

Curator
Lim Cheng Soon

Proofreader
Emily Griffin

Illustrator
Andy
Fairhurst

Printer
MagCloud

Contributors
ARTICLES
Steve
Schimmel
Mark Hughes
Mark Suster
Jason Cohen
Gabriel
Weinberg
Ryan McDermott
Des Traynor
Chris Murphy
Gustavo
Duarte

COMMENTARIES
Iain
Dooley
Eric Heine
Catherine Darrow
Theo
Jalba

Advertising

ads@hackermonthly.com

Contact

contact@hackermonthly.com

Published by
Netizens Media

46, Taylor Road,
11600 Penang, Malaysia.

Hacker Monthly is the print magazine
version of Hacker News — news.ycombinator.com,
a social news website wildly popular among programmers and startup
founders. The submission guidelines state that content can be
“anything that gratifies one’s intellectual curiosity.” Every
month, we select from the top voted articles on Hacker News and print
them in magazine format. For more, visit hackermonthly.com.

For links to the posts on Hacker
News, visit hackermonthly.com/issue-12.
All articles and comments are reprinted with permission of their
original author. Hacker Monthly is published by Netizens Media and
not affiliated with Y Combinator in any way.

Steve’s
Story: Googler 13

By STEVE SCHIMMEL

I was born in 1972 to a poverty-level
family in suburban Chicago. During the first few years of my life, I
shared a 600 sq ft, 1-bedroom cottage with my parents, older sister,
and dog. As a kid, I grew up helping my dad kill roaches and trap
rats in his 1-man pest control business.

 Inspired by my architect grandfather
who dabbled in the stock market, I started playing the market when I
was 15 years old. In 1994 at age 21, I graduated Magna Cum Laude &
Dean’s List from Babson College, an undergraduate business college
outside of Boston. Shortly thereafter, I moved to San Francisco to
find the stark reality of an uninterested job market. After a period
of trivial and unsuccessful undertakings, I took to the streets out
of desperation to “make something happen.” My thought at the time
was: “if my resume falls on the floor, nobody will bother to pick
it up.”

It was September, 1995. I had been in
San Francisco just over a year and had nothing to show for it. I
remember walking around the streets of San Francisco and seeing two
individuals who made a profound impression on me. One was a
panhandler who simply sat on a corner and directly asked for money.
The other was a man standing on a milk crate wearing a sandwich board
that said “Repent! The end of the world is coming.” I was in a
state of mind where I was open to anything. The things that struck me
were that the first man had gotten to a point where his ego had been
worn away and he was willing to simply and directly ask for what he
wanted without beating around the bush. The second man believed so
strongly in his convictions that he was willing to physically wear
his message and present it to the world. By the end of the week, I
had created a sandwich board expelling the virtues of my skills. One
morning, I put on my best thrift store suit and boarded the 5am bus
to the financial district with my sandwich board under my arm. I
stood outside the Bank of America world headquarters, put the
two-sided sign over my head and began passing out resumes. I was
there for 12 hours. I passed out resumes as people rolled into work,
when they went out for lunch, and as they left for home. This was one
of the most humbling moments of my life. I stood out, exposed,
bluntly asking for help and displaying my convictions. The response
was amazing and really helped renew my faith in people. In the back
of my head, I think I was expecting people to throw tomatoes at me
(which my friend in New York said would have happened on Wall
Street). Instead, many people took my resume and talked to me. A news
crew even came.

In the end, this seemingly crazy idea
lead to me getting a job as an associate equity analyst covering
high-tech companies in downtown San Francisco. In my job, I was able
to use my stock experience and education, but it did not take long to
realize that I did not like analyzing companies. What I really wanted
was to be involved with starting one.

In October of 1996 at age 24, I left my
job in order to write a business plan for an idea I had relating to
the relatively new phenomenon known as the commercial Internet. The
idea revolved around creating a platform for pooling individual
investor dollars to provide angel funding for fledgling companies and
create a secondary trading market for these shares.

Unfortunately, after a few months I ran
out of money and needed to look for a steady job again. I found a job
opening for an entry-level, market research analyst at a small
Internet company in San Francisco. Over a two-week period, I left
messages on every single voice mailbox I could get at that company. I
was never able to get a human on the phone or get a call back. One
day, I randomly entered an extension off the main number and heard
the message “Mark Goldstein’s pager number is....”. I knew from
the website that Mark was the CEO of the company. What had started
two weeks prior as a timid, pump myself up “you can do this” pep
talk turned into a “somebody is going to talk to me, damn it!”
When I got that pager number I called it immediately. Soon after I
got a call asking “who is this?” I explained that I wanted the
job his website had listed, but had not received a call back. He said
that the reason nobody was there is that a few weeks earlier he had
sold the company and its technology. He said he was downtown at a
conference and to meet him at lunchtime. I ran over and he proceeded
to tell me that he was a serial entrepreneur that would be starting
another business at some point soon and to stay in touch....He
emphasized that he was impressed that I was sitting across from him
given the situation.

Time passed. Mark had yet to start his
new company, and I was flat broke. I went to him yet again and asked
for help. He simply picked up the phone and called a Venture
Capitalist friend of his. The next day I was at breakfast with a VC.
Two days later I was working at Netscape Communications (one of the
companies responsible for the commercial Internet taking off) doing
business analysis and portal deal modeling.

It was there that I honed my skills
relating to understanding business models and became an expert in the
Internet itself. I also proved my worth to the Netscape executives
and built a reputation for myself there.

In 1999, America Online purchased
Netscape and many executives left the company. One in particular was
the Vice President of Business Development. He had decided to go to a
very small company that was looking for venture funding so it could
afford to try and build a company out of some very good technology it
had developed. The company had been incorporated by two Computer
Science Ph.D. candidates at Stanford University a few months prior.
It only had the two founders and a few engineers working there. The
Netscape VP joined the start-up in March of 1999 as employee 12 and
hired me to help him build the business. In May of 1999, I joined the
founding business team as lucky number 13. That company got its first
and only round of Venture Capital, $25 million, a month or two later.
The company was a Search Engine company that had only a few hundred
thousand searches performed on it per day by at most a million users
per month, mostly academics. The company had no revenue at the time.
That company, now widely recognized as Google, is the world leader in
search technology, bringing in billions of dollars in revenue per
quarter by aiding many millions of users all over the world to find
information on a daily basis.

During my career there, I negotiated
our first $100k and $1million deals; was on the design team for the
original ad program; ran a cross-functional external technology
evaluation team; negotiated 3rd party technology licenses; was an all
around go-to guy to just about every department that needed business
help...and I founded and ran the Google Wine Club :-)

I could not have imagined a better job
for myself. I was not constrained by any specific job description and
was free to add value wherever it was needed. I truly got to be a
Business Development Renaissance man.

When Google went public in 2004, it was
one of the most successful IPOs in history. For me, that was a
defining moment. I felt that I had made my impact, left my personal
mark, and accomplished everything I had set out to do there. I left
shortly after IPO to pursue other interests.

My confidence and follow-through, along
with the chances awarded me by individuals who saw something in me
and believed enough to give me a “shot,” took me from poor kid to
successful businessman “retired” by 32 years old. At no point did
I ever compromise my integrity. I do things that I can be proud of.
My colleagues and I lived by the motto of “don’t be evil.” It’s
not a gimmick. It’s a philosophy of doing what’s right and
letting the money follow.

Having reached a level of financial
success that awards me the freedom and flexibility that it has, I am
now looking to share some of my knowledge and experience to benefit
the next wave of those who aspire to do as I did.

...and that is my story. §

Steve Schimmel was Google’s 13th
employee and founding business team member. He is currently an
entrepreneurial advisor and angel investor and is starting a new
company to unite Hollywood & Silicon Valley.

Commentary

By Iain Dooley (dools)

This is a story of a true hustler —
and I mean that in a good way.

This guy got out there and hustled for
a job. He hustled his way into Netscape by persistently calling and
eventually “hacking” his way into contact with a well-connected
business person.

Then when he was employed at Google, he
went out there and hustled dollars that made them actually get some
turnover.

It’s a story we don’t hear very
often. It’s a story about the people that make the money rather
than the people that make the technology.

In a world where so much of the
technology sector seems to be predicated on the idea that you build
something cool, get users, and sort the “money stuff” out later,
it’s easy to forget that, at some point, someone’s gotta get out
there and actually make some goddamned money.

Having attempted to sell various
technological services of my own for the past 4 years, I can
whole-heartedly say that in my experience, building the technology is
the easy part.

Being able to monetize it is a magical
gift!

I’d also like to add that I find it
pretty far fetched to refer to this success as “luck.” Being a
good salesman, being a good hustler, is all about being there. That’s
why CRM systems are such a vital sales tool — you need to make
sure that every few months, you call your prospects, and if you don’t
sell to them, then you make an appointment to call back in 3 months,
and so on.

