
Issue 18 November 2011

I Am Nothing
by Paul Buchheit

Trying to read
your customers’
minds?

Our simple engagement tools help you understand your customers,
prioritize feedback, and give great customer support even faster.
Spend more time building a product your customers will love!

Get 50% o� your first 3 months* with the code
mindreader at UserVoice.com.

* O�er good for new accounts if used before 12/31/2011.

https://app.uservoice.com/account/new/full_service_ultimate?coupon_key=mindreader

Trying to read
your customers’
minds?

Our simple engagement tools help you understand your customers,
prioritize feedback, and give great customer support even faster.
Spend more time building a product your customers will love!

Get 50% o� your first 3 months* with the code
mindreader at UserVoice.com.

* O�er good for new accounts if used before 12/31/2011.

http://hacker.postmarkapp.com
https://app.uservoice.com/account/new/full_service_ultimate?coupon_key=mindreader

Curator
Lim Cheng Soon

Contributors
Paul Buchheit
Patrick McKenzie
Vinicius Vacanti
Chris Leary
Ferry Boender
Alan Skorkin
Michael Trick
Tony Haile

Illustrator
Matthew Phelan

Proofreader
Emily Griffin

Printer
MagCloud

HACKEr MonTHLy is the print magazine version
of Hacker news — news.ycombinator.com, a social news
website wildly popular among programmers and startup
founders. The submission guidelines state that content
can be “anything that gratifies one’s intellectual curiosity.”
Every month, we select from the top voted articles on
Hacker news and print them in magazine format.
For more, visit hackermonthly.com.

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
netizens Media
46, Taylor road,
11600 Penang,
Malaysia.

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

Cover Illustration: Matthew Phelan

http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com

For links to Hacker News dicussions, visit hackermonthly.com/issue-18

Contents
FEATURES

06 I Am Nothing
By PAuL BuCHHEiT

STARTUPS

08 Software Businesses in 5 Hours A Week
By PATriCK MCKEnziE

12 The Long Grind Before You Become an Overnight Success
By ViniCiuS VACAnTi

TRIBUTE

14 You’ve Got To Find What You Love
By STEVE JoBS

PROGRAMMING

18 Understanding JIT Spray
By CHriS LEAry

24 Evolutionary Algorithm
By FErry BoEndEr

30 Bash Shortcuts For Maximum Productivity
By ALAn SKorKin

SPECIAL

32 Finding Love Optimally
By MiCHAEL TriCK

34 Things I Learned On A Round-The-World Yacht Race
By Tony HAiLE

http://hackermonthly.com/issue-18.html

6 FEATURES

By PAuL BuCHHEiT

FEATURES

on a scale of
one to ten, how
good of a cog are
you? How well

do you function in your assigned
role? How much of a man or
woman are you? How do you rate
yourself as a son or daughter, father
or mother, wife or husband, het-
erosexual or homosexual, liberal or
conservative, black or white, winner
or loser, shark or sheep, introvert or
extrovert, Christian, Muslim, athe-
ist? How smart are you? How ratio-
nal? How emotional? do people
like you? Are you getting ahead, or
falling behind?

How do you know? Are you
keeping an eye on the others in
your category, comparing to see
how you measure up to your peers?
is it more important for a man to
be tall, or to have good hair?

This is, of course, the path of
insanity, and not the good kind of
insanity.

What will you do if you’re too
tough to be a good woman, too
sensitive to be a good man, too
selfish to be a good husband, too
lazy to be a good employee, too
shy to be a good friend, too caring
to be rational, too fat to be pretty,
too effeminate to be straight, too
introverted to be a good leader, too
smart to be kind, too young to be
taken seriously, too old to make a
difference, or too far behind to even
get in the race?

These are all false standards and
false dichotomies, but they are so
common and so ingrained that we
sometimes believe in them without
even realizing it. And this leads to
a mountain of insecurities, because
nobody measures up to these crazy

standards (and nobody should). But
even if we don’t believe in these
things, it still matters what other
people think, right? What will the
neighbors think? or how about
our co-workers, or the people at
church? And so everyone works
to hide their insecurities, and they
look around at their peers for
comparison, and maybe they feel
bad because everyone else seems
to have it easy, to have it all figured
out. The truth is nobody can see the
truth anymore. They are all work-
ing to hide the truth: that they are
afraid of who or what they really
are. So they all put on a show, and
they pretend to be a good whatever.
or maybe they rebel, and make a
point of being a bad whatever, but
then they are still under the control
of that false standard, and they are
still not being themselves.

I Am Nothing

 7

By PAuL BuCHHEiT

That is all so exhausting.
i am nothing. it’s simple. if i were

smart, i might be afraid of looking
stupid. if i were successful, i might
be afraid of failure. if i were a man,
i might be afraid of being weak. if i
were a Christian, i might be afraid

of losing faith. if i were an atheist,
i might be afraid of believing. if i
were rational, i might be afraid of
my emotions. if i were introverted,
i might be afraid of meeting new
people. if i were respectable, i
might be afraid of looking foolish. if
i were an expert, i might be afraid
of being wrong.

But I am nothing, and so I am
finally free to be myself.

This isn’t license to stagnate.
Change is inevitable. Change is
part of who we are, but if we aren’t
changing for the better, then we are
just slowly decaying.

By returning to zero expecta-
tions, by accepting that i am noth-
ing, it is easier to see the truth.
Fear, jealousy, insecurity, unfairness,
embarrassment — these feelings
cloud our ability to see what is.
The truth is often threatening, and
once our defenses are up, it’s dif-
ficult to be completely honest with
anyone, even ourselves. But when i

am nothing, when i have no image
or identity or ego to protect, i can
begin to see and accept things as
they really are. That is the begin-
ning of positive change, because
we cannot change what we do not
accept nor understand. But with

understanding, we can finally see
the difference between fixing prob-
lems and hiding them, between
genuine improvement and faking
it. We discover that many of our
weaknesses are actually strengths
once we learn how to use them,
and that our greatest gifts are
often buried beneath our greatest
insecurities.

Letting go of your identity can
be difficult and takes time, possibly
forever. But as with any change,
moving in the right direction is all
that really matters (which is why
you shouldn’t compare yourself
with others; you didn’t start in
the same place or with the same
challenges). Fortunately, we have a
variety of emotions that can help us:
pride, anger, fear, jealousy, insecurity,
unfairness, embarrassment, bit-
terness, etc. These are sometimes
portrayed as bad emotions, but
there’s no such thing as a bad emo-
tion, just bad responses to emotions.

(For example, torturing children is a
very harmful response to fears about
your own sexuality) instead, use
these emotions as a cue to remem-
ber that “I am nothing.” When you
let go of your identity and examine
why you are feeling the emotion
(typically because something has
threatened your identity), then
these emotions are beneficial. They
reveal the truth.

True self improvement requires
becoming a better version of
our selves, not a lesser version of
someone else. But without self
acceptance and understanding, how
can we even know what that looks
like or whether we’re headed in the
right direction? it would be like put-
ting the final touches on the Mona
Lisa while picturing some celebrity
you saw on the cover of People mag-
azine: the result would be a mess.
until we let go of our mental images
of who we are or who we should
be, our vision remains clouded by
expectation. But when we let go of
everything, open ourselves to any
truth, and see the world without
fear or judgment, then we are finally
able to begin the process of peeling
off the false identity that prevents
our true self from growing. And it
starts with nothing. n

Paul Buchheit is a partner at the venture
capital firm Y Combinator. He previously
co-founded FriendFeed, which was
acquired by Facebook in 2009, and was
one of the first engineers at Google. At
Google, he started Gmail, suggested
the “Don’t be evil” motto, and created
the first AdSense prototype. Paul has a
degree in Computer Science from Case
Western Reserve University.

I Am Nothing

“By returning to zero
expectations, by accepting
that I am nothing, it is easier
to see the truth.”

Reprinted with permission of the original author. First appeared in hn.my/nothing (paulbuchheit.blogspot.com)

http://hn.my/nothing

8 STARTUPS

STARTUPS

Software Businesses in
5 Hours A Week

➊ Charge More Money
Most engineers severely under-
charge for their products. This is
particularly true for products which
are aimed at businesses — almost
all SaaS firms find that they make
huge portions of their revenue from
the topmost plan which is bought
by people spending other people’s
money, but instead of optimizing
for this, we opt for charging “fair”
prices as determined by other soft-
ware developers who won’t pay for
the service anyway. This is borked.
Charge more.

➋ Do Web Applications
Faster iteration is a big deal. The
faster you can deliver product to
your customers, the faster you can
get changes to your customers, the
faster you learn about your busi-
ness. And the better your software
will get, the happier your customers
will be, the more money you will
make.

you get higher conversion rates
to web applications in many cases.
Mine is double what the down-
loadable application used to be.
There are many, many things that
could go wrong with downloading
an application. you download it,
“Where’d the installer go? i don’t
know how to install things. if i
install this on my computer, will it
steal my documents and break my
Googles?” Common customer wor-
ries. if it’s just a website, they won’t
have that worry.

Web applications that build
recurring revenue are always a great
thing. you have funnels leading up
to your web application, and you
also have funnels within your web
application. one of the things that i
track religiously is someone sign-
ing up for a free trial of my Bingo
Card Creator. do they actually get
Bingo cards spitting out of their
printer? if they don’t, i have failed
in some way. Maybe my software is
too complicated to use, and i could
talk for an hour about this, about
little optimizations i’ve made to the
internals of my application to make
it more likely that they succeed in

getting their job done for tomorrow.
And as you make it more likely that
people are going to succeed with
using your software, you’ll see the
number of people who convert and
the time that they stay using the
software will increase, and that’s
money Straight To your Bottom
Line.

➌ Put More of Your Iceberg
Above the Water Line
Businesses create value with almost
everything they do. The lion’s share
of the value is, like an iceberg,
below the waterline: it cannot be
seen from anywhere outside the
business. Create more value than
you capture, certainly, but get
the credit for doing so, both from
Google and from everybody else.
This means producing value in a
public manner. did you write soft-
ware outside the core of your line
of business? Great, oSS it. Get the
credit. Have you learned something
novel about your customers or
industry? Write about it. Get the
credit. Are your business’ processes
worthy of emulation? Spread what
you know. Get the credit.

By PATriCK MCKEnziE

 9

➍ SEO
i mentioned obliquely that half of
my sales come from SEo, and 75%
of my profits do. As developers who
are trying to get into marketing, this
is the thing that you will learn most
easily and will make you huge, huge
amounts of money if you do it well.

The biggest SEo problem that
entrepreneurs have is this: you have
a website consisting of five or six
pages, and there’s no reason for
someone to cite that website unless
they are in a commercial relation-
ship with you. So if they use your
software, they’ve paid their money,
and they’re happy, maybe they’ll
blog about that, and that’s good.
Getting money from someone is
very hard. Getting them to cite
you is less hard if you can produce
something of value for them.

➎ Optimize Everything
Some of the most important advice
i ever heard regarding the software
business came from Steve Pavlina:
all factors in the success of a soft-
ware business are multiplicative. So
if your conversion to the trial goes
up by 10%, and your conversion to
the sale goes up by 10%, you don’t
go up by 20% to your bottom line,
you go up by 21%, because 1.1 x
1.1 is 1.21. So if you just get a 5%
increase every month for a year, you
get 70% growth in revenue. yeah,
it’s a hill-climbing algorithm. yeah,
it takes some time, and it’s not
going to give you the 10x, 100x,
1000x return that some people are
looking for, but i hill-climbed all
the way out of the day job from
hell, so it’s an option.

