
Control Flow Obfuscations in Malwares

Author: Sudeep Singh

 Introduction

In this paper I will discuss about the control flow obfuscations used in malwares. The purpose of using
these control-flow obfuscations, how they are done and how they are used to deter reverse engineering
will be discussed.

The term control flow obfuscation is used in this article to indicate code sections in the binary, which are
added in order to make the comprehension of program more difficult.

After this, I also present a pintool I have written to help detect some important sequence of instructions,
which will be of interest to the virus analyst.

Note: You may need to zoom into the screenshots of disassembly included to view them clearly.

Purpose of Control Flow Obfuscations

The two main reasons of using control flow obfuscations in malwares are:

1. To deter the static reverse engineering of malwares. It becomes more difficult to target the code
sections of interest.

2. To defeat the static signatures used by AV vendors, which rely on specific byte sequences in the
binary to detect them.

Application Defined Callback Functions

There are certain APIs provided by Microsoft, which allow us to register a Callback Function. These can
be used by malwares to hide the main logic of their code. They can pass a pointer to the malicious
subroutine as the callback function parameter for the API.

Window Procedure

Using RegisterClassExA(), a Window Procedure can be registered for a specific Class Name. All the
windows with that class name will have the same Window Procedure.

When a window is created using CreateWindowA(), the Window Procedure is invoked with certain
default window messages like WM_CREATE, WM_NCCREATE and so on.

However, the main virus code will be executed only when a particular windows message is received.

Let us take as an example a virus which calls malicious subroutine indirectly:

After unpacking the malware, the first thing it does is to register a Window Class with the name,
"Runtime Check" with the Window Procedure subroutine at address, 00402680. It then creates the

Window. During the creation of the Window, the Window Procedure is invoked which handles the
initial window messages like WM_CREATE.

After the Window is created, it retrieves the message from the Thread's queue using GetMessage() and
dispatches it to the Window Procedure using DispatchMessage().

Inside the Window Procedure, it reads the code of the Window Message from the stack and stores it in
the EAX register. It then checks whether the window message code is greater than 0xF. If it is equal to
0x113, then it sets up a Timer that elapses after 1 second. Since the last parameter to the SetTimer()

function is NULL, the system will post a WM_TIMER message to the queue every time the timer elapses.
Each time a WM_TIMER message is retrieved from the application thread's message queue using
GetMessage(), it increments a counter. Once the counter is equal to 5, it calls the malicious subroutine.
Since the timer is set to elapse after 1 second, so overall delay introduced is approximately, 5 seconds.

Window Procedure:

Set the Timer:

Check the Window Message Code:

Below are the corresponding sections of code:

https://gist.github.com/c0d3inj3cT/7611371#file-wmtimer-asm

And here is the code rewritten in C:

if(wind_code > 0xF)
{
 if(wind_code == 0x113)
 {
 counter++;
 if(counter == 0x5)
 {
 call malicious_code;
 }
 }
}
else if(wind_code == 0xF)
{
 // code for handling the WM_PAINT message
}
else if(wind_code == 0x1)
{
 SetTimer(hWnd, 1, 0x3e8, 0)
}

As can be seen, this method can be used to introduce any amount of delay in execution. Since, most
automated sandboxes detect the delays in Execution by checking for
Sleep()/SleepEx()/NtDelayExecution() API calls, this method would bypass such detections.

DialogBoxParamA():

This is another API, which takes the address of the Window Procedure as one of the input parameters.
Below is an example of a virus that executes the main code section only when it receives the
WM_COMMAND window message.

https://gist.github.com/c0d3inj3cT/7611371#file-wmtimer-asm

EnumSystemLocalesA():

Here is another example of a Windows API, which takes an application defined callback function as one
of the input parameters.

By passing the pointer to malicious subroutine as the callback function, we can invoke it indirectly
through EnumSystemLocalesA() as shown below:

Also, it can be seen that there is a control flow obfuscation which finally redirects the execution to the
address 0x4013A7 which is in between two assembled instructions. This would result in updating the
view of Debugger since the disassembly changes.

The main impact of using this technique is that the code will be executed if we step over the call to these
APIs. As a result of this, we need to set a breakpoint at the callback function just before the API is
invoked. We will break at the callback function in the debugger as soon as the API is executed, this way
we can continue stepping through the code.

While this technique may appear to be easy for a seasoned reverse engineer, its usage is becoming
increasingly common among malwares these days.

There are several other Window APIs provided which accept an application defined callback function as
one of the input parameters.

