

Curator
Lim Cheng Soon

Proofreader
Emily Griffin

Printer
MagCloud

Contributors
Paras
Chopra
Rudolf Winestock
Thomas Buck
Udo Schroeter
Kenneth
Myers
Howard Yeh
Ryan Tomayko
Angus Croll
Laurence Tratt

Advertising

ads@hackermonthly.com

Contact

contact@hackermonthly.com

Published by
Netizens Media

46, Taylor Road,
11600 Penang, Malaysia.

Hacker Monthly is the print magazine
version of Hacker News — news.ycombinator.com,
a social news website wildly popular among programmers and startup
founders. The submission guidelines state that content can be
“anything that gratifies one’s intellectual curiosity.” Every
month, we select from the top voted articles on Hacker News and print
them in magazine format. For more, visit hackermonthly.com.

For links to the posts on Hacker
News, visit hackermonthly.com/issue-13.
All articles and comments are reprinted with permission of their
original author. Hacker Monthly is published by Netizens Media and
not affiliated with Y Combinator in any way.

How to Find
Startup Ideas that Make Money

By PARAS CHOPRA

If your aim is to make money, pursuing
such ideas can be risky. While idea-driven startups rarely make
money, I professed a market-driven approach for someone looking to
find startup ideas that actually make money.

Market-driven approach to finding
startup ideas that make money

The market-driven approach is quite
simple. It essentially means:

Find a startup idea that a) is
already making money for someone else in a growing industry, b)
interests you, and c) aligns with your skill sets. Once you find such
an idea, simply carve out a niche within the industry by a)
addressing pains of an under-served segment within that industry, or
b) making it much easier to use than existing solutions, or c)
disrupting the market by making your product accessible to masses at
a much affordable price. And once you dominate a particular niche,
expand from your niche with your eyes set on the largest player in
the market.

There is a lot going on here, so let’s
break it up.

Finding a startup idea

For most entrepreneurs, this is perhaps
the most difficult phase of initiation. I have known people who would
wait for years for that golden startup idea to strike. Truth is, even
if you wait for years, startup ideas that are born out of a vacuum
almost never work. As Steve Blank says, “no business survives first
contact with the customer.” So, why not skip the whole idea-game
altogether and simply go ahead with ideas that other people have
tried-and-tested? This is what market-driven approach is all about.
Pick a growing market and simply make a better product.

Here are some essential ingredients of
a market-driven startup idea:

• Growing
industry: this is important because a rising tide lifts all boats.
Also, a growing industry means that most probably a strong leader is
yet to be established, and the field is open for many new players,
one of whom could be you. How to find industries that are growing?
One good resource is Inc’s 5000 fastest growing companies list. In
that list you can find companies that have been growing at +1000%
every year for the last 3 years and have revenues in millions of
dollars. If they can do it, why can’t you?

• Industry
that interests you: aim is to not just make money but have fun on the
way, right? Hence, it is important to pick a startup idea in an
industry that appeals you. Even though eCommerce industry for ladies’
bags and purses might be growing, if you don’t see yourself
passionate about it, don’t pick it!

• Industry
where you have a chance: it is bit obvious, but there are a lot of
things in life that appeal to us, but we’ve got no chance (for
geeks: most obvious example is dating a hot lady!). For example, it
goes without saying that even if the machine vision industry is
growing and people are making money licensing such technology, if it
requires a PhD and you don’t have it, it is probably not worthwhile
to pursue an idea in that industry.

The key idea here is to find an
industry (like SEO, document management, enterprise productivity,
eCommerce for travel, etc.) where you know people are making money.
Inc 5000, Mixergy interviews and Flippa.com are just some of the
sources where companies reveal how much money they are making. Make a
list of industries that make money for other people, appeal to you,
and are relevant to your skill set. Finally select any one of them
(though in most cases you will end up with only 1 or 2 which satisfy
all 3 criteria). Don’t be ashamed of this activity, as we are not
“copying” business ideas; we are simply using information to
select which industry your startup should belong to.

But there are competitors in an
established market!

That’s precisely the key to this
approach. Lack of competitors in the market is a serious indicator
that nobody has found it profitable. So, you would want to pick a
startup idea that has competitors. In addition to signaling that a
market is profitable, competition also helps in positioning your
startup. When you are new, nobody understands your offering and
frankly nobody has time and patience to understand it. They are
simply too busy to digest an entirely new idea or product offering.
However, when you position it against established competition, you
instantly have their attention and they instantly understand the
differentiation. Now customers don’t have to understand new
concepts, they simply understand what’s so different about you.

This strategy of positioning against
established competition is very powerful. That’s why when cars were
invented, they were first called horseless carriages. And that’s
why I have positioned my startup Visual Website Optimizer
[visualwebsiteoptimizer.com]
as a much easier alternative to Google Website Optimizer with all the
features of Omniture Test and Target. (You may not understand the
positioning, but my target market of people who do A/B testing day-in
and day-out would instantly get it.)

Even with all the benefits, many
entrepreneurs still fear established competition. In the previous
step, once you pick an industry that you want to start with, find a
niche which you can dominate initially. It is important to become a
leader in at least one aspect of your industry. That aspect can be:

• Serving
an under-served segment. Imagine you picked SEO as an industry, next
step is to do research (hint: talking to people works best, but
probably I will address this in next blog post) on what the current
pain points are that are not addressed by existing solutions
(including the market-leading one). It may be the case that only a
small segment is unhappy, but in a growing market even that small
segment can be pretty large (in terms of revenue potential) for a
startup. So, for example, you find that marketing agencies want a
white-labeled solution for their clients. There, you have a startup
idea: white-labeled SEO tools for agencies. Similarly, if it is
document management, you may find that most solutions are so generic
that a specific subset of market like accountants are craving much
better management of Excel spreadsheets. So, there you have another
startup idea: document management for accountants and financial
planners. (Warning: the two startup ideas above may or may not work.
They are figments of my imagination with no market research!)

• Another
differentiator of your idea could be usability and ease of use. Most
likely, customers in any industry are fed up with existing, bloated
solutions with hard-to-use interfaces. Simply pick an industry and
make it drop-dead easy to use. People usually drastically
under-estimate how big an advantage ease-of-use can be for a startup.
However, simply look at some examples. File sharing existed before
Dropbox. Social networking existed before Facebook. A/B testing
existed before (my) Visual Website Optimizer. What all of these
products did was to dramatically simplify the key activity in an
industry. You can do the same. Taking example of SEO, make a product
that makes it a no-brainer to generate new content and build
backlinks for it. Make it so simple that even a 5th grader can do it,
and you have a winner.

• Disrupt
an industry with a lower (entry) price point. If your industry is
growing and existing solutions are exorbitantly priced, there may be
an opportunity to build a product as great as the leading one in the
market by simply providing it at a dramatically lower price.
Salesforce revolutionized CRM by offering their product for
$10/user/month, while leading CRM solutions at that point were
costing tens of thousands of dollars.

The key point here is that it is
important to carve out a niche that you can dominate with your
startup in order to get noticed in a growing industry and get your
initial set of customers.

So, is this the end of my startup
story?

No! In fact, this is just the
beginning. Niche domination is not the aim. Industry domination is
the aim. Visual Website Optimizer doesn’t only want to be the
easiest A/B testing out there. In fact, it aims to be the leading A/B
testing tool out there. It’s going to be hard — but not
impossible. The idea is to expand feature-set horizontally and gain
prominence outside of your niche slowly and steadily. Eventually, you
should replace the industry leader and in fact become a source of
market-driven ideas for other startups (I know, how meta).

Industry-leading companies are run by
people similar to you, and they probably followed the path your
startup is going to follow. So, there is no question that you can be
an industry leader someday. It is a nice feeling to be a niche
dominator, but don’t feel satisfied with it. Always set your eyes
on the industry leadership position! That’s where the big bucks
are. §

Paras Chopra, based out of Delhi,
India is the founder of Visual Website Optimizer, an A/B testing tool
to help increase website sales and conversions. You can follow him on
twitter @paraschopra.

The Lisp Curse

By RUDOLF WINESTOCK

The power of Lisp is its own worst
enemy.

Here’s a thought experiment to prove
it: take two programming languages, neither of which are
object-oriented. Your mission, if you choose to accept it, is to make
them object-oriented, keeping them backward-compatible with the
original languages, modulo some edge cases. Inserting any pair of
programming languages into this thought experiment will show that
this is easier with some languages than with others. That’s the
point of the thought experiment. Here’s a trivial example: Intercal
and Pascal.

Now make this thought experiment
interesting: imagine adding object orientation to the C and Scheme
programming languages. Making Scheme object-oriented is a sophomore
homework assignment. On the other hand, adding object orientation to
C requires the programming chops of Bjarne Stroustrup.

The consequence of this divergence in
needed talent and effort causes The Lisp Curse:

Lisp is so powerful that problems which
are technical issues in other programming languages are social issues
in Lisp.

