

 [image: Hacker Monthly July 2010]

Curator's Note

Issue 2 July 2010

I'm overwhelmed by the overall reception from the launch issue
of Hacker Monthly. It sold more than two hundred copies (my goal
was a hundred), has been downloaded more than ten thousand times,
and email subscribers have more than doubled (3,900 and counting).
Best of all, lots of readers sent in their form of support, whether
it's a simple email, suggestion to improve, donation, or offer to
help. Thank you all.

In this issue, I'm especially grateful for the help of the
excellent proofreader, Ricky and the incredibly talented
illustrator, Jaime.

A new section has been added in this issue, called Hacker
Comments. We created Hacker Comments thanks to suggestions by our
readers, who made a strong point that the most interesting thing
about Hacker News is the comments. Indeed. -- Lim Cheng Soon

HACKER MONTHLY is the print magazine version of Hacker News --
news.ycombinator.com -- a
social news website wildly popular among hackers and startup
founders. The submission guidelines state that content can be
"anything that gratifies one's intellectual curiosity."

Every month, we select from the top voted articles on Hacker
News and print them in magazine format. For more, visit hackermonthly.com.

Curator

Lim Cheng Soon
Contributors

Spencer Fry

Matt Welsh

Joey Devilla

Geoffrey K. Pullum

Mike Taylor

Jeff Atwood

Zack Linford

Jacques Mattheij

Zack Hiwiller

Bruce Schneier

Dominic Szablewski

Jakob Nielsen

Rafael Corrales

Proofreader

Ricky de Laveaga
Illustrators

Jaime G. Wong

Pasquale D'Silva
E-Book Conversion

Fifobooks.com
Printer

MagCloud
Advertising

ads@hackermonthly.com
Rate Card

hackermonthly.com/ratecard
Contact

curator@hackermonthly.com
Published by

Netizens Media

46, Taylor Road,

11600 Penang,

Malaysia.

How to Bootstrap

By SPENCER FRY

In my 10+ years of running Internet companies, I've never raised
a single dime, yet I've still gone on to sell three profitable
companies and am currently on my fourth, Carbonmade. Bootstrapping
is something I'm very familiar with, so I've gathered together some
thoughts that should provide you a step-by-step process of going
from idea to product to profitability. I have nothing against
raising money -- angel or venture capital -- it's just not the
process I'm most familiar with. How to bootstrap goes hand-in-hand
with how to run a lean startup, so expect some crossover below.

Idea Generating

Idea generating is only slightly different when you're
bootstrapping than when you're looking to raise money. The only
important difference is: if you're planning to bootstrap your idea
must have built-in revenue generating functionality from the get
go. Building Twitter is off the table.

You can't wait to hit scale before turning on the revenue
features. That's why ideas around Software as a Service (SaaS) are
so effective for bootstrapped companies, because you only need one
customer to reach revenue -- and, with inexpensive hosting costs,
probably only a dozen or two to reach profitability.

Bootstrapped companies can't afford to wait around to reach a
network effect. you need to start generating dollars as early as
possible so that you can quit your day job or put a stop to the
draining of your bank account as soon as possible. Bootstrapping
startups don't have the luxury to wait around. So when generating
an idea for your startup, toss out everything that doesn't involve
charging a fee for at least some of your clients. Leave the ad
revenue and crazy business model revenue streams to the startups
with venture funding. That's just not your game to play.

Team Building

You can either come up with the idea first or the team first. I
think it's fine to do it in either order, but it's probably best to
come up with the idea before the team. Then you can build a team
around the idea. When bootstrapping, you need to find a team that's
willing to work for nothing and spend their off hours with you, so
finding these types of people can take some searching. you're far
more limited in your choices. The worst thing you can do is work
with people who can't comprehend the idea of bootstrapping. you
need to work with people who understand that their nights and
weekends are going to be fully dedicated to building a product.
They'll be working two jobs, not one. you need to explain to
everyone you depend on how a bootstrapped company works: Revenue
generation is slow at first, though steady, and it could take a
year or more of hard work before they can quit their other job and
work full-time on the company. But the advantage here is that after
a few months off the ground you'll have a clear sense of how soon
that day can come. Another advantage of a bootstrapped company on
the SaaS model is that it's really easy to calculate your cash
flow.

It goes without saying that the people you work with should have
complementary skills to your own, but the bootstrapper's "slow but
steady" mindset is just as important to the health of your company.
you'll find a lot of people may not be comfortable with this
approach. Weed those people out as co-founders when you're
bootstrapping a company. A one and done approach won't work
here.

Off Hours

Almost every bootstrapped company begins as an off-hours
tinkering project. That's true of Carbonmade, which Dave built for
himself first; that's true of TypeFrag, which I built over the
course of a week during my sophomore year in college; that's true
of 37signals' Basecamp, true of Anthony's Hype Machine and lots of
other companies.

The good thing about bootstrapping is that you don't need to
spend a single penny outside of server costs and you can even do
most things locally before having to pay any money on a server.
your biggest expense is time, and that's why off hours are so
important.

Consult on the Side

The way we started Carbonmade, the way 37signals started, the
way Harvest started, and many other startups too, was by first
running a consulting shop. We ran a design consulting company
called nterface that Carbonmade grew out of. It's great, because
the money you're bringing in through client work tides you over
while you're waiting for your startup to grow.

Carbonmade was live for nearly 18 months before we started
working on it full-time. During those first 18 months, we were
taking on lots of client work to pay our bills. The great thing
about consulting through the early months is that you can take on
fewer and fewer jobs as your revenue builds up. For example, you
may need a dozen large projects during the first year and only two
or three during the second year. That was the case for us.

I know of other successful bootstrapped companies that during
the first year would take on a single client project for a month or
two, charging an appropriate amount, and that would give them just
enough leeway to work on their startup for two or three months.
Then they'd rinse and repeat. They did this for the first year and
a half before making enough money to work on their startup
full-time.

