
Malicious Cryptography: Kleptographic Aspects

Adam Young1 and Moti Yung2

1 Cigital Labs
ayoung@cigital.com

2 Dept. of Computer Science, Columbia University
moti@cs.columbia.edu

Abstract. In the last few years we have concentrated our research ef-
forts on new threats to the computing infrastructure that are the result of
combining malicious software (malware) technology with modern cryp-
tography. At some point during our investigation we ended up asking
ourselves the following question: what if the malware (i.e., Trojan horse)
resides within a cryptographic system itself? This led us to realize that
in certain scenarios of black box cryptography (namely, when the code is
inaccessible to scrutiny as in the case of tamper proof cryptosystems or
when no one cares enough to scrutinize the code) there are attacks that
employ cryptography itself against cryptographic systems in such a way
that the attack possesses unique properties (i.e., special advantages that
attackers have such as granting the attacker exclusive access to crucial
information where the exclusive access privelege holds even if the Trojan
is reverse-engineered). We called the art of designing this set of attacks
“kleptography.” In this paper we demonstrate the power of kleptography
by illustrating a carefully designed attack against RSA key generation.

Keywords: RSA, Rabin, public key cryptography, SETUP, kleptogra-
phy, random oracle, security threats, attacks, malicious cryptography.

1 Introduction

Robust backdoor attacks against cryptosystems have received the attention of
the cryptographic research community, but to this day have not influenced in-
dustry standards and as a result the industry is not as prepared for them as it
could be. As more governments and corporations deploy public key cryptosys-
tems their susceptibility to backdoor attacks grows due to the pervasiveness of
the technology as well as the potential payoff for carrying out such an attack.

In this work we discuss what we call kleptographic attacks, which are attacks
on black box cryptography. One may assume that this applies only to tamper
proof devices. However, it is rarely that code (even when made available) is
scrutinized. For example, Nguyen in Eurocrypt 2004 analyzed an open source
digital signature scheme. He demonstrated a very significant implementation
error, whereby obtaining a single signature one can recover the key [3].

In this paper we present a revised (more general) definition of an attack based
on embedding the attacker’s public key inside someone else’s implementation of a

A.J. Menezes (Ed.): CT-RSA 2005, LNCS 3376, pp. 7–18, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

8 Adam Young and Moti Yung

public-key cryptosystem. This will grant the attacker an exclusive advantage that
enables the subversion of the user’s cryptosystem. This type of attack employs
cryptography against another cryptosystem’s implementation and we call this
kleptography. We demonstrate a kleptographic attcak on the RSA key generation
algorithm and survey how to prove that the attack works.

What is interesting is that the attacker employs modern cryptographic tools
in the attack, and the attack works due to modern tools developed in what some
call the “provable security” sub-field of modern cryptographic research. From
the perspective of research methodologies, what we try to encourage by our
example is for cryptographers and other security professionals to devote some of
their time to researching new attack scenarios and possibilities. We have devoted
some of our time to investigate the feasibility of attacks that we call “malicious
cryptography” (see [6]) and kleptographic attacks were discovered as part of our
general effort in investigating the merger of strong cryptographic methods with
malware technology.

2 SETUP Attacks

A number of backdoor attacks against RSA [5] key generation (and Rabin [4])
have been presented that exploit secretly embedded trapdoors [7–9]. Also, at-
tacks have been presented that emphasize speed [1]. This latter attack is intended
to work even when Lenstra’s composite generation method is used [2] whereas
the former three will not. However, all of these backdoor attacks fail when half
of the bits of the composite are chosen pseudorandomly using a seed [7] (this
drives the need for improved public key standards, and forms a major moti-
vation for the present work). It should be noted that [1] does not constitute
a SETUP attack since it assumes that a secret key remains hidden even after
reverse-engineering.

We adapt the notion of a strong SETUP [8] to two games. For clarity this
definition is tailored after RSA key generation (as opposed to being more gen-
eral). The threat model involves three parties: the designer, the eavesdropper,
and the inquirer.