Consider the case of Scheme, again.
Since making Scheme object-oriented is so easy, many Scheme hackers
have done so. More to the point, many individual Scheme hackers have
done so. In the 1990s, this led to a veritable warehouse inventory
list of object-oriented packages for the language. The Paradox of
Choice, alone, guaranteed that none of them would become standard.
Now that some Scheme implementations have their own object
orientation facilities, it’s not so bad. Nevertheless, the fact
that many of these packages were the work of lone individuals led to
problems which Olin Shivers wrote about in documenting the Scheme
Shell, scsh.

Programs written by individual hackers
tend to follow the scratch-an-itch model. These programs will solve
the problem that the hacker, himself, is having without necessarily
handling related parts of the problem which would make the program
more useful to others. Furthermore, the program is sure to work on
that lone hacker’s own setup, but may not be portable to other
Scheme implementations or to the same Scheme implementation on other
platforms. Documentation may be lacking. Being essentially a project
done in the hacker’s copious free time, the program is liable to
suffer should real-life responsibilities intrude on the hacker. As
Olin Shivers noted, this means that these 1-man-band projects tend to
solve 80% of the problem.

Dr. Mark Tarver’s essay, “The
Bipolar Lisp Programmer,” has an apt description of this
phenomenon. He writes of these lone-wolf Lisp hackers and their

...inability to finish things off
properly. The phrase “throw-away design” is absolutely made for
the BBM, and it comes from the Lisp community. Lisp allows you to
just chuck things off so easily, and it is easy to take this for
granted. I saw this 10 years ago when looking for a GUI to my Lisp.
No problem, there were 9 different offerings. The trouble was that
none of the 9 were properly documented and none were bug free.
Basically each person had implemented his own solution and it worked
for him so that was fine. This is a BBM attitude; it works for me and
I understand it. It is also the product of not needing or wanting
anybody else’s help to do something.

Once again, consider the C programming
language in that thought experiment. Due to the difficulty of making
C object oriented, only two serious attempts at the problem have made
any traction: C++ and Objective-C. Objective-C is most popular on the
Macintosh, while C++ rules everywhere else. That means that, for a
given platform, the question of which object-oriented extension of C
to use has already been answered definitively. That means that the
object-orientated facilities for those languages have been
documented, that integrated development environments are aware of
them, that code libraries are compatible with them, and so forth.

Dr. Mark Tarver’s essay on bipolar
Lispers makes the point:

Now in contrast, the C/C++ approach
is quite different. It’s so damn hard to do anything with tweezers
and glue that anything significant you do will be a real achievement.
You want to document it. Also you’re liable to need help in any C
project of significant size; so you’re liable to be social and work
with others. You need to, just to get somewhere.

And all that, from the point of view
of an employer, is attractive. Ten people who communicate, document
things properly, and work together are preferable to one BBM hacking
Lisp who can only be replaced by another BBM (if you can find one) in
the not unlikely event that he will, at some time, go down without
being rebootable.

Therefore, those who already know C
don’t ask, “what object system should I learn?” Instead, they
use C++ or Objective-C depending on what their colleagues are using,
then move on to “how do I use object-oriented feature X?” Answer:
“Goog it and ye shall find.”

Real Hackers, of course, have long
known that object-oriented programming is not the panacea that its
partisans have claimed. Real Hackers have moved on to more advanced
concepts such as immutable data structures, type inferencing, lazy
evaluation, monads, arrows, pattern matching, constraint-based
programming, and so forth. Real Hackers have also known, for a while,
that C and C++ are not appropriate for most programs that don’t
need to do arbitrary bit-fiddling. Nevertheless, the Lisp Curse still
holds.

Some smug Lisp-lovers have surveyed the
current crop of academic languages (Haskell, Ocaml, et cetera) and
found them wanting, saying that any feature of theirs is either
already present in Lisp or can be easily implemented — and improved
upon — with Lisp macros. They’re probably right.

Pity the Lisp hackers.

Dr. Mark Tarver — twice-quoted, above
— wrote a dialect of Lisp called Qi. It is less than 10,000 lines
of macros running atop Clisp. It implements most of the unique
features of Haskell and OCaml. In some respects, Qi surpasses them.
For instance, Qi’s type inferencing engine is Turing complete. In a
world where teams of talented academics were needed to write Haskell,
one man, Dr. Tarver wrote Qi all by his lonesome.

Read that paragraph again and
extrapolate.

Exercise for the reader: Imagine that a
strong rivalry develops between Haskell and Common Lisp. What happens
next?

Answer: The Lisp Curse kicks in. Every
second or third serious Lisp hacker will roll his own implementation
of lazy evaluation, functional purity, arrows, pattern matching, type
inferencing, and the rest. Most of these projects will be lone-wolf
operations. Thus, they will have 80% of the features that most people
need (a different 80% in each case). They will be poorly documented.
They will not be portable across Lisp systems. Some will show great
promise before being abandoned while the project maintainer goes off
to pay his bills. Several will beat Haskell along this or that
dimension (again, a different one in each case), but their acceptance
will be hampered by flame wars on the comp.lang.lisp Usenet group.

Endgame: A random old-time Lisp
hacker’s collection of macros will add up to an undocumented,
unportable, bug-ridden implementation of 80% of Haskell because Lisp
is more powerful than Haskell.

The moral of this story is that
secondary and tertiary effects matter. Technology not only affects
what we can do with respect to technological issues, it also affects
our social behavior. This social behavior can loop back and affect
the original technological issues under consideration.

Lisp is a painfully eloquent exemplar
of this lesson. Lisp is so powerful, that it encourages individual
independence to the point of bloody-mindedness. This independence has
produced stunningly good innovation as in the Lisp Machine days. This
same independence also hampers efforts to revive the “Lisp all the
way down” systems of old; no “Lisp OS” project has gathered
critical mass since the demise of Symbolics and LMI.

One result of these secondary and
tertiary effects is that, even if Lisp is the most expressive
language ever, such that it is theoretically impossible to make a
more expressive language, Lispers will still have things to learn
from other programming languages. The Smalltalk guys taught everyone
— including Lisp hackers — a thing or two about object oriented
programming. The Clean programming language and the Mozart/Oz combo
may have a few surprises of their own.

The Lisp Curse does not contradict the
maxim of Stanislav Datskovskiy: employers much prefer that workers be
fungible, rather than maximally productive. Too true. With great
difficulty does anyone plumb the venality of the managerial class.
However, the last lines of his essay are problematic. To wit:

As for the “free software” world,
it eagerly opposes industrial dogmas in rhetoric but not at all in
practice. No concept shunned by cube farm hells has ever gained real
traction among the amateur masses.

In a footnote, he offers Linux as an
example of this unwillingness to pursue different ideas. To be sure,
he has a point when it comes to operating systems (the topmost
comment, in particular, is infuriatingly obtuse). He does not have a
point when it comes to programming languages. Python and Ruby were
influenced by Lisp. Many of their fans express respect for Lisp and
some of their interest has augmented the Lisp renaissance. With some
justice, JavaScript has been described as “Scheme in C’s
clothing” despite originating in those cube farm hells.

Nevertheless, in spite of this
influence, in both the corporate and open source worlds, Lisp still
has only a fraction of the developer mind share which the current
crop of advanced scripting languages have attracted. The
closed-mindedness of MBA’s cannot be the only explanation for this.
The Lisp Curse has more explanatory power.

The free development environments
available for Lisp further exemplify the Lisp Curse.

It’s embarrassing to point this out,
but it must be done. Forget about the Lisp Machine; we don’t even
have development systems that match what the average Smalltalk hacker
takes for granted (“I’ve always felt Lisp is the superior
language and Smalltalk is the superior environment,” said Ramon
Leon). Unless they pay thousands of dollars, Lisp hackers are still
stuck with Emacs.

James Gosling, the author of the first
Emacs that ran on Unix, has correctly pointed out that Emacs has not
fundamentally changed in more than 20 years. This is because the
Emacs maintainers are still layering code atop a design which was
settled back when Emacs was a grad-student project at the MIT AI Lab,
i.e., when Emacs development was still being indirectly financed by
the national debt. A Slashdotter may object that Emacs is already
quite capable and can do anything that any other development
environment can do, only better. Those who have used Lisp Machines
say otherwise.

So why don’t the Lisp hackers put the
Smalltalk guys in their proper place? Why don’t they make a free
development system that calls to mind some of the lost glories of the
LispM, even if they can’t reproduce another LispM?

The reason why this doesn’t happen is
because of the Lisp Curse. Large numbers of Lisp hackers would have
to cooperate with each other. Look more closely: large numbers of the
kind of people who become Lisp hackers would have to cooperate with
each other. And they would have to cooperate with each other on a
design which was not already a given from the beginning. And there
wouldn’t be any external discipline, such as a venture capitalist
or other corporate master, to keep them on track.

Every project has friction between
members, disagreements, conflicts over style and philosophy. These
social problems are counteracted by the fact that no large project
can be accomplished otherwise. “We must all hang together, or we
will all hang separately.” But the expressiveness of Lisp makes
this countervailing force much weaker; one can always start one’s
own project. Thus, individual hackers decide that the trouble isn’t
worth it. So they either quit the project, or don’t join the
project to begin with. This is the Lisp Curse.

