
Issue 12 May 2011

How to Become Batman

Batman is copyright © DC Comics.

2

Curator
Lim Cheng Soon

Proofreader
Emily Griffin

Illustrator
Andy Fairhurst

Printer
MagCloud

Contributors
ARTICLES

Steve Schimmel

Mark Hughes

Mark Suster

Jason Cohen

Gabriel Weinberg

Ryan McDermott

Des Traynor

Chris Murphy

Gustavo Duarte

COMMENTARIES

Iain Dooley

Eric Heine

Catherine Darrow

Theo Jalba

HACkER MonTHLy is the print magazine version

of Hacker news — news.ycombinator.com, a social news

website wildly popular among programmers and startup

founders. The submission guidelines state that content

can be “anything that gratifies one’s intellectual curiosity.”

Every month, we select from the top voted articles on

Hacker news and print them in magazine format.

For more, visit hackermonthly.com.

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
netizens Media

46, Taylor Road,

11600 Penang,

Malaysia.

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

Cover Illustration: Andy Fairhurst

http://fifobooks.com
http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com

 3

Contents
FEATURES

04 Steve’s Story: Googler 13
By STEvE SCHIMMEL

08 How to Become Batman
By MARk HuGHES

STARTUP

12 Why Startups Need to Blog
By MARk SuSTER

18 When You Want To Quit Because It’s Just Not Worth It
By JASon CoHEn

22 Codified Startup Advice
By GABRIEL WEInBERG

SPECIAL

24 My Fellow Geeks, We Need to Have a Talk
By RyAn MCDERMoTT

DESIGN

28 Designing Your Sign-Up Page
By DES TRAynoR

PROGRAMMING

32 Advanced Git Techniques
By CHRIS MuRPHy

36 How The Kernel Manages Your Memory
By GuSTAvo DuARTE

40 Why You Should Never Ask Permission to Clean Up Code
By CoLIn DEvRoE

For links to the posts on Hacker News, visit hackermonthly.com/issue-12. All articles and comments are reprinted with permission of their original author.

http://hackermonthly.com/issue-12.html

4 FEATURES

I was born in 1972 to a poverty-

level family in suburban Chicago.

During the first few years of my

life, I shared a 600 sq ft, 1-bedroom

cottage with my parents, older sister,

and dog. As a kid, I grew up helping

my dad kill roaches and trap rats in

his 1-man pest control business.

 Inspired by my architect grand-

father who dabbled in the stock

market, I started playing the market

when I was 15 years old. In 1994

at age 21, I graduated Magna Cum

Laude & Dean’s List from Babson

College, an undergraduate business

college outside of Boston. Shortly

thereafter, I moved to San Francisco

to find the stark reality of an uninter-

ested job market. After a period of

trivial and unsuccessful undertakings,

I took to the streets out of despera-

tion to “make something happen.”

My thought at the time was: “if my

resume falls on the floor, nobody will

bother to pick it up.”

It was September, 1995. I had

been in San Francisco just over a

year and had nothing to show for

it. I remember walking around the

streets of San Francisco and seeing

two individuals who made a pro-

found impression on me. one was

a panhandler who simply sat on a

corner and directly asked for money.

The other was a man standing on a

milk crate wearing a sandwich board

that said “Repent! The end of the

world is coming.” I was in a state of

mind where I was open to anything.

The things that struck me were

that the first man had gotten to a

point where his ego had been worn

away and he was willing to simply

and directly ask for what he wanted

without beating around the bush.

The second man believed so strongly

in his convictions that he was willing

to physically wear his message and

present it to the world. By the end of

the week, I had created a sandwich

board expelling the virtues of my

skills. one morning, I put on my

best thrift store suit and boarded the

5am bus to the financial district with

my sandwich board under my arm.

I stood outside the Bank of America

world headquarters, put the two-

sided sign over my head and began

passing out resumes. I was there for

12 hours. I passed out resumes as

people rolled into work, when they

went out for lunch, and as they left

for home. This was one of the most

humbling moments of my life. I

stood out, exposed, bluntly asking for

help and displaying my convictions.

The response was amazing and really

helped renew my faith in people. In

the back of my head, I think I was

expecting people to throw tomatoes

at me (which my friend in new york

said would have happened on Wall

Street). Instead, many people took

my resume and talked to me. A news

crew even came.

By STEvE SCHIMMEL

Steve’s Story: Googler 13

FEATURES

 5

In the end, this seemingly crazy

idea lead to me getting a job as an

associate equity analyst covering

high-tech companies in downtown

San Francisco. In my job, I was able

to use my stock experience and

education, but it did not take long to

realize that I did not like analyzing

companies. What I really wanted was

to be involved with starting one.

In october of 1996 at age 24, I

left my job in order to write a busi-

ness plan for an idea I had relating

to the relatively new phenomenon

known as the commercial Internet.

The idea revolved around creating

a platform for pooling individual

investor dollars to provide angel

funding for fledgling companies and

create a secondary trading market for

these shares.

unfortunately, after a few months

I ran out of money and needed to

look for a steady job again. I found

a job opening for an entry-level,

market research analyst at a small

Internet company in San Francisco.

over a two-week period, I left mes-

sages on every single voice mailbox

I could get at that company. I was

never able to get a human on the

phone or get a call back. one day,

I randomly entered an extension

off the main number and heard the

message “Mark Goldstein’s pager

number is....”. I knew from the

website that Mark was the CEo of

the company. What had started two

weeks prior as a timid, pump myself

up “you can do this” pep talk turned

into a “somebody is going to talk to

me, damn it!” When I got that pager

number I called it immediately. Soon

after I got a call asking “who is this?”

I explained that I wanted the job

his website had listed, but had not

received a call back. He said that

the reason nobody was there is that

a few weeks earlier he had sold the

company and its technology. He said

he was downtown at a conference

and to meet him at lunchtime. I ran

over and he proceeded to tell me

that he was a serial entrepreneur that

would be starting another business

at some point soon and to stay in

touch....He emphasized that he was

impressed that I was sitting across

from him given the situation.

Time passed. Mark had yet to

start his new company, and I was flat

broke. I went to him yet again and

asked for help. He simply picked

up the phone and called a venture

Capitalist friend of his. The next day

I was at breakfast with a vC. Two

days later I was working at netscape

Communications (one of the compa-

nies responsible for the commercial

Internet taking off) doing business

analysis and portal deal modeling.

It was there that I honed my skills

relating to understanding business

models and became an expert in the

Internet itself. I also proved my worth

to the netscape executives and built

a reputation for myself there.

In 1999, America online

purchased netscape and many

executives left the company. one

in particular was the vice President

of Business Development. He had

decided to go to a very small com-

pany that was looking for venture

funding so it could afford to try and

build a company out of some very

good technology it had developed.

The company had been incorporated

by two Computer Science Ph.D.

candidates at Stanford university

a few months prior. It only had the

two founders and a few engineers

working there. The netscape vP

joined the start-up in March of 1999

as employee 12 and hired me to help

him build the business. In May of

1999, I joined the founding busi-

ness team as lucky number 13. That

company got its first and only round

of venture Capital, $25 million, a

month or two later. The company

was a Search Engine company that

had only a few hundred thousand

searches performed on it per day by

at most a million users per month,

mostly academics. The company

had no revenue at the time. That

company, now widely recognized as

Google, is the world leader in search

technology, bringing in billions of

dollars in revenue per quarter by

aiding many millions of users all over

the world to find information on a

daily basis.

6 FEATURES

During my career there, I negoti-

ated our first $100k and $1million

deals; was on the design team for the

original ad program; ran a cross-func-

tional external technology evaluation

team; negotiated 3rd party technol-

ogy licenses; was an all around go-to

guy to just about every department

that needed business help...and I

founded and ran the Google Wine

Club :-)

I could not have imagined a better

job for myself. I was not constrained

by any specific job description and

was free to add value wherever it

was needed. I truly got to be a Busi-

ness Development Renaissance man.

When Google went public in

2004, it was one of the most success-

ful IPos in history. For me, that was

a defining moment. I felt that I had

made my impact, left my personal

mark, and accomplished everything I

had set out to do there. I left shortly

after IPo to pursue other interests.

My confidence and follow-

through, along with the chances

awarded me by individuals who

saw something in me and believed

enough to give me a “shot,” took me

from poor kid to successful business-

man “retired” by 32 years old. At

no point did I ever compromise my

integrity. I do things that I can be

proud of. My colleagues and I lived

by the motto of “don’t be evil.” It’s

not a gimmick. It’s a philosophy of

doing what’s right and letting the

money follow.

Having reached a level of financial

success that awards me the freedom

and flexibility that it has, I am now

looking to share some of my knowl-

edge and experience to benefit the

next wave of those who aspire to do

as I did.

...and that is my story. n

Steve Schimmel was Google’s 13th employee
and founding business team member. He is
currently an entrepreneurial advisor and
angel investor and is starting a new com-
pany to unite Hollywood & Silicon Valley.
Steve’s blog can be found at googler13.com.
Twitter @stevesf123.

1. Steve Schimmel, helping his dad’s pest
control business.

2. Steve Schimmel, doing whatever it
takes to get a job.

3. netscape CEo Jim Barksdale, Steve
Schimmel, vC John Doerr, 1999

4. Steve Schimmel, Google Co-founder
Sergey Brin, 2000

5. Steve Schimmel, vice President Al
Gore, 2001

1

2

Reprinted with permission of the original author.
First appeared in hn.my/googler13.

http://googler13.com
http://twitter.com/stevesf123
http://hn.my/googler13

3

4 5

 7

This is a story of a true hustler —

and I mean that in a good way.

This guy got out there and hustled

for a job. He hustled his way into

netscape by persistently calling and

eventually “hacking” his way into

contact with a well-connected busi-

ness person.

Then when he was employed

at Google, he went out there and

hustled dollars that made them actu-

ally get some turnover.

It’s a story we don’t hear very

often. It’s a story about the people

that make the money rather than the

people that make the technology.

In a world where so much of

the technology sector seems to be

predicated on the idea that you build

something cool, get users, and sort

the “money stuff” out later, it’s easy

to forget that, at some point, some-

one’s gotta get out there and actually

make some goddamned money.

Having attempted to sell various

technological services of my own for

the past 4 years, I can whole-heartedly

say that in my experience, building

the technology is the easy part.

