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Abstract

This paper discusses the Address Resolution Protocol
(ARP) and the problem of ARP cache poisoning. ARP cache
poisoning is the malicious act, by a host in a LAN, of in-
troducing a spurious IP address to MAC (Ethernet) address
mapping in another host’s ARP cache. We discuss design
constraints for a solution: the solution needs to be imple-
mented in middleware, without access or change to any
operating system source code, be backward-compatible to
the existing protocol, and be asynchronous.

We present our solution and implementation aspects of
it in a Streams based networking subsystem. Our solution
comprises two parts: a “bump in the stack” Streams module,
and a separate Stream with a driver and user-level appli-
cation. We also present the algorithm that is executed in
the module and application to prevent ARP cache poisoning
where possible, and detect and raise alarms otherwise.

We then discuss some limitations with our approach and
present some preliminary performance numbers for our im-
plementation.

1. Introduction

The Address Resolution Protocol (ARP) [5, 9] is used by
hosts on a Local Area Network (LAN) to find a link layer
address given a network layer address. In the context of this
paper, a network layer address is an IP [6] address, and a
link layer address is an Ethernet address. This assumption
is not necessary for the issues in this paper to be valid.

Hosts on a LAN maintain the IP address to Ethernet
address mappings in a local table called an ARP cache.
A mapping may be dynamic: the entry corresponding to
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the mapping is removed after a certain time-period unless
refreshed.

ARP cache poisoning is the act, by a malicious host in
the LAN, of introducing a spurious IP to Ethernet address
mapping into another host’s ARP cache. Some specific
examples of ARP cache poisoning are discussed in [12].

This paper discusses ARP cache poisoning and specifies
the context and design constraints for a solution. It then
presents a solution that satisfies those design constraints
and discusses the security and performance properties of the
solution.

The remainder of this paper is organized as follows. The
next section discusses ARP and the problem of ARP cache
poisoning. Section 3 discusses the design constraints and
context for a solution. The context for the solution is an
operating system that uses the Streams paradigm for its net-
working subsystem. Section 4 presents the solution. Section
5 discusses some disadvantages and shortcomings with our
approach. Section 6 presents some perfunctory performance
studies. We conclude in section 7.

2. ARP and ARP Cache Poisoning

In this section, we briefly discuss the Address Resolu-
tion Protocol (ARP) [5, 9] and what it means for a host’s
ARP cache to be poisoned. We also discuss various attack
scenarios and special cases in the use of ARP.

2.1. ARP

We adopt the scenario of hosts in a LAN communicating
using the TCP/IP suite [6, 7] over a shared Ethernet. IP
packets need to be encapsulated in Ethernet frames before
they can be transmitted. Hosts are identified at the IP layer
with an IP address, and at the Ethernet layer with an Ethernet
address. We assume that there is a one-to-one mapping
between the set of IP addresses and the set of Ethernet



addresses for the LAN. This is necessary for hosts to be
uniquely identified, both at the IP layer and at the Ethernet
layer.

Before an IP packet can be encapsulated in an Ethernet
frame, the sender needs the recipient’s Ethernet address so
the Ethernet frame can be constructed. Given the destina-
tion IP address, ARP is used to find the Ethernet address
corresponding to that IP address. ARP is employed when
static configuration of the IP to Ethernet address mappings
in each host in the LAN is not feasible or preferable.

Figure 1. The format of an ARP frame when
used on an Ethernet. This figure is adapted
from [9].

Figure 1 shows the format of an ARP frame. ARP is a
request–response protocol. An ARP request is broadcast on
the LAN. The request contains the source IP and Ethernet
addresses and the target IP address.

Each host on the LAN checks the target IP address in a
request against its own IP address. If a host is configured
with the target IP address, it sends an ARP response with its
Ethernet address. The response is unicast: it is addressed
only to the sender of the request.

Proxy ARP may be employed in situations in which it is
desirable to have an ARP (proxy) server respond to all or
some resolution requests. The server responds on behalf of
the target host. Proxy ARP is discussed in [2].

2.2. ARP Cache Poisoning

ARP cache poisoning is the act of a malicious host in
the LAN, of introducing a spurious IP to Ethernet address
mapping in another host’s ARP cache. The effect of ARP
cache poisoning is that IP traffic intended for one host is
diverted to a different host, or to no host.