One could even hack Emacs to get
something that’s good enough. Thus, the Lisp Curse is the ally of
Worse is Better.

The expressive power of Lisp has
drawbacks. There is no such thing as a free lunch. §

Rudolf Winestock is an aspiring
mathematician and writer with his own web design company at Winestock
Webdesign, LLC.

Building a Web
Application That Makes $500 a Month

By THOMAS BUCK

This is an article about the first web
app I wrote for myself, TweetingMachine [tweetingmachine.com].
I’ll cover every aspect of its creation and development, starting
at how the idea came to me, the many, many mistakes I made, and how
eventually I improved the tool so much that it now brings in $500 a
month, a figure that increases with each month. I realize that this
isn’t a huge amount of money, but it’s a nice present.

December 2009: The Idea

At the time, I was getting freelance
work from vWorker [vworker.com],
and I started to see a lot of requests asking for coders to work on
various Twitter-based applications. Some people wanted to create
sites that let users schedule tweets; others wanted to be able to
automatically follow people back; and some shady characters wanted
full-on spam engines. I was looking for an excuse to learn Twitter’s
API, and the more I thought about it, the more I realized that I
could write a web app in my free time with lots of great features,
that would be easy to use, and in no time it would become the #1
Twitter tool! Not only that — I could charge to access it…and
people would sign up, and use it, and love it, and inside 90 days I’d
be making tens of thousands each and every month!

Well, a guy can dream.

January 2010: The Execution

I had my great idea. Time to get
cracking on what would turn out to be the easy bit: writing the code.
I’m a web developer — have been for a decade — and I know how
to write web apps. Find a cheap VPS (prgmr.com
— incidentally, highly recommended and far exceeded my
expectations), sketch out some database and object designs, choose a
framework, and that was me, up and running, coding like a demon for a
good few weeks.

The important fact here is that I’m
very much a developer; I have all the design skills of a dead fish.
So I took a look at a few sites out there and attempted to make
something similar. This is going to be embarrassing, but here we go
anyway:

First
try

Let’s
try that again

And
again…

As you can see, TweetingMachine was not
a pretty sight. I was still naively optimistic that my poor design
skills would be ignored by the legions of customers that would be
overawed by TweetingMachine’s features and ease of use. I launched
the site, submitted it to the likes of FeedMyApp, KillerStartups, and
so on. This was right before…

February 2010: The Big Pause

My girlfriend and I (along with her
sister, for that matter) had decided to escape Poland’s chilly
winter and spend three weeks in India instead. A fantastic time was
had by all, and I occasionally managed to stop thinking about the
millions of dollars that must be waiting in my PayPal account.

March 2010: Crashing Back Down to
Reality

Arrive back home. Check emails. Zero
sales. Check server. Apache has been crashing. Cron jobs not running.
Sit down. Cry. Fix up the code. Go work on something else.

April 2010: First Sale!

I should stop here to explain what I
originally thought my pricing plans would look like: I was offering
tiered pricing — if you wanted to use multiple Twitter accounts,
it’d cost you more…and if you wanted to send more messages, that
would cost you as well. Enjoying taking rash decisions, I decided to
scrap the tiered pricing, and stick to a single price: $9.99/month,
with a week’s free trial beforehand.

Surprisingly, within a week, I had my
first sale. With $9.99 in my PayPal account, I was halfway to
breaking even on my monthly hosting costs, a small triumph! That
said, I was starting to notice a rather nasty trend: my visitor
numbers were dropping, sharply. If this carried on, I would have
maybe a single visitor per day in the next month. Not having any
marketing skills, I was starting to wonder what I should do.

May 2010: Internet Marketing for
Dummies

I was at a loss, and so I started to
read every basic guide out there for how to market your web app. All
of them made it seem so simple: find relevant websites and blogs;
contact authors and owners; ask for a review or if they’d let you
publish something; and then sit back and watch the targeted visitors
pour in.

Sadly, with TweetingMachine that didn’t
happen. I started to realize that its design could really be holding
the tool back, but I don’t have the money to pay a designer, so
what else can I do? Failing elsewhere, I added a page to the site
“Bloggers” that offered a free year’s subscription to
TweetingMachine in return for a review on their blog.

Just in case you ever go down this
route, you will not believe the cheek of some people. I still
regularly receive emails from people demanding free subscriptions,
and sending me a link to a copy of a review by someone else. Funnily
enough though, in a couple of cases this has led to purchases after I
got into an argument — “It’s only $19.99, why don’t you just
buy it?!” — with the person originally trying to cheat a
subscription out of me.

June 2010: Second Sale, and
Desperation Kicks In

Suddenly, my second sale arrived: I was
now breaking even on my monthly hosting costs! I decided to ignore
the design problem: with enough features, SEO, and gimmicks, surely
I’d start to make enough money to pay for a designer? So, in my
free time I worked on these 3 aspects:

1. As mentioned, adding more features.
Otherwise known as reading my competitor’s websites, and working
out how to do what they’re doing, but do it better.

2. SEO. I started reading every SEO
guide out there after realizing how many basic mistakes I was making
(such as having a title tag consisting of the word TweetingMachine
alone)

3. Gimmicks. Another embarrassing
confession, but honestly, this is how desperate I was. I made
TweetingMachine translation-friendly, and then set about adding
Google Translate versions of every language I could find. I later
realized quite how terrible and irritating the translations were when
the visitor logs showed non-English visitors repeatedly choosing the
English version of the site, usually after viewing a single page in
their native tongue.

July 2010 – September 2010: Close
to Giving Up

The pattern of low usage and sales
continued over the next few months. I gained 10 subscribers, over
half of whom cancelled after a month’s usage. And, honestly, I lost
interest in the project, now hating the design and the feature set.

One evening, though, I got in contact
with a friend I hadn’t spoken to in ages. He mentioned a website
that was paying his rent, and I expressed my frustration about
TweetingMachine’s lack of income. I think at this point, total
monthly revenue was $30.

Have you ever felt really, really
stupid? I excel in stupidity, missing common sense and so on, and as
the conversation progressed, the familiar feeling swept over me once
again. My friend told me, “Yup, honestly your site’s design
sucks. Why don’t you go on ThemeForest, buy this theme
[hn.my/agencia] for the front-end,
this theme [hn.my/terminator]
for the tool itself, and hey — you only need a couple of
subscribers for a couple of months, and the themes will have paid for
themselves.”

Well, knock me down with a feather!
Decent designs are available for not much money at all! My friend had
made a great argument. I paid the $50 and got to work.

October 2010: What a Difference a
Design Makes

I bought the themes and sat down to
integrate them. I was expecting this to take a lot longer than it
did: in the end, it took me a few hours over the course of the
evening. Bedtime was approaching, and I chose to spend the last hour
of the night harassing my ever-patient fiancée with
over-enthusiastic demonstrations of TweetingMachine’s new-found
greatness.

You see, over the past few months, my
hatred for TweetingMachine had built up day by day, its cheery colors
and shiny logo only heightening my sense of failure. Thankfully,
integrating the themes gave me a new burst of enthusiasm for the
project. Suddenly, I was really enjoying visiting the site and
playing with the tool. As I woke up the next day, my head filled with
all-too-ambitious dreams of wealth and success, and this in turn
motivated me to develop yet more features.

Enough talking! What do the figures
look like? This is a graph of new free trials:

So, cue wild happiness! But how well
did this translate into sales?

Honestly, I couldn’t believe it.

One month, and only five new
subscriptions.

November 2010: Running Out of
Excuses

At this point, I was charging
$9.99/month, with a free trial of 24 hours. I thought this was a fair
deal, but as the stagnating number of new subscriptions showed, it
was clear that something wasn’t working.

What could it be? And why? Of course!
The price! That must be where I’m going wrong!

Halfway through November, I bit the
bullet and made a significant change to the pricing: TweetingMachine
now cost $19.99 per year; no more monthly rebills.

I have yet to have any magic moments
with changes I’ve made to TweetingMachine. By that, I mean, changes
that have had an instant effect on use or payment. The pricing change
was no exception…for the first 2 days.

It was now the middle of November. And
on the 15th, someone subscribed. On the 16th, another user paid.
Teasingly, no-one signed up on the 17th…but on the 18th I received
2 new subscriptions. The pattern continued for the rest of the month,
averaging 1 sale per day.

Well! This was much more like it!
November brought in over $200!

December 2010: What Was that About
Marketing?

The rate of new subscriptions continued
throughout December, sometimes 2 subscriptions a day, and on 1
memorable day, 5 users subscribed!

So now the concept is proven, how can I
get more potential users to visit the site? I took the view that if
in doubt (as I was and continue to be — note earlier implied
reference to business ability of a squashed frog) follow what your
competitors are doing. So, I sat down, typed my competitors’ names
into Google, went through page after page of links, and identified
bloggers who might be interested in covering TweetingMachine. I sent
hundreds of personalized emails, and received fewer than 10 reviews
in total. Oh well, better than a kick in the teeth.