Being able to monetize it is a

magical gift!

I’d also like to add that I find it

pretty far fetched to refer to this

success as “luck.” Being a good

salesman, being a good hustler, is all

about being there. That’s why CRM

systems are such a vital sales tool

— you need to make sure that every

few months, you call your prospects,

and if you don’t sell to them, then

you make an appointment to call

back in 3 months, and so on.

Whether you’re selling vacuum

cleaners or selling your own services

as an employee or contractor, you

can’t refer to every successful sale as

“luck” — it is success based on per-

sistent action. If anything you’d have

to refer to people who hustle well

and don’t succeed as being unlucky,

rather than the other way around.

Commentary By IAIn DooLEy (dools)

Reprinted with permission of the original author.
First appeared in hn.my/googler13.

http://hn.my/googler13

8 FEATURES

By MARk HuGHES

How to Become
Batman

Illustration: Andy Fairhurst, wildlifehoodoo.deviantart.com
Batman is copyright © DC Comics.

http://wildlifehoodoo.deviantart.com

 9

It depends. which Batman,

the one in the current film

franchise, the one from the

current monthlies, the one

from the Justice League, etc., etc.?

I am going to make an assumption

here, in order to best answer your

question. We’ll put aside the issue of

Batman trained by ninjas in the films,

or the question of whether in the

comics Batman operates with sort-

of-superpowers when interacting

in stories alongside Superman and

other such characters. By “become

Batman” you mean the basic concept

of Batman that we all could agree

upon — a master of martial arts,

of forensic and detective skills, of

gymnastics, of science and chemistry,

of history and geography, of the

workings of organized crime, of

criminal psychology and physiology.

you mean a man with a suit offering

protection against bullets and knives

and electrocution, but which allows

him to move as fast as an olympian

runner and acrobat.

The simple answer is, no. unless

you really boil Batman down to a

very diluted level as just a really

strong, fast, good fighter who can

jump far and with good street smarts

plus an education in crime and

psychology, and who wears a mask

and a lot of armor.

The genius of Batman is that it

pretends to be realistic. It lets us

convince ourselves that with enough

money and training, we could

become Batman, too. But it’s still

fantasy. It’s just a fantasy that is more

compelling and convincing—and

thus more fun.

If you joined the military and

became something like a Delta

Force commando of the highest

quality, while studying nights to get

a double-major in criminal justice

and psychology, with a minor in

chemistry. you might also have time

to take weekend courses in detective

work and get a P.I. license. Then,

after probably 10 years to reach all

of those levels combined, you might

be 28 (if you started right out of

high school) and would then need to

maintain your physical level while

getting a job as a police officer in

order to learn real crime solving and

detective work on the streets and at

crime scenes, to get the experience

it would really take to be a master.

Let’s say you are so good it only

takes you perhaps 3 years to become

a top detective and expert in these

regards. now you are 31, and you

just finished the most basic level of

preparation you need to be an expert

in just some of the most obvious

fields required to match Batman.

now you have to quit the force

and develop a good cover story for

yourself so nobody suspects that

Batman might be the guy who is an

expert in all of those fields Batman

is a master at. you have to have

made sure you lived your life never

revealing your true feelings about

crime and vigilantism, etc. In fact

you need to cover it up unless you

want to be arrested as a suspect the

first time Batman comes around

town. you need to spend some time

doing dry runs to find your way

around rooftops and fire escapes,

practice running around at night in

the shadows and not being seen, and

presumably start practicing using

your ropes and grappling hooks

and other equipment you need for

nightly patrols. Do some dry runs,

make final preparations in case of

emergencies, etc.

And you need to have been invest-

ing money and amassing a fortune

the entire time, because the technol-

ogy you’ll need to even get close to

a real-world version of Batman will

cost millions of dollars. So you’ve

done that, and now you start spend-

ing the money to get an armored suit

full of electronics to communicate

with assistants and have night

vision and so on. you need a base of

operations, so you buy one of those

old used missile silos the military

sells (yeah, they really do that, and

it’s pretty cool inside them) and turn

it into a secret headquarters for the

computers, monitoring equipment,

car, bike and other equipment you

need for your vigilante life.

Conservatively, you should

probably be about 32 at this point.

And you are only about to go out

on your first night as Batman. okay,

it’s taken longer than expected and

been pretty hard. And honestly you

are not quite as much a master of all

fields as Batman, but at least you got

the basics and are pretty well trained

and smart and equipped. So off you

go, looking to stop crime...

...and you’re looking. And looking.

oh, wait, you hear police sirens or

you get a transmission from picking

up the police radio calls, there’s a

domestic disturbance in progress....

Well, that’s not really what Batman

10 FEATURES

does, so you let that one go to the

cops. Then you get another call about

a robbery, ah ha! Finally Batman is

going into action! you run across

those rooftops, swing across to

another roof — whoa, crap, that was

a lot more dangerous than it looks

in the comics! But you’re booking it,

running flat out and probably hitting,

what, a good 10 miles per hour?

Maybe less actually because of having

to dodge things and stop at the edge

of the roof to swing down again.

Anyway, there you are, rooftop to

rooftop, and it occurs to you that the

cop cars are so far gone now that you

barely hear the sirens. So you think

“Hmm, no wonder the real Batman

has a car, this rooftop thing looks

cool but I’ll never make it in time

to stop a crime that isn’t happening

within a block or two.”

And you don’t — make it in time,

that is. The first few nights, you keep

showing up and the robberies or

shootings or whatever are already

over, and you realize that this makes

sense because most reports about

crimes are only after it happens, not

while it’s taking place. And you also

remember that as a cop, you almost

never just walked up or drove up

accidentally right where a crime hap-

pened to be taking place. In fact, you

were just one of several thousand

cops in your city, and most of you

never just stumbled right across a

significant crime in progress.

By your second week, you are

getting unhappy that 90% of the

crimes you’ve even seen up-close are

just pathetic junkies buying crack

from another pathetic junkie selling

drugs to support his/her own habit.

And nothing makes you feel less like

Batman than scaring sad, homeless

crackheads. you tried to chase down

a kid who you saw punch a lady and

take her purse, but you can’t really

pursue that kind of thing by running

on rooftops, you gotta do it the hard

way by chasing him on foot down

the sidewalk... in your full Batman

costume, where everybody can see

you. People are taking photos on

cell-phones, and, yep, there’s a cop

car at the intersection and he saw

you, and now he has his lights on and

it’s you he’s after. Great, you have to

let the kid go so you can run down

an alley and climb up a fire escape to

the roof to get away.

At last, week three, you get lucky:

an armed robbery, right there across

the street! you leap down onto the

hood of their car, cape over the

 11

windshield just like in The Dark
Knight Returns. And a teenage kid

in the passenger seat fires a shotgun

though the windshield in panic,

blasting your torso.

you are wearing armor, though,

haha! So it merely shreds your cos-

tume and knocks you off the car onto

the street, but man that hurts! And

it takes your breath away just long

enough for the car to speed off. you

get up, angry and just in time to see

everyone taking your photo again and

staring at your shredded outfit. Then

the police come around the corner,

and you run off again but this time

you are injured because although

the armor stopped the slug, it still

bruised you and broke a rib. you are

fast, but not fast enough this time.

The police draw their guns and order

you to stop. you turn and grab for

the smoke pellet on your belt to help

hide your getaway, but unfortunately

for you the cops see you reaching for

something and open fire...and your

suit’s armor is already a mess from

the shotgun blast earlier. uh oh.

When you wake up in the ICu,

your mask and costume are gone,

you’re in a lot of pain, but the

doctors successfully removed the

bullets and re-inflated your lung.

The downside is the set of handcuffs

trapping you in the bed. As a master

detective, you can of course easily

pick the lock on the cuffs to escape,

but on the other hand the staph

infection you caught after surgery

is pretty bad and you feel like s**t.

So you wait until night to sneak

out — except you fall asleep on your

pain meds, and wake up the next

morning to the police coming to pick

you up and take you to the infirmary

at the state prison. Where you will

spend a month recuperating until

they can transfer you to the county

jail for your first court appearance.

During which your only comment

to the judge is, “I guess it’s not really

possible to become Batman.”

na-na-na-na-na-na-na-na-na!

Batman! n

Mark Hughes is a screenwriter and lifelong
reader of comics. He’s also a huge Batman
fan, and regrets crushing the hopes and
dreams of would-be superheroes around
the world. :(

Illustration: Andy Fairhurst, wildlifehoodoo.deviantart.com

Reprinted with permission of the original author.
First appeared in hn.my/batman.

http://wildlifehoodoo.deviantart.com
http://hn.my/batman

12 STARTUP

Blogs. we all read

them to get a sense

of what is going on

in the world, peeling

back layers of the old world in which

media was too scripted.

By definition, if you are reading

this, you read blogs. But should you

actually write one if you’re a startup,

an industry figure (lawyer, banker),

or vC? Absolutely.

This is a post to help you figure

out why you should write and what

you should talk about.

1. Why
If you care about accessing custom-

ers, reaching an audience, communi-

cating your vision, influencing people

in your industry, marketing your

services, or just plain engaging in a

dialog with others in your industry, a

blog is a great way to achieve this.

People often ask me why I started

blogging. It really started simply

enough. I was meeting regularly

with entrepreneurs and offering (for

better or for worse) advice on how

to run a startup and how to raise

venture capital from my experience

in doing so at two companies. I was

having the same conversations over-

and-over again, and I figured I might

as well just write them up and make

them available for future people who

might be interested. I never really

expected a big audience or ever

thought about it.

I had been reading Brad Feld’s blog

[feld.com] and Fred Wilson’s blog

[avc.com] for a couple of years and

found them very helpful to my think-

ing, so I honestly just thought I was

giving back to the community.

The results have been both unex-

pected and astounding. Within 2

years I was getting 400,000 views per

month and had been voted the 2nd

most respected vC in the country by

an independent survey of entrepre-

neurs, The Funded, and sentiment

analysis. I know that I have not yet

earned these kudos based on invest-

ment returns (although my partners

have. GRP Partners last fund is the

single best performing vC fund in

the uS [prequin data] for its vintage

year). But it speaks volumes to what

people want from our industry:

•	 transparency

•	 accessibility

•	 authenticity

•	 thought leadership

•	 advice

I’ll bet your customers, business

partners, or suppliers would love

similar.