Execution through Exception Handlers

Malwares could also redirect the execution to the malicious subroutine by triggering an exception. In
order to do this, they first register an exception handler using either
RtlAddVectoredExceptionHandler() or by registering a new Structured Exception Handler.

The exception can be invoked using either of the following:

1. Triggering a memory access violation (0xc0000005) by attempting to write to a memory
address to which there is no write access or by attempting to call an invalid memory address.

2. Executing a privileged instruction like STI or CLI, which would result in a Privileged Exception in

protected mode (0xc0000096).

3. Performing a division by zero to trigger the exception (0xC0000094).

Execution through Exception Handler for 0xc0000096:

Below is an example of a malware, which calls the malicious code by triggering a Privileged Instruction
exception.

It first registers an exception handler. Then it decrypts the code of that exception handler.

Once this is done, it triggers an exception by executing a privileged instruction like CLI or STI
(both these instructions are privileged in the protected mode).

Since an exception is triggered, the corresponding exception handler from the SEH chain will be
invoked. This is a control flow obfuscation trick. Below screenshots show an exception triggered after
executing the CLI instruction. On the stack we can see the exception handler address as: 0x00401610.

To continue the analysis in Olly Debugger, we can press, Shift + F9 and pass the exception to the
exception handler or we can just set the EIP to 0x00401610.

Execution through Vectored Exception Handler:

Below is an example of a malware, which calls the malicious subroutine through a Vectored Exception
Handler.

The handler checks only for memory access violation (0xc0000005) exception. It retrieves the address
of the faulting instruction from EXCEPTION_RECORD structure and compares it with the address it
expects. If they are equal it will set the value of EIP in the CONTEXT structure to malicious subroutine
address (0x00401f03 in this case) so that execution resumes there after exception handling completes.

Execution through RaiseException:

There are also some cases where debuggers like Olly Debugger do not pause at the exception Handler
when an exception is triggered and instead run the code.

One such case is when we trigger an exception by calling RaiseException() with the exception code,
0x80000003.

It first registers an exception handler, which has the malicious subroutine code and then triggers the
exception by calling RaiseException.

In this case, we can manually set the EIP to 0x0040126D (Structured Exception Handler) and continue
debugging from there.

Execution through Exception Handler for 0xC0000094:

In the case below, the virus redirects execution to exception handler by triggering the exception,
division by zero.

Inside the Exception Handler, it sets the address to resume execution from in the CONTEXT Record as
the address right after execution point of exception (in our case, 0x40B665)

Execution Slide

There are certain special instructions or sequence of instructions which when executed in the debugger
change the default behavior of the debugger (to trap at every instruction).

Below are a few examples:

INT 2D Instruction: INT 2D has a special behavior in Olly Debugger. Olly will skip the next byte in
execution as a result of which the control flow is obfuscated. This technique is often referred to as byte
scission.

It also has a dynamic behavior under different environments (different combinations of user
mode/kernel mode debuggers and in case of no debuggers).

Overwrite RETN: This is a special behavior observed in Olly Debugger. If we overwrite the RETN
instruction with the opcode, 0xC3 (which is the opcode of RETN) just before executing RETN, the
debugger does not pause at the RETN address but instead runs the code inside debugger.

Below is a proof of concept I have written for this:

; Overwrite RETN opcode

; Control Flow Obfuscation

; Sudeep Singh

include \masm32\include\masm32rt.inc

.data

hMod dd 0

.code

start:

push cfm$("RETN -- 0xc3 Overwrite\n")

call crt_printf

push cfm$("Make the code section writable\n")

call crt_printf

call nextaddr

nextaddr: pop eax

mov ebx, eax

push 4

call crt_malloc

mov esi, eax

invoke LoadLibrary, chr$("kernel32.dll")

mov hMod, eax

invoke GetProcAddress, hMod, chr$("VirtualProtect")

mov ecx, eax

push esi

push 040h

push 0100h

push ebx

call ecx

pushad

push cfm$("Enter the proof of concept routine\n")

call crt_printf

call label1

popad ; Debugger will not trap here and instead execute the code

mov eax, 01h

shl eax, 08h

push eax

push cfm$("2 ^ 8 is: %#0x\n")

call crt_printf

call ExitProcess

label1:

call label2

label3: retn

label2:

pop eax

sub eax, offset label3

lea esi, dword ptr [eax+label3]

lea edi, dword ptr [eax+label4]

mov ecx, 1

rep movs byte ptr [edi], byte ptr [esi]

label4: retn

end start

Trap Flag Check: We can recover the true value of the Trap Flag bit which is used by Debuggers for
single stepping by making the processor suspend the interrupts for the next instruction to be executed.