The designer is a malicious attacker and builds the SETUP attack into some
subset of all of the black-box key generation devices that are deployed. The goal
of the designer is to learn the RSA private key of a user who generates a key
pair using a device contained in this subset when the designer only has access
to the RSA public keys. Before the games start, the eavesdropper and inquirer
are given access to the SETUP algorithm in its entirety1. However, in the games
they play they are not given access to the internals of the particular devices that
are used (they cannot reverse-engineer them).

Assumptions: The eavesdropper and inquirer are assumed to be probabilistic
poly-time algorithms. It is assumed that the RSA key generation algorithm is
deployed in tamper-proof black-box devices. It is traditional to supply an RSA
1 e.g., found in practice via the costly process of reverse-engineering one of the devices.

Malicious Cryptography: Kleptographic Aspects 9

key generation algorithm with 1k where k is the security parameter. This tells
the generator what security parameter is to be used and assures that running
times can be derived based on the size of the input. For simplicity we assume
that the generator takes no input and that the security parameter is fixed. It is
straightforward to relax this assumption.

Let D be a device that contains the SETUP attack.

Game 1: The inquirer is given oracle access to two devices A and B. So, the
inquirer obtains RSA key pairs from the devices. With 50% probability A has a
SETUP attack in it. A has a SETUP attack in it iff B does not. The inquirer wins
if he determines whether or not A has the SETUP attack in it with probability
significantly greater than 1/2.

Property 1: (indistinguishability) The inquirer fails Game 2 with overwhelming
probability.

Game 2: The eavesdropper may query D but is only given the public keys that
result, not the corresponding private keys. He wins if he can learn one of the
corresponding private keys.

Property 2: (confidentiality) The eavesdropper fails Game 1 with overwhelm-
ing probability.

Property 3: (completeness) Let (y, x) be a public/private key generated using
D. With overwhelming probability the designer computes x on input y.

In a SETUP attack, the designer uses his or her own private key in conjunction
with y to recover x. In practice the designer may learn y by obtaining it from a
Certificate Authority.

Property 4: (uniformity) The SETUP attack is the same in every black-box
cryptographic device.

When property 4 holds it need not be the case that each device have a unique
identifier ID. This is important in a binary distribution in which all of the in-
stances of the “device” will necessarily be identical. In hardware implementations
it would simplify the manufacturing process.

Definition 1. If a backdoor RSA key generation algorithm satisfies properties
1, 2, 3, and 4 then it is a strong SETUP.

3 SETUP Attack Against RSA Key Generation

The notion of a SETUP attack was presented at Crypto ’96 [7] and was later
improved slightly [8]. To illustrate the notion of a SETUP attack, a particular
attack on RSA key generation was presented. The SETUP attack on RSA keys
from Crypto ’96 generates the primes p and q from a skewed distribution. This

10 Adam Young and Moti Yung

skewed distribution was later corrected while allowing e to remain fixed2 [9]. A
backdoor attack on RSA was also presented by Crépeau and Slakmon [1]. They
showed that if the device is free to choose the RSA exponent e (which is often
not the case in practice), the primes p and q of a given size can be generated
uniformly at random in the attack. Crépeau and Slakmon also give an attack
similar to PAP in which e is fixed. Crépeau and Slakmon [1] noted the skewed
distribution in the original SETUP attack as well.

3.1 Notation and Building Blocks

Let L(x/P) denote the Legendre symbol of x with respect to the prime P . Also,
let J(x/N) denote the Jacobi symbol of x with respect to the odd integer N .

The attack on RSA key generation makes use of the probabilistic bias removal
method (PBRM). This algorithm is given below [8].

PBRM(R, S, x):
input: R and S with S > R > S

2 and x contained in {0, 1, 2, ..., R− 1}
output: e contained in {−1, 1} and x′ contained in {0, 1, 2, ..., S − 1}
1. set e = 1 and set x′ = 0
2. choose a bit b randomly
3. if x < S − R and b = 1 then set x′ = x
4. if x < S − R and b = 0 then set x′ = S − 1 − x
5. if x ≥ S − R and b = 1 then set x′ = x
6. if x ≥ S − R and b = 0 then set e = −1
7. output e and x′ and halt

Recall that a random oracle R(·) takes as input a bit string that is finite in
length and returns an infinitely long bit string. Let H(s, i, v) denote a function
that invokes the oracle and returns the v bits of R(s) that start at the ith bit
position, where i ≥ 0. For example, if R(110101) = 01001011110101... then,

H(110101, 0, 3) = 010

and

H(110101, 1, 4) = 1001

and so on.
The following is a subroutine that is assumed to be available.

