
Open Capture the Flag 6 Whitepaper

The Open CTF Group

September 3, 2010



1 The Game
oCTF consisted of two types of challenges, vulnerable services and forensics
challenges. This format was chosen in an effort to expand the covered topics.
The scoring ran on five minute intervals, with flags for each service updated
at the end of each period. Vulnerable services were designed to be repeatedly
exploitable so as to encouraged teams to automate their attacks and score for
each interval. Scoring for services was based on standard values for challenge
difficulty rating, with a bonus of 10% given to the first team to exploit each
challenge for a given scoring interval. Forensics challenges had a single flag
hidden in each and were given one-time values based on the challenges relative
difficulty. These values depreciated over time, with a 5% reduction from the
initial maximum base value every 15 minutes until reaching a plateau of 50%.

2 The Infrastructure
The network was laid out to provide a robust infrastructure that could (hope-
fully) stand up to layer 2 attacks and stop teams from making the game
unplayable to other teams as had occurred in prior games. The network
consisted of 26 VLANs, including separate ones for game administration, the
game servers, and one for up to 24 participating teams. These were used
to separate the traffic between teams and minimize impact to those players
newer to the world of Capture the Flag-style games and perhaps not ready
or anticipating attacks from other teams. The main hardware used was not
a Layer 3 switch, so a separate router was required to direct all the traffic
across the VLANs to make the network actually function. A custom Live
CD was developed based on Fedora 13, which served as the router for the
game. This included safeguards such as read-only file system access and the
ability to simply reboot in the event the machine was ever compromised. As
a default rule all traffic was dropped; then white listing was done to allow
traffic to be routed to specific destinations (the game VLAN). Teams were
isolated and not allowed to communicate via the network with each other
or the game administration VLAN. Only traffic originating from the game
network was routed to the players. The game VLAN was configured to be
reachable from anywhere, and the admin network was only exposed to the
game VMs.

In order to minimize downtime and require as little physical equipment

1



possible, the decision was made to virtualize the entire game. Virtualization
allowed us to snapshot machines in a known working state. This would
allow images to simply be reverted to a snapshot in the case a machine was
broken or compromised in a way that disrupted the game. For virtualization
technology VMware ESXi 4 was chosen due to it being a relatively lightweight
hypervisor-only system, which we had hoped would help performance and be
one of the more secure options available.

Each virtual machine was a customized install of Slackware 13.1 which
was chosen for its simplicity, security history, and vanilla packages. The
virtual machines were kept as bare as possible to minimize the chance of
someone having a working out-out-box exploit and to make local exploitation
more difficult. Development tools were specifically left off requiring that
an attacker compile (or build on Slackware 13.1) and upload their binaries
rather than being able to readily build tools on the machines. Sane limits
were placed in an effort to help prevent players from performing DoS attacks
on the machines such as fork bombs. In order to make the systems more
secure and push new versions of challenges more quickly, home directories
were mounted as NFS shares with read-only access. A standard UID and GID
scheme persisted across all game machines in order to ensure that permissions
were kept and mounts were only allowed from systems within the actual game
servers VLAN.

3 Services

2speed (20 pts.)
2Speed was a SUID binary, which would copy the value in the key file to a
temporary file that was world readable and then remove it. This creates a
race condition in that the file exists on the system, where it can be read by
an attacker if they were to know the file name and read the file before it was
removed. Players would have to reverse engineer the binary to figure out the
naming scheme, which introduced a known value vulnerability as well. Since
the random number generator is seeded with the current time, an attacker
could predict the file name without having to simply checking all of the files
within /tmp.

2



Blooper Surf (10 pts.)
Blooper Surf was designed to force players to write a port knocker, under the
guise of racing an ascii art booper around to collect 8 red coins. Teams were
given a few clues as to what their objective was, including the last octet of
their IP address encoded in octal placed into the head of their blooper. They
were also given an octal number (with no indication of the encoding) that was
to be the first location of an available red coin or port to knock on. The ports
were chosen at random each time from a range of 51,000 to 61,000 ensuring
that the encoded values were not valid base 10 port numbers. Ports were
only opened for 3 seconds each, but only after each completed checkpoint
was reached by a player sending their unique blooper to the requested port.
After a successful run reaching the finish line port, a flag file was read and
dumped as part of the output.

Cipher Block Speed Run (20 pts.)
Cipher Block Speed Run implemented the XECrypt encryption algorithm.
Upon connection it presented players with a brief message followed by dump
of encrypted data. In order to get the flag, the attackers needed to brute
force a key from the cipher text and submit a response within ten seconds.
To add difficulty to this challenge, the encrypted plaintext was chosen at
random from one of six messages of different lengths. If the response was not
within 10 seconds, the player received a taunt and the connection closed. If
the key submitted evaluated as correct, the service would respond with the
flag.