Whether you’re
selling vacuum cleaners or selling your own services as an employee
or contractor, you can’t refer to every successful sale as “luck”
— it is success based on persistent action. If anything you’d
have to refer to people who hustle well and don’t succeed as being
unlucky, rather than the other way around.

How
to Become Batman

By MARK HUGHES

It depends. Which Batman, the one in
the current film franchise, the one from the current monthlies, the
one from the Justice League, etc., etc.?

I am going to make an assumption here,
in order to best answer your question. We’ll put aside the issue of
Batman trained by ninjas in the films, or the question of whether in
the comics Batman operates with sort-of-superpowers when interacting
in stories alongside Superman and other such characters. By “become
Batman” you mean the basic concept of Batman that we all could
agree upon — a master of martial arts, of forensic and detective
skills, of gymnastics, of science and chemistry, of history and
geography, of the workings of organized crime, of criminal psychology
and physiology. You mean a man with a suit offering protection
against bullets and knives and electrocution, but which allows him to
move as fast as an Olympian runner and acrobat.

The simple answer is, no. Unless you
really boil Batman down to a very diluted level as just a really
strong, fast, good fighter who can jump far and with good street
smarts plus an education in crime and psychology, and who wears a
mask and a lot of armor.

The genius of Batman is that it
pretends to be realistic. It lets us convince ourselves that with
enough money and training, we could become Batman, too. But it’s
still fantasy. It’s just a fantasy that is more compelling and
convincing—and thus more fun.

If you joined the military and became
something like a Delta Force commando of the highest quality, while
studying nights to get a double-major in criminal justice and
psychology, with a minor in chemistry. You might also have time to
take weekend courses in detective work and get a P.I. license. Then,
after probably 10 years to reach all of those levels combined, you
might be 28 (if you started right out of high school) and would then
need to maintain your physical level while getting a job as a police
officer in order to learn real crime solving and detective work on
the streets and at crime scenes, to get the experience it would
really take to be a master. Let’s say you are so good it only takes
you perhaps 3 years to become a top detective and expert in these
regards. Now you are 31, and you just finished the most basic level
of preparation you need to be an expert in just some of the most
obvious fields required to match Batman.

Now you have to quit the force and
develop a good cover story for yourself so nobody suspects that
Batman might be the guy who is an expert in all of those fields
Batman is a master at. You have to have made sure you lived your life
never revealing your true feelings about crime and vigilantism, etc.
In fact you need to cover it up unless you want to be arrested as a
suspect the first time Batman comes around town. You need to spend
some time doing dry runs to find your way around rooftops and fire
escapes, practice running around at night in the shadows and not
being seen, and presumably start practicing using your ropes and
grappling hooks and other equipment you need for nightly patrols. Do
some dry runs, make final preparations in case of emergencies, etc.

And you need to have been investing
money and amassing a fortune the entire time, because the technology
you’ll need to even get close to a real-world version of Batman
will cost millions of dollars. So you’ve done that, and now you
start spending the money to get an armored suit full of electronics
to communicate with assistants and have night vision and so on. You
need a base of operations, so you buy one of those old used missile
silos the military sells (yeah, they really do that, and it’s
pretty cool inside them) and turn it into a secret headquarters for
the computers, monitoring equipment, car, bike and other equipment
you need for your vigilante life.

Conservatively, you should probably be
about 32 at this point. And you are only about to go out on your
first night as Batman. Okay, it’s taken longer than expected and
been pretty hard. And honestly you are not quite as much a master of
all fields as Batman, but at least you got the basics and are pretty
well trained and smart and equipped. So off you go, looking to stop
crime...

...and you’re looking. And looking.
Oh, wait, you hear police sirens or you get a transmission from
picking up the police radio calls, there’s a domestic disturbance
in progress.... Well, that’s not really what Batman does, so you
let that one go to the cops. Then you get another call about a
robbery, ah ha! Finally Batman is going into action! You run across
those rooftops, swing across to another roof — whoa, crap, that was
a lot more dangerous than it looks in the comics! But you’re
booking it, running flat out and probably hitting, what, a good 10
miles per hour? Maybe less actually because of having to dodge things
and stop at the edge of the roof to swing down again.

Anyway, there you are, rooftop to
rooftop, and it occurs to you that the cop cars are so far gone now
that you barely hear the sirens. So you think “Hmm, no wonder the
real Batman has a car, this rooftop thing looks cool but I’ll never
make it in time to stop a crime that isn’t happening within a block
or two.”

And you don’t — make it in time,
that is. The first few nights, you keep showing up and the robberies
or shootings or whatever are already over, and you realize that this
makes sense because most reports about crimes are only after it
happens, not while it’s taking place. And you also remember that as
a cop, you almost never just walked up or drove up accidentally right
where a crime happened to be taking place. In fact, you were just one
of several thousand cops in your city, and most of you never just
stumbled right across a significant crime in progress.

By your second week, you are getting
unhappy that 90% of the crimes you’ve even seen up-close are just
pathetic junkies buying crack from another pathetic junkie selling
drugs to support his/her own habit. And nothing makes you feel less
like Batman than scaring sad, homeless crackheads. You tried to chase
down a kid who you saw punch a lady and take her purse, but you can’t
really pursue that kind of thing by running on rooftops, you gotta do
it the hard way by chasing him on foot down the sidewalk... in your
full Batman costume, where everybody can see you. People are taking
photos on cell-phones, and, yep, there’s a cop car at the
intersection and he saw you, and now he has his lights on and it’s
you he’s after. Great, you have to let the kid go so you can run
down an alley and climb up a fire escape to the roof to get away.

At last, week three, you get lucky: an
armed robbery, right there across the street! You leap down onto the
hood of their car, cape over the windshield just like in The Dark
Knight Returns. And a teenage kid in the passenger seat fires a
shotgun though the windshield in panic, blasting your torso.

You are wearing armor, though, haha! So
it merely shreds your costume and knocks you off the car onto the
street, but man that hurts! And it takes your breath away just long
enough for the car to speed off. You get up, angry and just in time
to see everyone taking your photo again and staring at your shredded
outfit. Then the police come around the corner, and you run off again
but this time you are injured because although the armor stopped the
slug, it still bruised you and broke a rib. You are fast, but not
fast enough this time. The police draw their guns and order you to
stop. You turn and grab for the smoke pellet on your belt to help
hide your getaway, but unfortunately for you the cops see you
reaching for something and open fire...and your suit’s armor is
already a mess from the shotgun blast earlier. Uh oh.

When you wake up in the ICU, your mask
and costume are gone, you’re in a lot of pain, but the doctors
successfully removed the bullets and re-inflated your lung. The
downside is the set of handcuffs trapping you in the bed. As a master
detective, you can of course easily pick the lock on the cuffs to
escape, but on the other hand the staph infection you caught after
surgery is pretty bad and you feel like s**t. So you wait until night
to sneak out — except you fall asleep on your pain meds, and wake
up the next morning to the police coming to pick you up and take you
to the infirmary at the state prison. Where you will spend a month
recuperating until they can transfer you to the county jail for your
first court appearance. During which your only comment to the judge
is, “I guess it’s not really possible to become Batman.”

Na-na-na-na-na-na-na-na-na! Batman! §

Mark Hughes is a screenwriter and
lifelong reader of comics. He’s also a huge Batman fan, and regrets
crushing the hopes and dreams of would-be superheroes around the
world. :(

Why Startups
Need to Blog

By MARK SUSTER

Blogs. We all read them to get a sense
of what is going on in the world, peeling back layers of the old
world in which media was too scripted.

By definition, if you are reading this,
you read blogs. But should you actually write one if you’re a
startup, an industry figure (lawyer, banker), or VC? Absolutely.

This is a post to help you figure out
why you should write and what you should talk about.

1. Why

If you care about accessing customers,
reaching an audience, communicating your vision, influencing people
in your industry, marketing your services, or just plain engaging in
a dialog with others in your industry, a blog is a great way to
achieve this.

People often ask me why I started
blogging. It really started simply enough. I was meeting regularly
with entrepreneurs and offering (for better or for worse) advice on
how to run a startup and how to raise venture capital from my
experience in doing so at two companies. I was having the same
conversations over-and-over again, and I figured I might as well just
write them up and make them available for future people who might be
interested. I never really expected a big audience or ever thought
about it.

I had been reading
Brad Feld’s blog [feld.com] and Fred Wilson’s blog [avc.com] for
a couple of years and found them very helpful to my thinking, so I
honestly just thought I was giving back to the community.

The results have been both unexpected
and astounding. Within 2 years I was getting 400,000 views per month
and had been voted the 2nd most respected VC in the country by an
independent survey of entrepreneurs, The Funded, and sentiment
analysis. I know that I have not yet earned these kudos based on
investment returns (although my partners have. GRP Partners last fund
is the single best performing VC fund in the US [prequin data] for
its vintage year). But it speaks volumes to what people want from our
industry:

•
transparency

•
accessibility

•
authenticity

•
thought leadership

•
advice

I’ll bet your customers, business
partners, or suppliers would love similar.