RandomBitString1():
input: none
output: random W/2-bit string
1. generate a random W/2-bit string str
2. output str and halt

Finally, the algorithm below is regarded as the “honest” key generation al-
gorithm.
2 For example, with e = 216 + 1 as in many fielded cryptosystems.

Malicious Cryptography: Kleptographic Aspects 11

GenPrivatePrimes1():
input: none
output: W/2-bit primes p and q such that p �= q and |pq| = W
1. for j = 0 to ∞ do:
2. p = RandomBitString1() /* at this point p is a random string */
3. if p ≥ 2W/2−1 + 1 and p is prime then break
4. for j = 0 to ∞ do:
5. q = RandomBitString1()
6. if q ≥ 2W/2−1 + 1 and q is prime then break
7. if |pq| < W or p = q then goto step 1
8. if p > q then interchange the values p and q
9. set S = (p, q)
10. output S, zeroize all values in memory, and halt

3.2 The SETUP Attack

When an honest algorithm GenPrivatePrimes1 is implemented in the device,
the device may be regarded as an honest cryptosystem C. The advanced attack
on composite key generation is specified by GenPrivatePrimes2 that is given
below. This algorithm is the infected version of GenPrivatePrimes1 and when
implemented in a device it effectively serves as the device C′ in a SETUP attack.

The algorithm GenPrivatePrimes2 contains the attacker’s public key N
where |N | = W/2 bits, and N = PQ with P and Q being distinct primes. The
primes P and Q are kept private by the attacker. The attacker’s public key is
half the size of p times q, where p and q are the primes that are computed by
the algorithm.

In hardware implementations each device contains a unique W/2-bit identifier
ID. The IDs for the devices are chosen randomly, subject to the constraint that
they all be unique. In binary distributions the value ID can be fixed. Thus,
it will be the same in each copy of the key generation binary. In this case the
security argument applies to all invocations of all copies of the binary as a whole.

The variable i is stored in non-volatile memory and is a counter for the
number of compromised keys that the device created. It starts at i = 0. The
variable j is not stored in non-volatile memory. The attack makes use of the
four constants (e0, e1, e2, e3) that must be computed by the attacker and placed
within the device. These quantities can be chosen randomly, for instance. They
must adhere to the requirements listed in Table 1.

It may appear at first glance that the backdoor attack below is needlessly
complicated. However, the reason for the added complexity becomes clear when
the indistinguishability and confidentiality properties are proven. This algorithm
effectively leaks a Rabin ciphertext in the upper order bits of pq and uses the
Rabin plaintext to derive the prime p using a random oracle.

Note that due to the use of the probabilistic bias removal method, this al-
gorithm is not going to have the same expected running time as the honest
algorithm GenPrivatePrimes1(). The ultimate goal in the attack is to make
it produce outputs that are indistinguishable from the outputs of an honest

12 Adam Young and Moti Yung

Table 1. Constants used in key generation attack.

Constant Properties

e0 e0 ∈ ZZ∗
N and L(e0/P) = +1 and L(e0/Q) = +1

e1 e2 ∈ ZZ∗
N and L(e2/P) = −1 and L(e2/Q) = +1

e2 e1 ∈ ZZ∗
N and L(e1/P) = −1 and L(e1/Q) = −1

e3 e3 ∈ ZZ∗
N and L(e3/P) = +1 and L(e3/Q) = −1

implementation. It is easiest to utilize the Las Vegas key generation algorithm
in which the only possible type of output is (p, q) (i.e., “failure” is not an allow-
able output).