I also found lots of directories of
Twitter tools: type in a description, upload screenshots, get listed,
lots of happy users dance their merry way towards your site.

I was expecting new subscriptions to
tail off just before Christmas. It made sense to me that there might
not be that many people online, and even fewer ready to hand over
their hard-earned cash after the yuletide spending craziness. Imagine
my happiness when new subscriptions continued, including on Christmas
day itself!

December brought in just under $500 —
to be precise, $479.71 after PayPal fees.

January 2011: Brave New
Subscriptions

The first month of 2011 was a time of
high emotion. For several days on end, no users would sign up…and
then a flurry of 3 or 4 subscriptions would come in within a couple
of hours. My mind even deluded itself into thinking it was acceptable
to describe this as “A rollercoaster of emotions.”

Whilst I was happy with January’s
takings — $429.75 after fees — the new signups permanently tailed
off at the end of the month. Something was definitely amiss.

February 2011: Delusions

I had started a new job in January,
developing Facebook applications for a local startup, and this was
taking up an awful lot of my evening time. I had some ideas for
changes to make to TweetingMachine that I was keen to implement, but
wasn’t sure when I’d get around to it. After all, assuming that
my time is free, each month it still bought in the equivalent of a
few nice meals out.

Still, subscriptions had nearly stopped
coming in altogether. For reasons unknown, TweetingMachine had 6
people in total subscribing in February. I had strangely depressing
thought: if I had been lucky in December and January, how much money
is being made by those who knew what they were doing?

I eventually found the spare time, and
made a couple of small, but effective changes: I coded some
flexibility into prices, so future price changes would take seconds
to implement, and I did the same for the free trial period.

Going forwards, TweetingMachine cost
$19.99/month, and the free trial increased from 24 hours to 10 days.

March 2011: All Change!

What difference did increasing the
price 12-fold make? Color me shocked, surprised and, frankly, happy:
it made *zero* difference!

Actually, I tell a lie; the rate was
between that of January and February. Essentially the same — except
that these subscriptions were going to be rebilled each and every
month!

I was starting to feel cautiously
optimistic. There were still plenty of outstanding questions (such
as: how do I get more, more, more users to visit?), but for now my
most pressing question was: will these subscribers continue their
subscriptions next month?

April 2011: The answer is… yes!

Please forgive me if this article feels
like a con. I’ve had months where I’ve made just under $500, and
months where I’ve made a lot less than that. April’s on target to
make over $500, and as of the 27th, I’ve had 1 unsubscribe from the
previous month, out of 17 new subscribers. Not the greatest retention
rate, but if that continues for the next 20 years…

Now, this isn’t a story of huge, wild
success; it’s of a 29-year-old making his first steps in business.
I believe that in a few more years, after a few more failures, and a
few more, modest, successes, I’ll be in a pretty good place for my
first major success. The point is: you have to make a start. §

Thomas is a British developer
currently based in Warsaw, Poland. When he’s not offending
tunefully-gifted listeners with his woeful piano skills, he blogs
about his attempts to create profitable SaaS apps at
tbbuck.com.

Hiring
Developers: You’re Doing It Wrong

By UDO SCHROETER

When Evan Carmi posted his Google job
interview experience [hn.my/ecarmi]
on HN, I felt reminded of my bygone startup days. In over a decade of
“modern” IT startup job interviews, we have made no progress
whatsoever. If anything, I was part of the problem there for a few
years. I simply copied a hiring mechanism that seemed like a standard
at the time, and in doing so I failed miserably at the most important
goals a company should observe when looking for new developers. Today
the tech front pages are full of Larry Page’s efforts to turn
around the company, but I think performance problems at
developer-centric companies may to a large part be burned into their
DNA by a deeply faulty hiring process.

How We Did It

My cofounder and I were running a small
web development shop in Germany. We had started working literally out
of my friend’s basement. Over time, we grew and moved into real
office space. At first it was easy to find new employees, we could
just ask our friends to come in and work for us. Of course, that
model didn’t scale, but it performed a very important function: it
made sure we hired people that were a good fit for the company, both
on a personal and a professional level. Then came the day when we
needed to fill positions by bringing in people from the outside.

One of the redeeming features of the
German regional unemployment offices is they will send you a large
stack of CVs on demand, within a few hours of calling them on the
phone. I was pleasantly surprised that we didn’t have to hire an
agency to do this. Together with the CVs we already had from people
who applied to the job posting on our website, we now had some
sifting to do. In the end, we agreed on about a dozen of the best and
invited them for an interview. This is the part where everything went
wrong.

The Standard Dev Interview

A candidate would come in, usually all
dressed up in their best suit and tie, and we’d sit down and have a
talk. That talk was essentially like an oral exam in college. I would
ask them to code algorithms for all the usual cute little CS
problems, and I’d get answers with wildly varying qualities. Some
were shooting their pre-canned answers at me with unreasonable speed.
They were prepared for exactly this kind of interview. Others would
break under the “pressure”, barely able to continue the
interview.

To be honest, when we first started
doing this, I had to look up these puzzles in advance, mainly to make
sure I didn’t embarrass myself. This should have been the first
warning sign that maybe we weren’t exactly testing for skills that
were most relevant to our requirements. If these doubts occurred to
me, I must have dismissed them very quickly. After all, it was the
way everyone approached the interview process.

Of course, we ended up hiring the
candidate with the smoothest answers. Inevitably, the next job
openings came, we did it again and again in the same fashion, for the
rest of the company’s lifetime. If this sounds familiar to you, you
are clearly not alone.

Actual Job Performance

But how did the candidates we selected
measure up? The truth is, we got very mixed results. Many of them
were average, very few were excellent, and some were absolutely awful
fits for their positions. So at best, the interview had no actual
effect on the quality of people we were selecting, and I’m afraid
that at worst, we may have skewed the scale in favor of the bad ones.

What does bad and good even mean in
this context? Let’s have a look some of the benchmarks that I
consider important:

Company Culture. In hindsight, one of
the most important features a new employee should have is
compatibility with the spirit of the people who already work there.
The Standard Dev Interview performed worst in this area, for obvious
reasons. It’s difficult to judge people’s personalities in
interviews because they are not exactly themselves. In fact, they’re
incentivized not to be themselves.

Programming Competence. Somewhat
counter intuitively, the code examples done during the interview were
a bad indicator for actual competence on the job. Real world projects
rarely consist of implementing binary searches without access to a
parser or literature. It turned out that employees who had done very
well in the code examples were not always able to transfer
theoretical knowledge into practical solutions. Having candidates
write sorting algos on the whiteboard is a method that rewards people
with great and precise short-term memory who come prepared for
exactly these kinds of questions. In our case, we needed resourceful
coders who could write neat, stable, and elegant software — and the
interview process wasn’t delivering them to us.

Project Management. People who did well
in the interview were not necessarily good team mates or even good
presenters in front of our customers. This result, too, was
surprising to me. Turns out, sucking up to an interviewer for an hour
is a completely different skill set than, say, being good at
coordinating with your coworkers or the people who pay our bills. Nor
was their interview performance indicative of the ability to write
good documentation or how to behave in online communications.

The Result

The results of a hiring process such as
this may be one of the factors responsible for a company to lose its
startup spirit and its creative soul. This was certainly the case
with our company. As the CEO, I was ultimately at fault; however,
having the wrong people on the job was a large part of the company’s
inability to deliver the quality and quantity of output needed to
sustain it. Infighting poisoned our teams. Incompetence was covered
up with good presentation skills and ass-kissing. Good people left
the company because they hated the new atmosphere.

Though I had to let go of many people
for different reasons over the years and in the end had to deliver
the hardest speech of my life on the morning I dissolved the company,
I only went “full Trump” once on an employee. It was the one who
had displayed the best interview performance and the best academic
references of them all, only a year before.

Sure, that’s an extreme example. Most
companies succeed regardless. But I still believe we can vastly
improve the chances of finding candidates that are good fits by
radically changing the way we do interviews. And in our case, that
would probably have made all the difference in the world.

An Alternative

So what should a developer job
interview look like then? Simple: eliminate the exam part of the
interview altogether. Instead, ask a few open-ended questions that
invite your candidates to elaborate about their programming work.

• What’s
the last project you worked on at your former employer?

• Tell
me about some of your favorite projects.

• What
projects are you working on in your spare time?

• What
online hacker communities do you participate in?

• Tell
me about some (programming/technical) issues that you feel
passionately about.

These questions are designed to reveal
a great deal about the person you have in front of you. They can help
you decide whether the candidate is interested in the same things as
you, whether you like their way of thinking, and where their real
interests lie. It’s tougher for them to bullshit their way through
here, because the interviewer can drill deeper into a large number of
issues as they present themselves.

What about actual coding ability? Well,
take a few moments after the interview and look into some code the
candidate wrote. Maybe for an open source project, maybe they have to
send you something that’s not public — it doesn’t matter.
Looking at actual production code tells you so much more than having
them write contrived fiveliners on the whiteboard.

