
Issue 6 November 2010

Staying Healthy and Sane
At a Startup

By Alex Payne

Cover Illustration: Matthew D. Phelan

2

Contents

Curator
Lim Cheng Soon

Proofreader
Ricky de Laveaga

Illustrators
Jaime G. Wong
Matthew D. Phelan

Printer
MagCloud

E-book Conversion
Fifobooks.com

Contributors
ARTICLES
Zed A. Shaw
Alex Payne
Patrick Mckenzie
Cameron Chapman
Rahul Vohra
Marco Arment
Bronnie Ware
Darius A Monsef IV
Sebastian Marshall
ridiculous_fish
Bryan Hales
James Hague
Daniel Markham

COMMENTS
Reginald Braithwaite
Raphaël Amiard
Daniel Krol
Jacques Mattheij
Nir Yariv
Dave Gallagher
Tom Darrow

HACKER MONTHLY is the print magazine version of Hacker
News — news.ycombinator.com, a social news website wildly
popular among programmers and startup founders. The submis-
sion guidelines state that content can be “anything that gratifies
one’s intellectual curiosity.” Every month, we select from the
top voted articles on Hacker News and print them in magazine
format. For more, visit hackermonthly.com.

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media
46, Taylor Road,
11600 Penang,
Malaysia.

http://fifobooks.com
http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com

Illustration: Jaime G. Wong

 3

Contents

STARTUPS

14 New Trends In Startup Financing
Explained For Laymen
By PATRICK MCKENZIE

18 10 Usability Tips Based On
Research Studies
By CAMERON CHAPMAN

21 The Accidental Launch
By RAHUL VOHRA

23 Most Common Words Unique to 1-star
and 5-star App Store Review
BY MARCO ARMENT

SPECIAL

24 Regrets of the Dying
By BRONNIE WARE

26 The Most Powerful Colors in the World
By DARIUS A MONSEF IV

29 How Do I Write So Much
BY SEBASTIAN MARSHALL

PROGRAMMING

32 The Treacherous Optimization
By RIDICULOUS_FISH

34 You’re a Developer, So Why do You Work
For Someone Else?
By BRYAN HALES

37 Advice to Aimless, Excited Programmers
By JAMES HAGUE

38 Agile Ruined My Life
By DANIEL MARKHAM

42 HACKER COMMENTS

FEATURES

04 Products For People Who
Make Products For People
By ZED A. SHAW

10 Staying Healthy and Sane At a Startup
By ALEX PAYNE

4 FEATURES

FEATURES

Illustration: Jaime G. Wong

 5

I HAVE SEVERAL FRIENDS who are “Prod-
uct People.” Their self-proclaimed
definition as a Product Person is

that they focus on the “user experience”
of everything they make, and could care
less about the “backend.” To them the
entire purpose of software is a magic
show whereby a programmer creates the
perception of quality through graphic
design regardless of the actual quality
held within.

To the Product Person I am a dinosaur.
I’m a Long Beard. I’m a guy who makes
web servers for fun and gives them away.
First, the fact that I actually know how
to make a web server just boggles their
mind. I might as well tell them I can
make a Jeep Cherokee from raw iron ore.
The reaction is about the same. Second,
to them a web server isn’t “product,” it’s
infrastructure. It’s not even a toilet, it’s the
rusty pipe that feeds water to the toilet.

To a Product Person the things I make
are laughable. They aren’t products
because people don’t use them, only
programmers. To make a good web server
you just have to code. There’s no design,
no usability, no human elements at all.
The all superior Product(TM) has design,
usability, and is used by humans. “Your
web server is just used by geeks and it’s
just code.”

The crux of the Product Person’s
belief system is this idea that unless the
product has a graphic component then
it’s not a product and it has no elements
of usability. And if it’s not a product then
it’s looked down on as not worth their
time. It’s obviously a stupid idea, but
where did it come from?

The Inmates Weren’t Running The
Asylum
I think this Product Person attitude can
be traced directly to The Inmates Are
Running The Asylum by Alan Cooper. It
is one of many books that advocated the
idea that programmers should be kept
away from products and that business
leaders are the ones who should be in
charge. The book should have really been
called “Fucking Nerds” because it was
very abusive and simply categorically
wrong in many ways.

The primary problem with the book
(and really the entire belief that program-
mers screw up usability) is that it assumed
they were in control. It assumed that
programmers made the decisions in the
product, which is just flat out wrong since
most programmers already just do what
some biz dude tells them. It also assumed
programmers controlled the technologies
they used, which again is plain wrong
since they typically had to eat what a
corporation like Microsoft fed them.

Products For People Who
Make Products For People

By ZED A. SHAW

6 FEATURES

Let me put it into perspective this way.
Let’s use the example of a Bank website.
They’re horrible, so according to Alan
Cooper’s view it’s the programmer’s
fault. They’re really in control and should
be completely removed from the product
decision and turned into just factory
workers creating exactly what the obvi-
ously more in-touch executives tell them
to create. Programmers are at fault for
the abysmal online banking experience.

Alright, people who think that
obviously haven’t worked at a bank as a
programmer. First off, you are told where
you will work, what team you have, and
given a strict process to follow. You are
told you will use Microsoft products,
or Sun products; and use Visual Studio,
or Eclipse. You will use windows, and
interface with an antiquated COBOL
system. You are told that it must work
with various departments because they
have budget. You are told that you must
have headcount of 16 people and buy
10 servers you don’t need. You are told
that you will add “corn flower blue” to
all the icons because some Big Swinging
Dick said his daughter’s favorite color is
cornflower blue.

You are told what to do with every-
thing and typically have no say in the
actual product in this situation. All you
have control over is how you use the
tools they’ve chosen for you. Alright, you
can wield your code to make a better
product right?

Nope, because the tools they’ve
given you are again controlled by
some corporation with a certain design
ideal. If it’s Microsoft then the things
you have to work with are Microsoft
looking and feeling. If it’s Oracle they
are Oracle looking and feeling. Stepping
outside of those predefined tool chains
is incredibly difficult, but if you do then
someone above you yells at you to “keep
it professional.” What they mean is, keep
Microsoft’s nasty looking clip art just like
everything else at the bank.

But, let’s say you can pull this off and
you have permission to really make the
UI sexy. Alright, where’s your designer?
In every mega-corp and government
agency I’ve worked for there has never
been a staff designer of any kind. If there
was one he or she was barely capable
and totally out of touch with modern
design. How can a programmer possibly
make a good visual design without any
help from a professional designer? That’s
like making a designer code up the web
server in C++ and then blaming them
when whatever they make sucks.

Despite this truth that programmers
have very little control, Alan Cooper’s
book took off and spawned an entire
generation of “Fucking Nerds” books.
Every one of these books made the
assumption (either explicit or implied)
that if you could code hard core stuff
like web servers then you couldn’t make
a decent product. There was even an
implied offensive insult that technical
competence meant you had autism. You

didn’t know people and it’s only the
Product People who deserve the rewards
and credit for anything, not nerds.

Incidentally, I’d say, if Long Beards
are autistic then Product People are
sociopaths. Just saying, the insults can go
both ways.

The Inmates Created The Palace
Keep in mind that back when this book
was written technology just barely
worked for consumer products. The web
was kind of crappy, desktop graphics
were just barely there, and the tools to
build better ones were defined mostly
by a few companies with an Enterprise
aesthetic. Trying to build a consumer
product that looked sexy in those days
was damn near impossible.

Here, take a look at Paypal and
compare it to Heroku. Paypal looks like
ass compared to Heroku, but back when
Alan Cooper wrote his book, Paypal was
the height of sexy product interfaces.
Now it looks like junk compared to
today’s graphic design, but today’s design
is only possible because browsers got
better and competitors to IE6 came out.

Paypal existed in the world where
IE6’s horrible aesthetic and stagnant
implementation ruled the world, and
that’s why it looks that way. Not because
“Nerds” screwed it up. Even still, Paypal
is a very easy to use product and it makes
a ton of money, so in a way it proves that
good design isn’t really the only product
consideration.

“If Long Beards are autistic then
Product People are sociopaths.”

 7

What’s happened is that programmers
who hated these tools spent their eve-
nings and free time making better tools.
They slaved away at better browsers,
better languages, better graphics, better
operating systems, all sorts of “backend”
infrastructure that the current crop of
Product People take for granted.

Without the same programmers that
Alan Cooper ranted against in his book
you would not have any of these prod-
ucts without massive capital investment.
Guys like me also hated the way things
looked, but there wasn’t much we could
do about it because the tech just wasn’t
there. Alan Cooper seemed to think
that programmers just wave a wand and
POOF there’s product, but the truth is
we build our products off other products.

And, the products we used to build
products just sucked horribly.

Product People Are Right And
Wrong
Obviously Product People are right
in that most programmers who make
infrastructure software do make unusable
crap. They’re also right in advocating the
mantra that products be usable and that
we need to focus on who the end user
is, not on just the cool hack. They are
right that programmers of my generation
need to learn usability as well. This is
important.

Where Product People go wrong is in
two assumptions:

 Infrastructure software does not have
usability concerns.

 The internal quality of a product
doesn’t matter.

I’ll cover the first assumption later
with what I know are the usability con-
cerns of infrastructure software, but first
let’s talk about the lack of real quality in
most Product People products.

Obviously the internal quality of a
product does matter, it’s just that current
products that you can create on the
internet let you hide crap internals. Since
my time in San Francisco I’ve found
many, many companies who seem to be
making awesome high quality products
when the truth is, internally, they’re
piles of duct taped junk. This works for a
while, but eventually they get bit in the
ass when a competitor with better tech
comes along and just copies them.

Or even worse, when the technical
debt that comes from ignoring internal
quality of a product creeps up on them
and the costs destroy the company.

I like to think of the division of “fron-
tend” vs “backend” to work a lot like this:

Revenue - Cost = Profit
Product - Operations = Profit
Design - Implementation = Profit
Frontend - Backend = Profit

Meaning, the frontend product is what
brings your revenue stream in, but your
backend operations quality is what keeps
your costs down as you grow. If your
backend costs get out of control because
of technical debt then you won’t make

a profit, or someone who can keep them
down will just copy you and wipe you
out with less. Pretty simple.

I believe that the current crop of
“products” created by Product People
are in for a big crash. They’ll eventually
have such huge cost overruns that they’ll
never turn a profit. There of course are
complexities in that statement because
of economies of scale in hosting, but all
these cheap cloud services do is stave off
the inevitable. If your product is entirely
focused on the user experience (revenue
stream) and not the operations (cost
reduction) then you’ll have a hard time
turning a real profit.

The Coming Long Beard Revolt
Even worse I think guys like me are
gonna revolt. Younger coders tend to
have no respect for older coders because
of this idea that there’s nothing to learn
from the Long Beards. In the past that
was true because software development
as a profession hadn’t really solidified.
There weren’t a lot of really good pro-
grammers and the technology changed
too fast.

I believe that we’re at an interesting
point where the Long Beards are valu-
able because technology hasn’t changed
all that much. What I see is in the previ-
ous technological revolutions, when the
technology went away the programming
languages backing them (and thus the
idioms and knowledge) went with them.
Mainframes died and so did COBOL.

“The frontend product is what brings
your revenue stream in, but your
backend operations quality is what
keeps your costs down as you grow.”

8 FEATURES

In this latest set of technology shifts
though, the programming languages
being used have been plentiful, old, and
adapted to the new landscape. Clojure is
Lisp. Erlang is Prolog. Java is C++. Ruby
is Smalltalk and Perl. Long beards won’t
necessarily be wiped out with each revo-
lution anymore because there’s a damn
good chance their language(s) of choice
are going to be used on the next one.

And if their languages or similar ones
are being used again, then the Long
Beard’s knowledge and expertise does
matter. Assuming they can get their head
out of their ass and actually be bothered
to learn the new stuff (that’s just like the
old stuff) they’ll find that they have skills
that Product People need to reduce costs.

But here’s what I see coming. I see
the Long Beards figuring out that they
are needed and revolting. I see the revolt
being a combination of:

 A serious dip in the amount of free
stuff Product People need to survive.

 A sudden rise in Long Beards simply
copying Product People Products but
doing it cheaper using their cost reducing
backend skills.

However, in order for that to happen I
think the Long Beards need to learn how
to make the special brand of products
they make usable first. Once they figure
out that their skills are operations level
cost reducers, and learn who their real
users are (Product People) then they’ll be
in a good position to dominate.

Because honestly, making a usable site
isn’t too hard if you have a little bit of
cash. Hire a designer, read a few books,
use a couple usability experiment tech-
niques, etc. are all non-difficult things
to learn. I think it takes about maybe a
year or so to learn usability (notice I said
usability, not design) if you actually care.

However, learning all the intricacies of
high performance web servers, databases,
and programming language design can
take decades. I actually think in this faux
competition between Long Beards and
Product People the Long Beards have
the advantage because their “products”
are more fad resistant and their skills can
translate to many more opportunities.

But First, you guys have to learn how
to make...

Products For People Who Make
Products For People
Infrastructure software obviously does
have usability concerns, but the concerns
are different because the people who use
them are different. Where Long Beards
go wrong is they seem to write software
that’s written for computers, not people.
They sit down and write code, servers,
and APIs that are just impossible to use
or understand, and then don’t document
it. Then if someone tries to use it and
has problems they assume that person is
an idiot. Obviously if the original author
can use the thing then everyone can, so
anyone who can’t must be a moron.

This is why people hate Long Beards.
While Product People are hated because
they come off as con artists hustling for
an extra buck, Long Beards are hated
because they seem to hate people.

In fact, Long Beards go so far as
to irrationally think that if a piece of
infrastructure software is easy to use then
it’s crap. If it has an entertaining manual,
then Long Beards scoff at the “flowery
language.” If it has a minimal set of viable
options they rant about it being too
simple. If it adopts a vogue technology
for some part they laugh at it being for
“kids” or a “fad.”

Really it is like they think people don’t
use their software, and partially make
Alan Cooper’s idiotic book right. This
attitude is just as bad as Product People
thinking software without graphics can’t
have usability. Because, Long Beards may
not make software for people, but they
do make software for people who make
software for people.

People are still using your software.
It doesn’t matter if you do operating
systems design, algorithm design, or
write web servers. Your software is used
by a real person at some point. Someone
has to call your functions so if you name
them weird your software is hard to use.
Your operating system will be setup and
used by a person, so if it is bizarre and
missing key functions it is hard to use.
Your web server is run and setup and

managed by a person so if it had bad
docs and obtuse error messages it is hard
to use.

Your end users are Product People.
You need to toss out this stupid idea
that making something usable by DHH
fanbois means you’re not HARD CORE.
You can still be hard core and make
something they can use, hell something
any programmer can use. By doing this
you will reduce costs for the people who
use your software which is what that
kind of software is good at.

The shift in thinking is to focus on
usability as if it ware a linguistic concern
rather than a graphical concern. Product
People focus on the design and interac-
tion of their product through graphics
because that’s how their customers have
to interact with what they make.

Long Beards need to focus on the
design and interaction of their product
through linguistics because that’s how
Product People interact with infrastruc-
ture software.

Usable Infrastructure Software
To make my software usable I focus on
the linguistic elements of the design.
The things I create don’t really have a
graphical component a person interacts
with daily. What they interact with are
software APIs, command line tools, con-
figuration files, databases, build scripts,
package managers, and automation tools
to constrain all of those.

Linguistics are your user interface.
Now this essay is already really long,
so I won’t go into all the finer points of
making a great linguistic experience™®
but here’s some of the things I try do
when making my stuff.

