
Unix malwares
Myth or reality ?

2

Agenda

1. A bit of history on Unix malwares

2. Why should anyone want to target Unix
platforms and users ?

3. A proof of concept “malware framework”

4. Back to the future

3

A bit of history

● Who was targeted ?
● Not users but servers: Morris worm, Lion, Ramen

● Why ?
● Unix servers had more bandwidth and resources, were

easier to find and attack

● Nevertheless, users have been threatened:
● BitchX, trojaned fragroute/dsniff/irssi … and a few

months ago infected gnome screensavers packages
● Breaking news : unreal ircd had its code backdoored on

November 2009, it was only discovered in June 2010 ;)

4

Why ?

● Unix users are more likely to be suspicious, aren't
they ?

● There are very few desktops running Linux, BSD,
Solaris (did you just say Mac OS X ?)

● But...
● Who reads source code today ?
● Did you recently have a look at any tarball and/or

package installation scripts or do you treat packaging
systems as black boxes ?

5

Why ?

● Most unix “home users” are geeks who have a
premium Internet connection and sometimes
powerfull boxes.

● User are (too ?) confident:
● Why would a free software dveloper put some kind of

backdoor in his code ?

● Unix users tend to connect to other boxes using
SSH:
● Using keys and/or capturing passwords, succesfull

spread is easier.

6

A proof of concept framework

● Infection vector chosen: packaging systems
● Packages installation requires root privileges

(aptitude/yum/pkgadd/make/whatever)
● Different ways of doing things: volatile or persistent
● No security checks done, user is only warned when

installing non-PGP signed packages
● MD5 and/or SHA checksums mismatch doesn't prevent

package installation

7

A proof of concept framework

● Malicious actions
● Modifying installed packages files
● Overwrite files from not installed yet packages
● Trigger malicious code on install/uninstall

Let the fun begin ! :)

8

A proof of concept framework

● How to choose the package to infect ?
● Check for software popularity :

– Freshmeat.net has such graphs
– Check popcon.debian.org
– Opensuse has a similar project : popcorn

● Check for dependency

– apt-cache dotty apache2 | dot -T png | display
– debtree
– rpmgraph

9

The classical tarball

● Most projects use the autoconf/automake
toolchain.
● Malware can be embedded in the “configure” script or

even Makefile.
● The configure script is run with standard user privileges

● “make install” is not :-)

● Remember the fragroute/dsniff/irssi trojaned tarballs

10

Debian packages

● Many many ways:
● Targets: preinst and postinst scripts
● But also prerm and postrm :-)
● update-rc.d to deploy malicious init scripts

● The pre* and post* scripts are kept inside
/var/lib/dpkg/info:
● Need to cover tracks to prevent the admin from

discovering things

11

Debian packages

● Packages are signed using GPG
● APT tools warn users about packages downloaded from

untrusted repositories

● Hopefully there's a way to 'circumvent' this protection :D
Google used the trick in its chrome debian package

WARNING: untrusted versions of the following packages will be installed!

Untrusted packages could compromise your system's security.
You should only proceed with the installation if you are certain that
this is what you want to do.

 untrusted_package_name

Do you want to ignore this warning and proceed anyway?
To continue, enter "Yes"; to abort, enter "No":

12

Debian packages
● Google's trick:

● Postinst script silently installs a new trusted GPG key

● Install Chrome, get a free trusted key you haven't heard
about !

Install the repository signing key (see also:
http://www.google.com/linuxrepositories/aboutkey.html)
install_key() {
 APT_KEY="`which apt-key 2> /dev/null`"
 if [-x "$APT_KEY"]; then
 "$APT_KEY" add - >/dev/null 2>&1 <<KEYDATA
-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: GnuPG v1.4.2.2 (GNU/Linux)

mQGiBEXwb0YRBADQva2NLpYXxgjNkbuP0LnPoEXruGmvi3XMIxjEUFuGNCP4Rj/a

$ sudo apt-key list

mQGiBEXwb0YRBADQva2Npub 1024D/7FAC5991 2007-03-08
uid Google, Inc. Linux Package Signing Key <linux-packages-keymaster@google.com>
sub 2048g/C07CB649 2007-03-08

13

RPM packages

● Malware friendly
● Targets: pre, post, preun and postun
● But also %verifyscript : use rpm verification

command to trigger infection
● What !? %triggerin an %triggerun: especially

useful to prevent HIDS from detecting a
malware

14

BSD

● Softwares are divived into two categories:
● Base system: the only way to add malware is to

compromise an official source repository
● Ports: there are mostly official mirrors :(

hopefully, one can still provide precompiled
packages ;)

15

Mac OS X

● Three different Unix packaging techniques:
● Fink: debian based
● Darwin ports: BSD-like
● Pkgsrc: netbsd-like

16

Solaris, HP-UX, AIX

● Solaris:
● packaging system is close to the one used in BSD

systems

● HP-UX:
● less and less used, but SWA seems vulnerable

● AIX:
● lpp: has preinst, postinst and postun style scripts
● RPM packages can be installed, even if it is

considered as third party

17

A PoC framework

● The malware injection lightweight
framework (MILF) aims at
● Injecting malicious shellscripts into packages
● Adding GPG key for unofficials repositories
● Circumventing host based IDS in the near

future ;)

18

A PoC framework

● MILF currently infects the following
packaging systems:
● Debian format
● RedHat Package Management (WIP)
● Classical tarballs

● HIDS evasion should be done through:
● The use of encoded scripts
● The flaws of softwares such as

SSI/rpmshield/whatever

19

A PoC framework

● A short demo !

20

Back to the future

● What if packaging systems coders have had
security in mind from the beginning ?

● Is there a need for antimalware on Unix ?
● NEED MOAR PWN2OWN :)))

21

Questions ?

	Title
	Long-term Goal
	Customer Wishes
	Fulfilling Customer Needs
	Cost Analysis
	Strengths and Advantages
	Slide 7
	Slide 8
	Next Steps of Action
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