Following are ways in which a host’s ARP cache can be
poisoned. We have tested that these attacks do work against
the ARP implementations of Solaris 2.6 and 2.5.1, Windows
95, Windows 98, Window NT 4.0 server and workstation
and Linux (various versions of the kernel).

� Unsolicited Response: A response that is not associated
with a request will be honored by an ARP implemen-
tation. A malicious host only has to send a response
ARP packet on the LAN with a spurious mapping to

poison the ARP cache of the victim. This response can
be broadcast to poison the ARP cache of every host on
the LAN.

� Request: ARP implementations cache entries based on
requests they receive. That is, if host A sends out a
broadcast ARP request for host B, host C might cache
the mapping information about host A based on the
request host A sends out. An attacker only has to
pretend to be sending out a legitimate request to poison
the ARP cache of a victim.

� Response to a request: Rather than send an unsolicited
response, or a spurious request, a malicious host may
wait till a victim issues a request and send a spurious
response to that request. If another host (legitimately)
responds to the request, there is a race condition that
the malicious host may win. The response that is re-
ceived later will supersede the entry in the victim’s
cache corresponding to the response that is received
earlier.

� Request and response: A malicious host could send
out both a spurious request, and a spurious response
corresponding to that request. This may be used to
poison a victim’s ARP cache in the case that the victim
has a partial solution to the problem and “remembers”
a request: either its own, or from another host and only
caches a response to a request.

3. The Design Considerations and Context for
a Solution

We first discuss design considerations for a solution in
section 3.1. Then, in section 3.2 we discuss the Streams [8,
10] paradigm and the portion of the protocol stack of interest
to us implemented using that paradigm.

3.1. Design Considerations

The design considerations for a solution to the problem
of ARP cache poisoning discussed in the previous section
are:

� Backward Compatible: we only want to protect the
ARP caches of some of the hosts in a LAN. These could
be “special” machines such as routers. All other hosts
in the LAN continue to use ARP unaware that some of
the hosts are protecting their respective caches.

� Asynchronous: we want a solution that does not in-
volve checking ARP cache consistency every few units
of time. A solution that involves such a technique
would leave us with the problem of deciding what is
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an appropriate time interval between checks for con-
sistency.

� Middleware: we do not want to have access to source
code for ARP or other components of the networking
subsystem to be able to develop or deploy the solu-
tion. A middleware solution is preferred, by which
some components are introduced into the networking
subsystem without any change to existing components.
The Streams paradigm, discussed in section 3.2, facil-
itates such a solution.

The design constraint for backwards compatibilitymeans
that a “conventional” cryptographic solution of establishing
a public key infrastructure for the LAN, and attaching a
message authentication code with every ARP packet, cannot
be used. We do not seek cryptographically strong security,
but we still want confidence in the validity of entries in a
host’s ARP cache.

Where possible, we want to prevent the host’s ARP cache
from being poisoned. For situations in which we are unable
to perform prevention, we would like to detect and respond
to attempts to poison the ARP cache. In discussing our
solution in section 4, we discuss our choice of situations for
prevention versus detection and response.

Figure 2. The Common Open IP Platform
(COIPP) and some of its components. The
COIPP is an integrated data communications
infrastruture.

These design constraints arise in the context of the Com-
mon Open IP Platform (COIPP) [1, 4] (see figure 2). In the
COIPP architecture, a network cloud is used for communi-
cation between peers. A peer is either a client or a server, or
both. At the edges of a cloud are gates. The gate is a bastion
to the cloud. Its ARP cache needs to be protected. But peers
only run “standard” software (such as web browsers) and
therefore nothing can be changed in them.

The COIPP is a network operating system. A peer is
a “user” that “logs into” the cloud and uses services ex-
ported by the cloud and by other peers. The cloud provides
functionality that does not have to be available at the peer,
such as authentication, access control and usage recording.

These design constraints are not unique to the COIPP. In any
situation in which the ARP caches of only select machines
on a LAN need to be protected, these design constraints are
appropriate. No changes are necessary in any of the other
hosts.