The value Θ is a constant that is used in the attack to place a limit on the
number of keys that are attacked. It is a restriction that simplifies the algorithm
that the attacker uses to recover the private keys of other users.

GenPrivatePrimes2():
input: none
output: W/2-bit primes p and q such that p �= q and |pq| = W
1. if i > Θ then output GenPrivatePrimes1() and halt
2. update i in non-volatile memory to be i = i + 1
3. let I be the |Θ|-bit representation of i
4. for j = 0 to ∞ do:
5. choose x randomly from {0, 1, 2, ..., N − 1}
6. set c0 = x
7. if gcd(x, N) = 1 then
8. choose bit b randomly and choose u randomly from ZZ∗

N

9. if J(x/N) = +1 then set c0 = eb
0e

1−b
2 u2 mod N

10. if J(x/N) = −1 then set c0 = eb
1e

1−b
3 u2 mod N

11. compute (e, c1) = PBRM(N, 2W/2, c0)
12. if e = −1 then continue
13. if u > −u mod N then set u = −u mod N /* for faster decr. */
14. let T0 be the W/2-bit representation of u
15. for k = 0 to ∞ do:
16. compute p = H(T0||ID||I||j, kW

2 , W
2)

17. if p ≥ 2W/2−1 + 1 and p is prime then break
18. if p < 2W/2−1 + 1 or if p is not prime then continue
19. c2 = RandomBitString1()
20. compute n′ = (c1 || c2)
21. solve for the quotient q and the remainder r in n′ = pq + r

22. if q is not a W/2-bit integer or if q < 2W/2−1 + 1 then continue
23. if q is not prime then continue
24. if |pq| < W or if p = q then continue
25. if p > q then interchange the values p and q
26. set S = (p, q) and break
27. output S, zeroize everything in memory except i, and halt

Malicious Cryptography: Kleptographic Aspects 13

It is assumed that the user, or the device that contains this algorithm, will
multiply p by q to obtain the public key n = pq. Making n publicly available
is perilous since with overwhelming probability p can easily be recovered by the
attacker. Note that c1 will be displayed verbatim in the upper order bits of
n = n′ − r = pq unless the subtraction of r from n′ causes a borrow bit to be
taken from the W/2 most significant bits of n′. The attacker can always add this
bit back in to recover c1.

Suppose that the attacker, who is either the malicious manufacturer or the
hacker that installed the Trojan horse, obtains the public key n = pq. The
attacker is in a position to recover p using the factors (P, Q) of the Rabin
public key N . The factoring algorithm attempts to compute the two smallest
ambivalent roots of a perfect square modulo N . Let t be a quadratic residue
modulo N . Recall that a0 and a1 are ambivalent square roots of t modulo N
if a2

0 ≡ a2
1 ≡ t mod N , a0 �= a1, and a0 �= −a1 mod N . The values a0 and a1

are the two smallest ambivalent roots if they are ambivalent, a0 < −a0 mod N ,
and a1 < −a1 mod N . The Rabin decryption algorithm can be used to compute
the two smallest ambivalent roots of a perfect square t, that is, the two smallest
ambivalent roots of a Rabin ciphertext.

For each possible combination of ID, i, j, and k the attacker computes the
algorithm FactorTheComposite given below. Since the key generation device
can only be invoked a reasonable number of times, and since there is a reasonable
number of compromised devices in existence, this recovery process is tractable.

FactorTheComposite(n, P, Q, ID, i, j, k):
input: positive integers i, j, k with 1 ≤ i ≤ Θ

distinct primes P and Q
n which is the product of distinct primes p and q
Also, |n| must be even and |p| = |q| = |PQ| = |ID| = |n|/2

output: failure or a non-trivial factor of n
1. compute N = PQ
2. let I be the Θ-bit representation of i
3. W = |n|
4. set U0 equal to the W/2 most significant bits of n
5. compute U1 = U0 + 1
6. if U0 ≥ N then set U0 = 2W/2 − 1 − U0 /* undo the PBRM */
7. if U1 ≥ N then set U1 = 2W/2 − 1 − U1 /* undo the PBRM */
8. for z = 0 to 1 do:
9. if Uz is contained in ZZ∗