This can be done by writing to the Stack Segment register using either of the following pairs of
instructions:

Push SS

Pop SS

PUSHF

Or

Mov ax, ss

Mov ss, ax

PUSHF

This will allow us to recover the true value of EFLAGS register and check for the Trap Flag bit in it. This
method has been known for quite some time however not used so often in malwares.

Junk Instructions

There are several Polymorphic Engines which are used by malware authors to generate modified
versions of their binary which perform the same activities on the machine however their code is
modified.

This is often used to bypass static signatures written for malwares by security vendors.

One of the important features of a Polymorphic Engine is the junk instruction generator. Junk
instructions are sequence of instructions that do not impact the overall logic of the code in anyway but
are placed to deter reverse engineering.

Between every useful instruction, several junk bytes are placed.

The main reasons for injecting junk bytes into the code section are:

1. These junk bytes could correspond to complete instructions which do not alter the overall logic
of the code. They increase the size of code section and deter reverse engineering since even
though these instructions appear to be legitimate, they have no impact on the main behavior of
virus.

2. The junk bytes injected into the code section correspond to partial instructions. This is done to
confuse the disassemblers which rely on algorithms like Linear Sweep and Recursive
Traversals.

3. The code can be obfuscated even further by using opaque predicates which can be combined
with Windows APIs that will always return a fixed value.

Let us now look at each of the above methods by taking real world virus examples:

At first, let us look at a simple example which places a lot of junk bytes at the Entry Point of the Program
which correspond to NOPs:

In this case, by combining an easy sequence of instructions like PUSH/POP, a long chain of NOPs is
generated. However, once such a pattern is identified, it becomes easy for the reverse engineer to skip
such sections of code.

Now, let us look at an example where Window APIs are used in such a way that their return value is
constant. By combining multiple calls to Window APIs in this way, a sequence of junk instructions can
be generated:

1. LoadIconA() is called with an invalid Resource Name so that its return value is always 0x0. As a
result of this, the conditional test that follows it becomes an opaque predicate.

2. GetCurrentThread() will always return the value 0xfffffffe as a result of which Z flag will be set
by the conditional test.

3. GetStockObject() is called in such a way that return value is always 0x0 so that it falls through
the next conditional test.

Here is another example of using Windows APIs along with some junk instruction sequences:

1. In this case we can see that a bit of variation is added by calling GetStockObject() twice, once such

that it always returns 0x0 and the second time it is called with a valid parameter (WHITE_BRUSH),
so that it returns a non-zero value.

2. A PUSH/RET sequence is used to jump to the next address.

Even though this sequence of instructions might appear to be easy to analyze, when a lot of such
sequences are combined together, it can help deter analysis to an extent.

Now, we will look at a sequence of instructions where opaque predicates are created without using
Window APIs:

Let us now look at examples where control flow is obfuscated by injecting junk bytes in such a way that
they form partial instructions and are never executed.

Below example shows the disassembly produced by Olly Debugger when the EIP is at the
address 00401610. It is important to note that Linear Sweep algorithm is used in this case to
generate the disassembly (without the “Analyze Code” option). So, it keeps disassembling the
bytes to x86 instructions in sequence as and when it is able form a valid instruction.

00401610 E8 04000000 CALL 00401619

00401615 BA DCFE0068 MOV EDX,6800FEDC

0040161A 2016 AND BYTE PTR DS:[ESI],DL

0040161C 40 INC EAX

0040161D 00EB ADD BL,CH

0040161F 04 BA ADD AL,0BA

00401621 DCEE FSUB ST(6),ST

00401623 0059 EB ADD BYTE PTR DS:[ECX-15],BL

The actual control flow for above code when executed is:

00401610 E8 04000000 CALL 00401619

00401619 68 20164000 PUSH 00401620

0040161E EB 04 JMP SHORT 00401624

00401624 59 POP ECX

Let us now understand how the junk bytes were injected and how they confused the disassembler.

There were 4 bytes injected in between the valid instructions at addresses, 00401610 and 00401619.

4 junk bytes injected = BA DC FE 00

BA = opcode of instruction, mov edx, <DWORD>

This is a 5 byte instruction. However, we can see that only 4 bytes are injected which makes the
instruction incomplete.

The last byte required to complete the instruction is used from the valid instruction at address,
00401619. The byte in this case corresponds to the PUSH instruction at 00401619.