There's no need to Rush

When you're bootstrapping there's no rush to get things out the
door, even though that's all you hear these days. I know people
talk about iterating quickly, and that's all well and good, but
when you're bootstrapping and not meeting anyone's deadlines but
your own you can take your time to better perfect your product
before every release. In my opinion, you should strive to be more
Apple-like and really think things through. If you don't take money
from an investor who will demand quick new product releases, you
can take the time it needs to perfect things. The first few
iterations of your product are everything, and bootstrapping
through this beginning phase can allow you to take your time and
think through everything. If you're too worried about getting off
the ground quickly, then you're bound to make a mistake.

Building organically

Bootstrapping a company allows you to grow it organically. We at
Carbonmade always refer to this as incubating your project. We like
to release something, let it sit, feel and gauge the reaction, and
then move on from there. you don't have this kind of freedom when
you're not bootstrapping, because you're desperately trying to ramp
up as quickly as possible.

I've heard stories of companies acting too quickly on initial
feedback only to undermine themselves going forward because the
feedback was from the wrong user group. For example, if only web
designers had given us feedback in the early days of Carbonmade,
demanding more precise tools for editing the look and feel for
their site, we would have never realized that our market is far
more broad: the masses of creative people who don't have a
build-it-yourself skill set. We would have limited Carbonmade to a
smaller group of people and never have gotten as big as we are
today.

Making that First Dollar

Bootstrapping is all about making that first dollar. When I
launched TypeFrag we didn't get any sign-ups for the first week and
this got us very worried -- my partner and I almost threw in the
towel -- but about five days into it we got our first bite. Then
another. Then three the next day. And more and more. Sign-ups began
to pile up well beyond what we had anticipated.

All this money coming in meant we could begin to lay out our
plans. If no money had come in, we would have had to drastically
change directions. Revenue validated our idea, and as every dollar
came in we got a better sense of our cash flow and could plan the
future development of TypeFrag more accurately. We were able to
quickly figure out that people wanted PayPal, so we add that and
saw even more money come in. your first dollar validates your
product, your business model, and everything else.

When Investors Come A Calling

As soon as you make that first dollar, investors are going to
start making inquiries. That's a good sign! It means you're doing
something right. They're not scary guys and most of them are really
nice and great people to meet with! Even Jason Fried, the man who
is well known for scorning investors, says in 37signals' 13th
podcast that it may even make sense for your bootstrapped company
to take investment after you've gotten off the ground. I completely
agree, as long as you know exactly how you're going to put that
money to use. Furthermore, the outcome you anticipate you'll get
from taking money needs to be well beyond what you anticipate doing
without it. My advice: Consult with a select few people you really
trust who aren't tied too closely to your company and see what they
have to say. Try and find someone who has raised money before and
had a successful outcome or two. Share everything with them and see
if taking that $2.5 at a $10m valuation makes sense. Can you put
that $2.5m to use to make your company worth at least 10x more than
it's worth today in three to five years? §

Spencer Fry is the co-founder and CEO of Carbonmade,
handling day-to-day operations, accounting, legal matters, customer
service, marketing, advertising, and "everything else" that's not
design or code. Carbonmade is the easiest way to display and manage
your portfolio online, with over 225,000 members.

Reprinted with permission of the original author. First appeared
in http://spencerfry.com/how-to-bootstrap.

The Secret Lives of Professors

By MATT WELSH

I came to harvard 7 years ago with a fairly romantic notion of
what it meant to be a professor -- I imagined unstructured days
spent mentoring students over long cups of coffee, strolling
through the verdant campus, writing code, pondering the infinite. I
never really considered doing anything else. At Berkeley, the
reigning belief was that the best and brightest students went on to
be professors, and the rest went to industry -- and I wanted to be
one of those elite. Now that I have students that harbor their own
rosy dreams of academic life, I thought it would be useful to
reflect on what being a professor is really like. It is certainly
not for everybody. It remains to be seen if it is even for me.

To be sure, there are some great things about this job. To first
approximation you are your own boss, and even when it comes to
teaching you typically have a tremendous amount of freedom. It has
often been said that being a prof is like running your own startup
-- you have to hire the staff (the students), raise the money
(grant proposals), and of course come up with the big ideas and
execute on them. But you also have to do a lot of marketing
(writing papers and giving talks), and sit on a gazillion stupid
committees that eat up your time. This post is mostly for grad
students who think they want to be profs one day. A few surprises
and lessons from my time in the job...

Show me the money.

The biggest surprise is how much time I have to spend getting
funding for my research. Although it varies a lot, I guess that I
spent about 40% of my time chasing after funding, either directly
(writing grant proposals) or indirectly (visiting companies, giving
talks, building relationships). It is a huge investment of time
that does not always contribute directly to your research agenda --
just something you have to do to keep the wheels turning. To do
systems research you need a lot of funding -- at my peak I've had 8
Ph.D. students, 2 postdocs, and a small army of undergrads all
working in my group. Here at Harvard, I don't have any colleagues
working directly in my area, so I haven't been able to spread the
fundraising load around very much. (Though huge props to Rob and Gu
for getting us that $10M for RoboBees!) These days, funding rates
are abysmal: less than 10% for some NSF programs, and the decision
on a proposal is often arbitrary. And personally, I stink at
writing proposals. I've had around 25 NSF proposals declined and
only about 6 funded. My batting average for papers is much, much
better. So, I can't let any potential source of funding slip past
me.

Must... work... harder.

Another lesson is that a prof's job is never done. It's hard to
ever call it a day and enjoy your "free time," since you can always
be working on another paper, another proposal, sitting on another
program committee, whatever. For years I would leave the office in
the evening and sit down at my laptop to keep working as soon as I
got home. I've heard a lot of advice on setting limits, but the
biggest predictor of success as a junior faculty member is how much
of your life you are willing to sacrifice. I have never worked
harder than I have in the last 7 years. The sad thing is that so
much of the work is for naught -- I can't count how many hours I've
sunk into meetings with companies that led nowhere, or writing
proposals that never got funded. The idea that you get tenure and
sit back and relax is not quite accurate -- most of the tenured
faculty I know here work even harder than I do, and they spend more
of their time on stuff that has little to do with research.

Your time is not your own.

Most of my days are spent in an endless string of meetings. I
find almost no time to do any hacking anymore, which is sad
considering this is why I became a computer scientist. When I do
have some free time in my office it is often spent catching up on
email, paper reviews, random paperwork that piles up when you're
not looking. I have to delegate all the fun and interesting
problems to my students. They don't know how good they have it!

