

• Table of Contents

Network Intrusion Detection, Third Edition
By Stephen Northcutt, Judy Novak

Publisher : New Riders Publishing
Pub Date : August 28, 2002
ISBN : 0-73571-265-4
Pages : 512

The Chief Information Warfare Officer for the entire United States teaches you how to
protect your corporate network. This book is a training aid and reference for intrusion
detection analysts. While the authors refer to research and theory, they focus their
attention on providing practical information. The authors are literally the most
recognized names in this specialized field, with unparalleled experience in defending
our country's government and military computer networks. New to this edition is
coverage of packet dissection, IP datagram fields, forensics, and snort filters.

Table of Contents

 Copyright

 About the Authors

 About the Technical Reviewers

 Acknowledgments

 Tell Us What You Think

 Introduction

 Part I: TCP/IP

 Chapter 1. IP Concepts

 The TCP/IP Internet Model

 Packaging (Beyond Paper or Plastic)

 Addresses

 Service Ports

 IP Protocols

 Domain Name System

 Routing: How You Get There from Here

 Summary

 Chapter 2. Introduction to TCPdump and TCP

 TCPdump

 Introduction to TCP

 TCP Gone Awry

 Summary

 Chapter 3. Fragmentation

 Theory of Fragmentation

 Malicious Fragmentation

 Summary

 Chapter 4. ICMP

 ICMP Theory

 Mapping Techniques

 Normal ICMP Activity

 Malicious ICMP Activity

 To Block or Not to Block

 Summary

 Chapter 5. Stimulus and Response

 The Expected

 Protocol Benders

 Abnormal Stimuli

 Summary

 Chapter 6. DNS

 Back to Basics: DNS Theory

 Using DNS for Reconnaissance

 Tainting DNS Responses

 Summary

 Part II: Traffic Analysis

 Chapter 7. Packet Dissection Using TCPdump

 Why Learn to Do Packet Dissection?

 Sidestep DNS Queries

 Introduction to Packet Dissection Using TCPdump

 Where Does the IP Stop and the Embedded Protocol Begin?

 Other Length Fields

 Increasing the Snaplen

 Dissecting the Whole Packet

 Freeware Tools for Packet Dissection

 Summary

 Chapter 8. Examining IP Header Fields

 Insertion and Evasion Attacks

 IP Header Fields

 The More Fragments (MF) Flag

 Summary

 Chapter 9. Examining Embedded Protocol Header Fields

 TCP

 UDP

 ICMP

 Summary

 Chapter 10. Real-World Analysis

 You've Been Hacked!

 Netbus Scan

 How Slow Can you Go?

 RingZero Worm

 Summary

 Chapter 11. Mystery Traffic

 The Event in a Nutshell

 The Traffic

 DDoS or Scan

 Fingerprinting Participant Hosts

 Summary

 Part III: Filters/Rules for Network Monitoring

 Chapter 12. Writing TCPdump Filters

 The Mechanics of Writing TCPdump Filters

 Bit Masking

 TCPdump IP Filters

 TCPdump UDP Filters

 TCPdump TCP Filters

 Summary

 Chapter 13. Introduction to Snort and Snort Rules

 An Overview of Running Snort

 Snort Rules

 Summary

 Chapter 14. Snort Rules—Part II

 Format of Snort Options

 Rule Options

 Putting It All Together

 Summary

 Part IV: Intrusion Infrastructure

 Chapter 15. Mitnick Attack

 Exploiting TCP

 Detecting the Mitnick Attack

 Network-Based Intrusion-Detection Systems

 Host-Based Intrusion-Detection Systems

 Preventing the Mitnick Attack

 Summary

 Chapter 16. Architectural Issues

 Events of Interest

 Limits to Observation

 Low-Hanging Fruit Paradigm

 Human Factors Limit Detects

 Severity

 Countermeasures

 Calculating Severity

 Sensor Placement

 Outside Firewall

 Push/Pull

 Analyst Console

 Host- or Network-Based Intrusion Detection

 Summary

 Chapter 17. Organizational Issues

 Organizational Security Model

 Defining Risk

 Risk

 Defining the Threat

 Risk Management Is Dollar Driven

 How Risky Is a Risk?

 Summary

 Chapter 18. Automated and Manual Response

 Automated Response

 Honeypot

 Manual Response

 Summary

 Chapter 19. Business Case for Intrusion Detection

 Part One: Management Issues

 Part Two: Threats and Vulnerabilities

 Part Three: Tradeoffs and Recommended Solution

 Repeat the Executive Summary

 Summary

 Chapter 20. Future Directions

 Increasing Threat

 Defending Against the Threat

 Defense in Depth

 Emerging Techniques

 Summary

 Part V: Appendixes

 Appendix A. Exploits and Scans to Apply Exploits

 False Positives

 IMAP Exploits

 Scans to Apply Exploits

 Single Exploit, Portmap

 Summary

 Appendix B. Denial of Service

 Brute-Force Denial-of-Service Traces

 Elegant Kills

 nmap

 Distributed Denial-of-Service Attacks

 Summary

 Appendix C. Detection of Intelligence Gathering

 Network and Host Mapping

 NetBIOS-Specific Traces

 Stealth Attacks

 Measuring Response Time

 Worms as Information Gatherers

 Summary

Copyright

Copyright © 2003 by New Riders Publishing

THIRD EDITION: September 2002

All rights reserved. No part of this book may be reproduced or transmitted
in any form or by any means, electronic or mechanical, including
photocopying, recording, or by any information storage and retrieval
system, without written permission from the publisher, except for the
inclusion of brief quotations in a review.

Library of Congress Catalog Card Number: 2001099565

06 05 04 03 02 7 6 5 4 3 2 1

Interpretation of the printing code: The rightmost double-digit number is
the year of the book's printing; the rightmost single-digit number is the
number of the book's printing. For example, the printing code 02-1 shows
that the first printing of the book occurred in 2002.

Printed in the United States of America

Trademarks

All terms mentioned in this book that are known to be trademarks or
service marks have been appropriately capitalized. New Riders Publishing
cannot attest to the accuracy of this information. Use of a term in this
book should not be regarded as affecting the validity of any trademark or
service mark.

Warning and Disclaimer

This book is designed to provide information about intrusion detection.
Every effort has been made to make this book as complete and as
accurate as possible, but no warranty of fitness is implied.

The information is provided on an as-is basis. The authors and New Riders
Publishing shall have neither liability nor responsibility to any person or
entity with respect to any loss or damages arising from the information

contained in this book or from the use of the discs or programs that may
accompany it.

Credits

Publisher

David Dwyer

Associate Publisher

Stephanie Wall

Production Manager

Gina Kanouse

Managing Editor

Kristy Knoop

Senior Acquisitions Editor

Linda Anne Bump

Senior Marketing Manager

Tammy Detrich

Publicity Manager

Susan Nixon

Project Editor

Suzanne Pettypiece

Copy Editor

Kelli Brooks

Indexer

Larry Sweazy

Manufacturing Coordinator

Jim Conway

Book Designer

Louisa Klucznik

Cover Designer

Brainstorm Design, Inc.

Cover Production

Aren Howell

Proofreader

Beth Trudell

Composition

Gloria Schurick

Dedication

Network Intrusion Detection, Third Edition is dedicated to Dr. Richard
Stevens

Stephen Northcutt: I can still see him in my mind quite clearly at lunch
in the speaker's room at SANS conferences—long blond hair, ponytail, the
slightly fried look of someone who gives his all for his students. I
remember the scores from his comment forms. Richard Stevens was the

best instructor of us all. I know he is gone and yet, every couple days, I
reach for his book TCP/IP Illustrated, Volume 1, usually to glance at the
packet headers inside the front cover. I am so thankful to own that book;
it helps me understand IP and TCP, the network protocols that drive our
world. In three weeks or so, I will teach TCP to some four hundred
students. I am so scared. I cannot fill his shoes, not even close, but the
knowledge must continue to be passed on. I can't stress "must" enough;
there is no magic product that can do intrusion detection for you. In the
end, every analyst needs a basic understanding of how IP works so they
will be able to detect the anomalies. That was the gift Dr. Stevens left
each of us. This book builds upon that foundation!

Judy Novak: Of all the influences in the field of security and traffic
analysis, none has been more profound than that of the late Dr. Richard
Stevens. He was a prolific and accomplished author. The book I'm most
familiar with is my dog-eared, garlic saucestained copy of TCP/IP
Illustrated, Volume 1. It is an absolute masterpiece because he is the
ultimate authority on TCP/IP and Unix, and he had the rare ability to make
the subjects coherent. I know several of the instructors at SANS consider
this work to be the "bible" of TCP/IP. I once had the opportunity to be a
student in a course he taught for SANS, and I think I sat with mouth
agape in reverence of someone with such knowledge. Last summer, he
agreed to edit a course I had written for SANS in elementary TCP/IP
concepts. This was the equivalent of having Shakespeare critically review a
grocery list. I carry his book with me everywhere, and I will not soon
forget him.

About the Authors

Stephen Northcutt is a graduate of Mary Washington College. Before
entering the field of computer security, he worked as a Navy helicopter
search and rescue crewman, white water raft guide, chef, martial arts
instructor, cartographer, and network designer. Stephen is author/co-
author of Incident Handling Step by Step, Intrusion Signatures and
Analysis, Inside Network Perimeter Security, and the previous two editions
of this book. He was the original author of the Shadow intrusion detection
system and leader of the Department of Defense's Shadow Intrusion
Detection team before accepting the position of Chief for Information
Warfare at the Ballistic Missile Defense Organization. Stephen currently
serves as Director of Training and Certification for the SANS Institute.

Judy Novak is currently a senior security analyst working for the
Baltimore-based consulting firm of Jacob and Sundstrom, Inc. She
primarily works at the Johns Hopkins University Applied Physics Laboratory
where she is involved in intrusion detection and traffic monitoring and
Information Operations research. Judy was one of the founding members
of the Army Research Labs Computer Incident Response Team where she
worked for three years. She has contributed to the development of a SANS
course in TCP/IP and written a SANS hands-on course, "Network Traffic
Analysis Using tcpdump," both of which are used in SANS certifications
tracks. Judy is a graduate of the University of Maryland—home of the 2002
NCAA basketball champions. She is an aging, yet still passionate, bicyclist,
and Lance Armstrong is her modern-day hero!

About the Technical Reviewers

These reviewers contributed their considerable hands-on expertise to the
entire development process for Network Intrusion Detection, Third Edition.
As the book was being written, these dedicated professionals reviewed all
the material for technical content, organization, and flow. Their feedback
was critical to ensuring that Network Intrusion Detection, Third Edition fits
our readers' need for the highest-quality technical information.

Karen Kent Frederick is a senior security engineer for the Rapid
Response team at NFR Security. She is completing her master's degree in
computer science, focusing in network security, from the University of
Idaho's Engineering Outreach program. Karen has over 10 years of
experience in technical support, system administration, and security. She
holds several certifications, including the SANS GSEC, GCIA, GCUX, and
GCIH. Karen is one of the authors of Intrusion Signatures and Analysis and
Inside Network Perimeter Security: The Definitive Guide to Firewalls,
VPNs, Routers, and Intrusion Detection Systems. Karen also frequently
writes articles on intrusion detection for SecurityFocus.com.

David Heinbuch joined the Johns Hopkins University Applied Physics
Laboratory in 1998. He has experience in intrusion detection, modeling
and simulation, vulnerability assessment, and software development. As a
member of the Information Operations group, he works on programs in
various areas, including secure computing systems, attack modeling and
analysis, and intrusion detection. Mr. Heinbuch has a bachelor of science in
computer engineering from Virginia Tech and an master's of science in
computer science from the Whiting School of Engineering, Johns Hopkins
University.

Acknowledgments

Stephen Northcutt: The network detects and analytical insights that fill
the pages of this book are contributions from many analysts all over the
world. You and I owe them a debt of thanks; they have given us a great
gift in making what was once mysterious, a known pattern.

I thank everyone who has served on, or contributed to, the Incidents.org
team. You have found many new patterns, helped minimize the damage
from a number of compromised systems, and even managed to teach a bit
of intrusion detection along the way. Good work!

Incident handlers would be of little purpose if people weren't reporting
attacks. The folks who contribute data to dshield.org are making a real
difference. You showed that it was possible to share attack information
and analysis and that bit by bit we would get smarter, better able to
understand exploits and probes.

Judy Novak, thank you for working with me on this project. Your efforts
and knowledge are the reason for the book's success. I truly appreciate
the work our technical editors, Karen Kent Frederick and David Heinbuch,
have done to catch the errors that can creep in while you are working late
into the night, or from an airplane. Suzanne Pettypiece, thank you for your
patience and organization in the busiest months of my entire life. A big
thanks to Linda Bump for working with us to keep the project on schedule!

I want to take this opportunity to express my appreciation to Alan and
Marsha Paller for friendship, support, encouragement, and guidance.

Kathy and Hunter, thank you again for the love and support in a writing
cycle. Kathy, I especially thank you for being willing to quit your job to
help me keep all the plates spinning. I love you.

"But if any of you lacks wisdom, let him ask of God, who gives to all men
generously and without reproach, and it will be given to him." James 1:5

Any wisdom or understanding I have is a gift from the Lord Jesus Christ,
God the All Mighty, and the credit should be given to Him, not to me.

I hope you enjoy the book and it serves you well!

Judy Novak: Many thanks to Stephen Northcutt for his tireless efforts in
educating the world about security and encouraging me to join him in his
efforts. His guidance has literally changed my life and the rewards and
opportunities from his influence have been plentiful. While the words to
express my thanks seem anemic, the gratitude is truly heartfelt.

I'd like to thank the wonderfully wise technical editors David Heinbuch and
Karen Kent Frederick for their patient and astute feedback. They are the
blessed souls who save me from total embarrassment! Also, I'd like to
extend special thanks to Paul Ritchey, who edited the Snort chapters for
technical accuracy. He whipped out the feedback with speed and insight.

Finally, last, but never least, I'd like to thank my family—Bob and
Jesse—for leaving me alone long enough when I needed to work on the
book, but gently nudging me to take a break when atrophy set in. There is
real danger in being left alone too long!

Tell Us What You Think
As the reader of this book, you are the most important critic and
commentator. We value your opinion and want to know what we're doing
right, what we could do better, what areas you'd like to see us publish in,
and any other words of wisdom you're willing to pass our way.
As the Associate Publisher at New Riders, I welcome your comments. You
can fax, email, or write me directly to let me know what you did or didn't
like about this book—as well as what we can do to make our books
stronger.
Please note that I cannot help you with technical problems related to the
topic of this book, and that due to the high volume of mail I receive, I
might not be able to reply to every message.
When you write, please be sure to include this book's title and author as
well as your name and phone or fax number. I will carefully review your
comments and share them with the author and editors who worked on the
book.
Fax: 317-581-4663
Email: stephanie.wall@newriders.com

Mail: Stephanie Wall
Associate Publisher
New Riders Publishing
201 West 103rd Street
Indianapolis, IN 46290 USA

mailto:stephanie.wall@newriders.com

Introduction
Our goal in writing Network Intrusion Detection, Third Edition has been to
empower you as an analyst. We believe that if you read this book cover to
cover, and put the material into practice as you go, you will be ready to
enter the world of intrusion analysis. Many people have read our books, or
attended our live class offered by SANS, and the lights have gone on;
then, they are off to the races. We will cover the technical material, the
workings of TCP/IP, and also make every effort to help you understand
how an analyst thinks through dozens of examples.
Network Intrusion Detection, Third Edition is offered in five parts. Part I,
"TCP/IP," begins with Chapter 1, ranging from an introduction to the
fundamental concepts of the Internet protocol to a discussion of Remote
Procedure Calls (RPCs). We realize that it has become stylish to begin a
book saying a few words about TCP/IP, but the system Judy and I have
developed has not only taught more people IP but a lot more about IP as
well—more than any other system ever developed. We call it "real TCP"
because the material is based on how packets actually perform on the
network, not theory. Even if you are familiar with IP, give the first part of
the book a look. We are confident you will be pleasantly surprised. Perhaps
the most important chapter in Part I is Chapter 5, "Stimulus and Response."
Whenever you look at a network trace, the first thing you need to
determine is if it is a stimulus or a response. This helps you to properly
analyze the traffic. Please take the time to make sure you master this
material; it will prevent analysis errors as you move forward.

Tip

Whenever you look at a network trace, the first thing
you need to determine is if it is a stimulus or a
response.

The book continues in Part II, "Traffic Analysis" with a discussion of traffic
analysis. By this, we mean analyzing the network traffic by consideration
of the header fields of the IP and higher protocol fields. Although ASCII
and hex signatures are a critical part of intrusion detection, they are only
tools in the analyst's tool belt. Also in Part II, we begin to show you the
importance of each field, how they are rich treasures to understanding.
Every field has meaning, and fields provide information both about the
sender of the packet and its intended purpose. As this part of the book
comes to a close, we tell you stories from the perspective of an analyst

http://safari.informit.com/?xmlid=0-73571-265-4/part01#part01
http://safari.informit.com/?xmlid=0-73571-265-4/part01#part01
http://safari.informit.com/?xmlid=0-73571-265-4/part02#part02
http://safari.informit.com/?xmlid=0-73571-265-4/part02#part02

seeing network patterns for the first time. The goal is to help you prepare
for the day when you will face an unknown pattern.
Although there are times a network pattern is so obvious it almost
screams its message, more often you have to search for events of interest.
Sometimes, you can do this with a well-known signature, but equally
often, you must search for it. Whenever attackers write software for denial
of service, or exploits, the software tends to leave a signature that is the
result of crafting the packet. This is similar to the way that a bullet bears
the marks of the barrel of the gun that fired it, and experts can positively
identify the gun by the bullet. In Part III of the book, "Filters/Rules for
Network Monitoring" we build the skills to examine any field in the packet
and the knowledge to determine what is normal and what is anomalous. In
this section, we practice these skills both with TCPdump and also Snort.
In Part IV, we consider the larger framework of intrusion detection. We
discuss where you should place sensors, what a console needs to support
for data analysis, and automated and manual response issues to intrusion
detection. In addition, this section helps arm the analyst with information
about how the intrusion detection capability fits in with the business model
of the organization.
Finally, this book provides three appendixes that reference common
signatures of well-known reconnaissance, denial of service, and exploit
scans. We believe you will find this to be no fluff, packed with data from
the first to the last page.
Network Intrusion Detection, Third Edition has not been developed by
professional technical writers. Judy and I have been working as analysts
since 1996 and have faced a number of new patterns. We are thankful for
this opportunity to share our experiences and insights with you and hope
this book will be of service to you in your journey as an intrusion analyst.

http://safari.informit.com/?xmlid=0-73571-265-4/part03#part03
http://safari.informit.com/?xmlid=0-73571-265-4/part04#part04

Part I: TCP/IP
 1 IP Concepts

 2 Introduction to TCPdump and TCP

 3 Fragmentation

 4 ICMP

 5 Stimulus and Response

 6 DNS

Chapter 1. IP Concepts

As you read this chapter, it will become apparent that you belong in one of two categories: the
beginner category or that of the seasoned veteran. The Internet Protocol (IP) is a large and
potentially intimidating topic that requires a gentle introduction for uninitiated beginners so as
not to overwhelm them with foreign acronyms, details, and concepts. Therefore, the purpose
of this first chapter is to expose newcomers to terms, concepts, and the ever-present
acronyms of IP. The suite of protocols covered here is more commonly known as Transmission
Control Protocol/Internet Protocol (TCP/IP). These protocols are required to communicate
between hosts on the Internet—the worldwide infrastructure of networked hosts. Indeed,
communication protocols other than TCP/IP exist (for instance, AppleTalk for Apple
computers). These protocols are typically found on intranets, where associated hosts talk on a
private network. Most Internet communications require TCP/IP, which is the standard for
global communications between hosts and networks.
Those seasoned veteran readers who dabble in TCP/IP daily might be tempted to skip this
chapter. Even so, you should give it a quick skim. If you ever need to explain a concept about
IP (perhaps to the individual who signs off on your pay raise or bonus, for example), you
might find this chapter's approach useful. Those of you who are getting your feet wet in this
area will certainly benefit from this introduction.
This is an around-the-world introduction to TCP/IP presented in a single chapter. Many of the
topics discussed in this introductory chapter are covered in much greater detail and complexity
in upcoming chapters; those chapters contain the core content, but you need to be able to
peel away the theoretical skin to understand them. Specifically, this chapter covers the
following topics:

● The TCP/IP Internet model. This section examines the foundations of
communications over the Internet, specifically communications made possible by using a
common model known as the TCP/IP Internet model.

● Packaging of data on the Internet. This section reviews the encapsulation of data to
be sent through different legs of a journey to its destination.

● Physical and logical addresses. This section highlights the different ways to identify a
computer or host on the Internet.

● TCP/IP services and ports. This section explores how hosts communicate with each
other for different purposes and through different applications.

● Domain Name System. This section focuses on the importance of host names and IP
number translations.

● Routing. This section explains how data is directed from the sending computer to the
receiving computer.

The TCP/IP Internet Model

Computer users often want to communicate with another computer on the Internet for some
purpose or another (to view a web page on a remote web server, for instance). A response
from a web server can seem almost instantaneous, but a lot of processes and infrastructures
actually support this seemingly trivial act behind the scenes.

Layers

Figure 1.1 shows a logical roadmap of some of the processes involved in host-to-host
communications. You begin the process of downloading a web page in the box labeled "Web
browser." Before your request to see a web page can get to the web server, your computer
must package the request and send it through various processes and layers. Each layer
represents a logical leg in the journey from the sending computer to the receiving computer.
After the sending computer packages the data through the different layers, it is delivered to
the receiving computer over the Internet. The receiving computer unwraps the data layer by
layer. An individual layer gets the data intended for it and passes the remainder of the
message to upper layers.

Figure 1.1. The TCP/IP Internet model.

Although discussed in more detail later in this chapter, it is important now to briefly look at
each layer. The following four layers comprise the TCP/IP Internet model:

• Application layer. The application layer is the topmost layer (the request for a
web page in the preceding example). Software on the sending and receiving
computers supports the implementation of the application (the web browser and web
server, for instance).

• Transport layer. Below the application layer lays the transport layer. This layer
encompasses many aspects of how the two hosts will communicate. This transport
layer is often concerned with providing reliability over other inherently unreliable
layers.

Two transport layers protocols will be covered: TCP, which is referred to as a reliable
protocol because mechanisms ensure data delivery, and User Datagram Protocol
(UDP), which makes no promise of reliable delivery. In this example application, TCP is
required because of the unacceptability of data loss.

• Network layer. Below the transport layer is the network layer, which is
responsible for moving the data from the source computer to the destination computer
(the web server in this case), often one hop or leg of the journey at a time. This hop is
between a computer and a router or a router and a router, but it ultimately takes the
data closer in routing space to its destination.

• Link layer. The bottom layer is the link layer, which is the component that takes
care of communications from a host to the physical medium on which it resides. In this
case, that component is Ethernet. This layer is concerned with receiving and sending
data from the host over a specific interface to the network.

Data Flow

Look at Figure 1.1 again. In theory, the data flow activity is this: The request for a web page
"descends" the sender's layers, often referred to as the TCP/IP stack. It gets directed to the
destination computer and "ascends" its TCP/IP stack. The vertical arrows between layers
represent the up and down flow on the same computer. The horizontal arrows between
computers signify that each layer talks to its "peer" layer on the communicating host. The two
computers do not directly interact with each other, per se. When the request descends the
sending computer's TCP/IP stack, it is packaged in such a manner that each layer has a
message for its counterpart layer, and so they appear to be talking directly.

This concept is quite important and crucial to understanding this chapter and the TCP/IP
model, in general. Therefore, it is important to reiterate the poignant points and elaborate on
terminology. The term TCP/IP stack is used to denote the layered structure of processing a
TCP/IP request or response. A process known as encapsulation does the implementation of the
layering. This means that data on the sender's host gets wrapped with identifying information
to assist the receiving host in parsing the received message layer by layer. Each layer on the
sending host adds its own header, and the receiving host reverses the process by examining
the message, stripping it of its header, and directing it to the appropriate layer. This process is
repeated for the higher layers until the data reaches the uppermost layer, which finally
processes the web page request. When the response is sent back, the entire process is
repeated; now the web server host packages the data to be sent, it is delivered and received,

and the web browser host strips the received message to pass to the application layer
supporting the web browser.

Packaging (Beyond Paper or Plastic)
At a very granular level, data exchanged between hosts must be bundled in some kind of
standard format. A host is a generic term that can reference a workstation on your desk, a
router, or a web server to name just a few examples. The important distinction is that these
computers are connected to a network capable of transporting data to and from the computer.
In the generic sense, the packaging of associated data is called a packet. The problem in
terminology arises because this data package is labeled differently at various layers of
communication between the source application and the destination application located on
different hosts. This section discusses some of the key concepts related to data packaging,
including bits, bytes, packets, data encapsulation, and interpretation of the layers.
Bits, Bytes, and Packets
The atom of computing is a bit, a single storage location that has a value of either 0 or 1 (also
known as binary). Although succinct and compact, you cannot actually store or convey a lot of
information with a single bit, so bits are grouped into clumps of eight. A unit of eight bits is a
byte (or octet, if you prefer). Eight times a very small amount of information is still pretty
small, but an octet can contain an American Standard Code for Information Interchange
(ASCII) character, such as the letter a or a comma (,). It can also hold a large integer
number, as high as 255 (28-1).
Bits, Bytes, and Binary
Figure 1.2 shows a byte. Because this discussion is focusing on bits, binary is the
language used— the language of 0s and 1s. Each bit is represented as a power of 2,
the base of binary. Notice that a byte spans powers of 2 from 20 through 27. If all
bits have a value of 0, the byte is obviously 0. Now, imagine that all bits are 1s. Add
up all the individual bit values, starting with the smallest value (20 = 1, any base
with an exponent of 0 is 1); you will have 1 + 2 + 4 + 8 + 16 + 32 + 64 + 128. The
total value is 255, and that is the maximum value that a given byte can have. This
value is examined later when the discussion turns to IP addresses.

Figure 1.2.

You just saw an example of how binary-to-decimal conversion is done. If you are
given a byte of data, just re-create this byte with the appropriate powers of 2 and
their associated decimal values. Any bit that is set is assigned the accompanying
decimal value of that bit. Then, just total up all the decimal values; voila, the
conversion is done. This is not really rocket science after all.
Multiple bytes, or octets, are grouped together for shipping across a network by packaging

them into packets. Figure 1.3 shows one of the great truths of networking: An overhead cost
accrues when slinging packets around the network.You have to go through a lot of trouble to
package your content for shipping across a network and then to unwrap it when it gets to the
other side (and even more trouble, of course, to finish the job with a tamper-proof seal). A
field known as the cyclical redundancy check (CRC), or checksum, is used to validate that the
frame (the name given to the packet on the wire) has not been damaged or corrupted in
transit.

Figure 1.3. Portrait of a packet.

Like an envelope addressed for mailing, IP packets need to include the addresses of both the
sending and receiving hosts (see Figure 1.3). If you live in a house with a street address, you can
think of that as your hardware address, the address assigned to your house. In networking, at
least with Ethernet networks, this is analogous to a network interface card's (NIC) Media
Access Controller (MAC) address. This hardware address is assigned to the NIC when the card
is constructed. The MAC address is 48 bits long, which means it can hold a very large number
(248-1). The "Addresses" section later in this chapter discusses the differences between MAC
addresses and IP addresses.
To create a frame, which is the name the packet acquires when transmitted on physical media,
you construct the packet using various protocol layers and then include the physical
information. Finally, the frame is placed on the networking medium by the NIC. The frame has
a frame header of 14 bytes, with fields such as the source and destination MAC addresses,
frame data that can vary in length, and a trailer of 4 bytes that represents the CRC.
Encapsulation Revisited
Figure 1.4 represents the concept of the layered packaging configuration. Different layers of
protocols theoretically "talk" to like layers of protocols on the source and destination hosts.
The layers are stacked atop one another— hence, the origin of the term "TCP/IP stack." At
each layer of the stack, the packet consists of a header of its own and data, sometimes known
as the payload. All the encapsulation is done for the purpose of sending some kind of content,
but the encapsulation requires different header information at different levels in its journey
from source to destination.

Figure 1.4. One layer's header is another layer's data.

Suppose that you have a message or other content to send. It is first collected by the
application, which could be a program such as telnet or electronic mail; these TCP applications
are discussed in more detail in the section "IP Protocols." The TCP packet is known as a TCP
segment and includes the TCP header and TCP data. If this were UDP, the packet would be
known as a datagram, which is confusing because it is redundant with the name at the IP
layer.
At this point, the TCP segment is handed down from the TCP layer of the TCP/IP stack to the
IP layer. The IP layer prepends (that means appends at the front) header information to the
TCP segment and becomes known as an IP datagram. Really, the TCP header and data become
invisibly enmeshed as data for the IP datagram, which has its own header. The IP datagram is
delivered to the link layer of the TCP/IP stack, and it is known as a frame. The link layer
prepends the frame header to the IP datagram to carry it across the physical medium, such as
Ethernet.
The process is repeated in reverse when the frame arrives at the destination host and all
headers are stripped away and passed to the proper upper-layer protocols. Each layer of the
TCP/IP stack with its embedded message converses with the similar layer of the receiving
host.
Interpretation of the Layers
With all the layering going on, the bottom line is that you have a bunch of adjacent 0s and 1s.
How do you know how to interpret them? Suppose that you are looking at the IP header; how
do you know what kind of embedded protocol you will find following it? Surely that must be
known to properly interpret the protocol. The term protocol is meant to denote a set of agreed
upon rules or formats. Each protocol (such as IP, TCP, UDP, and ICMP) has its own layouts and
formats.
Figure 1.5 shows an example of the organization of the IP header. You can see that a certain
number of bits are allocated for each field in the header. A Protocol field identifies the
embedded protocol. Each row that you see in the IP header is 32 bits (0 through 31,
inclusive), which means four (8-bit) bytes. To complicate matters a little, counting starts with
0 when talking about bit and byte locations. The first row represents bytes 0 through 3; the
second row represents bytes 4 through 7; and the third row represents bytes 8 through 11.
Notice that the circled Protocol field is in the third row. The preceding time-to-live (TTL) field is
1 byte long, which makes it the 8th byte; and the Protocol field, which is also 1 byte long,
represents the 9th byte. This means that the 9th byte (actually, it's the 10th byte, but
remember counting starts at 0) is examined to find the embedded protocol. The point is that
most packets at their respective levels are positional; fields can be discovered by going to
known displacements in the packet.

Figure 1.5. Positional layouts.

Now that you have counted your way to the Protocol field, what is it and what does it do? The
value in this field tells you what protocol is found in the embedded data. Suppose that the
value you find in this byte is 17. You might find the protocol value expressed in hexadecimal. A
hexadecimal 11 is the same as a decimal 17. This means that a UDP packet is embedded after
the IP header. A value of 6 means that the embedded packet is TCP, and a value of 1 means
that it is Internet Control Message Protocol (ICMP).
Base 16, Hexadecimal
Okay, so you have learned that binary is base 2 and is made up of 0s and 1s. This is
the numbering system used by computers to represent data. So, why complicate the
matter with another entirely new numbering system, base 16 (or hexadecimal)? The
real dilemma is that it takes a lot of bits to represent any sizable number and,
therefore, binary becomes very unwieldy very soon. Hexadecimal assists in
referencing binary numbers in a more abbreviated notation. You can replace 4
binary bits with 1 hexadecimal character (24 = 16).
Consider, for example, the IP header protocol field; it is 8 bits. That can be
converted into 2 hex characters. A decimal 17 in the protocol field, as mentioned
earlier, means that the embedded protocol is UDP. How do you go from a decimal 17
to a hexadecimal 11?
27 26 25 24 23 22 21 20
0 0 0 1 0 0 0 1
The binary powers of the 8 bits are shown. To arrive at 17, you need to have the bit
corresponding to 16 (or 24) set to 1, and the bit corresponding to 1 (20) set to
1—that is, 16 + 1 = 17. These have been grouped as two hex digits, two 4-bit
clumps. The 4 bits (or hex character) that are leftmost (also known as high-order or
most significant bits) have a value of 0001. Likewise, the 4 bits that are rightmost
(also known as low-order or least significant bits) have a value of 0001. Each hex
character represents values of 0 through 15. And each of these has a low-order bit
of 1 set (20), and so we arrive at the value of 11 hexadecimal (also known as 0x11,
in which the 0x distinguishes this as hex, not decimal).

Addresses

Most likely, you have heard the term IP address. But, what does it really represent and what
does it really do? And, exactly how do hosts address each other? These are some of the topics
covered in this section.
Physical Addresses, Media Access Controller Addresses
You can scour the headers of IP packets looking for physical layer MAC addresses until you
turn blue, and you will not find them. MAC addresses do not mean anything to IP, which uses
logical addresses; they are not part of the protocol. For all intents and purposes, they may as
well not exist.
By the same token, physical MAC addresses are how the Ethernet card interfaces with the
network. The Ethernet card does not know a single thing about IP, IP headers, or logical IP
addresses. So, you are faced with the signature line of Cool Hand Luke: "What we have here is
a failure to communicate." Clearly, if things are going to work, an operation process is required
that facilitates the correspondence between logical IP and physical MAC addresses.
Do you know the IP address of your desktop computer? If you don't, you are not really one
down at all; it is absolutely normal not to know it. It is normal for several reasons, one being
that in these days most of you don't even own or even get to keep the same IP address. IP
address space is a precious commodity. When you connect to the network, many of you are
loaned an address for that session, or possibly longer by an Internet service provider (ISP) or
network service provider via applications, such as Dynamic Host Configuration Protocol
(DHCP).
Leasing an IP Number: Dynamic Host Configuration Protocol
DHCP is a protocol that permits dynamic assignment of IP numbers. This replaces
the labor-intensive process of IP address management, in which every host is
configured with a static IP number assigned to it. DHCP allows the centralization and
automation of the IP assignment process. Hosts are leased an IP number for a given
amount of time, and this makes the process of managing and administering large
networks more efficient. This is good for the network administrator, but makes the
security administrator's job more complicated (for example, when some IP number
and associated temporary owner have to be chased down for questionable activity).

Exactly how many possible IP numbers are there? The exact number is 232 (because the
address is comprised of 32 bits), which is a number higher than 4 billion. But, every single IP
number is not available; reserved ranges decrease the possible numbers. With the explosive
growth of the Internet worldwide, the sad realization has dawned that the IP addresses are
being rapidly depleted. What are some remedies for the address depletion?
First, a particular site can use DHCP and assign IP numbers temporarily for the duration of
their use. This means that not all hosts will be active at any given time and a smaller pool of
possible IP numbers is required. The other remedy is something known as reserved private
addresses. The governing body of the Internet, the Internet Address Numbers Authority
(IANA), has set aside blocks of IP addresses to be used for internal addresses only. For
instance, the 192.168 and 172.16 subnets are to be used for hosts talking within a particular
network. This traffic should not leave the site's gateway. This allows a site with an insufficient
number of IP addresses to use these Class B network addresses for internal purposes and to
save the assigned IP addresses for other purposes.
Okay, go ahead and smirk now; some of you did know your IP address. That is good.
However, do you know your host's MAC address by heart? The answer would most likely be
"no," because almost no one knows his MAC address. There are several reasons for this, but
the primary one is that a 48-bit address with no provisions for human memorization is hard to
lock into the brain.
The Address Resolution Protocol (ARP) enables you to resolve the translation of physical MAC
addresses to logical IP addresses. ARP is not an IP protocol per se; it is the process of sending
an Ethernet frame to all systems on the same network segment. This is known as a broadcast.
If a message is a broadcast message, it is sent to all the machines on part of or the entire

network. A point worth emphasizing is that ARP is for locally attached hosts only on the same
network; this cannot be done between hosts on different networks.
The source host broadcasts the ARP request, and then presumably the destination host picks it
up and replies with its MAC address. During this transaction, both the source and destination
host, and any listening hosts on the network, cache (or save) what they have learned about
the other host, thereby storing the IP and MAC addresses. This storage cuts down on the
number of new ARP requests required. Ultimately, on the same network segment, the
communications will occur between MAC addresses and not IP addresses. They might begin as
a TCP/IP transaction with two hosts communicating between the same layers of TCP/IP, but
when the actual delivery occurs, communication is between two hosts' MAC addresses.
Why are MAC addresses so huge? After all, 48 bits is a lot of address space. The idea was that
they would be unique for all time and space! That sounds good if you say it real fast, but
future plans are to expand this value to 128 bits to accommodate its current limitations in
allowing each NIC manufacturer to have a unique vendor code embedded in the MAC address.
Logical Addresses, IP Addresses
An IP address has 32 allocated bits to identify a host. This 32-bit number is expressed as four
decimal numbers separated by periods (for example, 192.168.5.5). These are not just random
or sequential assignments. The initial portion of the IP number tells something about the size
of the network on which the host resides. The remainder of the IP number distinguishes hosts
on that network. Addresses are categorized by class; classes tell how many hosts are in a
given network or how many bits in the IP address are assigned for the unique hosts in a
network (see Table 1.1). A grouping known as Class A addresses assigns the initial 8 bits for a
network portion of the address, for example, and the final 24 bits for the host portion of the
address. Because 24 bits have been allocated for the hosts, more than 16 million (224-1) hosts
can possibly be in the network. An example of a Class A network is the 18.0.0.0 through
18.255.255.255, IP space assigned to Massachusetts Institute of Technology.

Table 1.1. 32 Bits for IP Address Space
Class Network Bits Host Bits Number of Hosts

A 8 24 16 million+
B 16 16 65,000+
C 24 8 255
The IP address classes range from Class A addresses to Class E. Classes A, B, and C are
unicast addresses; when you send a packet to them, presumably you are addressing a single
machine. Class D is known as a multicast address used to communicate with a designated set
of hosts. Class E is reserved for experimental use. Table 1.2 shows the address range associated
with each class.

Table 1.2. Address Classes and IP Ranges
Class Beginning IP Ending IP

A 0.0.0.0 127.255.255.255
B 128.0.0.0 191.255.255.255
C 192.0.0.0 223.255.255.255
D 224.0.0.0 239.255.255.255
E 240.0.0.0 247.255.255.255

House Rules of CIDR
You might hear a new term, classless inter-domain routing (CIDR) to refer to
addresses. For the longest time, addresses were part of a particular class and that
meant your network was allocated either 16 million+, 65,000+, or 255 hosts. The
most common situation was networks that required between 255 and 65,000 hosts.
Because many of these sites were allocated Class B networks, many IP numbers
went unassigned. Given that IP numbers are finite commodities, a remedy was
needed to allocate networks without class constraints.
CIDR assigns networks, not on 8-bit boundaries, but on single-bit boundaries. This
allows a site to receive the appropriate number of IP numbers, and thus reduces
waste. CIDR uses a unique notation to designate the range of hosts assigned to a
site. If you want to specify the 192.168 address range in CIDR, it would look like
192.168/16. The first part of the notation is the decimal representation of the bit
pattern allocated to the network. It is followed by a slash and then the number of
bits that represent the network portion of the address. This example is the same as
a Class B network, but it can be modified easily enough to represent smaller
networks.
Subnet Masks
Another concept you need to be aware of is something known as the subnet mask. This mask
informs a given computer system how many bits in its IP address have been relegated to the
network and how many to the host. Each bit that is a network bit is "masked" with a 1. A Class
A address, for instance, has 8 network bits and 24 host bits. In binary, the 8 consecutive bits
(all with a value of 1) translate to a decimal 255. The subnet mask is then designated as
255.0.0.0. Other classes have other subnet masks. A Class B network has a standard subnet
mask of 255.255.0.0, and a Class C network has a standard subnet mask of 255.255.255.0.
Why is this needed if you can tell what class and how many bits have been reserved for the
network by examining the IP address? Some network administrators subdivide their networks.
For instance, a Class C network could be divided into four individual subnets by assigning an
appropriate subnet mask.

Service Ports

This section is a "bit" easier. TCP and UDP have 16-bit port number fields in their respective
header fields. This means they can have as many as 65,536 different ports, or services, and
they are numbered from 0 to 65,535. One very important point to register in your long-term
memory is that even though a service is usually located at its assigned port number, nothing
guarantees this as true. Telnet, for instance, is almost universally found on TCP port 23. There
is nothing stopping your nonconformist side from offering it at port 31337. And, what better
way for a hacker who has broken into a computer to hide his tracks than by offering a service
at an unexpected port? If a hacker were to run telnet at some high-numbered port rather than
port 23, it would make his unauthorized connection more difficult to find and identify. Any
service can be run at any port. On the other hand, if you want to network with other hosts, it
is best to follow the standards. For UNIX hosts, the /etc/services file can be an excellent
resource to match TCP or UDP port numbers with the expected, or well-known, services likely
to be offered at that port number.

You see some very common port numbers and service examples from the /etc/services file. An
excerpt here shows you the format of the file and the associated services. You see that a
service known as domain (Domain Name Service, or DNS) can be offered on both TCP and
UDP. This is unusual, but not abnormal; most services are offered on either TCP or UDP, but
there are some exceptions (such as DNS).

ftp 21/tcp
telnet 23/tcp
smtp 25/tcp
domain 53/udp
domain 53/tcp

Figure 1.6 shows how the service is specified in the packet. In this case, a UDP header has a 16-
bit field known as the destination port. This is where the desired service or port is found. In
this example, the value in the UDP header's port number field would be 53, signifying that this
datagram is destined for the Domain Name Service.

Figure 1.6. Not just any port.

At one time in history, special significance was attached to ports below 1024. Those lower-
numbered ports were the so-called trusted ports (chuckle) because only root could use them.
The term trusted port originated because ports below 1024 were allocated to system
processes. Therefore, if a foreign host saw an incoming connection with a source port less than
1024, it was assumed to be trusted because it ostensibly came from a system process. This
made much more sense when the Internet was a safer place. This is much less true today, but
the ports above 1024 have special significance. These are often called the ephemeral ports,
which means they could be used by most any service for most any reason.

IP Protocols
Turn your attention again to the four primary layers of the TCP/IP model (refer back to Figure

1.1). You (as the user) use an application to interact with the IP communications stack. You use

a program such as FTP to transfer files, telnet as a terminal emulator, and email to forward
tired jokes and stories to 50 of your closest friends. The application takes the message, the
information from the user or user process, and prepares it to be sent down through the IP
stack. The remaining three layers are transport, network, and link.
Two different transport models are discussed at this point: a connection-oriented model (TCP)
and a connectionless model (UDP). Connection-oriented means just what it sounds like: The
software does everything that it can to ensure that the communication is reliable and complete
and begins the process by establishing a connection known as a handshake. Connectionless,
on the other hand, is a send-and-pray delivery that has no handshake and no promise of
reliability. Any offered reliability must be built in to the application. Table 1.3 shows some of the
TCP and UDP attributes.

Table 1.3. Attributes of TCP Versus UDP
TCP UDP

Reliable Unreliable
Connection-oriented Connectionless
Slower Faster
UDP is the easiest communication protocol to comprehend—after all, you just assemble
packets and fire them into the network. The destination host scoops them up, demultiplexes
(strips the headers off at one layer and sends it to the appropriate upper-layer protocol), and
extracts the message. Certainly, a few datagrams might get lost along the way, but that is
often okay; for plenty of applications, this is not an issue. If you were broadcasting audio, for
instance, and a word got lost, your mind could probably compensate for this and fill in the
missing word. If you were sending video, perhaps there would be a little blank spot where
some packets got lost. Most of the time, this is acceptable. The data that travels over UDP is
not necessarily unreliable; it is just that UDP itself is not responsible for it. The application
must ignore the missing pieces or ask for the missing pieces.
What if you have an application that cannot tolerate the loss of packets? That is when TCP is
used. It ensures that all data sent is received. Several mechanisms are in place to verify
delivery and proper sequencing of TCP data. One means of control is an acknowledgement.
An acknowledgement (ACK) is an important part of the TCP protocol. TCP is so reliable
because each packet is acknowledged after the destination host receives it. If a packet is not
received (and therefore not acknowledged), it is resent. Thus, TCP ensures that all the packets
are received, and so is deemed a reliable service. This is a much slower way of doing business,
but you can set certain optimizations to speed up the process. That said, TCP will always be
slower than UDP.
The final IP protocol discussed here is the Internet Control Message Protocol (ICMP), which is a
fascinating lightweight set of applications originally created for network troubleshooting and to
report error conditions. The most well-known ICMP application is certainly the echo
request/echo reply (or ping). You can use a ping to determine whether a given network host is
reachable. Other ICMP applications are used for such things as flow control, packet rerouting,
and network information collection (to name just a few of the functions). Chapter 4, "ICMP,"
discusses ICMP and its related functions in more detail.

Domain Name System

Naming a thing is not the same as knowing a thing, but it is often the first step. I remember

when I first started hearing about the Domain Name System (DNS). At the time, the major
database software vendors were all talking about their distributed database products that
would be available "real soon now," and then the next thing I knew I was running distributed
database software. It didn't cost me a thing, and it worked from day one. DNS is a distributed
database because the entire address table is not stored on a single host; instead, it is
distributed across many servers.

At one point, the IP addresses and names were kept in tables that were downloaded nightly.
As the Internet kept growing, this became impractical for a number of reasons related to the
size of the table and issues surrounding single point of failure. Take a look at this excerpt of
the static host file /etc/hosts maintained on a UNIX host:

/etc/hosts
127.0.0.1 loopback
172.20.1.41 relay relay.sans.org
172.20.31.19 goo goo.sans.org

Although UNIX and Windows 2000 hosts still maintain a small local hosts file to identify local
and frequently used hosts, this function has been augmented by adding DNS capabilities. Most
UNIX and Windows 2000 hosts are configured to search the host's file first and if a host is not
found there, to search DNS for the resolution for the host. This offloads most of the
maintenance burden from the system administrator to individual administrators who maintain
DNS servers.

Before jumping into the DNS, a discussion of DNS domains is needed. A domain is really just a
logical division of DNS or the DNS database. The initial seven well-known "generic" domains
have the three-letter endings such .com, .org, .edu, .net, and to a lesser extent .int, .gov, and
.mil. The list of top-level domains has been expanded to include .aero, .biz, .coop, .info,
.museum, .name, and .pro. There are also two-letter domains, which often appear as country
codes (.us, .fr, and .uk for the United States, France, and the United Kingdom). Within each of
those generic domains are the domains used every day (for example, yahoo.com and
sans.org). Each of these domains represents a slice of the entire DNS pie.

Now that you have been introduced to the concept of DNS domains, how does DNS name
resolution really work? At a very rudimentary level, there are basically two resolving routines:
gethostbyaddr and gethostbyname. When you do some kind of DNS resolution, a host needs
to either translate an IP number into a host name or a host name into an IP number. The real
issue at hand is that people refer to hosts by their God-given host names, whereas computers
refer to hosts by their binary-derived IP numbers. After all, there is no field in an IP datagram
for the host name, only the IP number.

The gethostbyaddr call issued by your host delivers an IP number to a DNS server and tells it
to resolve the host name and return it. There is much more to the process than meets the
superficial eye, and this is discussed in Chapter 6, "DNS." Conversely, a gethostbyname call
delivers a host name to a DNS server and requests resolution to an IP number. Understand
that this explanation of DNS is a gross oversimplification of the processes and issues involved
because it is intended to be a very introductory exposure.

Routing: How You Get There from Here

Do you remember reading about TCP/IP as a four-layer protocol stack: application, transport,
network, and link?

Some time was taken to explain what the application and transport layers do, but the
explanation stopped at the network layer. Well, the network layer is concerned with routing
and how to get from one host to another host regardless of the physical interconnection or the
layout of the network. A better name for this layer might be the IP layer because this is the
layer at which IP addresses are used and routing occurs. It is significant to understand that IP
doesn't concern itself with the underlying physical link.

You have already learned about the mechanism used to direct traffic to a host that resides on
a network with the same network ID and subnet mask as the sending host. ARP is used to
broadcast a request to all hosts on the local network asking one to respond with a MAC
address that matches the desired destination IP number. How then is traffic directed to other
networks since ARP is broadcast only on the local network? That is where routing comes in.

Each host has a routing table that knows about a default router. When the destination host is
not on the local network, the traffic to be sent is directed to the default router. The router is
responsible for forwarding the traffic one hop closer to its destination. This hop can be to
another router or to the destination host itself if it resides on a network directly connected to
the router's interface. The question then becomes, how do routers know how to correctly
direct the traffic and how do they receive updated information? After all, this has to be a
dynamic process given that routes change because of problems and growth.

Routers maintain tables of routes that they know about. They use dynamic routing protocols to
update their tables.

Routing protocols are divided into two major categories: Interior Gateway Protocols (IGPs) and
Exterior Gateway Protocols (EGPs). The Interior Gateway Protocols support routing traffic
within a network that is under the same administrative control, also known as an Autonomous
System (AS). This is a fancy name for all the routers for which a site has responsibility. The
Routing Information Protocol (RIP) is a widely deployed IGP. RIP is a simple protocol, which
requires very little configuration and is supported by essentially every device. Another IGP is
Open Shortest Path First (OSPF). These two protocols differ in the way that they receive
routing updates and their perspective on finding best routes.

Exterior Gateway Protocols are required when packets must travel between different
Autonomous Systems. These protocols bridge separate Autonomous Systems into a single
network in which all of the computers on the network can interact seamlessly with each other.
The Border Gateway Protocol (BGP) is a widely used Exterior Gateway Protocol. Currently, BGP
provides the routing protocol that supports the Internet backbone. BGP servers on the Internet
backbone must maintain routing tables that include all of the external addresses on the
Internet—a pretty daunting task.

Summary

A lot of new and diverse topics have been jam-packed into this introductory chapter. Details
aside, you need to take away some core concepts with you to understand the upcoming
chapters on TCP/IP.

First, visualize the transfer of data between two networked hosts as a series of layers, much
like a stack. On the sending end, the message to be delivered is encapsulated in a series of
headers as it is passed down the stack. On the receiving end, the process is reversed and the
encapsulating headers are stripped and delivered to the associated layer of the stack for
processing. Each layer on the sending host really communicates with its peer layer on the
receiving host. Data is exchanged and packaged in different bundles with different names
depending on the purpose of the data and the layer at which it is found in the TCP/IP stack.

Hosts are addressed as both IP numbers and MAC numbers at different layers of the TCP/IP
stack. Remember that port numbers are used with TCP and UDP to designate a specific
application, such as sendmail or telnet. TCP is the connection-oriented protocol that promises
delivery, whereas UDP makes no such promise and is considered unreliable. DNS is used to
translate host names to IP addresses and vice versa. Finally, routing is responsible for
transporting the datagram from source to destination host. TCP/IP is a vast and complex
topic.Various aspects of it will be examined in more detail in subsequent chapters of this part
of the book.

Chapter 2. Introduction to TCPdump and TCP

Now that you have learned a bit about Internet Protocol (IP), you can take a closer look at
how it works by using a practical analysis tool known as TCPdump. Just as you cannot do any
kind of intrusion detection or traffic analysis without knowledge of TCP/IP, you cannot do
analysis without a tool of some sort. TCPdump, or its Windows cousin Windump, is a popular
and widely used piece of software that can give you some insight into the traffic activity that
occurs on a given network. This chapter teaches you how to manipulate the tool for your own
purposes and explains the output that it displays. The discussion then turns to one of the most
important and common protocols, TCP. You are introduced to some theory, but the real goal is
to enable you to catch a visual clue about TCP's behavior by examining it using TCPdump.
An excellent free tool for packet sniffing and interpretation is known as Ethereal, which is
available for both Windows and UNIX. It provides a GUI interface to interpret all layers of the
packet and many times the payload. It is even protocol aware, meaning that it knows how to
interpret the payload of many common protocols. For instance, it would know how to decipher
a normally coded DNS query. You are probably wondering why Ethereal is not being used as
the tool of choice in this book. First, it is more difficult to translate the Ethereal output to
readable book format. TCPdump is more succinct and more easily viewed. Second, TCPdump is
more primitive because it requires the user to do much of the interpretation of the output. The
challenge is to make you think rather than hand you all the answers, as Ethereal does.
The second part of this chapter begins the discussion of network protocols with a discussion of
TCP. All the chapters in this book that discuss network protocols follow a similar format. To

give you insight into "normal" activity, the protocol is first presented as you would expect to
see it under normal circumstances. However, because the Internet has become a wild and
unpredictable arena, you are quite likely to see aberrant kinds of activity too. Each protocol
chapter discusses some of the deviant departures you might encounter. This chapter follows
that basic format.

TCPdump
TCPdump is a UNIX tool used to gather data from the network, decipher the bits, and display
the output in a semi coherent fashion. The semi coherent output becomes fully coherent
output with a little explanation and exposure to the tool. When I first came to work at the
Dahlgren Navy Laboratory, for example, I spent the first week watching a network analyzer.
My boss, Bob Hott, came by every couple of hours to ask questions or have me give him a
small assignment. At the end of the week, he had learned something about the behavior of IP
and the character of his network. I strongly encourage you to spend some time watching your
network traffic; your investment will pay off for you many times over in your journey as an
analyst.
Although output from commercial tools might differ slightly or be more fashionable than
TCPdump, TCPdump runs close to the metal and can help you understand other tools as well.
This section demonstrates the use and demystifies the output of TCPdump.
Where Do You Get TCPdump and Its Variants?
You can download TCPdump from ftp://ftp.ee.lbl.gov/tcpdump.tar.Z

You need to download software known as libpcap, which implements a portable
framework for capturing low-level network traffic. You can find it at
ftp://ftp.ee.lbl.gov/libpcap.tar.Z

This is the "official" version of TCPdump; Lawrence Berkeley Labs authored it. Yet,
more recently, a collective effort has arisen to maintain and improve the code. More
feature-rich versions are being developed and can be found at www.tcpdump.org

Windump is a Windows variant of TCPdump. You can download it from
http://netgroupserv.polito.it/windump

It also requires winpcap software to function. You can obtain winpcap from this same
site.
TCPdump Behavior
After TCPdump has been installed, most operating systems require root access to run it. This is
because reading packets requires access to devices accessible to root-only. TCPdump is run by
issuing the command tcpdump. By default, this reads all the traffic from the default network
interface and spews all the output to the console. This is not always the behavior the user
wants; in fact, this is pretty irritating because records are likely to fly by uncontrollably on a
busy network. Therefore, many different command-line options are available to alter the
default behavior.
Filters
Suppose, for instance, that you don't want to collect all the traffic from the default network
interface. Maybe you are interested only in TCP records. TCPdump has a filter that enables you
to specify the records that you are interested in collecting. TCPdump comes complete with a
filter "language" to denote the field(s) in an IP datagram that should be examined and
retained if the specified conditions are met. To collect only TCP records, issue the command
tcpdump 'tcp'. The filter in this example is 'tcp'.
Filters get much more complicated and restrictive than this simple one when you use

ftp://ftp.ee.lbl.gov/tcpdump.tar.Z
ftp://ftp.ee.lbl.gov/libpcap.tar.Z
http://www.tcpdump.org/
http://netgroupserv.polito.it/windump

combinations of fields and traits. Just about any field in an IP datagram, including the actual
data payload, can be used to limit the purview of collected records. It seems logical that
TCPdump should include a way to indicate that the filter is stored in a file so that users don't
have to type a long filter complete with ham-handed keystrokes on the command line itself.
And true to logic, TCPdump has an –F filename option to indicate that the filter is located in
the file filename.
Binary Collection
As mentioned earlier, TCPdump dumps all the collected output to the screen. This is tolerable
behavior if you are looking for a specific record. Most times, however, TCPdump is running in
unattended mode, gathering records for retrospective analysis. To gather data for
retrospective analysis, you want TCPdump to collect the records in a binary format, also known
as raw output. When TCPdump displays records on the console, they have been translated
from the native raw output format to a human-readable format. For retrospective analysis, the
desired format for storage is the binary mode, in which all captured data is stored, not just the
data translated for output. To collect in raw output mode, use the command tcpdump –w
filename, in which filename is the name of the file to which the records will be written in
binary format.
To read this raw output file, another command-line option is necessary: tcpdump –r
filename. This option reads input to TCPdump from filename rather than from the default
network interface. You can read a file that has been written using the –w option only by using
TCPdump with the –r option. If you have ever used the UNIX tar utility, you know that when
you create a tar file, often referred to as a tarball, you must read that same tar file using tar.
The same principle applies with TCPdump.
Altering the Amount of Data Collected
One final option is discussed before proceeding because it determines the amount of data that
TCPdump collects. TCPdump does not attempt to collect the entire datagram sent. The reason
for this is due to volume concerns and many times the user's interest is in the header portions
of the datagram that are usually collected with the default length. The snapshot length,
sometimes known as snaplen, determines the exact number of bytes collected. One of the
most common lengths of collected data is 68 bytes.
What exactly do you get with these 68 bytes of data? Figure 2.1 shows a sample breakdown of a
packet. The header fields can be different lengths than depicted, based on the protocol and
header options. First you have an encapsulating link layer header—if this were Ethernet, it
would represent 14 bytes of Ethernet frame header with fields such as source and destination
MAC addresses. Next, you have an IP datagram header, which is minimally 20 bytes if there
are no IP options. The encapsulated protocol header (TCP, UDP, ICMP, and so on) follows that
and can range from 8 bytes to more than 20 bytes for TCP headers with options. The data, or
payload in the datagram, is collected after all the headers. As you can see, there might not be
much, if any, payload collected because of the default snaplen. To alter the default snaplen,
use the tcpdump –s length command, in which length is the desired number of bytes to be
collected. If you want to capture an entire Ethernet frame (not including 4 bytes of trailer), use
tcpdump –s 1514. This captures the 14-byte Ethernet frame header and the maximum
transmission unit length for Ethernet of 1500 bytes.

Figure 2.1. Sample packet.

You can use many more command-line options with TCPdump. To learn about them, issue the
command man tcpdump command. Be warned, however, that the output is copious (change
the printer cartridge and restock the paper), but very informative if you have the patience and
curiosity to wade through it.
TCPdump Output
Because you will be seeing many TCPdump traces in this book, it is important for you to
understand the format. One of the hardest tasks for the novice analyst to master is decrypting
TCPdump output. TCPdump output is fairly standard for the different protocols (TCP, UDP,
ICMP, for example), but does have some nuances. The first step is to identify the protocol that
you are examining. TCP output will be used to explain the general TCPdump format. Here is a
TCP record displayed by TCPdump:
09:32:43:910000 nmap.edu.1173 > dns.net.21: S 62697789:62697789(0) win 512

● 09:32:43:9147882 This is the time stamp in the format of two digits for hours, two

digits for minutes, two digits for seconds, and six digits for fractional parts of a second.
● nmap.edu This is the source host name. If there is no resolution for the IP number or

the default behavior of host name resolution is not requested (TCPdump -n option), the
IP number appears and not the host name.

● 1173 This is the source port number, or port service.

● > This is the marker to indicate a directional flow going from source to destination.

● dns.net This is the destination host name.

● 21 This is the destination port number (for example, 21 might be translated as FTP).

● S This is the TCP flag. The S represents the SYN flag, which indicates a request to start a

TCP connection.
● 62697789:62697789(0) This is the beginning TCP sequence number:ending TCP

sequence number (data bytes). Sequence numbers are used by TCP to order the data
received. For a session establishment such as this, the beginning sequence number
represents the initial sequence number (ISN), selected as a unique number to mark the
first byte of data. The ending sequence number is the beginning sequence number plus
the number of data bytes sent within this TCP segment. As you see, the number of data
bytes sent for a session establishment request is usually 0. That is why the beginning
and ending sequence numbers are the same. Normal session establishments do not send
data.

● win 512 This is the receiving buffer size (in bytes) of nmap.edu for this connection.

TCP Flags
Normal TCP connections have one or more flags set. Flags are used to indicate the
function of the connection. Table 2.1 shows the TCP flags, their representation in
TCPdump, and their meanings.

Table 2.1. TCPdump Flags
TCP Flag Flag Representation Flag Meaning

SYN S This is a session establishment request, which is the first
part of any TCP connection.

ACK ack This flag is used generally to acknowledge the receipt of
data from the sender. This might be seen in conjunction
with or "piggybacked" with other flags.

FIN F This flag indicates the sender's intention to gracefully
terminate the sending host's connection to the receiving
host.

RESET R This flag indicates the sender's intention to immediately
abort the existing connection with the receiving host.

PUSH P This flag immediately "pushes" data from the sending host
to the receiving host's application software. There is no
waiting for the buffer to fill up. In this case, responsiveness,
not bandwidth efficiency, is the focus. For many interactive
applications such as telnet, the primary concern is the
quickest response time, which the PUSH flag attempts to
signal.

URGENT urg This flag indicates that there is "urgent" data that should
take precedence over other data. An example of this is
pressing Ctrl+C to abort an FTP download.

Placeholder . If the connection does not have a SYN, FIN, RESET, or
PUSH flag set, a placeholder (a period) will be found after
the destination port.

TCPdump output for TCP is unique; the flag field and the sequence numbers are distinguishing
characteristics. When you see these telltale signs in the TCPdump output, you know the record
is TCP. UDP records are likely to have the word udp in the TCPdump output. Although true
most of the time, just when you think you can rely on this as a steadfast way to identify UDP
output, TCPdump throws you a curve ball. TCPdump analyzes some UDP services, such as
Domain Name Service (DNS) and Simple Network Management Protocol (SNMP), at the
application level in addition to the protocol level as UDP. Like Ethereal, it is protocol aware and
can interpret normally coded payloads of certain protocols. The output might look foreign to
you the first few times you see it because it does not have the word udp and because there
are no TCP trademarks such as flags or sequence numbers. Typically, this is UDP output with
more detail. Finally, ICMP is easily identified because the word icmp appears, without
exception, in the TCPdump output.
Absolute and Relative Sequence Numbers
Not to belabor the discussion of TCPdump output any more than is necessary, but TCP
sequence numbers need to be addressed in a little more detail. Sequence numbers are
associated only with TCP output, as just discussed. TCP sequence numbers are used by the
destination host to reassemble TCP traffic that arrives. Remember that TCP guarantees order,
whereas UDP does not. The sequence numbers are decimal number representations of a 32-bit
field, so they can be pretty monstrous in size and intimidating to read. TCPdump helps make
the output more coherent by changing from the absolute ISNs to relative sequence numbers
after the two hosts exchange their ISNs. Look at the following TCPdump output. The time
stamp has been omitted for the clarity and space-saving considerations:

client.com.38060 > telnet.com.telnet: S 3774957990:3774957990(0) win 8760
<mss 1460> (DF)
telnet.com.telnet > client.com.38060: S 2009600000:2009600000(0) ack
3774957991 win 1024 <mss 1460>
client.com.38060 > telnet.com.telnet: .ack 1 win 8760 (DF)
client.com.38060 > telnet.com.telnet: P 1:28(27) ack 1 win 8760 (DF)
The section, "Establishing a TCP Connection," discusses the actual theory of this output. For now,
however, look at the numbers in bold. The first two numbers in the first two lines in bold
represent the very large ISNs in absolute format that are exchanged from client.com and
telnet.com, respectively. The third line has a number in bold that represents a relative
sequence number—1. This means that client.com has acknowledged receiving the previous
SYN by telnet.com with an ISN of 2009600000. The 1 as the acknowledgement value means
that the next expected relative byte to be received by client.com is byte 1. That would have an
absolute sequence number of 2009600001, if it were not displayed as a relative sequence
number. If this seems confusing, the theory of acknowledgement numbers will be discussed in
more detail in the upcoming section "Introduction to TCP."
The final line has the numbers 1 and 28 in bold to indicate that relative to the absolute
sequence number of 3774957990, the 1st byte through (but not including) the 28th byte are
sent from client.com to telnet.com. The final line also has ack 1.. This acknowledgement

number will not change until telnet.com sends more data.
If you ever need to leave the sequence numbers in their absolute form, the TCPdump –S
option will alter the default behavior of expressing TCP sequence numbers in relative terms
after the exchange of the ISNs.
Changing the TCPdump Collection Interface
You might find that you want to read TCPdump traffic from a different interface than
the default one. The default interface is the lowest number active one, not including
the loopback interface. For instance, if you were on a Linux box and had two NIC
cards, one might be known as eth0 and the next eth1. To change the default
interface, the –i option of TCPdump is used. The following command will select ppp0
as the listening interface:
tcpdump –i ppp0

Dumping in Hexadecimal
TCPdump does not display all the fields of the captured data. For example, the IP header has a
field that stores the length of the IP header. How do you display this field if it is not available
from the standard TCPdump output? There is a TCPdump command-line option (–x) that
dumps the entire datagram captured with the default snaplen in hexadecimal. Hexadecimal
output is far more difficult to read and interpret, but it is necessary to display the entire
captured datagram.
To interpret TPCdump hexadecimal output, you need some reference material that discusses
the format of the IP datagram headers and describes what each of the fields represents. (One
such reference title is TCP/IP Illustrated, Volume 1, by W. Richard Stevens.) You then must
translate hexadecimal to decimal for numeric fields and numeric to ASCII for character fields.
Ethereal is probably the best tool to use for translation of TCPdump records that are stored in
binary form with the –w tcpdump command line option; it can read TCPdump binary data as
input.

Introduction to TCP

TCP is a reliable connection-oriented protocol used with well-known applications such as telnet
or smtp. An application such as telnet cannot tolerate the uncertainty of the Internet Protocol
that can lose datagrams or deliver them in a different order from which they were sent. TCP is
the protocol that orchestrates and ensures reliability. It does so using the following
mechanisms:

● Exclusive TCP connection. When a TCP session is established, the connection is
exclusive and unique between the two hosts. This kind of connection is called a unicast
connection. The negotiation of the unique session allows both sides to track the traffic
exchanged between the two hosts.

● TCP sequence numbers. These provide a sense of chronology to the TCP data sent and
received. A telnet command or exchange might take several packets known as TCP
segments to transmit all the data. Data is assigned a TCP sequence number to uniquely
identify the data in each segment being sent. Because the data might arrive in a
different order from which it was sent, TCP sequence numbers are also used to
reassemble the data in the correct order.

● Acknowledgements. Acknowledgements are used to inform the sender that data has
been received. Acknowledgements are made to sequence numbers to identify the exact
data received. If the sender does not receive an acknowledgement for specific data in a
given time, it assumes that the data has been lost. The sender will retransmit what it
believes was lost.

Establishing a TCP Connection
Figure 2.2 shows establishing a TCP connection is almost ceremonial in nature, involving what is
commonly known as the three-way handshake. This is normally completed before any data is
passed between two hosts. What is depicted is the client or source host initiating a connection
to the server or destination host. The term client is used to mean the host requesting some
kind of service from another host. A server is a host that listens on a well-known port number
for requests of a particular service. TCP requires a destination port or service to be specified.
Examples of destination ports are 23 (telnet), 25 (smtp), or port 80 (also known as the HTTP
or the web server port).

Figure 2.2. The three-way handshake.

The three-way handshake proceeds as follows:
1. The client sends a SYN (SYNC) to signal a request for a TCP connection to the

server.

2. If the server is up and offers the desired service, and can accept the incoming
connection, it sends a connection request of its own signaled by a new SYN (SYNS) to

the client and acknowledges the client's connection request with an ACK (ACKC). This

is all accomplished in a single packet.
3. Finally, if the client receives the server's SYN and ACK of the SYN that the client
sent and still wants to continue the connection, it sends a final lone ACK (ACKS) to the

server. This acknowledges that the client received the server's request for a
connection.

After the three-way handshake has been executed in this manner, the connection has been
established. Data can now be exchanged between the two hosts. If you examine the three-way
handshake with a little more scrutiny, you will discover that two connections have really been
established. The first is between the client and server and the second between the server and
the client. This is because TCP is full duplex, which means that data exchanges can travel in
either direction independently.
The following example shows the three-way handshake, using TCPdump to display the
exchange:
tclient.net.39904 > telnet.com.23: S 733381829:733381829(0) win 8760 <mss
1460> (DF)
telnet.com.23 > tclient.net.39904: S 1192930639:1192930639(0) ack 733381830
win 1024 <mss 1460> (DF)
tclient.net.39904 > telnet.com.23: . ack 1 win 8760 (DF)
In the first record, you see the client, tclient.net, attempt a connection to the telnet server,
port 23, of telnet.com. You see the SYN flag set followed by the ISN, 733381829, and the
same ending sequence number, 0 payload bytes in the parentheses. After that, you see a
window size of 8760 and a maximum segment size (mss) that it advertises to the server. The
window size of 8760 says that the client has an 8760-byte buffer for aggregated incoming data
to this connection. The mss informs the destination host that the physical network on which
tclient.net resides should not receive more than 1460 bytes of TCP payload (20-byte IP header
+ 20-byte TCP header + 1460-byte payload = 1500 bytes, which is the maximum
transmission unit, or MTU, for Ethernet) at a time. In this case, even though the client,
(tclient.net) can accept 8760 bytes of data, the physical medium on which it resides, most
likely Ethernet, cannot accept more than 1460 bytes for a TCP payload size.
In the second record, you see telnet.com send a SYN and an ACK to tclient.net informing it
that it is an available and willing participant in this connection and is willing to establish one of
its own as well. telnet.com informs tclient.net of its ISN, 1192930639. This is also the ending
sequence number because no data is sent; this is normal for the SYN/ACK records. The
number following the ACK is the acknowledgement number, in this case, 733381830. Note
that this value is the ISN advertised by tclient.net in the first record 733381829 plus 1.
telnet.com has just acknowledged that it expects absolute byte number 733381830 as the
next sequence number from tclient.net. telnet.com advertises a window size of 1024 and a
maximum segment size of 1460.
In the final line, tclient.net sends the final lone ACK to telnet.com and acknowledges receiving
the SYN/ACK flags from telnet.com. The value of 1 as the relative acknowledgement number
indicates that it next expects the first byte from telnet.com. Also, notice that the sequence
numbers have changed from absolute to relative values beginning with this record. Right after
the destination part, following the colon, you see a period. Remember this is the placeholder
value when none of the PUSH, RESET, SYN, or FIN bits is set.
Server and Client Ports
In the past, more so than today, well-known server ports generally fell in the range of 1–1023.
Historically under UNIX, only processes running with root privilege could open a port below
1024. These ports should remain constant on the host for which they are offered. In other
words, if you find telnet at port 23 on a particular host one day, you should find it there the

next day. You will find many of the older well-established services in this range of 1–1023
(such as telnet on port 23 and smtp on port 25). Today, some of the newer services, such as
AOL Instant Messenger, usually associated with TCP port 5190, don't tend to conform to this
original convention. This is partially because there are more services than numbers in this
range today.
Client ports, often known as ephemeral ports, are selected only for a particular connection and
are reused after the connection is freed. These are generally numbered greater than 1023.
When a client initiates a connection to a server, an unused ephemeral port is selected. For
most services, the client and server continue to exchange data on these two ports for the
entirety of the session. This connection is known as a socket pair and it will be unique. There
will be only one connection on the Internet that has this combination of source IP and source
port connected to this destination IP and destination port.
Someone from the same source IP might even be connected to the same destination IP and
port. This user will be given a different ephemeral port, however, thus distinguishing it from
the other connection to the same server and destination port. Two users on the same host
might connect to the same web server. Although this is the same source IP, destination IP,
and port (80), the web server can maintain who gets what by the ephemeral source ports
involved.
Examine the three-way handshake exchange again, but this time in the context of client and
server ports:
tclient.net.39904 > telnet.com.23: S 733381829:733381829(0) win 8760 <mss
1460> (DF)
telnet.com.23 > tclient.net.39904: S 1192930639:1192930639(0) ack 733381830
win 1024 <mss 1460> (DF)
tclient.net.39904 > telnet.com.23: . ack 1 win 8760 (DF)
You see that tclient.net has selected ephemeral port 39904 on which to communicate and to
connect to well-known port 23 of telnet.com. Any further exchanges after the three-way
handshake are done using these two negotiated ports. After the connection is closed and some
time has passed, tclient.net releases port 39904 for use by another connection. Port 23 of
telnet.com remains bound to the telnet service for additional telnet requests.
Connection Termination
You can terminate a session in two ways: the graceful method or an abrupt method. The
graceful method is the phone conversation equivalent of you saying, "Thanks, but we're not
interested," and hanging up on the telemarketer. This informs the telemarketer that the
conversation is over and that he should now hang up and place another intrusive dinnertime
call to some other hapless victim. The abrupt equivalent of this is just hanging up after you
determine someone isn't worth your valuable time.
The Graceful Method
When the graceful TCP session termination method is conducted, one of the hosts, either the
client or server, signals with a FIN to the other that it wants to terminate the session. The
receiving host signals back with an ACK (to acknowledge the request). This terminates only
half the connection. Then, the other host must initiate a FIN as well, and the receiving host
needs to acknowledge this. Both sides need to initiate a FIN and acknowledge the other's FIN
because TCP is full duplex. Both the client and server send data in an asynchronous manner,
so both sides of the connection have to be individually terminated. Look at the following two
TCPdump exchanges:

1. Client initiates a close with a FIN, and server does an ACK, as follows:
2. tclient.net.39904 >telnet.com.23: F 14:14(0) ack 186 win 8760 (DF)
telnet.com.23 > tclient.net.39904: . ack 15 win 1024 (DF)

3. Server initiates close with a FIN, and client does an ACK, as follows:
4. telnet.com.23 > tclient.net.39904: F 186:186(0) ack 15 win 1024 (DF)
tclient.net.39904 > telnet.com.23: . ack 187 win 8760 (DF)

The connection between tclient.net and telnet.com is now closed.
The Abrupt Method
The second termination method is an abrupt halting of the connection.
This is done with one host sending the other a RESET. This signals the
desire to abruptly terminate the connection.tclient.net.39904 >
telnet.com.23: R 28:28(0) ack 1 win 8760 (DF)

This output shows tclient.com as it aborts the connection to telnet.com. It sends a RESET to
telnet.net to signal the intent to terminate immediately. There should be no further
communication between the two hosts using the negotiated session after the abort.
Data Transfer
Now that you know how TCP establishes and terminates a connection, it is time to take a look
at what happens in between. Normally, the whole reason for establishing a session is so data
can be exchanged between two hosts. The following data excerpt might be transferred
between tclient.net and telnet.com after the three-way handshake and before the termination:
tclient.net.39904 > telnet.com.23: P 1:28(27) ack 1 win 8760 (DF)
telnet.com.23 > tclient.net.39904: P 1:14(13) ack 1 win 1024
telnet.com.23 > tclient.net.39904: P 14:23(9) ack 28 win 1024
The first line shows tclient.net sending 27 bytes of data (a relative range of 1 to 28 bytes as
seen in the parentheses) to telnet.com. This is the first time the new P flag has appeared; it
represents PUSH. Because telnet is an interactive application that demands the fastest
response time available, the PUSH flag signals to the receiver of the data, in this case
telnet.com, to push the data immediately to the telnet application upon receipt of data in the
incoming buffer. This line also acknowledges that the next relative sequence number expected
by tclient.com from telnet.com is byte 1.
The second line shows telnet.com sending 13 bytes of data to tclient.com and acknowledging
receipt of 1 byte of data from tclient.com. It has yet to acknowledge receipt of the 27 new
bytes just sent by tclient.net. The final line shows telnet.com sending an additional 9 bytes to
client.com. See how the relative bytes begin at 14 (14:23) bytes after the 13 (1:14)

preceding bytes sent from telnet.com to tclient.net.
This exchange also acknowledges receipt of 27 bytes of data from tclient.net to telnet.com.
You see ack 28 because this is known as an expectational acknowledgement: Byte 28 is the

next anticipated byte to be received. All traffic exchanges between the two hosts will have the
ACK flag set after the three-way handshake has been completed. This is sometimes used as an
indication of an established session.
What's the Bottom Line?
What if you need to analyze some traffic for malicious intent? Is it really necessary for you to
absorb all the detailed theory about TCP to do any kind of analysis of TCP traffic of normal or
anomalous behavior? The bottom line is that you can do elementary analysis without flipping
bits. Here are some of the more general behaviors that you might examine:

● Was the three-way handshake completed between two hosts? If it was, this
means that the server listens at the port at which the client requested and the server
accepted the connection. This is fine if the expected behavior is that the server listens at
the requested port. However, what if the server port is not one that you expect to listen?
This might indicate some service, known to the system administrator and not to you, is
running. It might also mean, however, that someone maliciously installed some
backdoor application on the server without your knowledge.

● Was data transmitted? In TCPdump output, after the TCP sequence numbers, you find
the number of data bytes in parentheses that were sent. If you see data transmitted,
that means that the two hosts are speaking to each other. When you are doing some
kind of retrospective analysis of unexpected activity between two hosts, looking at the

number of bytes exchanged can come in handy in assessing the severity of what might
have transpired. You might not be able to see the actual data bytes or payload, but
numbers can be telling. Lengthy individual exchanges and the number of exchanges in
aggregate can readily indicate potential damage by an intruder.

● Who began and/or ended the connection? By determining which host initiated and
terminated the connection, you get an idea of who is in control. Typically, the client
requests the connection and the server responds (as you have already seen). Either host
can end the conversation, so observe which one initiates the termination with a RESET or
FIN.

Damage Assessment
Using TCPdump as a detective tool to analyze an attempted computer break-in is
like investigating a burglary attempt or actual burglary. The first step in damage
assessment is determining whether the perpetrator actually got into the computer
system (or in the case of a burglary, into the house). Repeated SYN attempts to a
system without a reply might be the equivalent of jimmying a door without
successful entry. The completion of the three-way handshake is the equivalent of
entry; it might just be through the garage door, which also requires a key to get into
the house, but it is indicative of some kind of entry. The three-way handshake is the
evidence equivalent of finding a previous locked door now unlocked or finding
strange fingerprints inside the locked door.
The server port number can indicate the intruder's interest. The use of a
conventional port, such as telnet, means that perhaps the burglar might be doing a
serious raid of goods (password files, trusted host relationships, and so on), the
equivalent of a thief's interest in jewelry and appliances. What about the
unconventional port numbers that don't support a known service? Is that the sign of
some kind of a joyride through your system just to prove it can be done—kind of like
coming home to find that someone drank all the milk in the refrigerator, threw the
empty carton on the floor, and did or took nothing else?
Whereas the house burglary damage might be assessed by determining what is
blatantly gone (the big-screen TV, for example), what about a burglar who broke
into a big, fully stocked warehouse that didn't keep good inventory records? How
would you make an assessment of stolen goods? Perhaps a neighbor saw a strange
vehicle in the driveway. Was it a moving van or was it a motorcycle? When you
examine the number of bytes exchanged in the TCPdump output, you are in effect
determining what kind of haul the burglar made off with. You are making best-guess
efforts based on the little evidence that you have.

TCP Gone Awry
In subsequent chapters, you will read many examples of the malicious attacks that employ
TCP. Appendix A, "Exploits and Scans to Apply Exploits," and Appendix C, "Detection of Intelligence
Gathering," discuss scanning methods that use different and sometimes unexpected
combinations of TCP flags to perform reconnaissance on networks and circumvent detection or
bypass filtering attempts. The following sections introduce some other anomalous TCP activity,
such as an ACK scan, a telnet scan, and TCP session hijacking.
An ACK Scan

Scans of ports are done for a variety of reasons, but they usually are used to discover whether
a host or hosts are offering a particular service. If a host is found to be offering a service that
might be exploitable, the hacker might try to break in using some vulnerability. Often, scans
are blatant; the hacker makes no attempt to hide his reconnaissance of your network, except
that the computer from which the scans originate might be compromised. The hacker assumes
that either no one is monitoring the scanning activity or that by using the compromised host,
no one can identify the hacker with the scan. Most likely there will be no attribution because
no one can associate the hacker with the scan.
At times, however, the scanner attempts to be more furtive about the reconnaissance efforts
in an attempt to evade notice. Examine the following activity, which is TCPdump output of
many related connections. The prober can identify live hosts by those responding to the ACK
scan. The deletion of time stamps makes it more readable:
ack.com.23 > 192.168.2.112.23: . ack 778483003 win 1028
ack.com.23 > 192.168.31.4.23: . ack 778483003 win 1028
ack.com.143 > 192.168.2.112.143: . ack 778483003 win 1028
ack.com.143 > 192.168.31.4.143: . ack 778483003 win 1028
ack.com.110 > 192.168.2.112.110: . ack 778483003 win 1028
ack.com.110 > 192.168.31.4.110: . ack 778483003 win 1028
ack.com.23 > 192.168.14.19.23: . ack 778483003 win 1028
ack.com.143 > 192.168.14.19.143: . ack 778483003 win 1028
ack.com.110 > 192.168.14.19.110: . ack 778483003 win 1028
ack.com.23 > 192.168.33.53.23: . ack 778483003 win 1028
ack.com.23 > 192.168.37.3.23: . ack 914633252 win 1028
ack.com.23 > 192.168.14.49.23: . ack 3631132968 win 1028
The preceding scan from ack.com sends an ACK flag to various different hosts on the internal
192.168 network. A lone ACK should be found only as the final transmission of the three-way
handshake, an acknowledgement of received data, an acknowledgement of a received FIN, or
data that is transmitted where the entire sending buffer has not been emptied. This is not the
case in this scan because no other traffic is found from ack.com to indicate that this is a
reaction to some natural catalyst.
This might be an attempt to find live hosts, somewhat akin to the function of ping. If a live
host receives an ACK for either an open or closed port, it should respond with a RESET. Also,
filtering routers that allow only "established" connections into the network (in other words, the
ACK bit is set) will not filter this kind of scan. As sites become more security conscious and
begin to block more traffic into the network, those who want to do reconnaissance have to
become more clever and stealthy in the manner in which they scan, as shown in this example.
Note that the source ports are the same as the destination ports. This is not the expected
behavior of the client selecting an ephemeral port with a value greater than 1023. This is
another signature that helps to identify this scan. With the lone ACK flag set and identical
source and destination ports, we can assume that this traffic has been "crafted." Someone has
written a program to execute this particular scan; it is not the result of normal TCP/IP stack
traffic generation.

Reserved Private Networks
Throughout the text, you will see references of networks 192.168 and 172.16 as
examples. These particular address spaces are part of what the governing body of
the Internet, the Internet Address Numbers Authority (IANA), has deemed to be
reserved private networks per RFC 1918. In other words, these are address spaces
that should be used for internal networks and traffic should not be sent to or from
these networks. These address spaces are often used so that a site will not exhaust
its actual assigned addresses.
Traffic to these networks is not routable because these are private address spaces.
When you see these address spaces used in examples, understand that they are
being used to disguise the real address spaces that were scanned or probed. The
intent is not to imply that traffic can be routed to theses networks via the Internet.
A Telnet Scan?
Look carefully at the next scan. Short of finding Waldo in the output, do you see anything
amiss?
scanner.se.45820 > 192.168.209.5.23: S 4195942931:4195942935(4) win 4096
scanner.se.45820 > 192.168.216.5.23: S 4195944723:4195944727(4) win 4096
scanner.se.52526 > 172.16.68.5.23: S 357331986:357331990(4) win 4096
scanner.se.45820 > 192.168.183.5.23: S 4196001810:4196001814(4) win 4096
scanner.se.52526 > 172.16.248.5.23: S 357312531:357312535(4) win 4096
scanner.se.45820 > 192.168.205.5.23: S 4196007442:4196007446(4) win 4096
scanner.se.52526 > 172.16.250.5.23: S 357313043:357313047(4) win 4096
scanner.se.52526 > 172.16.198.5.23: S 357365266:357365270(4) win 4096
scanner.se.52526 > 172.16.161.5.23: S 357355794:357355798(4) win 4096
To the naked eye, it is a scan from scanner.se of destination hosts on the 192.168 and 172.16
subnets—specifically to destination port 23, or telnet. You might conclude that this is an
attempt to find all hosts on the destination subnets that offer telnet, and that would be mostly
correct. A subtle signature might indicate potentially evasive behavior, however. A SYN
request usually sends no data bytes, but this scan sends 4 bytes, as you can tell by looking at
the number in the parentheses.
You might imagine that the 4 bytes of data sent before the completion of the three-way
handshake would be discarded. However, this is not the case. The 4 bytes should be included
in the data after the handshake has been completed as noted by RFC 793. Any payload bytes
that are sent during the handshake become part of the data stream after the completion of the
handshake according to the RFC. This could be a good way to circumvent detection by an
intrusion-detection system (IDS) that examines data sent only after the three-way handshake.
If you see 64 data bytes sent on a SYN connection to your DNS server to the DNS port 53, this
might indicate a different issue altogether. Software known as 3DNS attempts to give users
the quickest response time to web requests. One way that this is done is by attempting to
measure the response time to your DNS server from one or more web servers that might be
used to respond to the user's request. As a representative size of a typical web request, 64
bytes are used. If you see this activity, it should not be considered stealthy; perhaps you
might deem it invasive or annoying, or even ineffective because many sites block inbound
activity to TCP port 53, but the intent is not malicious.
TCP Session Hijacking
Although TCP appears to be a fairly safe protocol because of all the negotiation involved in
session establishment and all the protocol and precision involved in data exchange, don't get
complacent. Evil sniffers can be set up on an unsuspecting host to capture TCP or other data
that crosses the sniffers' path. Sniffers that are placed on networks that are not switched can
snoop clear-text data such as user IDs and passwords that are not encrypted in any way.
Session hijacking software, such as Hunt, uses another approach to exploit an existing TCP
session. These attempt to intercept an established TCP session and hijack one end of the

connection from the session to an evil host. The problem is that conventional TCP exchanges
do not require any authentication or confirmation that they are the actual hosts involved in a
previously established connection. After a session has been established between two hosts,
those hosts use the following to reconfirm the corresponding host:

● IP number. The established IP numbers of the hosts must not change.
● Port numbers. Most protocols communicate between established ports only; ports do

not change.
● Sequence numbers. Sequence numbers must change predictably in respect to the ISN

and the aggregate number of bytes sent from one host to another.
● Acknowledgement numbers. Acknowledgement numbers must change in respect to

delivered sequence numbers and aggregate bytes acknowledged from one host to
another.

If a hostile user can observe data exchanges and successfully intercept an ongoing connection
with all the authentication parameters properly set, he can hijack a session. Imagine the
damage that can be done if this hijacked session is one that has root authority. Many
complications and considerations are involved in session hijacking. It is not a trivial endeavor,
but it is made simpler using the Hunt software.

Summary
A vast and growing number of security tools are at your disposal.You have many tool choices
when it comes to monitoring your network. When you decide which tool to use, make sure that
the tool provides at least the level of detail that TCPdump offers. Admittedly, TCPdump does
not provide especially aesthetic output, but it does give the required amount of detail to make
intelligent assessments about traffic activity. If you select a tool that is easier on the eye, but
lighter on content, you might not get the whole story.
TCP is the protocol used for applications that require reliable delivery. TCP exchanges follow a
prescribed architecture of session establishment, possible data transfer, and session
termination, replete with all the mechanisms to ensure delivery and receipt of data. When you
observe TCP activity with TCPdump, you can delve into the details, if desired or necessary, or
you can observe broader patterns and make more general assessments of the type of activity
that has transpired.
TCP is a very robust protocol, and it has been robustly mutated for malicious uses. Carefully
analyze it for the unexpected when monitoring TCP activity. As Intrusion Detection Systems
(IDSs) and firewalls become more sophisticated in function, so do the hackers' efforts to
circumvent detection and shunning. It is important for an intrusion analyst to have a good
understanding of TCP, and TCPdump is an excellent instructional tool.

Chapter 3. Fragmentation

At different times, attackers use fragmentation both to mask and facilitate their probes and
exploits. Some intrusion-detection systems and packet-filtering devices do not support packet

http://safari.informit.com/?xmlid=0-73571-265-4/22991533

reassembly or perform it correctly and therefore do not detect or block activity where the
signature is split over multiple datagrams. Availability or denial-of-service attacks use highly
fragmented traffic to exhaust system resources. These are some of the reasons you might
want to learn about fragmentation and some of the topics covered in this chapter.
By understanding how this facet of IP works, you will be equipped to detect and analyze
fragmented traffic and discover whether it is normal fragmentation versus fragmentation used
for other purposes. Fragmentation can be a naturally occurring effect of traffic traveling
through networks of varying sized maximum transmission units (MTU). The theory and
composition of normal fragmentation is discussed first in this chapter to acquaint you with how
it should operate.

Theory of Fragmentation
Fragmentation occurs when an IP datagram traveling on a network has to traverse a network
with a maximum transmission unit that is smaller than the size of the datagram. For instance,
the MTU or maximum size for an IP datagram for Ethernet is 1500 bytes. If a datagram is
larger than 1500 bytes and needs to traverse an Ethernet network, it requires fragmentation
by a router directing it to the Ethernet network. Fragmentation can also occur when a host
needs to put a datagram on the network that exceeds its own network's MTU.
Fragments continue on to their destination, where the destination host reassembles them.
Fragments can even become further fragmented if they cross an MTU smaller than the
fragment size. Although fragmentation is a perfectly normal event, it is possible to craft
fragments for the purposes of avoiding detection by routers and intrusion-detection systems
that don't deal well with fragmentation.
What kind of information must the fragments carry for the destination host to reassemble
them back to the original unfragmented state? The following list answers this question:

● All fragments from the same datagram must be associated with each other fragment by
using a common fragment identification number. This is cloned from a field in the IP
header known as the IP identification number, also called the fragment ID.

● Each fragment must carry what its place or offset is in the original unfragmented packet.
● Each fragment must tell the length of the data carried in the fragment.
● Finally, each fragment must know if more fragments follow it. This is done using the

More Fragments (MF) flag.

The Fragment ID Number/IP Identification Number
The IP identification value is a 16-bit field found in the IP header of all datagrams.
This uniquely identifies each datagram sent by the host. Typically, this value
increases by one for each datagram sent by that host.
When the datagram becomes fragmented, all fragments created from this datagram
contain this same IP identification number, or fragment ID. The following TCPdump
output shows an IP identification number of 202 for this unfragmented output:
ping.com > 192.168.244.2: icmp: echo request (ttl 240, id 202)
If this datagram were to become fragmented on the way to its destination, all
fragments created from this datagram would share a fragment ID of 202. This
TCPdump output was generated using the -vv option. This is a verbose option that
says to list the time-to-live (TTL) value and the IP identification values at the end of
the standard output.

This information is contained in the IP header. The IP header is placed in an IP datagram
followed by an encapsulated fragment. As you have learned, all TCP/IP traffic must be
wrapped within IP because IP is the protocol responsible for getting the packet delivered.
Visualizing Fragmentation: Seeing Is Understanding
This discussion uses Ethernet as the example link layer medium to demonstrate the packaging
of datagrams. Figure 3.1 depicts the configuration of a datagram that is not fragmented. As
previously mentioned, a datagram traveling on Ethernet has an MTU of 1500 bytes. Each
datagram must have an IP header, which is typically 20 bytes, but can be more if IP options,
such as source routing, are included.

Figure 3.1. Ethernet datagram packaging.

As a quick refresher, recall that the IP header contains information such as the source and
destination IP numbers. It is considered the "network" portion of the IP datagram because
routers use the information found in the IP header to direct the datagram toward its
destination. Some kind of data is encapsulated after the IP header. This data can be an IP
protocol such as TCP, UDP, or ICMP. If this data were TCP, for instance, it would include a TCP
header and TCP data.
Figure 3.2 shows a datagram of 4028 bytes. This is an ICMP echo request bound for an Ethernet
network that has an MTU of 1500. This is an abnormally large ICMP echo request that is not
representative of normal traffic, but it is used to illustrate how fragmentation occurs. So, the
4028 byte datagram will have to be divided into fragments of 1500 bytes or less. Each of these
1500-byte fragmented packets will have a 20-byte IP header like the initial fragment, leaving
1480 bytes maximum for data for each fragment. Figure 3.3 examines this same datagram, but
shows the allocation of bytes per fragment. The following sections examine the contents of
each of the individual three fragments.

Figure 3.2. Original 4028 byte fragment broken into three fragments of 1500 bytes
or less.

Figure 3.3. Byte allocations per fragment.

All Aboard the Fragment Train
Turn your concentration to the initial fragment in the fragment train shown in Figure 3.4. The
"original" IP header will be cloned to contain the identical fragment identification numbers for
the first and remaining fragments.

Figure 3.4. The fragment engine.

The first fragment is the only one that will carry with it the ICMP message header. This header
is not cloned in subsequent associated fragments and this concept of the first fragment alone
identifying the nature of the fragment is significant, as you will soon learn. The first fragment
has a 0 offset, a length of 1480 bytes of length, 1472 bytes of data, and 8 bytes of ICMP
header; and because more fragments follow, the More Fragments flag is set.
Figure 3.5 explains the configuration of the first fragment in the fragment train. The first 20 bytes
of the 1500 bytes are the IP header. The next 8 bytes are the ICMP header. Remember that
this was an ICMP echo request that has an 8-byte header in its original packet. The remaining
1472 bytes are for ICMP data.

Figure 3.5. The guts of the fragment engine.

In addition to the normal fields carried in the IP header, such as source and destination IP and
protocol (in this instance of ICMP), there are fields specifically for fragmentation. The fragment
ID with a value of 21223 is the common link for all the fragments in the fragment train. There
is a field known as the More Fragments flag, which indicates that another fragment follows the
current one. In this first fragment, the flag is set to 1 to indicate that more fragments do
follow. Also, the offset of the data contained in this fragment relative to the data of the whole
unfragmented datagram must be stored. For the first record, the offset is 0. Finally, the length

of the data carried in this fragment is stored as the fragment length—in this fragment, the
length is 1480. This is the 8-byte ICMP header followed by the first 1472 bytes of the ICMP
data.
The Fragment Dining Car
Take a look at Figure 3.6 to focus on the next fragment in the fragment train. An IP header is
cloned from the "original" header with an identical fragment identification number, and most of
the other data in the IP header (such as the source and destination numbers) is replicated for
the new header. Embedded after this new IP header is 1480 ICMP data bytes. As you can see,
the second fragment has an offset of 1480 and a length of 1480 bytes; and because one more
fragment follows, the More Fragments flag is set.

Figure 3.6. The fragment dining car.

Continuing with fragmentation in Figure 3.7, you can examine the IP datagram carrying the
second fragment. As with all fragments in this fragment train, it requires a 20-byte IP header.
Again, the protocol in the header indicates ICMP. The fragment identification number remains
21223. And, the More Fragments flag is turned on because another fragment follows. The
offset is 1480 bytes into the data portion of the original ICMP message data. The preceding
fragment occupied the first 1480 bytes. This fragment is 1480 bytes long as well, and it is
composed entirely of ICMP data bytes.

Figure 3.7. The guts of the fragment dining car.

It is worth repeating that the ICMP header in the first fragment does not get cloned along with
the ICMP data. This means that if you were to examine this fragment alone, you could not tell
the type of the ICMP message—in this case, an ICMP echo request. This becomes an important
issue with regard to packet-filtering devices (as discussed later in this chapter).
The Fragment Caboose
Examine the final fragment in the fragment train in Figure 3.8. Again, an IP header is cloned from
the "original" header with an identical fragment identification number, and other fields are
replicated for the new header. The final 1048 ICMP data bytes are embedded in this new IP
datagram. You see the third fragment has an offset of 2960 and a length of 1048 bytes; and
because no more fragments follow, the More Fragments flag is 0.

Figure 3.8. The fragment caboose.

Figure 3.9 depicts the last fragment in the fragment train. Again, 20 bytes are reserved for the IP
header. The remaining ICMP data bytes are carried in the data portion of this fragment. The
fragment ID is 21223, and the More Fragments flag is not set because this is the last
fragment. The offset is 2960 (the sum of the two 1480-byte previous fragments). Only 1048
data bytes are carried in this fragment comprised entirely of the remaining ICMP message
bytes. This fragment, like the second one, has no ICMP header and therefore no ICMP
message type to reflect that this is an ICMP echo request.

Figure 3.9. The guts of the fragment caboose.

Viewing Fragmentation Using TCPdump
Take a look at the following TCPdump output. As you can see, the three different records
represent the three fragments discussed earlier. This means that the host running TCPdump
has collected the ICMP echo request after the fragmentation occurred. Here are the records:
ping.com > myhost.com: icmp: echo request (frag 21223:1480@0+)
ping.com > myhost.com: (frag 21223:1480@1480+)
ping.com > myhost.com: (frag 21223:1048@2960
The first line shows ping.com sending an ICMP echo request to myhost.com. The reason that
TCPdump can identify this as an ICMP echo request is because the first fragment contains the
8-byte ICMP header that identifies this as an ICMP echo request. Now, look at the
fragmentation notation at the right side of the record. TCPdump convention for displaying
fragmented output is that the word frag appears, followed by the fragment ID (21223, in this
example), followed by a colon. The length of data in the current fragment follows, 1480,
followed by an at (@) sign, and then you see the offset into the data (0, because this is the
first fragment). The plus (+) sign indicates that the More Fragments flag is set. This fragment
knows the purpose of the traffic, knows it is the first fragment, knows that more fragments
follow, but doesn't know what or how many follow.
The second record differs somewhat. Notice that there is no ICMP echo request label. This is
because there is no ICMP header to tell what kind of ICMP traffic this is. The IP header will still
have the protocol field set to ICMP, but that is all you can tell looking at this fragment alone.
You see the TCPdump output lists the fragment ID of 21223, the current data length of 1480,
and the offset of 1480. The plus sign signifies that the More Fragments flag is set. This
fragment has an affiliation, a follower, and a sense of placement, but is essentially clueless
about its purpose—sounds like freshman year at college.
The last line is very similar to the second one in format. It shows the same fragment ID of
21223, it has a length of 1048, and a displacement of 2960. No More Fragments flag appears
in the final record, however, as you would expect. This fragment has an affiliation, no sense of
purpose, and no followers.
How the Fragment Offset Is Stored
Although TCPdump nicely computes the fragment offset for you, it is stored in the
packet differently. Be forewarned that if you ever examine a fragment offset in a
packet—perhaps from a TCPdump hex dump—you will need to do some manipulation
before arriving at the actual byte offset.
The fragment offset is found in part of the sixth byte and the entire seventh byte
offset of the IP header. It is a 13-bit field that can represent a maximum value of
8191 (213 – 1). Yet, theoretically, though rarely indicative of normal fragmentation,
the offset can be greater than 8191 because the maximum datagram size is 65,535
(216 – 1) bytes. To represent the offset value found in the packet as bytes, multiply
it by 8. For those of you who want to know the mathematical origin of this, 65,536
(216) divided by 8192 (213) is 8.
Fragmentation and Packet-Filtering Devices
This section covers fragmentation and how a packet-filtering device, such as a router or
firewall, might deal with it. The problem arises when such a device attempts to block
fragmented traffic.
Because only the first fragment of a fragment train will contain any kind of protocol header
such as TCP, UDP, or ICMP, only this fragment is prevented from entry into the network
guarded by a packet-filtering device incapable of examining state of a header field. What I
mean by state is it appears obvious to you that any fragment sharing the fragment ID of the
blocked one should also be blocked. But, some packet-filtering devices don't maintain this
information. They myopically look at each fragment as an individual entity and don't connect it
with previous or subsequent packets. Intuitively enough, this is not a particularly good
architecture, so why is it used? Think about the overhead required to maintain state. It means

that each fragment must be examined and stored; this is expensive in terms of time,
processing, and memory. Eventually, fragments must be allowed or rejected access and that
too consumes more resources. It is far simpler to have an atomic architecture that scrutinizes
on a per-packet basis.
If a particular packet doesn't match the blocking criteria, in this instance, because of the
absence of a protocol header, it is allowed into the network. Fragmented TCP or UDP
datagrams might contain their respective header information in the first fragment only.
Blocking decisions are often based on header information, such as TCP or UDP destination
ports. This means that fragmented TCP and UDP are susceptible to the same shortcomings of a
stateless packet-filtering device.
One final point to remember is that IP is not a reliable protocol, and it is very possible for the
first fragment that contains the protocol header information to be lost. When this occurs, the
packet-filtering device has an even more difficult job of allowing or denying traffic. In fact, if
one of the fragments does not arrive at the destination, all must be resent.
The Don't Fragment Flag
In some of the TCPdump output you have looked at, you might have seen the letters DF in
parentheses. This means the Don't Fragment flag is set. No sur-prises here; as the name
implies, if this flag is set, fragmentation will not be done on the datagram. If this flag is set
and the datagram crosses a network where fragmentation is required, the router discovers
this, discards the datagram, and sends an ICMP "unreachable—need to frag" error message
back to the sending host.
The ICMP error message contains the MTU of the network that required fragmentation. Some
hosts intentionally send an initial datagram across the network with the DF flag set as a way to
discover the path MTU for a particular source to destination host. If the ICMP error message is
returned with the smaller MTU, the host then packages all datagrams bound for that
destination in small enough units to avoid fragmentation. This is often used with TCP because
TCP requires a lot of overhead. Fragmentation can introduce ineffi-ciency because if one
fragment is lost, all must be sent again; that is one reason it is desirable to avoid
fragmentation. As you can surmise, a malicious user also can use this mechanism to discover
the MTU of a segment of your network to be used later for fragmentation exploits. The user
could craft datagrams with different lengths and the DF flag set and observe when an ICMP
error message is received. This assumes that the targeted network doesn't disable the ICMP
error message from being sent. The following TCPdump output shows an ICMP message in
which a router discovered that fragmentation was necessary, but the Don't Fragment flag was
set.
router.ru > mail.mysite.com: icmp: host.ru unreachable - need to frag (mtu
308) (DF)
The stimulus for this reply was that mail.mysite.com attempted to send a datagram larger
than 308 bytes to host.ru with the DF flag set before this packet was sent. router.ru finds that
the datagram must traverse a smaller network with an MTU of 308 bytes and fragmentation is
necessary.
When router.ru examines the record, it finds that the Don't Fragment flag is set and an ICMP
message is sent back to mail.mysite.com informing it of the problem. Now, mail.mysite.com
either must package the datagrams to be smaller than the MTU of 308 so that fragmentation
doesn't occur or it must remove the DF flag so that fragmentation can occur and then resend
the datagram.

Malicious Fragmentation

There is no rest for the weary analyst when it comes to malicious fragmentation.
Fragmentation, it seems, has provided a field day of play and plunder for the hackers, and
they have produced a bevy of attacks.

This advice is repeated for other protocols and at other times in this book, but be especially
alert and watchful when analyzing fragmentation. Some of the best analysts I know have been
mockingly accused of paranoia by envisioning everyone attacking their networks in every
different way. Well, I would like to invite you to join the misfits' bandwagon of paranoia when
it comes to fragmentation. If your IDS cannot be tuned to give special scrutiny to
fragmentation, you might be missing a chunk of the action. If your IDS can correctly maintain
state, reassemble fragments, and then make some kind of intelligent assessment, you appear
to be well-armed.

One of the most infamous denial-of-service attacks associated with fragmentation, Ping of
Death, is discussed in Appendix B, "Denial of Service." The next sections examine a couple of
other fragmentation attacks.

TCP Header Fragments

nmap is an excellent scanning tool that runs on many UNIX platforms and is available from
www.insecure.org/nmap. It does conventional port scanning to discover what ports are open
on a target host and does stealth scanning that looks for open ports, but also makes an
attempt to elude detection by intrusion-detection systems. An nmap command-line option (-f)
fragments the 20-byte TCP headers in multiple fragments in an attempt to avoid detection.
The following TCPdump output was generated using the command:

nmap -f -sS -p 53 target.com

This sends a fragmented SYN connection to port 53 of target.com:

truncated-tcp 16 (frag 25096:16@0+)
fragger.org > target.com: (frag 25096:4@16)
truncated-tcp 16 (frag 4265:16@0+)
fragger.org > target.com: (frag 4265:4@16)
truncated-tcp 16 (frag 34927:16@0+)
fragger.org > target.com: (frag 34927:4@16)

The preceding TCPdump output shows a scan that fragmented the TCP header. This is a scan
from fragger.org that scanned port 53 on target.com using a standard TCP SYN request. This
is not obvious, however, because of the small fragments involved.

Looking at the first line of data, you see a fragment with 16 bytes of truncated TCP data. The
minimum TCP header is 20 bytes with no options. Because this is not a complete TCP header,
TCPdump reports this as truncated-tcp. In the next record, the additional 4 bytes of

TCP header are sent. It is possible that an intrusion-detection system might not capture or
report this kind of stealth scan.

http://www.insecure.org/nmap

Teardrop

Now that you are familiar with the way fragmentation should work, take a look at the following
TCPdump output. See if you can detect a problem with the fragmentation generated by a
malicious program known as Teardrop:

evilfrag.com.139 > target.net.139: udp 28 (frag 242:36@0+)
evilfrag.com > target.net: (frag 242:4@24)

The first fragment delivered is a UDP datagram that has a fragment ID of 242, a length of 36
data bytes, and an offset of 0. This is represented in Figure 3.10 by the patterned rectangles.
It spans bytes 0 through 35, inclusive.

Figure 3.10. Teardrop fragment mutation.

Now, the second fragment comes along. It is associated with the first fragment because of
fragment ID of 242, it has a length of 4, and it begins at an offset of 24 bytes into the data
portion. It is depicted in Figure 3.10 in the solid color in the middle. As you can see, it actually
overlaps bytes 24 through 27 of the first fragment.

The Teardrop attack exploits weaknesses in the reassembly process of fragments. The
Teardrop program creates fragments with overlapping offset fields. When these fragments are
reassembled at the destination host, some systems will crash, hang, or reboot. This attack was
first reported in 1997, yet it provides a good example of how malformed fragments can wreak
havoc on a target host.

A malformed or an incomplete set of fragments still presents problems for some hosts. More
recently, a program known as Jolt2 that will be discussed in more detail in Chapter 5,
"Stimulus and Response," can cause a denial of service via resource starvation simply by
repeatedly sending a non-zero offset fragment to Windows hosts as recent as Windows 2000.

So many problems exist because hosts, routers, and intrusion-detection systems have to deal
with many aspects of fragmentation. First, they have to make sure that all the fragments in a
fragment train are received. Second, they have to make sure that they are properly
formatted—none may overlap—and in aggregate, they may not exceed the maximum
datagram size of 65,535. Finally, they must check that no shenanigans are attempted by
fragmenting protocol headers. This is a tall order because it requires fragment reassembly and
detection of mutations. To do this correctly, this requires a commitment of memory and
allocation of CPU power, and if not implemented correctly, it can cause denial of service or
other problems.

Analyzing Fragmentation

Believe it or not, fragmentation is not really so complicated after you understand a
little theory and get comfortable with the notation associated with it. Many times as
a network analyst, in the process of examining TCPdump output, I have gone
through the mental exercise of "what's wrong with this fragmentation?" It is more
than an academic skill; it is required theory in your arsenal of knowledge to analyze
traffic on your network and safeguard it against fragmentation types of exploits.

If you do discover some kind of genuine mutant fragmentation, you might
experience an initial and well-deserved feeling of triumph. But, realize that the
discovery is just the first step in unraveling the mystery. Next, you have to figure
out what the intended purpose of the weird fragmentation is, and this is not always
obvious. One common explanation is some kind of denial of service, either a
degradation of service or an outright disabling of the target host. Other explanations
are to evade detection or circumvent shunning by monitoring or filtering devices
incapable of fragment reassembly. Take a look at what is happening on the network
in general and the target host specifically to make your assessment.

Finally, if you think that your site is well-protected at the perimeter and you don't
have a firewall or filtering router that is stateful, think again! With such a gaping
hole, it is almost trivial for even an inexperienced intruder to bypass your weak
defense.

Summary
Normal fragmentation involves separating and packaging the original datagram into new
packets less than or equal to the size of a smaller MTU. Each new fragment becomes a packet
of its own with a new IP header consisting of many cloned fields (IP numbers, IP identification
number, and so on) from the IP header of the original unfragmented datagram. However, each
new fragment will contain some unique identifying information such as the offset into the
fragment train, the number of data bytes in the fragment, and whether more fragments follow.
Malicious fragmentation comes in many different forms. Ultimately, the purpose might be a
denial of service or an opportunity to sneak some traffic into a network that might normally
block an unfragmented incarnation of this traffic. Some packet-filtering devices do not handle
fragmentation well, if at all, allowing these fragments entry into the network. By having an
appreciation and understanding of fragmentation, in general, you will be better able to detect
malicious fragmentation and recognize normal fragmentation.