First track how many of your
users never come back, and you
will find it is a scary, scary number.
i’ve been optimizing this for years.

My number is 60%. So i’m paying
Google thousands of dollars a
month, and 60% of thousands is
totally wasted because they never
come back after the first time.
Lower that number by making
their first experience, their first five
minutes with the software totally
awesome. Getting them to that
point with activation will produce
great returns.

➏ Outsource/Automate/Elimi-
nate So You Can Do It All in 5
Hours a Week
Three ways to avoid wasting your
time: outsource, automate, and
eliminate.

 n Outsourcing. outsourcing means
that you delegate tasks to be
done by other people without
harming the value too much.

 n Automation. Have the computer
do it, especially for repetitive
things.

 n Elimination. if it doesn’t add
value, then you shouldn’t be
doing it.

What to Outsource:
 n Web design. i have a seven to
eight day schedule for getting
my website up. i’m not going to
both make an application and
hack together a website in that
time. Web development talent is
really cheap right now, like web
design talent. So hand off the
work to people who are tal-
ented, who like doing this stuff,
and who constantly under price
themselves. Let them make the
websites. you do the work that
adds value uniquely to your busi-
ness that you can’t get done by
other people.

 n Web content. How many people
have written every word of text
on their websites? There are
many copywriters who can do
that for you, so hire them to do
it, because they’re cheaper than
you are. The end goal is maximiz-
ing effectiency. And any time you
are performing a task that can
be outsourced for far lower than
your goal wage without com-
promising quality and without
compromising your users’ trust
in you, then it should be done by
someone else.

 n Self-contained programming
projects. if it can be completed
by someone else and checked by
you in an efficient fashion, then
delegate.

don’t do all the development
by yourself just because you can.
your success will not be determined
by the number of lines of code
you write. Write code when you
want to write code, when it makes
you happy, because you should be
happy when you’re running your
own business. do not work at any
soul-sucking job for 19 hours a
day. Key takeaway: if a Japanese
company ever offers you a salaried
position, just say “no!”

What to Automate:
 n Routine customer support tasks.
you will find that the same four
things are taking all of your
time. in fact, when i was selling
downloadable software, i dealt
with the following: “What is my
registration key? i forgot it.” “The
Googles ate my computer.” “A
virus ate my hard drive, it’s no
longer installed. Can i get back?
Where is my registration?”

10 STARTUPS

 n If something comes up more than
three times, automate that. Any
support tasks that i’ve ever done
three times can be done with like
one click from my dashboard. For
example, i didn’t used to issue
receipts. Who needs a receipt,
right? Well, people who want to
get reimbursed need receipts. So
the first two times i hand-wrote
a receipt for her in notepad: ###
This is a receipt, not an invoice
###. Here’s your name, here’s my
name. you paid me $29.95. This is
your receipt. And i e-mailed that.
i did it like three times. And the
fourth time, i’m like, “Should the
CEo really be writing receipts by
hand in notepad?” no. So i wrote
software to do that, and there’s
one button that i can click that
will send you a receipt.

 n Drudgery. License generation. if
that isn’t outsourced or auto-
mated already, it should be.

 n Server maintenance and monitor-
ing. i used to check my server
every morning when i got up just
to make sure it had not died in
the middle of the night. That’s
very repetitive. it’s important that
i do it because if it dies, then, oh
dear! But computers can do that
much easier than i can, and they
can check every five minutes of
the day and just sent me an alert
iif my server goes down.

What to Eliminate:
 n Checking Google Analytics 37
times a day. i used to do it. i
wasted a lot of time on that. i
had five hours a week and i’d
spend one hour on Google Ana-
lytics learning nothing. Be honest
with yourself. is what i’m doing
right now really driving business
forward? if not, don’t do it.

 n Worrying about competition.
There are fifteen other people
who have done bingo card
creation software. Many of them
have cloned me, soup to nuts. So
i guess their marketing strategy
is being Patrick McKenzie-like.
That doesn’t work out so well. So
don’t worry about your competi-
tion. They’ll clone you or they
won’t clone you. Who cares? do
right by your customers. it will
work out in the end.

 n Development which is not
meeting customer needs. i spent
twenty hours making this one
feature for my software — that’s
an entire month of my business
sucked up. i thought they had
this problem: my teachers clearly
don’t understand where a file is.
i’ve been talking to them for a
couple of years, they don’t get
what the file system metaphor
actually means. They want their
bingo cards they make at home to
be available at school, so i made
a way that they could upload
their bingo cards to my website
and then download them from
school. i never asked an actual
teacher, “Would you use this?” n

Patrick McKenzie runs a small soft-
ware business. His current focus is on
Appointment Reminder, which solves
small businesses’ problems with missed
appointments. He also made Bingo Card
Creator and consults from time to time,
mostly on software marketing.

Summary

➊ Charge More Money

➋ Do Web Applications

➌ Put More of Your Iceberg
Above the Water Line

➍ SEO

➎ Optimize Everything

➏ Outsource
 n Web design
 n Web content
 n Self-contained programming

projects

Automate
 n Routine customer support tasks
 n Something that comes up more

than three times
 n Drudgery
 n Server maintenance and

monitoring

Eliminate
 n Checking Google Analytics 37

times a day
 n Worrying about competition
 n Development which is not meet-

ing customer needs

Reprinted with permission of the original author.
First appeared in hn.my/5hours (kalzumeus.com)

http://hn.my/5hours

Reprinted with permission of the original author. First appeared in hn.my/codelearn.

http://cloudkick.com

12 STARTUPS

By ViniCiuS VACAnTi

The Long Grind Before You
Become an Overnight Success

“So, what do you do?”
ugh. i hated that question.
The truth was that we were trying to start

a new venture, but we hadn’t really made any progress.
But, instead of just muttering something, i would

force myself to enthusiastically pitch our current strug-
gling idea. They would nod along, but the skepticism
on their face was hard to ignore.

And, when i was done, they would sometimes hit
me with: “So, is that your full-time thing?” ugh. What
that really meant was: you’re trying to tell me that you
spend all your time working on that ridiculous idea?

The Grind
We left our finance jobs in the summer of 2007, and
we worked really, really hard. By February of 2010,
it had been over two and half years of hustling on no
salary. What did we have to show for it? nothing.

We hadn’t made a dollar of revenue. We had been
rejected by every investor we talked to. We hadn’t been
able to recruit anyone to join our team. We hadn’t
gotten traction with any of our ideas.

We had failed to get more than 10K monthly unique
visitors for yipit for the last two years despite trying
several ideas with it. We were going sideways.

on a personal level, my life savings was disappear-
ing. i kept getting hit with late penalties on my credit
card. not because i didn’t have the cash to pay it, but
because i just didn’t want to think about it. it was too

depressing to look at my depleting bank account that i
had worked so hard to build up. i remember withdraw-
ing all the money from my 401K account and having
to confirm that i did, in fact, understand the massive
penalties i would incur for doing so.

in all honesty, i probably would have given up earlier.
The only reason why i didn’t was out of loyalty to my
co-founder, Jim, who had also quit his finance job. He
had passed up many amazing job opportunities to work
alongside me, and i wasn’t going to quit on him.

Everything Changes
in February of 2010, over two and half years since we
started, we have yet another idea: build an aggregator
for the early but quickly growing daily deal industry.
The idea was sound, timely, and right up our alley,
since we had been doing local deal aggregation for the
last nine months.

And, in just three days, everything changed.
We launched the new idea in a three-day scramble,

got some initial press, users loved it, and four months
later raised $1 million from amazing investors. A year
after that, we’ve raised $6 million, made real revenue,
attracted hundreds of thousands of users, and recruited
amazing people to join our team. And, best of all, we’re
just getting started.

 13

So, what happened in those three days?
i’m convinced that if we had the idea for a daily

deal aggregator back in 2007 or 2008 or even 2009, we
wouldn’t have gotten traction because we would have
messed it up.

But, after two and half years of failing and learning,
we knew exactly what to do:

 n Product strategy. We had become a part of the lean
startup movement. i had gone to the new york lean
startup meetups from the beginning, read Four Steps
to Epiphany, and knew we just needed to build a
minimum viable product.

 n Coding the prototype. i had taught myself web
development over the last few years, and Jim had
taught himself front-end development. We didn’t
need to find an outsourcer, we just quickly built it
ourselves.

 n Designing the user interface. We had already
designed a bunch of prototypes. We knew how
to design a landing page that collects user email
addresses and a sign-up flow that collects prefer-
ences, and we knew to ask our new users to spread
the message.

 n Getting initial press. We knew how to craft our story
in a way that would get journalists interested. We
got featured on TechCrunch and Wired, giving us a
strong initial boost.

 n Getting investors interested. We had built relation-
ships with many new york angel investors over the
last few years, and so we were able to quickly drum
up some interest based on our traction since they
already knew who we were.

 n Building buzz. We had become involved in the new
york tech community and our friends in the industry
really helped us build initial buzz for yipit.

now that i look back, i realize that i was wrong to
think that we had nothing to show for two and half
years of hustling. While we didn’t have outward signs
of success, we had learned something very important:
the art and science of starting a new venture. it took us
almost three years to know what exactly we had to do
during those three days.

And so, to everyone out there who’s struggling and
feels like they have nothing to show for it, i hope this
article keeps you going. you’re learning every day. And,
when the inspiration strikes, you’re going to be ready to
pounce on it. n

Vinicius Vacanti is the co-founder and CEO of Yipit, which
aggregates and recommends daily deals based on your
category and location preferences. Previous to startups, Vin
worked as an investment analyst on Wall Street. He graduated
from Harvard College with a degree in Applied Mathematics.

“While we didn’t have outward signs of success,
we had learned something very important:
the art and science of starting a new venture. ”

Reprinted with permission of the original author.
First appeared in hn.my/grind (viniciusvacanti.com)

http://hn.my/grind

TRIBUTE

14 TRIBUTE

Stanford Commencement Address, June 2005
By Steve Jobs

You’ve Got To Find
What You Love

i am honored to be with
you today at your com-
mencement from one of
the finest universities in

the world. i never graduated from
college. Truth be told, this is the
closest i’ve ever gotten to a college
graduation. Today i want to tell you
three stories from my life. That’s it.
no big deal. Just three stories.

The first story is about connect-
ing the dots.

i dropped out of reed College
after the first 6 months, but then
stayed around as a drop-in for
another 18 months or so before i
really quit. So why did i drop out?

it started before i was born. My
biological mother was a young,
unwed college graduate student,
and she decided to put me up for
adoption. She felt very strongly
that i should be adopted by college
graduates, so everything was all set
for me to be adopted at birth by
a lawyer and his wife. Except that
when i popped out they decided
at the last minute that they really

wanted a girl. So my parents, who
were on a waiting list, got a call
in the middle of the night asking:

“We have an unexpected baby boy;
do you want him?” They said: “of
course.” My biological mother later
found out that my mother had
never graduated from college and
that my father had never graduated
from high school. She refused to
sign the final adoption papers. She
only relented a few months later
when my parents promised that i
would someday go to college.