Students are the coin of the realm.

David Patterson once said this and I now know it to be true. The
main reason to be an academic is not to crank out papers or to
raise a ton of money but to train the next generation. I love
working with students and this is absolutely the best part of my
job. Getting in front of a classroom of 80 students and explaining
how virtual memory works never ceases to be thrilling. I have tried
to mentor my grad students, though in reality I have learned more
from them than they will ever learn from me. My favorite thing is
getting undergrads involved in research, which is how I got started
on this path as a sophomore at Cornell, when Dan Huttenlocher took
a chance on this long-haired crazy kid who skipped his class a lot.
So I try to give back.

Of course, my approach to being a prof is probably not typical.
I know faculty who spend a lot more time in the lab and a lot less
time doing management than I do. So there are lots of ways to
approach the job -- but it certainly was not what I expected when I
came out of grad school. §

Matt Welsh is a professor of Computer Science at
Harvard University. His research interests include OS, network, and
programming language support for complex, large-scale systems,
including wireless sensor networks and cloud computing services. He
is the author of "Running Linux" and blogs at http://matt-welsh.blogspot.com.

Reprinted with permission of the original author. First appeared
in
http://matt-welsh.blogspot.com/2010/05/secret-lives-of-professors.html.

Scooping the Loop Snooper

A proof that the Halting Problem is undecidable

By GEOFFREY K. PULLUM

No general procedure for bug checks succeeds.

Now, I won't just assert that, I'll show where it leads:

I will prove that although you might work till you drop,

you cannot tell if computation will stop.

If P's answer is 'Bad!', q will suddenly stop.

But otherwise, q will go back to the top,

and start off again, looping endlessly back,

till the universe dies and turns frozen and black.

For imagine we have a procedure called P

that for specified input permits you to see

whether specified source code, with all of its faults,

defines a routine that eventually halts.

And this program called q wouldn't stay on the shelf;

I would ask it to forecast its run on itself.

When it reads its own source code, just what will it do?

What's the looping behavior of q run on q?

you feed in your program, with suitable data,

and P gets to work, and a little while later

(in finite compute time) correctly infers

whether infinite looping behavior occurs.

If P warns of infinite loops, q will quit;

yet P is supposed to speak truly of it!

And if q's going to quit, then P should say 'Good.'

Which makes q start to loop! (P denied that it would.)

If there will be no looping, then P prints out 'Good.'

That means work on this input will halt, as it should.

But if it detects an unstoppable loop,

then P reports 'Bad!' -- which means you're in the soup.

No matter how P might perform, q will scoop it:

q uses P's output to make P look stupid.

Whatever P says, it cannot predict q:

P is right when it's wrong, and is false when it's true!

Well, the truth is that P cannot possibly be,

because if you wrote it and gave it to me,

I could use it to set up a logical bind

that would shatter your reason and scramble your mind.

I've created a paradox, neat as can be --

and simply by using your putative P.

When you posited P you stepped into a snare;

your assumption has led you right into my lair.

Here's the trick that I'll use -- and it's simple to do.

I'll define a procedure, which I will call q,

that will use P's predictions of halting success

to stir up a terrible logical mess.

So where can this argument possibly go?

I don't have to tell you; I'm sure you must know.

By reductio, there cannot possibly be

a procedure that acts like the mythical P.

For a specified program, say A, one supplies,

the first step of this program called q I devise

is to find out from P what's the right thing to say

of the looping behavior of A run on A.

you can never find general mechanical means

for predicting the acts of computing machines.

It's something that cannot be done. So we users

must find our own bugs. our computers are losers! §

Geoffrey K. Pullum is a linguist, currently teaching
at the University of Edinburgh. Formerly he Santa Cruz. His main
research interests for some time have been in the grammar of
Standard Engli syntactic theories, and his recreational interest in
theoretical computer science arises out of was at the University of
California, sh and the formalization of the latter.

Reprinted with permission of the original author. First appeared
in http://ling.ed.ac.uk/~gpullum/loopsnoop.html.
An earlier version was published in Mathematics Magazine (73).

Programming Books: The C Programming Language

By MIKE TAYLOR

It's 32 years old, and it remains the single greatest book ever
written about a programming language. Its crown is secure; even if
you'd not already read the title of this article, you'd know what
book I'm talking about. It's the only language-specific book in Top
Five programming books of the Programming Reddit's FAq. Co-written
by Reinvigorated Programmer regular Brian W. Kernighan and Dennis
M. Ritchie, it's not just the definitive book about the language in
question, it's the book that rewrote the book on what it means to
be definitive. Step forward, please, The C Programming
Language!

The biography of the Beatles at allmusic.com has a very astute and
resonant bit of analysis right in the first paragraph, saying that
"they were among the few artists of any discipline that were
simultaneously the best at what they did and the most popular at
what they did."

You could say the same for K&R, as it's affectionately
known: everyone knows it's the best book on C, and (for once) the
thing that everyone knows is actually true. So what makes it so
great?

Short, comprehensive, dense

First: it's so short. At 272 pages (this is for the second
edition, published in 1988 and describing ANSI C), it's shorter
that Harry Potter and the Prisoner of Azkaban (317 pages) and
little more than one third the length of order of the Phoenix.

Second, it's so comprehensive. There is, essentially, nothing to
be known about C beyond what is in this book. If you can read those
272 pages, and understand them all, then you are well on the way to
being a C wizard. (Er, assuming you have the patience to go on to
accumulate a decade of experience leading to wisdom, taste, good
judgement and technical intuition.) Third, and this is really a
conse- quence of the first two, it's so dense.

This is not a book that wastes words. There are no extended
introductory sections on Why you Should Learn C and C's Place In
The World.

The two prefaces (for 1st and 2nd editions) are one and a bit
pages each. The introduction is four pages. Then we're straight
into Chapter 1. A Tutorial Introduction, which is 30 pages long and
in that space covers:

• 1.1 Getting Started

• 1.2 variables and Arithmetic Expressions

• 1.3 The For Statement

• 1.4 Symbolic Constants

• 1.5 Character Input and output

• 1.6 Arrays

• 1.7 Functions

• 1.8 Arguments -- Call by value

• 1.9 Character Arrays

• 1.10 External variables and Scope

At the end of that chapter, on page 34, is a sequence of five
exercises, culminating in this one (and enjoy the characteristic
Kernighanian understatement in the final sentence):

Exercise 1-24.