The most important thing is I rely very
heavily on parsers as a core component
of my software designs. The reason is a
parser is the most reliable and proven
way to safely and cleanly handle linguistic
input. If you code up your config files,
command line interfaces, protocol
formats, and other linguistic elements by
hand then it becomes very hard to explain
them to your Product People users.

With a parser, you have a very succinct
and clear explanation of the grammar

 9

that they have to use. Parsers give better
error messages, cleaner code, and have
solid math backing them so there’s much
higher quality in general.

Parsers also force you to make your
linguistic interfaces logical. If you’re cre-
ating APIs you already are constrained by
the parser in your chosen programming
language. If you’re doing other textual
inputs then a parser’s core design and
mathematical basis forces you to make
the language logical. It’s just too hard
to throw in weird warts if you stick to a
good parser and solid grammar structure.

Parsers are the first line of a good
linguistic experience, but they’re not the
only thing that make infrastructure soft-
ware easy to use. They help, but you really
need a set of other linguistic helpers:

 Copious and clear error messages
that explain both one problem and
potentially how to fix it. Make your
errors psychic even. I have errors that
predict failed branches and buffer
overflows which end with “Tell Zed.”
People then come and tell me when they
hit one. It’s great. I also try to include
the file:line location so people can hunt
down exactly where the error is and
possibly fix it.

 Extensive and fun to read documenta-
tion. Gone are the days of dry boring
documentation. Your docs don’t have
to be Pulitzer worthy, but you have to
give people something more than just a
mind numbing stream of facts. Academic
language is also out. Keep it conversa-
tional, full of information they need, and
something they want to read.

 Full support systems. That includes
code repositories, bug tracking, mailing
lists, wiki systems, all the things your
users need to go get information, get
help, or report errors. These don’t need
to be really complex or entirely too open,
but you do need something there.

 Code that reads well. I see too many
programmers who write code that just
doesn’t read very well. Either because it’s
too complex, abuses too many concepts
at once, or because of simple formatting
choices. My personal pet peeve is people
who don’t add space to their code. The

ENTER and SPACEBAR are free people,
use them.

 Assumption of reasonable defaults.
Don’t make people specify every damn
thing, just assume some basic defaults
and let them change the defaults if they
need to.

 Reduce feature set by making clear
choices. Too often programmers try to
include tons of features and then make
the end user pick which ones to use.
Instead I try to have a limited set of fea-
tures, slowly add on as needed, and then
create a module system for extensions.

 Leverage familiar existing linguistic
interfaces, but don’t repeat past mistakes.
It’s good to give people something
they already know, but don’t just copy
something because everyone else does it.
Branch out and do something better but
with a bit of familiarity. Like how I gave
people a config file system using a sqlite3
database, but crafted two different config
file interfaces for it. Nobody needs to use
SQL and can use a familiar interface, but
they also don’t have all the problems of a
config file.

 Test new features and design ideas by
writing the docs for them first. Typically
if you can’t explain the feature easily in
writing then it’s not designed well.

 Automated testing. Product People
can get away with not having test
automations like unit tests, test scripts,
etc. Your stuff doesn’t have the luxury
of the magic show, so has to be tight and
trust worthy, so testing counts.

 Finally, less linguistic experience is
better. The more linguistics a person has
to deal with the harder it is for them
to get them right. A good metric is the
size of your grammar in your parsers. If
your grammar is approaching the size
of a programming language then that’s
probably too much.

Now, these recommendations also
have an additional purpose of reducing
the cost of and time of running your
project. If you have a hard time accept-
ing that linguistic experience is your goal
in infrastructure software, then at least
think of these recommendations as a way
to not have to deal with people who use
your stuff.

The Boolean Is Just For Effect
One final thought is that, while I did
make a division between Product People
and Long Beards for effect, I don’t actu-
ally think there’s such a clear division.
If you agreed with this division then I’d
say you’ve got a problem and probably
need to start experimenting with being
the other type of person for a while.
Everyone in tech is a product person
and a long beard at the same time, it just
depends on what you’re doing.

I think the artificial division between
the two can probably be summarized as:

The problem we have today is that Long
Beards think focusing on product and
usability means you’re a flake hippie,
and Product People think focusing on
technical quality means you’re an aspie
neckbeard.

The truth is if you want to be good at
this stuff you’ve gotta be both in varying
degrees at different times. If you irratio-
nally force your identity into one of these
stereotypes then you’re not going to be
as good as you could be.

Zed Shaw is the author of “Learn Python The
Hard Way”, many rants, essays, and has been
blogging for as long as there’s been blogging. He
also created various web servers, email servers,
and random open source projects, some of which
actually power real companies. He is currently
working on the Mongrel2 web server and in his
spare time is obsessed with guitars.

Reprinted with permission of the original author.
First appeared in http://hn.my/products/.

http://hn.my/products/

10 FEATURES

I DID A LOT of things wrong while at
Twitter. First and foremost, I took
pretty terrible care of myself during

our crazy early days (2007 – 2008).
I’d had intermittently demanding jobs
before, but nothing like the unrelent-
ing stress and chaos of a fast-growing
startup. I was a wreck for most of those
two years, and I wasn’t even working the
insane hours of, amongst others, our head
operations guy at the time.

During that time period, I was con-
stantly getting sick. I had nothing resem-
bling a consistent sleep schedule. I’d pile
on weight from stress-eating, then burn it
off from stress-not-eating. Relationships
fell apart. My code was adequate, but I
was scatterbrained, and I produced little
that was up to the quality I expect from
myself. Generally, it sucked. I sucked.
And I promised never to let work get the
best of me again.

Most sensible people take a vacation
between jobs. That wasn’t really an
option for me when I left Twitter to
join BankSimple earlier this summer.
The company needed to raise its Series
A (which we just closed), and I was
too excited about getting started to sit
around for half a month. But while I

opted not to take a break, I knew that I’d
have to change my habits in a big way in
order to survive this time around.

Here’s what I’ve been doing–or at least
trying to do–to stay healthy and sane
while working on a startup. It’s not rocket
science. It may work for you, and it may
not. But these strategies have been help-
ful for me, so I thought I’d share, in hopes
that others have an easier time of it.

Exercise
This is a no-brainer: get as much exercise
as you possibly can. I try to exercise daily.
I work out for three reasons: stress relief,
energy, and long-term health. The last
reason is self-explanatory, but the first
two are worth explaining.

Startups are stressful. Exercise
combats stress. Punchy meeting? Code
that just won’t do your bidding? Sweat it
out. I’m not a naturally athletic person,
and going to the gym is usually utterly
unappealing after a long day. At the end
of a good workout, though, I always feel
calmer than when I started. Exercise
boosts my mood and makes me more
able to see negative or combative situa-
tions from a more positive perspective.

Startup life will sap your energy. At
first, it’s easy to operate on sheer enthu-
siasm. Over time, though, even the most
exciting job becomes work. Working
out can tire out the muscles, but I find
that it energizes my mind. If I exercise
regularly, I don’t get antsy during the
day. This lets me focus for longer periods
on tasks that may not be thrilling but
have to get done, like piles of paperwork
or project planning.

Personally, I belong to a gym, and I
do a mix of cardio (elliptical, station-
ary bike) and weight lifting, with some
basic stretching on either end. I listen
to podcasts while I work out to make
the time go faster, and to sometimes
learn something. Ninety minutes in
the gym can feel like wasted time. Of
course, maintaining one’s health is far
from a waste, but for geeks, time not
spent working or learning usually feels
squandered. Taking in a brainy podcast at
the gym combats that feeling.

Later this month I’m moving away
from my current neighborhood and, by
extension, my current gym. I’m consider-
ing ditching a traditional gym for frequent
CrossFit classes, and perhaps a return to
Krav Maga, which I studied briefly years

Staying Healthy and Sane
At a Startup

By ALEX PAYNE

Illustration: Matthew D. Phelan

 11

ago and enjoyed. The more I’ve gotten
into an exercise routine, the more it starts
to feel, well, routine. Both CrossFit and
a martial art have the promise of adding
appealing variety, and of avoiding the
dreaded “fitness plateau” (which I’m
currently in no danger of reaching).

Point is: exercise. It works. It’s the
most straightforward of the recommen-
dations I’m making here.

Diet
My metabolism sucks. My ancestry is
primarily a mix of English and German,
and as a result I’m genetically optimized
for storing fat through a chilly European
winter (also for arch looks and laconic
humor). If I don’t eat carefully, I gain
weight, and if I gain weight, I look and
feel like crap. Without strict rules about
what I can and can’t eat, I’ll find myself
eating whatever’s around, particularly
when I’m stressed from work. To combat
this, I set very clear guidelines about
what I eat and drink, and when.

Programmers notoriously live on
caffeine and sugar. I refuse to cut the
caffeine out of my diet, but the biggest
change I’ve made for myself is cutting
out refined sugar. Basically, the only
“sweet” in my diet comes from fruit, or
small quantities of chocolate. The only
exception I make for sugar is in the occa-
sional cocktail, but I’ve limited those, too
(see below).

I’ve also removed most “bad” carbo-
hydrates and starches from my diet. I
avoid bread, pasta, white rice, potatoes,
etc. So yes, that means no sandwiches, no
noodles, no fries; none of a lot of things
that I enjoy. These restrictions seem like
more of an ordeal when I’m hungry, but
by the time I’m done eating something
that fits the guidelines I’ve set for myself,
I’m no longer feeling deprived.

In essence, the diet I’ve ended up with
is something akin to the South Beach
Diet, but not taken to an extreme. I don’t
count calories, monitor the glycemic
index of the foods I’m eating, or try to
aggressively induce “phases” of weight

loss. I just try to eat fresh vegetables,
lean protein, low-fat dairy, nuts, and
fresh fruit. This regime removes a huge
number of readily available and hid-
eously unhealthy foods as meal options.
Being able to say, “nope, that’s just not
in the category of things that I eat” is
helpful when confronted with a menu or
grocery store full of choices.

I’ve gone a step further and restricted
my alcohol intake to only days that don’t
precede work days. So, in a typical week,
that means I only get to drink on Friday
and Saturday. This has been the hardest
dietary change for me to make. Anyone
who follows me on Twitter knows that
I love booze; not to get drunk, but just
for the wonderful range of flavors and
creativity exhibited in good beer, wine,
spirits, and cocktails.

Though I miss my evening drink, this
change has been worth it. Cutting out
alcohol for most of the week means a
huge savings in calories. Avoiding drink-
ing before work days means that I’m
fresh and ready to go in the morning. I’ve
found that it’s harder to get to the gym
when I’ve had alcohol the previous night,
so avoiding booze helps maintain my
commitment to exercise.

The point of all these dietary changes
is primarily about achieving constancy.
Yes, it’s nice to lose some weight, but by
sticking to the above rules, my energy
level throughout the day remains the
same. Removing the sugar and carbs
means that I don’t peak and trough. I
generally feel less ruled by food, and it’s
easier to make dietary decisions now that
I have a framework.

12 FEATURES

Meditation
This is probably the most important of
the changes I’ve made. Regular medita-
tion is absolutely essential to maintaining
quality of life for me. It keeps me calm
and focused, and helps me sort out
personal and professional conundrums.

The meditation technique I use is
called Natural Stress Relief, or NSR.
Yes, their site looks goofy and dated,
and maybe even a bit sketchy, but have
a Google around and you’ll find out
that NSR is reasonably well-known and
accepted. It’s dead simple to do: sit nor-
mally in a chair, clear your mind, silently
repeat a monosyllabic mantra for about
fifteen minutes, clear you mind again,
and you’re done. Repeat twice daily. I
found it worthwhile to get the official
PDF + MP3 guide on the technique, as in
practice it’s slightly more nuanced than
my quick description, but thankfully not
by much.

I chose NSR after doing some research
on different techniques. There are many
ways to meditate, and also many differ-
ent goals to meditation. Being a devout
agnostic, I’m not looking to commune
with the spirits, become one with a deity,
or reach enlightenment; I just want to
feel like I’ve got my head screwed on
straight. Most of the techniques out
there are either derived from or actively
grounded in religious practice, but not
so with NSR. It’s completely secular, and
has no goal other than improving the
mental state of the practitioner. I like the
method’s simplicity and its pragmatism.

The hardest part of meditation is
making the time to do it. Realistically,
you need about 20 minutes per NSR
session. While that doesn’t sound like
much, adding 20 minutes to your morn-
ing and evening routines is harder than
you think. It’s entirely worth it, though.
Meditation cuts right through feelings of
being stressed-out and overwhelmed, and
neatly organizes thoughts and emotions.
More than once, I’ve been meditating and
have had the solution to a problem I’ve
been struggling with pop to the forefront
of my mind. That’s time well spent.

In a way, meditation is an investment
in the quality of time spent not meditat-
ing. Even if you don’t have any magic
moments of clarity while sitting there
with your eyes closed, you’ll probably
find that the rest of your day just feels
better when you meditate regularly. At
the very least, meditation makes my
work time more productive, and that
alone makes it worthwhile for me.

Time Management
I’ve always been reasonably well
organized, but time management is
distinct from organization. I’ve found
that time management has little to do
with “lifehacks” and how you manage
your email inbox and more to do with
prioritization, saying “no” to people, and
clearly communicating the expectations
you have for yourself and others. I’m less
crazed this time around the startup block
because I feel that I have a better grasp
on how to manage my time, both during
the workday and when I’m off the clock.

A big part of this shift was realizing
that time spent in front of a desk isn’t
necessarily useful work time. If you’re
burned out for the day, stop working; go
relax, exercise, or meditate, and come
back to work with renewed energy
and focus. That’s an easy policy to get
behind, but harder to put into practice,
particularly in traditional office environ-
ments. American culture at large is no
stranger to a Puritan work ethic, and that
labor fanaticism is magnified all the more
so in the startup “community” through
legends of all-nighters and weeks spent
sleeping under desks. Get over the guilt
and bullshit, and realize that you’ll be
happier, healthier, and more productive if
you manage work time on your terms.

This is probably the section where
my advice is the least clear. From my
perspective, time management is less a
set of techniques than a mindset, albeit
one assisted by social skills that allow
you to defend your time and sanity. If
you’re totally new to the idea of time
management, this talk by “last lecture”
professor Randy Pausch will get you
started. Once you’re set with keeping a

calendar, working through a task list, and
batching your phone and email sessions,
the broader mindset of time manage-
ment is acquired through experience.
You’ll figure out what works for you, and
where you need to draw boundaries.

Finally
Of course, everything in moderation, and
all within reason and good taste. Though
I’m trying to cut out sugar, I didn’t turn
down a slice of wedding cake at my
friend’s nuptials over the weekend. If
I’m catching a 6AM flight, I’m probably
going to miss my morning meditation
session, and maybe miss that day’s
workout, too. I just try to keep the good
habits going, and recover from lapses as
quickly as possible.

I hope at least some of the above
is helpful to someone. It goes without
saying that everyone is different, and
what works for me may be disastrous for
you. But, if you’re working on a startup
or about to embark on one, I’d encourage
taking the opportunity to examine your
habits and see if you can’t improve your-
self as much as you’re trying to improve
the world around you.

Alex Payne is a cofounder of BankSimple, a
startup combining modern technology with
extraordinary customer service to create a seam-
less, worry-free banking experience. Previously,
he was one of the first engineers at Twitter. Alex
is the coauthor of “Programming Scala” (O’Reilly,
2009), and has been writing online for about
a decade. He’s a recent transplant to Portland,
Oregon.