And 17 years later i did go to col-
lege. But i naively chose a college
that was almost as expensive as
Stanford, and all of my working-
class parents’ savings were being
spent on my college tuition. After
six months, i couldn’t see the value
in it. i had no idea what i wanted
to do with my life and no idea how
college was going to help me figure
it out. And here i was spending
all of the money my parents had
saved their entire life. So i decided
to drop out and trust that it would

all work out oK. it was pretty
scary at the time, but looking back
it was one of the best decisions i
ever made. The minute i dropped
out i could stop taking the required
classes that didn’t interest me, and
begin dropping in on the ones that
looked interesting.

it wasn’t all romantic. i didn’t
have a dorm room, so i slept on the
floor in friends’ rooms, i returned
coke bottles for the 5¢ deposits
to buy food with, and i would
walk the 7 miles across town every
Sunday night to get one good meal
a week at the Hare Krishna temple.
i loved it. And much of what i
stumbled into by following my
curiosity and intuition turned out
to be priceless later on. Let me give
you one example:

reed College at that time
offered perhaps the best calligraphy
instruction in the country. Through-
out the campus every poster, every
label on every drawer, was beauti-
fully hand calligraphed. Because i
had dropped out and didn’t have to

 15

take the normal classes, i decided
to take a calligraphy class to learn
how to do this. i learned about serif
and san serif typefaces, about vary-
ing the amount of space between
different letter combinations, about
what makes great typography
great. it was beautiful, historical,
artistically subtle in a way that sci-
ence can’t capture, and i found it
fascinating.

none of this had even a hope
of any practical application in my
life. But ten years later, when we
were designing the first Macintosh
computer, it all came back to me.
And we designed it all into the
Mac. it was the first computer with
beautiful typography. if i had never
dropped in on that single course in
college, the Mac would have never
had multiple typefaces or propor-
tionally spaced fonts. And since
Windows just copied the Mac, it’s
likely that no personal computer
would have them. if i had never
dropped out, i would have never
dropped in on this calligraphy class,
and personal computers might not
have the wonderful typography that
they do. of course it was impos-
sible to connect the dots looking
forward when i was in college. But
it was very, very clear looking back-
wards ten years later.

Again, you can’t connect the dots
looking forward; you can only con-
nect them looking backwards. So
you have to trust that the dots will
somehow connect in your future.
you have to trust in something —
your gut, destiny, life, karma, what-
ever. This approach has never let
me down, and it has made all the
difference in my life.

My second story is about love
and loss.

i was lucky — i found what i
loved to do early in life. Woz and i
started Apple in my parents garage
when i was 20. We worked hard,
and in 10 years Apple had grown
from just the two of us in a garage
into a $2 billion company with
over 4000 employees. We had just
released our finest creation — the
Macintosh — a year earlier, and i
had just turned 30. And then i got
fired. How can you get fired from
a company you started? Well, as
Apple grew we hired someone who
i thought was very talented to run
the company with me, and for the
first year or so things went well. But
then our visions of the future began
to diverge and eventually we had a
falling out. When we did, our Board
of directors sided with him. So
at 30 i was out. And very publicly
out. What had been the focus of
my entire adult life was gone, and it
was devastating.

i really didn’t know what to
do for a few months. i felt that i
had let the previous generation of
entrepreneurs down — that i had
dropped the baton as it was being
passed to me. i met with david
Packard and Bob noyce and tried
to apologize for screwing up so
badly. i was a very public failure,
and i even thought about running
away from the valley. But some-
thing slowly began to dawn on me

— i still loved what i did. The turn
of events at Apple had not changed
that one bit. i had been rejected,
but i was still in love. And so i
decided to start over.

i didn’t see it then, but it turned
out that getting fired from Apple
was the best thing that could
have ever happened to me. The
heaviness of being successful was
replaced by the lightness of being
a beginner again, less sure about
everything. it freed me to enter one
of the most creative periods of my
life.

during the next five years, i
started a company named neXT,
another company named Pixar, and
fell in love with an amazing woman
who would become my wife. Pixar
went on to create the worlds first
computer animated feature film,
Toy Story, and is now the most
successful animation studio in
the world. in a remarkable turn
of events, Apple bought neXT, i
returned to Apple, and the technol-
ogy we developed at neXT is at
the heart of Apple’s current renais-
sance. And Laurene and i have a
wonderful family together.

16 TRIBUTE

i’m pretty sure none of this
would have happened if i hadn’t
been fired from Apple. it was awful
tasting medicine, but i guess the
patient needed it. Sometimes life
hits you in the head with a brick.
don’t lose faith. i’m convinced that
the only thing that kept me going
was that i loved what i did. you’ve
got to find what you love. And that
is as true for your work as it is for
your lovers. your work is going to
fill a large part of your life, and
the only way to be truly satisfied
is to do what you believe is great
work. And the only way to do great
work is to love what you do. if you
haven’t found it yet, keep looking.

don’t settle. As with all matters of
the heart, you’ll know when you
find it. And, like any great relation-
ship, it just gets better and better as
the years roll on. So keep looking
until you find it. don’t settle.

My third story is about death.
When i was 17, i read a quote

that went something like: “if you live
each day as if it was your last, some-
day you’ll most certainly be right.” it
made an impression on me, and since
then, for the past 33 years, i have
looked in the mirror every morning
and asked myself: “if today were the
last day of my life, would i want to
do what i am about to do today?”
And whenever the answer has been
“no” for too many days in a row, i
know i need to change something.

remembering that i’ll be dead
soon is the most important tool i’ve
ever encountered to help me make
the big choices in life. Because
almost everything — all external
expectations, all pride, all fear of
embarrassment or failure — these
things just fall away in the face of
death, leaving only what is truly
important. remembering that you
are going to die is the best way i
know to avoid the trap of thinking
you have something to lose. you are
already naked. There is no reason
not to follow your heart.

About a year ago i was diagnosed
with cancer. i had a scan at 7:30 in
the morning, and it clearly showed
a tumor on my pancreas. i didn’t
even know what a pancreas was.
The doctors told me this was almost
certainly a type of cancer that is
incurable, and that i should expect
to live no longer than three to six
months. My doctor advised me to
go home and get my affairs in order,

which is doctor’s code for prepare
to die. it means to try to tell your
kids everything you thought you’d
have the next 10 years to tell them
in just a few months. it means to
make sure everything is buttoned
up so that it will be as easy as pos-
sible for your family. it means to say
your goodbyes.

i lived with that diagnosis all
day. Later that evening i had a
biopsy, where they stuck an endo-
scope down my throat, through
my stomach and into my intestines,
put a needle into my pancreas and
got a few cells from the tumor. i
was sedated, but my wife, who
was there, told me that when they
viewed the cells under a micro-
scope the doctors started crying
because it turned out to be a very
rare form of pancreatic cancer that
is curable with surgery. i had the
surgery and i’m fine now.

This was the closest i’ve been
to facing death, and i hope it’s the
closest i get for a few more decades.
Having lived through it, i can now
say this to you with a bit more cer-
tainty than when death was a useful
but purely intellectual concept:

no one wants to die. Even people
who want to go to heaven don’t
want to die to get there. And yet
death is the destination we all
share. no one has ever escaped it.
And that is as it should be, because
death is very likely the single best
invention of Life. it is Life’s change
agent. it clears out the old to make
way for the new. right now the
new is you, but someday not too
long from now, you will gradually
become the old and be cleared
away. Sorry to be so dramatic, but it
is quite true.

 17

your time is limited, so don’t waste it
living someone else’s life. don’t be trapped
by dogma — which is living with the
results of other people’s thinking. don’t
let the noise of others’ opinions drown out
your own inner voice. And most important,
have the courage to follow your heart and
intuition. They somehow already know
what you truly want to become. Every-
thing else is secondary.

When i was young, there was an amaz-
ing publication called The Whole Earth
Catalog, which was one of the bibles of
my generation. it was created by a fellow
named Stewart Brand not far from here
in Menlo Park, and he brought it to life
with his poetic touch. This was in the late
1960’s, before personal computers and
desktop publishing, so it was all made with
typewriters, scissors, and polaroid cameras.
it was sort of like Google in paperback
form, 35 years before Google came along:
it was idealistic, and overflowing with neat
tools and great notions.

Stewart and his team put out several
issues of The Whole Earth Catalog, and
then when it had run its course, they put
out a final issue. it was the mid-1970s,
and i was your age. on the back cover of
their final issue was a photograph of an
early morning country road, the kind you
might find yourself hitchhiking on if you
were so adventurous. Beneath it were the
words: “Stay Hungry. Stay Foolish.” it was
their farewell message as they signed off.

Stay Hungry. Stay Foolish. And i have
always wished that for myself. And now,
as you graduate to begin anew, i wish that
for you.

Stay Hungry. Stay Foolish.
Thank you all very much. n

In Memoriam, Steve Jobs (1955-2011)

“Have the courage to follow your heart
and intuition. They somehow already
know what you truly want to become.”

Special thanks to Stanford
University for granting the
permission to reprint.

Photo Credit (in order of ap-
pearance): Robert Holmgren,
Joi Ito, Matthew Yohe.

18 PROGRAMMING

PROGRAMMING

By CHriS LEAry

Understanding JIT Spray

Steel your mind for a tale
of intrigue, intertwined with
a complex topic in browser

security. (it’s kind of all over the
place, but i might spray something
useful.)

our story, like so many others,
starts out with a browser user like
yourself, a bottle of red wine, and
a devoted young hacker from the
Eastern Bloc that answers to the
handle “Coleslaw.”

Winey-and-Cheesy Corporation,
the largest international wine and
cheese distributor, has just blitz-
krieg bopped the mainstream media
over the head with a tactical Pr
campaign — a free case of wine and
sizable wheel of Gouda for the five
millionth visitor to their website.

The only problem is that Winey-
and-Cheesy’s massively trafficked
website... has been owned.

Coleslaw is something of a
wunderkind, and has, through feats
of social engineering and technical
prowess paralleled only by terrible
movies from the mid 90s, gained
the ability to insert some arbitrary,

special-sauce HTML and JavaScript
into that promotional page.

Coleslaw intends to perform a
“zero-day attack” — this means that
there’s a bug in the browser that
Coleslaw knows about, but that the
browser vendors are unaware of.
Coleslaw thinks that this bug can
be used to take over the machines
of some unsuspecting users who
visit the promotional page, capital-
izing on their maniacal love of fine
dining.

The Attacker’s Dilemma
So, to recap, Coleslaw has found
a bug in the browser. Coleslaw
wants to exploit that bug in order
to obtain arbitrary code execu-
tion — the ability to run whatever
code Coleslaw feels like on the
machine that’s running the vulner-
able browser. The question is, how
does Coleslaw get from point A, “i
see that there’s a bug,” to point B,
“i can run anything i want on the
vulnerable machine”? The process
of figuring this out is called exploit
development.

The exploit development process
is a narrative about control. Cole-
slaw starts off by having control
over a small set of things — the
JavaScript and HTML on a page
that the browser visits — but wants
to end up controlling everything
that the user controls on the vul-
nerable machine. The environment
that internet sites have access to
is supposed to be sandboxed; i.e.
internet sites are expected to have
a somewhat limited and carefully
selected set of things it can control.
For example, websites that you
happen to stumble across shouldn’t
be able to delete files off of your
hard drive.

Strongly-related to this narra-
tive about control is the concept
of determinism. if Coleslaw has
a concrete understanding that
performing some action, like call-
ing alert from JavaScript, always
results in some consequence, like
creating and displaying an alert
window in the browser, then Cole-
slaw has effectively extended the
realm of control from JavaScript to

 19

triggering-the-code-in-the browser-
that-displays-an-alert-dialog. Bar-
ring bugs, the realm of control is
always confined to the sandbox —
the set of possible actions are those
that the browser vendor permits an
untrusted website to take.

