
Attacking the OutGuess
Jessica Fridrich

Dept. of ECE
SUNY Binghamton

Binghamton, NY 13902-6000
001-607-777-2577

fridrich@binghamton.edu

Miroslav Goljan
Dept. of ECE

SUNY Binghamton
Binghamton, NY 13902-6000

001-607-777-5793

mgoljan@binghamton.edu

Dorin Hogea
Dept. of Computer Science

SUNY Binghamton
Binghamton, NY 13902-6000

001-607-777-5689

dhogea1@binghamton.edu

ABSTRACT
In this paper, we describe new methodology for developing
steganalytic methods for JPEG images. The proposed framework
can be applied to virtually all current methods for JPEGs
including OutGuess, F5, and J-Steg. It also enables accurate
estimation of the length of the embedded secret message. The
methodology is demonstrated on OutGuess 0.2.

Categories and Subject Descriptors
Multimedia processing and coding, including multimedia content,
analysis, content-based multimedia retrieval, multimedia security,
audio/image/video processing, and compression

General Terms
Algorithms, Design, Performance, Security

Keywords
Steganography, steganalysis, JPEG, attack, OutGuess, F5

1. INTRODUCTION
The JPEG format is currently the most common format for storing
image data. It is also supported by virtually all software
applications that allow viewing and working with digital images.
Recently, several steganographic techniques for data hiding in
JPEGs have been developed: J-Steg [1], JP Hide&Seek [1], F5
[2], and OutGuess [3]. In all programs, message bits are
embedded by manipulating the quantized DCT coefficients. J-
Steg and OutGuess embed message bits into the LSBs of
quantized DCT coefficients.
J-Steg with sequential message embedding is detectable using the
chi-square attack [4]. J-Steg with random straddling as well as JP
Hide&Seek are detectable using the generalized chi-square attack
[5,6]. The chi-square attacks are not effective for F5 (F5 does not
flip LSBs but decrements coefficient values by 1 if necessary) and
for OutGuess (OutGuess preserves first-order statistics). The

universal blind detectors pioneered by Farid [7] seem to be able to
detect virtually every steganographic method after appropriate
training on a database of stego and cover images, but the blind
detectors do not allow accurate estimation of the embedded
messages and it is not clear how their performance will scale to
more diverse databases. A successful attack on the F5 algorithm
has been recently reported in [8]. One important advantage of this
approach is that one can obtain an accurate estimate for the length
of the embedded secret message.
In the next section, we formulate a general methodology for
developing steganalytic methods for JPEGs. We demonstrate the
concepts by presenting a detection method for OutGuess in
Section 3. The paper is concluded in Section 4, where we briefly
describe how the same methodology can be used for detection of
other programs, such as the F5 and J-Steg.

2. GENERAL METHODOLOGY
For most steganographic techniques, it is usually relatively easy
to identify a macroscopic quantity S(p) that predictably changes
(for example, monotonically increases) with the length of the
embedded secret message p. Let us assume that the functional
form of S is known or can be guessed from experiments. The
function S may depend on several undetermined parameters. We
can attempt to determine those parameters by estimating some
extreme values of S, such as S(0) (S for the cover image) or
S(pmax) (for the stego image with maximal message). Once the
parameters have been determined, one can calculate an estimate
of the unknown message length q by solving the equation S(q) =
Sq for q, where Sq is the value of S for the stego image under
investigation. An important advantage of this approach is that the
detection is threshold-free and an estimate for the length of the
secret message can be obtained.
In this paper, we show what macroscopic quantities are useful for
detection and how to obtain an estimate of the cover image
steganographic methods that embed message bits in quantized
JPEG DCT coefficients. We crop the (decompressed) stego image
by 4 pixels and recompress it using the quantization table of the
stego image. Because of the cropping, the newly calculated DCT
coefficients will not exhibit clusters due to quantization. Also,
because the cropped stego image is visually similar to the cover
image, macroscopic characteristics, such as S, will be
approximately preserved. This JPEG image will then be used to
determine the parameters in the functional form of S.
In the past, we have successfully applied this approach to the F5
algorithm. Because the F5 modifies the histogram of DCT
coefficients in a predictable manner, we chose the individual