N then
10. for � = 0 to 3 do: /* try to find a square root */
11. compute W� = Uze�

−1 mod N
12. if L(W�/P) = +1 and L(W�/Q) = +1 then
13. let a0, a1 be the two smallest ambivalent roots of W�

14. let A0 be the W/2-bit representation of a0

15. let A1 be the W/2-bit representation of a1

16. for b = 0 to 1 do:
17. compute pb = H(Ab||ID||I||j, kW

2 , W
2)

14 Adam Young and Moti Yung

18. if p0 is a non-trivial divisor of n then
19. output p0 and halt
20. if p1 is a non-trivial divisor of n then
21. output p1 and halt
22. output failure and halt

The quantity U0 + 1 is computed since a borrow bit may have been taken
from the lowest order bit of c1 when the public key n = n′ − r is computed.

4 Security of the Attack

In this section we argue the success of the attack and how it holds unique prop-
erties.

The attack is indistinguishable to all adversaries that are polynomially
bounded in computational power3. Let C denote an honest device that imple-
ments the algorithm GenPrivatePrimes1() and let C′ denote a dishonest device
that implements GenPrivatePrimes2(). A key observation is that the primes
p and q that are output by the dishonest device are chosen from the same set
and same probability distribution as the primes p and q that are output by the
honest device. So, it can be shown that p and q in the dishonest device C′ are
chosen from the same set and from the same probability distribution as p and q
in the honest device C4.

In a nutshell confidentiality is proven by showing that if an efficient algorithm
exists that violates the confidentiality property then either W/2-bit composites
PQ can be factored or W -bit composites pq can be factored. This reduction is
not a randomized reduction, yet it goes a long way to show the security of this
attack.

The proof of confidentiality is by contradiction. Suppose for the sake of con-
tradiction that a computationally bounded algorithm A exists that violates the
confidentiality property. For a randomly chosen input, algorithm A will return a
non-trivial factor of n with non-negligible probability. The adversary could thus
use algorithm A to break the confidentiality of the system. Algorithm A factors
n when it feels so inclined, but must do so a non-negligible portion of the time.

It is important to first set the stage for the proof. The adversary that we are
dealing with is trying to break a public key pq where p and q were computed
by the cryptotrojan. Hence, pq was created using a call to the random oracle R.
It is conceivable that an algorithm A that breaks the confidentiality will make
oracle calls as well to break pq. Perhaps A will even make some of the same
oracle calls as the cryptotrojan. However, in the proof we cannot assume this.
All we can assume is that A makes at most a polynomial5 number of calls to the
oracle and we are free to “trap” each one of these calls and take the arguments.
3 Polynomial in W/2, the security parameter of the attacker’s Rabin modulus N .
4 The key to this being true is that n′ is a random W -bit string and so it can have a

leading zero. So, |pq| can be less than W bits, the same as in the operation in the
honest device before p and q are output.

5 Polynomial in W/2.

Malicious Cryptography: Kleptographic Aspects 15

Consider the following algorithm SolveFactoring(N, n) that uses A as an
oracle to solve the factoring problem.

SolveFactoring(N, n):
input: N which is the product of distinct primes P and Q

n which is the product of distinct primes p and q
Also, |n| must be even and |p| = |q| = |N | = |n|/2

output: failure, or a non-trivial factor of N or n
1. compute W = 2|N |
2. for k = 0 to 3 do:
3. do:
4. choose ek randomly from ZZ∗

N

5. while J(ek/N) �= (−1)k

6. choose ID to be a random W/2-bit string
7. choose i randomly from {1, 2, ..., Θ}
8. choose bit b0 randomly
9. if b0 = 0 then
10. compute p = A(n, ID, i, N, e0, e1, e2, e3)
11. if p < 2 or p ≥ n then output failure and halt
12. if n mod p = 0 then output p and halt /* factor found */
13. output failure and halt
14. output CaptureOracleArgument(ID, i, N, e0, e1, e2, e3) and halt