Chapter 4. ICMP

Internet Control Message Protocol (ICMP) was conceived as an innocuous method of reporting

error conditions and issuing and responding to simple requests. Perhaps because of its
seemingly benign origins, some of the current mutations of ICMP for less-than-upstanding
purposes seem all the more outrageous. In its pure state, ICMP is supposed to be a relatively
simple and chaste protocol, but it has been altered to act as a conduit for evil purposes.
Therefore, it is important to understand how this protocol is used both for its intended
purposes and for malicious purposes.
This chapter examines several aspects of ICMP. First, you are introduced to some background
about ICMP followed by how ICMP is used to find live hosts on a target network. Next, you
learn about both the expected and unexpected uses of ICMP that you might see in your own
network. You then put this ICMP theory into action by analyzing some unusual detected ICMP
activity. Finally, the discussion focuses on protecting your network by blocking inbound ICMP
activity and the accompanying repercussions of doing so.

ICMP Theory
Before delving into examples of ICMP traffic, let's flesh out ICMP a little by giving it some
foundation and perspective. If you are already familiar with the theory of ICMP, or if the sound
of ICMP theory isn't high on your quiver quotient, you can skip to the section, "Mapping

Techniques," and ping away.
Why Do You Need ICMP?
As you will recall from Chapter 2, "Introduction to TCPdump and TCP," TCP is a connection-
oriented protocol with lots of overhead involved in ensuring reliable delivery. User Datagram
Protocol (UDP) is a connectionless protocol that doesn't promise reliable delivery. Both UDP
and TCP require a server port with which a client can communicate.
A simple request such as determining whether a host is alive, commonly known as ping,
doesn't need ports to communicate and doesn't require reliable delivery. This request and
several more use ICMP to deliver and respond to such traffic.
In addition, what if some kind of error condition is discovered by a router or a host, and that
router or host needs to inform a sending source host of the problem? Because TCP is a more
robust protocol, it handles some error conditions such as a nonlistening port by sending back a
TCP response with the TCP flags of RESET/ACK set. If a TCP client or server receives too much
information, it also has a mechanism to close down the receiving buffer by setting a window
size of 0. This indicates that the receiving host cannot accept any more data until the current
buffered data is processed.
However, UDP and IP aren't robust enough to communicate error conditions. If a UDP port is
not listening or too much data is sent to a listening port, UDP has no way to convey these
conditions. That is where ICMP comes in: It provides a simple means of communicating
between hosts or a router and a host to alert them to some kind of problem situation.
Where Does ICMP Fit In?
The TCP/IP Internet layering model discussed in Chapter 1, "IP Concepts," is one representation
of the different layers that form data and pass the data between hosts. Figure 4.1 illustrates this.

Figure 4.1. TCP/IP Internet model.

Starting at the top, you can see the high-level application layer activity that might represent a
TCP/IP application such as telnet. Next is the transport layer, with such protocols as TCP and
UDP that provide the end-to-end communication between hosts. Beneath that is the Internet
layer, which is responsible for getting the datagram from source to destination. Finally, there
is the network layer, which transmits the datagrams over the network.
You can see from this that ICMP is in the same network layer as IP. ICMP is encapsulated in
the IP datagram after the IP header, but it is still considered to be in the same layer as IP.
Understanding ICMP
ICMP differs from TCP and UDP in several ways. For starters, ICMP has no port numbers like
those found in the transport layer protocols UDP or TCP. The closest thing that ICMP has to a
differentiation in services is an ICMP message type and code, the first 2 bytes in the ICMP
header. These bytes tell the function of the particular ICMP message.
ICMP Types
Listing and exploring all the variations of ICMPs is beyond the scope of this book.
However, www.iana.org/assignments/icmp-parameters is a great reference for those who want
to know more about this topic.
Next, there is really no such thing as a client and server. In fact, when ICMP error messages
are delivered, the receiving host might respond internally but might not communicate anything
back to the informer. ICMP also gives no guarantees about the delivery of a message.
One of the unusual traits about ICMP is that services or ports do not have to be activated or
listening. Just about every operating system can respond to an ICMP echo request (ping). The
hard part is turning off the default behavior of responding to an ICMP echo request.
Another unique trait about ICMP is that it supports broadcast traffic. TCP required an exclusive
client/server unicast relationship, but ICMP isn't nearly as exclusive. As the "Smurf Attack" section
of this chapter shows, ICMP's willingness to respond to broadcast traffic sometimes can cause
problems.
A host uses ICMP for simple replies and requests, and it uses ICMP to inform another host of
some kind of error condition. For instance, a receiving host might have a problem keeping up
with the traffic that the sending host is delivering to it. One of the ways that a host can inform
a sending host to throttle down the delivery rate is to send it an ICMP source quench message.
ICMP is used as a mechanism by routers to inform a sending host of some kind of problem. A
router might deliver an ICMP "admin prohibited" message to a sending host. This means that
the sending host attempted to send some kind of traffic that was forbidden by an access
control list statement of a router interface.
In a situation such as this, you would expect the router to be the sender of the message
because it is the one forbidding the activity. However, a router also might intervene to inform
a sending host about a condition when a destination host cannot respond. If the destination

http://www.iana.org/assignments/icmp-parameters

host is unreachable, for example, the destination host can obviously not respond. In this
instance, the router might reply instead.
Although a router might try to be helpful by informing the sending host of a problem, it also is
providing information that could be used for reconnaissance purposes. The sender then could
glean some knowledge about the type of activity that the router reports. A good security
practice is to silence a router by preventing it from issuing ICMP unreachable messages to
preclude the dissemination of unnecessary information. This will be discussed in more detail in
the section, "Host Unreachable."
Summary of ICMP Theory
Let's quickly summarize what you've learned in this short section on ICMP theory. You have
learned that ICMP is a means of delivering error messages between hosts. It is encapsulated in
an IP header, but is considered part of the IP or Internet layer.
ICMP is a unique protocol because it doesn't use ports to communicate like the transport
protocols do. ICMP messages can get lost and not be delivered. In addition, ICMP can be
broadcast to many hosts because there is no sense of an exclusive connection.
Finally, hosts and routers are the senders of ICMP messages. Hosts listen for ICMP, and most
will respond unless they deliberately have been altered for silence.

Mapping Techniques

Mapping a target network is a very strategic part of most intelligently planned attacks. This
initial step in reconnaissance attempts to discover the live hosts in a target network. An
attacker then can direct a more focused scan or exploit toward live hosts only.

If mapping is not done and a malicious user or program attacks a network, the attack can
become very noisy by generating a lot of traffic on the target network and not be very
productive. The latter quarter of 1999 saw an example of this kind of bull-in-a-china shop
reckless scan. A Trojan named RingZero that infected Windows hosts appeared to scan foreign
hosts for open Web proxy ports. One of the shortcomings of the RingZero scanning activity
was that it appeared to scan random hosts on many networks. In doing so, many IP addresses
that were not active were scanned along with the active ones. This was a noisy scan for
intrusion-detection systems that saw it. Also, a lot of work had to be done to receive any
valuable feedback about hosts that supported open Web proxy ports. This would have been a
more directed and perhaps more informative scan if the IP numbers that were scanned had
been live hosts.

The Ubiquitous RingZero Trojan

The observed RingZero attack in a monitored network involved many different
source IPs scanning mostly inactive TCP ports: 3128 (squid proxy server), 80
(normal HTTP port), and 8080 (an alternative HTTP port). About half a dozen of
these scans were detected on a Class B subnet every hour. Many other sites all over
the world that were capable of detecting this activity reported seeing it, too.

An initial theory was that all this activity was coming from spoofed source IPs with
an unknown intent. However, Ron Marcum, a system administrator at Vanderbilt
University, discovered a Windows host in his network that was doing this kind of
scanning and captured the software called RingZero. At the System Administration,
Networking, and Security (SANS) conference in October 1999, the RingZero software
was dissected.

When activated in a test network, the host on which it was installed began to scan
random hosts for the Web proxy ports. If open Web proxy server ports were
discovered, they were sent back to an ftp site that aggregated this information for
the collector. It is assumed that the collector then planned to use this knowledge for
some future plundering. To date, we still see RingZero scanning activity and it is still
unknown what the infection method is and how an infected host selects the IP
numbers to scan for proxy ports.

One of the most common methods of mapping is to issue ICMP echo requests. A host (or
hosts) responds to an ICMP echo request with an ICMP echo reply to signal it is a live host.
This is what the ping command does; it issues an ICMP echo request and waits for an ICMP
echo reply. Many security and network administrators have responded to this invasive ICMP
scrutiny with the knee-jerk reaction of blocking ICMP echo requests. This is a good and
necessary reaction, but this is only a partial solution because it is only a minor impediment to
the insistent pursuer. Blocking ICMP echo requests has motivated hackers to invent other
scanning methods using other protocols.

In Chapter 2, the section, "An ACK Scan," showed how TCP scans can use the ACK flag to
attempt to identify live hosts. This can be used as an alternative network scanning method
that blocks ICMP echo requests. The next sections look at some of the conventional and
esoteric mapping techniques used.

Tireless Mapper

The following scan shows the classic mapping technique of sending individual ICMP echo
requests to all hosts in a given subnet. In this case, the 192.168.117 Class C subnet is

scanned for all live hosts. As you can see, this is a very noisy scan:

00:05:58.560000 scanner.net > 192.168.117.233: icmp: echo request
00:06:01.880000 scanner.net > 192.168.117.139: icmp: echo request
00:12:45.830000 scanner.net > 192.168.117.63: icmp: echo request
00:15:36.210000 scanner.net > 192.168.117.242: icmp: echo request
00:15:58.600000 scanner.net > 192.168.117.129: icmp: echo request
00:18:51.650000 scanner.net > 192.168.117.98: icmp: echo request

00:20:42.750000 scanner.net > 192.168.117.177: icmp: echo request
00:26:36.680000 scanner.net > 192.168.117.218: icmp: echo request
00:27:30.620000 scanner.net > 192.168.117.168: icmp: echo request

If a site doesn't specifically look for ICMP activity, however, this might go unnoticed. So, the
age-old philosophical question becomes, if a hacker maps your entire network and no one is
listening, does it make any noise? Alarming on individual ICMP echo requests likely would
generate a lot of alerts from an IDS, so IDSs usually do not issue alerts for individual ICMP
echo requests. Yet, an IDS that examines more generic scan activity that exhibits a one-to-
many source-to-destination IP relationship would correctly trigger on such a scan. In other
words, if the IDS looks for one source IP connecting to many different destination IPs in a
given time period—for instance, seven connections per hour—it would discover the preceding
scan.

Efficient Mapper

Most likely, the preceding scan was automated so that it wasn't a labor-intensive effort for the
not-so-wily scanner. But why bother with all the volume if ICMP is a protocol that can be sent
to a broadcast address and can ping many hosts with a couple of commands? That is what the
following scanner attempts:

13:51:16.210000 scanner.net > 192.168.65.255: icmp: echo request
13:51:17.300000 scanner.net > 192.168.65.0: icmp: echo request
13:51:18.200000 scanner.net > 192.168.66.255: icmp: echo request
13:51:18.310000 scanner.net > 192.168.66.0: icmp: echo request
13:51:19.210000 scanner.net > 192.168.67.255: icmp: echo request
13:53:09.110000 scanner.net > 192.168.67.0: icmp: echo request
13:53:09.940000 scanner.net > 192.168.68.255: icmp: echo request
13:53:10.110000 scanner.net > 192.168.68.0: icmp: echo request
13:53:10.960000 scanner.net > 192.168.69.255: icmp: echo request
13:53:10.980000 scanner.net > 192.168.69.0: icmp: echo request

It appears that the scanner is attempting to map the 192.168 subnet. The third octet in the IP
number changes from 65 to 69 in this excerpt from a larger scan. You can see the final octet
fluctuate between 0 and 255. The 255 in the final octet is the classic broadcast address. The 0
in the final octet is a broadcast address for hosts that have a TCP/IP stack based on the UNIX
Berkeley Software Distribution (BSD) operating system. Using both these broadcast addresses,
all live hosts in an accessible network should respond.

This should convince you to deny into your network any activity destined for these broadcast
addresses. I don't know of any legitimate activity for traffic destined for broadcast addresses
except for diagnostic activity. The section, "Smurf Attack," shows that disallowing this activity
prevents Smurf amplification by your network.

Clever Mapper

In examining the next scan, you can see a new variation on an old mapping scheme:

06:34:31.150000 scanner.net > 192.168.21.0: icmp: echo request
06:34:31.150000 scanner.net > 192.168.21.63: icmp: echo request
06:34:31.150000 scanner.net > 192.168.21.64: icmp: echo request

06:34:31.150000 scanner.net > 192.168.21.127: icmp: echo request
06:34:31.160000 scanner.net > 192.168.21.128: icmp: echo request
06:34:31.160000 scanner.net > 192.168.21.191: icmp: echo request
06:34:31.160000 scanner.net > 192.168.21.192: icmp: echo request
06:34:31.160000 scanner.net > 192.168.21.255: icmp: echo request

Look at the scanning pattern. You can see that ICMP echo requests are being sent to the Class
C subnet of 192.168.21. Now look at the final octet of the IP address. You can see that the
first request is sent to the 0 broadcast address, and the last one is sent to the 255 broadcast
address. This isn't new; you saw this in the preceding scan.

Notice in the final octet of the other IP numbers, however, that they seem to span 64 IP
numbers. For instance, the first IP number has a final octet of 0, and the following one has a
final octet of 63. That is 64 total IP addresses. What is the significance of 64? Well, a typical
Class C subnet has 256 addresses between the 0 and 255 range.

It is possible to subdivide a Class C network so that you have multiple smaller networks by
assigning an appropriate subnet mask. One way to do this is to have four individually
addressable subnets with 64 hosts each. In this scheme, the network and broadcast addresses
change accordingly. The network and broadcast addresses for those four subnets are the IP
numbers that you see in the scan. So, it turns out that the scanner believes that this scanned
network might have a different addressing scheme than the Class C "natural" division. If this
were truly the addressing scheme for the 192.168.21 subnet, all live hosts might respond.
Even if the subnet is a standard Class C and the activity is not blocked, this will still ping all
hosts on the network because it uses the .0 and .255 broadcast addresses. If you need a
refresher about address classes, reference the "Logical Addresses, IP Addresses" section in
Chapter 1.

Cerebral Mapper

One final scan shows a different mapping technique using another ICMP request type. The
ICMP address mask request queries a host for the subnet mask of the network on which it
resides. Remember all the trouble that the preceding scanner went through to try to determine
the addressing scheme? That could have been avoided entirely by using the following ICMP
address mask request:

20:39:38.120000 scanner.edu > router.com: icmp: address mask request (DF)
20:39:38:170000 router.com > scanner.edu: icmp: address mask is 0xffffff00
(DF)
20:39:39.090000 scanner.edu > router2.com: icmp: address mask request (DF)
20:39:39:230000 router2.com > scanner.edu: icmp: address mask is 0xffffff00
(DF)
20:39:40.090000 scanner.edu > routerx.com: icmp: address mask request (DF)
20:39:40:510000 routerx.com > scanner.edu: icmp: address mask is 0xffffff00
(DF)

This is not a classic mapping technique per se, but it can provide some initial reconnaissance.
The quest here is to examine the subnet mask of different routers. Typically, only routers
respond to address mask requests so the scanner might discover additional reconnaissance of
the repliers. As discussed in Chapter 1, the subnet mask assigned to a computer system tells it
how many bits in its IP address designate the network and how many designate the host.

If a scanner can determine a subnet mask of a network, he knows exactly how many hosts
need to be scanned. Although the subnet mask of a host usually can be determined from
looking at the first octet of the IP number, this request might discover the networks that don't
have a "natural" subnet mask. That type of knowledge cannot be obtained from looking at the
IP number alone. In this example, the scanned routers respond with subnet masks of a
hexadecimal ffffff00. This translates to a decimal 255.255.255.0 subnet mask of the

network on which they reside. This means that these hosts all belong to a Class C network.
Querying for address masks is another type of ICMP activity that should be disallowed into the
network, for obvious reasons.

Summary of Mapping

Let's briefly recap the discussion about mapping. Mapping can be done using the following
methods:

• Sending individual ICMP echo requests to hosts in a network

• Sending ICMP echo requests to the broadcast addresses of a network

• Sending ICMP echo requests to network and broadcast addresses of subdivided
networks

• Sending an ICMP address mask request to a host on the network to determine the
subnet mask to better understand how to map efficiently

Normal ICMP Activity

This section examines some of the expected uses of ICMP—specifically, several different error
messages that ICMP sends to inform a host of some kind of problem situation. Looking at
mutant ICMP activity is more intriguing, but you've got to be able to understand what's normal
before you can recognize abnormal ICMP activity.

Host Unreachable

In the following ICMP output, you can see an error message to sending.host, which is

attempting to send traffic to a target host:

router > sending.host: icmp: host target.host unreachable

For some reason, the target.host is unreachable—perhaps no host resides at the requested

IP address, perhaps the host is temporarily unavailable, or perhaps the host is suffering from
some kind of misconfiguration that prevents it from responding.

In a situation such as this, the host obviously cannot send an error message, so the router

that oversees the target host's network intervenes to deliver the message. In this case, the
router informs the sending host that the target host is unreachable. As you can probably
guess, this gives a scanner valuable information that he can use to help him map the network.
If a scanner is collecting information about live hosts in a network to later scan, those that
have been identified as unreachable would likely not be scanned again. This makes any
subsequent scans more focused.

The valuable reconnaissance information that can be gleaned from many of the ICMP
unreachable commands can be detrimental to the security of a given network. Cisco router
access control lists have a statement no ip unreachables that can silence the router

interface from issuing the ICMP unreachable messages.

Port Unreachable

The ICMP output that follows demonstrates how a target host informs a sending host that a
requested UDP port is not listening. In this example, the sending host attempts to send traffic
to the target host on the UDP network time protocol (ntp) port:

target.host > sending.host: icmp: target.host udp port ntp unreachable (DF)

Therefore, the protocol used to deliver the error message is ICMP. Remember that when you
examined TCP, that protocol had a different way of informing a sending host that a port was
not active. It returned a packet with the TCP RESET flag set to indicate that the port was not
listening. UDP has no built-in mechanism to report about this error, so it enlists ICMP to assist.

Again, you can see that valuable reconnaissance can be gained from this ICMP error
message—namely that scanned UDP ports that do not respond with this message could be
listening ports. But, it is also possible that scanned UDP ports that do not respond might never
have received that scan due to packet loss. It is also possible that outbound port unreachable
messages are blocked from leaving the network. So, you can see that the absence of a port
unreachable message from a scanned UDP port is not a definitive confirmation that the port is
listening.

Admin Prohibited

Take a look at another possible problem situation with the following output:

router > sending.host: icmp: host target.host unreachable - admin prohibited

In this scenario, a sending host is attempting to deliver traffic to a target host. A router is at
the gateway of the target host network.

The router has an access control list that prohibits certain types of traffic from entering the
network. This could be a port that is blocked, a protocol that is blocked, or possibly the source
IP or subnet that is denied access, or the destination IP or subnet that is protected. A router
might respond to this condition with an ICMP "unreachable - admin prohibited" message.
Although this ICMP message does not indicate what is being blocked (a destination port, a
source IP, or an IP protocol, for instance), an astute scanner can attempt different
combinations of connections and figure out what is being disallowed into the network and
possibly find other avenues into the network that are not blocked.

Need to Frag

Another ICMP message warns that a desired host is unreachable because of a problem with
fragmenting a datagram:

router > sending.host.net: icmp: target.host unreachable - need to frag (mtu
1500)

The DF output in TCPdump means that the Don't Fragment flag is set. As the name implies, if
this flag is set, fragmentation will not be done on the datagram. If this flag is set and the
datagram crosses a network in which fragmentation is required, the router discovers this,
discards the datagram, and sends an ICMP error message back to the sending host.

The ICMP error message contains the maximum transmission unit (MTU) of the network that
required fragmentation. Some hosts conversing in TCP intentionally send an initial datagram
across the network with the DF flag set as a way to discover the smallest MTU for a particular
source-to-destination path. If the ICMP error message is returned with the smallest MTU, the
host then packages all datagrams bound for that destination in small enough chunks to avoid
fragmentation. The intent is to eliminate the overhead and inefficiencies in packet loss
associated with fragmentation.

Time Exceeded In-Transit

This ICMP message informs a sending host that a datagram has overstayed its welcome on the
Internet:

routerx > sending host: icmp: time exceeded in-transit

IP needs a way to flush a lost datagram from the Internet, perhaps one that is in some kind of
routing loop in which it is bouncing aimlessly between routers. The means used to prevent
wayward datagram activity involves a field in the IP header known as the time-to-live (TTL)
value.

Different operating systems set different initial TTL values. To examine default initial TTL
values set by operating systems, go to http://project.honeynet.org/papers/finger/traces.txt.

When a datagram traverses a router on its travel from the source to destination, each router
decrements the TTL value by 1. If the value ever becomes 0, the router discards the datagram
and sends an ICMP "time exceeded in-transit" message back to the sending host. Chapter 5,
"Stimulus and Response," shows how traceroute uses this ICMP "time exceeded in-transit"
message along with incrementing TTL values to discover and record interim routers along the
path from a given source to destination.

Embedded Information in ICMP Error Messages

It is helpful to understand that when an ICMP error message is returned, there is some
additional information that is supplied in the datagram. Specifically, after the actual ICMP
message, you will find the IP header followed by eight bytes of protocol header and data of the
original datagram that caused the error, as seen in Figure 4.2. This information allows the
receiving host to associate this error with the sending process and react appropriately. An
external response to an ICMP error message is not expected because RFC 1122 describes this

http://project.honeynet.org/papers/finger/traces.txt

as one of the conditions for which no ICMP reply should be generated.

Figure 4.2. ICMP error message format.

It is also useful to be aware that not all TCP/IP stacks will precisely copy the IP header and
following eight bytes. It would seem logical that the embedded information following the ICMP
error message, reflecting the first 28 bytes of the offending packet, would exactly match the
first 28 bytes of the offending packet. In fact, nmap can be used to discover a remote host's
operating system by sending normal and aberrant traffic to a target host. It looks for
responses and behavior of the target host that will distinguish it from standard expected
behavior to assist in operating system classification. One test in a series of traffic to the target
host attempts to send a datagram to a closed UDP port. The desired response to this is an
ICMP "port unreachable" message. But, nmap examines several of the fields in the ICMP error
message containing the IP header and following eight bytes of the initial probe of the UDP
port. It examines these fields to see if they match the fields in the datagram that elicited the
error. This information is used to determine the operating system.

Summary of Normal ICMP

In the previous sections, you examined some of the many ICMP messages that you might see
while monitoring your network. You also saw many of the different informative ICMP error
messages. As you noticed, these can be sent by either hosts or routers that discover a
problem.

These sections also discussed the notion that some of the ICMP unreachable errors are best
prevented from leaving your network if you are concerned about the reconnaissance
information that could be gathered from them.

Malicious ICMP Activity
Not unexpectedly, it was just a matter of time until ICMP became tainted in purpose. Today,
ICMP has been corrupted for use in many different types of denial-of-service attacks, and it
has been used in a most stealthy attack as a covert channel. This section examines some of
these malicious uses of ICMP.

Black Ice
As I was driving to work one wintry morning after a night of precipitation, it occurred
to me that the day's commute was much like the philosophy of my job as a security
analyst. I cautiously navigated the long, winding, snow-covered driveway; slowed
my pace; shifted to a lower gear descending the steep hill out of the neighborhood;
and safely drove around the abandoned car in my lane going uphill. I treated the
identified hazards with due caution and respect, but it was the unseen dangers such
as black ice that worried me.
Each day, as I analyze traffic to our sites, I have this omnipresent uneasy feeling
about what it is I am not seeing—the black ice of our networks. I have seen
firsthand the persistence, guile, and cleverness that the Internet pirates use to try to
find and exploit what they want. As a security analyst, this "What am I missing?"
semi-paranoid attitude is one you must adopt. If you become too complacent about
the security of your site, your site could spin out of control from the unidentified
perils.
Smurf Attack
The infamous Smurf attack, shown in Figure 4.3, preys on ICMP's capability to send traffic to the
broadcast address. Many hosts can listen and respond to a single ICMP echo request sent to a
broadcast address. This capability is used to execute a denial-of-service attack against a
hapless target host or network.

Figure 4.3. Anatomy of a Smurf attack.

First, a malicious host must craft an ICMP echo request with a spoofed source IP to a
broadcast address of an intermediate network. The spoofed source IP chosen is that of the
victim target host/network. Next, the intermediate site must allow broadcast activity into the
network. If it does, the ICMP echo request is sent to all hosts on the given subnet to which the
broadcast was sent. Finally, all the live hosts in the intermediate network that respond send an
ICMP echo reply to what they believe to be the sender, or the victim host. The victim host or
network on which it resides can become choked with all the activity and can suffer a
degradation or denial-of-service attack if the following conditions exist:

● The malicious user sends many ICMP requests to the broadcast address.

● The intermediate site allows inbound broadcast traffic.
● The intermediate site is large and has many responding hosts. On the other hand, many

smaller intermediate sites might be used to achieve the same result.
● The target site has a slow Internet connection. To be more precise, the Internet

connection must be susceptible of being overwhelmed by too many packets for the
supported bandwidth. Although it is possible to inundate and clog any Internet
connection given enough traffic, slower connections are more vulnerable.

Therefore, this is another reason that you want to deny broadcast traffic from entering into
your network. Your site cannot be used as a Smurf amplification network if broadcast traffic is
not allowed.
Tribe Flood Network
The Tribe Flood Network (TFN) attack is another denial-of-service attack that uses ICMP for
communication. Figure 4.4 depicts the attack. Unlike the Smurf attack, which originates from one
source and uses one intermediate network as an amplification point, the TFN attack enlists the
help of many distributed hosts, known as daemon or zombie hosts. Hence, the term
distributed denial of service (DDoS) is a more accurate description of the use of dispersed
hosts to participate in an attack.

Figure 4.4. Tribe Flood Network attack.

This attack requires a TFN master host and daemon hosts to be established. These are
typically compromised hosts on which TFN was installed. The master TFN host then instructs
the daemon hosts to attack a victim host, perhaps simultaneously. The communication
between the master and daemon host is done using the ICMP echo reply. The daemons can
send the target host a UDP flood, a TCP SYN flood, an ICMP echo request flood, or a Smurf
attack. The master instructs the daemon what to do by sending commands in the ICMP echo
reply. The ICMP identification number field in the ICMP header of the ICMP echo reply is used
to direct the daemons of the action to take. The data portion of the ICMP echo reply is used to
send arguments.
You might be wondering why this attack uses ICMP echo replies instead of ICMP echo
requests. The reason is that more sites block ICMP echo requests because they are aware of
the hazards of allowing them in the network. However, they may allow ICMP echo replies in to
get responses from pings to hosts outside the network and because they don't realize the

threats posed by rogue ICMP echo requests.
As you have probably concluded, by using several distributed intermediate hosts
simultaneously to flood the target host, a denial-of-service attack against the target network
or target host is the anticipated outcome. If you want to read more about TFN, go to www.cert.org
and search for incident IN-99-07.
Self-Inflicted Denial of Service?
It was December 29, 1999. As I prepared to begin my stint at a Y2K center for the
Office of the Secretary of Defense, I mulled over the rumors of impending
cyberspace doom. The widespread consensus was that there would be massive
denial-of-service attacks directed against infrastructure services such as power and
transportation. Despite the hackers' promised plans of drunken celebration with the
masses, the prevailing sentiment was that the release of distributed denial-of-
service tools such as TFN coincided with the arrival of the new millennium.
In response to the perceived threat, many sites all but shut down or greatly
restricted access to their networks. The irony of this was noted by a coworker who
said, "It seems rather funny to avoid a denial-of-service attack by turning off the
services yourself."
WinFreeze
The WinFreeze attack essentially causes a susceptible host to attack itself—an ugly kind of self-
mutilation:
router > victim.com: icmp: redirect 243.148.16.61 to host victim.com
router > victim.com: icmp: redirect 110.161.152.156 to host victim.com
router > victim.com: icmp: redirect 245.211.87.115 to host victim.com
router > victim.com: icmp: redirect 49.130.233.15 to host victim.com
router > victim.com: icmp: redirect 149.161.236.104 to host victim.com
router > victim.com: icmp: redirect 48.35.126.189 to host victim.com
router > victim.com: icmp: redirect 207.172.122.197 to host victim.com
router > victim.com: icmp: redirect 113.27.175.38 to host victim.com
router > victim.com: icmp: redirect 114.102.175.168 to host victim.com
The ICMP redirect message informs a sending host that it has tried to use a nonoptimal router
and tells the sending host to add a more optimal router to its routing table. The WinFreeze
attack can cause a vulnerable Windows NT host to suffer a denial of service by flooding it with
ICMP redirect messages. This is executed on a network on which the victim host resides and
purports to send ICMP redirect messages from the router. When the Windows host receives a
flood of these messages, it attempts to add these changes to its own routing table and could
suffer from degraded performance.
In the preceding output, the router is informing victim.com to redirect its traffic to many
different random IP numbers to itself. The host victim.com might be overwhelmed when trying
to apply all those changes to its own routing table.
Loki
Probably the most subversive and destructive use of ICMP to date is known as Loki. In Norse
mythology, Loki was the god of trickery and mischief. So too is the Loki exploit the master of
trickery. As you have seen, ICMP is intended to be used to inform of error conditions and to
make simple requests. As such, intrusion analysts prior to the release of Loki regarded ICMP
as a fairly harmless protocol, except for the denial-of-service attacks generated using it and
for the network mapping information it could provide if not blocked.
Loki uses ICMP as a tunneling protocol for a covert channel. A covert channel is one that uses
a transport method or data field in a secret or unexpected manner. In other words, the
transport vehicle is ICMP; but operationally, Loki acts much like a client/server application. If a
host is compromised and a Loki server is installed, it can respond to traffic sent to it by a Loki
client. For instance, the Loki client could send a request to the Loki server to cat/etc/passwd to
display the password file. The Loki client user then would see the output from the display,

http://www.cert.org/

capture it, and possibly crack the password file. You can find more information on Loki at
www.phrack.com issue 49, article 6.
The danger in this whole scheme is that a seemingly innocuous protocol is being used to do
some very sophisticated and potentially damaging exchanges. Again, ICMP was never intended
to support applications such as this. My advice to the intrusion analyst is to regard ICMP traffic
with heightened suspicion and to stop just shy of outright paranoia.
Unsolicited ICMP Echo Replies
Now, try your hand at some analysis and put into practice some of the theory you just learned
about ICMP exploits by examining the output that follows:
reply.com >192.168.127.41: icmp: echo reply
reply.com >192.168.127.41: icmp: echo reply
reply.com >192.168.127.41: icmp: echo reply
reply.com >192.168.127.41: icmp: echo reply
reply.com >192.168.127.41: icmp: echo reply
reply.com >192.168.127.41: icmp: echo reply
What you observe here is a host, reply.com, sending the 192.168.127.41 host ICMP echo reply
traffic. This would not be unusual if the 192.168.127.41 host had sent an ICMP echo request
eliciting these responses. However, this is not the case; no outbound ICMP echo requests were
sent from 192.168.127.41. Why might someone initiate such activity? You learn possible
reasons in the next three sections.
One thing to keep in mind is that for this kind of activity to be detected, you must have some
kind of IDS or supporting software capable of maintaining state. This means that you must be
able to determine whether any prior traffic had issued ICMP echo requests. Many IDSs do not
maintain state information and cannot detect such anomalous activity. Let's examine some of
the possible theories that might explain this anomalous activity.
Theory 1: Spoofing
The first theory poses the possibility that you see this traffic because someone has borrowed
the source IP 192.168.127.41 and has issued ICMP echo requests to reply.com using the
spoofed source IP; reply.com then replies to the real 192.168.127.41 IP address. If you saw
ICMP echo replies from many other hosts on the same network as reply.com, you could be a
Smurf target.
A dramatic increase in spoofing activity has arisen, so this is the most common explanation for
this type of activity. Typically, when you have witnessed unsolicited ICMP echo replies that
appear to be using your spoofed source IPs (in this example, 192.168.127.41), you might see
other unsolicited activity from the same intermediate host (in this example, reply.com). You
usually don't see this activity in isolation—you might see these replies going to many different
192.168.127 hosts, not just a single reply multiple times.
Theory 2: TFN
A second theory involves the TFN attack. You learned that the TFN master communicates with
its TFN daemons using ICMP echo replies.
Therefore, another possibility is that the host receiving the unsolicited ICMP echo replies,
192.168.127.41, has become a victim TFN daemon. Although the ICMP identification value
field is used to direct the daemon host to attack the victim, the exact value found in this field
might not be predictable if the attacker changes the default source code. The more obvious
way to determine whether the 192.168.127.41 has become an unwitting TFN daemon is to
examine the outbound activity from 192.168.127.41 after receiving the ICMP echo requests. If
it sends a flood of unexplained traffic outbound, it is possibly participating in a TFN attack.
Theory 3: Loki
The final theory is that this could be an exchange between a Loki client and a Loki server.
When Loki traffic is exchanged, it might not have a pattern of each ICMP echo request
generating a reply. It is possible for the Loki server to respond with multiple ICMP echo replies
to a single ICMP echo request.

http://www.phrack.com/

Original releases of Loki had a signature of a static value in the sixth and seventh bytes
(starting with byte 0) of the ICMP message. This could be determined by dumping the traffic
using TCPdump with hexadecimal output and observing the lack of change in this field that is
the ICMP sequence number. This field is usually unique for each ICMP echo request sent out
and, much like the IP header identification number, increments by 1 or 256 for each
subsequent ICMP echo request. Later incarnations of Loki might use encryption and might not
be decipherable in this manner.
As you have witnessed, ICMP echo traffic, whether request or reply, can facilitate some
noxious activity. So, this is an excellent candidate for blocking by a packet-filtering device.
Summary of Malicious ICMP Traffic
To wrap up this section, you learned that ICMP has been manipulated in use for other
purposes than the intended ones. ICMP can be used in a denial-of-service attack, as you
observed in the Smurf and WinFreeze attacks. ICMP was used more as a conduit for
communication in the TFN attack. It might not be used directly as a denial-of-service attack,
but it enables a denial-of-service attack to occur by providing the communication vehicle
between the TFN master and daemons. Finally, you saw that Loki has completely altered the
original purpose of ICMP by using it as a tunneling mechanism for malicious activity.

To Block or Not to Block
After reading about all the havoc that ICMP now can wreak, it appears that ICMP left Kansas
along with Dorothy and Toto. From a reconnaissance aspect, if you can elicit any of the
following ICMP messages from a host, you know you have reached a live host:

● "protocol unreachable"
● "port unreachable"
● "IP reassembly time exceeded"
● "parameter problem"
● "echo reply"
● "timestamp reply"
● "address mask reply"

Also, if you can get a router to report ICMP host unreachable errors, it is possible to

inversely map a network assuming that those hosts which do not have this error reported are
indeed live hosts.
As if this isn't enough information, the following common ICMP messages are sent by routers
only so if you can elicit any of the following, you can identify a site's routers:

● "fragmentation needed but don't-fragment bit set"
● "admin prohibited"
● "time exceeded in transit"
● "network unreachable"
● "host unreachable"

And, finally, we can discover more reconnaissance by the following ICMP messages:

● "admin prohibited: can assist in examining what type of traffic the site blocks"
● "address mask reply: gives the subnet mask of the network on which the responding

host resides"
● "time exceeded in transit: used in traceroute to discover routers and network topology"
● "protocol unreachable: can be used to inversely map a host's listening protocols"
● "port unreachable: can be used to inversely map a live host's listening UDP ports"
● "fragmentation needed but don't fragment bit set: can be used to determine the MTU of

links for use in attacks that use fragments"

Given all the reconnaissance that ICMP can supply, why not just unconditionally block all
incoming and outgoing ICMP traffic? Some sites do just this, but let's examine some of the
repercussions of blocking all inbound ICMP.
Unrequited ICMP Echo Requests
Obviously, your ability to do diagnostic activity using ping is broken when you block both
inbound ICMP echo requests and echo replies. The good news is that ICMP echo requests and
replies cannot be used as a front for stolen goods if blocked. The inconvenience suffered by
this loss might be justified by the improvement of your security posture, eliminating a possible
stealthy avenue into your network.
You might face a temptation to block only inbound ICMP echo requests, which would enable
you to do diagnostics from your network and receive a response by virtue of the ICMP echo
response gaining inbound access. The hackers know this, however, and as you have witnessed
with Tribe Flood Network and Loki, they are relying more on the use of ICMP echo reply as a
delivery mechanism.
Kiss traceroute Goodbye
Whether you use the UNIX traceroute command or the Windows tracert command to
discover the routers through which a datagram travels on its path from source to destination,
blocking inbound ICMP prevents you from executing these commands from your network to
other networks. These commands require inbound ICMP "time exceeded in-transit" messages
to operate correctly. By preventing all ICMP into the network, you break your use of traceroute
outbound.
The Windows tracert command uses the ICMP echo request, so blocking inbound ICMP
precludes a user from doing a tracert to a machine in your network. The UNIX traceroute
uses UDP as the protocol, however, so blocking inbound ICMP does not prevent someone from
executing a UNIX traceroute to a host in your network.
Silence of the LANs
As you learned in this chapter, ICMP can inform about unreachable conditions to a particular
host or port. When you block all inbound ICMP messages, hosts or routers on your network
cannot receive these informative messages. This does not produce catastrophic results, but it
does cause some inefficiencies. As an example, a host on your network might attempt a TCP
connection to another host that might be down. This could elicit a "host unreachable" message
from a remote router, but the host attempting this connection doesn't receive the ICMP
unreachable message because it is blocked. The sending host retries until it times out, thereby
sending unnecessary traffic.
Broken Path MTU Discovery
As discussed previously, when possible, a host sending TCP traffic tries to avoid fragmentation
of datagrams. This is done using path MTU discovery. As covered in this chapter, a sending
host uses the Don't Fragment flag in a discovery packet. The intent is for the discovery packet
to reach the destination host without being fragmented, or for the sending host to receive an
ICMP "need to frag" message with the value of the smaller MTU found in the message.
Therefore, blocking all inbound ICMP breaks this mechanism and causes some significant
problems. A host sending the discovery packet expects to receive an ICMP "need to frag"
message if fragmentation is required. Because it receives no such message due to the inbound
ICMP block, it continues to send oversized datagrams with the Don't Fragment flag set. These
are dropped, but the sending host is never informed of this. Packets sent that are smaller than

the smallest MTU along the path arrive at the destination, but larger ones do not.
So, if you choose to block ICMP, make sure that you make an exclusion to allow "host
unreachable - need to frag" ICMP messages into your network.

Summary

ICMP is a protocol that is supposed to be used to alert hosts of problem conditions or to
exchange simple messages. It can be transmitted between two hosts exclusively, or it can be
transmitted to multiple hosts using the broadcast address.

Regard ICMP as a potential threat. This chapter has identified some of the current known
malicious uses of ICMP. No doubt, many more will come, with many new flavors of unknown
subversions.

Block inbound ICMP, but do so wisely and selectively. Although you will prevent potentially
malicious traffic from entering your network, make sure that you understand the adverse
consequences to your own network of blocking inbound ICMP traffic.

Chapter 5. Stimulus and Response

Up until this chapter, you have been exposed to mostly stimulus activity. Not much time or
discussion has been invested presenting the unique responses from different stimuli. This
served you well when new theories and concepts were introduced so as not to add layers of
complexity to new material. Hopefully, now that you understand the basic theory, you are
ready to diversify your exposure.
Most current network intrusion detection systems have very high rates of false positives. In
other words, they cannot yet make wise decisions on whether traffic coming across a given
network is harmful or innocuous. So, the network intrusion-detection system (NIDS) often errs
on the side of caution, and alarms when there is no problem. There are many reasons for this,
but the short explanation is that most times the signatures or rule set that the NIDS uses to
determine suspicious traffic are too generic. If these signatures cannot be or are not more
precisely customized, the NIDS will often alert when no problem exists.
Therefore, the analyst must make the distinction between false positive and valid alarms. You
examine the traffic associated with the alarm and determine whether it is a false alarm. To
make such a determination, you need to have a foundation in what seemingly normal or
abnormal traffic looks like. Common sense dictates that all aspects of standard stimuli and
responses cannot be covered in this chapter. The intention is to impart some general
knowledge, however, so that you can make a more intelligent determination of the kind of
traffic you observe on different networks.
This chapter first exposes you to the expected behavior of typical applications and protocols.
Next, you learn about a category of activity that manifests expected, yet uncommon behavior.

http://safari.informit.com/?xmlid=0-73571-265-4/22991533

Finally, you descend from the sublime to the ridiculously abnormal activity.
This is much like the evolution of a budding courtship. Both partners are on their best behavior
at first because good manners are expected. The comfort zone seeps in after awhile, and the
expected fine etiquette deteriorates from furled pinkies while drinking tea to random slurps.
Familiarity certainly breeds bad manners as time passes and the first hardy belch rumbles.
The Personal Hazards of Working with False Positives
Several months ago, I was driving to work when I saw a simultaneous red flash of
both the battery and brake indicator lights appear on the dashboard of my car. They
disappeared immediately, but it concerned me. This happened several more times
on the remainder of the commute.
I am the first to admit that I am a mechanical moron and should never question
anything my car professes to tell me because it is far smarter than I am about its
health. Yet, it seemed strange to me that these seemingly unrelated lights flashed
together. After all, unless I had battery-powered brakes (and I was almost certain I
didn't), there was no logical correlation in my mechanically challenged mind of the
two different lights. I tried to explain it away as a false positive convincing myself
that perhaps a loose wire of some sort was the culprit instead of real mechanical
problems.
Some time passed and the problem got worse, so I gave in and called the service
shop. I told the service manager about the problem and her response told me she
was doing her very best not to yell, "You moron! " into the phone. Despite her
training in customer relations, she could barely contain her rage at my stupidity. She
told me that it was my car's alternator and I could be stranded— or some other
catastrophic things could happen like the car could blow up, or I could put an eye
out, yadayadayada. Needless to say after hearing the "sky-is-falling" prognosis of
my car and my life, I brought the car in to be repaired right away, and the problem
went away.
I got to thinking about the incident and began to reflect that I had been a relatively
conservative and cautious person most of my life who, years ago, would have taken
the car into the shop at the first sign of trouble. What had changed in all these
years? My only guess is that I'm so used to looking at NIDS outputs of false
positives that I try to explain everything away in that same light. In other words, I
believe nothing any more because everyone and everything is a liar!

The Expected
What the heck is normal traffic anyway? It would be an exercise in futility— and undoubted
head-bobbing boredom—to try to demonstrate all aspects of normal behavior. To make this a
more manageable and interesting task, this section reviews situations and traffic patterns that
are likely to be the bulk of what you will see on your network. Specifically, the response
behaviors of hosts and routers are examined when different traffic is sent and received under
different conditions with different protocols.
A very hard challenge in developing this material was trying to elucidate what is "normal."
Because expected behavior entails so many facets and dimensions, it is impossible to discuss
them all here. Ironically, normal might best be described as not abnormal. For this reason, this
book discusses many examples of deviant behavior.
Request for Comments
Is there some kind of standard baseline for what is expected? Request for Comments (RFCs)

http://safari.informit.com/?xmlid=0-73571-265-4/22991533

contain the foundation documentation for the Internet. They elaborate the expected standards
for individual protocols. The Internet is best viewed as a series of different protocols, each
documented by one or more RFCs. RFCs do not change after they are issued; protocol
enhancements are documented by issuing new RFCs. Some of the most pertinent RFCs for this
section include the following:

● RFC 793. This RFC discusses the Transmission Control Protocol (TCP), describing the
functions to be performed by TCP, the program that implements it, and its interface to
programs or users requiring its services.

● RFC 768. This RFC discusses the functioning of the User Datagram Protocol (UDP),
which is an unreliable connectionless protocol.

● RFC 791. This RFC discusses the Internet Protocol (IP), the protocol that provides for
transmitting blocks of data called datagrams from sources to destinations.

● RFC 792. This RFC discusses the Internet Control Message Protocol (ICMP), the protocol
that deals with errors in datagram processing.

You can find more information about RFCs at www.rfc-editor.org.
TCP Stimulus-Response
This section examines responses to an attempted telnet connection made under various
conditions such as a host that doesn't listen on the telnet port or a router blocking the
connection. Telnet is used as a representative TCP application. You will see some of the varied
responses to the identical stimulus. Obviously, this is not an exhaustive list of all conditions
that might be encountered with an attempted telnet connection. The particular set of
conditions has been selected for illustration because it represents some of the most common.
Destination Host Listens on Requested Port
A host, tel_client.com, attempts to telnet to myhost.com, which listens on port telnet (TCP
port 23).
Stimulus:
tel_client.com.38060 > myhost.com.telnet: S 3774957990:3774957990(0) win
8760
<mss 1460> (DF)
myhost.com offers telnet and connection is permitted.
Response:
myhost.com.telnet > tel_client.com.38060: S 2009600000:2009600000(0) ack
3774957991 win 1024 <mss 1460>
The previous TCPdump output examines the expected response when client host tel_client.com
attempts to connect to the telnet port on destination host myhost.com. You have already been
exposed to the concept of the three-way handshake for TCP session establishment. If you
remember, the first part of the process is for the client to initiate a TCP connection with the
SYN flag set to the server to signal the desire to connect. tel_client.com issues such a SYN
connection request to myhost.com to connect to the telnet port.
Now, if myhost.com offers telnet, access is permitted, and no other impediments arise; you
see the expected response of myhost.com replying to the request with a SYN/ACK. This says
that myhost.com is listening at the telnet port and can establish this telnet connection. The
final part of the three-way handshake not shown would be tel_client.com responding to
myhost.com with a TCP connection with only the ACK flag set.
Destination Host Not Listening on Requested Port
Look at the following TCPdump output to see the response from the same attempted telnet
connection. This time, the scenario changes and myhost.com does not listen for telnet
connections. The expected response is a RESET/ACK that is an abrupt termination to the
connection.
Stimulus:

http://www.rfc-editor.org/

tel_client.com.38060 > myhost.com.telnet: S 3774957990:3774957990(0) win
8760
<mss 1460> (DF)
myhost.com does not offer telnet.
Response:
myhost.com.telnet > tel_client.com.38060: R 0:0(0) ack 3774957991 win 0
In the response, you see that the ACK number 3774957991 from myhost.com is one more
than the tel_client.com's SYN of 3774957990. This means that myhost.com received the telnet
attempt, and this would be the expected sequence number of the next data byte.Yet, the R in
the response indicates a connection RESET or termination because myhost.com does not listen
on port telnet. After the RESET/ACK is issued by myhost.com, there should be no reply from
tel_client.com.
Destination Host Doesn't Exist
What happens if tel_client.com attempts a telnet connection to myhost.com, but myhost.com
doesn't exist? Looking at the following TCPdump output, you see an example of such an
exchange. Often a router responds to a situation such as this in which a host cannot respond.
In this case, router.com, the default router for the subnet on which myhost.com was formerly
found, informs tel_client.com using ICMP that myhost.com is unreachable.
Stimulus:
tel_client.com.38060 > myhost.com.telnet: S 3774957990:3774957990(0) win
8760
<mss 1460> (DF)
myhost.com doesn't exist.
Response:
router.com > tel_client.com: icmp: host myhost.com unreachable
This implies that myhost.com is a host with a registered domain name system (DNS) IP
address, but the IP number is no longer active or the host is currently down or suffering from
some kind of misconfiguration preventing it from responding. The response from router.com
informs of this unreachable error condition using ICMP as the protocol to deliver the message
to tel_client.com.
Destination Port Blocked
The next TCPdump output shows another possible condition. What if a filtering router blocks
the telnet port? What kind of response will you see? Again, the router for myhost.com,
router.com, informs tel_client.com that myhost.com is unreachable and qualifies that this is
because of an admin prohibited filter, meaning that the access was blocked.

router.com was just trying to be helpful and informative in this and the previous situations
examined, but it is giving out some valuable reconnaissance information if someone is probing
your network. It is possible to silence Cisco routers by putting a no ip unreachables

statement in the access control list of the appropriate interface as you learned in Chapter 4,
"ICMP." This prevents the router from being as verbose and limits the information that it
divulges.
Stimulus:
tel_client.com.38060 > myhost.com.telnet: S 3774957990:3774957990(0) win
8760
<mss 1460> (DF)
Router responds to blocked telnet request.
Response:
router.com > tel_client.com: icmp: myhost.com unreachable - admin prohibited
filter

Destination Port Blocked, Router Doesn't Respond
This TCPdump output illustrates what happens when a router blocks traffic, but the router has
been muzzled from issuing unreachable messages. Because no ICMP error message informs

tel_client.com that something is amiss, it stubbornly continues to send retries to connect. The
number of retries and the time intervals in which they are sent are based on the TCP/IP stack
of the operating system of the host sending the retries. Finally, the host tel_client.com gives
up on the connection after it has exhausted the maximum number of retries.
Stimulus:
17:14:18.726864 tel_client.com.38060 > myhost.com.telnet: S
3774957990:3774957990(0) win 8760 <mss 1460> (DF)
Router does not respond to blocked telnet request.
Response:
17:14:21.781140 tel_client.com.38060 > myhost.com.telnet: S
3774957990:3774957990(0) win 8760 <mss 1460> (DF)
17:14:27.776662 tel_client.com.38060 > myhost.com.telnet: S
3774957990:3774957990(0) win 8760 <mss 1460> (DF)
17:14:39.775929 tel_client.com.38060 > myhost.com.telnet: S
3774957990:3774957990(0) win 8760 <mss 1460> (DF)
The topic of retries or retransmissions will be examined in greater detail in Chapter 9, "Examining
Embedded Protocol Header Fields."
UDP Stimulus-Response
A DNS query is used in this section to examine how UDP responds to different stimuli.
Specifically, a listening domain port and a nonlistening port are inspected. Because the other
stimuli examined in the previous section for TCP (such as a host that doesn't exist or the
domain port blocked at the router) elicit very similar responses for the UDP DNS query, they
don't merit repetition.
Destination Host Listening on Requested Port
Looking at the following example, you see nslookup.com does a DNS query to myhost.com on
a port domain from the preceding TCPdump output. Chapter 6, "DNS," explains the TCPdump
DNS output more thoroughly. You see a DNS identification number, 51007, which is used to
pair up responses with requests. myhost.com receives the query and responds. myhost.com
communicates on port domain (53) to nslookup.com, responding to DNS identification number
51007. The 1/0/0 is TCPdump DNS jargon for returning one answer resource record, no
authority records, and no other records. As with TCP, you see that the UDP exchange was
done using an ephemeral port, 45070, on the client and the well-known domain server port.
The response from myhost.com uses these established ports.
Stimulus:
nslookup.com.45070 > myhost.com.domain: 51007+ (31) (DF)
myhost.com runs the domain service and responds.
Response:
myhost.com.domain > nslookup.com.45070 51007 1/0/0 (193) (DF)

Destination Host Not Listening on Requested Port
Observe the following TCPdump output. In this case, myhost.com responds with an ICMP
message that UDP port domain is unreachable. Again, this produces some good
reconnaissance about what services a target host does or does not offer. This time it is a loose-
lipped host, not a router that offers more detail than necessary.
Stimulus:
nslookup.com.45070 > myhost.com.domain: 51007+ (31) (DF)
myhost.com doesn't run the domain service and responds.
Response:
myhost.com > nslookup.com: icmp:myhost.com udp port domain unreachable
In Chapter 9, you will learn that nmap can scan for listening UDP ports. It attempts to do this by
assuming that scanned target host UDP ports for which no ICMP "port unreachable" messages
are returned are listening ports. This is sometimes referred to as inverse mapping because
there is no direct indication that the ports are listening.

Unlike listening TCP ports that respond at the TCP protocol level with a SYN/ACK, most UDP
ports will not respond at the UDP protocol level with a simple connection request. For instance,
the previous DNS query to UDP port 53 received a response because it was communicating at
the levels above the protocol level such as the application level. If you were to examine the
embedded payload, you would find a properly configured DNS query. The nmap UDP port
scanning sends 0 bytes of payload and therefore cannot communicate above the protocol
level.
ICMP Stimulus-Response
ICMP, as you have learned, differs from TCP and UDP. Naturally, the expected set of responses
differs as well. This very brief summary explains ICMP's uniqueness:

● ICMP doesn't use protocol ports to converse.
● ICMP can be a one-way transmission to inform of an error condition with no observed

response.
● ICMP can be a request with an expected reply.

The error responses that might be encountered using ICMP are typically availability issues,
such as if the host exists or whether access is allowed to the host. These are similar to those
observed with the TCP examples. Rather than rehash more of the same, the Windows tracert
command is introduced to demonstrate normal ICMP response used to discover a route from a
source to destination host.
Windows tracert
The tracert command uses the ICMP echo request and ICMP echo reply pair, also known as
ping, to discover the routers through which a datagram passes on its path from source to
destination host. The command output looks like this:
tracert target.my.com
Tracing route to target.my.com [1.2.3.4]
over a maximum of 30 hops:
 1 129 ms 126 ms 130 ms router.my.com [1.2.3.1]
 2 229 ms 124 ms 118 ms target.my.com [1.2.3.4]
 Trace complete.
When you execute the tracert command, you see the intermediate routers through which the
ICMP echo request passes. This example shows only one, router.my.com, before reaching the
destination host target.my.com.
Each router and the destination host receive three separate ICMP echo requests, and tracert
output displays the round-trip time for each of those datagrams to reach the router or
destination host. For instance, the first three ICMP echo requests sent to router.my.com took
129, 126, and 130 milliseconds to complete the round-trip with an ICMP echo response. The
multiple iterations to one router or host are done in case one or more ICMP echo requests or
replies is dropped or lost because of network problems. Next, target.my.com receives three
ICMP echo requests and replies with three ICMP echo replies.
TCPdump of tracert
This following TCPdump output is the result of executing the previous tracert command:
tracer.net > target.my.com: icmp: echo request [ttl 1]
router.my.com > tracer.net: icmp: time exceeded in-transit
tracer.net > target.my.com: icmp: echo request [ttl 1]
router.my.com > tracer.net: icmp: time exceeded in-transit
tracer.net > target.my.com: icmp: echo request [ttl 1]
router.my.com > tracer.net: icmp: time exceeded in-transit
tracer.net > target.my.com: icmp: echo request
target.my.com > tracer.net: icmp: echo reply (DF)
tracer.net > target.my.com: icmp: echo request

target.my.com > tracer.net: icmp: echo reply (DF)
tracer.net > target.my.com: icmp: echo request
target.my.com > tracer.net: icmp: echo reply (DF)
tracert sends the first ICMP echo request in an IP datagram with a time-to-live (TTL) value of
1. The TTL is a value set by a sending host and decremented by each network device through
which the packet traverses. TTL provides a means of discarding packets that have overstayed
their welcome on the Internet and might be bouncing aimlessly. If a router decrements the
TTL and the value becomes 0, the packet must be discarded and an ICMP "time exceeded in-
transit" error message is returned.
In the previous output, after a TTL with a value of 1 is observed, the router router.my.com
sends an ICMP "time-exceeded in-transit" message. This is because it decremented the TTL
and discovered a value of 0. It must then discard the packet and inform the sending host.
When used for tracert, however, the original source host receiving this ICMP error message
records the router from which it came. If necessary, tracert then sends another ICMP echo
request in an IP datagram, but increments the TTL value by 1. This process repeats until the
ICMP echo request finally makes its way to the destination host and receives an ICMP echo
reply.
By default, three different ICMP requests are sent to each new hop for redundancy in case a
packet is dropped. Notice that tracer.net sends an ICMP echo request to target.my.com.
Immediately, you see the reply from router.my.com complaining via the ICMP "time exceeded
in-transit" message that the TTL value has been decremented to 0. This is seen for all three
different ICMP echo requests. The host tracer.net then increments the TTL to 2, which is
enough to allow it to get to the actual destination host, target.my.com. The reason that you do
not see TCPdump display the TTL value of 2 is because the default behavior of TCPdump is to
print the TTL only when it has a value of 1 to warn of an impending problem. target.my.com
responds to all the ICMP echo requests with echo replies. If you want to examine the TTL
regardless of value using TCPdump, use the command line option –vv.

Protocol Benders

Between the expected and abnormal falls a netherland of applications that exhibit normal, yet
unconventional, behavior. These applications deviate from the expected behavior because they
were designed differently. These patterns are presented so that if you encounter them, you
will understand that this is normal traffic.

Specifically, FTP and UNIX Traceroute will be discussed. FTP is considered to be a protocol
bender because it defies the convention of using one ephemeral and one server port for the
duration of the FTP connection. The UNIX Traceroute is an unusual application because it
combines ICMP and UDP to navigate from source to destination and record all routers on the
way.

FTP

The expected behavior of TCP that you have witnessed so far is to establish the two ports used
by the client and server during the three-way handshake. The client usually selects an
ephemeral port greater than 1023, and the server listens on a well-known port. Throughout

http://safari.informit.com/?xmlid=0-73571-265-4/22991533

the remainder of the established TCP session, the client and server talk only on these
established ports. FTP differs from most other TCP services, because it communicates using
two different server ports. The first port is port 21, which is known as the standard FTP
command port. The second port is used for data passed between the client and the server. The
actual port used is different for active and passive FTP, as you will soon see.

Active FTP

Active FTP is so named because the FTP server opens up the data connection to the client.
Both active and passive FTP use port 21 to issue FTP commands, such as those to retrieve or
store a file. But, in active FTP, the second is port 20 for FTP data passed between the client
and the server. The FTP data port is used to exchange a file between the two hosts or to send
a listing of file directories from the server to the client.

Look at the following TCPdump output for an active FTP session to see an unusual, but normal,
change of TCP ports:

Session negotiation:

ftp.client.com.35955 > ftp.server.com. 21: S 1884312222:1884312222(0)
ftp.server.com.21 > ftp.client.com.35955: S 3113925437:3113925437(0) ack
1884312223
ftp.client.com.35955 > ftp.server.com.21: . ack 1
ftp.server.com.21 > ftp.client.com.35955: P 1:24(23) ack 1
ftp.client.com.35955 > ftp.server.com.21: . ack 24

dir command issued by the user:

ftp.server.com.20 > ftp.client.com.35956: S 3558632705:3558632705(0)
ftp.client.com.35956 > ftp.server.com.20: S 1901007864:1901007864(0) ack
3558632706
ftp.server.com.20 > ftp.client.com.35956: . ack 1

In the preceding example, the FTP connection is established between ftp.client.com using
ephemeral port 35955 and server port 21. The three-way handshake is completed and some
data (usually a welcoming message) is passed between the two. This is similar to what you
have witnessed with other TCP protocols.

Next, the user issues the FTP dir command from the client requesting a listing of the
directories on the server. A new connection is established from source port 20 of the server to
the ephemeral port 35956 on the client. Although you do not see it in the output, the client
informed the server that it would be listening on ephemeral port 35956 via the FTP port
command. After this new three-way handshake is completed, ftp.server.com can send the
directories to ftp.client.com on this established connection. Additional exchanges of data cause
the establishment of new connections and the selection of new ephemeral ports. This is called
active FTP because the FTP server initiates the data connection to the client. As you might
guess, this presents some problems for packet-filtering devices that would have to
indiscriminately allow traffic into the network coming from source port 20. Passive FTP avoids
these problems by having the internal FTP client make the data connection.

Passive FTP

Passive FTP differs from active FTP in the manner in which the data connection is established.
It uses the identical method of connecting to FTP port 21 to establish the command port. But,
as you observed with active FTP, the problem arises when a packet-filtering device must allow
initial SYNs in from source port 20 to a high-numbered port inside the packet-filtering device.
What is to keep a hacker from using this hole as a way into the network? After all, the packet-
filtering device might not be examining the content of the packet using this hole and cannot be
sure it is indeed FTP traffic.

Passive FTP avoids this problem altogether by having the client initiate the connection to the
server. Remember that active FTP required that the server initiate the connection to the client.
Look at the following output of a passive FTP session establishment:

Session negotiation:

ftp.client.com.44890 > ftp.server2.com.21: S 4276284026:4276284026(0) win
8760 <mss 1380> (DF)
ftp.server2.com.21 > ftp.client.com.44890: S 1669630260:1669630260(0) ack
4276284027 win 8280 <mss 1460> (DF)
ftp.client.com.44890 > ftp.server2.com.21: . ack 1 win 9660 (DF)

dir command issued by the user:

ftp.client.com.44891 > ftp.server2.com.3967: S 4282611109:4282611109(0) win
8760 <mss 1380> (DF)
ftp.server2.com.3967 > ftp.client.com.44891: S 1669768808:1669768808(0) ack
4282611110 win 8280 <mss 1460> (DF)
ftp.client.com.44891 > ftp.server2.com.3967: . ack 1 win 9660 (DF)

When ftp.client.com issues the dir command on the current command connection, it causes a
data connection to be established. You don't see this in the TCPdump output, but
ftp.server2.com informs the client via the FTP port command that it will be listening on port
3967. The client issues the SYN connection to that port and the server responds with a
SYN/ACK. The directory listing is done via this connection. Because the client is making an
outbound connection to the server, the subsequent responses from the server can be allowed
back in the packet-filtering device with relatively strong confidence that this is a "safe"
connection. This involves less risk than allowing active FTP connections by permitting all
inbound source port 20 through the packet-filtering device.

UNIX Traceroute

The UNIX Traceroute program discussed next shows a combination of UDP and ICMP to
discover the path that a datagram takes from source to destination. This traceroute program is
similar in function to the Windows Tracert; instead of using ICMP to discover the routers and
destination host, however, it uses UDP.

The intermediate routers that are discovered respond as you saw in the Windows Tracert with
ICMP "time-exceeded in-transit" messages when an IP datagram has a TTL value decremented
to 0. Again, this process is repeated until the UDP datagram makes its way to the destination
host by incrementing the starting TTL value by 1 for each new hop to be forged beyond the
previous one. The UDP destination port chosen is one typically in the 33000–33999 range—one
that almost surely does not listen. The intention is to elicit an ICMP "UDP port unreachable"

message that signals to traceroute that the destination host has been found. Like tracert, the
default behavior for traceroute is to send three different connections to each router or host.
This example alters the behavior to send only one for simplicity:

tracer.com.62615 > target.com.33456: udp 12 (DF) [ttl 1]
router.com > tracer.com: icmp: time exceeded in-transit
[tos 0xc0]
tracer.com.62615 > target.com.33457: udp 12 (DF)
target.com > tracer.com: icmp: target.com udp port 33457 unreachable (DF)

In the preceding output, you see tracer.com send a UDP datagram to destination port 33456
of target.com. The initial TTL value is set to 1. As soon as this packet hits router.com, it
decrements the TTL value to 0 and returns an ICMP "time exceeded in transit" message to
tracer.com. When tracer.com receives this, it sends another UDP datagram to target.com. This
is different from the first one because it increments the destination port to 33457 and, while
you cannot tell from the standard TCPdump output, it increments the initial TTL to 2. This
allows the datagram to traverse the first router, router.com, and take one more hop. That
additional hop takes it to the destination host target.com that does not listen on port 33457
and returns an ICMP "port unreachable" message.

You should be aware that both the UNIX traceroute and the Windows tracert only work if
specific ICMP messages are allowed into the network of the host executing the commands.
Both versions require that ICMP "time exceeded in-transit" messages be allowed into the
network. The UNIX traceroute requires that ICMP "port unreachable" messages be allowed,
and Windows tracert requires that ICMP echo requests be allowed.

You are probably asking whether these types of ICMP messages should be permitted inbound
to your network. This really depends on the security posture you adopt. At the most protected
and restricted sites, this is not necessarily recommended. The risks might far outweigh the
benefits because it is possible to use these ICMP messages for purposes other than the ones
for which they were designed, as was witnessed with the discussion of Loki in Chapter 4.

However, if your site is a more open one and you are willing to accept the risks, allowing these
ICMP messages can provide some obvious benefits of route discovery along with informative
feedback to internal hosts in your network.

Summary of Expected Behavior and Protocol Benders

Here is a brief synopsis of what has been covered so far in this chapter. The RFCs are the
standards documents upon which TCP/IP and the Internet were built. They describe how things
are supposed to work when everyone conforms to the same rules. Unfortunately, hackers have
discovered that different implementations of TCP/IP react differently to deliberate violations of
the RFC standards. That's one of the foundations of hacking: deliberately exploiting
exceptional conditions that the implementers of the TCP/IP code believed would never happen.
Hackers often attempt to identify operating systems by sending strange stimuli and observing
the host's responses. The final part of this chapter looks at some of the reactions of systems to
these deliberate deviations.

As previously discussed, there are unique responses for the same stimulus depending on the
circumstances and availability of the requested service. Responses also depend on a host or
router's capability to respond to a particular connection. Each of the different protocols has

different expected responses. Finally, you see in protocol benders some unusual, but not
abnormal, behavior exhibited by some applications.

Abnormal Stimuli
This section examines some of the blatantly anomalous behaviors that hackers might throw
your way. These behaviors have many purposes, and each is examined for the different
categories discussed. These categories and anomalies are not all-inclusive; you might find
many more.
Evasion Stimulus, Lack of Response
You see a port scan of victim.org from stealthy.com with the FIN flag alone set in the
TCPdump output that follows. This is a sneaky way of determining whether a given port is
active. The expected behavior per RFC 793 is that a listening port that is scanned should not
respond; a port that is not listening should respond with a RESET/ACK. This maps the services
that a target host offers. Take a look:
stealthy.com.50141 > victim.org.5: F 0:0(0) win 4096 (DF)
stealthy.com.50141 > victim.org.3: F 0:0(0) win 4096 (DF)
stealthy.com.50141 > victim.org.26: F 0:0(0) win 4096 (DF)
stealthy.com.50141 > victim.org.45: F 0:0(0) win 4096 (DF)
stealthy.com.50141 > victim.org.17: F 0:0(0) win 4096 (DF)
stealthy.com.50141 > victim.org.7: F 0:0(0) win 4096 (DF)
stealthy.com.50141 > victim.org.51: F 0:0(0) win 4096 (DF)
stealthy.com.50141 > victim.org.52: F 0:0(0) win 4096 (DF)
stealthy.com.50141 > victim.org.30: F 0:0(0) win 4096 (DF)
stealthy.com.50141 > victim.org.53: F 0:0(0) win 4096 (DF)
stealthy.com.50141 > victim.org.20: F 0:0(0) win 4096 (DF)
The reason that this scan is considered more stealthy than a scan that probes ports with an
attempted SYN connection is that some intrusion detection systems might not pick up a FIN
scan. Historically, probes of open ports were done using SYN scans, and earlier intrusion
detection systems were developed using this signature. When the hackers realized that their
scans were being detected, however, they tried to elude notice by launching FIN scans that
would map the active ports but might not be noticed. This scan can be launched using nmap
–sF victim.org to inform nmap to do a stealthy FIN scan.
Evil Stimulus, Fatal Response
Denial-of-service (DoS) attacks might attempt to starve a host of resources needed to function
correctly. There are many different varieties of DoS attacks. Jolt2 is an attack that consumes
so much of the target host's memory resources that it cannot function. Here is some sample
output from Jolt2:
10:48:56.848099 verbo.com > win98.com: (frag 1109:9@65520)
10:48:56.848099 verbo.com > win98.com: (frag 1109:9@65520)
10:48:56.848295 verbo.com > win98.com: (frag 1109:9@65520)
10:48:56.848295 verbo.com > win98.com: (frag 1109:9@65520)
10:48:56.848351 verbo.com > win98.com: (frag 1109:9@65520)
10:48:56.848351 verbo.com > win98.com: (frag 1109:9@65520)
10:48:56.848420 verbo.com > win98.com: (frag 1109:9@65520)
10:48:56.848420 verbo.com > win98.com: (frag 1109:9@65520)
10:48:56.848584 verbo.com > win98.com: (frag 1109:9@65520)
Jolt2 sends an endless stream of ICMP echo requests (by default, although other protocols can
be used) to a target Windows host. These are sent as fragments with the same fragment ID

but also with duplicate non-zero fragment offsets.
Because all fragments but the first in the fragment train carry only data, not protocol headers,
the receiving host only knows the embedded protocol is ICMP. A problem exists for certain
Windows 98, Windows NT, and Windows 2000 hosts when they do not receive the initial 0
offset fragment. The target host becomes consumed with packet reassembly, and memory
usage shoots way up leading to a DoS.
When looking at the TCPdump output of the Jolt2 activity, all you know is that host verbo.com
is sending some kind of packets to the win98.com host. You see a repeated fragment ID of
1109, a fragment length of 9, and a fragment offset of 65520. The Jolt2 source code assigns
the fragment offset a static value of 65520. This brings the total close to the 65535 maximum.
Initially, you might think this worked because of the fragment offset number. However, when
this value was changed in the source code to something quite a bit lower and the code was
recompiled, the DoS still occurred.
To test the response of the target host, a ping process was executed on the malicious host
verbo.com to win98.com before and during the time the Jolt2 code was run. The DoS was
almost immediate after the Jolt2 code was executed. The win98.com host neither responded to
pings nor keyboard input. It recovered after the attack was stopped and did not require
rebooting.
The Motivation Behind Scanning
One of the first phases in any attempt to break into a host on a network is to do
some kind of reconnaissance on the network or a particular host. An attacker might
have a new piece of code that was just released that enables him to get root access
if he can find a vulnerable host. Or, an attacker might just be interested in getting
into a host or multiple hosts in any way possible. Different hackers have different
goals for hacking. Perhaps the host or network is being sought to participate in a
distributed denial-of-service attack. Or, perhaps the interest is in compromising a
host from which to launch other attacks and hide the true identity of the hacker.
The attacker must scan the network in some fashion to discover live hosts, and later
discover hosts susceptible to exploits by scanning service ports. For instance, the
attacker might have acquired some software that could gain root access on hosts
offering vulnerable DNS servers. Chances are good that he would scan the network
for any host listening on the DNS port. After discovering those, the attacker might
try to execute the DNS exploit code on hosts running DNS.
The scanning phase is one that might be done blatantly at night when it is less likely
that a network is being watched. It might be done from a compromised host so that
when it is discovered, the attacker's identity will not be known. Or, the hacker might
try to launch the scans using methods that might go undetected, known as stealth
scans. These scans are considered more furtive because they use unconventional
techniques that NIDS are not likely to pick up. Some of the scanning techniques also
attempt to fingerprint the operating system. Many times a given exploit might
plague a subset of operating systems. For the hacker to have a better chance of
success, reconnaissance must be done to find hosts running a particular operating
system.
No Stimulus, All Response
This is really just a fancy name for IP spoofing. Appendix A, "Exploits and Scans to Apply
Exploits," discusses this in more detail. In the following TCPdump output, it appears that many
1.2 hosts are receiving ICMP "time exceeded in-transit" messages. They are being informed
that traffic, which they sent to a host, had a TTL expire in a datagram. Naturally enough, this
implies that all the 1.2 hosts sent some kind of traffic that elicited these responses. That is not
the case, however; no outbound traffic is found from these hosts. Here is the output:
router.com > 1.2.10.72: icmp: time exceeded in-transit
router.com > 1.2.18.13: icmp: time exceeded in-transit

router.com > 1.2.11.67: icmp: time exceeded in-transit
router.com > 1.2.16.13: icmp: time exceeded in-transit
router.com > 1.2.19.1: icmp: time exceeded in-transit
router.com > 1.2.1.252: icmp: time exceeded in-transit
router.com > 1.2.13.56: icmp: time exceeded in-transit
router.com > 1.2.143.6: icmp: time exceeded in-transit
router.com > 1.2.13.15: icmp: time exceeded in-transit
Can you guess the explanation for this traffic? Given the title of the section, it should be a no-
brainer. The 1.2 hosts were spoofed, and traffic was sent to a foreign network using them as a
source IP. The reason for this is sheer speculation because you see only one side of the action;
however, the most likely explanation is that some kind of flood of activity or harassment
against the foreign network was undertaken.
How do you know that source IP router.com is not doing some kind of reconnaissance of the
destination 1.2 hosts? Couldn't this type of traffic elicit some kind of response from a router, if
not a host? The problem is that this is an ICMP error message, and RFC 1122 dictates that an
ICMP error message cannot elicit another ICMP error message because that might lead to
some kind of endless loop when an error condition was encountered. Because no other
protocol would respond to this activity, the spoofing theory is the most logical.
Backscatter
A very interesting study was conducted and a paper was written about attacks such
as the one discussed in the section, "No Stimulus, All Response." The authors nicknamed
the attacks backscatter. The authors studied activity on their class A network on the
Internet over an extended time. They were able to infer backscatter attacks on the
Internet by examining different protocol responses for which there were no requests.
This indicated that IP addresses from their network were being spoofed. Using this
information, they were able to deduce the number and types of attacks that
occurred on the Internet during that time. The frequency and types of activity
occurring on the Internet are pretty amazing. The study, "Inferring Internet Denial-
of-Service Activity," can be found at www.cs.ucsd.edu/~savage/papers/UsenixSec01.pdf.
Unconventional Stimulus, Operating System Identifying Response
This section discusses some examples of attempts to fingerprint the operating system of a
target host by sending unconventional stimuli and then evaluating the target host's responses.
The nmap program is one scanning tool that can remotely attempt to identify a target host's
operating system.
The reason that malicious hackers attempt to identify a host's operating system is because
they can then pair appropriate exploits with vulnerable operating systems. It is potentially
damaging reconnaissance information if someone can determine the operating system of a
remote host. Sure, some sites are open enough that the operating system type and version
can be harvested from banners associated with telnet or FTP connections. These might not be
readily available for all sites, however; and even if they are, they might not be accurate. Every
operating system has a TCP/IP stack implementation that differs slightly. If a hacker or
software can send specific packets, knowing how a particular operating system should
respond, the hacker can tell Linux from Solaris, (sometimes) without requiring any other
information.
nmap sends some unexpected stimuli, including the following, to identify a host's operating
system based on the replies:

● An unsolicited FIN to an open port. There should be no response according to RFC
793, but some hosts do respond with a RESET. The output was examined in the previous
section, "Evasion Stimulus, Lack of Response," to show how this traffic can be used to
map listening ports with more stealth than conventional SYN scans.

http://www.cs.ucsd.edu/~savage/papers/UsenixSec01.pdf

● Bogus "reserved" TCP flag values. nmap sends these to see whether the target host
resets the bits to 0 for those nonexistent flags. Many operating systems think these bits
are bogus; however, those that are ECN-aware might not, as discussed in the following
section.

● Anomalous TCP flag combinations. Mutant flag combinations are sent with the
expectation that most target hosts will not respond, but a handful might respond,
uniquely identifying their operating system.

● No TCP flag values. nmap sends these to see how the target host handles this
anomalous situation.

Bogus "Reserved" TCP Flags
One fingerprinting method is to send bogus TCP flag settings. Figure 5.1 shows the configuration
of the TCP flag byte. The TCP flag byte contains all the possible TCP flag settings. Remember
from Chapter 2, "Introduction to TCPdump and TCP that the TCP flag settings tell much about the
purpose of a given TCP segment. Because there are only six TCP flags, there are 2 extra bits in
the TCP flag byte. Before the invention of something known as Explicit Congestion Notification
(ECN), these high-order reserved bits were expected to have a value of 0. ECN is discussed
more thoroughly in Chapter 9.

Figure 5.1. TCP flag byte.

To examine all the bits set in the TCP flag byte, you need to execute the standard version of
TCPdump with the -x option that dumps the collected datagram in hexadecimal. You cannot
check the value of the 2 high-order bits with standard TCPdump output.
A byte is represented as two hexadecimal characters, or nibbles. The low-order nibble contains
the bit settings for the PUSH, RESET, SYN, and FIN flags. Turn your attention to the high-order
nibble to examine the value of the reserved bits. The bogus TCP flag settings that nmap tests
attempt to give these bits a value. If the high-order nibble has a value greater than 3, this
indicates that one or both of the reserved bits are set. You can arrive at this value because the
ACK bit when set has a value of 1 times 20 (or 1) and the URG bit when set has a value of 1
times 21 (or 2). These two values combined equal 3. Any value greater than 3 in the high-
order nibble is anomalous unless ECN is being used.
The following TCPdump output shows an nmap scan that attempts to discover more about the
behavior of the TCP/IP stack of target.com to help identify the operating system. This
particular attempted connection set one of the reserved TCP flag bytes—specifically, the bit to
the left of the URG bit. First, you see the regular TCPdump output, but it gives no clue to the
underlying bogus TCP flag bit settings. The following hexadecimal output shows all fields,
including the TCP flag byte field:
scanner.com.44388 > target.com.domain: S 403915838:403915838(0) win 4096
<wscale 10,nop,mss 265,timestamp 1061109567 0,eol> (DF)

[4500 003c 7542 4000 3b06 15bd 0102 0304
0102 0305] ad64 0035 1813 443e 0000 0000
a042 1000 fa4c 0000 0303 0a01 0204 0109
080a 3f3f 3f3f 0000 0000 0000
Looking at the hexadecimal output, the first 20 bytes of the IP header are in brackets. The TCP
header and any data follow this; the 13th byte into the TCP header (marked in bold) is the TCP
flag byte. You see that the value is a hexadecimal 42. Looking at the high-order nibble (or the

value of 4), it is greater than 3, meaning that the low-order reserved bit has been set. The
scanner's hope is that the response to this bogus flag setting indicates something unique about
the operating system.
Now, take a look at the response of target.com to scanner.com. Our interest and nmap's
interest is the response to the bogus TCP flag bit set. Again, the normal TCPdump output
display does not show the reserved bits of the TCP flag byte. The hexadecimal dump that does
show the TCP flag byte follows this:
target.com.domain > scanner.com.44388: S 4154976859:4154976859(0) ack
403915839 win 8855 <nop,nop,timestamp 16912287 1061109567,nop,wscale 0,mss
265> (DF)

[4500 003c e04e 4000 ff06 e6af 83da d684
83da d683] 0035 ad64 f7a7 ea5b 1813 443f
a012 2297 fd3f 0000 0101 080a 0102 0f9f
3f3f 3f3f 0103 0300 0204 0109
Look at the response to the bogus TCP flag bits in the preceding TCPdump output. target.com
responds with a SYN/ACK—nothing rancid here. It appears that target.com did not react to the
abnormal TCP flag bit set. How do you know? The hexadecimal output of the transaction shows
that the response has the SYN and ACK bit set in the TCP flag byte with a hexadecimal value
of 12 (in bold). The ACK bit is in the low-order bit of the high-order nibble, so it represents the
value 1. The SYN bit is in the low-order nibble, second bit from the left, and represents the 2
value. Therefore, the response discarded the bogus TCP flag bit. Another operating system
might have preserved that bit, and it would have been reflected in the TCP flag byte.
Anomalous TCP Flag Combinations
RFC 793 elaborates normal TCP flag state settings and transitions in extensive detail. It seems
likely that most operating system TCP/IP stacks would conform to the specifications. For the
most part, they do, but there are the rare exceptions that do not conform and are therefore
identifiable by their lack of conformity. Look at the following TCPdump output from an excerpt
of traffic produced by running nmap in operating system fingerprinting mode (-O command
line option) for a host named win98:
nmap –O win98

20:33:16.409759 verbo.47322 > win98.netbios-ssn: SFP 861966446:861966446(0)
win 3072 urg 0 <wscale 10,nop,mss 265,timestamp 1061109567[|tcp]>

20:33:16.410387 win98.netbios-ssn > verbo.47322: S 49904150:49904150(0) ack
861966447 win 8215 <mss 1460> (DF)
The scanning host sends a packet with the TCP flags of SYN, FIN, and PUSH simultaneously
set. Logically, it appears that this is an anomalous flag trio because a SYN flag starts a
connection, a FIN flag closes a connection, and a PUSH flag sends data after a connection is
opened or before a connection is closed. It would seem a natural reaction that a host receiving
this connection would ignore it or perhaps RESET it because it makes no sense.Yet, the
Windows 98 target host appears to interpret this as session establishment and responds with a
SYN and an ACK. This unique reaction helps identify the responding host as having a Windows
TCP/IP stack.
No TCP Flags
As another example of nmap fingerprinting, look at the following TCPdump output. It shows a
TCP segment with no TCP flag bits set. This is another instance of sending a mutant TCP flag
byte setting. In this case, no flag bits have been turned on; this is also known as a null
session:
scanner.com.44389 > target.com.domain: . win 4096 <wscale 10,nop,mss 265,
timestamp 1061109567 0,eol> (DF)

[4500 003c 7543 4000 3b06 15bc 0102 0304
0102 0305] ad65 0035 1813 443e 0000 0000
a000 1000 fa8d 0000 0303 0a01 0204 0109
080a 3f3f 3f3f 0000 0000 0000
Look at the previous hexadecimal output. The TCP flag byte field, which is in bold, has a value
of 00. This means that no TCP flags have been set. Most hosts will not respond to a null
session, yet some must, otherwise nmap would have no reason to send this kind of traffic.
A normal TCP flag byte has at least one flag bit set. The host target.com did not respond at all
to this null session TCP segment. The lack of response provides some clue about the operating
system. Another operating system might distinguish itself by responding differently, perhaps
by replying with a RESET.
Using TCP Options for OS Identification
Look at the following TCPdump output from an nmap scan with the focus on the
bolded TCP options:
scanner.com.44388 > target.com.domain: S 403915838:403915838(0) win
4096
<wscale 10,nop,mss 265,timestamp 1061109567 0,eol> (DF)
target.com.domain > scanner.com.44388: S 4154976859:4154976859(0)
ack
403915839 win 8855 <nop,nop,timestamp 16912287
1061109567,nop,wscale 0,mss
265> (DF)
One of the other methods that nmap uses to identify a particular operating system is
to send many different TCP options. Some operating systems do not support all
these options, and the response discards some. Also, some operating systems set
different values for some of the TCP options, further differentiating the fingerprint.
Unlike the other examples discussed so far, these are not unconventional stimuli,
but are mentioned because they help identify the remote operating system.
Finally, different operating systems will store these options in a different order in the
TCP header, which is indicated by the order in which TCPdump lists them. All this
information can contain a bounty of identifying clues. As you see in the response to
the preceding options, the order has been changed and some of the values have
been altered (such as the wscale changing from 10 to 0 in the response). Also notice
that the nop and eol options are rearranged or disappear in the response. These
fields are used to pad TCP options to 4-byte boundaries and might not be needed in
the response.
For an in-depth discussion of TCP options, take a look at RFC 1323. Some of the TCP
options seen in the TCPdump output are as follows:

● -wscale. This option allows the TCP window size to increase to a value

greater than 65535 bytes. This is typically used to increase throughput of TCP
over high-bandwidth, long-delay networks.

● -timestamp. This option records round-trip time measurements. These

measurements are often necessary to optimize throughput based on changes
in network conditions.

● -nop. This option is used to add a 1-byte pad to TCP options. TCP options

must fall on 4-byte boundaries; and if they are less than 4 bytes, the nop is
used to pad.

● -eol. This is the end-of-list option used to pad a final byte to a 4-byte

boundary.

Summary of Abnormal Stimuli
You see that there are many variations of abnormal activity. Different types of abnormal
activity have different purposes. Some try to evade the vigilant eye of NIDS or circumvent
filtering. Others are blatantly hostile because they attempt a denial of service against a target
host.
You must also be aware that sometimes what you might perceive to be hostile activity is
actually a response from a host responding to your spoofed addresses. Finally, programs, such
as nmap, use unique stimuli to elicit responses with identifying characteristics of the target
operating system

Summary
As far as expected responses are concerned, remember there are no absolutes. Not every
operating system's TCP/IP stack is from the same mold shaped by a set of identical defining
RFCs. Some operating systems do not follow the RFCs' expected behavior. This does not
necessarily indicate some kind of mutant response. This is more a reflection of a lack of
standardization.
There is a very important point to learn from stimulus-response theory. A common knee-jerk
reaction from observing traffic that appears to be some kind of scan or repeated activity
directed against your network is to jump to the immediate conclusion that you are under
attack from the source IP. You are likely to label the source IP as the aggressor. Take a
moment and think before you automatically make such an assessment. Granted, many times
you will be correct. But, think about the possibility that this was an elicited response. (There
might have even been some kind of catalyst to which the alleged aggressor is responding.) For
instance, your source IPs might have been spoofed. This concept is easy to assimilate in
theory, but hard to remember in practice.
Conversely, when you get some kind of response activity, such as an unsolicited ICMP echo
reply, it is very possible that the source host is indeed the aggressor. As discussed in Chapter 4,
the Tribe Flood Network (TFN) attack uses an ICMP echo reply as the communication vehicle
between the master and daemons to launch or control a distributed denial of service (DDoS)
attack. If you have any doubt about observed activity, the best advice is to examine the entire
captured datagram and scrutinize the header fields and payload for anomalies.You have to
adopt the attitude that nothing is predictable all the time when you examine network traffic.

Chapter 6. DNS

Why devote an entire chapter to DNS? Isn't DNS used to translate a host name to an IP
address and that's about it? Sure, that is a big and important part of DNS, but DNS is much
more.
DNS servers are probably one of the most common targets of reconnaissance and exploit
efforts. Your DNS server is a cherished prize for a hacker to compromise, so hackers are going
to see how vulnerable it is by pounding on it for weaknesses. DNS servers are targeted for the
following reasons:

http://safari.informit.com/?xmlid=0-73571-265-4/22991533

● DNS servers can provide a lot of reconnaissance information about hosts in preparation
for launching an attack of a targeted network.

● DNS is used to resolve host names and IP addresses; so if a hacker can dupe a DNS
server or actually seize control of a DNS server, she can manipulate name or address
translations for malicious purposes. Often, weak methods of authentication rely on a
host having a particular host name or IP address. If normal translations can be
subverted, authentications can be corrupted.

● DNS servers are accessible and information sharing entities. The port commonly
associated with DNS traffic, UDP port 53, is often left open on packet-filtering devices so
that internal name servers can function.

This chapter covers these topics along with DNS theory and practical applications. You learn
how DNS queries are answered, how DNS servers interact with other DNS servers, how DNS
can be used to discover information about a site, and ways that DNS can be used for exploit
purposes. In short, this information will aid you in applying network security and analyzing the
nature of DNS traffic seen on the network.

Back to Basics: DNS Theory
Again, TCPdump is enlisted to help explain and visualize what occurs with different types of
DNS transactions. Specifically, this section examines how a DNS query is issued and answered.
DNS differs from a normal client/server application, such as telnet, where the client requests a
connection to a desired server and the interaction is between those two hosts. For DNS,
however, when a client issues a DNS query, a DNS server accepts the query, perhaps interacts
with one or more additional DNS servers, and then returns the response to the client.
This section looks at the structure of DNS as a distributed system, and it examines host name
to IP address resolution. It also discusses the role of master (formerly known as primary) and
slave (formerly known as secondary) name servers and discusses the interaction between
them. You learn that unlike other services, DNS can switch between UDP and TCP protocols,
depending on the kind of DNS activity.
The Structure of DNS
DNS is a globally distributed system that depends on the cooperative interaction of many DNS
servers to store records about "domains" and to communicate with each other. A domain is a
subset of DNS records associated with a logical grouping. For instance, sans.org is a collection
of records containing IP addresses, host names, name servers, and more associated with the
sans.org domain. Figure 6.1 depicts the hierarchical nature of DNS.

Figure 6.1. DNS, the pyramid scheme.

Logically, the top node of the DNS tree is known as root—designated by the period (.).
Functionally, this is represented by root servers that can act as the starting point for DNS
resolutions. These servers just point to other DNS servers that might have dominion over the
DNS records being sought. You are probably familiar with the top-level domains, those falling
directly under the root servers (the long-established .edu, .org, .com, .net, .mil, and .gov; and
the recently established .aero, .biz, .coop, .info, .museum, .name, and .pro, to name the
domestic domains). There are additional top-level domains for foreign countries, such as .jp
for Japan.
Steppin' Out on the Internet
Suppose that you want to visit www.sans.org, which is the home page for the System

Administration, Networking, and Security (SANS) Institute. You enter www.sans.org in your

browser, and seconds later you see the www.sans.org page.

Now, remember that IP datagrams use IP addresses for all source and destination addresses.
IP knows nothing about host names. The human mind is more likely to remember that the
capital of Florida is Tallahassee, than it is to remember the value of pi to 10 fractional digits is
3.1415926536, even though both take 11 characters (excluding the decimal) to represent.
Names have more order and less randomness than numbers, so you tend to remember them
better. This is why you speak in host names rather than IP addresses. It is apparent that some
kind of translation mechanism is required between the way you reference hosts (via host
names) and the way TCP/IP must reference hosts (via IP addresses).
So, how did this translation from www.sans.org to an IP address mysteriously occur behind

the scenes? Before you could even send out a request to www.sans.org, your host had to

know an IP address. Your host needs this IP address to insert into the datagram when it sends
the connection request to www.sans.org out on the network. The following section unveils

this somewhat transparent process.

Recursive Versus Iterative Queries
DNS queries come in two different varieties: recursive and iterative. A recursive
query requires a name server to find the answer to the query itself. In other words,
it might query name servers, such as root name servers that do not know the
answer to the query but know references of name servers that possibly have the
answer to the query. The name server must follow all the references until it finds a
name server that has the answer. The bottom line is that a recursive query asks the
queried DNS server to be the workhorse and finds an answer while the querying
DNS server waits for the answer or performs unrelated queries.
An iterative query asks a name server to fetch the answer to a query. If the name
server doesn't have the answer, it returns to the querying name server a reference
of another name server that possibly has the answer to the query. The queried
name server does not pursue finding the answer; the querying name server must
pursue finding the answer to the query itself.
DNS Resolution Process
Figure 6.2 shows the beginning of the process of resolution from host name www.sans.org to IP

address.
Figure 6.2. Client resolver, the handoff.

You see your browser is on host.my.com and it attempts resolution of www.sans.org.

Assuming that your host is not a name server, it is mostly passive throughout the resolution
process. It just fires off the request for the translation and resumes the process of connecting
to the www.sans.org page after it receives a resolution of the IP address. The workhorse

behind the resolution process is the DNS server that is queried (in this case, dns.my.com).
Generally, a default name server is chosen at the time the operating system is installed on a
given client machine. On UNIX machines, the information is stored in the file /etc/resolv.conf.
The DNS server is set as a TCP/IP property in the Network portion of the Control Panel for
Windows hosts. This default DNS server typically is managed locally and is located somewhere
on your organization's intranet. dns.my.com is this site's DNS server.
On the client host, the TCP/IP applications, such as telnet, FTP, Netscape, or Internet Explorer,
call "resolver" library routines to obtain DNS resolution. When you requested www.sans.org,

application software issued a call to resolve the host name to an IP address. In this case, a
gethostbyname call is sent from host.my.com to the DNS server. This requests host name
translation of www.sans.org to an IP address. The DNS server receives this request,

processes it, and returns it to host.my.com.
Figure 6.3 shows the second part of the resolution journey after leaving host.my.com. You see
dns.my.com assumes the actual task of finding the answer of the IP of www.sans.org. For

simplicity of theory (although this might be perceived as adding complexity to the actual
resolution process), assume that dns.my.com knows nothing about www.sans.org or any

other host in the .org domain. dns.my.com begins its search with a DNS root server to find the
resolution.

Figure 6.3. DNS server resolution, the cry for help.

If a DNS server has to resolve an unknown external host name and it has no knowledge of the
host's associated domains, it must contact a root name server. Root name servers are more
than just a starting point—they maintain a mapping between domain names (sans.org) and
the authoritative name servers—DNS servers that maintain DNS records for those domains.
When the local name server, dns.my.com, asks a root name server for the IP address of
www.sans.org, it gets back a referral to the name servers for sans.org. You might ask how

dns.my.com knows the names and IP addresses of the root servers to contact. Obviously, the
local name server must be preconfigured with a list of known root name servers. This
information is maintained by the InterNIC and may be downloaded from
ftp://ftp.rs.internic.net/domain/named.ca.
Continuing the resolution adventure, the root server lets dns.my.com know where to continue
its search. The root server has returned a referral to the name server server1.sans.org as an
authoritative name server for www.sans.org. Figure 6.4 depicts dns.my.com querying

server1.sans.org and receiving an authoritative answer, the IP address of 12.33.247.6.
Figure 6.4. DNS server resolution, from the horse's mouth

ftp://ftp.rs.internic.net/domain/named.ca

TCPdump Output of Resolution
You can examine the traffic that this DNS request generated by observing the TCPdump output
that follows:
host.my.com.1716 > dns.my.com.53: 1+ (35)
dns.my.com.53 > h.root-servers.net.53: 12420 (30) (DF)
h.root-servers.net.53 > dns.my.com.53: 12420- 0/3/3 (153) (DF)
dns.my.com.53 > server1.sans.org.53: 12421+ (30) (DF)
server1.sans.org.53 > dns.my.com.53: 12421* 1/3/3 (172)
dns.my.com.53 > host.my.com.1716: 1* 1/3/3
(197) (DF)
First, host.my.com (the client exchanges from host.my.com are in bold) issues the request to
resolve www.sans.org to dns.my.com. TCPdump analyzes DNS at the application level, which

is why you don't see the word udp embedded in the output even though this is UDP. UDP is

the protocol selected for the transmission of the majority of DNS traffic because the queries
and responses are often short and the application itself can tolerate lost data. When
anticipated data is not received, the DNS query is reissued.
Next, dns.my.com attempts a connection to h.root-servers.net on port 53. Notice that both
source and destination ports are 53. h.root-servers.net responds back to dns.my.com using
source and destination ports 53 as well. A discussion of the numbers and notations found at
the end of each TCPdump record is found in the next section, "Strange TCPdump Notation." h.root-
servers.net does not have the answer to the query. It has a reference of another DNS server
that either has the answer or has a reference of who might have the answer. Querying name
servers for the IP of www.sans.org is an iterative process that yields a reference of another

DNS server that might have the answer. This process repeats until contacting a name server
that has the IP address answer.
Because h.root-servers referred dns.my.com to another DNS server, in the third line of the
preceding output, you see dns.my.com query this server, server1.sans.org, for the IP for
www.sans.org. server1.sans.org happens to "own" the DNS record for www.sans.org and

can return the IP address associated with www.sans.org to dns.my.com. At long last,

dns.my.com delivers the response to host.my.com.
TCPdump has a unique format that contains necessary insight into what is happening between
DNS connections. Look at the next section to help you decipher the TCPdump output.
Strange TCPdump Notation
Look at the exchange between dns.my.com and h.root-servers.net that follows:
dns.my.com.53 > h.root-servers.net.53: 12420 (30) (DF)

h.root-servers.net.53 > dns.my.com.53: 12420- 0/3/3 (153) (DF)
The first line of TCPdump output is the query from dns.my.com to the root server. The first
field that you have not seen before in conventional TCPdump output is the number 12420,
following the colon after destination port 53. This is the DNS identification number. It is a
unique identifying number that a DNS server or client uses to match a query and response.
dns.my.com issues the request to the root server with the number 12420, and when it
receives a response, it can pair it to the request. You have to be aware that a busy
dns.my.com is probably doing a lot of other queries while it is doing yours, so it has to be able
to match multiple queries with responses. The length of the UDP payload (not including the IP
or UDP headers) is 30 bytes. And, the Don't Fragment (DF) flag is set so that this datagram
won't be fragmented.
The response to query 12420 follows. A dash after 12420 signifies that recursion was not
desired. This means that dns.my.com told the root server that it wanted a response that
referenced where the next DNS server is—it did not want the root server to pursue finding the
response itself.
Root servers are very busy computers, processing many initial DNS requests, and they cannot
process queries in a recursive fashion like dns.my.com can. Root servers are only expected to
give whatever knowledge they have about a good reference in pursuit of the answer. If you
were hopelessly lost in a city somewhere and came across a policeman directing traffic at a
busy intersection, you would know better than to ask him directions to Aunt Sadie's place. If
you had the poor sense to ask, the best you could hope for is a general hasty reference to a
gas station that could give you better directions.
In the response from the root server, you see some strange output in the format of 0/3/3. This
says that there were zero answer records, meaning no IP address was found, but three
authority records were found and three additional records were found. An authoritative server
is one that "owns" and maintains records for a given domain. You don't see this in the
TCPdump output, but the three authoritative servers (server1.sans.org, ns.BSDI.COM, and
ns.DELOS.com) and the three additional records are shown with the pairing of the
authoritative DNS servers with their IP addresses.
AUTHORITY RECORDS
sans.org nameserver = server1.sans.org
sans.org nameserver = ns.BSDI.COM
sans.org nameserver = ns.DELOS.COM
ADDITIONAL RECORDS
server1.sans.org Internet address = 167.216.198.40
ns.BSDI.COM Internet address = 206.196.44.241
ns.DELOS.COM Internet address = 65.102.83.117
The section, "Using DNS for Reconnaissance," shows you how to use the nslookup command to
discover this information. By sending the IP addresses in additional records, when using the
returned authoritative name servers, subsequent resolutions are unnecessary to translate
those returned host names to IP addresses. Any one of those DNS servers has authority for
the sans.org domain and can answer the query. As you saw, dns.my.com selects the first one,
server1.sans.org, to use for the final resolution.
Finally, examine the remainder of the TCPdump output from the resolution process:
dns.my.com.53 > server1.sans.org.53: 12421+ (30) (DF)
server1.sans.org.53 > dns.my.com.53: 12421* 1/3/3 (172)
dns.my.com.53 > host.my.com.1716: 1* 1/3/3
(197) (DF)
dns.my.com has been informed that there are several authoritative servers, and it selects the
first one, server1.sans.org, for resolution. It issues a new query 12421 and asks for recursion,
noted by the plus sign. Essentially, dns.my.com has tasked server1.sans.org to find the IP

address. In this case, server1.sans.org is an authoritative name server for www.sans.org, so

it can answer the query itself. If it were not the authoritative name server, however, it would
be asked to find the IP address by recursively issuing queries to other name servers until an IP
address was found. Not all DNS servers are configured to perform recursive queries; so even
though recursion might be desired, it is not necessarily done.
server1.sans.org responds to the query. The asterisk means that this is an authoritative
response. This says that the record for www.sans.org is in the DNS database that

server1.sans.org maintains. One answer is returned—in this case, the IP address of
www.sans.org, 12.33.247.6. You do not see the IP in the TCPdump output, but that is what

is in the payload of the UDP datagram. The three authority records and three additional
records that were previously discussed are returned here too. Lastly, after dns.my.com has the
IP address, it returns it to host.my.com, the original querier.
Caching: Been There, Done That
This section briefly explains what happens to received responses. DNS servers cache or save
responses that they receive. This makes the resolution process more efficient if the same DNS
queries do not have to be repeated over and over again. This also potentially reduces the
number of hits that other DNS servers take responding to queries. Chances are pretty good
that the same host name to IP resolution that was requested once may be requested again
soon thereafter. But, as you will soon see in the section, "Cache Poisoning," these savings, gained
by caching responses, will open up some security risks if cached responses are not authentic
and valid.
If you were to ask for the www.sans.org web page again soon after the first request, the

resolution process would differ a little. Your host still issues a gethostbyname call to resolve
the IP address for www.sans.org. When dns.my.com receives this request, however, it

checks its cache as usual before trying to resolve it. If everything is working correctly,
dns.my.com finds the record residing in cache and returns the IP address to host.my.com.
How long do cached records stay around on the DNS server? Well, it depends. Each cached
record might have a different life span. It turns out that each response of a DNS resource
record has a DNS time-to-live (TTL) value. Don't confuse this TTL value with the IP header
TTL. They represent two very different and distinct functions. The DNS TTL value is set by the
responding DNS server and cached by the receiving name server for the TTL time value. DNS
servers that update records often are more likely to have lower TTL values than relatively
static servers have.
Berkeley Internet Name Daemon
Berkeley Internet Name Daemon (BIND) is the de facto standard DNS
implementation in use on the Internet today. Older versions of BIND are 4.x.x,
whereas the more current versions are 8.x.x and 9.x.x. When you observe DNS
servers that communicate with both source and destination ports of 53, it is usually
indicative of the default behavior of BIND 4.x.x. By default, BIND versions 8 and
later assign an ephemeral source port greater than 1023 in a querying DNS server
datagram, similar to the behavior that you witnessed with other client applications,
such as telnet.
However, BIND versions 8 and later can be configured to mimic version 4 behavior
by using a default source port of 53. This is done using the query-source address
* port 53 configuration file substatement. Some sites find that this configuration
better suits existing firewall/router access rules.
Reverse Lookups
Occasionally, you will be given an IP address and want to see whether it resolves to a host
name. This is done via a gethostbyaddr call by the client resolver.
Remember, DNS is a distributed hierarchy of responsibility, and resolution begins at the root

node and continues down in the DNS tree.You saw top-level domain nodes, such as .org, .mil,
.edu, and so forth. A special domain has been reserved for resolution of IP addresses to host
names. At the top-level domain, this is the arpa suffix. A second-level domain follows, known
as in-addr. The tree expands outward beneath this for the legal first octets in the IP address,
as you see in Figure 6.5. In the case of the IP for www.sans.org, for instance, the first octet is

12. Beneath this follows a subtree with the next node of 33, the second octet of the
www.sans.org IP address. Continuing with this logic, the 247 and 6 nodes for the final two

octets fall below. Only this subtree is examined in this example, but this subtree spans all the
possible IP addresses just as the other top-level domains begin the expansion of all the host
names.

Figure 6.5. Reverse lookups, IP address to host name.

Resolutions of IP to host name are known as reverse lookups. When DNS attempts a reverse
lookup for 12.33.247.6, the application software reformats this as a query to 6.247.33.12.in-
addr.arpa. The order of the octets is reversed to conform to the host name notation. For name
www.sans.org, the name is formulated by starting at the bottom of the DNS tree with node

www, moving up to node sans, and topping out at node org. Similarly, with the IP address,
you must move from the most specific to the most general.
Master and Slave Name Servers
Each domain must have a master server, upon which database records of names and IP
addresses are maintained. Then, for redundancy sake, one or more slave servers are often
created in case the master server ever goes down. If there is no redundancy built in and the
only DNS server for a particular domain were to go down, no queries could be answered for
hosts in that domain. Unless entries were cached at other DNS sites, resolution of hosts in the
domain whose DNS server was down could not be accomplished. Slave servers can share the
load of responding to queries with a fully functioning master name server.
DNS information is maintained on the master server in flat text files. The slave name servers
periodically contact the master name server to see whether any updates have been made for a
particular domain. If so, the slave servers with older versions of BIND download all information
for that domain, even if only one record has been modified. Newer versions of BIND will allow
incremental updates that will download only changed records.

Zone Transfers
This section examines how changes are propagated from the master to the slave name server.
When the slave server restarts, or when it periodically queries the master server and finds
updated records, a zone transfer is performed between the master and slave servers.
This is just a transfer of the zone maps or DNS records from the master server to the slave
server. Unlike most DNS transactions, this is done using TCP because there is potentially a lot
of data and reliable delivery is important. The zone transfer seems like an innocuous process.
It usually is between the same domain master and slave servers. Yet, what if a hacker could
do a zone transfer of your domain data for your internal hosts? This would give him all the IP
addresses and hosts in your domain. This is very valuable data that should not be readily
available to anyone.
Obviously, you would like to try to prevent this kind of misuse. You can do this in a couple of
ways. In versions of BIND 4.9.3 and later, configuration parameters enable the DNS
administrator to specify IP addresses or subnets authorized to do zone transfers. BIND 4.9.x
has an xfernets directive, and BIND 8 and 9 have an allow-transfer substatement to control
zone transfers.
If your version of BIND does not support this feature, another option is to block inbound traffic
to TCP port 53. This block prevents transfers, but might block other legitimate data as well (as
discussed in the very next section). If this is your only option, however, it is preferable to
prevent the zone transfer, even at the expense of blocking other legitimate data.
UDP or TCP
As discussed earlier, typically, DNS traffic is sent using UDP because answers are often
succinct, and a best-delivery effort can be tolerated because responses to DNS queries not
received can be reissued. Because there is more data for zone transfers, and reliable exchange
is required, they are an exception to the UDP protocol and are done using TCP.
The maximum allowable size for a UDP DNS payload response is 512 bytes. What happens if
the data contained in the DNS message exceeds 512 bytes? First, the response is returned
with the truncated bit turned on. This bit is found in the flags field spanning offset bytes 2 and
3 of the DNS message:
dns.my.com.53 > dns.verbose.com.53: 18033 (43) (DF)
dns.verbose.com.53 > dns.my.com.53: 18033| 7/0/0 (494)
dns.my.com.37404 > dns.verbose.com.53: S 518696698:518696698(0) win 8760
<mss
1460> (DF)
dns.verbose.com.53 > dns.my.com.37404: S 199578733:199578733(0) ack
518696699
win 8760 <mss 1460> (DF)
In the preceding output, look carefully at the second line of TCPdump output. The response is
from dns.verbose.com to dns.my.com. After the DNS identification number, 18033, you see a
vertical line, or UNIX pipe symbol. This is the notation that TCPdump uses to alert you that the
DNS record has been truncated. The response of seven resource records would have exceeded
the 512-byte payload limit. You see that 494 bytes of payload are returned, consisting of
complete answers that do not exceed the limit.
Therefore, dns.my. com reissues the DNS query using TCP. You see the attempted SYN
connection from dns.my.com to dns.verbose.com. dns.verbose.com responds with a SYN/ACK,
indicating that it is listening on port 53. The information is then transferred using TCP as the
protocol.
Some sites will block all inbound TCP traffic with either a source or destination port of 53 to
prevent unauthorized zone transfers. But, this will also block any queried external DNS server
from resolving large responses. That is what happens in the preceding output. The fourth line
in the previous output shows the packet with the SYN/ACK from dns.verbose.com that got
blocked. Our packet-filtering device in front of dns.my.com blocks a TCP connection from

dns.verbose.com source port domain (53). That is why the three-way handshake is never
completed and the large DNS response is never delivered. To avoid this problem, block traffic
to TCP destination port 53 only and allow traffic from TCP source port 53 that has an already
established connection.
Summary of DNS Theory
DNS relies on a complex interweaving of many DNS servers.You must be able to examine
traffic to and from your DNS server to understand the nature of the activity. TCPdump is an
adequate tool to use; but at times, you have to use other tools to examine the content of the
datagrams to see whether problems exist. Typical DNS servers on active networks receive a
lot of traffic, and hackers can use the volume of normal activity as a smoke screen for
malicious activity.