Reprinted with permission of the original author.
First appeared in http://hn.my/startuphealth/.

http://hn.my/startuphealth/

Tutorial
Rails

railstutorial.org

“My former company (CD Baby) was one of the first to loudly switch to Ruby on Rails, and then even
more loudly switch back to PHP… This book by Michael Hartl came so highly recommended that I had
to try it, and Ruby on Rails Tutorial is what I used to switch back to Rails again… Though I’ve worked my
way through many Rails books, this is the one that finally made me ‘get’ it.”

 —From the foreword by

“I got review access to all of the material a week ago and can confirm that, yes, these screencasts are
awesome… If you basically want to be able to look ‘over the shoulder’ of an experienced Rails devel-
oper and see how a Rails development environment is set up and how multiple apps are built, there’s
nothing that can beat this. This isn’t a set of ‘build a blog in 15 minutes’ videos—it’s a complete course
that could kick off a new career for you with Rails 3.0.”

 — , Ruby Inside

 by Michael Hartl, author of Rails Tutorial and RailsSpace

RECEIVE 10% OFF

ENTER COUPON CODE
“hackermonthly”

http://railstutorial.org

14 STARTUPS

NOTED AMERICAN TECHNOLOGY
investor and all-around
smart guy Paul Graham

wrote recently about emerging trends
in startup funding, specifically that
convertible notes and rolling closes are
displacing the traditional equity rounds
done at a fixed valuation done with angel
syndicates.

Did that sound like Greek to you?
Great, you might benefit from this

translation of Financier into Geek. (P.S.
If you haven’t figured out the significance
of it originally being written in Financier
instead of in Geek, please, think it
through.) I originally wrote it as a com-
ment on Hacker News but somebody
asked me to put it somewhere easily
findable. I have elaborated with standard
blog post formating and graphs where I
thought they helped the explanation:

Why We Care About Angel
Investing
Startups raise money from investors to
accelerate their growth into, hopefully,
massively profitable businesses and/
or massively large acquisitions from big
companies.

One particular type of investor that
invests in startups is called an angel
investor. An angel investor is often an
individual human being who is wealthy,
frequently as a consequence of successful
entrepreneurship. They invest anywhere
from $25,000 to $250,000 or so.

Fundraising is painful, and requires
a lot of time and focus from startup
founders. To mitigate the pain, it is often
structured in terms of “rounds”, where
the startup goes out to raise a particular
large sum of money all at once. For an
angel round, let’s say that could be a
million dollars. (n.b. It is trending down,
as companies can now be founded for
sums of money which would have been
laughable a few years ago.) Clearly we’re
going to need to piece together contribu-
tions from a few angels here.

Why Angel Investing Frustrates
Founders
Traditionally, one angel has been the
“lead” angel, who handles the bulk of the
organizational issues for the investors.
The rest just sit by their phone and write
checks when required. (Slight exaggera-
tion.) Investors are often skittish, and
they require social proof to invest in
companies, so you often hear them say
something like a) they’re not willing to
invest in you but b) they are willing to
invest in you if everybody else does. This
leads to deadlocks as a group of investors,
who all would invest in the company
if they company were able to raise
investment, fail to invest in the company
because it cannot raise investment.

Startup founders are, understandably,
frustrated by this.

What “Valuation” Means
All numbers below this point were
chosen for ease of illustration only. They
do not represent typical valuations,
round sizes, or percentages of companies
purchased by angels.

New Trends In
Startup Financing

Explained For Laymen
By PATRICK MCKENZIE

STARTUPS

 15

One item of particular interest in
investing is the valuation of the company.
This gets into heady math, but the
core idea is simple: if we agree that the
company is worth $100 at this instant in
time (the “pre-money valuation”), and
you want to invest $100, then right after
the company receives your investment,
the company is worth $200 (the “post-
money valuation”). Since you paid $100,
you should own half the company.

Traditionally, the company has exactly
one pre-money valuation (which is
decided solely by negotiation, and bears
little if any relation to what disinterested
outside observers could perceive about
the company). All investors receive
slices in the company awarded in direct
proportion to the amount of money they
invest. Two investors investing the same
amount of money receive the same sized
slice of the company. This can be written
as “they invested at the same valuation.”

The thesis of PG’s essay is that
allowing investors to invest at the same
valuation is not advantageous to the
startup. Instead, by offering a discount
to valuation for moving quickly, you can
convince investors to commit to the deal
early, thus starting the stampede from
the hesitant investors who were waiting
to see social proof.

For example, take the company from
earlier. We said it was worth $100 prior
to receiving investing, but that is not
tied to objective reality. Say instead
we’ll agree that it is worth $80… but
only with respect to the 1st investor. He
commits $20. $80 + $20 = $100, so he
gets $20 / $100 = 20% of the company
for $20, or $1 = 1%. This convinces a
second investor to invest. He says “Can I
get 20% for $20, too?” Not so fast, buddy,
where were you yesterday? The company
isn’t worth $80 any more. We think it
is worth $105 now. (Did we just get
through saying $100? Yes. But valuations
are not connected to objective reality.)
So you get $20 / ($105 + $20) = 16% of
the company for your $20. Think that is
fair? You do? OK, done.

This continues a few times. The startup
raises money — possibly more money,
depending on how much the angels want
in — with less hassle for the founders.

What Is A Convertible Note? Why
Do Founders Like Them?
We’ve been talking about just dollars so
far, and alluding to control of the com-
pany as if it were equity like stocks, but
there is a mechanism called “convertible
notes” at play here. A convertible note
is the result of a torrid affair between a
loan and an equity instrument. It looks
a bit like Mom and a bit like Dad. Like
a loan, it charges interest: typically
something fairly modest like 6 to 8%,
much less than a credit card.

The tricky thing about convertible
notes is that they convert into partial
ownership of the company at a defined
event, most typically at the next round
of VC funding or at the sale of the
company. So, instead of the first investor
getting $20 = 20% of the company, he
loans the company $20 in exchange for a
promise like this: “You owe me $20, with
interest. Don’t worry about paying me
back right now. Instead, next time you
raise money or sell the company, we’re
going to pretend that I’m either investing
with the other guy or selling with you.
The portion of the company which I
buy or sell will be based on complicated
magic to protect both your interests and
my interests. If you want to sweeten the
deal for me, sweeten the magic.”

Do we understand why this arrange-
ment works for both parties? It incentiv-
izes investors to commit early, which lets
startups raise more money with less pain.
Because startups are in the driver’s seat,
it also lets them avoid collusion among
investors (“We decided we’d all invest
in you, but we don’t think the company
is worth $100. We think it is worth
$50. Yeah, that has no basis in objective
reality, but objective reality is that your
company is worth $0 without the $100
in our collective pockets. What is it going
to be? Give up 2/3 of the company, or go
broke and get nothing.”)

How Do You Calculate The Equity
Value of A Convertible Note?
OK, back to complicated magic. When
the company takes outside investment,
the convertible notes magically convert
into stock, based on:

a) the valuation the company receives for
the investment round (higher numbers
are better for both founders and angels)
b) a negotiated discount to the valuation,
to reward the angel investor for his early
faith in the company (higher numbers
are better for angels)
c) possibly, a valuation cap (higher num-
bers, or no cap, are better for founders)

For example, continuing with our “low
numbers make math comprehensible”
startup, let’s say it goes on a few months
and is then raising a series A round,
which basically means “the first time we
got money from VCs.” We’ll say the VC
and startup negotiate and agree that the
company is worth $500 today, the VC is
investing $250, ergo the VC gets a third
of the company.

How much does our first $20 angel
investor get? Well, he gets to participate
like he was investing $20 today, plus
he gets a discount to the valuation. So
instead of getting $20 / $750 = 2.67%
of the company, maybe he got a 20%
discount to the valuation, so he gets $20
/ (.8 * $750) = 3.33% of the company.
(We’re ignoring the effect of interest
here for simplicity, but he probably
effectively has $21 and change invested
by now in real life.)

After this is over, the convertible
note is gone, and our angel investors are
left with just shares (partial ownership
of the company), which they probably
hold until the company either goes IPO
or gets bought by someone. So if the
company later gets bought for $2,000
by Google, our intrepid angel investor
makes $66 on his $20 investment.

Reprinted with permission of the original author. First appeared in http://hn.my/startupinvest/.

http://hn.my/startupinvest/

16 STARTUPS

How Does A Valuation Cap Work?
We haven’t discussed valuation caps yet.
Valuation caps are intended to prevent
the startup dragging its feet on raising
money, thus building up lots of worth in
the company, and then the angel investor
getting cheesed. For example, if they
had just grown through revenues for a
year or two, they might be raising money
at a valuation of $1,250. In that case,
$20 only buys you 2% of the company
(remember, he gets a 20% discount : $20
/ (.8 * $1250) = 2%), which the angel
investor might think doesn’t adequately
compensate him for the risk he took on
betting on a small, unproven thing several
years before. So we make him a deal: he
gets to invest his $20 at the same terms
as the VCs do if, and only if, the valuation
is less than $750. If it is more than $750,
for him and only him, we pretend it was
$750 instead. This means that under no
circumstances will he walk away with
less than $20 / (.8 * $750) = 3.33% of
the company, as long as the company
goes on to raise further investment.
(Obviously, if they fold, he walks away
with nothing. Well, technically speaking,
with debt owed to him by a company
which is bankrupt and likely has no assets
to speak of, so essentially nothing.)

Perhaps This Will Be Clearer With
A Picture
Angels ultimately benefit from higher
discounts to the valuation of the Series A
round, and lower valuation caps. Higher
discounts, and higher effective discounts,
mean you get more of the company for
less money. That is an unambiguous
good, as long as you keep the quality of
the company constant.

Let’s see how valuation caps affect
how much of the company you end up
with. The better the company is doing
by Series A time, the less of the company
the angel ends up with. This shows the
incentive for the founders: do as well as
you can prior to raising money, which is
the same incentive founders always have.

As you can see from the below graph,
a valuation cap essentially gives the angel
an artificially higher discount for if the
Series A valuation exceeds the valuation
cap. Obviously then, it is in the interest
of angels to negotiate as low a cap as
possible, and in the interests of founders
to negotiate a high cap or no cap at all.
According to Paul Graham, this becomes
the primary “pricing” mechanism in the
new seed financing economy: if a founder
wants to reward an angel, they award
them with a lower cap. If they don’t,
the angels get a higher cap, or no cap at
all. This kicks discussions of valuations
down the road a little bit, and allows you
to simultaneously offer the company to
multiple angels at multiple “price points.”
That allows you to reward them for
non-monetary compensation (mentoring,
having a big name, etc) or for early action
on the deal.

This Is Not My Business. Take With
A Grain Of Salt.
Lest anyone get the wrong impression,
my familiarity with angel investing is
very limited and, to the extent that it
exists, it is mostly about angel investing
in small town Japan. (Oh, the stories
I can’t tell.) The above explanation is
based on me processing what I’ve read
and trying to prove that I understand it
by explaining it to other people. If I have
made material errors, please correct me
in the comments.

My current business is not seeking
funding (and would be an extraordinarily
poor candidate for it). I’ll never say
never for the future, but for the present, I
rather like getting 100% of the returns.

Patrick McKenzie is a ex-Japanese salaryman who
currently runs a small software business. His
main product at present is Bingo Card Creator,
a product aimed at making elementary school
teachers’ lives easier.

http://duckduckgo.com

18 STARTUPS

10 Usability Tips Based on
Research Studies

WE HEAR PLENTY of usabil-
ity tips and techniques
from an incalculable

number of sources. Many of the ones
we take seriously have sound logic, but
it’s even more validating when we find
actual data and reports to back up their
theories and conjectures.

This article discusses usability findings
of research results such as eye-tracking
studies, reports, analytics, and usability
surveys pertaining to website usability
and improvements. You’ll discover that
many of these usability tips will be
common sense but are further supported
with numbers; however, some might
surprise you and change your outlook on
your current design processes.

 Forget the “Three-Click Rule”
The idea that users will get

frustrated if they have to click more than
three times to find a piece of content on
your website has been around for ages.
In 2001, Jeffrey Zeldman, a recognized
authority in the web design industry,
wrote that the three-click rule “can help
you create sites with intuitive, logical
hierarchical structures” in his book,
Taking Your Talent to the Web.

Logically, it makes sense. Of course,
users will be frustrated if they spend a
lot of time clicking around to find what
they need.

But why the arbitrary three-click limit?
Is there any indication that web users will
suddenly give up if it takes them three
clicks to get to what the want?

In fact, most users won’t give up
just because they’ve hit some magical
number. The number of clicks they have
to make isn’t related to user frustration.

A study conducted by Joshua Porter
published on User Interface Engineering
found out that users aren’t more likely to
resign to failure after three clicks versus a
higher number such as 12 clicks. “Hardly
anybody gave up after three clicks,”
Porter said.

The focus, then, shouldn’t be on
reducing the number of clicks to some
magically arrived number, but rather on
the ease of utility. If you can construct a
user interface that’s easy and pleasurable
to use, but takes like 15 clicks (e.g. 5
times more than the three-click rule) to
achieve a particular task — don’t let the
arbitrary three-click rule stop you.

 Enable Content Skimming By
Using an F-Shaped Pattern

Dr. Jakob Nielsen, a pioneer in the field
of usability, conducted an eye tracking
study on the reading habits of web users
comprising of over 230 participants.
What the research study displayed was
that participants exhibited an F-shaped
pattern when scanning web content.

A similar study, by search marketing
firms Enquiro and Did-it in collaboration
with eye-tracking research firm Eyetools,
witnessed a similar pattern when they
evaluated Google’s search engine results
page with an eye tracking study that
included 50 participants. Dubbed the
“Google Golden Triangle” because the
concentration of eye gazes tended to
be top and left, the results are congru-
ent with the F-shaped pattern seen in
Nielsen’s independent research.

For designers and web copywrit-
ers, these results suggest that content
you want to be seen should be placed
towards the left, and also that the use
of content that fits an F-shaped pattern
(such as headings followed by paragraphs
or bullet points) increases the likelihood
that they will be encountered by a user
who is skimming a web page.

By CAMERON CHAPMAN

 19

 Don’t Make Users Wait:
Speed Up Your Website

We’re always told that our users are
impatient: they hate waiting. Well, that’s
logical — who likes waiting on purpose?
But is there any proof outside of anec-
dotal evidence that people actually don’t
like waiting and that page performance
affects website users?

Bing, Microsoft’s search engine,
conducted an analysis to see if there are
any correlations between page speed
and numerical performance indicators
such as satisfaction, revenue generated
per user, and clicking speed. The report
showed that a less than 2-second increase
of delays in page responsiveness reduced
user satisfaction by -3.8%, lost revenue
per user of -4.3% and a reduced clicks
by -4.3%, among other findings. For a
company as large as Microsoft, even
a 4.3% drop in revenue can equate to
multi-million-dollar losses in profit.

So users, in fact, are impatient: They’re
less satisfied and will reduce their
number of clicks if they wait too long.
And if you care about search engine
ranking, then the incentive to improve
page response times is even greater since
Google now factors page speed in their
search ranking.

What can you do to improve page
performance? Use tools that will help
you find performance bottlenecks, use
CSS sprites to improve page speed, and
utilize benchmarking tools like YSlow to
quickly see where you can make
front-end optimizations.

 Make Your Content Easily
Readable

Internet users don’t really read content
online, at least according to a study by
Dr. Nielsen on reading behaviors of
people on his website. His analysis shows
that people only read 28% of the text on
a web page and the percentage decreased
the more text there is on the page.