Not All Bugs Are Created Equal
There are lots of different kinds
of bugs that browser software can
have. There’s a relatively tiny set of
bugs that permit control flow hijack-
ing, which are generally of interest
for gaining arbitrary code execu-
tion. Successful hijacking implies
that you have the ability to control
the address of the instruction being
executed, which is commonly
referred to as pseudo-register %eip
(where ip is short for instruction
pointer). With full control of %eip,
the attacker can point it at any exe-
cutable code — possibly at execut-
able code that they’ve created.

Control flow hijacking is typically
accomplished through some kind of
memory corruption, stemming from
errors in the use of type-unsafe pro-
gramming constructs in the browser.
in general, the bugs of interest for
control flow hijacking are:

 n Memory writes that can be used
to clobber vtable pointer or func-
tion pointer values. The attacker
may have control over the loca-
tion of the memory write, the
value being written, or both.

 n Buffer overruns that can be used
to manipulate values that are
ultimately used to determine
code to run. The classic example
of this is clobbering return
addresses present on the C stack.

There’s also the possibility of
using an attacker-controllable
invalid memory read bug to cause
an invalid write to happen further
along in program execution. Bugs
that cause segfaults are carefully
evaluated by browser security
teams to see if the invalid memory
access being performed can be
manipulated for use in control flow
hijacking.

Platform-level Mitigations: DEP,
ASLR, and Canaries
There are some nifty platform-
level protections against traditional
control flow hijacking techniques.
They make both taking control of
%eip and executing an attacker-
controlled code sequence more
difficult.

one control-flow hijacking miti-
gation is stack smashing protection,
which is enabled at compile time
using a technique referred to as
“canary values.” An attacker could
historically use stack buffer over-
runs to clobber the return address
in a function frame with a target
%eip value, and the ret instruc-
tion at the end of the function’s
machine code would return to that
new (attacker-controlled) address
value. With this mitigation enabled,
however, the compiler places a
special value on the stack between
local variables (where the buffer
lives) and the return value. The
compiler also augments the func-
tion body with pre-return func-
tion prologue code that checks the
canary value on the stack against
its original value. if a stack buffer
overrun causes the return value to
be overwritten, the canary that lives
in the contiguous space between

the locals and return value should
indicate that things have gone hor-
ribly wrong.

Generally, we tend to think of
executables as containing all their
executable code as static machine-
code. other than the code that the
compiler spat out as specific sec-
tions of the executable, nothing else
should run over the course of the
program’s execution. This expec-
tation is codified in an oS-level
mitigation called data Execution
Prevention (dEP).

The goal of dEP is to prevent
things which are not code from
being executed as code at runtime.
your program stack, for example, is
just a bunch of space for data that
your C function frames can’t keep
in registers. There’s basically no
reason that a sane program would
ever want to start executing the
stack area of memory like it were
code. if something like that were to
happen, it would be better if your
program just terminated, because it
could be the pivotal point before an
attacker like Coleslaw takes control.
Program termination means loss of
control for the attacker.

Trying to execute code that was
not in the original binary will gener-
ally cause the program to fault. in
a JiT, however, we purposefully
create code at runtime, violating
the all-the-code-is-in-the-binary
assumption. As a result, we have
to explicitly mark the machine
code that we create as executable
by calling to an operating system
APi function, like VirtualProtect
or mprotect, to indicate that the
data the process has created should
really be executable.

20 PROGRAMMING

dEP’s close friend from acronym
club is Address Space Layout ran-
domization (ASLr). ASLr reduces
determinism in the process that the
attacker is trying to exploit by ran-
domizing the stack address, library
loading address, heap address, and
PEB address, amongst other key
program components. With this
mitigation, hardcoded constant
addresses in attacker-crafted code
become probabilistically unlikely to
succeed at hitting their target. As an
example, the start of the program
stack could wind up being placed at
one of 16,000 locations!

This also means that the address
of system dLLs, like the ones
containing oS APi functions like
VirtualProtect and C library func-
tions like system, are probabilisti-
cally unknown to the attacker. Since
the browser ships linked with all
ASLr-enabled dLLs, it’s difficult
to use linked dLL code as direct
footholds in process space.

Coleslaw wants to run an
attacker-controlled code payload,
but dEP makes it difficult to
execute that payload, since it won’t
be marked as executable by default.

Coleslaw wants to be able to turn
the bug that relinquishes control
of %eip into a reliable exploit, but
ASLr makes it difficult to know
where to point %eip in order to run
exploit code.

i imagine that turning a crash
into an exploit isn’t trivial these
days.

Staged Shellcode Payloads
The machine-code payloads that
attackers create are referred to as
shellcode. Shellcode is generally
characterized by its size and its
goal, which is usually reflected by
the “stage” it’s said to be running.
For example, the very first shellcode
to run, in computer science style, is
referred to as “stage 0.”

intermediate stages of shell-
code are often used to bootstrap
more complex executable code
sequences. The complexity involved
in turning a bug into an exploit
often prevents arbitrarily complex
code sequences from execut-
ing immediately, so tinier code
sequences are written that just
delegate responsibility to a more
easily formed executable payload.
Constraints that apply to the code
that the exploit starts running
directly tend to disappear after
you’ve gone through some amount
of indirection.

Shellcode can easily embed
astoundingly small code sequences
called “egg hunters” to find the
memory address of other attacker-
controlled payloads. The egg hunt-
ers are designed to avoid faulting
the application, because faults
cause the attacker to lose control.
They work by performing a series
of fast-and-minimally-sized system
calls to determine whether a virtual
memory page is safe to traverse
through and read to find the “egg”
payload delimiter.

once the address of a stage 1
data payload is determined, stage
0 shellcode may attempt to make
that segment of memory execut-
able. despite ASLr, the address of

the VirtualProtect function can
be derived by hopping from the
known TEB address to the PEB
address to the dLL loader address
mapping table. once executable
permissions have been added to the
stage 1 shellcode, it can simply be
jumped to.

Another alternative, if the stage
0 shellcode is executing out of a
code space with both writable and
executable permissions and suf-
ficient available space, is to use
what’s called a “GetPC” shellcode
sequence to determine the cur-
rent value of %eip and then copy
the contents of a stage 1 shellcode
payload buffer into the current
code space.

For some bugs it may be pos-
sible to create “common” stage 0
shellcode to bootstrap any other
shellcode payload. This common
shellcode is a valuable commodity
for exploit toolkits.

JIT Spray, Deconstructed
As mentioned earlier, the JiT has
to mark its own assembly buffers as
executable. An attacker may look at
using that fact to generate execut-
able stage 0 shellcode in order to
bypass some of the pain inflicted by
dEP. But how could you possibly
use JiT compilation process to
make shellcode?

JIT spraying is the process of coerc-
ing the JIT engine to write many
executable pages with embedded
shellcode.
— Blazakis, 2010

dion Blazakis wrote the seminal
paper on JiT spray, in which he
presented a jaw-dropping example.

 21

Blazakis noticed that the following
ActionScript code:

Was JiT-compiled into the follow-
ing instruction sequence:

Check out the first line. it’s
showing that the first instruction is
a MOV that places the 32-bit imme-
diate payload into the EAX register.
The 32-bit immediate payload
from that instruction (3C54D0D9)
is exactly the immediate that was
used as the left-hand-side to the
long Xor sequence in the original
ActionScript code.

now, if we look at the subse-
quent lines, we see that the addr
column, which is showing the
address of instructions relative to
the start of the sequence, goes up
by 5 every time. That’s because
each instruction after the initial MOV
is performing an XOR against the
original value in the accumulator
register, EAX, exactly as the Action-
Script program described.

Each of these instructions
is exactly 5 bytes long — each
instruction has a 1-byte opcode
prefix, given under the op column,
followed by a 32-bit immedi-
ate constant: the opcode for
MOV EAX,[imm32] is 0xB8, and
the opcode sequence for XOR
EAX,[imm32] is 0x35.

The immediate column may look
confusing at a glance, but it’s actu-
ally just the little-endian equivalent
of the 32-bit immediate given in
the assembly: the “little end” (least
significant byte) goes “in” (at the
lowest memory address), which

is why the
byte order
looks flipped
around from
the one given
in the assem-
bly (and in
the original
ActionScript
program).

it may not look so sinister, but the
above table is actually deceiving you!

in the table, all of the instructions
are the same number of bytes (5)
in length. on x86 CPus, however,
instructions are actually a vari-
able number of bytes in length:

instructions can be as small as a
single byte, but can get quite long:
the nop instruction is just a 0x90
opcode byte with no operands,
whereas the movl $0xdeadbeef,
0x12345678(%ebx,%edx,1) instruc-
tion is significantly larger.

As a result, when we look at this
instruction sequence “crooked”
(with a 1-byte skew to the address),
we decode a totally different
sequence of instructions. i’ll show
you what i mean.

our instructions in memory look
like the following buffer:

When we load this up in GdB,
and run the disassemble command,
we confirm the instructions present
in the above table:

addr op imm assembly
0 B8 D9D0543C MOV EAX,3C54D0D9
5 35 5890903C XOR EAX,3C909058
10 35 6AF4593C XOR EAX,3C59F46A
15 35 01C8903C XOR EAX,3C90C801
20 35 D930903C XOR EAX,3C9030D9
25 35 5B53533C XOR EAX,3C53535B

static const char buf[] = {
 0xB8, 0xD9, 0xD0, 0x54, 0x3C,
 0x35, 0x58, 0x90, 0x90, 0x3C,
 0x35, 0x6A, 0xF4, 0x59, 0x3C,
 0x35, 0x01, 0xC8, 0x90, 0x3C,
 0x35, 0xD9, 0x30, 0x90, 0x3C,
 0x35, 0x5B, 0x53, 0x53, 0x3C
};

(gdb) disassemble/r buf
Dump of assembler code for function buf:
 0x08048460 <+0>: b8 d9 d0 54 3c mov eax,0x3c54d0d9
 0x08048465 <+5>: 35 58 90 90 3c xor eax,0x3c909058
 0x0804846a <+10>: 35 6a f4 59 3c xor eax,0x3c59f46a
 0x0804846f <+15>: 35 01 c8 90 3c xor eax,0x3c90c801
 0x08048474 <+20>: 35 d9 30 90 3c xor eax,0x3c9030d9
 0x08048479 <+25>: 35 5b 53 53 3c xor eax,0x3c53535b

var y = (
 0x3c54d0d9 ^
 0x3c909058 ^
 0x3c59f46a ^
 0x3c90c801 ^
 0x3c9030d9 ^
 0x3c53535b ^
 ...
)

22 PROGRAMMING

But then, if we look at the buffer
with a 1-byte offset, we see a totally
different set of instructions! note
the use of buf+1 as the disassembly
target:

if you look down the middle part
of the two disassemblies, before the
assembly mnemonics, you can read
that the bytes are the same from
left to right: the first line of the
first disassemblies goes b8 d9 d0
54 3c, and the second disassembly
starts on the second byte of that
same sequence with d9 d0 54 3c,
straddling multiple instructions.
This is the magic of variable length
instruction encoding: when you
look at an instruction stream a little
bit sideways, things can change very
drastically.

Yo Dawg, I Heard You Like X86
Assembly...
it’s not obvious, at first glance, just
how clever this technique is.

The goal of the ActionScript
code pattern is for the attacker
to insert arbitrary bytes into the
code stream that the JiT otherwise
generates. The attacker then uses
these arbitrary bytes as an alternate
instruction stream. However, the
attacker has to compensate for the
non-attacker-controlled bytes that
surround its own.

Each 32-bit immediate encoded
in the ActionScript program starts
with a MSB of 0x3c. That byte is
little-endian encoded and placed,
in memory, right before each of
the 0x35s that represent the XOR
EAX,[imm32] opcode.