Using DNS for Reconnaissance
Given the notion that DNS is a global database, it is an excellent source for reconnaissance.
DNS information is intended to be freely shared and freely available in the spirit of
cooperation. At one time in the evolution of the Internet, this was a relatively innocuous
philosophy. In today's climate of hungry pirates, however, it seems quite naive. Here are some
ways in which reconnaissance can be done using DNS.
The nslookup Command
nslookup acts much like a DNS client would, but displays the information so that you can see
it. In fact, that is how the authoritative name server host names and IP addresses for the
sans.org domain were obtained. This is a very helpful interactive tool that can be used on a
UNIX or Windows NT (and beyond) host. Some UNIX operating systems are beginning to
replace the nslookup command with the dig (Domain Internet Groper) command.
You can ask many more questions of a DNS server than just the host name. Using nslookup,
you can formulate queries and see the kinds of responses you get. There is also a debug
setting that enables you to see more of the data in the DNS message that is sent and returned
than just the query and response values.
Look at the following output to get an idea of the capabilities of the nslookup tool. You see
host.my.com issue the nslookup command. You then enter into the nslookup interactive
process and receive notification of the default DNS server, dns.my.com and its associated IP
address (192.168.4.4) used to resolve your queries. The output follows:
host.my.com% nslookup
Default Server: dns.my.com
Address: 192.168.4.4

> www.sans.org
Server: dns.my.com
Address: 192.168.4.4

Name: www.sans.org
Address: 12.33.247.6

At the greater than (>) prompt, www.sans.org is entered to find its IP address. Again, you

get confirmation of the DNS server and IP address being used to resolve the query. You see
the answer below that of 12.33.247.6.
Name That Name Server
How does someone discover what your DNS server is? Given the number of reconnaissance

http://safari.informit.com/?xmlid=0-73571-265-4/22991533

attempts targeting DNS servers only, there must be a way to find out. Actually, it is rather
easy to find this out using nslookup:
> set type=ns
> sans.org
Server: dns.my.com
Address: 192.168.4.4
NON-AUTHORITATIVE ANSWER
sans.org nameserver = NS.DELOS.COM
sans.org nameserver = server1.sans.org
sans.org nameserver = NS.BSDI.COM
AUTHORITATIVE ANSWERS CAN BE FOUND FROM
NS.DELOS.COM Internet address = 65.102.83.117
server1.sans.org Internet address = 167.216.198.40
NS.BSDI.COM Internet address = 206.196.44.241
Assuming that you are at a subcommand prompt of the nslookup command, enter the
subcommand set type=ns. You have just set the option to return an answer of a name
server(s) to subsequent queries issued. Bump up one node on the DNS tree and query for
sans.org to see the name servers for this domain. You discover all the name servers for
sans.org, both host names and IP addresses. This appears to be a pretty good place to start
the reconnaissance effort for a site. After discovering the name servers, one might scan those
name servers for potential security deficiencies or to see what kind of Internet services or
daemons are being run on the DNS server.
HINFO: Snooping for Details
HINFO records are yet another record type stored by DNS. These are information records and
another potential source for reconnaissance. A DNS server administrator has the option of
entering host information, specifically the CPU type and operating system, when creating a
new or maintaining an existing DNS record. If trusted intranet hosts use the DNS server, this
is a way to maintain an inventory of the hosts without too much risk.
Because this provides too much information to unknown Internet users, many administrators
do not enter these parameters. Obviously, if this type of information can be harvested from a
DNS server, a hacker can get some serious intelligence about the site.
> set type=hinfo
> host49
Server: dns.my.com
Address: 192.68.4.4

host49.my.com CPU = SunSparc OS = Solaris
my.com nameserver =dns.my.com
dns.my.com Internet address = 192.68.4.4
Set the type to hinfo as a subcommand in nslookup. Information is queried for host49, which
is a fictional renaming of a real host. host49.my.com is a Sun SPARC running a version of the
Solaris operating system. It is possible that a hacker's efforts might be foiled by outdated data
kept in the HINFO records. This is probably one of the few times that less-than diligent
maintenance is a desirable thing.
List Zone Map Information
One of the easiest ways to discover a lot of information about a domain is to try to list all the
zone map information. Assume that there is a domain with the lackluster name of
fakeplace.com. You can attempt to dump the records associated with the domain using the
following subcommand in the nslookup utility:
> ls –d fakeplace.com
If the site has not disabled the dissemination or transfer of the data, the DNS server lists all
records for the domain fakeplace.com. As a bonus to the information collector, this site also

maintains HINFO records.
whish 1D IN HINFO "SGI" "Irix"
1D IN A 192.168.1.239
susie 1D IN HINFO "IBM-RS/560F" "unix"
1D IN A 172.16.16.13
pixie 1D IN HINFO "IBM-RS/560F" "unix"
1D IN A 172.12.16.14
bandit 1D IN HINFO "PC" "Win98"
1D IN A 192.168.3.107
adder 1D IN HINFO "IBM-RS/530" "unix"
1D IN A 172.16.133.4
hub21 1D IN HINFO "Cabletron-MMAC3" "SNMP"
1D IN A 192.168.26.80
switch3 1D IN HINFO "Switch" "3COM"
1D IN A 192.168.7.130
This information harvesting can occur only if the site allows indiscrimate access to TCP
destination port 53, because TCP is the transport protocol used to deliver this information.
Dig
Another information gathering technique is to query a DNS server for its BIND version
number:
dns.my.com% dig @MYDNS.COM version.bind txt chaos

; <<>> dig 8.1 <<>> @MYDNS.COM version.bind txt chaos
; (1 server found)
;; res options: init recurs defnam dnsrch
;; got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 10
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0
;; QUERY SECTION:
;; version.bind, type = TXT, class = CHAOS

;; ANSWER SECTION:
VERSION.BIND 0S CHAOS TXT "4.9.7-REL"
A tool called dig (which stands for Domain Internet Groper) comes with many
implementations of BIND. It has many of the same capabilities as nslookup. You have an
option to display the version number of BIND running on a DNS server. The format of the
command is as follows: dig followed by the at sign (@), followed by the name of the DNS
server you want to examine, followed by the option version.bind, followed by the word TXT
and the word CHAOS. The word TXT tells DNS that the type of entry you are searching for is a
TXT record found in the DNS database. This is just a different record type, much as HINFO
records and NS records are different types. Finally, you see the word CHAOS, which is a query
class that is mostly obsolete.
This dig command has queried for the version number of MYDNS.com. You see that it is
running an older version 4.9.7 of BIND. For someone conducting reconnaissance, this is
valuable information. If a hacker can pair a BIND vulnerability with the version discovered, she
is better able to target the name server for attack. BIND versions 8.2 and later have an
options statement in the configuration file /etc/named.conf that will return a message instead
of the version number. You select the contents of the message, perhaps something like
"unknown version of BIND." But, if you feel mischievous, your message can return the wrong
version of BIND just to confuse the information gatherer.

http://safari.informit.com/?xmlid=0-73571-265-4/22991533

Tainting DNS Responses

As discussed earlier, DNS requires the cooperation of many unknown or untrusted hosts to
function properly. You have to blindly trust that the response received to a DNS query is
genuine. Unfortunately, this is not always the case. This section presents a sampling of DNS
problems and perversions related to DNS record authentication.

A Weak Link

One of the weaknesses in using host names to allow or deny access to a given service is that if
a host can assume a bogus identity of a trusted host, all authentication can be subverted.
Think of the types of access allowed based on host name or perhaps on an entire domain
name. Do you allow access to an intranet web server for all internal hosts because they are
part of your domain? Or, do you use UNIX hosts that allow access without user ID and
password authentication based on a trusted host name? That can be very risky behavior if true
identities are altered to masquerade as trusted hosts. A host name can be changed on a host
itself, on a DNS server that has been compromised and altered until discovered, or on a DNS
server temporarily by corrupting a cached DNS record.

Versions of BIND, beginning with BIND 8.3, include DNS Security Extensions (DNSSEC) to
provide better authentication mechanisms based on cryptographic signatures to validate the
integrity and origin of DNS data. To authenticate a set of responses, a responding DNS server
will "sign" them by encrypting a hashed incarnation of the set of responses with the DNS
zone's private key. This signature will be returned to the resolver via a new resource record
known as SIG. The resolver needs to get the DNS server's public key for the appropriate zone,
which is done using another new resource record known as KEY. After it is obtained, the
recipient decrypts the signature using the public key to obtain the original hash of the data.
The recipient then computes its own hash of the received set of responses, using the same
algorithm the DNS server used. It compares the response it receives, and if it matches the
decrypted one from the server, it means that the data has not been altered and it is from the
professed source.

Cache Poisoning

A Computer Emergency Response Team (CERT) advisory (CA-97.22, issued in August 1997)
warns of a vulnerability in versions of BIND.Versions before release 8.1.1 were vulnerable to
caching malicious or misleading data from a remote server. A hostile user could use a remote
DNS server to put incorrect DNS records in the cache of a victim DNS server.

For this to happen, first, an evil user must force your vulnerable local name server to query
the evil user's hacked DNS server. The query is for some innocent piece of information, but the
response contains corrupted resource records that your vulnerable DNS server caches.

This "poisoned" data is then returned in any responses for the poisoned record asked of the
tainted DNS server. The cache-poisoning techniques are used to corrupt the mapping between
host names and IP addresses.

Another of the cache-poisoning exploits is successful because it sends answers with a query
record. When any type of DNS traffic is sent, a DNS message is contained in the datagram.
The same DNS message format is used for both queries and responses. It appears that some
errant versions of BIND cache whatever they find in the response section of the DNS message.
They don't check to make sure that the record is a response and not a query. The evil user
sends a query to your vulnerable DNS server with poisoned answers in the query, and the DNS
server caches these tainted responses.

Figure 6.6 shows an example of how cache poisoning can work. Suppose there is a wicked user
who crafts a DNS message with a response in the request. This same user can then send a
query using the source host evil.dns.net and the destination DNS server of ns04.baweb.com,
the authoritative name server for www.hillary2000.org.

Figure 6.6. DNS cache poisoning.

This crafted packet has a query for the IP address of www.hillary2000.org, but it includes

an IP address in the response part of the DNS message, which gives the IP address of
206.245.150.74. This is not the real IP address associated with www.hillary2000.org, as

you will soon see.

ns04.baweb.com suffers from the inability to tell query from response, and therefore caches
the answer it received in the query. Its cache has just been poisoned with a bogus host name
and IP pairing. Now, to complete the ruse, there must be a DNS server on behalf of a user or
process that consults ns04.baweb.com for the IP address for www.hillary2000.org. In

response, the cached answer of 206.245.150.74 is returned.

This is a real-world example in alleged political cyber-warfare. In July 1999, Hillary Clinton
launched a web site, www.hillary2000.org, which promoted her to-be-declared run for the

U.S. Senate from New York.

When some users attempted to contact this site, however, they were redirected to a rival site,

www.hillaryno.com (IP address 206.245.150.74). The supporters of then New York City

mayor Rudolph Giuliani maintained this site. (Mayor Giuliani, at the time of these mysterious
occurrences, was an undecided contender for the same seat; he subsequently decided not to
run.)

The speculation is that this might have been a cache-poisoning hack that successfully diverted
Hillary supporters to the Giuliani page. In other words, www.hillary2000.org was paired

with the IP address for www.hillaryno.com. Of course the people who maintained the

www.hillaryno.com site, disavowed all knowledge of any wrongdoing.

So, you see that the arsenal of political dirty tricks has now entered the realm of cyberspace.
This would be a very hard kind of hack to trace or prove if the cache were poisoned to reroute
users.

Summary
DNS is a distributed hierarchy of name servers that provides different types of resolutions,
such as IP addresses and host names. Unlike typical client/server interactions, the resolution
of a DNS query might involve multiple DNS servers and multiple connections. And, unlike other
client/server interactions, DNS might use UDP, or TCP, or both as the transport protocol to do
resolutions.
DNS servers can provide a wealth of reconnaissance information because historically, DNS
servers have been the purveyors of host name to IP address pairing information. Sadly, as the
Internet has become less safe and less trusted, it is best to silence DNS servers by offering
only limited information.
BIND software has a notorious history of security problems. Several exploits have been
discovered in recent years that have allowed root level access from buffer overflow attacks.
But, it is pretty much impossible to use the Internet today without some kind of interaction
with DNS. This doesn't mean that you should innocently trust answers received from other
DNS servers, but you should certainly safeguard your own DNS server as much as possible.
Upgrade your DNS server to the newest versions, take advantage of the latest security
features, and configure your site's DNS servers to restrict the information shared.

http://safari.informit.com/?xmlid=0-73571-265-4/22991533

Part II: Traffic Analysis
 7 Packet Dissection Using TCPdump

 8 Examining IP Header Fields

 9 Examining Embedded Protocol Header Fields

 10 Real-World Analysis

 11 Mystery Traffic

Chapter 7. Packet Dissection Using TCPdump

The next four chapters explore using TCPdump to analyze network traffic. TCPdump provides
some wonderful benefits when used with a signature-based NIDS in a network. Most often,
when signature-based NIDS detect some kind of anomalous activity, it is due to a pre-defined
signature discovering a malicious packet. Typically, the NIDS will alert on the activity and
perhaps capture the single packet that it perceives to contain an event of interest.
There are several problems with this method. First, as anyone who has ever used a NIDS
knows, these systems are prone to generating alerts when there really is no problem. This is
known as a false positive. The reason that many NIDS generate false positives is because
signatures are not specific enough and the packet is not examined in context with those that
precede it or those that follow.
It really is helpful to have a tool such as TCPdump running in the background capturing traffic
into and out of the network—kind of like a traffic audit trail. Although TCPdump, by default,
doesn't capture the entire packet, you still have much of the pertinent information captured in
the headers— where the traffic came from, where it is going, and what the purpose of the
packet is. The signature-based NIDS can inspect the packet on its own for payload anomalies.
The captured TCPdump traffic can be used to distinguish real alerts from false positives.
Assuming that your NIDS affords you access to the signature and access to the packet that
caused the alert to fire, you can examine the given packet for problems. Additionally, you can
use the TCPdump traffic collected before and after the alert to assist in the assessment. There
have been many times when examining collected TCPdump records has provided the extra
detail to allow more accurate assessments of alerts generated by a NIDS.
The quest is to become proficient at doing analysis of traffic apart from a NIDS, which is what
the next four chapters will teach you.
We start off with the most basic analysis possible—looking at the packet at the bit level. Chapter

8, "Examining IP Header Fields," will show you how to dissect a packet for the rare occasion
when a packet-sniffing tool is not adequate for packet interpretation. Next, Chapters 9,
"Examining Embedded Protocol Header Fields," and 10, "Real-World Analysis," discuss another
level of interpretation—examining fields in the packet. As we discovered when looking at
TCP/IP, it is impossible to tell what is abnormal unless we are familiar with what is normal. The
same goes for understanding the fields in a packet. Next, in Chapter 11, "Mystery Traffic," we will
move one layer higher in the analysis process by looking at the packet as a whole. In other
words, discovering the intent of the packet. After we have completed this topic, we will look at
some real-world events from monitored traffic using TCPdump. Here, we will study a synthesis
of packets to understand some incidents. Finally, Chapter 12, " Writing TCPdump Filters," looks at

beginning forensics in an attempt to further explain a specific real-world event. We will delve
into passive fingerprinting and try to determine if activity has been spoofed or is from many
different real sources.
Background Activity Isn't Always Noise
As mentioned many times in the book, a NIDS is required for detecting pre-defined
anomalous behavior, whether it is some suspicious payload in a packet or some
violation of protocol. Although there are NIDS that can be configured to dynamically
capture packets after the suspicious one, NIDS do not save packets that are of no
current interest. That is why the use of TCPdump or any other tool that can capture
background traffic is advocated. There will be events of interest that might not have
pre-defined signatures.
Years ago, I was a member of a military CERT team when we received an email from
an administrator of another site who informed us that he believed that a computer
from our network had been used to break into a computer on his network. He
supplied us with the alleged date, time, source, and destination IPs. He gave us one
other valuable piece of information: he believed a user account with the name of
Darren had been added to the password file. Immediately, we researched the
complaint and discovered that the source IP from our network alleged to be involved
was a static IP associated with our dial-in pool of addresses. This was many years
ago, before DHCP was in vogue. The owner of the IP address was a well-respected
manager who seemed the antithesis of the stereotypical hacker. We asked around
and discovered the man had a teenage son named Darren. With no sense of
culpability or shame, the employee readily admitted to the security officer that he'd
given his military dial-in account number, username, and password to his son. Yet, he
vehemently denied that his son would be involved in hacking.
At that point, it was up to the security team to prove any guilt. We began our efforts
by searching the TCPdump records from the day and time of the incident, and several
days before and after to amass a profile of the use of the IP. We discovered that the
source IP had connected to the destination IP reported by the system administrator
and that the user of the source IP had visited literally hundreds of pornography sites
as well. But the activity of the user of the IP had set off no alerts on the NIDS. Only
the audit trail of TCPdump records allowed us to resolve the complaint.
Think about the use of alarms in department stores. Most are equipped with some
kind of burglar alarm to sound if there is a break-in or intrusion after hours. And,
most have a device that alarms on your way out of the store if you haven't
deactivated some kind of indicator by paying for a piece of merchandise. So, the
department store alarms are equipped to alert on some pre-defined conditions.
Yet, department stores also have video cameras at doors or other locations in the
store. These cameras record an audit trail of activity that might be entirely unrelated
to break-ins and thefts. I remember a news report about a sought-after kidnapper
who had used his credit card number at a Wal-Mart. This same Wal-Mart had cameras
that captured his and the kidnapped child's images on video. His activity didn't set off
any alarms, yet having the background tape of store activity assisted law
enforcement in identifying and capturing the kidnapper.

Why Learn to Do Packet Dissection?
With all the tools, both free and commercial, available to do packet interpretation for you, why

is it necessary to re-invent the wheel by performing your own packet dissection? If programs
such as Ethereal can perform every layer of interpretation from the frame header to protocol
decodes appropriate for the packet's particular payload, why would you even need to know how
to interpret hex or bit output of the packet? Well, these are excellent and accurate dissection
tools when you have a packet with expected values and predictable pedestrian behavior. When
someone crafts a packet with unusual or unexpected values, these tools might fall far short of
being accurate.
As an example, early in 2001, a program known as sidestep was released by Robert Graham, a
Chief Technical Officer (CTO) of an NIDS company. The assertion of the author that was
demonstrated by sidestep was that NIDS must be protocol-aware so that they will not be
susceptible to techniques used to elude detection. There is a derogatory term network grep, or
packet grep, that is used to describe a NIDS that simply looks for a string of characters in a
packet as a signature for discovering malicious activity. The UNIX grep command searches for a
string of characters in text or files, hence the term network grep. If a NIDS is not protocol-
aware, it might be duped by simple manipulations of payload.
Sidestep can be run in evasive mode for different protocols such as DNS, RPC, and several
others to prove the author's point. In the DNS evasive mode, sidestep queries a DNS server for
the version of BIND it is running. A DNS server readily responds to this if it has not been
silenced from giving out this potentially valuable information. If a normally formatted version of
BIND query is issued, most NIDS detect this by looking for the string "07version04bind". The
numeric prefixes, also known as labels, seen before "version" and "bind" simply tell how many
characters are found in the following node.
RFC 1035 explains the use of pointers in DNS payloads. The legitimate use of pointers is found
in a DNS response when there are multiple records returned with repeated information. For
instance, what if you issued a query that returned several hosts with a node of
veryveryverylongname? If you have host1.veryveryverylongname.com returned as a first
response, a second response that needs to reference host2.veryveryverylongname.com can
include the node host2 and point to the position of the occurrence of
veryveryverylongname.com in the first response. This obviously shortens the response quite a
bit, especially if you have several responses with veryveryverylongname.com in them. If you
want more details on the concept of using pointers in a DNS query, look at the section, "Sidestep

DNS Queries."
Pointers can be used in queries as well for evasion purposes, as demonstrated by running
sidestep. It is no longer necessary to have the node "version" precede the node "bind" in the
string of characters in the DNS query. Pointers can direct the decoding of the query so that the
node "bind" could precede the node "version" in order, but not in the order in which they are
decoded by the DNS server. The DNS server happily responds to a query with pointers, yet a
NIDS that does a network grep for "07version04bind" is blind to the query.
Before all of this was discovered, I tried to understand the evasive machinations employed by
sidestep. I ran the code in evasive mode and used Ethereal. Ethereal was great at doing packet
capture and decoding all the normal behaviors and values, but it was as clueless as I was when
it came to discovering the evasive techniques used. At that point, I was decoding bits and
reading RFCs. Indeed, most times, you will not be involved in this type of sleuth work, and your
packet sniffers/decoders will be excellent and reliable tools.Yet, for the rare times when they
fail, you will be left to your own wiles to understand the packets, which is why we are about to
discuss packet dissection. And, if you aren't convinced that learning packet dissection is
worthwhile, another benefit is that it helps you become infinitely more familiar with the protocol
that you are analyzing.

http://safari.informit.com/?xmlid=0-73571-265-4/22991533

Sidestep DNS Queries
To get a better understanding of the need for a NIDS to be protocol savvy, we'll examine DNS
queries that are formed by running sidestep. First, most NIDS, whether protocol aware or not,
should catch a normal query. The evasive query will be discussed next to contrast it with the
normal query and demonstrate that a NIDS that looks for strings in a packet would probably
miss the clever manipulations employed.
Normal Query
Let's examine the output that was generated by TCPdump from the sidestep program using a
normal query. This is displayed in standard TCPdump output followed by a hexadecimal dump of
the packet to understand the context of the activity:
12:39:30.027400 10.100.100.201.1128 > DNS.SERVER.domain: 10+ TXT CHAOS)?
version.bind. (30)

4500 003a 052c 0000 8011 c056 0a64 64c9 E..:.,.....V.dd.
0a64 6402 0468 0035 0026 6325 <000a 0100 h.5.&c%....
0001 0000 0000 0000 0776 6572 7369 6f6e version
0462 696e 6400 0010 0003> .bind.....
First you see the standard TCPdump display output of host 10.100.100.201 querying
DNS.SERVER on UDP port 53 (domain) with a DNS identification number of 10 and with
recursion desired (+) for a TXT type record and a CHAOS class record of version.bind.
Let's examine the hexadecimal output of the actual DNS query. The DNS portion of this packet
has been delimited with the < > to easily identify the part of the record we will scrutinize.
DNS questions have a prescribed format. A DNS question has a series of nodes that end in a 00
to form the question. We typically see nodes that are separated by periods when we express a
hostname or IP address. For instance, if an IP address resolution were desired for
www.yahoo.com, the DNS question that would be generated would treat the name as a series

of nodes—www, yahoo, and com. Preceding each node is a byte count that tells how many
bytes are in the following node.
The version.bind question that was generated using sidestep's normal option is as follows:
0776 6572 7369 6f6e 0462 696e 6400
The bolded bytes represent labels. The first label is 07, which means that there should be 7
bytes in the first node of the query. In this instance, the hex characters that follow are the
ASCII representation of the node "version". Next, you see a label of 04 meaning that there are
4 bytes in the following node, which is the hex representation of the ASCII "bind". A 00 label
ends the query, which is the final label that is seen.
Each question requires a DNS type and class, each of which is a 2-byte field. The various
different types and classes can be found in RFC 1035, but for the purposes of the BIND version
query, these must be a type of TXT represented by a 16 (or hex 0010) and a class of CHAOS
represented as a 3 (or hex 0003). An accessible DNS server that does not prevent version.bind
queries will respond to the above query with the version of BIND that is running.
Evasive Query
Let's examine the output that was generated by TCPdump displayed in hexadecimal to
understand the evasive activity:
12:39:56.674320 10.100.100.201.1129 > DNS.SERVER.domain: 42 (32)

4500 003c 0577 0000 8011 c009 0a64 64c9 E..<.w.......dd.
0a64 6402 0469 0035 0028 e445 <002a 0000 i.5.(.E.*..
0001 0000 0000 0000 0756 6572 7369 6f6e Version
c01a 0010 0003 0442 494e 4400> BIND.
 | |
 | |

 V V
Pointer 26 26 Bytes
bytes into DNS
Payload
Look at the hex output. You will see the query name (in bold) of evasive mode. The name
starts, as before, with a label of 07 followed by the first node of the query. What had previously
been all lowercase letters in "version" now is "Version". This would successfully elude any string
matching software that does not do uppercase/lowercase conversions.
That is not the entirety of the ruse used here. Look at the next byte: c0. A label has a
maximum value of 63 and a hexadecimal c0 is 192 when converted to decimal. Any time that a
label has the two high-order bits of the byte set to 1 (a hex c), it is considered a pointer. A
pointer is the number of bytes into the DNS message where the next label (or pointer) is to be
found. In this case, we see that the pointer is a hexadecimal 1a or a decimal 26. Therefore, we
have to count 26 bytes from the beginning of the DNS message to find the next node. The DNS
message is delimited between the < > on the left side of the output.
Moving 26 bytes into the DNS message directs us to the string beginning with 0442 494e 4400.
The 04 is the label 26 bytes into the DNS message, and as expected, it is followed by 4 bytes
that represent the string "BIND". The query then ends when a label of 00 is encountered. It
appears that resolution of the query resumes at the next byte after the first pointer in the query
name. This brings us back to the string "0010 0003" that represents the query type of TXT and
a query class of CHAOS. This query elicits the version of BIND running on the queried DNS
server if the DNS server does not prevent queries for the version of BIND.
Sidestep can be found at www.robertgraham.com/tmp/sidestep.html.

Introduction to Packet Dissection Using TCPdump

When you run TCPdump in standard mode, it will dump the most pertinent fields in the packet.
More fields will be collected than displayed in the default 68 bytes of capture (14 bytes for
Ethernet frame header and the remainder for the IP packet). Yet, all of the fields will not be
displayed unless you ask for TCPdump to display the output in hexadecimal mode using the –x
command line option. The first thing that you have to do before attempting any kind of packet
dissection is arm yourself with the standard layouts of the various kinds of TCP/IP headers such
as IP, TCP, UDP, and ICMP. There are many sources of these including the RFCs.

Look at the following output to see a sample of hexadecimal output from TCPdump using the –x
command line option:

11:55:52.069484 192.168.143.5 > 192.168.143.101: icmp: echo request

4500 0054 064b 0000 4001 bc12 c0a8 8f05
c0a8 8f65 0800 620a 850a 0000 889f 4b39
510f 0100 0809 0a0b 0c0d 0e0f 1011 1213
1415 1617 1819

It looks like a big jumble of garbage at first glance. Let's begin methodically to describe the
output. First, each character you see is a hexadecimal character, as you might have astutely
intuited from the fact that we are doing hex output. (Okay, enough sarcasm.) Each hex

http://www.robertgraham.com/tmp/sidestep.html
http://safari.informit.com/?xmlid=0-73571-265-4/22991533

character can have a value of 0 to 0xf, which corresponds to 0 to 15 decimal. Again, the 0x
notation means hexadeci-mal. And, each hex character is 4 bits, also known as a nibble. That
means two hex characters are 8 bits or one byte. Finally, each row of hex dumped by TCPdump
has 16 bytes or 32 hex characters.

The trick is "superimposing" this hex output over a standard layout of the fields. In this case,
we are looking at an IP header followed by some embedded protocol that we will discover as we
progress. Take a look at Figure 7.1. It shows the standard IP header layout that we've examined
several times before in the book. Let's just make sure we can look at a field or two before we
move on. For instance, the first field you see in the IP header layout is the IP version number,
which is 4 bits long. If we look at the previous hex dump, we see that the first hex character is
a 4. This is the IP version number or IP version 4.

Figure 7.1. IP header layout.

That was fairly simple. Let's try something a little more advanced. Another very important field
is the protocol field found in the IP header. This tells us the embedded protocol that follows the
IP header. If you look at Figure 7.1, you'll see that the 8-bit protocol field is found in the third row
of the IP header. This layout is different from the hex dump because each row contains 32 bits
of output or 4 bytes. No matter, we can still find the displacement of the protocol field from the
beginning of the IP header (again, another annoying reminder that we start counting at offset
0). So, each row contains 4 bytes, and we find the protocol is located in the 9th byte offset of
the IP header. The 9th byte offset found in the hex dump is 01. A value of 01 in this field means
that the ICMP protocol follows the IP header. Other common values that we will examine are a
value of 06 means TCP follows, and a hex 11 or decimal 17 means that UDP follows the IP
header.

Where Does the IP Stop and the Embedded Protocol Begin?
We just learned how to determine what embedded protocol follows the IP header—a very
significant step in doing packet dissection. The next problem we encounter is knowing where
headers stop and other parts of the packet begin. A normal IP header with no IP options such as
source routing has a length of 20 bytes. An IP header greater than 20 bytes long should contain
IP options. The IP header length is found in the 0 byte offset of the IP header in the low-order
nibble. This is the hex character that follows the IP version number. But, we find a value of 5
there. How does that relate to a normal 20-byte header? The IP header length is expressed in
32-bit words, meaning that any value found in this field must be multiplied by 4.
Although it would be nice and a whole lot less complicated if all the many lengths fields found in
the packet were expressed in bytes, this just isn't the case. You might be thinking (or cursing to
yourself), why couldn't the wise creators of TCP/IP have been more merciful and standardized
on bytes? The most likely reason is that when TCP/IP was created years ago, hardware and
software were much slower and it took longer to send more data, even a couple of bits. The
thought was that if bits could be compressed, they could be processed or sent more quickly. So
there is some rhyme and reason to what you might perceive as random mayhem.
Now that we know that we have a 20-byte IP header, we count 20 bytes into the hex data that
we find in previous hex output. When we deal with length bytes, we have a total of 20 bytes.
We aren't concerned about offsets, so we don't need to start counting at 0. We simply count off
a number of total bytes, in this case 20. We have 16 bytes in the first row of hex output and
need only to count off 4 more in the second row to take us to where the IP header stops and
the ICMP header begins in this packet. The ICMP header begins with the first two bytes of 0800.

Other Length Fields
Let's look at some other length fields in the IP packet. Ultimately, we need to know how to
interpret these values to be able to decode the packet.
The IP Datagram Length
Another very important field is the IP packet total length. Fortunately, this is expressed in bytes
so we don't have to manipulate it in any way. This field is found in the second and third bytes
offset of the IP header. The only tricky part is computing this from hex to decimal.
Converting Hex to Decimal
Taking hex output and converting it to decimal might not be intuitive, so we need a
review. Any time you need to convert hex to decimal for a field, do the following:

1. Figure out how many hex characters are in the field by examining the
protocol layout.
2. Start at the rightmost hex character.
3. Represent each hex character in the field as an increasing power of 16
beginning with an exponent of 0.
4. Multiply each base by exponent and add all individual products.

For instance, in the previous example, we find the value of 0054 in the IP datagram
total length. Going step by step to translate it to decimal:

1. The IP datagram length is 16 bits.
2. This is 4 hex characters of output.
3. Start at the rightmost hex character (4).

http://safari.informit.com/?xmlid=0-73571-265-4/22991533

4. Represent each hex character as an increasing power of 16 (160 through
163).
5. Multiply each base by exponent and add all individual products.

163 162 161 160
 0 0 5 4

5*161 + 4*160 = 84
In the previous example, we are looking at the length field. We have 4 hex characters
because the length is a 16-bit field. We really only need to label the two rightmost
hex characters because they are non-zero. After we do this, we find we have a 4 in
the 160 position; this is really the 1's position meaning we have 4*1 or 4. The next
character of 5 is in the 161 position. So, we multiply 5*16 for a product of 80. We add
these two products together to get the final result of 84.
TCP Header Length
Like the IP header, the TCP header can also have options. Also, like the IP header length, the
TCP header length is found in a nibble that is a representation of 32-bit words. This value, like
the IP header length value, must be multiplied by 4 to get the TCP header length. A TCP header
with no options is 20 bytes long. The TCP header length is found in the high-order nibble of the
12th byte offset of the TCP header. This is an important value because it determines where the
TCP header stops and where the TCP payload begins.
Here is standard output followed by the hex output from a TCP header with no TCP options:
15:43:40.705372 1.2.3.4.63220 > 4.3.2.1.139: S 776342897:776342897(0) win
3072

4500 0028 e34f 0000 3a06 e534 0102 0304
0403 0201 <f6f4 008b 2e46 0d71 0000 0000

5002 0c00 b85f 0000>
The TCP segment is delimited by the less than and greater than signs. The highlighted value is
the TCP header length, and as expected, we find a 5. After we multiply that by 4, we get a
standard TCP header of 20 bytes.
Now, look at the hex output for a TCP header with TCP options:
15:48:24.620314 1.2.3.4.3088 > 4.3.2.1:139 S 1212214992:1212214992(0) win
32120 <mss 1460,sackOK,timestamp 7748460 0,nop,wscale 0> (DF)

4500 003c 11a8 4000 4006 70c8 0102 0304
0102 0304 <0c10 008b 4840 eed0 0000 0000
a002 7d78 92b4 0000 0204 05b4 0402 080a
0076 3b6c 0000 0000 0103 0300>
You see that it has a TCP header length of 0xa, which is a decimal 10. This value multiplied by 4
indicates a TCP header length of 40 bytes. If you look at the standard TCPdump output before
the hex dump, you see that this TCP header includes such options as maximum segment size of
1460, selective acknowledgement (sackOK), timestamp, a nop (no operation) to pad to a 4-byte
boundary, and a window scale (wscale). These options need to be stored in the TCP header.

Increasing the Snaplen

Here's a question: Why do you only see 54 bytes of output in the following hex output displayed
even though the default number of bytes capture is 68? Check it out:

4500 0054 064b 0000 4001 bc12 c0a8 8f05
c0a8 8f65 0800 620a 850a 0000 889f 4b39
510f 0100 0809 0a0b 0c0d 0e0f 1011 1213
1415 1617 1819

The answer is that TCPdump captures 14 bytes of the Ethernet frame header, yet it does not
display them unless explicitly directed. To display the captured frame header use the command
tcpdump –e:

20:55:48.520619 0:10:b5:39:c6:93 0:10:b5:39:c6:9a ip 102
192.168.143.5 > 192.168.143.101: icmp: echo request

There will be times that you will be interested in examining the frame header. One of the
reasons for this would be to identify the source MAC address to try to determine where the
packet came from—a host or perhaps a router.

In the previous output, which uses Ethernet encapsulation defined by RFC 894, the bolded text
is a result of the –e option. First, you see the source and destination MAC addresses (source
MAC of 0:10:b5:39:c6:93 and destination MAC address of 0:10:b5:39:c6:9a). You might be
thinking that these are bogus MAC addresses because they are so close together, but they are
genuine MAC addresses. These are two Compaq PCs ordered at the same time. The MAC
addresses are followed by the type of packet that follows the frame header. Some of the types
of traffic you are likely to see are IP, ARP, and RARP (reverse ARP). These fields are all stored in
the frame header. The final displayed field is the length, in bytes, of the entire frame including
the frame header and the data in the encapsulated frame header. In this case, it is a frame
header of 14 bytes and a following IP datagram of 88 bytes to give 102. A value of 0x0800 in
the type field indicates an IP datagram follows the frame header. The IP packet must be at least
46 bytes in length and the frame length information is not contained anywhere in the Ethernet
RFC 894 frame header. The snapshot length, or snaplen for short, is the number of bytes that
TCPdump collects. The default snaplen of 68 bytes is usually enough to capture the IP header,
embedded protocol header, and some data. But, if there are many options, either IP header
options or TCP options, all of the headers might not be captured.

If you want to increase the default snaplen, use the –s TCPdump command line option. As a
test case, let's say we want to capture the entire datagram for each record we read or process
on an Ethernet network. In this case, we need to increase the snaplen to the maximum size of
the datagram plus the frame header. Ethernet has a maximum transmission unit of 1500. If you
add 14 bytes for the frame header, the snaplen must be 1514 bytes—tcpdump –s 1514. Now,
to check if we've collected the entire datagram, we run TCPdump with a snaplen of 1514:

4500 0054 064b 0000 4001 bc12 c0a8 8f05

c0a8 8f65 0800 620a 850a 0000 889f 4b39
510f 0100 0809 0a0b 0c0d 0e0f 1011 1213

1415 1617 1819 1a1b 1c1d 1e1f 2021 2223
2425 2627 2829 2a2b 2c2d 2e2f 3031 3233
3435 3637

If we dump the collected record in hexadecimal, we find we've collected more than the default
54 bytes. The actual datagram length is found in the 2nd and 3rd bytes offset of the IP header.
We discover a hex 54 in this field, which we recently computed is a decimal 84 bytes. And, we
see that we've collected all 84 bytes.

Dissecting the Whole Packet
We have covered all the fundamentals required to dissect a packet. Okay, get the scalpel out
and let's see if we can attempt a couple of IP packet dissections. Here's a short review of what
we need to do to accomplish our dissection:

● Identify the embedded protocol in the packet. This is found in the 9th byte offset of the IP
header.

● Determine what the embedded protocol is based on the value found.
● Identify where the header(s) stop(s), and examine the IP header length.

❍ Tells where the IP header stops and the embedded protocol begins.
● Examine the embedded protocol header length

❍ Tells where the embedded protocol payload begins.

One of the first steps in discovering what type of activity is embedded in the datagram is to
discern the embedded protocol. Remember, you have an IP header and you will find the
embedded protocol in the 9th byte offset into the IP header. Remember that the most common
values you will see here are 01 for an embedded ICMP message, 06 for an embedded TCP
segment, and a hex 11 or decimal 17 for an embedded UDP datagram.
After you've discovered this, you need to know how many bytes are in the IP header. Usually,
this is 20 bytes, but it can be more if there are IP options. The IP header length field is found in
the low-order nibble of the 0 byte offset of the IP header. Remember that this is expressed as a
32-bit word, so this value has to be multiplied by 4 to translate to bytes. If you count off this
number of bytes into the IP header, you will discover where the IP header stops and the
embedded protocol begins.
Next, you need to examine the embedded protocol. You'll have to get the proper header
configuration for the protocol and translate the values that you find in the hexadecimal output.
For UDP, the header length remains static at 8 and the payload follows. But, a header has a
different format depending if the protocol is ICMP, TCP, or UDP.
TCP header lengths can vary, so you'll have to find the TCP header length field. This is 12 bytes
offset into the TCP header, specifically, the high-order nibble. Again, like the IP header length,
this is expressed as a 32-bit word and the value will have to be multiplied by 4 to convert it to
bytes. This informs you where the TCP header stops and the payload starts.
Here is the hex dump of our specimen for dissection:
4500 0054 f23b 4000 ff01 d121 0102 0304

0403 0201 0000 9f00 d646 0000 b4cb 863a
56af 0e00 0809 0a0b 0c0d 0e0f 1011 1213

1415 1617 1819 1a1b 1c1d 1e1f 2021 2223

2425 2627 2829 2a2b 2c2d 2e2f 3031 3233
3435 3637 0000 4e00
Let's approach this in two different parts. In the first part, we'll attempt to discover the

embedded protocol and the length of the IP header. We see that the embedded protocol is ICMP
because we have a 0x01 value (bolded) in the protocol field 9 bytes offset into the IP header.
That indicates that an ICMP echo reply message follows the IP header (last 2 bytes of 0201).
Because the IP header is 20 bytes, we discover where the IP header stops and the ICMP header
and data begin. The ICMP header begins at the 2 bytes 0000 following the final 2 bytes of the IP
header.
In our second step of dissection, we need to examine the ICMP message header. Remember
that each individual character you see in the hex output represents a nibble or 4 bits. So, two
hex characters are one byte. Use Figure 7.2 to assist in decoding the ICMP message.

Figure 7.2. ICMP header layout.

When examining ICMP, the ICMP header format can vary depending on the ICMP message type
and code. The first two bytes of the ICMP header are really pertinent when trying to assess
what type of ICMP message you have. These are the message type and message code fields.
There are many possible different values for these fields that can be found at
www.iana.org/assignments/icmp-protocols; however, we see a very common one in the above record. An
ICMP message with a type of 00 and a code of 00 is an ICMP echo reply. The standard TCPdump
output for this output is as follows:
1.2.3.4 > 4.3.2.1: icmp: echo reply (DF)
Let's try one more exercise in packet dissection:
4500 0030 df3c 4000 8006 633f 0102 0304
0403 0201 0b64 0015 48f3 05b1 0000 0000
7002 2000 50b6 0000 0204 05b4 0101 0402
This is a different protocol than ICMP. What is of most interest is the embedded protocol
destination port. This tells you the purpose of this particular packet. Although the TCP and UDP
headers are different, they share a similar characteristic of having the source port in bytes 0
and 1 offset of the embedded header and the destination port in bytes 2 and 3 offset of the
embedded header.
Once again, we find an IP datagram with a 20-byte IP header. But, this time we find that we
have TCP as the embedded protocol as ascertained by looking at the bolded protocol field in the
previous hex dump.
The significant piece of information that helps us assess the function of the TCP segment is the
destination port. This is found in the bolded value of 0015 positioned in offset bytes 2 and 3 of
the TCP header.
We determine that the decimal translation is port 21, which is ftp. The destination port field has

http://www.iana.org/assignments/icmp-protocols

a hexadecimal value of 0015. To translate this to decimal, we find a 1 in the 161 position and a
5 in the 160 position. When these 2 values are added, we have 16 + 5, which gives us
destination port 21.
So, we have some kind of ftp exchange. This is the beginning of the 3-way handshake so we
have no payload.Yet, it helps to look at the TCP header length found in the high-order nibble of
the 12th byte offset of the TCP header. A value of 7 is found here and this must be multiplied by
4 to figure out that there is a 28-byte TCP header. This means that there are TCP options; and
examining the following standard output of TCPdump for the datagram, we see that there are
options of maximum segment size (mss), two nops to pad 4-byte boundaries, and a selective
acknowledgement (sackOK):
18:26:48.888088 1.2.3.4.2916 > 4.3.2.1.21: S 1223886257:1223886257(0) win
8192 <mss 1460,nop,nop,sackOK> (DF)

Freeware Tools for Packet Dissection

Now that you've manually labored your way through packet dissection, here are some excellent
tools to help you out. Just to remind you of why we struggled with our own packet dissections
at all, you will sometimes find packets that have been crafted and that are not analyzed
accurately by tools whose interpretations rely on properly configured packets.

Ethereal

Ethereal is free, available for both Windows and UNIX, and is particularly user-friendly because
it has a GUI to assist in navigating the capture and analysis. Ethereal can read TCPdump binary
output captured using the –w option. It can also use TCPdump filters to selectively capture or
display records. Ethereal is an especially useful tool because it allows you to analyze a captured
record from many different perspectives.

Figure 7.3 shows a snapshot of Ethereal output. In the top screen, you see a highlighted record. If
you move to the middle screen, you can view the frame header, the IP header, and the TCP
header, including more information about many of the fields. Also, Ethereal is protocol-aware
for many protocols and attempts to interpret the payload according to RFC and protocol specs.

Figure 7.3. Ethereal output.

tcpshow

Tcpshow is good at translating the header field values relieving you of having to know what field
is where, computing exact lengths, and figuring out hex values. It also attempts to interpret the
payload. If the payload is ASCII, it can be translated. But, there are also services such as
NetBIOS that have additional layers of translation that are not done by tcpshow and the output
is incoherent. Remember that unless you increase the default snapshot length of 68 bytes, most
of the time you will not capture the entire datagram. This means that not all of the payload will
be available for interpretation by tcpshow.

Tcpshow can be run by using the following command:

tcpdump -enx | tcpshow –nolink

This command reads TCPdump records from the network and feeds them to tcpshow. We use
the TCPdump options of -enx to read the frame header for interpretation purposes (the –e
option), not resolve hostnames (the –n option), and dump the output in hex (the –x option).
The –nolink option in tcpshow says not to display the frame header information like MAC
addresses. Here is some output from an ICMP record that was captured:

Packet 1
IP Header
 Version: 4
 Header Length: 20 bytes
 Service Type: 0x00

 Datagram Length: 40 bytes
 Identification: 0xB5CB
 Flags: MF=off, DF=on
 Fragment Offset: 0
 TTL: 254
 Encapsulated Protocol: ICMP
 Header Checksum: 0xB229
 Source IP Address: 1.2.3.4
 Destination IP Address: 4.3.2.1

ICMP Header
 Type: echo-reply
 Checksum: 0xBC9C

ICMP Data
 .<Q...........c.

As you can see, tcpshow provides a lot of assistance in interpreting a packet. It decodes the IP
header, liberating you from figuring out field displacements, converting lengths to bytes, and
converting hexadecimal to decimal—to name a few of the functions that it performs. And, it
attempts to decode the embedded protocol header and data. In this case, the ICMP data is not
ASCII-based so tcpshow's interpretation is not intelligible. Ethereal is a much better tool to use
to interpret the payload because it is protocol-aware.

TCPdump –X Option

One final tool for payload interpretation is TCPdump itself.Versions of TCPdump later than 3.4
have a new -X option. This simply attempts to interpret payload from hex to ASCII characters.
It actually does this for the entire packet, which is not appropriate for numeric-based fields.
But, if your goal is to interpret ASCII-based payloads, this works well without the use of
additional tools such as Ethereal or tcpshow. Here is an example of the output from running
TCPdump with the –X option:

17:21:53.457019 1.2.3.4.ftp > 4.3.2.1.1607: P 1:81(80) ack 1 win 32120 (DF)
[tos 0x10]

0x0000 4510 0078 1691 4000 4006 6b93 0102 0304 E..x..@.@.k.....
0x0010 0403 0201 0015 0647 a940 1471 309a 93ee ...e...G.@.q0...
0x0020 5018 7d78 14fa 0000 3232 3020 7665 7262 P.}x....220.verb
0x0030 6f20 4654 5020 7365 7276 6572 2028 5665 o.FTP.server.(Ve
0x0040 7273 696f 6e20 7775 2d32 2e35 2e30 2831 rsion.wu-2.5.0(1
0x0050 2920 5475 6520 5365 7020 3231 2031 363a).Tue.Sep.21.16:
0x0060 3438 3a31 3220 4544 5420 3139 3939 2920 48:12.EDT.1999).
0x0070 7265 6164 792e 0d0a ready...

If you look at the rightmost column, you can see the interpretation of the data that has been
passed using ftp. You can also see from the first two lines of this column that the header
interpretations are incorrect because these are numeric, not ASCII-based values.

Summary

Most of the time, you will find that relying on tools such as Ethereal to decode packets is
accurate and pain-free. Ethereal comes with a great GUI interface that allows you to drill down
to fields and interpreted values. But, a very rare occasion will arise when more conventional
tools are either not available or do not accurately interpret the packet. When you encounter
such a situation, you do not want to be intimidated by looking at a nasty hex dump.

Just remember to approach it methodically. You need to get a standard layout for the protocol
or header or fields that you want to examine. Then, make sure that you discover the embedded
protocol that follows the IP header. Calculate the length of the IP header remembering that the
value you find in the IP header field must be multiplied by 4. Then, look at the embedded
header and determine the pertinent values in it. Using this approach, you should be able to
decipher any hex dump you are given.

Chapter 8. Examining IP Header Fields

This is the first of two chapters that examines fields in the IP packet. This chapter focuses on
fields in the IP header, whereas the following chapter looks at fields in the embedded protocol
(TCP, UDP, and ICMP) headers. As we continue our journey of looking at traffic from many
different perspectives, another view we can assume is to look at the functions of fields in the
headers and normal and abnormal values found in those fields. If we are familiar with the
purpose of the fields and acquainted with normal values, we should be able to detect mutant or
malicious values. When you begin to look at NIDS output or even TCPdump output on a regular
basis, this knowledge will come in very handy for detecting problem packets or identifying the
nature of malicious traffic.

Insertion and Evasion Attacks
Before we look at individual fields in the IP header, we'll make a digression about types of
attacks that might thwart a NIDS' capability to detect malicious activity. As we examine fields in
the datagram, we will reference possible insertion or evasion attacks that may be done by
manipulating certain field values.
There is a landmark paper written in 1998 called "Insertion, Evasion, and Denial of Service:
Eluding Network Intrusion Detection." The authors Thomas Ptacek and Timothy Newsham
discuss attacks that can elude detection by the NIDS by using methods of sending traffic that
will cause the NIDS and the destination host to interpret packets differently. The paper is an
excellent treatise of different conditions that can cause a NIDS to improperly analyze potentially
malicious traffic. The authors conducted several different tests against NIDS to prove their
theory.
Along with the denial of service of a NIDS, the paper basically discusses the idea of individual
attacks to confuse the NIDS. The first is known as insertion. This is where the attacker sends

http://safari.informit.com/?xmlid=0-73571-265-4/22991533

traffic to a target destination host. One or more of the packets sent is accepted or seen by the
NIDS, yet it never reaches the destination host; or if it does, the destination rejects it as faulty.
The point that the authors make is that the NIDS and the destination host evaluate traffic
differently or perhaps even see different traffic.
A second attack is known as evasion. This involves the same idea of sending traffic to a target
destination host. Although the destination host sees the same traffic that the NIDS does, it
scrutinizes the packets differently than the NIDS. Perhaps the NIDS rejected one or more
packets, but the destination host accepted them. Again, the NIDS and the destination host see
the traffic differently. Although the term reject brings up some semantic issues especially when
compared with actions of packet-filtering devices, it is the terminology used in the paper itself.
An evasion attack is successful because the NIDS fails to analyze the packet or data in the
packet as the destination host does, allowing the destination host to see a packet or data that
the NIDS does not.
Insertion Attacks
Examining how an insertion attack might work, let's say we have a NIDS that is on a different
network, such as the DMZ, from many of the hosts that it is guarding. Further, let's also say
that the NIDS is looking for signatures that might indicate some kind of problem or notable
traffic. One of those signatures might be to look for traffic to telnet, TCP port 23, with a content
of REWT as a sign of some backdoor account to telnet.
Now, we have an attacker who has remained undetected in planting a Trojan telnet on a target
host and now wishes to log in to that host using the REWT account. The attacker has done some
reconnaissance on our network and knows more about the network topology and behavior than
we care for him to know. It is possible for the attacker to elude notice of the NIDS if he can
make the NIDS accept a packet that the end host will not accept or will never see.
In Figure 8.1, the attacker sends three different packets destined for TCP port 23 of the target
host, each with one or more characters in the payload. The first contains the letter R, which
both the NIDS and the end host receive, examine, and accept. A second character of O is sent
that has a bad TCP checksum. Checksums validate the integrity of the packet and if they are
not correct, the packet should be discarded. Let's say that the NIDS sees this packet, is not
programmed to validate the TCP checksum, and blindly accepts the packet as a valid part of the
stream of characters being sent to the destination host. The destination host receives the
packet, validates that the TCP checksum is incorrect, and discards the packet. The attacker has
managed to insert a character that causes the NIDS to fail to recognize a real attack or action
against the end host. Finally, a third packet is sent with a payload of EWT that both the NIDS
and the destination host receive and accept.

Figure 8.1. A sample insertion attack.

The NIDS has assembled the TCP stream and concludes it is not a threat because the NIDS
does not have a signature for TCP port 23 with a content of ROEWT. Yet, the destination host
reassembles this stream as REWT and happily starts a telnet session with a user of REWT that is
undetected by the NIDS. Note: This is an oversimplified discussion of this attack; TCP sequence
numbers need to be synchronized correctly for this to work properly.
Evasion Attacks
In the case of evasion depicted in Figure 8.2, the destination host sees or accepts a packet that
the NIDS rejects. In this case, we are still looking for a telnet session with user REWT to the
target destination host. If the attacker can send the traffic in such a manner that the NIDS
rejects a packet that the end host accepts, this eludes detection.

Figure 8.2. A sample evasion attack.

A possible scenario for this attack is sending data on the SYN connection. Although not typical
of normal connections, sending data on SYN is valid per RFC 793. The data on a SYN connection
should later be considered part of the stream after the three-way handshake has been
completed. Let's say we have a first packet that arrives on the network with a SYN packet
destined for TCP port 23 of our target host. It has a payload of R in the SYN packet. The NIDS
only looks for payload after the three-way handshake has been completed, so it totally misses
that data. The destination host receives the same packet and knows to store the R for the
stream after the three-way handshake is completed. We then have the packets that complete
the three-way handshake, each with no data in them, as expected. Finally, we have a normal
packet with the letters EWT as the payload destined for the target host TCP port 23.
The result is that the NIDS reassembles the TCP stream for destination host port 23 with a
complete payload of EWT. This doesn't match any signature it knows. The destination host, on
the other hand, reassembles the stream as REWT and happily starts the Trojaned telnet
session.
To summarize the paper mentioned earlier, there are many techniques that can be used for
insertion and evasion attacks against a NIDS. Although the paper doesn't cover application layer
attacks such as HTTP obfuscations, we find that application attacks are a growing trend in
evasion. Many of the various attacks are successful just because the NIDS cannot predict the
reaction of every possible destination host's TCP/IP stack to various attacks. There are many
facets of the TCP/IP stacks that differ among operating systems.
Although keeping track of a lot of this information is feasible for the NIDS, understand that as
you require the NIDS to perform more functions and duties, the NIDS will become slower in
processing all traffic to the point where it might begin to drop packets. Ultimately, it is a
tradeoff of functionality and speed, and speed is the current winner. One way to deal with the
possibility of evasion or insertion attacks is to install a host-based IDS on resources that require
more protection or scrutiny. The host-based IDS sees the same packets that the host sees, but
this is as far as its resistance to evasion goes. The host would still need the application-level
savvy to handle application-based evasion attacks.
This paper can be found at: www.robertgraham.com/mirror/Ptacek-Newsham-Evasion-98.html.

http://www.robertgraham.com/mirror/Ptacek-Newsham-Evasion-98.html
http://safari.informit.com/?xmlid=0-73571-265-4/22991533

IP Header Fields
Let's begin our examination of the fields in the IP header. Each field will be discussed in terms
of its function, any pertinent information about normal and abnormal values, reconnaissance
that may be obtained from examining the field, and evasion or insertion attacks possible using
the field.
IP Version Number
The only valid IP version numbers currently in use are 4 and 6, for IPv4 and IPv6, respectively.
IPv4 is the most common and pervasive version number thus far. IPv6 is not yet in wide use in
user networks in North America, although it is slowly being deployed in the Internet backbone.
It is also being used in Europe and Asia.
The IP version field must be validated by a receiving host and if not valid, the datagram is
discarded and no error message is sent to the sending host. RFC 1121 states that the datagram
must be silently discarded if an invalid value is discovered. So, crafting a datagram with an
invalid IP version would serve no purpose other than to test if the receiving host complies with
the RFC.
Also, if a packet arrives at a router with an invalid IP version, it should be discarded silently.
Using this as a means of an insertion attack is rather difficult unless the attacker is on the same
network as the NIDS. If this is the case and a series of packets is sent to the end host with an
invalid IP version and a NIDS does not discard them, this is an insertion attack—something the
NIDS accepts that the destination host or intermediate router after the NIDS should surely
reject.
Protocol Number
You have already learned that the IP protocol number indicates the type of service that follows
the IP header. A list of all the supported protocol numbers and names can be found at
www.iana.org/assignments/protocol-numbers. Conveniently, later versions of nmap have the capability to
scan a host for listening protocols. This is done using the –sO option. The target host is
scanned for all 256 possibilities of protocols. Protocols are deemed listening when no ICMP
"protocol unreachable" message is returned. The following text shows an nmap scan for live
protocols and the returned nmap assessment:
nmap –sO target

Starting nmap V. 2.54BETA1 by fyodor@insecure.org (www.insecure.org/nmap/)
Interesting protocols on myhost.net (192.168.5.5):
(The 250 protocols scanned but not shown below are in state: closed)

Protocol State Name
1 open icmp
2 open icmp
6 open tcp
17 open udp
Here is a sample of the traffic that the protocol scan generated:
07:30:31.405513 scanner.net > target.com: ip-proto-124 0 (DF)
07:30:31.405581 scanner.net > target.com: ip-proto-100 0 (DF)
07:30:31.405647 scanner.net > target.com: ip-proto-166 0 (DF)
07:30:31.405899 target.com > scanner.net: icmp: target.com protocol 124
unreachable (DF)
07:30:31.788701 scanner.net > target.com: ip-proto-132 0 (DF)
07:30:32.119538 target.com > scanner.net: icmp: target.com protocol 166

http://www.iana.org/assignments/protocol-numbers

unreachable (DF)
07:30:34.098715 scanner.net > target.com: ip-proto-236 0 (DF)
07:30:34.098782 scanner.net > target.com: ip-proto-129 0 (DF)
07:30:34.098849 scanner.net > target.com: ip-proto-229 0 (DF)
07:30:32.779583 target.com > scanner.net: icmp: target.com protocol 236
unreachable (DF)
07:30:34.099557 target.com > scanner.net: icmp: target.com protocol 109
unreachable (DF)
The nmap scan examines all 256 different protocol types. A host that receives this type of scan
should respond with an ICMP "protocol unreachable" message to any protocols that it doesn't
support.
Although the supported protocols of a host are interesting, another possible piece of
reconnaissance from this type of scan is that the host is alive. This is a more stealthy type of
scan that might not cause an intrusion-detection system to alarm. However, if the site has a "no
ip unreachables" statement on the outbound interfaces of the gateway router or if it blocks all
outbound ICMP, this information is not leaked to the scanner. In that instance, the scan is
useless.
There is a flaw in the logic used by nmap to discern listening protocols. Nmap assumes that the
absence of an ICMP "protocol unreachable" message means that the protocol is listening. Yet,
conditions such as the scanned site blocking outbound ICMP messages prevent the nmap
scanner from getting these messages. There are other conditions, such as dropped packets,
that might also cause the loss of packets and falsely influence nmap. However, the author of
nmap tried to consider such situations. Nmap sends duplicate packets for each protocol to deal
with the problem of packet loss. Also, if nmap gets no ICMP protocol unreachable messages
back, it doesn't assume all protocols are listening. Instead, it wisely assumes that the traffic is
being "filtered" and reports this.
A Bloody Simple Analogy
Nmap uses the philosophy of the absence of communication is the confirmation of a
condition to determine listening protocols. In other words, the absence of an "ICMP
protocol unreachable" message is the confirmation that the protocol is listening. As
we've seen, there are some flaws associated with this method.
This philosophy reminds me of the real-world situation of going to the doctor's office
for some blood work. Because the doctor and staff are very busy people, they usually
tell you on your way out that they will not call you unless they discover something
wrong. They are basically telling you that the absence of communication, the lack of a
phone call, is a confirmation of a condition, that you are healthy as a horse.
Yet, if you are even a bit cynical, you understand the possible problems with this
situation. All kinds of things can go wrong such as losing your blood in the doctor's
office before it gets sent to a lab, losing your blood on the way to or from the lab, or
even losing your blood at the lab. Just because you don't hear from the good doctor
doesn't necessarily mean that everything is copasetic.
Similar problems can beset a packet. A packet can get lost in transit or it can be
dropped or blocked at many points in its journey. Nmap attempts to deal with some
of these problems, yet the absence of communication might not always be a
confirmation of a condition.
Differentiated Services Byte (Formerly Known as Type of Service—The Prince of Fields)
It seems that the former Type of Service byte has undergone several rounds of alterations since
its incipient creation. One of these alterations in RFC 2481 and more currently RFC 3168 calls
for the two low-order bits of the differentiated services byte to be used for Explicit Congestion
Notification (ECN). The purpose here is that some routers are equipped to do Random Early
Detection (RED) or active queue management of the possibility of packet loss.
When congestion is severe, it is possible that a router can drop packets. RED attempts to
mitigate this condition by calculating the possibility of congestion in the queue to a router

interface and marking packets that might otherwise have been dropped as experiencing
congestion.
There are two possible values of the ECN bits to inform that the sending host is ECN-capable.
The ECN-capable Transport (ECT) bit settings can either be 01 or 10 in these two low-order bits
of the differentiated services byte in Figure 8.3. These settings indicate that the sender is ECN-
aware. If the sender is ECN-aware, a router that uses RED attempts not to drop the packet, but
instead sends it with the Congestion Experienced (CE) bits enabled, and the receiver reacts to
this. The bit setting for Congestion Experienced is 1s in both of the ECN bits. We'll discuss the
receiver's response in more detail when we cover the TCP fields in the next chapter.

Figure 8.3. The Differentiated Services byte and ECN.

The Don't Fragment (DF) Flag
The Don't Fragment (DF) flag is a field in the IP header that is set when fragmentation is not to
occur. If a router discovers that a packet needs to be fragmented, but the DF flag is set, the
packet is dropped and an ICMP message "unreachable - need to frag (MTU size)" is delivered to
the sending host. Most current routers include the maximum transmission unit (MTU) size of the
smaller link that required the fragmentation.
Fragmentation comes with some overhead, so you should avoid it altogether. If one fragment of
the fragment train is not delivered, all fragments must be re-sent. Because of this, when some
TCP/IP stacks send data, they first send a discovery packet with the DF flag set. If the packet
goes from source to destination without any ICMP errors, the selected datagram size of the
discovery packet is used for subsequent packets. If an ICMP message is returned with an
"unreachable error – need to frag" message and the MTU is included, the packet is resized so
that fragmentation does not occur. This assumes the site allows these ICMP messages inbound.
Some operating system TCP/IP stacks set the DF flag on certain types of packets, and nmap
uses this as one of the tests to try to fingerprint the operating system. Also, an attacker can use
the DF flag as a means of an insertion attack. This means the NIDS would have to be on a
network with a larger MTU than the final destination host. In this case, one or more packets
among a series of others have the DF flag set. The NIDS receives the packet(s) and accepts it,
but the end host never receives the packet(s) because fragmentation is required, yet the DF
flag was set.

The More Fragments (MF) Flag

The More Fragments (MF) flag tells you that one or more fragments follow the current one. All
fragments except the final one should have the MF flag set. The way that a receiving host
detects fragmentation is that this flag is set or the fragment offset field in the IP header is set
to a non-zero value.
Mapping Using Incomplete Fragments
Another mapping technique is to try to elicit an ICMP IP "reassembly time exceeded" message
from hosts on a scanned network. This can be done by sending an incomplete set of fragments
to hosts that are being mapped. For this to work properly, the destination host has to be
listening on the port that is scanned if the traffic is TCP or UDP. When the scanned host receives
the first fragment, it sets a timer. If the timer expires and the receiving host has not received
all the fragments, it sends the ICMP "IP reassembly time exceeded" error back to the sending
host.
It is important to note (according to RFC 792) that for the ICMP "IP reassembly time exceeded"
error to be generated, the first fragment must not be the missing one. If no first fragment is
received, the host receiving the fragments never sets the timer. RFC 1122 recommends that the
timer expire between 60 seconds and 2 minutes, though we'll see that is not always the case.
hping2 –S –p 139 –x win98

06:49:36.986218 verbo.2509 > win98.netbios-ssn: S 1980004944:1980004944(0)
win 512 (frag 38912:20@0+)
06:50:41.636506 win98 > verbo: icmp: ip reassembly time exceeded

hping2 –S –p 21 –x linux

11:56:04.064978 verbo.2450 > linux.ftp: S 1198423806:1198423806(0) win 512
(frag 39067:20@0+)

11:56:34.056813 linux > verbo: icmp: ip reassembly time exceeded [tos 0xc0]
Hping2 is freeware that is used to generate different types of traffic. Hping2 is first executed
with the –S option to send a packet with a SYN, a destination port of 139, -p 139, and the –x
option to set the More Fragment flag. One packet is sent to the destination host win98, which as
you might guess is a Windows 98 host listening on TCP port 139.
The fragment sent is actually the entire SYN packet—20 header bytes and a 20-byte TCP
header. There is no data to send, but the receiving host has no way of knowing this because the
MF flag is set. You can see that the MF flag is set by looking at the + in the previous output of
TCPdump. The Windows host took approximately one minute and five seconds to time out the
fragment reassembly clock. That is when you see the ICMP "IP reassembly time exceeded"
message returned.
The next hping2 test is tried on a Linux (2.2 kernel) host on a listening ftp port. The Linux host
took about thirty seconds to time out on incomplete fragments sent to destination port 21.
IP Numbers
IP numbers are 32-bit fields. The source IP number is located in the 12th through 15th bytes
offset of the IP header; the destination IP number is located in the 16th through 19th bytes
offset of the IP header.
What are some unnatural values for source IPs entering your network? If you see an IP number
entering your network that purports to be from your network, there is a problem. Most likely,
someone has crafted this packet and is spoofing an IP address in your range. A packet-filtering
device should shun this traffic. Additionally, you should never see source IPs coming from the
loopback address 127.0.0.1, nor should you see any source IPs that fall in the Internet Assigned
Numbers Authority (IANA) reserved private network numbers defined in RFC 1918. These

address ranges can be found at www.iana.org/assignments/ipv4-address-space. Their intended use is for
local internal networks only.
As far as traffic leaving your network, it should have a source IP number that reflects your
network's address space. If you see an IP number coming from inside your network that has an
IP number of a different address space, it is either being spoofed or there is a misconfiguration
problem with a host inside your network. In either case, this traffic should not be allowed to
leave your network. This prevents hosts in your network from participating in distributed denial
of service attacks because participant or zombie hosts usually use spoofed source IP numbers
so that they cannot be located. Other types of scans use decoy or spoofed source IP's as a
smokescreen. By disallowing outbound traffic that is not part of your address space, these scans
will be ineffective as well.
You should also never see a source IP with the loopback 127.0.0.1 address leaving your
network because that identifies the local host. And, you should never allow source IP's in the
reserved address ranges to leave your network.
Finally, you shouldn't allow traffic with a broadcast destination IP address into or out of your
network. Such destination addresses are typically used to quickly map other networks or use
them as Smurf amplification sites.
IP Identification Number
The IP identification value is found in bytes 4 and 5 offset of the IP header. For each new
datagram that a host sends, it must generate a unique IP ID number. This value is normally
incremented by 1, although some use an increment of 256, for each new datagram sent by the
host.
This unique value is required in case the datagram becomes fragmented. All fragments from the
datagram share this same IP ID number. This is also referred to as the fragment ID number. It
is the number that is used by the receiving host to reassemble all fragments associated with a
common datagram.
The range for IP ID values is 1 through 65,535 because this is a 16-bit field. Usually, you don't
see IP ID numbers with a value of 0. When the maximum value of 65,535 for the IP ID value is
reached, it should wrap around and start again. Different source IPs directing traffic to your
network should manifest a different chronology of IP ID values. So, if you see different "alleged"
source IPs sending traffic to your network and they appear to have a chronology of
incrementing IP ID numbers, it is possible that the source IPs are being spoofed.
As with just about any other field or value in the IP datagram, this value can be "crafted" so as
to render it meaningless for interpretation. For instance, if an attacker used a tool that sent all
packets with the identical IP ID, they would offer no meaningful forensic value about the
attacker's host. The –vv option of TCPdump can be used to display the IP ID number along with
the time-to-live (TTL) value.
Time to Live (TTL)
The TTL is an 8-bit value that is set by the host sending the datagram. Initial TTL values are
different depending on the TCP/IP stack used, as you can see in Table 8.1 that was obtained at
project.honeynet.org/papers/finger/traces. As we have discussed, each router that

the packet travels on its way to the destination host must decrement the TTL value by 1. If a
router ever discovers a value of 0 in the TTL, it must discard the packet and return an ICMP
"time exceeded in-transit" message back to the sender. This banishes lost packets such as
those stuck in a routing loop. This can be used as a possible insertion attack if the NIDS sees
the packet, yet the TTL is low enough to be expired by a router before it reaches a target host.

Table 8.1. Initial TTL Values by Operating System
OS Version Platform TTL

Windows 9x/NT Intel 32
AIX 4.3.x IBM/RS6000 60
AIX 4.2.x IBM/RS6000 60

http://www.iana.org/assignments/ipv4-address-space

Cisco 11.2 7507 60
IRIX 6.x SGI 60
Linux 2.2.x Intel 64
OpenBSD 2.x Intel 64
Solaris 8 Intel/Sparc 64
Windows 9x/NT Intel 128
Windows 2000 Intel 128
Cisco 12.0 2514 255
Solaris 2.x Intel/Sparc 255
What if you want to test to see if a packet is from the source IP it says it is from? You can look
at the arriving TTL, estimate the initial TTL by using Table 8.1, and subtract the arriving TTL from
the initial TTL to give you the hop count for the packet to arrive on your network. Then, a
traceroute could be executed to see if the number of hops taken back to the alleged source IP
approximates the number of hops originally taken into your network. It is possible that the
route back to the alleged source IP might be different than the route taken to your network
because of the dynamics of routing, but they often do have close hop counts, assuming that
there are no major router or traffic problems along the way.
Chances are, if you have different source IPs concurrently entering your network, they have
different arriving TTL values. If you see different source IPs entering your network at the same
time, doing the same type of activity, with identical arriving TTLs, it is possible that this might
be source IP spoofing.
Be aware that some scanning programs purposely randomize the initial TTL value just to
eliminate this vestige of the true origin of the datagram.
Looking at the IP ID and TTL Values Together to Discover Spoofing
Examine the following output:
07:31:57.250000 somewhere.de > 192.168.104.255: icmp: echo request
(ttl 246, id 5134)
07:34:18.090000 somewhere.jp > 192.168.104.255: icmp: echo request
(ttl 246, id 5137)
07:35:19.450000 somewhere.ca > 192.168.104.255: icmp: echo request
(ttl 246, id 5141)
This output shows traffic from three purportedly different source IPs to the same infrequently
referenced destination IP. The timestamps are within minutes of each other, and the chronology
of the IP identification values is worth examining. What is strange about the IP identification
values, and why might someone send traffic such as this?
What are the odds that the IP identification values are coincidentally incremental from three
alleged different sources to the same destination IP— 192.168.104.255? The particular subnet
192.168.104 does not have active hosts, so this makes the traffic even more suspicious.
Although this could be a huge coincidence, it is more likely that someone on one host was
sending ICMP echo requests (ping) to the infrequently referenced internal 192.168.104.255
address.
Recall that the IP identification value is a 16-bit field with a range of values from 1 to 65,535.
The clustering of values between 5134 and 5141 is highly unlikely for three unique sources. It
also appears to be a particularly inactive host (perhaps a single user PC) sending the packets,
judging by the small increments in the IP identification values over several minutes. This
assumes that the IP identification numbers have not been crafted.
As with much unusual traffic seen on the network, the what is far easier to figure out than the
why. Maybe this was a mapping attempt with one real source and two spoofed sources. This
emits a smokescreen effect; even if we noticed this, chances are we wouldn't be able to identify
the real source IP anyway.
Let's examine this same traffic, but now let's look at it in terms of the TTL values. Oddly, all the
arriving TTL values are identical. This tends to confirm the speculation that all three packets

originated from the same host. What are the chances that three different source IPs sending
traffic to our network had a probable (uncrafted) initial TTL of 255 and each was 9 hop counts
away and they all had an interest in the same IP address at approximately the same time?
Using the –vv option of TCPdump can give us two additional fields of display that can assist in
determining if suspicious traffic has been spoofed.
When this traffic was detected on the network, traceroutes were executed back to the alleged
source IPs in an attempt to determine if they were real or spoofed source IPs. Here are the
results of the traceroutes:
traceroute somewhere.de
 arriving TTL: 246
 probable initial TTL: 255
 expected hop count back: 9
 actual hop count back: 13

traceroute somewhere.jp
 arriving TTL: 246
 probable initial TTL: 255
 expected hop count back: 9
 actual hop count back: 13

traceroute somewhere.ca
 arriving TTL: 246
 probable initial TTL: 255
 expected hop count back: 9
 actual hop count back: 12
This example of using traceroutes isn't very conclusive. Each of the three different source IPs
had approximately 12 or 13 hops back from the network upon which the sensor sniffed the
packets. However, it does offer an example of the mechanics used to attempt to validate the
authenticity of the source IP.
The hop count back from the traceroute is believably close to the expected hop count. Yet,
using the IP identification values in conjunction with these results, these source IPs probably
were spoofed. A hop count back to the source IP that varies widely from the expected hop count
is a better indication that the source IP was spoofed. Also, if the actual hop counts back to the
three different source IPs differed more substantially from each other, this too would be a
better indicator of spoofing.
There are a couple of caveats associated with using traceroute for forensics. First, you might be
unable to do traceroutes to/from your network because of router/firewall blocks of ICMP traffic,
specifically "time exceeded in-transit" and "port unreachable" messages. Second, note that
traceroute to a real IP might not be desirable because it can potentially illuminate your interest
in a site.
IP Checksums
Checksums are used to ensure that data has not gotten corrupted from source to destination.
The algorithm used for TCP/IP is to divide the data that is being checksummed into 16-bit fields.
Each 16-bit field has a 1's complement operation done on it and all of these 1's complement
values are added. The final value is considered to be the checksum.
The IP checksum is found in the 10th and 11th bytes offset of the IP header. The IP checksum
covers all fields in the IP header only. This checksum is different than the checksums that are
computed for the embedded protocol fields because it is validated along the path from source to
destination. Embedded protocol checksums such as TCP, UDP, and ICMP are validated by the
destination host only. The IP checksum is validated by each router through which it passes from
source to destination and finally is validated by the destination host as well.
If the computed checksum does not agree with the one found in the datagram, the datagram is
discarded silently. No attempt is made to inform the source host of a problem. The idea is that

higher-level protocols or applications will detect this and deal with it.
The formula for the IP header checksum is used for all other embedded checksums as well.
First, we divide the IP header into 16-bit fields. Because the IP header length is always a
multiple of 4 bytes, we do not have to worry about extra fields that do not fall on 16-bit
boundaries.
After all of the fields are separated, we take the 1's complement of each. This operation simply
flips the bit. All of these individual 1's complement values are added to form the checksum. For
example:
4 5 0 0 Hex Representation
0100 0101 0000 0000 Binary Representation
1011 1010 1111 1111 1's Complement
In the previous output, you see the first 16 bits of a very common beginning to an IP header.
Each hex value is represented in four binary bits and each of these bits is flipped. This becomes
the 1's complement value. This operation is commutative so you can add the hex values of the
16-bit fields and then take the 1's complement and the resulting checksum should be the same.
The IP checksum is examined and recomputed for each hop on the way from source to
destination. Intermediate routers validate the IP checksum, and if it is correct, the TTL value is
decremented by 1. The IP header checksum must be recomputed to reflect this change in the IP
header. Remember that this checksum validates the fields in the IP header only, not the rest of
the datagram that consists of the embedded protocol header and data.
The rationale for checking the IP checksum for each hop makes sense when you think about it.
The worst-case scenario is that the destination IP becomes corrupted. It makes no sense to
forward a packet that has been corrupted because the corruption might alter the intent of the
packet.
Although the IP checksum and all other checksums found in the datagram find most packet
corruption, there is a problem. It is possible for entire 16-bit fields to be swapped and yet the
checksum will remain the same.
4500 003c

4500 = 0100 0101 0000 0000 1011 1010 1111 1111
003c = 0000 0000 0011 1100 1111 1111 1100 0011
 1011 1010 1100 0010

003c 4500

003c = 0000 0000 0011 1100 1111 1111 1100 0011
4500 = 0100 0101 0000 0000 1011 1010 1111 1111
 1011 1010 1100 0010

Look at the previous output. We swap the first two 16-bit fields (4500 003c) in the IP header.

The computed checksum for the correct sequence of these 16-bit fields is 1011 1010 1100 0010
(this doesn't include the high-order bit carryover). But, if we reverse the fields and compute the
checksum, it is exactly the same. A datagram with 16-bit fields swapped is a vastly different
datagram in meaning and resolution when fields are swapped. So, this is obviously a drawback
of using this computation.
Why not use a more complicated and reliable algorithm for the checksum? This computation is
done for each packet that a router receives. The simpler the algorithm, the quicker the
computation time. The checksum algorithm is a fast and mostly reliable algorithm, and the
clean swap of 16-bit fields is a rare occurrence. To read more about IP checksums, look at RFC
1071.

Summary

Let's summarize some of the ideas conveyed in this chapter. First, although your NIDS is a
necessary tool for risk mitigation, it is not a panacea for detecting all malicious traffic. One
reason for this is that insertion and evasion attacks can cause the NIDS to incorrectly scrutinize
network traffic. There are many different attacks that can be used and it is simply impossible for
a NIDS to know how every different target host on a network will react to a packet. A NIDS
cannot know the nuances of each individual host's implementation of the TCP/IP stack. As well,
the NIDS is not aware of network topology differences that can be used in some of the attacks
such as packets with low TTL numbers that will never reach the target host. The use of host-
based IDS can be used to fortify the security provided by the NIDS.

A savvy analyst should be aware of the types of fields and possible values that are found in the
IP header. This is valuable knowledge when examining packets for anomalous values.
Recognizing mutant values might not explain the intended purpose of the packet, but it should
draw your attention to the packet. From there, it might be possible to determine the nature of
the traffic.

Chapter 9. Examining Embedded Protocol Header Fields

This second chapter on examining header fields discusses the fields in the headers found after
the IP header, namely the TCP, UDP, and ICMP headers. As we discovered in the previous
chapter, it is imperative that anyone performing traffic analysis be familiar with the purpose of
the fields and expected values. This is the only way to unearth values that are not normal and
might be a reflection of some kind of malicious activity.
Because this is a fairly extensive topic, the chapter addresses fields in each of the protocols
individually. Hopefully, this will partition the protocols into more manageable chunks of learning.

TCP
Back in Chapter 2, "Introduction to TCPdump and TCP," we discussed that TCP is a reliable
protocol. This means that TCP oversees the exchange of data and knows when there is a
possible problem by using fields such as sequence and acknowledgement numbers to order and
keep track of the exchanged data. There are many more fields in the TCP header than UDP and
ICMP have because TCP needs to maintain state and provide optimal flow control between
sender and receiver. We'll examine these fields and others in the context of normal and
abnormal use.
Ports
The port fields are two separate 16-bit fields in the TCP header, one for source (bytes 0 and 1
offset from the TCP header) and another for destination (bytes 2 and 3 offset from the TCP
header) port. The valid range of values is between 1 and 65535. The use of port 0 is anomalous

http://safari.informit.com/?xmlid=0-73571-265-4/22991533

and considered to be a unique "signature" of an improper port setting.
When a source host wishes to connect to a destination host, an ephemeral source port is
typically selected in the range of ports greater than 1023. For each new connection that the
host attempts that is not a retry, a different ephemeral port should be selected. The concept of
TCP retries or retransmission will be covered later in this chapter in the section, "Retransmissions."
In a scan scenario, you will likely see the source port value incrementing by 1 for each new
connection.
One of the telltale signs of an nmap SYN scan to find open TCP ports is a static source port
retained over multiple new TCP connections. For example:
nmap –sS sparky

09:40:43.964215 verbo.47247 > sparky.1548: S 2401927088:2401927088(0) win
2048
09:40:43.964412 verbo.47247 > sparky.24: S 2401927088:2401927088(0) win 2048
09:40:43.964465 verbo.47247 > sparky.1547: S 2401927088:2401927088(0) win
2048
09:40:43.964553 verbo.47247 > sparky.2564: S 2401927088:2401927088(0) win
2048
09:40:43.964604 verbo.47247 > sparky.1484: S 2401927088:2401927088(0) win
2048
09:40:43.964642 verbo.47247 > sparky.1460: S 2401927088:2401927088(0) win
2048
09:40:43.964695 verbo.47247 > sparky.628: S 2401927088:2401927088(0) win 2048
09:40:43.964748 verbo.47247 > sparky.1112: S 2401927088:2401927088(0) win
2048
Although we would expect the source port of scanner verbo to change for each new SYN
connection to new ports of target host sparky, the source port number remains constant as
47247.
In contrast, look at the default behavior exhibited by another scanning tool known as hping2.
The –S option of hping2 performs a different kind of SYN scan. It increments the source port as
expected, yet it attempts to open destination port 0 of its target. The intent of this type of scan
obviously is not to find a listening port. This type of scan is used to elicit a RESET response to
see if a host is alive, because there should be no hosts listening at port 0. Here's the output
from hping2:
hping2 –S sparky

09:44:13.882207 verbo.1788 > sparky.0: S 1553132317:1553132317(0) win 512
09:44:14.876837 verbo.1789 > sparky.0: S 1894028093:1894028093(0) win 512
09:44:15.876836 verbo.1790 > sparky.0: S 2032501562:2032501562(0) win 512
09:44:16.876832 verbo.1791 > sparky.0: S 851202745:851202745(0) win 512
TCP Checksums
As mentioned previously, the embedded protocols have checksums as well. These cover the
embedded header and respective data for TCP, UDP, and ICMP. Unlike the IP checksum, these
are end-to-end checksums calculated by the source and validated by the destination host-only.
The TCP checksum has been chosen to represent the embedded protocol checksums. UDP does
not require a checksum to be computed, unlike IP, TCP, and ICMP. However, it is highly
recommended.
The embedded protocol checksums for TCP and UDP are computed using a pseudo-header in
addition to the embedded protocol header and data. A pseudo-header consists of 12 bytes of
data depicted in Figure 9.1: the source and destination IPs, the 8-bit protocol found in the IP
header, and a repetition of the embedded protocol length (this is the protocol header length
plus the number of data bytes). The zero-pad field found in the 8th byte offset is used to pad
the 8-bit protocol field to 16 bits because checksums are performed on 16-bit blocks of data.

Figure 9.1. TCP checksum pseudo-header fields.

Why is the pseudo-header necessary? This is a double check that is used by the receiving host
to validate that the IP layer has not accidentally accepted a datagram destined for another host
or that IP has not accidentally tried to give TCP a datagram that is for another protocol. If there
is some errant corruption that occurs in transit, the validation of the IP checksum may or may
not discover this, but some fields from the IP header are included in the pseudo-header
checksum computation to help protect against this.
Let's examine a very specific example of how the pseudo-header protects against delivering the
packet to the wrong host. Figure 9.2 is offered to assist in visualizing the process. Assume that we
have a host that sends a packet to destination IP 1.2.3.4. We will use TCP as the embedded
protocol, but it really doesn't matter if the transport layer is TCP or UDP because both use the
pseudo-header. The transport layer checksum includes the pseudo-header fields in the
checksum computation. Therefore, for the destination IP, a value of 1.2.3.4 is used in the TCP
checksum computation.

Figure 9.2. Pseudo-header checksum protection.

On its way from the sending host, the packet travels through a router that, as you remember,

must validate the IP checksum before forwarding it. Suppose the router validates the IP
checksum, decrements the TTL, and then needs to recompute the new IP checksum. For some
unforeseen reason, the IP layer of the router somehow corrupts the destination IP to be 1.2.3.5.
The IP checksum is recomputed using the corrupted destination IP. The IP checksum is valid so
the packet continues on towards the wrong destination, IP 1.2.3.5.
Assume that the IP 1.2.3.5 exists. The corrupted packet arrives at the wrong destination IP. The
IP layer validates the checksum and it is correct because destination IP 1.2.3.5 was used in the
IP checksum computation by the corrupting router. The packet is pushed up to the transport
layer where TCP uses the pseudo-header fields in the checksum validation. But, the TCP
checksum validation uses destination IP 1.2.3.5 in the corrupted packet IP header for validation
comparison against the packet's actual TCP checksum. However, this does not match the TCP
pseudo-header checksum from the sending host that used 1.2.3.4 as the destination IP in the
pseudo-header checksum. Host 1.2.3.5 then discards the packet because the embedded
protocol checksum does not match the computed checksum done by the destination host.
A Cry for Help
While reading literature on the purpose of the pseudo-header, it made perfect sense
to me that it is used as an additional check to make sure that the packet isn't sent to
the wrong host or protocol. Yet, for the life of me, I couldn't envision how this was
done. I asked several colleagues, but they too shared my confusion when it came to
giving an example. I ended up writing noted author and TCP/IP expert, Doug Comer,
who shared the example of a router corrupting the destination IP number. I would
like to extend many thanks to Mr. Comer for clearing up the confusion.
TCP Sequence Numbers
The TCP sequence numbers are used to uniquely identify the beginning byte of each TCP
segment that is sent. This is a way to keep track of all the TCP data that is sent and received in
a TCP stream. Most times, there is more TCP data than can be sent in one TCP segment. Or,
some services such as rlogin might send a character at a time over a TCP stream requiring
multiple streams per session. Because TCP is a reliable protocol, we must have a mechanism to
account for data being sent and received. In part, that is done using TCP sequence numbers.
These sequence numbers should not be repeated unless there is a retry of the same connection
if an initial attempt fails and the sender receives no error from either the intended receiver or
some kind of packet-filtering device. The initial sequence number (ISN) is the first sequence
number that is used in the TCP exchange between the sending and receiving hosts. Each host in
the exchange selects a unique initial sequence number when sending the initial SYN connection
to the other host.
The formula that TCP/IP stacks use to select their initial sequence number is examined by nmap
to help fingerprint the operating system. There is a file that comes with nmap, nmap-os-
fingerprints, that has a list of many different operating systems and versions. Nmap performs a
given set of tests against a target host. Nmap can categorize a particular operating system by
matching the values in responses to different normal and abnormal stimuli sent by the scanning
host with the expected values for a given operating system.
The first test executed by an operating system fingerprinting nmap scan is one that examines
the initial sequence numbers generated by a receiving host from sent connections to a listening
port. Different TCP/IP stacks use different formulas to generate the ISN. Some of the older
operating systems used a predictable increment for the ISN for each new connection. But
someone watching and sniffing could possibly predict and hijack a connection using this
information, as was done in the infamous Mitnick attack. Other operating systems have a time-
dependent formula that predictably increases the ISN based on a given time change. This, too,
is not considered very secure. The most secure formula for ISN generation is a random,
unpredictable one. As a tidbit of information, the SYN that we refer to as the flag to start a TCP
connection is actually an abbreviation for synchronize sequence numbers. The following
execution of nmap using the operating system fingerprint scan option (-O) shows open ports,

TCP sequence number prediction difficulty, and guessed operating system.
nmap –O sparky

(The 1495 ports scanned but not shown below are in state: closed)
Port State Service
23/tcp open telnet
25/tcp open smtp
111/tcp open sunrpc
513/tcp open login
32771/tcp open sometimes-rpc5
32772/tcp open sometimes-rpc7

TCP Sequence Prediction: Class=random positive increments
 Difficulty=46112 (Worthy challenge)
Remote OS guesses: Solaris 2.6 - 2.7, Solaris 7
Using nmap –O to scan the Solaris host sparky and identify the operating system discovers
that the generation of initial sequence numbers is based on a formula using "random positive
increments." And, it reports that predicting a new TCP sequence number would be a "worthy
challenge." Sparky is a Solaris 2.7 host, and it appears to be fairly impervious to someone
guessing a new TCP sequence number based on a previous one or based on time.
Acknowledgement Numbers
The method that TCP uses to ensure that data is received is via an acknowledgement. The
receiving host sets the acknowledgement flag and the acknowledgement number, which are
validation that the receiving host did indeed get the data. The acknowledgement number sent
by the receiving host actually represents the next expected TCP sequence number it should
receive.
Because a SYN connection consumes one sequence number, and because the acknowledgement
value is one more than this sequence number, a valid acknowledgement number must be
greater than 0. There is one rare qualification of this. It is possible to use all 2 billion plus TCP
sequence numbers available with the 32-bit field in which they are stored. If, by chance, the
last TCP sequence number sent is the largest 32-bit number allowed, the receiving host wraps
around and acknowledges that the next expected sequence number is 0. This is an infrequent
occurrence.
Nmap can attempt to identify live hosts by sending a remote host a TCP connection with an
unsolicited ACK flag set. This method of host identification is often more successful than pinging
the host because many sites now block inbound ICMP echo requests. Yet, a router that doesn't
maintain state may allow in "established" traffic in which the ACK flag is set. The desired
response to the unsolicited ACK is a RESET from the remote host, which indeed indicates that
the remote host is alive regardless of whether the scanned port is listening. Current versions of
nmap have a telltale signature because the ACK flag is set, yet the acknowledgement number is
0 as shown in the following output.
verbo.52776 > win98.netbios-ssn: . ack 0 win 4096 <wscale 10,nop,mss
265,timestamp 1061109567[|tcp]>
TCP Flags
TCP flags are used to indicate the function of a given TCP connection or session. The SYN flag
starts a session and the FIN flag terminates a session gracefully. A RESET is used to abort a
session. The ACK flag is set to indicate an acknowledgement of data by the receiver. The ACK
flag is set on all packets after the initial SYN. The PUSH flag is typically used to tell the sending
host to write all of its buffered data to send to the destination host and for the destination host
to PUSH it up to the TCP layer. It is actually possible to send data without the PUSH flag set
when all of the data in the sending buffer is not completely emptied. Finally, the URGENT flag is
used to indicate that data has the highest priority.
The TCP flags have many different valid combinations. And, there are many different invalid

combinations that are used for different purposes. Early in the evolution of NIDS, many would
examine traffic for initial SYN attempts only. Scanners realized this and would send a SYN/FIN
combination that might elicit a response from a host. Different operating system TCP/IP stacks
respond differently to mutant flag settings, so this is used to attempt to fingerprint the
operating system. We will examine some of the situations in which valid and invalid flag
combinations can occur over the next several sections.
TCP Corruption
Just because you see mutant TCP flag combinations, it is not necessarily an indication of
malicious behavior. Packets can and do get corrupted, and it is possible for TCP flags to be
unnaturally set after some kind of corruption in the TCP portion of the packet.
Look at the following packet received on a Shadow NIDS. This was an attempted Napster
connection back in the days when Napster was a free and legal method of exchanging MP3s:
host.home.com.1310 > napster.com.6699: SRP [bad hdr length] (DF)
There are two anomalies that stand out looking at the record. The first is the mutant flag
settings of SRP, meaning that all three of the SYN, RESET, and PUSH flags are set
simultaneously. The next sign is TCPdump's notation of bad hdr length.

A bad hdr length is an error generated by TCPdump when the specified TCP header length is

greater than the actual TCP segment (header and data) length. Because there is no field in the
IP datagram that holds the value of the TCP segment length (header and data), TCPdump
computes this value by using fields it does have. It subtracts the IP header length from the IP
datagram total length. For properly formatted packets, this reflects the true TCP segment
length. One of the validity checks performed by TCPdump is to test if the packet's specified TCP
header length in bytes is greater than the computed TCP segment length. If this comparison is
true, there is something definitely wrong with a length field, and that is when the bad hdr

length error is displayed.

It will be become apparent why TCPdump believes this by examining the following hex dump
output. First, the IP header is contained between the brackets and the TCP header between the
less than and greater than signs:
[4500 0028 8974 4000 7406 a9c5 1804 ee22
80f4 4c7b] <051e 1a2b 0000 029d 9efe a721
a7ae 5010 2058 ac31 0047 0050>
Now let's turn our attention to the length fields in the packet. First, look at the IP total
datagram length in the bolded 2nd and 3rd bytes offset of the IP header. You should see a 0x28
or 40-byte IP datagram length. The IP header length is found in the bolded low-order nibble of
the 0 byte offset of the IP header. As we know, this value of 5 represents a 20-byte IP header.
The protocol field in the 9th byte offset of the IP header has been bolded to highlight the
embedded protocol. Because we discover a 06 in that field, we know that a TCP header follows.
The computed TCP segment length is then 40–20, giving us 20 bytes for TCP header and data.
This is room enough for a TCP header with no options and no data such as might be found on a
plain SYN attempt.
Yet, in the TCP header length, we find a length of 0xa in the bolded high-order nibble of the
12th byte offset, which indicates a 40-byte TCP header after we multiply it by 4 to translate
from 32-bit words to bytes.
Using these fields, do you know why TCPdump generates the bad hdr length error? This is a

datagram with a total length of 40, including a 20-byte IP header length, yet a TCP header that
professes to be 40 bytes. We need a minimum IP datagram length of 60 to house this data if
indeed there has been no corruption.
Is it possible that this packet has been corrupted and the checksum is invalid? Remember, if
this involved packet corruption in the TCP header or data, the only host that will detect this is
the destination host. The NIDS sensor typically does not validate a TCP checksum.
Here is what we can deduce about this packet. Chances are that the IP header is fine because

the previous router did not drop it. Routers are supposed to validate the IP checksums and
silently drop packets with inaccurate ones. Now, before reaching the destination host and
having the TCP checksum validated, it passes by the sensor where TCPdump finds a problem
with it. It is possible that the router corrupted the IP header after the checksum was computed,
but the header otherwise appears to be normal.
At this point, we don't know if the packet has been accidentally corrupted or intentionally
corrupted for whatever reason. The only other ways to verify packet corruption is to manually
compute the checksum of the received packet on the sensor or examine how the receiving host
(napster.com) reacts. The problem with looking at how napster.com reacts is that if the
checksum is invalid, we will see no response. Yet, if the checksum is valid, this weird
combination of flags might not elicit a response either. If we do observe an unlikely response
from napster.com (most likely a RESET), this means that the checksum is valid and the packet
wasn't corrupted on route from source to destination. This means that the packet was most
likely crafted with mutant values at the source. Too, there is always the possibility of cleanly
swapped 16-bit fields that would corrupt the packet, but there would be no manifestation of it in
the checksum.
Vern Paxson, creator of an IDS named Bro, talks of traffic he has labeled "crud" in his paper
"Bro: A System for Detecting Network Intruders in Real-Time." His definition of crud is
"innocuous implementation errors" that create traffic pattern pathologies that look similar to
genuine attacks. He cites examples of an errant TCP/IP stack that routinely sets the URG flag on
a SYN attempt and another that sets the DF flag on traffic fragments. Although this is different
than packet corruption, the important point to keep in mind is that not all-anomalous traffic you
witness is malicious. It is remotely possible that a very small amount is due to corruption, or
crud.
ECN Flag Bits
Until very recently, the two high-order bits of the TCP byte were known as the reserved bits.
They had no purpose, and the value found in the bits should have been 0. However, when tools
such as nmap came along, it was discovered that these bits could be used to try to help
fingerprint a remote operating system. Different operating system TCP/IP stacks would respond
uniquely when these bits were set.
Some would reset the bits to 0, and others would simply leave them with the current value.
Hence, some insight could be made of the remote host's operating system TCP/IP stack. This
alone might not be enough to inform the scanner of the operating system, but used in
conjunction with several other tests, the operating system could be conjectured with a high
probability.
Remember back when we were discussing the differentiated services byte in Chapter 8,
"Examining IP Header Fields," we introduced a new purpose for the two low-order bits known as
Explicit Congestion Notification (ECN)? The intent was for a router to be able to notify a sender
that there was congestion in the network and to reduce its sending rate.
How exactly does that occur? Currently, as discussed in the ECN RFC 3168, the only transport
capable of reacting to that congestion notification is TCP. So, TCP must be prepared to deal with
this. The RFC offers using the two high-order bits of the TCP flag byte (see Figure 9.3) as fields for
ECN. The bit to the right of the high-order bit is known as the ECN-echo bit. This bit is turned
on when TCP receives a packet that has the Congestion Experienced bits set in the
differentiated services byte of the IP header. This means that both end-points of the TCP
conversation are ECN-capable, which is determined during the three-way handshake.

Figure 9.3. The ECN bits of the TCP flag byte.

If TCP sets the ECN-echo bit, the purpose is to inform the sender to reduce the rate at which it
is sending data because there is congestion between the sender and receiver. Upon receipt of a
TCP segment with the ECN-echo bit set, the sender reduces its congestion window, the size of
the sending buffer, by half. After it reacts in this manner, it turns on the Congestion Window
Reduced (CWR) bit to inform the other side of the conversation that remedial action to reduce
congestion has occurred. This bit is found in the high-order bit of the TCP byte flag.
Although this mechanism helps reduce the number of packets dropped, it is anticipated that
many existing NIDS will begin to alarm on these new TCP flag bytes being used. Right now,
most uses of these bits are for scanning purposes only. Also, some packet-filtering devices will
not allow inbound TCP segments with these bits set. So, much customization will have to be
done to smoothly introduce ECN and distinguish it from the rogue scans.
Operating System Fingerprinting
When nmap is placed in operating system fingerprinting mode with the –O option, it sends
some mutant flag combinations when an open port is discovered. Look at the following output
from nmap remote operating system scans:
nmap –O win98

20:33:16.409759 verbo.47322 > win98.netbios-ssn: SFP 861966446:861966446(0)
win 3072 urg 0 <wscale 10,nop,mss 265,timestamp 1061109567[|tcp]>

20:33:16.410387 win98.netbios-ssn > verbo.47322: S 49904150:49904150(0) ack
861966447 win 8215 <mss 1460> (DF)

nmap –O sparky
20:37:00.738412 verbo.50107 > sparky.echo: SFP 2326441544:2326441544(0) win
2048 urg 0 <wscale 10,nop,mss 265,timestamp 1061109567[|tcp]>

nmap –O linux

20:44:50.370158 verbo.42318 > linux.ftp: SFP 1749165064:1749165064(0) win
1024 urg 0 <wscale 10,nop,mss 265,timestamp 1061109567 0,eol>
In the first scan of a Windows 98 host, the mutant flag combination of SYN/FIN/PUSH/URG is
sent to the Windows port 139. This is a NetBIOS session service port, and the Windows host
listens on this port. Yet, amazingly enough, it responds with an acknowledgement! This
behavior is not what we expect.
In the second nmap scan, the same technique of sending the mutant combination of
SYN/FIN/PUSH/URG flags to a listening Solaris port (echo) is attempted, and no response is
elicited. This same combination of flags is sent to a listening Linux ftp port in the third scan, and
no response is received. This is the expected behavior, which conforms to RFC specifications.

Yet, you can see how this test can be used to distinguish Windows hosts from all others.
As a new analyst, it is often difficult to distinguish between what appears to be malicious
behavior and TCP/IP stacks that don't conform to the RFC specifications. It is hard to
understand the intent when a response isn't as you expect. Many times, even an experienced
analyst does not know if abnormal TCP flag settings are an indication of some wayward TCP/IP
stack or someone up to no good.
Retransmissions
What if an initial TCP connection is attempted, yet the host attempting the connection doesn't
receive a response from the destination host? A destination host might not respond because it
might not be up or might not exist. A router might attempt to deliver an ICMP message about
the destination host being unreachable, but if the router has been silenced from delivering
unreachable messages, the sending host will never know that there is a problem. A destination
host might be sitting behind some kind of packet-filtering device that blocks the connection
inbound, yet silently drops the connection without informing the sending host.
It is also possible that the destination host responds positively (SYN/ACK) or negatively
(RESET/ACK), yet for some reason the sending host doesn't receive these replies.
Additional attempts or retransmissions are made to contact the host in situations like this. The
number of retransmissions and the time intervals in which they are attempted varies by TCP/IP
stack. Eventually, the sending host ceases the connection attempts.
How can you distinguish retransmissions or retries from separate new TCP connections to a
destination host? The source ports remain the same, and the TCP sequence numbers don't
change for retransmissions. This is not a fail-safe detection method. It is also possible that the
sender is crafting packets that use the same source ports and TCP sequence numbers.
Examine the following set of retries—specifically, look at the time and the IP identification
number changes. The IP identification numbers should change on a retry as well as a set of
unique connections. The sending host generates an entirely new packet for the retry so the IP
identification number should increment or wrap:
17:14:18.726864 1.1.1.1.62555 > 192.168.44.63.3128: S 20583734:20583734(0)
win 8192 <mss 1380>(DF) (ttl 17, id 15697)
17:14:21.781140 1.1.1.1.62555 > 192.168.44.63.3128: S 20583734:20583734(0)
win 8192 <mss 1380> (DF) (ttl 17, id 33873)
17:14:27.776662 1.1.1.1.62555 > 192.168.44.63.3128: S 20583734:20583734(0)
win 8192 <mss 1380> (DF) (ttl 17, id 46113)
17:14:39.775929 1.1.1.1.62555 > 192.168.44.63.3128: S 20583734:20583734(0)
win 8192 <mss 1380> (DF) (ttl 17, id 54353)
Now, look at the time changes between attempted retries. Between the first and second
connection attempts, the wait is approximately 3 seconds. This doubles to 6 seconds between
the second and third connections. And, finally, this doubles again to 12 seconds between the
third and fourth attempts. This doubling of the backoff time might not always be
witnessed—different TCP/IP stacks use different retry-time algorithms for the subsequent
retries.
Often, analysts not familiar with the concept of retries misread what is happening here. They
erroneously believe that an attacker is attempting multiple connections to the destination host.
Instead, the retries are automatically generated by TCP.
Using Retransmissions Against a Hostile Host—LaBrea Tarpit Version 1
A very clever defender against the Code Red worm scans of web servers, Tom Liston, wrote a
program that "tarpits" scanners looking for unassigned IP numbers. Typically, when you see
activity to an unassigned IP address, it might mean someone is scanning hosts on your
network. He named his code LaBrea after the La Brea Tar Pit.
Here is how LaBrea works. It is installed on a local host and first listens for ARP requests to
unassigned IP numbers. Usually, a router generates this ARP request for the unknown IP
number. When no ARP reply is generated by a real host after three seconds, the LaBrea host
fakes a response to an ARP reply.

If a SYN follows from the scanning host (in this case, usually an infected Code Red host), the
LaBrea host fakes a SYN/ACK response. LaBrea does not examine the destination port, so this
program could be used against any TCP scan or attempted TCP connection to an unassigned IP
number. The scanning host then completes the three-way handshake and attempts to send
some data. The LaBrea host now deliberately fails to respond by never ACKing the data sent by
the scanning host. Thus, the scanning host is tarpitted in retransmissions until it times out. This
consumes resources on the scanning host and slows its capability to scan, especially if it waits
for a response to proceed with further scanning.
Let's examine what happens step by step in the LaBrea tarpit:
ARP request for unassigned IP 192.168.143.236

18:34:32.757821 arp who-has 192.168.143.236 tell 192.168.143.1
18:34:35.743528 arp who-has 192.168.143.236 tell 192.168.143.1

After 3 seconds and no ARP reply, LaBrea host fakes reply

18:34:35.743591 arp reply 192.168.143.236 (0:0:f:ff:ff:ff) is-at
0:0:f:ff:ff:ff
First, LaBrea looks for ARP requests on the local network. These usually come from the local
routing device. If it sees no ARP reply after three seconds (this is the default wait time, however
it can be changed by a command line option), it fakes an ARP reply. In this case, we see an ARP
request for host 192.168.143.236 from the local router 192.168.143.1. This is an unassigned IP
number. No ARP reply is seen and another ARP request is generated three seconds after the
initial one.
After three seconds, the LaBrea host fakes an ARP reply and tells 192.168.143.1 that the MAC
address for 192.168.143.236 is a bogus 0:0:f:ff:ff:ff. Neither the 192.168.143.236 address nor
the MAC address is real. This is a way to allow the routing device to respond to the scanner
without generating an ICMP unreachable error. Now, the LaBrea host will look for any traffic
destined for the bogus MAC address going across the network.
After the bogus MAC address is generated by LaBrea, the scanning host's SYN attempt is
answered by the LaBrea host simulating a listening host and port as shown.
Infected Code Red host requests SYN

18:34:35.743817 codered.victim.com.1113 > 192.168.143.236.www: S
301190748:301190748(0) win 8192 <mss 1460,nop,nop,sackOK> (DF)
LaBrea host spoofs ACK

18:34:35.743940 192.168.143.236.www > codered.victim.com.1113: S
2516582400:2516582400(0) ack 301190749 win 10

Infected Code Red host completes three-way handshake

18:34:35.744190 codered.victim.com.1113 > 192.168.143.236.www: . ack 1 win
8576 (DF)
In the previous output, you see the codered.victim.com host attempt a SYN connection to the
unassigned destination IP address 192.168.143.236 destination port 80 (www). LaBrea then
generates a response to this connection with a SYN/ACK from the non-existent IP address
192.168.143.236. And, as expected, the codered.victim.com host completes the three-way
handshake. The connection is now "established."
Next, the codered.victim.com host attempts to send 10 bytes of data to fill the receive buffer of
the bogus web server 192.168.143.236 as can be seen in the following output:
Code Red host sends 10 bytes of data
18:34:35.745555 codered.victim.com.1113 > 192.168.143.236.www: . 1:11(10) ack

1 win 8576 (DF)
Retransmission at +6 seconds
18:34:41.746643 codered.victim.com.1113 > 192.168.143.236.www: . 1:11(10) ack
1 win 8576 (DF)
Retransmission at +12 seconds
18:34:53.743027 codered.victim.com.1113 > 192.168.143.236.www: . 1:11(10) ack
1 win 8576 (DF)
Retransmission at +24 seconds
18:35:17.735734 codered.victim.com.1113 > 192.168.143.236.www: . 1:11(10) ack
1 win 8576 (DF)
Retransmission at +48 seconds
18:36:05.741181 codered.victim.com.1113 > 192.168.143.236.www: . 1:11(10) ack
1 win 8576 (DF)
Retransmission at +96 seconds
18:37:41.911995 codered.victim.com.1113 > 192.168.143.236.www: . 1:11(10) ack
1 win 8576 (DF)
3 minutes 6 seconds later retransmissions stop
There is no PUSH flag set as you are used to seeing because the PUSH flag is only set when the
sending host empties its sending buffer. But, because codered.victim.com's send buffer is
greater than 10 bytes, the only flag you see is the ACK flag acknowledging receipt of the bogus
initial SYN connection from 192.168.143.236.
Now, here comes the tarpit. There is no acknowledgement of the data sent by
codered.victim.com. So, it must retransmit the data. The retransmission timer for this particular
host has an exponential backoff where it doubles the time between retries. Of the several runs
of LaBrea attempted, the first retry varied in wait time from three to twelve seconds after the
initial try. Several attempts used the six-second wait as manifested in the previous output.
Five retries and three minutes and six seconds after the initial attempt to send data, the
codered.victim.com host gives up. But it has expended resources and been delayed in its
scanning for this duration. If the scanning host waits for the response from the LaBrea host
before continuing the scan, it has been slowed down in its efforts. This is more effective if the
scanning host is tarpitted over and over again for all unassigned IPs on this network.
Although it appears very tempting to use LaBrea, make sure that you understand the
implications of doing so. First, as currently written, the tarpit is performed for any TCP
connection for which there is no real destination IP, regardless of destination port number. If a
real host in the network temporarily experiences problems and is unable to respond to an ARP
request, legitimate connections might be erroneously tarpitted. Also, it appears that firewalls
that maintain state tables of connections can become encumbered by the tarpitted connections.
LaBrea code can be found at www.hackbusters.net.

La Brea Tar Pit
La Brea Tar Pit is located in Los Angeles's Hancock Park. It was the site of a natural
accumulation of tar that formed over oil. During the Early Pleistocene time (about 2.5
million years ago), animals became tarpitted and died when attempting to drink at
the site or cross the tar formation.
TCP Window Size
The TCP window size is the method employed by a receiving host to inform the sending host of
the current buffer size for data sent for that connection. This is a flow control mechanism
because it is dynamic. The window size becomes smaller for all data that has been received, but
not yet processed by the receiving host. If the receiving buffer ever becomes full, the window
size becomes 0 informing the sending host to temporarily halt transmission of any more data.
After the receiving host has processed some of the data in the buffer, it sends a window size
update to the sending host to inform it to resume sending data.
As you can see, flow of control for TCP sessions is mostly done by the receiving host by use of
the window size. We have a tendency to assume that the sender is really the one controlling the

http://www.hackbusters.net/

flow of data across the network. But, for the most part, the receiver is the director of the data
flow.
Initial window sizes are used by nmap to determine the operating system. Different TCP/IP
stacks select different initial window sizes, which is used to help fingerprint the operating
system.
LaBrea Version 2
If you recall, the original version of LaBrea was able to slow down a scanning or attacking host
for the amount of time it took the attacker's TCP connection to time out from lack of a response
after the three-way handshake. Depending on the attacker's TCP/IP stack implementation of the
number of retries and the backoff time between timeouts, the attacker could be delayed several
minutes.
LaBrea's author, Tom Liston, improved on his own concept using another technique known as
the TCP persist timer. As we just learned, if a receiving host's TCP window is filled and it cannot
accept any more data from the sender, it notifies the sender to cease sending data by setting
the window size to 0. Ordinarily, when the receive buffer frees up space by sending the data to
TCP, a TCP segment follows with a window size greater than 0. What if this new window
advertisement is lost? Both sender and receiver would be frozen waiting for the other to act.
There is a mechanism to deal with this known as a window probe. After a timer expires and the
sender has not received any new window advertisement from the receiver, the sender transmits
a TCP window probe that carries 1 byte of payload with the exclusive purpose of soliciting a
response from the receiver to discover if the window size has been increased. The sender
persists in sending window probes until the window size increases or until either of the end-host
applications terminates.
The new version of LaBrea uses the persist timer to tarpit the attacker for an indefinite amount
of time, as you can see from the following TCPdump output. It works exactly like the previous
version of LaBrea up through the three-way handshake. Instead of not responding, LaBrea
reacts to the sender's data with an acknowledgement, but with a window size of 0. It doesn't
increase the window size via a window update forcing the scanner to send a window probe. The
LaBrea host responds to the window probe, but again advertises the window size as 0. This
pattern of window probe and a response of a window size of 0 continues indefinitely. This tarpits
the attacker into a persistent connection with the LaBrea host if there is no intervention. Take a
look at the output:
19:28:07.577541 codered.victim.com.2045 > 10.10.10.155.www: S
882335286:882335286(0) win 8192 <mss 1460,nop,nop,sackOK> (DF)
19:28:07.577618 10.10.10.155.www > codered.victim.com.2045: S
998514038:998514038(0) ack 882335287 win 5
19:28:07.577879 codered.victim.com.2045 > 10.10.10.155.www: . ack 1 win 8576
(DF)

19:28:07.581366 codered.victim.com.2045 > 10.10.10.155.www: . 1:6(5) ack 1
win 8576 (DF)
19:28:07.581437 10.10.10.155.www > codered.victim.com.2045: . ack 6 win 0
19:28:09.820965 codered.victim.com.2045 > 10.10.10.155.www: . 6:7(1) ack 1
win 8576 (DF)
19:28:09.821041 10.10.10.155.www > codered.victim.com.2045: . ack 6 win 0
19:28:14.424567 codered.victim.com.2045 > 10.10.10.155.www: . 6:7(1) ack 1
win 8576(DF)
19:28:14.424646 10.10.10.155.www > codered.victim.com.2045: . ack 6 win 0
19:28:23.621770 codered.victim.com.2045 > 10.10.10.155.www: . 6:7(1) ack 1
win 8576 (DF)
19:28:23.621845 10.10.10.155.www > codered.victim.com.2045: . ack 6 win 0
19:28:42.016162 codered.victim.com.2045 > 10.10.10.155.www: . 6:7(1) ack 1
win 8576 (DF)

19:28:42.016237 10.10.10.155.www > codered.victim.com.2045: . ack 6 win 0
19:29:18.804962 codered.victim.com.2045 > 10.10.10.155.www: . 6:7(1) ack 1
win 8576 (DF)
19:29:18.805038 10.10.10.155.www > codered.victim.com.2045: . ack 6 win 0
We join our session after the faked ARP reply by the LaBrea host. For orienta-tion purposes, we
see the three-way handshake completed by the Code Red victim host, codered.victim.com, and
the LaBrea host pretending to be host 10.10.10.155. The codered.victim.com host then sends 5
bytes of data (in bold output) because that was the advertised window size of the bogus
10.10.10.155 host. The 10.10.10.155 LaBrea host responds with an acknowledgement of
receipt of data, but a window size of 0. The codered.victim.com host waits a couple of seconds
when it doesn't get any notification of a window size increase and sends a 1-byte window probe
to 10.10.10.155. The LaBrea host lazily responds to the window probe essentially telling the
inquirer to chill out; it is still alive and running, but is not ready for any data just yet. As you
witness, this cycle is repeated with the probing host increasing its wait time for future probes
and becoming tarpitted indefinitely.