Since the disassembler is making use of Linear Sweep algorithm, it disassembles the 5 bytes to:

MOV EDX,6800FEDC

As a result of this, the remaining bytes are disassembled incorrectly as well.

Now, let us look at this code in Olly debugger. When we step through the instructions, debugger will
follow the proper control flow. However, since the initial disassembly displayed was not as per the
control flow of the code, it will be updated each time we step through it as shown below:

Observe how the disassembly changes each time we step through the code and every time the
disassembly changes, the view is updated and instruction at EIP will be at the top of the view.

Olly Debugger is capable of using a Recursive Traversal algorithm for disassembling the code as well.
It provides us an option to use the “Analyze Code” feature which will disassemble the code based on the
control flow. Let us use this feature and apply it to the above code.

We can see that though recursive traversal algorithm is better than linear sweep algorithm at
identifying the junk bytes, it is still susceptible to disassembly errors.

The “?” symbol next to the opcodes seen above in Olly Debugger indicates that these instructions were
not disassembled properly.

Also, when injecting junk bytes in the code section, we have to make sure that these junk bytes are not
executed. In order to do this, unconditional jump instructions are placed before the junk bytes.

Below is an example which shows the initial disassembly and the actual control flow:

00401610 E8 04000000 CALL 00401619

00401615 BA DCFE0068 MOV EDX,6800FEDC

0040161A 2016 AND BYTE PTR DS:[ESI],DL

0040161C 40 INC EAX

0040161D 00EB ADD BL,CH

0040161F 04 BA ADD AL,0BA

00401621 DCEE FSUB ST(6),ST

00401623 0059 EB ADD BYTE PTR DS:[ECX-15],BL

00401626 05 EB8B09EB ADD EAX,EB098BEB

0040162B 03EB ADD EBP,EBX

0040162D FA CLI

0040162E 74 58 JE SHORT 00401688

00401630 EB 05 JMP SHORT 00401637

00401632 ^EB 8B JMP SHORT 004015BF

00401634 00EB ADD BL,CH

00401636 03EB ADD EBP,EBX

00401638 FA CLI

00401639 ^74 EB JE SHORT 00401626

0040163B 05 7529C8EB ADD EAX,EBC82975

00401640 04 EB ADD AL,0EB

00401642 FA CLI

00401643 -0F85 C1E008EB JNZ EB48F70A

00401649 07 POP ES

0040164A 3B05 4A164000 CMP EAX,DWORD PTR DS:[40164A]

00401650 7D 6A JGE SHORT 004016BC

00401652 030F ADD ECX,DWORD PTR DS:[EDI]

00401654 C8 EB05EB ENTER 5EB,0EB

The actual control flow:

00401610 E8 04000000 CALL 00401619

00401619 68 20164000 PUSH 00401620

0040161E EB 04 JMP SHORT 00401624

00401624 59 POP ECX

00401625 EB 05 JMP SHORT 0040162C

0040162C ^EB FA JMP SHORT 00401628

00401628 8B09 MOV ECX,DWORD PTR DS:[ECX]

0040162A EB 03 JMP SHORT 0040162F

0040162F 58 POP EAX

00401630 EB 05 JMP SHORT 00401637

00401637 ^EB FA JMP SHORT 00401633

00401633 8B00 MOV EAX,DWORD PTR DS:[EAX]

00401635 EB 03 JMP SHORT 0040163A

0040163A EB 05 JMP SHORT 00401641

00401641 ^EB FA JMP SHORT 0040163D

0040163D 29C8 SUB EAX,ECX

0040163F EB 04 JMP SHORT 00401645

00401645 C1E0 08 SHL EAX,8

00401648 EB 07 JMP SHORT 00401651

00401651 6A 03 PUSH 3

00401653 0FC8 BSWAP EAX

00401655 EB 05 JMP SHORT 0040165C

You can observe the excessive use of unconditional jumps to prevent the junk bytes from executing.

Detection of Interesting Instructions using Pintool

Now, let us look at the pintool, which I have written to detect interesting sequence of instructions in
malwares.

The reason I wrote a Pintool to do this is because if we rely on Static Byte Signatures, then we are
limited to static analysis of the binary (on disk). If the binary is packed then we might not be able to
detect the interesting instructions, which would be executed after the binary is unpacked in memory.

Since pintool allows us to perform Dynamic Binary Instrumentation, it would be good to make use of it
for this purpose.

Please note that this pintool is not specifically related to control flow obfuscations.