By MARk SuSTER

Why Startups Need to Blog

STARTUP

http://feld.com
http://avc.com

 13

2. What
I often get the question from people,

“I’d like to blog, but I don’t really

know what to talk about?” or “I’m

a new entrepreneur — why would

I offer advice on how to run a

startup?”

you wouldn’t. you shouldn’t.

not only would it be less authen-

tic, but if you’re a startup, it’s not

immediately clear that other startup

CEos are your target market.

They’re mine because I’m a vC. I

care about having a steady stream of

talented startup people who want

to raise money thinking that they

should talk to me in addition to the

top others whom they’re targeting.

Whom do you want to target?

Who are your customers, partners, or

suppliers?

My suggestion is to blog about

your industry. Think Mint.com. In

their early days they had an enor-

mously effective blog on the topic of

personal financial management. They

created a reason for their custom-

ers to aggregate on their site on a

regular basis. They became both a

thought leader in the space as well

as a beautifully designed product.

They created inbound link juice on

topics that drove more traffic to their

site. Type “personal financial manage-

ment” into Google. Mint.com is the

second result. Smart.

Think Magento. They are an

open-source and SaaS provider of

eCommerce solutions. They are the

fastest growing player in the world

in this space. They achieved all of

this before they raised even a penny

of venture capital. eCommerce is an

enormously competitive search term.

yet type it into Google and the third

result is Magento. Magic. They did it

by creating a blog, a discussion board

and hub for eCommerce advice and

information.

So you developed a product for the

mommy community? Blog on that

topic. Do you have an application

that helps mobile developers build

HTML5 apps? you know your blog

topic. Do you have sales productivity

software? obvious. Check out Sale-

sCrunch posts [hn.my/salescrunch].

Blog to your community. Be a thought

leader. Don’t blog to your friend (that

might be a separate Tumblog or some-

thing), but blog to your community.

If you’re going to pump out

regular content that is meaningful,

you obviously need to blog about a

topic in which you’re knowledgeable,

thoughtful, and passionate. If you’re

not all three of these things in your

industry, then I guess you’ve got a

broader problem. Honestly.

“Be a thought leader.
Don’t blog to your friend, but
blog to your community.”

http://Mint.com
http://hn.my/salescrunch

14 STARTUP

So my biggest recommendation of

“what” to blog is a series of articles

that will be helpful to your com-

munity. If you’re a lawyer, blog on a

topic that would be helpful to poten-

tial customers. Show that you’re a

thought leader. Scott Edward Walker

does an excellent job at this. It’s the

only reason I know who he is. I had

seen his blog and his tweets and then

was interested to meet him IRL.

Do a brainstorming session and

create a list of 40-50 topics that

interest you. Write out the topic and

maybe even the blog title. keep the

list electronically.

Struggling to come up with

enough topics? Take one topic

and break it up into 10 bite-sized

articles. It’s probably better that way

anyways. I wanted to write about the

top 10 attributes of an entrepreneur.

I wrote it all in one sitting and then

broke it up into 10 separate posts. It

kept me busy for 3 weeks! Each one

ended up taking on a life of its own;

as the comments flowed in for post

1, I had more thoughts to add to

post 2, and so on.

3. Where
you need a blog. Duh. If you’re a

company and if hanging it off of

your company website makes sense

for the link traffic, go for it. If you

are head of marketing at a company

and keep a more generalized blog

(in addition to your company blog)

so that you can influence brands and

agencies, it can be separate.

I chose for my blog to be indepen-

dent of my firm, GRP Partners. The

reason is that I wanted to be free to

say what I was thinking indepen-

dently of my partners. My views don’t

always represent theirs and vice-versa,

even though we’re pretty like-minded

(we’ve worked together for 10+

years). I chose a title that represented

a brand that I wanted to emphasize:

Both Sides of the Table. I chose it

because I thought it would represent

who I am — mostly an entrepreneur,

but somebody with investment chops.

I wanted to differentiate.

So. People keep asking me, “Why

would you write on TechCrunch?”

I guess I would have thought it was

obvious. Apparently not. People say,

“Aren’t you driving traffic away from

your own blog?”

Facts:

•	 I don’t really care about total page

views or uniques other than as a

measure of whether I’m improv-

ing. I don’t sell ads.

•	 I do care about “share of mind,”

which means that I want fish in

the pond where the people whom

I want to speak with hang out. I

know a certain number hit my

blog. But I’m not so arrogant (or

successful) as to think they come

all the time. So I take my show

on the road. If I can write about a

topic which I’m passionate about

and double or triple the number

of people who read it, that’s gold

dust. That’s why I never stopped

anybody from taking my feed and

republishing.

•	 As it happens, since I began writ-

ing at TechCrunch my viewership

has continued to go up, not down.

I always publish on my own blog

the day after it runs on TC. I want

the historical post there. A large

number of readers on my site get

it from Feedburner or newsletter

feed.

“Do a brainstorming session and create a
list of 40-50 topics that interest you.”

 15

•	 I also get a lot of inbound links

from writing here. I try to make

any inbound links to my blog

authentic to the story. But each

story has driven thousands of

views.

•	 The majority of my traffic still

comes from Twitter. TC posts =

more Twitter followers = more

conversion when I do write on

my own blog = more Feedburner/

newsletter subs = more traffic. It’s

an ecosystem. Simple.

So once you have a blog, a voice,

and a small following — don’t be

shy about writing some guest posts

for target blogs. Remember: for you

that’s likely not TC — it’s the place

your community hangs out.

4. How
Be authentic. Don’t try to sound too

smart or too funny. Just be yourself.

People will see who you are in your

words. If you try to make everything

too perfect, you’ll never hit publish.

If you try to sound too intelligent

you’ll likely be boring as shit. Most

blogs are. I hate reading blowhards

who try to sound like they’re smarter

than the rest of us. Be open and

transparent. Get inside your reader’s

minds. Try to think about what they

would want to know from you. In

fact, ask them!

Don’t be offensive. It’s never

worth it to offend great masses of

people. But that doesn’t mean sitting

on the fence. I have a point of view

and I’m sure sometimes it rankles.

But I try to be respectful about it.

Sitting on the fence on all issues is

also pretty boring. And don’t blog

drunk. or at least don’t hit publish

;-) Mostly, have fun. If you can’t do

that, you won’t last very long.

How do I get started? First, you’ll

need a platform. I use WordPress.

Some people swear by SquareSpace.

There are the new tools like Tumblr

and Posterous. I’ve played with both

and they’re pretty cool. They’re

more lightweight and easier to use.

Importantly, they’re more social. It’s

much easier to build an audience in

social blogging platforms the way you

do in Twitter or Facebook. Then you

need to decide whether to use the

“hosted” version or the “installed” ver-

sion. At least that’s true in WordPress.

The advantage of the hosted version

is that it’s easier to get started. The

disadvantage is that you can’t install a

lot of additional tools that use Javas-

cript. I started with the hosted version

and then migrated to an installed

version so I could use Google Analyt-

ics and some other products.

you then need a uRL. It’s true

you can be something like msuster.

typepad.com but that’s kind of lame

so I wouldn’t recommend it. Just get

a real uRL. I think it’s important to

think about what image you want

to portray when you pick your

uRL name. It doesn’t need to be

short. you’re not trying to build a

consumer website. My website is a

pretty long uRL, but people manage

to find it. Much of my traffic is

through referring websites and/or

social media. Some search. What are

you trying to convey? What will be

your unique positioning? Don’t just

write a carbon copy of what some-

body else is doing. That’s boring.

“If you try to make everything too perfect,
you’ll never hit publish. ”

16 STARTUP

So I wrote a post, now what?

Don’t blow your load on your first

post. Slice it up enough to do many

posts. I think most blogs are between

600-1000 words/post. once you’re

written a few posts, don’t try to

make the floodgates open at once.

Slowly build your audience. Make

it organic. If you write good content

consistently, you’ll build an audience

over time.

The #1 thing that kills 95% of

blogs is that they do 5 or 6 posts in

rapid succession and then peter out.

It’s lame to go to a blog where this

happens. And then 8 months later

they do the obligatory post saying,

“ok, I’m going to be more com-

mitted to blogging now!” and then

another 4 months go by. If you’re

really not going to write that often at

least don’t put dates on your posts.

But if you write good stuff, put

in an effort, and keep going — it’s

a marathon — you will see results

over time.

How do I build an audience? If

you build it, will they come? no. A

blog post is just like a product. First it

needs to be good. And then you need

to market it. It doesn’t just happen.

you should be subtle about how you

market it, but market it nonetheless.

If you’re too squeamish to ask for

help in promoting it or to do so

yourself, then you’ll never build an

audience. (you’ll also likely not make

it as an entrepreneur. Sorry. But that’s

true.)

The obvious starting point is to

email a few friends and let them

know you have a new blog. Don’t be

overbearing — just an email saying,

“wanted to let you know about my

new blog.” I also recommend you put

a link to it under your email signa-

ture (in a color other than black).

you also should have it be what your

Twitter bio links to.

Every time I write a post, I send it

out on Twitter. I try to send out the

Twitter link when more people are

online. over time I’ve found out that

I get better clicks at 8:30-9:30am

Monday-Friday, so that’s when I

tweet a lot of my stuff. I’ll frequently

send two tweets — East Coast and

West Coast. not everybody sees the

first one. Social media is ephemeral.

Because I’ve built my Twitter

following slowly but steadily and

authentically over time, I get very

high click-through rates (and thus a

high klout score — currently 74). I

get about 4% CTR on every tweet

in the AM, and it’s actually higher

because if I assume only 33% of my

followers on online the CTR is closer

to 12%. Interestingly, if I had sent

one Tweet at 5:30am (to get East

Coast time) and another at 8:30am,

I get 4% CTR both times. So it’s

hard to argue you shouldn’t tweet

twice if you have a geographically

distributed following.

How do I know my stats? I use

awe.sm (disclosure, I’m an investor)

which is the best tool I know of for

tracking: it tracks each individual

share behavior (it creates unique

uRLs for each tweet), plus it also

separates out tweets from Facebook

shares and from “Retweets” that

come from somebody clicking on my

blog, etc. It also tracks who tweeted

the link so you will know who your

most influential social followers are.