UDP
UDP is a much less complicated protocol to discuss than TCP because it doesn't have any of the
fields that ensure reliable delivery. UDP does not make any guarantees that data will be
delivered and leaves this function to applications to handle. This section will examine the fields
found in the UDP header and how UDP port scanning is accomplished.
Ports
Just as with TCP ports, UDP port fields are two separate 16-bit fields in the TCP header—one for
source and another for destination. The valid range of values is between 1 and 65535; the use
of port 0 is typically a signature of unusual activity.
When a source host wishes to connect to a destination host, an ephemeral port is typically
selected in the range of ports greater than 1023. For each new sending connection, a different
ephemeral port should be selected.
UDP Port Scanning
Unlike TCP that responds with either a positive response (SYN/ACK) to a listening port or a
negative response (RESET/ACK) to a non-listening port, UDP doesn't respond to an initial
connection with any positive feedback. But, a live host responds with a negative response of
ICMP "port unreachable" to a non-listening UDP port. This is how scanners determine if the UDP
port is listening or not. This is another more stealthy way to scan for live hosts, assuming the
site does not block outbound ICMP error messages.
So, the absence of an ICMP "port unreachable" error is construed as an open port. What if the
scanning packet got dropped on its way to the target host? Or what if the target host responds
with an ICMP "port unreachable" message, but the site blocks outbound ICMP messages? Or
what if the site blocks inbound UDP and blocks all outbound ICMP or ICMP unreachable
messages so that the scanner cannot receive an ICMP "admin prohibited" message to know
this? This can be misconstrued as a listening port. Nmap scans the same UDP ports many times
to try to deal with the case of dropped packets. If one packet is dropped and the network is not
under duress or having problems, chances are one of the repeated packets will not be dropped.
And once again, nmap is intelligent enough to know that the lack of any response is more likely
an indication of filtering of some sort by the destination site than it is of all UDP ports listening.
This is a UDP port scan in the 32771 to 34000 range to look for open Remote Procedure Call
(RPC) ports on a Solaris host. Nmap found many of these ports open. It assumes that a port is
open if no ICMP "port unreachable" message was returned. As we have discussed, this is not

always true.
nmap –sU sparky –p 32771-34000

WARNING: -sU is now UDP scan -- for TCP FIN scan use -sF
Starting nmap V. 2.12 by Fyodor (fyodor@dhp.com, www.insecure.org/nmap/)
Interesting ports on sparky (1.1.1.100):
Port State Protocol Service

32771 open udp unknown
32772 open udp unknown
32773 open udp unknown
32774 open udp unknown
32782 open udp unknown
32783 open udp unknown
32784 open udp unknown
32785 open udp unknown
32786 open udp unknown
32797 open udp unknown
The following TCPdump output shows a sample from UDP port scanning. Any port in the
scanned range that sparky does not generate an ICMP "port unreachable" message for is
assumed to be listening:
07:09:08.286810 verbo.62865 > sparky.32787: udp
07:09:08.286847 verbo.62865 > sparky.32775: udp
07:09:08.286878 verbo.62865 > sparky.32788: udp
07:09:08.286924 verbo.62865 > sparky.32789: udp
07:09:08.286969 verbo.62865 > sparky.32791: udp
07:09:08.287046 verbo.62865 > sparky.32774: udp
07:09:08.287094 verbo.62865 > sparky.32781: udp
07:09:08.287162 verbo.62865 > sparky.32772: udp
07:09:08.287229 verbo.62865 > sparky.32789: udp

07:09:08.287793 sparky > verbo: icmp: sparky udp port 32788 unreachable (DF)
07:09:08.977544 sparky > verbo: icmp: sparky udp port 32791 unreachable (DF)
07:09:09.657361 sparky > verbo: icmp: sparky udp port 32781 unreachable (DF)
07:09:10.157301 sparky > verbo: icmp: sparky udp port 32787 unreachable (DF)
07:09:10.817315 sparky > verbo: icmp: sparky udp port 32789 unreachable (DF)
UDP Length Field
The UDP length is the number of bytes found in the UDP header plus the number of bytes found
in the UDP payload. The UDP header is 8 bytes so the minimum length for the UDP length is 8
bytes. The maximum theoretical byte length of an IP datagram is 65535. Given this, and that
the IP header is a minimum of 20 bytes long, the theoretical maximum UDP length value is
65515.
Many UDP applications limit the length of the UDP datagram to 8192 bytes, although we saw
where DNS limited the DNS payload to 512 bytes. Also, the TCP/IP stack of a given operating
system as implemented in the kernel might limit the length of the UDP datagram.

ICMP
ICMP is another protocol that is fairly simple as far as the fields found in the header. Like UDP,
ICMP does not guarantee delivery of the message, so its structure and fields are

http://safari.informit.com/?xmlid=0-73571-265-4/22991533

straightforward. ICMP fields will be examined in terms of normal and malicious use.
Type and Code
Remember that ICMP has no ports. There must be a method indicating what type of ICMP
message is being sent or received. The first two bytes of the ICMP message are the ICMP
message type and code, respectively. The message code is a subcategory under the message
type.
For instance, there are two possible message codes for a message type of 11, which represents
the time exceeded category. If the message code is 0, it is a "time exceeded in-transit"
message. If the message code is 1, it is an IP "reassembly time exceeded" message.Valid
values of ICMP message types and codes are found at www.iana.org/assignments/icmp-parameters.
Identification and Sequence Numbers
If you examine some ICMP requests such as the echo request, you'll find some additional fields
in the ICMP header. These are the ICMP identifier found in bytes 4 and 5 offset of the ICMP
header and the ICMP sequence number found in bytes 6 and 7 offset of the ICMP header.
These fields are used in an echo request/echo reply pair to uniquely identify requests and match
them with responses. For UNIX hosts, the ICMP ID is typically the process ID of the ping that
generated the traffic. There can be several simultaneous ping commands so the identifier in
both the echo request and echo reply informs the pinging host what reply is connected with
what request. Each ping can generate several echo requests and the sequence number is the
manner in which they are tracked in order to see if there are missing packets. Here is the
output from a ping request that demonstrates the change in ICMP sequence numbers.
PING sparky (1.1.1.100) from 1.1.1.5 : 56(84) bytes of data.

64 bytes from 1.1.1.100: icmp_seq=0 ttl=255 time=0.8 ms
64 bytes from 1.1.1.100: icmp_seq=1 ttl=255 time=0.9 ms
64 bytes from 1.1.1.100: icmp_seq=2 ttl=255 time=7.3 ms

16:33:07.400700 verbo > sparky: icmp: echo request

4500 0054 038d 0000 4001 bed1 0101 0105
0101 0164 0800 9e12 c402 0000 0391 8439
1d1d 0600 0809 0a0b 0c0d 0e0f 1011 1213

1415 1617 181916:33:07.401479 sparky > verbo: icmp: echo reply (DF)

4500 0054 7146 4000 ff01 5217 010018f64
010018f05 0000 a612 c402 0000 0391 8439
1d1d 0600 0809 0a0b 0c0d 0e0f 1011 1213
1415 1617 1819
Let's examine the ICMP identifier and sequence numbers in the context of the previous output's
ping. We ping host sparky from verbo and see from the output that the sequence number
begins at 0 and increments for each new echo request sent out. In this case, the ping process
was aborted after the third echo request.
If you examine the hex dump, you'll see that the identifier is a hex c402 or decimal 50178.
Because the pinging host is a Linux host, we assume this is the process ID of the ping. This
value will remain static for all echo requests and replies associated with this ping. The sequence
number, on the other hand, will increase by 1 for each new echo request sent and will be cloned
in the associated echo reply. Had all the echo requests and replies associated with this ping
process been displayed, we'd see four additional records, two echo requests, and two echo
replies. The identifier would be the same for all, but the sequence number would be 1 for the
second set of echo requests and replies, and it would be 2 for the third set.
Misuse of ICMP Identification and Sequence Numbers
Because the ICMP identifier and sequence number fields were not likely to receive careful

http://www.iana.org/assignments/icmp-parameters

scrutiny in the past, they were chosen to signal exploit traffic to the receiving host. In the case
of the a DDoS known as Stacheldraht, the ICMP identifier value of 667 was used to initiate
connections between handler and agent hosts in an ICMP echo reply. The ICMP identifier value
of 666 was used to respond from agent to handler with another ICMP echo reply. In Tribe Flood
Network, an ICMP identifier value of 456 was used to initiate a connection between client and
daemon and a value of 123 was used to respond—both using ICMP echo replies too. Finally,
Loki of many years ago had a static hex value of 0xf001 or 0x01f0 in the ICMP sequence
number.
These are all valid values for those fields so tuning a NIDS to look solely for those values in
those fields might generate some false positives. It is best to examine these packets statefully
in the context in which they occurred.

Summary

As we wind up our two-chapter scrutiny of header fields in the IP datagram, we finish our
examination of the embedded protocol fields. By far, TCP is the busiest of the protocol headers
because of all of the fields required to maintain reliability, state, order, and data flow control. As
you would imagine, the initial values selected for some of these fields provide a wealth of
information for nmap operating system fingerprinting scans. As well, some of the fields can be
used for invasion or insertion attacks as we saw demonstrated with the TCP checksum example
in the previous chapter.

UDP and ICMP header fields are uncomplicated in purpose. Still, UDP ports can be scanned
using nmap by searching for ports for which no ICMP "port unreachable" message is returned.
ICMP messages can provide reconnaissance when allowed to leave the network, and nmap
makes use of examining the embedded messages after the ICMP header to identify remote
operating systems. Finally, the ICMP identification and sequence numbers have been used for
stealthy purposes in DDoS attacks or covert protocol exchanges.

Chapter 10. Real-World Analysis

No doubt you've had your fill of healthy, low-fat theory on packet dissection and header fields.
How about bringing on some of the more interesting, tasty, real-world traffic? That is what we
are about to embark on in this chapter. For you to understand the analysis that will be shown
here, it was necessary to lay the groundwork in previous chapters first.
To refresh your memory of the intent of this section, we want to analyze traffic from many
different viewpoints. We've evolved from bits and fields in previous chapters to inspecting one
or more packets for their intent and explaining some actual events of interest that were
captured by Shadow from sites.
The transition from understanding theory to actually explaining some traffic that you see is not
necessarily an easy or intuitive one. It takes time and exposure to some interesting traffic
before you gain the confidence and experience to make this transition. The examples shown in

http://safari.informit.com/?xmlid=0-73571-265-4/22991533

this chapter should help you get started.

You've Been Hacked!

The simplicity of this first real-world event belies its poignancy. In a former lifetime, I worked
for a local military Computer Emergency Response Team (CERT). I worked an early shift
beginning about 5:30 A.M. to avoid the brunt of the rush hour traffic from the suburbs of one of
the nation's most awful commuting cities, Washington, DC. I walked into the office one
morning, and the phone was already ringing—not a good sign unless it is Ed McMahon calling to
tell me I'd won the Publisher's Clearinghouse Sweepstakes. Instead, the call was from one of
our parent military CERTs informing us that we'd had a break-in over night.

As a bit of background, the parent CERT used a different set of tools to monitor our site than we
did, and would sometimes call when it had an inquiry about traffic or to report something
noteworthy, as in this case. The CERT supplied the date, approximate time, and source and
destination IPs associated with the break-in, but could supply no more information than this
when queried.

The destination IP of the alleged victim host was a DNS server at the site. This was probably
one of the best maintained hosts on the site; it had the most recent patches of BIND, it had all
ports closed except for secure shell (SSH) from specific source addresses and DNS queries, and
it had been stripped of all unnecessary user accounts. It was not as if this was some legacy
system sitting openly on a DMZ with no recent attention, superfluous ports open, and
unrestricted access. Still, although my first reaction was skepticism, I wasn't naive enough to
think that any host connected to the Internet was impervious to attack. After all, this was a
DNS server, and the venerable BIND software has been plagued with a history of problems,
including buffer overflow attacks that allowed remote root access.

A rational way to approach this early morning report was to use TCPdump records from Shadow
to examine all traffic to and from our DNS server from the alleged attacker's IP address. Before
showing you an excerpt of the results of that, let's just re-examine what an established TCP
session looks like in terms of TCPdump.

Three-Way Handshake:

boulder.myplace.com.38060 > aspen.myplace.com.telnet: S 3774957990:
3774957990(0) win 8760 <mss 1460> (DF)
aspen.myplace.com.telnet > boulder.myplace.com.38060: S 2009600000:
2009600000(0) ack 3774957991 win 1024 <mss 1460>
boulder.myplace.com.38060 > aspen.myplace.com.telnet:. ack 1 win 8760 (DF)

Data Exchange:

boulder.myplace.com.38060 > aspen.myplace.com.telnet: P 1:28(27) ack 1 win
8760 (DF)
aspen.myplace.com.telnet > boulder.myplace.com.38060: P 1:14(13) ack 1 win

1024
aspen.myplace.com.telnet > boulder.myplace.com.38060: P 14:23(9) ack 28 win
1024

Session Termination:

aspen.myplace.com.telnet > boulder.myplace.com.38060: F 4289:4289(0) ack 92
win 1024
boulder.myplace.com.38060 > aspen.myplace.com.telnet: .ack 4290 win 8760 (DF)
boulder.myplace.com.38060 > aspen.myplace.com.telnet: F 92:92(0) ack 4290
win 8760(DF)
aspen.myplace.com.telnet > boulder.myplace.com.38060: .ack 93 win 1024

First, for two hosts to exchange some kind of data, they have to complete the three-way
handshake. In this case, we have host boulder.myplace.com requesting to connect to host

aspen.myplace.com on port telnet. Host aspen.myplace.com offers telnet service; and the

two hosts synchronize sequence numbers and the connection is established.

Next, typically a client connects to a host for the purpose of exchanging some data. And in this
case, we witness the exchange between both hosts as we see 27, 13, and 9 bytes of data sent
respectively in the three PUSH packets displayed. More data was exchanged before the session
was terminated, but that is not shown because it really adds no new insight into this discussion.

Finally, the two hosts gracefully sever the connection by exchanging and acknowledging FIN
packets. That is what normal TCP sessions look like.

Now, examine some of the traffic from the alleged break-in:

whatsup.net.24997 > dns.myplace.com.sunrpc: S 2368718861:2368718861(0) win
512 <mss 1460>
whatsup.net.25002 > dns.myplace.com.139: S 4067302570:4067302570(0) win 512
<mss 1460>
whatsup.net.25075 > dns.myplace.com.ftp: S 1368714289:1368714289(0) win 512
<mss 1460>
dns.myplace.com.ftp > whatsup.net.25075: R 0:0(0) ack 1368714290 win 0 (DF)
whatsup.net.25177 > dns.myplace.com.1114: S 3231175487:3231175487(0) win 512
<mss 1460>
whatsup.net.25189 > dns.myplace.com.tcpmux: S 368146356:368146356(0) win 512
<mss 1460>
whatsup.net.25118 > dns.myplace.com.22: S 2035824356:2035824356(0) win
512 <mss 1460>

The malicious host is whatsup.net and our DNS server is dns.myplace.com. We see a bunch

of attempted SYN connections to various different ports staring with port 111, also known as
sunrpc or portmapper, port 139, NetBIOS session manager, ftp, and so on. We see no response
from the DNS server except to return a RESET on the ftp query. We can surmise that the packet-
filtering device blocked the other ports we see, yet not ftp. When the DNS server received the
ftp SYN attempt, it responded with a RESET because it didn't listen at that port.

This is just an excerpt of the traffic seen, yet it all was similar except for the different
destination ports attempted. The point is that there were no successful three-way handshakes,
data exchange, or session terminations witnessed. Unless there was some kind of unknown

backdoor into our network that was not monitored, it appears that this was a simple scan of the
DNS server and not a break-in.

After analyzing this traffic, I called the person who had reported the break-in. I shared my
results and asked what kind of evidence they had that there was a break-in. The person replied
that one of their parent CERT organizations had reported this and was just passing the
information on to our site. I got the contact information for the original person who reported the
incident and called to inquire why he believed we had suffered an intrusion. The response was
that he had reported it as a scan, and it had been mistakenly communicated to me as a break-
in.

My mission had not been to determine culpability; it was to determine what kind of solid
evidence anyone had to refute my belief that we had only had a scan. But, as it turned out,
there really was no break-in after all. This incident brought home the necessity for having an
audit trail of activity into and out of the network. Had we not had the TCPdump records of the
scan, we would have had no evidence to refute the intrusion claim. We would have had to trust
the caller and believe that we had an intrusion that none of our NIDS had detected.

We could have logged on to the DNS server. Yet, there would be an absence of any evidence, if
we were lucky. There would be no changes in any of the Tripwire logs that maintained integrity
audits of important files, there would be no rootkits, and there would be no changes to
password files or inetd startup files. It would be impossible to know for certain that there had
been no intrusion; there would be lingering doubt that we just were not seeing the
manifestations of the break-in, perhaps because of installed rootkits and Trojaned software. In
such a case where you are still uncertain about the health of the host, there are not a lot of
options. You have to rebuild the system from the ground up—not a desirable task.

Prior to this event, I had been a proponent of Shadow and had been collecting TCPdump activity
at monitored sites. This converted me to a die-hard Shadow user, and I now use Shadow for all
sites that I monitor. Truthfully, it doesn't matter if you use TCPdump or any other collection
mechanism. What matters is that you have this historical capture of the traffic entering and
leaving your network. And, you don't need to capture payload, just the header portions of the
records, to understand the nature of the activity as was demonstrated in this incident. Indeed,
it also can be helpful to capture payload if you have enough space, even if only to keep it a
couple of days before archiving it.

Netbus Scan
In the next incident, we examine a scan to destination port 12345, which is typically associated
with the netbus Trojan that affects Windows hosts. This particular scan was launched against a
Class B subnet so that it set off all kinds of alarms. The network that was scanned had some
high-numbered port access open through the packet-filtering devices.
The following records provide a very brief excerpt of the detected traffic. This scan attempted
connections to more than 65,000 IPs in the target network. It is important to note that this
traffic was collected on a sensor located behind (inside) the packet-filtering device. This is the
traffic that actually got inside the network. Scans happen! In fact, they happen all the time on
this particular network. It's not that this network is any more inviting than others; it is just a
fact of life that scanning is inevitable and frequent. Knowing this, you cannot get too worked up
when you see scans. However, this is inside the packet-filtering device making it more than a

curiosity, as we will later see. Here are the records:
bigscan.net.1737 > 192.168.7.0.12345: S 2299794832:2299794832(0) win 32120
<mss 1380,sackOK,timestamp 120377100[|tcp]> (DF)

bigscan.net.1739 > 192.168.7.2.12345: S 2299202490:2299202490(0) win 32120
<mss 1380,sackOK,timestamp 120377100[|tcp]> (DF)

bigscan.net.1741 > 192.168.7.4.12345: S 2293163750:2293163750(0) win 32120
<mss 1380,sackOK,timestamp 120377100[|tcp]> (DF)

bigscan.net.1743 > 192.168.7.6.12345: S 2298524651:2298524651(0) win 32120
<mss 1380,sackOK,timestamp 120377100[|tcp]> (DF)

bigscan.net.1745 > 192.168.7.8.12345: S 2297131917:2297131917(0) win 32120
<mss 1380,sackOK,timestamp 120377100[|tcp]> (DF)

bigscan.net.1747 > 192.168.7.10.12345: S 2291750743:2291750743(0) win 32120
<mss 1380,sackOK,timestamp 120377100[|tcp]> (DF)

bigscan.net.1749 > 192.168.7.12.12345: S 2287868521:2287868521(0) win 32120
<mss 1380,sackOK,timestamp 120377100[|tcp]> (DF
We see the scanning host bigscan.net methodically moving through the 192.168.7 subnet with
a unique scan search pattern of looking at the .0 address and even final octets thereafter.
Netbus Hijinks
Netbus is a tool that allows remote access and control of a Windows host. After a host
is compromised, it behooves the attacker to have a means of future access to the
host. Netbus is one of many backdoor Trojans that can be run to provide stealthy
access. It predates another, more familiar backdoor Trojan, Back Orifice. Both Netbus
and Back Orifice have user-friendly GUI interfaces to easily control the remote
compromised host.

Not All That Runs on Port 12345 Is Malicious
The OfficeScan virus eradication package for the corporate enterprise listens on TCP
port 12345 on the desktop host. The enterprise software accommodates central virus
reporting, automatic update (apparently via port 12345 on the updated host), and
remote management for ease of use to assist in monitoring and configuration.
If you ever see a host that listens on TCP port 12345, it is possible that it might be a
helpful rather than harmful process. Given the range of possible listening ports 1
through 65535, I'd much prefer to see the white hats (good guys) select listening
ports that don't share commonly used hacker ports.
Let's go for the jugular and see if there is any need to further investigate this scan. We want to
examine the hosts in the internal network and see if they responded to the scan. The TCPdump
filter to examine this would look for traffic from the internal network of 192.168 with a source
port of 12345 and a TCP flag pair of SYN and ACK. This means that we have a listening host,
which can be potentially very dangerous. Our filter could have used the IP number of the
scanning host instead of or in conjunction with the internal subnet address.
The TCPdump command used to extract response records associated with the scan reads from
the binary file of collected records for the site, and identifies this scan as one that involved the
internal 192.168 subnet and port 12345. The TCPdump command is further refined by using a
filter that looks at the 13th byte offset of the TCP header, where the TCP flag byte is located,
and looks for the ACK flag and the SYN flag set simultaneously. Here is the TCPdump command
and the output generated from it:
tcpdump -r tcpdumpfile 'net 192.168 and port 12345 and tcp[13] = 0x12'

mynet.edu.12345 > bigscan.net.3698: S 2633608519:2633608519(0) ack 2346088305
win 49152 <mss 1380,nop,nop,timestamp 2662730[|tcp]> (DF)
The good news is that only one host responded. The bad news is that one host responded!
When it was discovered that there was a responding host, this incident was escalated to the
highest priority because we believed we had a host offering the netbus Trojan, a natural
conclusion. The scan and subsequent discovery that there was a responding host occurred by
7:00 A.M., meaning that most of the staff had not yet arrived at work. In the interim, the
network group was contacted and told to disallow any inbound or outbound traffic to or from
the responding host by blocking it at the packet-filtering device. Also, the local computer
incident response team was mobilized to scan the host for vulnerabilities and track down the
owner.
After some superficial probing, the incident response team discovered that the host was a
Silicon Graphics, Inc. (SGI) running an older version of Irix (SGI's version of UNIX). As a
veteran of incident response teams, I remembered that older versions of Irix used to come
configured with an account of lp (line printer) with no password. Tragically, a telnet connection
to the host allowed me access to the host, using the lp account and no password. This discovery
pretty much ruled out that this was a netbus problem because the responding host ran a
version of UNIX, but we did have a rogue port answering and a host that had little, if any,
security.
Concurrently, the search for the host's system administrators continued. Ownership records
were dated and the host had been tossed from administrator to administrator as people moved
in and out of the organization and assignments changed. This particular host had a rich history
of neglect because the user-administrators were scientists or engineers who were never really
trained in administration, let alone security. This is a common paradigm of neglect because
many research departments do not have the budget to hire trained administrators. The users
are usually overburdened workers who just need to keep the host running.
The system administrators of the SGI hosts finally arrived at work. As suspected, they had no
idea what was listening on port 12345. It was also quite apparent that they and their users had
little concern or appreciation for security. We told them it was necessary to disconnect the host
from the network and begin backups for forensic purposes. An argument ensued when one of
the users became indignant about needing to have the host up and accessible on the network.
The leader of the incident response team politely told him that he had two options: first, to
cooperate and willingly cede control, or second, to have the network connection
unceremoniously severed by wire cutters. It seems the light bulb went on at that point, and
they agreed to cooperate.
When we finally got access to the system, we wanted to make sure that the host was listening
on port 12345. The process of making backups on this host was long and cumbersome, so we
didn't want to make them do anything unnecessary. At the same time, we didn't want to ruin
any forensic evidence by poking around too much. Only one command was attempted—the
netstat –a command to make sure that port 12345 was running.
Can you see the flaw of executing the netstat command? In hindsight, it seems this was really
not such a wise move. Had the netstat command reported that port 12345 was not listening,
this would have been extremely suspicious and more indicative of a Trojaned or rootkit netstat
program running on the host that was altered to not report that port 12345 was listening. But,
this was not the case; port 12345 was listening.
System backups were started to preserve any forensic evidence in case some kind of
prosecution ever had to be done. Finally, when the backups were completed, we had an
opportunity to examine the system. We didn't want to disturb it in any way prior to the
backups.
A very handy command in this situation is the fuser command. This is not available for all UNIX
operating systems, but it is available on Irix and Linux:
[root@irix]# fuser 12345/tcp

12345/tcp: 490
The command was issued to find the process number associated with port 12345 on TCP. By
looking at the netstat output, you don't know the process that is running the service on port
12345. The fuser command returns the process number of the software running on that port.
Next, you have to find what that particular process number is running. That can be done using
the ps command and then examining the output for the process number, in this case 490:
[root@irix]# ps -ef | grep 490
root 490 483 0 Sep19 ? 00:02:17 /usr/local/bin/license_manager
You see that there is a license manager running. When this appeared on the console with the
system administrator watching, he remarked that he had recently installed a license manager.
He had no idea what port it listened on. The mystery was solved! This was the best possible
resolution considering the alternatives. But, give me a break—what reputable license manager
software maker would use a default listening port of 12345?
Before this host was allowed back on the network, it was cleaned up with the assistance of a
savvy UNIX administrator. An initial vulnerability scan of the host produced about twenty pages
of high- and medium-range security problems. It was scanned again after the changes and
upgrades to make sure that no known vulnerabilities existed.
Other Commands to Display Programs Associated with Ports
The UNIX command lsof can be used, as well, to list information about files opened
by processes. This comes with many UNIX operating systems, but can be downloaded
and added if it is not available. To find the process ID associated with the service
listening on port 901 using lsof, execute the following:
lsof -i TCP:901

COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
inetd 387 root 9u IPv4 369 TCP *:swat (LISTEN)
You see that port 901 is associated with the inetd process. This is the Internet
daemon that starts most of the listening services. Some additional information is
displayed in the last column; port 901 is associated with Samba Web Administration
Tool (swat). You should find this started in the file /etc/inetd.conf:
grep swat /etc/inetd.conf
swat stream tcp nowait.400 root /usr/sbin/swat swat
A Windows tool known as fport (available with a tool search on www.securityfocus.com) can
be used to associate processes with ports on which they run. Here is a sample output
from running fport on a Windows 2000 host:
FPort v1.31 - TCP/IP Process to Port Mapper
Copyright 2000 by Foundstone, Inc.
http://www.foundstone.com
Securing the dot com world

Pid Process Port Proto Path
384 svchost -> 135 TCP C:\WINNT\system32\svchost.exe
8 System -> 445 TCP
496 MSTask -> 1025 TCP C:\WINNT\system32\MSTask.exe
8 System -> 1027 TCP
1692 SshClient -> 3705 TCP C:\Program Files\SSH
Communications
Security\SSH Secure Shell\SshClient.exe
1892 OUTLOOK -> 4040 TCP C:\Program Files\Microsoft
Office\Office\OUTLOOK.EXE

384 svchost -> 135 UDP C:\WINNT\system32\svchost.exe
8 System -> 445 UDP

http://www.securityfocus.com/

220 services -> 1026 UDP C:\WINNT\system32\services.exe
916 iexplore -> 1341 UDP C:\Program Files\Internet
Explorer\iexplore.exe
1892 OUTLOOK -> 4024 UDP C:\Program Files\Microsoft
Office\Office\OUTLOOK.EXE

Although this turned out to be a non-incident in terms of intrusions, it does illustrate a very
noteworthy point. It is extremely helpful to be able to do a quick assessment of potential
reconnaissance or potential damage from scan activity of your network. Most NIDS report about
scans, notifying you that they have occurred. But, the more relevant knowledge is this: did any
host respond to the scans? That is where TCPdump recorded activity is once again invaluable.

How Slow Can you Go?
This event concerns a remotely monitored site that had poor response time on a good day. One
day while attempting to examine activity, the response time became painfully slow. It was so
slow, you could type in one character and it would take about 30 seconds to see it echoed back
on the screen. This was pretty annoying, but signaled that the site had some issues other than
normal poor response time.
Although this was occurring, we were collecting a copy of their Shadow sensor data at our site.
In an attempt to explain the poor response time, the site's Shadow events of interest were
examined. It showed that they were getting a lot of fragmented activity directed at their
network address of 192.168.133.0 (this is a translated address for anonymity purposes). Upon
further examination, it was discovered that this had been going on for many hours. Here is a
sample of the records that they were getting:
12:01:12.150572 dos.com > 192.168.133.0: (frag 54050:1480@4440+)
12:01:17.560572 dos.com > 192.168.133.0: (frag 54050:1480@2960+)
12:01:17.570572 dos.com > 192.168.133.0: (frag 54050:1480@4440+)
12:01:22.200572 dos.com > 192.168.133.0: (frag 54050:1480@1480+)
12:01:22.210572 dos.com > 192.168.133.0: (frag 54050:1480@2960+)
12:01:22.220572 dos.com > 192.168.133.0: (frag 54050:1480@4440+)
12:01:22.230572 dos.com > 192.168.133.0: (frag 54050:1480@5920+)
12:01:27.240572 dos.com > 192.168.133.0: (frag 54050:1480@2960+)
12:01:27.250572 dos.com > 192.168.133.0: (frag 54050:1480@5920+)
12:01:37.230572 dos.com > 192.168.133.0: (frag 54050:1480@1480+)
12:01:37.240572 dos.com > 192.168.133.0: (frag 54050:1480@2960+)
12:01:37.240572 dos.com > 192.168.133.0: (frag 54050:1480@4440+)
12:01:37.250572 dos.com > 192.168.133.0: (frag 54050:1480@5920+)
12:01:42.300572 dos.com > 192.168.133.0: (frag 54050:1480@1480+)
You see dos.com sending fragmented packets to the network address. As mentioned, this
activity had been happening for several hours. There are a couple of problems with the traffic
that need to be examined. See if you can find the three problems associated with fragmentation
in the previous TCPdump output.
First, a normal fragmented packet train usually has two or more parts:

● There is an initial fragment that has an offset of 0 and the More Fragments flag set (+):

frag 54050:1480@0+
Recall that the fragment format is as follows:
frag FRAG-ID:BYTES-IN-CURRENT-FRAGMENT@OFFSET-INTO-FRAGMENT-DATA [+]

● There might be intermediate fragments that are neither the first nor last fragments. An
intermediate fragment has a non-zero offset and the More Fragments flag set. The + flag
indicates that the more fragments bit is set or there is another fragment following the one
being sent. The More Fragments flag is set in the first and intermediate fragments.

● There is a final fragment, one in which the more fragments bit is not set: no + flag.

This activity appeared on Shadow's hourly wrap-up from the default because both the
fragmentation and the destination address having a final octet of 0 (the network address
192.168.133.0).
The fragmentation that is seen in this log has some definite problems:

1. There is no first fragment—one that has an offset of 0.
2. You see repeated offsets for fragments that are in the same fragment train with the
fragment ID of 54050. For instance, the fragment offset 4440 is repeated several times.
3. There is no final fragment—one that doesn't have the More Fragments flag (+) set.

It is possible that the offset values are not chronological because the fragments don't
necessarily arrive in the order in which they were sent.
After doing some research about the topology of the remote site, we discovered that our sensor
was located behind (inside) a packet-filtering device that blocked inbound ICMP echo requests.
That is the reason we believe that the initial fragment was never seen. Keep in mind that only
the first fragment in the fragment train carries the embedded protocol header, such as the
information to say that these packets were associated with ICMP echo requests. We can only
surmise that the fragmented activity was associated with the dropped ICMP echo requests.
The packet-filtering device that blocked this activity was a router that did not keep track of
state. Therefore, it blocked the first fragment of the fragment train because it was the one that
contained the information that this was an ICMP echo request. The router had no means of
associating the first fragment with subsequent ones. It appears obvious to us that the
subsequent packets all share the same fragment ID and are assumed to be associated with the
blocked one. Yet, this router did not maintain that information and allowed the subsequent
fragments into the network.
However, this doesn't explain why no final fragment was observed. This should have nothing to
do with a router that is incapable of keeping track of state. The only explanation for not
receiving a final fragment is that is was intentionally omitted.
Normally, fragments are reassembled by the destination host only and not by intermediate
routers through which they travel. However, in this case, the router attempts to reassemble the
fragmented packets because they are sent to the network address 192.168.133.0 on which the
router resides. This particular router has an old Berkeley Software Distribution (BSD) TCP/IP
style stack that responds to this "broadcast" so that it attempts to reassemble the fragments.
The router has limited cache for reassembly. The combination of the repetition of the same
fragment ID, the more fragments bit set in every fragment, and the missing first and last
fragments severely encumbered the router so that it couldn't do routing work. The router would
never time out on reassembly of these packets because it kept seeing evidence that more
fragments were coming. This was a successful denial of service (DoS) against the router. When
the hostile IP was blocked on an external router, the response time returned to normal.
Why didn't this router expire the incomplete set of fragments with an ICMP "IP reassembly time
exceeded" message? After all, isn't this a prime candidate for resource exhaustion, waiting for a
fragment or fragments that are never sent? The problem is that for the "IP reassembly time
exceeded" message to be delivered and for the receiving host to expire the fragments, the first
fragment must be received. Because the outermost router blocked these, the first fragment
never arrived, and others could not be expired.
Although some routers block incoming ICMP echo requests, denial of service attacks against the
router should not occur for "normal" traffic. The DoS attack succeeded against this particular
router because of the broadcast address, the repeated fragment ID, and the missing fragments.

After the problem was discovered, the activity was blocked from the hostile source IP address.
This blocked all inbound traffic including fragments because the IP address is repeated in each
of the IP headers of every fragment.
This was successful, and the response time returned to its normal slow (but not painful) state.
The attackers must have sensed this; chances are that the monitored site must have foolishly
sent ICMP errors that indicated that their activity was blocked. The attackers responded by
attempting the same attack with a different source IP address on the same subnet.
Explanation Acknowledgement and Additional Reference
Many thanks and much credit to Vicki Irwin of the SANS Institute for her assistance in
figuring out the router DoS. She referenced the following for a discussion of this and
similar exploits: www.cisco.com/warp/public/770/nifrag.shtml

RingZero Worm

Let's wrap up our foray into real-world analysis by examining the RingZero Worm. This worm
would probably be considered ancient in Internet time because it was discovered in the latter
part of 1999. Plenty has transpired concerning malicious code since that time, yet some of the
concepts that can be learned from examination of the worm activity are timeless. This presents
a good transition into the next and final chapter of this section that delves more deeply into
forensics.

The first indication that the monitored site had some new and unusual activity was that Shadow
reported many different attempts to connect to TCP port 3128, the squid web proxy server.
These attempted connections occurred many times an hour and were from source hosts from all
over the world. Although it has become rather commonplace today with malicious code such as
Code Red and nimda to see many different source IPs scanning many different destination IPs,
in late 1999, it was a rarity. Here is an excerpt of the kind of activity seen for one hour at the
monitored site:

12:29:48.230000 4.3.2.1.1049 > 172.16.54.171.3128: S 9779697:9779697(0) win
8192 <mss 1460> (DF)
12:29:58.070000 4.3.2.1.1049 > 172.16.54.171.3128: S 9779697:9779697(0) win
8192 <mss 1460> (DF)
12:30:10.960000 4.3.2.1.1049 > 172.16.54.171.3128: S 9779697:9779697(0) win
8192 <mss 1460> (DF)

12:44:54.960000 1.2.3.4.3243 > 172.16.187.212.3128: S 356330349:356330349(0)
win 8192 <mss 1460> (DF)
12:44:57.930000 1.2.3.4.3243 > 172.16.187.212.3128: S 356330349:356330349(0)
win 8192 <mss 1460> (DF)
12:45:03.930000 1.2.3.4.3243 > 172.16.187.212.3128: S 356330349:356330349(0)
win 8192 <mss 1460> (DF)
12:45:15.930000 1.2.3.4.3243 > 172.16.187.212.3128: S 356330349:356330349(0)
win 8192 <mss 1460> (DF)

12:46:13.070000 1.1.1.1.2262 > 172.16.99.110.3128: S 20315949:20315949(0) win

http://www.cisco.com/warp/public/770/nifrag.shtml

8192 <mss 1460,nop,nop,sackOK> (DF)
12:46:16.080000 1.1.1.1.2262 > 172.16.99.110.3128: S 20315949:20315949(0) win
8192 <mss 1460,nop,nop,sackOK> (DF)
12:46:22.070000 1.1.1.1.2262 > 172.16.99.110.3128: S 20315949:20315949(0) win
8192 <mss 1460,nop,nop,sackOK> (DF)

Three different source IPs—4.3.2.1, 1.2.3.4, and 1.1.1.1—are attempting connections to three
different internal destination IP addresses. Because many of the scanned destination IPs in our
network were not active, there appeared to be no prior reconnaissance that would target live
hosts only. Each source host retries (source ports and TCP sequence numbers do not change)
the connection several times because the destination hosts do not respond, and no ICMP error
message is returned to indicate that the destination hosts are unreachable. Looking at the
timestamps, you can see that these connection attempts occurred at different times during the
12:00 hour.

Our site was not the only one that witnessed this activity; the Naval Surface Warfare Center
was also seeing these scans as well as ones to destination port 80 and 8080. Other sites
witnessed this activity, and soon, it became apparent that this activity was very widespread.

The initial assessment of the activity was someone attempting to find open web proxy servers.
Open proxy servers sometimes offer a "tunnel" through which a hacker can gain access and
assume the source IP of the proxy to hide his tracks. At this point, because the traffic was
coming from all over the world, one theory was that the source IPs had been spoofed and it was
just a handful of hosts involved. Again, this attack pre-dates the notion of distributed denial of
service (DDoS) attacks, so we were unaccustomed to dealing with many source hosts to many
destination host attacks.

The verbose option (-vv) of TCPdump might provide some assistance in determining whether or
not the source IPs were spoofed. The same TCPdump records are examined again, but this time
using the verbose option:

12:29:48.230000 4.3.2.1.1049 > 172.16.54.171.3128: S 9779697:9779697(0) win
8192 <mss 1460> (DF) (ttl 19, id 9072)
12:29:58.070000 4.3.2.1.1049 > 172.16.54.171.3128: S 9779697:9779697(0) win
8192 <mss 1460> (DF) (ttl 19, id 29552)
12:30:10.960000 4.3.2.1.1049 > 172.16.54.171.3128: S 9779697:9779697(0) win
8192 <mss 1460> (DF) (ttl 19, id 39792)

12:44:54.960000 1.2.3.4.3243 > 172.16.187.212.3128: S 356330349:356330349(0)
win 8192 <mss 1460> (DF) (ttl 19, id 962)
12:44:57.930000 1.2.3.4.3243 > 172.16.187.212.3128: S 356330349:356330349(0)
win 8192 <mss 1460> (DF) (ttl 19, id 11714)
12:45:03.930000 1.2.3.4.3243 > 172.16.187.212.3128: S 356330349:356330349(0)
win 8192 <mss 1460> (DF) (ttl 19, id 22466)
12:45:15.930000 1.2.3.4.3243 > 172.16.187.212.3128: S 356330349:356330349(0)
win 8192 <mss 1460> (DF) (ttl 19, id 33218)

12:46:13.070000 1.1.1.1.2262 > 172.16.99.110.3128: S 20315949:20315949(0) win
8192 <mss 1460,nop,nop,sackOK> (DF) (ttl 116, id 35676)
12:46:16.080000 1.1.1.1.2262 > 172.16.99.110.3128: S 20315949:20315949(0) win
8192 <mss 1460,nop,nop,sackOK> (DF) (ttl 116, id 46428)
12:46:22.070000 1.1.1.1.2262 > 172.16.99.110.3128: S 20315949:20315949(0) win
8192 <mss 1460,nop,nop,sackOK> (DF) (ttl 116, id 57180)

12:46:34.080000 1.1.1.1.2262 > 172.16.99.110.3128: S 20315949:20315949(0) win
8192 <mss 1460,nop,nop,sackOK> (DF) (ttl 116, id 2397)

Let's scrutinize these records, but this time in terms of source IP spoofing. The salient advice to
remember when looking for spoofed source IPs is to look for similarities in the fields or
characteristics of packets. More likely than not, an attacker will not take time to "craft" in
differences in the packets, and there will be some traces of unlikely similarities. Conversely,
when distinct source IPs truly represent different source hosts, differences in packet
characteristics should be apparent. Given this knowledge, what differences can you find among
the three different source IPs of the previously shown traffic?

For starters, you pretty much have to do fourth-down-and-punt with the IP identification
numbers. The time gaps between when each set of initial connections received is too great to
see real trends in IP identification numbers. Ten minutes pass between the first and second set
of connections, which is enough time for the IP identification numbers of a busy host to go
through all 65,535 numbers and wrap.You would ordinarily look for a chronology of very close
IP identification numbers, which would indicate source IP spoofing. But, this can only be done if
the time changes are insignificant.

What about the arriving TTL values? They look promising for spoofing because both the first two
sets of connections involving source IPs of 1.2.3.4 and 4.3.2.1 have an arriving TTL value of 19.
However, the third set from 1.1.1.1 has an arriving TTL value of 116.

Are there any other differences? Look at the TCP options for the connections. The first two
source IPs share the same TCP options, a maximum segment size (mss) of 1460.Yet, the third
source IP also has a selective acknowledgement (sackOK) that must be padded with two noop's
to fall on a 4-byte boundary.

Finally, look at the number of retries per attempted connection and the backoff time between
initial tries and retries and between subsequent retries. The first source IP 4.3.2.1 has an initial
try and two retries. The backoff time between retries is approximately 10 seconds. Next, IP
1.2.3.4 has one initial try and three retries with the retry attempts doubling in the amount of
time before subsequent ones. Finally, the source IP 1.1.1.1 behaves much like 1.2.3.4 as far as
retries in that it has three retries with a doubling of the backoff time. From all the forensics
from the preceding dump, we can pretty much conclude that these are actual separate source
IPs.

When the traffic was observed, we took the TTL values, estimated the initial TTL values, and
subtracted the arriving from the initial values. This gave us the number of hop counts that the
datagram took to arrive on the sensor network. Then, we executed a traceroute back to the
source IP to see if the expected hop count was close to the actual hop count.

About a dozen traceroutes were attempted; most had a hop count credibly close to the actual
hop count. Also, all the targeted IPs were alive, which might not be the case had random IPs
been chosen for spoofing. It would be rare if someone were doing mass amounts of spoofing
using hand picked live IP numbers only. Usually, it is a far more random selection of spoofed
source IP numbers.

This kind of widespread scan was difficult to explain examining one site. Before the days of
www.incidents.org, Stephen Northcutt asked SANS members to look at traffic at their individual sites
and see if they could provide any explanations about the activity. Hundreds of sites reported
similar activity.

http://www.incidents.org/

A couple of sites were able to see the HTTP request that was executed, and it appeared to
implicate a host www.rusftpsearch.net. The site was available for a few days and it appeared to be
collecting IPs of any open proxy servers found.

Ron Marcum of Vanderbilt University discovered a PC on his network that was scanning hosts on
other networks looking for ports 80, 8080, and 3128. He discovered a Trojan called RingZero
that appeared to be the culprit. At a SANS conference in 1999, conference members and
instructors installed the program that was discovered on the Vanderbilt host and examined what
it did. They were able to recreate that this Trojan would scan other hosts on web ports.

The suspected infection means is via email or mp3 sharing. But, this seminal malicious code is
one of the first that infected hosts and gathered some valuable information from the hosts, and
then used the infected hosts to scan other hosts. This is the same model used for scans and
attacks today, albeit quite a bit more sophisticated.

Summary

Without unnecessarily belaboring the point, the events described in this chapter have
demonstrated the added value of having TCPdump or Shadow running at a site to capture the
background traffic. The first incident of a non-intrusion showed how TCPdump can be invaluable
because its purpose is not exclusively to show alerts of events of interest, but to capture all
traffic. It can provide an audit trail of activity that occurred, or more descriptively in this case,
of activity that did not occur.

In addition, TCPdump was used in the scan incident to assess the reaction of hosts on the
monitored network to the scan. Scans can be harmless distractions when there is no response
by the scanned hosts, or in this case, they can be a reason for concern. Although most NIDS
will inform you of scans, none will automatically alert you of responding hosts.

In the third and final events, TCPdump was used to get very specific information about the
fragments or packets in order to make more accurate evaluations of the nature of the attack.
You can even begin to do forensic investigation about the type of hosts that are conducting the
hostile activity. You will see a more thorough discussion of passive analysis of hostile traffic in
the next chapter.

Chapter 11. Mystery Traffic

Many times as a security analyst, you see some kind of interesting traffic and wish that you had
the time or resources to investigate it or understand it better. You have a much better chance
of being able to do this if you are in a research position rather than a busy operational

http://www.rusftpsearch.net/

environment where your exclusive purpose is to make sure that no unauthorized access occurs.
One such opportunity to do analysis of an event of interest arose at a site where Shadow was
used to capture traffic. The site was the target of some extensive unexplained activity directed
at TCP destination port 27374, which is often used by SubSeven.
The explanation and findings of the traffic are discussed in this chapter. When we witnessed this
activity, we had a gut feeling that we were seeing something unique just because of the sheer
volume of it. We used Shadow's collected TCPdump records to analyze different fields and
aspects of the packet to come to our conclusions. This was a team effort conducted with the
help of co-workers Vern Stark and David Heinbuch.
My suspicion is that many people who gravitate to the position of security analyst enjoy working
puzzles or mysteries. The mystery of this traffic was unraveled simply using TCPdump record
capture, Perl programming to examine and summarize different aspects of the traffic, and Excel
to plot the findings. Working on this puzzle was not only a great learning experience of doing
traffic evaluation, and recovery after making errant assumptions, but it provided a lot of
entertainment to some true bit-heads.

The Event in a Nutshell
Examination of an hour's traffic on June 29, 2001 at 12:00 captured by a Shadow sensor
positioned outside a monitored site's perimeter firewall revealed a large number of source hosts
scanning what appeared to be the site's Class B address space for TCP destination port 27374.
Shadow retrospectively analyzes each hour's traffic for anomalies. Anomalies, or more
accurately, events of interest, are culled by running the previous hour's collected TCPdump
traffic through a series of TCPdump filters. One of the filters looks for attempted TCP SYN
connections from outside the network to a host in the network.
TCP destination port 27374 is associated with a Trojan known as SubSeven that can allow full
access to the victim's machine. We have seen plenty of large scans to the SubSeven port;
however, we had never seen a scan that generated such a large volume of traffic—nor had we
seen one that had come from multiple concurrent sources.
Correlation of Similar Activity
About this same time, the System Administration, Networking, and Security (SANS)
Internet Storm Center released a report on June 26, 2001 about a Microsoft Windows
worm named W32.leave.worm. The speculation was that this worm was used to make
the infected host a participant host, also known as a zombie, in distributed denial of
service (DDoS) attacks. According to the report, the worm spread via connections to
hosts listening on TCP port 27374. The report noted that the worm scanned
predetermined network blocks associated with @Home and Earthlink for destination
port 27374. However, it made no mention of synchronized scanning, nor did it
mention scanning of networks other than those previously mentioned. Although the
described worm activity appeared to be different than the activity that was witnessed
at the monitored site, it was possible that the worm activity had mutated since the
initial report.

The Traffic

The following output represents a handful of TCPdump records to provide the general "flavor" of
the activity. The source and destination hosts are bold. These are the first ten records
associated with the activity on June 29; there are four different source hosts involved in
scanning ten different destination hosts.

The timestamps associated with the records should be regarded with caution. The sensor that
captured these records is running Redhat Linux 7.1 with a packet-capturing mechanism known
as turbopacket compiled into the kernel. It is supposed to contain a method for more efficient
buffering, but it also appears that the timestamp precision has been lost. Timestamps should
have microsecond fidelity, but these timestamps appear to have 10-ms resolution:

12:16:31.150575 ool-18bd69bb.dyn.optonline.net.4333 > 192.168.112.44.27374: S
542724472:542724472(0) win 16384 <mss 1460,nop,nop,sackOK> (DF) (ttl 117, id
13444)
12:16:31.160575 ool-18bd69bb.dyn.optonline.net.4334 > 192.168.112.45.27374: S
542768141:542768141(0) win 16384 <mss 1460,nop,nop,sackOK> (DF) (ttl 117, id
13445)
12:16:31.170575 24.3.50.252.1757 > 192.168.19.178.27374: S
681372183:681372183(0) win 16384 <mss 1460,nop,nop,sackOK> (DF) (ttl 117,id
54912)
12:16:31.170575 24-240-136-48.hsacorp.net.4939 >192.168.11.19.27374: S
3019773591:3019773591(0) win 16384 <mss 1460,nop,nop,sackOK> (DF) (ttl 117,
id 39621)
12:16:31.170575 ool-18bd69bb.dyn.optonline.net.4335 > 192.168.112.46.27374: S
542804226:542804226(0) win 16384 <mss 1460,nop,nop,sackOK> (DF) (ttl 117, id
13446)
12:16:31.170575 cc18270-a.essx1.md.home.com.4658 > 192.168.5.88.27374: S
55455482:55455482(0) win 8192 <mss 1460,nop,nop,sackOK> (DF) (ttl 117, id
8953)
12:16:31.170575 24.3.50.252.1759 > 192.168.19.180.27374: S
681485650:681485650(0) win 16384 <mss 1460,nop,nop,sackOK> (DF) (ttl 117, id
54914)
12:16:31.170575 cc18270-a.essx1.md.home.com.4659 > 192.168.5.89.27374: S
55455483:55455483(0) win 8192 <mss 1460,nop,nop,sackOK> (DF) (ttl 117, id
9209)
12:16:31.170575 24.3.50.252.1760 > 192.168.19.181.27374: S
681550782:681550782(0) win 16384 <mss 1460,nop,nop,sackOK> (DF) (ttl 117, id
54915)
12:16:31.170575 cc18270-a.essx1.md.home.com.4660 > 192.168.5.90.27374: S
55455484:55455484(0) win 8192 <mss 1460,nop,nop,sackOK> (DF) (ttl 117, id
9465)

DDoS or Scan
At first, it was not apparent if this was some kind of attempted DDoS or an actual coordinated
scan of some sort. During the examination of the activity, we were fortunate (from the analysis
perspective) to receive additional activity on July 2, 2001 at 16:00 that was remarkably similar.

After we received the second scan, we began in earnest to look at individual fields found in the
received packets of both sets of activity to interpret the nature and intent of the activity.
Source Hosts
In the first scan, 132,706 total packets were received and there were 314 unique source hosts
involved. Of those hosts, only 17 (approximately 5.4 percent) did not have DNS registered host
names. In the second scan, 157,842 total packets were received. There were 295 unique source
hosts with only 24 (approximately 8.1 percent) with unresolved host names. This alone is quite
telling. Two choices for categorizing the source hosts are that they either do or do not reflect
the genuine source host that is sending the traffic. If the source host reflects the actual sender,
no subterfuge is used in sending the packet. If the source host is not the actual sender, a
spoofed source IP number is placed in the packet.
Typically, when source IP numbers are spoofed, it is a random generation of different IP
numbers in the instance of a flood. Other attacks might use a selection of one or more source IP
numbers that might be either a decoy or an eventual target of some kind. When the source host
reflects the true sender, the intent is more likely than not to be able to receive a response to
the sent traffic.
Therefore, it appears that the activity that was seen is using genuine source IP numbers. If this
were a flood and the source IPs were spoofed using randomly generated IP numbers, it is
statistically unlikely that these IP numbers would resolve to host names 91.9 to 94.6 percent of
the time. It would be unusual that IP numbers would be spoofed using a predetermined set of
IP numbers that resolved to host names, because this takes a lot of effort for little or no gain.
It can be speculated that, because of the sheer number of source hosts involved, they most
likely represent zombie hosts that have somehow been exploited and owned. Many of these
source networks are associated with cable modem or DSL providers such as @Home and AOL.
This corroborates the speculation of zombie hosts because home users are more likely to be
unaware of security threats and less protected than most commercial or larger networks with
some kind of perimeter protection.
Destination Hosts
Next, the analysis moved to examination of the destination hosts to provide more evidence of a
scan. The scanned network is Class B with the possibility of 65,535 IP numbers to scan. The
first scan targeted 32,367 unique destination hosts and the second scan targeted 36,638 unique
destination hosts. An initial unsubstantiated reaction to missed subnets was that there was
some prior reconnaissance performed to directly target live hosts. After more thorough
examination of the destination hosts, it was evident that many of the destination IP numbers
that were scanned had no associated live hosts.
The more plausible explanation for the missing destination subnets and destination hosts is that
perhaps the zombie or zombies that were assigned the mission of scanning those subnets were
somehow not active or responsive during the scan and did not participate. A single missing
destination host in an otherwise scanned subnet might be interpreted as a dropped initial packet
rather than an omitted destination IP number.
Although one unique source host scanned most destination hosts, multiple source hosts scanned
some destination hosts. The scanner appears to have some redundancy of scanned hosts to
ensure a response.
Scanning Rates
Another indication of a scan versus a flood was the scanning rate of the source hosts. Both
scans sustained some kind of activity for five or six minutes; however, the ramp-up time was
fast, and there was a burst of activity for the first two minutes.
The measure of bandwidth consumption was as follows. Each packet was a SYN packet with TCP
options and no payload. Most packets had a length of 48 bytes, a few had more, and a few had
4 bytes less, depending on the number and types of TCP options used. Packets had a standard
20-byte IP header with no IP options. Because the majority of packets had a length of 48 bytes,
this was used as the packet length for the computation of bandwidth consumption. Because
throughput or bandwidth is measured in bits per second, the packet length was 384 (48 * 8)

bits.
The scan on June 29 reached a maximum rate of 1.7Mbps at peak. The second scan on July 2
reached a maximum rate of 2.4Mbps at peak. This did not adversely affect the monitored site,
but a site with a smaller ingress pipe such as a T-1 with 1.554Mbps capacity might have
suffered a temporary denial of service as a side effect of the scan. Figure 11.1 shows the bits per
second during peak scan minutes.

Figure 11.1. Bits per second.

Looking at the plots in Figure 11.1 together, it is apparent from the general contours that the
scanning rates for both scans were very similar. In fact, both scans reached peak scanning
rates at exactly 21 seconds after the scan began. As discovered later, after examining the traffic
using different representations, this peak activity indicated some kind of coordination by the
"commander" who allocated scanning assignments and rates for the zombies.
Peak rates could have occurred because there were more scanning hosts during that second or
because the number of packets sent by hosts increased. Further scrutiny of the data revealed
that the peaks and valleys correlated with an increased number of scanning hosts.
The 21-second peak rate that was observed yet again on a third scan on November 1 was
indeed a mystery. However, it was observed that the scanning hosts sent retries of initial SYN
connections that received no response. This is typical TCP behavior, and many TCP/IP stacks
will attempt 3 retries after the initial SYN, with a formula of waiting 3 seconds before the first
retry, doubling the wait time to 6 seconds for the second retry and doubling the wait time yet
again to 12 seconds for the third and final retry. Hence, the aggregate time that passes
between the initial SYN and the final retry is 21 seconds. And so, when initial SYN attempts only
were plotted by time as in Figure 11.2, the 21-second peak disappears.

Figure 11.2. June 29, 2001 initial SYN attempts.

This only partially explains the 21-second peak. If this peak were due strictly to retries alone of
the same hosts, similar peak activity should be observed at 3 and 9 seconds as well. Figure 11.3
shows two separate types of connection attempts by time for the June 29 scan—the solid line
shows initial SYN attempts and the dashed line shows retries of those initial SYN attempts. This
more completely explains the 21-second peak.

Figure 11.3. June 29, 2001 initial SYNs and retries.

Peak activity occurs at 12:16:52. As expected, this corresponds to the 3rd retry of the spate of
attempted SYN connections sent at 12:16:31. Furthermore, it corresponds to the second retry
of the deluge of another set of initial SYN attempts sent 9 seconds before peak activity at
12:16:42. More so, in both scans, it appears, at least at first, that the wave of initial SYN
connections comes in 12-second intervals. The overlap of retries from this particular timing
pattern is why the 21-second peak activity was witnessed.

The 21-Second Mystery
One of the most intriguing revelations of the examination of this SubSeven traffic was
the 21-second time preceding the peak activity for the initial two scans, and later a
third, that were observed. It was clear that there was some meaning and explanation
associated with this; this couldn't be a mere coincidence because it occurred three
times.
I have an annoying habit: When I'm stumped and frustrated by my inability to figure
something out, I start plaguing colleagues. Most have learned to dismiss me with
some plausible excuse like, "There are free donuts in the cafeteria. See you later."
But, I cornered my co-worker and longtime bicycling buddy, Vern, and asked him to
ponder this mystery. Within seconds, and still a good chance to get those cafeteria
donuts, he said, "Oh, that's easy; it's the combined backoff times for retries." This
insight made us rethink our approach, and we eventually plotted the traffic separately
for initial SYNs and retries, allowing us to discover that the 21-second peak rate was
an overlap of retries from different initial waves of SYN activity.

Fingerprinting Participant Hosts
The assumption now is that the zombie hosts have been "infected" with some malware that is
generating the scanning activity. The question then becomes this: Is there a specific operating
system that has been exploited, transforming the host into a zombie for this scan? An
examination of passive fingerprints can assist in identification of zombies' operating systems.
This assumes that the packets coming from these hosts are not crafted to change default
values, such as TCP window size, initial TTL, and TCP options.
Passive fingerprinting categorizes operating systems by looking at unique field values in the
packets that have been sent. As we have discussed, different operating system TCP/IP stacks
choose unique values for certain fields, such as Time to Live (TTL), TCP window size, and TCP
options. There are also other fields that can be examined, such as the Type of Service (TOS)
value and the don't fragment (DF) flag. But, because most operating systems use a default TOS
value of 0 and set the DF flag, this might only determine the small percentage of unusual values
sent from other operating systems. And, these two fields are best examined in conjunction with
other fields and not alone.
Table 11.1, provided by the Honeynet Project, was used in determining some of the scanning
hosts' operating systems. The lines that are highlighted represent the operating system and
associated fingerprints of the majority of the scanning hosts that were observed for this activity.

Table 11.1. Passive Fingerprinting Values by Operating System
OS VERSION PLATFORM TTL WINDOW DF TOS

#--- ------- -------- --- ----------- -- ---
DC-OSx 1.1-95 Pyramid/NILE 30 8192 n 0
Windows 9x/NT Intel 32 5000-9000 y 0
NetApp OnTap 5.1.2-5.2.2 54 8760 y 0
HPJetDirect HP_Printer 59 2100-2150 n 0

AIX 4.3.x IBM/RS6000 60 16000-16100 y 0
Cisco 11.2 7507 60 65535 y 0
DigitalUnix 4.0 Alpha 60 33580 y 16
IRIX 6.x SGI 60 61320 y 16
OS390 2.6 IBM/S390 60 32756 n 0

http://safari.informit.com/?xmlid=0-73571-265-4/22991533

Reliant 5.43 Pyramid/RM1000 60 65534 n 0
FreeBSD 3.x Intel 64 17520 y 16
JetDirect G.07.x J3113A 64 5804-5840 n 0
Linux 2.2.x Intel 64 32120 y 0
OpenBSD 2.x Intel 64 17520 n 16
OS/400 R4.4 AS/400 64 8192 y 0
SCO R5 Compaq 64 24820 n 0
Solaris 8 Intel/Sparc 64 24820 y 0
FTX(UNIX) 3.3 STRATUS 64 32768 n 0
Unisys x Mainframe 64 32768 n 0
NetWare 4.11 Intel 128 32000-32768 y 0
Windows 9x/NT Intel 128 5000-9000 y 0
Windows 2000 Intel 128 17000-18000 y 0
Cisco 12.0 2514 255 3800-5000 n 192
Solaris 2.x Intel/Sparc 255 8760 y 0
This table of information was obtained at http://project.honeynet.org/papers/finger/traces.txt.
Arriving TTL Values
If you recall, the arriving TTL values can be used to help identify the scanning host's operating
system. Different operating systems use different initial TTL values when sending a packet.
Each router through which the packet travels on its journey from source to destination host
examines the TTL value and decrements it by 1. This becomes an indication of the number of
"hops" that the packet has traveled. If a router ever discovers a TTL of 0, it discards the packet
and sends back an ICMP error message of "time exceeded in-transit" to the sending host. This
informs the sending host that the packet has exceeded its welcome on the Internet. This is a
mechanism that is used to discard lost packets, such as ones that have become caught in a
routing loop.
Initial TTLs of many operating systems have typical values of 32, 64, 128, and 255. These
might be different per protocol—TCP, UDP, or ICMP. For instance, Windows NT 4.0 Service Pack
6 has an initial TTL value of 128 for TCP and an initial TTL value of 32 for ICMP packets sent.
Fortunately, this examination is limited to TCP so there is no need to account for protocol
differences. The arriving TTL values are examined and are helpful in estimating the initial TTL
values. The caveat here is that although most operating systems will be configured to use the
default initial TTL values, these can be changed. All that can be determined with absolute
certainty from the arriving TTL is that it is less than the initial TTL. Of course, this assumes that
the source host and destination host are not directly connected to the same local network, in
which case the packet could pass from source to destination without the TTL being
decremented.
Examination of Figure 11.4 for June 29, 2001 shows that there are three clusters of arriving TTL
values for the scans. More specifically, the closest scanning host appears to be 8 hops away,
and the most distant appears to be 25 hops away from the capturing sensor interface. The
assumption is that the scanning hosts had initial TTL values of 128, 64, and 32, and the arriving
TTL values are associated with an initial TTL value that is greater than the initial TTL value by
the least amount. For instance, if an arriving TTL is 50, it is assumed to have an initial TTL
value of 64 and not 128, although either initial TTL value would be valid.

Figure 11.4. June 29, 2001 arriving TTL values.

http://project.honeynet.org/papers/finger/traces.txt

In the June 29 scan, the largest percentage of scanning hosts, 92.13, had an estimated initial
TTL of 128. More than 37 percent of the hosts with an initial TTL of 128 were approximately 11
to 13 hops away from the sensor. According to Table 11.1, an initial TTL value of 128 is indicative
of Windows 9x/NT/2000. An initial TTL value of 32 is Windows 9.x/NT, which comprised 2.66
percent of the scanning hosts. The initial TTL value of 64 is associated with many of the UNIX
platforms, including the Linux 2.2.x kernel. The percentage of hosts with an initial TTL of 64
was 5.2.
Examination of Figure 11.5 for July 2, 2001 shows the same clustering. More specifically, the
closest scanning host appeared to be 8 hops away, and the most distant appeared to be 27
hops away from the capturing sensor interface.

Figure 11.5. July 2, 2001 arriving TTL values.

Looking at the July 2 scan, the largest percentage of scanning hosts, 92.29, had an initial TTL of
128. More than 37 percent of the hosts with an initial TTL of 128 were approximately 11 to 13
hops away from the sensor. 2.36 percent of the scanning hosts had an initial TTL of 32. Finally,
5.35 percent of the scanning hosts had an initial TTL of 64.
The determination from this is that the scanning hosts are not exclusively Windows hosts, but it
appears that Windows hosts are the majority of the scanners. This means that whatever
malware is exploiting the scanning hosts, it is not exclusive to Windows.
Although the x-axis scaling for plots in Figures 11.4 and 11.5 doesn't readily show this, there was
a very distinct clustering around the estimated initial TTL values. For instance, in the June 29
scan, there is a noticeable gap or absence of packets with arriving TTL values between 22 and
42 and between 56 and 103. Similar behavior is observed for the July 2 scan.
TCP Window Size
A host advertises the TCP window size when it attempts to make an initial connection. The
window size is a dynamic value that changes as information is exchanged between hosts and
represents the current TCP buffer size for the incoming data. This buffer allows multiple packets
to be sent and queued before passing them to TCP and the application. More simply, a given

operating system has a default value for the TCP window size, and the window size can change
dynamically as data is received and processed.
But, the initial window size can be used to fingerprint the operating system. The user or
administrator can customize this, but commonly the default is used.
As you can see in Figure 11.6, the bulk of the connections had an initial window size of 8192. This
is associated with Windows 9x/NT connections according to Table 11.1. Although the table doesn't
have a window-size entry for 16384, research has discovered it is associated with Windows
2000. Table 11.1 alludes that a window size of 65535 is associated with Cisco. However, it
appears that the high percentages associated with this window size would include other
operating systems.

Figure 11.6. Scanning host TCP window size.

Search engines on the Internet failed to find any operating system associations with a window
size of 65535. Attempts were made to examine a week's collection of TCPdump data for the
monitored site to find hosts that had a window size of 65535. Only a dozen of approximately
5,500 hosts were found with a window size of 65535. A scan by nmap could not determine the
operating systems. Some of the hosts had ports open, such as 135 and 139, which would
indicate Windows versions prior to Windows 2000. Others had port 445 listening, which was
introduced in Windows 2000 to support Server Message Block (SMB) talking directly over
TCP/IP without the need for the intermediate layer of NetBIOS over TCP/IP (NBT). Yet, other
hosts with a window size of 65535 listened at ports 111 (portmapper), 515 (line printer
daemon), and 6000 (X11), which are all associated with UNIX hosts. No conclusions could be
reached about the operating system associated with a window size of 65,535 based on these
findings.
Other unique window sizes that were seen were 32120, associated with Linux, which was found
in the June 29 scan only and comprised .19 percent of the total scanning hosts. A window size
of 8760 was seen in both scans and reflects a Solaris host. The first scan had 5.21 percent

hosts with this window size, and the second scan had 6.60 percent hosts with this window size.
The conclusion that can be drawn examining the TCP window size is the same as examining the
arriving TTL values. Looking at Figure 11.6, most of the scanning hosts appear to have a window
size associated with Windows, yet it also appears that operating systems other than Windows
are involved in the scanning too.
TCP Options
Another interesting field for examination is the Maximum Segment Size (MSS), which is found in
the TCP options. This represents the maximum amount of payload that a TCP segment can
carry. This does not include the TCP header and the IP header. Generally speaking, the MSS is
40 bytes less than the Maximum Transmission Unit (MTU), assuming a 20-byte IP header with
no IP options and a 20-byte TCP header with no TCP options. The MTU can then be used to
determine the media on which the sending host resides.
In some instances, although not this one, the MTU, and hence the MSS, might reflect the path
MTU. The sender might send a "discovery" packet that looks for the smallest MTU from source
to destination by setting the DF flag on the packet. If no ICMP error messages are returned, it is
assumed that using the size of the local MTU for packaging packets will not cause
fragmentation. If an ICMP error message "unreachable – need to frag (mtu ###)" is returned,
it contains the MTU size (###) of the link that is smaller than the size of the local MTU. The

sender can decrease the size of the packets to avoid fragmentation. The point is that it is
possible that the MSS might not reflect the local MTU. However, because there is no indication
of discovery packets or that path MTU was used, the assumption is that the MSS does reflect
the local MTU.
Figure 11.7 reveals that the greatest percentage of scanning hosts resided on a link with an MTU of
1500. This is indicative of Ethernet, found in LAN connections or DSL. The MTU of 576 is
associated with PPP or ISDN. Finally, the MTU of 1454 is associated with PPP over Ethernet that
is also found on DSL connections.

Figure 11.7. MSS/MTU values.

Although the MSS of 536 is associated with PPP and dial-up modems, it is supposed that most
of the hosts reside on ISDN, which uses the same MSS. The scenario is that these are all
zombie hosts that are directed to do some type of activity at a given time. Either they respond
to a catalyst or they all have some kind of time synchronization and are directed to respond at a
given time.
The idea of participants from dial-up modems is worth some reflection. First, if a zombie is
associated with a dial-up connection, this might not be a sustained connection unless there is
some kind of dedicated phone line for the traffic. Additionally, many dial-up connections are at
the mercy of Dynamic Host Configuration Protocol (DHCP) with a leased IP number for a certain
period of time. How would the "commander" direct a zombie with a changing IP number to
launch the activity? One guess is that the zombies report home to the commander periodically.
Therefore, only ones that are active and online just before the attack are directed to participate
in the attack.
Another question arises from this discussion. It has already been determined that zombies have
assignments of mostly unique address ranges to scan. Is there some kind of formula used to
assign the address ranges to scan so that the maximum numbers of hosts get scanned?
The suspicion is that most of the participating zombies have a sustained and dedicated Internet
connection, but this doesn't adequately explain the missing destination hosts and subnets.
TCP Retries
As mentioned, when a source host attempts a TCP connection to a destination host and is
unsuccessful, yet gets no indication of the failure, it attempts one or more retries. A source host
is not notified of a failure if the connection packet never gets to the destination or the
destination host's response doesn't get back to the source. In the case of our scanned network,
the activity to port 27374 was blocked.Yet, the firewall that blocks the activity "silently" drops
the packet with no notification in the form of an ICMP error message to the original source host
that there is a problem. The purpose of the silent drop is so that no additional reconnaissance is

disseminated about our network perimeter and defense.
For the purposes of this investigation, a TCP retry is defined as one that has the same source
and destination hosts, ports, and TCP sequence numbers as the initial attempt. The number of
successive retries and the backoff time between retries is TCP/IP stack dependent.
Retries are associated with source code that uses socket connections. In other words, the
source code is written so that the socket calls go through the proper layers of the TCP/IP stack.
In this case, the socket uses the TCP and IP layers to form the appropriate headers and values
for those headers.
The alternative is known as a raw socket, which does not use the TCP/IP stack to form the
packet. Instead, the programmer is responsible for supplying the appropriate headers and data.
This packet is written directly to the network interface card. Many scanners such as nmap and
hping2 use raw sockets.
This scan manifested multiple retries when the destination host was unresponsive. What does
this mean? That regular and not raw sockets were used? First, the scanning host really wanted
to maximize the opportunity to elicit a response from the destination host—more indicative of
scan behavior than flood behavior. Flood behavior would likely send packets using raw sockets
as fast as possible. Second, raw sockets require an additional level of complexity because they
require the installation of an application programming interface for packet capture on the
scanning host—either winpcap for Windows or libpcap for UNIX. The use of standard sockets
simplifies the setup required to scan.

Summary

The determination is that this was a very efficient scan looking for hosts listening on TCP port
27374. The scan was conducted by zombie hosts, which were mostly Windows hosts. It appears
that hosts with other operating systems were involved, yet they played only a small part in the
percentage of scanning hosts. The significance of this is that the means of infection of the
zombie hosts does not appear to be Windows-specific. It is unknown whether the percentage of
Windows-based scanning hosts and the percentage of scanning hosts that have other operating
systems actually mirror the percentage of Windows versus all other operating systems that are
found on the Internet. The implication here would be that the operating systems of the zombie
hosts might be consistent with a normal distribution found on the Internet. Another implication
is that the percentage of zombie hosts having a particular operating system might represent the
ease of compromise for that operating system.

Is the sole purpose of this scan to efficiently identify hosts listening on port 27374? It can be
surmised that not all of the zombie hosts were exploited by the SubSeven Trojan. SubSeven is
a Windows-based Trojan, and it appeared that not all the zombie hosts were Windows. Perhaps
there are SubSeven Trojans that have been developed for other operating systems as well.
Whatever the exploit used to "own" the zombies, the "commander" knew about the owned
zombie hosts and had no need to scan to find them. Is it possible that this scan search was to
find other candidate zombies owned by another commander? This assumes that these new
zombie hosts would be Windows-based because they would be listening at the SubSeven port.
The new zombies may be used for activity other than the scanning that was witnessed at our
site.

Whatever the purpose of this scan, it looks like a pretty sophisticated way to maximize a scan.

In a couple of minutes, over 30,000 destination hosts were scanned. This activity demonstrates
the evolving sophistication in zombie activity and malicious code in general, as we have
witnessed with Code Red and nimda worms. It also shows the burgeoning number of exploited
hosts that can be marshaled into active duty because of the innocence or disbelief of home
users, paired with always-on connectivity, and operating systems and applications that come
ready-assembled for looting and pillaging.

Part III: Filters/Rules for Network Monitoring
 12 Writing TCPdump Filters

 13 Introduction to Snort and Snort Rules

 14 Snort Rules—Part II

Chapter 12. Writing TCPdump Filters

This is the first of three chapters that discusses writing filters or signatures to detect
anomalous behavior. The authors have chosen to discuss these particular filters and
signatures for a couple of reasons. The first is because these signatures are available with
freeware and available to the masses—even the impoverished. The second reason is that
there are so many IDS packages today, it is almost impossible to cover them and yet not
be accused of bias or favoritism because of omissions. As a fair compromise, we have
chosen this chapter to discuss TCPdump and the following two chapters to discuss Snort
signatures.
This chapter discusses how to select records from TCPdump using filters to detail the
specifics of records of interest. The following chapter will introduce the reader to Snort (a
free NIDS) and Snort signatures. The final of the three chapters will provide additional
information on composing Snort signatures.
The time-honored TCPdump program comes with an extensive filter language that you can
use to look at any field, combination of fields, or bits found in an IP datagram. If you like
puzzles and don't mind a bit of tinkering, you can use TCPdump filters to extract different
anomalous traffic. Mind you, this is not the tool for the feint of heart or for those of you
who are shy of getting your brain a bit frazzled. Those who prefer a packaged solution
might be better off using the commercial products and their GUIs or filters.
This chapter introduces the concept of using TCPdump and TCPdump filters to detect
events of interest. TCPdump and TCPdump filters are the backbone of a freeware IDS
Shadow, and so the recommended suggestion is to download the current version of
Shadow at www.nswc.navy.mil/ISSEC/CID to examine and enhance its native filters. This takes
care of automating the collection and processing of traffic, freeing you to concentrate on
customizing the TCPdump filters for better detects.
Specifically, this chapter discusses the mechanics of creating TCPdump filters. You learn
different techniques for excavating bytes and bits within the IP datagram using these
filters. Different TCPdump filters are developed to show you how to extract events of
interest. This chapter tries to build on these foundations and leads up to developing more
complex and advanced filters.

The Mechanics of Writing TCPdump Filters
By default, TCPdump examines or collects all of the records read from either the network

http://www.nswc.navy.mil/ISSEC/CID
http://safari.informit.com/?xmlid=0-73571-265-4/22991533

or from a file. But often you will want to examine or collect only records with specific
values set in identified fields in the IP datagram to look for signs of malicious activity
directed at your network. TCPdump filters can be used to specify an item of interest, such
as a field in the IP datagram for record selection. Such items might be part of the IP
header (the IP header length, for example), the TCP header (TCP flags, for example), the
UDP header (the destination port, for example), or the ICMP message (message type, for
example).
TCPdump provides some macros for commonly used fields, such as "port" to indicate a
source or destination port, or "host" to indicate an IP number or name of a source or
destination host. We won't use these in the examples—not for the sake of proud
academics, but because the fields we are interested in do not have macros, and so we
must use the format of referencing a field by the protocol and displacement in terms of
bytes into that protocol.
TCPdump assigns a designated name for each type of header associated with a protocol.
Much as you would expect, "ip" is used to denote a field in the IP header or data portion of
the IP datagram, "tcp" for a field in the TCP header or data of the TCP segment, "udp" for a
field in the UDP header or data of the UDP datagram, and "icmp" for a field in the ICMP
header or data of the ICMP message.
Now, we have to reference a field in a given protocol by its displacement in bytes from the
beginning of the protocol header. For instance, ip[0] indicates the 0 byte offset of the IP
datagram, which happens to be part of the IP header (remember, counting starts at 0).
tcp[13] is byte 13 offset into the TCP segment, which is also part of the TCP header, and
icmp[0] is the 0 byte of the ICMP message, which is the ICMP message type.
For this discussion, we use the following format to create a TCPdump filter:
<protocol header>[offset:length] <relation> <value>
All the initial filters this chapter covers reference Figure 12.1, which is the standard layout of
the IP header. Notice that each of the rows has 32 bits, ranging in value from 0 through
31. Essentially, each row is composed of 4 bytes—and don't forget that counting starts
with 0. That is one of the hardest things to commit to memory.

Figure 12.1. The IP header.

Suppose that you want to use TCPdump to select any datagram that has an embedded
protocol of ICMP. Refer to Figure 12.1 and notice this particular protocol field is located 9
bytes offset (last reminder: start counting at 0) into the IP header. Therefore, we denote
this field as ip[9]. Notice also that the TCPdump filter format called for an offset:length;
the implied length is 1 byte, and the length is typically used if you want to span more than
a single byte. Now that you have located the 1-byte field that stores the embedded
protocol, you need to know that a value of 1 in this field represents ICMP. To compose the
entire filter to find ICMP records, use the filter ip[9] = 1. If this were used to collect
records off the network, you would run TCPdump as follows:
tcpdump 'ip[9] = 1'
This reads from the default network interface and collects only ICMP records. You embed
the filter in single quotation marks to keep the UNIX shell from trying to interpret the filter.
Another TCPdump option used for more complicated filters is the –F option of TCPdump,
which points TCPdump to a file where the filter is located. You could create a file,
/tmp/filter, containing the text "ip[9] = 1" which could then be used in the following
command:
tcpdump –F /tmp/filter
This would have yielded the same results as the TCPdump command that included the filter
in the command line itself. This option is usually used for long filters or automated
TCPdump processes to avoid command-line entry of the filter.

http://safari.informit.com/?xmlid=0-73571-265-4/22991533

Bit Masking
We need to introduce a couple more concepts while we're at it. The TCPdump filter
language is not a robust language compared to the constructs and operations available in
other languages such as C or Perl, for instance. Often, we have to go back to the ancient
roots of assembler language—like manipulations to extract fields that don't fall on byte
boundaries.
TCPdump is fairly straightforward and coherent when you are dealing with a field that falls
on a byte boundary and you are looking at all 8 bits. Although you have discovered how to
span bytes by specifying the length after the offset, what happens if you want to look at
only certain bits or a range of bits in a byte? In other words, you don't want to look at the
entire byte. This is where things get a little hairy, and this discussion assumes that you
have mastered the rudiments of binary and hexadecimal.
Preserving and Discarding Individual Bits
Take a look at the structure of the IP header again. Now look at the first byte in the IP
header and notice that it is actually two 4-bit fields. Each of these 4-bit fields is known as a
nibble. What if you wanted to examine the 4-bit header length only, and didn't care about
the value in the 4-bit version field? You really just want to look at the low-order nibble.
How do you discard the high-order nibble so that you can concentrate on the value of the 4-
bit IP header length alone? In essence, you want to turn the high-order 4 bits into 0s.
Doing so enables you to reference the first byte and look at the low-order nibble alone. If
the question "how the heck do I do that?" is rolling around the tip of your tongue, you are
following this discussion in hot pursuit.
Remember back to Boolean arithmetic? A well-deserved groan or two is merited or even
expected. Personally, I don't remember anyone who enjoyed a good truth table, but
unfortunately, you have to delve back into the far recesses of your brain to resurrect the
Boolean AND operator. Does Table 12.1 bring back any nightmares?

Table 12.1. AND Truth Table
BIT A AND BIT B RESULT

0 0 0

1 0 0

0 1 0

1 1 1

This table shows all the possible binary bit values and the results of ANDing the bits. The
only time that 2 bits have a resulting value of 1 is when both ANDed bits are 1. What does
this mean to this discussion of TCPdump filters? You might have forgotten the original
challenge:You need to zero out the high-order nibble of the first byte in the IP header so
that you can focus on the low-order nibble. Well, what if you can AND the value found in
the first byte of the IP header with all 0s in the high-order nibble, which has the effect of
discarding them? Then, you can preserve the original value in the low-order nibble by
ANDing all those bits with 1s.
Consider how this is done. Take a look at Figure 12.2. In the rectangles, you see the first byte
of an actual IP header divided into two 4-bit chunks. Examine the value in the datagram;
the high-order nibble has a value of 0100 with a 1 in the 22 position, which yields 4. This is
the version of IP—IP version 4, in this case. Now look at the low-order nibble. It has a
value of a 1 in the 22 position and a 1 in the 20 position, so we have a 4 + 1 (or 5). This is
the IP header length.Very unfortunately, the metric for this is not bytes as you might
expect. It would be a lot easier that way, but to save on space required to store this value,
this represents not a byte, but a word. A word is 32 bits, or 4 bytes. To convert a value

that you find in this length field to bytes, you must multiply by 4. This means that this is a
20-byte header length, which is typical for a header that has no options.

Figure 12.2. Bit masking.

Creating the Mask
Let's get on with the task of discarding the four high-order bits. Look at Figure 12.2 again, but
this time at the line under the actual value found in the first byte of the IP datagram. This
is what we have designated the "mask," or the byte that will be ANDed with the original
value, bit by bit to discard the high-order bits and preserve the low-order bits. If you were
to start the process at the high-order (leftmost) bit, you would find a 0 in the value bit and
a 0 in the mask bit. On the line below it, you see the resulting bit is 0. Logically, we have a
0 in the value bit that we AND with a 0 in the mask bit and the result is a 0. Remember, if
we AND any value bit with a 0, the result is a 0. Using this line of thought, our other mask
bits for the high-order nibble are also 0s. As you see, the resulting value for the high-order
nibble is 0000, which is exactly what we wanted—to zero-out this field to focus on the
lower-order nibble.
Because we are dealing with an entire byte, we also need to mask the low-order
nibble—we cannot ignore that. Staring with the leftmost bit of the low-order nibble, we find
a 0 in the value bit and a 1 in the mask bit. These two values ANDed yield a 0, thereby
preserving the original value bit. Next, we see that a 1 in a value bit ANDed with a 1 in the
mask bit also preserves the value bit. You can see the pattern; all 1s in the mask for the
low-order nibble preserves the low-order nibble. And, looking at the resulting value, we see
that we have accomplished what we set out to do—to look exclusively at the value of the
IP header length. Yes, we have to go through all of this because we cannot look at just
part of a byte! Whew! We need to cover just one more step about the mechanics of writing
filters and then we can turn to the actual filters themselves. How do we tell TCPdump to
perform the AND operation and with what value?
First, we want to represent the mask bytes as two hexadecimal characters. 0000 1111 can
be translated to 0x0f. The 0x informs TCPdump that this value is in hexadecimal; its
default base is decimal. Here is how to construct the partial filter:
ip[0] & 0x0f
This says to take the value found in the 0 byte offset of the IP header and AND it with a
hexadecimal value of 0f.
Putting It All Together
We are dealing with the 0 byte offset of the IP header. We AND that byte with a
hexadecimal 0x0f and we have just managed to focus on the IP header length. Why might
you want to isolate this field? One very good reason is to test for the presence of IP
options. The normal IP header is 20 bytes, or five 32-bit words. That means that an IP
header that might contain a dangerous IP option such as source routing would have a
length of greater than 5 found in this field. IP options are almost never used any more for

anything other than evil intent, so we want to know whether IP options exist. Recall from
the TCPdump filter syntax that you need a relation and a value. The entire filter to find a
signature of an IP datagram that has IP options is as follows:
ip[0] & 0x0f > 5
That is it. The end of a very long story. I know this seems like a lot of work and a lot of
theory, but it truly does get easier as you get more practice. I warned you about the
tinkering part; if you followed this and think you understand, however, you're well on your
way to examining any field including bits of the IP datagram. Not many intrusion-detection
systems offer this capability. With TCPdump, you lose no fidelity in your ability to capture
and analyze data. Again, not many intrusion-detection systems can make this claim. That
is why it might be worth your while to become familiar with TCPdump and TCPdump filters.

TCPdump IP Filters

Some of the telltale indications in the IP header that you might be a target of
reconnaissance include traffic sent to your broadcast addresses, fragmentation, and the
presence of IP options. You should never see legitimate traffic sent to your broadcast
addresses from outside your network, and you should block this traffic as previously
mentioned to prevent the likes of mapping and Smurf attacks. As you learned,
fragmentation is a natural enough byproduct of a datagram traveling to a network that
originated on a network with a larger MTU. But, you also saw how fragmentation can be
used for denial-of-service attacks or to try to bypass notice by an IDS or routers that
cannot keep track of state.

Detecting Traffic to the Broadcast Addresses

Let's define the broadcast address as one with a final octet of 255 or 0. This includes most
broadcast addresses subdivided on classic byte boundaries. Take a look again at Figure 12.1.
The destination address is found in bytes 16 through 19 (32 bits) of the IP header. We are
only concerned with the final octet, or byte 19. We can describe the broadcast addresses
as follows:

ip[19] = 0xff
ip[19] = 0x00

or as a combined filter as follows:

ip[19] = 0xff or ip[19] = 0x00

We tend to express ourselves in hexadecimal and not decimal, but you could have as easily
written this filter:

ip[19] = 255 or ip[19] = 0

Depending on where the sensor host is that runs the TCPdump filter, you might pick up
broadcast traffic inside your network. Assume, for example, that your inside network is
192.168.x.x. To further qualify this filter to examine only traffic directed toward your
network from a foreign source, you tweak the filter as follows:

not src net 192.168 and (ip[19] = 0xff or ip[19] = 0x00)

The preceding introduced a new operator, the not, to negate; and a couple of new

macros: src, to indicate the traffic originated from this source, and net to indicate a

subnet. This filter says you want to look at any traffic that originates from a source
network other than your own that is destined for the broadcast addresses. If you start
TCPdump with this filter or collect TCPdump data and later read it back with this filter, it
picks up attempted mapping efforts of your network.

Detecting Fragmentation

In this section, you exercise some of your new knowledge of the mechanics of writing
TCPdump filters to look for fragmentation. All fragments in a normal fragment train except
the last one have the more fragments bit set. If you can discover how to locate this field
and see whether it is set, you can find most of the fragmented traffic directed your way.
Look again at Figure 12.1. You see that the more fragments bit is in the second row of the IP
header. Can you figure out what byte it is in?

Specifically, if you count into the IP header, you will find it in the 6th byte offset. It is the
third bit from the left of the high order-bit. Look at Figure 12.3 to see how you might mask all
surrounding bits except this one. Your mask needs to be 0010 0000, which is a
hexadecimal 0x20. Your filter becomes ip[6] & 0x20 != 0. You use a generic relation and
value of != 0. This means that the more fragments bit is set. Why not just say ip[6] &
0x02 = 1? After all, aren't you testing that the exact bit is set? Not really. The problem
with this is that you are not testing the bit value, but the resulting value of masking the
original byte and the mask byte. Therefore, you need to examine the resulting value in
context of where it falls in the whole byte. If the more fragments bit is set, it falls in the
byte in the 25 position of the byte, which is 32. A generic != 0 is a little easier to express
the result. Alternatively, you can write the filter as ip[6] & 0x02 = 32. Keep in mind that
because fragmentation is not always malicious, you are likely to generate false positives
with this filter.

Figure 12.3. Identifying the more fragments bit.

You have now seen how to express three TCPdump filters for potentially anomalous
settings in the IP header. Now, turn your attention to some of the other protocols and how

you can use TCPdump filters to discover other sorts of events of interest.

TCPdump UDP Filters
Many backdoors and Trojans use UDP ports, such as port 31337 used by Back Orifice. To
detect UDP connections, you must decide on which UDP ports you want to examine
directed activity. Take a look at www.snort.org/ports.html for an idea of some of the types of
ports you might want to watch. Configure your filters to watch for activity to these ports. If
you want to look for traffic to Back Orifice, for example, your filter is as follows:
udp and dst port 31337
The labor is not in figuring how to express this as a TCPdump filter; as you see, it is trivial.
The labor is involved in deciding which ports you want to include, adding them to the filter,
and keeping the filter current with the real world of ever-expanding UDP exploits.
Consider a popular UDP application, traceroute. The UNIX traceroute works by attempting
to send UDP datagrams to high-numbered ports of the destination host. If a host on your
network is that destination host, you want to be alerted of the attempted or successful
traceroute. If you begin by looking at UDP activity to ports in the 33000–33999 range, you
will find most of the traceroute activity. Be warned that Windows traceroutes use ICMP
echo requests and replies, so this signature does not detect that activity. And, be
forewarned that some versions of the UNIX traceroute enable the user to provide
command-line options, one of which is a destination port. Therefore, this filter might not
capture all traceroute activity, but it will find most of the conventional activity.
Figure 12.4 shows the layout of the UDP header. Notice that the UDP destination port number
is found in bytes 2 and 3 of the UDP header.

Figure 12.4. The UDP header.

A very insightful question to ask is this: "Why don't we use the port macro rather than byte
displacements?" For instance, why can't we use this filter:
dst port >= 33000 and dst port < 34000
The problem is that when TCPdump uses a range such as this and not one exact value, you
have to express that field in terms of the primitive protocol and displacement and forgo the
use of macros. The correct syntax to discover traceroutes then becomes this:
udp[2:2] >= 33000 and udp[2:2] < 34000

Notice the first use of the length option [2:2] to span bytes. You need to examine two

consecutive bytes starting at byte 2 offset. You can further limit the amount of traffic that
this filter extracts by examining the TTL value along with the destination port. Traceroute
operates by manipulating the TTL value found in the IP header. Traceroute records the
routers that it traverses and does so using an incrementing TTL value. More often than not,
you will see a TTL of 1 on the sensor host running TCPdump before it crosses a router that

http://www.snort.org/ports.html

will expire it. This is a signature of traceroute. Therefore, let's embellish the traceroute
filter to include the TTL value to eliminate some of the noise associated with discovering
traceroutes. The TTL field is found in the IP header; it has no macro to reference it and if
you look once again at Figure 12.1, you find it in the 8th byte offset. Here is what the new
filter would look like:
udp[2:2] >= 33000 and udp[2:2] < 34000 and ip[8] = 1
This gives you an idea of some of the UDP filters. TCPdump filters can also be used for
ICMP traffic. Specifically, some of the good candidates for detection of anomalous ICMP
traffic are address mask requests, someone trying to discover the MTU of your network
sending datagrams with the don't fragment bit set and receiving back messages from your
router with the MTU, and Loki. All these filters are so simple to write. We will leave these
for you to try. Here are the signatures of TCPdump filters for you to write on your own:

● The address mask request has a value of 17 in the 0 byte offset of the ICMP
message.

● The fragmentation required, but DF flag set message has a 3 in the 0 byte offset of
the ICMP message and a 4 in the 1st byte offset of the message.

● A signature for Loki was an echo request (an 8 in the 0 byte offset of the ICMP
message) or an echo reply (a 0 in the 0 byte offset of the ICMP message and in the
6th and 7th bytes offset of the ICMP message). You would have a hexadecimal value
of 0xf001 or 0x01f0.

Answers to ICMP filters:
- icmp[0] = 17

- ((icmp[0] = 3) and (icmp[1] = 4))

- (((icmp[0] = 0) or (icmp[0] = 8)) and
 ((icmp[6:2] = 0xf001) or (icmp[6:2] = 0x01f0)))

TCPdump TCP Filters
TCPdump filters for TCP traffic are mostly concerned with initial SYN connections and other
types of anomalous flag combinations that might indicate some kind of reconnaissance or
mapping efforts. We want to look for initial SYN connections because they inform us of
attempted connections to a TCP port. This doesn't necessarily mean that they were
successful. If your TCPdump sensor is located outside a packet-filtering device that blocks
access to the TCP destination port, it will never reach the host. And, if the traffic is allowed
through the packet-filtering device, it is possible that the host doesn't offer the attempted
service. You can glean a lot of intelligence by detecting this activity, the least of which is
discovering rogue TCP ports that hosts on your network might be offering.
Filters for Examining TCP Flags
Figure 12.5 relates to most of the remaining filters in this chapter.

Figure 12.5. The TCP flag byte.

http://safari.informit.com/?xmlid=0-73571-265-4/22991533

The TCP flag bits are located in the 13th byte offset of the TCP header. Because you are
looking for individual bits in the bytes, you need to perform some bit masking to select the
flag or flags you want to examine. Begin by writing a filter to extract records with the SYN
flag alone set:
tcp[13] & 0xff = 2
Why this filter? We see that our mask consists of all 1s. Why didn't we use a mask of 0s in
all fields except the SYN flag (tcp[13] & 0x02 = 2)? By masking a bit with a 0, the resulting
value is necessarily 0. The value bit could be 1, however, and the 0 mask would discard it.
If this is confusing, try an example.
Suppose that you want to look at TCP segments with the SYN flag alone set. Okay, now
suppose that you have a TCP flag byte with both the SYN and ACK flags set. The binary
value that you would see for the TCP flag byte would be 0001 0010. If that were masked
with 0000 0010, you would end up with a result of 0000 0010, which is 2. Therefore,
masking with 0s in fields other than the SYN flag selects TCP segments with other flags set
along with the SYN flag. To prevent this from occurring, you use the original filter and
preserve all the value bits; the resulting value will not be 2 if any other value bit is set. If
the ACK bit were set, you would have a resulting value of 18 from the new mask. This filter
does not select records with other flags set along with the SYN flag.
Because you are looking for the SYN flag alone set, to be perfectly simple about this
particular filter, you can specify it by:
tcp[13] = 2
This will assure that only the SYN flag is set because if any other flag is set, the resulting
value when adding up all the bits set in the byte will not be 2. For instance, let's say that
you have a byte with an errant SYN and URG flag set together. The URG flag is found in
the position of the byte that has a value of 32 and the SYN flag is found in a position with a
value of 2. Therefore, the resulting combined value of these two bits set would be 34 and
would not match the filter.
Take a look at some other TCP flag combinations you might want to know about:

● tcp[13] & 0xff = 0 alternatively tcp[13] = 0 This shows null scans with no flags
set. This condition should never occur.

● tcp[13] & 0xff = 3 alternatively tcp[13] = 3 This shows activity where both the
SYN and FIN flags are set simultaneously; this is definitely an anomalous condition.
You might want to alter the filter to tcp[13] & 0x03 = 3, because this gets any
activity with both the SYN and FIN flags set, as well as any other flags set. In this
case, you don't necessarily want to exclude this to SYN and FIN alone.

● tcp[13] & 0xff = 0x10 and tcp[8:4] = 0 This shows activity with the ACK flag set,
but with an acknowledgement value of 0. This is usually an anomalous condition
because the three-way handshake necessarily consumes a sequence number.
Logically, an acknowledgement value would have to be 1 greater than the initial
sequence number meaning it will be non-zero. This filter is offered because it often
captures nmap operating system fingerprinting scans that send TCP traffic to various
destination ports with the ACK flag alone set, but a 0 value in the acknowledgement
field.

It is rarely possible that a 0 acknowledgement can be legitimate if the sender has
sent a sequence number where all the bits in the sequence number are 1 – in other
words 232 – 1. The next expected sequence number would then wrap around and
be 0.

● tcp[13] >= 64 Figure 12.5 shows two high-order bits in the TCP flag byte that are
labeled reserved bits. These two bits should be 0s; if they are not, something might
be amiss. The first reserved bit is found in the 26 (64) position, and the second is
found in the 27 (128) position. If either or both bits are set, the value for the TCP
flag byte is greater than or equal to 64. Our old friend nmap sometimes sets the bit
that is in the 64 position to perform operating system fingerprinting. Most hosts reset
these values to 0s, but some leave the set value. This is used by nmap to help
classify the operating system behavior.

More recently, these erstwhile-reserved high-order TCP flag bits are now
associated with something known as Explicit Congestion Notification (ECN). This is
a technique for reducing congestion in a network. How can you distinguish
legitimate ECN traffic from nmap operating system scans? ECN traffic should have
a non-zero value in the differentiated services byte (formerly known as the type of
service byte), whereas nmap will have a 0 in this field. If you care to read more
about ECN, reference RFC 3168.

These are just some of the different combinations of TCP flags that you can examine. This
is not an exhaustive list and I encourage you to play with these filters and develop
different combinations.
Detecting Data on SYN Connections
Before letting you loose to develop some TCPdump filters of your own, let's take a look at
one advanced filter that will summon up all the various bits and pieces you have learned in
the chapter about developing filters and then some. In Chapter 2, "Introduction to TCPdump
and TCP," you learned that data should not be sent before the three-way TCP handshake
has been completed. You saw this activity with the 3DNS product, which is a nuisance but
ostensibly not malicious. You also read about the example of a scan that a site received in
which there was data included on the SYN. It was feared that this type of activity might be
an attempt to elude an IDS that started stream or data assembly for data received after
the three-way handshake only.
It seems prudent then to try to develop a TCPdump filter that would detect this activity.
You could later put in exclusions for annoying false alarms from 3DNS activity. The
problem is that no field in the TCP header has the number of bytes in the TCP payload. You
do have a bevy of other fields that have length values in them, however. Specifically, in
the IP datagram, you have two length fields in the IP header. One is the length of the
entire IP datagram, and the other is the length of the IP header alone. In the TCP segment,
you have the length of the TCP header. Figure 12.6 shows that the length of the IP datagram
minus the length of the IP header minus the length of the TCP header should leave the TCP
payload length.

Figure 12.6. Calculating the TCP payload length.

"Piece of cake," you say? You will encounter some complications, or challenges (your
choice). Notice the different metrics in different fields; the IP datagram length is in bytes,
whereas the IP header and TCP header are in 32-bit words. You must standardize to bytes
and convert the header lengths to bytes by multiplying them by a factor of 4. This is quite
manageable. You have already dealt with the IP header length, and so you have pretty
much conquered that.
One final bit of nastiness that you need to address is the TCP header length seen in Figure

12.7. Look carefully at where this is located; it is in the high-order nibble of the 12th byte.
You already know that you have to zero-out the low-order nibble to deal with the high-
order nibble exclusively, but you aren't quite ready to tackle the formula just yet. Because
this is in the high-order nibble, it is really multiplied by a factor of 16, so it has to be
normalized.

Figure 12.7. The TCP header.

Suppose, for example, that you have a TCP header length of 24 bytes that includes a 20-
byte header and some TCP options. Remember that you have to convert to 32-bit words,
so you need to divide by 4 to compute the value that would be found in the TCP header
length field. You would find a value of 6 in this field. Assume you have also masked the low-
order nibble so that the hexadecimal value remaining in this byte is 60. The binary

representation of this byte is 0110 0000. A 1 is in the 26 position (64) and a 1 is in the 25
position (32), which really means you have 96. Because this field is in the high-order
nibble, it is really 16 times a value found in a low-order nibble. To normalize this back to 6,
you need to divide by 16. Summing up all the manipulations to this field, you want to
normalize by dividing by 16 and then convert to bytes by multiplying by 4. Now you are
ready to tackle this filter.
Let's revisit the conditions and formula we want in pseudo-code before attempting the
TCPdump filter.
If the SYN flag alone is set, subtract from the IP datagram total length, the IP header
length converted to bytes, and the TCP header length normalized and converted to bytes,
and check to see whether the resulting value is non-0.
SYN flag alone is set:
tcp[13] & 0xff = 2 or alternatively tcp[13] = 2
Total length of the IP datagram:
ip[2:2]
IP header length converted to bytes:
((ip[0] & 0x0f)*4)
TCP header length normalized and converted to bytes:
((tcp[12] & 0xf0)/16*4)
which is the same as:
((tcp[12] & 0xf0)/4)
Now put it all together to see the final filter:
tcp[13] & 0xff = 2
and
 (ip[2:2] -
 ((ip[0] & 0x0f)*4) -
 ((tcp[12] & 0xf0)/4)
) != 0
This discovers any traffic that attempts to include data on the initial SYN. Pretty awesome!

Summary

This chapter has shown that although TCPdump filters might not win most-likely-to-
succeed in a beauty pageant of IDS filters, they can do some amazing things. Yes indeed,
you need to get your hands soiled and you need to think pretty darn hard many times
when attempting to debug a filter that does not work. But, these filters give you full access
to your data. I cannot emphasize enough that when you smell something foul with your
data, you want the ability to analyze at the bit level. TCPdump filters afford you this power.
Literally, you want to leave no bit unturned when you are conducting in-depth analysis.

Most of the filters that you write using TCPdump will probably use macros and probably
won't require any bit masking. When you need to examine individual bits or disjoint bits in
a byte, however, you must isolate the bits of interest using bit masking. The other gotcha
with TCPdump discussed in this chapter is standardizing on metrics with different length

http://safari.informit.com/?xmlid=0-73571-265-4/22991533

fields—make sure you convert to bytes. Finally, remember that the location where bits fall
in the byte is significant. It might be necessary to normalize if you are dealing with bits in
the high-order nibble. If you are up to the challenge of all of this, I think you will get a true
sense of satisfaction after you have mastered the deciphering of data and the creation of
potentially revealing filters.

Chapter 13. Introduction to Snort and Snort Rules

Snort is an open source free NIDS that was developed by Marty Roesch. It was initially
written so that Marty could do traffic sniffing at his job and has grown to a full-featured
NIDS. Along the way, Marty has attracted a vast following of admirers and coders who
work collectively to enhance the code and issue new releases. In early 2002, Snort was
downloaded from its home at www.snort.org over 10,000 times a week to protect government,
corporate, home, and educational sites.
Snort is a signature-based NIDS that uses a combination of rules and preprocessors to
analyze traffic. The rules offer a simple and flexible means of creating signatures to
examine a single packet. The preprocessor code allows more extensive examination and
manipulation of data that cannot be done via rules alone. Preprocessors can perform a
variety of tasks such as IP defragmentation, portscan detection, web traffic normalization,
and TCP stream reassembly, to name a few. Preprocessors give Snort the capability to look
at and manipulate streams, as opposed to the single-packet-at-a-time view rules use.
The current version of Snort in March 2002 is 1.8.3 and is a compact 1.8 megabytes of
source code. It is extremely portable and currently runs on approximately 23 different
platforms including Linux, Solaris, BSD, IRIX, HP-UX, Mac OS X, and Win32. Snort is also
easily configurable and flexible, allowing users to create their own signatures and alter the
base functionality through the use of plug-ins. Plug-ins are code that can optionally be
compiled into Snort at installation time and offer features such as active response to
malicious traffic.
The focus of this section of the book is writing filters and signatures, so many aspects of
Snort will not be discussed, such as installation, configuration, and output. If you would
like more information on these topics about Snort, please visit www.snort.org. This chapter will
cover an introduction to Snort, the anatomy of a Snort rule, and explore fields and possible
values found in the first part of a Snort rule known as the rule header. The next chapter
will continue rule writing by discussing the second part of the rule known as the rule
options. It will also cover writing more advanced rules.

An Overview of Running Snort

http://www.snort.org/
http://www.snort.org/

Snort can be run in various modes from simply dumping sniffed traffic to the screen, to
NIDS mode where Snort is able to compare the network traffic with a preconfigured set of
signatures known as rules that are housed in one or more files. The latter is the most
common mode in which to run Snort.

Snort is typically run from the command line, whether it is run on a UNIX or Windows host.
There is software offered known as IDScenter, which provides a Windows GUI interface, as
well as Demarc/Puresecure, which provides a Windows and UNIX GUI interface. There are
many command-line options that can be used, but the most practical one (-c snort.conf)
allows the user to place Snort in NIDS mode by informing it of the configuration file to be
used. As the name implies, this is where Snort configuration occurs, including assigning
variables used in the rules values, informing Snort which preprocessor options to use, and
telling Snort which rules to include in traffic analysis. A skeleton configuration file named
snort.conf is provided in the Snort download directory. The user must customize this file
for his site.

When Snort is run in NIDS mode, by default, it places the output of events of interest
triggered by the rules in various files. Snort allows an action to be assigned to each rule,
indicating what to do when the rule is triggered. An action of alert means to write the
offending packet to a file named alert, which is created in /var/log/snort on many UNIX
hosts, by default. On Windows hosts, the alert file is created in the log subdirectory in the
current directory from which Snort is run. Here is an example of a Snort alert file entry:

[**] NMAP TCP ping [**]
03/21-13:33.51:880120 1.2.3.4:1029 -> 192.168.5.5:80

TCP TTL:46 TOS:0x0 ID:19678
******A* Seq: 0xE4F00003 Ack: 0x0 Win: 0xC00

There is an identifying message associated with the alert that the user can assign when the
rule is created. This is optional; however, it informs the analyst of the perceived problem.
The message for the preceding alert is "NMAP TCP ping". On the next line, there is a date
and timestamp followed by source IP address (1.2.3.4) and port (1029), direction of the
traffic (source to the left of the arrow and destination to the right of the arrow), and the
destination IP address (192.168.5.5) and port (80) of the offending packet. The third line
indicates that the traffic is TCP, it has an arriving time-to-live value of 46, a type of service
value of 0, and an IP identification number of 19678. The final line lists the TCP flags set;
the A signifies that the acknowledgement flag is set. It is followed by a hexadecimal
representation of the TCP sequence number, the acknowledgement number, and the TCP
window size. All of these fields can provide more details about the packet that triggered
the alert.

This alert appeared because there is a rule that examines TCP segments with an
acknowledgement flag set but an accompanying acknowledgement value of 0. Most of the
time when this is observed, it is a telltale sign of nmap attempting to discover a live host.
If the acknowledgement is allowed to reach the destination host, the host should respond
to the unsolicited acknowledgement with a reset, regardless of whether the port is listening
or not. That is why the message accompanying the alert is "NMAP TCP ping."

The alert action causes the activity to be logged as well. There is a separate action, log,
which only logs the triggered activity. When activity is logged, it is recorded in a human
readable format that can provide more verbose information about the packet, such as the
payload. The logged packets are written to files and directories based on the IP addresses
in the packet being logged. These are further segregated by the transport layer protocol
and source and destination ports involved in the connection. Look at the contents of FTP
activity that was logged:

 [**] Attempted anonymous ftp access [**]
04/24-12:11:08.724441 192.168.143.15:3484 -> 192.168.143.16:21
TCP TTL:64 TOS:0x10 ID:30124 DF
*****PA* Seq: 0x93EE0AB7 Ack: 0xB8352E61 Win: 0x7D78
TCP Options => NOP NOP TS: 112024246 27551686
55 53 45 52 20 61 6E 6F 6E 79 6D 6F 75 73 0D 0A USER anonymous..

The logged output contains the same information that the alert does, but it also has the
payload if the decode (-d) command-line option was supplied. This message indicates that
we have a rule to inspect ftp command-line traffic to destination port 21 for a user of
anonymous. We will examine how this is accomplished in Chapter 14, "Snort Rules—Part II,"
but the payload from the previous output indicates that there was an anonymous user
attempt. The hexadecimal representations of the ASCII values in the payload are also
included in the logged packet.

The log and alert files can be a cumbersome way of analyzing output from Snort, so it
allows you other options via configuration file changes. Activating available output options
can enable writing output or alerts to spool files via a backend known as Barnyard, or
directly to a database, to name a few of the possible options.