Write a program to check a C program for rudimentary syntax errors
like unbalanced parentheses, brackets and braces. Don't forget
about quotes, both single and double, escape sequences, and
comments. (This program is hard if you do it in full
generality.)

And, as tough as that may seem after only 30 pages, they really
have given you all the tools you need to do the exercise by this
point.

Say what you mean, simply and directly

Apologies if you're getting bored of reading this
Kernighan-and-Plauger epigram every time you return to this blog,
but I really don't think it can be over-emphasised. Although this
advice's appearance in The Elements of Programming Style is of
course in the context of writing programs, Kernighan also follows
his own advice when it comes to writing prose. No words are wasted;
neither is your time. yet somehow the book avoids feeling rushed
despite packing so much into so little space.

After the tutorial introduction, the remaining chapters
cover:

•Chapter 2. Types, operators, and Expressions

•Chapter 3. Control Flow

• Chapter 4. Functions and Program Structure

• Chapter 5. Pointers and Arrays [this, by the way, on page
93]

• Chapter 6. Structures

• Chapter 7. Input and output

• Chapter 8. The UNIX System Interface

That's it for the chapters. So they've got you doing systems
programming by page 169; from page 185 to the end of the chapter,
they show you how to implement malloc(). These guys are not mess-
ing about.

And then it's on to the appendices, which rival those of The
Return of the King for comprehensiveness (though thankfully without
the notes on the differences between Eldar and Númenorean
calendars).

• Appendix A. Reference Manual [because all the chapters are
tutorial]

• Appendix B. Standard Library [yes, all of it, in 18 pages]

• Appendix C. Summary of Changes [since the 1st edition]

And finally, there's just time for a characteristically
comprehensive index before the book comes to a close.

In praise of small

Kernighan and Ritchie's much-quoted preface explains the
philosophy behind the book's characteristically dense
structure:

We have tried to retain the brevity of the first
edition. C is not a big language, and it is not well served by a
big book. [...] Appendix A, the reference manual, is not the
standard, but our attempt to convey the essentials of the standard
in a smaller space. [...] As we said in the preface to the first
edition, C "wears well as one's experience with it grows." With a
decade more experience, we still feel that way.

And it's true that the book is only able to be as short as it is
because the language that it describes is as small as it is. I have
the second edition of Stroustrup's The C++ Programming Language,
which clearly models itself on K&R and is about as terse as
such a book can be, but its 691 pages make it fully two and half
times the size of the original. This, mind you, is the second
edition of Stroustrup, published in 1991 only three years after the
K&R second edition, when C++ was still relatively well under
control.

There is much, much more that I could say about the smallness of
C, but rather that go against everything I've just been saying by
bloating this review up into a monster, I am going to save that for
a separate article.

Do it yourself

It's also characteristic of K&R that they have this
statement on the copyright page:

This book was typeset (pic|tbl|eqn|troff -ms) in
Times Roman and Courier by the authors, using an Autologic APS-5
phototypesetter and a DEC VAX 8550 running the 9th Edition of the
UNIX(R) operating system.

That they did their own typesetting is not just a cute touch,
but an insight on the completeness of their mastery of what they
were doing, and the care they took over it. The book is not what
you would call beautiful to look at, but the typesetting is wholly
functional, at one with the text rather than fighting against
it.

If I could analyse it, I'd do it myself

Finally, we come to the aspect of The C Programming Language
that is hardest to explain -- and hardest to do. The bottom line
here is that writing is an art. you can hack your way through to
producing tolerable text without being an artist, just as an
uninspired programmer can bash his way through to wiring together
an uninspired web application. But just as it takes a Ken Thompson
to invent and write uNIX, and a Dennis Ritchie to invent C and
write the initial compiler, so it takes a Brian Kernighan to write
The C Programming Language.

If all it took to write a truly great technical book was to
write down everything there is to say about a subject and then
ruthlessly distill it to its essence, then great technical books
would be much less rare than they are. That, I think, is a
prerequsite; but it's Necessary But Not Sufficient. There is a
graceful quality about the writing in K&R, even when it is
brutally technical; it draws you on and in; it's just pleasant to
read. It is, on occasion, gently humorous, though certainly not
before I can stop reading.

I wish I knew how they did it. But I'm glad that they did.
Kernighan and Ritchie, we salute you! §

Mike Taylor is a computer programmer by day and a
dinosaur palaeontologist by night, twin obsessions reflected in his
two blogs, http://reprog.wordpress.com/ and
http://svpow.wordpress.com/. He
started programming in 1980, on a Commodore PET 2001 and a Video
Genie, and has hardly stopped since.

Reprinted with permission of the original author. First appeared
in
http://reprog.wordpress.com/2010/04/06/programming-books-part-4-the-c-programming-language/.

If Mario Were Designed in 2010

By ZACK HIWILLER

Author's note

While this post is meant to be humorous, it isn't meant to be
humorous at the expense of my fellow designers. I know we all try
to do what is best for our games and Lord knows I am just as guilty
as everyone else, so don't take offense guys! It's just me pining
for a simpler time... §

Zack Hiwiller is a game designer currently living in
New York City. He's worked on games on eleven platforms from the
lowly Game Boy Advance to the chugging heat-expelling behemoth
called the Playstation 3. He writes about games and the game
industry on his blog at http://www.hiwiller.com.

Reprinted with permission of the original author. First appeared
in
http://www.hiwiller.com/2010/04/29/if-mario-was-designed-in-2010/.

Worst-Case Thinking

By BRUCE SCHNEIER

At a security conference recently, the moderator asked the panel
of distinguished cybersecurity leaders what their nightmare
scenario was. The answers were the predictable array of large-scale
attacks: against our communications infrastructure, against the
power grid, against the financial system, in combination with a
physical attack.

I didn't get to give my answer until the afternoon, which was:
"My nightmare scenario is that people keep talking about their
nightmare scenarios."