Make sure your blog has Tweet-

meme or similar to make it easier for

readers to tetweet. Also, make sure

to sign up with Feedburner. That way

people who want to get your blog by

RSS and/or email can do so. Make

sure your blog also has a Follow Me

on Twitter button so people who

find you can easily follow you.

“The #1 thing that kills 95% of blogs is that
they do 5 or 6 posts in rapid succession and
then peter out. ”

 17

5. When
People often ask how I blog so much,

since they don’t think they can do

it themselves. If you write about

something for which you’re both

knowledgeable and passionate, I’ll

bet you can pump out more than

you think.

I usually blog at 10pm or on

airplane flights. I never blog at work.

Like you, I don’t have the time.

I have board meetings, company

pitches, internal partner meetings,

etc. Hell, I often can’t even get to

email during the day. So it comes

out of Tv time, which means I’m

not missing anything. occasionally

if I really want to blog and I have a

date or too much work, I just set my

alarm for 5:30am. yup. It’s not that

hard if you make a commitment to it.

What would it mean to you and

your business if you could: increase

your inbound traffic, enhance your

company and personal brand, and

meet new influential people who sud-

denly know who you are? If you want

these things, they are available to you

for the cost of some time and effort.

If you plan out what you want

to write about in advance, then it’s

really about writing. Create topics,

then headings to structure your

article; you’ll notice on this one I

started with “Why, What, Where,

How,” and then I later added “When”

and “What next.”. Structure helps

enormously.

I write for about 45 minutes to

1 hour in the first pass. I usually

then re-read, edit, spell check, and

add links. This usually takes another

20-30 minutes. I then always add an

image. I think this is a nice touch.

Just staring at text is a bit boring and

I find that the image can add humor

and/or drive people in.

6. What Next?
Then there are comments. you have

to respond to comments. Do yourself

a favor and install Disqus. It makes a

huge difference in driving a com-

ment community.

First, it’s the most fun part of blog-

ging. It’s addictive, like Twitter. It’s

where you exchange ideas with other

people. It’s where your community

gets to know you. It’s where you

build loyalty and relationships. I have

met many people in person who

were first commenters on my blog. I

find it frustrating if I leave comments

on somebody’s blog and they never

respond. If somebody found your

blog and took the time to comment

then they’re like a customer who

should be cherished. Responses to

them are like customer retention. It’s

also where you’ll learn. People will

tell you when you’re full of shit. n

Mark Suster is a 2x entrepreneur who has
gone to the Dark Side of VC. He joined GRP
Partners in 2007 as a General Partner after
selling his company to Salesforce. He focuses
on early-stage technology companies.

“If you plan out what you want to
write about in advance, then it’s
really about writing.”

Reprinted with permission of the original author.
First appeared in hn.my/startupblog.

http://hn.my/startupblog

18 STARTUP

By JASon CoHEn

When You Want To Quit
Because It’s Just Not Worth It

I’ve been there. It sucks.

you know most startups fail

“only” because the founders

stop working on them, and

often, it’s because it’s emotionally

draining. I don’t care who you are or

how strong your ego is, you will have

these moments — perhaps a con-

tinuous stream of moments — when

you can’t take it anymore.

I literally cannot remember the

number of times I was so overwhelmed

at Smart Bear that I almost threw in

the towel. Close the bank accounts,

close the doors, turn off the website,

bounce the email, and just stop.

Sounds dramatic, but it’s no exag-

geration. you’ll hit these walls, too;

maybe a little commiseration will

help you get through it.

of course you expect these

moments to happen at the beginning

of startup life — when you’re least

confident, have the worst product,

and the least knowledge about your

customers and the market.

 you see, the pain is not limited

to the beginning of the venture. It’s

still there three years in, despite

real revenue, profitability, customers

arriving everyday, and a great team.

Since that is not obvious, I’d like

to share a personal story.

Four years into Smart Bear I had

several employees getting paid

decently (which at a bootstrapped

startup is hard to do!) and a product

that people were buying — plus, we

were doing around a million-a-year.

Life was good!

I was working on my first true

“enterprise sale.”

I was negotiating our biggest order

to date — something like $200,000.

Actually, “negotiating” is the wrong

word because I don’t believe in price

negotiation, even with enterprise

sales (the one area that most people

claim must include automatic

discounting).

The person with whom I was

negotiating wasn’t the end user, nor

the boss, nor boss’s boss, nor anyone

in that chain of command. See, big

companies have entire departments

devoted to dealing with vendors

like you and me, and when it comes

to negotiating, these departments

harbor terrorists with titles like

Procurement Manager or Strategic

Sourcing Manager.

I say “terrorists” because they

use fear tactics to get their way, yet

they have no power other than fear.

Imagine the worst stereotype of a

salesman — the greasy used-car type,

except instead of selling you some-

thing, their job is to beat a discount

out of you.

now, to be fair, many vendors do

take advantage of large companies

— overcharging (because “They can

afford it!”), or promising one thing

to the users and sneaking something

else into the invoice.

 19

But mostly it’s because of the

traditional enterprise sales dance,

reminiscent of the lumbering mating

dance of the great blue whale. The

vendor asks for too much money; the

client is astonished at the price. Both

calmly explain that this is a deal-

breaker. Then the vendor capitulates

30% but only if the client signs a

three year maintenance contract

(which they wanted anyway). The

deal is struck.

(This tradition continues because

of perverse, wasteful incentives. The

vendor’s salesman likes this because

sometimes he gets away with a high

price which pads his commission

check. The Procurement Manager

likes this because he can show his

superiors how much money he’s

“saved” the company.)

So big companies need a Defender

of Evil vendors, I get that. But that’s

not enough for these guys; it feels to

me like an attack, not a parry.

This is always how the conversa-

tion would go:

PM: What kind of discount are you

offering?

Me: We don’t discount; instead we

put our pricing on our website so

there’s no misunderstanding.

PM: Well, I’m going to need some

kind of discount. How about 30%?

Me: As it says on our website, we

don’t discount.

PM: But I’m buying 400 seats!

Me: Yes, and we already provide a

nice discount for bulk orders, which

is already included on the invoice

and documented on the website.

PM: you don’t understand, I always

get a discount. I’ve done business

with 47 other vendors and all of

them give me at least 20% off.

Me: There’s always a first!

So far it’s actually ok — I’m the one

refusing to plod through the mating

ceremony, wanting to skip right to the

wedding night. I expect push-back.

But here’s where it gets nasty.

I remember sitting there on the

phone getting lambasted for my

intolerable ignorance about the

Way It Works. I was told “I have no

business selling anything to anyone.”

My obstinate ignorance is a deal-

breaker because of what it implies

about my company in general—after

all, if I don’t even understand the

purchasing process there’s no chance

in hell my software’s going to work!

Furthermore, despite my ignorance

I’m unwilling to listen to the rules, to

learn, which means there’s no hope

for me.

I’ll never forget how this ended:

PM: ok, that’s it, you give me no

choice. I absolutely cannot approve

this deal, and furthermore I’m

recommending that we never work

with your company in any capacity.

At this point, even if you gave me a

discount I would still reject it.

Here’s where I’m supposed to

unleash my intellectual fortitude. I

won’t capitulate, will I? I won’t let

this guy insult and bully me, will I?

C’mon, I’m the strong-willed con-

fident entrepreneur with the stoic

well-argued voice of reason, and he’s

the sleezeball with the tedious day-

job — surely I’ll laugh as his words

roll off me like water off an oiled

duck’s back.

Just the opposite. I felt like throw-

ing up. He’s right — who do I think

I am? I’m a geek playing in the big

boy’s house and I don’t know what

the hell I’m doing. I have these naïve

ideas about how the world should

work and how people should treat

one another, and that’s just silly.

And it shows. And now this guy is

going back and spewing vitriol at the

other folks in the company whom I

actually like and worked really hard

to earn their trust.

But it’s over. They’ve seen through

me. It’s just a matter of time before

others do, too. That’s the end of deals

like this.

Why am I doing this anyway? This

is supposed to be fun and fulfilling

but at this moment, as we say in

Texas, I feel like ten tons of shit in

a two-ton bag. What I like is writ-

ing code — why am I even trying

to play this sales game? Why not

just go get a job where I only worry

about whether or not I can write

code — because I sure as hell can do

that — and let the natural salesmen

do all this crap?

Is the money worth it? What

money, we’re still bootstrapping and

I still don’t get a regular salary. Is the

promise of money worth it? Worth

these feelings of inadequacy?

After days (yep, days) of fretting

like this, it converted from despair

to anger. Who the hell is this guy?

20 STARTUP

Some asshole who isn’t good enough

with money to be an accountant, too

slimy to sell cars, this guy whose only

skill is to be a jerk, some guy who

has never had to make payroll or

take a risk or put himself out there,

this schmuck is going to tell me I’m

the one who isn’t good enough, I’m

the one who has no business selling

software?

Worst of all, I’m letting him make

me feel like a pile of shit!

Well, if you’re waiting for the big

moment where intellectual reason-

ing finally defeats weak, irrational

emotions, I’m sorry to disappoint

you, because that moment never

came. I know it’s dumb and illogical,

but there it is. It’s trivial and baseless,

but I still carry that experience in a

corner of my thoughts. That’s how

emotions work.

By the way, this guy turned out to

be totally full of shit. He had, in fact,

no power to stop the deal. When

I finally got my main contact from

that company on a conference call

with the PM, the conversation was

literally:

My Guy: So, what’s holding up

procurement’s approval?

PM: Nothing, just some paperwork,

we’ll have it done by Friday.

All of that angst for nothing. Son

of a bitch!

years later I was on site at this

company and I finally met this guy

face to face.

I still felt small.

Want to say I’m weak? or he’s

strong?

Who cares, the point is: Getting

through this slog of a thing that’s a

startup — or anything difficult and

worthwhile — doesn’t require that

you’re always confident or stoic or

smart or right or wise. you don’t

need to match the emotional stabil-

ity you see from the big bloggers

(which is mostly a façade anyway).

It’s about sticking through the

tough parts, whatever your personal

foibles or weaknesses.

Living through it, not beating it. I

never have, to this day, “beaten” that

PM, not emotionally, not if I’m being

truly honest.

I’m not saying tenacity is all it

takes. Just that without it, you’ll

stop. It’s so easy to stop. There are so

many reasons to stop.