Jumping to the 1-byte offset
from the base address of the
instruction stream starts us off

executing 0xd9 0xd0, a 2-byte
instruction that runs a no-op on the
floating point unit. Both of these
bytes were part of the attacker’s
immediate value: 0x3c54d0d9.

Effectively, the attacker is able
to control 4 out of every 5 bytes
per instruction in the stream. They
are somewhat limited by the bytes
fixed in the instruction stream,
however. The MSB of each imme-
diate is a 0x3c so that it can suc-
cessfully combine with the 0x35
from the XOR EAX,[imm32] opcode
to create a nop-like instruction,
cmp al,0x35, that keeps the stream
executing at the 1-byte offset.

it would be ideal for the attacker
if they could find a way to incor-
porate the 0x35 into an instruction
in a useful way, instead of having
to lose a byte in order to control
it; however, there are lots of fun
tricks that you can play to make
compact instruction sequences. By
making use of the stacky subset of
x86 you can get a nice little MiSCy
program: pushes and pops are nice
1-byte instructions that you can
split across the semantic nops to
simulate moves, and pushing 8-bit
signed immediates only takes 2
bytes, as you can see at buf+11.
dumping your floating point copro-
cessor state out to the stack is a
2-byte sequence. Accessing the TEB
is a 3-byte sequence. How can you
not love x86?

For this particular code sequence,
the attacker only has a 1 in 5
chance of jumping to an %eip
that gives control back to the JiT
program. if you land anywhere
in the constant-encoded portion,
the instruction sequence will be
entirely different.

(gdb) disassemble/r (buf+1), (buf+sizeof(buf))
Dump of assembler code from 0x8048461 to 0x804847e:
 0x08048461 <buf+1>: d9 d0 fnop
 0x08048463 <buf+3>: 54 push esp
 0x08048464 <buf+4>: 3c 35 cmp al,0x35
 0x08048466 <buf+6>: 58 pop eax
 0x08048467 <buf+7>: 90 nop
 0x08048468 <buf+8>: 90 nop
 0x08048469 <buf+9>: 3c 35 cmp al,0x35
 0x0804846b <buf+11>: 6a f4 push 0xfffffff4
 0x0804846d <buf+13>: 59 pop ecx
 0x0804846e <buf+14>: 3c 35 cmp al,0x35
 0x08048470 <buf+16>: 01 c8 add eax,ecx
 0x08048472 <buf+18>: 90 nop
 0x08048473 <buf+19>: 3c 35 cmp al,0x35
 0x08048475 <buf+21>: d9 30 fnstenv [eax]
 0x08048477 <buf+23>: 90 nop
 0x08048478 <buf+24>: 3c 35 cmp al,0x35
 0x0804847a <buf+26>: 5b pop ebx
 0x0804847b <buf+27>: 53 push ebx

 23

Outstanding Issues
So now we know the basic require-
ments for pulling off a JiT spray attack:

 n deterministic attacker control of
values embedded in the instruc-
tion stream

 n Control of %eip

 n The ability to jump somewhere
inside the JiT code, in order to
probabilistically execute the
attacker’s interleaved instruction
stream

But wait, how do you know
where to jump?

JiT spray opens up the possibil-
ity for an attacker to create a lot
of very similar code via the JiT
compiler, possibly with nop sled
prefixes. As a result, one approach
to bypassing both dEP and ASLr is
to fill enough of the address space
with JiT code that you can jump
to a random location and hit an
attacker-controlled portion valid
JiT code buffer with reasonable
probability.

But this leads to further ques-
tions: what address does the
attacker pick to jump to? How
much code memory does the
attacker spray? Creating a reliable
exploit seems significantly more
difficult.

Blazakis’ Solution
in order to create a reliable exploit
(as opposed to a probabilistic one),
Blazakis used the techniques of
pointer inferencing and heap feng
shui.

The sandbox makes it par-
ticularly tricky to figure out where
things live in memory. Those kinds
of details definitely aren’t sup-
posed to be exposed through the
sandbox. if the attacker were able
to figure out the locations of things
in memory space through the
sandbox, it would be considered an
information leak.

Pointer inferencing is the tech-
nique that Blazakis used to accu-
rately determine the memory
location of heapified ActionScript
entities in the Flash VM. The
inferencing described in Blazakis’
paper is cleverly based on the fact
that literal integer values in the
Flash virtual machines are hashed
alongside of heap-object pointers.
By observing the default diction-
ary enumeration order — the order
in which keys exist in the hash
table — Blazakis was able to narrow
down the value of the object
pointer to its exact location.

“Heap feng shui” is the process of
understanding the memory alloca-
tion behaviors of the sandboxed
environment that code is run-
ning in, and using that knowledge
to place objects in some known
locations in memory relative to
each other. Blazakis noted that the
ActionScript object heap expands
in 16MiB increments and took into
account the heuristics for execut-
able allocations when loading
ActionScript bytecode entities.
Blazakis also relied on the usage
of VirtualAlloc in the Action-
Script memory allocator, with the
knowledge that VirtualAlloc maps
the first 64KiB aligned hole that’s
found in a linear scan through the
virtual address space.

Blazakis was able to combine
these techniques into reliable stage
0 shellcode execution by:

1. determining the exact pointer of
the first object within a 16MiB
heap chunk.

2. Spraying just enough JiT code to
place a JiT code allocation right
after that 16MiB chunk.

3. determining the JiT spray
address to be the object address
+ 16MiB.

4. Adding a value like 0x101 to the
base address to get an unaligned
JIT code location, as described in
the JiT spray section above.

5. Jumping to that resulting address.

Back to the Story: the Law of
Large Numbers
So, Coleslaw intends to use a multi-
step process:

1. Find bug that permits control
flow hijacking

2. Perform JiT spray

3. Jump to probabilistic address for
stage 0 shellcode

importance of leaked information
about the memory map becomes
apparent here: it prevents you from
doing a JiT-spray and jump-spray.
However, given enough visitors, like
the 5 million to Winey-and-Cheesy’s
giveaway, we have to start calculat-
ing expected values. As mitigations
are added to lower the probability
of success, we can see the expected
value of ownage drop as well. n

Chris Leary is a Mozilla JavaScript engine
hacker working on JIT spray mitigations
for an upcoming version of Firefox.

Reprinted with permission of the original author.
First appeared in hn.my/jit (cdleary.com)

http://hn.my/jit

24 PROGRAMMING

By FErry BoEndEr

Evolutionary Algorithm

My interest in Evo-
lutionary Algorithms
started when i read

on the origin of Circuits over at
damninteresting.com. i always
wanted to try something like that
out for myself, but never really
found the time. now i have, and i
think i’ve found some interesting
results.

Disclaimer: i know next to noth-
ing about Evolutionary Algorithms.
Everything you read in here is the
product of my own imagination and
tests. i may use the wrong algo-
rithms, nomenclature, and meth-
odology, and i might just be getting
very bad results. They are, however,
interesting to me, and i do know
something about evolution, so here
it is anyway.

How Evolution Works
So, how does an Evolutionary
Algorithm work? Why, the same as
normal biological evolution, mostly!
Very (very) simply said, organisms
consist of dnA, which determines
their characteristics. When organ-
isms reproduce, there is a chance
their offspring’s dnA contains a
mutation, which can lead to differ-
ences in characteristics. Sufficiently
negative changes in offspring make

that offspring less fit to survive,
causing it, and the mutation, to die
out eventually. Positive changes are
passed on to future offspring. So
through evolution, a set of dnA
naturally tends to grow towards its
“goal,” which is ultimate fitness for
its environment. now this is not an
entirely correct description, but for
our purposes it is good enough.

A Simple Evolutionary
Algorithm
There is nothing stopping us from
using the same technique to evolve
things towards goals set by a pro-
grammer. As can be seen from the
Antenna example in the damnin-
teresting article, this can sometimes
even produce better things than
engineers can come up with. For
example, i’m going to evolve the
string “Hello, World!” from random
garbage. The first example won’t be
very interesting, but it demonstrates
the concept rather well.

First, let’s define our starting
point and end goal:

our evolutionary algorithm
will start with “jiKnp4bqpmAbp”,
which we can view as the dnA of
our “organism.” it will then ran-
domly mutate some of the dnA,
and judge the new mutated string’s
fitness. But how do we determine
fitness? This is probably the most
difficult part of any evolutionary
algorithm.

Lucky for us, there’s an easy
way to do this with strings. All we
have to do is take the value of each
character in the mutated string, and
see how much it differs from the
same character in the target string.
This is called the distance between
two characters. We then add all
those differences, which leads us
to a single value which is the fit-
ness of that string. A fitness of 0 is
perfect, and means that both strings
are exactly the same. A fitness of
1 means one of the characters is
off by one. For instance, the strings
“Hfllo” and “Hdllo” both have a fit-
ness of one. The higher the fitness
number, the less fit it actually is!

Evolving “Hello, World!”

source = "jiKnp4bqpmAbp"
target = "Hello, World!"

 25

Here’s the fitness function.

if you look closely, you’ll notice
that for each character, i square the
difference. This is to convert any
negative numbers to positive ones,
and to put extra emphasis on larger
differences. if we don’t do this,
the string “Hannp” would have a
fitness of 0. you see, the difference
between “e” and “a” is -5, between
“l” and “n” is +2 (which we have
twice) and between “o” and “p” is
+1. Adding these up yields a fitness
of 0, but it's not the string we want
at all. if we square the differences,
they become 25, 4, 4 and 1, which
yields a fitness of 34. Effectively, we
square each difference so that they
can’t cancel each other out.

now we need to introduce muta-
tions into our string. This is rather
easy. We simply pick a random
character in the string, and either
increment or decrease it by one, or
leave it alone:

Time to tie the whole shebang
together!

This should be easy enough to
understand. For each iteration of
the While-loop, we mutate the
string and then calculate its fitness.
if it is fitter then the original string
(the parent), we make the child the
new string. otherwise, we throw it

away. if the
fitness is 0,
we’re done!

Let’s look at some output. i’m
snipping out some intermediary
output because it’s not terribly
interesting.

At generation 1, we have a fitness
of 15491, and the string looks noth-
ing like “Hello, World!” The same
for generation 20, 40, 60, etc.

not much progress so far. At
generation 500 it’s still a load
of nonsense:

Generation 1200: we start to
see something that looks like
“Hello, World!”:

Generation 1500: we’re getting
very close!

it still takes a good 1500 gen-
erations more before we’re finally
there:

 There it is!

def fitness(source, target):
 fitval = 0
 for i in range(0, len(source)):
 fitval += (ord(target[i]) - ord(source[i])) ** 2
 return(fitval)

def mutate(source):
 charpos = random.randint(0, len(source) - 1)
 parts = list(source)
 parts[charpos] = chr(ord(parts[charpos])
+ random.randint(-1,1))
 return(''.join(parts))

fitval = fitness(source, target)
i = 0
while True:
 i += 1
 m = mutate(source)
 fitval_m = fitness(m, target)
 if fitval_m < fitval:
 fitval = fitval_m
 source = m
 print "%5i %5i %14s" %
(i, fitval_m, m)
 if fitval == 0:
 break

 1 15491 jjKnp4bqpmAbp
20 15400 jiKnp3bppoAbp
40 15377 jiKlo2bpooAdp
60 15130 iiKlo2aoooAdp

500 9986 \eTlo,YaorNdf

1200 4186 Heglo,LWorhdP

1500 3370 Hello,GWorldL

3078 2 Hello, Vorld"
3079 2 Hfllo, World"
3080 2 Hfllo, World"
3081 0 Hello, World!