2. What

I often get the question from people,
“I’d like to blog, but I don’t really know what to talk about?”
or “I’m a new entrepreneur — why would I offer advice on how to
run a startup?”

You wouldn’t. You shouldn’t.

Not only would it be less authentic,
but if you’re a startup, it’s not immediately clear that other
startup CEOs are your target market. They’re mine because I’m a
VC. I care about having a steady stream of talented startup people
who want to raise money thinking that they should talk to me in
addition to the top others whom they’re targeting.

Whom do you want to target? Who are
your customers, partners, or suppliers?

My suggestion is to
blog about your industry. Think Mint.com. In their early days they
had an enormously effective blog on the topic of personal financial
management. They created a reason for their customers to aggregate on
their site on a regular basis. They became both a thought leader in
the space as well as a beautifully designed product. They created
inbound link juice on topics that drove more traffic to their site.
Type “personal financial management” into Google. Mint.com is the
second result. Smart.

Think Magento. They are an open-source
and SaaS provider of eCommerce solutions. They are the fastest
growing player in the world in this space. They achieved all of this
before they raised even a penny of venture capital. eCommerce is an
enormously competitive search term. Yet type it into Google and the
third result is Magento. Magic. They did it by creating a blog, a
discussion board and hub for eCommerce advice and information.

So you developed a
product for the mommy community? Blog on that topic. Do you have an
application that helps mobile developers build HTML5 apps? You know
your blog topic. Do you have sales productivity software? Obvious.
Check out SalesCrunch posts [hn.my/salescrunch].
Blog to your community. Be a thought leader. Don’t blog to your
friend (that might be a separate Tumblog or something), but blog to
your community.

If you’re going to pump out regular
content that is meaningful, you obviously need to blog about a topic
in which you’re knowledgeable, thoughtful, and passionate. If
you’re not all three of these things in your industry, then I guess
you’ve got a broader problem. Honestly.

So my biggest recommendation of “what”
to blog is a series of articles that will be helpful to your
community. If you’re a lawyer, blog on a topic that would be
helpful to potential customers. Show that you’re a thought leader.
Scott Edward Walker does an excellent job at this. It’s the only
reason I know who he is. I had seen his blog and his tweets and then
was interested to meet him IRL.

Do a brainstorming session and create a
list of 40-50 topics that interest you. Write out the topic and maybe
even the blog title. Keep the list electronically.

Struggling to come up with enough
topics? Take one topic and break it up into 10 bite-sized articles.
It’s probably better that way anyways. I wanted to write about the
top 10 attributes of an entrepreneur. I wrote it all in one sitting
and then broke it up into 10 separate posts. It kept me busy for 3
weeks! Each one ended up taking on a life of its own; as the comments
flowed in for post 1, I had more thoughts to add to post 2, and so
on.

3. Where

You need a blog. Duh. If you’re a
company and if hanging it off of your company website makes sense for
the link traffic, go for it. If you are head of marketing at a
company and keep a more generalized blog (in addition to your company
blog) so that you can influence brands and agencies, it can be
separate.

I chose for my blog to be independent
of my firm, GRP Partners. The reason is that I wanted to be free to
say what I was thinking independently of my partners. My views don’t
always represent theirs and vice-versa, even though we’re pretty
like-minded (we’ve worked together for 10+ years). I chose a title
that represented a brand that I wanted to emphasize: Both Sides of
the Table. I chose it because I thought it would represent who I am —
mostly an entrepreneur, but somebody with investment chops. I wanted
to differentiate.

So. People keep asking me, “Why would
you write on TechCrunch?” I guess I would have thought it was
obvious. Apparently not. People say, “Aren’t you driving traffic
away from your own blog?”

Facts:

•
I don’t really care about total page views or uniques other
than as a measure of whether I’m improving. I don’t sell ads.

•
I do care about “share of mind,” which means that I want
fish in the pond where the people whom I want to speak with hang out.
I know a certain number hit my blog. But I’m not so arrogant (or
successful) as to think they come all the time. So I take my show on
the road. If •
I can write about a topic which I’m passionate
about and double or triple the number of people who read it, that’s
gold dust. That’s why I never stopped anybody from taking my feed
and republishing.

•
As it happens, since I began writing at TechCrunch my
viewership has continued to go up, not down. I always publish on my
own blog the day after it runs on TC. I want the historical post
there. A large number of readers on my site get it from Feedburner or
newsletter feed.

•
I also get a lot of inbound links from writing here. I try to
make any inbound links to my blog authentic to the story. But each
story has driven thousands of views.

•
The majority of my traffic still comes from Twitter. TC posts
= more Twitter followers = more conversion when I do write on my own
blog = more Feedburner/newsletter subs = more traffic. It’s an
ecosystem. Simple.

So once you have a blog, a voice, and a
small following — don’t be shy about writing some guest posts for
target blogs. Remember: for you that’s likely not TC — it’s the
place your community hangs out.

4. How

Be authentic. Don’t try to sound too
smart or too funny. Just be yourself. People will see who you are in
your words. If you try to make everything too perfect, you’ll never
hit publish. If you try to sound too intelligent you’ll likely be
boring as shit. Most blogs are. I hate reading blowhards who try to
sound like they’re smarter than the rest of us. Be open and
transparent. Get inside your reader’s minds. Try to think about
what they would want to know from you. In fact, ask them!

Don’t be offensive. It’s never
worth it to offend great masses of people. But that doesn’t mean
sitting on the fence. I have a point of view and I’m sure sometimes
it rankles. But I try to be respectful about it. Sitting on the fence
on all issues is also pretty boring. And don’t blog drunk. Or at
least don’t hit publish ;-) Mostly, have fun. If you can’t do
that, you won’t last very long.

How do I get started? First, you’ll
need a platform. I use WordPress. Some people swear by SquareSpace.
There are the new tools like Tumblr and Posterous. I’ve played with
both and they’re pretty cool. They’re more lightweight and easier
to use. Importantly, they’re more social. It’s much easier to
build an audience in social blogging platforms the way you do in
Twitter or Facebook. Then you need to decide whether to use the
“hosted” version or the “installed” version. At least that’s
true in WordPress. The advantage of the hosted version is that it’s
easier to get started. The disadvantage is that you can’t install a
lot of additional tools that use Javascript. I started with the
hosted version and then migrated to an installed version so I could
use Google Analytics and some other products.

You then need a URL. It’s true you
can be something like msuster.typepad.com but that’s kind of lame
so I wouldn’t recommend it. Just get a real URL. I think it’s
important to think about what image you want to portray when you pick
your URL name. It doesn’t need to be short. You’re not trying to
build a consumer website. My website is a pretty long URL, but people
manage to find it. Much of my traffic is through referring websites
and/or social media. Some search. What are YOU trying to convey? What
will be your unique positioning? Don’t just write a carbon copy of
what somebody else is doing. That’s boring.

So I wrote a post, now what? Don’t
blow your load on your first post. Slice it up enough to do many
posts. I think most blogs are between 600-1000 words/post. Once
you’re written a few posts, don’t try to make the floodgates open
at once. Slowly build your audience. Make it organic. If you write
good content consistently, you’ll build an audience over time.

The #1 thing that kills 95% of blogs is
that they do 5 or 6 posts in rapid succession and then peter out.
It’s lame to go to a blog where this happens. And then 8 months
later they do the obligatory post saying, “OK, I’m going to be
more committed to blogging now!” and then another 4 months go by.
If you’re really not going to write that often at least don’t put
dates on your posts.

But if you write good stuff, put in an
effort, and keep going — it’s a marathon — you will see results
over time.

How do I build an audience? If you
build it, will they come? No. A blog post is just like a product.
First it needs to be good. And then you need to market it. It doesn’t
just happen. You should be subtle about how you market it, but market
it nonetheless. If you’re too squeamish to ask for help in
promoting it or to do so yourself, then you’ll never build an
audience. (You’ll also likely not make it as an entrepreneur.
Sorry. But that’s true.)

The obvious starting point is to email
a few friends and let them know you have a new blog. Don’t be
overbearing — just an email saying, “wanted to let you know about
my new blog.” I also recommend you put a link to it under your
email signature (in a color other than black). You also should have
it be what your Twitter bio links to.

Every time I write a post, I send it
out on Twitter. I try to send out the Twitter link when more people
are online. Over time I’ve found out that I get better clicks at
8:30-9:30am Monday-Friday, so that’s when I tweet a lot of my
stuff. I’ll frequently send two tweets — East Coast and West
Coast. Not everybody sees the first one. Social media is ephemeral.