3.2. Streams and Solaris

We assume that a host that we need to deploy the solu-
tion in has a Streams [8, 10] based networking subsystem.
Streams is a paradigm that prescribes modularity. Modules
can be created that implement some functionality, and can
be selected and interconnected without any kernel repro-
gramming or linking. Drivers act as interfaces between a
(possibly virtual) device and the kernel.

Streams modules and drivers are organized as a stack,
with a stream head on top, any number of modules beneath
the head, and a driver at the bottom. Data is transferred
using units called message blocks, and a messaging queue
is associated with each of the upward and downward direc-
tions.

Solaris 2.6 is an example of an operating system that uses
a Streams based networking subsystem. Part of the func-
tionalityassociated with each of ARP and IP is implemented
using Streams modules. We refer the reader to [8, 10] for
more details on Streams and Streams modules and drivers.

Figure 3. The portion of the protocol stack
that pertains to ARP. The ovals are Streams
modules, and the rectangles are Streams
drivers. The bold lines represent links to the
multiplexing driver, and the thin lines repre-
sent the links in a Stream.

Again, using Solaris 2.6 as an example, the portion of
the protocol stack that pertains to ARP is shown in figure 3.
The ARP module is pushed above the IP module for the IP
module to be able to make resolutions based on the local
ARP cache. All ARP traffic from and to the network flows
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on the "branch" on which there is only the ARP module
below the IP multiplexing driver.

4. The Solution

In this section, we present our solution to the problem
of ARP cache poisoning that satisfies the design constraints
specified in section 3.1. Our solution is for a Streams-based
network subsystem. We first describe a Streams module,
driver and user-level application as components of our ar-
chitecture in section 4.1. In 4.2, we discuss heuristics that
we adopt in the Streams module to address the attacks men-
tioned in section 2.2.

Our implementation is for the Solaris 2.6 operating sys-
tem, and we discuss details from the implementation where
appropriate.

Note that our solution can also be implemented in other
platforms, including ones that do not use the Streams
paradigm for their networking subsystem. For instance, we
could write a kernel device driver to realize the functionality
in the Streams module in a non–Streams environment.

4.1. Streams Module, Driver and a User-Level Ap-
plication

Our prevention and detection architecture for solving the
problem of ARP cache poisoning is shown in figure 4.

Figure 4. Figure 3 modified to show our solu-
tion in place. cpcmod is the Streams module,
drvCpc is the Streams driver, and cpcAppl is
the user–level application. /dev/cpc0 is the
device used for communication between cp-
cAppl and drvCpc.

“CPC” stands for “Cache Poisoning Checker.” The CPC
module intercepts ARP traffic in both the downward and
upward directions. Traffic in the upward direction can be
checked for whether it will poison the cache. If a decision

is made that the traffic should not be allowed through, that
is enforced. Traffic in the upward direction could be either
ARP requests or responses.

Traffic in the downward direction is ARP requests and
responses from the host. This traffic is used to record what
requests have gone out of the host, so responses may be
matched to the requests. As there are separate queues for
downward– and upward–flowing traffic, requests sent from
the local host can be differentiated from requests sent by a
malicious host pretending to be the local host.

The CPC driver is used to provide an interface to the
user-level application. The device /dev/cpc0 provides an
interface to the driver. The application performs an open(
) [11] on the device and then communicates with the driver
using ioctl( ) [11] to send messages to the driver,and getmsg(
) [11] to receive messages from the driver. The module and
driver communicate with each other using function calls.

The application is used for two reasons: to have access
to the local ARP cache, and to raise alarms if an attack is
detected. COIPP has its own management and monitoring
system in a cloud to raise such alarms. Alarms can also be
raised using the Syslog facility [11]. Note that the driver and
the application are on a Stream of their own. That Stream
does not have modules between the Stream head and the
driver.

Note that the CPC module cannot do what the IP module
(see figure 3 or figure 4) does to make Ethernet address
resolutions. As we mentioned in section 3.2, the IP module
uses the ARP module to make such resolutions. But the
“protocol” used between the IP module and the ARP module
is not publicly documented. Therefore, we use the separate
Stream that has the driver and application.

No kernel reboot is required to “plumb” the solution
into the Stream in the kernel. If the host in the which the
solution is deployed has multiple interfaces, each interface
has a Streams module plumbed in, but the host has only a
single driver and application.