26 PROGRAMMING

A Better, More Interesting,
Algorithm
okay, so that worked. But...it was
kind of lame. nothing interest-
ing to see, really, was there? That’s
because our algorithm was a little
too simplistic. only one “organism”
in the gene pool, only one charac-
ter mutated at any time. We can
do better than that, so let’s modify
the program to make it more
interesting.

We’re not going to touch our
fitness function, since that works
rather well. instead, let’s introduce
a gene pool. instead of having only
one string, why not have a whole
bunch of randomly generated
strings and let them duke it out
among themselves. That sounds a
bit more real-life, doesn’t it?

This little snippet generates a
gene pool with 20 random strings
and their fitnesses. in an official
implementation, the gene pool
would be called the population.

now, let’s modify our mutation
function. instead of mutating one
single character, we feed it two
parents, picked at random from
the genepool, and it will mix their
dnA together a bit. This is called
“crossover”. it will also randomly
mutate one character in the result-
ing dnA. it then returns the newly
fabricated child, including its fitness.

We also need a routine to pick
two random parents from the
genepool. now, we could just pick
them completely random, but
what you really want is for parents
with a good fitness to have a better
chance of offspring. This is called
“elitism.” if we sort the genepool
list by fitness, we can use a uniform
product distribution to make sure
that parents with better fitness get
chosen more often.

now you might ask, what the
hell is a uniform product distribu-
tion? When you randomly pick a
number between, say, 1 and 10,
each number has the same chance
of being picked. This is called a
“uniform distribution.” But when
you pick two random numbers, and
you multiply them, there’s a much
bigger chance of getting a bigger
number than a smaller number.
Hence the name “uniform product
distribution.” Here’s how that looks:

GENSIZE = 20
genepool = []
for i in range(0, GENSIZE):
 dna = [random.choice(string.printable[:-5]) for j
in range(0, len(target))]
 fitness = calc_fitness(dna, target)
 candidate = {'dna': dna, 'fitness': fitness }
 genepool.append(candidate)

def mutate(parent1, parent2):
 child_dna = parent1['dna'][:]

 # Mix both DNAs
 start = random.randint(0, len(parent2['dna']) - 1)
 stop = random.randint(0, len(parent2['dna']) - 1)
 if start > stop:
 stop, start = start, stop
 child_dna[start:stop] = parent2['dna'][start:stop]

 # Mutate one position
 charpos = random.randint(0, len(child_dna) - 1)
 child_dna[charpos] = chr(ord(child_dna[charpos]) +
random.randint(-1,1))
 child_fitness = calc_fitness(child_dna, target)
 return({'dna': child_dna, 'fitness': child_fitness})

 27

So our random parent picker will
do just that. We select two random
real numbers between 0 and 1,
multiple those two random num-
bers and then scale the result up
to our pool size by multiplying the
result with the size of the pool. We
return that parent from the pool.

There! now it’s time for our main
loop.

For each iteration of the While
True loop, we first sort the gene-
pool by fitness so that the most fit
parents are at the top. We check to
see if the fittest happens to be the
target string we’re looking for. if so,
we stop the loop.

Then we select two parents from
the genepool using the uniform
product distribution so that fitter
parents are chosen more often.
We create a bastard mutated child
that will mix both parents’ dnA

together and introduce a little
mutation. if the new child is more
fit than the worst in the genepool, it
will replace that degenerate one in
the genepool. in the next iteration,
the pool is sorted again on fitness so
that the new child takes its rightful
place.

Results
now it’s time to run this puppy and
see what it does. Again, i snip out
some of the less interesting stuff.

Here’s the genepool in the
beginning. The first number is the
generation (the number of times
the While-loop has run), the second
number is the fitness, and the third
column is the dnA for that entry
in the genepool.

 one big random jumbled mess.
note the ones i’ve emphasized.
These are the parents that were
selected for the new child in the
next generation. Let’s see how it
looks after one generation:

def random_parent(genepool):
 wRndNr = random.random() * random.random() * (GENSIZE - 1)
 wRndNr = int(wRndNr)
 return(genepool[wRndNr])

while True:
 genepool.sort(key=lambda candidate: candidate['fitness'])

 if genepool[0]['fitness'] == 0:
 # Target reached
 break

 parent1 = random_parent(genepool)
 parent2 = random_parent(genepool)

 child = mutate(parent1, parent2)
 if child['fitness'] < genepool[-1]['fitness']:
 genepool[-1] = child

1 7617 'iSx{$,K`u~(B
1 9284 SQf`1N#UdrPlT
1 12837 sYIu<E"Fq'^_.
1 15531 DC8Dg1I$*mUs-
1 16064 L~*}JBVdF7bu2
1 16533 1,XU%)5$q[YuO
1 16588 ff],ceW<0fud&
1 17316 [V3@2'VgY\{KV
1 17356 kWw#v/P<#apG9
1 17581 <Lrh(1hN_Bd)3
1 18777 TM]_]TbtxFY:q
1 19656 $zS+EI?BS>%z(
1 19841 =S;B~((W8 D,6
1 20398 P_A$D|NPJPio/
1 21957 J&f=O:g\8'{S2
1 22543 5*T2c"pMZ80L'
1 24954 A&lZ#A_}MxI"P
1 25186 &9MrI|0&x)q,N
1 28110 OlXT/Q{y3{"LR
1 29656 8WB99hx%0]}h[

2 7617 'iSx{$,K`u~(B
2 8742 SQf`1N#UdfumT
2 9284 SQf`1N#UdrPlT
2 12837 sYIu<E"Fq'^_.
2 15531 DC8Dg1I$*mUs-
2 16064 L~*}JBVdF7bu2
2 16533 1,XU%)5$q[YuO
2 16588 ff],ceW<0fud&
2 17316 [V3@2'VgY\{KV
2 17356 kWw#v/P>#apG9
2 17581 <Lrh(1hN_Bd)3
2 18777 TM]_]TbtxFY:q
2 19656 $zS+EI?BS>%z(
2 19841 =S;B~((W8 D,6
2 20398 P_A$D|NPJPio/
2 21957 J&f=O:g\8'{S2
2 22543 5*T2c"pMZ80L'
2 24954 A&lZ#A_}MxI"P
2 25186 &9MrI|0&x)q,N
2 28110 OlXT/Q{y3{"LR

28 PROGRAMMING

 Two random parents from the
previous generation have their
dnA mixed, and have generated
an offspring (the bold one) which is
better then both of them. it comes
in second with a fitness of 8742,
while its parents only had fitness of
9284 and 16588. Let’s skip ahead a
bit and look at the 6th generation:

As you can see, the “SQf” has
reproduced again with success, and
there are now four variants of it
in the genepool. We also note the
“kWw#”, of which there are two
identical ones. This can happen
when the entire dnA of one parent
is copied and no mutation occurs.
in our mutate function, we use the
first parent’s dnA as a base and
then randomly overlay some of the
seconds parent’s dnA. This can be
anything from the entire second
parent’s dnA, or nothing at all.

But generally, the chance is higher
that the first parent’s dnA survives
largely in tact.

The next interesting generation
is 13:

Wow! “SQf” has been really busy
and now almost rules the genepool.
“iSx” is second and third, but has
lost its number one position to the
“rQf” variant of “SQf.” “rQf” was
introduced in the 12th generation
as a child of an “iSx” and “SQf”
variant. We see that “kWv” has been
knocked almost to the end of the
list by more fit candidates. it is very
obvious that this pool is no longer
random. Patterns are starting to
emerge all over it.

By the time we reach generation
40:

The genepool is now almost
entirely dominated by the “rQf”
variants. Forms of its original
parents “SQf” and “iSx” can still
be found here and there, although
“iSx” is almost entirely gone from
the pool. An interesting thing is
that we can see combinations of
letters (bold) that keep reappearing.
These are almost like actual genes!
Combinations of dnA that work
well together and therefore stay in
the genepool in that combination.
it takes lots of generations to make
variants of these genes that are
more fit then previous versions.

6 7617 'iSx{$,K`u~(B
6 8742 SQf`1N#UdfumT
6 9284 SQf`1N#UdrPlT
6 10198 SQfD1N#UdfumT
6 12837 sYIu<E"Fq'^_.
6 15531 DC8Dg1I$*mUs-
6 16064 L~*}JBVdF7bu2
6 16387 SQf`1N"MZ80LT
6 16533 1,XU%)5$q[YuO
6 16588 ff],ceW<0fud&
6 17316 [V3@2'VgY\{KV
6 17356 kWw#v/P>#apG9
6 17356 kWw#v/P>#apG9
6 17581 <Lrh(1hN_Bd)3
6 18777 TM]_]TbtxFY:q
6 19656 $zS+EI?BS>%z(
6 19841 =S;B~((W8 D,6
6 20287 fe],1eW<0fud&
6 20398 P_A$D|NPJPio/
6 21957 J&f=O:g\8'{S2

13 4204 RQf`{$,KdfumT
13 7617 'iSx{$,K`u~(B
13 7617 'iSx{$,K`u~(B
13 8742 SQf`1N#UdfumT
13 8742 SQf`1N#UdfumT
13 9284 SQf`1N#UdrPlT
13 9284 SQf`1N#UdrPlT
13 10198 SQfD1N#UdfumT
13 12837 sYIu<E"Fq'^_.
13 15531 DC8Dg1I$*mUs-
13 15838 L~*xJBVdG7bu2
13 15856 $zS+<E"Fq(^_(
13 15883 L~*xJCVdG7bu2
13 16064 L~*}JBVdF7bu2
13 16387 SQf`1N"MZ80LT
13 16533 1,XU%)5$q[YuO
13 16588 ff],ceW<0fud&
13 17316 [V3@2'VgY\{KV
13 17356 kWw#v/P>#apG9
13 17356 kWw#v/P>#apG9

40 3306 RQSw{$-KcfumB
40 4204 RQf`{$,KdfumT
40 4229 RQf`|$,KdfumT
40 4242 RQe`|$,KdfumT
40 4795 RQSw{$-KdfumT
40 4971 RQSwz$*K`uSnT
40 4973 RQSwz$+K`uSmT
40 4992 RQSwz$+K`uSnT
40 5017 SQSxz$+K`uSmT
40 5017 SQSxz$+K`uSmT
40 5951 (QSxz$+KdfSmT
40 5985 'QSxz$+K`uSmT
40 6421 SQfx{$+K`u~(B
40 6444 TQf`{$+K`u~(B
40 6489 SQfx{$+KdfS(B
40 6492 TQf`{$-K`u~(B
40 7034 SQSxy$+KdfS(B
40 7617 'iSx{$,K`u~(B
40 7617 'iSx{$,K`u~(B
40 7625 'iS`{$,Kdg~(B

 29

The next milestone is found in
the 67th generation:

This marks the first generation
where there are no other variations
than the rQS one. But immedi-
ately, we see the next generation in
which a new number one is found:

By the 96th generation, QQS has
taken over the top:

This is where the race gets
boring. Every now and then a new,
better, mutation will arise and
take over the genepool. Change is
slow, though, and no big surprises
are left. The candidates slowly but
surely mutate until they reach
something resembling the “Hello,
World!” we are looking for in gen-
eration 1600:

it takes almost another half-
thousand generation to get to the
final target:

Interesting facts:

 n it usually takes anywhere
between 2500 and 4000 genera-
tions to evolve the target.

 n on average, it takes approxi-
mately 3100 generations to
evolve the target.

 n if we remove the parent dnA
mixing and rely solely on muta-
tions, it takes on average 3650
generations to evolve the target.

 n The parent dnA mixing is
only really useful in the begin-
ning. in the first generations, it
can quickly propel a new mix
of dnA to the top of the list,
but later on random mutations
instead of mixing dnA becomes
the main driving force between
the evolutions. (This doesn’t have
to be the case in real life evolu-
tion, naturally.) n

Ferry Boender is a Software Engineer
and hacker with over 20 years of
programming experience. He holds a
Bachelor’s degree in Computer Science.