I’m sure you can come up with even
more questions and other ways to engage the interviewee. At this
point, pretty much any idea will be an improvement.

Nay-saying

Most people are quick to defend the
status quo, and sure, that’s a rewarding position to hold. It’s
risk free and you can always fall back on the old argument “a lot
of smart, rich and successful people do it the old way, so my money
is on whatever they are doing.”

“Nice, but that doesn’t work for
large, successful companies. Your idea doesn’t scale.”

Sure, it scales: in terms of effort per
interview, there is no difference. There is no reason this couldn’t
work in larger companies. In the end, the interviewer always makes a
personal and deeply subjective decision. I’m merely suggesting a
way that delivers more relevant information for that purpose.

“The best programmers have no
spare time projects.” or: “The most talented people I know work
from 9 to 5 and then go home to watch football/be with their
families/whatever.”

This is not my experience. I’m not
saying that a good programmer should not have a life. But I do
believe that a certain amount of enthusiasm for programming is called
for. And really, if you have such a great skill, not using it for fun
seems kind of wasteful to me.

“In my spare time I’m working on
making the next million for my company. Oh, when I’m not
working for my company? I’m with my family or friends.”

That’s great, those people can surely
show me something they have been working on. I would, however,
consider the lack of any hobby projects a warning sign for some
development jobs.

Final Thoughts

It has been my experience that the
traditional developer interview is insufficient at finding good
candidates. While the typical whiteboard coding exercises correlate
somewhat with general CS competence, they are poor indicators of
actual programming performance. It is my contention that we have been
doing them this way for years simply because they’re easy to
administer, but the data that’s coming out of these interviews is
largely irrelevant at best. We as an industry should move to more
personalized interview questions that focus on the entirety of a
developer’s skill set. Also, I believe it is more productive to
judge production code as opposed to abstract modular puzzles that
have no real connection to the actual job in question. Most
importantly, I am convinced that gaining insight into the developer’s
real personality is just as important as checking for professional
competence, because one bad fit can destroy an entire team. §

Udo Schroeter works as a project
manager at Kautschuk Gesellschaft Group in Frankfurt, Germany. While
he loves writing web applications, his professional focus is
bioinformatics and computational modeling. In his spare time, he is
currently building the Hubbub Distributed Social Network open source
project.

A Rough Guide to Social Skills for Awkward Smart People

By KENNETH MYERS

I am a full-on dork. The things that
make me want to get up in the morning are things that make normal
people lose interest in the conversation, or giggle. These are things
like lucid dreaming, artificial intelligence, utopian movements, and
Esperanto.

Be that as it may, I’m mostly fine
with boring the normals and living in the Vibrant True World of
Beauty with its other full-on dork denizens. Amazingly, I’ve found
that Esperantists seem to be anarcho-Taoists, that AI researchers
tend to have experimented with lucid dreaming, and that other secret
threads hold the seemingly disparate interests of Dorks Like Me
together. I have countrymen. Just not yet my country.

The other thing that holds my kinsmen
together, though, is an unfortunate thing: they are all asses. They
decimate the chances of their ideas’ success by offending everyone
they meet, making it look like being happy and having friends are
suspicious, counterrevolutionary behaviors.

In case you’re wondering if my sermon
is directed at you, there are some common tropes in our oft-reenacted
social suicide:

1. We call someone’s beliefs
“idiotic.”

2. We call someone’s beliefs
“idiotic” within five minutes of meeting them.

3. We happily inform strangers of our
vast and superior intelligence.

4. We derail a conversation about
American Idol to bring it back to the real issue at hand: that there
is no God.

5. When given a compliment, “Oh,
you’re so well-read!”, we look blankly in the eyes of the
complimenter, and respond “Yes, I know.”

I can hear your retort, oh ye smart and
lonely: “But I am the smartest person in the room”/“But their
beliefs are idiotic”/“I’m not going to compromise the truth to
make some idiot happy.”

Great. Good luck with that. Oh, and by
the way, your cause will die, I promise.

People don’t respond well to being
told that they’re idiots, even if they are. Ideas don’t spread by
beating their enemies to a pulp. They spread by subterfuge and
incalculable subtlety.

I would propose that sacrificing some
smaller truths in your day-to-day interactions is the only way for
the greater truth to prevail.

Be a Good Spy

As a short exercise, I invite you to
think of it this way: it is World War II, and you are an Allied spy.
You are in Germany, and you have attained a mid-level rank in the
Nazi bureaucracy. Your superiors speak well of the Führer.

Now ask yourself, which response
probably achieves the most towards the furtherance of your
objectives?

a) “No, he’s actually an idiot, and
killing Jews is wrong, and I’m an Allied spy, and there are Jews in
my attic.”

or

b) “Heil Hitler.”

The Old One-Two

Now, of course we’ll never achieve
anything good if we simply walk around saying “Heil Hitler” all
day. If you do have an important mission in the world, you’ll have
to face dangers, and at some point show your true colors.

Doing this in the wrong way Schrutes
your whole mission. Doing this in the right way makes you Ani
Difranco or Bob Dylan.

Ani Difranco has a trick. She gets up
on the stage, and her guitar is un-tuned. While tuning it, she
ad-libs a story. The story isn’t funny. There are a lot of pauses,
and a lot of “uh”s. The crowd starts to get uncomfortable. We
feel sympathetic embarrassment. Massive pity. Poor little girl. Then,
suddenly, she rips into everyone’s soul, fast. Now she’s
confident and smarter than you can handle. Now she’s referencing
poets and playing brilliantly with language. The whole dumb scared
thing was an act (she doesn’t do it in interviews). It works. I
call this The Old One-Two.

One: Disarm. Don’t be an ass. Be
weak. Be self-deprecating. Build Ethos.

Two: Be brilliant.

The Old One-Two is charm at its
atomistic simplest. Most good actors use it (though not so much in
their stage performances as in interviews). Bob Dylan is the absolute
king of the game, ripping off Milton and making it sound like
something he misheard his grandfather say.

What I find the most interesting about
The Old One-Two is that even after I realize I’ve been duped, I
still love the guy who’s scammed me.

“Oh no, I really don’t play piano,
I just mess around.”

“Aw, come on, please?”

“Oh, alright.” {Flawless Bach
Piece}

“Whoa.”

Even after you know it was a lie, the
false humility still gives you warm feelings. Now when this guy later
turns around and says, “Aw, naw, not really — well, I guess kind
of I dabble in The Ultimate Truth,” I’ll probably listen. §

Kenneth Myers is the administrator
of an ESL program at a small college in Texas, an amateur programmer,
an occasional politician, and a fun guy. Call him when you’re in
Dallas. You should be his friend.

Play Git Like A
Violin

By HOWARD YEH

People think that playing the violin is
hard. But that’s only when you are learning and practicing. When
you are actually playing, it’s as natural as breathing. So it is
with Git. After a couple years of use, and with the help of a few
aliases, my Git usage now comes as easily as music from a familiar
piece:

git
caa
git ca
git s
git l
git r1
git rh 330183
git
s
git d
git cm 'a new commit'

All of us at some point or another kept
a private cheat sheet of common Git commands. I know I did. After a
while, I gained enough experience with Git to know the common tasks
that I do all the time. For these common tasks I create aliases.

Very often, after I’ve made a commit,
I’d keep wanting to make small fixes to it, like fussing around
with spaces, or renaming variables, or rewording the comments, or
minor refactoring of the code. These changes are too small to be
worth their own commits (that would only clutter up the history). So
I’d prefer if these changes belonged to the commit I already have.
I’d do this:

git
commit -a --amend -C HEAD

This adds all the changes to the
staging area and commits it as an amendment to the previous commit,
using the same commit message. Effectively, I am saying: “put
whatever I’ve done into the previous commit.”

For this usage pattern, I have created
an alias in my ~/.gitconfig, like so:

[alias]

 caa = commit -a --amend -C HEAD

Then, ever after, I’d type git caa
whenever I wanted to do the same thing. Another pattern I use a lot
is to create a commit for the changes I’ve done, all in one step:

git commit -a -m 'commit message'

Thus I’d create another alias:

[alias]

 cma = commit -a -m

Then, ever after that, I’d type g
cma. Ninety percent of the time, git caa and git cma cover my commit
needs. If you ask me what they stand for, I honestly can’t tell
you, because these commands are so short, they are ingrained in my
muscle memory. I don’t think about what I am doing with Git, just
as when I am playing an arpeggio on the violin, I don’t think about
the notes individually.

Here are all my Git aliases. I hope you
find some of them useful to integrate into your Git workflow.

[alias]
#
I like using the interactive mode to
make complex commits
ai
= add --interactive

#
All the aliases relate to commits. Note # that they are grouped by
common prefixes, # so I don't confuse what I want done by
#
accident.

c
= commit
commit with a message
cm = commit -m
cma = commit
-a -m
amending the previous commit
ca = commit --amend
caa
= commit -a --amend -C HEAD

#
reset
soft resets
r = reset
r1 = reset HEAD^
r2 =
reset HEAD^^
hard resets
rh = reset --hard
rh1 = reset
HEAD^ --hard
rh1 = reset HEAD^^ --hard

#
shortcuts for commands
s = status
d = diff
a = add
co =
checkout
b = branch
l = log
f = fetch
r = reset
p =
push

Cherry on top: I aliased g as git in my
bash shell. What I actually do is:

g
caa
g ca
g s
g l
g r1
g rh 330183
g s
g d
g
cm 'a new commit' §

Howard Yeh graduated with a degree
in Cognitive Science and currently travelling the world. He likes
Lisp, but now works mostly in Ruby. Follow him on Twitter @hayeah.