Because I’ve built my Twitter
following slowly but steadily and authentically over time, I get very
high click-through rates (and thus a high Klout score — currently
74). I get about 4% CTR on every tweet in the AM, and it’s actually
higher because if I assume only 33% of my followers on online the CTR
is closer to 12%. Interestingly, if I had sent one Tweet at 5:30am
(to get East Coast time) and another at 8:30am, I get 4% CTR both
times. So it’s hard to argue you shouldn’t tweet twice if you
have a geographically distributed following.

How do I know my stats? I use awe.sm
(disclosure, I’m an investor) which is the best tool I know of for
tracking: it tracks each individual share behavior (it creates unique
URLs for each tweet), plus it also separates out tweets from Facebook
shares and from “Retweets” that come from somebody clicking on my
blog, etc. It also tracks who tweeted the link so you will know who
your most influential social followers are.

Make sure your blog has Tweetmeme or
similar to make it easier for readers to tetweet. Also, make sure to
sign up with Feedburner. That way people who want to get your blog by
RSS and/or email can do so. Make sure your blog also has a Follow Me
on Twitter button so people who find you can easily follow you.

5. When

People often ask how I blog so much,
since they don’t think they can do it themselves. If you write
about something for which you’re both knowledgeable and passionate,
I’ll bet you can pump out more than you think.

I usually blog at 10pm or on airplane
flights. I never blog at work. Like you, I don’t have the time. I
have board meetings, company pitches, internal partner meetings, etc.
Hell, I often can’t even get to email during the day. So it comes
out of TV time, which means I’m not missing anything. Occasionally
if I really want to blog and I have a date or too much work, I just
set my alarm for 5:30am. Yup. It’s not that hard if you make a
commitment to it.

What would it mean to you and your
business if you could: increase your inbound traffic, enhance your
company and personal brand, and meet new influential people who
suddenly know who you are? If you want these things, they are
available to you for the cost of some time and effort.

If you plan out what you want to write
about in advance, then it’s really about writing. Create topics,
then headings to structure your article; you’ll notice on this one
I started with “Why, What, Where, How,” and then I later added
“When” and “What Next.”. Structure helps enormously.

I write for about 45 minutes to 1 hour
in the first pass. I usually then re-read, edit, spell check, and add
links. This usually takes another 20-30 minutes. I then always add an
image. I think this is a nice touch. Just staring at text is a bit
boring and I find that the image can add humor and/or drive people
in.

6. What Next?

Then there are comments. You have to
respond to comments. Do yourself a favor and install Disqus. It makes
a huge difference in driving a comment community.

First, it’s the most fun part of
blogging. It’s addictive, like Twitter. It’s where you exchange
ideas with other people. It’s where your community gets to know
you. It’s where you build loyalty and relationships. I have met
many people in person who were first commenters on my blog. I find it
frustrating if I leave comments on somebody’s blog and they never
respond. If somebody found your blog and took the time to comment
then they’re like a customer who should be cherished. Responses to
them are like customer retention. It’s also where you’ll learn.
People will tell you when you’re full of shit. §

Mark Suster is a 2x entrepreneur who
has gone to the Dark Side of VC. He joined GRP Partners in 2007 as a
General Partner after selling his company to Salesforce. He focuses
on early-stage technology companies.

When You Want
To Quit Because It’s Just Not Worth It

By JASON COHEN

I’ve been there. It sucks.

You know most startups fail “only”
because the founders stop working on them, and often, it’s because
it’s emotionally draining. I don’t care who you are or how strong
your ego is, you will have these moments — perhaps a continuous
stream of moments — when you can’t take it anymore.

I literally cannot remember the number
of times I was so overwhelmed at Smart Bear that I almost threw in
the towel. Close the bank accounts, close the doors, turn off the
website, bounce the email, and just stop.

Sounds dramatic, but it’s no
exaggeration. You’ll hit these walls, too; maybe a little
commiseration will help you get through it.

Of course you expect these moments to
happen at the beginning of startup life — when you’re least
confident, have the worst product, and the least knowledge about your
customers and the market.

 You see, the pain is not limited to
the beginning of the venture. It’s still there three years in,
despite real revenue, profitability, customers arriving everyday, and
a great team.

Since that is not obvious, I’d like
to share a personal story.

Four years into Smart Bear I had
several employees getting paid decently (which at a bootstrapped
startup is hard to do!) and a product that people were buying —
plus, we were doing around a million-a-year. Life was good!

I was working on my first true
“enterprise sale.”

I was negotiating our biggest order to
date — something like $200,000. Actually, “negotiating” is the
wrong word because I don’t believe in price negotiation, even with
enterprise sales (the one area that most people claim must include
automatic discounting).

The person with whom I was negotiating
wasn’t the end user, nor the boss, nor boss’s boss, nor anyone in
that chain of command. See, big companies have entire departments
devoted to dealing with vendors like you and me, and when it comes to
negotiating, these departments harbor terrorists with titles like
Procurement Manager or Strategic Sourcing Manager.

I say “terrorists” because they use
fear tactics to get their way, yet they have no power other than
fear. Imagine the worst stereotype of a salesman — the greasy
used-car type, except instead of selling you something, their job is
to beat a discount out of you.

Now, to be fair, many vendors do take
advantage of large companies — overcharging (because “They can
afford it!”), or promising one thing to the users and sneaking
something else into the invoice.

But mostly it’s because of the
traditional enterprise sales dance, reminiscent of the lumbering
mating dance of the great blue whale. The vendor asks for too much
money; the client is astonished at the price. Both calmly explain
that this is a deal-breaker. Then the vendor capitulates 30% but only
if the client signs a three year maintenance contract (which they
wanted anyway). The deal is struck.

(This tradition continues because of
perverse, wasteful incentives. The vendor’s salesman likes this
because sometimes he gets away with a high price which pads his
commission check. The Procurement Manager likes this because he can
show his superiors how much money he’s “saved” the company.)

So big companies need a Defender of
Evil Vendors, I get that. But that’s not enough for these guys; it
feels to me like an attack, not a parry.

This is always how the conversation
would go:

PM: What kind of
discount are you offering?

Me: We don’t
discount; instead we put our pricing on our website so there’s no
misunderstanding.

PM: Well, I’m
going to need some kind of discount. How about 30%?

Me: As it says on
our website, we don’t discount.

PM: But I’m
buying 400 seats!

Me: Yes, and we
already provide a nice discount for bulk orders, which is already
included on the invoice and documented on the website.

PM: You don’t
understand, I always get a discount. I’ve done business with 47
other vendors and all of them give me at least 20% off.

Me: There’s
always a first!

So far it’s actually ok — I’m the
one refusing to plod through the mating ceremony, wanting to skip
right to the wedding night. I expect push-back.

But here’s where it gets nasty. I
remember sitting there on the phone getting lambasted for my
intolerable ignorance about the Way It Works. I was told “I have no
business selling anything to anyone.” My obstinate ignorance is a
deal-breaker because of what it implies about my company in
general—after all, if I don’t even understand the purchasing
process there’s no chance in hell my software’s going to work!
Furthermore, despite my ignorance I’m unwilling to listen to the
rules, to learn, which means there’s no hope for me.

I’ll never forget how this ended:

PM: OK, that’s
it, you give me no choice. I absolutely cannot approve this deal, and
furthermore I’m recommending that we never work with your company
in any capacity. At this point, even if you gave me a discount I
would still reject it.

Here’s where I’m supposed to
unleash my intellectual fortitude. I won’t capitulate, will I? I
won’t let this guy insult and bully me, will I? C’mon, I’m the
strong-willed confident entrepreneur with the stoic well-argued voice
of reason, and he’s the sleezeball with the tedious day-job —
surely I’ll laugh as his words roll off me like water off an oiled
duck’s back.

Just the opposite. I felt like throwing
up. He’s right — who do I think I am? I’m a geek playing in the
big boy’s house and I don’t know what the hell I’m doing. I
have these naïve ideas about how the world should work and how
people should treat one another, and that’s just silly. And it
shows. And now this guy is going back and spewing vitriol at the
other folks in the company whom I actually like and worked really
hard to earn their trust.

But it’s over. They’ve seen through
me. It’s just a matter of time before others do, too. That’s the
end of deals like this.

Why am I doing this anyway? This is
supposed to be fun and fulfilling but at this moment, as we say in
Texas, I feel like ten tons of shit in a two-ton bag. What I like is
writing code — why am I even trying to play this sales game? Why
not just go get a job where I only worry about whether or not I can
write code — because I sure as hell can do that — and let the
natural salesmen do all this crap?

Is the money worth it? What money,
we’re still bootstrapping and I still don’t get a regular salary.
Is the promise of money worth it? Worth these feelings of inadequacy?