To increase the likelihood of your
readers getting the most out of your
content, utilize techniques for making
content easier to read. Highlight
keywords, use headings, write short
paragraphs, and utilize lists.

 Don’t Worry About “The
Fold” and Vertical Scrolling

There has long been a myth that all
of your important content should be
above “the fold,” a term borrowed from
newspapers that refers to the area of
a web page that can be seen without
having to scroll down — first proposed
by Jakob Nielsen.

So, are long pages bad? Should we
cram everything at the top of our web
layouts because people won’t ever read
anything below this fold?

The answer is “No” according to a
report by Clicktale, a web analytics
company. Their results showed that the
length of the page has no influence in the
likelihood that a user will scroll down
the page.

A study reported by Joe Leech of CX
Partners, a user centered design agency,
indicated that less content above the fold
even encourages users to explore the
content below the fold.

The main point to take away here is
that you shouldn’t stuff all your impor-
tant content at the top because you fear
that users won’t be able to find them
otherwise. Use visual hierarchy principles
and the art of distinction to prioritize
and infer the importance of various
elements in your pages’ content.

 Place Important Content on
the Left of a Web Page

People brought up in cultures where
language is read and written from left to
right have been trained early on in life
to begin at the left of a page, whether in
writing or reading a book. This can be
the reason why many web users spend a
majority of their attention on the left side
of a web page — as much as 69% of the
time, according to Dr. Nielsen’s eye-
tracking study that involved over 20 users.

The same results were reflected on
websites whose language were read from
right to left, such as Hebrew and Arabic
sites, with the results inverted (higher
attention on the right side versus the left).

There are two things to take away
from this result. First, the language of
your site matters when thinking about
layout considerations; when designing

websites you should consider cultural
design considerations. Secondly, for sites
that are traditionally read from left to
right, placing important design compo-
nents at the left is a good idea; vice versa
for sites whose language is read from
right to left.

 Whitespace of Text Affects
Readability

Easy readability of text improves com-
prehension and reading speed as well as
enhancing the likelihood that a user will
continue reading instead of abandoning
the web page. There are many factors
that influence ease of readability, includ-
ing font choices (serif versus sans-serif),
font-size, line-height, background/fore-
ground contrast, as well as spacing.

A study on readability tested read-
ing performance of 20 participants by
presenting them with the same text
blocks having different margins sur-
rounding the text as well as varying
line-heights (the distance between lines
of text). It showed that text with no
margins was read faster, however, reading
comprehension decreased. Faster reading
speeds when the text had no margins can
be explained by the text and paragraphs
being closer together, resulting in less
time needed to move the eyes from line
to line and paragraph to paragraph.

As this particular study shows, the way
we design our content can greatly impact
the user’s experience. Be wary of the
details: color, line-heights, tracking, and
so forth and be mindful of sound typog-
raphy principles for the web to ensure
that you’re not discouraging your users
from reading your content. Furthermore,
study the effective use of negative space
in web design.

20 STARTUPS

 Small Details Make a Huge
Difference

Too often, we look at the big picture
when creating a web design and ignore
the little things when we’re in a time
crunch. We forego any thought put into
the wording of something, or the design
of a single button on a form if time and
resources are limited. There are so many
other things we need to think about that
it’s often easy to let go of the small stuff.

But something as small as a form’s
button can affect the success of a site,
at least according to user interface
design expert Jared Spool, who wrote
about a case where removing a button
and adding a clear error message to
avoid user errors in a checkout process
increased revenue by $300 million in just
a year. After the revision of the checkout
process, customers purchasing went up
by 45%, generating $15 million in the
first month.

Flow, a user-centered design firm,
echoes Spool’s emphasis on the impor-
tance of attention to detail. They found
that revising an error page so that it
contained useful help text improved
completed checkouts by 0.5% per
month, which if extrapolated, could
mean an additional quarter of a million
pounds annually for the particular site.

The message they used? A polite two-
sentence message instead of a cryptic 404
error: “We’re sorry, we’ve had a problem
processing your order. Your card hasn’t
been charged yet. Please click checkout
to try again.”

Pay attention to the details. Use A/B
split testing to test your hypothesis and
find out what is the most effective design
that achieves better results. Set goals
using analytics software to benchmark
results of design tweaks in relation to site
objectives.

 Don’t Rely on Search as a
Crutch to Bad Navigation

Users expect navigation to be easy to use
and well organized. Even with an excel-
lent site search engine, users will still
turn to primary navigation first. Accord-
ing to a task test conducted by Gerry
McGovern, over 70% of the participants
began the task he gave them by clicking
on a link on the page as opposed to using
the search feature.

This result is similar to a test by UIE
of 30 users that tracked e-commerce
tasks. The research analysis concluded
that “users often gravitated to the search
engine when the links on the page didn’t
satisfy them in some way.” Thus, search
is most often utilized only when the user
has failed to discover what they were
looking for in the current page.

The lesson to be gained here is clear:
Don’t rely on site search to remedy poor
content organization, findability issues,
and bad information architecture. When
users are unable to navigate to what
they are looking for, attention should
be diverted to layout, navigation, and
content organization improvements, with
improving search functionality as the
secondary priority.

 Your Home Page Isn’t As
Important as You Think

Visitors to your website are less likely to
land on your home page. Search engines
are a big factor here, as they’ll link to
whatever page is relevant on your site.
Links from other websites are also likely
to link to pages beyond your home page
if that’s where the relevant information is.

According to an analysis by Gerry
McGovern, page views sourcing from
the home page of websites is decreasing
dramatically. He witnessed a drop from
39% from 2003 to only 2% in 2010 of
page views coming from the home page
of a large research site. This trend was
doubly confirmed on another site he
studied, where page views sourcing from
the home page halved in just two years
(from 10% in 2008 to only 5% in 2010).

McGovern’s results indicate that
traffic, more and more, is coming from
external sources — search engines, social
media sites such as Twitter, and content
aggregator services such as AllTop —
rather than from the front page of a
website. Therefore, a higher focus on
landing pages versus your home page
can get you more bang for your buck in
terms of conversion and user-retention
opportunities.

Cameron Chapman is a professional web and
graphic designer with over 6 years of experi-
ence in the industry. She’s also written for
numerous blogs such as Smashing Magazine
and Mashable. You can find her personal web
presence at Cameron Chapman On Writing
[http://cameronchapman.com/]. If you’d like
to connect with her, check her out on Twitter @
cameron_chapman.

Reprinted with permission of the original author.
First appeared in http://hn.my/usabilitytips/.

http://cameronchapman.com/
http://twitter.com/cameron_chapman
http://hn.my/usabilitytips/

 21

WE ACCIDENTALLY GOT
10,000+ users in 24
hours, and funding from

Y Combinator just a few days later. This
post tells that story.

We were determined to take part in Y
Combinator, so we spent weeks crafting
our entry and polishing Rapportive. At
the start of March, we were finally ready.
We held our breath and clicked “Submit.”
We looked at each other, relaxed, and
slowly started to breathe again. A few
hours passed uneventfully. We were in no
way prepared for what happened next.

Somehow, the press had found us.
TheNextWeb ran the first piece. Read-
WriteWeb picked it up after that. Then
Lifehacker. Then WebWorkerDaily. We
had headlines like: “Stop What You Are
Doing & Install This Plug-In.” Our twit-
ter account was aflame with thousands
of mentions in just a few hours. We had
accidentally launched.

We saw our user count grow from 5
to over 10,000 in 24 hours. I had a case
of beers in my drawer in case we ever
needed to celebrate anything. We drank
all of them.

I stayed awake for two days straight:
the emails didn’t slow down, the tweets
kept pouring in, and new Skype chats

would appear as soon as I’d finish old
ones. But we were determined to quickly
respond to every single last email, tweet,
and chat, so we soldiered on.

The next day, investors from across the
world started contacting us with offers of
funding. These weren’t just any old inves-
tors; these were some of the best angels
and venture capitalists in the world.

We didn’t have time to wait for the
normal Y Combinator interview, which
would have happened a month later. I
contacted Harj, Venture Partner at YC,
and they offered to do the interview
over Skype. (I vaguely knew Harj from
our university days — it’s a surprisingly
small world.)

A few days later, Martin, Sam and I
were huddled around around a laptop
talking to pg, Jessica and Harj. They
weren’t quite as huddled, so we spent
most of it talking to pg’s legs. We talked
for half an hour, but I felt like it passed
by in an instant. A few minutes later, we
had our answer: Y Combinator would
fund us!

We celebrated in the traditional British
manner. When we were next coherent,
we booked a fundraising trip to the Valley.

Lessons Learnt
We did several things that worked well
during this phase:

Offer surprisingly great service. Most
companies deliver terrible service, and
users have come to expect it. Surprise
them. Make it abundantly clear how
users can contact you. Monitor all
your channels. Respond to people
as soon as you physically can. Thank
everybody and go the extra mile. I
personally find that it really helps to
smile, even when the user is thousands
of miles away and on the other end
of a tweet. We use a shared Gmail
account for email support, and CoT-
weet for twitter. Our YC batchmates
rave about Olark.
Use a feedback forum. Make the
forum really easy to find. Include
links to it from your product. Make
the links especially visible when the
product isn’t working properly. If your
forum provides single sign-on (so users
don’t have to create new accounts)
then use it! We use UserVoice and
have fallen irrevocably in love with it.
Release early. We didn’t choose
to release early: it was a complete
accident! But in hindsight it turned

The Accidental Launch
By RAHUL VOHRA

22 STARTUPS

out to be very useful. Our feedback
forum rapidly filled up. We quickly
learnt peoples’ likes and dislikes, and
prioritised building what people want.
If you don’t release early, then you
might build the wrong thing and you
won’t find out until much later. Even
if you build the right thing, somebody
else might build it first and steal your
thunder. So get out there.
Be ready to scale. You never know
when traffic will hit. Now I realise that
“be ready to scale” may sound like clas-
sically bad advice, but cloud comput-
ing has changed the economics. You
can be ready by simply choosing the
right hosting provider. If we were on a
cheap VPS, we would have crumbled
to pieces like Cobb’s limbo in Incep-
tion. As we were on Heroku, we could
simply increase the number of dynos. I
still vividly remember when our traffic

hit. I was away from my desk, so I
reached for my iPhone and dialed us
up to 20 dynos using Nezumi. A few
seconds later, we had scaled.
Build for the press. It turns out that
Rapportive works exceedingly well
for technology bloggers, because they
spend so much time corresponding
with people who have significant
online presences. It is not worth build-
ing functionality only for the press
(unless, of course, they are your target
market), but it is worth being aware of
this effect.
Build early. This advice is specifically
for companies applying to Y Combina-
tor: start as early as you can, as the
deadline will come soon. The most
impressive thing you can do is make
something that people want.

One of our favourite books is
Founders at Work, a collection of inter-
views with founders about their early
days. We’re now collecting stories of our
own, which we will post in a series, Rap-
portites at Work. This post is the first of
the series.

Rahul Vohra is a co-founder and the CEO of Rap-
portive. He’s a computer scientist, a gamer, and
an entrepreneur. You can follow Rahul on twitter
at http://twitter.com/rahulvohra

Reprinted with permission of the original author.
First appeared in http://hn.my/accidental/.

http://twitter.com/rahulvohra
http://colorschemer.com
http://hn.my/accidental/

 23

I WROTE A SCRIPT to crawl U.S. App Store customer reviews for
the top 100 apps from every category (minus duplicates)
and compute the most common words in 1-star and 5-star

reviews, excluding words that were also common in 3-star reviews.
Keep in mind that the results are not representative of overall

user opinions: most users don’t review apps, and people who dislike
an app are more likely to leave a review than people who like it.

These are the top words by rating, with descending frequency:

:
awesome, worth, thanks, amazing, simple, perfect, price, every-
thing, ever, must, ipod, before, found, store, never, recommend,
done, take, always, touch

:
waste, money, crashes, tried, useless, nothing, paid, open, deleted,
downloaded, didn’t, says, stupid, anything, actually, account,
bought, apple, already

Bold words are adjectives or likely to be used as adjectives in
context.

Some are obvious: people like awesome apps and dislike those
that crash. A few words are more interesting, though:

It’s promising to see simple in the top-positive list, which says
a lot about user expectations on the platform.

Both positive and negative reviews seem unusually obsessed
with price. This seems odd, given the relative cost of the hardware,
accessories, and cellular service where applicable.

The negative words are most interesting to me: in addition to
complaints about the price, one word is especially telling of a
prevalent attitude I’ve seen for a while: useless. More than any
other adjective, reviewers condemn apps they don’t like as “useless.”
Subjectively, I usually see this in contexts in which the app doesn’t
have a minor feature that the reviewer wants, or where it doesn’t
perform well in a rare use-case, so the reviewer unfairly declares
the app “useless.” This demonstrates a curious psychological effect
of modern western culture that I’ll write about soon.

Marco Arment is the founder of Instapaper and the former cofounder of
Tumblr. He converts coffee and Phish to web and iOS apps, and he writes
at Marco.org.

Most Common Words
Unique to 1-star and 5-star
App Store Reviews
By MARCO ARMENT

Reprinted with permission of the original author. First appeared in http://hn.my/appstorewords/.
Icon by Ricky de Laveaga.

http://hn.my/appstorewords/

24 SPECIAL

FOR MANY YEARS I worked in
palliative care. My patients
were those who had gone
home to die. Some incred-

ibly special times were shared. I was with
them for the last three to twelve weeks
of their lives.

People grow a lot when they are faced
with their own mortality. I learnt never
to underestimate someone’s capacity for
growth. Some changes were phenomenal.

Each experienced a variety of emotions, as
expected, denial, fear, anger, remorse, more
denial and eventually acceptance. Every
single patient found their peace before
they departed though, every one of them.

When questioned about any regrets
they had or anything they would do differ-
ently, common themes surfaced again and
again. Here are the most common five:

 I wish I’d had the courage to
live a life true to myself, not

the life others expected of me.
This was the most common regret of
all. When people realise that their life is
almost over and look back clearly on it,
it is easy to see how many dreams have
gone unfulfilled. Most people had not
honoured even a half of their dreams and
had to die knowing that it was due to
choices they had made, or not made.

SPECIAL

Regrets of the
Dying
By BRONNIE WARE

Photo: Just Add Light, http://www.flickr.com/photos/gnas/4650799888/.
Licensed under Creative Commons Attribution 2.0 Generic licence. Full terms available at http://creativecommons.org/licenses/by/2.0/deed.en.

http://www.flickr.com/photos/gnas/4650799888/
http://creativecommons.org/licenses/by/2.0/deed.en

 25

It is very important to try and honour
at least some of your dreams along the
way. From the moment that you lose
your health, it is too late. Health brings
a freedom very few realise, until they no
longer have it.

 I wish I didn’t work so hard.
This came from every male

patient that I nursed. They missed their
children’s youth and their partner’s com-
panionship. Women also spoke of this
regret. But as most were from an older
generation, many of the female patients
had not been breadwinners. All of the
men I nursed deeply regretted spending
so much of their lives on the treadmill of
a work existence.

By simplifying your lifestyle and
making conscious choices along the way,
it is possible to not need the income that
you think you do. And by creating more
space in your life, you become happier
and more open to new opportunities,
ones more suited to your new lifestyle.

I wish I’d had the courage to
express my feelings.

Many people suppressed their feelings
in order to keep peace with others. As a
result, they settled for a mediocre exis-
tence and never became who they were
truly capable of becoming. Many devel-
oped illnesses relating to the bitterness
and resentment they carried as a result.