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference ’00, Month 1-2, 2000, City, State.
Copyright 2000 ACM 1-58113-000-0/00/0000…$5.00.

histograms of DCT coefficients as the macroscopic quantity S.
Details of this approach can be found in [8].
Because OutGuess preserves the first order statistics (histogram),
we cannot use the same approach. Instead, we turned our attention
to the measure of discontinuities along the boundaries of 8×8
pixel blocks. Also, we utilize the fact that the embedding process
and the correction step are simple LSB flipping operations.

3. BREAKING OUTGUESS
The OutGuess steganographic algorithm was proposed by Neils
Provos [3] to counter the statistical chi-square attack [4]. In the
first pass, similar to J-Steg, OutGuess embeds message bits along
a random walk into the LSBs of coefficients while skipping 0’s
and 1’s. After embedding, the image is processed again using a
second pass. This time, corrections are made to the coefficients to
make the stego image histogram match the cover image
histogram. Because the chi-square attack is based on analyzing
first-order statistics of the stego image, it cannot detect messages
embedded using OutGuess. Provos also reports that the
corrections are made in such a manner to avoid detection using
his generalized chi-square attack [5].
In our attack on OutGuess, we use the fact that the embedding
mechanism in OutGuess is overwriting the LSBs. This means that
embedding another message into the stego image will partially
cancel out and will thus have a different effect on the stego image
than on the cover image.
In the rest of this text, we will work with grayscale images.
Extension to color images should be obvious. Let hd , d = … , –2,
–1, 0, 1, 2, … be the histogram of the quantized DCT coefficients
from the cover image. Let P be the total number of coefficients
different from 0 and 1:

∑
≠
≠=

1
0

i
i ihP .

We will call those coefficients usable coefficients. OutGuess first
calculates the maximal length of a randomly-spread message that
can be embedded in the image while making sure that one will be
able to make corrections to adjust the histogram to its original
values. After embedding m pseudo-random bits in the LSBs of the
cover-image in randomly selected usable coefficients, the
histogram values (h2i, h2i+1) will be changed to

h2i → h2i − α(h2i − h2i+1),
h2i+1 → h2i+1 + α(h2i − h2i+1),

where 2α = m/P. Let us assume that, for example, h2i > h2i+1.
After embedding, there must be enough coefficients with value
2i+1 to make necessary corrections. Thus, h2i+1 − 2α h2i+1 = α (h2i
− h2i+1), which gives

ii

i
i hh

h

212

12
+

=
+

+α .

This condition must be satisfied for all histogram pairs (h2i, h2i+1).
Thus, the maximal message size that can be embedded in the
image with appropriate corrections is 2aP, where a = mini αi.

After embedding a message of size 2paP bits, 0≤p≤1, in the cover
image (we call such a message a p-percent message), due to the
correction step, the number of changes for values 2i and 2i+1 are

both pah2i, assuming h2i > h2i+1. Thus, the total number of changes
(both due to embedding and correction) is

,2
0 22

0
2 ∑∑ ≠≠

−+==
i ii

i
ip hhpapaPhpaT (1)