After days (yep, days) of fretting like
this, it converted from despair to anger. Who the hell is this guy?
Some asshole who isn’t good enough with money to be an accountant,
too slimy to sell cars, this guy whose only skill is to be a jerk,
some guy who has never had to make payroll or take a risk or put
himself out there, this schmuck is going to tell me I’m the one who
isn’t good enough, I’m the one who has no business selling
software?

Worst of all, I’m letting him make me
feel like a pile of shit!

Well, if you’re waiting for the big
moment where intellectual reasoning finally defeats weak, irrational
emotions, I’m sorry to disappoint you, because that moment never
came. I know it’s dumb and illogical, but there it is. It’s
trivial and baseless, but I still carry that experience in a corner
of my thoughts. That’s how emotions work.

By the way, this guy turned out to be
totally full of shit. He had, in fact, no power to stop the deal.
When I finally got my main contact from that company on a conference
call with the PM, the conversation was literally:

My Guy: So, what’s
holding up procurement’s approval?

PM: Nothing, just
some paperwork, we’ll have it done by Friday.

All of that angst for nothing. Son of a
bitch!

Years later I was on site at this
company and I finally met this guy face to face.

I still felt small.

Want to say I’m weak? Or he’s
strong?

Who cares, the point is: Getting
through this slog of a thing that’s a startup — or anything
difficult and worthwhile — doesn’t require that you’re always
confident or stoic or smart or right or wise. You don’t need to
match the emotional stability you see from the big bloggers (which is
mostly a façade anyway).

It’s about sticking through the tough
parts, whatever your personal foibles or weaknesses.

Living through it, not beating it. I
never have, to this day, “beaten” that PM, not emotionally, not
if I’m being truly honest.

I’m not saying tenacity is all it
takes. Just that without it, you’ll stop. It’s so easy to stop.
There are so many reasons to stop.

And that — stopping — is how most
little startups actually fail. §

Jason is the
founder of three companies, all profitable and two exist. He blogs on
startups and marketing at blog.ASmartBear.com.

Codified
Startup Advice

By GABRIEL WEINBERG

I’ve been getting a lot of requests for startup advice lately,
which is great because I like helping startup people as best I can.
However, I’ve found myself giving a lot of the same
advice, so I
decided to try to codify it in the following flow- chart. Most
investors and been-there-done-that entrepreneurs are very busy
people, so I imagine this chart more generally applies for seeking
startup advice.

My Fellow
Geeks,
We Need to Have a Talk

By RYAN MCDERMOTT

My fellow nerds, geeks, hackers,
designers, makers, builders, and DIYers, there is something very,
very wrong with our culture right now.

We’re jackasses to one another.

No, we’re not! Right? Geeks help each
other out! Well, sometimes we do, but most of the time, we’re the
most abrasive, critical, non-cooperative community of people I’ve
ever encountered. How many websites are there like the daily wtf? Or
clients from hell? Or photoshop disasters?

How many blog posts have been written
about how everybody is doing everything wrong! Stop using comic sans,
god dammit! What are you, illiterate? “Grammar nazis” are
engrained into our culture, and disregarding something somebody has
said because of minor misspelling is a common, accepted, and even
expected practice.

“Tables? What is this, the 1990s? Ha
ha ha!”

“This design looks like MySpace
gorged itself on Friendster and vomited all over Geocities!”

“You’re using the default hashing
algorithm in mysql instead of bcrypt? You should probably give up and
see if they’re hiring down at the local concrete crushing factory
because you, sir, have absolutely no business whatsoever touching,
much less programming, a computer.”

“God I hate the arduino. It’s not
real hacking. Using the arduino is no different than going down to
target and just buying whatever it is that you’re trying to build.
Arduino is for idiots who can’t actually program because they’re
too stupid to figure out how to hook a parallel cable into a bread
board. God, kids these days are fucking idiots.”

These are all embellished caricatures
of comments I’ve actually seen.

What the hell, guys? Why is this
attitude so common? And it extends beyond just criticizing other
designers/hackers/makers. Why does every single nerd I meet just hate
“hipsters”? Or “bros”?

Are we all back in high school again?

I want to share the experiences I’ve
had with other communities, specifically sports people. I’ve shared
this before, so if you’ve already heard it, please excuse me. When
I was about 16 years old, I was a huge (literally, I was physically
huge) nerd. I’m not sure if it was because of the tiny school that
I went to, but somehow, I managed to befriend some skateboarders.
After a few times going with them to the local skatepark and helping
them film a “sponsor me” video, I decided that I should learn to
skateboard myself, so I bought a board.

This was probably hilarious to watch. A
big huge nerd who was certainly more comfortable sitting behind a
python interpreter than in front of a skate ramp was hopelessly
rolling around in circles in the parking lot.

Except nobody told me that I sucked at
skateboarding, or that my form was terrible, or that I should give up
on it. In fact quite the opposite. One day at the skatepark I was
sitting off to the side just watching everybody else and kind of
wishing that I wasn’t there. One of my best friends, Steve, came up
to me to ask what I was doing.

“Oh, man, I suck at this. I’m just
going to practice at home or something. I don’t want to get in
anybody’s way.”

“What? Dude, you look like a weird-o
just sitting over here, and you’re not going to learn anything by
just staring at that thing. If I ever catch you sitting on this bench
again, you’re not invited to the skatepark anymore.” (There were
probably quite a few more vulgarities, but this was the gist of it)

I have never seen this attitude in the
geek community. It’s always been “You’re doing it wrong, and
you should give up because you suck at it,” or “if you’re not
using $hip_new_language, then you’re a loser.”

Guys, why do we do this? Most of us
were nerds when we were younger, and this attitude of “you’re not
cool enough to be in the $cool_designers or $cool_programmers club”
is exactly the type of stuff we had to deal with. It’s the
high-school lunch room all over again.

So I have a challenge for you: for the
next 30 days, be more like my friend Steve. Instead of outlining all
of the ways that your peers are terrible at programming because
they’re not doing manual memory management, or that your customers
are illiterate morons and how dare they have the audacity to question
your work, give people constructive criticisms. If their design is
bad, tell them what they can do to improve it. If there code is bad,
offer to help them patch it and make it better. If there spelling or
grammar is off, just let it go.

And please, stop it with the irrational
hatred of “hipsters.” Most “hipsters” that I know love geek
culture and would be elated at the opportunity to have somebody show
them around a laser cutter. §

Ryan is an independent developer
living in Phoenix, Arizona. He currently spends most of his time
working on thingist.com, a social
website for keeping and sharing lists.

Commentary

By Eric Heine (sophacles)

I’m reminded of something a wise man
once told me (HNified a bit):

In every pairwise conversation there
are 6 people:

1. Alice

2. Bob

3. Who Alice
thinks she is.

4. Who Bob thinks
he is.

5. Who Bob thinks
Alice is

6. Who Alice
things Bob is.

Perception plays an absurdly large part
in communication, as do nonverbal cues. Frequently we adjust our
message based on feedback we get from the listener. Those lacking
“social graces” or communicating in just text on the internet
don’t get these cues, so the message comes out “harsher”.

Complicating this, there is a lot of
baggage each person attaches to words, phrases and general styles of
questioning/commenting. So one person’s harsh may be another’s
“in to it”.

One example of all this I have
experienced:

One time at a vendor show, me and some
colleagues were in a small demo, presented by a sales guy and a few
engineers from the company. During the Q&A, I started questioning
the engineer pretty intensely with questions like:

Does it do $X? Why not? Do you plan on
adding it?

(These are actually pretty neutral
questions)

Then about another aspect I was really
into some possibilities of:

Can I use it for $Y? Can I make $Y
happen by this? What happens if I do $Z? How about if I work around
that limitation like this and get $Y + $Z effectively?

(these are not neutral questions, they
are me geeking out)

So after the demo some people thought I
broke the engineer and ripped him a new one with the second set of
questions, because I was rapid fire asking questions towards a goal.
One engineer thought it was a fun “play with an idea time”. The
other engineer thought I was severely criticizing his work.

The sales guy and several of the
audience members thought I was being unduly harsh by asking about the
feature $X. Apparently this was a contentious issue that I knew
nothing about. The engineers and others thought nothing of those
questions.

Similarly: I frequently get frustrated
when people wrap up valid criticism in fake nice BS. I don’t want
to hear “great thing, what if instead you did this”. I really
would rather just hear “What about this other method? Why not use
that?” or even “Dude, 10s of googling would have shown you the
flaws in that”. Because an honest self assessment includes the fact
that I don’t know everything, and that many (most) of the things I
come up with have also been thought of by other people, who may have
found flaws in that reasoning.

I guess my point is
there is a lot more than just “nerds are mean to each other”
going on.

Designing Your
Sign-Up Page

By DES TRAYNOR

Turning a visitor into a user of your
application is difficult. Turning a user into a customer is even
harder. Much has been written about designing for sign-up, focusing
on funnels, metrics, cost-per-acquisition, etc. A lot of the guides
focus on the assumption that lost customers are a result of poor form
design, bad layout choices, and visual design-related blunders.
Unfortunately, that’s very rarely the case.