4.2. Heuristics for Detection and Prevention

In this section, we discuss the heuristics we employ in
the module and application to prevent and detect ARP cache
poisoning. As we mentioned earlier , we prevent poisoning
where possible, and detect an attack otherwise. If an attack
is detected, an alarm is raised.

There are four events of potential interest to us: receiv-
ing a request, receiving a response, sending a request and
sending a response. The event associated with sending a
response can be ignored: it does not affect the ARP cache
of the host in which our solution is installed.

The CPC module maintains two queues of IP addresses
called requestedQ and respondedQ. When the host sends
out an ARP request, this fact is remembered by recording
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the target IP address in the requestedQ. When a response is
received by the host, the requestedQ is checked for whether
a request for that IP address is outstanding. If a request
is outstanding, the response frame is allowed to flow up
the Stream so it can be cached in the host’s ARP cache.
The entry corresponding to the request is moved from the
requestedQ to the respondedQ.

If there is no entry in the requestedQ corresponding to
the response, the respondedQ is checked for a corresponding
entry. If an entry exists, the response is characterized as a
duplicate and the application is consulted via the driver for
whether the response is consistent with the entry already in
the cache. If it is, the entry in the cache is refreshed. If it
is not, an alarm is raised and the entry for that IP address is
flushed.

Thus, our characterization of whether a response is un-
solicited or a duplicate is based on whether a request corre-
sponding to that response is in the respondedQ or not.

When a request is received, the request is checked for
whether it is a request for this host’s Ethernet address. If it
is not, the request is dropped. If it is, the Streams module
responds to the request and does not allow the request to
flow up the stream. Thus, we enforce a policy that infor-
mation from requests is not cached. Only information from
responses to requests from this host is cached.

The size of the requestedQ plus the respondedQ is fixed.
When an entry needs to be added to the requestedQ, the
oldest entry in the respondedQ is overwritten with the new
request information and moved to the requestedQ. If the
respondedQ is empty, the oldest entry in the requestedQ
is overwritten with the new information and becomes the
newest entry in the queue.

The algorithm executed in the Streams module and the
application is as follows.

If a frame is received:
If this is a response:

If there is a corresponding entry in
the requestedQ:

Move the entry to the respondedQ
and let the frame flow up the Stream
to be processed by the host’s ARP
implementation.

Else, there is no corresponding entry in
the requestedQ, and:

If there is a corresponding entry in the
respondedQ, then we have received a
duplicate response, so:

Check the local ARP cache (via the
application) for whether there is an
entry for this IP address. If there is:

Check whether the entry in
the ARP cache corresponding
to the IP address is the

same as that in the response.
If yes:

Refresh the entry in the
ARP cache.

Else, the ARP cache entry is
not consistent with the frame:

Raise an alarm and log
the fact. Drop the
frame. Flush the cache
of the entry with
that IP address.

Else, there is no entry in the ARP
cache for this IP address, and:

The entry has expired in the
ARP cache. To avoid the risk
of poisoning the ARP cache,
drop the frame.

Else, this is an unsolicited response.
Drop it and log the fact.

Else, this is a request, and:
If this is a request for a resolution of this
host’s IP address:

Send a response and drop the frame.
Else, this is a request for resolving another
host’s IP address:

Drop the frame.
Else, a frame is being sent, and:

If this is a response:
Let the frame flow down.

Else, this is a request, and:
Add a corresponding entry in the requestedQ.
Let the frame flow down.

4.3. Special Cases with ARP

Two special cases not mentioned in the above algorithm
are gratuitous ARP and the use of an ARP (proxy) server.

Gratuitous ARP is used by a host to find out if another
host on the LAN has also been assigned its IP address [9].
A situation in which this is useful is when DHCP [3] is used
for dynamic IP address assignment. When a host gets an
IP address from the DHCP server, it sends out a gratuitous
ARP frame. A gratuitousARP frame is an ARP request, and
has that IP address as both the source and target IP addresses
in the frame (see figure 1), and the host’s Ethernet address
as the source Ethernet address. The frame is broadcast, just
like any other ARP request.

The expectation is that a host that has the same IP address
will respond to the request, and thus, the two hosts know
that they are using the same IP address. How they resolve
the conflict is not relevant to this discussion, and the reader
is referred to [9] for a discussion on the issue.