And that — stopping — is how

most little startups actually fail. n

Jason is the founder of three companies, all
profitable and two exist. He blogs on start-
ups and marketing at blog.ASmartBear.com.

“It’s about sticking through the
tough parts, whatever your
personal foibles or weaknesses.”

Reprinted with permission of the original author.
First appeared in hn.my/quit.

http://blog.ASmartBear.com
http://hn.my/quit

”

 21

Reprinted with permission of the original author.
First appeared in hn.my/quit.

http://hn.my/quit
http://startupsopensourced.com

NO YES

YES

YESNO

YES

Codified Startup Advice
By GABRIEL WEInBERG

I’ve been getting a lot of requests for startup advice lately,

which is great because I like helping startup people as best

I can. However, I’ve found myself giving a lot of the same

advice, so I decided to try to codify it in the following flow-

chart. Most investors and been-there-done-that entrepreneurs

are very busy people, so I imagine this chart more generally

applies for seeking startup advice.

READY TO
COMMIT
5 YEAR

FULL-TIME?

ARE YOU
SERIOUS?

HAvE A
HACkER

FOUNDER?
LAUNCHED?NEED MORE

RESOURCES?

NARROW
SCOPE TO

MvP.

HAvE
TRACTION?

kNOW WHY
USERS AREN’T

ENGAGING?

TALk TO
USERS

kNOW HOW
TO GET MORE

USERS?

RUN TEST ON
ACqUISITION

CHANNELS

STUDIED HOW
COMPETITION

GET USERS?

TWEAk OR
PIvOT

NONO

YES

YES

NO

SEEk ADvICE

NO

YES

YES

NO

START HERE

NO

MET UP
OUTSIDE
EvENTS?

CHANGE IDEA
TO SUIT A
HACkER.

CAN’T FIND
ONE?

COOL. TELL
THEM TO
TERMS.

kNOW
INvESTORS?

kNOW TERMS?

APPLIED TO
ANGELIST?

APPLIED TO
OAF?

RAISING
MONEY?

kNOW HOW
MUCH?

ExHAUSTED
YOUR

NETWORk?

APPLIED TO
ACCELERATOR?

DON’T NEED
ONE?

bEEN TO
HACkER

EvENTS FOR 6
MONTHS?

FIGURE COST
TO GET MORE

USERS.

YES

NO

YES

NOYES

NO

YES

YES

NO

YES

NO

Reprinted with permission of the original author. First appeared in hn.my/codified.

http://hn.my/codified

24 SPECIAL

SPECIAL

By RyAn MCDERMoTT

My Fellow Geeks,
We Need to Have a Talk

My fellow nerds, geeks,

hackers, designers,

makers, builders, and

DIyers, there is something very, very

wrong with our culture right now.

We’re jackasses to one another.

no, we’re not! Right? Geeks help

each other out! Well, sometimes we

do, but most of the time, we’re the

most abrasive, critical, non-coopera-

tive community of people I’ve ever

encountered. How many websites are

there like the daily wtf? or clients

from hell? or photoshop disasters?

How many blog posts have been

written about how everybody is

doing everything wrong! Stop using

comic sans, god dammit! What are

you, illiterate? “Grammar nazis”

are engrained into our culture, and

disregarding something somebody

has said because of minor misspelling

is a common, accepted, and even

expected practice.

“Tables? What is this, the 1990s?

Ha ha ha!”

“This design looks like MySpace

gorged itself on Friendster and

vomited all over Geocities!”

“you’re using the default hashing

algorithm in mysql instead of bcrypt?

you should probably give up and see

if they’re hiring down at the local

concrete crushing factory because

you, sir, have absolutely no business

whatsoever touching, much less

programming, a computer.”

“God I hate the arduino. It’s not

real hacking. using the arduino is no

different than going down to target

and just buying whatever it is that

you’re trying to build. Arduino is for

idiots who can’t actually program

because they’re too stupid to figure

out how to hook a parallel cable into

a bread board. God, kids these days

are fucking idiots.”

These are all embellished carica-

tures of comments I’ve actually seen.

What the hell, guys? Why is this

attitude so common? And it extends

beyond just criticizing other design-

ers/hackers/makers. Why does every

single nerd I meet just hate “hip-

sters”? or “bros”?

Are we all back in high school again?

I want to share the experiences

I’ve had with other communities,

specifically sports people. I’ve shared

this before, so if you’ve already

heard it, please excuse me. When I

was about 16 years old, I was a huge

(literally, I was physically huge)

nerd. I’m not sure if it was because

of the tiny school that I went to, but

somehow, I managed to befriend

some skateboarders. After a few

times going with them to the local

skatepark and helping them film a

“sponsor me” video, I decided that I

should learn to skateboard myself, so

I bought a board.

 25

This was probably hilarious to

watch. A big huge nerd who was

certainly more comfortable sitting

behind a python interpreter than

in front of a skate ramp was hope-

lessly rolling around in circles in the

parking lot.

Except nobody told me that I

sucked at skateboarding, or that my

form was terrible, or that I should

give up on it. In fact quite the oppo-

site. one day at the skatepark I was

sitting off to the side just watching

everybody else and kind of wishing

that I wasn’t there. one of my best

friends, Steve, came up to me to ask

what I was doing.

“oh, man, I suck at this. I’m

just going to practice at home or

something. I don’t want to get in

anybody’s way.”

“What? Dude, you look like a

weird-o just sitting over here, and

you’re not going to learn anything

by just staring at that thing. If I ever

catch you sitting on this bench again,

you’re not invited to the skatepark

anymore.” (There were probably

quite a few more vulgarities, but this

was the gist of it)

I have never seen this attitude

in the geek community. It’s always

been “you’re doing it wrong, and you

should give up because you suck at

it,” or “if you’re not using $hip_new_

language, then you’re a loser.”

Guys, why do we do this? Most

of us were nerds when we were

younger, and this attitude of “you’re

not cool enough to be in the $cool_

designers or $cool_programmers

club” is exactly the type of stuff we

had to deal with. It’s the high-school

lunch room all over again.

So I have a challenge for you: for

the next 30 days, be more like my

friend Steve. Instead of outlining

all of the ways that your peers are

terrible at programming because

they’re not doing manual memory

management, or that your customers

are illiterate morons and how dare

they have the audacity to question

your work, give people constructive

criticisms. If their design is bad, tell

them what they can do to improve

it. If there code is bad, offer to help

them patch it and make it better. If

there spelling or grammar is off, just

let it go.

And please, stop it with the

irrational hatred of “hipsters.” Most

“hipsters” that I know love geek

culture and would be elated at the

opportunity to have somebody show

them around a laser cutter. n

Ryan is an independent developer living in
Phoenix, Arizona. He currently spends most
of his time working on thingist.com, a social
website for keeping and sharing lists.

“
”

Instead of outlining all of the ways that
your peers are terrible at programming,
give people constructive criticisms.

Reprinted with permission of the original author.
First appeared in hn.my/geektalk.

http://hn.my/geektalk

I’m reminded of something a wise

man once told me (Hnified a bit):

In every pairwise conversation

there are 6 people:

1. Alice

2. Bob

3. Who Alice thinks she is.

4. Who Bob thinks he is.

5. Who Bob thinks Alice is

6. Who Alice things Bob is.

Perception plays an absurdly

large part in communication, as do

nonverbal cues. Frequently we adjust

our message based on feedback we

get from the listener. Those lacking

“social graces” or communicating in

just text on the internet don’t get

these cues, so the message comes out

“harsher”.

Complicating this, there is a lot

of baggage each person attaches to

words, phrases and general styles of

questioning/commenting. So one

person’s harsh may be another’s “in

to it”.

one example of all this I have

experienced:

one time at a vendor show, me

and some colleagues were in a small

demo, presented by a sales guy and

a few engineers from the company.

During the Q&A, I started question-

ing the engineer pretty intensely

with questions like:

Does it do $X? Why not? Do you

plan on adding it?

(These are actually pretty neutral

questions)

Then about another aspect I was

really into some possibilities of:

Can I use it for $y? Can I make

$y happen by this? What happens if

I do $Z? How about if I work around

that limitation like this and get $y +

$Z effectively?

(these are not neutral questions,

they are me geeking out)

So after the demo some people

thought I broke the engineer and

ripped him a new one with the

second set of questions, because I was

rapid fire asking questions towards

a goal. one engineer thought it was

a fun “play with an idea time”. The

other engineer thought I was severely

criticizing his work.

The sales guy and several of the

audience members thought I was

being unduly harsh by asking about

the feature $X. Apparently this was

a contentious issue that I knew noth-

ing about. The engineers and others

thought nothing of those questions.

Similarly: I frequently get frus-

trated when people wrap up valid

criticism in fake nice BS. I don’t

want to hear “great thing, what if

instead you did this”. I really would

rather just hear “What about this

other method? Why not use that?” or

even “Dude, 10s of googling would

have shown you the flaws in that”.

Because an honest self assessment

includes the fact that I don’t know

everything, and that many (most) of

the things I come up with have also

been thought of by other people,

who may have found flaws in that

reasoning.

I guess my point is there is a lot

more than just “nerds are mean to

each other” going on.

Commentary
By ERIC HEInE (sophacles)

26 SPECIAL

 27

Reprinted with permission of the original author. First appeared in hn.my/codelearn.

http://cloudkick.com

28 DESIGN

Turning a visitor into a user of your

application is difficult. Turning a user

into a customer is even harder. Much has

been written about designing for sign-up,

focusing on funnels, metrics, cost-per-acquisition, etc. A lot

of the guides focus on the assumption that lost customers

are a result of poor form design, bad layout choices, and

visual design-related blunders. unfortunately, that’s very

rarely the case.

Sign-Up Funnels: Myth and Reality
 In some transactions you lose customers at each step in

the process. In retail stores, this can be measured. Gap

knows that the more customers who try things on, the more

they’ll sell, so they encourage their visitors into changing

rooms. They know that by having an assistant on standby

with a size up, a size down, and a different colour, they’re

more likely to close the sale. They know how to attract and

acquire customers.