We cannot control the reactions of
others. However, although people may
initially react when you change the way
you are by speaking honestly, in the
end it raises the relationship to a whole
new and healthier level. Either that or it
releases the unhealthy relationship from
your life. Either way, you win.

 I wish I had stayed in touch
with my friends.

Often they would not truly realise the
full benefits of old friends until their
dying weeks and it was not always
possible to track them down. Many had
become so caught up in their own lives
that they had let golden friendships slip
by over the years. There were many
deep regrets about not giving friendships
the time and effort that they deserved.
Everyone misses their friends when they
are dying.

It is common for anyone in a busy
lifestyle to let friendships slip. But when
you are faced with your approach-
ing death, the physical details of life
fall away. People do want to get their
financial affairs in order if possible. But
it is not money or status that holds the
true importance for them. They want to
get things in order more for the benefit
of those they love. Usually though, they
are too ill and weary to ever manage
this task. It is all comes down to love
and relationships in the end. That is all
that remains in the final weeks, love and
relationships.

 I wish that I had let myself be
happier.

This is a surprisingly common one. Many
did not realise until the end that happi-
ness is a choice. They had stayed stuck
in old patterns and habits. The so-called
‘comfort’ of familiarity overflowed into
their emotions, as well as their physical
lives. Fear of change had them pretend-
ing to others, and to themselves, that
they were content. When deep within,
they longed to laugh properly and have
silliness in their life again.

When you are on your deathbed, what
others think of you is a long way from
your mind. How wonderful to be able to
let go and smile again, long before you
are dying.

Life is a choice. It is YOUR life.
Choose consciously, choose wisely,
choose honestly. Choose happiness.

Bronnie Ware is a writer and singer/songwriter
from Australia. She is currently writing a book on
her experiences in palliative care and is working
on a new album of inspirational songs.

“When you are on your deathbed,
what others think of you is a
long way from your mind.”

Reprinted with permission of the original author.
First appeared in http://hn.my/dying/.

http://hn.my/dying/

26 SPECIAL

The Most Powerful Colors
in the World

WHEN WE RELEASED our
report on the colors of
the social web, based

on data analyzed by our Twitter theme
tool, we were surprised that blue was
such a dominant color in people’s profile
designs. Was Twitter’s default color influ-
encing their design decisions? Or is blue
really THE most popular and dominant
color online? ...We decided to look at the
colors in the brands from the top 100
sites in the world to see if we could paint
a more colorful picture.

Turns out the blueberry doesn’t fall
far from the bush. The web landscape
is dominated by a large number of blue
brands... but Red occupies a large amount
of space as well. What’s driving this? You
might want to say that carefully orga-
nized branding research and market tests
were done to choose the perfect colors
to make you spend your money, but a
lot of the brands that have grown to be
global web powerhouses, started as small
web startups... and while large corporate
giants with branding departments spend
quite a lot on market research, user test-
ing, branding, etc., lots of the sites listed
above got started with brands created
by the founders themselves with little to
no research into the impact their color
choice would have. I once asked Mark

Zuckerberg, the founder of Facebook
why he chose blue for his site design...
“I’m color blind, it’s the only color I
can see.” ...and now 500 Million people
around the world stare at a mostly blue
website for hours each week.

While the initial reasoning for the
colors chosen may be trivial, the impact
that these dominant players now have
in the web world will surely influence
the smaller startups that want to share

in the positive color associations created
by their bigger siblings... Once a rocket-
ship of a web startup takes flight, there
are a number of Jr. internet astronauts
hoping to emulate their success... and are
inspired by their brands. And so Blue and
Red will probably continue to dominate,
but we can have hope for the Gowalla’s,
DailyBooth’s and other more adventur-
ous brands out there.

By DARIUS A MONSEF IV

 27

By DARIUS A MONSEF IV

28 SPECIAL

Would A Corporation By Any
Other Color, Still Profit As Well?
Color is an important part of any brand,
but along with the actual name of a com-
pany... Is it a great brand that builds a
great company, or the other way around?
Would Google, Google just as well with
another name? My guess is yes.

And almost 10 years ago, Wired
Magazine looked at the Colors of
the corporate America... Blue & Red
dominate again.

Companies spend millions trying to
differentiate from others. Yet a quick
look at the logos of major corporations
reveals that in color as in real estate, it’s
all about location, location, location. The
result is an ever more frantic competition
for the best neighborhood. Here’s a look
at the new blue bloods.
[Wired Magazine]

The Colors of 1 Million Brand
Icons
And a brand can extend further than just
your logo... On the web it reaches into
the address bar in the form of a Favicon.
It’s quite amazing to explore, but the
top 1,000,000 website Favicons can be
browsed here at Icons of the Web
[http://nmap.org/favicon/].

Uh-oh! But Will We Run Out of
Color on the Web?
Last year Francisco Inchauste posted a
very interesting article on SixRevisions
about the limited resource of color...
not in physical form, but in mind share.
(Even linking to a post we did a while
back about T-Mobile and it’s trademark
of “Magenta”)

As a designer, it is important to be aware
of the trending colors, and how they
are being applied in products and work
produced today. What really isn’t being
discussed by the design world at large
though are the limitations being set on
color. Color is as free for us to use as the
air we breathe… or is it? [SixRevisions]

The Next Big Color Trend
You are the next great founder, designer,
influencer or creative mind that may
build the next Facebook. You have the
power to influence future color trends...
What colors will you choose?

Darius wants the whole world to find color
enlightenment. He is the CEO of CHROMAom,
Inc and the creator of COLOURlovers.com. He
built COLOURlovers after an uninspired class
on color theory left him searching for an online
community to explore color. Darius is an inter-
net entrepreneur, web designer/coder, former
student of fashion design and was previously
community organizer for Microsoft’s Photosynth
software. He’s also the co-founder of the disaster
relief non-profit Hands On Disaster Response
(HODR) and has spent more than 11 months
living in disaster zones around the world.

Reprinted with permission of the original author.
First appeared in http://hn.my/colors/.

http://nmap.org/favicon/
http://COLOURlovers.com
http://hn.my/colors/

 29

A FEW OF MY friends – three friends, to be exact – men-
tioned to me that I write a heck of a lot on here and
they’re impressed. I have convinced the ultra-smart

Sami Baqai to start blogging, and he just got the holy-shit-this-is-
hard-I’m-overwhelmed feeling. Ah, yes, I have been there Sami.
Perhaps I can share some thoughts.

First and foremost, I am a huge devotee of the Equal-Odds Rule.
As far as I know, I’m the only person talking about it outside of
academia. This Amazon review covers it pretty well:

The equal-odds rule says that the average publication of any
particular scientist does not have any statistically different chance
of having more of an impact than any other scientist’s average
publication. In other words, those scientists who create publica-
tions with the most impact, also create publications with the least
impact, and when great publications that make a huge impact
are created, it is just a result of “trying” enough times. This is an
indication that chance plays a larger role in scientific creativity
than previously theorized.

So I read that, and I’m like – whoa. You know Neo in the
Matrix? Whoa.

If you want to make excellent stuff, you need to make a lot
of stuff.

If you want to make a lot of stuff, you’ll make a lot of crap.
If you want to make excellent stuff, you need to make a lot

of crap.
And my personal opinion here —
And that’s okay, because you get judged by your best work,

not your bad work.
At the risk of being honest, a lot of my writing here is crap. I

mean, it’s okay, it’s not totally stupid, but a lot of it is very “meh”
– well, by own estimation. But occasionally I really nail something,
and that’s what people are going to remember. A Lot of Victory is
Just Walking Around turned out to be a huge hit and got hundreds

of visitors from people Facebook-liking it, when I just typed it up
on the spur of the moment. I thought it was good, but nothing
crazy revolutionary – I was talking about noticing where business
are in certain areas, and what businesses are missing that you could
potentially build. I talked about putting a premium mechanic
shop in an upscale district of Hong Kong I was walking around,
or opening a coffee chain in Cambodia. People loved that, I got so
many compliments and lots of new visitors, many of whom stuck
around and are still readers. (Hi guys! Glad you stuck around) In
retrospect, I guess yeah that was a good post. But it only happened
because I wrote some very just-okay posts too.

Alright, but let’s talk nuts and bolts more. Three things we’ve
already covered this post —

1. I believe in the Equal-Odds Rule, which states roughly that
a creator can’t entirely control the quality of their output. In
order to do high impact excellent work, you have to do a lot of
work, which includes low impact not excellent work.

2. I think as long as you’re not doing life-or-death stuff, it’s okay
to put out low quality work. Well, not really. I’m kind of a
perfectionist. What I actually mean is you’re going to be a bad
judge of how good your own stuff is, especially if it’s creative
work. Don’t put out anything wrong or terrible or lazy, but if
something is okay and you gave it your best, put it out. People
might like it, or might not, but you probably won’t be able to
know in advance.

3. You’ll get judged by your best work. I’ve written up at least
150 articles over the last four months. If I want to present my
writing to someone, I’ll link to the best 10-20 and get evaluated
on those. If I’m pitching something really important, I can always
go edit and polish an even better version.

How Do I Write So Much
By SEBASTIAN MARSHALL

30 SPECIAL

This is big stuff. This is the mental side of it. I happen to know
how good Sami’s writing is, because he and I swap emails and
share ideas. We connected originally from Hacker News, and he’s a
super-sharp guy, very multi-disciplinary bright. But Sami obviously
got some issues putting crap out into the world. He doesn’t want
do it. Well, Sami, you want to do great work or not? You’re going
to have to put some crap out to do great work. I know, it’s hard.
It sucks. Mind you, I don’t want to put crap out. It’s just, that’s
the Equal-Odds Rule, which I am a believer in.

Alright, nuts and bolts for real this time.

4. I commit to doing it every day, every single day no matter what.

5. My audience is whoever likes it – the site is written for me. If
someone doesn’t like it at this point in their life, they’re not
my audience for now.

6. Extensive notes/backlog – quotes, stories, pictures, ideas. Lots
of this.

7. I accepted that I’m going to judged. I don’t love it, but I accepted
it. It comes with the territory.

8. Look at my first entries if you want to be inspired. Or any
blogger’s first entries. Or Seth Godin’s “E-Marketing” book
from 1995. Sort of cheesy – “MORE THAN $1,000 WORTH
OF MONEY-SAVING COUPONS INSIDE” – but it doesn’t
seem to have derailed his career. Just the opposite, actually – we
all gotta start somewhere.
A few tactical thoughts:

9. Post scheduling is good, especially if not going to be near internet.
You can schedule when a post comes live pretty easily on any
modern blogging platform. I don’t like to do this too far in
advance, because I want my currently published things to be
whatever I want to talk about on the phone with people or in
email since people do bring it up. But I often write a post before
sleeping, and schedule it to go live a minute after midnight.
That way, I’m not under time crush the next day to make sure
I get a blog post in. If I want to write more, I’ll write a second
post that day. If I’m not sure about internet because I’m flying,
I’ll schedule two in a row, one for the next day, one for the day
after, but I don’t even do that too often. I like my writing to be
whatever is on my mind.

10. Not worrying about perfection, just starting.

11. Try to think of every visitor as an honored guest. If you think
of “web traffic,” 15 visitors is disappointing. If you think of
15 people deciding to spend time with you they could spend
anywhere, and they’re choosing to spend it with you – they’re
choosing to spend their life energy reading your thoughts – that’s
very cool and humbling, and suddenly chugging along with
15 readers feels pretty good. I had between 10 and 40 visitors
for the longest time. The site is starting to blow up a little bit
more, had 746 unique visitors on September 1st and have been
above 200 daily visitors consistently recently, but I was pretty
honored even when 10 people were stopping by for 4 minutes
each. That’s 40 minutes of life energy people are choosing to
spend with you instead of somewhere else. Like, that’s pretty
humbling. Now I have 200 regular readers? Like, whoa. That’s
800 minutes per day. People are spending 12 hours of life-time
each day with me. Wow. That’s cool. Even when it was 10 per
day, I was thinking that was really cool and humbling.

12. On a very busy day, I’ll just post a quote or a short insight-
ful thought. I’ve got some quotes from Miyamoto Musashi,
Tokugawa Ieyasu, Marcus Aurellius, Thomas Jefferson, Sun
Tzu, Carl von Clauswitz, and others lined up.

“The strong manly ones in life are those who understand
the meaning of the word patience. Patience means restrain-
ing one’s inclinations. There are seven emotions: joy, anger,
anxiety, adoration, grief, fear, and hate, and if a man does not
give way to these he can be called patient. I am not as strong
as I might be, but I have long known and practiced patience.
And if my descendants wish to be as I am, they must study
patience.” – Tokugawa Ieyasu

13. Listen to audio at cafes with nothing else to do. Sit there, have
coffee, listen to smart audio. Ideas will come. Jot down a note.

14. When you have a good idea, write it down. I have a “short-
termblog.txt” on the desktop of my laptop, and there’s at least
dozens of ideas written down in there. Sometime or other I’ll
talk about Roman Emperor Septimus Severus made a huge
mistake making his two sons Caracella and Geta joint-Emperors.
Dude, Septimus, that never works…

15. Have fun. I mean, really have fun. Look at my “Some General
Life Goals” – “carrying self like rich dickhead” is on the list. After
I already took a screenshot of my computer, I realized that was

“You’re going to have to put
some crap out to do great work.”

 31

on there. I thought about censoring it. Nahh, whatever. Someone
could judge me? Yes. Someone could get offended? Yes. I just
wrote up another post, “Arguing With Peasants Shows a Lack
of Self-Discipline” – I thought to myself, “Do I really want to
write that?” Am I going to get asked on some news interview
sometime, “So, you think you shouldn’t argue with peasants,
do you?” in a really sanctimonious, judging tone that makes me
look bad? I don’t know, maybe. Probably? Whatever. It’s actu-
ally how I think. I read some insight from economist Vilfredo
Pareto about how the peasants never actually take control of
the government, instead one elite uses the peasants to kill off
the other elite, but the peasants themselves never take power.
Reading that, a lot of things clicked. I said, “Ohhh, I shouldn’t
argue with peasants who believe they can really take power.” A
lot of peasants are backing their team – well, have fun in your
new worker’s paradise Socialist Soviet Republic. Idiots. Will I
catch flak later because I shared my honest opinion about this?
Maybe. But whatever, it’s how I think. This is a relatively new
feeling for me, in the past I always tried to be diplomatic, and
now I’m more and more just saying what I’m actually thinking.
It’s actually enjoyable in its own strange way.

16. That leads me to the final point, which is you gotta remember
this is all a circus. Life is really a circus. Are you such a big
deal that you can’t be embarrassed, or make a mistake, or do
something wrong? No, you’re not. You’re not a big deal. At
least, I’m not a big deal. I’ll say some stupid shit at some point,
and get embarrassed, and look bad. Oh well. If things break the
right way, I’ll also found branches of science, inspire people,
build amazing businesses, found charities that actually work,
make art, fund art, fund science, build a virtuous international
dynasty, and all sorts of other stuff. But if I try and fail? Well,
whatever, I’m not such a big deal. I can be embarrassed. It’s
okay if I get something wrong or say something stupid. Most of
what we obsess over is going to turn to dust anyways.