where ih2 = max(h2i, h2i+1) and h2i+1 = min(h2i, h2i+1) for each i.
The first term is due to message embedding, the second term due
to corrections.
Because OutGuess introduces random changes into the quantized
coefficients, the spatial discontinuities at the boundaries of all 8×8
blocks will increase. We will measure the discontinuity using the
blockiness measure (3). For detection, we will inspect the increase
of this blockiness measure after embedding a 100% message
again using OutGuess. This increase will be smaller for the stego
image than for the cover image because of the partial cancellation
of changes. This difference will form the basis of our message
length estimation.
To mathematically analyze the proposed idea, we first calculate
the number of changes after consecutive embedding of two
messages in one image. Given a set of n integers, if we randomly
select a subset S consisting of s integers and flip their LSBs and
then do the same again with another randomly chosen subset R
with r integers, the number of integers with flipped LSBs will be
equal to |S ÷ R|, where the symbol “÷” denotes the symmetric set
difference and |A| is the cardinality of A. This is because the
integers in S∩R will be flipped twice and thus unchanged.
Consequently, the total expected number of integers with flipped
LSBs will be r + s – 2rs/n.
Therefore, if we embed an additional message of size 2qaP,
0≤q≤1, into the image that already holds 2paP bits, the expected
values of changes for the values 2i and 2i+1 are

 pa ih2 + qa ih2 – 2pqa2
ih2 = a ih2 (p + q– 2pqa) and

 pa ih2 + qa ih2 – 2pqa2 2
2ih /h2i+1 = a ih2 (p + q – 2pqa ih2 / h2i+1) ,

respectively. Thus, the total number of expected changes in the
cover image after consecutive embedding of two independent
randomly-spread messages of size 2paP and 2qaP bits, 0 ≤ p, q ≤
1, is

∑ ≠

+−+=

0 2

2
2 12

i i

i
ipq h

hapqqphaT . (2)

The measure of blockiness at the block boundaries will be
calculated using the following formula

 ∑ ∑
∑ ∑

−

= = +

−

= = +

−+

+−=

8/1

1 1 18,8,

8/1

1 1 ,18,8

N

j

M

i jiji

M

i

N

j jiji

gg

ggB
 (3)

where gij are pixel values in an M×N grayscale image and x
denotes the integer part of x.
We have a compelling experimental evidence that the blockiness
B increases linearly with the number of DCT coefficients with
flipped LSBs. The slope of this linear dependency is largest for
the cover image and becomes smaller for an image that already
contains a message. We use this slope as the macroscopic quantity
S to estimate the message length.

The detection will consist of the following steps:
1. Decompress the stego image, calculate its blockiness

and denote Bs(0).
2. Using OutGuess, embed the maximal length message in

the stego image (2aP bits), decompress, calculate the
blockiness, and denote Bs(1). Calculate the slope S =
Bs(1) – Bs(0).

3. Crop the decompressed stego image by 4 columns. This
image will be the baseline image that we will use to
calibrate the slope. Compress the baseline image using
the same JPEG quantization matrix as in the stego
image. Decompress to the spatial domain and calculate
its blockiness B(0).

4. Using OutGuess, embed the maximal length message in
the cropped image and calculate the blockiness B(1).

5. Use the embedded image from Step 4 and, again, using
OutGuess, embed the maximal length message in it
denoting its blockiness B1(1).

6. Calculate the secret message length using Equation (4)
(see the derivation below)

The slope S0 = B(1) – B(0) is what we would expect for the
original cover image (p = 0). The slope S1 = B1(1) – B(1) is what
we would obtain for an image with maximal embedded message
(p = 1). The slope S = Bs(1) – Bs(0) for the stego image will be
somewhere in between these two slopes, S∈[S1,S0] corresponding
to an unknown message length p. We use linear interpolation to
obtain the formula for p, S = S0 – p(S0 – S1), which gives us

10

0
SS
SSp

−
−

= . (4)

The linear interpolation and Equation (4) can be justified using
Equation (2) for the number of changes. Because the blockiness is
a linear function of the number of DCT coefficients with flipped
LSBs, we can write B(p) = c + dTp, where Tp is the number of
coefficients with flipped LSBs after embedding a message of
length 2paP bits, and c and d are constants. Using (2) we can
write