67 3138 RQSw{$+KdfukA
67 3161 RQSw{$+KcfukA
67 3176 RQSw{$,KdfulA
67 3176 RQSw{$+KcfulA
67 3218 RQSw{$-LcfumA
67 3222 RQSw{%,KefumB
67 3237 RQSw{$-LcfvmA
67 3241 RQSw{$-KcfumA
67 3241 RQSw{$-KcfumA
67 3266 RQSw{$-KceumA
67 3266 RQSw{$-KceumA
67 3267 RRSw{$-KcfumB
67 3289 RQSw{%,KefumC
67 3306 RQSw{$-KcfumB
67 3306 RQSw{$-KcfumB
67 3323 RQSw{#-KcfumB
67 3324 RPSw{$-KdfumB
67 3331 RQSw{$-KbfumB
67 3348 RQSw{#-KbfumB
67 3489 RQSw{$+KdfumA

68 3119 QQSw{$+KdfukA
68 3138 RQSw{$+KdfukA
68 3161 RQSw{$+KcfukA

96 3060 QQSw{%+KdhukA
96 3065 QRSw{%+KdfukA
96 3081 QQSw{%+KdgukA
96 3081 QQSw{%+KdgukA
96 3081 QQSw{%+KdgukA
96 3096 QQSw{$+KdgukA
96 3104 QQSw{%+KdfukA
96 3119 QQSw{$+KdfukA
96 3119 QQSw{$+KdfukA
96 3119 QQSw{$+KdfukA
96 3137 RRSw{$,KdfulA
96 3137 RRSw{$,KdfulA
96 3138 RQSw{$+KdfukA
96 3138 RQSw{$+KdfukA
96 3138 RQSw{$+KdfukA
96 3138 RQSw{$+KdfukA
96 3138 RQSw{$+KdfukA
96 3142 QQSw{$,KdfukA
96 3142 QQSw{$+KcfukA
96 3144 QQSw|$+KdfukA

1600 19 Hdllo+ Worle%
1600 20 Hdklo+ Worle%
1600 20 Hdklo+ Worle%
1600 20 Hdklo+ Worle%
1600 20 Hdklo+ Worle%
1600 20 Hdklo+ Workd%

1904 0 Hello, World!
1904 1 Hello, World"
1904 1 Hello, World"
1904 2 Hello, Wprld"
1904 2 Helmo, World"
1904 2 Helmo, World"
1904 2 Hdllo, World"
1904 2 Hello, Worle"

Reprinted with permission of the original author.
First appeared in hn.my/evolution (electricmonk.nl)

http://hn.my/evolution

30 PROGRAMMING

it may or may not surprise
you to know that the bash
shell has a very rich array
of convenient shortcuts

that can make your life, working
with the command line, a whole
lot easier. This ability to edit the
command line using shortcuts is
provided by the Gnu readline
library. This library is used by many
other *nix applications besides
bash, so learning some of these
shortcuts will not only allow you
to zip around bash commands with
absurd ease, but also make you
more proficient in using a variety
of other *nix applications that use
readline. i don’t want to get into
readline too deeply so i’ll just men-
tion one more thing. By default
readline uses emacs key bindings.
Although it can be configured to
use the vi editing mode, i prefer to
learn the default behavior of most
applications (i find it makes my
life easier not having to constantly
customize stuff). if you’re familiar
with emacs then many of these
shortcuts will not be new to you.
These are mostly for the rest of us.

Command Editing Shortcuts

 n Ctrl + a → go to the start of
the command line

 n Ctrl + e → go to the end of the
command line

 n Ctrl + k → delete from cursor
to the end of the command line

 n Ctrl + u → delete from cursor
to the start of the command line

 n Ctrl + w → delete from cursor
to start of word (i.e., delete
backwards one word)

 n Ctrl + y → paste word or text
that was cut using one of the
deletion shortcuts (such as the
one above) after the cursor

 n Ctrl + xx → move between start
of command line and current
cursor position (and back again)

 n Alt + b → move backward one
word (or go to start of word the
cursor is currently on)

 n Alt + f → move forward one
word (or go to end of word the
cursor is currently on)

 n Alt + d → delete to end of
word starting at cursor (whole
word if cursor is at the begin-
ning of word)

 n Alt + c → capitalize to end of
word starting at cursor (whole
word if cursor is at the begin-
ning of word)

 n Alt + u → make uppercase
from cursor to end of word

 n Alt + l → make lowercase
from cursor to end of word

 n Alt + t → swap current word
with previous

 n Ctrl + f → move forward one
character

 n Ctrl + b → move backward one
character

 n Ctrl + d → delete character
under the cursor

 n Ctrl + h → delete character
before the cursor

 n Ctrl + t → swap character
under cursor with the previous
one

By ALAn SKorKin

Bash Shortcuts For
Maximum Productivity

 31

Command Recall Shortcuts

 n Ctrl + r → search the history
backwards

 n Ctrl + g → escape from history
searching mode

 n Ctrl + p → previous com-
mand in history (i.e., walk back
through the command history)

 n Ctrl + n → next command
in history (i.e., walk forward
through the command history)

 n Alt + . → use the last word of
the previous command
Command Control Shortcuts

 n Ctrl + l → clear the screen

 n Ctrl + s → stops the output
to the screen (for long-running
verbose command)

 n Ctrl + q → allow output to the
screen (if previously stopped
using command above)

 n Ctrl + c → terminate the
command

 n Ctrl + z → suspend/stop the
command

Bash Bang (!) Commands
Bash also has some handy features
that use the ! (bang) to allow you
to do some funky stuff with bash
commands.

 n !! → run last command

 n !blah → run the most recent
command that starts with “blah”
(e.g., !ls)

 n !blah:p → print out the com-
mand that !blah would run (also
adds it as the latest command in
the command history)

 n !$ → the last word of the previ-
ous command (same as Alt + .)

 n !$:p → print out the word that
!$ would substitute

 n !* → the previous command
except for the last word (e.g.,
if you type ‘find some_file.txt
/‘, then !* would give you ‘find
some_file.txt‘)

 n !*:p → print out what !* would
substitute

There is one more handy thing
you can do. This involves using the
^^ “command.” if you type a com-
mand and run it, you can re-run
the same command but substitute
a piece of text for another piece of
text using ^^. For example:

Here, the command was the
^-al^-lash, which replaced the
-al with -lash in our previous ls
command and re-ran the command
again.

There is a lot more that you can
do when it comes to using shortcuts
with bash. But, the shortcuts above
will get you 90% of the way towards
maximum bash productivity. n

Alan Skorkin is a developer and aspiring
software craftsman from Melbourne,
Australia. He is often found causing con-
troversy on his blog skorks.com, while
sharing his thoughts about hacking, the
software development profession and
the people who work in it.

$ ls -al
total 12
drwxrwxrwx+ 3 Admin None 0 Jul 21 23:38 .
drwxrwxrwx+ 3 Admin None 0 Jul 21 23:34 ..
-rwxr-xr-x 1 Admin None 1150 Jul 21 23:34 .bash_profile
-rwxr-xr-x 1 Admin None 3116 Jul 21 23:34 .bashrc
drwxr-xr-x+ 4 Admin None 0 Jul 21 23:39 .gem
-rwxr-xr-x 1 Admin None 1461 Jul 21 23:34 .inputrc
$ ^-al^-lash
ls -lash
total 12K
 0 drwxrwxrwx+ 3 Admin None 0 Jul 21 23:38 .
 0 drwxrwxrwx+ 3 Admin None 0 Jul 21 23:34 ..
4.0K -rwxr-xr-x 1 Admin None 1.2K Jul 21 23:34 .bash_profile
4.0K -rwxr-xr-x 1 Admin None 3.1K Jul 21 23:34 .bashrc
 0 drwxr-xr-x+ 4 Admin None 0 Jul 21 23:39 .gem
4.0K -rwxr-xr-x 1 Admin None 1.5K Jul 21 23:34 .inputrc

Reprinted with permission of the original author.
First appeared in hn.my/bash (skorks.com)

http://hn.my/bash

32 SPECIAL

SPECIAL

By MiCHAEL TriCK

Finding Love Optimally

Like many in operations research,
my research interests often creep
over into my everyday life. Since i
work on scheduling issues, i get par-

ticularly concerned with everyday scheduling, to
the consternation of my friends and family (“We
should have left 6 minutes ago: transportation is
now on the critical path!”). This was particularly
true when i was a doctoral student when, by
academic design, i was living and breathing opera-
tions research 24 hours a day.

i was a doctoral student from ages 22 to 27,
and like many in that age group, i was quite
concerned with finding a partner with whom
to spend the rest of my life. Having decided on
certain parameters for such a partner (female,
breathing, etc.), i began to think about how i
should optimally find a wife. in one of my classes,
it hit me that the problem has been studied: it
is the Secretary Problem! i had a position to fill
(secretary, wife, what’s the difference?), a series
of applicants, and my goal was to pick the best
applicant for the position.

 Fortunately, there is quite a literature on the
Secretary Problem, and there are a number of
surprising results. The most surprising is that it
is possible to find the best secretary with any
reasonable probability at all. The hard part is that
each candidate is considered one at a time, and
an immediate decision must be made to accept
or reject the candidate. you can’t go back and say

Heart Of The Storm, flickr.com/photos/jdhancock/4354438814

http://flickr.com/photos/jdhancock/4354438814

 33

“you know, i think you are the
cat’s meow after all.” This matched
up with my empirical experi-
ence in dating. Further, at each
step, you only know if the current
candidate is the best of the ones
you have seen: candidates do not
come either with objective values
or with certifications of perfection,
again matching empirical observa-
tions. you can only compare them
with what you have sampled.

despite these handicaps, if
you know how many candidates
there are, there is a simple rule to
maximize the chance of finding
the best mate: sample the first
K candidates without selecting
any of them, and then take the
first subsequent candidate who is
the best of all you have seen. K
depends on n, the total number of
candidates you will see. As n gets
big, K moves toward 1/e times
n, where e is 2.71….So sample
36.9% of the candidates, and then
take the first candidate who is the
best you have seen. This gives a
36.9% chance of ending up with
Ms. or Mrs. right.

one problem here: i didn’t
know what n is. How many eli-
gible women will i meet? Fortu-
nately, the next class covered that
topic. if you don’t know what n
is but know that you will be doing
this over a finite amount of time T,

then it is okay to replace this with
a time cutoff rule: simply take the
first candidate after 36.9% of the
time (technically, you use 36.9%
of the cumulative distribution,
but i assumed a uniform distribu-
tion of candidate arrivals). okay,
i figured, people are generally
useless at 40 (so i thought then:
the 50-year-old-me would like
to argue with that assumption),
and start this matching process
at about 18 (some seem to start
earlier, but they may be playing a
different game), so, taking 36.9%
of the 22 year gap gives an age
of 26.11. That was my age! By
a great coincidence, operations
research had taught me what to
do at exactly the time i needed to
do that.

redoubling my efforts, i pro-
ceeded to sample the candidate
pool (recognizing the odds were
against me: there is still only
a 36.9% chance of finding Ms.
right) when lo and behold — i
met her: the woman who was
better than every previous candi-
date. i didn’t know if she was Per-
fect (the assumptions of the model
don’t allow me to determine that),
but there was no doubt that she
met the qualifications for this step
of the algorithm. So i proposed.