My favorite poem: Ozymandius by Percy Bysshe Shelley
I met a traveller from an antique land
Who said: Two vast and trunkless legs of stone
Stand in the desert. Near them, on the sand,
Half sunk, a shattered visage lies, whose frown
And wrinkled lip, and sneer of cold command
Tell that its sculptor well those passions read

Which yet survive, stamped on these lifeless things,
The hand that mocked them and the heart that fed.
And on the pedestal these words appear:
“My name is Ozymandias, king of kings:
Look on my works, ye Mighty, and despair!”
Nothing beside remains. Round the decay
Of that colossal wreck, boundless and bare
The lone and level sands stretch far away.

This is all coming down, man. Turning to dust. Life’s a circus.
Now, some people have this attitude of, “Well, all this doesn’t

matter, so I’m just going to party, or do nothing, or whatever.” Me?
No way! I think, “Well, most of this doesn’t matter, so I might
as well found branches of science, do great works, build amazing
things, make art, write, fund things, build things, fix things, serve
people, and otherwise do amazing stuff.”

I mean, why not, right?
On the tactical level, I’d strongly recommend committing to

writing every day. Every single day, something. Even something
small. People liked “Sun Tzu says – Make It Look Easy” and that
was just a short quote I picked up listening to the Art of War.

Look at my early posts, if you like. A lot of them aren’t very
good. But you start doing it every day, every single day, and you
get better pretty quickly. You start noticing what people like, and
tweaking your works, and it’ll come. Just accept that your early
work is going to suck, and even later some of your work is going
to suck, and cherish every visitor. I’ll add you to my RSS reader
and I’ll stop by from time to time, so there, you’ve got at least
one visitor. Do it every day, eh? You’ll suck and make crap for a
while, and then you’ll do good stuff, and in not-very-long you’ll
do some awesome stuff. Tone is hard to get, but it comes with
time. Every single day is the way. Something, even just a quote.
You’ll find the theme later. Now, get started, eh?

Sebastian Marshall has stated his goal is to train to be the greatest
strategist of this generation. He writes on strategy, entrepreneurship,
technology, business, marketing, philosophy, history, governance, and
creativity at SebastianMarshall.com, a site that is updated daily with
new insights. He prides himself on being very accessible and helpful –
feel free to shoot him a line with a question, comment, or feedback at
sebastian@sebastianmarshall.com.

“Are you such a big deal that you
can’t be embarrassed, or make a
mistake, or do something wrong? ”

Reprinted with permission of the original author. First appeared in http://hn.my/writemuch/.

http://SebastianMarshall.com
sebastian@sebastianmarshall.com
http://hn.my/writemuch/

32 PROGRAMMING

“I’M GOING TO beat grep by thirty percent!" I confidently
crow to anyone who would listen, those foolish enough
to enter my office. And my girlfriend too, who’s con-

tractually obligated to pay attention to everything I say.
See, I was working on Hex Fiend, and searching was dog slow.

But Hex Fiend is supposed to be fast, and I want blazingly quick
search that leaves the bewildered competition coughing in trails of
dust. And, as everyone knows, the best way to get amazing results
is to set arbitrary goals without any basis for believing they can be
reached. So I set out to search faster than grep by thirty percent.

The first step in any potentially impossible project is, of course,
to announce that you are on the verge of succeeding.

I imagine the author of grep, Ultimate Unix Geek, squinting
at vi; the glow of a dozen xterms is the only light to fall on his
ample frame covered by overalls, cheese doodles, and a tangle of
beard. Discarded crushed Mountain Dew cans litter the floor.
I look straight into the back of his head, covered by a snarl of
greasy locks, and reply with a snarl of my own: You’re mine. The
aphorism at the top, like the ex girlfriend who first told it to me,
is dim in my recollection.

String searching
Having exhausted all my trash-talking avenues, it’s time to get to
work. Now, everyone knows that without some sort of preflighting,
the fastest string search you can do still takes linear time. Since my
program is supposed to work on dozens of gigabytes, preflighting
is impossible – there’s no place to put all the data that preflight-
ing generates, and nobody wants to sit around while I generate
it. So I am resigned to the linear algorithms. The best known is
Boyer-Moore (I won’t insult your intelligence with a Wikipedia
link, but the article there gives a good overview).

Boyer-Moore works like this: you have some string you’re
looking for, which we’ll call the needle, and some string you want
to find it in, which we’ll call the haystack. Instead of starting the
search at the beginning of needle, you start at the end. If your
needle character doesn’t match the character you’re looking at
in haystack, you can move needle forwards in haystack until
haystack’s mismatched character lines up with the same character
in needle. If haystack’s mismatch isn’t in needle at all, then you
can skip ahead a whole needle’s length.

For example, if you’re searching for a string of 100 ‘a’s (needle),
you look at the 100th character in haystack. If it’s an ‘x’, well,
‘x’ doesn’t appear anywhere in needle, so you can skip ahead all
of needle and look at the 200th character in haystack. A single
mismatch allowed us to skip 100 characters!

I get shot down
For performance, the number of characters you can skip on a
mismatch is usually stored in an array indexed by the character
value. So the first part of my Boyer-Moore string searching algo-
rithm looked like this:

char haystack_char = haystack[haystack_index];
if (last_char_in_needle != haystack_char)
 haystack_index += jump_table[haystack_char];

So we look at the character in haystack and if it’s not what
we’re looking for, we jump ahead by the right distance for that
character, which is in jump_table.

“There,” I sigh, finishing and sitting back. It may not be faster
than grep, but it should be at least as fast, because this is the fastest
algorithm known. This should be a good start. So I confidently
ran my benchmark, for a 1 gigabyte file…

PROGRAMMING

The Treacherous
Optimization

Old age and treachery will beat
youth and skill every time.

By RIDICULOUS_FISH

 33

grep: 2.52 seconds

Hex Fiend: 3.86 seconds

Ouch. I’m slower, more than 50% slower. grep is leaving me
sucking dust. Ultimate Unix Geek chuckles into his xterms.

Rollin’, rollin’, rollin’
My eyes darken, my vision tunnels. I break out the big guns. My
efforts to vectorize are fruitless (I’m not clever enough to vectorize
Boyer-Moore because it has very linear data dependencies.) Shark
shows a lot of branching, suggesting I can do better by unrolling
the loop. Indeed:

grep: 2.52 seconds

Hex Fiend (unrolled): 2.68 seconds

But I was still more than 6% slower, and that’s as fast as I got.
Exhausted, stymied at every turn, I throw up my hands. grep
has won.

grep’s dark secret
“How do you do it, Ultimate Unix Geek? How is grep so fast?”
I moan at last, crawling forwards into the pale light of his CRT.

“Hmmm,” he mumbles. “I suppose you have earned a villian’s
exposition. Behold!” A blaze of keyboard strokes later and grep’s
source code is smeared in green-on-black across the screen.

while (tp < = ep)
 {
 d = d1[U(tp[-1])], tp += d;
 d = d1[U(tp[-1])], tp += d;
 if (d == 0)
 goto found;
 d = d1[U(tp[-1])], tp += d;
 d = d1[U(tp[-1])], tp += d;
 d = d1[U(tp[-1])], tp += d;
 if (d == 0)
 goto found;
 d = d1[U(tp[-1])], tp += d;
 d = d1[U(tp[-1])], tp += d;
 d = d1[U(tp[-1])], tp += d;
 if (d == 0)
 goto found;
 d = d1[U(tp[-1])], tp += d;
 d = d1[U(tp[-1])], tp += d;
 }

“You bastard!” I shriek, amazed at what I see. “You sold them
out!”

See all those d = d1[U(tp[-1])], tp += d; lines? Well, d1 is
the jump table, and it so happens that grep puts 0 in the jump
table for the last character in needle. So when grep looks up
the jump distance for the character, via haystack_index +=
jump_table[haystack_char], well, if haystack_char is the last

character in needle (meaning we have a potential match), then
jump_table[haystack_char] is 0, so that line doesn’t actually
increase haystack_index.

All that is fine and noble. But do not be fooled! If the characters
match, the search location doesn’t change - so grep assumes there
is no match, up to three times in a row, before checking to see if
it actually found a match.

Put another way, grep sells out its worst case (lots of partial
matches) to make the best case (few partial matches) go faster.
How treacherous! As this realization dawns on me, the room
seemed to grow dim and slip sideways. I look up at the Ultimate
Unix Geek, spinning slowly in his padded chair, and I hear his
cackle “old age and treachery...”, and in his flickering CRT there
is a face reflected, but it’s my ex girlfriend, and the last thing I
see before I black out is a patch of yellow cheese powder inside
her long tangled beard.

I take a page from grep
“Damn you,” I mumble at last, rising from my prostrate position.
Chagrined and humbled, I copy the technique.

grep: 2.52 seconds

Hex Fiend (treacherous): 2.46 seconds

What’s the win?
Copying that trick brought me from six percent slower to two
percent faster, but at what cost? What penalty has grep paid
for this treachery? Let us check - we shall make a one gigabyte
file with one thousand x’s per line, and time grep searching for
“yy” (a two character best case) and “yx” (a two character worst
case). Then we’ll send grep to Over-Optimizers Anonymous and
compare how a reformed grep (one that checks for a match after
every character) performs.

Best case Worst case

Treacherous grep 2.57 seconds 4.89 seconds

Reformed grep 2.79 seconds 2.88 seconds

Innnnteresting. The treacherous optimization does indeed
squeeze out almost 8% faster searching in the best case, at a cost
of nearly 70% slower searching in the worst case. Worth it? You
decide! Let me know what you think.

Resolved and refreshed, I plan my next entry. This isn’t over,
Ultimate Unix Geek.

ridiculous_fish is a curious programmer perpetually out of his element.
He is channeled by an engineer who currently works at Apple. Read more
from fish at ridiculousfish.com

Reprinted with permission of the original author.
First appeared in http://hn.my/treachery/.

http://ridiculousfish.com
http://hn.my/treachery/

34 PROGRAMMING

AS A DEVELOPER, you are sitting
on a goldmine. Do you even
realize it?

No, seriously, a @#$% goldmine!
Never in modern history has it been so
easy to create something from scratch,
with little or no capital and a market-
ing model that is limited only by your
imagination.

Think about the biggest websites you
visit or use on a regular basis: Facebook,
Twitter, Flickr, Foursquare, or even
Google for that matter — all of them
were created by developers who created
something from little more than an idea
in their head. Was it easy for them? Heck
no. But it could only have been done in
today’s day and age. So why in the world
are you sitting there day after day work-
ing for someone else?

Yeah, I am too.
So if there are so many amazing

opportunities out there, why aren’t more
developers out there working for them-
selves? I think there is a pretty common
set of excuses that we tell ourselves.
None of them are legit!

Myth #1: I don’t have any time
This is a common excuse, but one that
makes me laugh every time I hear it.
Alright, so how much time do you spend
watching TV or playing XBox, Wii,
Playstation, etc? Maybe just an hour
a day right? What about the time you
spend playing around on Facebook or
Twitter? (Probably just a few minutes
here and there, right?) What do you do
every day on your lunch break? There’s
an hour right there.

My point is: an hour here and an hour
there adds up! You have time, it’s just a
matter of what you choose to do with it.
If you want to break out on your own,
you need to come up with a good idea
(one that truly solves a problem) and
obsess over it. If you’re passionate about
your idea, you’ll find time. You’ll reach
a point where it is actually painful to
have to work on something other than
your idea.

I’m a married 31 year-old guy with
three young kids. I work a full-time job
and come home to a wonderful wife
who, at the end of her day, is at her wits’
end with the kids. I consider myself a

pretty busy guy, yet I am able to consis-
tently find around 20 hours a week (at
least) to work on my idea.

As I write this, I am sitting on a comfy
chair across the street from my day job in
the café of a Border’s Bookstore. I come
here nearly every single day, which on its
own adds up to 5 hours of pretty produc-
tive work per week. No kids running
around, no real distractions, just me, my
laptop, and my headphones.

In the evening, when the kids have
gone to bed and the dishes are washed,
I can generally get a good 3-4 hours of
work in before going to bed and starting
over the next day. I usually give myself a
day or two off during the week to keep
my sanity and unwind a bit, but with my
20 or so evening hours during the week
plus my 5ish lunch hours, I can get some
real work done.

Even if you can’t afford to quit your
day job to pursue your idea (like me), I
think you can find time to work on your
idea, if you’re really passionate enough
about it.

You’re a Developer,
So Why do You Work For

Someone Else?
By BRYAN HALES

Reprinted with permission of the original author. First appeared in http://hn.my/developerwork/.

http://hn.my/developerwork/

 35

Myth #2: I can’t come up with any
ideas
If you’re like me when I started, you con-
stantly hear people say stuff like “Ideas
are a dime a dozen” and “I’m always
coming up with new ideas, but I just
don’t have the time to follow through.”
Yet you sit there trying to come up with
the Next Big Thing (the next Facebook,
the next Reddit, etc) and it seems like
all the best ideas are taken. You can’t
come up with anything that you would
consider a home run.

Ask any founder of a large website
about how it is today versus how they
imagined it would be, and I’d bet they’ll
laugh. The fact is, they hardly ever start
out the way they planned. These sites
become huge hits because the founders
and owners were smart about adapting
and creating features that their users love.

So quit trying to hit a home run and
focus on simply getting on base! Create
something useful. Something people
need, and then iterate over and over and
over. Start simple and go from there. If
you obsess over the end result (a yacht
in the Caribbean on a private island),
all you’ll ever be is a dreamer. Build
something, put it out there, get feedback,
and adapt.

Here’s what I do when I’m trying to
come up with a fun new idea to work on:

 Listen to the news (or any talk show
for that matter). People love to
complain. I see every complaint as a
possible idea. My current project, for
example, came from a story about the
100th anniversary of the Boy Scouts.
I’m a former Boy Scout. I’ve been a
Scout leader. I know their aches and
pains, but I had forgotten about them.
Listening to the radio and keeping an
ear open for opportunities gave me
the idea I’m working on now. It’s a
pretty small niche market, but there is
a lot of opportunity there. I get a lot of
bad ideas too, but that’s ok! Coming
up with new ideas is like exercising.
The more you keep your ears open for
new ideas, the easier it is to come up
with new ones and quickly vet them.
Find out what people hate, what pains

them, and build something that they
would be willing to pay for (either
directly or through lead-generation,
putting up with ads, etc).

 What do you love to do? What are
you most passionate about? You had
better be passionate about what you’re
thinking about working on, because it
will get really tedious and tempting to
move onto something else before too
long. Make sure, before you begin, that
you are ok with working on this new
idea of yours 24/7, because you’ll need
to in order to get it off the ground.
One of my passions is scuba diving. I
would love nothing more than to live
in a world where all I think about is
scuba diving. I’ve got a few ideas for
products in that realm that are sim-
mering on the back burner for now.

 Keep a backlog. Google Docs is your
friend. I have a document that I call
“App Ideas.” When I get a new idea,
no matter how trivial or niche it
originally feels, I immediately stop
what I’m doing and write it down.
I’ve heard of people keeping notepads
by their bed for this same reason. I
can’t tell you how many “EUREKA!”
moments I had in the car on my way
home, only to have forgotten them
by the time the kids were in bed.
It’s not that they were bad ideas, it’s
that I got distracted. They eventually
come back to me, but it’s frustrating
in the meantime. Keeping ideas in a
backlog helps you to organize them
by legitimacy, add notes and thoughts,
and remember them next time you go
looking for an idea.

Never start working on a project the
same day you came up with it. Let it
simmer for a day or two, at least. Make
sure that it is worth spending the next few
years of your life obsessing over. Don’t
build it just to see if it people will like it.
That will be a complete waste of time.
Ask them first. Go read Yes, but who said
they’d actually BUY the damn thing? [
http://blog.asmartbear.com/customer-
validation.html] and come back. Go
ahead, I’ll wait.