Sign-Up Funnels: Myth and Reality

 In some transactions you lose
customers at each step in the process. In retail stores, this can be
measured. Gap knows that the more customers who try things on, the
more they’ll sell, so they encourage their visitors into changing
rooms. They know that by having an assistant on standby with a size
up, a size down, and a different colour, they’re more likely to
close the sale. They know how to attract and acquire customers.

The only equivalent of this is shopping
carts where you can measure conversions by watching customers move
from one step to the next. It’s a lovely idea that a purchase works
in a perfectly measurable funnel: “View Product -> Add to Cart
-> Go to Checkout -> Enter Details -> Confirm Order ->
Success”. That’s true for some cases, but most of the time
there’s five tabs open looking at different prices/charges/delivery
dates/refund policies/taxes, etc. And the purchase might happen once
they get home, or when they get paid, in a separate visit, possibly
recorded as a separate visitor. That said, shopping cart funnels
still offer heaps of information that should inform design decisions.

The problem is that none of this works
well when designing marketing sites for a web app about to launch.
There are different forces at play.

The Cheapest App Money Can Buy

Web applications are rarely a
commodity. Commodity web apps are things like file format
conversions, URL shorteners, Twitter pic uploaders, or File-hosting
sites. They’re disposable, one-off transactions and the user
doesn’t really care what URL they get out of the exchange. They’re
tough rackets to be in.

Users aren’t
looking for the cheapest app. They want the fastest, most reliable,
best supported app. The only thing that matters when designing your
sign-up page content is making sure that it serves their needs. Are
you convincing users that your product does something useful for
them? Does it make them rich, make them laugh, pique their interest,
or get them laid? [hn.my/content]

If you offer me an invoicing solution
and print “easy to use” everywhere on your site, it means nothing
to me. Just like everyone thinks they have a good sense of humour,
everyone thinks their software looks good and is easy to use.

Good Content Sells

Content is king on marketing pages, yet
often they’re the most content scarce pages on the web. A fancy
tilted screenshot and a big red button doesn’t convince me of
anything, except your ability to rotate images. Here’s an
incomplete brain dump of questions you need to answer if you’re
selling invoicing.

Your app looks simple to use, but is it
powerful enough to handle my set-up? Does your software know about
the taxes/rules about how invoices are handled in my country? Will I
be your first serious customer, or do have experience dealing with
firms of my size? Do other firms like mine use your software? How
long have you been running? How do I know you won’t wrap things up
in a few months? Can I trust you guys? Can I talk to you guys? How do
I know you are legit? Do you offer good support?

Begging your visitors to take your free
trial is often the wrong approach. A free trial costs time and
doesn’t answer all the questions. Screencasts are good, but they’re
usually not enough.

Bear in mind also
that invoicing is a well-defined problem. People know what to expect
of invoicing software. It gets harder when you’re pitching a
solution to an unknown problem, or re-defining an existing problem.
Take FlowApp [getflow.com], for
example. Flow aims to change the way I work. This means Flow needs to
convince me that they know how I work, convince me there is a problem
with it, explain how they solve it, why it works, who it’s aimed
at, and then go ahead and answer all the other questions I listed
earlier. No wonder they’ve yet to launch a marketing site. This is
hard stuff.

What You Can Include

Before you open “Ye Olde Web App”
template and routinely drop in the obvious components, think about
how you would sell this to someone. What sort of information pushes
people over the line. If you were trying to impress me at a
conference, what would you say? Easy to use? Heard that before.
Convenient? I’d hope so. You need more than that to attract
interest, here are some ideas…

•
What interesting figures can you aggregate (100,000 hours billed,
2,000 companies managed, 3.6 Terrabytes of data secured)

•
Who’s currently using it, and for what?

•
Who is the team behind the application?

•
How long has the application been worked on?

•
What significant changes has the app been through while alive? What
is the story behind the application?

•
How can you be contacted? Can you be called? How good is your
support?

•
How secure is my information?

“But many popular web apps don’t do
this!” you might say. Firstly, well established web apps are
feeding off their recommendations and the established reputation of
their creators. When you’re just getting started, things are
different. You might not have an audience yet, so unlike the big
names, you need to win trust and respect. You might get the benefit
of the doubt, but you can’t rely on it.

Secondly, many of
the big name web apps have content heavy homepages. Look at Highrise
or Basecamp, Mailchimp, Campaign Monitor, they’re not scrimping on
information. This goes beyond “Content is King” and isn’t
really about design. It’s about the ability to sell. Even when your
product is stunning and sells itself, you still need to sell me on
your company, your support, your features, your future. That’s why
it doesn’t surprise me to see companies like 37Signals continue to
add content such as the Yes page [highrisehq.com/yes],
or the customer support happiness page [smiley.37signals.com].
There will be more to come.

 The Exceptional Homepage

The Exceptional
marketing site [getexceptional.com]
has gone through many revisions over the past three years. One lesson
we’ve learned is that the more useful information we can give
visitors, the better our conversion rate. The numbers back this up.
Each piece of content is there to answer a question. Our wall of
logos lets you know that we are for real, and have 6,000 people
relying on us. Our status site lets you know take performance
seriously. Our blog lets you see our customers and what they use us
for. Our features page details every single thing the app can do for
you. Our screenshots offer tooltips to explain what you’re looking
at. The point being every piece of content is there to answer a
question, and bring you one step closer to sign-up. When we discuss
the site, it’s from a “What else would persuade people to
sign-up, if they knew about it” approach. Our last addition was the
row of supported languages & frameworks, and again we’re seeing
positive results. Allan Branch of Less Accounting reported that
adding a phone number increased conversions by 1.8%. We’ll look at
that next.

Metrics For Marketing Pages

Metrics are great for telling the what,
but not the why. No matter how many Google Analytics tutorials you
follow, you’re never going to find the killer regex that checks for
“user actually being interested in the app”. Your best bet there
is to start finding people who you know should be interested in your
software, try to sell to them, and find out what works and what
doesn’t. If you see a lot of inertia, lots of “I can’t be
bothered”, then you have two choices. Either target new consumers
in the market (i.e. the people who have no solution at present) or
identify a new feature that users will pay for. Be wary of the latter
tactic though. The world is full of people would would buy it if….

As I’ve said before, the truth with
funnels and A/B tests is that they’re of little value during the
early days of a web app, when traffic isn’t significant. I’ve
seen many A/B test junkies wait a long time for customer “B” to
even show up.

When you don’t have the volume, go
for the personal approach. When you can no longer go personal, then
analyse the volume. At every step you need to ask yourself “Is
every single thing on my website selling the product?” and “Is
there anything else I can include that will help?”

Looking through
Mixergy interviews [mixergy.com]
with successful founders, you could be forgiven for thinking you
needed a popular blog to be able to release an app successfully. The
correlation here isn’t coincidental. A popular blog is an
indication that the writers can sell things, whether it’s their
credo, depth of thought, technical skills, or opinions about
business. It’s surely no surprise that if they can sell themselves,
they can also sell their software.

The thing is, we’re all salesmen, and
whether we like it or not, we’re always selling. We just don’t
wear the shiny shoes. §

Des Traynor is
the User Experience Lead at Contrast. In this role he works primarily
with start-ups helping them define a product strategy, identify their
customers, and design solutions to attract and delight them. Des
regularly writes his thoughts about his experience in design and the
business of web applications on the Contrast blog [contrast.ie/blog],
He can be found on twitter as @destraynor.

Advanced
Git Techniques

By CHRIS MURPHY

Finding That Issue

“The Pickaxe”

So you’re doing a code review on a
piece of the program you don’t normally touch, and you notice that
there’s a new property of your Person class. Since when did we
start tracking social_security_number for our workout app? The
pickaxe is part of the internal gitdiffcore, but you won’t find it
by name in the git commands we all use. Instead, pass in the -S
string with a term to search for. In our case, let’s search for
that new variable:

$
git log-Ssocial_security_number

This will show you each time that the
string “social_security_number” appeared or disappeared from the
repository history. It can be very useful, as long as you know what
string you’re looking for. The pickaxe is one of a few different
transformations that the diff uses, but it’s really the only one
I’ve used. I’m not even sure if the others, other than order, are
intended for the end-user.

You probably know the -p flag for git
log, which shows the git diff inline with the log messages. You can
combine that with the pickaxe so that you can see a little context
while you search. If you use the pickaxe for presenting changes, you
might find the --pickaxe-all switch useful. That’ll show you the
diff for all of the changes in the commits that the pickaxe finds —
not just the actual lines that the pickaxe recognized. Try them out:

$
git log -Ssomething -p
$ git log -Ssomething -p --pickaxe-all

Pretty powerful stuff.