+−=−=−=

=−=−=

+−=−=−=

∑
∑
∑

≠

≠

≠

i

i
i ipp

i i

i

i
i i

h
h

aphadTTdBsBsS

hadTTdBBS

h
hahadTTdBBS

2

2
0 201

0 200100

2

2
0 210111

112)()1()1(

2)()0()1(

112)()1()1(1

which, after simple algebra, confirms Equation (4). Equation (4)
generally provides an accurate estimate of the secret message
length. However, there are some situations when a large error
may occur. This happens when the image sent to OutGuess is
already a JPEG file. OutGuess always decompresses the cover
image to the spatial domain and then recompresses it using a

specified quality factor. The message is then embedded into this
recompressed image by modifying the LSBs of DCT coefficients.
If the quality factor Qc of the cover image is different from the
quality factor for the stego image Qs , the stego image is double-
compressed (double quantized) and can have very singular
properties in the frequency domain, such as a “jagged” DCT
histogram. The baseline image obtained by cropping and
recompressing the stego image will have macroscopic
characteristics that correspond to the cover image but not to the
double-compressed image. This may cause a large error especially
when Qc < Qs. An obvious remedy to this is to try to recognize the
fact that the stego image has been double compressed and then
estimate the original quality factor Qc. Fortunately, OutGuess
preserves the histogram and this helps us to recover Qc. Thus, in
the final version of the detection algorithm, Step 3 is replaced
with:
3’. Crop the decompressed stego image by 4 columns. Compress
the cropped image using Qc , decompress, and recompress using
Qs – a process that effectively simulates what happens during
embedding. Decompress to the spatial domain and calculate the
blockiness B(0).
There are probably many ways how to estimate the quality factor
Qc from the stego image. We opted for the following simple
algorithm. Let hd (i, j) is the histogram of values of the (i, j)-th
DCT mode for the stego image and let hd (i, j, Q) is the same for
the cropped stego image that has been compressed using the
quality factor Q, decompressed and recompressed using the stego
image quality factor Qs. We calculate Qc as the quality factor that
minimizes the difference between hd (i, j, Q) and hd (i, j) for those
DCT modes (i, j) that correspond to the lowest-frequency DCTs
(1,2), (2,1), (2,2) (the mode (1,1) is the DC term):

∑ ∑ −=
),(

2),,(),(minarg
ji d ddQc QjihjihQ .

We have tested this algorithm on 70 test grayscale 600×800 JPEG
images with quality factors ranging from 70 to 90 and a fixed
stego image quality factor Qs = 80. In all but four cases we
estimated the cover image quality factor correctly.
The same database of images was used for evaluation of the
performance of our detection method. Among the 70 test images,
24 of them were processed using OutGuess with message sizes
ranging from the maximal capacity to zero. Because the detection
algorithm contains randomization, we have repeated the detection
10 times for each image and averaged the p values (4). The results
are shown in Figure 1. On the y axis is the relative number of
changes due to embedding Tp/aP (see Equation (1)) and on the x
axis is the image number. Assuming the distribution of the
difference between the estimated and actual values is Gaussian,
the estimation error is −0.0032 ± 0.0406. From our experiments
with Equation (1) on test images, we determined that the number
of changes due to the correction step is about 1/3 of the changes
due to message embedding. Thus, on average the total number of
changes due to embedding m bits is Tp = m/2 (1+1/3).
Consequently, the error for the estimated message length m is
−0.48 ± 6 % of total capacity.