Myth #3: I don’t have any money
Who said anything about money? Unless
you have come up with an idea that
absolutely needs money to get going,
which I think should be relatively rare in
this Internet world of the Long Tail, you
can get going for free. Zero. Zip. Zilch.
Be creative about how you get what you
need. Barter, trade, consult. Make it a point
to spend as little as possible to get things
done until you can actually justify spend-
ing money you don’t have on it. Better yet,
don’t spend money at all until you’ve got
it coming in from actual customers.

For my current project, I splurged and
set up a hosted account at DreamHost
for my Django needs. I love it, but I
consider it a luxury. I could have built
it with Google App Engine for free, but
heck, for $100 a year I think I can stom-
ach that. I’m planning on using Chargify
at a monthly cost of (you guessed it) free
until I get enough customers to justify
paying for an account.

You don’t need money to get started.
If you think you do, and especially if
you’re a first-time entrepreneur, you
should probably think twice.

Myth #4: I don’t know how to
market/design/etc
This is not a good reason to avoid
starting a startup, but I must admit that
it is probably the biggest reason people
hesitate. As a developer, I am terrified of
sales. I hate spending any amount of time
on the phone. I don’t enjoy thinking of
new ways to attract more people to my
site. I just enjoy building things. If you
find yourself nodding your head, you
have one of two choices:

 Find a co-founder that is good at what
you’re not. Focus on what you’re good
at. If you’re a developer, spend all
your time listening to your users and
building a great product. Sales and
marketing are a full-time gig all by
themselves. It is extremely difficult to
master both worlds. If you have two
technical co-founders, you might be
able to get by splitting the market-
ing and sales tasks, but I think you’ll
find that one of you is better than

36 PROGRAMMING

the other, and will end up spending
more time doing it. Now, just because
you’re the “developer” doesn’t mean
that you shouldn’t be involved in sales
or marketing. Although you’ll get the
most bang for your buck by playing to
your strengths, you should also know
exactly what is involved in the sales,
marketing, or PR side of things. That
will prevent you from ever saying to
yourself “Man, why can’t John ever
bring in any real customers? Why do
I feel like I’m doing all the work?”
When you realize how hard market-
ing and sales are, you’ll appreciate it
more. Get your hands dirty! Step up!
Conversely, sales or marketing-savvy
co-founders should spend some time
at least reading through the code. Give
them a chance to contribute a little. At
the very least, they might consult with
you about a new feature before selling
one that doesn’t exist if they know
how hard and time-consuming your
job is as well. Take the magic/black-
box aura out of the equation and get
your hands dirty!

 Step up and learn how to do it. This
will mean that you will need to
set aside your code for awhile and
learn how to market effectively or
essentially become a Sales/PR person.
It takes time, so don’t give up! The
good news is that what works for one
company or website will not necessar-
ily work for another. “What,” you say?
“That sounds like bad news.” Look at it
this way: The worst you can do is fail.
I say that tongue-in-cheek but it’s true.
If you fail at a marketing campaign,
so what? TRY again some other way.
Add it to your list of failures and move
on. Learn what you can from books,
forums, websites, how-tos, etc, and
then go out and EXPERIMENT. You
don’t have to have money to experi-
ment either. Be creative and resource-
ful. You need to learn about what
works for your company, not someone
else’s. Take what lessons you can learn
from others and try something.

Myth #5: I need a steady income
— I can’t quit my job!
This may be more of a reality than a
myth, but it is no reason to continue
with the status quo. Do you really want
to work for someone else every day, on
their terms, for the rest of your life? No?
Well that’s going to require some sacri-
fice. Of course, you know that, otherwise
you wouldn’t be reading this article!

If it is even slightly possible, the best
thing you could ever do would be to quit
your job and focus 100% of your time on
your startup. Doing so forces you to focus
on quality and making something people
are willing to pay for. The need to pay bills
and buy food is an incredible motivator.

If, like me, you have young mouths to
feed and quitting just isn’t an option, you
can still find time — it will just take longer.
“See Myth #1: I don’t have any time.”

Great startups don’t happen over-
night. They take time. It can take years to
really gain some traction. Don’t give up!

Once you have a decent working pro-
totype built, go back to the people who
told you it would be a good idea (you
did do that in the first place, didn’t you?)
and get feedback. I have found that this
is a great source of encouragement. You’ll
probably get some haters, but consider
that a good thing! If people are passion-
ate about your project, then you may
have hit a nerve. Take in their criticism
and improve. The last thing you want is
a bunch of people telling you something
is a great idea, because they don’t want
to offend you. What you end up with in
that situation is a mediocre product that
nobody really cares about.

Once you start gaining some traction
and real users, consider getting your
project funded. Ask friends and family to
invest or talk to an angel investor. If you
can’t convince them to fund you, that
doesn’t necessarily mean your idea sucks,
it just means you need to refine it and
get more users. If you can get and retain
users, then you’re obviously on to some-
thing. In this world of the Long Tail, you
don’t have to have a massively funded or
mainstream project to make money!

Myth #6: I can’t find a partner
One of the biggest reasons startups fail
is because of bad partnerships. Infighting
or co-founders who are not pulling their
fair weight can kill your idea faster than
anything else. It is extremely important
that you pick a co-founder who is as
passionate about your idea as you are.

Don’t expect someone to be as
passionate about your idea as you are
right off the bat. You have had a lot more
time to think and dream about it than
they have. Criticism and playing “devil’s
advocate” should be welcomed when
discussing an idea. Do you really think
you speak for everyone? You should
actually welcome dissent, as long as it is
constructive criticism.

Where can you find a good co-
founder? The best place to look is among
people you already know. There is a
much lower risk of a personality clash if
you already know them and their work-
ing habits and passions.

Because starting a startup is hard
work with little payoff initially, you need
someone who understands and appreci-
ates this. Take part in communities like
Hacker News or Founders Mix to find
people that think the way you do.

If you have a community like Gang-
plank near you, go hang out. Learn from
people there and don’t be afraid to share
your idea with everyone you come in con-
tact with. Don’t try to guess what people
want, ASK them! It’s silly to walk around
afraid to mention your idea to anyone
because “they might steal my idea.” Ideas
are a dime a dozen. If you’re afraid that
they can execute your idea better than
you, then you have bigger problems.

Now, get out there and build some-
thing people want!

Bryan Hales is a C# developer by day and a
Django hacker by night. He has been in love
with the entrepreneurial spirit and attitude
since he was a young boy. Whether or not you
actually end up running a startup of your own
or not, he is a firm believer that the Startup
Culture can offer businesses of any size con-
siderable advantages. He writes about his
entrepreneurial thoughts and experiences at
http://www.intermittentintelligence.com

http://www.intermittentintelligence.com

 37

I OCCASIONALLY SEE MESSAGES like this from aimless,
excited programmers:

Hey everyone! I just learned Erlang/Haskell/Python,
and now I’m looking for a big project to write in it. If
you’ve got ideas, let me know!

or

I love Linux and open source and want to contribute
to the community by starting a project. What’s an
important program that only runs under Windows
that you’d love to have a Linux version of?

The wrong-way-aroundness of these requests always
puzzles me. The key criteria is a programing language
or an operating system or a software license. There’s
nothing about solving a problem or overall usefulness
or any relevant connection between the application and
the interests of the original poster. Would you trust a
music notation program developed by a non-musician?
A Photoshop clone written by someone who has never
used Photoshop professionally? But I don’t want to
dwell on the negative side of this.

Here’s my advice to people who make these queries:
Stop and think about all of your personal interests

and solve a simple problem related to one of them. For
example, I practice guitar by playing along to a drum
machine, but I wish I could have human elements
added to drum loops, like auto-fills and occasional
variations and so on. What would it take to do that?
I could start by writing a simple drum sequencing
program – one without a GUI – and see how it went. I
also take a lot of photographs, and I could use a tagging
scheme that isn’t tied to a do-everything program like
Adobe Lightroom. That’s simple enough that I could
create a minimal solution in an afternoon.

The two keys: keep it simple, make it some-
thing you’d actually use.

Once you’ve got something working, then build
a series of improved versions. Don’t create pressure
by making a version suitable for public distribution,
just take a long look at the existing application, and
make it better. Can I build an HTML 5 front end to
my photo tagger?

If you keep this up for a couple of iterations, then
you’ll wind up an expert. An expert in a small, tightly-
defined, maybe only relevant to you problem domain,
yes, but an expert nonetheless. There’s a very interest-
ing side effect to becoming an expert: you can start
experimenting with improvements and features that
would have previously looked daunting or impossible.
And those are the kind of improvements and features
that might all of a sudden make your program appeal-
ing to a larger audience.

James Hague is a recovering programmer who now works
full time as a game designer, most recently acting as Design
Director for Red Faction: Guerrilla. He’s run his own indie game
studio and is a published photographer.

Advice to Aimless,
Excited Programmers

By JAMES HAGUE

Reprinted with permission of the original author.
First appeared in http://hn.my/advice/.

http://hn.my/advice/

38 PROGRAMMING

Agile Ruined My Life

I READ THE REPLY to my comment
on a popular hacker board with
sadness:

(disclaimer: Agile consultants ruined
the software group I work in.) Making
good software is hard, and anyone
claiming to have a magical process that
guarantees good software is selling snake
oil. I can appreciate your wanting to
make a buck, but would also seriously
appreciate it if you could find some other
industry besides software development to
go screw up

Reminded me of an email I received
back in May:

[We] started working on [agile technique
X] when [author]’s [famous book] was
just a draft. I was on that project and
worked on Agile Projects for a decade.
(Next time you meet [famous guy], ask
about me, I just finished reviewing his

forthcoming [another famous book]).
I am a founding member of the Agile
Society of [place] and have organized
conferences on Agile. I’ve attended XP
Conf as well. I’ve probably worked in
more agile projects than you ever have
(not that it particularly matters). So let
us first dispense with the notion that
your notion of what constitutes “true”
agile and its scamsters is somehow the
only standard....

Do you deny that the whole Scrum
Master idea is a scam within the Agile
Camp?

Scamster? Ron Jeffries the guru/
founder of Agile couldn’t write a Sudoku
implementation with his favorite
technique “TDD” and refactoring over
five weeks. Fraud.

Robert Martin (another “guru” and
agile consultant) claims that any code
not written with TDD is “stone age” code
including such things as Unix and such

people as Norvig and Linus and Zawin-
ski who’ve built more code than he can
dream of. Dalke poked holes in his TDD
“kata” which never got answered Fraud.

I could go on and on. And these are
the gurus. But that isn’t the point. i
saw “agile consultants” evolve from
some naive but well meaning people
(like Kent) to scamsters like X and co
and tose are just at the top. Practically
every single “Scrum MAster” is a fraud.
The more intelligent among them admit
that two days of listening to a higher
level shyster teach nothing and it is just
a signal to dumb managers to improve
their chances of getting a project. Yet they
go along. That in my eyes is a scam like
chiroproctors or reiki people claiming
to be doctors. Agile was amovement
founded by scamsters and propagated
mostly by scamsters.

By DANIEL MARKHAM

 39

I’ve had many such conversations over
the years. There are some seriously pissed
off people about Agile out there. Why?
Isn’t agile supposed to be warmth, apple
pie, motherhood, goodness and all of
that? Why so much anger?

The easy answer – and the answer
most agile-lovers would give – is that
these folks are simply non-hackers. Bad
attitude, poor skills, interpersonal con-
flicts – the reasons are many and diverse
as to why a small percentage of folks are
just going to get ticked off at anything
you try to do.

I don’t accept that. Or rather, while it
may be true, it is also an excuse for non-
action. I view every piece of feedback as
a cause for some kind of action.

And the thing is, it’s not just the
people who are being trained. I’ve done
my fair share of complaining about vari-
ous pieces of agile, and I’ve seen many
other coaches – in private– grumble and
complain as well.

So it’s time to get honest. Take a good
look at ourselves.

Here are the problems I see and hear
about:

Fake success stories - People think
they can take some lame project that’s
mostly done, apply a little agile, then
proclaim how great it was? Come
on, folks, this isn’t fooling anybody.
Everybody knows exactly what it is:
propaganda. Making it worse, many
times the experts brought in are the
last to know what a pointless photo-op
exercise it was, leading them to “learn”
incorrect things from the experience
as well, then “sharing” that knowledge
with new teams, continuing the cycle
of crap.
Trainers who can’t do the work - I
have good friends who teach agile
and haven’t coded or led a team in
years, so to them I apologize. But if
you’re going to train something, you
should be able to do it. And I mean
do it to a very high level of expertise.
An agile coach should be able to code,
perform analysis, manage the project,
test – anything that needs doing on

a project. If she can’t, then how can
you talk to her about your particular
situation? If your agile trainer was a
BA last week, or never slung code in
his life, or is a professional trainer, or
– let’s be brutally honest – is making
less than the members of the team
are, you’ve got a dud. It seems like
common sense but it bears repeating:
you can’t train something you haven’t
done. And “done” means a bunch of
times, not just on the pilot project.
I had a company once that wanted
me to train several people to be agile
coaches – people who never knew
agile before I walked in the door two
weeks before. Hell, if I could do that
I’d be printing money, but it doesn’t
work like that. Does anybody go to
school to be a famous baseball coach?
Or do they learn to play baseball first
and then only some of them realize
that they have a talent for coaching?
Nine women can’t have a baby in one
month, no matter how much you wish
it were so.
Inflexibility on the part of adherents
- I worked with a lady who wrote an
article asking “why are we complaining
about Scrum teams not succeeding
when they’re really not doing scrum?”
This attitude – that there is a list of
things that must be perfectly done and
failure is a result of not doing them
– is basically religious in nature. You
can never do enough. If the team fails?
Well, it wasn’t agile enough. It’s non-
sense, that’s what it is. Lots of great
agile teams fail. And lots of teams who
are not agile do very well.
“Feel good” agile - One of my friends
went to an agile conference. She told
me she left one class because it was
about “the use of haiku in team-
building.” While I love poetry, seems
a bit fluffy to me (and to her). I have
several friends who, god love them,
are hippies. It’s all bunnies and floaty
clouds and harmonics and karma.
These things may have an important
part in life, but I don’t want to sing
Kumbaya, I want to have a fun and
productive team. Don’t get me wrong

– I love unusual and off-the-wall
techniques. But the agile community
has at times embraced the far fringe of
wackiness too. It’s hard enough getting
extremely detail-oriented analytical
people to stand up and talk to each
other every day. Getting them to put
on a puppet show for their showcase
is just a bridge too far. We need to
tone it down.
Magic Bullet Syndrome - One of the
first things they tell you in Scrum class
is that Scrum is not a magic bullet.
Then they spend the rest of the time
telling you how it’s the best thing
since sliced bread. We’ve all met and
worked with the guys who already
have the answer – you just need to
ask the question. The solutions have
already been determined for whatever
problem you might have. These people
are extremely annoying. It’s like
talking to a wall. Bad, bad. I knew a
guy once (another famous guy) that
would love to stand up and give an
impassioned plea for just doing scrum.
Whatever the problem, whatever the
actual situation, you could count on
him to bloviate about Scum. Not only
ineffective, but highly annoying. You
don’t know whether to laugh or cry.
Reversal of team dominance - I know
a lot of guys who teach agile. Sadly,
many of them impose agile on teams,
not train them. You come in with a
big stick, then proceed to beat people
with it until they “conform.” The
dynamic is backwards – the outsider
is somehow in charge instead of the
team. One guy (famous author again)
basically put it like this to me when
I told him the team wasn’t succeed-
ing: I’m here to demonstrate certain
practices and to show that they work,
not to just stop everything and attend
to what the team is dealing with
today. Sadly, upper-level management
encourages this kind of behavior.
Many clients will ask me to provide
a schedule an a checklist for how I’m
going to make their teams agile. I tell
them look, I can provide the informa-
tion, and I can coach the team as it