There's a certain blindness that comes from worst-case thinking.
An extension of the precautionary principle, it involves imagining
the worst possible outcome and then acting as if it were a
certainty. It substitutes imagination for thinking, speculation for
risk analysis, and fear for reason. It fosters powerlessness and
vulnerability and magnifies social paralysis. And it makes us more
vulnerable to the effects of terrorism.

Worst-case thinking means generally bad decision making for
several reasons. First, it's only half of the cost-benefit
equation. Every decision has costs and benefits, risks and rewards.
By speculating about what can possibly go wrong, and then acting as
if that is likely to happen, worst-case thinking focuses only on
the extreme but improbable risks and does a poor job at assessing
outcomes.

Second, it's based on flawed logic. It begs the question by
assuming that a proponent of an action must prove that the
nightmare scenario is impossible.

Third, it can be used to support any position or its opposite.
If we build a nuclear power plant, it could melt down. If we don't
build it, we will run short of power and society will collapse into
anarchy. If we allow flights near Iceland's volcanic ash, planes
will crash and people will die. If we don't, organs won't arrive in
time for transplant operations and people will die. If we don't
invade Iraq, Saddam Hussein might use the nuclear weapons he might
have. If we do, we might destabilize the Middle East, leading to
widespread violence and death.

Of course, not all fears are equal. Those that we tend to
exaggerate are more easily justified by worst-case thinking. So
terrorism fears trump privacy fears, and almost everything else;
technology is hard to understand and therefore scary; nuclear
weapons are worse than conventional weapons; our children need to
be protected at all costs; and annihilating the planet is bad.
Basically, any fear that would make a good movie plot is amenable
to worstcase thinking.

Fourth and finally, worst-case thinking validates ignorance.
Instead of focusing on what we know, it focuses on what we don't
know -- and what we can imagine.

Remember Defense Secretary Rumsfeld's quote? "Reports that say
that something hasn't happened are always interesting to me,
because as we know, there are known knowns; there are things we
know we know. We also know there are known unknowns; that is to say
we know there are some things we do not know. But there are also
unknown unknowns -- the ones we don't know we don't know." And
this: "the absence of evidence is not evidence of absence."
Ignorance isn't a cause for doubt; when you can fill that ignorance
with imagina- tion, it can be a call to action.

Even worse, it can lead to hasty and dangerous acts. you can't
wait for a smoking gun, so you act as if the gun is about to go
off. Rather than making us safer, worst-case thinking has the
potential to cause dangerous escalation.

The new undercurrent in this is that our society no longer has
the ability to calculate probabilities. Risk assessment is
devalued. Probabilistic thinking is repudiated in favor of
"possibilistic thinking": Since we can't know what's likely to go
wrong, let's speculate about what can possibly go wrong.

Worst-case thinking leads to bad decisions, bad systems design,
and bad security. And we all have direct experience with its
effects: airline security and the TSA, which we make fun of when
we're not appalled that they're harassing 93-year-old women or
keeping first graders off airplanes. you can't be too careful!

Actually, you can. you can refuse to fly because of the
possibility of plane crashes. you can lock your children in the
house because of the possibility of child predators. you can eschew
all contact with people because of the possibility of hurt. Steven
Hawking wants to avoid trying to communicate with aliens because
they might be hostile; does he want to turn off all the planet's
television broadcasts because they're radiating into space? It
isn't hard to parody worst-case thinking, and at its extreme it's a
psychological condition.

Frank Furedi, a sociology professor at the university of Kent,
writes: "Worst-case thinking encourages society to adopt fear as
one of the dominant principles around which the public, the
government and institutions should organize their life. It
institutionalizes insecurity and fosters a mood of confusion and
powerlessness. Through popularizing the belief that worst cases are
normal, it incites people to feel defenseless and vulnerable to a
wide range of future threats."

Even worse, it plays directly into the hands of terrorists,
creating a population that is easily terrorized -- even by failed
terrorist attacks like the Christmas Day underwear bomber and the
Times Square Suv bomber.

When someone is proposing a change, the onus should be on them
to justify it over the status quo. But worst-case thinking is a way
of looking at the world that exaggerates the rare and unusual and
gives the rare much more credence than it deserves.

It isn't really a principle; it's a cheap trick to justify what
you already believe. It lets lazy or biased people make what seem
to be cogent arguments without understanding the whole issue. And
when people don't need to refute counterarguments, there's no point
in listening to them. §

Internationally renowned security expert Bruce
Schneier has authored nine books -- including Schneier on Security
and Beyond Fear -- and hundreds of articles and academic papers.
Schneier regularly appears on television and radio, has testified
before Congress, and is a frequent writer and lecturer on issues
surrounding security and privacy.

Reprinted with permission of the original author. First appeared
in
http://www.schneier.com/blog/archives/2010/05/worst-case_thin.html.

9 Years of Sleep

By DOMINIC SZABLEWSKI

For the lastten years or so, I used to turn on my PC when I came
home from school or work and shut it down again right before I went
to bed. So most of the time when my PC is running, I'm awake.

I've also been idling in IRC for as long as I had Internet -
when my PC is running, so is my IRC client.

I still have all my IRC logs since 2001 lying on my HDD. The log
format of mIRC changed slightly over the years, but it's all easily
parsable with some basic Regexp. I quickly wrote a PHP script that
extracts the Session Start and Sessions Close markers and
timestamps from these logs and transfers them into an image.

As you can see, I tend to stay up late. I also tend to go into a
free-running sleep mode when I don't have to get up early every
morning. During May 2004, after my A-Level exams and before my
apprenticeship started, I "rotated" my sleep cycle three times.
This has been even more extreme in the last two years, when we've
had fewer lectures and instead worked on a lot of projects. I
should really get one of these daylight lamps.

There's so much more interesting information hidden in these IRC
logs. Maybe I can bring myself to parse and import all of them into
a database, so I can run some simple queries on them. Maybe I can
even find my pre-2001 IRC logs on some backup CDs. §

Dominic Szablewski is a freelance developer and a
student for Digital Media at the Hochschule Darmstadt in Germany.
He is currently working on his bachelor thesis about real-time
games written using HTML5. PhobosLab is his personal blog about any
project he can get to a presentable state.