Snort Rules
Snort supports both header and payload inspection methods, allowing you to fully specify
in a single rule what is considered a suspect packet. This flexibility allows you to build rules
customized to your site that greatly aid in minimizing false positives, but in a format that is
very readable. Remember all the heartache and toil involved in writing TCPdump filters,
especially one to inspect a packet for a particular TCP flag setting? Well, writing an
identical rule in Snort is almost trivial, as you will soon see.
As a short but important digression, what qualities does one look for in a good NIDS?
There are many, but one of the most important is the capability to inspect and alter
signatures. Believe it or not, there are NIDS available that do not allow the user to see the
active signatures or alter them in any way. This blindsides the analyst and does not allow
her to distinguish between false positives and real alerts. When an alert appears, it is
presented as an irrefutable statement that a problem has appeared, and there is no way to
validate it using the NIDS alone. If the analyst can examine the signatures and the packet
that caused the alert, there is a better chance that a more accurate assessment can be
made.

http://safari.informit.com/?xmlid=0-73571-265-4/22991533

Additionally, signatures that allow an analyst to look at any field, either header or payload,
from different perspectives potentially improve the quality of the NIDS. In other words, if a
NIDS only allows the analyst to create rules that inspect packets for a given IP or port or
protocol, it lacks the range to examine payloads or header fields on a more granular level
such as TCP flag settings. Perhaps the analyst is interested in inspecting the payload for
specific contents when the acknowledgement flag is set. Because other flags may be set
along with the acknowledgement flag, it would be handy for the signature to allow for this
specification as well.
The capability to inspect just about any field in a packet is an area in which Snort excels.
There are many options available to configure a rule to specify just about any field in the
packet and examine the value of that field in a variety of ways. And, the few fields that
cannot be inspected via current Snort rule options can always be examined by supplying a
filter at the end of the command line or by resorting to a command-line switch (-F) that
allows Berkeley Packet Filters (BPF) to be specified in a file. Berkeley Packet Filters are
what we have been calling TCPdump filters, which can be used to select the desired field.
For instance, Snort doesn't have an option to examine the IP version field found in the high-
order nibble of the zero byte offset of the IP header. Snort might be run to examine
packets off the wire or from a binary file of captured TCPdump data using a BPF filter to
find any packets with an IP version that does not equal 4. Here is the command that would
perform this inspection reading packets from the network:
snort –v 'ip[0] & 0xf0 != 0x40'
As explained in more detail in Chapter 12, "Writing TCPdump Filters," this will mask out the
low-order nibble of the zero byte offset of the IP header and look for a value of 4 in the
high-order nibble of that field and write the output to the screen (-v).
Another benefit of using Snort is that it comes with a very large set of rules. It is not
recommended that all of the rules be used on installation because the more active rules
used, the slower the traffic inspection becomes. The analyst must decide which rules are
appropriate for the site. And, amazingly, new Snort rules are released sometimes as soon
as hours after a new exploit is discovered. This is by virtue of having so many savvy users
and developers of Snort who respond almost instantly to develop and test new rules for
these exploits.
However, a word of caution must be added about some Snort rules. Just because a rule
becomes available shortly after an exploit is released, doesn't mean that it is a good
rule—that is to say, just because a rule matches a given compiled version of an exploit's
output doesn't mean that it is necessarily a rule that may find variations of the exploit from
making minor changes in the source code. It is imperative that the rule writer understands
not only the exploit code and output, but also the protocol against which it runs.
A good rule anchors on fields and values that must remain static for the exploit to succeed.
For instance, if there is some kind of DNS exploit that generates a DNS identification
number of 0xBEEF, this is not a good field or value to use in the rule. It is trivial to change
this in the source code, and the exploit will most likely succeed regardless of the value of
the DNS identification number.

Hidden Signatures
As a contractor for a client, I once had the opportunity to visit a commercial
NIDS vendor about integrating output from its NIDS to some kind of correlation
tool. Frankly, I believed the output from the NIDS wasn't worth trying to
correlate since there was no way to validate if the generated alerts were real
because there was no access to either the signatures or the packets that caused
the alert. Why synthesize garbage? But, the client had requested my presence at
the meeting, so I dutifully attended.
While there, I asked if there was any way that we could get access to the
signatures. The vendor rep balked and asked why I would ever need to see the
signatures. "Well, I want to know if we have a real detect or false positive," I
politely responded. The rep replied that if I believed we had seen a rare false
positive, I could call the support line and ask for help. With the number of false
positives generated by the vendor's NIDS, I could only imagine that it had stock
in the Baby Bells to answer so foolishly. Indignantly, I pressed on and asked the
rep what the problem was with releasing his signatures. The response was that if
I could see the signatures, so could the hackers! Honest to goodness, that was
the best dog-ate-my-homework excuse he could come up with. More than
anything, I suspect it was that he feared that the competition might pirate his
product's signatures, but he didn't have the spine to say that. How are you
supposed to take these guys and their proprietary signatures seriously? Okay, so
we're not all blessed with the power to either make or influence the decision of
which NIDS to buy. What if you happen to work at a site where you have a NIDS
that has either a limited or no view of the signatures and traffic—do you throw in
the towel? Well, if lobbying for a better NIDS fails, you can become resourceful!
You can always run TCPdump in the background mode either alone or as part of
Shadow. Or, you can try to do correlation with other sources of information such
as firewalls, routers, or host logs. This is not ideal, but it prevents you from being
totally blind.
We were running Shadow along with the deficient NIDS mentioned previously. An
analyst called me to report that the NIDS was alerting on a Loki attack and asked
if I could examine the TCPdump output to discover whether this was a real alert
or not. I knew that Loki had a telltale signature years ago of a value of 0xf001 or
0x01f0 in the ICMP sequence number. The analyst was able to give me the
source and destination IP numbers for the suspected Loki traffic. I searched the
TCPdump records and discovered ICMP packets that matched the signature;
however, this was just a case of coincidental use of those values in the ICMP
sequence number in an innocuous ICMP echo request/response pair. This was an
awkward and time-consuming way of dealing with this false positive, but it was
better than putting full trust in the NIDS.
Snort Rule Anatomy
An individual rule is broken into two general parts. The first part, the rule header, defines
who must be involved in order for the traffic to be considered by the rule options. The
second part, the rule options, defines what must be involved. This includes packet header
information (such as TCP flag settings) or the contents of the payload.
Generally speaking, both sections are used for most rules. It is possible to specify rules
with only a rule header so that the given action can be taken for the provided hosts and
ports. This is typically the case where pass rules are used to ignore traffic between specific
hosts and ports, such as port 53 traffic coming from a site's DNS servers.
All conditions specified in both the rule header and the rule options must be true in order

for an alert or some other kind of action to be triggered. It is also important to understand
the Snort rules are stateless. In other words, each rule inspects one and only one packet.
The rules themselves have no way of knowing what activity occurred in a packet preceding
or following the current one. Snort attempts to build in functionality for state using a
preprocessor such as IP defragmentation or TCP stream reassembly, but there are limits to
what can be discovered when not examining traffic statefully.
Also, Snort triggers on the first rule that a packet matches and does not examine the
remaining rules. The order that rules are listed in the rules files is important, but Snort
does some ordering of its own. By default, Snort orders all rules by their action value in the
following order: alert, pass, and log. This can be overridden by a command-line option that
will be discussed later in the section, "The Action Field." However, Snort does some further
ordering by grouping identical headers that is beyond the scope of this chapter. For more
information, see www.snort.org/docs/faq.html#3.13.
Look at Figure 13.1 to see a sample Snort rule.

Figure 13.1. The anatomy of a Snort rule.

You see a rule header that gives the details of the action to be taken if the rule triggers
and the information pertaining to the who values in the packet. In this rule, we alert when
TCP traffic is observed that originates from a network that is not 10.1.1.x from any source
port destined for network 10.1.1.x to any destination port. We assume that our internal
network is the 10.1.1.x network, so this rule triggers when an outsider attempts to make
an internal TCP connection.
If you turn your attention to the rule options, we further specify the what of the packet
attributes. In this instance, the anomalous TCP flag pair of SYN and FIN is sought, and if
found, a message of "SYN-FIN scan" is associated with the alert. The rules keywords will
be described more thoroughly in the following sections.
Rumor has it that the rules syntax will change radically when Snort version 2.0 makes its
debut. So, if you are reading this chapter after the release of Snort 2.0, it is best to refer
to Snort documentation because the information presented here might be obsolete.
Rule Header Fields
As briefly mentioned, the rule header is responsible for specifying the action used to
respond to a triggered rule, as well as specifying the protocol and source and destination
addresses and ports. These who conditions must be met if the rule options are to be
examined. Rule options will be explored in Chapter 14.
The Action Field
The first field in the rule header is the action field. This field instructs Snort on what to do if
the rule is triggered. The valid values for the action field are the following:

● Alert. This value instructs Snort to create an entry in the alert file and to log the
packet as well. The alert file is a single file that contains all detects that were made.
The information written to this file in the default alert mode consists only of the
packet header information. For the log entry, the same information (optionally
including the payload if the -d command-line option is specified) that is written to the
alert file is written to individual files found in a directory that usually has the name of
the hostile IP number.

● Log. This value instructs Snort to only make a log entry. No record of the traffic is
made in the alert file when the log action is used. The log files might have data from

http://www.snort.org/docs/faq.html#3.13

the application payload if the command-line option to decode the application (-d) is
used.

● Pass. When a rule is triggered that has pass specified as the action, Snort does no
further packet inspection—essentially dropping the packet from the detection engine.
This is useful, for example, if you want to monitor anonymous ftp attempts on your
network to non-anonymous ftp servers. You would write a pass rule to ignore
anonymous ftp attempts to your valid anonymous ftp server. You would then use a
second, normal, alert rule to log all other anonymous ftp attempts.

● Activate. These rules, when triggered, not only alert, but are also used to turn on
other rules (dynamic) that remain idle until turned on.

● Dynamic. These remain idle (do not trigger) until turned on by an activate rule.
After they are turned on, their behavior is the same as log rules.

Note that the activate and dynamic actions are being replaced by the tag option, which is
found in the rule options. The tag option allows dynamic capture of packets for a given
amount of time or a specified number of packets after the rule triggers.
It's also possible to define your own action types, which can be used to route rule output to
various destinations. This sophisticated usage is not covered here, but can be explored at
Snort's web site (www.snort.org). As briefly mentioned, the default order in which rules are
processed is alert rules first, pass rules second, and log rules last. To change this default
behavior, you must specify the -o command-line option when running Snort, which
changes the order the rules are processed. Using the -o option changes the rule processing
order to pass rules first, alert rules second, and log rules last. This was done when Snort
was developed for public use to avoid having an errant pass rule accidentally disable every
alert and log rule in the system. The –o option was developed as an expert mode for
people after they understood how the rules system worked.
The Protocol Field
The protocol field in the rule header tells Snort which protocol to examine. Snort currently
supports four different types of network traffic: TCP (Transmission Control Protocol), UDP
(User Datagram Protocol), ICMP (Internet Control Message Protocol), and IP (Internet
Protocol). Additional protocols may be added in the future such as ARP, RARP, GRE, OSPF,
RIP, and IPX. Snort understands only IP version 4, though it will note that it has seen an IP
version 6 packet. And, Snort is not IPSec aware, so it cannot decode unencrypted fields of
those packets.
The Source and Destination IP Address Fields
The source and destination IP address fields identify where the hostile traffic is coming
from and where it is going. It is possible to specify the IP addresses as a host, a subnet, or
multiple hosts or subnets. The IP addresses are specified in classless inter-domain routing
(CIDR) notation, an easy to write and understand format. This format includes as much of
the address as needed, along with the number of bits in the network mask. Let's examine
the format and some examples of IP addresses.
Format:
Address/netmask or any or
[address/netmask,address/netmask…]

Address = x.x.x.x
Netmask = bits of network mask
24.0.0.0/8 = Class A
135.1.0.0/16 = Class B
192.168.5.0/24 = Class C

http://www.snort.org/

192.168.5.5/32 = Host address
Special keywords:
any - match all addresses
! - negate address
$HOME_NET – variable defined elsewhere in rules file
CIDR notation details the base address and the number of bits of the base address that are
associated with the network. For instance, the representation 24.0.0.0/8 means that this is
a Class A address that has the first octet (24) allocated to the network and all the
remaining octets associated with hosts on the network. Although the standard Class A, B,
and C CIDR notations are seen in the previous examples, the beauty of CIDR notation is
that the network bits don't have to fall on byte boundaries, so they might represent all
network masks.
You can specify an IP address list by enclosing all IP addresses or networks between
brackets ([]) and delimiting each of the list values by commas (but no spaces in
between—the Snort rule parser doesn't allow spaces in the comma delimited list). If you
want to examine traffic to destination host 1.2.3.4 or subnet 2.3.4.x, the following IP
address list could be used:
[1.2.3.4,2.3.4.0/24]
A special keyword any can be used when any IP address is the matching criteria. And, as
you've seen, the exclamation point (!) can be used to negate the IP address value when all
IP addresses but the specified one are to be considered. Finally, to add more flexibility and
portability to the rules, a variable can be used to indicate the IP address. The $HOME_NET
variable is one that is used in many of the rules included with Snort to indicate the
user's/analyst's home network. You can assign your internal network any variable name
you want, but because many of the rules already reference $HOME_NET, it is best to use
it. This variable must be defined in a rules file, the configuration file, or on the command
line (-S) before it is referenced.Variables can be used in other fields in the rules as well.
The Source and Destination Port Field
The port fields are used to detail the source and destination ports of the traffic. The ports
can be listed as a specific number, range of numbers, or the keyword any, which
represents all possible source ports. Here are some possible port representations:
static port: 111
all ports: any
range: 33000:34000
negation: !80
less than or equal: :1023
greater than or equal: 1024:
The first and most common port value is a static one, such as port 111, to represent the
port associated with the Remote Procedure Call (RPC) portmapper. As with IP addresses, a
generic port value can be supplied using the keyword any. A range of port numbers can be
specified, such as ports 33000 through 34000 inclusive (33000:34000), which might
represent UNIX traceroute UDP ports. Negation is also supported with ports as we are
looking for any port but port 80 (!80) above. Ports can be indicated as a less than or equal
to condition or a greater than or equal to condition. The ":1023" identifies that we want to
look for all ports less than or equal to 1023 or the reserved port range. Finally, the "1024:"
is used to say that all ports greater than or equal to 1024 should be considered—the ports
typically found in the ephemeral source port range. You could also specify a port as a
variable so long as you assigned a value to the variable before referencing it.
You might be wondering if you have to indicate a port for the ICMP protocol because it

does not use ports like TCP and UDP. The rule syntax requires ports, so you must specify
some kind of placeholder value. Although no port value makes sense, the value "any" is
often used. Let's look at some possible port values.
Direction Indicator
The traffic direction field allows you to indicate the direction the packet must be traveling.
Two options are available, allowing you to indicate a specific direction of flow, or that
direction doesn't matter. Using the notation that looks like an arrow (->), the packet must
be traveling from a source to a destination. The source information is specified to the left
of the arrow, and the destination is to the right. The packet must be traveling in the listed
direction; if it is traveling in the opposite direction, the packet will not pass the rule header
test and will not be inspected any further against the rule.
If you use the notation that looks similar to a double-headed arrow (<>), the packet can
be traveling to or from either address/port pair. For this notation, either side can represent
the source or destination depending on the packet flow in the connection.

Summary
Snort provides a very good NIDS at no cost for the software. Understand that although it is
free to use, there are costs associated with the hardware, as well as costs associated with
customizing rules and making sense of the output. Snort is most useful when run in packet-
sniffing mode where it compares the network traffic against a set of rules. This can be
done either in real-time mode, or traffic can be captured in binary format and
retrospectively analyzed later by feeding it back into Snort as an input file.
Snort rules provide a flexible and easily configurable means of specifying most header
fields to inspect, as well as analyzing any data in the payload. The rules allow the user
many different ways to indicate values for particular fields in addition to permitting the use
of variables to represent values. Snort rules also provide the granularity necessary to be
very explicit about the attributes of the packet that are to be inspected or ignored. The
result is that there should be far fewer false positives and false negatives if the rules are
properly configured for the site.

Chapter 14. Snort Rules - Part II

The previous chapter provided an introduction to Snort, in general, and Snort rules. As you
will recall, a Snort rule is composed of a rule header, which was examined in detail in the
previous chapter, and a rule option, which will be covered thoroughly in this chapter.
The rule header supplies the action that will be applied if the rule is triggered. It details the
source and destination IP addresses and ports, the protocol, and the direction of the traffic
flow. The rule header can be used alone to form a rule, but it is usually followed by a rule
option to provide more detail about the packet attributes. Ironically, there are some
commercial NIDS that only allow the same level of detail as a Snort rule header when
specifying a signature. In other words, they don't allow the user to configure much more
than the IP addresses, protocol, and TCP or UDP ports to define a signature. Obviously,

http://safari.informit.com/?xmlid=0-73571-265-4/22991533

this cannot be considered very robust in terms of rule or packet granularity. The rule
options form the core of Snort's intrusion-detection capabilities.

Format of Snort Options

The rule options are separated from the rule header via required parentheses (). Look at
the following rule:

alert tcp !$HOME_NET any -> $HOME_NET any (flags: SF; \
msg: "SYN-FIN scan";)

The options portion is as follows:

(flags: SF; msg: "SYN-FIN scan";)

Each option is made up of an option keyword, and possibly a value for the particular option
keyword. In the preceding example, you find the option keyword flags paired with a value
of SF and an option keyword of msg paired with a value of SYN-FIN scan. The value that is
associated with a given option keyword depends on the option. Some options require
numeric values and others require text. Option keywords are separated from the
associated value via the colon (:), and individual options are delimited by a semi-colon (;).
A semi-colon must follow the final option as well or an error will be generated. Although
most option keywords are usually followed by a value, there are some options that require
no value. One such example is the option nocase that indicates a search for content in the
packet's payload is to be case insensitive.

Snort is pretty unconcerned and forgiving about the lack or abundance of whitespace
between delimiters such as ; and :. You don't have to supply spaces, or you can supply
multiple spaces between options, values, and delimiters. For instance, the two following
options should both work:

(flags:SF;msg:"SYN-FIN scan";)
(flags: SF ; msg : "SYN-FIN scan" ;)

The backslash (\) is a rule continuation character; rules can be continued on separate lines
if this character is supplied at the end of any unfinished line. Speaking of special
characters, the pound sign (#) is used as the comment character for Snort rules.

Rule Options

http://safari.informit.com/?xmlid=0-73571-265-4/22991533

Some of the most important and commonly used options will be discussed now to convince
you of the power of Snort rules. The entire list of burgeoning options will not be covered,
but descriptions of all of them can be found at www.snort.org by examining the online Snort
Users Manual under the documentation link.
Msg Option
The msg option allows the user or analyst to assign an appropriate message to the output
of a triggered rule. When you examine an alert or logged entry for the triggered rule, you
will see the offending packet. You will not see the actual rule that triggered the alert in the
output itself, so you need some descriptive way of associating the alert with the rule. If
you assign an msg option value, it will appear before the offending packet output to give
you a better idea of why the rule triggered.
Look at the following format, rule, and an associated alert that triggered from the rule:
Format:
msg: "<message text>";
Sample rule:
alert udp any any -> 192.168.5.0/24 31337 \
(msg:"Back Orifice";)
Sample output:
 [**] Back Orifice [**]
04/24-08:49:21.318567 192.168.143.15:60256 -> 192.168.5.16:31337
UDP TTL:41 TOS:0x0 ID:49951
Len: 8
The Snort rule says to alert (and log) when a UDP packet from any source IP address or
port goes to subnet 192.168.5 destination port 31337 and to assign it a message of "Back
Orifice". When the rule is triggered, the alert is recorded with "[**] Back Orifice [**]" to
describe the activity.
Logto Option
The logto option allows you to specify a filename to which to log the activity. This applies
to rules with the alert or log action in the rule header only. A rule that is triggered with the
alert or log action will normally write to a default directory (either /var/log/snort for UNIX
hosts or, on a Windows machine, a subdirectory named log from wherever Snort is
launched) or a directory specified using the –l filename option on the command line. This
assumes that the user hasn't changed the default logging to binary output (-b command-
line option), to send the output to the syslog daemon (-s command-line option), or
disabled logging altogether (-N command-line option).
The logto option can be used to send the output for a specific rule or class of user-chosen
rules to a given file. Why might you want to use this option? Well, this is an excellent way
to separate the truly dangerous or harmful kinds of alerts from those that are the garden
variety. In the case shown in the example, if you suspect that you have some kind of
trinoo distributed denial-of-service (DDoS) infestation or any other DDoS activity on the
network, you can look directly at the DDoS file for signs of this. This will also be logged to
the default alert file as well because the following sample rule uses the action alert.
Format:
logto: "<filename>";
The supplied filename should not include a path, only a filename. Including a path causes
Snort to display an error message. You should place the filename in quotes, otherwise an
initial space is sometimes added before the name.
Sample rule:
alert udp any any -> 192.168.5.0/24 31335 \
(msg: "trinoo port"; logto: "DDoS";)

http://www.snort.org/

Sample output:
If the rule is triggered, the output on this UNIX host will be found in /var/log/snort/DDoS:
 [**] trinoo port [**]
04/24-09:07:41.320938 192.168.143.15:56881 -> 192.168.5.16:31335
UDP TTL:42 TOS:0x0 ID:4011
Len: 8
Ttl Option
The ttl option allows you to examine the arriving time-to-live field for a specific value. This
option could be used for a variety of reasons. One reason to examine this field would be to
look for a packet with a low arriving TTL value, which can be indicative of a UNIX host
performing a traceroute or a Windows host performing a tracert. When the protocol is UDP
and the port ranges are 33000 through 34000, it is most likely a UNIX traceroute. A
Windows tracert is done via ICMP echo requests.
The following rule looks for UNIX traceroute traffic to the 192.168.5 network with a UDP
port in the range 33000 through 34000 inclusive and an arriving TTL value of 1.
Format:
ttl: <number>;
Sample rule:
alert udp any any -> 192.168.5.0/24 33000:34000 \
(msg: "Unix traceroute"; ttl: 1;)
Sample output:
[**] Unix traceroute [**]
04/24-09:29:37.971353 192.168.143.15:40920 -> 192.168.5.16:33437
UDP TTL:1 TOS:0x0 ID:40923
Len: 18
Id Option
As you recall, the IP identification value is a 16-bit value that is found in the IP header of
each datagram. Each new datagram is assigned a unique IP ID number that is typically
incremented by 1 for each packet. This number becomes the fragment ID, which assists
the destination host in reassembling fragments. The sample rule looks for an unusual IP ID
value of 0. It now appears that Linux 2.4 kernels set the IP ID value to 0 when the Don't
Fragment (DF) flag is set in the packet. The reasoning for this is that if the packet will
never become fragmented, why bother to assign it a fragment ID?
Format:
id: <number>;
Sample rule:
alert icmp any any -> 192.168.5.0/24 any \
(msg: "Suspect IP Identification #"; ID:0;)
Sample output:
[**] Suspect IP Identification # [**]
04/25-09:21:36.371005 192.168.143.15 -> 192.168.5.16
ICMP TTL:64 TOS:0x0 ID:00
Dsize Option
The dsize option allows Snort to examine the size of the payload. You can inspect the
payload size for an exact value, or a value less than or greater than a particular number.
This can come in handy when you are creating a rule for buffer overflow attacks. These
attacks might have a telltale signature of having a larger payload than expected. The
following sample rule looks for ICMP packets with a payload size greater than 1,024 bytes.
Format:
dsize: [<|>] number

Sample rule:
alert icmp any any -> 192.168.5.0/24 any \
(msg: "Large ICMP payload"; dsize: >1024;)
Sample output:
[**] Large ICMP payload [**]
04/24-11:10:24.110169 192.168.143.100 -> 192.168.5.16
ICMP TTL:255 TOS:0x0 ID:5487 DF
ID:7564 Seq:0 ECHO
Sequence Option
The sequence option checks the value of the TCP sequence number. The Shaft distributed
denial-of-service software is known to assign a fixed sequence number—hexadecimal
28374839—when a TCP flood is directed to a victim site. No doubt, this is something that is
configurable in the source code, so this is not a failsafe method of identifying Shaft. Of
course, a benign packet could coincidentally be using the same sequence number, too.
Format:
seq: <number>;
Sample rule:
alert tcp any any -> any any \
(msg: "Possible Shaft DDoS"; seq: 0x28374839;)
Sample output:
[**]Possible Shaft DDoS [**]
04/25-07:19:58.582562 192.168.143.100:35680 -> 192.168.143.15:23
TCP TTL:255 TOS:0x0 ID:7705 DF
******S* Seq: 0x28374839 Ack: 0x0 Win: 0x2238
TCP Options => MSS: 1460
Acknowledgement Option
The acknowledgement option examines the value of a TCP acknowledgement number. The
primary use for this currently is to detect nmap pings. As you discovered in the previous
chapter, nmap sends a unique signature when it tries to assess if a host is alive. It sets the
ACK flag on, and it sets the acknowledgement value of 0. This would be a rare setting to
find in normal traffic because it would be indicative of an already established connection
acknowledging that the previous TCP sequence number received was 232 – 1, and now the
acknowledgement number is wrapping back to 0.
Format:
ack: <number>;
Sample rule:
alert tcp any any -> any any \
(msg: "nmap TCP ping"; flags: A; ack: 0;)
Sample output:
[**] nmap TCP ping [**]
04/25-07:27:13.578488 192.168.143.15:63367 -> 192.168.143.16:80
TCP TTL:42 TOS:0x0 ID:26253
A* Seq: 0x16680003 Ack: 0x0 Win: 0xC00
Itype and Icode Options
The itype option is used to select a particular ICMP message type. The message type field
is found in the zero byte offset of the ICMP message.Valid values for this and its partner
option icode, which is used to represent the ICMP message code, can be found at
www.iana.org/assignments/icmp-parameters. The icode option is often used in conjunction with the
itype option. The ICMP message code is found in the first byte offset of the ICMP message.
Many ICMP messages share the same type but are further delineated using the ICMP code

http://www.iana.org/assignments/icmp-parameters

field. For instance, an ICMP type of 3 has many different ICMP codes associated with it. If
you are just interested in seeing ICMP port unreachable messages, you must qualify the
rule with an itype value of 3 and an icode value of 3.
Format:
itype: <number>;
icode: <number>;
Sample rule:
alert icmp 1.1.1.0/24 any -> 192.168.5.0/24 any \
(msg: "port unreachable"; itype: 3; icode: 3;)
Sample output:
[**] port unreachable [**]
04/25-07:56:37.129338 1.1.1.16 -> 192.168.5.15
ICMP TTL:255 TOS:0xC0 ID:33569
DESTINATION UNREACHABLE: PORT UNREACHABLE
Flags Option
The flags option enables you to inspect TCP flag settings in many different ways. Starting
from the least significant (rightmost) flag bit setting:
F: Finish flag set
S: Synchronize flag set
R: Reset flag set
P: Push flag set
A: Acknowledgement flag set
U: Urgent flag set
2: ECN echo flag set (formerly a reserved bit)
1: ECN congestion window reduced set (formerly a reserved bit)
0: No flag bits set
It's also possible to use one of three modifiers (+,*,!) to assist in examining flag
combinations or negating a flag setting. For instance, the A+ flag setting indicates that the
Acknowledgement flag must be set. It can be set alone, or any other flag might be set
along with it. This could include an acknowledgement on push flag (meaning new data is
being sent at the same time received data is being acknowledged to combine transfers into
one packet), which is a common and legitimate combination. The * modifier is used when
you have a combination of flags and any of those flags might be set. For instance, SFP*
says that any combination of the SYN, FIN, and PSH flags can be set—they can all be set;
a lone SYN, FIN, or PSH can be set; or any pair in the trio can be set. Finally, the ! modifier
specifies to negate the current flag setting. The flags option !S specifies that any TCP
segment without the SYN flag set will be a candidate packet.
Format:
flags: <flag_settings>
Flag Settings:
F = FIN
S = SYN
R = RST
P = PSH
A = ACK
U = URG
2 = ECE
1 = CWR
0 = No flags set

See Figure 14.1 for a pictorial representation of Snort's TCP flag bits. Possible flag modifiers:
Figure 14.1. Snort's view of the TCP flag byte.

+ All, match if listed flag(s) set and any others set
* Any, match if any combination of listed flag(s) set
! Not, match if listed flag(s) NOT set
Sample rule:
alert tcp any any -> any any (msg:"Null Scan"; flags:0;)
Sample output:
[**] Null Scan [**]
04/25-05:49:51.914748 192.168.143.15:54746 -> 192.168.143.16:21
TCP TTL:51 TOS:0x0 ID:23446
******** Seq: 0x1CED3E2E Ack: 0x0 Win: 0x1000
TCP Options => WS: 10 NOP MSS: 265 TS: 1061109567 0 EOL EOL
In the previous sample output, you see a string of eight asterisks (********). Snort
changes an asterisk to its respective flag bit letter association (12UAPRSF) if the flag is set
in the packet that triggered the alert. Because this is a null scan, no flag bits are set;
hence, you see all asterisks.
Content Option
The content option is one of the most vital and potentially misused options. It provides a
means of supplying payload content to search for in the packet. There are many ways to
supply the content value and multiple different content values can be sought. This option is
used liberally throughout the rules that are supplied in the Snort download, but the content
option should also be used wisely. Seeking content in payload is considered to be
computationally expensive—in other words, this can slow Snort down considerably if it is
not done intelligently. Although the developers of Snort have maximized the efficiency of
the algorithm applied to do content searches, it is a slow operation when compared with a
more exact task such as a match of a header field value. This is because the header field
value is, at most, four bytes long, yet payloads are often much longer, thus taking more
time to search.
If at all possible, the content option should be qualified with other options as flags or those
that will be discussed shortly, such as an offset into the payload where the content search
begins, and depth into the payload where the content search ends. The content option is
tested last even if it is listed first in the rule options. This is done to optimize the search by
qualifying it with other options.
Content strings can be represented as text or a hexadecimal translation of binary data or a
combination of text and hexadecimal. Text strings are enclosed in quotes ("") and matches
are case sensitive unless the nocase option is used. Hexadecimal code is delimited with the
pipe (|) characters. Multiple content options and values can be specified in a rule and all
values associated with the multiple content options must be found in the packet. The
content values associated with the multiple content options can appear in any order in the
payload; in other words, they do not have to match the order in which they are listed in
the rule. There is another available content option that will not be covered known as the
content-list. This allows multiple content strings to be specified and if any of them match,
the rule triggers. The Snort Users Manual found on www.snort.org discusses this option and
gives an example.

http://www.snort.org/

Format:
content: <"value">;
content: <"value">; content: <"value">;
Sample rule:
alert udp $EXTERNAL_NET any -> $HOME_NET 53 \
(msg: "EXPLOIT BIND tsig Overflow Attempt"; \
content: "|00 FA 00 FF|"; content: "/bin/sh";);
Sample output:
02/22-15:33:19.472301 ATTACKER:1024 -> VICTIM:53
UDP TTL:64 TOS:0x0 ID:6755 IpLen:20 DgmLen:538
Len: 518

<lines omitted to condense output>

00 3F 90 E8 72 FF FF FF 2F 62 69 6E 2F 73 68 00 .?..r.../bin/sh.
0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D
1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D .. !"#$%&'()*+,-
2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B 3C EB ./0123456789:;<.
07 C0 00 00 00 00 00 3F 00 01 02 03 04 05 06 07?........
08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17
18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 !"#$%&'
28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 ()*+,-./01234567
38 39 3A 3B 3C EB 07 C0 00 00 00 00 00 3F 00 01 89:;<........?..
02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11
D8 FA FF BF D8 F7 FF BF D0 7C 0D 08 04 F7 10 40|.....@
22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 "#$%&'()*+,-./01
32 33 34 35 36 37 38 39 3A 3B 3C EB 07 C0 00 00 23456789:;<.....
00 00 00 3F 00 01 02 03 04 05 06 07 08 09 0A 0B ...?............
0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B
1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B !"#$%&'()*+
2C 2D 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B ,-./0123456789:;
3C EB 07 C0 00 00 00 00 00 00 00 FA 00 FF <.............
This output provides the hex characters in the payload on the left side of the output,
followed by the ASCII interpretation of those characters on the right side. The rule that
was created looks for UDP traffic from outside the trusted network to destination port 53
on a host on the trusted network. Specifically, it looks for the existence of two strings—the
first expressed in hexadecimal 00 FA 00 FF, and the second, the text /bin/sh. Both strings
must appear in the payload in any order. This rule will be refined more after some other
options are discussed.
Some rule options are used only as modifiers to a content option—in other words, they are
meaningless and will generate an error message unless the content option is used. These
options are: offset, depth, nocase, and regex. They follow the content option that they
qualify and if multiple content options are given, the offset, depth, nocase, and regex
options modify only the content option that they immediately follow.

To Push or Not to Push
If you examine the TCP rules supplied with Snort, you will discover that many of
those with a content option include a flag option of A+. This means for the rule to
trigger, the acknowledgement flag must be set and other flags can be set as well.
This might seem odd because logically, you might be thinking, "Why isn't the flag
setting P+?" After all, shouldn't Snort examine content when payload bytes are
pushed in the packet?
That is absolutely true; it makes the processing more efficient by qualifying the
rule to look at content when actual payload data is transmitted. According to the
noted author, Richard Stevens, in TCP/IP Illustrated, Volume 1, many BSD
derived stacks set the push flag any time data is transmitted; but other operating
system stacks set the push flag when data is sent only if the sender empties its
write buffer. This means that if the receiver advertises a small TCP window size
and the sender doesn't empty its write buffer when transmitting data, only the
acknowledgement flag is set. That is why the A+ flag setting is used, because it
will match the condition regardless if the push flag is set or not. Although many
packets with only the acknowledgement flag set do not have payload, they will be
considered for examination.
Alternatively, an option of dsize > 0 could be used to make sure that there was
payload in the packet before examining it. This would catch unusual traffic such
as data on the SYN, which the A+ would not.
As an example of payload data sent in a packet with only the acknowledgement
flag set, look at two TCPdump records from LaBrea version 2, as discussed in
Chapter 9, "Examining Embedded Protocol Header Fields," that slowed the attacker
by advertising an unusually small TCP window size and then effectively arrested
data transfer by decreasing the TCP window size to 0. The first record shows the
LaBrea host 10.10.10.155 pretending to be a web server and advertising an
usually small TCP window size of 5. Host attacker.net sends 5 bytes of payload,
yet you see there is no push flag set along with the acknowledgement flag
because this amount of data was too small to empty attacker.net's TCP write
buffer:
10.10.10.155.www > attacker.net.2045: S 998514038:998514038(0)
ack 882335287
win 5
attacker.net.2045 > 10.10.10.155.www: . 1:6(5) ack 1 win 8576
(DF)

Offset Option
As mentioned, the content search is computationally expensive, but it can be made more
efficient by starting the search at an offset into the payload if the location of the content is
known to begin somewhere other than the first byte in the payload. By default, the content
search starts at the first byte, which is considered to be offset 0.
Format:
offset: <number>;
Sample rule:
alert tcp any any -> 192.168.5.0/24 21 \
(msg: "Attempted anonymous ftp access"; \
content: "anonymous"; offset: 5;)
Sample output:
 [**] Attempted anonymous ftp access [**]
04/24-12:11:08.724441 192.168.143.15:3484 -> 192.168.5.16:21

TCP TTL:64 TOS:0x10 ID:30124 DF
AP Seq: 0x93EE0AB7 Ack: 0xB8352E61 Win: 0x7D78
TCP Options => NOP NOP TS: 112024246 27551686
55 53 45 52 20 61 6E 6F 6E 79 6D 6F 75 73 0D 0A USER anonymous..

The text "anonymous" is found at the 6th byte in the payload, but because we begin the
offset count at 0, it is found in offset byte 5.
Depth Option
The depth option is another useful option to help limit the amount of processing Snort
must do on content searches. The depth specifies the number of bytes to search from the
offset. If no offset is given, the offset is assumed to be 0. This option can drastically
improve Snort's performance if packets have large payloads and the content being sought
appears in well-defined areas of the payload.
Format:
depth: <number>
Sample rule:
alert udp !$HOME_NET any -> $HOME_NET 5632 \
(msg: "PCAnywhere Startup"; content: "ST"; depth: 2;)
Sample output:
[**] PCAnywhere Startup [**]
04/24-12:11:08.724441 192.168.143.15:3484 -> 192.168.143.16:5632
UDP TTL:64 TOS:0x10 ID:30124 DF
73 74 61 72 74 75 70 STARTUP
This rule is triggered if the characters "ST" are discovered two bytes from the default offset
of byte 0.
Nocase Option
The nocase option makes the content search in the payload case insensitive. This means
that Snort will match the content string being searched no matter what case is used. This
is one of the few options that does not have an option value partnered with it.
Format:
nocase;
Sample rule:
alert tcp any any -> any 21 \
(msg: "FTP warez snooping"; content: "warez"; nocase;)
Sample output:
[**] FTP warez snooping[**]
04/25-05:28:28.146374 192.168.143.15:3487 -> 192.168.143.16:21
TCP TTL:64 TOS:0x10 ID:30637 DF
AP Seq: 0xE1977C8D Ack: 0x452F7F9 Win: 0x7D78
TCP Options => NOP NOP TS: 118248207 33775174
43 57 44 20 57 61 52 65 5A 0D 0A CWD WaReZ..

Regex Option
The regex option modifier of content allows wildcard characters to appear in the content
string. Two wildcard characters are available: the ? specifies that a single character can be
substituted in the position where the ? is found. The second wildcard character * indicates
that any number of characters can be substituted where the * is found.
One excellent use of the regex option is looking for signs of buffer overflow characters. If a
buffer overflow is successful on a UNIX host, the attacker might very well try to gain
access to a shell such as the Bourne shell using /bin/sh. Yet, there are many other shells
that can be used such as the C shell (csh), the Korn shell (ksh), and Bourne again shell
(bash), to name a few. Therefore, specifying a proper string and wildcard character will

find all of the various shells. Prior to the addition of the regex option, the only way to test
for all different shells was to use different rules. Be warned that the regex option will not
be fully functional until release 2.0 of Snort.
Format:
regex;
Sample rule:
log tcp any any -> 192.168.5.0/24 515/
(msg: "Attempted shell on lpd"; content: "/bin/*sh"; regex;)
Sample output:
[**] Attempted shell on lpd [**]
03/23-07:41:11.282960 1.1.0.1:1892 -> 192.168.5.55:515
TCP TTL:64 TOS:0x0 ID:63821 IpLen:20 DgmLen:60
AP Seq: 0x32A77D55 Ack: 0x0 Win: 0x200 TcpLen: 20
2F 62 69 6E 2F 63 73 68 0A 00 00 00 00 00 00 00 /bin/csh........
00 00 00 00
The previous rule looks for shell access to destination port 515 known as the line printer
daemon. The regex qualifier to the content value of /bin/*sh is used to find all the different
types of shell access.
Session Option
The session option is used to capture user data from TCP sessions. It can provide a good
forensics tool to see what a particular user is doing, especially if you suspect some kind of
malicious behavior is taking place.
There are two available argument keywords for the session rule option: printable or all.
The printable keyword only prints out data that the user would normally see or be able to
type. The all keyword substitutes non-printable characters with their hexadecimal
equivalents.
You should be aware that the use of the session option can degrade the performance of
Snort, so it is best used retrospectively; capture the data in binary format (TCPdump files)
and then run it through Snort. Also, note that typically when you use this option, you
should use the direction operator that specifies both directions as shown in the example.
Finally, it is best to use the –d command-line option to dump at the application level;
otherwise, it doesn't make much sense to specify the session option.
By default, the session is recorded in the default log directory. The subdirectory beneath
that is the IP number of the host initiating the activity. A file named SESSION:sourceport-
destport, where sourceport and destport are the actual source, destination ports for the
connection will be located in that directory.
Format:
session: [printable|all]
Sample rule:
log tcp any any <> 192.168.5.0/24 21 (session: printable;)
Sample output:
Assuming the source host for the session is 1.2.3.4 on port 1025, the following output will
be in the log directory in subdirectory 1.2.3.4 file SESSION: 1025-21:
220 linux2 FTP server (Version wu-2.5.0(1) Tue Sep 21 16:48:12 EDT 1999)
ready.
USER jsmith
331 Password required for jsmith.
PASS snorty-the-p1g
230 User jsmith logged in.
SYST

215 UNIX Type: L8
QUIT
221-You have transferred 0 bytes in 0 files.
221-Total traffic for this session was 239 bytes in 0 transfers.
221-Thank you for using the FTP service on linux2.
221 Goodbye
Resp Option
The resp option allows an automated active response when malicious activity is detected.
An active response attempts to disable a connection. There are many different
combinations of active responses and multiple resp options can be given in a single rule.
TCP connections can be aborted by sending a reset to the sending host socket connection,
the receiving host socket connection, or both hosts' socket connections. If the offending
packet is UDP, different ICMP messages can be sent in an attempt to interrupt the UDP
data flow. An ICMP network, host, or port unreachable message—or a combination of all
three of these ICMP messages—can be sent.
The response option doesn't come automatically enabled with the source distribution. To
enable it, you must explicitly configure Snort via the following command:
./configure --enable-flexresp
This includes the necessary code for compilation. It is also possible that your configuration
of UNIX doesn't have a libnet.h include file required for this to compile. It is available from
www.packetfactory.net.
No discussion of active response is complete unless the requisite caveats are offered. First,
think smoking-brain hard before you decide to indiscriminately use active response. It
should be used for situations where you perceive that unauthorized harmful access could
occur such as a buffer overflow. Keep in mind that attackers can spoof source IP
addresses, and you might end up using active response against an IP address or addresses
that never sent you traffic to begin with. Think about the consequences of active response
if someone spoofs a legitimate partner's IP addresses; it is possible for you to end up
attacking a vital resource. Also, a false positive could cause a totally benign connection to
be halted. This can cause a denial of service to legitimate users.
Another concern is timing issues. Many requests and responses are almost instantaneous,
especially one such as a UDP DNS query-response pair. Attempting to actively respond to a
perceived malicious DNS query might prove to be futile because by the time Snort reacts,
the response has probably already been sent.
Format:
resp <resp_option[, resp_option…]>;
Available choices for the response are:
rst_snd Send TCP RESET packets to sending socket
rst_rcv Send TCP RESET packets to receiving socket
rst_all Send TCP RESET packets to both sending and receiving sockets
icmp_net Send an ICMP_NET_UNREACH to sender
icmp_host Send an ICMP_HOST_UNREACH to sender
icmp_port Send an ICMP_PORT_UNREACH to sender
icmp_all Send all of the above ICMP_UNREACH packets to sender
Sample rule:
alert tcp any any -> $HOME_NET 21 \
(msg: "FTP password file retrieval"; \
flags: A+; resp: rst_all; content: "passwd";)
Sample session:

http://www.packetfactory.net/

[root@verbo hping2-beta53]# ftp sparky
Connected to sparky.
220 sparky FTP server (SunOS 5.7) ready.
Name (sparky:root): jsmith
331 Password required for jsmith.
Password:
230 User jsmith logged in.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> cd /etc
250 CWD command successful.
ftp> get passwd
local: passwd remote: passwd
200 PORT command successful.
421 Service not available, remote server has closed connection
The previous rule calls for an active response to a connection to an ftp server that
references the password file passwd. Snort resets both ends of the connection to interrupt
this attempt because the resp option of rst_all was selected.
Look at the last line of the ftp session. You see that right after the attacker entered the
command get passwd, the connection was actually closed. It is possible that the
password file had already been transferred before the reset occurred.
Tag Option
The use of the tag option enables Snort to dynamically capture additional packets after a
rule triggers. Without the tag option, only the packet that caused the rule to be triggered is
recorded. This is an excellent way to see what transpires after the rule is triggered to get a
better idea of the intent of the activity. This can also be useful for validating that some
activity that triggered a rule is simply a false positive.
Format:
tag: <type>, <count>, <metric>, [direction]

● type. What traffic to record.
❍ session. Record the packets from both sides of the connection
❍ host. Record the packets from the host that caused the rule to trigger (must

use direction modifier)
● count. Number of units specified by metric.
● metric. Number of packets/seconds to record.

❍ packets. Record host/session for <count> packets.
❍ seconds. Record host/session for <count> seconds.

● direction. Used only with "host" type to indicate host to tag.
❍ src. Tag all traffic of source IP in triggered rule.
❍ dst. Tag all traffic of destination IP in triggered rule.

Sample rule:
alert tcp any any -> any 21 (msg: "FTP passwd access"; flags: A+; \
content: "passwd"; tag: session, 10, packets;)
Sample output:
The alert file shows the abbreviated data from the miscreant connection to destination port
21:
[**] FTP passwd access [**]
03/21-20:31:05.610035 10.10.10.101:1454 -> 10.10.10.100:21

TCP TTL:128 TOS:0x0 ID:50697 IpLen:20 DgmLen:58 DF
AP Seq: 0x17806739 Ack: 0x121C07E5 Win: 0x1FD3 TcpLen: 20
A directory named 10.10.10.101 was created with a file named TCP:1454-21 to record the
session exchange of the attempted password file access and 10 subsequent records. Note
that the command line used the –d option to capture and dump the data payload. This is
an excerpt of the output:
03/21-20:31:05.610035 10.10.10.101:1454 -> 10.10.10.100:21
TCP TTL:128 TOS:0x0 ID:50697 IpLen:20 DgmLen:58 DF
AP Seq: 0x17806739 Ack: 0x121C07E5 Win: 0x1FD3 TcpLen: 20
52 45 54 52 20 2F 65 74 63 2F 70 61 73 73 77 64 RETR /etc/passwd
0D 0A ..

=+=

03/21-20:31:05.610731 10.10.10.100:21 -> 10.10.10.101:1454
TCP TTL:64 TOS:0x10 ID:1752 IpLen:20 DgmLen:109 DF
AP Seq: 0x121C07E5 Ack: 0x1780674B Win: 0x7D78 TcpLen: 20
31 35 30 20 4F 70 65 6E 69 6E 67 20 41 53 43 49 150 Opening ASCI
49 20 6D 6F 64 65 20 64 61 74 61 20 63 6F 6E 6E I mode data conn
65 63 74 69 6F 6E 20 66 6F 72 20 2F 65 74 63 2F ection for /etc/
70 61 73 73 77 64 20 28 36 37 39 20 62 79 74 65 passwd (679 byte
73 29 2E 0D 0A s)...

=+=

<omitted boring records>

=+=

03/21-20:31:08.924038 10.10.10.101:1454 -> 10.10.10.100:21
TCP TTL:128 TOS:0x0 ID:52489 IpLen:20 DgmLen:58 DF
AP Seq: 0x17806764 Ack: 0x121C0860 Win: 0x1F58 TcpLen: 20
52 45 54 52 20 2F 65 74 63 2F 73 68 61 64 6F 77 RETR /etc/shadow
0D 0A ..

Putting It All Together
Now that you've endured the tedium to understand Snort rules, you might be wondering
how you would write a rule for a new exploit that was released. Chances are that the
user/developer population of Snort will have a new rule out for a current exploit very
quickly. But, assume you have some code that professes to be an attack for which no
Snort rule exists.
The first thing to do is to execute the exploit code in an isolated test network such as your
home or a segregated lab environment at work. If the code works as advertised, record the
packet exchange between the attacking and victim hosts. Then, look for unique and
repeatable values in the packet that can be used to write a signature or rule. You might
have to read some RFCs to become acquainted with the protocol used in the exploit to

understand which are repeatable and which are modifiable values.
Suppose you downloaded some code that exploited a buffer overflow condition for DNS
TSIG (transaction signature) records. This is an actual attack that was effective against
unpatched versions of BIND from 4.x up to, but not including, 8.2.3. A TSIG record in DNS
is another resource record type like an address or pointer record. It is used by resolvers
and for dynamic updates to ensure the integrity of an exchanged DNS record using a
cryptographic one-way hash and shared secret key.
Because the exploit attempts to get access to a shell at the privilege level that BIND (the
"named" daemon) runs at, the captured traffic from the exploit should be examined for this
signature. Here is the packet that contains the buffer overflow and subsequent attempt to
get shell access:
02/22-15:33:19.472301 ATTACKER:1024 -> VICTIM:53

UDP TTL:64 TOS:0x0 ID:6755 IpLen:20 DgmLen:538
Len: 518

DE AD 01 80 00 07 00 00 00 00 00 01 3F 00 01 02?...
03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12
13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 !"
23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 #$%&'()*+,-./012
33 34 35 36 37 38 39 3A 3B 3C EB 0A 02 00 00 C0 3456789:;<......
00 00 00 00 00 3F 00 01 EB 44 5E 29 C0 89 46 10?...D^)..F.
40 89 C3 89 46 0C 40 89 46 08 8D 4E 08 B0 66 CD @...F.@.F..N..f.
80 43 C6 46 10 10 66 89 5E 14 88 46 08 29 C0 89 .C.F..f.^..F.)..
C2 89 46 18 B0 90 66 89 46 16 8D 4E 14 89 4E 0C ..F...f.F..N..N.
8D 4E 08 EB 07 C0 00 00 00 00 00 3F EB 02 EB 43 .N.........?...C
B0 66 CD 80 89 5E 0C 43 43 B0 66 CD 80 89 56 0C .f...^.CC.f...V.
89 56 10 B0 66 43 CD 80 86 C3 B0 3F 29 C9 CD 80 .V..fC.....?)...
B0 3F 41 CD 80 B0 3F 41 CD 80 88 56 07 89 76 0C .?A...?A...V..v.
87 F3 8D 4B 0C B0 0B CD 80 EB 07 C0 00 00 00 00 ...K............
00 3F 90 E8 72 FF FF FF 2F 62 69 6E 2F 73 68 00 .?..r.../bin/sh.
0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D
1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D .. !"#$%&'()*+,-
2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B 3C EB ./0123456789:;<.
07 C0 00 00 00 00 00 3F 00 01 02 03 04 05 06 07?........
08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17
18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 !"#$%&'
28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 ()*+,-./01234567
38 39 3A 3B 3C EB 07 C0 00 00 00 00 00 3F 00 01 89:;<........?..
02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11
D8 FA FF BF D8 F7 FF BF D0 7C 0D 08 04 F7 10 40|.....@
22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 "#$%&'()*+,-./01
32 33 34 35 36 37 38 39 3A 3B 3C EB 07 C0 00 00 23456789:;<.....
00 00 00 3F 00 01 02 03 04 05 06 07 08 09 0A 0B ...?............
0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B
1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B !"#$%&'()*+
2C 2D 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B ,-./0123456789:;
3C EB 07 C0 00 00 00 00 00 00 00 FA 00 FF <.............
One obvious signature is the /bin/sh, which attempts to give shell access after a successful
buffer overflow. Another signature of this output is that there must be some identification
that a DNS TSIG record has been used.

The DNS type is a 2-byte field and a TSIG record will be assigned a value of 250 (0x00FA).
There must also be a 2-byte DNS class associated with each different resource record type
and the value assigned to a TSIG record is 255 (0x00FF)—to mean any class. Therefore,
there must be an occurrence of 0x00FA00FF in the DNS payload for this to be a TSIG
record. You would not find the occurrence of the string "/bin/sh" in a normal TSIG query,
so looking for both of these values is likely to find malicious records without alerting on
false positives. Although other values in this particular packet could be used for the rule, it
is possible to alter the source code so that the exploit would still work, yet the DNS header
or following TSIG records could change. Here is a rule that can detect the exploit:
alert udp $EXTERNAL_NET any -> $HOME_NET 53 \
(msg: "EXPLOIT BIND tsig Overflow Attempt"; \
content: "|00 FA 00 FF|"; offset: 12; \
content: "/bin/*sh"; regex; offset: 12;)
The observed traffic uses UDP, and you want to look for attackers coming into your
network from an outside host on any port to destination port 53. Two separate content
options are used to find the multiple occurrences of strings that are in the signature. The
option of regex is used in case a shell other than the Bourne shell is used. The regex option
is a work in progress and doesn't always work as advertised in Snort version 1.8.3. In the
previous example, it failed to work when included with the wildcard search of "/bin/*sh",
but it will be fixed and should work in the upcoming version 2.x releases.
Also, the content strings are qualified using an offset of 12 indicating that the search is to
begin at the 12th byte offset from the beginning of the DNS message. This is done for
efficiency and accuracy because the DNS header takes up the first 12 bytes and the search
to be performed is on the DNS payload, not the DNS header.
The TSIG Exploit
If you would like more information about TSIG, look at RFC 2845 titled, "Secret
Key Transaction Authentication for DNS (TSIG)." More information about the
exploit can be found at the Carnegie Mellon CERT site, www.cert.org, advisory CA-
2001-02. There is a wonderful write-up of the exploit done by Paul Asadoorian,
which can be found at www.sans.org/newlook/resources/IDFAQ/TSIG.htm. Many thanks to Paul
for his discussion of the Snort rule and the attack output.

Summary

Snort rule options provide a wide range of attributes and ways to specify values to
examine in a packet. The use of the options is quite intuitive and requires only some
familiarization of the various options via experimentation or reading the Snort
documentation. With virtually each new release of Snort, more options have been added,
making Snort rules feature-rich and comparable or better than many of the commercial
NIDS' signature writing capabilities.

To create a Snort rule for some exploit, run the exploit in an isolated environment and
record the traffic either using Snort or TCPdump in a mode where the entire packet is

http://www.cert.org/
http://www.sans.org/newlook/resources/IDFAQ/TSIG.htm

captured for examination. Use any available Snort rule header fields or options to precisely
identify the unique values and attributes of the exploit packets. Be aware that some
aspects of the exploit source code can be changed to alter the packet content; so, attempt
to extract the values or fields that are not likely to change when creating your rule.
Selecting and qualifying appropriate fields and values to be used is not an easy thing to do
because good signature writing is truly a practiced art that requires knowledge about the
signature language, the exploit, and the protocol involved in the exploit.

Part IV: Intrusion Infrastructure
 15 Mitnick Attack

 16 Architectural Issues

 17 Organizational Issues

 18 Automated and Manual Response

 19 Business Case for Intrusion Detection

 20 Future Directions

Chapter 15. Mitnick Attack

In the final section of the book, we will look at automated and manual responses, and
architectural and organizational issues. We will use this chapter on the Mitnick attack to serve
as a transition between this higher-level material and the more fundamental material that we
have already covered. The Mitnick attack is one of the most famous intrusion cases to ever
occur. If you are in the intrusion business, you should be aware of the techniques used by
Mitnick to attack Tsutomu Shimomura's systems. In this chapter, we will also introduce many
important issues, including reconnaissance and scanning for trust relationships. We will also
consider perimeter and host defenses that are related to intrusion detection for our future
discussions.
A primary source for this information is drawn from Shimomura's post on the Mitnick attack. If
you want more information on the subject, or to get expanded versions of the quotations you
see here, refer to tsutomu@ariel.sdsc.edu (Tsutomu Shimomura), comp.security.misc (date: 25 Jan
1995).

Exploiting TCP
The techniques Mr. Mitnick used were technical in nature and exploited weaknesses in TCP that
were well known in academic circles, but not considered by system developers. The attack used
two techniques: SYN flooding and TCP hijacking. Although SYN floods today can disable
systems, the operating systems at the time of the attack, 1994, were far more susceptible to
attack. The SYN flood kept one system from being able to transmit. Although it was in a mute
state, the attacker assumed its apparent identity and hijacked the TCP connection. Mitnick
detected a trust relationship between two computers and exploited that relationship.
Surprisingly, few things have changed since then; for instance, computer systems are still set
up to be overly trusting, often as a convenience to the system administrators or users.
IP Weaknesses
A number of reconnaissance, exploit, and denial-of-service attacks take advantage of flaws in
the architecture or implementation of the Internet Protocol stacks. In Chapter 4, "ICMP," we
discussed the use of broadcast ICMP in both network mapping and denial of service with Smurf.
In Chapter 3, "Fragmentation," we discussed penetration of perimeters with fragments as well as

mailto:tsutomu@ariel.sdsc.edu

malicious fragmentation with gaps and illegal offsets.
Some of these are older techniques, but new attacks based on programming flaws in IP
implementations are being developed all the time. The following TCPdump trace is from the
SNMP test tool PROTOS, released in February 2002:
18:49:54.519006 10.0.0.1.59108 > 10.0.0.2.161: GetRequest(33)
.1.3.6.1.2.1.1.5.0[len3<asnlen4294967295] (DF)
0x0000 4500 004c 0000 4000 4011 269f 0a00 0001
0x0010 0a00 0002 e6e4 00a1 0038 0efc 302e 0201
0x0020 0004 0670 7562 6c69 63a0 2102 0206 9202
0x0030 0100 0201 0030 1530 1306 082b 0601 0201
0x0040 0105 0044 84ff ffff ff02 0100
When we first ran this test against a Red Hat Linux 7.0 box, two interesting things happened:
The SNMP server application on the Linux box crashed, and the Ethereal network analyzer also
crashed. Why did they crash? If you notice the ASN.1 length in the square brackets at the top of
the trace, you will notice it is four billion some odd bytes. That is a lot of free memory to try to
allocate, and attempting to do so crashed the SNMP and Ethereal applications. As we work our
way into the Mitnick attack, we will see that available memory was a major issue in that attack.
One simple way to exhaust memory that is used every day is intentionally not completing the
three-way handshake. The weakness of TCP that Mitnick exploited comes from a design flaw in
the early implementations of TCP stacks; however, this approach still does harm to some IP
stacks.
TCP's Roots
When TCP was being developed, you couldn't purchase much memory for machines.
If you could get 4 megabytes on a server, you were doing quite well. Therefore, the
implementers of IP protocol stacks were very conservative.
The Internet is an outgrowth of a project from the 1970's by the US Department of
Defense Advanced Research Projects Agency (ARPA). The ARPANET, as it was then
called, was designed to be a non-reliable network service for computer
communications over wide areas. In 1973 and 1974, a standard networking protocol,
a communications protocol for exchanging data between computers on a network,
emerged from the various research and educational efforts involved in this project.
This became known as TCP/IP or the IP suite of protocols. The TCP/IP protocols
enabled ARPANET computers to communicate irrespective of their computer operating
system or their computer hardware.
For further information and the source of this quotation, see
www.ie.cuhk.edu.hk/~shlam/cstdi/history.html.

Let's take a closer look at this memory exhaustion problem. To an application program such as
ftp or telnet, sockets are the lowest layer, a programming interface to networking hardware. IP
is another layer and is above sockets. TCP sits on top of IP. Because TCP is connection oriented,
it has to keep state information, including window and sequence number information. A typical
Internet protocol stack contains information relating to sockets. TCP is connection oriented (or
stateful), so the server must keep track of all condition states and sequence numbers.
The C code below came from my Unix workstation. It can be thought of as a database record
with a number of fields. The key point is that each of these fields consumes memory.
struct ip {
#if defined(bsd)
 u_char ip_hl:4, /* header length */
 ip_v:4; /* version */
#endif
#if defined(powerpc)
 u_char ip_v:4, /* version */
 ip_hl:4; /* header length */
#endif

http://www.ie.cuhk.edu.hk/~shlam/cstdi/history.html

 u_char ip_tos; /* type of service */
 short ip_len; /* total length */
 u_short ip_id; /* identification */
 short ip_off; /* fragment offset
field */
#define IP_DF 0x3000 /* dont fragment flag */
#define IP_MF 0x4000 /* more fragments flag */
 u_char ip_ttl; /* time to live */
 u_char ip_p; /* protocol */
 u_short ip_sum; /* checksum */
 struct in_addr ip_src, ip_dst; /* source and dest address
*/
};
The preceding header file fragment is taken from an IP header file on a SunOS 4.1.3 system. A
struct—in this case, struct ip—can be thought of as a database record and the items inside

as fields for that record. Every time a new connection is processed, these structs have to be
created for socket, ip, and other protocol information. That takes memory, and lots of it. After a
server replies to a SYN, it has committed memory and must keep it committed until the timer,
usually set at about sixty seconds, allows the memory to be released if the connection is never
established. Because memory is finite, the designers of stacks have set limits. The SYN flood
attack exploits the queue size limit of the number of connections that can be simultaneously
waiting to be established for a particular service. Though some modern operating systems are
more resistant to these SYN flood attacks today, many are not. An unpatched Solaris 2.5 with a
GB of memory will still be DoSed after 32 SYNs.
SYN Flooding
In a modern SYN flood, the goal is simply to throw hundreds or thousands of packets per
second at a server to exhaust either system resources, as we have discussed, or even network
resources when the rate is high enough.
When an attacker sets up a SYN flood, he has no intention to complete the three-way
handshake and establish the connection. Rather, the goal is to exceed the limits set for the
number of connections waiting to be established for a given service. This caused IP stacks in the
1994 era to be unable to establish any additional connections for that service until the number
of waiting connections dropped below the threshold. Until the threshold limit is met, each SYN
packet generates a SYN/ACK that stays in the queue (which was generally between 5 and 10
total connections), waiting to be established. Today, queues can be much larger; ranges
between 100 and 1000 are reasonable.
SYN Floods Five Years Later
SYN flooding was in the news in February 2000 with the famous DDoS attacks that
were used against Yahoo! and other high-profile Internet sites. In the intervening
years since the Mitnick attack, there have been some improvements in system
networking stacks and perimeter defenses. The answer of the attackers has been
simple: raise the number of SYNs by several orders of magnitude. The SYN flood
described here is fairly elegant; the ones common to the Internet today are pure
brute force.
Each connection has a timer, a limit to how long the system waits for connection establishment.
The hourglass in Figure 15.1 represents the timer, which tends to be set for about a minute. After
the time limit has been exceeded, the memory that holds the state for that connection is
released and the service queue count is decremented by one. After the limit has been reached,
the service queue can be kept full, preventing the system from establishing new connections on
that port with about 10 new SYN packets per minute.

Figure 15.1. Getting down to it.

Covering His Tracks
Because the only purpose of the technique is to perform a denial-of-service attack, it doesn't
make sense to use the attacker's actual Internet address. The attacker is not establishing a
connection; he is flooding a queue, so there is no point in having the SYN/ACKs return to the
attacker. The attacker doesn't want to make it easy for folks to track the connection back to
him. Therefore, the source address of the packet is generally spoofed. The following IP header
is from actual attack code for a SYN flood. At the very bottom, notice the dadd and sadd for

destination and source address, respectively:
/* Fill in all the IP header information */
 packet.ip.version=4; /* 4-bit Version */
 packet.ip.ihl=5; /* 4-bit Header Length */
 packet.ip.tos=0; /* 8-bit Type of service */
 packet.ip.tot_len=htons(40); /* 16-bit Total length */
 packet.ip.id=getpid(); /* 16-bit ID field */
 packet.ip.frag_off=0; /* 13-bit Fragment offset */
 packet.ip.ttl=255; /* 8-bit Time To Live */
 packet.ip.protocol=IPPROTO_TCP; /* 8-bit Protocol */
 packet.ip.check=0; /* 16-bit Header checksum (filled in
below) */
 packet.ip.saddr=sadd; /* 32-bit Source Address */
 packet.ip.daddr=dadd; /* 32-bit Destination Address */
As the following code fragment shows, this technique even uses an error-checking routine to
make sure the address chosen is routable, but not active. When the attacker enters an address,
the attack code pings the address (notice the slickping line in the following code fragment)

to ensure it meets these requirements. If the address is active, it sends a RESET when it
receives the SYN/ACK for the system under attack. When the target system receives the RESET,
it releases the memory and decrements the service queue counter, rendering the attack
ineffective. From an intrusion-detection standpoint, these bogus packets assembled for the
purpose of attacking and probing can be called crafted packets. Quite often, the authors of
software that craft packets make a small error at some point, or take a shortcut, and this gives
the packet a unique signature. You can use these signatures in intrusion detection. When you

detect evidence of a crafted packet, you know the sender is up to something. Take a look:
case 3:
 if(!optflags[1]){
 fprintf(stderr,"Um, enter a host
 first\n");
 usleep(MENUSLEEP);
 break;
 }
 /* Raw ICMP socket */

if((sock2=socket(AF_INET,SOCK_RAW,IPPROTO_ICMP))<0){
 perror("\nHmmm.... socket
 problems\n");
 exit(1);
 }
 printf("[number of ICMP_ECHO's]-> ");
 fgets(tmp,MENUBUF,stdin);
 if(!(icmpAmt=atoi(tmp)))break;
 if(slickPing(icmpAmt,sock2,unreach)){
 fprintf(stderr,"Host is reachable...
 Pick a new one\n");
 sleep(1);
Now you have a technique to use as a generic denial of service. You hit a target system with
SYNs until it cannot speak (establish new connections). Systems vulnerable to this attack can
be kept out of service until the attacker decides to go away and SYN no more. In the Mitnick
attack, the goal was to silence one side of a TCP connection and masquerade as the silenced,
trusted party.
What would attackers use today to accomplish the same thing? Any good current denial-of-
service tool—for instance, an attack against Windows computers that has been pretty effective
is jolt.c, based on malicious oversize ICMP messages.
Identifying Trust Relationships
So how did Mitnick identify which system to silence? How did he confirm a trust relationship
existed? It turns out that many complex attacks are preceded by intelligence gathering
techniques, or recon probes. Here are the recon probes detected by TCPdump, a network-
monitoring tool developed by the Department of Energy's Lawrence Livermore Lab and reported
in Tsutomu's post.
"The IP spoofing attack started at about 14:09:32 PST on 12/25/94. The first probes were from
toad.com." (This information was derived from packet logs.)"
14:09:32 toad.com# finger -l @target
14:10:21 toad.com# finger -l @server
14:10:50 toad.com# finger -l root@server
14:11:07 toad.com# finger -l @x-terminal
14:11:38 toad.com# showmount -e x-terminal
14:11:49 toad.com# rpcinfo -p x-terminal
14:12:05 toad.com# finger -l root@x-terminal

Each of the commands shown—finger, showmount, and rpcinfo—can provide information

about UNIX systems. If you work in a UNIX environment and haven't experimented with these
commands in a long while, it might be worthwhile to substitute some of your machine names
for target, server, and x-terminal to see what you can learn. Here is the information you can
glean from the following commands:

● finger tells you who is logged on to the system, when they logged on, when they last

logged on, where they are logging on from, how long they have been idle, whether they

have mail, and when their birthday is (well, scratch the birthday). The analogous
command for Microsoft Windows systems is NBTSTAT.

• finger Example:

• [root@toad /tmp]# finger @some.host.net

• [some.host.net]

• Login Name TTY Idle When Where

• chap Bill Chapman x1568 pts/6 3:11 Tue 17:26 picard

• chap Bill Chapman x1568 console 8:39 Mon 14:44 :0
[root@toad /tmp]#

● showmount -e provides information about the file systems mounted with Network File

System (NFS). Of particular interest to attackers are file systems that are mounted world
readable or writable—that is, available to everyone.

• showmount Example:

• [root@toad /tmp]# showmount -e some.host.net

• Export list for some.host.net:

• /usr export-hosts

• /usr/local export-hosts

• /home export-hosts
[root@toad /tmp]#

● rpcinfo provides information about the remote procedure call services available on a

system. rpcinfo –p gives the ports where these services reside.

rpcinfo Example
[root@toad /tmp]# rpcinfo -p some.host.net
 program vers proto port
 100000 3 udp 111 rpcbind
 100000 2 udp 111 rpcbind
 100003 2 udp 2049 nfs
 100024 1 udp 774 status
 100024 1 tcp 776 status
 100021 1 tcp 782 nlockmgr
 100021 1 udp 784 nlockmgr
 100005 1 tcp 1024 mountd
 100005 1 udp 1025 mountd
 391004 1 tcp 1025
 391004 1 udp 1026
 100001 1 udp 1027 rstatd
 100001 2 udp 1027 rstatd
 100008 1 udp 1028 walld
 100002 1 udp 1029 rusersd
 100011 1 udp 1030 rquotad
 100012 1 udp 1031 sprayd
 100026 1 udp 1032 bootparam
These days, most sites block TCP port 79 (finger) at their firewall or filtering router, but it might
be a good idea to try this from your home ISP account— get permission first! Again, hopefully

your site blocks TCP/UDP port 111 (portmapper), but this is worth testing as well. In recent
years, so-called secure portmappers have become available either from vendors or as an
external package developed by Wietse Venema, available from the Coast archive at
ftp://coast.cs.purdue.edu/pub.
Examining Network Traces
In the case of the Mitnick attack, however, none of these ports were blocked and toad.com
acquired information that was used in the next phase of the attack. The following quotation is
from Tsutomu's post:
We now see 20 connection attempts from apollo.it.luc.edu to x-terminal.shell. The purpose of
these attempts is to determine the behavior of x-terminal's TCP sequence number generator.
Note that the initial sequence numbers increment by one for each connection, indicating that
the SYN packets are not being generated by the system's TCP implementation. This results in
RSTs conveniently being generated in response to each unexpected SYN-ACK, so the connection
queue on x-terminal does not fill up.
As you examine the following TCPdump trace, note how it is in sets of three packets—a SYN
from apollo to x-terminal, a SYN/ACK (step two of the three-way handshake), and a RESET
from apollo to x-terminal to keep from SYN flooding x-terminal.
How to Read TCPdump Traces
Timestamp Source host.Source Port > Dst host.Dst Port: TCP
FLAG(s)
14:18:25.906002 apollo.it.luc.edu.1000 > x-terminal.shell: S
SEQ NUM: ACK NUM TCP Window Size
1382726990:1382726990(0) win 4096

The following traces begin "flooding" x-terminal. Note that the +++s have been added to

emphasize the packet triplets:
+++
14:18:25.906002 apollo.it.luc.edu.1000 > x-terminal.shell: S
1382726990:1382726990(0) win 4096
14:18:26.094731 x-terminal.shell > apollo.it.luc.edu.1000: S
2021824000:2021824000(0) ack 1382726991 win 4096

14:18:26.172394 apollo.it.luc.edu.1000 > x-terminal.shell: R
1382726991:1382726991(0) win 0
+++

+++
14:18:26.507560 apollo.it.luc.edu.999 > x-terminal.shell: S
1382726991:1382726991(0) win 4096

14:18:26.694691 x-terminal.shell > apollo.it.luc.edu.999: S
2021952000:2021952000(0) ack 1382726992 win 4096

14:18:26.775037 apollo.it.luc.edu.999 > x-terminal.shell: R
1382726992:1382726992(0) win 0
+++
Notice the bolded value in the preceding trace. This is the sequence number if we take the
second set of packets and focus on the sequence number in x-ter-minal's SYN/ACK; it is
2021952000. The sequence number in the preceding set's SYN/ACK is 2021824000. If you
subtract 2021824000 from 2021952000, the remainder is 128,000. Does this represent any
value? Yes, if it is repeatable. Check one more set of packets:
+++

14:18:27.014050 apollo.it.luc.edu.998 > x-terminal.shell: S

ftp://coast.cs.purdue.edu/pub

1382726992:1382726992(0) win 4096

14:18:27.174846 x-terminal.shell > apollo.it.luc.edu.998: S
2022080000:2022080000(0) ack 1382726993 win 4096

14:18:27.251840 apollo.it.luc.edu.998 > x-terminal.shell: R
1382726993:1382726993(0) win 0

14:18:27.544069 apollo.it.luc.edu.997 > x-terminal.shell: S
1382726993:1382726993(0) win 4096 "

14:18:27.714932 x-terminal.shell > apollo.it.luc.edu.997: S
2022208000:2022208000(0) ack 1382726994 win 4096

14:18:27.794456 apollo.it.luc.edu.997 > x-terminal.shell: R
1382726994:1382726994(0) win 0
Again, 2022208000 – 2022080000 = 128,000. So it is repeatable, or perhaps a better word is
predictable. We know that anytime we send a SYN to x-terminal, the SYN/ACK will come back
128,000 or higher, as long as it is the next connection. With the ability to silence one side of the
TCP connection and trust relationship and the ability to determine what the sequence number
will be, we are almost ready to take over the trust relationship and the connection. Figure 15.2
shows the basic approach.

Figure 15.2. Ready for the kill.

Setting Up the System Compromise?
How can this attack on a trust relationship be possible? Surely the computers would notice that
the attacker has the wrong IP address. Well, the IP address is spoofed, so there would be no
chance of seeing that. The time-to-live (TTL) might be a bit odd, but that is in the IP layer, and
all the work is occurring at the TCP layer. The route to the system changes, so potentially it
would be possible to detect something is wrong at some point in the route. However, no one is
using IP options like record route, so this would never be detected. Instead, the primary focus is
the sequence number. If you send a packet with the wrong sequence number, the other side
sends a RESET and breaks off the connection. This is why it mattered that in the Mitnick attack,
x-terminal had a predictable sequence number. So, now we can silence one party (server) and
make the other party (x-terminal) believe we are that party (server). What happens next?
Again, we return to Tsutomu's post:

We now see a forged SYN (connection request), allegedly from server.login to x-terminal.shell.
The assumption is that x-terminal probably trusts server, so x-terminal will do whatever server
(or anything masquerading as server) asks. x-terminal then replies to server with a SYN-ACK,
which must be ACK'd in order for the connection to be opened. As server is ignoring packets
sent to server.login, the ACK must be forged as well.
Normally, the sequence number from the SYN/ACK is required to generate a valid ACK.
However, the attacker can predict the sequence number contained in the SYN/ACK based on the
known behavior of x-terminal's TCP sequence number generator, and therefore can ACK the
SYN/ACK without seeing it.
You can see this in the section below. In the first line x-terminal is stimu-lated by server to
open the connection. Server never sees the SYN/ACK so that is why it is missing from the trace.
However, he knows to add 128,000 plus 1 to the initial sequence number that x-terminal
proposed when sending the SYN/ACK. After the lone ACK, the connection is open.
14:18:36.245045 server.login > x-terminal.shell: S 1382727010:1382727010(0)
win 4096
14:18:36.755522 server.login > x-terminal.shell: . ack 2024384001 win 4096
Here, Mitnick exploits the trust relationship between x-terminal and server. The SYN packet is
sent with a spoofed source address. The attacker sends this packet blindly; there is no way for
the attacker to see the reply (short of a snif-fer planted on x-terminal or server's network).
Because Mitnick has used a fake source address, that of server, the SYN/ACK is sent to server.
Server knows that it never sent a SYN packet, a request to open a connection. The proper
response for server is to send a RESET and break off the connection. However, that isn't going
to happen. As shown here, 14 seconds before the main part of the attack, the server's
connection queue for the login port is filled with a SYN flood. The server cannot speak.
14:18:22.516699 130.92.6.97.600 > server.login: S 1382726960:1382726960(0)
win 4096
14:18:22.566069 130.92.6.97.601 > server.login: S 1382726961:1382726961(0)
win 4096
14:18:22.744477 130.92.6.97.602 > server.login: S 1382726962:1382726962(0)
win 4096
14:18:22.830111 130.92.6.97.603 > server.login: S 1382726963:1382726963(0)
win 4096
14:18:22.886128 130.92.6.97.604 > server.login: S 1382726964:1382726964(0)
win 4096
14:18:22.943514 130.92.6.97.605 > server.login: S 1382726965:1382726965(0)
win 4096

The r-Utilities
You would think that both telnet and r-utilities would have been completely replaced
by a secure shell by now, but this simply is not the case. Both are still in wide use.
The login service is also known as rlogin, and shell as rshell. These remote
"convenience services" allow access to systems without a pesky password, which can
get old if you have to enter it often. On UNIX computers, you can generally create a
trust relationship for all users except root, or super user, by adding the trusted
system and possibly the trusted account in a file called /etc/hosts.equiv. A root
trusted relationship requires a file called /.rhosts. The r-utilities are obsolete and
should not be used anymore; the secure shell service is a far wiser choice because it
is harder for the attacker to exploit. In either the /hosts.equiv or the /.rhosts file, the
plus sign (+) has a special meaning, that of the wildcard. For instance, a /.rhosts file
with a "+ +" means to trust all computers and all users on those computers.
With the real server disabled by the SYN flood, the trusted connection is used to execute the
following UNIX command with rshell: rsh x-terminal "echo + + >>/.rhosts". The result of
this causes x-terminal to trust, as root, all computers and all users on these computers (as
already discussed). That trace is as follows:

14:18:37.265404 server.login > x-terminal.shell: P 0:2(2) ack 1 win 4096
14:18:37.775872 server.login > x-terminal.shell: P 2:7(5) ack 1 win 4096
14:18:38.287404 server.login > x-terminal.shell: P 7:32(25) ack 1 win 4096
At this point, the connection is terminated by sending a FIN to close the connection. Mr. Mitnick
logs on to x-terminal from the computer of his choice and can execute any command. The
target system, x-terminal, is compromised:
14:18:41.347003 server.login > x-terminal.shell: . ack 2 win 4096
14:18:42.255978 server.login > x-terminal.shell: . ack 3 win 4096
14:18:43.165874 server.login > x-terminal.shell: F 32:32(0) ack 3 win 4096
If Mitnick were now to leave the computer named server in its mute state and someone else
were to try to rlogin, he would fail, which might bring unwanted attention to the situation.
Therefore, the connection queue is emptied with a series of RESETs.
We now see RSTs to reset the "half-open" connections and empty the connection queue for
server.login:
14:18:52.298431 130.92.6.97.600 > server.login: R 1382726960:1382726960(0)
win 4096
14:18:52.363877 130.92.6.97.601 > server.login: R 1382726961:1382726961(0)
win 4096
14:18:52.416916 130.92.6.97.602 > server.login: R 1382726962:1382726962(0)
win 4096
14:18:52.476873 130.92.6.97.603 > server.login: R 1382726963:1382726963(0)
win 4096
14:18:52.536573 130.92.6.97.604 > server.login: R 1382726964:1382726964(0)
win 4096

Detecting the Mitnick Attack

As we have mentioned, this chapter serves double duty: to tell the story of the Mitnick attack
and also to set the stage for the final section of the book. As we complete this chapter, let's
introduce the elements needed to detect and respond to an attack like this. The attack could
have been detected by both host-based and network-based intrusion-detection systems. It
could have been detected at several points, from the intelligence-gathering phase all the way to
the corruption of /.rhosts file, when the target system was fully compromised. Intrusion
detection is not a specific tool, but a capability, a blending of tools and techniques. In fact, a
number of vendors, including NAI and ISS, offer hybrid systems that can perform log file
analysis and packet analysis at the host system. As you read through the material in this book,
you will see examples of detects by firewalls and by host-based and network-based intrusion-
detection systems.

TCP spoofing is becoming harder all the time because many operating systems now randomize
their initial sequence numbers, though Microsoft is a notable exception. With vulnerable
operating systems, this is still a valuable technique for the more advanced attacker. SYN floods
still work on many TCP stacks, although modern operating systems are much more resistant.
And of course, even if a SYN flood will not work to take out one side of a trust relationship,
there are denial-of-service attacks that can shut down an operating system. Much safer
alternatives exist (secure shell, for example), but system administrators continue to use the r-
utilities. If we cannot field a capability that enables us to detect the Mitnick attack, what can we

http://safari.informit.com/?xmlid=0-73571-265-4/22991533

detect? To restate, the Mitnick attack serves as an excellent indicator of intrusion-detection
capability. Why make such a big deal of this? It turns out that almost a decade later, TCP
hijacking is still almost impossible to reliably detect in the field with a single tool.Various
products can demonstrate a detect in a lab, but the number of false alarms (false positives) in
the field makes this system feature close to useless. The good news is most of the Mitnick
attack was trivially detectable; so, let's look at some ways to accomplish this.

Network-Based Intrusion-Detection Systems

Network-based intrusion-detection systems can reliably detect the following entire recon probe
trace. As an analyst, you will be tempted to ignore a single finger attempt, but the pattern in
entirety really stands out and should never be ignored. Consider some of the ways network-
based intrusion-detection systems might detect this recon probe:

14:09:32 toad.com# finger -l @target
14:10:21 toad.com# finger -l @server
14:10:50 toad.com# finger -l root@server
14:11:07 toad.com# finger -l @x-terminal
14:11:38 toad.com# showmount -e x-terminal
14:11:49 toad.com# rpcinfo -p x-terminal
14:12:05 toad.com# finger -l root@x-terminal

Trust Relationship

The scan is targeted to exploit a trust relationship. The whole point of the Mitnick probe was to
determine the trust relationship between systems. There must have been some form of earlier
intelligence gathering to determine which systems to target. If Mitnick could do this from a
network, the site should be able to do the same thing, perhaps even better. Trained analysts
who know their networks can often look at an attack to determine whether it is a targeted
attack, but intrusion-detection systems don't currently have this capability.

Port Scan

Intrusion-detection systems can usually be configured to watch for a single attacker coming to
multiple ports on a host. Port scans are a valuable tool for detecting intelligence gathering.You
saw toad.com fire three probes to x-terminal. However, two of them (showmount and rpcinfo)
will probably be directed at the same port (portmapper), which is at TCP/UDP 111. It is
certainly possible to set the alarm thresholds to report connection attempts to two different
ports on a host computer in under a minute. In actual practice, however, this would create a
large number of false alarms. It wouldn't take long for the analyst to give up and set the
threshold higher. Therefore, a network-based intrusion-detection system probably would not
detect this probe as a port scan.

Host Scan

Host scans happen when multiple systems are accessed by a single system in a short period of
time. In the example, toad.com connects to three different systems in as many minutes. Host

scan detects are extremely powerful tools that force attackers to coordinate their probes from
multiple addresses to avoid detection. In operational experience, we have found that one can
employ a completely stupid brute-force algorithm (flag any host that connects to more than five
hosts in an hour, for example) with a very acceptable false positive rate. If you lower the
window from an hour to five minutes, connects to three or more hosts will still have a low false
positive rate for most sites. If the intrusion-detection system can modify the rule for a host scan
to eliminate the hosts or conditions that often cause false positives (for example, popular web
servers, real audio, any other broadcast service), the trip threshold might be able to be set
even lower than five per hour and three per five minutes. The host scan detection code in an
intrusion-detection system should be able to detect the example recon probe.

Connections to Dangerous Ports

The recon probe targets well-known, exploitable ports. For this reason, the recon probe is very
close to a guaranteed detect. Network-based intrusion-detection systems can and do reliably
detect connects and attempted connects to SUNRPCs. On the whole, the attacker has some
advantages in terms of evading intrusion-detection systems; she can go low and slow, and she
can flood the system with red herring decoys and then go for her actual target. She probably
has to go after a well-known port or service to execute the exploit, however, and this is where
the intrusion-detection system has an advantage. SUNRPCs are a very well-known attack point
and every intrusion-detection system should be able to detect an attempt against these
services.

Host-Based Intrusion-Detection Systems

Because the attack was against a UNIX system, this review considers detecting the attack with
two types of commonly used UNIX tools: TCP Wrappers and Tripwire. TCP Wrappers log
connection attempts against protected services and can evaluate them against an access control
list to determine whether to allow a successful connection. Tripwire can monitor the status of
individual files and determine whether they were changed. When considering host-based
intrusion-detection systems, you want at least these capabilities. Using tools such as PortSentry
and LogSentry from www.psionic.com, you can achieve an even greater level of detection and
protection by watching the logs and the packets addressed to the host system.

TCP Wrappers

TCP Wrappers or xinetd would detect the probes or attacks at the host level. For TCP Wrappers
to work, you must edit the /etc/inetd.conf file to wrap the services that were probed, such as
finger. It is also a good idea to add access control lists to TCP Wrappers. If a system is going to
run a service such as finger, you can define which systems you will allow to access the finger
daemon. That way, both the access would be logged and the connection would not be
permitted. The following fabricated log entry shows what three TCP Wrappers finger connection
events might look like on a system log facility (syslog):

Dec 24 14:10:29 target in.finger[11244]: refused connect from toad.com
Dec 24 14:10:35 server in.fingerd[21245]: refused connect from toad.com
Dec 24 14:11:08 x-terminal in.fingerd[11066]: refused connect from toad.com

http://www.psionic.com/

One of the interesting problems with host-based intrusion detection is how much information to
keep and analyze locally and how much to analyze cen-trally. This fabricated example shows
that three different systems (target, server, and x-terminal) are reporting to a central log
server. A single finger attempt logged and evaluated on the host computer might be ignored.
Three finger attempts against three systems might stand out, however, if they were recorded
and evaluated on a central or departmental log server.

An analyst would consider access attempts to portmapper higher priority than finger attempts.
At the time of the Mitnick attack, secure portmappers were not widely available. This is no
longer the case, and so it would be an indication of an archaic or poorly configured UNIX
operating system if both logging and access control features were not available for portmap.
Host-based intrusion-detection solutions should certainly detect attempts to access portmap.

Tripwire

You could not reasonably use Tripwire to detect the recon probes. This is because it basically
creates and stores a high-quality checksum of critical files, so that if the file or its attributes
change, this fact can be detected. Tripwire could detect the actual system compromise, the
point at which the /.rhosts file was overwritten. Unfortunately, even if the alarm goes off in near
real-time, it is essentially too late. The system is already compromised, and a scripted attack
can do a lot of damage very rapidly. Therefore, early detects are the best detects. If you can
detect an intruder in the recon phase of his attack and determine the systems the attacker has
an interest in, your chance of detecting the actual attack improves.

Preventing the Mitnick Attack
Certainly, the attack could have been prevented at multiple points. A well-configured firewall or
filtering router is remarkably inexpensive, easy to configure, and effective at protecting sites
from information-gathering probes and attacks originating from the Internet. Even for its time,
this site was left open to more services than was advisable.
If the recon probes and r-utilities had been blocked, it would have been much harder for the
attacker, perhaps impossible. In general, a site should be blocking almost all incoming packets
except for packets destined for ports that need to be open. A file that will point out some of the
more dangerous ports, called the Top Twenty list, www.sans.org/top20.htm, will give you pointers on
not just what to block, but also ports to watch attempts to connect to. As we will see in Chapter

16, "Architectural Issues," the perimeter is a core part of an intrusion-detection capability.
You have already read about host-based security and the use of access lists. Obviously, systems
need to run services to accomplish their work efficiently, but it is often possible to specify which
systems are allowed to access a particular service (for example, by using TCP Wrappers). In
this case, the attacker must actually compromise a trusted host and launch the attack from that
host. The Mitnick attack just had to spoof the identity of a trusted host, which is a lot easier
than actually compromising the trusted host.
Even after the attack was launched, if it had been detected and responded to, it could have
been stopped. In Chapter 18, "Automated and Manual Response," we will discuss ways to slow
down, or even stop, an attack that is in progress.

http://www.sans.org/top20.htm

Summary

When doing a post mortem on a successful system compromise or attack, you can often
determine that the attack was preceded by intelligence gathering "recon" probes. The harder
issue is to detect recon probes, take them seriously, and increase the defensive posture of a
facility or system. Many times these recon probes are used to locate and investigate trust
relationships between computer systems.

Attackers often exploit a trust relationship between two computers. Many times, system
administrators use such relationships as a convenience for themselves, even though they are
aware that this is a "chink in the armor" for the system.

The Mitnick attack deliberately did not complete the TCP three-way handshake to SYN flood one
side of the trust relationship. Many attacks and probes intentionally do not complete the three-
way handshake.

Crafted packets include packets with deliberately false source addresses. These often have a
signature that allows intrusion detection to detect their use.

Checking things only once is a general problem in computer security. When designing software
or systems, build in the capability to check and then recheck.

The signature of TCP hijacking is that the IP addresses change during a TCP session, while the
sequence numbers remain correct for the connection. Reliable detection of TCP hijacking is still
beyond the reach of single-tool systems in real-world environments.

Intrusion detection is best thought of as a capability, not a single tool. The Mitnick attack serves
as an excellent test case. Intrusion-detection systems that cannot detect this attack on a real-
world network with a real-world load (such as a busy T-1 or higher), just mislead their users
into thinking they are performing intrusion detection when in fact they are blind. Even the best
intrusion-detection system will be blind to an attack that it is not programmed to detect. Many
intrusion-detection analysts prefer to use systems that enable them to craft user-defined filters
to detect new or unusual attacks. The next chapter presents examples of user-defined filters.

Chapter 16. Architectural Issues

This chapter considers some of the tradeoffs, capabilities, and issues facing intrusion-detection
system users and builders. This is a bit more theoretical than some parts of the book, but I use
real-world examples to try to keep the material useful and pragmatic. We invest some time
talking about events of interest (EOI). This is an important concept because an analyst gets
better results from an intrusion-detection system if she understands what she is searching for
and tunes the IDS to find it, as opposed to letting the IDS tell the analyst what to look for. We
also discuss severity. All incidents are not created equal and should not be treated so. There is
a great debate, a religious war in intrusion detection, about whether the sensor should be

placed inside or outside the firewall. This chapter covers this and other sensor-placement issues
as well.
One of the great myths that have occurred in the industry is the need to work in real-time. I
have even seen this specified in procurement documents. What marketers mean by real-time is
that intrusion-detection analysts are supposed to respond to beeps and alarms. Real-time, of
course, is almost impossible, at least for human reaction, because the packet is traveling at the
speed of light. Figure 16.1 shows the detect occurring just after real-time. The illustration was
added to the book in case you ever need to point this out to your management because they
are overemphasizing response time. In fact, UNIX and Windows NT computer systems do not
support either real-time or even deterministic delay. We discuss these issues in push versus pull
architectures, which leads into a section on the analyst console. Moreover, as we will shortly
discuss, the intrusion analyst will run filters through second and even third passes over the data
looking for EOI.

Figure 16.1. Time and ID response.

Every intrusion-detection maker falls short in providing a really great analyst interface. This is
currently the primary thrust of development of course, so we will take some time to discuss the
interface. What exactly does an analyst need?
The next section discusses some of the tradeoffs, or "tuning knobs," that should be considered
as you design or enhance your intrusion-detection capability. These include false positives and
negatives and sensor focus.

Events of Interest
Chapters 13, "Introduction to Snort and Snort Rules," and 14, "Snort Rules Part II," introduced events
of interest in the sense that when you write a filter, you design it to find something you are
interested in. For instance, if you are using the Snort rule content option to find the hex pattern
0xdead or 0xbeef, a pattern that has its roots as a test pattern but is sometimes used by
attackers in their code, and you come across a packet with this pattern, this is potentially an
EOI. There are three main issues surrounding the subject of EOI in intrusion detection:

● The balance between false positives and false negatives
● Targeting or focusing the sensor to ensure we detect EOI
● The effects of the limits of our system on our capability to detect

The false negative/false positive problem is a serious one in intrusion detection and a lot of our

http://safari.informit.com/?xmlid=0-73571-265-4/22991533

energy is invested in customizing filters to detect EOI and not to generate false alarms or false
positives. On the other hand, false negatives would mean missing something we would have
wanted to detect. I would like to illustrate what an analyst might do with a simple example.
Attackers are known to use certain strings, numbers, and hex patterns in the software they
create to do reconnaissance, denial of service, or direct exploits. Some of the classics are:

● The decimal patterns 31337 and 666
● The ASCII string, skillz
● The hex patterns 0xdead and 0xbeef

Suppose we create a filter looking for hex 0xdead as shown below:
alert icmp any any -> 192.168.5.0/24 any \
 (msg: "0xdead hex pattern seen"; \
 content: "|DE AD|";)
Would such a rule create false positives? Certainly it would. If the content of an ICMP packet
happened to have these hex characters in this order, these simple content filters would alert.
Would I want to run this rule in real-time? No, probably not. On the other hand, if we started
seeing a lot of 0xdead 0xbeef, that could be significant. One of the lessons from the Shadow
project was secondary analysis. Keep a couple of days of data and run programs to scrub the
data looking for interesting events. I probably wouldn't even bother manually examining a
single occurrence of 0xdead or 666 in a couple of day's worth of data, but if I saw a dozen, I
would certainly think about pulling those connections and examining them.
The stories you learned about in Chapters 10, "Real-World Analysis," and 11, "Mystery Traffic,"
almost all have the same root. An analyst, looking at the data, saw something odd and said,
"That's funny." When Judy and I were working together as active analysts for the Army and
Navy respectively, we discovered a number of attacks for the first time. People would ask how
we did it. I used to answer, "Pure, dumb luck." Now you know better. We would write scripts to
slice and dice that data looking for those events of interest.
Another great classic script is to take a week or so of data and search for odd protocol activity
as shown in the following .bpf filter:
not tcp and not udp and not icmp and not igrp and not igmp
You certainly would not want to run this in real-time; but, as a way to run through your data
looking for events of interest that you might otherwise miss, this is obviously attractive. After
you know your network and get your filter optimized, most likely you will rarely detect anything
with this filter. I don't recommend that you run it interactively and watch the results, because
you might get bored and quit running it. However, if you schedule the job to run once a week
and only design the system to alert you if it finds results, you have a tool that might strike pay
dirt one fine day. If you are shopping for these new correlation consoles or enterprise security
managers, one feature you might want to look for is the capability to schedule and run scripts
to examine your data.
Now we complete our study of EOI with a consideration of overall system limitations on the
lower detect limit. Let's start with the bottom line: It is important to have a fairly clear
understanding of what you are looking for and what events you are interested in, because you
cannot collect or detect everything. Figure 16.2 shows both the data actually observable by your
intrusion-detection system and the data you cannot observe.

Figure 16.2. Sources of data.

Limits to Observation

As shown in Figure 16.2, the sensor or event generator might not be able to observe all events.
This is often quite a surprise for folks who pay good money for an intrusion-detection system,
and they slowly find out just how limited it is in practice. What kinds of things can't we observe?

• Events on a different network. Unauthorized "backdoor" connections into a
network are very common; every machine with a modem has the potential to permit a
backdoor. This issue shows up prominently in advertisements for host-based intrusion-
detection systems because they can make the "we're here, we're there, we're
everywhere" claim.

• Sensor is not functioning. Events that happen right in front of the IDS, but they
are not observed because the IDS is brain dead. By brain dead, I mean anywhere
between hard crashed like the blue screen of death, to pingable while not functioning. A
good measure of IDS reliability might mean time between having to reboot the system,
because that seems to be the fix for both Windows NT- and UNIX-based systems. I
have personally experienced this joy multiple times with Shadow, NFR, NID, Snort, and
RealSecure. Naturally, you only discover these systems need rebooting on rainy days
when they are in a different building from your analyst console. Some systems are more
robust than others, of course. What is the most effective Windows NT remote
management tool? A car. If the sensor's disk fills up, this will also prevent collection.

• No habla SNA or SS7. Events in a protocol that the intrusion-detection system
cannot decode are not observable. What if you need an intrusion-detection system that
can decode Signaling System 7 or IBM's SNA? Is there a need for such a thing? For
most of us, the answer is no; however, one fairly common event is when we detect a
protocol we don't know. For instance, I know a number of people who have detected IP
Protocol 54, NHRP (Next Hop Resolution Protocol), at their DMZs and have never seen

an IDS decode this.

• Exceeding bandwidth limit. Events that occur above the sensor's maximum
bandwidth-handling capability cannot be observed. At some point, the sensor has to
start dropping packets and we enter what analysts euphemistically call statistical
sampling. If you ask network-based IDS vendors what their upper limits of speed are,
you get a lot of curious answers ranging from "80Mbps" to "it depends." Hint: Trust the
person who says "it depends" more than the one who gives you a fixed number,
especially a fixed number above T-3 speeds (45Mbps). The number of rules a sensor
has to process is one primary factor in the sensor's upper detection limit for many
systems, however the primary factor is the critical path. This is the longest execution
path a given packet might cause the sensor to take. If a sensor is still processing one
packet when another arrives, the packet will be dropped.

To recap what was just covered, intrusion-detection systems cannot look at every possible
event. The reasons for this include the following:

• The event happened on another network.

• The IDS is dead.

• The IDS has no understanding of the protocol.

• The IDS has reached its maximum bandwidth limit, or has hit critical path on a
given packet and has dropped packets that came later.

The bad news is there are events we can't even observe. The good news is that we find there
are events that we can capture. Of all the packets that we can capture, some will match our
filters in some way, and they are represented by the space of the inner circle. Finally, some of
the total number of detects in the inner circle are valid and have value. We can refer to these as
the EOI, the genuine, no-false-positive-about-it detects. They are the reason we go through all
the trouble of deploying and operating intrusion-detection systems. Detecting an attack,
especially a clever attack, is a lot of fun.

Low-Hanging Fruit Paradigm

Today, the primary standard in intrusion detection is the Snort ruleset. There used to be two
major rulesets, but with the present legal troubles of Max Vision, his ruleset is no longer
available. It has been inspiring to watch the community come and work together to build the
rules, improve the port list, and explain the vulnerabilities. In some sense, I feel like a heel
saying a single word against this worthy effort, but there is a risk to us that we at least need to
be aware of. We have already discussed the basic issues of false positives and negatives when
we covered signatures and filters to detect signatures. Now we need to consider the effect of
the low-hanging fruit paradigm on false negatives. What do we mean by the low hanging fruit?

I live on the island of Kauai. Many things are in short supply, but we certainly have enough

banana trees and free range chickens. After a hurricane seven years ago, many of the chicken
coops were blown apart freeing the chickens. There are no natural predators, so now the island
is overrun by chickens. My neighbor recently had a bumper crop of bananas in his garden. I
have never stopped to think about just how many bananas can grow on one of these trees, but
it can be more than one hundred pounds. As the tree began to bend a bit with the weight of the
bananas, they came in range of the chickens, at least the lower ones. They would line up under
the banana tree and jump/partially fly and nip at the exposed bananas. It was quite a sight to
watch and many a banana was ruined as its bottom was nipped off. So, the low hanging fruit is
the easily harvested, vulnerable fruit that any one or any thing can reach.

Suppose a number of intrusion-detection vendors were secretly downloading the Snort ruleset
and using this as a foundation for their own rules. What if their other major process was to go
to a couple of well known sites for attack code to download the exploits to their labs, run the
exploits, determine their signatures, build effective filters to detect these exploits, and then load
these filters in the intrusion-detection systems we all use? If this were to happen, we would
begin to establish a lowest common denominator. At first blush, that sounds like a good thing;
as a consumer, you could expect any IDS to meet at least a minimum standard defined by the
Snort ruleset and the most available attacks (most of which are covered in the Snort ruleset, of
course). The problem is that an attacker can then analyze the Snort ruleset and craft small
changes to her attacks to make them evade the IDS. If a number of commercial vendors copy
these rules, this becomes an interesting problem. It allows them to treat the ruleset, a
tremendous asset to the community, as low hanging fruit.

Although the preceding paragraph is partially true, there are lots of ways to mitigate the
problem. Many intrusion-detection vendors and researchers culti-vate contacts with the
computing underground and have access to a larger library of attacks than those commonly
published. Several research efforts attempt to collect attacks and exploits and to define
vulnerabilities. The problem is they use different names and descriptions. Mitre (http://cve.mitre.org)
manages a project called the Computer Vulnerabilities and Exposures (CVE), which enjoys
broad industry support. Their goal is to develop a common nam-ing system, primarily to serve
as a thesaurus for vulnerability descriptions, but also to support IDS development.

Also, it is sometimes possible to write a general filter to detect a family of exploits. We have
already examined a general filter to detect web server attacks. During the discussion of that
filter, you learned about a number of CGI-BIN attacks against web servers that attempt to
acquire the system's password file for offline decryption. The most famous is the phf attack.
Several hundred others exist, however, including php and aglimpse. In the past, each of these
had cgi-bin and /etc/passwd files somewhere in the packet, so it was possible to write a general
filter to detect each of these and their cousins as well. Today, with the advent of shadow
password files, we do not see many attacks against /etc/passwd; however we commonly see
the following string:

id;uname –a; w

The command id gives you your effective userID; the semicolon delimits different commands;
uname –a gives the exact operating system and patch level; and finally w tells you who is
logged on to the system. It is also possible (and very advisable) to write general filters that
detect odd events (things that just shouldn't happen) and to report them. A TCP packet with all
flags set, or no flags set, and packets with unknown IP protocols are examples of these kinds of
filters. Although you can increase the sensor-detection capability in many ways, the bottom line
should be somewhat sobering: If an IDS depends on signatures and doesn't have a filter to look
for that signature, how will it make a detect?

http://cve.mitre.org/

Human Factors Limit Detects

Another factor that limits the EOI we can detect and report is that people are part of the
system. A typical day as an operator of an intrusion-detection system includes the recording
and possible reporting of some number of detects. If you were to examine a year's worth of
detects from a site, you might find that the detects cluster as 12 IMAPs, 5 portmaps, 25 ICMP
ping sweeps, 30 Smurfs, 8 mscans, 4 portscans, 5 DNS zone Xfer attempts, 4 WinNukes, and so
forth. If you check the site's Computer Incident Response Team (CIRT), you find that yup, these
are the kinds of things being reported by those sites that do bother to report. So what's wrong
with this picture? Not only does the IDS fail to report many events of interest because it does
not have a signature for them, many times the analyst chooses not to report many of the
events that are detected.

If you were to spend a day or two on the Internet doing web searches, you could easily collect a
hundred different software implementations of exploits. Some won't compile easily, and others
have limited documentation. Still others are variations on a theme. The simple fact remains,
however, that you can easily collect more attacks than are commonly being detected and
reported. So what's the problem? One part of the problem is the signature issue previously
discussed. If the design of the system relies on signatures and a filter doesn't exist, the box
cannot make the detect. Other factors that limit the detect capability of the system as a whole
relate to the intrusion-detection analysts and the CIRTs to which they report.

Limitations Caused by the Analyst

Part of the reason for missed detects has to be laid at the feet of the intrusion-detection
analyst. There are several issues here. Sometimes, an analyst might mentally evaluate an
intrusion attempt and decide it isn't worth investigating. I have been guilty of this multiple
times. Here is a classic example: Code Red is still active, because some people don't have the
gumption to patch their IIS boxes. On a given day, I see a number of detects on port 80, but I
do not tend to evaluate them in depth. I just figure it is Code Red. However, in February 2002,
when the Apache PHP vulnerability was reported, I had to suddenly change my ways. After all, I
run Apache.

Does an analyst report something he doesn't understand? Unknown patterns are challenging
and require a significant understanding of TCP/IP and computer system processes to run to
ground. What if the analyst doesn't trust her intrusion-detection system? It takes a lot of faith
to sign a report based on a little picture on a console telling you such and such just happened.
It takes even more faith to do this when the same IDS reports two email Wiz attacks (Wiz is a
very, very old email attack) per day and six SYN floods per hour (and these are obviously false
positives). Therefore, analysts are most certainly a weak link in the system. The reasons for this
include the following:

• Failing to report what the IDS detects

• Lack of training needed to investigate new attack patterns

• Lack of understanding about TCP/IP, protocols, and services

• Lack of trust in the IDS itself

Limitations Caused by the CIRTs

Could part of the problem of missed detects be the CIRTs? If your CIRT gets a report for an
IMAP, portmap, ICMP ping sweep, Smurf, mscan, portscan, DNS zone Xfer, WinNuke, or
whatever, no problem. They have a database pigeonhole to put it in, and everyone is happy. If
the CIRT gets a report saying, "Unknown probe type, here is the trace, whatever it is it turns
my screens blue," what do they do with that? The person getting the report is probably entry
level and so there is a hassle because a database pigeonhole doesn't exist. The advanced
analysts have a lot of work to do, and the seasoned CIRT workers have been burned by a false
positive or two and aren't that likely to take action unless they get a similar report from a
second source. In intrusion time, this can be a serious problem. From the moment I first heard
about the klogin vulnerability in May 2000, it was less than eight hours before we were dealing
with our first compromised system.

This is a serious issue because the CIRT is almost certainly understaffed. Real people are on the
phone begging for help because their systems are compromised and their organization never
had the funding to take security seriously. Real people screaming for help with compromised
systems has to take priority over unknown probe types that turn screens blue. At the end of the
month or quarter or whatever, the CIRT puts out their report: We logged this many portmaps,
ICMP ping sweeps, Smurfs, mscans, portscans, DNS zone Xfers, WinNukes, and so forth. The
new analyst who reported the unknown probe type sees that the report makes no mention of
the unknown probe, shakes her head, and silently decides, never again. The analyst doesn't
know whether the CIRT thinks she is nuts or whether the CIRT just doesn't care. This is why we
made a conscious choice with Incidents.org, an all volunteer CIRT and analysis organization, to
be willing to post a new pattern before the whole world and write as our commentary, "We have
no idea what this is, can anybody help us?" More than once I have been embarrassed by the
answer, because it was a pattern I should have known. Over time, that has led us to act more
like a conventional CIRT, to be cautious about what we post, to wait until we know more. This
keeps the word from getting out, and may allow an attack more time before we understand it
well enough to detect it and defend against it. We know we shouldn't clam up, but it is hard to
fight human nature.

A brief recap of EOI is now in order. We cannot observe every event. Of the things that we can
observe, some are dismissed as unimportant when in fact they are attacks—these are the false
negatives. Others are flagged as attacks when they aren't—these are the false positives. The
goal of the system designer and intrusion-detection analyst should be to maximize the events
that can be observed while minimizing the false positives and negatives. A number of systems
and program design issues arise here, but there are also human issues to consider. Although
complete efficiency might never be achieved, you should accept nothing less as your goal.

Severity
Several schools of thought propose ways to reduce severity to a metric, a number we can
evaluate. This section discusses some of the primary factors that should be used to develop
such a number. Let's start, however, with a basic philosophical principle: Severity is best viewed

from the point of view of the system (and its owners) under attack. This is an important
principle because the further removed the evaluator is from a given attack, the less severe it is
(at least to the evaluator).
It Happens All the Time
The intrusion-detection team that I worked with for several years was once invited to
spend the day with a very large CIRT. The CIRT had an analysis team that had just
accepted delivery of a spiffy new intrusion-detection capability, an analyst interface
that could watch a large number of sensors. We all thought it might be interesting to
sit with the Shadow team analysts at this CIRT's workstations and see how effective
they could be with the new spiffy interface. Within four minutes, one of the Shadow
analysts had found a signature indicating a root-level break-in to one of our sister
sites. She wanted to call the site and tell them, but the CIRT workers laughed and
said, "It happens all the time." No doubt that was true from their perspective. These
folks operate well over a hundred sensors of their own in addition to all the reports
they receive. They probably deal with more compromises in a year than I will
experience in my entire working career. The trip still seems odd to me, however,
because I know how much trouble and pain a compromised system can be to the
system owners and those who have to assist them. Severity is best viewed from the
point of view of the system under attack and its owner(s).
Although we do want to keep the human element in mind as we discuss the severity of attacks,
we need to be able to sort between them so that we can react appropriately. At every
emergency room, there is an individual in charge of triage, making sure that care is given to
those who need it the most. This way, a patient with an immediate life-threatening injury
doesn't have to wait while the medical personnel attend to a patient with a stubbed toe. In a
large-scale attack response, resources become scarce very quickly, so an approach to triage for
computer assets is required. Figure 16.3 introduces this concept at a high level.

Figure 16.3. Severity at a glance.

Are nontargeted exploits for vulnerabilities that do not exist within your computer systems
actually no-risk? When you study risk more formally, you will learn that part of the equation is
your level of certainty; how sure are you that none of your systems have the vulnerability? I
tend to be on the conservative side. In the examples that follow, I consider nontargeted,
nonvulnerable exploits to be of no risk only if they are also blocked by the firewall or filtering

router. In fact, there is a sense in which this is negative risk. The attacker using a nontargeted
script exploit against a well-secured site is at a higher risk than the site because the attack will
be reported. If the attacker succeeds in breaking in and doing damage somewhere else, the
odds are at least fair that he can be tracked down.
What might be a reasonable method to derive a metric for severity? What are the primary
factors? How can we establish an equation? How likely is the attack to do damage? And, if we
sustain damage, how bad will it hurt? Clearly, these are all factors.
Criticality
How bad will it hurt is one of the most important issues to consider in risk management. I was
giving a talk in Washington, DC and wanted to make a point about anti-virus and personal
firewalls so I asked, "How many of you travel multiple times a year?" Most of the hands went
up, which makes sense for a government headquarters crowd. Then I asked, "How many of you
carry Cipro?" Cipro is the antibiotic that was prescribed during the Anthrax attacks. Because
there had not been an anthrax attack since October 2001, nobody was thinking about that.
However, I can just imagine what would happen if I were in a strange city and started feeling
the worst case of the flu in my entire life. How would I get access to top-quality medical care?
At home, I have my doctor, who knows me, and a medical record and friends that are doctors.
In Houston, or Seattle, or New York City, the answer is go to the emergency room. Do you
know that it is not impossible to wait 12 hours just to be seen in an emergency room? How bad
will it hurt? This is the question that should drive us. Now, just so you don't think I am totally
off my rocker for carrying Cipro, I also travel internationally a lot, and though I try not to drink
the water and to cook it, peel it or forget it, having something like Cipro is an important tool if
things go wrong. What does any of this have to do with antivirus or a personal firewall? If you
don't have these things and you are exposed, you are in a heap of trouble, just like anthrax and
no Cipro.
It would be bad for me to be poisoned with anthrax, but it would be so much worse for the
President of the United States to be poisoned with it. The major determinant for "how bad will it
hurt?" is how critical the target is. If a desktop system is compromised, it is bad in the sense
that time and work might be lost. Also, that system could be used as a springboard to attack
other systems. If an organization's domain name system (DNS) server or email relay is
compromised, however, a much more serious problem exists. In fact, if an attacker can take
over a site's DNS server, the attacker might be able to manipulate trust relationships and
thereby compromise most or all of a site's systems. When developing a metric, we need a way
to quantify criticality. We can use a simple five-point scale, as follows:
5 points Firewall, DNS server, core router
4 points Email relay/exchanger
2 points User UNIX desktop system
1 point MS-DOS 3.11
Lethality
The lethality of the exploit refers to how likely the attack is to do damage. Attack software is
generally either application or operating system specific. A Macintosh desktop system isn't
vulnerable to a UNIX tooltalk buffer overflow, or an rcp.statd attack. A Sun Microsystems box
running unpatched Solaris might quickly become the wholly owned property of Hacker
Incorporated if hit with the same attacks. As an intrusion-detection analyst, I get nervous when
an attacker can go after a specific target with an appropriate exploit. This is an indicator that
the attacker has done his homework with recon probes and that we are going to have to take
additional countermeasures to protect the target. Again, a five-point scale applies:
5 points Attacker can gain root across network.
4 points Total lockout by denial of service.
4 points User access (via a sniffed password, for example).
1 point Attack very unlikely to succeed (Wiz in 2002, for example).
The last example, 1 point for Wiz, introduces a really important point when calculating severity,

and that is the effect of time. This is known as the lethality curve. The attackers have a term
they call zero day, and it references an attack that works before it is publicly known. The exploit
works fine, but it is tightly held by a fairly small number of people who are breaking into
systems with it. This is a time of extreme lethality, but the number of uses is fairly low.
Eventually, the attack is discovered and published. Now the community knows about it and so
do the attackers. We enter a race condition—attackers race to get the exploit, learn to use it,
and attack our systems. Defenders rush to apply patches, download new IDS signatures, or
implement other countermeasures. During this phase, the attack is still pretty lethal, but the
lethality is dropping; however, the incidence of attack attempts goes way up. Finally, we reach
the crest of the wave. More and more defenders are patching their systems and applying other
countermeasures, and over time, the attack becomes less and less destructive.