40 PROGRAMMING

works the problems, but the problems
are going to be people problems, not
technology problems. And guess what?
People don’t respond very well to
being treated like machines.
Cargo Cult Agile - There are a lot of
teams doing cargo cult agile out there,
also called theater agile. It’s where
everybody knows their lines, the ritu-
als, and where to stand and how to act.
It’s like an orchestrated pagent. It’s an
awful, lifeless thing. Blech
Non-answers to questions - Can
agile work with distributed teams?
It depends. Can we use fortnights to
estimate projects? It depends. Can
agile work with embedded software?
It depends. Argghhh! Everything
depends. Sometimes no matter how
hard I try to be forthcoming, honest,
and direct, I end up sounding like
those guys from The Matrix the first
time you watched it. They said a lot,
but it didn’t really mean much. It all
sound like just so much gobbledygook.
I hate giving advice like that. I know
folks hate hearing it.
Conflicting Advice - Can you architect
and design before you code with agile
or not? Can you have requirements?
Can you work on requirements ahead
of the sprint you are in? Can you
roll-up multiple projects into usable
program management metrics? I could
list a dozen more questions which
have multiple answers, depending on
who you talk to. One guy says do it
this way. Another guy says do it that
way. It’s enough to drive anybody nuts.
Scamsters - I spoke at an Agile
conference back in 2009. One of the
first things I said to the audience was

“I don’t read agile books. They are
a waste of time.” Wow! You could
almost hear the groans throughout the
crowd! But I’m serious: 99% of agile
books out there are just people telling
stories about stuff. Stories are great
– love to hear them. But I can’t trust
the authors of most of these books to
tell honest stories and learn honest
lessons from them. Instead they have
a theme, an argument, a point-of-view.
And everything in that book is going
to support that theme, that point of
view. Heck, it’s just good book-writing.
The problem is, real life doesn’t have a
theme. Or if it does, it would be amaz-
ingly incredible and preposterously
improbable if your book matched
up with what was going on with my
organization. The early agile books
were so funny that I couldn’t read
them – I always started laughing too
much. When Bob Martin started trash-
ing developers who didn’t use TDD I
realized that many “agile experts” were
jumping the shark. Yes, there are a lot
of folks selling you things you don’t
need by convincing you that you need
it. A fair word for that is “scamster.”
It’s the same, only different - One of
the things I hate most about agile is
when management decides to “be”
agile, only they don’t want to change
anything. So then you’re teaching a
team that they are in control, that
they are responsible for important
decisions about how much work they
can do in each iteration and how to
do it – only they aren’t. This destroys
morale faster than anything. A while
back I turned down teaching TDD to
a team. Why? Because somebody up

above had decided the team was doing
TDD, not the team. The class would
have been three days of me trying
to share things that the team had no
desire to hear and wasn’t going to
practice. A lot of other coaches – the
vast majority, probably, would have
taken that gig, but I’m not going to be
part of the problem. Courage isn’t just
for teams.
Little Gold Star Syndrome - A
two-day class and a little gold star, or
your name on some website, doesn’t
mean jack squat in terms of what you
can do. Let’s just be honest about
that. The training might be great, but
the idea that getting a little gold star
sticker on your head is going to make
you significantly better is bogus.

WHEN TRAINING AGILE, one of
the first things I do is go over

definitions.
What’s Iterative Development?
What Incremental Development?
What’s Scrum?
What’s Agile?
The answers – both the ones I give and

the class’s – are interesting.
Iterative development is doing things

in iterations. Little bits of work done
over and over again. Agile is big on
time-boxes, but iterations can be done
based on features too. The idea is that
you do everything you need to do to
deploy. Then you do it again. Over time
the product gets better and better and
the team begins to have experience in all
phases of development.

Incremental Development is doing
things in little atomic pieces, called
increments. Say you want a checkbook

“One of the things I hate most about agile is
when management decides to “be” agile,
only they don’t want to change anything.”

 41

program, so increment 1 might be log-
ging in. Increment 2 could be writing a
check, etc.

So far, so good. Most folks think that
iterative and incremental development
are good ideas. If not, then welcome to
2010. There are other ways of doing
things, sure. But most folks are already at
this point.

So what’s Scrum? It’s a standardized
version of project management tools
for iterative and incremental develop-
ment, that’s what. It has a board, a test,
a class. It’s a monolithic thing. When we
talk scrum we have concrete terms and
concepts to discuss (like them or not,
separate subject).

Our final question: what’s Agile?
Usually a couple people have ideas. “It’s
TDD” one might say. Another might say
“There’s a manifesto I think”

After a long pause I tell the class what
sounds like a joke but isn’t.

Agile has no definition.
Nada. Zip. Bupkis.
There’s no standards board, there’s

no test, there’s no approved workbook,
there’s no checklist.

Agile is nothing like Scrum. Personally,
I think that’s a good thing.

Agile is a set of best practices around
running iterative and incremental
development teams. It’s a marketing
term. Sure, there’s a manifesto, and there
are experts (I’m one of them), and there
are conferences, and books, and classes,
and god knows what else. But it’s just
best practices.

It’s based on three things: principles
not practices, attention to people, and

 always be adapting

To some, this might be so fuzzy as to
mean nothing. If so, I apologize. I can
assure you that there really is a structure
and line of progress to learning agile. I
can also assure you that teams that “get
it” are happier and produce a lot more
than teams who don’t.

But it IS an art, not a science. You
don’t just read a book or take a class and
suddenly you are agile. It’s more like
playing jazz piano. You learn a bit, you
do a bit, you take an honest inventory
of what works and what doesn’t, then
you learn a bit more. And so on. It’s the
doing , the reflecting, and the adapting
that count the most. You don’t learn
to play the piano by watching a film of
somebody else playing, reading a book
about it, or going to a conference. And
you don’t learn by making yourself into a
robot, following a series of rules without
exception. Would you try to play the
piano by dressing up like a pianist,
renting Carnegie Hall, and simply acting
as much like a great piano player as pos-
sible? Yet every day some poor schmucks
are sitting in a stand-up that lasts for an
hour and is more of a brutal daily status
report than something collaborative. And
we call that agile.

The commenter from yesterday
went on to say that he was working in a
development group that was happy and
productive. Then they were bought out
by a larger firm who decided to “do agile”
on them. Productivity went down the
tubes, morale suffered, and people were
told to adapt or get lost.

Iterative and incremental development
isn’t for everybody. Lots of teams do
things completely ad-hoc. Lots of teams
are happy with waterfall. Lots of folks just

don’t care to change. These are all good
reasons why agile might be a bad idea.

My standard for what agile isn’t
universal, sure. but I’m very happy
teaching best practices for iterative and
incremental development. You can call
that agile, you can call it Joe. Whatever
it is, helping people see things and try
things they haven’t seen or tried before
– and then letting them decide whether
it’s working for them or not – is a pretty
good business to be in. But there are a
LOT of problems in this business, and
ignoring them won’t make them go away.
Over time there can be an us-versus-
them attitude that sets up between any
two groups of people. We must always be
on guard for this. If you’re not a servant
to the team, you shouldn’t be in the
room. That’s just as bluntly as I can put
it. The problems listed above are owned
by all of us, and it’s our job to make sure
we address them as best we can.

Daniel Markham is the principal partner of Bed-
ford Technology Group, a consulting firm that
trains teams in large organizations to run like
startups. When he’s not consulting with large
companies, he’s a serial inventor and small team/
startup junkie who has created dozens of vari-
ous websites and apps. Daniel programs in most
all major languages and database platforms,
although he currently is excited about working
in F#. He lives with his wife and 2 kids in rural
Virginia.

“You don’t just read a book or take
a class and suddenly you are agile.”

Reprinted with permission of the original author.
First appeared in http://hn.my/agile/.

http://hn.my/agile/

42 HACKER COMMENTS

HACKER COMMENTS

On: You’re a Developer, So Why
Do You Work For Someone Else?

From NIR YARIV (nir)
I’m happy for the author and wish him
success. But the assumption that being
a good developer can make you rich is
misleading.

Reading PG may create the impression
that building a successful company is an
engineering-like process, deterministic
and repeatable. It is not. It’s a chaotic
process that cannot be reliably planned.
Thinking “Zuckerberg coded a PHP app,
I can code a PHP app” is like thinking
“That old lady bought a lottery ticket. I
can buy a lottery ticket..”

Building a smaller business that
supports a few people is a different story
(and a worthy goal unto itself). But that’s
not “sitting on a goldmine.”

EDIT: Just wanted to add I have huge
respect for this guy, building a business
while supporting a family. My beef,
such as it is, is with simplistic picture of
startups often painted in HN. The actual
people giving it a go, you have to respect.

On: Advice to Aimless, Excited
Programmers

From DANIEL KROL (orblivion)
It’s funny because some of us have
the opposite problem. Too many
ideas, but not that much interest
in learning new languages for their
own sake. So when it comes down to
implementing a new idea, we want it
done quickly. We don’t want to take
the time to try to figure out how to
make it in Haskell, and just revert
back to Python.

On: Agile Ruined My Life

From RAPHAËL AMIARD (Raphael_Amiard)
As a young software developer, what
really bores me with Agile, is the name,
the shiny box you put things into, where
it should just be named “Good practices
for software development.” It’s the
mentality of selling things as products,
with some kind of prebuilt ideology and
aesthetic built along with the core, that
really makes me run far far away.

I don’t want to be sold a product. The
fact that it led people to try new ways
of developing software, be it TDD or
pair programming or whatever, is good,
but heck, just give me the core idea,
remove the gift wrap, and go away. I
don’t want nor need some kind of new
age manager coach.

Anyway, the article seems to be
making this very point in some way,
but then, why the name agile? Well for
marketing of course. So, while i sort of
agree with the article, well I’ll just be far
away looking, thanks.

On: Product For People Who Make
Products For People

From REGINALD BRAITHWAITE (raganwald)
I hear a lot of “programmers don’t do good
UI” as well as “marketers dictate bad UI” in
my travels. I used to try to work out some
sort of theory about which statement is true,
and why. But then I experienced a revela-
tion, Sturgeon’s Revelation:

90% of everything is crap.

Therefore, if handed ten UIs designed by
programmers, nine will be crap. If handed
ten UIs designed by marketers, nine will be
crap. Perhaps there is a characteristic way
in which the nine programmer crap UIs are
crap, but the observation that most pro-
grammer UIs are crap is not insightful and
doesn’t magically justify the idea of turning
UI design over to product management.

On: How Do I Write So Much

From JACQUES MATTHEIJ (jacquesm)
So, is this one of the crappy ones or
one of the good ones? ;)

Agreed whole heartedly though,
if you are a “producer” there will be
tons of stuff that is not fantastic but
that might be useful to somebody.

The funny thing is that it is
unpredictable, what will be appreci-
ated and what not. Sometimes I fire
off a 10 minute blog post and it gets
retweeted for days or even weeks
after, and sometimes I work for
hours and hours on something and
nobody cares.

I see the “lower grade stuff” as
taking a break from the other stuff
whilst still keeping busy. Sooner
or later you find yourself engaged
with more interesting things again,
if you “broke the routine” just
because you’re not doing anything
worthwhile you’d find your source of
inspiration dried up pretty quickly.

So keep busy, by all means, and
fail often, looking forward to the
gems. Like this one:
http://sebastianmarshall.com/?p=95

http://sebastianmarshall.com/?p=95

 43

For links to the posts on Hacker News, visit hackermonthly.com. All comments are reprinted with permission of their original author.

Exercise is basic necessary maintenance
required by the human body. You either
do it and have a happy/healthy body, or
you don’t. Eating healthy is just as impor-
tant, separated into two categories: overall
caloric intake, and nutritional content.

Car analogies are a dime a dozen in
computing, but they apply here as well.
Not exercising is like changing the oil
in your car every 10,000-15,000 miles,
instead of every 3,000 - 6,000. Your car is
still going to last years, but its lifespan will
be shortened, and it’s going to run poorly
towards the end of it. The nice thing
about a car is you can repair it, or buy a
new one. Repairing a human is tricky, and
you definitely can’t buy a new one.

I’m absolutely baffled by those who
put their careers or money at a higher
priority than their own physical health.
You really want to be rich and famous
with a crappy body? Is type 2 diabetes,
along with likely amputations, blindness,
and erectile dysfunction, your thing?
Looking forward to clogged arteries
and heart disease? What about stroke,
wiping away your ability to control your
own body, or even being able to think or
speak? Etc, etc...

I don’t intend to be mean, but many
American’s simply don’t prioritize their
health high enough. People seem to have
every excuse in the world not to do it,
except for a good one.

True story. My brother is enrolled for
his doctoral in physical therapy. He dis-
sected cadavers (donated human corpses)
during one of his classes. My family and
I went out to visit, and he was able to let
us look at one.

My father, who is about 30 pounds
overweight in his late-50’s, hasn’t really
cared about his health. He eats too much
high-saturated-fat ice cream, puts cream
in his coffee, likes cookies with lots of
butter in them, etc... I’ve been trying to
get him to eat healthier and exercise for
years to no avail.

Well, my brother was having me
hold/feel the heart from the cadaver
(it was already cut out of the dissected
body). I was squishing some of the
arteries with gloves on, and my brother
said “Try squishing this Coronary Artery.
Sometimes it might be crunchy from
heart disease.”

So I did, and WOW! It was ROCK
SOLID! So much calcium and plaque
had built up inside this persons heart
that it completely clogged the artery. It
was as if there was a pebble-sized rock
inside of it.

Of course, I forced my father to put
some gloves on and feel it for himself.
Well, that scared the SHIT out of him!
These last few weeks since, he’s made
a decision to stay away from high-fat
foods (and has been doing so - non-fat
ice cream now, skim milk in coffee,
etc...). He’s also putting together an
exercise room.

It looks like he’s in the right mindset
now, which is a very good thing! Some-
times the dagger of death hanging over
your head is the best motivator. :)

On: Most Common Words Unique
to 1-star and 5-star App Store
Reviews

From TOM DARROW (lotharbot)
The words that leap out at me from the
one-star list are “actually” and “says,”
words indicating that real behavior dif-
fered from expected/advertised behavior.
The app says X but actually does Y, and
therefore sucks. This strongly underscores
the value of consistency between what
your customers think they’re getting and
what you actually deliver.

On: Staying Healthy and Sane At a Startup

From DAVE GALLAGHER (dgallagher)

Dream. Design. Print.

25% O! the First Issue You Publish
HACKER

http://www.magcloud.com

	Contents
	FEATURES
	Products For People Who Make Products For People
	Staying Healthy and Sane At a Startup

	STARTUPS
	New Trends In Startup Financing Explained For Laymen
	10 Usability Tips Based on Research Studies
	The Accidental Launch
	Most Common Words Unique to 1-star and 5-star App Store Reviews

	SPECIAL
	Regrets of the Dying
	The Most Powerful Colors in the World
	How Do I Write So Much

	PROGRAMMING
	The Treacherous Optimization
	You’re a Developer, So Why do You Work For Someone Else?
	Advice to Aimless, Excited Programmers
	Agile Ruined My Life

	HACKER COMMENTS

