
Hunting rootkits with
Windbg v1.1Windbg v1.1

Frank Boldewin

Scope of this Talk

� In the next few slides the audience learns
how to hunt for rootkits with Windbg

� To get a good overview of the different ways
how rootkits hide itself from being
recognized several techniques from rootkits

2

recognized several techniques from rootkits
like Runtime2, Rustock.B, Alipop, Stuxnet as
well as TDL3 and TDL4 are introduced

� Of course the techniques used to detect a
special rootkit are not limited to the shown
cases. ;-)

� Prerequisites are a good understanding
about Windows internals and basic Windbg
skills

Finding SSDT hooks

� The SSDT is a data array in kernel memory,
that stores pointers to the native API
functions of Windows, e.g. NtCreateFile

� These functions are handled in NTOSKRNL

3

� Older rootkits used to hook some distinctive
functions to hide its files or registry entries
when queried from usermode

� Almost every run-of-the-mill antirootkit tool
is able to detect such hooks today

Finding SSDT hooks

� Viewing the SSDT manually

4

Finding Shadow SSDT hooks

� The Shadow SSDT is another array and stores
pointers to functions in the Win32k.sys

� To view its entries we first have to switch to
a GUI process context and reload the
symbols for the specific module

5

symbols for the specific module

!process 0 0 winlogon.exe

PROCESS 81ebf6f8 SessionId:

.process /p 81ebf6f8

.reload

Finding Shadow SSDT hooks

6

Finding Shadow SSDT hooks

� To find SSDT and Shadow SSDT hooks automatically we can
use a Windbg script from Lionel d'Hauenens of Laboskopia

7

Runtime2 Rootkit – Finding SSDT/Shadow SSDT hooks with a
Windbg script

8

Rustock.B Rootkit – SYSENTER_EIP hook

� The SYSENTER_EIP (MSR 0x176) usually points to
KiFastCallEntry to serve requests from the usermode
to access native functions in the SSDT

� This pointer gets hooked by the Rustock.B rootkit

� If Sysenter gets called Rustock checks in its own SDT

9

� If Sysenter gets called Rustock checks in its own SDT
table if a function is hooked or not. Non hooked
native functions have a null pointer. Hooked
functions have a pointer to its own handler.

� To avoid easy hook detections the Sysenter_EIP
address points to the same module (NTOSKRNL.EXE)
as KiFastCallEntry.

� It overwrites a textstring „FATAL_UNHANDLED_HARD_ERROR“
with a 5 bytes jump to its real rootkit code.

Rustock.B Rootkit – SYSENTER_EIP hook

10

Rustock.B Rootkit – SYSENTER_EIP hook

Another Laboskopia Windbg command shows us the
hook automatically

11

Rustock.B Rootkit – Finding hidden registry entries

� To find the hidden registry entries Rustock uses to
survive a reboot, we walk the windows hive with the
„!reg“ command and its parameters

� A hive is a logical group of keys, subkeys, and values
in the registry that has a set of supporting files +
backup copies

12

backup copies

� Hives are stored as files on disk

� Next to standard hives every user has his own hives
file

Rustock.B Rootkit – Finding hidden registry entries

� Table of standard hives and their supporting files

Registry hive Supporting files

HKEY_CURRENT_CONFIG System, System.alt, System.log, System.sav

13

HKEY_CURRENT_CONFIG System, System.alt, System.log, System.sav

HKEY_CURRENT_USER Ntuser.dat, Ntuser.dat.log

HKEY_LOCAL_MACHINE\SAM Sam, Sam.log, Sam.sav

HKEY_LOCAL_MACHINE\Security Security, Security.log, Security.sav

HKEY_LOCAL_MACHINE\Software Software, Software.log, Software.sav

HKEY_LOCAL_MACHINE\System System, System.alt, System.log, System.sav

HKEY_USERS\.DEFAULT Default, Default.log, Default.sav

Rustock.B Rootkit – Finding hidden registry entries

14

Rustock.B Rootkit – Finding hidden registry entries

15

Rustock.B Rootkit – Finding the Hidden Registry Entry

16

Rustock.B Rootkit – pIofCallDriver Hook

� Hooks at pIofCallDriver are often used to filter
special IRP requests to drivers

� Rustock filters any attempt to directly communicate
with NTFS.SYS or FASTFAT.SYS. These files are
hidden, can‘t be copied, nor overwritten or renamed

17

Rustock.B Rootkit – IDT hooks

� The Interrupt Descriptor Table (IDT) is a structure
which is used when dispatching interrupts

� Interrupts can interrupt an execution of a program to
to handle an event

� Interrupts could be a result of a hardware signal or

18

� Interrupts could be a result of a hardware signal or
software based using the INT instruction

� The IDT descriptor table can handle 256 entries

� The descriptor to the table can be written with the
instruction LIDT and read with SIDT