Countermeasures
What about firewalls or system patches or operating systems running from CD-ROMs?
Countermeasures certainly affect severity and can logically be divided into system
countermeasures and network countermeasures.
The five-point scale for system countermeasures is as follows:
5 pointsModern operating system, all patches, added security such as TCP Wrappers and

secure shell
3 pointsOlder operating system, some patches missing
1 point No TCP Wrappers/allows fixed unencrypted passwords
The five-point scale for network countermeasures is as follows:
5 pointsValidated restrictive firewall, only one way in or out
4 pointsRestrictive firewall, some external connections (modems, ISDN)
2 pointsPermissive firewall (The key question is this: "Does the firewall allow the attack

through?")

Calculating Severity
Analysts trained in the GIAC approach to intrusion detection use the following formula to
calculate severity:
(Criticality + Lethality) - (System + Net Countermeasures) = Severity
Take a look at a couple examples. These are taken from the practical project required to
achieve GIAC Intrusion Analyst certification. To put the examples in context, the entire analysis
process is shown, even though the current focus is on severity.
The approach described here helps reinforce that attacks vary in severity. This discussion
examines some of the factors that affect severity. You can cite these factors to help others
understand when they ask, "What is it about? This attack that has you spun up?" Having a
method to calculate severity can be handy when the handler is in the situation of having to
triage, or choose how to deploy finite defensive assets. To the system owner, his system is the
most important one in the world (much like everyone's own child is the cutest kid). You can use
a severity-grading technique like this one to explain why you applied defensive assets to one
owner's system rather than to someone else's.

Scanning for Trojans
This first example comes from a trace that David Leaphart selected for use in his practical. To
help get you started, the first trace is saying that on March 24 at 1:54 A.M. source host
computer 24.3.57.38 connected from source port 11111 to destination host computer
24.3.21.199 on destination port TCP 12345:
Mar 24 01:54:58 cc1014244-a kernel: securityalert: tcp if=ef0 from
24.3.57.38:11111 to 24.3.21.199 on unserved port 12345
Mar 24 03:14:13 cc1014244-a kernel: securityalert: tcp if=ef0 from
171.214.113.228:2766 to 24.3.21.199 on unserved port 1243
Mar 24 04:45:01 cc1014244-a kernel: securityalert: tcp if=ef0 from
208.61.109.243:3578 to 24.3.21.199 on unserved port 1243
Mar 24 04:45:06 cc1014244-a kernel: securityalert: tcp if=ef0 from
208.61.109.243:3832 to 24.3.21.199 on unserved port 27347
Mar 24 05:40:42 cc1014244-a kernel: securityalert: udp if=ef0 from
24.24.100.172:2147 to 24.3.21.199 on unserved port 137
Mar 24 14:56:08 cc1014244-a kernel: securityalert: udp if=ef0 from
63.17.79.40:4294 to 24.3.21.199 on unserved port 137
Mar 24 17:20:44 cc1014244-a kernel: securityalert: tcp if=ef0 from
62.6.100.45:1828 to 24.3.21.199 on unserved port 27374
Mar 24 20:50:47 cc1014244-a kernel: securityalert: tcp if=ef0 from
194.27.62.179:4857 to 24.3.21.199 on unserved port 27374

Analysis
The following questions prove very useful for determining the severity of any intrusion. Here
they have been applied to the trace preceding identified:

● Evidence of active targeting?

Yes. The traffic from the source is detected at the host's interface.

● Identify the history?

No. Previous traffic from the source address was noted in the detect report.

● Identify the technique?

TCP and UDP packets were directed at a specific host. The SYN packets were directed at
TCP ports 12345, 1243, 27347, and 27374. The UDP traffic was directed at UDP port
137. The sources are hoping for a SYN-ACK, or no response in the case of UDP. The port
scan is coming from different sources over a number of hours. All the source addresses
are active on the Internet and do not appear to have been spoofed.

● Evidence of intent?

This detect is a port scan of the victim looking for various vulnerabilities. These can be
summarized as follows:

Port 12345 Netbus and also the TrendMicro listening port
Port 1243 SubSeven and Backdoor-G Trojans
Port 27374 SubSeven 2.0
Port 27347 Possibly a typing error for port 27374
Port 137 NetBIOS

The analyst needs to check the victim for evidence of Trojans and ensure that NetBIOS
is not a problem.

● Identify hostile individuals and groups?

Based on Whois, these source addresses came from various locales. They appear to be
unrelated both in geography and time. The last address is of a little more concern,
however, because it originates in Turkey. These scans appear to be hostile, but the
victim seems to be rebuffing the scans.

Severity
I would assess the severity of this breach as follows:

● Criticality. This is a 2, presuming this is not a critical server.
● Lethality. This is a 4, because these exploits can be damaging.
● Countermeasures. This is a 5, assuming that the OS is fully patched.
● Net countermeasures. There doesn't seem to be a firewall, so this is a 0.

Host Scan Against FTP
Consider one more example. Eric Brock submitted Table 16.1. He used a FireWall-1 firewall to
collect the information he used for his practical.

Table 16.1. Example of Data Gathered on a Host Scan Against FTP
ID Date Time SourceIP Source Port DestIP DestPortProtocol Info

66153021Feb20009:09:24195.243.30.140 4858 10.10.1.1 FTP TCP len 60
66153121Feb20009:09:24195.243.30.140 4857 10.10.1.0 FTP TCP len 60
66153221Feb20009:09:24195.243.30.140 4860 10.10.1.3 FTP TCP len 60
66153321Feb20009:09:24195.243.30.140 4859 10.10.1.2 FTP TCP len 60
… … … … … … … … …
66163221Feb20009:09:25195.243.30.140 1144 10.10.1.252FTP TCP len 60
66163321Feb20009:09:25195.243.30.140 1145 10.10.1.253FTP TCP len 60
66163421Feb20009:09:25195.243.30.140 1146 10.10.1.254FTP TCP len 60
Analysis
So as we analyze the attack, we want to begin with the fact the packets came to our DMZ; you
could call this active targeting. It is important to determine the history. In the list below we
consider it only from our DMZ's perspective, but by using Dshield (http://www.dshield.org/ipinfo.php) we
can also look at the history of the source IP address at other sites. We describe the technique
that was used and then make are best assessment as to the purpose of the packets, the intent,
the reason we saw these packets, and begin to make our final analysis conclusions.

● Existence. Someone claiming to be IP address 195.243.30.140 is visiting us.
● History. There is no history of this address visiting our network.
● Techniques. The visitor is sending one FTP packet to each address in our subnet. They

are being sent extremely fast.
● Intent. The visitor is attempting to find hosts on our network that will respond on the FTP

port.
● Targeting. Our entire network is being targeted, but no specific servers are being

targeted.
● Analysis. This visitor is performing a scan of our network, looking for ftp servers. The

visitor could be planning a denial-of-service attack against an ftp server, or he could be
looking for an anonymous ftp server to see what he can download from it, or to see what
he can upload to it.

Severity
Severity is made up of a number of dimensions, the criticality of the target, how lethal the

http://www.dshield.org/ipinfo.php

attack is, and any system or network countermeasures that might mitigate the attack.

● Criticality. This is a 3, because no specific servers are targeted.
● Lethality. This is a 4, because there are many known ftp vulnerabilities.
● System countermeasures. This is a 2, because all operating systems are running the

latest patches, but some are listening on the ftp port.
● Network countermeasures. This is a 4, because the firewall blocks all incoming ftp.
● Severity score. This severity score is 1. The formula is this:

Severity = (Criticality + Lethality) – (System Countermeasures + Network
Countermeasures)

Sensor Placement

A network-based intrusion-detection system isn't going to work unless there is a sensor. It will
not work optimally if the sensor is not placed correctly. Generally, somewhere in the vicinity of
the firewall is a good location for the sensor.

Outside Firewall
Usually, intrusion-detection sensors are placed outside the firewall in the DMZ (as shown in Figure

16.4). This allows the sensor to see all attacks coming in from the Internet. However, if the
attack is TCP and the firewall, or filtering router, blocks the attack, the intrusion-detection
system might not be able to detect the attack. Many attacks can be detected only by matching
a string signature. The string is not sent unless the TCP three-way handshake is completed.

Figure 16.4. A sensor, or event detector, is used to instrument the DMZ.

Although some attacks cannot be detected by a sensor outside the firewall, this is the best
sensor location to detect attacks. The benefit to the site is that analysts can see the kinds of
attacks to which their site and firewall are exposed. One of the reviewers of the book puts it this
way: "Outside the firewall is attack detection, and inside it is intrusion detection." Well put!
During late 1997 and early 1998, a large number of sites detected attempts against the
portmapper port (TCP/UDP 111). Sites with active portmappers are likely locations for rpc.statd.
I ran a vulnerability scanner internally at two locations to see whether any risk existed. The
scan turned up more than 50 systems that would answer an rpcinfo –p request (which means
an unsecured portmapper) and further analysis showed that they were running statd. The
firewall at both locations blocked the attacks, both via portmapper, and any attempt to directly
access statd. Having information that sites I was concerned with protecting were under a
concerted attack and that there was an internal exposure redoubled my efforts in the never-
ending battle to get those portmappers secured and see whether patches were available from
vendors for statd. For more information, refer to www.cert.org/advisories/CA-97.26.statd.html.
DMZ (demilitarized zone) is the area between an ISP and the outermost firewall interface.
Sensors Inside Firewall
A school of thought says that sensors should be placed inside firewalls. Several reasons compel
this placement. If attackers can find the sensor, they might attack it so that there is less chance
of their activities being audited. Systems inside firewalls present less vulnerability than systems
outside firewalls. If the sensor is inside the firewall and exposed to less noise, it might generate
fewer false positives. Also, inside the firewall, you can detect whether a firewall is misconfigured

http://www.cert.org/advisories/CA-97.26.statd.html

(if attacks get through that are supposed to be stopped, for example).
It is certainly true that well-configured firewalls stop most low-end exploit attempts. It is also
true that far too much attention is devoted to detection and analysis of these low-end attacks.
Both Inside and Outside Firewall
More is better. Best of both worlds. You have heard both of these slogans. For me, they are
more than mere slogans. I deploy sensors on both sides of the firewall. If your organization can
afford a sensor both inside and outside the firewall, this has certain advantages, such as:

● You never have to guess whether an attack penetrated a firewall.
● You might be able to detect insider, or internal, attacks.
● You might be able to detect misconfigured systems that can't get through the firewall so

that you can help the system administrator.

If your organization is using an expensive IDS solution, this is not worth the cost and effort. If
you do deploy dual sensors, the sensor on the inside of the firewall is the one to set up to page
you in an emergency.
Misconfigured Systems
Intrusion-detection systems and their analysts should be able to troubleshoot the
network. When I was involved in deploying Shadow, we usually spent the first week
or two helping the site fix problems with the network. This is just as true today.
Below are some of the common problems:

● localhost 127.0.0.1 or 127.0.0.2 broadcasting to an internal subnet.
● Misconfigured DNS files. These read from right to left; so if your site's network

ID is 172.20.0.0/24 and you detect a host (172.20.30.40) doing a broadcast to
255.30.20.172, that could be a clue that someone didn't get the word that
domain files read right to left.

● Incorrect subnet mask. Broadcast to 172.20.255.255 rather than to
172.20.30.255.

● Backdoors. When you see a packet coming from the Internet to 172.20.30.255
(using the network ID from the preceding example), there is a pretty good
chance your network has sprung a leak—that is, a packet should not be coming
from you, to you, outside your firewall.

Additional Sensor Locations
The most common place for a sensor is outside the firewall, but it is certainly not the only place
that benefits an organization. Many intrusion-detection systems can be used to support the
organization in a variety of additional locations, including the following:

● Partner networks, to which you have direct connections to customers and suppliers often
inside your firewall.

● High-value locations, such as research or accounting networks.
● Networks with a large number of transient employees (consultants and/or temps, for

example).
● Subnets that appear to be targeted by outsiders, or that have shown indications of

intrusions or other irregularities.

A final issue in sensor placement is what the sensor is connected to. Networks today operate
almost exclusively on switched VLAN environments. Sensors can operate in these environments.
If the switches' spanning ports are not configured properly, however, intrusion detection is all
but impossible. One thing to be aware of is that spanning puts a load on the switch. If a sensor
is to be operated in a switched network, the implementation must be tested. TCP is a duplex

protocol, and the analyst should ensure that the sensor is receiving both the source and
destination side of the conversation. The sensor should also be tested to ensure that it sends
data reliably from the switched location. It might be necessary to configure the sensor with two
interface cards. The first can monitor in promiscuous mode (listening to all packets regardless of
whether they are addressed to the sensor) attached to a spanning port. The second interface
would be placed on a separate VLAN to communicate with the analysis station. Of course,
throwing money at the problem is always a handy trick in intrusion detection. If you are having
load and configuration problems, here are a couple of options:

● Consider a network tap. These are connected directly to the media and allow the sensor to
see the data that passes by the tap.

● TopLayer, www.toplayer.com, has a switch designed to copy data from the network to an IDS.
● Cisco Catalyst 6000 switches can support an optional Policy Feature Card that allows you

to control the data copied to the IDS in about the same way the TopLayer does.

Push/Pull
Now that you have determined where you want to place your sensor, how will you extract the
data from it? The preferred behavior, at least when you first deploy a sensor or event
generator, is to push events to the analysis system as they occur. When the sensor detects an
event, it creates a packet with the pertinent data and shoots it to the analysis station. An
obvious protocol for this would be something like an SNMP trap. Most commercial products have
their own proprietary protocol for communications between the sensor and analysis station. The
number-one feature potential customers look for when they compare intrusion-detection
systems is "real-time" response.
Pushy Intrusion-Detection Systems
One of the more interesting selling points for intrusion-detection systems is how
obnoxious they can behave. It seems like a good idea when looking for a system that
the IDS will beep the console, send us email, page us, or call our cell phones. It
usually takes only a couple weeks to turn off these handy real-time notification
features. Even the most dedicated analyst will accept only so many false alarms at
three o'clock in the morning.
Real-time is not possible until the intrusion-detection capability exists in the network switch
fabric and computer system operating system and programs themselves. Even so, prospective
customers of intrusion-detection systems want the event-detection information available to
them as quickly as possible, and that makes a whole lot of sense. Certainly then, push is the
correct architecture for network-based intrusion detection, right?
Push-based architectures have one very severe flaw. If their behavior is such that they generate
a packet in response to a detect, and if the sensor can be observed, it is fairly easy to
determine how it is configured. Over time, this would allow an attacker to determine what the
sensor ignores. This kind of effort and patience is unlikely with low-end script-kiddie attackers,
but almost guaranteed behavior from the high end, such as high-value economic espionage.
The obvious solution to this problem is to push out the events on a regular basis as a stream.
This gives the same, just a little later than real-time response, capability and masks what the
sensor detects. If there are no detects, the stream is just filled with encrypted null characters.
Figure 16.5 shows the differences in architecture between push and pull systems. On the whole,
push is the better architecture for intrusion detection. One of the best applications for pull is a
covert sensor, which can be employed in an investigation. It can be focused on a particular
computer system. It can also just passively monitor communications until a key phrase occurs,

http://www.toplayer.com/

and then it can be used to capture the communication stream. Most of the sniffers deployed by
hackers to collect user IDs and passwords are pull-based systems. They collect data until the
collected data is retrieved.

Figure 16.5. Push or pull?

Analyst Console
So, you have determined where to place your sensors and have selected between push, pull, or
both paradigms to acquire the EOI information. Now you can finally get to work. The intrusion-
detection analyst does her work at the analyst console. If an election was won with the mantra,
"It's the economy, stupid," someone better tell the intrusion-detection vendors that, "It's the
console, stupid." An organization typically looks for the following factors when shopping for an
IDS:

● Real-time
● Automated response capability
● Detects everything (no false negatives)
● Runs on Windows XP/UNIX/Commodore 64 (whatever the organization uses)

That gets the box in the door, but will it stay turned on? I have visited several sites that
deployed commercial intrusion-detection systems very early in the game, and although they are
still connected to the network, the console has a thin layer of dust on its keyboard. After the
organization has been using the system for several months, the feature set tends to be as
follows:

● Faster console
● Better false positive management
● Display filters
● Mark events that have already been analyzed
● Drill down
● Correlation
● Better reporting

Most major commercial IDS system consoles were so bad that the Department of Defense
funded a number of alternate designs. Several of these are now hitting the market as products
in the Enterprise Security Console market. Most organizations can't afford to develop alternative
interfaces; so if you are in the market for an IDS, this list might help you select one you can
actually use. The following sections explore the console factors in greater detail.
Faster Console
The human mind is a tragic thing to waste, but that is exactly what happens when we put
trained intrusion analysts' minds in a wait state. Here is what happens: The analyst has a
detect, he starts to gather more information, he waits for the window to come up, he waits
some more, and suddenly can't remember what he was doing.
I was working with the sales engineer of an IDS company recently and tried to point out that
the interface was very slow. His answer of course was to buy a faster computer. (This was a
twin 1.2Ghz Pentium IV with a gigabyte of RAM, which was still fairly current for January 2002.)
One simple technique for improving the console performance is for the system to always query
the information for any high-priority attack and have it canned and ready for the moment the
analyst clicks on it. This way, the computer can wait for the analyst, rather than the other way
around.
False Positive Management
False positives happen. Sometimes we can't filter them out without incurring false negatives, so
we must ask: What we can do to manage them?
The Code Red web attacks serve as a good example. If we write a filter that dampens probes to
port 80 (and most of us did), we stand the risk of a massive false negative. If we don't use such
a filter, we will cause a large number of false positives (false positive in the sense that if we are
not running a vulnerable version of IIS, we don't need to be concerned with Code Red). Because
Code Red is a Windows problem, we could get part of the way towards handling this problem
with a better filter. If our filter language supports it, we could put in basic passive fingerprinting
information for Windows into our filter. For instance, a Windows system defaults to a TTL of 128
and TCP window sizes between 5,000 and 9,000 for Windows NT and between 17,000 and
19,000 for Windows 2000; so if we see a TTL of greater than 128 and a window size that is not
within spec, perhaps we could afford not to display the detect. We still collect it, but we do not
bother the analyst with it. When the analyst selects any event in the potential false positive
class, the console should display the regular normal information that it always does, but also
the additional data to enable the analyst to make the determination.
Responsibility for False Positive
IDS vendors' feet need to be held to the fire for better false positive management.
The Snort ruleset is getting better and better about providing information in the help
file that tells an analyst whether there are possible false positives and what they are.
But this is not good enough. Vendors must be diligent in reducing them, because
false positives are the biggest hurdle to successful incident management. Vendors
should fix filters that cause too many false positives, make sure that filters vulnerable
to them are tunable, and delete filters that are useless and cause too many false
positives. If nothing else, they must carefully document exactly the traffic pattern
triggering the filters to report false positives.
Display Filters
The false positive management technique just discussed is used on some commercial IDS
systems and should be considered a minimum acceptable capability. To reach a goal of
detecting as many events of interest as possible, you have to accept some false positives.
Display filters are one way to manage these. This is not a new idea; network analysis tools,
such as NAI's Sniffer, have always had both collection and display filters.
Mark as Analyzed
Unless you are a second-level (supervisor, trainer, or regional) intrusion analyst, life is too short
to inspect events that have already been manually analyzed. After an analyst has inspected an

event, it should be marked as done. This is not rocket science. After all, the web browsers we
all use mark the URLs we have already visited. Ideally, this would be more like the editing
functions on modern word processors such as Microsoft Word—the event gets a tag with the
date and time it was analyzed and the username of the analyst, and whether it was rejected as
a false positive or accepted and reported.
Drill Down
We certainly wouldn't want to provide users an interface that intimidates them! When an
organization first starts performing intrusion detection, it might be quite happy with the system
displaying a GUI interface with a picture, the name of the attack, date, time, and source and
destination IPs. The happiness often ends when the organization finds out that it has reported a
false positive. At this point, the analyst starts to desire to see the whole enchilada and it should
be available with one mouse click. Drill down is a very powerful approach. Analysts get to work
with big-picture data, and then as soon as they want more detail, they just click. The analyst
should not have to leave the interface he is using—that discourages research. Analysts certainly
should not have to enter a separate program to get to the data—that is inexcusable.
Drill down is not possible unless the data is collected (and it certainly ought to include the
packet headers). No analyst should have to report a detect he can't verify!
Correlation
Every analyst has seen a detect and scratched his head saying, "Haven't I seen that IP before?"
Intrusion analysts at hot sites (sites attacked fairly often) frequently detect and report between
15 and 60 events per day. After a couple of weeks, that is a lot of IP addresses to keep track of
manually. It also is not hard for the analysis console to keep a list of sites that have been
reported and color those IP addresses appropriately.
Better Reporting
Two kinds of reports make up the bread and butter of the intrusion analyst: event-detection
reports and summary reports. Event reports provide low-level detailed information about
detects. Summary reports help the analyst to see the trends of attacks over time and the
manager to understand where the money is going.
Event-Detection Reports
Event-detection reports are either done event by event or as a daily summary report. They are
usually sent by electronic mail. The IDS should support flexibility in addressing and offer PGP
encryption of the report. The reports might be sent to groups that specialize in collecting and
analyzing this information such as Incidents.org or SecurityFocus or the organization's CIRT or
FIRST team, the organization's security staff. If you are shunning the attacker or plan to take
action, another powerful technique is to file the report as a memo to record. For every detect
displayed on the console, the analyst should have the opportunity to report with a single mouse
selection accepting the detect. The system should then construct a report, which the analyst
reviews and annotates before sending.
If you are shopping for an intrusion-detection system or Enterprise Security Console, sit down
at the console and see how long it takes you to collect the information needed to report an
event and to send it via email (or other format such as XML) to a CIRT or FIRST team. If you
can't access raw or supporting data, take your hands off the keyboard and walk away from the
system. If it takes more than five to seven minutes and your organization intends to report
events, keep shopping. If you can collect the information including raw or supporting data and
send it in within two minutes, please send me email telling me about the product so I can get
one too.
Weekly/Monthly Summary Reports
Management often wants to stay abreast of intrusion detects directed against the sites for which
they are responsible. Event-by-event or even daily reporting might prove too time consuming,
however, and doesn't help them see the big picture. Weekly or monthly reports are a solution to
this problem. In general, the higher level the manager, the less frequently she should be sent
reports.

Host- or Network-Based Intrusion Detection

The more information we can provide the analyst, the better chance she has of solving the
difficult problems in intrusion detection. What is the best source of this information, host based
or network based? If you read the literature on host-based intrusion-detection products, you
might conclude that host based is a better approach. And, of course, if you read the literature of
companies that are primarily network based, theirs is the preferred approach. Obviously, you
want both capabilities, preferably integrated, for your organization. Perhaps the best way to
consider the strengths of the two approaches is to describe the minimum reasonable intrusion-
detection capability for a moderately sized organization connected to the Internet, such as
shown in Figure 16.6.

Figure 16.6. A common architecture for a moderately sized organization.

The sensor outside the firewall is positioned to detect attacks that originate from the Internet.
DNS, email, and web servers are the target for about a third of all attacks directed against a
site. These systems have to be able to interact with Internet systems and can only be partially
screened. Because they face high overall risk, they should have host-based intrusion-detection
software that reports to the analyst console as well. This shows the need for both capabilities,
host and network based, even for smaller organizations. As the size and value of the
organization increases, the importance of additional countermeasures increases as well.

This minimum capability does not address the insider threat. Much of the literature for
(primarily) host-based solutions stresses the insider attack problem. I keep seeing studies and
statistics that state the majority of intrusions are caused by insiders. This is beginning to
change and most experts agree that the majority of attacks come from the Internet. Malicious

code has become a huge problem, however, and in some sense Trojans and information-
gathering viruses can be thought of as insiders after they are in your systems. If insider attacks
are a primary concern for your organization, additional measures to achieve a minimum
capability are required, such as the following:

• Use taps or spanning ports on network switches so that you are not blind on the
inside.

• Configure the filters on your DMZ sensor so that they do not ignore your internal
systems.You must keep tabs on outgoing traffic as much as incoming. This is especially
true because malicious code has become such a major problem.

• Configure the filters on your border router or firewall to allow only outbound traffic
if the addresses correspond to your assigned Internet addresses. This is called egress
filtering and there is a how-to paper available at the Incidents.org web site
(http://www.incidents.org/defend/egress.php).

• Deploy network-based sensors at high-value locations such as research and
accounting.

• Deploy honeypot systems at juicy locations with files that appear to be anything you
think insider attackers might be trying to steal.

• Place additional sensors from time to time on user networks as a random spot
check.

• At the very least, you should deploy host-based intrusion-detection code on all
server systems as well as corporate officers and other key personnel. Many personal
firewalls are available for less than $75 a station, and they are easy to deploy (Tiny,
ZoneAlarm, BlackIce, and Symantec Internet Security, for example).

• Establish a reward system for those who report on employees who misuse or steal
from the organization.

Summary

Very often, the features that seem most desirable when searching for an intrusion-detection
system don't prove to be all that important in actual use. The first one to go is usually the
capability to send alerts to the analyst's pager.

For various reasons, intrusion-detection systems cannot even look at every possible event.
Why? This chapter identified a few possible reasons: The event happened on another network.
The IDS is dead. The IDS has no understanding of the protocol. Perhaps the IDS has reached its
maximum bandwidth limit and dropped the packet. Further, the network-based IDS is limited to
the capabilities of the spanning port on a switch, and encrypted packets prevent IDS

http://www.incidents.org/defend/egress.php

identification.

An analyst gets better results from an intrusion-detection system if he understands what he is
searching for and tunes the IDS to find it, as opposed to letting the IDS tell the analyst what to
look for.

If you have only one sensor, place it outside your firewall.

When you have evidence that your site is under a targeted attack, and that the attacker knows
the type of operating systems you have and is targeting them accurately, take additional
countermeasures swiftly.

If possible, implement a balanced intrusion-detection capability with both network- and host-
based solutions.

Chapter 17. Organizational Issues

What does risk management have to do with intrusion detection? Every organization either
consciously or subconsciously makes decisions about risk. Obviously, we decide how much risk
we are willing to accept ourselves. The distributed denial-of-service attacks that became widely
known in February 2000 and Code Red attacks in 2001 demonstrate clearly that we also decide
how much risk we are willing to accept on others' behalf. The security of my site depends, at
least in part, on the security of your site. This chapter lays the groundwork that will enable you
to present a cogent argument to your management that intrusion detection is one tool for
managing risk, or part of an overall security architecture. The highest and best purpose of a
network intrusion-detection system is to identify the attacks being directed against our
perimeter defenses so that we can ensure our systems are hardened to withstand these attacks.
In other words, intrusion detection must serve as instrumentation that enables us to define the
metrics we need to manage risk intelligently. This chapter also ties risk-management
techniques and concepts directly to intrusion detection.

Organizational Security Model

To manage risk, we need a model, a way of describing the problem and what needs to be done
from a process standpoint so that we can get our arms around the problem. A simple example
of a model is the Top Twenty list. You can find one at www.sans.org/top20.htm. It lists the top twenty
vulnerabilities that attackers exploit and how to fix them. Every major vulnerability scanner
looks for evidence of these. This is a simple model, listing the twenty vulnerabilities most often
exploited. Make sure there are tools to find these vulnerabilities, and describe the fixes so that
all users can repair their systems. If a significant number of people do this, attackers will have a
much harder time compromising systems, and everyone's risk is reduced. Alan Paller, a good
friend of mine, created this model. Alan Paller is the Director of Research for the System

http://www.sans.org/top20.htm

Administration, Networking, and Security (SANS) Institute, and he developed another more
complex model while on an international flight with some of the top security minds in the world.
During the long flight to Australia, he continued to interview and question these individuals to
develop a comprehensive security model.

While working with this model, I have been impressed with the results it gives after you take
the time to implement it. As I reflect on the efforts and challenges of directing the startup effort
that created the Global Information Assurance Certification (GIAC) certification and SANS
Immersion training tracks, I am deeply thankful to have had a model like this to use. After
twenty years of government service, adjusting to the speed we have to move at makes it hard
to remember which way is up some days.

What to do? When I worked for the Ballistic Missile Defense Organization (BMDO), I used this
security model to help me sort out the many contradictory priorities. In the government,
everything is so ponderous that you need a roadmap to remember what you are trying to do.
With SANS and the GIAC, everything is "practice what you preach." If we teach it, we do it. So,
I am trying to implement the same model in a startup world where everything changes
everyday. I did not develop this model; Alan Paller, Gene Schultz, Matt Bishop, and Hal
Pomeranz did, but I have used it in the past and it has worked for me. I offer it to you in the
hope that it helps you as well. As I describe it here, I will put an ID slant on the model, but you
certainly can apply it in a more general way. Listing 17.1 shows the results of their work (courtesy
of Matt, Alan, Hal, and Gene). Let's take a look at it. Instead of three steps (determine the top
twenty vulnerabilities, scan or test for these vulnerabilities on your systems, and fix these
vulnerabilities if they are present), this model has seven steps.

Listing 17.1 The Seven Most Important Things to Do If Security Matters

1. Write the security policy (with business input).

2. Analyze risks or identify industry practice for due care; analyze vulnerabilities.

3. Set up a security infrastructure.

4. Design controls and write standards for each technology.

5. Decide which resources are available, prioritize countermeasures, and implement
the top priority countermeasures you can afford.

6. Conduct periodic reviews and possibly tests.

7. Implement intrusion detection and incident response.

Security Policy

Wait! Please don't close this book just because I wrote the words security policy. From my
experience training analysts and teaching classes on intrusion detection, I know that the last
thing an intrusion-detection analyst wants to do is write a security policy. When I teach, if I say
"policy," I can see the eyes glaze over instantly. But applying filters to an IDS is kind of neat,
right?

Consider that the filter rule set you upload to a sensor is called a policy. This is true for most

other commercial systems, and it is well named because these filter sets are a security policy. A
firewall is just an engine that enforces network policy. So let's recalibrate ourselves not to think
of security policy as a pile of paper that took weeks to write and now sits gathering dust. For an
intrusion-detection analyst, a security policy is a permission slip, the organization's approval to
install dynamic and active policy in security engines, such as firewall and intrusion-detection
systems. That's right, policy can serve as permission to do the right thing! At its heart, an IDS
is a monitoring device and you should never monitor people without authorization. Policy is the
umbrella that covers us when we execute the steps to actually use an IDS effectively.

Industry Practice for Due Care

Both risk and vulnerabilities are discussed further, so for right now, let's focus on due care, or
best practice. Actually, I abhor the term best practice, perhaps we can use pretty good practice
instead. Although every organization has pockets of expertise, no one group has all the
answers. As you know, the technology rate of change is so high that none of us can keep up
across all the subject areas. The best solution to this problem is to learn what people are doing
and what is working for them. One of the greatest joys for me in being affiliated with the SANS
Institute has been the consensus projects. Many of them are called Step by Steps, such as
Securing Windows 2000—Step by Step. These are not the work of a single person, but many
committed professionals who come together on a project to share their knowledge with others.

Security Infrastructure

Robert Peavy, the Director for Security and Counter-Intelligence for the BMDO, prepared a talk
for the Federal Computer Security Conference titled, "Security as a Profit Center—How to Sell
Protection to Your Leadership."

As much as anyone I have ever met, Robert Peavy understood that security, good security,
requires people. This is at least as true in the intrusion-detection field as any other security
domain. Intrusion-detection analysts are front-line troops. They often feel personally
responsible for any attacks that penetrate an organization's defenses and compromise systems.
They get burned out and there are some turnover issues, especially if they are double-hatted
with incident response as well. They need training to remain aware of the latest attacks, but
there is limited high-quality training available for them. What does all this mean? It means the
wise organization has some depth for the role of intrusion-detection analyst and that takes a
security infrastructure to accomplish.

Implementing Priority Countermeasures

As I am writing tonight, I have a great fear. I have run vulnerability scanners at a number of
organizations that have both UNIX and now an increasing number of Windows 2000/XP
computers. I am shocked by the number of systems that still have well known vulnerabilities as
well as the number of systems that still have SNMP; and it has been two weeks since the CERT
advisory on SNMP and the PROTOS test kit was released that searched for thousands of
problems. Will this be the next rstatd?

Since 1997, an ever-growing number of Sun Solaris UNIX systems continue to be compromised
using a buffer exploit against the rstat daemon. Several buffer-overflow exploits are available
for DNS, so it certainly could happen. Last week, I scanned a UNIX system being placed outside
a firewall. It had the Echo, Chargen, portmap, and r-utilities open. It reminded me of
elementary school when we used to put those signs on our classmates saying, "Kick Me."

How do you know whether something is a priority countermeasure in a world where everything
is the number-one priority? If an attacker can exploit a vulnerability from the Internet as easily
as a hot knife slicing through butter, you have to decide whether you want to fix the problem
before or after the system is compromised. I continue to be astounded by the number of
organizations that do not have time to do it right, but they do have time to do it over.

Periodic Reviews

Wake up! If you are an intrusion-detection analyst, do not miss this! It is imperative that you
review your filter set from time to time. When I worked on the Shadow intrusion-detection
project, one of the things I forced myself to do every couple of months was to run the
complement of our filter set against a week's worth of data and manually parse through the
results looking for anomalies. We must strive to continue to enhance our filter sets to reduce
false negatives. If this month's set of filters is picking up exactly the same attacks as three
months ago, this is a bad sign.

So, besides setting filters to trap the things one normally ignores, how do we improve our
filters? The bugtraq mailing list has proven to be an excellent source of information about new
attacks, each of which might need new filters. Once again, if you can find another group doing
intrusion detection and striving to do it well, and you can exchange information, as this is
another excellent way to stay current.

Conducting periodic reviews is a more general security principle than just watching our filter
set, of course. The intrusion-detection analyst also profits by examining the firewall filter set on
a fairly regular basis.You might find what I call firewall creep. When the firewall was first
installed, it had a fairly tight and orderly ruleset. As time goes on, however, this business
interest and that new service become a set of exceptions, or modifiers, to the ruleset. As the
rules grow, it becomes harder and harder to validate them. Also, from time to time, the firewall
administrator might add in a special rule "just for testing" and forget that it is there. As an
analyst you think, "No problem, we are blocking UDP port umpty clutch," when in fact you
aren't. The real difficulty is tracking these changes; they happen when you least expect them
and over a long period of time, a bit like a low and slow scan. I am starting to think that
external scanning services with databases, so you can track what has changed, are a must. If
you have never considered one of these, you might want to visit www.qualys.com.

Implementing Incident Handling

An exhaustive discussion of incident handing is beyond the scope of this book, but I want to
touch on it as it relates to the model. Have you ever been certified to administer CPR? How
confident would you feel if you had to administer CPR 3, 6, 12 months after your training? I call
these "gulp" moments. I know I am qualified as an incident handler in some sense, but if I
haven't handled an incident in a couple of months, I really feel the rust.

What does incident handling have to do with intrusion detection? A lot! The analyst is likely to
be the one to raise the alarm. In organizations with structured incident-handling capabilities,
the analyst might be assigned to provide network information to the handlers. In organizations
without these structured incident-handling capabilities, the handlers are likely to be you and a
system administrator or two. In the "Manual Response" section of Chapter 18, "Automated and Manual
Response," read carefully and make notes concerning the things you know you need to do
before you have to handle a serious incident. If you do this, it will really help when the gulp
moment comes.

http://www.qualys.com/

Defining Risk

What are the scariest three words an intrusion analyst is likely to hear?

We can't reasonably manage risk if we don't know what risk is. Risk occurs in the domain of
uncertainty. If there is no uncertainty, there is no risk. Jumping out of an airplane two miles up
without a parachute isn't risky; it is suicide. For such an action, there is a nearly 1.0 probability
you will go splat when you hit the ground, or an almost 0.0 probability you will survive.
However, there is also risk to jumping out of perfectly good airplanes with parachutes, as
several skydivers discover each year.

Let's apply this concept to router protection filters. In many cases, these filters are connection
events—that is, they are port number based. If we see a TCP connection at port 25, we identify
it as sendmail and take whatever action is prescribed. However, any service can actually run at
any port. There is the uncertainty; there is a risk that we will make the wrong decision. With the
ephemeral ports (above 1024), this happens often. This uncertainty, coupled with the fact that
an adverse action could be exploited (a service we intended to block could penetrate our site),
leads to a risk. This is one reason many security professionals think that a filtering router does
not serve as a firewall.

An intrusion-detection analyst needs to know the degree of uncertainty for specific filters. As an
example, SYN flood filters often have a high degree of uncertainty. If an intrusion-detection
analyst continues to report these, there is the potential for an adverse action. The CIRT might
begin to trivialize this analyst's reports. Therefore, a filter's degree of uncertainty can result in
risk to the analyst and the organization, especially in high-profile cases. Conversely, the expert
analyst knows the conditions in which a filter is likely to perform well and also the conditions
that lead to failure. These analysts develop the ability to "read between the lines."

Perhaps, the simple issue of reputation doesn't grab you. The same problem, uncertainty of
filters, gets more interesting if a site employs automated response techniques.

I want to briefly mention one more potential adverse result of uncertainty with intrusion-
detection filters. Several commercial IDS vendors provide lists of their filters. Sometimes, they
rate their filters by their probability of producing a false positive and perhaps list conditions
known to cause the false positives. This is a great service to the analyst. What if a company
lists some of its filters as not having any chance of a false positive—that is, there should be no
uncertainty, therefore there is no risk. Then, you dig in and find several of these filters do
generate false positives. That realization can undermine your confidence in the company. I
know; it happened to me. In fact, I started building test cases for the filters that according to
the literature had no chance of a false positive and found several other filters had flaws. Well
this really bugged me. Why say it doesn't error if it does? Then, I remembered that I had been
issued a brain to keep my heart in check. Why get mad at this company when they have the
most complete filter documentation of any commercial IDS? So, I just updated my copy of the
filter documentation and sent them traces of my test cases. What do I get for my effort? I know
a lot more about which detects to be uncertain about and the conditions likely to cause the
filters to error and generate a false positive.

What about the Snort ruleset? It is open and can be examined and has been subjected to
exhaustive public review—are these rules uncertain? To be sure, there are great advantages to
public review (and you can bet that more than one or two of those rules finds its way into other
IDS systems), but the fact that it is open means an attacker can be aware of it and modify the
attack just enough to evade the rule.

Oh yeah, the scariest three words to an intrusion-detection analyst. They are when the gruff old
decision-maker who has to make a hard call looks you in the eye and asks, "Are you sure?"

Risk
Risk happens. It is ridiculous to say I don't want any risk in a given situation. Rather, we
manage risk. I heard on TV once that the space shuttle often has backup systems for its backup
systems. A shuttle flight is an exercise in strapping yourself to a rocket and heading for space.
Space is an environment where any number of things can kill you: radiation, heat, cold,
vacuum, and finally the reentry. If you approach a reentry with too steep an angle, the mistake
will crash you; and if your angle is too shallow, it will bounce you into space. That is a lot of
risk, which is one of the reasons astronauts get all the free Tang they can drink.
If you really think it through, the whole process is nuts and no sane person would do it. NASA
actually has go/no go criteria. If anything is wrong, they do not go ahead with the launch, even
though there are backup systems. This is judged an unacceptable risk. Other risks are
considered acceptable, like the bit about strapping yourself to a rocket. With any risk, we must
decide how we will deal with risk. We have three options for dealing with risk:

● Accept the risk as is.
● Mitigate or reduce the risk.
● Transfer the risk (insurance model).

Accepting the Risk
If we don't install a firewall and we connect to the Internet, in some sense we are as daring as
the men and women who bolt themselves onto rockets; what we are doing is risky and we've
chosen to accept that risk. If we have information assets of high value and we don't do auditing
on these hosts or use some form of intrusion detection, we are again choosing to accept the
risk.
The concept of accepting risk is simple enough, but there is another aspect of this we need to
consider. The elementary school bus driver who drinks a few too many beers before picking up
the kids with his school bus is accepting risk all right, but he is accepting risk he does not have
a right to accept. The firewall administrator who was just testing some service and mistakenly
left it in the system might have caused the organization to accept a risk that it would not
choose to accept. After all, why did it go through the trouble to buy and set up a firewall? One
of the interesting problems of information security is that it is quite possible for an individual to
accept a risk for an organization that he is not authorized to accept. I would like to illustrate this
point with an intrusion-detection story.
Last week, we detected systems initiating file transfers from a site that we monitor. It was just
odd enough that we decided to look into it a bit further. When we examined the payload of the
ftps, it was clear each of these systems was sending a bit of information about itself. We
weren't sure what the information was until we saw a couple instances of "Preferred Customer."
It seemed like it had to be the registration field for Microsoft Office products. Our suspicions
were quickly confirmed. A member of Human Resources had sent a memo as an attachment to

an email message to all the senior managers of the organization. It was the fact they were
senior managers that alerted me to further investigate the ftp sessions; these folks didn't even
read their own email! They had a secretary screen their mail, print it, and put the important
messages in their inbox. The email message sent by Human Resources was infected with a
macro virus that sent information out of the organization. It apparently didn't do any serious
harm. From an information warfare perspective, however, I was appalled, because it gives a
clear potential infection vector into this organization, which could be exploited at a later time.
This support employee, by just failing to maintain current virus software, accepted a high
degree of risk for the entire organization. As Jimmy Kuo, a research fellow at NAI would say,
"You are only as good as your last update." How about one more example?
The same week we detected many more systems initiating file transfers than usual from the
same site we monitor. We found five in one day. When we pulled the payload, we found they
were all going to the same IP address, the same user ID, and the same password. They were
downloading files to the desktop systems. In this case, it turned out to be a shareware
program, PKZip. Now, this is no Trojan; this is no sneak attack. A paragraph on the shareware
web site stated that when PKZip was installed it came with a bonus component that downloaded
ads. None of the five users gave a second thought to what they were actually doing; they just
wanted PKZip. So what's the problem? Well, so long as the software is just downloading ads,
there isn't a problem. However, keep in mind that many sites configure their firewalls so that if
a connection is initiated from the inside, it passes through the firewall without any problems.
This means there are several potential attacks from such a behavior.
Trojan Version
We have seen several examples of Trojan versions of legitimate software, such as the Trojan
ICQs and Internet Relay Chat (IRCs). The user would not be aware that the program was
actually uploading sensitive data from the system, or downloading tools that could be used to
attack his organization's network from the inside.
In the same vein, what if the advertisement company hired a malicious individual, or an expert
in economic espionage? Think about what he could accomplish with robot code that downloaded
arbitrary files every time a system was booted! If this seems like science fiction, consider the
use of netbugs (www.bugnosis.org) and spyware that is so common today.
Malicious Connections
There are a number of DNS attacks, but the idea in DNS cache poisoning is to manipulate the
DNS system so that the client system goes to a malicious server rather than to the actual
server. This is often done when a client answers a question, within a query.
The problem is complex; users of desktop Windows systems do not generally know what
connections their systems are making. I honestly didn't know that software programs on my
Windows system could connect to the Internet without me clicking on them. Several years back,
I bought a software package, McAfee Office, primarily to get the Pretty Good Privacy (PGP) that
comes with it, but decided to play with most of the software. One of the programs was called
GuardDog, which is a security program for Windows systems. I installed it, and imagine my
surprise when I booted my computer and it barked at me, to warn me that one of the programs
on my system was trying to connect to the Internet. It was Real Audio; I didn't have the time to
set up monitors and traps in my home lab to track it, so I just uninstalled it. Later, it turned out
they were collecting information on users. Today, I use application-aware personal firewalls
such as ZoneAlarm and Norton Internet Security.
We have gone through some important information, so let's take a second to summarize some
points. In the preceding two examples, macro virus and PKZip, users' desktops initiated
connections to the Internet without the users knowing about the connections. Both cases have
the potential for harm to the organization, although mercifully the only real damage in these
examples was my blood pressure shooting through 200. In both cases, one by inaction, one by
action, the users make a personal decision to accept a risk that affects the entire organization.

http://www.bugnosis.org/

Expanding Our View of Intrusion Detection
Neil Johnson, a researcher and faculty member at George Mason University,
presented a really wonderful paper on intrusion detection and recovery against
watermarked images at the SANSFIRE 2000 conference. If you spend a lot of time
and money creating graphics, you might want to put a copyright seal on these
graphics in some way. There are tools to do this. Then, it is possible to use World
Wide Web worm technology to search the Internet looking for graphics to see
whether your seal turns up on some server that didn't license the graphic. Neil
explained this and demonstrated both attacks and the recovery techniques. Now, you
might be thinking, what do watermarks have to do with intrusion detection?
As we continue our study of risk and its application in the field of intrusion detection,
keep in mind that the dangerous enemy is not the one aimlessly running three-year-
old canned attacks! The dangerous enemy is the one who knows what he wants and
uses a hard-to-detect technique to get it. USA Today ran a story in the wake of
9/11/2001 that Bin Laden used steganography to send messages related to the
attack. There are more pragmatic examples. In the case of a graphics company, its
images are its crown jewels. To the company, this is the nightmare scenario: an
attacker who can remove the proof that it is the owner of the images and possibly
even brand the images under another company's name.
Mitigating or Reducing the Risk
What if we decide that even though it is risky to strap ourselves to a rocket, the end result of
doing so is worthwhile? Perhaps our objective is greater than just a free drink of Tang; perhaps
we have an opportunity to be the first human to set foot on Mars. The enterprise is still very
risky, but we are certain that this is something we want to do. In this case, if we aren't
foolhardy, what we do is try to find ways to make the endeavor less risky; we reduce the risk.
Have you ever thought about intrusion attacks against laptop computers? Most professionals
carry them these days. They often have sensitive information about their organization on them.
We have already mentioned information-gathering malicious code, but that can be directed
against any system. How specifically are laptops vulnerable to attack? What can you do to
mitigate their vulnerability?
Network Attack
If the organization uses Internet service providers (ISPs) to connect for email rather than
secured dial-in, there is an opportunity to attack the organization's systems while they are on
the net. They are outside the firewall and so the normal screening protections against NetBIOS
and other Windows attacks that desktop systems enjoy inside the firewall are not available to
them.
Snatch and Run
I really hate putting my laptop on the X-ray machine conveyor belt at airport security checks. If
I don't make it through the metal detector, this is a golden opportunity for someone to steal it
because I am physically separated from my briefcase in a dynamic, crowded environment.
Worse, I only have one shoe on because thanks to the terrorist that tried to blow up the
airplane with his shoes, mine are being inspected. Further, if someone does walk off with my
laptop if I rush after them, I run the risk of getting shot by the National Guard with the M16s.
There are also the situations when I get to my destination: Do I leave it in my hotel room when
I go to dinner, or lug it?
I don't know whether you are worried about the information that professionals in your
organization put on laptops. After all, it is just stuff such as your design and business plans,
sales and marketing information, perhaps a bid work-up or two. I write this tongue and cheek,
but if you interview the folks who lug these laptops around, you might find that they do not
often perceive the information on them as sensitive and needing protection.
I do know my situation. In writing, teaching, and reviewing I often find myself working with
proprietary information. I have signed several Non Disclosure Agreements and have always

tried to be careful with that information. If a large security and network company decides I
have not protected its information properly, I have to face its army of lawyers (alone). So I am
inspired to do the best job I can to protect my laptop; I look for tools to mitigate the risk.
Because I know that connecting to the Internet is risky, what are some of the tools that help
protect my system?
I have looked at several tools. ZoneAlarm is free for personal use and works well. A lot of my
friends swear by BlackIce, and the traces it creates have nice fidelity; but, it has steadily
dropped in quality since the company was acquired. I have found the Norton Internet Security
tool actually runs on XP, which is a plus. PGP appears to have a personal firewall, but my boss
installed it on his XP and lost his ability to connect to the Internet. I went through that with
Windows ME when I installed PGP. In both cases the culprit was the PGPNet product. With the
ME computer, I thought about it for a while, I knew I needed PGP, but was pretty sure I didn't
need ME so I just wiped out that system and rebuilt it as a Windows 2000 system. PGP also
comes with PGPdisk that protects sensitive files should the laptop ever be stolen or suffer an
intrusion, or you can use the Microsoft Encrypting File System on Windows 2000 and XP.
Although PGP has a disk overwrite, data-destruction routine, I find BC Wipe from
http://www.jetico.sci.fi to be a better tool for my purposes. There, that is my personal example of
implementing countermeasures to mitigate risk.
Transferring the Risk
Last week, when I wasn't dealing with outbound ftps, I was dealing with flood damage. The
toilet upstairs got stopped up (with a little help from my teenager). The chain that drops the
stopper just happened to chink and not drop the stopper flush to seal the water. So, the water
filled the toilet bowl and poured over onto the bathroom floor and began its journey in search of
sea level. But wait, there's more! This happened to be the day the city decided to flush the fire
hydrants, which stirs up all kinds of rust, so it wasn't clear water pouring through the house; it
was blood red. When my wife got home, the water was pouring from the dining room chandelier
like a fountain. The plaster ceiling had huge cracks and the wooden floor had already warped in
two places. The water continued on, accumulating until the ceiling of my wife's sewing room
collapsed, spewing rusty water and soggy ceiling tile on her machine and the projects below. My
wife called me at work, asking where she should begin. "Turn off the water, move away from
the dining room, I'm on my way," I answered.
I use the same incident-handling technique for everything. As I hung up the phone, it hit me
that this had to be 20 to 30 thousand dollars worth of damage. I was very sad as I drove home
and then busy as we tried to salvage what we could of my wife's sewing room. It wasn't until
later at night that it hit me. I have insurance! In fact, I have insurance with a good company,
one that has always treated me well. I always knew owning a home had risks that were beyond
what I could financially accept. There just aren't good enough home firewalls to expect them to
defend against toilets that get jammed and stuck on a day that the city is purging the fire
hydrants. Like most homeowners, we had chosen to transfer the risk. So I called Travelers.
They came over, were very sympathetic, and said they were going to take care of us. Sure
enough, I was only out $100 for the deductible; and the job would have been done except that
no one told my wife the five little words you never say to a contractor. Still, even after a "while
you are at it," it only cost me an extra $2,500 and now I have crown moldings on the ceiling,
something I am sure I always wanted.
So how does this notion of transferring risk apply to information assurance and intrusion
detection? In the first place, there is a direct correspondence. Several agencies, including Lloyds
and IBM, are now offering hacker insurance. They usually require the organization to do its part
before insuring them, and their part is likely to include firewalls, vulnerability assessments, and
intrusion detection, at least it would if I were offering such insurance.
We have discussed uncertainty and how it applies to risk. We have proposed that some risks we
are willing to accept (whether or not we are authorized to do so), and other risks we are not
willing to accept. In the last case, we need to either mitigate the risk or transfer it. Now, we
need to deal with the issue of what agent is going to potentially do us harm; we call this the

http://www.jetico.sci.fi/

threat. Vulnerabilities are the gateways by which threats manifest themselves.

Defining the Threat
"Umm, I wouldn't go there if I were you".
"Why not?"
"Bad things will happen to you if you go there."
"What bad things?"
"Bad things."
This is not a compelling scenario, true? Most of us would not be persuaded by it. Imagine giving
a similar pitch to management: If you don't fund an intrusion-detection system, bad things will
happen to us.
We need to define and quantify bad things:

● What things?
● How bad?
● How likely they are to occur or repeat?
● How do you know?
● What support do you have for your answer?

So for each threat we can define and enumerate, we need to answer these questions.
How Bad—Impact of Threat
In the end, risk is evaluated in terms of money. This is true even if life is lost; in the case of
loss of life, it might be a lot of money. For any threat we have defined, we take the value of the
assets at risk and multiply that by how exposed they are. This yields the expected loss if we
were to get clobbered by the threat. This is called the single loss expectancy (SLE) and the
formula to calculate SLE is as follows:
Asset value x exposure factor = SLE
The exposure factor is an estimate, ranging from 0 percent to 100 percent of our loss of the
asset. Consider the following calculation, the threat of a nuclear bomb exploding just above a
small town whose total assets are worth 90 million dollars:
Example Nuclear bomb/small town ($90M x 100% = $90M)
Now let's bring it home. I have already mentioned that when I have conducted vulnerability
scans of sites with UNIX computers I have found a number of systems with the tooltalk
vulnerability. Can we apply this formula to these? First, we have to define the threat. Suppose
we are a Class C site. The threat is a malicious attacker who gains root, exploits any trust
models, encrypts the file systems, and holds the computers ransom for $250,000. The attacker
scans the net and finds six vulnerable systems. The buffer-overflow attack quickly yields root.
After exploiting the trust models of these systems, our attacker is able to root compromise four
additional systems and therefore encrypt the disks of 10 UNIX workstations. So when the CEO
of your organization comes in to work on Monday, his secretary finds the following in his email
box:
To: John Smith, CEO
From: Dark Haqr
Subject: Rans0m
I 0wN U L^m3r It wi11 c0st u a kwart3r Mi11i0n t0 g3t ur dAtA b^k.
What is our SLE at this point? We could say $250,000, but it might not be quite that simple. If
there were backups, we might be able to restore from backups and just lose a day or two of
work. If there aren't backups (please, please ensure there are always backups), we have a

more interesting problem. At this point, we don't actually know if we will ever get the
encryption key. The threat is that we will not. So, the value of the assets is the value of the
data on these systems, plus the time to rebuild them from scratch, plus the loss from the
downtime. How do we calculate the value of the data?
The value of data can be approximated by the burdened labor rate of the people who have been
working on the system for the life of the project(s) on the system. To keep the numbers simple,
we will consider each of the UNIX systems to be a professional's desktop. They are working on a
single project that is two years along and they each make $60k, but their burdened rate
(benefits, office space, and so on) is $100k. Ten people at $100k, for two years is $2 million
dollars. What is our degree of exposure? It's 100 percent; the files are already encrypted. So,
we quickly see that paying the quarter million and keeping our big mouths shut and not
involving law enforcement is probably in our best interest. So in this scenario, we pay the
money, get the key, and get back to work and everyone is happy. Now, what happens if we
don't fix the vulnerability?
Frequency of Threat—Annualized
Annualized loss expectancy (ALE) occurs when a threat/vulnerability pairing can reasonably be
expected to be consummated more than once in a given year. In a brief given to the Joint
Computer Security Conference in March 2000, Dr. Gene Schultz postulated this might be an
inadequate measurement. Given the nuclear bomb example in our small town, this can't
happen; indeed, we drop as many bombs as we want on the town, but we aren't likely to cause
any further damage. ALEs fit very well into models such as shoplifting, returns in the mail-order
business, and defaults on loans. In a competitive environment (e-business, for example),
however, how many ALEs events can you survive? Consider the case of distributed denial of
service. If your web storefront is shut down four or five times in a month, some of that business
goes to your competition. How do you recover from that? How do ALEs factor into information
assurance and intrusion detection?
I mentioned earlier that intrusion-detection technology is easily applied to unauthorized use
detection. I also think that this can be a waste of skilled intrusion-detection analysts. But, there
is a powerful business argument that says this is a very wise use of the system and personnel.
As we work through the following example, note that even though I kept the numbers
ridiculously low, we still ended up with some serious money, enough to pay the burdened rate
of those entry-level professionals the organization says it can't afford. Use the following formula
to calculate ALE:
SLE x Annualized rate occurrence = Annual loss expectancy
This is nothing more than our SLE times the number of times it could be expected to occur in a
year. This is why we ended the encrypted file system example with the question, "What
happens if we don't fix the tooltalk vulnerability?" Dark Haqr takes our money, goes out and
buys a Beamer, his friends inquire of the means of his sudden fortune, and we get to play the
game again.
Let's do a common example: Web surfing on the job rather than working. First, we need to
calculate an SLE. Say we have 1,000 employees, 25 percent of which waste an hour per week
surfing:
$50/hr x 250 = $12,500
To calculate the ALE we observe, they do it every week except when on vacation:
$12,500 x 50 = $625,000
You can see why an organization might want to leverage its investment in intrusion-detection
equipment and personnel to curb unauthorized use. Again, I kept the numbers much lower than
what I have observed to be the case at many sites. Also, in the real world, the waste doesn't
tend to be spread evenly across employees, but rather is localized in a small number of
employees. If these employees can be identified and canned (after all, if they weren't working,
they probably aren't really needed), there are a number of potential savings for the
organization.
Recognition of Uncertainty

How reliable are the answers from these SLE and ALE calculations? If we are going to make
decisions based on these calculations, we need to know how reliable they are. I spent a long
afternoon with a gentleman who was trying to convince me to invest a lot of money in an
intrusion-detection framework. This thing would do everything but wax your car: it had sensor
fusion, automated correlation of vulnerabilities with incoming attacks, and even factored in virus
reports in a very cool graphics display. "Best of all," he says, "it has an expert system."
He continued talking and I nodded from time to time, but I was already gone. I couldn't help
but remember phrases from my artificial intelligence (AI) classes. How about this one, "The
reason expert systems don't live up to their promise is that the rules we are putting in them
aren't very good. The knowledgeable engineer interviews the experts in the field, but what we
are learning is that the experts aren't very expert." Here is another, "One of the biggest
problems with AI is when the system doesn't know what it doesn't know. In that respect, AI
systems are exactly like people."
When we calculate SLEs and ALEs, we need to be sensitive to what we don't know, to the places
we fudge the numbers, to the cases where the models just don't fit. "No problem," you might
be thinking. "I have no intention of calculating SLEs." Umm, maybe you do something similar,
but you do it in your head without a process or documentation.
I work in an organization that monitors networks, for instance, although I guess that doesn't
come as a surprise. I was listening to a new employee briefing and they were told very clearly
that pornography was forbidden and that if caught, the responsible employees would probably
be escorted out the door and fired. Let's jump into the mind of one of these young new
employees. Maybe he is curious to see whether the organization can detect him if he misspells a
sexually oriented word on a search engine, or uses oblique references. The answer is probably
yes. But then again, he might think, "Hmmmm, but I already know they don't have a sense of
humor, the SLE is just too high." Well, maybe he wouldn't use those exact words, but you get
my drift.
Might I share one more example of uncertainty in answers with you? In mid-February 1999, I
attended a working group for Presidential Decision Directive 63 (PDD 63). The goal was to get
the 50 or so top researchers (and me) to consider four problem areas necessary for allocating
approximately half a billion dollars in research money for intrusion detection and information
assurance. One of the tracks was called anomalous behavior, which is Washington D.C. speak
for the trusted insider problem. So, we all worked away and then presented our results. The
anomalous group presented a finding that research had been funded 100 times more for
detecting outsiders than insiders. Someone asked, "What study did you find that ratio in, and
what was your source?" The answer from our distinguished scientists was "We made it up, but
it's close."

Risk Management Is Dollar Driven
If you approach management and say you need $10,000 for an intrusion-detection system, they
might want a bit more information. It is a good sign if they ask how much time it will take to
run such a system; it shows they are listening and thinking clearly. A good manager knows the
hardware and software costs are the tip of the iceberg and wants to get a handle on the whole
picture. Managers want to understand how it fits into the business model. Risk management
(and that includes intrusion detection) is dollar driven.
Whenever we are faced with a risk that is unsavory to us, we begin to wonder what can be done
to reduce or mitigate the risk. As we pick our countermeasures, we should try to calculate what
they would cost on a yearly basis. When you make a proposal to management, people really
like it if you can give the cost breakdown and even an option or two. Remember those SLEs and

http://safari.informit.com/?xmlid=0-73571-265-4/22991533

ALEs; this is when they really come in handy. The countermeasure will cost some money, but
look at the risk metrics!
Here is a very important aspect of pitching risk management to the organization's
management: Don't nickel and dime. The bigger picture you can paint of all the risks,
vulnerabilities, countermeasures, and get-well plans, the more receptive they are likely to be.

How Risky Is a Risk?

I really like to hear host-based intrusion-detection sales folks give presentations. It has always
been an uphill battle, and in these days of personal firewalls where anyone that wants host
protection can get it for $40 to $60, it is becoming comical! The sales people get going on the
insider threat and play that issue like a harp with one string. They have to do this; they are
fighting a perception problem, or perhaps it would be better to state this as an education
problem. What they are trying to do is get the potential customer to rate one risk higher than
another. If you think about it, this is a common sales tactic.

In Virginia, they don't get much snow, but at the beginning of winter, the auto ads are really
pushing four-wheel drive vehicles. Never mind the fact that they cost more, are more
mechanically complex, and get fewer miles per gallon than two wheel drives; if you buy one,
you don't have to be afraid of the snow. We can learn two things from this: to consider as many
risks as possible and to keep things in perspective. We want to be able to rank risk. There are
two basic approaches to ranking risk: the quantitative and qualitative approach.

Quantitative Risk Assessment

The goal of this approach is to figure out what the risk is numerically. The most common way to
do this is asset valuation using our friends the SLEs and ALEs. This is not worth doing for each
desktop system in your organization! It can be a very effective tool at the organization level,
however, and the numbers are not that hard to dig up. To calculate asset value (AV), use this
formula:

AV = Hardware + Commercial software + Locally developed software + Data

Your comptroller should be able to produce your organization's hardware and software budget
and actuals in a matter of minutes. The value of locally developed software is usually a bit
trickier. You have to take the burdened cost of everyone paid to develop software for your
organization for some number of years. Data is where it gets interesting! Isn't it true that
almost everyone in your organization uses a computer? If so, the value of the data is what your
organization has paid to keep those people in front of computers for whatever is a reasonable
life cycle for the data. (I usually use three years.) This is going to be a big number! It shouldn't
take longer than an hour to hammer out a reasonable value for your organization's information
assets. This can be a really good thing to have available if you need to persuade management
to fund something, or to quit doing something really risky.

Qualitative Risk Assessments

http://safari.informit.com/?xmlid=0-73571-265-4/22991533

You can also apply a checklist approach to ranking risk. Generally, you have a list of threats,
and you rank each item as a high, medium, or low risk. This works much better at the system
level than the organization level. There are examples of a modified quantitative method and
several checklist style qualitative method risk assessments at
http://www.nswc.navy.mil/ISSEC/Form/AccredForms/index.html.

The accreditation "part II" forms at the web site are for the various architectures (Windows 95,
NT, Macintosh, UNIX) are the qualitative method examples. The SCORE checklists at
www.sans.org/SCORE are another resource. Finally, the Center for Internet Security www.cisecurity.org
has a number of tools that you can run to assess your security posture. These tools pretend to
be quantitative because they give you a numeric score; but if you look under the hood, you will
quickly realize they are qualitative.

Why They Don't Work

In theory, both approaches to risk assessment work fine. In practice, they do not work so well.
This is because we have a natural tendency not to tell the truth, because if we do show there is
a vulnerability with a high risk, we have to do something to fix it. Therefore in practice, people
who are performing a qualitative assessment come up with numbers that are really big. They
know they cannot afford that much risk, so they do the assessment on smaller and smaller
chunks until they get it down to the single desktop system, and that is silly! Guess which box
(high, medium, or low risk) folks doing a quantitative assessment tend to pick. And if
everything is a low risk, why bother?

Summary
From the time of the Cuban Missile Crisis to the fall of the Berlin Wall, if you were in the
Department of Defense and you wanted money, the strategy was to go to Congress and say,
"The Russians are coming." Despite the way TV and the movies portray the legislative branch,
those folks aren't dumb and a lot of them have been on the hill for a long time. So at some
point, they start pointing out that they funded this and they funded that all because the
Russians were coming. Why hasn't that fixed the problem?
Now, we are doing it all over again to stop terrorism, or for the purposes of this book, to stop
cyber-terrorism. If you don't need your year's worth of food and water and your thousand
rounds of ammo for each gun to survive hackers, you certainly are going to need these things
to survive the coming cyber-war. Sigh. This will work to extract money and attention for a
season, but it is poor practice. This chapter has covered a sound organizational security model.
We have looked at tools to assess and prioritize risk. We have a foundation for discussing what
we do and why we do it with management. The next chapter discusses responses to attacks and
system compromise. When we have these tools solidly in hand, we can discuss how the hackers
are coming and how to survive a cyber-war in a reasonable manner.

Chapter 18. Automated and Manual Response

http://www.nswc.navy.mil/ISSEC/Form/AccredForms/index.html
http://www.sans.org/SCORE
http://www.cisecurity.org/
http://safari.informit.com/?xmlid=0-73571-265-4/22991533

When we were learning how to analyze network traces, we discussed stimulus and response in
detail. Now, we use the same concept but apply it at the organizational level as we consider the
defensive responses available to us. The stimulus will generally be a "successful" attack or
attack attempt. A successful attack, if detected, invokes an incident-handling procedure. How
do we define a successful attack? In the vein of "any landing you can walk away from is a good
one," we can say "any attack that causes us to take action above our normal filtering is a
successful attack." Do you agree? If not, keep in mind that if we respond in any non-
automated, non-normal way, it has to cost us resources. What I would like to do is offer three
attack examples. Take a look at each of these and consider whether they are successful
attacks:

● Ping sweep. A series of ICMP echo requests from a party conducting reconnaissance.
Ping sweeps are usually launched from outside our intranet or autonomous systems to
internal subnet broadcast addresses. They might be detected by a sensor such as a
firewall or intrusion detection system.

● Disk-based survey. An employee receives a letter with a disk. If he places the disk in his
computer, answers all the questions, and mails the disk back, he receives a free T-shirt.

● TCP port 53 connections. An Internet company that produces banner ads for web pages
is observed pinging systems that have gone to these web pages and attempted to initiate
connections to TCP port 53 on these systems.

What do you think? I would say that if your perimeter router or firewall blocks ICMP echo
requests, the ping sweep is not a success. I have heard folks assert that this is just a
reconnaissance probe, not an attack; but the question is, does it cost you resources? I was
looking at a network trace recently in which the attacker was going after only actual live
systems. It is kind of scary when they know what they are looking for.
The disk-based survey? Certainly, this is a successful attack. Most employees would never know
which files were scanned or added to their system, but it is certainly true the attacker gets the
benefit from the information the employee types into the survey—and your organization is
footing the bill. As a security professional, you should inform your organization's employees to
throw these disk-based surveys straight into the trash, or if they must, take them home to fill
them out.
The simple DNS lookups? DNS queries happen all the time, and it is hard to determine which
queries might be reconnaissance as opposed to the function call gethostbyaddr that occurs
whenever someone is web surfing. However, the HTTP protocol headers contain a lot of
information about the client that is web surfing. Some of the fields include the following:

● Host operating system.
● Version of the browser being used.
● The last web server visited. This is the referrer field.

Web servers routinely collect this type of information for marketing purposes. The collected data
helps the webmasters tune the look and feel of the pages as well as phrases that web clients
are looking for. However, this information can also be used to collect information about the web
clients. If you add DNS, and possibly netstat type information, you begin to compile an
incredible amount of information about a given IP address, or IP address range.
You might notice that I did not use any "gulpers" for the examples (with the possible exception
of the ping sweep; however, these are not script kiddie examples either). I am very impressed
with the philosophy of Escrima, a martial art. The idea is to take whatever targets your
adversary offers and cut them apart (literally, knives are the primary weapon) a piece at a time.
This is a fundamental principal of information warfare. Folks are constantly employing a wide
variety of techniques against your organization, taking whatever is vulnerable. This is why a
sound protection scheme, including defense in depth and automated response, is so important.

Automated Response
This section examines architectural issues of automated response, mechanisms available to us,
and the most popular implementation—PortSentry—as well as the automated response
capability of personal firewalls. Obviously, the cheapest and easiest response is the automated
response. This form of incident handling should be widely practiced and, if done wisely and with
care, is safe. There are a couple of gotchas we will address from the start. Because intrusion-
detection systems have a problem with producing false positives, you might err and respond
against a site that never attacked you. The good news is that you could take a number of
passive defenses. These passive responses I describe do not cause harm. You would have to
have rocks in your head to hit a suspected attacker back with an automated exploit due to the
potential for error from IP spoofing and false positives.
The other problem is that if your attacker determines that you have automated response on, he
might be able to use this against you. Imagine setting up the equivalent of an Echo-Chargen
feedback loop involving two sites' auto-responding intrusion-detection systems and a couple of
spoofed addresses. Or, at a major deadline, the attacker could target a site with spoofed
attacks from its partner/customer/supplier addresses and cause the firewalls to isolate from one
another so that the deadline cannot be met.
Architectural Issues
Because network-based intrusion-detection systems are generally passive, just tapping the bit
stream, they do not usually respond to an attacker's stimulus. However, many commercial
implementations of intrusion detection have the capability to connect directly to the firewall and
this combination allows for automated response. In fact, hogwash, a firewall implementation
based on Snort, actually integrates the two functions, and there are similar commercial
products under development. The DMZ or Internet connection is an obvious place to implement
automated response, but there are other very effective options that include internal firewalls
and the host systems themselves.
Response at the Internet Connection
The closer to your site's Internet connection that you apply automated response, the more
effective it will be; but the risk of harm to the organization coming from spoofing and
manipulation also rises quickly. A primary reason for this is that your Internet connection is
generally unfiltered—that is, after all, where you put your firewall and filtering router. This
means these devices can be hit with any possible address (spoofed or not), 65,535 TCP ports
with any number of flag and options combinations, 65,535 UDP ports again with options, ICMP,
fragmentation, and all of the IP protocol types. This is a lot of space to defend against. Now a
"deny all that is not specifically allowed" policy will prevent the overwhelming bulk of these
possibilities from penetrating your perimeter, but the risk comes when we try to interpret all
this using an automated policy. The bottom line, though, is that in the face of a rapidly
increasing threat, and with the need to respond in the time it takes to evaluate a single packet,
automated response is probably going to be widely implemented. And because you get the
biggest bang for your buck by putting the capability near the Internet connection, we will
probably continue to see solutions like hogwash and Tippingpoint's UnityOne (www.tippingpoint.com).
Internal Firewalls
Automated response using internal firewalls is much safer because the traffic an internal firewall
receives generally is at least partially filtered. Also, you know your policy better. If you are
defending five machines or so with your internal firewall, you have a pretty good idea with
whom those hosts should be talking and on what ports. Of course, the catch is the automated
response covers a lot less area. And there are cost issues both for hardware and software and

http://www.tippingpoint.com/

also administration. The good news is a number of appliance and near-appliance devices need
almost no configuration. The DSL and cable modem revolution has created a huge market for
these, and there are a number of options including appliance products from Cisco, Linksys,
Netgear, and Symantec. I really like the little $500 PIX, but try putting your hands on one; they
seem to be permanently sold out. Because Network Address Translations (NATs) are so
effective at preventing attacks and the lower end devices run about $250, there is no reason
not to deploy them throughout your organization. If people do widely deploy boxes like that, I
might have to find a new line of work. In fact, I am already working on my delivery: "Would you
like a hot apple pie with that order?"
Host-Based Defenses
Automated response on the host is clearly where you get the minimum bang for the buck, but
this is widely practiced, and the risk from spoofing is much lower than a perimeter solution. The
industry trend is twofold: internal appliance type firewalls and host-based firewall defenses. A
number of people, especially in university environments, depend entirely on software such as
Psionic's PortSentry for their UNIX systems. PortSentry blocks an offending host from making
any further connections and even drops the route so that the host cannot get back to try again.
The PC world has a large number of personal firewall solutions. Because this is an automated
response chapter, we should mention the amazing BackOfficer Friendly,
www.nfr.com/products/bof/index.html. This is far more than a personal firewall! Perhaps we could
consider it a honeypot or even an active defense solution. If you have a Windows system and
want to get started learning about automated response, download this and give it a look. The
only downside is that it hasn't really been updated as the threats increase. Imagine what would
have happened if they had managed to incorporate LaBrea technology early in the Code Red
days! The good news is these host-based defense systems are very effective, becoming more
prevalent, and are fairly easy to install, configure, and maintain. Why do people depend so
heavily on these programs? Often, they are security-conscious administrators at sites with no
filtering from the Internet whatsoever! There are four main sources for unfiltered addresses:

● Cable modems and DSL
● Commercial organizations that don't care
● Universities in the name of academic freedom
● Connecting while on travel such as at an Ethernet equipped hotel

The cable modem and DSL world is going to be an ever-increasing threat to site defenders, so
maybe I don't have to worry about pushing hot apple pies on the fast-food drive-through after
all. I have instrumented a number of cable modem connections and tend to receive between
about 5 and 20 probes per day. Hundreds of people are hooking up to cable and DSL everyday,
and most of them have unprotected systems. This is something we became very aware of in
2001 with Code Red, nimda, and Leaves. Most cable modem style defenses such as NATs and
host-based firewalls do not implement automated response; but it isn't a bad trade: intrusion
protection for intrusion detection.
Commercial organizations that are inept or don't care and connect to the Internet will not
survive the transition to an information economy.Yet, a surprising number of sites either do not
have a firewall or have inadequate perimeter protection. When you connect your organization to
the Internet, you will be probed and tested. If your systems are not combat ready and can be
seen from the Internet, they will fall. If you are lucky, you get the playful sorts of attackers, but
even then your system will likely be used to attack and probe others. A commercial organization
with a compromised system could share a far worse fate if the attackers decide to use it to
acquire corporate secrets. As we suggested earlier, if I were in business, in addition to a main
firewall, I would strongly consider the use of internal appliance type firewalls. After you get
inside the perimeter of many facilities, they have neither detection nor protection capability.
Key hosts would do well to have system level protections.

http://www.nfr.com/products/bof/index.html

The interesting battleground that I have been watching for several years is the university world.
Many of these sites have no firewalls or filtering at all. Already, I have seen departments set up
their own firewalls in universities that don't want to put one at the front door. And, system
protections are popular with proactive administrators. A fully open Internet connection is an
archaic and brain-dead throwback to academic freedom, and I doubt the practice will survive
another four years. It will be fun to watch. The academics that claim all packets must be free to
travel the Internet will probably back down soon enough. Just wait until their department's
budget suffers a 50 percent cut due to the university losing a major lawsuit brought by a
dot.com that lost significant revenue when the university's systems were compromised and
used in an attack.
Connecting while on travel requires a bit of thinking. I often carry a small Linksys router hub
with me, so that I have two layers of defense: the NAT and my personal firewall. Also, it allows
my wife and I to be online at the same time; when you are used to being online for 14 hours a
day, you aren't very good at taking turns to check your mail. The NAT allows me to mitigate the
risk to my relationship and my important documents—what could be sweeter?
I understand that you might have reservations about implementing automated response. I try
to set things up in class and show a number of intrusion detects from December 24 and 25 and
comment that Christmas is a special time of the year. Then, when we come to the automated
response discussion, I point out that during the Christmas and Easter vacations people are
normally not around, but systems are still up. This can be an excellent time to experiment with
automated response at the Internet connection. Because very little work is getting done,
especially at Christmas, this is a fairly low-risk time to take your automated response systems
out for a spin and see what they are capable of.
Next, let's work through our response options. It is a good idea to keep in mind the previous
discussion about where the analysis and response functions are best accomplished.
Throttling
This is a smart response to port scans, host scans, SYN floods, and mapping techniques. The
idea is to begin to add delay as a scan or SYN flood is detected; and if the activity continues,
continue increasing the delay. This can frustrate several script-driven scans such as ping
mapping to 0 and 255 broadcast addresses because they have to rely on timing for the
UNIX/non-UNIX target discrimination. Enterasys and Cisco both have rate limiting. In fact, any
device you can interface with that supports Quality of Service should be usable in this fashion.
Throttling can also be done at the protocol level. For UDP, the IDS could forge a source quench.
For TCP, if the traffic goes through a proxy firewall, the outbound interface could send a small
window size. I would avoid using the LaBrea trick of a window size of 1. Attackers will be
looking for that next time around, but 5, for instance, will drastically slow down the attack.
Drop Connection
Dropping the connection is straight out of the string-matcher handbook. When I say
"connection," of course I am talking TCP primarily, but the same general effect for UDP can
occur using a shun (as discussed in the next section).
The attacker establishes a connection to an active port. Then he sends the packet, or packets
(for intrusion-detection systems such as Cisco Secure IDS or Snort with packet re-assembly
capability), that contains the attack string, or exploit. This is the point of great danger for a
vulnerable system. The IDS detects the string and orders the firewall to drop the connection.
Now, you might have a compromised system, but the attacker can't make use of the
compromise directly. In the case of a buffer overflow, the victim computer is now running
whatever code was beyond the command length and is probably running it as root. If it is a
grappling hook type program (a small telnet daemon running on some predefined port),
dropping the connection might only buy you a few seconds.
Shun
I am going to continue the attack just described with the shun technique, and then discuss why
shun might be one of the most important automated and manual techniques at your disposal.
As the attack progresses, you have a new process running as root that has opened up a telnet

daemon or sent back an X Window or whatever open door into our victim system the attacker
has chosen. Dropping the connection does not help, because he is already planning to initiate
another connection; or in the case of an X Window, you have initiated the connection to him
from our side. Shunning might buy some relief. When you shun, you do not accept any more
traffic to or from the offending IP address. This is a good technique and can be executed on just
the offending host or on its subnetwork. A capability to look for whether you want to implement
shun is a "never shun" file (also called a white list); you can place the addresses of your
customers and suppliers in this file. This protects you from an attacker being able to spoof these
addresses with some obvious script kiddie attack just to isolate you from the systems you do
business with.
Shunning does not help you if the attacker is using two address families, which is fairly
common. My friend Pedro Vasquez sent me a trace from Brazil with a DNS buffer-overflow
coordinated attack that did exactly this. The attack came from one host and the X Window was
displayed to another host. Just because shunning does not help you in every case, however,
doesn't mean you shouldn't employ the technique.
Proactive Shunning
It turns out that a number of Internet service providers and even whole countries
cannot, or will not, manage their hosts. Over time, as you have been doing intrusion
detection, you come to realize that an incredible number of the attacks that you and
your friends deal with (you are sharing data, right?) come from the same network
addresses. Why play with fire? Eventually, they will find a way to burn you! Block
them. Let me take this a step further: be willing to block them at the two octet or 16-
bit mask. Be willing to block a whole country. Nobody is getting arrested for hacking,
and it doesn't look like that is going to change any time soon. If countries that will
not control their "research networks" start to be marginalized and are unable to reach
large parts of the Internet, however, they will have to come to the table and talk
turkey.
We have been experimenting with this on the SANS web server, and one single ISP
that has open proxies has been the source network of more attacks than any other
address group. We shunned them for about two months; they wrote and made
promises, so we let them back into the site and within a day, we were attacked again.
We are considering a permanent ban at this point.
Islanding
Islanding is the auto-response of last resort. The idea is, if a sufficient number of attacks occur
over a time period (usually during time periods during which no analyst is on duty), the
intrusion-detection system sends a command to an X10 or similar logic-controlled relay and
drops the power to the router. The result of this is isolation of the site from the Internet.
Although there is serious potential for a denial-of-service condition, this can be a reasonable
strategy for three-day weekends at high-security sites. This capability can be hacked together
with a few lines of code with any intrusion-detection system that issues SNMP traps. On second
thought, maybe that SNMP trap idea is not so smart. Automated response does have a risk of
self-inflicted denial of service. Only do something like this if you are willing to have the deadfall
occur on any given "red-alert" alarm condition.
SYN/ACK
Suppose the intrusion-detection system knew the ports that a site blocked with its firewall or
filtering router. Further, suppose that every time the IDS detected a TCP SYN packet to one of
these blocked ports, it answered back with a forged SYN/ACK. The attackers would think they
were finding lots of potential targets; however, all they would be getting is false positives. If
you think about it, the latest generation of scanning tools has caused a lot of problems for the
intrusion-detection community with their decoy capabilities. This would be a great way to
answer back. I finally got to see this in action. Some friends of mine got a Raptor firewall. This
works great. The attacker completes the three-way handshake and thinks he has a victim. He

even sends data with the lone ACK, so you can see what he is up to.
Reset
This is the so-called Reset kill or as the Snort folks say, session sniping. I have serious
reservations about this technique. The Reset kill can tear down someone else's TCP connection,
and I have seen commercial IDS systems fire these kills based on false positives. The idea is if
you see a TCP connection that has been established and the IDS detects a signature that
requires action, you forge two Resets and send one to both sides to blow off the connection. It
used to be possible simply to smack the initiating host, but attackers are learning to ignore
Resets. This isn't used all that often, although it is available in Snort and commercial intrusion-
detection systems.

Honeypot

An advanced site, in conjunction with throttling, can use its router to direct the attacker to a
specially instrumented system called a honeypot. The honeypot could be used as a stand-in for
the targeted host. We also have used honeypots with static addresses as stand-ins for internal
hosts that have become "hot."

Every once in a while, a host that you are protecting will suddenly stir up a lot of interest and
you will keep seeing probes and exploit attempts directed to it. In such a situation, a fun course
of action is to change both its name and IP address and install a honeypot in its place. However,
the most common use we have at www.incidents.org for honeypots is to figure out what the
attackers are doing by catching their attack in a honeypot. I have tried three types of
honeypots: a proxy system, the Deception Tool Kit (DTK), and an "empty" computer, the
Honeynet approach.

Proxy System

During 1996 and 1997, I did a lot of research into hacker technology. The goal of the project
was to collect as many exploit tools as possible. I took a Sun computer running SunOS 4.1.3,
patched it as best I could, and installed the TIS toolkit. The system was named cray3. I copied
an /etc/motd from a Unicos system and did everything I could to make it look like a cray. Thank
goodness this was before TCP fingerprinting.

I used the TIS toolkit for the target services, ftp, telnet, SMTP, and so forth. Finally, I compiled
Internet Relay Chat (IRC). The idea was to spend time on the hacker IRC channels, exchange
code, get people to attack my system, and collect the techniques they used. There was only one
small problem. I had never been on IRC! I knew that if I didn't do it right that I would show up
like I had five legs and a tail. So what to do? I decided to start in a channel other than #hack.
So I tried #thirtysomething. I have never been good at flirting, so I ended up wasting hours
watching words fly by on the screen.

Next, I decided to try #Jesus. I figured church people would be nice to me. BZZZZT, they
kicked me off within 10 minutes. I was really crushed!

Finally, in frustration, I signed on to the #abortion channel because that was what was about to

http://safari.informit.com/?xmlid=0-73571-265-4/22991533
http://www.incidents.org/

happen to my project. They were some great folks, although strongly polarized on both sides of
the issue. Best of all, they were willing to let a newbie learn to chat. After a week or so
practicing my social graces, I entered #hack, but there was just one last little hitch. We had
agreed that any hint of entrapment was outside project parameters and because I was doing
this for the DoD, I found myself on #hack with a .mil source address. Well, that brought back
memories of elementary school and "Kick Me" signs taped to my back; kick me they did.

However, I won a TCP trivia challenge or two, and after a while, we managed to get things
going. It was a lot of fun, and they couldn't resist attacking the .mil system, so we were able to
collect a lot of fun data.

DTK

The Deception Tool Kit was authored by Fred Cohen and is available at http://all.net/dtk.

It is written in a combination of Perl and C and emulates a large number of services. DTK is a
state machine, can emulate virtually any service, and comes ready to do so out of the box for a
number of them. It used to be pretty easy to compile and set up. As it has been improved to be
more realistic, however, it has started to become a bear to build.

This state machine approach is essentially what BackOfficer Friendly is, and as I write this
Marcus Ranum is writing another honeypot for SANS students to try.

Empty System

Nothing looks more like UNIX than UNIX, or Windows NT than Windows NT. So in some sense,
the perfect honeypot is just a system that is a little older and slower and has a smaller disk (the
smaller the better, in case you loose the bubble). Then, you instrument the heck out of the
system and collect information as folks try to exploit it. This has been taken to near science by
the Honeynet team. Incidents.org is a member of the Honeynet alliance and has a vmware-,
www.vmware.org, based Honeynet with a firewall, intrusion detection system, and a couple of
running operating systems all running on a single machine.Vmware is the closest thing to magic
I have ever seen. Lately, there have been some troubling indications that some of the
honeypots and Honeynets on the Internet have been identified and their IP addresses are being
passed around in the underground so that they avoid these systems.

Honeypot Summary

Honeypots are an advanced technique. They can be low yield for the effort one has to expend.
On the other hand, if you block with your firewall or filtering router, you never get to collect the
attack if you filter. A honeypot enables you to collect the attack. If you don't have a hot system,
the best thing to do is set your honeypot up as either your DNS, web, or email relay system.
These systems are routinely added to attackers' shopping lists. The good news is you can collect
attacks; the bad news is you collect the same attacks over and over again.

Manual Response
Intrusion-detection analysts often serve a double role as lead for incident handling, or as a

http://all.net/dtk
http://www.vmware.org/

handling team member. Please get one thing straight in your head right now:You are going to
take a hit. Between the outsider threat from the Internet, the insider threat, and the malicious
code threat, you are definitely going to take a hit. Analysts sometimes get in a mindset that
they are responsible to protect the organization.You can't! We don't expect rescue-squad
workers to ensure no accidents occur on I-95, right? We just ask them to help in a professional
manner after the accident has occurred. Consider what I have said carefully. I have led a large
intrusion-detection team with many sites and have seen several analysts develop a mindset
that they are personally responsible to make sure no attacks get through.
If we are going to take a hit, a system compromise can't be the end of the world. Rather, the
point is to deal with it as effectively and efficiently as possible. Because there might be some
stress involved, we want a clear, well-defined process to follow. Think about CPR; they have
their pithy acronym, ABC. The ABCs of CPR are as follows:

● Airway. Make sure it is clear.
● Breathing. Are they?
● Cardiac. Beating or not beating?

I found the following six-step process in a government publication in 1995. I have been working
to refine this model ever since. The six steps are as follows:

● Preparation
● Identification
● Containment
● Eradication
● Recovery
● Lessons learned

This chapter doesn't discuss preparation or identification; after all, most of this book is devoted
to preparation and identification.
Containment
In incident handling, you learn to maintain a reasonable pace; if you hurry, you make mistakes
and that can be costly. There is one place to really move out, however, and that is containment.
It is better to deal with two affected computers than four and better to deal with one
compromised workgroup than a whole Windows domain. Good incident-handling teams can
work in parallel. This is really important in cases in which multiple systems might be involved.
As soon as the data has come in, I just make a copy, circle the addresses I need a team
member to handle, and hand him the paper. Usually, I don't have to say more than my
trademark "take good notes people, good notes."
The first thing to do in containment is to start reducing network connectivity.
Freeze the Scene
My first course of action is to pick up the phone and call the person nearest the system console.
The language in the following section has been developed over years of hard-knocks
experience. You are a technical person; the person you are calling on the telephone might not
be. Also, as he realizes there is a problem, he might be under some stress. Of course, you will
develop your own scripts and techniques, but I call the individual with a suspected problem and
say:
Please take your hands off the keyboard and step away from the computer.
Thank you. Now, in the back of the computer there is a network connection, please find it and
remove it from the computer.
My name is Stephen Northcutt, what is your name?
Pleased to meet you ______, and where is your office?
Sure, we know where that is. ________, can I get your phone number and any other office

phones that you know?
You have done a fantastic job. We'll be right there; now do you have a fax machine? Great;
while the team is on its way, I am going to fax you a set of instructions. _______, we need your
help and I would appreciate it if you would start as soon as your receive the incident-handling
guide. Can you tell me what operating system the computer is?
These are critically important lines. The trick is to say as few words as possible to get the point
across. However the "noise" or non-content words such as please, thank you, and fantastic, are
very important; we need to de-stress the situation if possible. Despite the attackers, I keep
learning the hard way that our biggest danger is what we do to our evidence and ourselves. I
am also working on my voice inflection. I don't have a really commanding, powerful voice, so I
try to speak with authority, slower than my normal pace, and try to project kindness and
empathy.
Sample Fax Form
Security Office @UR Organization
On Site Computer Incident Response Form
Revision 2.1.1
Date: Time: Printed Full Name:
Thank you for notifying the security department of this incident and agreeing to help.
Please do not touch the affected computer(s) unless instructed to do so by a member
of the Incident-Handling Team. In addition, please remain within sight of the
computer until a member of the team gets there and ensures that no one touches the
system. Please help us by detailing as much information about the incident as
possible. We need a list of anyone who directly witnessed this incident; please list
their names below. If you need more space, please continue on a separate sheet of
paper:
Witnesses:
1)
2)
3)
What were the indications that you observed that led you to notice the incident.
Please be as specific and detailed as possible. Incident indicators:
This next section is very important. Please be as accurate as possible. From the time
you noticed the incident to the time you called the Incident-Handling Team, or help
desk, please try to list every command you typed and any file that you accessed.
Commands typed and files accessed:
Signature:______________________________________
On-Site Containment
Whenever possible, we suggest two people be dispatched to the scene. One handles the site
survey, and the second team member, the more experienced, should work at containing the
computer system.
Site Survey
The survey member should use a portable tape recorder and describe the scene. Record the
names of everyone in the vicinity, if possible. Order everyone in the vicinity who was not there
when the incident occurred, does not normally work in the area, or isn't the system owner, to
leave. While the on-site handler is setting up the backup, interview the individual who phoned in
the incident. Determine the indications of the incident. Work with the employees in the area to
check the other computer systems to see whether there are indications of compromise on these
systems. Be certain to continue to record what you are seeing, or if you can't use a recorder,
make sure to take good notes. Every few minutes, shoulder surf the incident handler and make
a time-stamped notation of what you observe her doing; two records are better than one.
System Containment
The handler should try to get the normal system administrator for this system to ride shotgun.

Ask him to help you take good notes. One of your primary goals is to make a backup of the
system if at all possible.
Experienced handlers often have their own privileged binary applications and this includes
backup programs. If you do not possess your own forensic-type backup and seizure tools, such
as safeback, it might be wiser to copy all history files and log files to removable media before
taking any other action. Incident handlers are supposed to write the contents of memory to
removable media as well; while easily said, however, this has proven to be hard to do in
practice. The best backups are bit-by-bit backups. If this option is not possible, the next
question to answer is how critical the system is and how time pressing the incident is. If
criminal activity is suspected and there is reason to believe that this actually is an incident, it
might be best to do as follows:

● Power down the system
● Pop the drive
● Seal it in an envelope with a copy of your notes and the notes from the person who called

in the incident
● Store the drive in an evidence safe or locked container with limited access

Hot Search
If it is a critical system and criminal prosecution is not a priority, you might have to search the
system hot to find the problem. This is where a tool such as Encase or The Coroner's Toolkit
(TCT) can really come in handy. Both tools are available for both old Windows (FAT) and more
modern Windows (NTFS) file systems. Before running either tool, I like to run Tripwire on both
the search drive and my host operating system before I start. That way, if something goes
horribly wrong, I have an idea where to look for the problem. There used to be a forensics tool
called Expert Witness, but it died in a lawsuit. I was doing a hot search of a drive that was
infected with a virus and the next thing I knew I was infected with a virus. Now of course, the
forensics tool sales representative is going to tell you this could never happen with his tool and
he is probably right, but why take the chance?
In any case, your goal is to determine whether the evidence on the system reasonably supports
the reported indications. This is known as validating the incident, and it is not limited to the
information on the suspect hard drive. A good team doesn't leave a handler all alone; hopefully,
someone is working the intrusion-detection system's records and other sources of data looking
for information about the affected system while you are focused on the suspect system's hard
drive.
Eradication
Sometimes, it is possible to examine the situation and remove the problem entirely; other
times, it is not. With eradication, we need to pause for an upwardly mobile career observation
about incident handling. If folks in an organization have suffered one compromised computer or
six, they are usually pretty scared. If your team comes in and you are courteous and
professional and get the job done, they really appreciate it. When they see you in halls and staff
meetings, they nod and kind of say thanks with their eyes—it is a good thing.You are sort of a
hero.
I used to have this really cool job in the U.S. Navy where I flew around in helicopters waiting for
jets to go smacking into the water. Then we would hover over the ejected pilots and I would
jump out and swim up to them, hook the crew up to a cable hoist, and we would pull them out
of the ocean. You want to know what they always said when I swam up to them? Whenever I
ran into them on the ship after the rescue, there was that same nod and saying thanks with
their eyes.
However: If you show up and do your work and the problem comes back the next day, you are
not a hero; you are an incompetent idiot. It is critical that you succeed in eradication, even if
you have to destroy the operating system to do it. Repeat after me, "Nukem from high orbit."

See, that isn't hard to say. Or, "Total eradication is too good for 'em."
I have tried to inject a little humor, because we must deal with a serious issue. As an incident
handler, you need to be pre-authorized to contain and destroy to save your organization. Please
take the preceding sentence very seriously. The incident-handling team needs to have a very
senior executive in the organization as its sponsor or champion. The handler must be able to
look that very young, very successful program manager droid, who has axed many a promising
technical person on a whim, in the eye and say, "Yes, I know how important this system is. We
will save as much of the data as your people have properly backed up, but the operating system
is toast." Many times, the only way you can be certain the problem has been eliminated is to
scrub that puppy to bare metal.
Oh yeah, when I swam up to these navy pilots, they always wanted to know "what happened?"
They asked their questions in such a way that it was clear they wanted to know exactly one
thing: Was it their fault? Might I suggest that when you handle an incident, the folks you come
in contact will be very concerned that the incident was their fault. Why our culture is so bent on
blaming the victim is beyond me! Be gentle and comforting when you speak. Don't come to
conclusions early. Many times, running an incident to ground is like peeling an onion a layer at
a time. Even if you know in your very bones it is their fault, be kind and supportive during the
incident. The time to deal with what happened comes soon enough!
Recovery
The purpose of the incident-handling process is to recover and reconstitute capability.
Throughout the process, we try to save as much data as we can, even if the system hadn't been
backed up in a long time. Often, we can mount a potentially corrupted disk as a data disk and
remove the files we need from it. This is another good application for Tripwire. Before mounting
a suspect disk on your field laptop, make sure you have a very current Tripwire running so that
you can be certain malicious code doesn't get on your computer.
Emergency medical technician (EMT) trainers use scenarios to drive home the academic points
taught. One of the important lessons to teach EMTs is not to become a victim, because this
makes the rescue even more problematic. If you see someone prostrate on the ground draped
over a cable, for instance, don't run up to him and touch him. What if the cable is the reason
they are lying there dead? What will happen to you when you grab someone connected to a
high-voltage cable? The point is to use situational awareness and take a few seconds to think
about the circumstances that caused the computer to be compromised. In the exact same way
that failing to eradicate the problem makes the incident handler look stupid, we do not want to
put the system back in business with the same vulnerability that caused it to be compromised.
This is an important point, because we will probably alter the system in some way. In fact,
many times, the system owners will want to use this as an unexpected opportunity to upgrade
the system, or freshen the patches. I find it amusing when the same manager who looked me in
the eye during the containment phase and said things like, "Do you know how critical this
system is? You can't shut it down," suggests that we upgrade the operating system before
returning to service.
It is all well and good to freshen the operating system. However, what happens when an
outsider makes a change to one of our systems? I oversaw the installation of a firewall once at
a facility that didn't have one. For the next five years, every time someone couldn't connect to
something, or their software didn't work right, I would get phone calls and/or email. "Is it the
firewall?" This is a career risk vector to the incident handler. Remember our very young, very
successful, hell-bent-on-rising-to-the-top executive? If anything goes wrong, he might use that
to deflect attention from the fact that a system in his group was compromised. What
countermeasures can we take?
During the incident-handling process, I like to keep the system owners informed. As long as
they are in danger, they are very interested. As soon as they can see they are going to make it,
they usually turn their attention to something else. It is imperative that early in the cycle, while
the adrenaline is still flowing, to pull them aside and say something like this:
Sir, our primary objective is to get you back in business with as little downtime and as few

problems as possible. I am sure you understand that because the system was compromised, we
will have to make at least some minor changes to the architecture, or it is likely to happen
again. To ensure that the changes we make do not impact your operations, we need a copy of
the system's documentation, especially design documents, program maintenance manuals, and
most importantly, your system test plan. We will be glad to work with your folks to execute
your system test plan before we close the incident.
Now, you and I both know that maybe five computers on the planet earth have an up-to-date,
comprehensive test plan. There is no way on God's green earth that our slick young manager is
going to be able to produce it. Time to invoke the power of the pen. We produce our preprinted
incident closure form. It has blocks on it for the system administrator, primary customer, and
system owner to state that they have tested the recovered system and that it is fully
operational. So you say something like this:
No test plan? Ummm, well sir I can't close an incident out unless the system has been certified
as fully operational. Tell you what, if you will get your people to run the tests they use to certify
your systems and document those tests and sign the form, tonight, we can get this incident
closed. I am willing to stay as long as it takes because as you know, the CIO's goal for incident
handling is for downtime to never exceed one day, and we can't clear this system for operation
until it has been tested.
I invested a couple of paragraphs making this public safety announcement. It is really a
bummer when a promising young incident handler gets blamed for system problems after
pouring her heart out to save a compromised system. Now that you know the risk, practice safe
incident-handling procedures.
After a system has been compromised, it might become a hacker trophy. The attacker might
post his exploit in some way. I have seen several instances in which after a system is
compromised, recovered, and returned to service, the attackers come out of the woodwork to
whack it again. Use your intrusion-detection capability to monitor the system closely. It might
be possible to move the system to a new name and address and install a honeypot for a few
weeks.
Lessons Learned
At first, the incident was exciting and everybody on the planet wanted to get involved. There
was the hunt for the culprit, sifting through clues to find the problem, and reconstructing the
chain of events that led to the incident. Then comes the slow process of recovery and testing.
This is less fun and folks are leaving, saying things like, "I guess you guys can take it from
here." Finally, we are done. The problem is contained, eradicated, and the system is recovered.
We are all drained and possibly a bit punchy. The last thing in the world you want to hear is,
"the job ain't finished until the paperwork is done."
Two disciplines distinguish the professional from the wannabe: The pro takes complete and
accurate notes every step of the way and does a good follow up. Both of these are disciplines;
they do not come naturally. Every time you handle an incident, mistakes will occur. Mistakes
also had to occur or the incident could have never happened. But that is a touchy subject, so
tread lightly. Things could always have been done better. It is okay to make mistakes, just
make new ones.
"Lessons learned" is the most important part of the process when approached with the correct
mindset. It should never be a blame thing, rather an opportunity for process improvement.
Here is the approach that has worked for me.
The incident handlers are responsible for documenting the draft of the incident report. As soon
as they finish it, typos and all, they send a copy to each person listed as a witness, primary
customer, and system owner. Anyone can make any comment he wants, and his comments will
be part of the permanent record. The handlers make the call whether to modify the report.
Within a week of the incident, a mandatory meeting should be held. Book the room for exactly
one hour and start on time. The only order of business at the meeting is to review the final
incident report's recommendations for process changes. One-hour meetings are not good places
for the consensus approach. Just tally the votes for each item. The final report goes to the

senior executive who is the sponsor of the team.
The most important section of an incident report is the executive summary. This is where you
document why having a crack incident-handling team saved your organization a lot of money.

Summary

We face risks with every user or program we add to our systems and with every service we
open on our firewall. Effective response, both automated and manual, is an effective mitigation
technique. It enables your organization to move a bit faster and a bit more aggressively in this
fast-paced world. Some of the automated responses include throttling to slow down the attack,
dropping connections, shunning the attacker if he attempts to reconnect, islanding from the
Internet in serious attacks, protocol tricks such as sending SYN/ACKs even if the host or service
does not exist, and Reset kills.

Every organization has an incident-handling team; some just haven't formalized one. A formal
team following the six-step process of preparation, identification, containment, eradication,
recovery, and lessons learned will probably be more effective than an ad hoc response. The
intrusion-detection analysts should always be members of the team and often are excellent
choices for leading it.

One security model, time-based security, states that the time that we are protected is primarily
based on the time it takes us to detect and react to an attack. As we tune our automated and
manual responses, we train to react faster and hopefully better, increasing the protection we
provide for our respective organizations.

Chapter 19. Business Case for Intrusion Detection

"Where do I start? What is the best ID tool to use?" A student asked this question after he had
just completed the most advanced class we teach on the subject of intrusion detection, our
hands-on, immersion curriculum. I was more than a little surprised by that question. We had
spent the past six days and evenings hands on, learning about covert channels, malformed
packets, and TCP fingerprinting within a connection. We had worked and worked to show the
students why there is no silver bullet, why every IDS needs to be backed up by a network
recorder that captures all the traffic. I decided to answer with a question. To the questioner, I
must have sounded like someone from Oz, but what I said was, "If your organization doesn't
currently have an intrusion-detection capability, why should they acquire one now? What's
changed?" If your organization doesn't currently have an intrusion-detection capability, it will
often be an uphill effort to champion one. To paraphrase Newton, an organization at rest tends
to remain at rest.
We are coming to the close of this book and before we move to our final chapter, the future of
intrusion detection, I would like to consider the business case for intrusion detection. This is an
important subject. The chapters that precede this one give the sense that the knowledge

required to be an analyst is very technical, but fun. Also, I am sure you have a sense that the
job of the intrusion-detection analyst with new detects and live attacks is exciting and
challenging. Everyone that I know in the field is having a great time, but that isn't a good
reason to deploy intrusion detection in your organization. If you made it past the first half of the
book, you probably have a technical bent; so do I. But that isn't enough. Three of my heroes in
intrusion detection, Ron Gula, Marcus Ranum, and Marty Roesch, have all started to say, "As a
businessman…." Each of us is in business in some sense. This is still true if we work for the
government, a university, or a not-for-profit. If you are even thinking about intrusion detection,
your organization probably is fairly well funded. We have taken pains to develop a technical and
architectural framework, but also to consider the business issues of risk management. If your
ID capability does not fit in your organization's business model, it will be a source of friction.
Let's work together to develop the strategies and processes needed to package intrusion
detection for an organization.
This chapter was written for security professionals who:

● Don't currently have an intrusion-detection capability and are considering the merits of
acquiring one

● Have a rudimentary capability and are considering a follow-on procurement or upgrade
● Have an existing capability and the organization is downsizing or restructuring and is in

the process of evaluating this job function

In these cases, you aren't going to succeed by "wowing 'em" with technology. Appeals to duty
or alarmist cries, "The hackers are coming, the hackers are coming," will not suffice to keep this
project funded for the long haul— although it might well shake loose money for an additional
purchase.
This chapter lays out a three-part plan that shows the importance of intrusion detection. The
first part of the plan covers management issues, what I call the "fluffy stuff." Part one isn't
technical, but it serves as the backdrop to allow management to support the intrusion-detection
plan.
Part two of the plan answers the question "Why intrusion detection?" This is where you discuss
the threat and the vulnerabilities; this is where you draw heavily on what you have learned
about risk.
Part three offers your solutions and tradeoffs. The goal is to create a written report that serves
as the project plan and justification. I have tried to lay this out so that it makes a nice
presentation as well, because that is how one normally briefs senior management these days.
Each item in a bulleted list is a suggestion for a PowerPoint slide. For extra credit, cut and paste
the appropriate material from your written report into the notes section of the PowerPoint slides
and suggest they be printed with notes pages showing. Few people take the time to do notes
pages, so this will show you have it together.
All presentations and reports to management should start with an introduction called an
Executive Summary. This is where you sum up the three most important points you are going
to make. When you brief senior management, always be prepared to have your time cut short.
"Can you do it in five minutes?" is not an unheard of request. In that case, you will show
exactly three slides: your Executive Summary, Cost Summary, and Schedule. The Executive
Summary is followed by a Problem Statement, in which you define the problem you are trying
to solve. You probably want to extract a nice sound bite from the information in part two of the
report for this. Your third slide is a roadmap where you define the structure of the presentation.

Part One: Management Issues
Your goal is to show management that this is part of an overall integrated information-
assurance strategy that has tangible benefits to the organization. The key to doing this is to
show that your proposed solution has the following characteristics:

● Bang for the buck.
● The expenditure is finite and predictable.
● The technology will not destabilize the organization.
● This is part of a larger, documented strategy.