It can be used to detect the following:

1. Obfuscated code sections of the malware.
2. Encryption/Decryption Routines.
3. Function Name Hash generation routines.
4. Junk Instructions inserted by Polymorphic Engines.
5. Privileged Instructions
6. Some methods like GetPC, which are often used by shellcode to be position independent.
7. Execution of special instructions like SIDT, SLDT, SGDT, which indicate the usage of Anti VM,

tricks.
8. Execution of RDTSC, which may indicate the usage of Anti Debugging Tricks.
9. And some more interesting instructions can be discovered.

I wrote this tool to help me while analyzing malwares and also to discover interesting viruses in the
wild. This is more of a concept at present and it can be extended to discover more malware attributes at
an instruction level.

Please note that some of the characteristics mentioned above will also be observed in known packers
like UPX, ASPack and so on. You can quickly identify the known packers with PEiD and a good database
of known packers byte signatures.

Interestingly, if you run this pintool against a benign binary, you will observe very little to almost no
output. As a result of this, it can also be used to detect malicious binaries based on the type of
instructions executed.

Below is the code written:

/*

Instruction Tracer to identify

interesting sequence of instructions

in malwares.

Sudeep Singh

*/

#include <stdio.h>

#include <iostream>

#include "pin.H"

VOID Instruction(INS ins, VOID *v)

{

 if(INS_Opcode(ins) == XED_ICLASS_XOR && INS_Address(ins) < 0x3d930000)

 {

 if(INS_MaxNumRRegs(ins) == 1)

 {

 cout << hex << INS_Address(ins) << " : " << INS_Disassemble(ins) <<

endl;

 }

 else

 {

 string regRead;

 string regWrite;

 regWrite = REG_StringShort(INS_RegW(ins, 0));

 regRead = REG_StringShort(INS_RegR(ins, 0));

 if(regRead.compare(regWrite) != 0 && regRead.compare("ebp") != 0 &&

regWrite.compare("ebp") != 0)

 {

 cout << hex << INS_Address(ins) << " : " << INS_Disassemble(ins)

<< endl;

 }

 }

 }

 else if(INS_Opcode(ins) == XED_ICLASS_ADD && INS_Address(ins) < 0x3d930000)

 {

 if(INS_MaxNumRRegs(ins) == 1 && INS_RegWContain(ins, REG_ESP) == 0 &&

(INS_OperandImmediate(ins, 1) & 0x00ff0000) != 0 && ((INS_OperandImmediate(ins,

1) & 0x00ffff00) ^ 0x00ffff00) != 0)

 {

 cout << hex << INS_Address(ins) << " : " << INS_Disassemble(ins) <<

endl;

 }

 else

 {

 string regRead;

 string regWrite;

 regWrite = REG_StringShort(INS_RegW(ins, 0));

 regRead = REG_StringShort(INS_RegR(ins, 0));

 if(regRead.compare(regWrite) != 0 && regRead.compare("ebp") != 0 &&

regWrite.compare("ebp") != 0 && regRead.compare("esp") != 0 &&

regWrite.compare("esp") != 0)

 {

 cout << hex << INS_Address(ins) << " : " << INS_Disassemble(ins)

<< endl;

 }

 }

 }

 else if(INS_Opcode(ins) == XED_ICLASS_SIDT || INS_Opcode(ins) ==

XED_ICLASS_SGDT || INS_Opcode(ins) == XED_ICLASS_SLDT)

 {

 cout << hex << INS_Address(ins) << " : " << INS_Disassemble(ins) << endl;

 }

 else if(INS_Opcode(ins) == XED_ICLASS_STI || INS_Opcode(ins) ==

XED_ICLASS_CLI)

 {

 cout << hex << INS_Address(ins) << " : " << INS_Disassemble(ins) << endl;

 }

 else if(INS_Opcode(ins) == XED_ICLASS_SUB && INS_MaxNumRRegs(ins) == 1 &&

INS_RegWContain(ins, REG_ESP) == 0 && (INS_OperandImmediate(ins, 1) & 0x0000ff00)

!= 0 && INS_Address(ins) < 0x3d930000)

 {

 cout << hex << INS_Address(ins) << " : " << INS_Disassemble(ins) << endl;

 }

 else if(INS_Opcode(ins) == XED_ICLASS_CMP && INS_MaxNumRRegs(ins) == 1 &&

INS_Size(ins) > 0x3 && INS_IsMemoryRead(ins) == 0 && (INS_OperandImmediate(ins,

1) & 0xff000000) != 0 && ((INS_OperandImmediate(ins, 1) & 0x00ffff00) ^

0x00ffff00) != 0 && INS_Address(ins) < 0x3d930000)