Git Blame

What if you don’t know exactly what
you’re looking for, but you know the file you want to look at? Git
has a tool just for you: git blame. Try it out:

$
git blame <file>

This will show you who is responsible
for each of the lines in that file. In other words, the last commit
that touched the line. This is really useful, but don’t use it as
an excuse to yell at people. Unless they did something really awful.
Okay, not even then.

By the way, this is one of two times
that I sometimes like to use GUIs for git. The lines for git blame
can be pretty long (even if you modify the output with switches).
Just say:

$
git gui blame

That’ll do the exact same thing,
except in a nice GUI interface, which will make it easier to see the
whole line and navigate between commits.

Git Bisect

Bisect is an awesome idea: a
combination of binary search, interactive, and testing that can only
result in happiness. Suppose a user reports a bug in your program,
and you figure out how to reproduce it. You write a test for it, and
sure enough, it fails on current build. You have no idea when the bug
was introduced, but bisect is here to help. If you happen to know a
version where the bug didn’t happen, you can tell bisect to start
there. If not, just tell it the beginning of your history.

$
git bisect start
$ git bisect good <sha>
$ git bisect bad
master

Git will do all the hard work for you.
You just have to run your tests at each point that git prompts you,
and tell it whether it passed or not:

$
git bisect bad (or good)

Thanks to the power of binary search,
you’ll find it pretty quickly. I haven’t found a need to use this
feature in anger, but in my simple tests, it worked like a charm. You
don’t even need to have a bug to test it out — just lie to git
about what is good and what is bad.

If you have the ability to run your
tests and get a Unix return code (0 for success, non-zero for
failure), git bisect run will actually do all of the work for you!

Branch Management

When you’re making good use of git
branching, you’ll notice that the easiest thing to do is to just
merge in your branch to master and move on. But if you do a lot of
branching, and you’re constantly pulling in changes from other
branches, that’ll become really ugly, really quick. It may be
worthwhile to prevent all of those merge commits, depending on your
team strategy. If you want to do this, git (as always) has plenty of
ways to help.

Cherry Pick

git cherry-pick is useful for bringing
in a selection of commits from any branch. I use it when there are
selected bug fixes or feature adds in another branch that I need to
pull in to my working branch.

As with all git commands, you can tell
git which commit you want to cherry-pick in a variety, but to be
honest, I almost always explicitly call out the sha-1. Use git log or
gitk to find the sha-1, then:

$
git cherry-pick <sha-1>

Here again we see the value of keeping
your commits logically separated. Otherwise, a simple one-liner turns
into manual file editing, which is just asking for mistakes. Why not
let git do the work for you?

Rebase (onto)

You already know about rebasing from
Git 102 [hn.my/git102]. In that
case, we just rebased the master branch, but we can do so much more.
If you decide you don’t want a merge commit to show in master, you
can do the following in your feature branch:

$
git rebase master
$ git checkout master
$ git merge
feature-branch

Since you already did the work to
rebase the changes from master with your changes in feature-branch,
when you merge into master, it’ll be a simple, fast-forward merge.
No merge commit.

The next step is to use rebase across
multiple branches. If you often float back and forth between fixes,
this one is for you. Let’s see what we can do with --onto:

git
rebase [-i | --interactive] [options]
[--onto <newbase>]
<upstream> [<branch>]

You feed git rebase --onto three
things: the place where git should play commits onto and the two
places to compare commits from. So if you do a simplified version of
the man page’s example:

$ git rebase master~5 master~3 master

In our case, master looks like this:

A-B-C-D-E-F
(F is HEAD)

Git looks at master and master~3 (three
parents from the HEAD) and figures out what commits are in master,
but not in master~3. In this case, that would be D, E, and F. It
applies those commits onto your first argument, which is master~5
(commit A). Using git’s friendly message terminology, it rewinds
HEAD to master~5 (it actually does exactly what a reset --hard would
do), then plays back commits D, E, and F. The newly rebased master
looks like this:

A-D-E-F

Put simply, rebase killed B and C from
your tree. That’s pretty awesome. Now we can tackle the more
complex case of working around branches.

Look at the example
from the man page [hn.my/rebase]with
topicA branched from master and topicB branched from master.

The page says to run git rebase --onto
master topicA topicB to get commits H, I, and J applied to master.
Since topicB was branched from topicA, it has all of the commits in
the picture in its history. But topicA doesn’t have any of the
commits of topicB, so rebase will find that H, I, and J need to be
applied to your target, which is master.

You should note that the man page’s
previous example with topic and next is actually identical. The only
difference is that master has moved on since you branched next. This
demonstrates that the commits are played back onto master’s HEAD
(since that’s what you told it to do) — it has nothing to do with
where the first branch (next or topicA) branched from.

Recovering from Mistakes

git reset

Sometimes, you just can’t gracefully
back out of a messed up manual merge, rebase, or plain ol’
corrupted working tree.

$
git reset --hard <something>

That’ll reset your current branch,
index, and working tree (for less than all three, try --mixed or
--soft) to whatever you tell it. Most often, I’m running it against
origin/somebranch, to reset to the last pushed state.

Ok, so you probably already knew that
one. But what about the untracked working tree files that get spewed
around sometimes (p4merge on Windows leaves .orig lying around
all.the.time.)?

git clean -fd

clean will kill off all of those pesky
files that you haven’t added to git, and want gone. Since git is so
safety-conscious, you have to force it with -f, and you probably want
to tell it to get rid of the directories, too, with -d. With reset
and clean, you should never have to rm -rf and re-clone again.

The reflog

All this playing around with hard
resets, rebases, and whatnot might scare you. What happens if you
hard reset two days of work? No matter how careful you are, this will
happen eventually. Well, git hasn’t really destroyed everything
permanently, at least until the garbage collector comes around. If
you accidentally trash something, just type git reflog to see a list
of the last operations. Here’s an example:

$
git reset --hard HEAD~2
$ git reflog
7298e1e HEAD@{0}: HEAD~2:
updating HEAD
ca9164c HEAD@{1}: Oh man this is the best algorithm
ever. It sorts in constant time!!
$ git reset --hard ca9164c

phew. You obviously shouldn’t rely
on this, and if you’re digging into the reflog every day, you
should probably re-evaluate your git strategy. But it’s great to
have that safety net there when you need it!

Filter-branch

One last tip. If
you’re working in an open-source environment (pushing to GitHub,
for example), you’ll want to be careful not to commit any sensitive
information. As we’ve seen, any commit is part of the repo forever.
That is, unless you rewrite history. That’s what filter-branch is
there for. As you might imagine, GitHub has an excellent article
[help.github.com/removing-sensitive-data]
to show you how to protect yourself.

By the way, anything that’s hanging
around in reflog waiting to be gc’d won’t make it out if you push
to GitHub, so don’t worry about that. You can still kick off gc
manually if necessary. §

Chris Murphy lives near Boston and
is a graduate of Bowdoin College. He is a displaced Python and Java
man trying to write C# by day, and loves sports, cooking, and
learning.

How
The Kernel Manages Your Memory

By GUSTAVO DUARTE

After
examining the virtual address layout [hn.my/virtual]
of a process, we turn to the kernel and its mechanisms for managing
user memory. Here is gonzo:

Linux processes are implemented in the
kernel as instances of task_struct, the process descriptor. The mm
field in task_struct points to the memory descriptor, mm_struct,
which is an executive summary of a program’s memory. It stores the
start and end of memory segments as shown above, the number of
physical memory pages used by the process (rss stands for Resident
Set Size), the amount of virtual address space used, and other
tidbits. Within the memory descriptor we also find the two work
horses for managing program memory: the set of virtual memory areas
and the page tables. Gonzo’s memory areas are shown next:

Each virtual memory area (VMA) is a
contiguous range of virtual addresses; these areas never overlap. An
instance of vm_area_struct fully describes a memory area, including
its start and end addresses, flags to determine access rights and
behaviors, and the vm_file field to specify which file is being
mapped by the area, if any. A VMA that does not map a file is
anonymous. Each memory segment above (e.g., heap, stack) corresponds
to a single VMA, with the exception of the memory mapping segment.
This is not a requirement, though it is usual in x86 machines. VMAs
do not care which segment they are in.

A program’s VMAs are stored in its
memory descriptor both as a linked list in the mmap field, ordered by
starting virtual address, and as a red-black tree rooted at the mm_rb
field. The red-black tree allows the kernel to search quickly for the
memory area covering a given virtual address. When you read file
/proc/pid_of_process/maps, the kernel is simply going through the
linked list of VMAs for the process and printing each one.

In Windows, the EPROCESS block is
roughly a mix of task_struct and mm_struct. The Windows analog to a
VMA is the Virtual Address Descriptor, or VAD; they are stored in an
AVL tree. You know what the funniest thing about Windows and Linux
is? It’s the little differences.