By DES TRAynoR

Designing Your
Sign-Up Page

DESIGN

 29

The only equivalent of this is shopping carts where you

can measure conversions by watching customers move from

one step to the next. It’s a lovely idea that a purchase works

in a perfectly measurable funnel: “view Product -> Add

to Cart -> Go to Checkout -> Enter Details -> Confirm

order -> Success”. That’s true for some cases, but most of

the time there’s five tabs open looking at different prices/

charges/delivery dates/refund policies/taxes, etc. And the

purchase might happen once they get home, or when they

get paid, in a separate visit, possibly recorded as a separate

visitor. That said, shopping cart funnels still offer heaps of

information that should inform design decisions.

The problem is that none of this works well when design-

ing marketing sites for a web app about to launch. There

are different forces at play.

The Cheapest App Money Can buy
Web applications are rarely a commodity. Commodity web

apps are things like file format conversions, uRL shorteners,

Twitter pic uploaders, or File-hosting sites. They’re dispos-

able, one-off transactions and the user doesn’t really care

what uRL they get out of the exchange. They’re tough

rackets to be in.

users aren’t looking for the cheapest app. They want the

fastest, most reliable, best supported app. The only thing

that matters when designing your sign-up page content is

making sure that it serves their needs. Are you convincing

users that your product does something useful for them?

Does it make them rich, make them laugh, pique their

interest, or get them laid? [hn.my/content]

If you offer me an invoicing solution and print “easy to

use” everywhere on your site, it means nothing to me. Just

like everyone thinks they have a good sense of humour,

everyone thinks their software looks good and is easy to use.

Good Content Sells
Content is king on marketing pages, yet often they’re

the most content scarce pages on the web. A fancy tilted

screenshot and a big red button doesn’t convince me of

anything, except your ability to rotate images. Here’s an

incomplete brain dump of questions you need to answer

if you’re selling invoicing.

your app looks simple to use, but is it powerful enough

to handle my set-up? Does your software know about the

taxes/rules about how invoices are handled in my country?

Will I be your first serious customer, or do have experience

dealing with firms of my size? Do other firms like mine use

your software? How long have you been running? How do

I know you won’t wrap things up in a few months? Can

I trust you guys? Can I talk to you guys? How do I know

you are legit? Do you offer good support?

Begging your visitors to take your free trial is often the

wrong approach. A free trial costs time and doesn’t answer

all the questions. Screencasts are good, but they’re usually

not enough.

http://hn.my/content

30 DESIGN

Bear in mind also that invoicing is a well-defined problem.

People know what to expect of invoicing software. It gets

harder when you’re pitching a solution to an unknown

problem, or re-defining an existing problem. Take FlowApp

[getflow.com], for example. Flow aims to change the way

I work. This means Flow needs to convince me that they

know how I work, convince me there is a problem with

it, explain how they solve it, why it works, who it’s aimed

at, and then go ahead and answer all the other questions I

listed earlier. no wonder they’ve yet to launch a marketing

site. This is hard stuff.

 What You Can Include

Before you open “ye olde Web App” template and routinely

drop in the obvious components, think about how you

would sell this to someone. What sort of information pushes

people over the line. If you were trying to impress me at a

conference, what would you say? Easy to use? Heard that

before. Convenient? I’d hope so. you need more than that

to attract interest, here are some ideas…

•	 What interesting figures can you aggregate (100,000

hours billed, 2,000 companies managed, 3.6 Terrabytes

of data secured)

•	 Who’s currently using it, and for what?

•	 Who is the team behind the application?

•	 How long has the application been worked on?

•	 What significant changes has the app been through

while alive? What is the story behind the application?

•	 How can you be contacted? Can you be called? How

good is your support?

•	 How secure is my information?

“But many popular web apps don’t do this!” you might

say. Firstly, well established web apps are feeding off their

recommendations and the established reputation of their

creators. When you’re just getting started, things are differ-

ent. you might not have an audience yet, so unlike the big

names, you need to win trust and respect. you might get

the benefit of the doubt, but you can’t rely on it.

Secondly, many of the big name web apps have con-

tent heavy homepages. Look at Highrise or Basecamp,

Mailchimp, Campaign Monitor, they’re not scrimping on

information. This goes beyond “Content is king” and isn’t

really about design. It’s about the ability to sell. Even when

your product is stunning and sells itself, you still need to

sell me on your company, your support, your features, your

future. That’s why it doesn’t surprise me to see companies

like 37Signals continue to add content such as the yes page

[highrisehq.com/yes], or the customer support happiness

page [smiley.37signals.com]. There will be more to come.

“This goes beyond “Content is King”
and isn’t really about design.
It’s about the ability to sell.”

http://getflow.com
http://highrisehq.com/yes
http://smiley.37signals.com

 31

 The Exceptional Homepage

The Exceptional marketing site [getexceptional.com] has

gone through many revisions over the past three years. one

lesson we’ve learned is that the more useful information

we can give visitors, the better our conversion rate. The

numbers back this up. Each piece of content is there to

answer a question. our wall of logos lets you know that

we are for real, and have 6,000 people relying on us. our

status site lets you know take performance seriously. our

blog lets you see our customers and what they use us for.

our features page details every single thing the app can

do for you. our screenshots offer tooltips to explain what

you’re looking at. The point being every piece of content

is there to answer a question, and bring you one step closer

to sign-up. When we discuss the site, it’s from a “What

else would persuade people to sign-up, if they knew about

it” approach. our last addition was the row of supported

languages & frameworks, and again we’re seeing positive

results. Allan Branch of Less Accounting reported that

adding a phone number increased conversions by 1.8%.

We’ll look at that next.

Metrics For Marketing Pages
Metrics are great for telling the what, but not the why. no

matter how many Google Analytics tutorials you follow,

you’re never going to find the killer regex that checks for

“user actually being interested in the app”. your best bet

there is to start finding people who you know should be

interested in your software, try to sell to them, and find out

what works and what doesn’t. If you see a lot of inertia, lots

of “I can’t be bothered”, then you have two choices. Either

target new consumers in the market (i.e. the people who

have no solution at present) or identify a new feature that

users will pay for. Be wary of the latter tactic though. The

world is full of people would would buy it if….

As I’ve said before, the truth with funnels and A/B tests

is that they’re of little value during the early days of a web

app, when traffic isn’t significant. I’ve seen many A/B test

junkies wait a long time for customer “B” to even show up.

When you don’t have the volume, go for the personal

approach. When you can no longer go personal, then analyse

the volume. At every step you need to ask yourself “Is every

single thing on my website selling the product?” and “Is

there anything else I can include that will help?”

Looking through Mixergy interviews [mixergy.com] with

successful founders, you could be forgiven for thinking you

needed a popular blog to be able to release an app success-

fully. The correlation here isn’t coincidental. A popular blog

is an indication that the writers can sell things, whether it’s

their credo, depth of thought, technical skills, or opinions

about business. It’s surely no surprise that if they can sell

themselves, they can also sell their software.

The thing is, we’re all salesmen, and whether we like it

or not, we’re always selling. We just don’t wear the shiny

shoes. n

Des Traynor is the User Experience Lead at Contrast. In this role
he works primarily with start-ups helping them define a product
strategy, identify their customers, and design solutions to attract
and delight them. Des regularly writes his thoughts about his experi-
ence in design and the business of web applications on the Contrast
blog [contrast.ie/blog], He can be found on Twitter as @destraynor.

Reprinted with permission of the original author. First appeared in hn.my/signup.

http://getexceptional.com
http://mixergy.com
http://contrast.ie/blog
http://twitter.com/destraynor
http://hn.my/signup

32 PROGRAMMING

By CHRIS MuRPHy

Finding That Issue
“The Pickaxe”

So you’re doing a code review on a piece of the program

you don’t normally touch, and you notice that there’s a

new property of your Person class. Since when did we start

tracking social_security_number for our workout app? The

pickaxe is part of the internal gitdiffcore, but you won’t

find it by name in the git commands we all use. Instead,

pass in the -S string with a term to search for. In our case,

let’s search for that new variable:

$ git log-Ssocial_security_number

This will show you each time that the string “social_secu-

rity_number” appeared or disappeared from the repository

history. It can be very useful, as long as you know what string

you’re looking for. The pickaxe is one of a few different

transformations that the diff uses, but it’s really the only

one I’ve used. I’m not even sure if the others, other than

order, are intended for the end-user.

you probably know the -p flag for git log, which shows

the git diff inline with the log messages. you can combine

that with the pickaxe so that you can see a little context

while you search. If you use the pickaxe for presenting

changes, you might find the --pickaxe-all switch useful.

That’ll show you the diff for all of the changes in the com-

mits that the pickaxe finds — not just the actual lines that

the pickaxe recognized. Try them out:

$ git log -Ssomething -p
$ git log -Ssomething -p --pickaxe-all

Pretty powerful stuff.

Git Blame

What if you don’t know exactly what you’re looking for,

but you know the file you want to look at? Git has a tool

just for you: git blame. Try it out:

$ git blame <file>

This will show you who is responsible for each of the lines

in that file. In other words, the last commit that touched

the line. This is really useful, but don’t use it as an excuse

to yell at people. unless they did something really awful.

okay, not even then.

By the way, this is one of two times that I sometimes like

to use GuIs for git. The lines for git blame can be pretty

long (even if you modify the output with switches). Just say:

$ git gui blame

That’ll do the exact same thing, except in a nice GuI

interface, which will make it easier to see the whole line

and navigate between commits.

Advanced Git Techniques

PROGRAMMING

 33

Git Bisect

Bisect is an awesome idea: a combination of binary search,

interactive, and testing that can only result in happiness.

Suppose a user reports a bug in your program, and you

figure out how to reproduce it. you write a test for it, and

sure enough, it fails on current build. you have no idea

when the bug was introduced, but bisect is here to help.

If you happen to know a version where the bug didn’t

happen, you can tell bisect to start there. If not, just tell

it the beginning of your history.

$ git bisect start
$ git bisect good <sha>
$ git bisect bad master

Git will do all the hard work for you. you just have to

run your tests at each point that git prompts you, and tell

it whether it passed or not:

$ git bisect bad (or good)

Thanks to the power of binary search, you’ll find it pretty

quickly. I haven’t found a need to use this feature in anger,

but in my simple tests, it worked like a charm. you don’t

even need to have a bug to test it out — just lie to git about

what is good and what is bad.

If you have the ability to run your tests and get a unix

return code (0 for success, non-zero for failure), git bisect

run will actually do all of the work for you!

branch Management
When you’re making good use of git branching, you’ll notice

that the easiest thing to do is to just merge in your branch

to master and move on. But if you do a lot of branching, and

you’re constantly pulling in changes from other branches,

that’ll become really ugly, really quick. It may be worthwhile

to prevent all of those merge commits, depending on your

team strategy. If you want to do this, git (as always) has

plenty of ways to help.