When our Streams module receives a gratuitous ARP
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frame, it checks for whether the IP address corresponds to
the IP address of the host. If it does, the frame is allowed
to flow up the Stream. If it does not, the frame is dropped.
This is done so that a spurious gratuitous ARP frame is not
allowed to poison the host’s ARP cache.

Some LANs use a proxy ARP server to respond to ARP
requests for the Ethernet addresses of some hosts. The host
that our solution is deployed in can act as proxy server with
some modifications to our solution. If some of the other
hosts in the LAN use such a proxy server to give out their
Ethernet address information, that does not adversely affect
our solution. The responses from such a server have the
source address in the Ethernet frame that the ARP frame
is encapsulated in, as the server’s address. But the source
address in the ARP frame (see figure 1) is the address of the
host for which the proxying is being performed.

5. Disadvantages with the Approach

We discussed the design constraints for the solution in
section 3.1. The design constraints also express the advan-
tages with the approach. In this section we discuss some of
the disadvantages with our approach and implementation.

Our solution does not offer cryptographically strong pro-
tection for entries in the host’s ARP cache. Cryptograph-
ically strong security would be ideal, but because of our
necessity for backward-compatibility with ARP, we are un-
able to incorporate cryptography into our solution.

We have only implemented our solution in a Streams
environment, and we have tested that it works successfully
with Solaris 2.5.1 and 2.6. We have not directly investigated
the portability issues to other operating systems. But we
conjecture that implementing the solution in a non–Streams
environment is possible.

Our heuristics do not work in all situations. For instance,
in our solution we expect the legitimate host to respond to
requests so we are able to detect duplicates. If an attacker
can “choke” the legitimate host so it is unable to respond,
he will succeed in poisoning the ARP cache of the host we
are protecting.

The combined size of the two queues is very critical to
the proper functioning of the solution. If the total size is
too small, our solution will effect a denial of service even in
situations where there is no attack. This would happen if the
host has more ARP requests outstanding that the requestedQ
can accommodate. When a response is received for a request
that is not in the queue, that is characterized as an unsolicited
response.

One of the solutions to the problem with the combined
size of the two queues is to make them dependent on the
expected traffic characteristics. Alternately, it is possible to
design an algorithm to make the queue size determination
dynamically, based on observed traffic characteristics.

6. Performance Impact

ARP is not intended to be a high performance protocol.
ARP traffic is expected to be “few and far between” in
comparison to “real” network traffic, such as IP datagrams.
Nevertheless, it is useful to study the impact our solution
introduces. We conducted a preliminary study of the impact
as discussed in this section.

We deployed the solution in a SparcStation 20 with 32
MB of RAM on a 10 Mbps Ethernet. We then ran a “ping
test” as discussed below against a 133 MHz Pentium on the
same LAN running Linux.

We measured the latency introduced by the solution as
follows: we sent 50,000 ICMP Echo Requests (ping pack-
ets) from host A, the host the solution was deployed in, to
host B. The ARP caches at both A and B were cleaned be-
fore each (echo-request, echo-response) pair was generated.
Each ICMP echo request from A causes A to make an ARP
request for B’s Ethernet address. The requestedQ and re-
spondedQ at A are set up so that with each request, an entry
has to be moved from the respondedQ to the requestedQ. B
also has to make an ARP request for A’s Ethernet address
before it can respond.

We performed the above “ping test” in two situations:
with the solution deployed at A, and without the solution.
We observed a performance degradation of 4% when the
solution is in place when compared to when the solution is
not in place. The mean of the total times when the solution
was in place was 2.56 ms, with a standard deviation of less
than 0.1, and the mean when the solution was not in place
was 2.47 ms, with a standard deviation of 0.08.

7. Conclusions

In this paper, we discussed the Address Resolution Pro-
tocol (ARP) and the problem of ARP cache poisoning. ARP
is an example of a protocol designed for a benign environ-
ment, but sometimes used in insecure environments. We
presented the design constraints for a solution: backward
compatible, middleware and asynchronous. We then dis-
cussed our context for a solution: a Streams based protocol
stack implementation.

Using the Solaris 2.6 operating system as an example
platform, we discussed our solution. We also discussed
some implementation aspects of our solution. Based on
initial performance studies, the solution does not seem to
severely impact network performance.
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