 {

 cout << hex << INS_Address(ins) << " : " << INS_Disassemble(ins) << endl;

 }

 else if(INS_Opcode(ins) == XED_ICLASS_LOOP && INS_Address(ins) < 0x3d930000)

 {

 cout << hex << INS_Address(ins) << " : " << INS_Disassemble(ins) << endl;

 }

 else if(INS_Opcode(ins) == XED_ICLASS_ROR && INS_MaxNumRRegs(ins) == 1 &&

INS_Address(ins) < 0x3d930000)

 {

 cout << hex << INS_Address(ins) << " : " << INS_Disassemble(ins) << endl;

 }

 else if(INS_IsCall(ins) && INS_IsIndirectBranchOrCall(ins) == 0)

 {

 if(INS_DirectBranchOrCallTargetAddress(ins) == INS_Address(ins) + 0x5)

 {

 cout << hex << INS_Address(ins) << " : " << INS_Disassemble(ins) << " -->

GetPC " << endl;

 }

 }

 else if(INS_Opcode(ins) == XED_ICLASS_RDTSC)

 {

 cout << hex << INS_Address(ins) << " : " << INS_Disassemble(ins) << endl;

 }

 else if(INS_Opcode(ins) == XED_ICLASS_INT || INS_Opcode(ins) ==

XED_ICLASS_INT1 || INS_Opcode(ins) == XED_ICLASS_INT3)

 {

 cout << hex << INS_Address(ins) << " : " << INS_Disassemble(ins) << "<--

INT instruction" << endl;

 }

}

VOID Fini(INT32 code, VOID *v)

{

 printf("Instrumentation has completed!\n");

}

INT32 Usage()

{

 return -1;

}

int main(int argc, char * argv[])

{

 if (PIN_Init(argc, argv))

 return Usage();

 INS_AddInstrumentFunction(Instruction, 0);

 PIN_AddFiniFunction(Fini, 0);

 PIN_StartProgram();

 return 0;

}

Now, let us run it against some of the viruses discussed previously and understand the output
generated.

Below is the output from the pintool for one of the viruses:

We have the addresses corresponding to the instructions of interest. Let us now look at the code
sections which have these instructions in the debugger.

The instructions in the pintools output can be used to identify the Function Name hash generation
routine as shown below:

Let us label the subroutine at 00401110 as “GetFunctionNameHash()”
If we look up the instruction at address, 004010d4, it brings us to the subroutine used to calculate the
Function Pointer.

Let us label the subroutine at address, 004010A5 as GetFunctionPointer()

We will look up the instruction at address, 00401176 in debugger:

If we trace the code to the shellcode at address, 0040b008 we can see that the pintool identified the
decryption routine correctly.

By putting all this together we have the flow as:

1. The code manually crafts a 0x40 bytes shellcode at address 0x0040b00e using a sequence of Sub
instructions.

2. It calculates the function pointer of VirtualProtect() using a precalculated function name hash
and by parsing the export directory of kernel32.dll

3. It calls VirtualProtect() to mark 0x1000 bytes at address, 0x0040b00e as
PAGE_EXECUTE_READWRITE since this region of code will be self modified and then executed.

4. Transfers the control flow to 0x0040b00e.
5. Uses GetPC to identify the address of code to be decrypted.
6. Uses a one byte ADD key, 0xDB to decrypt 0xA55 bytes of code and then continues executing the

decrypted code.

This way, we can see how the pintool helped us quickly identify the useful sections of code. This will
help us in performing an indepth analysis of the control flow of the code, to understand the packer used
and the decryption routines used as well.

Conclusion

After reading this paper you will have an understanding of the various techniques used by viruses in the
real world to obfuscate the code to deter reverse engineering.

This should help in analyzing viruses which use similar techniques as it is becomingly increasingly
common for viruses to prevent the analysis of their code.

References

Pintool: http://software.intel.com/sites/landingpage/pintool/docs/49306/Pin/html/
MSDN: http://msdn.microsoft.com/
OllyDbg: http://www.ollydbg.de/
RaiseException Reference: http://waleedassar.blogspot.in/2012/11/ollydbg-raiseexception-bug.html

http://software.intel.com/sites/landingpage/pintool/docs/49306/Pin/html/
http://msdn.microsoft.com/
http://www.ollydbg.de/
http://waleedassar.blogspot.in/2012/11/ollydbg-raiseexception-bug.html