Cherry Pick

git cherry-pick is useful for bringing in a selection of

commits from any branch. I use it when there are selected

bug fixes or feature adds in another branch that I need to

pull in to my working branch.

As with all git commands, you can tell git which commit

you want to cherry-pick in a variety, but to be honest, I

almost always explicitly call out the sha-1. use git log or

gitk to find the sha-1, then:

$ git cherry-pick <sha-1>

Here again we see the value of keeping your commits

logically separated. otherwise, a simple one-liner turns into

manual file editing, which is just asking for mistakes. Why

not let git do the work for you?

Rebase (onto)

you already know about rebasing from Git 102 [hn.my/

git102]. In that case, we just rebased the master branch, but

we can do so much more. If you decide you don’t want a

merge commit to show in master, you can do the following

in your feature branch:

$ git rebase master
$ git checkout master
$ git merge feature-branch

Since you already did the work to rebase the changes

from master with your changes in feature-branch, when

you merge into master, it’ll be a simple, fast-forward merge.

no merge commit.

The next step is to use rebase across multiple branches.

If you often float back and forth between fixes, this one is

for you. Let’s see what we can do with --onto:

git rebase [-i | --interactive] [options]
[--onto <newbase>] <upstream> [<branch>]

you feed git rebase --onto three things: the place

where git should play commits onto and the two places to

compare commits from. So if you do a simplified version

of the man page’s example:

$ git rebase master~5 master~3 master

In our case, master looks like this:

A-B-C-D-E-F (F is HEAD)

Git looks at master and master~3 (three parents from the

HEAD) and figures out what commits are in master, but not

in master~3. In this case, that would be D, E, and F. It applies

those commits onto your first argument, which is master~5

(commit A). using git’s friendly message terminology, it

34 PROGRAMMING

rewinds HEAD to master~5 (it actually does exactly what

a reset --hard would do), then plays back commits D, E,

and F. The newly rebased master looks like this:

A-D-E-F

Put simply, rebase killed B and C from your tree. That’s

pretty awesome. now we can tackle the more complex

case of working around branches.

Look at the example from the man page [hn.my/rebase]

with topicA branched from master and topicB branched

from master.

The page says to run git rebase --onto master topicA

topicB to get commits H, I, and J applied to master. Since

topicB was branched from topicA, it has all of the commits

in the picture in its history. But topicA doesn’t have any of

the commits of topicB, so rebase will find that H, I, and J

need to be applied to your target, which is master.

you should note that the man page’s previous example

with topic and next is actually identical. The only differ-

ence is that master has moved on since you branched next.

This demonstrates that the commits are played back onto

master’s HEAD (since that’s what you told it to do) — it

has nothing to do with where the first branch (next or

topicA) branched from.

Recovering from Mistakes

git reset

Sometimes, you just can’t gracefully back out of a messed up

manual merge, rebase, or plain ol’ corrupted working tree.

$ git reset --hard <something>

That’ll reset your current branch, index, and working tree

(for less than all three, try --mixed or --soft) to whatever

you tell it. Most often, I’m running it against origin/some-
branch, to reset to the last pushed state.

ok, so you probably already knew that one. But what

about the untracked working tree files that get spewed

around sometimes (p4merge on Windows leaves .orig lying

around all.the.time.)?

git clean -fd

clean will kill off all of those pesky files that you haven’t

added to git, and want gone. Since git is so safety-conscious,

you have to force it with -f, and you probably want to tell

it to get rid of the directories, too, with -d. With reset and

clean, you should never have to rm -rf and re-clone again.

The reflog

All this playing around with hard resets, rebases, and what-

not might scare you. What happens if you hard reset two

days of work? no matter how careful you are, this will

happen eventually. Well, git hasn’t really destroyed every-

thing permanently, at least until the garbage collector comes

around. If you accidentally trash something, just type git
reflog to see a list of the last operations. Here’s an example:

$ git reset --hard HEAD~2
$ git reflog
7298e1e HEAD@{0}: HEAD~2: updating HEAD
ca9164c HEAD@{1}: Oh man this is the best algorithm
ever. It sorts in constant time!!
$ git reset --hard ca9164c

phew. you obviously shouldn’t rely on this, and if you’re

digging into the reflog every day, you should probably re-

evaluate your git strategy. But it’s great to have that safety

net there when you need it!

Filter-branch

one last tip. If you’re working in an open-source environ-

ment (pushing to GitHub, for example), you’ll want to be

careful not to commit any sensitive information. As we’ve

seen, any commit is part of the repo forever. That is, unless

you rewrite history. That’s what filter-branch is there for.

As you might imagine, GitHub has an excellent article

[help.github.com/removing-sensitive-data] to show you

how to protect yourself.

By the way, anything that’s hanging around in reflog wait-

ing to be gc’d won’t make it out if you push to GitHub, so

don’t worry about that. you can still kick off gc manually

if necessary. n

Chris Murphy lives near Boston and is a graduate of Bowdoin Col-
lege. He is a displaced Python and Java man trying to write C# by
day, and loves sports, cooking, and learning.

Reprinted with permission of the original author. First appeared in hn.my/git201.

http://web.stonehill.edu/compsci/RediscoveringMath/RM.html
http://hn.my/rebase
http://help.github.com/removing-sensitive-data
http://hn.my/git201

“The study and practice of mathematics
can raise your spirits, gladden your heart,

and put a smile on your face.”
– Shai Simonson

Rediscovering Mathematics is an eclectic
collection

of mathematical topics and puzzles aimed
at talented

youngsters and inquisitive adults who wan
t to expand their

view of mathematics. By focusing on prob
lem solving, and

discouraging rote memorization, the book
shows how to learn

and teach mathematics through investigat
ion, experimentation,

and discovery. Rediscovering Mathematic
s is also an excellent text

for training math teachers at all levels.

Topics range in difficulty and cover a wide
range of historical periods, with some

examples demonstrating how to uncover m
athematics in everyday life, including:

• number theory and its application to sec
ure communication over the Internet,

• the algebraic and combinatorial work of a
medieval mathematician Rabbi, and

• applications of probability to sports, cas
inos, and everyday life.

Rediscovering Mathematics provides a fre
sh view of mathematics for

those who already like the subject, and offe
rs a second chance for those

who think they don’t.

Rediscovering
mathematics Shai Simonson

Reprinted with permission of the original author. First appeared in hn.my/git201. http://web.stonehill.edu/compsci/RediscoveringMath/RM.html

http://web.stonehill.edu/compsci/RediscoveringMath/RM.html
http://hn.my/git201

36 PROGRAMMING

By GuSTAvo DuARTE

After examining the virtual address layout

[hn.my/virtual] of a process, we turn to the

kernel and its mechanisms for managing user

memory. Here is gonzo:

 Linux processes are implemented in the kernel as

instances of task_struct, the process descriptor. The mm field

in task_struct points to the memory descriptor, mm_struct,

which is an executive summary of a program’s memory.

It stores the start and end of memory segments as shown

above, the number of physical memory pages used by the

process (rss stands for Resident Set Size), the amount of

virtual address space used, and other tidbits. Within the

memory descriptor we also find the two work horses for

managing program memory: the set of virtual memory areas

and the page tables. Gonzo’s memory areas are shown next:

Each virtual memory area (vMA) is a contiguous range

of virtual addresses; these areas never overlap. An instance

of vm_area_struct fully describes a memory area, including

its start and end addresses, flags to determine access rights

and behaviors, and the vm_file field to specify which file is

being mapped by the area, if any. A vMA that does not

map a file is anonymous. Each memory segment above

(e.g., heap, stack) corresponds to a single vMA, with the

exception of the memory mapping segment. This is not a

requirement, though it is usual in x86 machines. vMAs do

not care which segment they are in.

How The Kernel Manages
Your Memory

http://hn.my/virtual

 37

A program’s vMAs are stored in its memory descriptor

both as a linked list in the mmap field, ordered by starting

virtual address, and as a red-black tree rooted at the mm_rb

field. The red-black tree allows the kernel to search quickly

for the memory area covering a given virtual address. When

you read file /proc/pid_of_process/maps, the kernel is

simply going through the linked list of vMAs for the process

and printing each one.

In Windows, the EPROCESS block is roughly a mix of

task_struct and mm_struct. The Windows analog to a vMA

is the virtual Address Descriptor, or vAD; they are stored

in an AvL tree. you know what the funniest thing about

Windows and Linux is? It’s the little differences.

The 4GB virtual address space is divided into pages. x86

processors in 32-bit mode support page sizes of 4kB, 2MB,

and 4MB. Both Linux and Windows map the user portion

of the virtual address space using 4kB pages. Bytes 0-4095

fall in page 0, bytes 4096-8191 fall in page 1, and so on.

The size of a vMA must be a multiple of page size. Here’s

3GB of user space in 4kB pages:

 The processor consults page tables to translate a virtual

address into a physical memory address. Each process has

its own set of page tables; whenever a process switch occurs,

page tables for user space are switched as well. Linux stores

a pointer to a process’ page tables in the pgd field of the

memory descriptor. To each virtual page there corresponds

one page table entry (PTE) in the page tables, which in

regular x86 paging is a simple 4-byte record shown below:

Linux has functions to read and set each flag in a PTE.

Bit P tells the processor whether the virtual page is present

in physical memory. If clear (equal to 0), accessing the page

triggers a page fault. keep in mind that when this bit is zero,

the kernel can do whatever it pleases with the remaining

fields. The R/W flag stands for read/write; if clear, the page is

read-only. Flag u/S stands for user/supervisor; if clear, then

the page can only be accessed by the kernel. These flags are

used to implement the read-only memory and protected

kernel space we saw before.

Bits D and A are for dirty and accessed. A dirty page

has had a write, while an accessed page has had a write or

read. Both flags are sticky: the processor only sets them,

they must be cleared by the kernel. Finally, the PTE stores

the starting physical address that corresponds to this page,

aligned to 4kB. This naive-looking field is the source of

some pain, for it limits addressable physical memory to 4

GB. The other PTE fields are for another day, as is Physical

Address Extension.