CaptureOracleArgument(ID, i, N, e0, e1, e2, e3):
1. compute W = 2|N |
2. let I be the Θ-bit representation of i
3. for j = 0 to ∞ do: /* try to find an input that A expects */
4. choose x randomly from {0, 1, 2, ..., N − 1}
5. set c0 = x
6. if gcd(x, N) = 1 then
7. choose bit b1 randomly and choose u1 randomly from ZZ∗

N

8. if J(x/N) = +1 then set c0 = eb1
0 e1−b1

2 u1
2 mod N

9. if J(x/N) = −1 then set c0 = eb1
1 e1−b1

3 u1
2 mod N

10. compute (e, c1) = PBRM(N, 2W/2, c0)
11. if e = −1 then continue
12. if u1 > −u1 mod N then set u1 = −u1 mod N
13. let T0 be the W/2-bit representation of u1

14. for k = 0 to ∞ do:
15. compute p = H(T0||ID||I||j, kW

2 , W
2)

16. if p ≥ 2W/2−1 + 1 and p is prime then break
17. if p < 2W/2−1 + 1 or if p is not prime then continue
18. c2 = RandomBitString1()
19. compute n′ = (c1 || c2)
20. solve for the quotient q and the remainder r in n′ = pq + r
21. if q is not a W/2-bit integer or if q < 2W/2−1 + 1 then continue
22. if q is not prime then continue

16 Adam Young and Moti Yung

23. if |pq| < W or if p = q then continue
24. simulate A(pq, ID, i, N, e0, e1, e2, e3), watch calls to R, and

store the W/2-most significant bits of each call in list ω
25. remove all elements from ω that are not contained in ZZ∗

N

26. let L be the number of elements in ω
27. if L = 0 then output failure and halt
28. choose α randomly from {0, 1, 2, ..., L− 1}
29. let β be the αth element in ω
30. if β ≡ ±u1 mod N then output failure and halt
31. if β2 mod N �= u2

1 mod N then output failure and halt
32. compute P = gcd(u1 + β, N)
33. if N mod P = 0 then output P and halt
34. compute P = gcd(u1 − β, N)
35. output P and halt

Note that with non-negligible probability A will not balk due to the choice
of ID and i. Also, with non-negligible probability e0, e1, e2, and e3 will conform
to the requirements in the cryptotrojan attack. So, when b0 = 0 these four
arguments to A will conform to what A expects with non-negligible probability.
Now consider the call to A when b0 = 1. Observe that the value pq is chosen from
the same set and probability distribution as in the cryptotrojan attack. So, when
b0 = 1 the arguments to A will conform to what A expects with non-negligible
probability. It may be assumed that A balks whenever e0, e1, e2, and e3 are not
appropriately chosen without ruining the efficiency of SolveFactoring. So, for
the remainder of the proof we will assume that these four values are as defined
in the cryptotrojan attack.

Let u2 be the square root of u2
1 mod n such that u2 �= u1 and u2 < −u2 mod n.

Also, let T1 and T2 be u1 and u2 padded with leading zeros as necessary such
that |T1| = |T2| = W/2 bits, respectively. Denote by E the event that in a given
invocation algorithm A calls the random oracle R at least once with either T1

or T2 as the W/2 most significant bits. Clearly only one of the two following
possibilities hold:
1. Event E occurs with negligible probability.
2. Event E occurs with non-negligible probability.

Consider case (1). Algorithm A can detect that n was not generated by the
cryptotrojan by appropriately supplying T1 or T2 to the random oracle. Once
verified, A can balk and not output a factor of n. But in case (1) this can only
occur at most a negligible fraction of the time since changing even a single bit
in the value supplied to the oracle elicits an independently random response.
By assumption, A returns a non-trivial factor of n a non-negligible fraction of
the time. Since the difference between a non-negligible number and negligible
number is a non-negligible number it follows that A factors n without relying
on the random oracle. So, in case (1) the call to A in which b0 = 0 will lead to
a non-trivial factor of n with non-negligible probability.