Reprinted with permission of the original author. First appeared
in http://www.phoboslab.org/log/2010/05/9-years-of-sleep.

iPad Usability: First Findings From User Testing

By JAKOB NIELSEN

It looks like a giant iPhone", is the first thing users say when
asked to test an iPad. (Their second comment? "Wow, it's
heavy.")

But from an interaction design perspective, an iPad user
interface shouldn't be a scaled-up iPhone UI.

Indeed, one finding from our study is that the tab bar at the
bottom of the screen works much worse on iPad than on iPhone. on
the small phone, users are likely to notice the muted icons at the
bottom of the screen, even if their attention is on content in the
middle of the screen. But the iPad's much bigger screen means that
users are typically directing their gaze far from the tab bar and
they ignore (and forget) those buttons.

Another big difference between iPad and iPhone is that regular
websites work reasonably well on the big tablet. In our iPhone
usability studies, users strongly prefer using apps to going on the
Web. It's simply too painful to use most websites on the small
screen. (Mobile-optimized sites alleviate this issue, but even they
usually have worse usability than apps.)

The iPad's bigger screen offers reasonable usability for regular
Web pages. of course, there's still the "fat finger" problem common
to all touch screens, which makes it hard for users to reliably hit
small targets. The iPad has a read-tap asymmetry, where text big
enough to read is too small to touch. Thus, we definitely recommend
large touch zones on any Web page hoping to attract many iPad
users.

Also, most Web pages offer a rich and overstuffed experience
compared to the iPad's sparse and regulated environment; when an
iPad app suddenly launches users onto the Web, the transition can
be jarring.

For more than a decade, when we ask users for their first
impression of (desktop) websites, the most frequently-used word has
been "busy." In contrast, the first impression of many iPad apps is
"beautiful." The change to a more soothing user experience is
certainly welcome, especially for a device that may turn out to be
more of a leisure computer than a business computer. Still, beauty
shouldn't come at the cost of being able to actually use the apps
to derive real benefits from their features and content.

First Studies

We conducted our initial usability studies of iPad apps and
content a few weeks after Apple launched the device. We tested 7
users -- all with at least 3 months' iPhone experience -- but only
one was an "experienced" iPad user.

(This user had only a week's experience -- far less than the
minimum of one year's experience that we usually request of
usability study participants.)

Obviously, the findings from this research are only preliminary.
However, we're releasing them anyway because the iPad platform is
so different and is expected to attract considerable application
development during the coming months. It would be a shame for all
these apps to be designed without the benefit of the usability
insights that do exist, despite the gaps in our current
knowledge.

We tested the following applications and websites:

• ABC player

• Alice in Wonderland Lite

• AP News

• Art Authority

• BBC News

• Bloomberg

• craigsphone (Craigslist)

• eBay (both app and website)

• The Elements (physics courseware)

• Endless.com

• Epicurious

• ESPN Score Center

• ESPN.com

• Gap

• Gilt

• Gq magazine

• GWR Lite (Guinness World Records)

• iBook

• IMDb (Internet Movie Database)

• iverse Comics

• Kayak kayak.com

• Marvel Comics

• MLB.com (Major League
Baseball)

• Nike.com

• Now Playing

• NPR (National Public Radio)

• The New york Times Editors' Choice

• Popular Science

• Time Magazine

• USA Today

• virginamerica.com

• whitehouse.gov

• Wolfram Alpha

• yahoo! Entertainment

Wacky Interfaces

The first crop of iPad apps revived memories of Web designs from
1993, when Mosaic first introduced the image map that made it
possible for any part of any picture to become a UI element. As a
result, graphic designers went wild: anything they could draw could
be a UI, whether it made sense or not.

It's the same with iPad apps: anything you can show and touch
can be a UI on this device. There are no standards and no
expectations. Worse, there are often no perceived affordances for
how various screen elements respond when touched. The prevailing
aesthetic is very much that of flat images that fill the screen as
if they were etched. There's no lighting model or
pseudo-dimensionality to indicate raised or lowered visual elements
that call out to be activated.

In contrast, long-standing GUI design guidelines for desktop
user designs dictate that buttons look raised (and thus pressable)
and that scrollbars and other interactive elements are visually
distinct from the content.

The traditional GUI separation between "church and state" --
that is, between content and features or commands -- has carried
over to modern Web design.

Those 1993-style image maps are long gone from any site that
hopes to do business on the Internet.

The iPad etched-screen aesthetic does look good. No visual
distractions or nerdy buttons. The penalty for this beauty is the
re-emergence of a usability problem we haven't seen since the
mid-1990s: users don't know where they can click.

For the last 15 years of Web usability research, the main
problems have been that users don't know where to go or which
option to choose -- not that they don't even know which options
exist. With iPad UIs, we're back to this square one.

Inconsistent Interaction Design

To exacerbate the problem, once they do figure out how something
works, users can't transfer their skills from one app to the next.
Each application has a completely different UI for similar
features.

In different apps, touching a picture could produce any of the
following 5 results:

• Nothing happens

• Enlarging the picture

• Hyperlinking to a more detailed page about that item

• Flipping the image to reveal additional pictures in the same
place (metaphorically, these new pictures are "on the back side" of
the original picture)

• Popping up a set of navigation choices

The latter design was used by USA Today: Touching the
newspaper's logo brought up a navigation menu listing the various
sections. This was probably the most unexpected interaction we
tested, and not one user discovered it.

Similarly, to continue reading once you hit the bottom of the
screen might require any of 3 different gestures:

• Scrolling down within a text field, while staying within the
same page

• For this gesture to work, you have to touch within the text
field.

However, text fields aren't demarcated on the screen, so you have
to guess what text is scrollable.

• Swiping left (which can sometimes take you to the next article
instead of showing more of the current article)

This gesture doesn't work, however, if you happen to swipe within
an area covered by an advertisement in The New york Times app

• Swiping up

iPad UIs suffer under a triple threat that causes significant
user confusion:

• Low discoverability: The UI is mostly hidden within the
etched-glass aesthetic without perceived affordances.

• Low memorability: Gestures are inherently ephemeral and difficult
to learn when they're not employed consistently across apps; wider
reliance on generic commands would help.