Figure 1. The actual relative number of changes Tp/aP (circles) compared to the calculated number of changes (triangles) for 70

test JPEG images resized to 600×800 pixels obtained using a digital camera Kodak DC 290

4. CONCLUSION
In this paper, we describe a threshold-free detection methodology
for attacking steganographic methods that embed data by
modifying quantized DCT coefficients. The detection starts with
identifying a macroscopic quantity S(p) that predictably changes
with the length of the embedded message. We show how to
determine the parameters in S by calculating S(0) and S(1) for an
approximation to the cover image obtained by cropping the stego
image and recompressing it. Using the values S(0) and S(1), it is
possible to calculate an estimate of the length of the embedded
message p. For OutGuess, we take the increase in spatial
blockiness as a function of p as the macroscopic quantity S. For
the database of 70 grayscale images, the estimated relative
number of modifications due to embedding is quite close to the
actual numbers with the standard deviation for the error of 4% of
the total image capacity.
The detection methodology is based on the assumption that the
macroscopic quantity S behaves approximately the same for the
cover image and the cropped recompressed stego image.
Although, this assumption has been verified experimentally, it
deserves a more formal mathematical approach. It would be
especially useful to automatically detect cases when this
assumption is not satisfied and thus the result of the detection may
be inaccurate.
For F5, we can take the individual histograms of low-frequency
DCT coefficients as the quantity S (for details, see [8]). For J-Steg
(including the version of J-Steg with random straddling), one can
also use the histogram because it changes predictably with the
length of the embedded message.
One of the lessons learned from this paper is that in order to
develop a high-capacity steganographic method for JPEGs, one
needs to avoid making predictable changes to some macroscopic
characteristics of the JPEG file. However, this task seems to be
quite difficult if we insist on embedding one bit in each non-zero
DCT coefficient. Also, another lesson is that one should abandon
the concept of LSB flipping for embedding and instead use
incrementing/decrementing the coefficient values as already
pointed out in [2].

5. ACKNOWLEDGMENTS
The work on this paper was supported by Air Force Research
Laboratory, Air Force Material Command, USAF, under a
research grant number F30602-02-2-0093. The U.S. Government
is authorized to reproduce and distribute reprints for

Governmental purposes notwithstanding any copyright notation
there on. The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily
representing the official policies, either expressed or implied, of
Air Force Research Laboratory, or the U. S. Government.

6. REFERENCES
[1] Steganography software for Windows, http:

//members.tripod.com/steganography/stego/ software.html

[2] Westfeld, A. and Pfitzmann, A. High Capacity Despite
Better Steganalysis (F5–A Steganographic Algorithm). In:
Moskowitz, I.S. (eds.): Information Hiding. 4th International
Workshop. Lecture Notes in Computer Science, Vol.2137.
Springer-Verlag, Berlin Heidelberg New York, 2001, pp.
289–302

[3] Provos, N. Defending Against Statistical Steganalysis. Proc.
10th USENIX Security Symposium. Washington, DC, 2001

[4] Westfeld, A. and Pfitzmann, A. Attacks on Steganographic
Systems. In: Pfitzmann A. (eds.): 3rd International
Workshop. Lecture Notes in Computer Science, Vol.1768.
Springer-Verlag, Berlin Heidelberg New York (2000), pp.
61−75

[5] Provos, N. and Honeyman, P. Detecting Steganographic
Content on the Internet. CITI Technical Report 01-11, 2001

[6] Westfeld, A. Detecting Low Embedding Rates. 5th
Information Hiding Workshop. Nooerdwijkerhout,
Netherlands, Oct. 7−9, 2002

[7] Farid, H. and Siwei Lyu. Detecting Hidden Messages Using
Higher-Order Statistics and Support Vector Machines. 5th
Information Hiding Workshop, Noordwijkerhout,
Netherlands, Oct. 7−9, 2002

[8] Fridrich, J., Goljan, M., and D. Hogea. Steganalysis of JPEG
Images: Breaking the F5 Algorithm. 5th Information Hiding
Workshop, Noordwijkerhout, Netherlands, Oct. 7-9, 2002

[9] Fridrich, J., Goljan, M., and Hogea, D.: New Methodology
for Breaking Steganographic Techniques for JPEGs.
Submitted to SPIE: Electronic Imaging 2003, Security and
Watermarking of Multimedia Contents. Santa Clara,
California, 2003