Now consider case (2). Since E occurs with non-negligible probability it fol-
lows that A may in fact be computing non-trivial factors of composites n by

Malicious Cryptography: Kleptographic Aspects 17

making oracle calls and constructing the factors in a straightforward fashion.
However, whether or not this is the case is immaterial. Since A makes at most
a polynomial number of calls6 to R the value for L cannot be too large. Since
with non-negligible probability A passes either T1 or T2 as the W/2 most sig-
nificant bits to R and since L cannot be too large it follows that β and u1 will
be ambivalent roots with non-negligible probability. Algorithm A has no way
of knowing which of the two smallest ambivalent roots SolveFactoring chose
in constructing the upper order bits of pq. Algorithm A, which may be quite
uncooperative, can do no better than guess at which one it was, and it could in
fact have been either. Hence, SolveFactoring returns a non-trivial factor of N
with non-negligible probability in this case.

It has been shown that in either case, the existence of A contradicts the
factoring assumption. So, the original assumption that adversary A exists is
wrong. This proves that the attack satisfies Property 2 of a SETUP attack.

Immediately following the test for p = q in C and in C′ it is possible to
check that gcd(e, (p− 1)(q− 1)) = 1 and restart the entire algorithm if this does
not hold. This handles the generation of RSA primes by taking into account the
public RSA exponent e. This preserves the indistinguishability of the output of
C′ with respect to C.

5 Conclusion

Attacks on cryptosystems can occur from many different angles: a specification
may be incorrect which requires provable security as a minimum requirement –
preferably based on a complexity theoretic assumption and if not than on some
idealization (e.g., assuming a random oracle like the idealization of unstructured
one-way hash functions). However, implementations can have problems of their
own. Here a deliberate attack by someone who constructs the cryptosystem (e.g.,
a vendor) has been demonstrated. This attack is not unique to the RSA cryp-
tosystem and is but one of many possible attacks. However, it serves to demon-
strate the overall approach. At a minimum, the message that we try to convey is
that the scrutiny of code and implementations is crucial to the overall security
of the cryptographic infrastructure, and if practitioners exercise scrutiny then
we should be aware that we may need to completely trust each individual imple-
mentation to be correct in ways that may not be efficiently black-box testable
(as our attack has demonstrated).

References

1. C. Crépeau, A. Slakmon. Simple Backdoors for RSA Key Generation. In The Cryp-
tographers’ Track at the RSA Conference – CT-RSA ’03, pages 403–416, 2003.

2. A. K. Lenstra. Generating RSA Moduli with a Predetermined Portion. In Advances
in Cryptology – Asiacrypt ’98, pages 1–10, 1998.

6 Polynomial in W .

18 Adam Young and Moti Yung

3. P. Q. Nguyen. Can We Trust Cryptographic Software? Cryptographic Flaws in
GNU Privacy Guard v1.2.3. In Advances in Cryptology – Eurocrypt ’04, pages
555–570, 2004.

4. M. Rabin. Digitalized signatures and public-key functions as intractable as factor-
ization. TR-212, MIT Laboratory for Computer Science, January 1979.

5. R. Rivest, A. Shamir, L. Adleman. A method for obtaining Digital Signatures and
Public-Key Cryptosystems. In Communications of the ACM, volume 21, n. 2, pages
120–126, 1978.

6. A. Young, M. Yung. “Malicious Cryptography: Exposing Cryptovirology,” Wiley
Publishing Inc., Feb. 2004.

7. A. Young, M. Yung. The Dark Side of Black-Box Cryptography, or: Should we
trust Capstone? In Advances in Cryptology – Crypto ’96, pages 89–103, 1996.

8. A. Young, M. Yung. Kleptography: Using Cryptography Against Cryptography. In
Advances in Cryptology – Eurocrypt ’97, pages 62–74, 1997.

9. A. Young. Kleptography: Using Cryptography Against Cryptography. PhD Thesis,
Columbia University, 2002.

	1 Introduction
	2 SETUP Attacks
	3 SETUP Attack Against RSA Key Generation
	3.1 Notation and Building Blocks
	3.2 The SETUP Attack

	4 Security of the Attack
	5 Conclusion
	References