The 4GB virtual address space is
divided into pages. x86 processors in 32-bit mode support page sizes
of 4KB, 2MB, and 4MB. Both Linux and Windows map the user portion of
the virtual address space using 4KB pages. Bytes 0-4095 fall in page
0, bytes 4096-8191 fall in page 1, and so on. The size of a VMA must
be a multiple of page size. Here’s 3GB of user space in 4KB pages:

 The processor consults page tables to
translate a virtual address into a physical memory address. Each
process has its own set of page tables; whenever a process switch
occurs, page tables for user space are switched as well. Linux stores
a pointer to a process’ page tables in the pgd field of the memory
descriptor. To each virtual page there corresponds one page table
entry (PTE) in the page tables, which in regular x86 paging is a
simple 4-byte record shown below:

Linux has functions to read and set
each flag in a PTE. Bit P tells the processor whether the virtual
page is present in physical memory. If clear (equal to 0), accessing
the page triggers a page fault. Keep in mind that when this bit is
zero, the kernel can do whatever it pleases with the remaining
fields. The R/W flag stands for read/write; if clear, the page is
read-only. Flag U/S stands for user/supervisor; if clear, then the
page can only be accessed by the kernel. These flags are used to
implement the read-only memory and protected kernel space we saw
before.

Bits D and A are for dirty and
accessed. A dirty page has had a write, while an accessed page has
had a write or read. Both flags are sticky: the processor only sets
them, they must be cleared by the kernel. Finally, the PTE stores the
starting physical address that corresponds to this page, aligned to
4KB. This naive-looking field is the source of some pain, for it
limits addressable physical memory to 4 GB. The other PTE fields are
for another day, as is Physical Address Extension.

A virtual page is the unit of memory
protection because all of its bytes share the U/S and R/W flags.
However, the same physical memory could be mapped by different pages,
possibly with different protection flags. Notice that execute
permissions are nowhere to be seen in the PTE. This is why classic
x86 paging allows code on the stack to be executed, making it easier
to exploit stack buffer overflows (it’s still possible to exploit
non-executable stacks using return-to-libc and other techniques).
This lack of a PTE no-execute flag illustrates a broader fact:
permission flags in a VMA may or may not translate cleanly into
hardware protection. The kernel does what it can, but ultimately the
architecture limits what is possible.

Virtual memory doesn’t store
anything, it simply maps a program’s address space onto the
underlying physical memory, which is accessed by the processor as a
large block called the physical address space. While memory
operations on the bus are somewhat involved, we can ignore that here
and assume that physical addresses range from zero to the top of
available memory in 1-byte increments. This physical address space is
broken down by the kernel into page frames. The processor doesn’t
know or care about frames, yet they are crucial to the kernel because
the page frame is the unit of physical memory management. Both Linux
and Windows use 4KB page frames in 32-bit mode; here is an example of
a machine with 2GB of RAM:

In Linux each page frame is tracked by
a descriptor and several flags. Together these descriptors track the
entire physical memory in the computer; the precise state of each
page frame is always known. Physical memory is managed with the buddy
memory allocation technique, hence a page frame is free if it’s
available for allocation via the buddy system. An allocated page
frame might be anonymous, holding program data, or it might be in the
page cache, holding data stored in a file or block device. There are
other exotic page frame uses, but leave them alone for now. Windows
has an analogous Page Frame Number (PFN) database to track physical
memory.

Let’s put together virtual memory
areas, page table entries and page frames to understand how this all
works. Below is an example of a user heap:

Blue rectangles represent pages in the
VMA range, while arrows represent page table entries mapping pages
onto page frames. Some virtual pages lack arrows; this means their
corresponding PTEs have the Present flag clear. This could be because
the pages have never been touched or because their contents have been
swapped out. In either case access to these pages will lead to page
faults, even though they are within the VMA. It may seem strange for
the VMA and the page tables to disagree, yet this often happens.

A VMA is like a contract between your
program and the kernel. You ask for something to be done (memory
allocated, a file mapped, etc.), the kernel says “sure,” and it
creates or updates the appropriate VMA. But it does not actually
honor the request right away, it waits until a page fault happens to
do real work. The kernel is a lazy, deceitful sack of scum; this is
the fundamental principle of virtual memory. It applies in most
situations, some familiar and some surprising, but the rule is that
VMAs record what has been agreed upon, while PTEs reflect what has
actually been done by the lazy kernel. These two data structures
together manage a program’s memory; both play a role in resolving
page faults, freeing memory, swapping memory out, and so on. Let’s
take the simple case of memory allocation:

When the program asks for more memory
via the brk() system call, the kernel simply updates the heap VMA and
calls it good. No page frames are actually allocated at this point,
and the new pages are not present in physical memory. Once the
program tries to access the pages, the processor page faults and
do_page_fault() is called. It searches for the VMA covering the
faulted virtual address using find_vma(). If found, the permissions
on the VMA are also checked against the attempted access (read or
write). If there’s no suitable VMA, no contract covers the
attempted memory access and the process is punished by Segmentation
Fault.

When a VMA is found the kernel must
handle the fault by looking at the PTE contents and the type of VMA.
In our case, the PTE shows the page is not present. In fact, our PTE
is completely blank (all zeros), which in Linux means the virtual
page has never been mapped. Since this is an anonymous VMA, we have a
purely RAM affair that must be handled by do_anonymous_page(), which
allocates a page frame and makes a PTE to map the faulted virtual
page onto the freshly allocated frame.

Things could have been different. The
PTE for a swapped out page, for example, has 0 in the Present flag
but is not blank. Instead, it stores the swap location holding the
page contents, which must be read from disk and loaded into a page
frame by do_swap_page() in what is called a major fault. §

Gustavo Duarte
founded his first start up as a freshman in high school, building a
web-based stock market analysis tool in Brazil. He sold that company
at 18 and emigrated to the US, and now divides his time between the
two countries developing software, authoring technical material, and
riding snow and waves. He can be reached at gustavo@duartes.org.

Why
You Should Never Ask Permission to Clean Up Code

By COLIN DEVROE

“Can I take some time to clean up
this code? It is horrendous.” The answer to this question should
always be “yes.” However, often we find ourselves up against
walls in the form of budgets, time, due dates, and expectation, and
so the typical “powers that be” at companies often veto the
request. My advice to you, dear developer, is to never ask for
permission for things you know are vital to your work.

You know your work environment better
than I do, so perhaps you can ask this question and immediately have
the full support of your team. Sad to say that many aren’t so
fortunate. They’ll ask their boss if they can take some time to
clean up their code, make it efficient and extensible and, while the
boss may recognize the need for such tasks, ultimately the boss will
simply say “maybe we can do that later.”

Why is this the typical reaction?
Because bosses don’t have to read, edit, and support the code.

This is folly and every developer knows
it. Bosses, (if you’re reading this) putting off a few hours worth
of code clean-up now will only turn into many hours or days in the
future. So by allowing your developers time to do this much-needed
code maintenance, you’re actually saving your company money. But
don’t worry — they’re not going to ask you for permission
anymore. They’re just going to do it. §

Colin Devroe is
the Director, Product Management for Viddler.com.
He enjoys art, writing, traveling, and all forms of whiskey. You can
follow him on Twitter as @cdevroe.

Commentary

By Catherine Darrow (Dove)

I agree to an extent. It can be easy to
fool yourself about what constitutes good code — in the sense of
making a product better or making work easier. Sometimes bad code is
better left as is. Even working totally unconstrained, I prefer not
to refactor something unless I have a pressing reason in mind.

My rule of thumb is this: as a
programmer and an employee, I am professionally bound to produce
quality software efficiently. If I know I can complete an assignment
faster (or in equal time, but leaving behind a better code base) by
rewriting something, building a tool, fixing something architectural
. . . I will silently do it. No point in asking permission. It’s in
my charter.

On the other hand, if I want to take a
lot of time to re-architect something — an order of magnitude more
than it would take to just do whatever it was that brought me there —
at that point, it’s a strategic decision and management deserves to
know about it.

The way I see it, management has no
right to require me to produce an unprofessional product in my day to
day work. And I have no right to force management to use engineering
considerations only in strategic decisions.

By Theo Jalba (theoj)

Then again, refactoring without
permission could be a really bad idea. You need to ask yourself a few
questions before you proceed.

Do you have thorough unit tests for the
code that you are trying to refactor? If not, be aware that there is
no way to know for sure that your refactoring won’t break the
functionality of the code.

Suppose it breaks the code. Have you
thought about the operational impact on clients and the financial
costs?

Let’s say the costs are low. How big
and political is your organization? What kind of trouble will you
find yourself in? As the hysteria rises, will you be fed to the dogs
over this?

How bureaucratic is your company, and
how many people do you need to interact with to fix a functionality
breakage? The more people you will need to interact with, the more
damage you will do to yourself and your reputation. Others will
resent working in panic mode to clean up after you (now widely known
as the “rogue” programmer).