Dr. Mario (10 pts.)
Dr. Mario was an example of poor input checking and resulting command
injection vulnerability. At first connect the service prompted an attacker for
the name of a patient. This input text would then be reversed and XORed
against 0x45. The attacker would then be presented with the result asking if
it was correct. Unrecognized responses or indicating the input was incorrect
would each result in the respective taunt, and the connection dropped. If a
reply in the affirmative were received, the service would check to see if the
first part of converted input, delimited by semicolon, tried to match a name in
the known list. Names were chosen based on common Mario characters and

3



were an easy guess. If the name existed, the service would hand off input to
a program executed locally which would then cat the sanitized input string.
Due to the very limited input checking an attacker could chain commands
together to explore the local file system and eventually read the flag file.

Thumbd (20 pts.)
Thumbd was similar to a finger process. When connected, it would prompt
an attacker for a user id. The service would look up the user id and respond
with the user name associated with it. The get input function was vulnerable
to a simple stack-based buffer overflow from the use of the gets function to
read input rather than one of the various bounds checking input functions.
By overflowing the stack one could easily gain control of EIP and return into
shellcode. ASLR was disabled allowing the attacker to easily use a generated
reverse bind shell or any number of other payloads to obtain the flag.

TWSS (30 pts.)
TWSS unfortunately never worked in the live game due to networking issues,
but was a hackback service disguised as an SSH client. By modifying the
client and servers authentication tokens and version, the normal ssh client was
rendered useless and unable to connect. The client, which was distributed,
was stripped and statically compiled to allow all teams to be able to run it,
regardless of their *nix flavor and library versions. The point of the challenge
was to reverse engineer the client and create a working one which didnt have
a reverse bind shell in it. A separate program called broadcaster was running
for each scoring interval changing the authentication credentials and sending
out a broadcast packet with the new password in it. Teams would have to
listen on the wire for the packet and pull the password out for each scoring
interval to log in and grab the flag.

Warp Zone (30 pts.)
Warp Zone was designed as a reversing challenge that contained a simple
format string exploit. Teams were given a stripped binary which contained
a main function susceptible to format string exploitation, and an unused
statically declared function that would cat the flag file had it been called.

4



Reversing was eased by minimizing functionality of the service, network con-
nections and input/output pipes were handled by a neutral program. Unfor-
tunately due to a compiler optimization that showed up in the game binary
which skipped dtors if no dtors functions were declared, this program was
never exploited as intended, and although a corrected binary was eventually
created once the problem had been identified, the game ended before live
exploitation could take place.

4 Forensics

Forensics 100 (500 pts.)
Forensics 100 was a gif concatenated with a zip file. Inspection of the file
with strings revealed a fairly obvious clue that this was the case. Due to
the preservation of gif file format information in the header and the zip
information in the footer, the zip file could easily be extracted. The zip
contained a tiff image that included the flag value.

Forensics 200 (1000 pts.)
Forensics 200 was a bitmap image. By zooming into Marios mouth a 1 pixel
high strip of colors could be seen on the tongue. Converting each pixels
hexadecimal color code to ASCII characters revealed the flag.

Forensics 300 (1500 pts.)
Forensics 300 was a discolored image from the original Super Mario Bros. If
closely inspected text could be seen in the bottom right corner. By viewing
only the alpha channel the flag became clear and readable.

Forensics 400 (2000 pts.)
Forensics 400 was an OS X .dmg image which contained a deleted jpeg file.
This could be recovered by inspecting the image with any number of well
known forensics tools. In the jpeg there was EXIF data, which contained a
base64 encoded string as the Author value. Decoding this resulted in flag.

5



5 Conclusion
Throughout the game a number of attacks were performed that we believe
are worthy of mention, some of which resulted in bonus points. The attack
which resulted in the largest impact on the game was from team Neg 9, who
was able to successfully gain root access to one of the game VMs through
exploiting the 2speed challenge. A write-up explaining their attack can be
found at https://neg9.org/wiki/DC18-oCTF-2speed-local-root. The
second attack which drew our attention was from team Vand, who would
have been able to gain full read access to any of the home directories by
using a reverse SSH tunnel through one of the game nodes, had we not
properly secured our NFS server.

Finally, we would like to thank everyone for playing this year; we hope
that the game was enjoyable and challenging. Also, we are grateful for ev-
eryones patience throughout the first day as the network and scoring system
was fixed and the game brought to a playable state. We look forward to
hosting an even better game next year with more challenges, space for more
teams, and a more robust backend.

6

https://neg9.org/wiki/DC18-oCTF-2speed-local-root

	The Game
	The Infrastructure
	Services
	Forensics

