
MALWARE ANALYSIS USING PYMAL &
MALPIMP	

Amit Malik	

Idiot @SecurityXploded Research Group	

Researcher @Fireeye Labs	

(C) SecurityXploded Research Group Advanced Malware Analysis Training

Agenda	

•  Tools introduction	

•  Malpimp	

•  Configuration file	

•  Tracing	

•  Demo	

•  Pymal	

•  Features and functions	

•  Demo	

•  More examples	

	

(C) SecurityXploded Research Group Advanced Malware Analysis Training

Tools Introduction	

•  Malpimp – based on pydbg (pure python debugger)	

•  API tracing, using configuration file you can configure the tool according to your needs.	

•  Light weight and very easy, just serves the purpose 	

•  PyMal – Python interactive shell for malware analysis	

•  Based on three powerful pure python tools: pefile, pydbg, volatility	

•  Pydbg != debugger in pymal	

•  Process manipulation & live memory analysis.	

•  Some powerful features like hook detection (proprietary), Injected code detection.	

•  And full python support J 	

(C) SecurityXploded Research Group Advanced Malware Analysis Training

Malpimp	

	

	

	

	

	

•  Second argument on command line is the address from where we want to start tracing. Zero means entry point.	

•  Configuration file	

•  Fine control over tracing 	

•  Loop detection based on return address – believe me this is really a beautiful feature, I saw couple of big

heavy commercial products that are suffering on it. Also this technique is unique to this tool and it greatly

improves the tracing time. [Depending on your configs it is capable to reduce tracing time from 2 hours to 2

seconds with almost same information.]	

•  Inclusion and exclusion policies 	

(C) SecurityXploded Research Group Advanced Malware Analysis Training

Malpimp Configuration	

•  TraceInclude – Apply hooks only on these DLLs or APIs, if this field have some value either in DLL

or API then TraceExclude will be ignored.	

•  Syntax : for DLL: simple dll name like : kernel32.dll, user32.dll etc. , for API: DLL!API name e.g: kernel32!VirtualAlloc	

•  TraceExclude works only when we have all fields empty in TraceInclude policy.	

(C) SecurityXploded Research Group Advanced Malware Analysis Training

Malpimp Configuration cont.	

•  Loop detection settings	

•  Report logging addresses – set start and end addresses for logging, it allow us to log only important

trace. For example: we want to trace API calls from newly allocated region or from a specific DLL

address space.	

	

•  You can also attach malpimp to any running process using the following command	

•  Malpimp.exe –p <process id>	

(C) SecurityXploded Research Group Advanced Malware Analysis Training

Demo	

•  Bamital sample Trace!	

(C) SecurityXploded Research Group Advanced Malware Analysis Training

Limitations	

•  Based on a debugger so debugger detection techniques can easily detect.	

•  Unreliable for heavy applications with hooks on lots of DLLs.	

(C) SecurityXploded Research Group Advanced Malware Analysis Training

Pymal	

•  Python interactive shell for malware analysis	

•  Wrapper functions around pefile, pydbg and volatility	

•  Helpful in active process manipulation and live memory analysis	

•  Interactive shell with full python support so additional modules can be easily imported, operations on

data are much easier.	

•  Tab completion, use object “pm” to see pymal methods. 	

•  Uses distorm3 library for disassembly	

•  Some features like hook detection and injected code detection are awesome.	

•  Please read the PyMal disclaimer carefully before using its code/technique/theory into your tools.	

	

(C) SecurityXploded Research Group Advanced Malware Analysis Training

Pymal Functions	

•  Only the important ones.	

•  Process related:	

•  DumpModule – Dump the loaded dll from memory to disc (it will fix the headers automatically)	

•  DumpMem – Dump exe image from memory to disc (no header fix)	

•  DumpPidFix – Dump exe image from memory and fix the headers	

•  DumpMemToPE – Dump the PE file from memory (just need an address but it is your responsibility to

verify the valid image at that address)	

•  OpenProcess, ReadMemory, WriteMemory, ShowProcesses, ShowModules, ShowThreads etc.	

•  FindDll – search for a dll in all processes.	

•  FindProcess – retrieve pid using exe name.	

(C) SecurityXploded Research Group Advanced Malware Analysis Training

Pymal Functions cont.	

•  Pefile related functions	

•  LoadPE – load the exe file	

•  ImageBase – get image base address	

•  EntryPoint – get entry point address	

•  Sections, ImportTable, ExporTable etc.	

•  You can access original pefile and pydbg objects using pm.pe and pm.dbg 	

•  Advanced functions	

•  ScanModInPid – scan a dll in process for hooks	

•  ScanPidForMod – scan all loaded modules for hooks in a process.	

•  FindInjectedCode – find the RWE allocations in the process	

•  Others	

•  Disasm* - show disassembly 	

•  In case of confusion use help(pm.function_name) eg: help(pm.Disasm)	

(C) SecurityXploded Research Group Advanced Malware Analysis Training

Pymal Demo	

•  Pymal Demo	

•  Online users: http://nagareshwar.securityxploded.com/2013/08/28/bamital-analysis-using-malpimp-

and-pymal/	

(C) SecurityXploded Research Group Advanced Malware Analysis Training

Pymal – more examples!	

•  Helpful in many scenarios	

•  Read/write remote process memory, helpful mainly when one process injects code in other processes	

•  Monitor addresses or values at addresses without using or attaching a debugger. 	

•  Read data from process and apply your logics from a single shell eg: xor data, calculate hash etc.	

•  Import you own modules	

•  Etc. etc.	

(C) SecurityXploded Research Group Advanced Malware Analysis Training

Thank You!	

(C) SecurityXploded Research Group Advanced Malware Analysis Training