AWK-ward Ruby

By RYAN TOMAYKO

Ruby, like most successful languages,
was assembled from pieces of things that came before it: Smalltalk’s
consistent object system, Perl’s practical syntax, UNIX’s
sensibilities. Not that it didn’t bring entirely new innovations of
its own(Smalltalk had block syntax first!), but it’s amazing to
consider how much of Ruby’s design rests on the elegant packaging
of old concepts into a new coherent whole.

There’s something less obvious but
perhaps more essential that Ruby borrowed: the very concept of
blatant, unashamed borrowing. In his 1999 talk, Perl, the first
postmodern computer language, Larry Wall states plainly that Perl was
built mostly from things that “didn’t suck” in the languages
that preceded it:

When I started designing Perl, I
explicitly set out to deconstruct all the computer languages I knew
and recombine or reconstruct them in a different way, because there
were many things I liked about other languages, and many things I
disliked. I lovingly reused features from many languages. (I suppose
a Modernist would say I stole the features, since Modernists are hung
up about originality.) Whatever the verb you choose, I’ve done it
over the course of the years from C, sh, csh, grep, sed, awk,
Fortran, COBOL, PL/I, BASIC-PLUS, SNOBOL, Lisp, Ada, C++, and Python.
To name a few. To the extent that Perl rules rather than sucks, it’s
because the various features of these languages ruled rather than
sucked.

Ruby, the story goes, borrowed much
from Perl: integral regular expressions, statement modifiers (do_this
if that), array/hash literals, funny global variable names, and, of
course, the philosophy of having more than one way of doing the same
thing (TMTOWTDI).

Or did it?

If these features didn’t originate
with Perl, as Wall seems to imply, then where did they come from?

One of the most important influences on
Perl’s design was AWK. So much so that Perl was sometimes described
as a semantic superset of AWK. Are the relics of AWK still present in
Ruby? Let’s see.

Today, AWK is probably best known as a
versatile tool for extracting fields from delimited flat files in a
shell pipeline:

cat
/etc/passwd | awk -F: '{ print $1 }'

It’s rare to see AWK used for more
complex problems in modern systems, but there’s actually a
full-blown programming language lurking beneath the surface. It was
at one time used to solve a lot of the same problems people commonly
use Ruby, Perl, or Python to solve today.

You might find some of AWK’s language
features familiar:

• Associative
array type.

• Automatic
string, integer, and floating point value types.

• C-style
if, while, and do constructs.

• For-each
style for construct for iterating over associative arrays.

• Arithmetic
(+, -, *, /), modulu-division (%), exponentiation (^),
increment/decrement (++, --), and assignment shorthand (+=, -=, *=,
…) operators.

• Array
membership operator (expr in array).

• Integral
regular expression type and matching operators (str ~ /pattern/).

• Comprehensive
builtin function library (a small sample: printf, gsub, split,
substr, cos, sin, log, sqrt).

• User
defined functions.

Not bad for 1977.

It would seem that a large portion of
Ruby’s basic syntax and semantics were present in AWK. So how did
Perl come to dominate the problem space? There must be something very
different about AWK.

While AWK had much of the primitive
syntax right, it also overcompensated for a specific case: processing
streams of delimited text. The top-level context is used exclusively
for declaring one or more matching statements:

pattern
{ action }
...

Here, pattern is a full-blown
expression and action is a block of code executed when pattern
evaluates truthfully. The pattern is tested for each line (or record)
of input and action is executed when pattern returns truthfully.
Omitting the pattern causes the action to be executed for every line.

There’s special patterns for setting
actions up to run before the first line of input is read and after
all lines have been processed. Here’s an example that uses the
special BEGIN pattern along with a regular expression match. It
prints all the usernames from /etc/passwd while avoiding comment
lines:

cat
/etc/passwd |
awk '
 BEGIN { FS = ":" }

/^[a-z_]/ { print $1 }
'

(NOTE: You can paste bomb that into
your shell on just about any UNIX system.)

Here’s a more complex example that
shows off some of AWK’s advanced features, like associative arrays
and for-in syntax. It calculates word frequencies from the text of
Jonathan Swift’s, A Modest Proposal:

curl
-s http://www.gutenberg.org/files/1080/1080.txt |
awk '
 BEGIN
{ FS="[^a-zA-Z]+" }

 {

 for (i=1; i<=NF; i++) {
 word = tolower($i)

words[word]++
 }
 }

 END {
 for (w in
words)
 printf("%3d %s\n", words[w], w)
 }
'
|
sort -rn

It may seem strange, but this style of
programming was very common in UNIX’s hayday. Instead of programs
being dominated by a single language like Perl or Ruby, you’d build
pipelines that combined standard utilities (like sort shown above),
sprinkle in bits and pieces of AWK as needed, and drop down to C when
performance was critical.

Perl took the guts of AWK and left
behind the mandatory pattern matching at the top-level. That simple
design change turned what was a special purpose language for
processing delimited text streams into what we know today as a
“general purpose scripting language.”

But that’s not the end of the story.

It was important that Perl be able to
act as a replacement for AWK in all its capacities, including within
shell pipelines. This meant having the ability to run perl in a kind
of top-level AWK mode. Ruby borrowed this capability from Perl,
making it possible to use Ruby for the same style of programming
facilitated by AWK, complete with BEGIN and END blocks!

Here’s the word frequency script in
AWK-ish Ruby:

curl
-s http://www.gutenberg.org/files/1080/1080.txt |
ruby -ne '

BEGIN { $words = Hash.new(0) }
 $_.split(/[^a-zA-Z]+/).each

{ |word| $words[word.downcase] += 1 }

 END
{
 $words.each { |word, i|
 printf "%3d %s\n",
i, word }
 }
' |
sort -rn

The -n argument causes Ruby to assume a
while gets(); ... end loop around the provided script. $_ is set to
the last line read, and the BEGIN and END blocks function exactly as
they did in AWK. §

Ryan Tomayko is a systems designer
at GitHub and lifelong student of Unix philosophy.

Understanding
JavaScript’s “this” Keyword

By ANGUS CROLL

The JavaScript this keyword is
ubiquitous, yet misconceptions abound.

What You Need to Know

Every execution context has an
associated ThisBinding whose lifespan is equal to that of the
execution context and whose value is constant. There are 3 types of
execution context:

1. Global context

this is bound to the global object
(window in a browser)

alert(this);
//window

2. Function context

There are at least 5 ways to invoke a
function. The value of this depends on the method of invocation.

a) Invoke a property

this is the baseValue of the property
reference:

var
a = {

 b:
function() {

 return
this;

 }

};

a.b();
//a;

a['b']();
//a;

var
c= {};

c.d
= a.b;

c.d();
//c

b) Invoke a variable

this is the global object:

var
a = {

 b:
function() {

 return
this;

 }

};

var
foo = a.b;

foo();
//window

var
a = {

 b:
function() {

 var
c = function() {

 return
this;

 };

 return
c();

 }

};

a.b();
//window

The same applies to self-invoking
functions:

var
a = {

 b:
function() {

 return
this;

 }

};

var
foo = a.b;

foo();
//window

var
a = {

 b:
function() {

 var
c = function() {

 return
this;

 };

 return
c();

 }

};

a.b();
//window

c) Invoke using Function.prototype.call

this is passed by argument.

d) Invoke using
Function.prototype.apply

this is passed by argument:

var
a = {

 b:
function() {

 return
this;

 }

};

var
d = {};

a.b.apply(d);
//d

e) Invoke a constructor using new

this is the newly created object:

var
A = function() {

 this.toString
= function() {
 return "I'm an A"
 };
};

new
A(); //"I'm an A"

3. Evaluation context

this value is taken from the this value
of the calling execution context:

alert(eval('this==window'));

//true - (except firebug, see above)

var
a = {

 b:
function() {

 eval('alert(this==a)');

 }

};

a.b();
//true;

What You Might Want to Know

This section explores the process by
which this gets its value in the functional context — using ECMA 5
262 as a reference.

Let’s start with the ECMAScript
definition of this:

The this keyword evaluates to the
value of the ThisBinding of the current execution context.

 – from ECMA 5, 11.1.1

How is ThisBinding set?