A virtual page is the unit of memory protection because

all of its bytes share the u/S and R/W flags. However, the

same physical memory could be mapped by different pages,

possibly with different protection flags. notice that execute

permissions are nowhere to be seen in the PTE. This is why

classic x86 paging allows code on the stack to be executed,

making it easier to exploit stack buffer overflows (it’s still

possible to exploit non-executable stacks using return-to-
libc and other techniques). This lack of a PTE no-execute

flag illustrates a broader fact: permission flags in a vMA

may or may not translate cleanly into hardware protection.

The kernel does what it can, but ultimately the architecture

limits what is possible.

virtual memory doesn’t store anything, it simply maps

a program’s address space onto the underlying physical

memory, which is accessed by the processor as a large block

called the physical address space. While memory operations

on the bus are somewhat involved, we can ignore that here

and assume that physical addresses range from zero to the

top of available memory in 1-byte increments. This physi-

cal address space is broken down by the kernel into page

frames. The processor doesn’t know or care about frames,

yet they are crucial to the kernel because the page frame

is the unit of physical memory management. Both Linux

and Windows use 4kB page frames in 32-bit mode; here is

an example of a machine with 2GB of RAM:

38 PROGRAMMING

In Linux each page frame is tracked by a descriptor and

several flags. Together these descriptors track the entire

physical memory in the computer; the precise state of each

page frame is always known. Physical memory is managed

with the buddy memory allocation technique, hence a page

frame is free if it’s available for allocation via the buddy

system. An allocated page frame might be anonymous, hold-

ing program data, or it might be in the page cache, holding

data stored in a file or block device. There are other exotic

page frame uses, but leave them alone for now. Windows

has an analogous Page Frame number (PFn) database to

track physical memory.

Let’s put together virtual memory areas, page table entries

and page frames to understand how this all works. Below

is an example of a user heap:

Blue rectangles represent pages in the vMA range, while

arrows represent page table entries mapping pages onto page

frames. Some virtual pages lack arrows; this means their

corresponding PTEs have the Present flag clear. This could

be because the pages have never been touched or because

their contents have been swapped out. In either case access

to these pages will lead to page faults, even though they are

within the vMA. It may seem strange for the vMA and the

page tables to disagree, yet this often happens.

A vMA is like a contract between your program and

the kernel. you ask for something to be done (memory

allocated, a file mapped, etc.), the kernel says “sure,” and it

creates or updates the appropriate vMA. But it does not

actually honor the request right away, it waits until a page

fault happens to do real work. The kernel is a lazy, deceitful

sack of scum; this is the fundamental principle of virtual

memory. It applies in most situations, some familiar and

some surprising, but the rule is that vMAs record what has

been agreed upon, while PTEs reflect what has actually been

done by the lazy kernel. These two data structures together

manage a program’s memory; both play a role in resolving

page faults, freeing memory, swapping memory out, and so

on. Let’s take the simple case of memory allocation:

When the program asks for more memory via the brk()
system call, the kernel simply updates the heap vMA and

calls it good. no page frames are actually allocated at this

point, and the new pages are not present in physical memory.

once the program tries to access the pages, the processor

page faults and do_page_fault() is called. It searches for the

vMA covering the faulted virtual address using find_vma().

If found, the permissions on the vMA are also checked

against the attempted access (read or write). If there’s no

suitable vMA, no contract covers the attempted memory

access and the process is punished by Segmentation Fault.

When a vMA is found the kernel must handle the fault

by looking at the PTE contents and the type of vMA. In

our case, the PTE shows the page is not present. In fact,

our PTE is completely blank (all zeros), which in Linux

means the virtual page has never been mapped. Since this

is an anonymous vMA, we have a purely RAM affair that

must be handled by do_anonymous_page(), which allocates

a page frame and makes a PTE to map the faulted virtual

page onto the freshly allocated frame.

Things could have been different. The PTE for a swapped

out page, for example, has 0 in the Present flag but is not

blank. Instead, it stores the swap location holding the page

contents, which must be read from disk and loaded into a page

frame by do_swap_page() in what is called a major fault. n

Gustavo Duarte founded his first start up as a freshman in high
school, building a web-based stock market analysis tool in Brazil.
He sold that company at 18 and emigrated to the US, and now
divides his time between the two countries developing software,
authoring technical material, and riding snow and waves. He can
be reached at gustavo@duartes.org.

Reprinted with permission of the original author. First appeared in hn.my/kernel.

mailto:gustavo@duartes.org
http://hn.my/kernel

 39

Reprinted with permission of the original author. First appeared in hn.my/kernel.

Prototype Like A Pro Using Tools You Already Know
Design User Interfaces and Clickable Mockups For Web, Mobile & Desktop
Applications In 30 Minutes Or Less Using Your Favorite Presentation Tool

Keynotopia user interface libraries contain thousands of native vector components
for prototyping with Apple Keynote, Microsoft PowerPoint and OpenOffice Impress.

To create your mockup screens, simply copy UI elements from the libraries onto
your slides, add hyperlinks to make the interface clickable, then export the
prototype as an interactive PDF file and test it on your mobile device, or send it to
your clients, managers and team members to get their feedback.

Keynotopia UI libraries include components for prototyping iPhone, iPad, Android,
Windows Phone, BlackBerry, Facebook, OS X, Windows 7 and web 2.0 apps.

It works great with all recent versions of Keynote, PowerPoint and OpenOfice.

Get 20% O� This Week Only With
Coupon HM411 at Keynotopia.com

http://hn.my/kernel
http://keynotopia.com

40 PROGRAMMING

By CoLIn DEvRoE

“Can i take some time to clean up

this code? It is horrendous.” The

answer to this question should

always be “yes.” However, often we find ourselves

up against walls in the form of budgets, time,

due dates, and expectation, and so the typical

“powers that be” at companies often veto the

request. My advice to you, dear developer, is to

never ask for permission for things you know are

vital to your work.

you know your work environment better than

I do, so perhaps you can ask this question and

immediately have the full support of your team.

Sad to say that many aren’t so fortunate. They’ll

ask their boss if they can take some time to clean

up their code, make it efficient and extensible

and, while the boss may recognize the need for

such tasks, ultimately the boss will simply say

“maybe we can do that later.”

Why is this the typical reaction? Because bosses

don’t have to read, edit, and support the code.

This is folly and every developer knows it.

Bosses, (if you’re reading this) putting off a few

hours worth of code clean-up now will only turn

into many hours or days in the future. So by

allowing your developers time to do this much-

needed code maintenance, you’re actually saving

your company money. But don’t worry — they’re

not going to ask you for permission anymore.

They’re just going to do it. n

Colin Devroe is the Director, Product Management
for Viddler.com. He enjoys art, writing, traveling, and
all forms of whiskey. You can follow him on Twitter as
@cdevroe.

Why You Should Never
Ask Permission to

Clean Up Code

Reprinted with permission of the original author.
First appeared in hn.my/maintenance.

http://Viddler.com
http://twitter.com/cdevroe
http://hn.my/maintenance

Reprinted with permission of the original author.
First appeared in hn.my/maintenance.

 41

By CATHERInE DARRoW (Dove)

Commentary

I agree to an extent. It can be easy to fool your-

self about what constitutes good code — in

the sense of making a product better or making

work easier. Sometimes bad code is better left as

is. Even working totally unconstrained, I prefer

not to refactor something unless I have a pressing

reason in mind.

My rule of thumb is this: as a programmer

and an employee, I am professionally bound to

produce quality software efficiently. If I know I

can complete an assignment faster (or in equal

time, but leaving behind a better code base)

by rewriting something, building a tool, fixing

something architectural . . . I will silently do it.

no point in asking permission. It’s in my charter.

on the other hand, if I want to take a lot of

time to re-architect something — an order of

magnitude more than it would take to just do

whatever it was that brought me there — at that

point, it’s a strategic decision and management

deserves to know about it.

The way I see it, management has no right to

require me to produce an unprofessional product

in my day to day work. And I have no right to force

management to use engineering considerations only

in strategic decisions.

Then again, refactoring without permis-

sion could be a really bad idea. you need

to ask yourself a few questions before you

proceed.

Do you have thorough unit tests for the

code that you are trying to refactor? If not,

be aware that there is no way to know for

sure that your refactoring won’t break the

functionality of the code.

Suppose it breaks the code. Have you

thought about the operational impact on

clients and the financial costs?

Let’s say the costs are low. How big and

political is your organization? What kind of

trouble will you find yourself in? As the hyste-

ria rises, will you be fed to the dogs over this?

How bureaucratic is your company, and

how many people do you need to interact

with to fix a functionality breakage? The

more people you will need to interact with,

the more damage you will do to yourself and

your reputation. others will resent working in

panic mode to clean up after you (now widely

known as the “rogue” programmer).

By THEo JALBA (theoj)

http://hn.my/maintenance

Dream. Design. Print.
MagCloud, the revolutionary new self-publishing web service
by HP, is changing the way ideas, stories, and images find
their way into peoples’ hands in a printed magazine format.

HP MagCloud capitalizes on the digital revolution, creating a
web-based marketplace where traditional media companies,
upstart magazine publishers, students, photographers, design-
ers, and businesses can affordably turn their targeted content
into print and digital magazine formats.

Simply upload a PDF of your content, set your selling price, and
HP MagCloud takes care of the rest—processing payments,
printing magazines on demand, and shipping orders to loca-
tions around the world. All magazine formatted publications
are printed to order using HP Indigo technology, so they not
only look fantastic but there’s no waste or overruns, reducing
the impact on the environment.

Become part of the future of magazine publishing today at
www.magcloud.com.

25% Off the First Issue You Publish
Enter promo code HACKER when you set your
magazine price during the publishing process.

Coupon code valid through February 28, 2011.
Please contact promo@magcloud.com with any questions.

42 PROGRAMMING

http://www.magcloud.com

	Contents
	FEATURES
	Steve’s Story: Googler 13
	How to Become Batman

	STARTUP
	Why Startups Need to Blog
	When You Want To Quit Because It’s Just Not Worth It
	Codified Startup Advice

	SPECIAL
	My Fellow Geeks, We Need to Have a Talk

	DESIGN
	Designing Your Sign-Up Page

	PROGRAMMING
	Advanced Git Techniques
	How The Kernel Manages Your Memory
	Why You Should Never Ask Permission to Clean Up Code