Bang for the Buck
You need to be realistic. Intrusion detection is fairly costly. You need two fast computers ($2.5k
each). If you choose commercial intrusion-detection solutions, the software license ($10k, to
start), means that it costs $15k just to say intrusion detection. The network might need to be
altered and there is the __ work-year salary and overhead for the intrusion-detection analyst;
you could easily be talking $100k. But wait, there is more, bandwidth is increasing, so you need
six sensors and a Top Layer switch just to watch the web farm, add another $100K. You need a
database to search for slow speed scans and a correlation engine with a hardware RAID to hold
all this data, add another $150K easily. In an environment focused on cost reduction, you are
going to have to show a significant benefit to justify this expense.
The good news is that you can do exactly that. Risk is part of the business equation. In fact,
there are markets that buy and sell denominated risk every day. Did you skip over the risk
chapter? What is one way an intrusion-detection system helps reduce the annualized loss
expectancy (ALE)? By observing the attacks against your organization, the analyst can assist
the organization in fine-tuning its firewall and other defenses to be resistant to these attacks. Is
that worth $100k - $350k? If not, here is another way an intrusion-detection system helps
reduce loss. To conduct business, you might find that certain applications, or situations, require
that some vulnerabilities need to be left on systems. A common example is that when you apply
the recommended security patches to a system, it breaks some application. The intrusion
detection can be focused on that particular vulnerability. In fact, this is an ideal opportunity to
use that Reset kill you have been itching to try. There is a bang for the buck using intrusion-
detection systems.You can show it, and you can quantify it.
Intrusion Detection Using Firewalls
One of the incredible changes on the market has been firewalls that log full binary
data. OpenBSD's IPFilter and the commercial Raptor firewall can log data in BPF
format. This binary logging allows you to run Snort or TCPdump filters against this
information. This is incredible! I have already mentioned hogwash and UnityOne,
firewall appliances with an IDS capability built in. My personal preference is to use
two devices—if one fails the other continues to run.
Also, firewalls that do not have a binary logging capability can still be used in
intrusion detection. As an example, Dshield (www.dshield.org), the technology that
powers incidents.org, uses firewall data for its large-scale intrusion-detection
capability. Firewalls certainly can be sensors. To be sure, firewalls that do not log
most of the TCP header field values, such as TCP flags, only allow for very limited
analysis. If you have a firewall with the fidelity of a Linux firewall (such as IPtables,
for example), however, you can do a lot of the traffic-analysis techniques you have
learned in this book.
If you do not have an IDS available, you can and should begin to apply what you
have learned from this book by reviewing your organization's firewall logs. Needless
to say, get permission first and be slow to raise alarms!
The Expenditure Is Finite
You know the old adage about a boat being a hole in the water you throw money into. I was

http://www.dshield.org/

reading a Sunday paper column recently titled, "Ten Tips on How to Increase Your Personal
Wealth." One of the tips was don't buy a boat; if you have a boat, sell it. I am not so interested
in wealth that I am ready to ditch my boats, but they do keep costing money (and they are
mostly sea kayaks).
Here is one more house story that will help you understand a senior manager's concerns about
containing expense. One day, I realized that everything I did was done on a small fleet of
laptops and a cell phone with a trillion monthly minutes. In that moment, I realized I could live
anywhere I want as long as the area has cell towers and DSL or better. My wife and I settled on
Hawaii, and as luck would have it, DoD called the next day and asked me to do two weeks of
consulting on an IDS visualization project on Oahu, so Kathy and I flew down to the islands.
Two weeks later, we bought a dream house on Kauai on the rim of a canyon overlooking the
Wailua River halfway between the rainforest and the beach. A month after we moved in, the
dream house became a nightmare house as it suddenly settled into the soft earth of what had
formerly been a pineapple field. A parade of insurance agents came through claiming it was not
covered, followed by structural engineers saying they had never seen this before. Finally, a wise
local pointed me to the best contractor on the island, Luis Soltren—truly the best contractor I
have ever seen—but the house was totaled. Luis, like anyone who is the best at what he does,
is not cheap. It was the money pit, (never watch that movie if you are remodeling), up close
and personal. Every time they pulled a piece of sheetrock or a tile, we would find more
problems. Luis would shout for one of us and we would look and shudder. I did remodeling in
college, have built a house, and roofed dozens, so I know a bit about the trade, and Luis was
spot on—these were all must-do repairs. The bill kept getting higher and higher. When it
crossed, no joke, $200k, I was sick to my stomach, and it kept going. We are finally done, and I
learned a very important lesson. The phrase total cost of ownership is very popular in
information technology, and I never really considered it until I was caught in a project, my
house, where it wasn't possible to calculate what the final costs were going to be; they just kept
going up.
Now, let's apply what we have learned from this story to intrusion detection and your
organization's senior management. Keep in mind that good managers treat every dollar as if it
is their own, and uncontrollable costs make them feel the way my house made me feel.
When it comes to intrusion detection, management might well be willing to pay the $100k or
whatever, but management needs to be shown why the expenses you propose in your plan are
probably correct and that you aren't going to have to come back for more and more money. For
instance, a classic error is to plan on using older, last-generation PCs for the intrusion system. I
propose the opposite. Buy the latest-generation PCs for intrusion detection, and after six
months to a year, roll them out as desktop machines.
Management will appreciate this as an honest and workable approach. It gives the organization
the best possible intrusion-detection capability and the hardware upgrades are essentially free
because buying new desktops is part of the computing life cycle.
Technology Used to Destabilize
The signature line of the hymn "Amazing Grace" is "I once…was blind, but now I see." This is
what an intrusion-detection system does: It helps an organization go from a blind state to a
seeing state. Time and time again, students who take the intrusion-detection curriculum we
teach at SANS go back and start looking at their data and they realize they really need to
change the way they do business. This is a good thing! However, it is a change, and people are
suspicious of and resistant to change. When you propose intrusion detection, you must be
sensitive to the potential for organizational change and make every effort to show that the IDS
will "fit in." Some of the potential impacts to the organization are the configuration of the
network, the effects on behavior of employees, and the need for additional policy support.
Network Impacts
We have discussed the challenges of deployment on switched networks. This needs to be
carefully coordinated with the network operations people before the purchase order for the IDS
is cut. The best thing to do is to get the spanning port working with a protocol analyzer; most

network operations groups have one or more protocol analyzers. If the spanning port is difficult
for your networks operations people to configure and maintain, network taps should be
considered for the listening ports on the IDS. Many people feel that good practice for an IDS
sensor is to be provisioned with multiple interface cards:

● Listening ports in promiscuous mode but without IP addresses. This makes it hard for
attackers to find the sensor's listening ports.

● One interface, with an IP address, is used to communicate with the sensor.

The IDS will almost certainly require a firewall modification. Commercial vendors all seem to
think that writing their own proprietary protocol for communications among their IDS consoles,
sensors, and databases sets them apart from their competition. And of course, they are literally
correct. Do your homework and research what ports need to be opened. If the IDS can be
modified to use an existing hole in the firewall, use that. Even proxy-based firewalls often have
a pass-through hole; a "suck-and-spit" proxy with no protocol knowledge already running to
support some application or another. It will be great when the Intrusion Detection Working
Group (IDWG) finishes its work and there is a standard transport protocol based on beep
(www.beepcore.org/beepcore/docs/profile-idxp.html) for intrusion-detection systems.
IDS Behavioral Modification
Behavioral modification is another aspect of running an IDS. You already know that I have
concerns about using the IDS as big brother, even though many organizations are losing a lot of
money to wasteful activities. The IDS is a data collection and analysis tool, however; so even if
you aren't looking for trouble, you might still find it. You need to be prepared as an organization
to deal with what you find now that you are no longer blind to network traffic. Let's use an IRC
server as an example scenario.
You turn the IDS on and soon realize that a bright young kid in the computer operations
department has set up one of your internal systems as an IRC server. How did you find this out
if you weren't monitoring for IRC? We have discussed the fact that DNS, web, and email servers
draw a lot of fire. That is nothing compared to the fire IRC servers draw! What the analysts see
is a ba-zillion attacks and probes directed at a system in computer operations. When you look
into it further, you find out the rest of the story. Obviously, the organization wants to turn this
around and get the problem cleaned up. The wise analyst and organization will have established
policy before the IDS was powered on to handle these things.
The Policy
I suggest that the organization consider an initial amnesty policy. By this, I mean the first 10 or
so violations of the organization's acceptable-use computer policy be dealt with quietly and in a
lenient fashion. A memo can be sent out that doesn't name anyone, but lists some of the
examples and warns that in the future these activities will not be tolerated. I know of
organizations that have turned on their shiny new IDS and examined their traffic for the first
time. Imagine their surprise when they see things they do not approve of entering and leaving
their network. They are now at an important decision point. If the organization reacts in a knee-
jerk fashion and walks the employee straight to the door, the IDS will always be viewed with
suspicion and hatred. Be especially careful with the way you deal with systems and network
administrators; they are used to doing whatever they want. If you walk someone from the
computer or network operations group to the door because they broke an acceptable-use policy
you just started enforcing, your IDS might break down or suffer blindness caused by loose
cables a lot in the future!
Management knows all about firestorms—hate and discontent and the interactions between
folks with strong personalities. Managers deal with this kind of stuff every single working day. If
your implementation plan shows that you are sensitive to the other players in the organization
and that the IDS is not guaranteed to produce Excedrin headache number 36, they will be far
more supportive of your plan.

http://www.beepcore.org/beepcore/docs/profile-idxp.html

Part of a Larger Strategy
This book is focused on helping the analyst of a network-based intrusion-detection system.
However, we have also talked about system security, risk, vulnerability scanners, unauthorized
use, incident handling, and now, business issues. You need to always be ready to show how
intrusion detection fits in as part of the organization's information-assurance program.
To be honest with you, when I was younger, I didn't get it. I thought my mission in life was to
implement the best technology at the most affordable price possible to help the research lab
that I worked for be "world class." Phrased that way, it even sounds like a laudable mission. I
would approach my boss with a technology and its technical tradeoffs and he would say, "Yes,
but show me the big picture." It used to drive me crazy. I was convinced he was a total idiot
with a personal goal of being named Luddite of the year. Fifteen years later, I am just starting
to really understand. You can't play a song on a harp with one string. Any technology, no
matter how wonderful, is useless unless it complements the existing business processes of the
organization. When you brief management on the spiffy IDS you want to buy, be sure to include
the hooks to system security, risk, vulnerability scanners, unauthorized use, incident handling,
and business issues in your plan. Please allow me to do a quick repeat from Chapter 17,
"Organizational Issues" (see Listing 19.1)

Listing 19.1 The Seven Most Important Things to Do If Security Matters [1]
[1] Courtesy of Matt Bishop, Alan Paller, Hal Pomeranz, and Gene Schultz

Write the security policy (with business input).
Analyze risks, or identify industry practice for due care; analyze vulnerabilities.
Set up a security infrastructure.
Design controls, and write standards for each technology.
Decide what resources are available, prioritize countermeasures, and implement top-
priority countermeasures you can afford.
Conduct periodic reviews and possibly tests.
Implement intrusion detection and incident response.

If your intrusion-detection proposal is written against a process like this, it will be obvious to
management that it is part of a larger strategy. Senior management does not have the time to
accept information piecemeal; it is responsible for broad business strategies. Take a bit of your
time to make its job easier.
We have spent considerable time on the four issues that management needs to see in an
intrusion-detection plan. If we do not cover these bases, their paradigms will not let them even
consider the plan. Again, they are as follows:

● Bang for the buck.
● The expenditure is finite and predictable.
● The technology will not destabilize the organization.
● This is part of a larger, documented strategy.

Now we can move on to the technical stuff; this will be part two of your plan or proposal.

Part Two: Threats and Vulnerabilities

The second part of the plan is where you lay out the threats and compare them to your
vulnerabilities and the value of your assets. The purpose of this is to answer the question, "Why

do we need additional security measures?" I think that the highest and best purpose of network
intrusion detection outside the firewall is to help assessment of the attacks directed against
your organization and to ensure the internal hosts are hardened against these attacks. But
before you have an IDS, how do you assess these threats? You want to examine the problem,
the threats, and the vulnerabilities before you offer intrusion detection as the solution. Chapter

17's focus on risks gave the foundation you need to approach this section of the plan. Part two's
elements are as follows:

• Threat assessment and analysis

• Asset identification

• Valuation

• Vulnerability analysis

• Risk evaluation

Threat Assessment and Analysis

A risk assessment purist would say you need a dictionary that enumerates all possible threats,
and then you need to analyze each threat. For a plan to support an intrusion-detection system
that is designed to be readable by management, this is a bad idea.Your goal is not to show all
possible threats, but rather a sampling of probable treats. Management and the intrusion-
detection analyst would do well to focus on what is likely to happen to it and how it is going to
happen. I cover these in reverse order. The following list is my take on how these attacks are
going to arrive. The primary threat vectors are as follows:

• Outsider attack from network

• Outsider attack from telephone

• Insider attack from local network

• Insider attack from local system

• Attack from malicious code

Threat Vectors

Let's just take a second to be sure of the term threat vector. If you go to the restroom of a
restaurant, there is often a sign saying, "Employees Must Wash Their Hands Before Returning to
Work." It has been well established that skipping this sanitary step is a disease vector. The dirty
hands are the pathway, the conduit that allows the food poisoning.

A network-based intrusion-detection system might be able to detect outsider attack from the
network, insider attack from the network, and possibly attack from malicious code (remember
the Macro virus and PKZip examples from Chapter 17).

A host-based intrusion-detection system with an active agent might be able to detect all five

vectors.

Threat Determination

Your goal for the purposes of establishing a business case for intrusion detection is to list well-
known, probable threats as opposed to all threats. How do you find these threats? Sources
might include the following:

• Newspaper or web articles on attacks at other places. If it happens to them, it could
happen to you.

• Firewall/intrusion-detection logs for specific threats.

• System audit trail logs.

• Demonstration of an intrusion-detection system.

Many commercial intrusion-detection vendors allow you to take their systems for a test drive,
with a 30-day trial or something similar. If you are serious about wanting to implement an IDS
capability, I can't stress how important this is to do. It gives you a list of actual attacks against
your network; this is helpful for establishing the threat. It helps establish the groundwork for
part three of the plan when you show why you recommend an intrusion-detection system as
opposed to, say, another firewall. And, it gives you experience with a couple commercial
offerings. All too often, folks make their decision either based on something they read or on
how friendly the salesperson is. If you have tried a few "loaner" IDSs, in part three of the plan,
you can make honest statements about the tradeoffs between various systems.

If you can find the time to do it, interviews with folks in various parts of your organization can
be a rich source of threats and vulnerabilities that you might otherwise have missed. I have had
people tell me about shockingly bad practices when I ask them what they consider the largest
dangers to the organization's information assets to be. Yet, they never came forward with the
information on their own. As they say in Alabama, "Whaay-el, you never asked."

Asset Identification

Chapter 17 discussed asset valuation. Now, you focus on the concept a bit more. The huge value is
the investment in data. If most of your workers use computers most of their workday, the value
of the data on the computer is the cost of putting that worker in front of the console. The
threats to that data are that it will be copied, destroyed, or modified.

We have touched on this throughout the book. So that we are really clear, however, I will
reiterate: The most probable threat to that data is destruction from the system owner. As my
Catholic friends would point out, this could be by a sin of commission, or a sin of omission. By
commission, I mean an overt act, deleting the data accidentally, or on purpose, and never
telling anyone so that it can be recovered. By omission, I mean the failure to back up the data
properly, and that includes off-site backup. At least for the things that are within your power to
change, work to ensure your data is backed up.

It turns out to be an almost impossible task to ensure that all the data throughout the
organization is protected from being copied, destroyed, or modified. In the same way, making
sure every data element is backed up, on and off site, is beyond the capabilities of any

organization that I know of. This is a great lead-in to the notion of crown jewels, or critical
program information (CPI) as they say in security texts.

Valuation

All your data is not of the same value. In fact, a small portion of the information that exists in
your organization is what distinguishes you from your competition. Although all your data has
value, crown jewels are the information that has critical value and must be protected.

You reflect this in the threat section of your plan. Find as many of the crown jewels as possible.
Consider the threat vectors, and the known common threats, and use these as the examples of
threats and vulnerabilities in part two of your intrusion-detection business plan.

In part three, you will discuss countermeasures to protect these clusters of high-value
information. These might include the following:

• Host-based IDS software on the critical systems.

• Honeypot files. If your organization has sensitive documents, you can add special
tagged strings into the document. One way to do this is invent acronyms that do not
actually exist. Then you can program your IDS watch for these with a string, or content
matching rule. This would tell you if these files are entering or leaving your network.

• Instrumenting internal systems with personal firewalls. (Technically oriented
employees often enjoy doing this.)

• Network-based IDS in high-value locations.

Vulnerability Analysis

Vulnerabilities are the gateways by which threats are made manifest. All the threats in the
world don't matter if there are no vulnerabilities.

Were you disappointed because I didn't give a long list of vulnerabilities from which to work?
Well, they change almost daily so you need a pointer to a current list, not a static one that will
be obsolete before the book is even printed. I like the Computer Vulnerabilities and Exposures
(CVE) project (cve.mitre.org) the best because it cross-indexes a number of great

vulnerability lists such as bugtraq and ISS's X-Force. However, you do not need to do this
manually. Getting your general threat list as well as an assessment of your vulnerabilities is a
fairly simple matter. A number of good vulnerability assessment tools are available. These tools
test for specific threats, and they find potential vulnerabilities. Let's consider three classes of
tools: system-vulnerability scanners, network-based scanners, and also phone-line scanners.

Tools such as COPS, SPI, tiger, and STAT are examples of system-vulnerability scanners. They
work within the system looking for missing patches, incorrectly set file permissions, and similar
problems.

Tools such as nmap, nessus, saint, ISS' Internet Scanner, and Axent's NetRecon are examples
of network-based scanners. These are fairly fast and effective and scan the network looking for
unprotected ports or services.

While conducting vulnerability assessments, you might also want to assess your risk from the
attackers who scan your phone lines looking for active modems. Toneloc, available from fine
hacking sites everywhere, is the most used tool for this. Phonesweep from http://www.sandstorm.net
is a commercial tool with some additional features.

If at all possible, your vulnerability assessment should offer three views:

• A system view. Taken from selected systems with system scanners.

• A network view. Done from an internal scan of your network.

• An Internet view. Done from outside your firewall and, if possible, a phone scan
as well.

Of course, you want some juicy vulnerabilities to spice up your report, but please also scan your
firewall, DNS, mail, and web servers, as well as systems related to your crown jewels. These
are the systems that your organization depends on.

Whew! Sounds like a lot of work, doesn't it? Correct, it is a lot of work and vulnerability
assessments are not something that should be done only once. Why does it make sense for the
intrusion-detection analyst to be involved in vulnerability assessments? It keeps you aware of
specific problems and where in the organization your vulnerabilities are located.

Risk Evaluation

You have a lot of data. What do you do with it? Just because you collected it, do not stuff it all
in your report, even as labeled appendixes. On the other hand, you do want it organized and
available. Whenever you brief senior management, you want at least one supporting layer of
data available—that is, if your slide says 12 systems are deemed to contain CPI, you darn sure
want to be able to list those systems and explain the rationale for choosing them and not
others.

Okay, we have answered the question of what you are not going to put in the second section of
the report. What should you provide?

• A top-level slide with the value of the organization's information assets. Suppose
you have 100 computers with a five-year life cycle, for instance. The hardware,
software, and maintenance costs are $200k/year with information valued at $1 million.

• A network diagram that defines the boundary you are trying to protect.

• A basic description of the threat vectors.

• A general summary of your general vulnerability assessment.

• A description of the crown jewels: where they are, their value, and so on (include
the firewall, DNS, mail, and web servers).

• Specific threats against the crown jewels.

http://www.sandstorm.net/

• Specific vulnerabilities of the systems that host the crown jewels.

This should exist as a written report as well as a view-graph presentation. If you are doing a
PowerPoint presentation (which is recommended), expand each of the preceding bullets to be a
PowerPoint slide with three to five bullets each.

Part Three: Tradeoffs and Recommended Solution
Finally, you get to pitch your intrusion-detection system! You can hardly wait to get behind the
console of that shiny new intrusion.com special and smell that new IDS smell. Slow down a little
longer.You need to offer some tradeoffs, and also remember, you are going forward with a
package. Intrusion detection by itself is a hard sell. From a risk-assessment, textbook
standpoint, the next thing you are supposed to do is establish risk-acceptance criteria. This
approach is to put management on the spot and have it define what levels of risks it is willing to
accept. Then, you go back and design comprehensive countermeasures for all risks greater than
what management is willing to accept. Good luck!
Therefore, you should do the following:

● Define an information-assurance risk-management architecture.
● Identify what is already in place.
● Identify the immediate steps you recommend.
● Identify the options for these countermeasures.
● Produce a cost-benefit analysis.
● Implement a project schedule.
● Identify the follow-on steps illustrating where you want to go in the future.

Define an Information-Assurance Risk-Management Architecture
This sound like a hard chore, but it is really simple. You have defined the threats. You know the
primary countermeasures. It could be as simple as implementing the following:

● Firewall from the Internet
● Network-based IDS outside the firewall
● Internal firewalls for crown jewels
● Network-based IDS covering crown jewels
● Host-based IDS on crown jewels' platforms
● Tagged honeypot files on crown jewels' platforms
● Basic hardening for all systems, antivirus programs, patches, and good configuration

management to prevent silly file permission settings
● Organizational network-based backup with off-site storage
● Scanning of the internal network for vulnerabilities quarterly
● Certificate-based encryption for transmissions over the Internet with customers and

suppliers as well as home and off-site workers
● Strong authentication for dial-ins
● Disk encryption and personal firewalls for laptops

This list might not be completely appropriate for your organization, but this is my view of the
big picture for information assurance.
Identify What Is in Place
Every briefing or report to senior management should include a status slide, something that

defines where you are now. If you follow your definition of your information-assurance
architecture with your current status, it is a nice set up for the things you want to do next.
Identify Your Recommendations
Finally, you get to pitch the intrusion-detection system of your dreams. You want the pitch to be
balanced. It is perfectly reasonable to pitch an intrusion-detection system and a vulnerability
scanner (or whatever is appropriate for your organization) at the same time. For the pitch to be
solid, it should include options, cost, and schedule information.
I just cry when I see someone take an hour of a senior manager's time to brief him on a
problem and possibly recommend a solution when the presenter doesn't have the cost and
backup information. The senior executive doesn't think she has enough information to make a
decision, so she puts the matter off. What happens, however, is a very subtle characteristic of
human nature. When you first hear about a scary problem, you are shocked and might well be
moved to action. If you do not act, however, you have been inoculated against the problem.
The next time you hear about it, you are less scared and less moved to action. Therefore, you
need to be prepared to sell your project the first time!
Identify Options for Countermeasures
I hate doing this! I know what I want! I have done a market survey. Why should I have to
justify the product I have selected? Well, if you didn't know this before, I'll let you in on a
potential "gotcha." The commercial intrusion-detection system vendors aren't dumb! They are
trying hard to reach the CIOs and other top executives of your organization with non-technical,
high-level issues-oriented briefings. For instance, the host-based companies are pushing the
insider threat really hard. Therefore, if you come marching into your CIO with your report and it
doesn't mention the insider threat or consider host-based systems as options, you might be one
down instantly.
Personal Firewalls
If you are facing management and the issue of the insider threat comes up, keep in
mind that internal firewall and personal firewall data can come in very handy. In
some sense, these serve as burglar alarms and can alert you to internal problems.
Before asking senior management who is responsible for the organization's risk
management, funding, and support, it is a good idea to know as much about the
probable risks as possible.
Take the time to list at least one optional approach and to consider at least one alternative
product for your recommended procurements. You don't have to pitch these slides; in fact, you
shouldn't pitch these slides. But you do want them in case the issue comes up. While you are at
this point, you need to take a second for an integrity check. Are you trying to buy a toy and
help get the job skills to enhance your career or are you trying to secure your organization?
Have you really taken the time to examine those firewall logs? If they have good fidelity, and
you are honestly more concerned about your organization's security, perhaps you should
consider spending the time and money on a different aspect of your information-assurance
architecture.
Cost-Benefit Analysis
The cost aspect of this section is more important than the benefit section. This is where you
give management a warm, fuzzy feeling that you know how much the recommended
countermeasures are going to cost. As a program manager, when I hear something that I know
I want to do, I really don't need a lot more information—just tell me what it will cost and when I
can have it. Earlier, we talked about the case of having to present the whole package in five
minutes. In that situation, you would use three slides: the Executive Summary, the Cost
Summary, and the Schedule.

Why Cost-Benefit Matters
Cost-benefit analysis doesn't sound sexy to an intrusion analyst, but going through
the exercise for even a one-page financial analysis is really worth the time. I used to
have an employee who was very bright, but she had an uncanny knack for coming up
with the projects guaranteed to fail. Because she was so smart, when she would
suggest that we ought to do something, I would think, "Yeah, that makes sense, let's
do it." The next thing I knew, it was crash and burn time, and I would look silly again
in front of senior management. Then what do you suppose happened? She came up
with one of those, "I think we should…." My heart started pounding, my brain racing.
I could feel my stress level go up. A wiser manager would have sat down with her and
taught her to calculate the cost, the risk, and the potential benefits of a course of
action. It is easy after you have done it once. Not me, though. I just reminded her of
the failures, and in so doing, probably lost any chance of hearing another idea from a
brilliant software engineer.
Not all benefits are tangible and that is important, but this is where you want to support your
bang-for-the-bucks slide. This is the point where you list the costs. In the written report, you
should list all the costs; in a presentation, you should present only the summary costs. If there
are questions, refer management to the written report.
Have you ever given a pitch and had a member of the management team challenge you? And
just out of the blue, they say, "I don't think that is going to work." They don't even give a
reason. They might have a double-digit IQ, but the spotlight is on you! This is where it really
helps to be prepared. Let me make it plain for you: There is a better-than-even chance
management will ask the following questions, and you will have to give the answers shown. Will
an intrusion-detection system:

● Actually stop attacks? No.
● Detect everything? No.
● Cost a significant amount of money in equipment and salary? Yes.

So you see, you really do want to be prepared! As backup material, I strongly recommend you
have at least one ALE (annualized loss expectancy) or SLE (single loss expectancy, as explained
in Chapter 12, "Writing TCPdump Filters") calculation for what you think is the biggest general
threat against the organization. You should also have a couple examples of specific threats
against crown jewels if possible. Select your cases carefully so that they support your choice of
countermeasures. If you end up needing these slides, your pitch is in trouble; so do a good job
on them.
Business Plan
I am a passionate, vision-driven person and I need to be honest with you about
something. I am physically incapable of labeling anything I write a "cost-benefit
analysis." Let's be careful here, 9 out of 10 consultants would agree that is the
correct title and form for what you should take to management for a final approval of
a project. It is probably what decision-making management expects. So, after telling
you plainly that I am outside the normal and customary in this regard, please let me
share what I do. I produce a business plan, often it is only a couple of pages long, but
it helps me focus on the issues. It has the same basic content as a cost-benefit
analysis. I deal with costs, advantages, tangibles, and intangibles, but there is one
added factor: It will help advance the business. It seems to me that anything you do
should serve two purposes: It should solve the problem at hand, and it should
advance the business. The energy and capital you invest should help your
organization achieve or maintain the lead in your field. "Oh come on Stephen," you
might say, "intrusion detection is an overhead function; you can't make money on it!"
Wanna bet? Baseball, I mean intrusion detection, has been very, very, good to me,

and to many of my friends as well. Don't shortchange yourself and skip learning the
material in this chapter. Learn to write a business plan or a cost-benefit analysis. This
skill might literally pay off for you.
Project Schedule
I have written software (badly) for 15 years or so, but I have also managed some pretty skilled
coders. I try to get estimates from them so that I can pass up milestone information on future
deliverables. Depending on the person, I either double or triple their estimates. Software people
invariably think something is a simple matter of a few lines of code until they get into the
problem.
The point I am trying to make is that managers develop a radar, a sixth sense for bogus
schedules. You are on the next-to-last slide of your presentation, or next-to-last section in your
report. You do not want to blow it here.
If you are not experienced at project management, here are some gotchas with fudge factors of
items that will take longer than you probably estimated:

● Procure anything and everything (2x)
● Compile and run any free software (2x)
● Get management approval for any policy (5x)
● Install the software and test it (2x)
● Get the sensor to work on a switched network (5x)
● Get the analysis station to connect to the sensor through the firewall (3x)
● Get clearance to install host-based intrusion-detection software on production systems

(5x)
● Sweep your phone lines for vulnerabilities (5x)
● Fix problems you find with a network vulnerability sweep (5x)

The preceding list was partly done in fun, but I also am serious. If these items are part of your
critical path, you might want to give your schedule a second look.
Follow-On Steps
At this point, you have finished everything we need to do to pitch your solution. We have
defined and quantified both the problem and the solution with options. What could possibly be
lacking? Will installing this solution solve all the organization's problems? If not, you should
identify some of the next steps. If you are recommending a network-based intrusion-detection
system, for instance, your next steps might be as follows:

● Host-based perimeter defenses for critical systems
● Database for trend analysis, especially with the emergence of enterprise security modules

that allow you to consider data from NID, HID, firewall, router, and system log files
● Internal network-based IDSs for high-value locations
● Organization-wide host-based perimeter defense deployment

Each of these steps should include a high-level estimate for timeframe and cost. Taking the
time to show the next steps helps management in two important ways. It shows you have
technical vision—that there really is a well thought out plan. Also the budget planning cycle for
capital purchases at many organizations is done several years in advance. By presenting the
follow-on steps, financial planners can use your information as budget "wedges" for future
years.

Repeat the Executive Summary

You know the drill. Tell them what you are going to tell them, tell it to them, and then tell them
what you told them. This is an excellent time to repeat your Executive Summary points.

Summary

I hope this chapter and this book have been helpful to you. This chapter was tailored for
security professionals who don't have an intrusion-detection capability, want to upgrade their
capability, or have these job positions under scrutiny. In much of the book, we try to give you a
bit of insight into the enemy. In this chapter, we have tried to give you insight into
management and business processes.

The most important thing to keep in mind, both for yourself and when you brief management, is
that intrusion detection should be an integral part of your organization's information-assurance
strategy. In fact, intrusion detection should be a part of every nation's information-assurance
strategy. The events of this coming year with massive IRC bot driven distributed denial-of-
service attacks, SNMP/ASN.1 exploits, and polymorphic attacks will prove this to be true. You
don't need an IDS to detect a DDoS attack, but it will help you find the compromised hosts
before they can be used to hurt someone. Now, let us take some time to discuss the future of
intrusion detection in our final chapter in this book.

Chapter 20. Future Directions

Prognostication is dangerous. Have you seen the studies on the accuracy of newspaper and
tabloid predictions? How will we do better? It is time to discuss the leading edge, the emerging
tools and trends in intrusion detection. I am asked to speak on the future of various information
assurance topics a couple times a year and try to stay abreast of trends, hold focus groups, and
so forth. None of that ensures that I will be right about anything; so, consider what you read in
this chapter with care. With that, here is my read on the future for intrusion detection.
In terms of broad trends, we will discuss the emerging threat, cyber-terrorism, the ease by
which attackers are able to install and run malicious code on our systems, the improvements in
reconnaissance and targeting, skills versus tools, defense in depth, and large-scale intrusion
detection. Finally, we'll close with some short takes on emerging trends.

Increasing Threat

One of the drivers that fuels the continued interest in intrusion detection is the increasing
threat. The progress in attacker tools over the past year has been incredible. I am not talking
about Code Red so much as Leaves and the IRC bot (robot programs) nets that reached a
significant level of sophistication in mid-2001. Attackers have the firepower to knock almost any
site off the Internet. They can coordinate a fast scan, blowing through half of a class B in about
five minutes from 2,500 or so discrete source hosts. They can also scan very slowly, modulating
the technique to be almost undetectable. Many of these attackers are also security practitioners
by day, a disturbing fact, and they are not planning to stop writing attack code.

Cyber-Terrorism

"Have you seen any evidence of increasing attacks, anything significant?" No less than five of
my friends that work for the government had asked me that question by noon on 9/11/2001.
Suddenly, we started hearing about cyber-terrorism and, with Executive Order 13231 filed after
the attack, we see the US Government preparing defensive mechanisms against cyber-
terrorism. Although we have tried to detail the increasing threat, and to be sure there is a lot of
firepower out there, I do not see any evidence that cyber-based terrorism is a near-term threat.
There are hints and glimmerings of it, but the emphasis of terrorism seems to remain fixed on
bombs and guns. Is cyber-terrorism a credible threat? In some sense, it has to be. Much of the
infrastructure is computer controlled, and the computers are certainly vulnerable. The main
thing that seems to be holding cyber-based terrorism back seems to be the attacker's apparent
lack of skill and motivation. In other words, the committed terrorists still seem to prefer bombs
and guns to laptops for now.

With that said, we do need to consider the implications of the large attack networks that have
been formed in the past year. One reason we have not seen more damage is that many of the
people involved in creating these attack networks are not really malevolent.

An interesting trend that is as true today as it was when I first learned about it in 1997 is that a
main theme of all this advanced denial of service is Internet Relay Chat (IRC). Groups of
hackers fighting for control of IRC chatrooms developed the denial-of-service tools. As long as
people were content to clobber IRC servers, who cared? Now the genie is out of the bottle and it
cannot be put back. It is interesting that the latest attack networks are IRC bots, but they are
certainly not constrained to IRC targets. If a group bent on terrorism was to gain control of one
of these networks, it could certainly do significant damage, especially financially. If you could
keep the top ten Internet businesses offline for a week, what would the potential financial
damage be? It is more than just the lost revenue; it would include the weakened state of the
companies and potentially a serious effect on the stock market, especially the technology rich
NASDAQ exchange.

The bottom line on terrorism, cyber or not, is that your organization should have a contingency
plan. Right after 9/11, there was a bit of concern about creating and updating business
continuity plans, but it seemed to pass quickly, even while the site of the World Trade Center
was still smoking. The main thing is to make sure you have an alternative way of doing
business in case the net infrastructure gets severely perturbed at some point.

Large-Scale Compromise

Trojan horses, logic bombs, and software vulnerabilities are incredibly rampant. The bad news
is that it is essentially impossible to secure modern operating systems. One of the reasons for
this is their complexity. Take a look at your active processes, ps –ax or ps –ef on UNIX and

Ctrl+Alt+Del on Windows. Ask yourself if you would recognize if something changed on
anything that is shown. These are high-level listings, not the function calls and .dlls themselves.
If someone were able to plant a malicious routine on one of your systems, you would probably
not be able to find it except with a tool like anti-virus software. So how do these backdoors and
such get planted on your systems?

A huge vector for Windows systems in the past two years has been browser related problems. A
number of vulnerabilities in Microsoft's Internet Explorer have been reported that allow
attackers to run arbitrary programs on systems when the browser downloads web pages with
specially formatted strings. This is on top of the previous trend of creating attacks based on
vulnerabilities in the Outlook mail program. Granted, these attacks are at the bottom of the
food chain in some sense—PCs—many of which are on dial up connections and cannot do that
much damage; but just as many are inside government facilities, corporations, educational
institutions, and homes with broadband connectivity. On UNIX systems, a variety of buffer
overflows have been found and exploited that allow attackers to accomplish the same thing. In
addition to the techniques that attackers use to break into systems, they are also becoming
more adept at finding systems to break into.

Improved Targeting

In this book, you have learned a lot about the various reconnaissance techniques attackers use.
Multiple organizations are involved in Internet mapping efforts. Some of the aspects of
advanced targeting include the following:

• Techniques to maximize results using broadcast packets when possible. If a site
allows broadcast packets to enter its network from the Internet, this allows the
attackers to get significant results with a fairly low number of stimulus packets.
Scanning is actually fairly slow going; this is the reason nmap and other tools default to
an echo request first. If they get a reply, they invest in scanning for open ports and
protocols.

• Avoidance of dangerous IP address ranges, based on lists of honeypots and sites
that are known to be alert and active in reporting to CIRTs and law enforcement.

• Sharing reconnaissance data between scanning organizations minimizes the
footprint. If two groups have different techniques and they share the results, it is harder
to detect them in action, especially if they both use distributed scanning.

Because the reconnaissance has been going on for a long time, we are now seeing the results of
long-term mapping efforts. When you see a few probes, they might be validating that the site
map the attackers hold is still fairly up-to-date. As new vulnerabilities are found, the attackers
will have the capability to launch precision attacks.

How the Threat Will Be Manifested

The fact that systems are vulnerable and attackers are perfecting their techniques for finding
vulnerable systems is not news. What changed in late 2001 and early 2002 was the scale. Large-
scale, successful attacks such as Leaves SubSeven scans, Code Red and nimda against IIS, and
the SNMP/ASN.1 and Apache PHP attacks in early 2002, left attackers with networks of
thousands and thousands of compromised zombie systems, and they had primitive, but
workable command and control systems to manage these networks.

This much firepower has a couple of uses.You can threaten to blow almost any site off the
Internet. By February 2002, two years after the original distributed denial-of-service (DDoS)
attacks against high-end web sites like CNN and Yahoo, attackers were going after ISPs. In
February, when the SANS Institute was funding a webcast about a free new Cisco router
security configuration tool, the ISP streaming the webcast, Digital Island, reported it was hit
with a denial-of-service attack disrupting the webcast. And, the attackers continued to explore
their firepower. As March of 2002 opened, we were seeing test attacks where sites were
knocked off the Internet by doing a traceroute, determining the routers the site needed to
connect to the Internet and leveling them. They were also beginning to experiment with TCP
port 179, BGP. As I write this, I cannot know the future, but from the close of February 2002,
my way-out-on-a-limb guesses would be that two things seem likely:

• The attackers are not going to be able to resist testing out this firepower. Some will
just be in it for the money and will try extortion, threatening to disrupt e-business sites
like eBay or Amazon. Others will be more interested in a grand stunt, probably against
the two exposed services on the Internet, routing and DNS; and if you can take out
routing, DNS falls naturally. Our best analysis says you cannot take down the entire
Internet, because it is made up of too many independent parts.

• The government is going to do the only thing it can do—make it a serious criminal
penalty to run these kinds of attacks. This has already started with the laws that passed
after 9/11, but if the attackers do pull a bold stunt, lawmakers around the globe will
probably have to respond.

This is not to say that all is gloom and doom—far from it. The threat might be reaching its
highest point in a few months, but there appears to be some natural limits to the growth.

Defending Against the Threat

There are countermeasures and limits to the increasing threat. In this section, we will first
discuss the natural limits and then consider the development of skills and tools for defenders.
Also, the community is making progress in understanding and implementing defense in depth.
We are also deploying intrusion detection in a large-scale mode to be able to see the trends
quickly. The good news is they are about ready to hit some limits that ought to slow them down
a bit. What limits?

• The current DDoS type attack tools like Leaves and litmus have their command and
control via Internet Relay Chat. This is both their strength and weakness. At some
point, the community is going to wise up and start blocking this type of protocol. There
are countermeasures that the attackers can and will take, but these can and will be
contained.

• A large number of scans depend on public addresses. Every time an organization
switches to a NAT and private addresses, it becomes just a little bit harder for attackers.

• Many of the attack networks we are currently facing are a result of the Leaves (via

SubSeven), Code Red, and SNMP/ASN.1 bonanzas of mid-2001 and early 2002. OK, this
is where I go so far out on a limb. It isn't funny, but a large number of these machines
are Windows, and lately there has been some evidence that Microsoft really cares. I
think that seeing 180,000 IIS web servers switch to (mostly) Apache in the months
after Code Red really got their attention.

• Follow the money! The money is primarily going into the defensive side of the
house. The attacker community is demonstrating a lot of ingenuity, but as lower cost,
easy-to-configure security appliances come on to the market, and security training that
really works becomes available, there will be less low hanging fruit. Attacking will
become less fun and less common, and it will be easier to shun sites that do not stop
bad behavior.

Money really is the interesting question. It seems logical to assume that if you are investing in
security, it will make a difference. However, February 13, 2002, the United States Office of
Management and Budget (OMB) released a report 2002-05,
http://www.whitehouse.gov/omb/inforeg/fy01securityactreport.pdf, on federal information security. The report, to
no one's surprise, outlined a number of shortcomings including the following:

• Inadequate senior management attention

• Ineffective security education and awareness

• Improper security practices by outside contractors

• Inadequate detection and reporting of vulnerabilities

However, the most significant finding in the report was there was no detectable correlation
between the amount of money invested in information security and the results. Further, they
did not even consider the importance of good tools other than in some discussion about capital
expenditure. In the near future, if we are able to invest the money we have available wisely on
skills development and apply some good process when deciding which tools to purchase, I think
we will make some significant forward progress.

Skills Versus Tools

The interest in the topic of intrusion detection is still on the rise. SANS offered the first Intrusion
Detection Immersion Curriculum in March 2000 and not only was it sold out, would-be analysts
really turned to some high-end social engineering trying to get a seat. Today, we offer the
current hands-on, six-day intrusion-detection track somewhere in the world every week. That is
a demonstration of the demand, and it is fueled by a desire to learn how to do intrusion
detection. Would-be analysts are learning all the things that you learned in this book: bit
masking, basic analysis skills, and how to write filters, all the atomic skills that prepare one to
do intrusion detection.

At the same time, companies are working to build better and better tools. It is fairly clear at this
point that you cannot build an IDS that does not require a skilled operator. The one commercial
company that tried to make an easy-to-use GUI as number one priority gets a lot of sales, but
many companies that buy their products are replacing them a year later. As we move forward,
it looks like the balance will swing to tools designed to allow an analyst to use her skills.

http://www.whitehouse.gov/omb/inforeg/fy01securityactreport.pdf

Analysts Skill Set

Intrusion-detection systems have the same problem as anti-virus software: New attacks are not
detected because there is no signature for them. But the problem is worse because so few
signatures have been defined for NIDS, still less than 2,000 decent signatures, compared with
the 30,000 or more for antivirus. There are natural limitations of signature-based network
intrusion-detection systems, and to be effective, I recommend coping strategies like a box
recording all traffic. That way, it is possible to go back after the NID alerts and examine the
stimulus that lead to the activity reported by the NID. I also like to keep a cache of at least
several days of raw data, so if I get lucky and detect something I have a way of checking to see
if there was previous activity. Today, an analyst needs the ability to write a filter to run these
types of searches. In the future, as console solutions are fielded, it might be possible to do
much of this with canned searches, but even with relational databases, an analyst might have
to be able to describe the search he needs in SQL.

Companies are realizing they need skilled people. Even in the economic downturn of 2001,
SANS was still running class after class and most of the classes were full. Companies are even
requiring certification when they are looking to hire. At first, this was laudable, but depressing,
"IDS Analyst needed, must be able to write IDS rules, interpret hex, and hold a current CISSP
certification." Arrrg, please do not interpret this as a slam against the Certified Information
System Security Professions (CISSP), but the CISSP certainly does not certify a person to run
an IDS or configure a firewall or to do any other technical task. However, companies are
learning fast, and recently the Foote survey echoed the earlier Gartner survey that showed
Global Information Assurance Certifications (GIAC) certifications contributed to a higher salary
and a higher chance of employment. The tools are getting better, but for the next few years at
least—and I expect forever—nothing replaces a skilled analyst.

The rapid emergence of personal firewalls is already a major defensive force, although we need
to find easy ways to harness this data. They range from the load-and-forget Symantec Internet
Security, which combines anti-virus with lightweight protection and detection, to BlackIce,
which can log packets for analysis. These folks have essentially solved that old host-based
problem, the effort of deployment! Security conscious employees take it on themselves to
install personal firewalls at work and at home; if they bother reporting, they become valuable
sensor inputs. There are automated tools like Dshield, www.dshield.org, to take the data from these
systems and examine it for trend information. Network-based NIDS are still being deployed at a
good rate as well. It is easier to get someone to stick two boxes on her network than to get her
to even think about adding a nonproduction, cycle-consuming, software layer to all the hosts in
her network. When I analyze what it takes to do a really effective job of intrusion detection, the
advantages of personal firewalls on the host computers of security-aware employees are
enormous and really add to the network-based data. So, it is no surprise that we are coming to
the age of the console, the database driven system that normalizes NID data with firewall,
personal firewall, anti-virus, and potentially other data such as syslog reports, and gives us a
better view of what is going on in our networks defensively than we have ever had.

Improved Tools

These new consoles have a number of forms. Some of them are advanced log watchers like Big
Brother (www.bb4.com) and NetIQ (www.netiq.com); content analysis tools like SilentRunner
(www.silentrunner.com); and correlation engines tools like netForensics (www.netforensics.com), ISS
SiteProtector (www.iss.net), and Intellitactics NSM (www.intellitactics.com). This is just the tip of the
iceberg. I know of a number of companies that are racing to unveil products including the
Sourcefire OpenSnort console (www.sourcefire.com) that uses the high performance database tool

http://www.dshield.org/
http://www.bb4.com/
http://www.netiq.com/
http://www.silentrunner.com/
http://www.netforensics.com/
http://www.iss.net/
http://www.intellitactics.com/
http://www.sourcefire.com/

named barnyard that was developed by Andrew Baker. As they start to really compete and we
go through the rounds of reviews and bakeoffs, we should end up with some very usable tools.
The good news is that there are factors that should serve to slow the rate of improvement for
attacker tools.

Companies have been buying tools all along, but they are not getting the kind of quality they
deserve for the money they spend. We mentioned a commercial IDS earlier that many
companies, a year after they install it, are replacing. What is wrong with this picture? Obviously,
the company has a world class marketing program, but how have we as a community allowed a
sensor that doesn't even record the TCP code bits to exist for so many years, to waste so many
organizations' time and money? The good news is it looks like the next release will be credible,
but we need to demand tools that work.

The competition in the network intrusion detection arena is funny. You don't have to be an
industry insider to quickly realize that Ron Gula with Dragon, Robert Graham with BlackIce, now
RealSecure and Marty Roesch with Snort are not just brilliant, they are really invested mentally
and emotionally in their products. In the background is the very capable Kevin Zeise on the
Cisco team. He might not be as visible as the others in the field, but he is the kind of guy that
runs four miles in the morning, eats two pieces of key lime pie for breakfast, rolls out a new
product line by lunch, and then saves the world from the latest cyber catastrophe before retiring
for the evening. He is fully capable of running with the IDS pack. The various mailing list and
conference battles are great entertainment, but they also serve a purpose. In a world of
marketing and lies, these three folks, at least for now, are seriously committed to building the
best tool they can. Who will win? It isn't something one person can do, it will be the best team.
So in the spirit of predicting the future, back out onto a limb I go:

• Enterasys is having some problems right now with the SEC and has had cash flow
problems for a while. Stock options aren't as much of a motivator when you drop from
11 to 4 in a single day, so watch for some bailouts of brainy engineers that want
another shot at making a million dollars. I like Dragon and particularly like some of their
network gear but don't think I want in for more than a 100 shares—too likely to become
wallpaper. So, I think Dragon could have been a contender, but the SEC probably
banged them too hard for them to compete in this neck-and-neck field.

• ISS and Robert Graham have to be the odds-on favorite in early 2002. The ISS
management team is good, the marketing team better, and the X-Force side of the
house has been solid for years. There were a lot of things I liked about BlackIce that
Robert could build into RealSecure in his sleep. There is no doubt in my mind that, short
of burning out or getting hit by a bus, Robert will produce a sensor to be reckoned with.
The question is whether they will be able to build or integrate with a great console. As I
write this, SiteProtector is just too new to be evaluated, but it has to work for ISS to
shine because they have bet heavily on entering the managed services market, and
they need this tool to do it. My prediction is that the answer will come down to the skills
versus tools argument. If they build their console so that it helps a skilled worker be all
she can be, I think ISS can win against everyone except Cisco. If they build a console
that has a philosophy of "sit here and if you see a red triangle, call me," I think they will
lose any chance at market credibility.

• Cisco developed a strategy years ago of moving intrusion detection into the
network. The Catalyst 6000 and the Policy Feature Card is going to give TopLayer, the
darling of the gotta go fast intrusion analyst, a serious run for the money. This call is a
no brainer. High-end sites with high-value assets are going to go Cisco. My money is

where my mouth is too; when their stock dips, we pick up another chunk whenever we
can.

• Sourcefire, led by Marty Roesch, just received two million dollars in round one
venture capital. I need to be honest; I am hardly objective. When the company started
and I was given an opportunity to fund the startup, I jumped at it. So read what I say
with more than a bit of salt and I will try to stick to the main issues. The facts are
simple: Snort is the most widely deployed sensor on the planet and the Snort ruleset
and language are the most commonly read and written. This is without debate.
However, that is free Snort, and I have watched from the sidelines as my friend Gene
Kim and Tripwire have tried to make the transition from free software to
commercialware and it is not an easy task. Moreover, Marty is not the only one with the
idea of commercializing Snort. My guess is that he has entered the market at the best
of times. At a time when it is harder and harder to find a decent stock value, ISS and
Enterasys have plummeted, reducing their value, this is now a great opportunity for the
tiny Sourcefire.

The bottom line, my guess, is that by the time this book gets into your hands, Cisco and
Sourcefire will be stronger, ISS holding its own, Enterasys on the ropes, and NFR, no closer to
an IPO than they ever were. Will Tippingpoint, the new Swiss army knife of information
security, even be in the running? Probably not, it is most likely still a year or two before users
will be ready for integrated firewalls/NIDs, but we will see. The fact that cannot be argued is
that the significant competition and innovation is driving the bar up and we all win because of
that. One reason that I am so focused on this new generation of consoles is they are the
foundation for analysts to maintain situational awareness and one of the most important tools
for building active defense in depth.

Defense in Depth
Military history teaches us to never rely on a single defensive line or technique. We have tried
to teach you not to rely on your NID alone. When a filter fires, it might be necessary to
determine why it fired and the network activity that preceded it. We have been trying to teach
you to rely on your ability to decode a packet in addition to using your NID as a tool. This is one
small example of defense in depth.
The firewall serves as an effective noise filter, stopping many attacks before they can enter your
network. Within your internal net, the router or switch can be configured to watch for signs of
intrusion or fraud. When a detect occurs, the switch either can block the session and seal off the
host or just send a silent alarm. You can improve your model further by adding the host-based
layer of defense. Here, you can detect the insider with a legitimate login (whether or not it is
really his) accessing files he shouldn't. Toss in a couple more network-based intrusion-detection
systems, including a few stealthy ones, and you have an architecture sufficient to counter the
increasing threat. Sadly, this architecture seems to be more likely found in a Jetsons cartoon
than real life. So what is possible today and in the near future to implement defense in depth?
The five perimeter rules of the road are the first steps, the ones you should put into practice
today if you are not already doing them. Please do not start with a lot of talk about a crunchy
perimeter and a soft chewy inside; we will get there soon enough. The five rules are all covered
in the book and the appendix, but this is the final chapter and needs to be the summary chapter
as well as a discussion on the future of intrusion detection. The five rules of the road are as
follows:

● Squelch all outgoing ICMP error unreachable messages. You might choose to stop
other outgoing ICMP error messages, but do not fail to stop these. Doing this will reduce
your site's vulnerability to reconnaissance.

● Split horizon DNS. You might call this by a different name, but the concept is simple.
The DNS server(s) that can be reached from the outside should only know about a few of
your hosts including your mail server, web server, and you fill in the rest of the blanks.
Otherwise, this DNS server can be used for reconnaissance against your site.

● Proxy when possible. Not only are proxies available on your firewall, but they can also
be put between the Internet and your Internet facing devices.

● Network Address Translation (NAT). If your site can find the backbone to give up
those evil public addresses and move to private addresses, you will instantly find a tenfold
benefit in your resistance to attack.

● Implement auto-response. Yes, really. The anti-junk mail world has been doing it for
years. The Raptor firewall with its active defense and BackOfficer Friendly haven't melted
down the world. There is a place for auto-response and you need to get in the game (as
they say in the movie Zorro), as safely as possible.

Defense in depth doesn't stop with the perimeter, of course. It includes configuration
management, personal firewalls, anti-virus, content scanning at the perimeter, operating
system patches, and an active vulnerability scanning program.
Large-Scale Intrusion Detection
One of the most fascinating trends in 2001 was the emergence of three large-scale intrusion
detection efforts: Aris by SecurityFocus.com, MyNetWatchman (www.mynetwatchman.com), and Dshield
(www.dshield.org). Each of these works by providing reporting software to hundreds or even
thousands of clients. These clients range from Check Point firewalls and Linksys cable routers to
personal firewalls. The data is sent to a central site that allows it to be examined for trends.
The aggregation of this much data from all over the world is a powerful tool. Dshield, for
instance, was adding about six million records per week. Although there are significant issues
with normalization, within the first year of Dshield's operation, the technology was used to
discover the Ramen, Lion, and Leaves worms. For instance, the CERT advisory on widespread
vulnerabilities with SNMP and ASN.1 was released on February 12, 2002, and you could see the
increase in scanning as the month progressed, as shown in Figure 20.1.

Figure 20.1. Dshield data plot.

http://www.securityfocus.com/
http://www.mynetwatchman.com/
http://www.dshield.org/

These are new implementations, and the community is still trying to learn how to make the best
use of the tools. Distributed intrusion detection systems like Dshield is such a profoundly
significant concept that a number of people I talked with found it hard to understand why it
hadn't been done earlier. One of the reasons is that a subtle shift in attitude took place after the
turn of the century, and people were willing to share data.
Sharing
I asked the Incidents.org community if anyone wanted to contribute a sidebar for the
second edition of the book. It is no less true today, so we will keep it in this edition.
The following was submitted by Richard Bejtlich, a skilled intrusion analyst, and I
decided to place it here primarily because of the fourth question below.
"I make optimum use of my network intrusion detection system (NIDS) by asking
four questions:

● What could cause suspicious traffic to be generated?
● What events could my NIDS miss?
● How does real Internet behavior differ from textbook descriptions?
● Should I share events with the security community?

The first question suggests that packets can be forged, manipulated, and unwillingly
solicited, in addition to being routed directly. The second question requires me to
understand my NIDS' limitations, and remember it might not explain or even capture
every related packet. The third question implies that traffic not matching the norms of
RFCs or technical studies is not always malicious. The last question encourages
intrusion detectors to share their questions and discoveries with the security
community, whether through www.sans.org or forums like the

securityfocus.com Incidents list."1

1Richard Bejtlich
In addition to detection, these large-scale intrusion detection networks also play a crucial role in
response. As they collect data and the information passes a certain threshold, they can create
automated or semi-automated reports and send them to the responsible party for an IP
address. For instance, on February 28, 2002, IP address 217.128.207.17 from the
abo.wanadoo.fr domain was detected sending 33,995 packets. Now, that certainly warrants
sending a note, though sending a note to Wanadoo asking them to quit ftp scanning is a bit like
sending a note to Bin Laden asking him to stop terrorism—at best, they don't care. However,
many people do care, and the note from Dshield might be the first hint a system administrator
gets to help him realize he has a problem. Below is a note from another satisfied customer:
"Thank you for the notification of illicit activity coming from a computer in the University of
XXXXX XXXXXX domain. This was a faculty member's computer that was found to have the
"mummy" virus when the eSafe virus scanner was ran on the computer. We have attempted to
disinfect this computer to prevent the unauthorized intrusions to your and other networks.
Again thanks for the notification; and if there is anything else we can do, please let me know."
By the way, I am a bit skeptical about the particulars in the report. The mummy virus is an MS-
DOS Jerusalem variant, so this sounds like an excuse to cover some mischief, but as long as the
behavior changes, it is another win for these new defense systems. To date, only Aris has a
business model to support what it is doing, so it is not clear that these first implementations of
large-scale intrusion detection will survive long term. I certainly hope they are an emerging
trend. I would like to close the chapter and the book with a quick review of the anti-virus
industry, a discussion of hardware-based and program-based intrusion detection, and finally,
some of the changes in auditing.

Emerging Techniques
Current intrusion-detection systems are fairly limited. Network-based systems are not well
suited to detect the insider threat, mobile code, intelligence-gathering viruses, modem-based
attacks, or runs along the trust model. Host-based systems can detect these attacks, but they
suffer from two big problems: the cost of deployment and the system overhead "tax." There is a
lot of money to be made by the company that can build and market the better mousetrap. The
enterprise security consoles we have discussed are one technology poised to collect some of
this money—after all, what security guy is not going to want a cockpit? Curiously, the market
sector that appears to have snatched defeat from the jaws of victory is the anti-virus arena.
Virus Industry Revisited
I have watched in amazement as NAI and Symantec, two companies in exactly the right place
to take advantage of the gap between the increasing threat and existing response, have failed
to take total control of the host-based intrusion detection market. Even if anti-virus makers do
not want anything to do with the intrusion-detection market sector, they are already
intersecting with it. These Trojans all have a network signature, SubSeven, and netbus and all
the rest. Anti-virus companies can detect all of these and remove them as well! Well, maybe
not. The first clue I had that anti-virus could be evaded was when one of my students realized
he had accidentally downloaded a Trojan when he saw "notepad.exe" go by after having clicked
on a download page. After some investigation, he determined it was QAZ. And yet, his anti-
virus didn't pick it up. But how is this possible with a well known Trojan? Well, it turns out that
the attacker community can "pack" the Trojan with any number of tools. For more information
on this, go to http://rr.sans.org/malicious/trojan_war.php.
However, do not count out the anti-virus industry. It can detect the work of many of the more

http://rr.sans.org/malicious/trojan_war.php

popular packers and certainly can detect the Trojan when it becomes active on the network if
you also have a personal firewall packaged with your anti-virus. Well, you can if the malicious
code doesn't disable the firewall and/or anti-virus software as one of its first orders of business,
but the companies are working on defending against this as well.
Symantec's Internet Security product that combines anti-virus with a personal firewall is not a
bad product, but it could have been a killer application. Anti-virus companies are poised to be
the 800-pound gorillas in intrusion detection. An anti-virus company could excel in this industry
because of the following eight reasons:

● No security tool has better desktop penetration than anti-virus software.
● Intrusion-detection tools often have fewer than 500 signatures; virus software can detect

more than 20,000.
● Virus software comes with implementations for firewalls, server systems, or the desktop.
● These tools can identify, contain, eradicate, and recover with minimal user intervention.
● Anti-virus companies have fully solved the issue of updating a user's signature table with

a variety of painless options.
● Many large organizations have site licenses with these software companies and are pretty

satisfied.
● Anti-virus companies are already oriented to very fast turnaround of a signature table

when a new exploit is detected.
● These software companies often have companion products with security capabilities.

The match is so perfect that I cannot understand why we aren't seeing these products dominate
the industry. It would be so easy to make the changes to the NAI or Symantec personal
firewalls to let them serve as network intrusion detection systems, but with every software
release, they seem to move further and further away from providing a tool that is industrial
strength.
Next, we will discuss intrusion detection in hardware. Cisco, more than any other company, has
been intentionally pursuing putting intrusion detection in the network itself, so that you have
hardware-based intrusion detection solutions.
Hardware-Based ID
There are three serious challenges to network-based intrusion detection:

● Encrypted packets that foil string matching
● Fast networks beyond the speed of the sensor
● Switched networks

We discuss intrusion detection in the switch shortly. Encryption is an interesting problem. It is
good if your organization is doing it and having the key escrowed. Encryption is a bad thing if
someone is using it to evade your detection system. How do you know if a bit stream is
encrypted? You test for randomness, of course. This is easy to do, but expensive in terms of
CPU cycles. There is an argument that this should be done in hardware. I am not sure this is
valid; general-purpose computers keep getting faster and faster. With that said, there are
places where applying hardware to the problem makes a lot of sense. One of the best
applications is faster nets.
The perfect place for Cisco SecureIDS is on a card placed in a Cisco router or switch. This,
however, is just a toaster without a power supply. The really interesting advances come by
doing limited intrusion detection as a software process in the router or switch. This is a
desperately needed future trend. One advantage of this is that you finally achieve real-time, or
wire speed. In all other solutions (except intrusion detection in the firewall), you detect the
intrusion right after the packet has flown by. In this case, you can literally stop it or divert it to
a honeypot. The capability to do this seems to be at hand with the Policy Feature Card that is

available for the Catalyst 6000 switches. I am not sure why they built the card, perhaps to
provide a product to compete with TopLayer, the application layer switch that well-funded
intrusion detection analysts turn to when they have the need for speed. Perhaps they project
advances in the QoS market that I just do not see on the horizon. However, the ability to filter,
mark a packet, application switch, or failover switch inside the network fabric at the rate of 5
million packets per second at layer 3— much more at layer 2—opens a number of possibilities
for detection and protection. This would include many of the auto-response capabilities such as
dropping a connection, rate limiting, copying traffic to a more powerful IDS or binary logger, or
switching the connection to a honeypot. Like large-scale intrusion detection systems, it will be a
while before we really know what to do with tools like this, but learning should be a lot of fun.
Program-Based ID
I just cannot get over the size of programs today. I used to own a computer called a
Commodore 64. The 64 stood for the amount of RAM, 64K. The implication is that the programs
had to load and run in that memory space. There is an important lesson to be learned by
comparing the functionality of the Commodore 64 to my 400Mhz Pentium II with 1024MB of
RAM. The applications that ran on the Commodore had about the same functionality as my
Microsoft Office suite. However, these programs are huge! If we are going to tolerate bloatware,
and it is clear we will, we might as well start asking for some security in the programs.
At the seminal conference for intrusion detection SANS' ID'99, I was fortunate enough to break
away for an hour to have lunch with Simson Garfinkle, who is writing software designed for
special-security applications. A lot of security software, especially vulnerability-testing
programs, can be used for malicious purposes. He wants to protect his intellectual property
from intrusion (software piracy), and he also wants to ensure the software cannot be misused
without it being clear and obvious which copy of the software is the origin.
Can software prevent or detect that it is being copied or misused? For a while, this was a big
issue for computer games, at least the copy-protection aspect. It doesn't seem to be such a hot
topic today. None of the games my son has bought require a dongle. One of the forensics tools
I use, Expert Witness, has some degree of license protection built in with a hardware dongle.
Microsoft must have some scheme with its strange orange sticker on the CDs, the long pin
numbers, and its techniques for phoning home and inspecting the network for license violations.
Simson, however, was taking the issue a lot more seriously than any of these companies appear
to be. He was proposing a series of countermeasures, including encrypting segments of the
programs and chaining checksums.
Let's take this a step further. Could a critical program detect that it is under attack? Suppose
sendmail or Bind had a static library of security functions. The program could then detect an
unauthorized entity is trying to access it, or that the input it is receiving is actually binary code.
It could then block the attack and raise an alarm. Programs could even develop profiles about
their uses so that they can detect that someone "out of profile" is accessing their files and take
some preprogrammed action. Still another way to do intrusion detection at the program level is
to put a wrapper around the program, which is most certainly an emerging trend.
The first wrapper was Wietse Venema's TCP Wrapper program, which was a wonderful security
tool for years—although perhaps xinetd with ICMP support is more appropriate today. But, the
concept has been extended. You might want to check out immunix (www.immunix.org). I would
expect that, for Internet facing applications, this will be an emerging theme to the point that
eventually, sound practice will be to chroot it, wrap it, or both.
Smart Auditors
This emerging trend was in the book the first go around and it didn't happen. I put it in again in
the second edition and there was some progress—not enough for me to get hired by Miss
Cleo—but I am sticking with this as an emerging trend! According to Alan Kay, the best way to
predict the future is to invent it, and by the time this book is in your hands, SANS should be
engaged in helping to establish pragmatic tools and resources for auditors. Auditors are already
smart—that is why they do the auditing and you do the sweating. Auditors are starting to
understand security technology and practices at a rapid rate. The days are gone and will not

http://www.immunix.org/

return when they ask whether you have a firewall, nod when you say "yes," and then walk
away.
I think the emerging trend is for auditors to understand security-assessment tools and to be
able to operate them. Auditors can visit your site, plug in, and, while they are interviewing you,
run an assessment tool. They can then compare your answers against the assessment—cheerful
thought, eh?
Although it will be a pain for system administrators when we are audited, knowledgeable,
equipped auditors could be one of the most effective countermeasures against the increasing
threat. Hackers, trusted insiders, and malicious code authors are not really that smart; we are
just a bit lazy, careless, and naive. So when we make a mistake or get sloppy, it leaves a hole
that attackers find and exploit. If we are held accountable, we actually do the things that we
know we ought to do and the organization benefits.

Summary
All data that I have indicates that the future looks good for the intrusion-detection analyst. We
will have plenty of work to do, and we should be able to get decent pay for our work. Good
analysts are in extreme demand, and that should not change in the near term. Companies are
starting to understand that the skills component is important and are asking for GCIA
certifications, or demonstrated ability for higher paying jobs. Tools, techniques, and training are
being developed to counter the threats, and some of these will make our lives easier.
Thank you for reading this book. I have enjoyed teaming with Judy and Marty on this update,
and I thank them for their skills and insights. Truly this is becoming an analyst's handbook.
Please grant me one closing note, one more minute of your precious time. The www.incidents.org
resource depends upon the involvement of the community and may well have to close at some
point. While it is there, your book comes with a warranty, a way to stay up-to-date, a forum to
discuss anything you don't understand or disagree with, and most important, a place for you to
share your insights. Please get involved. We welcome every nation, every point of view, and
detects from every brand of intrusion-detection software. Intrusion detection is in its infancy
and needs to improve. That can only happen if you get involved. See you on Incidents!

http://safari.informit.com/?xmlid=0-73571-265-4/22991533
http://www.incidents.org/
http://safari.informit.com/?xmlid=0-73571-265-4/22991533

Part V: Appendixes
 A Exploits and Scans to Apply Exploits

 B Denial of Service

 C Detection of Intelligence Gathering

Appendix A. Exploits and Scans to Apply Exploits

In this appendix, we will examine a number of network traces. Each has a story to tell. Most of
these traces are in the TCPdump format. This format is consistent with the traces in the book
TCP/IP Illustrated, Volume 1: The Protocols, by Richard Stevens (published by Addison Wesley,
1994). This reference should be at the fingertips of any serious intrusion-detection analyst

False Positives
This appendix starts with some of the errors analysts are prone to make. Although the
Computer Incident Response Teams (CIRTs) hire some top-notch analysts, the errors in this
first section are just subtle enough that they might slip by them as well. On the surface, many
CIRTs say that they prefer that you report liberally, even if you are afraid it might be a false
positive. I agree, to a point, although I think that if you are not sure what something is you
should say so right in the report! In the final analysis, you (as the analyst) are closest to the
data. You see the network traffic on a daily basis. To steal a line from America's second-favorite
bear, "Only you can prevent false positives."
All Response, No Stimulus
The following trace is the classic pattern commonly mistaken for a backdoor. Before going too
far, however, take a look at some of the characteristics of the trace so that you don't miss
anything. At 7:17, the sensor observed a packet from mysystem, the source port was echo (or
7), the packet was addressed to target1 destination port 24925, and the size was 64 bytes:
TIME SRCHOST SRCPORT > DSTHOST DSTPORT Proto Size
07:17:09.615279 mysystem.echo > target1.24925: udp 64
The first time I saw this, my blood pressure went through the ceiling; I just knew I was dealing
with a backdoor. Why, you might ask? Well I knew that my site blocked incoming echo at the
firewall, so it was not possible that someone was bouncing echoes off of mysystem. Therefore,
my reasoning was that I was either dealing with some form of malicious code, a UDP flooder of
some sort that had a signature of source port 7, or there was a backdoor. Now, that was bad
reasoning because no one in his right mind would write malicious code that used 7 as a source
port—it would be too likely to draw attention.
When I searched for the stimulus traffic, however, I could not find it, and that is what confused
me. In truth, the network perimeter had changed over the weekend and someone really was
bouncing echoes off of mysystem. Why didn't I see the stimulus traffic? The two most likely
possibilities are asymmetric routing and a misconfigured spanning port. Some older
implementations of switched networks in spanning mode only span one direction of the traffic,

http://safari.informit.com/?xmlid=0-73571-265-4/22991533

which can cause a false positive. Here is the trace:
07:17:09.615279 mysystem.echo > target1.24925: udp 64
07:17:10.978236 mysystem.echo > irc.some.where.40809: udp 600
07:17:11.001745 mysystem.echo > irc.some.where.14643: udp 600
07:17:11.146935 mysystem.echo > irc.some.where.49911: udp 600
07:17:12.254277 mysystem.echo > irc.some.where.28480: udp 600
07:17:12.350014 mysystem.echo > irc.some.where.20683: udp 600
07:17:12.835873 mysystem.echo > target1.5134: udp 64
07:17:13.266794 mysystem.echo > irc.some.where.16911: udp 600
07:17:13.862476 mysystem.echo > target1.32542: udp 64
07:17:14.032603 mysystem.echo > irc.some.where.32193: udp 600
07:17:14.579404 mysystem.echo > irc.some.where.24455: udp 600
07:17:14.619173 mysystem.echo > irc.some.where.5120: udp 600
07:17:14.792983 mysystem.echo > irc.some.where.47466: udp 600
07:17:14.879559 mysystem.echo > target1.16878: udp 64
07:17:15.308270 mysystem.echo > irc.some.where.12234: udp 600

Spanning Ports
Switched networks are a major challenge for network-based intrusion detection. A
sensor with a single network interface, one that listens in promiscuous mode and also
reports to the analysis station, might upset some switched network configurations.
If your network operations folks want you to add a second interface to the sensor,
you should try to accommodate them. Use one interface to listen in promiscuous
mode; it doesn't even need an IP address. The other interface can be for
communication with the sensor. In fact, this is pretty much the best practice for
running a network intrusion-detection sensor these days as it helps protect the sensor
from attackers and makes it harder to detect.
If the preceding trace is not caused by a misconfiguration of a spanning port on a switched
network, what else could cause it? A backdoor connection or malicious code could certainly
cause this pattern, but make that your second guess.
This trace is titled "All Response, No Stimulus." IP communications generally have a stimulus and a
response. When analysts encounter traces they don't understand, their job is to determine what
the stimulus was. This determination helps answer the questions about what is going on. This
trace stands out because you can tear through all the traffic, but you cannot find the stimulus;
this is all the sensor sees. The event of interest in this case is the packets being sent to
mysystem's echo port.
What else can you learn from this trace? For starters, what is this echo thing, and what does it
do? The echo program reads a string and repeats it. Think of it as an automated liberal arts
undergraduate student. Now that you know the expected behavior of echo, it is possible to fill in
the blanks for what the traffic should have looked like (if the sensor is misconfigured, for
example, or if we are dealing with a backdoor connection).
The simulated, reconstructed traffic is as follows:
07:17:09.527910 target1.24925 > mysystem.echo: udp 64
07:17:09.615279 mysystem.echo > target1.24925: udp 64
07:17:10.823651 irc.some.where.40809 > mysystem.echo: udp 600
07:17:10.978236 mysystem.echo > irc.some.where.40809: udp 600
So what does that show? It shows target1 and irc.some.where sending a string to mysystem
and getting the string echoed back. Now why would they do that? The answer is they probably
wouldn't. Even if one system was to use echo for testing or to troubleshoot, two using it
simultaneously stretches coincidence past the breaking point. This is probably a denial-of-
service with target1 and irc.some.where as the intended victims. A wise rule of thumb is to turn
off any network service on a computer system you don't actually need. If the system
administrator for mysystem had commented echo out of /etc/inetd.conf, this trace would have
never happened. If this hasn't convinced you to turn echo off yet, that's okay—additional traces

later on show more fun with echo.
This trace has yet another problem. The destination ports include 24925, 40809, 14643, 49911,
and so on. Because these are echo replies, we assume they were the source ports from the
sending system. The range is more random than normal for source ports, however; generally,
you can expect to see 24925 followed by 24926 and so forth. Therefore, these are probably
replies to crafted packets. Mistaking a trace for a "backdoor" pattern (when it is, in fact, a
misconfigured switched network) can happen, but it is not that common.
Take a look at one final example of "All Response, No Stimulus" before moving on. At first
glance, this too might be perceived to be an attack of some sort:
11:38:54.010000 masker.com > 192.168.133.127: icmp: address mask is
0xfffffe00
11:39:43.180000 masker.com > 172.16.33.116: icmp: address mask is 0xfffffe00
11:53:37.780000 masker.com > 192.168.58.105: icmp: address mask is 0xfffffe00
11:56:43.690000 masker.com > 172.16.178.85: icmp: address mask is 0xfffffe00
12:15:52.550000 masker.com > 172.16.121.67: icmp: address mask is 0xfffffe00
12:25:41.800000 masker.com > 172.16.247.72: icmp: address mask is 0xfffffe00
12:45:07.470000 masker.com > 172.16.110.69: icmp: address mask is 0xfffffe00
12:45:31.530000 masker.com > 172.16.167.73: icmp: address mask is 0xfffffe00
12:58:23.350000 masker.com > 192.168.214.116: icmp: address mask is
0xfffffe00
Remember the ICMP address mask request? It asked a host to respond with the subnet mask of
the network on which it resided. Although the TCPdump output does not have the word reply in
it, you do see the words address mask and a hexadecimal number. These are replies to address
mask requests. All the hosts receiving these replies are nonexistent hosts, however, so they
could not have initiated the request.
Again, it appears that the culprit is spoofing the 192.168 and 172.16 IPs and firing them at
masker.com. Why would someone most likely do this? An educated guess is some kind of
flooding attempt to masker.com using a different delivery mechanism than an ICMP echo
request. Truthfully, it really doesn't matter what kind of activity you direct at a target host if
flooding and perhaps a denial of service are the intent. Now, take a look at a false positive that
has fooled many beginning analysts.
Scan or Response?
Take a look at the following detect that appeared on Shadow's hourly web wrap-up. Shadow is
configured to look for traffic destined for UDP port 1080, which is the socks proxy server. There
are some associated exploits, so we want to be alerted when someone shows interest in the
socks port. Here it is:
18:20:12.080000 dns.com.53 > myhost.com.1080: 5 NXDomain* 0/1/0 (128)
18:20:12.300000 dns.com.53 > myhost.com.1080: 6 NXDomain* 0/1/0 (119)
18:20:12.410000 dns.com.53 > myhost.com.1080: 7* 1/0/0 (48)
But, look carefully at what is going on in this output. Does anything look vaguely familiar to
you? Concentrate on the notation after the 1080. Is that your final answer, or perhaps maybe
you want to use a lifeline to the audience? What about the source port? A correct response does
not yield a million dollars or help ratings during TV Sweeps month, but isn't this reminiscent of
some kind of DNS activity? Yes, it appears to be a response from dns.com to myhost.com for
multiple DNS queries that were issued. The identification numbers for the queries are 5, 6, and
7, and query number 7 received one resource record, no authority records, and no additional
records.
Because this smacks more of response than scan, you need to look at outbound traffic from
your network to see whether this was a DNS query initiated by myhost.com. Sure enough, the
following output puts this all in perspective:
18:20:11.870000 myhost.com.1080 > dns.com.53: 5+ (50)
18:20:12.090000 myhost.com.1080 > dns.com.53: 6+ (41)
18:20:12.310000 myhost.com.1080 > dns.com.53: 7+ (32)

The explanation is that myhost.com requested resolution of queries 5, 6, and 7 from dns.com.
The client selected ephemeral source port 1080 on which to issue these queries. When the
responses came back from myhost.com, they were directed to destination port 1080. Shadow
cannot correlate what we just did, however, and so blindly fires any time a scan is detected on
its signature filters. The bottom line is that this is a false positive. One of the most common
false positives, however, is the SYN flood.
SYN Floods
As an analyst, one of the scary calls for me to make is a SYN flood. It is very easy for an
intrusion-detection system to be wrong about this when, in fact, this detect actually is a false
positive. If the SYN flood comes from a known hostile address, or if other hostile activity is
associated with the connection, or if it is very obvious (50 or more connection attempts in less
than a minute, for example), I might report the activity. Otherwise, I tend to sit on it and watch
for further activity.
Valid SYN Flood
The following trace shows an actual SYN flood:
14:18:22.5660 flooder.601 > server.login: S 1382726961:1382726961(0) win 4096
14:18:22.7447 flooder.602 > server.login: S 1382726962:1382726962(0) win 4096
14:18:22.8311 flooder.603 > server.login: S 1382726963:1382726963(0) win 4096
14:18:22.8868 flooder.604 > server.login: S 1382726964:1382726964(0) win 4096
14:18:22.9434 flooder.605 > server.login: S 1382726965:1382726965(0) win 4096
14:18:23.0025 flooder.606 > server.login: S 1382726966:1382726966(0) win 4096
14:18:23.1035 flooder.607 > server.login: S 1382726967:1382726967(0) win 4096
14:18:23.1621 flooder.608 > server.login: S 1382726968:1382726968(0) win 4096
14:18:23.2284 flooder.609 > server.login: S 1382726969:1382726969(0) win 4096
14:18:23.2825 flooder.610 > server.login: S 1382726970:1382726970(0) win 4096
14:18:23.3457 flooder.611 > server.login: S 1382726971:1382726971(0) win 4096
14:18:23.4083 flooder.612 > server.login: S 1382726972:1382726972(0) win 4096
14:18:23.9030 flooder.613 > server.login: S 1382726973:1382726973(0) win 4096
14:18:24.0052 flooder.614 > server.login: S 1382726974:1382726974(0) win 4096
Did that look familiar? Maybe this will help:
Source: tsutomu@ariel.sdsc.edu (Tsutomu Shimomura), comp.security.misc Date: 25 Jan 1995
"About six minutes later, we see a flurry of TCP SYNs (initial connection requests) from
130.92.6.97 to port 513 (login) on server. The purpose of these SYNs is to fill the connection
queue for port 513 on server with 'half-open' connections so it will not respond to any new
connection requests. In particular, it will not generate TCP RSTs in response to unexpected SYN-
ACKs."
False Positive SYN Flood
After you compare the preceding excerpt from the Mitnick attack with the following trace, you
might wonder what the heck the difference is. Well, the differences are quite subtle. The source
port increments in both traces, as does the sequence number. The TCP window size is the
same: 4096 bytes. Clearly, there are two TCP retries with four packets each shown below, note
the static source port and static sequence number and the 3, 6, 12 time interval. The arrival
times of the packets are very similar. So how do we sort this out?
14:02:22.5166 host.2104 > server.25: S 1382726960:1382726960(0) win 4096
14:02:25.5669 host.2104 > server.25: S 1382726960:1382726960(0) win 4096
14:02:31.7447 host.2104 > server.25: S 1382726960:1382726960(0) win 4096
14:02:42.8311 host.2104 > server.25: S 1382726960:1382726960(0) win 4096
14:02:58.8868 host2.3311 > server.25: S 2382927964:2382927964(0) win 4096
14:03:01.9434 host2.3311 > server.25: S 2382927964:2382927964(0) win 4096
14:03:07.0025 host2.3311 > server.25: S 2382927964:2382927964(0) win 4096
14:03:19.1035 host2.3311 > server.25: S 2382927964:2382927964(0) win 4096
What a difference a small change, email rather than a different service, makes! Email is
expensive, at least to mail relays. If the email relay cannot push the mail out the first time, the

mailto:tsutomu@ariel.sdsc.edu

relay must try again an hour later. If you notice the time, you get a hint of what is to come. The
"victim" of the denial–of-service attack here is not a victim at all, it is a mail server and it is
down. The mail is queued up all over the world trying to send it the mail. Every hour these
systems, all over the world, try again, often near the top of the hour. So, we have this false
SYN flood condition.
Another very common false positive is Microsoft Internet Explorer visiting a web page. It creates
a connection for each GIF, JPEG, HTML, and so forth, up to a limit of 32. As a rule of thumb,
therefore, do not report a SYN flood on TCP 25, TCP 80, or TCP 443.
Even better, as a general rule, be very slow to believe your IDS or to report a SYN flood
(especially because you are just beginning your journey as an analyst). Most commercial
intrusion-detection systems produce false positives on SYN floods so often that you have to set
their counters to a very high number, which means they will never detect a real SYN flood. The
good news is that more modern operating systems can resist SYN floods of low numbers of
SYNs, so it is becoming safer and safer to ignore them. The SYN floods that do affect modern
systems are very high volume and difficult not to detect.
Although SYN floods in low volumes might be safe to ignore, the Windows Trojan horses (such
as Back Orifice) certainly are not. These programs can give an attacker total control over an
infected computer. When dealing with a high-risk problem such as Back Orifice, the analyst
should not turn that filter off on the intrusion-detection system even if the filter generates false
positives.
Back Orifice?
Trojan horses and scanning for Trojans accounts for a large number of the attacks between mid-
1997 and the present. Back Orifice and Netbus were the original frontrunners in late 1998 or
early 1999, and then SubSeven became a major force in late '99 and early 2000. The default
port for Back Orifice is 31337 UDP, and 12345 TCP for Netbus (port 12346 as well, although I
have never seen this in actual use). Most Trojans can be configured to operate at other ports of
course, which can make it harder to locate them. Further, 31337, like 666 and the hex patterns
dead beef are often of hacker activity. We saw this following trace twice in a single day; I just
had to chuckle:
11:20:44.148361 ns1.com.31337 > ns2.arpa.net.53: 38787 A? arb.arpa.net. (34)
11:52:49.779731 ns1.com.31337 > ns1.arpa.net.53: 39230 ANY? hq.arpa.net. (36)
This is a great time to mention that TCPdump has a desire to be helpful. Although this is a UDP
trace, it does not say UDP like the first echo example of this chapter. Instead, TCPdump uses
this opportunity to tell us more about the packet because it knows DNS (UDP port 53), because
DNS has its own format. Our client system ns1.com is doing a name lookup on the DNS server
ns*.arpa.net. So what are the 31337s doing there?
As an analyst, this was the question I wanted to answer when I saw the trace. We pulled the
packet, printed it in hex, ran it through tcpshow, and compared it to other DNS lookups. It was
normal.
Before BIND 8, the expected, although not required, behavior from a name server doing a UDP
lookup is that the source port is 53 as well. Sometimes, I have seen the source port as 137,
indicating that the client is a Windows system. Why 31337?
Like all of us, I was busy at work, so I forgot about it until an analyst at another site flagged the
same pattern to my attention. I picked up the phone and started working my way through this
corporation until I finally found the bright young chap who managed the DNS server. I told him
what I saw:
Northcutt: I am seeing source port 31337s coming to various DNS servers.
Young Chap: Uh, we've looked into it, and it is not Back Orifice.
Northcutt: I know that, but it sets off every intrusion-detection system that sees it.
Young Chap: You should fix your intrusion-detection system.
Northcutt: No. You fix your source port or my site will block you, and my friend's sites will
block you; your company will lose its contracts, and you will lose your job.
He asked who I was again, and we started to make progress toward a solution.

So, we had a false positive in a sense; it was not an attack. Instead, it was just a young kid
who figured that because he could configure a DNS system, he was "eleet." He just needed a bit
of calibrating and everything was all right. Ignoring the traffic leads to some dangerous choices;
an analyst should not disable an intrusion-detection system filter, for example, for a potentially
dangerous attack signature. The analyst must verify that the detect is not a false positive before
reporting it. Some people think I was overly harsh with the young chap. I would ask them to
keep in mind the problems such activity could cause at the CIRT level. Remember, only you can
prevent false positives.
Note that modern DNS servers running BIND 8 choose an unprivileged port above 1024, but
they probably won't choose 31337 consistently.
This story also illustrates how important it is for your organization not just to report detects to
your CIRT, but also to share with other intrusion-detection-capable organizations that have
something in common with you. This is how I determined the 31337 wasn't just a fluke. Also, at
times you might need to shun an Internet address block if they are being antisocial.
Shunning Works!
Once, a major Internet service provider was not providing support when its address
block was being used to attack our sites. Time and time again we tried to reach its
organization to get help. Finally, we blocked them (email, web, the whole nine yards).
Within three weeks, they were screaming in pain because they were starting to lose
money; corporate customers were pulling out. They agreed to be responsive in the
future and to triple their Internet abuse staff. Who could ask for more?
This concludes the discussion about common false positives. Strictly speaking, the exploit is
when the attacker goes for the kill and the software or technique exploits a vulnerability in a
computer system. In actual practice, it is very difficult to distinguish between scanning for
vulnerabilities and the actual attack. In fact, the current generation of attack tools do both;
they scan to find vulnerabilities and they also attack. Therefore, this section contains a bit of
mix and match, primarily considering vulnerabilities, but also touching on scanning for
vulnerabilities when appropriate.
I am not the only one struggling with categorizing these traces in a nice organized manner. The
research side of intrusion detection has been working on this problem for years and has not yet
produced an accepted taxonomy of attacks. The Database of Vulnerabilities, Exploits, and
Signatures (DOVES) project released a CD-ROM with its work on categorization in February
1999. For further information, contact Dr. Matt Bishop (bishop@cs.ucdavis.edu). Mitre has fostered
the creation of the Common Vulnerability Enumeration (CVE). The CVE is probably the most
significant effort and enjoys wide support from the vendor community; more than 2,000
vulnerabilities have been accepted by its editorial board at this time with an additional 1,700
candidates. For further information, check out CVE's web site at cve.mitre.org.
The following section examines traces from IMAP exploit attempts.

IMAP Exploits

No series of exploits has reaped as much havoc on the Internet as IMAP. Buffer overflows, such
as the IMAP vulnerability, are not uncommon; several major problems have occurred with DNS
buffer overflows as well. Because these programs run as root, the attack is potentially
devastating, leaving the attacker with root access.

mailto:bishop@cs.ucdavis.edu
http://www.cve.mitre.org/

10143 Signature Source Port IMAP

The pattern here is the classic pattern of one of the most devastating buffer overflows ever
unleashed on the Internet. Note that this scan contains two destination networks. Also note the
time gap between packets. The gap is so large because this scan was targeting every Class B
network on the Internet. This trace comes from mid-1997, and this particular signature is rarely
seen now:

14:13:54.847401 newbie.hacker.org.10143 > 192.168.1.1.143: S
14:24:58.151128 newbie.hacker.org.10143 > 172.31.1.1.143: S
14:35:40.311513 newbie.hacker.org.10143 > 192.168.1.2.143: S
14:43:55.459380 newbie.hacker.org.10143 > 192.168.2.1.143: S
14:54:58.693768 newbie.hacker.org.10143 > 172.31.2.1.143: S
15:05:41.039905 newbie.hacker.org.10143 > 192.168.2.2.143: S
15:13:59.948065 newbie.hacker.org.10143 > 192.168.3.1.143: S

111 Signature IMAP

The following trace is another IMAP scan/exploit that has a repeatable signature. The fixed
source port, the fixed sequence and acknowledgment fields with the 111, and of course the
window size of 0 is a nice touch. From a signature-use standpoint, this one is particularly
interesting. We started to see it in late 1998 following the large numbers of source port 0 and
SF set scans, (these are shown next), and then it disappeared. In early 1999, this signature
reappeared. I have no idea what the story behind this behavior is; it is as if the software got
lost for a few months! Here is the trace:

00:25:09.57 prober.2666 > relay.143: S 111:111(0) win 0
00:25:09.59 prober.2666 > relay.143: S 111:111(0) win 0
00:42:50.79 prober.2666 > web.143: S 111:111(0) win 0
00:43:24.05 prober.2666 > relay.143: S 111:111(0) win 0
00:43:24.07 prober.2666 > relay.143: S 111:111(0) win 0
00:44:20.42 prober.2666 > relay2.143: S 111:111(0) win 0
00:44:42.62 prober.2666 > ns2.143: S 111:111(0) win 0
00:44:42.64 prober.2666 > ns2.143: S 111:111(0) win 0
00:44:42.67 prober.2666 > ns1.143: S 111:111(0) win 0
00:44:42.69 prober.2666 > ns1.143: S 111:111(0) win 0

Exploit Ports with SYN/FIN Set

One of the fascinating patterns to watch has been the various mutations of a pattern called
SYN/FIN (or more commonly, SF). This is one of the most significant patterns in intrusion
detection in the sense that an analyst will almost certainly have seen this and should be
expected to know this pattern. The earliest instantiation I am aware of is the attack Jackal.c
from late 1996, and the most recent variation I have seen was a buffer overflow against secure
shell in December 2001. Attackers set SYN/FIN because it passes through a static packet filter,
because they block on a SYN only. However, if a packet with SYN/FIN gets to either a Windows
or UNIX system with that port open, they respond with a SYN/ACK. This is great from an
attacker's point of view, because it penetrates the perimeter and still lets them compromise the
system. Take your time with this section to look at some of the major variations of this pattern
and to learn its history.

Source Port 0, SYN and FIN Set

The first clue I had about the following trace was a post to bugtraq in March 1998. I did not
actually pick this trace up for another month. Here, the signature is source port 0, which is not
logical; and both SYN and FIN flags are set, which is also not logical. An intrusion-detection
system ought to be able to pick up this kind of trace! Note the random-appearing subnets 26,
24, 17, 16, 24, as well as hosts. This is possibly to make the scan less obvious. Also note the
speed of the scan. Scan detectors should be able to detect five connect attempts to five
different hosts in about a quarter of a second. Take a look:

13:10:33.281198 newbie.hacker.org.0 > 192.168.26.203.143: SF
 374079488:374079488(0) win 512
13:10:33.334983 newbie.hacker.org.0 > 192.168.24.209.143: SF
 374079488:374079488(0) win 512
13:10:33.357565 newbie.hacker.org.0 > 192.168.17.197.143: SF
 374079488:374079488(0) win 512
13:10:33.378115 newbie.hacker.org.0 > 192.168.16.181.143: SF
 374079488:374079488(0) win 512
13:10:33.474966 newbie.hacker.org.0 > 192.168.24.194.143: SF
 374079488:374079488(0) win 512

The preceding scan presents several interesting advantages. FINs might be allowed through
filtering devices even if SYNs are not. This improves the probability of a response. Also, because
the FIN signals connection tear down, some logging systems will potentially fail to report the
connect attempt. SYN/FIN was a trademark of a scanning tool named jackal, which was
purported to penetrate firewalls. The challenge with this signature is that more than one
exploit/scan is believed responsible for creating it. A more current tool that can generate a
similar signature is nmap, the most effective intelligence-gathering tool yet deployed by
attackers.

Source Port 65535 and SYN FIN Set

The following trace is an interesting variant of the preceding trace. This was collected in
November 1998. There is speculation that this pattern is probably the result of an attack tool
that enables the user to select any source port she wants. Although I have no doubt that such a
tool either exists or will exist in the near future, that does not begin to explain why intrusion-
detection analysts have collected hundreds of examples with source port 0 and a large number
with source port 65535. In the early days, before 1999, analysts had not yet collected any
examples with any other source port and SYN/FIN set. The source port was hard-coded into the
software and that the source port 65535 is a second-generation code branch from the original.
The trace follows:

16:11:38.13 IMAPPER.65535 > ns2.org.143: SF 3794665472:3794665472(0) win 512

16:11:38.13 IMAPPER.65535 > ns2.org.143: SF 3794665472:3794665472(0) win 512

DNS Zone Followed by 0, SYN FIN Targeting NFS

Although IMAP has been an effective target of opportunity for attackers, it certainly isn't the
only target. The following trace has similarities to the source port 0 and SYN/FIN set pattern. In
this case, however, we are dealing with a double dipper. First, the attacker tries an attack
against TCP 53, which is also DNS. The difference is you use TCP 53 rather than UDP 53 when
you want a zone transfer—in essence, a host table of the site.

As previously noted, the 0 source port and the SF flag sets are a signature for a common IMAP
exploit. This attack directed at NFS almost certainly shares code with that exploit. These code
branches help to identify attackers who write, modify, or compile code as opposed to those who
can run only existing exploits. What apparently has happened is that the attacker has bolted a
different exploit onto an older delivery system.

Say what? Well, we make the case later that at least some part of what we are dealing with is
warfare. In weapons, one often separates the warhead from the delivery system. For instance:

• Archers could use one tip for firing into infantry and a different arrowhead for
launching flaming arrows at castles.

• Catapults could throw rocks to bust walls or dissuade charges, but could also throw
flaming missiles if that was what was needed.

• Modern cruise missiles can carry conventional weapons and slip in the enemy's
bedroom window (or so the Gulf War footage would have us believe) or they can carry
nuclear warheads.

In each of these cases, a delivery system can fire multiple exploits (I mean warheads). You
should not be surprised to see the same principle in information warfare. The arrowhead in the
following trace is the NFS port, 2049. The signature of the delivery mechanism (source port 0
and SYN/FIN set) is shown in bold:

12:11:48 prober.21945 > ns1.net.53: SF 1666526414:1666526414(0) win 512
12:11:49 prober.21951 > ns2.net.53: SF 11997410:211997410(0) win 512

12:36:54 prober.0 > relay.net.2049: SF 3256287232:3256287232(0) win 512
12:37:03 prober.0 > web.net.2049: SF 3256287232:3256287232(0) win 512
12:37:05 prober.0 > relay2.net.2049: SF 3256287232:3256287232(0) win 512

This pattern has continued. One classic sighting was in February 2000; posters to GIAC were
reporting source port 0, SF set to TCP port 109, the POP2 service. This pattern has most
recently mutated to reflexive source and destination ports—for example, source port 109, SF
set to destination port 109. A final note about the preceding trace: This individual is probably a
rookie. If you hit a site with an exploit and do not get in, it is far wiser to move to a different IP
address before trying again. Using the same IP address twice increases your risk of a knock on
the door from federal agents. That said, this was the first time we saw the code branch to the
NFS exploit. There are no easy answers. And, it is still going on. In December 2001, we picked
up an attack against secure shell (TCP 22), source port 22, destination port 22, SF set.

Scans to Apply Exploits

This final section discusses a number of interesting patterns that, with the exception of discard
and IP-191, tend to use well-known vulnerable ports. One challenge you face when sorting out
the exploit tools from the scan tools is that because most sites use their firewall or filtering

router to block risky ports, it becomes difficult to collect information. With TCP-based attacks,
for instance, the three-way handshake never completes because the connection is blocked,
which makes it all but impossible to know the intention of the attacker.

The first trace examined here is the mscan pattern, a favorite tool of attackers.

mscan

The following trace is representative of one of a very common attack pattern, mscan. The
multiscan exploit code is widely available and does not indicate an "eleet" or well-connected
attacker. That said, it gets its fair share of system compromises, because it scans for
vulnerabilities present in a large number of systems connected to the Internet:

06:13:23.188197 bad.guy.org.6479 > target.mynetwork.com.23: S
06:13:28.071161 bad.guy.org.15799 > target.mynetwork.com.80: S
06:13:33.107599 bad.guy.org.25467 > target.mynetwork.com.143: S
06:13:38.068035 bad.guy.org.3861 > target.mynetwork.com.53: S
06:13:43.271220 bad.guy.org.14296 > target.mynetwork.com.110: S
06:13:47.831695 bad.guy.org.943 > target.mynetwork.com.111: S

AL-98.01 AusCERT Alert multiscan (mscan) Tool 20 July 1998,

ftp://ftp.auscert.org.au/pub/auscert/advisory/AL-98.01.mscan:

"AusCERT has received reports indicating a recent and substantial increase in network scanning
activity. It is believed that intruders are using a new tool called 'Multiscan' or 'mscan'. This tool
enables the user to scan whole domains and complete ranges of IP addresses to discover well-
known vulnerabilities in the following services: statd nfs cgi-bin Programs ('handler', 'phf' & 'cgi-
test,' for example) X, POP3, IMAP, Domain Name Servers, finger."

So, you ask, "What is a scanner doing in the exploit chapter?" Sue me! The exploits for telnet,
Web, IMAP, DNS, POP3, and Portmap are so numerous and so well known I thought it was
appropriate.

Son of mscan

Of course, if one attacker has mscan, another has to do it one better. The following trace was
first seen in November 1998. We can learn some things from this trace. The scan rate is on the
order of 10 packets per second. That is no record, but it is fast. We would certainly hope our
intrusion-detection system's port scan detect code would take note of 10 SYN packets to
different ports on the same system in one second!

What are all those ports? Throughout the book, I use the Internet Assigned Numbers Authority
(IANA) paper on ports (ftp://ftp.isi.edu/in-notes/iana/assignments/port-numbers) for services 1024 and below.
Above 1024 is a mess, and we work through these ports carefully. If you have an Internet
connection, you might want to download a copy of the port listing now. Another excellent
source of information is an /etc/services file from a UNIX computer, the best being the one that
ships with FreeBSD. However, I am learning more and more to use Google (www.google.com).You
simply type port 12345 or whatever and then read the discussions. Everyone knows 12345 is
Netbus, but I didn't know that it is also a license manager. Nor did I know that Trend Micro uses
this as a listening port. I would have never known about this if I had not queried Google. If you
don't have access to one, or the time to go get one, refer to the service names at the beginning

ftp://ftp.auscert.org.au/pub/auscert/advisory/AL-98.01.mscan:
ftp://ftp.isi.edu/in-notes/iana/assignments/port-numbers
http://www.google.com/

of each line for this trace:

Echo- 20:50:19.872769 prober.1454 > mail.relay.7: S 7460483:7460483(0) win
8192 (DF)
Discard- 20:50:19.881293 prober.1455 > mail.relay.9: S 7460502:7460502(0) win
8192 (DF)
Quote of the Day- 20:50:19.916488 prober.1456 > mail.relay.17: S
7460545:7460545(0) win 8192 (DF)
Daytime- 20:50:19.983115 prober.1457 > mail.relay.13: S 7460592:7460592(0)
win 8192 (DF)
Chargen- 20:50:20.026572 prober.1458 > mail.relay.19: S 7460646:7460646(0)
win 8192 (DF)
FTP- 20:50:20.118159 prober.1459 > mail.relay.21: S 7460745:7460745(0) win
8192 (DF)
Telnet- 20:50:20.215007 prober.1460 > mail.relay.23: S 7460845:7460845(0) win
8192 (DF)
Time- 20:50:20.415433 prober.1462 > mail.relay.37: S 7461008:7461008(0) win
8192 (DF)
DNS- 20:50:20.475574 prober.1463 > mail.relay.53: S 7461095:7461095(0) win
8192 (DF)
Gopher- 20:50:20.616177 prober.1464 > mail.relay.70: S 7461209:7461209(0) win
8192 (DF)
Finger- 20:50:20.675549 prober.1465 > mail.relay.79: S 7461295:7461295(0) win
8192 (DF)
HTTP- 20:50:20.766639 prober.1466 > mail.relay.80: S 7461396:7461396(0) win
8192 (DF)
TSMUX- 20:50:20.869773 prober.1467 > mail.relay.106: S 7461494:7461494(0) win
8192 (DF)
POP2- 20:50:20.983764 prober.1468 > mail.relay.109: S 7461608:7461608(0) win
8192 (DF)
POP3-20:50:21.040400 prober.1469 > mail.relay.110: S 7461645:7461645(0) win
8192 (DF)
Portmap- 20:50:21.125914 prober.1470 > mail.relay.111: S 7461746:7461746(0)
win 8192 (DF)
NNTP- 20:50:21.224194 prober.1471 > mail.relay.119: S 7461846:7461846(0) win
8192 (DF)
NetBIOS- 20:50:21.325783 prober.1472 > mail.relay.139: S 7461955:7461955(0)
win 8192 (DF)
SMUX- 20:50:21.415527 prober.1473 > mail.relay.199: S 7462046:7462046(0) win
8192 (DF)
REXEC- 20:50:21.483920 prober.1474 > mail.relay.512: S 7462096:7462096(0) win
8192 (DF)
RLOGIN- 20:50:21.543247 prober.1475 > mail.relay.513: S 7462194:7462194(0)
win 8192 (DF)
RSHELL- 20:50:21.577268 prober.1476 > mail.relay.514: S 7462199:7462199(0)
win 8192 (DF)
PRINTER- 20:50:21.581449 prober.1477 > mail.relay.515: S 7462203:7462203(0)
win 8192 (DF)
UUCP- 20:50:21.615331 prober.1478 > mail.relay.540: S 7462205:7462205(0) win
8192 (DF)

What is the (DF) at the end of each line in the trace? That is the spiffy Don't Fragment flag.

The packets in this trace are supposed to arrive in one parcel or be thrown away.

Having examined the preceding trace, what operating system is being targeted? Most likely,
UNIX is the target, because many of these services do not normally run on other operating
systems. Of course, if the only answer back from the scan were port 139, the attacker would
guess he had detected a Windows box. Could the 139 port be targeted at UNIX, even though
139 is normally associated with Windows systems? Yes, SAMBA allows UNIX systems to "speak"
NetBIOS, and there are SAMBA exploits as well.

Broad-brush scans such as these are one reason I recommend the following:

• Turn off any service you are not actively using and wrap services you need with TCP
Wrappers configured to deny all and only allow those with whom you want to
communicate.

• Firewalls should be configured to block everything not needed to conduct an
organization's business.

One last thing before moving on—did you notice the packet that was out of sequence? Notice
how as time increases various fields, such as source ports and destination ports, also increase.
Now on the fourth line down, one of the destination ports is out of sequence. No big deal; on
the Internet, packets can arrive out of order. Now, check its source port. Interesting! This could
potentially be a signature that enables us to identify this pattern.

Access Builder?

Look at one more multiscan. This is typical of several that appeared in the December
1998/January 1999 time frame. Note that the scan targets Back Orifice (actually, it targets
31337; to target Back Orifice, this should be UDP) and Netbus. One of the interesting things
about this scan is that it hits the same machine on the same port twice. Also, note the attempt
to access port 888. This port has an official meaning: It is 3Com's Access Builder and is also
used for a database:

13:05:02.437871 scanner.2577 >
192.168.1.1.888: S 922735:922735(0) win 8192 (DF)
13:05:02.442739 scanner.2578 >
192.168.1.1.telnet: S 922736:922736(0) win 8192 (DF)
13:05:03.071918 scanner.2578 >
192.168.1.1.telnet: S 922736:922736(0) win 8192 (DF)
13:05:03.079767 scanner.2577 >
192.168.1.1.888: S 922735:922735(0) win 8192 (DF)
13:05:03.680841 scanner.2577 >
192.168.1.1.888: S 922735:922735(0) win 8192 (DF)
13:05:04.274991 scanner.2578 >
192.168.1.1.telnet: S 922736:922736(0) win 8192 (DF)
13:05:04.278967 scanner.2577 >
192.168.1.1.888: S 922735:922735(0) win 8192 (DF)
13:05:05.391873 scanner.2575 >
192.168.1.1.12345: S 922734:922734(0) win 8192 (DF)
13:05:05.392074 scanner.2576 >
192.168.1.1.31337: S 922734:922734(0) win 8192 (DF)
13:05:06.079211 scanner.2575 >
192.168.1.1.12345: S 922734:922734(0) win 8192 (DF)

Single Exploit, Portmap
The following trace is fairly simple. In this case, a system is targeting multiple sites looking for
portmapper. An interesting thing about this scan is that the attacking host comes from a U.S.
Government lab. Despite the way the government is portrayed by the X-Files and in various
movies, this probably is not a covert plot. Instead, when you get attacked by government
computers, it is an opportunity to make a difference: That system is probably compromised.
When I called that lab, the fellow in charge of security was so thankful for the tip that he was
willing to send me the attack code and data files from the attacker. The attack code was
targeting rpc.statd. The data files had two names: XXX.domains and XXX.results, in which XXX
was the target of the attack such as mil.domains and isp.domains. This is called the shopping
list. The results file was a listing of systems that had systems with active, unprotected
portmappers. These results files were presumably the shopping lists for the next stage of this
attack, the actual exploit. The sensors in this case were TAMU netloggers, an interesting but
obsolete network-logging software package and their trace is shown below.
12/03/97 02:35:53 EB419A7E muon.phy.nnn.gov 994 -> relay.nnnn.arpa.net
sunrpc
12/03/97 02:35:56 EB419A7E muon.phy.nnn.gov 994 -> relay.nnnn.arpa.net
sunrpc
12/03/97 02:36:02 EB419A7E muon.phy.nnn.gov 994 -> relay.nnnn.arpa.net
sunrpc
12/03/97 02:36:08 F94110F6 muon.phy.nnn.gov 995 -> ns1.nnnn.arpa.net
sunrpc
12/03/97 02:47:46 C4AF4C22 muon.phy.nnn.gov 954 -> 192.168.16.7
sunrpc
12/03/97 02:47:52 C4AF4C22 muon.phy.nnn.gov 954 -> 192.168.16.7
sunrpc
12/03/97 03:09:26 A63222B3 muon.phy.nnn.gov 861 ->
gw1.havregrace.arpa.net sunrpc
12/03/97 03:09:29 A63222B3 muon.phy.nnn.gov 861 ->
gw1.havregrace.arpa.net sunrpc
12/03/97 03:09:35 A63222B3 muon.phy.nnn.gov 861 ->
gw1.havregrace.arpa.net sunrpc
Port 111 TCP is an attempt to access portmapper. This trace was particularly interesting
because for several years access attempts on TCP 111 were fairly rare, although UDP 111
attempts were quite common. This particular attempt was a harbinger of things to come. Note
that the source ports are all below 1024, which indicates the process running on the
government system is running as root. This system is compromised! By March 1998, this exploit
was mowing down a large number of Sun Solaris systems, many of which were the DNS, web,
or mail servers for their sites. This is particularly interesting because the vulnerability was
widely known and the fix was widely available, as shown here:

● Computer Emergency Response Team (CERT) put out a warning in December 1997 at
http://www.cert.org/advisories/CA-97.26.statd.htm.