Each function defines a [[Call]]
internal method which passes invocation values to the function’s
execution context:

The following steps are performed when
control enters the execution context for function code contained in
function object F, a caller provided thisValue, and a caller provided
argumentsList:

1. If the function code is strict
code, set the ThisBinding to thisValue.

2. Else if thisValue is null or
undefined, set the ThisBinding to the global object.

3. Else if Type(thisValue) is not
Object, set the ThisBinding to ToObject(thisValue).

4. Else set the ThisBinding to
thisValue.

 – from ECMA 5, 10.4.3 Entering
Function Code (slightly edited)

In other words, ThisBinding is set to
the object coercion of the abstract argument thisValue, or if
thisValue is undefined, the global object (unless running in strict
mode, in which case, thisValue is assigned to ThisBinding as-is).

So where does thisValue come
from?

Here we need to go back to our 5 types
of function invocation:

1. Invoke a property

2. Invoke a variable

In ECMAScript parlance these are
Function Calls and have two components: a
MemberExpression and an
Arguments list.

1. Let ref be the result of
evaluating MemberExpression.

2. Let func be GetValue(ref).

6. If Type(ref) is Reference, then

a. If IsPropertyReference(ref) is
true

i. Let thisValue be GetBase(ref).

b. Else, the base of ref is an
Environment Record

i. Let thisValue be the result of
calling the ImplicitThisValue concrete method of GetBase(ref).

8. Return the result of calling the
[[Call]] internal method on func, providing thisValue as the this
value and providing the list argList as the argument values

 – from ECMA 5, 11.2.3 Function
Calls

So, in essence, thisValue becomes the
baseValue of the function expression (see step 6, above).

Where the function is expressed as a
property, the baseValue is the identifier preceding the dot (or
square bracket).

foo.bar();
//foo assigned to thisValue

foo['bar']();
//foo assigned to thisValue

var
foo = {

 bar:function()
{

 //(Comments
apply to example 			//invocation only)

 //MemberExpression
= foo.bar

 //thisValue
= foo

 //ThisBinding
= foo

 return
this;

 }

};

foo.bar();
//foo

For variables, the baseValue is the
VariableObject (the “Environment Record” above), which is a
Declarative Environment Record. ECMA 10.2.1.1 tells us that the
ImplcitThisValue of a Declarative Environment Record is undefined.

var bar = function() {…};

bar(); //thisValue is undefined

Revisiting 10.4.3 Entering Function
Code (see above) we see that unless in strict mode, an undefined
thisValue results in a ThisBinding value of global object. So this in
a variable function invocation will be the global object.

In full…

var
bar = function() {

 //(Comments
apply to example
 //invocation only)

 //MemberExpression
= bar

 //thisValue
= undefined

 //ThisBinding
= global object
 //(e.g.window)

 return
this

};

bar();
//window

3. Invoke using
Function.prototype.apply

4. Invoke using
Function.prototype.call

(specifications at 15.3.4.3
Function.prototype.apply and 15.3.4.4 Function.prototype.call)

These sections describe how, in call
and apply invocations, the actual value of the function’s this
argument (i.e. its first argument) is passed as the thisValue to
10.4.3 Entering Function Code. (Note this differs from ECMA 3, where
primitive thisArg values undergo a toObject transformation, and null
or undefined values are converted to the global object — but the
difference will normally be negligible since the value will undergo
identical transformations in the target function invocation [as we’ve
already seen in 10.4.3 Entering Function Code.])

5. Invoke a
constructor using new

When the [[Construct]] internal
method for a Function object F is called with a possibly empty list
of arguments, the following steps are taken:

1. Let obj be a newly created native
ECMAScript object.

8. Let result be the result of
calling the [[Call]] internal property of F, providing obj as the
thisValue and providing the argument list passed into [[Construct]]
as args.

10. Return obj.

 – from ECMA 5, 13.2.2
[[Construct]]

This is pretty clear. Invoking the
constructor with new creates an object that gets assigned as the
thisValue. It’s also a radical departure from any other usage of
this.

House Cleaning

Strict mode

In ECMAScript’s strict mode, the
thisValue is not coerced to an object. A this value of null or
undefined is not converted to the global object and primitive values
are not converted to wrapper objects.

The bind function

Function.prototype.bind is new in

ECMAScript 5 but will already be familiar to users of major
frameworks. Based on call/apply, it allows you to prebake the
thisValue of an execution context using simple syntax. This is
especially useful for event handling code, for example, a function to
be invoked by a button click, where the ThisBinding of the handler
will default to the baseValue of the property being invoked — i.e.
the button element:

//Bad
Example: fails because ThisBinding of handler will be button

var
sorter = {

 sort:
function() {

 alert('sorting');

 },

 requestSorting:
function() {

 this.sort();

 }

}

$('sortButton').onclick
= sorter.requestSorting;

//Good
Example: sorter baked into ThisBinding of handler

var
sorter = {

 sort:
function() {

 alert('sorting');

 },

 requestSorting:
function() {

 this.sort();

 }

}

$('sortButton').onclick
= sorter.requestSorting.bind(sorter);

Further Reading

ECMA 262 5th Edition (PDF) [hn.my/emca]

11.1.1 Definition of this

10.4.3 Entering Function Code

11.2.3 Function Calls

13.2.1 [[Call]]

10.2.1.1 Declarative Environment Record
(ImplicitThisValue)

13.2.2 [[Construct]]

15.3.4.3 Function.prototype.apply

15.3.4.4 Function.prototype.call

15.3.4.5 Function.prototype.bind

Annex C The Strict Mode of ECMAScript §

Angus Croll is a front end developer
at Twitter and author of the influential “JavaScript, JavaScript”
blog [javascriptweblog.wordpress.com].
He’s also a mentor at JSMentors.com.

Parsing: The
Solved Problem That Isn’t

By LAURENCE TRATT

Parsing is the act of taking a stream
of characters and deducing if and how they conform to an underlying
grammar. For example the sentence, “Bill hits Ben,” conforms to
the part of the English grammar noun-verb-noun. Parsing concerns
itself with uncovering structure; although this gives a partial
indication of the meaning of a sentence, the full meaning is only
uncovered by later stages of processing. Parsable but obviously
nonsensical sentences, like “Bill evaporates Ben,” highlight this
(the sentence is still noun-verb-noun, but finding two people who
agree on what it means will be a struggle). As humans we naturally
parse text all the time, without even thinking about it; indeed, we
even have a fairly good ability to parse constructs that we’ve
never seen before.

In computing, parsing is also common.
While the grammars are synthetic (e.g. of a specific programming
language), the overall idea is the same as for human languages.
Although different communities have different approaches to the
practicalities of parsing — (C programmers reach for lex/yacc;
functional programmers to parser combinators; others for tools like
ANTLR or a Packrat/PEG-based approach), they typically rely on the
same underlying area of knowledge.

After the creation of programming
languages themselves, parsing was one of the first major areas
tackled by theoretical computer science and, in many people’s eyes,
one of its greatest successes. The 1960s saw a concerted effort to
uncover good theories and algorithms for parsing. Parsing in the
early days seems to have shot off in many directions before (largely)
converging. Context Free Grammars (CFGs) eventually won, because they
are fairly expressive and easy to reason about, both for
practitioners and theorists.

Unfortunately, given the extremely
limited hardware of 1960s computers (not helped by the lack of an
efficient algorithm), the parsing of an arbitrary CFG was too slow to
be practical. Parsing algorithms such as LL, LR, and LALR identified
subsets of the full class of CFGs that could be efficiently parsed.
Later, relatively practical algorithms for parsing any CFG appeared,
most notably Earley’s 1973 parsing algorithm. It is easy to
overlook the relative difference in performance between then and now:
the fastest computer in the world from 1964-1969 was the CDC6600
which executed at around 10 MIPS. My 2010 mobile phone has a
processor which runs at over 2000 MIPS. By the time computers had
become fast enough for Earley’s algorithm, LL, LR, and friends had
established a cultural dominance which is only now being seriously
challenged. Many of the most widely used tools still use those
algorithms (or variants) for parsing. Nevertheless in tools such as
ACCENT / ENTIRE and recent versions of bison, one has access to
performant parsers that can parse any CFG, if that is needed.

The general consensus, therefore, is
that parsing is a solved problem. If you’ve got a parsing problem
for synthetic languages, one of the existing tools should do the job.
A few heroic people — such as Terence Parr, Adrian Johnstone, and
Elizabeth Scott — continue working away to ensure that parsing
becomes even more efficient, but, ultimately, this will be
transparently adopted by tools without overtly changing the way that
parsing is typically done.

Language composition

One thing that’s become increasingly
obvious to me over the past few years is that the general consensus
breaks down for one vital emerging trend: language composition.
Composition is one of those long, complicated, but often vague terms
that crops up a lot in theoretical work. Fortunately, for our
purposes it means something simple: grammar composition, which is
where we add one grammar to another and have the combined grammar
parse text in the new language (exactly the sort of thing we want to
do with Domain Specific Languages [DSLs]). To use a classic example,
imagine that we wish to extend a Java-like language with SQL so that
we can directly write:

for
(String s : SELECT name FROM person WHERE age > 18) {
 ...

}

Let’s assume that someone has
provided us with two separate grammars: one for the Java-like
language and one for SQL. Grammar composition seems like it should be
fairly easy. In practice, it turns out to be rather frustrating, and
I’ll now explain some of the reasons why.