� Rustock hooks INT 2Eh, which is usually pointing to
KiSystemService, a Zw* functions dispatcher and
handler for usermode INT 2Eh calls on old hardware
not supporting fastcalls via the SYSENTER command

Rustock.B Rootkit – INT 2Eh

� Rustock hooks INT 2Eh to communicate between
usermode and kernelmode components

� The „IDT“ command shows us the pointer to the
handler. KiSystemService is ok, otherwise it‘s hooked

19

Alipop Rootkit – GDT Callgate

� A callgate is a mechanism in Intel x86 arch to change
privilege level of the CPU

� The Alipop rootkit installs such a callgate to execute
code with the highest privilege (Ring 0) from
usermode (Ring 3) without the need to have a driver,
e.g. by calling DeviceIOControl

20

e.g. by calling DeviceIOControl

� Callgate usage works by executing “call far ptr <addr>”

from usermode code

� Installation of the callgate is done by the bootkit part
of Alipop

� Other malware seen in the wild used
\Device\PhysicalMemory to install a callgate in the
GDT (works only on older windows versions)

ALIPOP Rootkit – GDT Callgate

21

ALIPOP Rootkit – GDT Callgate

22

TDL3 Rootkit – ATAPI IRP hooks

� The TDL3 rootkit usually infects the ATAPI driver
with a small loader for the real rootkit code in the PE
resource area of atapi.sys and changes the
entrypoint to its loader code

� The real rootkit part is being stored encrypted on
disk sectors

23

disk sectors

� The loader uses low level disk operations to read the
sectors, decrypts the mini TDL file system and starts
the real rootkit code

� To hide and protect its sectors TDL3 uses IRP
hooking in ATAPI.SYS

TDL3 Rootkit – ATAPI IRP hooks

24

TDL3 Rootkit – ATAPI IRP hooks

25

TDL3 Rootkit – Shared Memory structure (Kernel-/User mode)

� To share information with its usermode components
TDL3 uses the structure KUSER_SHARED_DATA

� This structure is accessable from kernel at address
0xFFDF0000 and is mapped to userspace at
0x7FFE0000

� Kernel mode has read/write access to this structure,

26

� Kernel mode has read/write access to this structure,
usermode has only read access

� At KUSER_SHARED_DATA+0308h (SystemCallPad)
TDL3 stores a pointer to an own structure

� This structure stores a bunch of things like
kernelbase, original ATAPI IRPs, TDL3 FS start, path
to its config file …

TDL3 Rootkit – Shared Memory structure (Kernel-/User mode)

27

TDL3 Rootkit – Shared Memory structure (Kernel-/User mode)

28

TDL3 Rootkit – TDL mini FS (file system)

29

TDL3 Rootkit – Traces in the system worker threads

� Drivers requiring delayed processing usually use a
work item, using IoQueueWorkItem with a pointer to
its callback routine

� When a system worker thread processes the queued
item it gets removed and the callback gets invoked

30

� System worker threads run in the system process
context (PID 4)

� TDL3 rootkit is using work items as well

� Whenever work items have been processed or other
system threads have been created this leaves traces
on the callstack

� As TDL3 does not belong to any known module, the
process thread view informs us about this problem

TDL3 Rootkit – Traces in the system worker threads

31

TDL4 Rootkit – Finding TDL4 with its invalid device object

32

TDL4 Rootkit – ATAPI DriverStartIO hook

� TDL4 rootkit hooks the ATAPI driver as well, but in a
lower level way than its precedessor

� As more and more tools were easily able to dump its
files even from usermode via
IOCTL_SCSI_PASS_THROUGH_DIRECT calls directly
to the port device, TDL4 changed the hook method to

33

to the port device, TDL4 changed the hook method to
DriverStartIO

� This makes it harder to dump the TDL4 files

TDL4 Rootkit – ATAPI DriverStartIO hook

34

TDL4 Rootkit – Finding the Kernel Callback with a Windbg script

� Rootkits often use kernelcallbacks to get notified
when files are loaded, processes or threads are
created as well as Registry events occur.

� TDL4 installs a kernelcallback to inject its usermode
payload in distinctive windows processes

35

TDL4 Rootkit – Dropper dumping after TDL4 infection (before
reboot)

36

TDL4 Rootkit – Dumping injected user mode payload

37

TDL4 Rootkit – Finding inline hooks in user mode payload

38

Stuxnet Rootkit – IoRehisterFsRegistrationChange

� Stuxnet mrxnet.sys driver adds a new device object
and attaches to the device chain with the objecttype
\FileSystem (fastfat, ntfs, cdfs)

� A filesystem registration callback makes it possible to
attach to the device chain for each devobj managed by
these drvobjs

39

these drvobjs

� This makes it possible to control and intercept IRP
requests

Stuxnet Rootkit – IoRegisterFsRegistrationChange

40

Questions?

Thanks for good discussions and ideas

41

Michael Hale Ligh

EP_X0FF

Cr4sh

Matthieu Suiche