And she turned me down.
And that is when i realized why

it is called the Secretary Problem,
and not the Fiancée Problem
(though Merrill Flood proposed
the problem under that name).
Secretaries have applied for a job
and, presumably, will take the
job if offered. Potential mates, on
the other hand, are also trying
to determine their best match
through their own Secretary
Problem. in order for Ms. right

to choose me, i had to be Mr.
right to her! And then things get
much more complicated. What
if i was meeting women in their
sampling phase? it did seem that
some people were very enthusi-
astic about having long sampling
phases, and none of them would
be accepting me, no matter how
good a match they would be for
me. And even the cutoff of 36.9%
looks wrong in this case. in order
to have a hope of matching up at
all in this “dual Secretary Prob-
lem,” it looked like i should have
had a much earlier cutoff, and in
fact, it seemed unlikely there was
a good rule at all!

i was chagrined that operations
research did not help me solve my
matching problem. i had made
one of the big mistakes of practi-
cal operations research: i did not
carefully examine the assump-
tions of my model to determine
applicability.

downcast, i graduated with
my doctorate, resolving to marry
myself to integer programming.
i embarked on a postdoc to
Germany.

There, i walked into a bar, fell
in love with a beautiful woman,
moved in with her 3 weeks later,
invited her to live in the united
States “for a while,” married her 6
years after that, and had a beauti-
ful son with her 6 years ago. i am
not sure what optimization model
led me down that path, but i think
i am very happy with the result. n

Michael Trick is a professor at Carnegie
Mellon, who really did meet his wife as
a postdoc in Germany. His research is
in mathematical optimization, with an
emphasis on applications in voting and
in sports.

Reprinted with permission of the original author. First appeared in hn.my/love (mat.tepper.cmu.edu)

http://hn.my/love

34 SPECIAL

Things I Learned On A
Round-The-World Yacht Race

Eleven years ago
this month, i stepped
aboard a 72-foot
racing cutter affec-

tionately called The Good Ship
Logica and began a 10-month
round the world yacht race, the
only one to go around the world
against the currents and prevailing
winds. Below deck, i was the geek,
making sure the satellite could
broadcast despite 90ft waves block-
ing line of sight; above deck i was
the bowman, standing at the pointy

end and getting the shit kicked out
of me by walls of water as our team
struggled to take down huge sails
that the wind wanted to keep up.

 Today i learned that someone
mishandled a crane in Portsmouth
during a routine maneuver and
dropped Logica, effectively killing
it. This was the boat that i learned
to trust to keep me safe through
hurricanes, lightning strikes and the
worst the Southern ocean had to
offer. it was the boat that i cursed
every time a rampant wave picked

me up and tossed me down the
deck like a rag doll, slamming me
into rigging and stanchions. it was
the boat in whose bowels i spent
cold hours pumping water into
buckets after the electric pump
failed, the boat that taught me how
to sleep on a rollercoaster while a
generator roared next to my head,
the boat i loved, heart and soul.
now she’s gone.

So today i’ve been thinking about
the lessons she taught me.

By Tony HAiLE

 35

The Opposite of Fear Is Not
Bravery, It’s Initiative
When my first hurricane at sea
hit, it came out of nowhere. i
was delivering a boat (the older,
smaller sister of Logica) across the
Atlantic from Plymouth to Boston.
The boom swung across the deck

with such ferocity that it ripped
the pulley system that controlled
it out of the deck and flung it out
to sea; the third wave took the
heavily bolted down compass and
consigned that to the ocean. our
skipper was up on deck so fast it
seemed incredible that he had just

been asleep and, screaming above
the waves, he got us working to
try to bring down the mainsail and
control the wayward boom. our
boat was so far over on its side that
the mast was dipping into the ocean
and water was starting to drag
the mainsail and the boat further
down into the lifeless grey. i don’t
remember being frightened, at least
not in the way i had always thought
about fear; traditional fear involves
some prediction of a future you
would rather avoid. At this point,
i couldn’t begin to think about a
future at all. i just remember feel-
ing utterly drained of initiative. i
would do whatever anyone asked
me to do, but i was utterly unable
to think or to act for myself.

i brooded over that night for
months afterwards, dwelling on my
own inadequate response when
faced with a true crisis. i knew i
was due to set out on a round-the-
world yacht race the next year and
was terrified that i didn’t have what
it takes, that i would let down my
team when it mattered most.

36 SPECIAL

in october 2000, my skipper
came below decks and asked us if
we had ever seen the Perfect Storm
(it had occurred on the Grand
Banks near our position at the
time). “yeah, three storms converg-
ing on the Flemish Cap,” replied
Adam, the bowman on the other
watch. “We’re in luck,” the skipper
replied, “we’ve only got two storms
converging on us.” We watched the
scarlet dawn rising and remarked
upon the sailors motto “red sky at
night, sailor’s delight; red sky at
morning, we’re fucked.”

We had more warning this time,
but the hurricane still hit with a
vengeance. There’s something about
the sea when the wind gets above
70 knots of breeze (80mph), it
becomes gunmetal grey, as if not
even color could live in these condi-
tions. our bow team struggled up
to the foredeck to take down the

headsails and put up our storm
staysail. orange and bulletproof, we
needed it up if we were going to be
able to steer a course through this
storm at all. This was the moment
i had thought about for years, but
for some reason i was not the same
man who had been so useless on
that previous voyage. i was able to
think, to act on my own initiative
and help my team to survive. it was
a revelation and gave me hope that
the ability to lead in a crisis was
not inbuilt from birth but could be
learned, that i could become better.
The lesson i took from this is that
bravery is a term applied retro-
actively, after the work has been
done and the danger has passed.
in a situation that engenders fear
and terror, don’t ask yourself to be
brave; simply ask yourself to act.
The bravery comes later.

Finding Fault is a Luxury Best
Saved for Tomorrow
My first day of training on the
yacht, and i’d already managed to
break something. A sail was tum-
bling down and the boat was losing
speed. The first mate darted across
the boat to find out what had hap-
pened and i started in on a long and
rambling tale of the series of unfor-
tunate events which had, through
no fault of my own, caused the
damage we were looking at right
now. i was barely three sentences in,
when the mate interrupted me: “i
don’t give a crap whose fault it was,
i just need to know what to fix.”

 The words hit me like a sledge-
hammer, my concern had been
with my perceived reputation and
standing as a competent crewman,
his concern was simply that the
boat wasn’t working right and yet
it needed to be. identifying the

 37

incompetent culprit responsible
or working out the precise series
of events leading us to here were
luxuries that could wait for another
time. right now the boat needed to
be fixed before we lost too much
speed and time. if i was ever going
to truly pull my weight with the
crew, i would have to learn to be
ok with people potentially thinking
the worst of me or ascribing failures
to me that were not directly my
own fault, what mattered was keep-
ing the boat moving. i find thinking
of that day instructive when facing
a board meeting. Finding fault or
assigning blame is an idle luxury —
what matters is keeping the com-
pany moving.

Do Your Thinking Before The
Crisis
We were deep in the Southern
ocean, one of the nastiest environ-
ments on earth, and three of us
were sitting on the windward side
of the deck (the high side) with
little to do but endure the waves
crashing over us and make sure
the helmsman didn’t get hurt. our
skipper came up on deck to take a
look around and spotted a trailing
rope on the leeward side that he
wanted to tidy. He made his way
down to where the deck was skim-
ming the water and began to bring
in the rope when a rogue wave
took him by surprise and knocked
him down the deck. All three of us
leaped forward to grab him before
he was washed overboard, but two
of us were stopped short by our
safety lines like a dog reaching the
limits of its leash.

only Glyn, had the presence of
mind to first unhook his safety line
get across to the other side, reattach
and reach our skipper before it was
too late. While i and my team-mate
had been sitting there grumpily
bearing the waves and wishing we
were elsewhere, Glyn had been run-
ning through scenarios in his head
and working out potential plans of
action should any of them occur.
He knew that there isn’t necessar-
ily time in a crisis to stop, assess the
best course of action and then enact
it, so you have to do your thinking
beforehand. Be constantly work-
ing through “what if?” scenarios so
that your brain has the advantage
when an accident happens and you
are not left flailing helplessly at the
end of a line watching someone get
washed away.

38 SPECIAL

Leave It on the Last Wave
our round the world yacht race
involved putting 18 people in a tin
can, plunging it in salt water, and
shaking it violently for 10 months.
People hallucinate through lack
of sleep, the unconscious tap-
ping of teeth can provoke a knife
fight (which occurred on another
yacht in a previous race), and one
simply can’t avoid someone if you
have an argument. The only way
for your team to mentally survive
in that kind of environment is to
embody the motto of “leave it on
the last wave.” The argument you
had during a sail change? That
happened on a wave way in the

distance, leave it out there where it
belongs. The time you almost came
to blows with a team mate over
something so minor you both can’t
remember, leave it on the wave
where it started because the wind
has changed and there are new sails
to be put up and a new course to
take. The lesson on a boat is clear:
you can either let go of slights or
negative emotions or you can damn
near kill someone. There’s not
much wiggle room in between.

These are some of the gifts that
Logica gave me. My friends have
often remarked upon how the
person who joined the race in Sep-
tember 2000 was utterly different

from the man who left it in July
of 2001. i miss my boat, i miss my
team, and i will always treasure
what i learned on her deck. n

Tony Haile is CEO of Chartbeat and an
all-round troublemaker at Betaworks.
Prior to his life in startups, Tony com-
peted in a round-the-world yacht race,
was Editor of the Middle East and inter-
national terrorism desk for Control Risks
and managed to get paid to muck about
on polar expeditions. He has stood at
the North Pole, worked sail changes
under the Southern Lights and married a
Pennsylvanian.

Reprinted with permission of the original author.
First appeared in hn.my/yacht (tonyhaile.com)

http://hn.my/yacht

http://wpengine.com/?utm_source=hackermonthly&utm_medium=online&utm_campaign=fsquare

40 SPECIAL

Dream. Design. Print.
MagCloud, the revolutionary new self-publishing web service
by HP, is changing the way ideas, stories, and images find
their way into peoples’ hands in a printed magazine format.

HP MagCloud capitalizes on the digital revolution, creating a
web-based marketplace where traditional media companies,
upstart magazine publishers, students, photographers, design-
ers, and businesses can affordably turn their targeted content
into print and digital magazine formats.

Simply upload a PDF of your content, set your selling price, and
HP MagCloud takes care of the rest—processing payments,
printing magazines on demand, and shipping orders to loca-
tions around the world. All magazine formatted publications
are printed to order using HP Indigo technology, so they not
only look fantastic but there’s no waste or overruns, reducing
the impact on the environment.

Become part of the future of magazine publishing today at
www.magcloud.com.

25% Off the First Issue You Publish
Enter promo code HACKER when you set your
magazine price during the publishing process.

Coupon code valid through February 28, 2011.
Please contact promo@magcloud.com with any questions.

http://www.magcloud.com

	Contents
	FEATURES
	I Am Nothing

	STARTUPS
	Software Businesses in 5 Hours A Week
	The Long Grind Before You Become an Overnight Success

	TRIBUTE
	You’ve Got To Find What You Love

	PROGRAMMING
	Understanding JIT Spray
	Evolutionary Algorithm
	Bash Shortcuts For Maximum Productivity

	SPECIAL
	Finding Love Optimally
	Things I Learned On A Round-The-World Yacht Race