Grammar composition

While grammar composition is
theoretically trivial, simply squashing two grammars together is
rarely useful in practice. Typically, grammars have a single start
rule; one therefore needs to choose which of the two grammars has the
start rule. More messy is the fact that the chances of the two
grammars referencing each other is slight. In practice, one needs to
specify a third tranche of data — often referred to, perhaps
slightly misleadingly, as glue — which actually links the two
grammars together. In our running example, the Java-like language has
the main grammar; the glue will specify where, within the Java-like
expressions, SQL statements can be referenced.

For those using old parsing algorithms
such as LR (and LL etc.), there is a more fundamental problem. If one
takes two LR-compatible grammars and combines them, the resulting
grammar is not guaranteed to be LR-compatible (i.e. an LR parser may
not be able to parse using it). Therefore such algorithms are of
little use for grammar composition.

At this point, users of algorithms such
as Earley’s have a rather smugger look on their face. Since we know
from grammar theory that unioning two CFGs always leads to a valid
CFG, such algorithms can always parse the result of grammar
composition. But, perhaps inevitably, there are problems.

Tokenization

Parsing is generally a two-phase
process: first we break the input up into tokens (tokenization,; and
then we parse the tokens. Tokens are what we call words in everyday
language. In English, words are easily defined (roughly, a word
starts and ends with a space or punctuation character). Different
computer languages, however, have rather different notions of what
their tokens are. Sometimes, tokenization rules are easily combined;
however, since tokenization is done in ignorance of how the token
will later be used, sometimes it is difficult. For example, in SQL,
SELECT might be a keyword, but in Java it is also a valid identifier;
it is often hard — if not impossible — to combine such
tokenization rules in traditional parsers.

Fortunately, there is a solution:
scannerless parsing (e.g. SDF2 scannerless parsing). For our
purposes, it might perhaps better be called tokenless parsing. The
different names reflect the naming conventions of different parsing
schools. Scannerless parsing does away with a separate tokenization
phase. The grammar now contains the information necessary to
dynamically tokenize text. Combining grammars with markedly different
tokenization rules is now possible.

Fine-grained composition

In practice, the simple “glue”
mentioned earlier used to combine two grammars is often not enough.
There can be subtle conflicts between the grammars, in the sense that
the combined language might not give the result that was expected.
Consider combining two grammars that have different keywords.
Scannerless parsing allows us to combine the two grammars, but we may
wish to ensure that the combined languages do not allow users to use
keywords in the other language as identifiers. There is no easy way
to express this in normal CFGs. The SDF2 paper referenced earlier
allows reject productions as a solution to this; unfortunately this
then makes SDF2 grammars mildly context sensitive. As far as I know,
the precise consequences of this haven’t been explored, but it does
mean that at least some of the body of CFG theory won’t be
applicable; it’s enough to make one a little nervous, at the very
least (not withstanding the excellent work that has been created
using the SDF2 formalism by Eeclo Visser and others).

A recent, albeit relatively unknown,
alternative are boolean grammars. These are a generalization of CFGs
that include conjunction and negation, which, at first glance, are
exactly the constructs needed to make grammar composition practical
(allowing one to say things like “identifiers are any sequence of
ASCII characters except SELECT”). Boolean grammars, to me at least,
seem to have a lot of promise, and Alexander Okhotin is making an
heroic effort on them. However, there hasn’t yet been any practical
use of them that I know of, so wrapping one’s head around the
practicalities is far from trivial. There are also several open
questions about Boolean grammars, some of which, until they are
answered one way or the other, may preclude wide-scale uptake. In
particular, one issue relates to ambiguity, of which more now needs
to be said.

Ambiguity

By severely restricting which CFGs they
accept, grammars that are compatible with traditional parsing
algorithms (LL, LR etc.) are always unambiguous (though, as we shall
see, this does not mean that all the incompatible grammars are
ambiguous-many are unambiguous). Grammar ambiguity is thus less
widely understood than it might otherwise have been. Consider the
following grammar of standard arithmetic:

E
::= E "+" E
 | E "-" E
 | E
"/" E
 | E "*" E

Using this grammar, a string such as 2
+ 3 * 4 can be parsed ambiguously in two ways: as equivalent to (2 +
3) * 4; or as equivalent to 2 + (3 * 4). Parsing algorithms such as
Earley’s will generate all possibilities even though we often only
want one of them (due to arithmetic conventions, in this case we want
the latter parse). There are several different ways of disambiguating
grammars, such as precedences (in this example, higher precedences
win in the face of ambiguity):

E
::= E "+" E %precedence 1
 | E "-" E
%precedence 1
 | E "/" E %precedence 2

 | E "*" E %precedence 3

This might suggest that we can tame
ambiguity relatively easily. Unfortunately, parsing theory tells us
that the reality is rather tricky. The basic issue is that, in
general, we cannot statically analyze a CFG and determine if it is
ambiguous or not. To discover whether a given CFG is ambiguous or
not, we have to try every possible input: if no input triggers an
ambiguous parse, the CFG is not ambiguous. However, this is, in
general, impractical: most CFGs describe infinite languages and
cannot be exhaustively tested. There are various techniques that aim
to give good heuristics for ambiguity (see Bas Basten’s masters
thesis [hn.my/basten] for a good
summary; I am also collaborating with a colleague on a new approach,
though it’s far too early to say if it will be useful or not).
However, these heuristics are inherently limited. If they say a CFG
is ambiguous, it definitely is; but if they cannot find ambiguity,
all they can say is that the CFG might be unambiguous.

Since theoretical problems are not
always practical ones, a good question is the following: is this a
real problem? In my experience thus far, defining stand-alone
grammars for programming languages using Earley parsing (i.e. a
parsing algorithm in which ambiguity is possible), it has not been a
huge problem. As the grammar designer, I often understand where
dangerous ambiguity might exist and can nip it in the bud. I’ve
been caught out a couple of times, but not enough to really worry
about.

However, I do not think that my
experience will hold in the face of widespread grammar composition.
The theoretical reason is easily stated: combining two unambiguous
grammars may result in an ambiguous grammar (which, as previously
stated, we are unlikely to be able to statically determine in
general). Consider combining two grammars from different authors,
neither of whom could have anticipated the particular composition: it
seems to me that ambiguity is much more likely to crop up in such
cases. It will then remain undetected until an unfortunate user finds
an input that triggers the ambiguity. Compilers that fail on
seemingly valid input are unlikely to be popular.

PEGs

As stated earlier, unambiguous parsing
algorithms such as LL and LR aren’t easily usable in grammar
composition. More recently, a rediscovered parsing approach has
gathered a lot of attention: Packrat/PEG parsing (which I henceforth
refer to as PEGs). PEGs are different than everything mentioned
previously: they have no formal relation to CFGs. The chief reason
for this is PEGs ordered choice operator, which removes any
possibility for ambiguity in PEGs. PEGs are interesting because,
unlike LL and LR, they’re closed under composition: in other words,
if you have two PEGs and compose them, you have a valid PEG.

Are PEGs the answer to our problems?
Alas — at least as things stand now — I doubt it. First, PEGs are
rather inexpressive: like LL and LR parsing, PEGs are often
frustrating to use in practise. This is, principally, because they
don’t support left recursion. Alex Warth proposed an approach which
adds left recursion, but I discovered what appear to be problems with
it, though I should note that there is not yet a general consensus on
this (and I am collaborating with a colleague to try and reach an
understanding of precisely what left recursion in PEGs should mean).
Second, while PEGs are always unambiguous, depending on the glue one
uses during composition, the ordered choice operator may cause
strings that were previously accepted in the individual languages not
to be accepted in the combined language — which, to put it mildly,
is unlikely to be the desired behaviour.

Conclusions

If you’ve got this far, well done.
This article has ended up much longer than I originally expected —
though far shorter than it could be if I really went into detail on
some of these points! It is important to note that I am not a parsing
expert: I only ever wanted to be a user of parsing, not — as I
currently am — someone who knows bits and pieces about its inner
workings. What’s happened is that, in wanting to make greater use
of parsing, I have gradually become aware of the limitations of what
I have been able to find. The emphasis is on “gradually”:
knowledge about parsing is scattered over several decades (from the
60s right up to the present day), from many publications (some of
them hard to get hold of) and many people’s heads (some of whom no
longer work in computing, let alone in the area of parsing). It is
therefore hard to get an understanding of the range of approaches or
their limitations. This article is my attempt to write down my
current understanding and, in particular, the limitations of current
approaches when composing grammars. I welcome corrections from those
more knowledgeable than myself. Predicting the future is a mugs game,
but I am starting to wonder whether, if we fail to come up with more
suitable parsing algorithms, programming languages of the future that
wish to allow syntax extension will bypass parsing altogether, and
use syntax-directed editing instead. Many people think parsing is a
solved problem — I think it isn’t. §

Dr. Laurence Tratt is a software
consultant and Senior Lecturer at Middlesex University. His research
interests center around language design, implementation, and usage.
His homepage can be found at tratt.net/laurie.