• Accidental activation: This occurs when users touch things by
mistake or make a gesture that unexpectedly initiates a
feature.

When you combine these three usability problems, the resulting
user experience is frequently one of not knowing what happened or
how to replicate a certain action to achieve the same result again.
Worse yet, people don't know how to revert to the previous state
because there's no consistent undo feature to provide an escape
hatch like the Web's Back button.

Crushing Print Metaphor

Swiping for the next article is derived from a strong print
metaphor in many content apps. In fact, this metaphor is so strong
that you can't even tap a headline on the "cover" page to jump to
the corresponding article. The iPad offers no homepages, even
though users strongly desired homepage-like features in our
testing. (They also often wanted search, which was typically not
provided.)

In electronic media, the linear concept of "next article" makes
little sense. People would rather choose for themselves where to
go, selecting from a menu of related offerings.

A strategic issue for iPad user experience design is whether to
emphasize user empowerment or author authority. Early designs err
on the side of being too restrictive.

Using the Web has given people an appreciation for freedom and
control, and they're unlikely to happily revert to a linear
experience.

Publishers hope that users will perceive content as more
valuable if each publication is a stand-alone environment.
Similarly, they hope for higher value-add if users spend more time
with fewer publications rather than flit among a huge range of
sites like they do on the Web.

Using the desktop Web, a user can easily visit 100 sites in a
week, viewing only 1-3 pages on most of them. (For example, for one
task in which B2B users visited 15 sites, they spent an average of
29 seconds per pageview.) Most sites are visited once-only, because
users dredge them up in a search or stumble upon links from other
sites or social media postings. Without real customer
relationships, content sites have no value and 90% of the money
created by users spending time online accrues to search
engines.

The current design strategy of iPad apps definitely aims to
create more immersive experiences, in the hope of inspiring deeper
attachments to individual information sources. This cuts against
the lesson of the Web, where diversity is strength and no site can
hope to capture users' sole attention. Frequent user movements
among websites has driven the imperative to conform with interface
conventions and to create designs that people can use without any
learning (or even much looking around). The iPad could be different
if people end up getting just a few apps and sticking with
them.

Card Sharks vs. Holy Scrollers

UI pioneer Jef Raskin once used the terms card sharks vs. holy
scrollers to distinguish between two fundamentally different
hypertext models:

• Cards have a fixed-size presentation canvas. you can position
your information within this two- dimensional space to your heart's
content (allowing for beautiful layouts), but you can't make it any
bigger. users have to jump to a new card to get more info than will
fit on a single card. HyperCard was the most famous example of this
model.

• Scrolls provide room for as much information as you want because
the canvas can extend as far down as you please. users have to jump
less, but at the cost of less-fancy layout because the designer
can't control what users are seeing at any given time.

The Web is firmly in holy-scroller camp, particularly these
days: users scroll a fair amount and sometimes view information far
down long pages. Even mobile-phone apps often rely on scrolling to
present more than will fit on their tiny screens.

In contrast, card sharks dominate the early iPad designs.
There's a bit of scrolling here and there, but most apps try to
create a fixed layout for the pretty screen.

There's no real reason we can't have both design models: cards
on the iPad and scrolls on the desktop (and phones somewhere in the
middle). But it's also possible that we'll see more convergence and
that the Web's interaction style will prove so powerful that users
will demand it on the iPad as well.

Toward a Better iPad User experience

Even our limited initial user studies provide directions for
making iPad designs more usable:

• Add dimensionality and better define individual interactive
areas to increase discoverability through perceived affordances of
what users can do where.

• To achieve these interactive benefits, loosen up the etched-glass
aesthetic. Going beyond the flatland of iPad's first-generation
apps might create slightly less attractive screens, but designers
can retain most of the good looks by making the GUI cues more
subtle than the heavy-handed visuals used in the
Macintosh-to-Windows-7 progression of GUI styles.

• Abandon the hope of value-add through weirdness. Better to use
consistent interaction techniques that empower users to focus on
your content instead of wondering how to get it.

• Support standard navigation, including a Back feature, search,
clickable headlines, and a homepage for most apps.

Although our full report offers additional detailed advice, we
obviously haven't yet developed a full list of design
guidelines.

One big question will remain unanswered for a year or so until
we see how daily use of the iPad evolves: Will people use the iPad
mainly for more immersive experiences than the desktop and mobile
Webs? In other words, will people primarily settle on a few sources
and dig into them intensively, rather than move rapidly between
many sources and give each cursory attention?

Maybe people will begin to use the desktop Web for more
goal-driven activities, such as researching new issues or
performing directed tasks like shopping and managing their
investments. And they might use the iPad for more leisurely
activities, such as keeping up with the news (whether "real" news
or social network updates) and consuming entertainment-oriented
content. We don't know yet. The answer to this question will
determine how far iPad UIs have to move from their current wacky
style. §

Jakob Nielsen, PhD, is principal of Nielsen Norman
Group www.nngroup.com, a user
-research firm specializing in Web usability. He is the author or
editor of 12 books, including the recent Eyetracking Web Usability
(New Riders Press). Dr. Nielsen writes a bi-weekly newsletter, The
Alertbox, with a quarter-million readers, at www.useit.com.

Reprinted with permission of the original author. First appeared
in http://www.useit.com/alertbox/ipad.html.

Zero Zero

By RAFAEL CORRALES

I've been thinking about something that we always did junior
year when I was on my high school soccer team.

When we'd score a goal, we realized that it's when a team is at
its most vulnerable. I saw it first hand when many earlier teams I
had been on would get scored on right after our goal. It negates
the whole point of working so hard for that score.

So that year, after a goal, we would pause and celebrate for
just a few seconds. And as we ran back to our side of the field, we
always had one guy stop and yell at the top of his lungs, "WHAT'S
THE SCORE?" and we'd yell back "ZERO-ZERO!"

That scared our competitors, but more importantly it got us
results. That year we outscored the teams we played something like
48 goals for and 6 against. We beat some of the best teams in the
southeast and some really big schools.