● More and more UNIX operating systems were shipping with "secure" portmappers.
● Wietse Venema's code to protect portmapper was available at

http://coast.cs.purdue.edu/pub/tools/unix/portmap.

rexec

http://www.cert.org/advisories/CA-97.26.statd.htm
http://coast.cs.purdue.edu/pub/tools/unix/portmap

The following trace is just a variety of rexec attempts. The interesting thing about rexec is that
it does expect a password for authentication. So, why don't the attackers use rlogin instead?
They are probably trying default passwords, because rexec does not tend to log. Also, SGI
systems shipped for a long time with a guest account with a password of guest. An attacker
could then use this at least to get reconnaissance information and probably to also begin
privilege escalation. An attacker has a low chance of being detected unless the site has either
network- or host-based intrusion detection.
The following trace represents how many attempts?
21:30:17.210000 prober.1439 > 172.20.18.173.512: S 334208000:334208000(0) win
61440
21:30:22.720000 prober.1439 > 172.20.18.173.512: S 334208000:334208000(0) win
61440
21:30:46.720000 prober.1439 > 172.20.18.173.512: S 334208000:334208000(0) win
61440
21:31:02.170000 prober.1449 > 172.20.18.173.512: S 340608000:340608000(0) win
61440
21:31:07.720000 prober.1449 > 172.20.18.173.512: S 340608000:340608000(0) win
61440
21:31:31.720000 prober.1449 > 172.20.18.173.512: S 340608000:340608000(0) win
61440
Two attempts. Observe the source ports 1439 and 1449—each is retried two times. Also, note
the sequence numbers: 33420… for the first three packets and 34060… for the second set of
three packets. You need more data to make an educated assessment, but notice that the two
sequence numbers end in 08000. Given two distinct TCP sequence numbers, it is very unlikely
that they would have this pattern. This might indicate some kind of crafting of the sequence
number. Look at other TCP sequence numbers referenced in the book, and you will discover
that most are fairly unique and do not show such patterns.
POP3
Here, we have a fast scan with nicely uniform arrival times. If this doesn't set off our scan
detect code, nothing will! A number of POP buffer exploits exist, so the target is easy to
understand.
What is odd about this trace is the host selection. The scan is targeting a particular subnet,
number 14. But what is the deal with the hosts? If you were the analyst on duty and you saw
this, what would you check for?
20:35:25.260798 bad.guy.org.4086 > 192.168.14.101.110: S
20:35:25.279802 bad.guy.org.4129 > 192.168.14.119.110: S
20:35:25.281073 bad.guy.org.4141 > 192.168.14.126.110: S
20:35:25.287761 bad.guy.org.4166 > 192.168.14.128.110: S
20:35:25.290293 bad.guy.org.4209 > 192.168.14.136.110: S
20:35:25.295865 bad.guy.org.4234 > 192.168.14.141.110: S
20:35:25.303651 bad.guy.org.4277 > 192.168.14.146.110: S
20:35:25.317924 bad.guy.org.4302 > 192.168.14.173.110: S
20:35:25.319275 bad.guy.org.4378 > 192.168.14.171.110: S
(If my answer differs from yours, it's okay.) I would want to know whether these were actually
active hosts on the 14 subnet. If they are, the attacker already clearly has some information
about us from a previous intelligence-gathering effort. If they are active hosts, and also run
popd, it is past time to consider increasing the countermeasures for that subnet!
Targeting SGI Systems?
The following trace shows a port scan, but it is pretty specific and it looks like a UNIX system is
the target. This is believed to be targeted at SGI UNIX systems due to port 5232, part of their
distributed graphics. Unless the intrusion-detection system is weighting the IMAP and telnet
port (and most do), this scan could easily be missed because it is only three packets:
21:17:12 prober.1351 > 172.20.4.6.imap: S 19051280:19051180(0) win 512 <mss

1460>
21:17:12 prober.1352 > 172.20.4.6.5232: S 12879079:12879079(0) win 512 <mss
1460>
21:17:12 prober.1353 > 172.20.4.6.telnet: S 42734399:42734399(0) win 512 <mss
1460>
Discard
When Discard gets a packet, it throws it away. When we detected this, we joked that it must be
a student of Richard Stevens (because he uses Discard for many of the examples in his book).
In this case, four SYNs were attempted to each host in the scan before moving on to the next
host in the scan:
08:02:35 dscrd.net.268 > 192.168.160.122.9: S 1797573506:1797573506(0) win
16384 (DF)

08:02:38 dscrd.net.268 > 192.168.160.122.9: S 1797573506:1797573506(0) win
16384 (DF)
Three-Port Scan
I added this scan primarily because the added latency of the HTTP portion of the scan. It is
much slower than the rest of the trace. And as an added bonus, I bet you haven't seen a
daytime scan before! Most likely, this is a benign network mapping effort out of Bell labs called
Netsizer—of course, if the source address happens to be your primary competitor, you might
want to look into this further! Here it is:
20:50:04.532822 prober.54934 > myhost.domain: S 2118852885:2118852885(0) win
8760 (DF)
20:50:08.028023 prober.54934 > myhost.domain: S 2118852885:2118852885(0) win
8760 (DF)
20:50:14.432349 prober.54934 > myhost.domain: S 2118852885:2118852885(0) win
8760 (DF)
20:50:27.226116 prober.54934 > myhost.domain: S 2118852885:2118852885(0) win
8760 (DF)
20:50:52.824148 prober.54934 > myhost.domain: S 2118852885:2118852885(0) win
8760 (DF)
20:53:26.414741 prober.54944 > myhost.http: S 2144702009:2144702009(0) win
8760 (DF)
20:53:29.913485 prober.54944 > myhost.http: S 2144702009:2144702009(0) win
8760 (DF)
20:53:49.111043 prober.54944 > myhost.http: S 2144702009:2144702009(0) win
8760 (DF)
20:54:14.710959 prober.54944 > myhost.http: S 2144702009:2144702009(0) win
8760 (DF)
20:55:05.905554 prober.54944 > myhost.http: S 2144702009:2144702009(0) win
8760 (DF)
21:00:10.209063 prober.54968 > myhost.daytime: S 2196732969:2196732969(0) win
8760 (DF)
21:00:13.703247 prober.54968 > myhost.daytime: S 2196732969:2196732969(0) win
8760 (DF)
21:00:20.103798 prober.54968 > myhost.daytime: S 2196732969:2196732969(0) win
8760 (DF)
21:00:32.902480 prober.54968 > myhost.daytime: S 2196732969:2196732969(0) win
8760(DF)
21:00:58.500635 prober.54968 > myhost.daytime: S 2196732969:2196732969(0) win
8760(DF)
Weird Web Scans
This scan earns no speed records, but that is intentional. Is the attacker looking for web
servers? We could hypothesize they are and UNIX-based web servers at that. Sending the

packet to the 0 host address is an old-style BSD broadcast; Windows systems will fail to
answer. The scan proceeds at a slower rate so that all the inputs can be processed.
Note the source port remains the same for each subnet:
18:45:06.820 b.t.t.6879 > 172.20.1.0.http: S 1025092638:1025092638(0) win
61440
18:45:09.356 b.t.t.7136 > 172.20.2.0.http: S 1041868014:1041868014(0) win
61440
18:45:12.626 b.t.t.6879 > 172.20.1.0.http: S 1025092638:1025092638(0) win
61440
18:45:14.375 b.t.t.7395 > 172.20.3.0.http: S 1059077568:1059077568(0) win
61440
18:45:15.184 b.t.t.7136 > 172.20.2.0.http: S 1041868014:1041868014(0) win
61440
18:45:16.790 b.t.t.7650 > 255.255.255.255.http: S 1075727476:1075727476(0)
win 61440
18:45:17.970 b.t.t.7905 > 172.20.5.0.http: S 1092175088:1092175088(0) win
61440
18:45:20.190 b.t.t.7395 > 172.20.3.0.http: S 1059077568:1059077568(0) win
61440
18:45:20.442 b.t.t.8160 > 172.20.6.0.http: S 1108940634:1108940634(0) win
61440
18:45:22.695 b.t.t.7650 > 255.255.255.255.http: S 1075727476:1075727476(0)
win 61440
18:45:23.648 b.t.t.7905 > 172.20.5.0.http: S 1092175088:1092175088(0) win
61440

TCP Broadcast?
Well, the 0 host ID looks like old-style broadcasts, and smells like old-style
broadcasts, but here is a comment from one of the book's reviewers:
"First, there is no such thing as broadcasting using TCP. See TCP/IP Illustrated,
Volume I, p. 169: 'Broadcasting and multicasting only apply to UDP, where it makes
sense for an application to send a single message to multiple recipients. TCP is a
connection-oriented protocol that implies a connection between two hosts (specified
by IP addresses) and one process on each host (specified by port numbers).'
"In fact, to be sure I tried this out against our test network, which contains about 25
hosts—all different OSs and hardware, old software and new software—against
several different TCP ports, using both the .0 and the .255 broadcasts…and no hosts
will answer this request. The .0 or .255 address is interpreted as a unicast address
and no other hosts on the net will pick up the packet. This further makes sense when
we think about how TCP identifies connections according to the tuple (src ip, dst ip,
src port, dst port). In the case of a broadcast address, there is no way to include that
address in the tuple. The attacker cannot obtain a broadcast-type response from
these SYN packets because there is no way to negotiate a three-way handshake using
a broadcast address."
However, routers do not work at the TCP layer, they work at the IP layer; so this
packet is not actually looking for web servers, it is doing reconnaissance hoping for
ICMP error messages such as unreachables.
The following excerpt is another web-based scan, from the access_log of a UNIX computer
running the Apache web server code. This captured the contents of the traffic destined for the
httpd port. By using both the network IDS and the host-based logs, we can fuse what is
happening. Apache is the most popular web server software in use on the Internet. This trace is
the result of a popular web server multi-CGI-BIN exploit; whisker or the nessus tools are
famous examples. These are commonly in use. We cannot seem to go a day without someone
trying to run one of these against www.sans.org:

prober - - [11/Dec/1998:15:28:26 -0500] "GET /cgi-bin/phf/ HTTP/1.0" 404 165
prober - - [11/Dec/1998:15:28:26 -0500] "GET /cgi-bin/php.cgi/ HTTP/1.0" 404
169
prober - - [11/Dec/1998:15:28:26 -0500] "GET /cgi-bin/campas/ HTTP/1.0" 404
168
prober - - [11/Dec/1998:15:28:26 -0500] "GET /cgi-bin/htmlscript/ HTTP/1.0"
404 172
prober - - [11/Dec/1998:15:28:27 -0500] "GET /cgi-bin/aglimpse/ HTTP/1.0" 404
170
prober - - [11/Dec/1998:15:28:27 -0500] "GET /cgi-bin/websendmail/ HTTP/1.0"
404 173
prober - - [11/Dec/1998:15:28:27 -0500] "GET /cgi-bin/view-source/ HTTP/1.0"
404 173
prober - - [11/Dec/1998:15:28:27 -0500] "GET /cgi-bin/handler/ HTTP/1.0" 404
169
prober - - [11/Dec/1998:15:28:28 -0500] "GET /cgi-bin/webdist.cgi/ HTTP/1.0"
404 173
prober - - [11/Dec/1998:15:28:28 -0500] "GET /cgi-bin/pfdispaly.cgi/
HTTP/1.0" 404 175
prober - - [11/Dec/1998:15:29:50 -0500] "GET /cgi-bin/phf/ HTTP/1.0" 404 165
prober - - [11/Dec/1998:15:29:51 -0500] "GET /cgi-bin/php.cgi/ HTTP/1.0" 404
169
prober - - [11/Dec/1998:15:29:51 -0500] "GET /cgi-bin/campas/ HTTP/1.0" 404
168
prober - - [11/Dec/1998:15:29:51 -0500] "GET /cgi-bin/htmlscript/ HTTP/1.0"
404 172
prober - - [11/Dec/1998:15:29:52 -0500] "GET /cgi-bin/aglimpse/ HTTP/1.0" 404
170
prober - - [11/Dec/1998:15:29:52 -0500] "GET /cgi-bin/websendmail/ HTTP/1.0"
404 173
prober - - [11/Dec/1998:15:29:52 -0500] "GET /cgi-bin/view-source/ HTTP/1.0"
404 173
prober - - [11/Dec/1998:15:29:52 -0500] "GET /cgi-bin/handler/ HTTP/1.0" 404
169
prober - - [11/Dec/1998:15:29:53 -0500] "GET /cgi-bin/webdist.cgi/ HTTP/1.0"
404 173
prober - - [11/Dec/1998:15:29:53 -0500] "GET /cgi-bin/pfdispaly.cgi/
HTTP/1.0" 404 175
IP-Proto-191
To the very best of my understanding, this cannot be an exploit and probably isn't an
immediate prelude to one. I wanted to include it, however, because IP protocol types that are
not TCP, UDP, or ICMP are not that uncommon as scans.
What is ip-proto-191? Durned if I know. An 8-bit protocol field in the IP header was set to 191:
00:32:28.164183 prober > 192.168.0.255: ip-proto-191 48
00:32:28.164663 192.168.4.5 > prober: icmp:192.168.0.255 unreach
00:32:30.192825 prober > 192.168.1.255: ip-proto-191 48
00:32:33.203521 prober > 192.168.2.255: ip-proto-191 48
00:32:36.219821 prober > 192.168.3.255: ip-proto-191 48
00:32:36.220302 192.168.4.5 > prober: icmp:192.168.3.255 unreach
00:32:38.243973 prober > 255.255.255.255: ip-proto-191 48
00:32:41.254622 prober > 192.168.5.255: ip-proto-191 48
00:32:44.262961 prober > 192.168.6.255: ip-proto-191 48
00:32:47.276258 prober > 192.168.7.255: ip-proto-191 48
00:32:50.285609 prober > 192.168.8.255: ip-proto-191 48

00:32:50.286098 192.168.4.5 > prober: icmp:192.168.8.255 unreach
What is the origin of the ip-proto-191 notation? TCPdump tries to figure out the IP protocol by
looking at the appropriate field in the IP header. TCPdump knows the common protocol
translations. If it finds a 1 in this field, it labels it as ICMP in the output—6 is TCP, and 17 is
UDP. If it is not a protocol that it knows about, however, it uses the ip-proto notation with the
number that it discovered in the protocol field.
The preceding output also shows a response from 192.168.4.5. This response, in itself, supplies
some reconnaissance about the network. Even if you do not get a protocol unreachable, you still
have every chance of seeing a host unreachable.

Summary

Analysts make many common mistakes. These include SYN floods, misconfigured networks, and
being too quick to match a signature. If possible, try to avoid sending false positives to your
CIRT.

Some of the tricks attackers are using for either stealth or better penetration, such as setting
both the SYN and FIN flag, allow these packets to be trivially detected.

Appendix B. Denial of Service

In February 2000, denial-of-service attacks were the hot topic. With a network of more than
2,000 compromised systems, most of them via a DNS buffer overflow, attackers shut down
major high-profile Internet sites such as CNN and eBay. Although the end of this chapter covers
these attacks, they are the exception and not the rule for denial of service. In general, denial-of-
service attacks groan on and on, doing little harm besides wasting people's time and bandwidth
and occasionally crashing a system. In the vast majority of these attacks, the source address is
faked or "spoofed." Please be very slow to phone the owners of the address space that you
think just hit you with a denial of service and read them the riot act! One day it might be your
address that is spoofed. This is a short chapter divided into two sections. The first section deals
with denial-of-service brute-force attacks that are widespread and regularly detected even if
they are not all that well known. The second section includes additional well-known attacks, but
these are more elegant; in fact, they tend to be one-packet kills—that is, a single attacker
packet that can freeze or shut down a system.

Brute-Force Denial-of-Service Traces
These brute-force patterns have reached a point that they are known by almost all Internet
institutions. The curious thing is that I still find sites and systems vulnerable to these attacks.

Keep in mind that one of the characteristics of many of the denial-of-service attacks is that the
attacker can use one of your systems to cause harm to someone else. The fixes are well
published and well understood; please implement them. Only you can prevent SYN floods, UDP
floods, Smurf, and Echo-Chargen!
Smurf
The Smurf attack has no effect except to consume bandwidth. The most important thing to
consider with regard to the effectiveness of Smurf is that for your site's Internet connection to
run smoothly, you depend on the security policy of other people's sites. This is a very old
attack, but you still see it deployed with the most current attack tools. Smurf is still deployed
for exactly one reason: It still works. In the following case, spoofed.pound.me.net almost

certainly did not really send the echo request to 192.168.1.255. Instead, an outside

computer interjects this into the network, as shown in Figure B.1. The poor spoofed addressee will
potentially get hit with a large number of ICMP echo replies. If spoofed is on a slow Internet
connection, this might be harmful; and if a large number of hosts reply to the Smurf, damage
can be done to fast networks.

Figure B.1. ICMP denial of service.

Cisco published the following field notice titled "Minimizing the Effects of 'Smurfing' Denial of
Service Attacks." The following quotation is from that document:
A Scenario: Assume a co-location switched network with 100 hosts, and that the attacker has
a T1. The attacker sends, for example, a 768 kbps stream of ICMP echo (ping) packets, with a
spoofed source address of the victim, to the broadcast address of the "bounce site." These ping
packets hit the bounce site's broadcast network of 100 hosts. Each of them takes the packet
and responds to it, creating 100 ping replies outbound. By multiplying the bandwidth, you see
that 76.8 Mbps is used outbound from the "bounce site" after the traffic is multiplied. This is
then sent to the victim (the spoofed source of the originating packets).1

1www.cisco.com/warp/public/707/5.html

I chose to reference a Cisco technical manual because Cisco routers—the most widely deployed
routers in the world—are one of the primary keys to eliminating Smurf attacks. Let's examine
how the attack works and then the countermeasures:
00:00:05.327 spoofed.pound.me.net > 192.168.15.255: icmp: echo request
00:00:05.342 spoofed.pound.me.net > 192.168.1.255: icmp: echo request
00:00:14.154 spoofed.pound.me.net > 192.168.15.255: icmp: echo request

http://www.cisco.com/warp/public/707/5.html

00:00:14.171 spoofed.pound.me.net > 192.168.1.255: icmp: echo request
00:00:19.055 spoofed.pound.me.net > 192.168.15.255: icmp: echo request
00:00:19.073 spoofed.pound.me.net > 192.168.1.255: icmp: echo request
00:00:23.873 spoofed.pound.me.net > 192.168.15.255: icmp: echo request

All for One
Many denial-of-service attacks and network-mapping probes use broadcasts, packets
addressed to all members of a network, to accomplish their purposes. RFC 919 sets
several standards for broadcasts, including the rule that 255.255.255.255 must not
be forwarded by a router or routing host.
How did 255.255.255.255 come to be? The local network layer can always map an IP
address into a data link layer address. Think about switched networks—that is exactly
how they work. So, the choice of an IP "broadcast host number" is somewhat
arbitrary. Something needed to be selected, and it seemed reasonable that it should
be one that was not likely to be assigned to a real host. The number whose bits are
all 1s had this property. Keep the idea of all 1s in mind; we will look at patterns
where the broadcast is not 255.255.255.255 due to subnet masking, but the all 1s
remains true.
The address 255.255.255.255 denotes a broadcast on a local hardware network,
which must not be forwarded by a router or routing host. This address might be used,
for example, by hosts that do not know their network number and are asking some
server for it. A common case of this is a diskless workstation; as it is booting up, it
broadcasts a request for help in finding its operating system. Its server hears the
request and answers, providing the next step in the boot up process and then the
customized files this system needs to do its job.
Therefore, a host on net 36, for example, might do the following:

● Broadcast to all of its immediate neighbors by using 255.255.255.255
● Broadcast to all of net 36 by using 36.255.255.255

(Note that unless the network has been broken up into subnets, these two methods
have identical effects.)
If the use of "all 1s" in an octet of an IP address means "broadcast," using "all 0s"
could be viewed as meaning "unspecified." There is probably no reason for such
addresses to appear anywhere but as the source address of a bootp. bootp is

one of the protocols used to help diskless systems and routers load their operating
systems and configuration files. Although there is a legacy ICMP Information Request
datagram, these are obsolete and should not occur in normal traffic. As a notational
convention, however, we refer to networks (as opposed to hosts) by using addresses
with 0 fields. For example, 36.0.0.0 means "network number 36," whereas
36.255.255.255 means "all hosts on network number 36."2

2 www.library.ucg.ie/Connected/RFC/919/7.htm

Directed Broadcast
If you detect a pattern such as the following 255.255.255.255, the odds are that it was sent as
a simple broadcast and has been expanded by your router, as shown here:

1. A packet originally destined for 172.20.4.255 assumes a netmask of 255.255.255.0,
the size of a Class C network. This broadcasts to all hosts of the 172.20.4 network.
2. A router, possibly in your organization, has the 172.20.4 interface. When it copies
the packet from the Internet and rebuilds it on the 4 interface, it expands the
broadcast, thereby referencing all hosts served by that interface. Therefore, it rewrites
to broadcast as 255.255.255.255.

In the following trace, the broadcast has been expanded. The all 1s broadcast is as described

http://www.library.ucg.ie/Connected/RFC/919/7.htm

earlier, and the legacy all 0s broadcast has been expanded to the network portion of the
netmask. Who answers these expanded pings? Every system that hears them! Therefore, one
packet coming in from a spoofed address ends up being amplified to hundreds or thousands of
packets. Sites that do not block incoming ICMP are known as Smurf amplifiers. You can find a
listing of these, including the top 10, at www.powertech.no/smurf or www.netscan.org. (In this case, it is
not a great honor to be in the top 10.) Take a look at the trace:
05:20:48.261 spoofed.pound.me.net > 192.168.0.0: icmp: echo request
05:20:48.263 spoofed.pound.me.net > 255.255.255.255: icmp: echo request
05:21:35.792 spoofed.pound.me.net > 192.168.0.0: icmp: echo request
05:21:35.819 spoofed.pound.me.net > 255.255.255.255: icmp: echo request
05:22:16.909 spoofed.pound.me.net > 192.168.0.0: icmp: echo request
05:22:16.927 spoofed.pound.me.net > 255.255.255.255: icmp: echo request
05:22:58.046 spoofed.pound.me.net > 192.168.0.0: icmp: echo request
05:22:58.061 spoofed.pound.me.net > 255.255.255.255: icmp: echo request
In terms of countermeasures, you can build perimeter defenses that are denial-of-service
resistant. Instead of connecting a proxy or application gateway firewall directly to your Internet
connection, you might want to have a router first. After all, they are more efficient at blocking
high-bandwidth attacks simply because they are designed to operate at "wire speeds." You
should also block outgoing packets that have a source address not from your network; this is
known as egress filtering. You can find examples of egress filtering for a large number of
routers and firewalls in the GCFW practical assignments at www.giac.org/cert.php. Many denial-of-
service attacks use spoofed source addresses. If you do not let them on the Internet, you are
being a good net-neighbor. Needless to say, if one of your systems is sending out spoofed
addresses, that is a clue that this box might have been compromised.
Echo-Chargen
Echo-Chargen is another example of a classic brute-force attack that uses poorly defended sites
and poorly configured systems as amplifiers. This attack mostly looks for UNIX systems as
amplifiers, so it is not quite as potent as Smurf, which uses any system. You know how they
depict the audiences of tennis matches on cartoons? Everybody's head goes back and forth
following the ball. This pattern is just like that except that the heads would have to oscillate at
just under the speed of light. Echo is UDP port 7; if it receives a packet it echoes back the
payload. If you send echo an "a," it replies with an "a."
Chargen (character generator) is UDP port 19. If you send Chargen any characters, it replies
with a pseudo random string of characters.
In the following trace, an outsider spoofs a number of connections to various hosts' Chargen
ports. The hope here is that they will reply back to the echo port and a game of Echo <-->
Chargen ping-pong will begin burning bandwidth and CPU cycles.
You can still detect this in actual use, but it is becoming more rare. You can help make it even
more rare. There is no reason to allow packets addressed to these ports through your
organization's firewall or filtering router. These services should be commented out of your UNIX
system's inetd.conf files:
08:08:16.155354 spoofed.pound.me.net.echo > 172.31.203.17.chargen: udp
08:21:48.891451 spoofed.pound.me.net.echo > 192.168.14.50.chargen: udp
08:25:12.968929 spoofed.pound.me.net.echo > 192.168.102.3.chargen: udp
08:42:22.605428 spoofed.pound.me.net.echo > 192.168.18.28.chargen: udp
08:47:21.450708 spoofed.pound.me.net.echo > 172.31.130.93.chargen: udp
08:51:27.491458 spoofed.pound.me.net.echo > 172.31.153.78.chargen: udp
08:53:13.530992 spoofed.pound.me.net.echo > 172.31.146.49.chargen: udp
I studied martial arts for many years and eventually became an instructor. Twice a year we
would have a black belt test. The school's master would invite other masters to form a panel for
the test. Of course, it is customary to bow to these masters, and they bow back. I have a
mischievous streak, and from time to time I would bow, they would bow, I would bow again,

http://www.powertech.no/smurf
http://www.netscan.org/
http://www.giac.org/cert.php

they would bow again, and so on, until they finally looked up with a pained expression and
walked away. I cannot look at an Echo-Chargen trace without thinking about that little trick.
The example trace is UDP, but I have found you can make the oscillation with the TCP variant of
these services as well, although I haven't figured out how to spoof the address and make it
work. For fun, if you have Cisco routers, telnet to your router's Echo or Chargen port. For
instance, $ telnet myrouter 7 accesses the TCP echo port. Many Cisco routers seem to

have these open by default.

Elegant Kills

Brute-force attacks tend to rely on spoofed addresses to provide a bit of cover for the attacker.
One packet kills can operate with a much lower footprint. They take advantage of flaws in the IP
stack's capability to deal with illegal conditions, or even bad programming. The following
sections look at several of these, including Echo-Chargen, Teardrop, Land, and a fun little attack
against an adventure game called Doom.

Teardrop

Smurf and Echo-Chargen work by brute force; Teardrop works by finesse. It takes advantage of
a simple fact: Network protocol stacks are not good at math. They are especially bad at
negative numbers. This is another ancient attack, and although it is still in use, I do not see it
that often. My intrusion-detection students must complete a practical assignment to achieve
certification. The assignment varies in the details, but essentially it is to collect and analyze
about 10 network traces. Quite often, they instrument their cable modems and collect data for a
while, and Teardrop shows up on many of the practical assignments. Therefore, it is still being
tried. The next question is this: Does it still work? Sure, but only on unpatched or older
operating systems. The following is an example of a Teardrop trace:

10:25:48.205383 wile-e-coyote.45959 > target.net.3964: udp 28 (frag
242:36@0+)
10:25:48.205383 wile-e-coyote > target.net: (frag 242:4@24)

Because it has been a long time since Chapter 3, "Fragmentation," perhaps a reminder is in order.
The top line shows a fragment named 242 with 36 octets of data for offset 0. The second line
shows 4 more octets of data for offset 24. Therefore to service this packet, the operating
system would have to rewind from 36 to 24. Negative numbers can translate to very large
positive numbers, and so the operating system is likely to scribble all over some other
program's section of memory. Try this a couple times and you kill the system.

The core problem is that many IP stacks do not know how to deal with negative, or illegal,
numbers. I most recently saw this when the PROTOS toolkit was released along with a CERT
advisory on February 12, 2002. HD Moore, a security researcher, was running the toolkit
against a Red Hat, Linux 7 box and caused a segmentation fault. We tried to look at this packet
with Ethereal, but it killed Ethereal. A TCPdump trace is shown here:

18:49:54.519006 10.0.0.1.59108 > 10.0.0.2.161: GetRequest(33)

.1.3.6.1.2.1.1.5.0[len3<asnlen4294967295] (DF)
4500 004c 0000 4000 4011 269f 0a00 0001
0a00 0002 e6e4 00a1 0038 0efc 302e 0201
0004 0670 7562 6c69 63a0 2102 0206 9202
0100 0201 0030 1530 1306 082b 0601 0201
0105 0044 84ff ffff ff02 0100

Notice that, at the top of the trace, TCPdump is trying to tell us something about the Abstract
Syntax Notation (ASN.1) length being over 4 billion bytes long. Even with modern systems, that
is one heck of a lot of memory to allocate to a single packet. The 84ff ffff ff02 near the

end of the hex dump is the value in the length field, if you were just dying to know that.

It is just a matter of time until someone finds another field in the IP stack to do this trick with.

Note that another characteristic of fragmentation is that it eludes some intrusion-detection
systems that do not support packet reassembly.

Land Attack

The Land attack is famous for two reasons: It is a very elegant one- or two-packet kill, and it is
the "hello world" of intrusion-detection filters. As soon as I heard about it, I wrote a filter to
detect it—after all, you cannot ask for an easier signature. But we never captured an attack. I
was afraid we had made some kind of silly error in the filter, so I downloaded the attack exploit
and compiled it. Now what system could I run it against? I needed something that had intrusion
detection running so that I could get a trace of the attack. At that time, we had only intrusion
detection in the DMZ. What about the web server? It was in the DMZ. So, I put the web server's
IP address into the exploit script, fired the exploit, and boom, the web server crashed as
advertised. I hurried over to reboot the web server and never gave the experiment a second
thought. Well, until our intrusion-detection analyst called. She was so excited because she had
found an actual Land attack and had already reported it to our CIRT. I just kind of said, "Great
job," and spent the rest of the day quietly whistling to myself. The detect she saw is shown in
the trace below:

12/03/97 02:19:48 192.168.1.1 80 -> 192.168.1.1
80
12/03/97 02:21:53 192.168.1.1 31337 -> 192.168.1.1
31337

I hope the statute of limitations for this deed has passed by the time this book gets printed.

We're Doomed

I love the culture I live in. First, they convince my kid to play with dolls; they just call them
action figures. When he finally gets too old to play with dolls, he trades his plastic action figures
in for cyber action figures. Some of the great cyber action figures, complete with horns and
everything, live in the game of Doom.

Doom is played on port 666. So what is going on in the following trace?

12/03/97 02:19:48 0 206.256.199.8 19 -> 192.168.102.3
666
12/03/97 02:21:53 0 206.256.199.8 19 -> 164.256.23.100

666
12/03/97 02:28:20 0 206.256.199.8 19 -> 164.256.140.32
666
12/03/97 02:30:29 0 206.256.199.8 19 -> 192.168.18.28
666
12/03/97 02:30:44 0 206.256.199.8 19 -> 164.256.67.121
666
12/03/97 02:34:47 0 206.256.199.8 19 -> 164.256.140.32
666
12/03/97 02:35:28 0 206.256.199.8 19 -> 147.168.130.93
666
12/03/97 02:36:56 0 206.256.199.8 19 -> 192.168.18.28
666
12/03/97 02:39:23 0 206.256.199.8 19 -> 147.168.153.78
666
12/03/97 02:41:55 0 206.256.199.8 19 -> 147.168.130.93
666

Apparently, some individuals are so bored that they are spoofing a bunch of addresses, such
that if these attackers chance on folks playing Doom, the Chargen output might disrupt the
game in some way (and a single packet can be enough to do the trick).

The following simulated reconstructed trace shows the cause and effect of such an action,
finding a Doom server. Again, 147.168.153.78 in this case is spoofed, and the activity is being
caused by an unknown IP address. Although Doom traffic is becoming more rare these days, a
similar game called Quake still generates a packet or two. Here is the Doom trace:

12/03/97 02:39:22 0 147.168.153.78 666 -> 206.256.199.8
19
12/03/97 02:39:23 0 206.256.199.8 19 -> 147.168.153.78
666

Actually, I had not seen this trace in a long time and was going to remove it from the material;
then the following variant showed up again in January 1999. Note that the intrusion-detection
system did flag this. What tips us off and lets us know that?

17:58:13.725824 doomer.echo > 172.20.196.51.666: udp 1024 (DF)
17:58:13.746748 doomer.echo > 172.20.196.51.666: udp 426 (DF)
18:03:24.133079 doomer.echo > 172.20.46.79.666: udp 1024 (DF)
18:03:24.157238 doomer.echo > 172.20.46.79.666: udp 426 (DF)
21:05:22.503299 dns1.arpa.net.domain > doomer.domain: 42815 (44)
21:05:26.152327 doomer.domain > dns1.arpa.net.domain: 42815* 2/0/0 (98) (DF)
23:50:15.728480 doomer.echo > 172.20.76.2.666: udp 1024 (DF)
23:50:15.751821 doomer.echo > 172.20.76.2.666: udp 426 (DF)

Sure! The domain lookup is a big hint! We have already discussed Echo and Chargen, and we
have seen them show up together. What is going on? The attacker is bouncing off an open echo
port to cover his tracks, the receiving computer will see the system with echo port in the source
address field, not the attacker. The attacker spoofs the address of the target machine to a
machine, and then bounces traffic off these ports onto the game. The preceding signature is a
tough one; 7 to 666 is also a classic signature of a UDP flood denial-of-service program called
Pepsi. However, Pepsi scanners do not usually pause for a refreshing DNS lookup.

As this discussion shows, both brute-force attacks and elegant denial-of-service attacks take
advantage of flawed site and system protection. How do they know which systems to take
advantage of? In some cases, attackers simply try all the addresses, hoping to get lucky. In
other cases, they perform reconnaissance. One of the best tools, bar none, to do this is nmap.

nmap
nmap is the most versatile scanner available at any price for Windows and UNIX (and the price
is free). This software can create a large number of traces, and in early 1999 was being called
the most potent denial-of-service engine available. Some of the best information about the
denial-of-service effects of nmap was published by the National Infrastructure

Protection Center (NIPC). NIPC produces biweekly reports called CyberNotes. Electronic

copies are available on the NIPC web site at http://www.nipc.gov. CyberNotes lists specific
vulnerabilities that nmap exploits. Issue 99-2, for example, reports a scan on port 427 that
causes the dreaded blue screen of death on Windows 98 systems running the Novell Intranet
Client. I certainly do not disagree with NIPC, but if a piece of networking software dies because
it receives a packet on a certain port, we should not blame the vulnerability scanner. Packets
happen. In fact, in the years since nmap was first released, many stacks have crashed, but this
has forced the manufacturers to fix their products because nmap is so prevalent.
nmap is a vulnerability scanner, but it operates in several powerful modes, including some that
can knock out unpatched systems. These modes include the following:

● Vanilla TCP connect() scanning
● TCP SYN (half open) scanning
● TCP FIN, Xmas, or Null (stealth) scanning
● TCP FTP proxy (bounce attack) scanning
● SYN/FIN scanning using IP fragments (bypasses packet filters)
● UDP raw ICMP port unreachable scanning
● ICMP scanning (ping-sweep)
● TCP Ping scanning
● Remote OS identification by TCP/IP fingerprinting
● Reverse-indent scanning

nmap was integrated starting with Shadow 1.6. It is great. When the analyst sees a connection
to a system from the Internet that causes concern, the analyst can scan the internal system.
Shadow's default is to use the vanilla TCP connect, although all modes are available. The
purpose is to quickly determine what services the internal system has available. And yes, from
time to time when OS fingerprinting, I have crashed a system or two. I guess the good news is
that it is really hard for the attackers to compromise the system if you crash it when
fingerprinting it!
Mutant Packet Arms Race
In mid-1998, I was talking with the development team for Cisco's vulnerability
scanner, Net Sonar. Members of the team were discussing the great pains they took
to avoid crashing systems while scanning them.
Today, nmap has some serious competition from hping2 when it comes to generating
some seriously funky packets. I hope that an arms race does not develop between
the two of them to see which can do the most harm the fastest.

http://www.nipc.gov/

Distributed Denial-of-Service Attacks

Before the millennium rollover, I ran into a former coworker who, within the past five years,
had retired from her computer-related job. After exhausting more pertinent topics, I asked her
whether she planned to fly home to Nebraska for the Christmas holiday. Indeed, she was
staying into the New Year. I was curious whether she had any fears about the possibility of Y2K
computer problems and flying. She admitted no anxiety and asked me whether there was
anything that she should be concerned about. I calmly mentioned a minor inconvenience of a
massive denial-of-service against all infrastructure systems such as power grids, airlines, and
banks continuing for days, weeks, or even years to assuage her nonexistent anxiety. Innocently
enough, she replied, "What's a denial of service?" Believe me, this is a sharp woman, and I
thought nothing less of her because of her question; I just realized that my fears were based on
my exposures, and her peace of mind was based on her exposures.

I believe, however, that exposure for most of the rest of the media-connected world changed
with the denial-of-service attacks against some of the major Internet players, such as Yahoo!
and eBay, in February 2000.You could not help but hear on the nightly news or read on the
front pages of the newspapers about these attacks that felled these giants of e-commerce.
Months later, the media still buzzes about the lack of consumer confidence associated with
these attacks much as years ago you couldn't read or hear about the Russian space station Mir
without hearing the word "beleaguered."

The software responsible for these and many more attacks is known as distributed denial of
service (DDoS) because it is a denial of service originating from many different source hosts.
Thankfully for us as authors and perhaps unfortunately for you as readers, we haven't captured
any traffic associated with these attacks. But, no discussion of denial of service today is
respectable unless the distributed denial-of-service attacks are covered.

Intro to DDoS

Remember the powerful Smurf attack that used an intermediate site and all its responding hosts
to amplify a denial-of-service attack? That is a drop in the ocean compared to the magnitude of
some of the distributed denial-of-service attacks. If you look at the architecture of the Smurf
attack, you will discover that there is really one hostile origin of the attack: A malicious user at
one host crafts one or many ICMP echo requests to a broadcast address of the amplification site
with a spoofed source IP of the target host. Many amplification hosts can magnify the intensity
of the attack.

In a DDOS attack, many different "hostile" hosts enlisted are directed to attack a target site.
These so-called hostile hosts are compromised hosts that have had distributed denial-of-service
software installed on them. Maybe this new public awareness about these attacks will eliminate
some of the naive attitudes of "why would someone want to break into my computer…it's got
nothing worth stealing."

DDoS software comes in many different incarnations, each with different terminology and
techniques. Among all, however, there is a notion of a controlling computer that directs the

compromised hosts to attack a site. Therefore, you have multiple origins of hostile hosts
simultaneously attacking the victim site. The intent is to clog the portals of the victim site by
consuming the resources for handling legitimate traffic. The victim site has to figure out a way
to block the DDoS traffic while still allowing the legitimate traffic.

DDoS Software

Historically, four different DDoS programs were known: Trinoo, Tribe Flood Network (TFN),
TFN2K, and Stacheldraht (German for barbed wire). With each new release, they seem to have
evolved into more complex packages with richer functionality. Most work on Linux or Solaris
hosts, and TFN2K works on Windows NT hosts. Reports of new Windows-like DDoS are
surfacing.

Some new terminology must be introduced. At the top of the DDoS attack, you have a host,
usually known as the client, which is used by the person coordinating the attack. Next, at a
layer below that, you have a host or hosts known by the term master or handler. The master
controls subservient hosts to launch attacks. Finally, at the bottom, you have hosts known both
as agents or daemons, which actually launch the attacks. The terminology gets tricky because it
sometimes differs for the individual attacks.

Trinoo

This software uses controlling hosts known as masters, and attacking hosts known as daemons.
The communications between the client and the masters and the masters and the daemons is
done using TCP and UDP. There are standard ports, but these can be altered. Trinoo can send
only UDP floods to random destination port numbers on the victim host. Communications
between hosts in an unaltered configuration are as follows:

client master: destination port TCP 27665

master daemons: destination port UDP 27444

daemons master: destination port UDP 31335

TFN

Chapter 4, "ICMP," discussed TFN. Basically, there are TFN masters and daemons, which again
represent the controlling hosts and the attacking hosts. The communication between master
and daemon is done via an ICMP echo reply. The ICMP echo reply can direct the daemon to
send a UDP flood, TCP SYN flood, ICMP echo flood, or a Smurf attack. The master can
manipulate the IP identification number and payload of the ICMP echo reply to identify the type
of attack to be launched. TFN can also spoof the source IP to hide the origin of the attack.

TFN2K

TFN2K was the first of the DDoS programs to be transported to Windows. The communications
between the master and agents can be encrypted and can be over TCP, UDP, or ICMP with no
identifying ports. The master can spoof the source IP so that if it is detected, the real master
cannot be identified. The agent can attack using a TCP SYN flood, a UDP flood, ICMP flood, or
Smurf (as we saw with TFN). Additionally, the attacking agent can alternate among these types
of attacks for any given attack. And, the agent-generated attack packets have a spoofed source
IP by default.

Stacheldraht

Stacheldraht is a combination of Trinoo and TFN with encryption added to communications
between the client and handler and the handler and the agents. Agents can generate TCP SYN
floods, UDP floods, ICMP floods, and Smurf attacks against the victim. Default communications
are as follows:

client handler: TCP port 16660 or 60001

handler agent: TCP port 65000 or ICMP echo reply

agent handler: TCP port 65000 or ICMP echo reply

Today, since the discovery of the leaves worm with the f.exe malicious code in June 2001, the
main emphasis seems to be on controlling systems from IRC channels or using flooding IRC
bots. If you see traffic entering or leaving your network on TCP 6667 (actually TCP 6660–6670)
you probably should consider taking a close look at it, unless you are sure the owner of the
system is actually using IRC to chat.

Summary

In denial-of-service attacks, the source address is probably spoofed. Please report them to your
CIRT anyway. Many of the denial-of-service attacks are very old and well understood; this does
not mean they aren't effective. Although there is nothing impressive about Echo-Chargen, I was
just talking with a major Internet service provider that lost a T3 circuit for three hours to an
oscillation.

As far as DDoS attacks, you can do little right now if you become a victim site. A document is
available from www.incdents.org to guide you step by step if you think one of your UNIX hosts might
be infected with one of these Trojans. A wise analyst will download and read this from
www.incidents.org/react/trojan.php before she has to deal with an infected system. And, you certainly
can take some measures for preventing your site from becoming a launching ground. First,
make sure you have egress filtering that allows packets to leave your network only if they
contain source IPs from your network. There is an excellent paper on egress filtering available
from Incidents.org, www.incidents.org/protect/egress.php. This prevents source IP spoofing used by many
of the attacks. Also, you can configure your intrusion-detection system to look for some of the
signatures so that you have detection capabilities if you do become a launching site. And, as
trite it sounds, you have less chance of a host compromise if you block unnecessary traffic into
your sites and your hosts are well patched and maintained. This prevents the compromises
necessary to install the DDoS software.

Appendix C. Detection of Intelligence Gathering

http://www.incdents.org/
http://www.incidents.org/react/trojan.php
http://www.incidents.org/protect/egress.php

Chapter 16, "Architectural Issues," raised the issue that CIRTs have to focus primarily on
compromised systems. And they do! How would you feel if you were on the phone with your
CIRT trying to get information you need to deal with the latest nasty Trojan horse code and
they said, "Sorry we are devoting all our resources to a new intelligence-gathering technique?"
Wise intrusion analysts devote a lot of attention to the prevention, detection, and reporting of
mapping techniques. They know that recon is just part of the game. As attackers amass high-
quality information about the layout of networks and distribution of operating systems, it
enables them to specifically target their attacks. You do not want to allow your organization to
get in a one-exploit, one-kill situation!
The line between exploit/denial of service and recon probe couldn't be thinner. Any exploit that
fails (or succeeds) also provides intelligence about the target.
This appendix contains many traces showing information-gathering techniques and reviews
some of the ways an attacker might map the network and its hosts. This appendix also briefly
covers NetBIOS-specific issues because there are so many deployed Windows systems. The
appendix concludes by examining some of the so-called stealth mapping techniques.

Network and Host Mapping
The goal of host mapping is just to determine what hosts or services are available in a facility.
In some sense, the odds are in the analysts' favor; we are, after all, defending very sparse
matrices. Suppose you have a Class B network, 172.20.0.0 (which is 65,536 possible
addresses). There are also 65,536 TCP ports and 65,536 UDP ports possible per host. That
means that the attacker has 23 trillion+ possible targets. Scanning at a rate of 18 packets per
second, it would take a shade under 5 million years to completely scan the network. Because
computers have a life span of between three and five years, the rate of change confounds the
usefulness of the scan.
Now to be sure, attackers are coming up with smarter and faster scanning techniques. An
attacker has no need to consider all possible port numbers. Fifty TCP and UDP ports account for
the probable services, so the target space is something in the range of 163 million (which could
be scanned in less than four months at 18 packets per second). Hmmmm, that is achievable!
And if the site doesn't have intrusion detection, the site owners will probably never know
whether the attacker's scan randomizes the addresses and ports a bit.
If the attackers can get an accurate host map, however, they can turn the tables on those of us
who defend networks big time. Many address spaces are lightly populated. If the attacker can
determine where the hosts are, they have a serious advantage. Suppose our Class B network is
populated with only about 6,000 computers, for instance, and the attacker can find them. Now
the attacker can scan the populated hosts on the network, at 18 packets per second, in less
than 10 days—and there are still much more efficient ways to do the scan. In fact, if we allow
ICMP echo request broadcasts, they can ping map our network with only 255 packets.
The point of the story is obvious. If attackers cannot get intelligence information about our site,
they are forced to guess about a very sparse matrix. If we do let their intelligence-gathering
probes succeed, they don't have to do much guessing at all.
So how can an attacker get such an accurate host map? Many sites still make a host table
available for FTP download. Other sites allow DNS zone transfers. Or, perhaps the attacker has
to work to discover this information with host scans.
Chapter 4, "ICMP," covered some of the more rudimentary ICMP mapping techniques. The crudest
of them all tried to send ICMP echo requests to individual hosts and created a lot of noise doing
so. We also saw the broadcast ICMP echo requests that attempted to map a network by sending
the ICMP echo requests to the .0 and .255 addresses, possibly making the process more

efficient and less noisy. This section describes another mapping attempt using the echo request
and revisits the network-based broadcast in more detail.
Host Scan Using UDP Echo Requests
In the following trace, the attacker is targeting multiple network addresses. Two were detected
by this sensor constellation, but it is very probable there were many more. By interleaving the
scan, the attacker has managed to space the UDP echo requests far enough apart that the
probe will not be detected by most scan detect codes. The scrambled addresses are also a nice
touch. The udp 6 refers to UDP payload with 6 bytes of data. As discussed in the last section in

this chapter, stealth in intrusion detection has a fairly specific meaning, but I consider the low
and slow approach the best stealth technique. Here is the trace:
02:08:48.088681 slowpoke.mappem.com.3066 > 192.168.134.117.echo: udp 6
02:15:04.539055 slowpoke.mappem.com.3066 > 172.31.73.1.echo: udp 6
02:15:13.155988 slowpoke.mappem.com.3066 > 172.31.16.152.echo: udp 6
02:22:38.573703 slowpoke.mappem.com.3066 > 192.168.91.18.echo: udp 6
02:27:07.867063 slowpoke.mappem.com.3066 > 172.31.2.176.echo: udp 6
02:30:38.220795 slowpoke.mappem.com.3066 > 192.168.5.103.echo: udp 6
02:49:31.024008 slowpoke.mappem.com.3066 > 172.31.152.254.echo: udp 6
02:49:55.547694 slowpoke.mappem.com.3066 > 192.168.219.32.echo: udp 6
03:00:19.447808 slowpoke.mappem.com.3066 > 172.31.158.86.echo: udp 6
Instead of relying on the ICMP echo request to find hosts, this scan is seeing whether any host
will reply on the echo port. The echo port echoes back (imagine that) any characters sent to it.
Good system administrators should not have this port listening and good network
administrators should not allow in traffic to this port.
A Word About Detecting Scans
Until some brilliant researcher comes up with a better technique, scan detection boils
down to testing for X events of interest across a Y-sized time window. An intrusion-
detection system can and should have more than one scan detect window. For
instance, we have seen several scans that exceed five events per second. By using a
short time window in the range of one to three seconds, the system can detect a high-
speed scan and alert in near real-time, three to five seconds after the scan begins.
Nipping such scans in the bud is one of the best uses of automated reaction. The next
reasonable time window is on the order of one to five minutes. This detects slower
but still obvious scans. The Shadow intrusion-detection system has had some success
with a scan detect of five to seven connections to different hosts over a one-hour
window.
I developed code that was enhanced by Bill Ralph that implemented a scan detect
process designed to examine a 24-hour time window to investigate the TCP half-open
scans and mildly low and slow scans. Now that most intrusion detection systems feed
databases, a major focus of console development is detection of low and slow scans.
Scans have been detected using database queries with rates as low as five packets
from a single IP address over 60 days. A scan rate that low makes sense only if it is
interleaved (executed in parallel from multiple source addresses) to the extreme. We
have documented scans of about 2,500 hosts working together and the entire
w32.leaves worm network was about 30,000 compromised hosts, so distributed slow
scans are in the hands of attackers.
Netmask-Based Broadcasts
Which of the echo requests in the following trace are broadcasts? All of them! We all recognize
the 0 and the 255, but they are all broadcast packets under the right conditions, and the point
of this trace is to test for these conditions. What are these right conditions? They are networks
that have a different subnet mask than the usual one. Take a look:
02:21:06.700002 pinger> 172.20.64.0: icmp: echo request
02:21:06.714882 pinger> 172.20.64.64: icmp: echo request

02:21:06.715229 pinger> 172.20.64.63: icmp: echo request
02:21:06.715561 pinger> 172.20.64.127: icmp: echo request
02:21:06.716021 pinger> 172.20.64.128: icmp: echo request
02:21:06.746119 pinger> 172.20.64.191: icmp: echo request
02:21:06.746487 pinger> 172.20.64.192: icmp: echo request
02:21:06.746845 pinger> 172.20.64.255: icmp: echo request
I once worked in a facility that charged for network addresses. A single host address was
$50/month and a subnet with a netmask of 255.255.255.0, or 256 possible addresses, was
$1,000/month. The facility had a Class B address space assigned to it, 172.29.0.0, which they
broke up into subnets. It turns out that if we bought a router and leased a subnet from them,
we could bring our address space tax way down. Here is how.
Rent one subnet 172.29.15.0 for $1,000/month. The expected subnet mask would be
255.255.255.0. That gives us 256 possible addresses, but 0 and 255 are not usable for hosts,
so that leaves 254 usable addresses. At $50/month, that is $12,700/month; so getting the
subnet for $1,000/month is already a big win. With our own router, however, we could make
the subnet mask anything we wanted on "our" side of the router.
Suppose we could find three more small groups as cheap, er frugal, and ruggedly individual as
we are. We could use 2 bits of our address space for internal subnets to create four subnets
with 6 bits of address space each. 26 is 64. The netmask for this is 255.255.255.192, or in hex
0xffffffc0. We could each have our own subnet to do with as we please and split the
$1000/month for just a little more than the price of five individual addresses. Great, but what is
the broadcast value for a subnet mask of 255.255.255.192?
255 – 192 = 63, which is the broadcast value for an "all 1s" broadcast, which means 0 or 64 is
the value for an "all 0s." If that is too easy, however, consider this:
c 0 in hex is
1100 0000 in binary.
^^ the two high order bits were lost to the NETID
 ^^ ^^^^ so we have 6 bits of host ID to play with
6 bits all set to 1s = 32 + 16 + 8 + 4 + 2 + 1 = 63.
Now, the pattern we see in the trace above is an ICMP echo request to 0, 64, 63, 127, 128,
191, 192, and 255.
Could 127 and 128 also be broadcasts? Sure, if we have a situation in which we need lots of
subnets, but each one can have a lower number of hosts if we can steal 1 bit from the HOSTID
space and use it for subnets. If we use 25 bits for the NETID (33,554,432 possible subnets)
each with 7 bits of HOSTID space (128 possible addresses), this would be a subnet mask of
255.255.255.128. What is the broadcast address? 255 – 128 = 127. 127 is the "all 1s"
broadcast.
Could 191 and 192 also be broadcasts? If we have a situation in which we need lots and lots of
subnets, but each one can have a low number of hosts, we can use 27 bits for the NETID
(134,217,728 possible subnets) each with 5 bits of HOSTID space (32 possible addresses). This
is a subnet mask of 255.255.255.64. 255 – 64 = 191.
Of course if we allow ICMP in, they could just send one packet with an ICMP netmask request
and be done with it! If the site answers a netmask request, it returns the network mask that it
is using, eliminating the guesswork.
Port Scan
Time for an easier trace. The following trace is a basic port scan. After our attacker has found a
host, he may want to scan it to see what services are active. This trace is TCP, and the scan
counts down on the destination port. The skips in the source ports are interesting. This may be
a very busy machine or more than one scan may be going on. This is a good example of a
bursty trace; compare the arrival times at the beginning of the trace to the end. In the
beginning of the trace, there is a lower number of packets per second arriving than at the end.
Any number of factors can influence this. If we can correlate this trace to other traces from
other sensor systems and they are also bursty, however, we can begin to make some

assumptions about the source machine. The skipped source ports indicate the source of the
burstiness may be the source computer and not the network in between. If we can match up
the source ports of our detect with a detect from another sensor, we may be able to make
assumptions as to whether multiple scans are occurring, or whether this scan is being initiated
from a busy multiple-user computer. The trace follows:
09:52:25.349706 bad.guy.org.1797 > target.mynetwork.com.12: S
09:52:25.375756 bad.guy.org.1798 > target.mynetwork.com.11: S
09:52:26.573678 bad.guy.org.1800 > target.mynetwork.com.10: S
09:52:26.603163 bad.guy.org.1802 > target.mynetwork.com.9: S
09:52:28.639922 bad.guy.org.1804 > target.mynetwork.com.8: S
09:52:28.668172 bad.guy.org.1806 > target.mynetwork.com.7: S
09:52:32.749958 bad.guy.org.1808 > target.mynetwork.com.6: S
09:52:32.772739 bad.guy.org.1809 > target.mynetwork.com.5: S
09:52:32.802331 bad.guy.org.1810 > target.mynetwork.com.4: S
09:52:32.824582 bad.guy.org.1812 > target.mynetwork.com.3: S
09:52:32.850126 bad.guy.org.1814 > target.mynetwork.com.2: S
09:52:32.871856 bad.guy.org.1816 > target.mynetwork.com.1: S
Scanning for a Particular Port
So what service runs on TCP 7306? Durned if I know. As I mentioned in Appendix A, it never hurts
to ask www.google.com, because all of the port lists I have looked at are incomplete. This trace was
collected in late December 1998, which was the beginning of a number of interesting scans that
all seemed to be targeting strange ports. This scan is well crafted; there is no obvious
signature.
The first and last packet in the following trace resolve to a host name; the middle four don't, as
is obvious from the fact that the Internet address is shown for these rather than a name. This
can indicate that the attacker is "shooting in the dark," that he does not have an accurate
network map. Often a reason some names do not resolve is that they don't exist. Take a minute
to look at the last packet in the trace; source ports usually increase, but this decreases by 22.
Because the initial sequence number (49684211) is also lower, this packet probably got lost
along the way and arrived out of order:
09:54:40.930504 prober.3794 > lula.arpa.net.7306: S 49684444:49684444(0) win
8192 (DF)
09:54:40.940663 prober.3795 > 192.168.21.20.7306: S 49684454:49684454(0) win
8192 (DF)
09:54:41.434196 prober.3796 > 192.168.21.21.7306: S 49684945:49684945(0) win
8192 (DF)
09:54:41.442674 prober.3797 > 192.168.21.22.7306: S 49684955:49684955(0) win
8192 (DF)
09:54:41.451029 prober.3798 > 192.168.21.23.7306: S 49684965:49684965(0) win
8192 (DF)
09:54:41.451049 prober.3776 > host.arpa.net.7306: S 49684211:49684211(0) win
8192 (DF)
Complex Script, Possible Compromise
The next trace is comprised of multiple individual probes and attacks. It is shown here in five
parts. The accesses to portmap (SUNRPC) imply this attacker is attempting a compromise or
gathering intelligence. Further, the system answers back, which is a bad thing. Portmap should
be blocked by the filtering router or firewall, and secure portmap code should be on any system
that runs SUNRPC. Note that these attacks are directed against two systems: host 16 and host
17. From the ports accessed, I assume these are UNIX systems. It is quite possible that these
two systems have a trust relationship so that if one falls, they both fall.
Then we see the access to TCP port 906, which is unassigned, and the target system answers
back. This could well indicate that malicious code has been installed on the system. Instead of
sending or receiving data, however, the attacker closes the connection. Two hours later, the

http://www.google.com/

attacker pings to see whether the systems are still there. Take a look:
00:35:33.944789 prober.839 > 172.20.167.16.sunrpc: udp 56
00:35:33.953524 172.20.167.16.sunrpc > prober.839: udp 28
00:35:33.984029 prober.840 > 172.20.167.17.sunrpc: udp 56
00:35:33.991220 172.20.167.17.sunrpc > prober.840: udp 28

00:35:34.046598 prober.840 > 172.20.167.16.906: S 2450350587:2450350587(0)
win 512
00:35:34.051510 172.20.167.16.906 > prober.840: S 1996992000:1996992000(0)
ack 2450350588 win 32768 (DF)

00:35:34.083949 prober.843 > 172.20.167.17.sunrpc: udp 56
00:35:34.089272 172.20.167.17.sunrpc > prober.843: udp 28

00:35:34.279472 prober.840 > 172.20.167.16.906: F 117:117(0) ack 69 win 32120
00:35:34.284670 172.20.167.16.906 > prober.840: F 69:69(0) ack 118 win 32768
(DF)

02:40:43.977118 prober > 172.20.167.16: icmp: echo request
02:40:43.985138 172.20.167.16 > prober: icmp: echo reply
The preceding trace is fairly significant, and as an analyst I would be concerned and recommend
further investigation. Let's talk about response for a minute. We want to back up, investigate,
contain, and clean. If these were my systems, I would direct the following:

● Take your hands off the keyboard and keep them off.
● Pull the network cable immediately; we will be right there.
● After you are on the scene, one of your top priorities is to back up the system(s).
● Treat the backup tape as evidence.

The port 906 bears further investigation. The easiest thing to do is bring a laptop and a small
hub to the system you expect may be compromised. Plug the laptop and one of the possibly
compromised systems into the hub. Then, load your own copies of system utilities (ls, ps,
netstat, for example) into a directory on the suspect system and set your path to that directory,
or get them from a CD that you have created. From the laptop, telnet to the possibly
compromised system on port 906. Run your versions of netstat and ps and such on the suspect
system to see what is active. Also, examine the .rhosts and /etc/hosts.equiv on the suspect
system to see what other systems are trusted by our dynamic duo.
An Alternative Approach
There is no way I can do justice to incident handling in a few paragraphs. Incident
Handling Step by Step is a collaboration of more than 90 incident handlers. It is
available from www.sans.org. One best practice technique if the system is down, or must
be rebooted, is to use a bootable CD-ROM. Then, you can mount the system disk as a
data drive. If at all possible, keep the original hard drive as evidence.
When you are finally satisfied that you understand what is going on with port 906, unless you
are totally certain the system was not compromised, the following is the best course of action.
Turn to the system owners and ask when the last full backup was made. Make sympathetic
clucking noises as they say "never" or "two years ago" and nod your head sadly. Look them in
the eye and ask whether any data absolutely must be saved. Back up data files only, format the
hard drive, and tell them to be sure to install all the appropriate security patches before putting
the system back in business. Hook your laptop to the local area network. Scan the local net for
SUNRPC and also for systems that answer on port 906, whatever else you have learned.
Continue nuking from high orbit until the infection is sanitized.

http://www.sans.org/

Does this sound draconian? The death of a thousand cuts is far worse. By the way, we have
talked about Loki and distributed denial of service tools like Trinoo using echo requests and
replies for other purposes. Perhaps you would want to take a close look at the content of that
ping in the trace as well.
"Random" Port Scan
This scan was well on its way to setting a speed record. This is another example of scanning
ports that don't make any sense. There is no detectable signature; the purpose of the scan is
unknown:
11:48:42.413036 prober.18985 > host.arpa.net.794: S 1240987936:1240987936(0)
win 512
11:48:42.415953 prober.18987 > host.arpa.net.248: S 909993377:909993377(0)
win 512
11:48:42.416116 prober.19031 > host.arpa.net.386: S 1712430684:1712430684(0)
win 512
11:48:42.416279 prober.19032 > host.arpa.net.828: S 323265067:323265067(0)
win 512
11:48:42.416443 prober.19033 > host.arpa.net.652: S 1333164003:1333164003(0)
win 512
11:48:42.556849 prober.19149 > host.arpa.net.145: S 2112498338:2112498338(0)
win 512
11:48:42.560124 prober.19150 > host.arpa.net.228: S 1832011492:1832011492(0)
win 512
11:48:42.560824 prober.19151 > host.arpa.net.840: S 3231869397:3231869397(0)
win 512
11:48:42.561313 prober.19152 > host.arpa.net.1003: S 2435718521:2435718521(0)
win 512
11:48:42.561437 prober.19153 > host.arpa.net.6: S 2632531476:2632531476(0)
win 512
11:48:42.561599 prober.19165 > host.arpa.net.280: S 2799050175:2799050175(0)
win 512
11:48:42.563074 prober.19166 > host.arpa.net.845: S 2065507088:2065507088(0)
win 512
11:48:42.563115 prober.19226 > host.arpa.net.653: S 1198658558:1198658558(0)
win 512
11:48:42.563238 prober.19227 > host.arpa.net.444: S 1090444266:1090444266(0)
win 512
11:48:42.565041 prober.19274 > host.arpa.net.907: S 2414364472:2414364472(0)
win 512
Okay, we don't know the purpose of the scan, and that is frustrating. So as an analyst, what do
we know about this? We know it is fast and we know that the source port behavior is
unpredictable—sometimes it skips, and sometimes it doesn't. Why doesn't the trace make
sense? Why in the world is someone scanning so many unknown ports? I am not sure that we
will ever know these answers. In the past few years, there have been a lot of very odd scan
patterns. The best guess I have is that someone was using nmap, hping2, isic, packetx, or a
similar tool to craft scans that had no possible purpose, probably from spoofed source
addresses. That answers how, but not why!
Here is a guess: to drive intrusion-detection analysts crazy; to see what they would report and
what they wouldn't; to see whether the scanners could cause a CNN news report that the world
was under some horrid new cyber attack. Granted, it is far fetched, but it is the best I can come
up with. How should the analyst react to this trace and other unknown seemingly random
scans? I do recommend reporting stuff like this, because you never know what piece of
information will help your CIRT. If your firewall is set to deny everything not specifically
allowed, and none of your hosts answer back, however, don't get stressed. The best idea is to

create a directory named "Scans_From_Mars" and file these detects there.
Database Correlation Report
I am a strong fan of allowing analysts to "fire and forget"—that is, when they see a detect, just
report it and move on. When we first started doing fairly large-scale intrusion detection (five
sites, 12,000 computers or so), the analyst had to manually check all the sensors for a
correlation of source port, source IP, destination port, destination IP, and so on. Back then, if
you were looking for something like correlation of TTL field or some behavior of the sequence
number, it might take days to sort it out.
Life is too short for that kind of madness. After a pattern has been detected and reported, the
database looks to see whether any correlations exist. This is what such a report might look like.
This report was generated by a military correlation system known as Dark Shadow. It is based
on an Oracle database. When an analyst detects and reports an intrusion attempt, Dark Shadow
checks for that pattern across its data window of X sensor locations for Y months. If it finds a
match, it creates a correlation report. This is why the analyst can operate in a fire-and-forget
mode.
Note that from the source port ranges, it appears that two processes are running (destination
port 111 is contacted by source ports from 617–1023, and destination port 25 by ports
2294–29419) on scanner, one to check email and the other to check portmapper. The two
processes are probably bound by a shell script and reading from a file of target IP addresses.
The probability is very high that this scan is interleaved across many more addresses. Here it is:
06/04/98 03:20:25 scanner 622 172.20.1.41 111 t
06/04/98 04:02:35 scanner 21091 172.20.1.1 25 t
06/04/98 04:02:36 scanner 890 172.20.1.1 111 t
06/04/98 04:06:04 scanner 21242 172.20.10.114 25 t
06/04/98 04:09:15 scanner 617 172.20.10.114 111 t
06/04/98 07:24:47 scanner 2295 192.168.229.18 25 t
06/04/98 07:28:06 scanner 1017 192.168.229.18 111 t
06/04/98 07:28:21 scanner 2333 172.20.1.41 25 t
06/04/98 07:31:40 scanner 729 172.20.1.41 111 t
06/04/98 12:46:21 scanner 20553 172.20.48.157 25 t
06/04/98 12:49:40 scanner 1023 172.20.48.157 111 t
06/04/98 16:05:22 scanner 29276 172.20.1.1 25 t
06/04/98 16:08:33 scanner 803 172.20.1.1 111 t
06/04/98 16:08:52 scanner 29419 172.20.10.114 25 t
06/04/98 16:08:53 scanner 900 172.20.10.114 111 t
SNMP/ICMP
The Simple Network Management Protocol (SNMP), even before the exploits that followed the
release of the PROTOS toolkit in early 2002, could provide an attacker with a lot of information
about your hosts and network configuration. According to the RFC NSMP is port 161 TCP and
UDP. I have never seen a TCP version of SNMP in practice, but for safety,) port 161 TCP and
UDP should be blocked from the Internet.
It is amazing how many devices, such as micro hubs, x-terminals, and printers, have SNMP
agents. By default, these devices are protected by a well-known password (community string),
typically "public." Many security-conscious organizations change this password, usually to one of
the following:

● Private
● Internal
● The name of the organization

Note: Forgive me if you thought I was serious. The choices of private, internal, or the name of
the organization for SNMP community strings are not advised. Pick something hard to guess.
In the following trace, notice the use of broadcast for both SNMP and ICMP. This is a very

effective mapping technique because the attacker doesn't have to send many packets to
potentially collect a lot of information.
17:31:33.49 prober.1030 > 192.168.2.255.161: GetNextRequest(11)[|snmp]
17:31:33.73 prober.1030 > 255.255.255.255.161: GetNextRequest(11)[|snmp]
17:31:33.73 prober > 255.255.255.255: icmp: echo request
...
17:43:17.32 prober > 192.168.1.255: icmp: echo request
17:43:17.32 prober.1030 > 192.168.1.255.161: GetNextRequest(11)[|snmp]
FTP Bounce
We have another trace courtesy of the correlation database engine. In this case, the analyst is
searching for FTP-DATA (TCP port 20) without an initiating FTP (TCP port 21). This can be the
result of FTP bounce. The advantage to the attacker of using FTP bounce is that his identity is
hidden. This is just like using an open proxy server, except that the source port will always
show as TCP 20 for FTP-DATA. To do this, they just log on to a vulnerable FTP server as
anonymous and open up arbitrary ports to probe the intended victim. This is not usually a very
serious threat, unless the FTP server is a trusted host by its organization. Then, an attacker
may be able to use the FTP server to probe the organization. FTP bounce is the subject of a
CERT advisory, which you can find at www.cert.org/ftp/cert_advisories/CA-97.27.FTP_bounce.
In some implementations of FTP daemons, the PORT command can be misused to open a
connection to a port of the attacker's choosing on a machine that the attacker could not have
accessed directly. There have been ongoing discussions about this problem (called "FTP
bounce") for several years, and some vendors have developed solutions for this problem.
When we uncovered the traffic in the following trace, we went back to prober and it was an FTP
server, it supported anonymous FTP, and we were able to use the port command as advertised.
The interesting thing is this trace was detected long before going to unknown ports became a
fad. The following trace represents all the connections from prober to the protected network
(172.20.152):
date time source IP src port dest IP dest port
04/27/98 10:17:31 prober 20 172.20.152.2 3062 t
04/27/98 10:27:32 prober 20 172.20.152.2 4466 t

05/06/98 06:34:22 prober 20 172.20.152.2 1363 t
05/06/98 09:12:15 prober 20 172.20.152.2 4814 t
05/06/98 09:15:07 prober 20 172.20.152.2 1183 t
05/06/98 10:11:30 prober 20 172.20.152.2 1544 t

NetBIOS-Specific Traces
This section examines some traces that appear to be targeted at Windows systems. NetBIOS
uses 135–139 TCP and UDP. It is certainly true that other systems than Windows use NetBIOS
(SAMBA, for example), but as a general rule NetBIOS traffic can be expected to be generated
by and targeted against Windows systems.
A Visit from a Web Server
One of the characteristics of NetBIOS is that traffic to destination port UDP 137 is often caused
by something a site initiates. If you send email to a site running Microsoft Exchange, for
example, the site will often send a port 137 attempt back. The following trace turned up
because we saw 137s and then we started searching for the cause factor. To find the answer,
we pulled all traffic for jellypc and found the web access. Then, we did the same for jampc and
it was the same pattern. Being able to pull all the traffic for a host is very valuable when doing

http://www.cert.org/ftp/cert_advisories/CA-97.27.FTP_bounce
http://safari.informit.com/?xmlid=0-73571-265-4/22991533

analysis. If your IDS does not support this, beat on your vendor!
Public Safety Announcement
Although this section focuses mostly on NetBIOS, let me take a minute to mention
that there are hostile web servers on the Internet. When a system from your site
visits a web server, that server can collect a lot of information about you, including
your operating system and browser version. If your site doesn't use Network Address
Translation (NAT), the web server will have your IP address. It is often possible to
extract the web client's email address. Some sites open a connection back to the
client and perform what we believe is TCP stack analysis. (And we haven't even
discussed cookies.)
The web server in the jellypc trace wasn't satisfied with just the information it could collect from
the HTTP headers; the server wanted more, so another system from the same subnet comes
back to the hosts that visited the web server to collect the information available from the
NetBIOS Name Service.
Here is the pattern:
12/02/97 08:27:18 jellypc.arpa.net 1112 -> www.com http
12/02/97 08:27:19 0 bill.com 137 -> jellypc.arpa.net 137

12/02/97 17:06:03 jampc.arpa.net 2360 -> www.com http
12/02/97 17:08:10 0 bill.com 137 -> jampc.arpa.net 137
I got on the phone and had a great chat with a technical type who runs the network there. It
turns out that they are using a piece of commercial software for marketing purposes that
creates a comprehensive database of your likes and dislikes.
If you want to see what kind of information is available about a particular Microsoft Windows
host, the command is called nbtstat and it runs on Windows NT systems. A Windows host that
runs NetBIOS cannot refuse to answer an nbtstat. A sample trace is shown here:
C:\>nbtstat -a goo

NetBIOS Remote Machine Name Table

 Name Type Status

Registered Registered Registered
MAC Address = 00-60-97-C9-35-53

GOO <20> UNIQUE
GOO <00> UNIQUE
KD2 <00> GROUP
KD2 <1C> GROUP
KD2 <1B> UNIQUE
GOO <03> UNIQUE
SRN0RTH <03> UNIQUE
INet~Services <1C> GROUP
IS~GOO <00> UNIQUE
KD2 <1E> GROUP
KD2 <1D> UNIQUE
..__MSBROWSE__.<01> GROUP
The NetBIOS name of my machine, Goo, can be picked up as well as my workgroup, KD2. The
logon name I use on that machine is srnorth. It is also possible to determine that I have a
master browser cookie.
Perhaps this application of the wildcard request doesn't concern you, but I have been able to
use nbtstat queries to determine an entire organizational structure as well as most of the logon
names.

Null Session
But wait, there's more. Null sessioning has been described as analogous to finger. In essence, it
is logging on to a system as a nobody user. Although you cannot modify anything, you can
learn about the system. A sample command string is as follows:
net use \\172.20.244.164\IPC$ "" /USER:""
This generates literally pages of information, a section of which is shown here:
2/18/98 1:39 AM - Jsmith - \\192.168.4.22
UserName

Administrator
 Groups,Administrators (Local,
Members can fully administer the computer/domain)
 AccountType,User
 HomeDrive
 HomeDir
 PswdCanBeChanged,Yes
 PswdLastSetTime,Never
 PswdRequired,Yes
 PswdExpires,No
 AcctDisabled,No
 AcctLockedOut,No
 AcctExpiresTime,Never
 LastLogonTime,11/20/98 3:24 PM
 LastLogonServer,192.168.4.22
 Sid,S-1-5-21-706837240-361788889-398547282-500
Null sessioning can be prevented on Windows 2000 and if you will give me a second, I will test
it on Windows XP Professional. Yup, it works—Control Panel, Administrative Tools, Local
Security Policy.

Stealth Attacks

The first time I heard the term stealth was in a paper by Chris Klaus titled "Stealth
Scanning—Bypassing Firewalls/SATAN Detectors." He was describing what people now usually
refer to as "half open"—that is, intentionally violating the TCP three-way handshake. There are
a number of variations of half scans, and we are going to examine all the common ones. These
are not all that hard to detect in and of themselves, but as you will learn in the discussion on
coordinated attacks, they are getting some help. Nowadays, some folks use stealth to mean null
flags (no flags or code bits set). The only approaches I find actually stealthy are those based on
either low and slow, or highly distributed, packet delivery. As time goes on, static packet filters
continue to be less and less common; half-open scans are less and less an issue. They certainly
should not be called stealth because they stand out like a sore thumb. The Snort web page,
www.snort.org, lists a number of effective rules to detect these probes.

This is a season of advanced scans; attackers with the skill to type, make, and actually compile
software are using tools that give them the look and feel of "eleetness." Three years ago it was
jackal; at the turn of the century, hping and nmap; and today, distributed scanners.

http://www.snort.org/

In the book, Inside Firewalls by Robert Ziegler (New Riders), I commented that I continue to be
astounded by the security provided by Network Address Translation (NAT). My most important
files are on a vmware version of Linux 7.2 on my Windows laptop, and the Linux system is
behind a NAT. So, if attackers can get through my home perimeter defenses, which also include
a NAT, and break into my XP laptop, they still have another NAT to go through. With appliance
firewalls available as cheap as $300, you can afford a number of NATs in your organization,
which will foil most of this scanning. There is also a strong argument that nothing penetrates a
well-configured, proxy-based firewall (although we will dispute this in a moment). None of the
deception tools will elude a well-trained analyst with an IDS that collects all the traffic and has a
supporting database. If your site has chosen a lesser path, you may be in for a wild ride.

As we get ready to launch into some traces of stealth techniques, take a minute to read the
opening comment from the original 1997 jackal.c source code. /* Jackal -Stealth/FireWall
scanner. With the use of halfopen ports and sending SYNC (sometimes additional flags like FIN)
one can scan behind a firewall. And it shouldnt let the site feel we're scanning by not doing a 3-
way-handshake we hope to avoid any tcp-logging. Credits: Halflife, Jeff (Phiji) Fay, Abdullah
Marafie. Alpha Tester: Walter Kopecky. Results: Some firewalls did allow SYN | FIN to pass
through. No Site has been able to log the connections though during alpha testing. ShadowS
shadows@kuwait.net Copyleft (hack it i realy dont care). */

It was a brilliant idea! If the filtering router tests for SYN, feed it a SYN/FIN. However, the
statement that jackal had never been logged by any site misses the mark. In Appendix A, "Exploits
and Scans to Apply Exploits," you saw the IMAP traces with the SYN/FIN set, which were
detected by the Shadow system. Competent intrusion-detection systems were able to log and
analyze anything sent by jackal (or hping or nmap). In fact, today when attackers set SYN/FIN,
they make our job easy.

Explicit Stealth Mapping Techniques

The two well-known explicit mapping techniques are the SYN/ACK and the FIN scan. Both of
these generate a RESET, if they hit an active host. They also get an ICMP error message back if
the host is unreachable. Explicit stealth mapping is more efficient than inverse mapping
(described later), but is possibly more obvious.

FIN Scan

I have never detected a FIN scan in the wild and have chosen not to simulate one. In the case
of a FIN scan, one would detect a large number of packets with the FIN flag set where there
was no three-way handshake ever established. We have already discussed using a database to
find FTP bounce. A good intrusion-analysis system should provide the capability to look for
spurious traffic such as FINs, to connections that were never established. I have seen ACKs only
and have seen them penetrate a Check Point firewall.

Inverse Mapping

Inverse mapping techniques can compile a list of networks, or hosts, that are not reachable and
then use the converse of that map to determine where things probably are. We will also show a
DNS example of all replies and no queries. Before we go on, though, if you absolutely cannot do
NAT and must use public IP addresses, make sure you do not allow ICMP unreachables out of
your network. That will not stop all inverse mapping techniques, but it will quench a large
number of them. As you look at the trace that follows, keep this in mind: the answers by
router.mynet.net are doing all the harm:

mailto:shadows@kuwait.net

02:58:05.490 stealth.mappem.com.25984 > 172.30.69.23.2271:
 R 0:0(0) ack 674719802 win 0
02:59:11.208 stealth.mappem.com.50620 > 172.16.7.158.1050:
 R 0:0(0) ack 674719802 win 0
02:59:20.670 stealth.mappem.com.19801 > 192.168.184.174.1478:
 R 0:0(0) ack 674719802 win 0
02:59:31.056 stealth.mappem.com.7960 > 192.168.242.139.1728:
 R 0:0(0) ack 674719802 win 0
02:59:42.792 stealth.mappem.com.16106 > 172.16.102.105.1008:
 R 0:0(0) ack 674719802 win 0
03:00:50.308 stealth.mappem.com.8986 > 172.16.98.61.1456:
 R 0:0(0) ack 674719802 win 0
03:00:58.939 stealth.mappem.com.35124 > 192.168.182.171.1626:
 R 0:0(0) ack 674719802 win 0
03:00:58.940 router.mynet.net > stealth.mappem.com:
 icmp: host 192.168.182.171 unreachable

Answers to Domain Queries

Another variation of inverse mapping is shown here. The probing computer sends answers to
domain questions that were never asked. The goal is to stumble across a subnet or host that
doesn't exist, which will generate an ICMP unreachable message. As stated earlier, this pattern
tends to evade detection. It can be found with scan detect code if the attacker gets greedy and
probes too many hosts too quickly. It can also be detected by retrospective analysis scripts or
database searches for application state violations. Here is the example of inverse mapping:

05:55:36.515566 stealth.com.domain > 172.29.63.63.20479: udp
06:46:18.542999 stealth.com.domain > 192.168.160.240.12793: udp
07:36:32.713298 stealth.com.domain > 172.29.185.48.54358: udp
07:57:01.634613 stealth.com.domain > 254.242.221.165.13043: udp
09:55:28.728984 stealth.com.domain > 192.168.203.163.15253: udp
10:38:53.862779 stealth.com.domain > 192.168.126.131.39915: udp
10:40:37.513176 stealth.com.domain > 192.168.151.126.19038: udp
10:44:28.462431 stealth.com.domain > 172.29.96.220.8479: udp
11:35:40.489103 stealth.com.domain > 192.168.7.246.44451: udp

11:35:40.489103 stealth.com.domain > 192.168.7.246.44451: udp
11:35:40.489523 router.mynet.net > stealth.com:
 icmp: host 192.168.7.246 unreachable

Because IP spoofing, usually part of a denial-of-service attack, is so common, you may be
asking, "Why isn't the explanation for this IP spoofing of the 172.29, 192.168, and so forth
addresses and directing them to stealth.com?" Couldn't this just be seeing the echoes of this
activity directed back to our network? The problem is that this doesn't resemble normal DNS
responses. It doesn't have any indications that some kind of DNS query was issued.

To investigate this further, you might try to find out whether stealth.com is really a DNS server.
You use the nslookup command and change servers to stealth.com and try to resolve any
address. If it works, you know that stealth.com is a true DNS server and the mystery
intensifies. (Tragically, nslookup, at least on UNIX, is being deprecated by the more obscure dig
program.) If it doesn't respond, chances are it is not a DNS server, and it really is the
aggressor. It is also possible that it is a DNS server, but you might not have access to it.

Answers to Domain Queries, Part 2

The following activity is similar to what you just saw because both use source port of 53 or
domain. This output is TCP and came from multiple different sources, however, unlike the
preceding activity. Any guesses about what is going on here?

11:19:30.885069 host1.corecomm.net.53 > myhost1.com.21: S 7936:7936(0) win
1024
11:17:29.375069 host1.corecomm.net.53 > myhost1.com.139: S 7936:7936(0) win
1024
11:15:32.115069 host1.corecomm.net.53 > myhost1.com.23: S 7936:7936(0) win
1024
11:11:17.485069 host1.corecomm.net.53 > myhost1.com.43981: S 7936:7936(0) win
1024
11:09:12.945069 host1.corecomm.net.53 > myhost1.com.880: S 7936:7936(0) win
1024
12:01:05.060000 host70.corecomm.net.53 > pc112.com.880: S 1738:1738(0) win
1024
12:03:24.820000 host70.corecomm.net.53 > pc112.com.139: S 1738:1738(0) win
1024
12:06:12.620000 host70.corecomm.net.53 > pc112.com.21: S 1738:1738(0) win
1024
12:09:09.940000 host70.corecomm.net.53 > pc112.com.43981: S 1738:1738(0) win
1024
12:09:57.960000 host70.corecomm.net.53 > pc112.com.23: S 1738:1738(0) win
1024

This appears to be a scan of myhost1.com, pc112.com, and many other hosts not shown in this
abbreviated output of some common destination ports such as 21 (FTP), 23 (telnet), and 139
(NetBIOS Session Manager). But, there are some funky destination ports along with those
common ones that aren't readily identifiable, such as 43981 and 880. You can round up all the
usual suspect explanations for the unconventional ports, but in this case, your analysis should
concentrate more on the source port used.

TCP source port 53 might be allowed into many networks because this can be indicative of
activity from a long DNS response. Remember from Chapter 6, "DNS," that UDP DNS responses of
more than 512 bytes are reissued to the DNS server to destination port TCP 53. When the
response returns to your network, the source port will be 53 and you need to allow that back in
to receive that response. A smart network administrator qualifies this so that it is allowed back
in only if it was established inside the network of origin, and only if the destination port is
greater than 1023 (indicative of an ephemeral port), which is the case in the long DNS
responses.

That is not the case in the preceding scan, but the scanner is banking on the packet-filtering
device being open on source port 53 without any further qualification. This way, the scanner
might circumvent a normally protective packet-filtering device.

It is interesting to note that the TCP sequence numbers you see in the scan are repeated for
each of the same source-to-destination port scans. These should change for each new TCP
segment created. Another forensics tidbit about this scan that is not obvious unless you look at
many more records than are shown, gives some insight into the nature of the TCP sequence
number crafting. The preceding scan shows two TCP sequence numbers: 7936 and 1738.

Considering that the TCP sequence number field is 32 bits long, these are very small initial
sequence numbers—quite unusual. All the TCP sequence numbers from this scan were
lightweight, and when the activity was dumped in hex, the reason why was discovered. The
high-order 16 bits of the TCP sequence number were always 0s. This is confirmation that some
kind of sequence number manipulation was performed, and it becomes a signature of this
activity.

Fragments, Just Fragments

Consider this final example of an inverse mapping technique. As you have already learned, only
the first fragment chunk comes with protocol information. Attackers using this technique (along
with some interesting variations) were able to penetrate older firewalls and filtering routers. The
firewalls would assume that this was just another segment of traffic that had already passed
their access lists. Needless to say, this has been fixed in most vendors' products.

In this case, however, the prober isn't particularly interested in firewall penetration. Once again,
if one of the target hosts does not exist, the router sends back an unreachable message. The
attacker can then compile a list of all the hosts that do not exist and, by taking the inverse of
that list, has a list of the hosts that do exist. This is why this class of techniques is called
inverse mapping. Take a look:

18:32:21.050033 PROBER > 192.168.5.71: (frag 9019:480@552)
18:32:21.109287 PROBER > 192.168.5.72: (frag 9275:480@552)
18:32:21.178342 PROBER > 192.168.5.73: (frag 9531:480@552)
18:32:21.295332 PROBER > 192.168.5.74: (frag 9787:480@552)
18:32:21.344322 PROBER > 192.168.5.75: (frag 10299:480@552)
18:32:21.384284 PROBER > 192.168.5.76: (frag 10555:480@552)
18:32:21.431136 PROBER > 192.168.5.77: (frag 11067:480@552)
18:32:21.478246 PROBER > 192.168.5.78: (frag 11579:480@552)
18:32:21.522631 PROBER > 192.168.5.79: (frag 11835:480@552)

Measuring Response Time
Lately, we've seen a lot of traffic coming from all over the place directed to DNS servers, but
not for the purpose of querying for DNS information or ostensibly of malicious intent. What is
happening is that companies have developed software that tries to deliver the best possible
response time to web requests. It has been demonstrated that most users will tolerate about an
eight-second delay in receiving responses and after that they might go to a competitor site with
better response time. It has become a matter of e-business survival and profitability to offer
good response time, and because necessity is the mother of invention, software has been
created to accomplish the mission. The patterns explained in this section are from a product
known as 3DNS.
One technique is to associate the user request with an authoritative DNS server for the user's
host and find the response time to the DNS server. This assumes that the authoritative DNS
server and the user's hosts are geographically close, which might not always be the case. Why
not just find the distance to the user's host? Indeed, this seems more logical, but many sites
are well protected, and access to the user's host is not always available. They figure there is a
better chance of having some kind of access to the DNS server, which may or may not be the
case.

There has been a lot of hue and cry from analysts who see their IDS fired because of the traffic
generated by this software. Many sites feel violated because traffic is directed to the sacred
DNS server, of all hosts. And, many more sites don't understand what is happening and
perceive this activity to be an attack of some sort. The final objection is that this is
unauthorized information gathering, regardless of whether it benefits the end user.
Let's take a look at some of the signatures associated with this type of traffic. One thing that
you should keep in mind is that many different web sites use this software and so you will see
many different source IPs. Because of the unique signatures generated from multiple source
IPs, this has been mistaken for some kind of coordinated attack. As you will see, however, it
really isn't.
Echo Requests
No surprise with the following TCPdump activity to measure response time to your DNS server.
The echo request is issued and the response time is measured based on receipt of an ICMP echo
reply, if there is one:
10:25:44.070000 216.32.68.13 > mydns.com: icmp: echo request
10:25:44.070000 216.32.68.13 > mydns.com: icmp: echo request
10:25:44.070000 216.32.68.13 > mydns.com: icmp: echo request
10:30:01.530000 216.32.68.13 > mydns.com: icmp: echo request
10:30:01.530000 216.32.68.13 > mydns.com: icmp: echo request
10:30:01.550000 216.32.68.13 > mydns.com: icmp: echo request
10:30:25.660000 209.67.29.8 > mydns.com: icmp: echo request
10:30:25.660000 209.67.29.8 > mydns.com: icmp: echo request
10:30:25.670000 209.67.29.8 > mydns.com: icmp: echo request
10:32:12.520000 209.67.78.200 > mydns.com: icmp: echo request
As you have learned, however, many sites block ICMP echo requests because ICMP has
capability to map sites both actively with a ping, and also by eliciting error messages that give
away the position of hosts and routers in a site. And, if this is the case, an attacker, or even a
service provider using a tool like 3DNS might focus their reconnaissance on the DNS server.
Actual DNS Queries
If the user's DNS server didn't respond to the ICMP echo request and the server using the 3DNS
probing software is configured to continue to try to make contact with the DNS server, more
activity is sent, as shown here:
216.32.68.11.3200 > mydns.com.53: 0 [0q] Type0 (Class 0)?. (36)
mydns.com.53 > 216.32.68.11.3200: 0 FormErr [0q] 0/0/0 (12) DF
216.32.68.11.3201 > mydns.com.53: 256 [0q] Type0 (Class 0)? . (36)
mydns.com.53 > 216.32.68.11.3201: 0 FormErr [0q] 0/0/0 (12) DF
216.32.68.11.3202 > mydns.com.53: 512 [0q] Type0 (Class 0)? . (36)
mydns.com.53 > 216.32.68.11.3202: 0 FormErr [0q] 0/0/0 (12) DF
A real DNS query is not issued, but one is sent to UDP port 53 with a DNS message of all 0s.
TCPdump performs some integrity checking of the DNS message and if it discovers what it
considers to be noteworthy fields, it reports them. The 0q means that there were zero queries

in the DNS message, for example. Normally, for types other than inverse queries there will be
at least one query. That is why TCPdump reported it and all other 0-padded fields it considers to
be odd. This elicits an error response from mydns.com, which is then used to compute the
round-trip time.
Probe on UDP Port 33434
Here is yet a third type of activity directed at the DNS server if the others have failed:
209.67.78.203.3310 > mydns.com.33434: udp 36 [ttl 1]
209.67.78.203.3311 > mydns.com.33434: udp 36 (ttl 2)
216.32.68.10.3307 > mydns.com.33434: udp 36 [ttl 1]
216.32.68.10.3308 > mydns.com.33434: udp 36 (ttl 2)
216.32.68.10.3307 > mydns.com.33434: udp 36 [ttl 1]
216.32.68.10.3308 > mydns.com.33434: udp 36 (ttl 2)

209.67.78.200.3411 > mydns.com.33434: udp 36 [ttl 1]
209.67.78.200.3412 > mydns.com.33434: udp 36 (ttl 2)
This output is much like you might see with a UNIX traceroute. Traceroute has the signature of
attempting a UDP connection to a high-numbered port in the 33000+ range, such as seen here.
This is slightly different because the standard implementation of traceroute uses incrementing
destination ports. These are to static UDP destination port of 33434. The anticipated response
will be a port unreachable error, in which case response time can be computed when the 3DNS
software receives the response. The incrementing TTL values can also be a signature of
Traceroute, if the DNS server is inside the sensor that captured this activity.
3DNS to TCP Port 53
A final attempt to establish a connection to TCP port 53 is made if all others fail. This attempt
differs from most SYN connections because you will see that 64 bytes have been included in the
payload. Normal traffic has no payload until after the three-way handshake has been
completed. The 64 data bytes are sent to approximate a reasonable-sized payload, one that is
neither too small nor too large. The anticipated response will be either a SYN/ACK from a
listening server or a RST/ACK from one that is not listening:
209.67.78.202.2202 > mydns.com.53: S 997788921:997788985(64) win 2048
209.67.78.202.2200 > mydns.com.53: S 869896644:869896708(64) win 2048
209.67.78.202.2201 > mydns.com.53: S 1386586413:1386586477(64) win 2048
216.32.68.11.3102 > mydns.com.53: S 765045139:765045203(64) win 2048
216.32.68.11.3100 > mydns.com.53: S 865977968:865978032(64) win 2048
216.32.68.11.3101 > mydns.com.53: S 565178644:565178708(64) win 2048
This approach seems destined to fail for many sites, especially if this is the final attempt when
all others have failed because of blocked access to the other methods. The problem is that most
security-conscious sites block access to TCP destination port 53 because that can be used to
download the DNS maps that contain all registered hosts and their IP numbers. Therefore, if
traffic is blocked, perhaps they could do the measurements from an ICMP unreachable received
from the router blocking the access. What if the block was done by a router that has been
silenced from delivering host unreachable errors? This is just as fruitless as the other failed
attempts.

Worms as Information Gatherers

If all users at your site share a common mail server, and it is configured to examine mail for
viruses that have been identified, many might be eliminated before they can infect the target
host. But, users might not all use the same mail server; they might not run virus eradication
software; and if they do, they might not update it frequently. This increases the risk of
infection.

Viruses and worms have not been viewed conventionally as information gatherers. We are
starting to see a new class of worm that acts as some kind of agent to harvest or seek
information. This might involve attempting connections to other hosts after a host has been
infected. If this is the case, and there is some kind of IDS at an egress point of the infected
host, we can observe the activity. Two such worms are examined here: Pretty Park and
RingZero.

Pretty Park Worm

http://safari.informit.com/?xmlid=0-73571-265-4/22991533

I was reviewing an alert about outbound blocked activity at one of our sites and discovered that
an internal host was attempting to connect to an Internet Relay Chat (IRC) port 6667 on many
different destination IPs. This site had blocked outbound activity to many of the conventionally
used IRC ports just because the site was hard pressed to find redeeming quality in many. I'm
sure it can be argued that there are many reputable and upstanding chat rooms, but often
times users gravitate to ones that aren't work related. And, every summer when the new crop
of cyber-connected summer students arrived, this site usually saw a couple of them try to
engage in IRC activity and fail.

It was late February, a Friday afternoon to be exact, and I was seeing this activity. I reported it
to the appropriate contact, and he said that he had informed the owning administrator of the
detected activity. I also dumped logs of the rejected outbound activity, but didn't give them
much scrutiny. Had I been more thorough, I would have discovered that the host was
attempting connections to IRC sites about five times a minute. This either reflects an obsessive-
compulsive desire to connect or an automated program.

On the following Monday, I received another alert about outbound IRC activity—no big deal. I
just thought it was the same host I had already identified trying once again. But, I searched the
logs again and found four more hosts engaged in similar activity. The scary part was that they
were all going to the same destination hosts, many of them in foreign countries. And, so the
inevitable thought of horror arose in my paranoid analyst's brain: We had suffered multiple
compromises using a common vulnerability, and the intruder was trying to contact her home
base to report the triumph. Another, more comforting (compared to a compromise) thought
occurred that maybe there was some kind of worm infection.

Sure enough, when my Windows-savvy coworker examined one of the infected hosts, he
located some strange programs running (FILES32.VXD and PRETTY PARK.EXE) and identified
this as the Pretty Park worm. Using netstat, he discovered that the host had sent a TCP SYN to
destination port 6667. Apparently, Pretty Park is a worm that arrives via an email attachment
and one of the duties of the worm is to go to these IRC sites in hopes of sending back
information about the hosts—things such as passwords and details about the infected host. You
can get a more thorough description of Pretty Park at http://vil.nai.com/vil/wm98500.asp.

Here is an excerpt of the activity captured by TCPdump. The destination port is 6667, and the
destination hosts change:

09:30:34.470000 infected.com.1218 > ircnet.grolier.net.6667: S
662405:662405(0) Âwin 8192 (DF)
09:30:37.370000 infected.com.1218 > ircnet.grolier.net.6667: S
662405:662405(0) Âwin 8192 (DF)
09:30:43.370000 infected.com.1218 > ircnet.grolier.net.6667: S
662405:662405(0) Âwin 8192 (DF)
09:30:55.370000 infected.com.1218 > ircnet.grolier.net.6667: S
662405:662405(0) Âwin 8192 (DF)
09:31:04.050000 infected.com.1220 > irc.ncal.verio.net.6667: S
691990:691990(0) Âwin 8192 (DF)
09:31:06.970000 infected.com.1220 > irc.ncal.verio.net.6667: S
691990:691990(0) Âwin 8192 (DF)
09:31:12.970000 infected.com.1220 > irc.ncal.verio.net.6667: S
691990:691990(0) Âwin 8192 (DF)
09:31:24.970000 infected.com.1220 > irc.ncal.verio.net.6667: S
691990:691990(0) Âwin 8192 (DF)

http://vil.nai.com/vil/wm98500.asp

09:32:34.130000 infected.com.1222 > mist.cifnet.com.6667: F
722101:722101(0) ack 1426589426 win 8680 (DF)
09:32:43.070000 infected.com.1224 > krameria.skybel.net.6667: S
782083:782083(0) Âwin 8192 (DF)
09:32:55.070000 infected.com.1224 > krameria.skybel.net.6667: S
782083:782083(0) Âwin 8192 (DF)
09:33:04.170000 infected.com.1226 > zafira.eurecom.fr.6667: S
812112:812112(0) Âwin 8192 (DF)

The lesson here is that the theory of fusing host-based and network-based software yields the
best results.

On the host-based side, we would like to believe that worm-eradication software prevents
infection, but this doesn't work for all hosts. Detection was network-based in this case because
logging the denied traffic was what identified a possible problem.

RingZero

Another worm, a Trojan horse known as RingZero, that sent out network traffic was discovered
in September 1999. The first identified traffic pattern associated with RingZero was a Shadow
detect of a scan of many different hosts for TCP port 3128, the squid proxy server port. Here is
a sample of the captured activity seen by Shadow:

12:29:48.230000 4.3.2.1.1049 > 172.16.54.171.3128: S 9779697:9779697(0) win
8192 Â<mss 1460> (DF) (ttl 19, id 9072)
12:29:58.070000 4.3.2.1.1049 > 172.16.54.171.3128: S 9779697:9779697(0) win
8192 Â<mss 1460> (DF) (ttl 19, id 29552)
12:30:10.960000 4.3.2.1.1049 > 172.16.54.171.3128: S 9779697:9779697(0) win
8192 Â<mss 1460> (DF) (ttl 19, id 39792)
12:44:54.9600001.2.3.4.3243 > 172.16.187.212.3128: S 356330349:356330349(0)
win Â8192 <mss 1460> (DF) (ttl 242, id 962)
12:44:57.930000 1.2.3.4.3243 > 172.16.187.212.3128: S 356330349:356330349(0)
win Â8192 <mss 1460> (DF) (ttl 242, id 11714)
12:45:03.930000 1.2.3.4.3243 > 172.16.187.212.3128: S 356330349:356330349(0)
win Â8192 <mss 1460> (DF) (ttl 242, id 22466)
12:45:15.930000 1.2.3.4.3243 > 172.16.187.212.3128: S 356330349:356330349(0)
win Â8192 <mss 1460> (DF) (ttl 242, id 33218)
12:46:13.070000 1.1.1.1.2262 > 172.16.99.110.3128: S 20315949:20315949(0) win
Â8192 <mss 1460,nop,nop,sackOK> (DF) (ttl 116, id 35676)
12:46:16.080000 1.1.1.1.2262 > 172.16.99.110.3128: S 20315949:20315949(0) win
Â8192 <mss 1460,nop,nop,sackOK> (DF) (ttl 116, id 46428)
12:46:22.070000 1.1.1.1.2262 > 172.16.99.110.3128: S 20315949:20315949(0) win
Â8192 <mss 1460,nop,nop,sackOK> (DF) (ttl 116, id 57180)
12:46:34.080000 1.1.1.1.2262 > 172.16.99.110.3128: S 20315949:20315949(0) win
Â8192 <mss 1460,nop,nop,sackOK> (DF) (ttl 116, id 2397)

Three hostile hosts (1.1.1.1, 1.2.3.4, and 4.3.2.1) scanned different internal 172.16 hosts for
port 3128. When an additional investigation was performed, it was discovered that the scanning
host also attempted connections to destination ports 80 (HTTP) and 8080 (alternate HTTP).
Shadow filters don't look for those destination ports because they are likely to trigger a lot of
false positives. A lot of sites saw similar activity, and it appeared to be coming from many
different source hosts from all over the world with as many as a half dozen different scans per
hour. Most of these scans hit destination addresses that didn't exist, indicating that no prior

reconnaissance had been done or it hadn't been done well.

One theory concluded this was from one host that was just spoofing source IPs. In the
preceding scan output that was executed with the TCPdump –vv option, (this is the reason you
see the additional information in parenthesis), the TTL value is displayed. The –vv option also
displays a field known as the IP identification number that appears as "id #." If this activity
were all from one spoofed source IP, the arriving TTL value should have remained relatively
constant unless it was being crafted.

When traceroutes were attempted back to many of the source IP addresses, the hop counts to
get from my site back to the alleged source IP appeared credible. If you can estimate the initial
TTL assigned by the source IP and figure out the difference between that and the arriving TTL,
you can approximate the hop counts. The difficulty is guessing the initial TTL. If you look at the
chart found at www.honeynet.org/papers/finger/traces.txt, most times you can figure out a reasonable
initial TTL.

Not only were the hop counts believable, but all the source IPs appeared to be alive and
pingable, something not typically found with randomly pirated source IPs. Finally, in the
preceding scan, notice that the final scanning IP, 1.1.1.1, has different TCP options (nop, nop,
sackOK) from the other records. This points more to the source's hosts being genuinely different
and real, rather than a crafter taking the time to artificially introduce these differences.

In conjunction with a SANS call for help in determining the cause of these scans, a very astute
network administrator, Ron Marcum of Vanderbilt University, discovered a PC on his network
scanning hosts on other networks looking for ports 80, 8080, and 3128. The RingZero Trojan
appeared to be the culprit. It looked for any hosts that were using open proxy servers found on
ports 3128, 80, or 8080 and, at least for a while, collected ones it did find on an FTP site. There
is value in knowing where an open proxy server is; it enables hackers to hide their true source
IP identities. Open proxy servers enable you to tunnel through them and assume that IP
number as the source IP. Some questions still remain about RingZero; it is not known how the
Trojan infects a particular host, and it has not been determined what IPs the Trojan scans when
downloaded.

Summary

The attacker community is investing an incredible amount of effort to scan the Internet. The
single most important service for your site to block is ICMP echo requests. Reconnaissance
probes should be taken seriously; if attackers can learn where your hosts are, they can make
fairly short work of determining what services these hosts run. If they cannot determine which
of the hosts in your network address space are active, they have a very sparse matrix with
which to work. One great defense is to use RFC 1918 private address space instead of using
public address space. If you have public address space and do not have split horizon DNS,
attackers can just ask your DNS server where your hosts are with reverse lookups. Also, when
possible, a NAT is a fantastic defense against probing. I recommend several layers of NATs.
Finally, try to configure your perimeter not to allow ICMP unreachable error messages out of
your network.

http://www.honeynet.org/papers/finger/traces.txt

Also, with the new class of viruses and worms being released, infiltration of your well-guarded
site might come from within. This is a natural evolution of information-gathering techniques
because many sites have become more proficient at shunning reconnaissance from the outside.

	@Team LiB
	Network Intrusion Detection, Third Edition
	Table of Contents
	Copyright
	About the Authors
	About the Technical Reviewers
	Acknowledgments
	Tell Us What You Think
	Introduction
	Part I: TCP/ IP
	Chapter 1. IP Concepts
	The TCP/ IP Internet Model
	Layers
	Data Flow

	Packaging (Beyond Paper or Plastic)
	Bits, Bytes, and Packets
	Encapsulation Revisited
	Interpretation of the Layers

	Addresses
	Physical Addresses, Media Access Controller Addresses
	Logical Addresses, IP Addresses
	Subnet Masks

	Service Ports
	IP Protocols
	Domain Name System
	Routing: How You Get There from Here
	Summary

	Chapter 2. Introduction to TCPdump and TCP
	TCPdump
	TCPdump Behavior
	Filters
	Binary Collection
	TCPdump Output
	Absolute and Relative Sequence Numbers
	Dumping in Hexadecimal

	Introduction to TCP
	Establishing a TCP Connection
	Server and Client Ports
	Connection Termination
	The Graceful Method
	The Abrupt Method
	Data Transfer
	What's the Bottom Line?

	TCP Gone Awry
	An ACK Scan
	A Telnet Scan?
	TCP Session Hijacking

	Summary

	Chapter 3. Fragmentation
	Theory of Fragmentation
	All Aboard the Fragment Train
	The Fragment Dining Car
	The Fragment Caboose
	Viewing Fragmentation Using TCPdump
	Fragmentation and Packet-Filtering Devices
	The Don't Fragment Flag

	Malicious Fragmentation
	TCP Header Fragments
	Teardrop

	Summary

	Chapter 4. ICMP
	ICMP Theory
	Why Do You Need ICMP?
	Where Does ICMP Fit In?
	Understanding ICMP
	Summary of ICMP Theory

	Mapping Techniques
	Tireless Mapper
	Efficient Mapper
	Clever Mapper
	Cerebral Mapper
	Summary of Mapping

	Normal ICMP Activity
	Host Unreachable
	Port Unreachable
	Admin Prohibited
	Need to Frag
	Time Exceeded In-Transit
	Embedded Information in ICMP Error Messages
	Summary of Normal ICMP

	Malicious ICMP Activity
	Smurf Attack
	Tribe Flood Network
	WinFreeze
	Loki
	Unsolicited ICMP Echo Replies
	Theory 1: Spoofing
	Theory 2: TFN
	Theory 3: Loki
	Summary of Malicious ICMP Traffic

	To Block or Not to Block
	Unrequited ICMP Echo Requests
	Kiss traceroute Goodbye
	Silence of the LANs
	Broken Path MTU Discovery

	Summary

	Chapter 5. Stimulus and Response
	The Expected
	Request for Comments
	TCP Stimulus-Response
	Destination Host Listens on Requested Port
	Destination Host Not Listening on Requested Port
	Destination Host Doesn't Exist
	Destination Port Blocked
	Destination Port Blocked, Router Doesn't Respond
	UDP Stimulus-Response
	Destination Host Listening on Requested Port
	Destination Host Not Listening on Requested Port
	ICMP Stimulus- Response
	Windows tracert
	TCPdump of tracert

	Protocol Benders
	FTP
	Active FTP
	Passive FTP
	UNIX Traceroute
	Summary of Expected Behavior and Protocol Benders

	Abnormal Stimuli
	Evasion Stimulus, Lack of Response
	Evil Stimulus, Fatal Response
	No Stimulus, All Response
	Unconventional Stimulus, Operating System Identifying Response
	Bogus "Reserved" TCP Flags
	Anomalous TCP Flag Combinations
	No TCP Flags
	Summary of Abnormal Stimuli

	Summary

	Chapter 6. DNS
	Back to Basics: DNS Theory
	The Structure of DNS
	Steppin' Out on the Internet
	DNS Resolution Process
	TCPdump Output of Resolution
	Strange TCPdump Notation
	Caching: Been There, Done That
	Reverse Lookups
	Master and Slave Name Servers
	Zone Transfers
	UDP or TCP
	Summary of DNS Theory

	Using DNS for Reconnaissance
	The nslookup Command
	Name That Name Server
	HINFO: Snooping for Details
	List Zone Map Information
	Dig

	Tainting DNS Responses
	A Weak Link
	Cache Poisoning

	Summary

	Part II: Traffic Analysis
	Chapter 7. Packet Dissection Using TCPdump
	Why Learn to Do Packet Dissection?
	Sidestep DNS Queries
	Normal Query
	Evasive Query

	Introduction to Packet Dissection Using TCPdump
	Where Does the IP Stop and the Embedded Protocol Begin?
	Other Length Fields
	The IP Datagram Length

	Increasing the Snaplen
	Dissecting the Whole Packet
	Freeware Tools for Packet Dissection
	Ethereal
	tcpshow
	TCPdump -X Option

	Summary

	Chapter 8. Examining IP Header Fields
	Insertion and Evasion Attacks
	Insertion Attacks
	Evasion Attacks

	IP Header Fields
	IP Version Number
	Protocol Number
	The Don't Fragment (DF) Flag

	The More Fragments (MF) Flag
	Mapping Using Incomplete Fragments
	IP Numbers
	IP Identification Number
	Time to Live (TTL)
	Looking at the IP ID and TTL Values Together to Discover Spoofing
	IP Checksums

	Summary

	Chapter 9. Examining Embedded Protocol Header Fields
	TCP
	Ports
	TCP Checksums
	TCP Sequence Numbers
	Acknowledgement Numbers
	TCP Flags
	TCP Corruption
	ECN Flag Bits
	Operating System Fingerprinting
	Retransmissions
	Using Retransmissions Against a Hostile Host—LaBrea Tarpit Version 1
	TCP Window Size
	LaBrea Version 2

	UDP
	Ports
	UDP Port Scanning
	UDP Length Field

	ICMP
	Type and Code
	Identification and Sequence Numbers
	Misuse of ICMP Identification and Sequence Numbers

	Summary

	Chapter 10. Real-World Analysis
	You've Been Hacked!
	Netbus Scan
	How Slow Can you Go?
	RingZero Worm
	Summary

	Chapter 11. Mystery Traffic
	The Event in a Nutshell
	The Traffic
	DDoS or Scan
	Source Hosts
	Destination Hosts
	Scanning Rates

	Fingerprinting Participant Hosts
	Arriving TTL Values
	TCP Window Size
	TCP Options
	TCP Retries

	Summary

	Part III: Filters/Rules for Network Monitoring
	Chapter 12. Writing TCPdump Filters
	The Mechanics of Writing TCPdump Filters
	Bit Masking
	Preserving and Discarding Individual Bits
	Creating the Mask
	Putting It All Together

	TCPdump IP Filters
	Detecting Traffic to the Broadcast Addresses
	Detecting Fragmentation

	TCPdump UDP Filters
	TCPdump TCP Filters
	Filters for Examining TCP Flags
	Detecting Data on SYN Connections

	Summary

	Chapter 13. Introduction to Snort and Snort Rules
	An Overview of Running Snort
	Snort Rules
	Snort Rule Anatomy
	Rule Header Fields
	The Action Field
	The Protocol Field
	The Source and Destination IP Address Fields
	The Source and Destination Port Field
	Direction Indicator

	Summary

	Chapter 14. Snort Rules - Part II
	Format of Snort Options
	Rule Options
	Msg Option
	Logto Option
	Ttl Option
	Id Option
	Dsize Option
	Sequence Option
	Acknowledgement Option
	Itype and Icode Options
	Flags Option
	Content Option
	Offset Option
	Depth Option
	Nocase Option
	Regex Option
	Session Option
	Resp Option
	Tag Option

	Putting It All Together
	Summary

	Part IV: Intrusion Infrastructure
	Chapter 15. Mitnick Attack
	Exploiting TCP
	IP Weaknesses
	SYN Flooding
	Covering His Tracks
	Identifying Trust Relationships
	Examining Network Traces
	Setting Up the System Compromise?

	Detecting the Mitnick Attack
	Network- Based Intrusion- Detection Systems
	Trust Relationship
	Port Scan
	Host Scan
	Connections to Dangerous Ports

	Host- Based Intrusion- Detection Systems
	TCP Wrappers
	Tripwire

	Preventing the Mitnick Attack
	Summary

	Chapter 16. Architectural Issues
	Events of Interest
	Limits to Observation
	Low- Hanging Fruit Paradigm
	Human Factors Limit Detects
	Limitations Caused by the Analyst
	Limitations Caused by the CIRTs

	Severity
	Criticality
	Lethality

	Countermeasures
	Calculating Severity
	Scanning for Trojans
	Analysis
	Severity

	Host Scan Against FTP
	Analysis
	Severity

	Sensor Placement
	Outside Firewall
	Sensors Inside Firewall
	Both Inside and Outside Firewall

	Push/ Pull
	Analyst Console
	Faster Console
	False Positive Management
	Display Filters
	Mark as Analyzed
	Drill Down
	Correlation
	Better Reporting
	Event-Detection Reports
	Weekly/Monthly Summary Reports

	Host- or Network- Based Intrusion Detection
	Summary

	Chapter 17. Organizational Issues
	Organizational Security Model
	Security Policy
	Industry Practice for Due Care
	Security Infrastructure
	Implementing Priority Countermeasures
	Periodic Reviews
	Implementing Incident Handling

	Defining Risk
	Risk
	Accepting the Risk
	Trojan Version
	Malicious Connections
	Mitigating or Reducing the Risk
	Network Attack
	Snatch and Run
	Transferring the Risk

	Defining the Threat
	How Bad— Impact of Threat
	Frequency of Threat— Annualized
	Recognition of Uncertainty

	Risk Management Is Dollar Driven
	How Risky Is a Risk?
	Quantitative Risk Assessment
	Qualitative Risk Assessments
	Why They Don't Work

	Summary

	Chapter 18. Automated and Manual Response
	Automated Response
	Architectural Issues
	Response at the Internet Connection
	Internal Firewalls
	Host-Based Defenses
	Throttling
	Drop Connection
	Shun
	Proactive Shunning
	Islanding
	SYN/ACK
	Reset

	Honeypot
	Proxy System
	DTK
	Empty System
	Honeypot Summary

	Manual Response
	Containment
	Freeze the Scene
	Sample Fax Form
	On-Site Containment
	Site Survey
	System Containment
	Hot Search

	Eradication
	Recovery
	Lessons Learned

	Summary

	Chapter 19. Business Case for Intrusion Detection
	Part One: Management Issues
	Bang for the Buck
	The Expenditure Is Finite
	Technology Used to Destabilize
	Network Impacts
	IDS Behavioral Modification
	The Policy
	Part of a Larger Strategy

	Part Two: Threats and Vulnerabilities
	Threat Assessment and Analysis
	Threat Vectors
	Threat Determination

	Asset Identification
	Valuation
	Vulnerability Analysis
	Risk Evaluation

	Part Three: Tradeoffs and Recommended Solution
	Define an Information- Assurance Risk- Management Architecture
	Identify What Is in Place
	Identify Your Recommendations
	Identify Options for Countermeasures
	Cost-Benefit Analysis
	Follow-On Steps

	Repeat the Executive Summary
	Summary

	Chapter 20. Future Directions
	Increasing Threat
	Cyber- Terrorism
	Large- Scale Compromise
	Improved Targeting
	How the Threat Will Be Manifested

	Defending Against the Threat
	Skills Versus Tools
	Analysts Skill Set
	Improved Tools

	Defense in Depth
	Large- Scale Intrusion Detection

	Emerging Techniques
	Virus Industry Revisited
	Hardware- Based ID
	Program- Based ID
	Smart Auditors

	Summary

	Part V: Appendixes
	Appendix A. Exploits and Scans to Apply Exploits
	False Positives
	All Response, No Stimulus
	Scan or Response?
	SYN Floods
	Valid SYN Flood
	False Positive SYN Flood

	Back Orifice?

	IMAP Exploits
	10143 Signature Source Port IMAP
	111 Signature IMAP
	Exploit Ports with SYN/ FIN Set
	Source Port 0, SYN and FIN Set
	Source Port 65535 and SYN FIN Set
	DNS Zone Followed by 0, SYN FIN Targeting NFS

	Scans to Apply Exploits
	mscan
	Son of mscan
	Access Builder?

	Single Exploit, Portmap
	rexec
	POP3
	Targeting SGI Systems?
	Discard
	Three- Port Scan
	Weird Web Scans
	IP-Proto-191

	Summary

	Appendix B. Denial of Service
	Brute-Force Denial-of-Service Traces
	Smurf
	Directed Broadcast
	Echo-Chargen

	Elegant Kills
	Teardrop
	Land Attack
	We're Doomed

	nmap
	Distributed Denial-of-Service Attacks
	Intro to DDoS
	DDoS Software
	Trinoo
	TFN
	TFN2K
	Stacheldraht

	Summary

	Appendix C. Detection of Intelligence Gathering
	Network and Host Mapping
	Host Scan Using UDP Echo Requests
	Netmask-Based Broadcasts
	Port Scan
	Scanning for a Particular Port
	Complex Script, Possible Compromise
	"Random" Port Scan
	Database Correlation Report
	SNMP/ICMP
	FTP Bounce

	NetBIOS-Specific Traces
	A Visit from a Web Server
	Null Session

	Stealth Attacks
	Explicit Stealth Mapping Techniques
	FIN Scan
	Inverse Mapping
	Answers to Domain Queries
	Answers to Domain Queries, Part 2
	Fragments, Just Fragments

	Measuring Response Time
	Echo Requests
	Actual DNS Queries
	Probe on UDP Port 33434
	3DNS to TCP Port 53

	Worms as Information Gatherers
	Pretty Park Worm
	RingZero

	Summary