My varsity team was barely 15 guys from a 200 person school. We
had a high concentration of really talented people, but the big
part of our success wasn't our talent. our success was actually the
result of our mentality. And that's the broader point: don't let
your success turn into complacency. Because right after a small
success is when you are the most vulnerable to complacency and bad
results. §

Rafael Corrales is co-founder and CEO of LearnBoost,
a VC and angel backed education startup offering free gradebook
software. He graduated from Georgia Tech and holds an MBA from
Harvard Business School.

Reprinted with permission of the original author. First appeared
in http://blog.rafaelcorrales.com/2010/05/zero-zero.html.

HACKER COMMENTS

On "Humans prefer cockiness to expertise"

From JONATHAN TANG (nostrademons)

Sounds crazy but I've used this in action. How do you think I got
such high karma here? ;-)

Thing is - it works. Both online and in-person. I'd much rather
be honest about how little I know (and often am when I'm working
long-term with someone), but I've found it's a losing strategy in
most situations. If you do know your stuff, you'll just get shouted
down by idiots. Better to shout the idiots down first and then do
the research to make sure you're not wrong. If you screw up
everything, you'll probably get another chance simply by virtue of
confidence (look at John Meriweather, who nearly brought down the
global financial system three times and is still managing money),
but if you appear timid and then screw up, people are all like "I
knew he didn't really know what he was talking about..."

Answer to "What Text Editor Do You Use?"

From JOE COOPER (SwellJoe)

vim or emacs: pick one and get back to work. Editing text is a
solved problem.

On "Online Advertising Is Now Dead"

From THOMAS PTACEK (tptacek)

The other day, Dave Winer broke his Cuisinart coffee machine and
was, within 5 minutes, able to replace it on Amazon. Therefore,
online advertising is now dead.

On "Fake Steve Jobs: Why I'm Switching to Android"

From ED WEISSMAN (edw519)

1980: CPM on your choice of hardware or lock into Apple hardware
& software at a higher price.

1990: DOS on your choice of hardware or lock into Apple hardware
& software at a higher price.

2000: Windows on your choice of hardware or lock into Apple
hardware & software at a higher price.

2010: Android on your choice of hardware or lock into Apple
hardware & software at a higher price.

Answer to "I'm tired of Hacking. What Do I Do?"

From MAHMUD MOHAMED (mahmud)

I took a laptop and a digital camera with me and ended up hating
them every step of the way. My first travels I did Africa and the
Middle-East, the second I did Asia.

In countries where I have "based" myself, anything more than 4
weeks; the laptop has been a good useful distraction. When you're
shocked by a local culture which you have to deal with for extended
survival (anything more substantial than a western-style hotel and
continental breakfast) you will end up missing speaking your
familiar language, eating familiar foods, or just walking outside
without a guide at hand (printed or in-flesh.) Also there is that
strong sense of alienation when everybody around you is looking at
you, even when you have been with them for weeks. In these times,
firing up your slackware box and seeing what you used to work on in
more homely times is a good psychological aid.

Cameras I didn't like. I hated being looked at and treated as a
"foreigner", and I feel like I am doing the same when I point a
lens at a "local" person, building or artifact. It felt like I was
capturing their soul to take back home with me as a novelty. I have
no photos of my travels, but I have friends. Hundreds of good
friends from all walks of life; fishermen, priests, pimps,
students, political activists, drug traffickers, aid workers, moms,
bicycle repairmen, white-house staffers, journalists you name
them.

Coming back was hard. I have lost 80 lbs and came back with more
street-sense than I could imagine. When I landed at Dulles Airport
I had $60 to my name and I had the photo of a new girlfriend in my
wallet. None of my family or friends had the time to give me a ride
home, so I took the bus, for the first time in the U.S. Before then
I have taken the bus a few times on nights-out when I knew I
wouldn't be fit to drive. This time it was just what I was used to
do. My instincts where different; I took a window seat in the way
back that was close to an exit door. Something that you do when
traveling in dangerous places (you don't sit in the front, or
police and bandits will pull over the bus and shake you up for
bribes; and you don't sit sandwitched between two locals, unable to
escape.)

I also came back with 2 pack a day cigarette habit. High alcohol
tolerance. A very unprofessional appearance. An appetite for
anything served to me on a plate. A habit of carrying a bag with
basic survival necessities. Indifference to crashing anywhere.
Hitching rides with total strangers. And finally, a weird ability
to connect with people in the underworld.

My first few gigs have been freelancing gigs doing anything and
everything. It took my girlfriend the last few months polishing up
back to shape; I don't think I would have come back if it wasn't
for her, actually. I have seen many long-time Western expats dying
in local hospitals of controllable diseases; the ex-military
Americans are most prone to this. Diabetes, high-blood pressure,
liver problems; I have pitched in $5 donations to so many expats in
hospitals I didn't want to be one of them.

On "Why Your Startup Shouldn't Copy 37signals or Fog
Creek"

From MICHAEL F BOOTH (mechanical_fish)

This guy has gone to the zoo and interviewed all the animals. The
tiger says that the secret to success is to live alone, be well
disguised, have sharp claws and know how to stalk. The snail says
that the secret is to live inside a solid shell, stay small, hide
under dead trees and move slowly around at night. The parrot says
that success lies in eating fruit, being alert, packing light,
moving fast by air when necessary, and always sticking by your
friends.

His conclusion: These animals are giving contradictory advice!
And that's because they're all "outliers".

But both of these points are subtly misleading. yes, the advice
is contradictory, but that's only a problem if you imagine that the
animal kingdom is like a giant arena in which all the world's
animals battle for the Animal Best Practices championship [1],
after which all the losing animals will go extinct and the entire
world will adopt the winning ways of the one True Best Animal. But,
in fact, there are a hell of a lot of different ways to be a
successful animal, and they coexist nicely. Indeed, they form an
ecosystem in which all animals require other, much different
animals to exist.

And it's insane to regard the tiger and the parrot and the snail
as "outliers". Sure, they're unique, just as snowflakes are unique.
But, in fact, there are a lot of different kinds of cats and birds
and mollusks, not just these three.

Indeed, there are creatures that employ some cat strategies and
some bird strategies (lions: be a sharp-eyed predator with claws,
but live in communal packs). The only way to argue that tigers and
parrots and snails are "outliers" is to ignore the existence of all
the other creatures in the world, the ones that bridge the gaps in
animal-design space and that ultimately relate every known animal
to every other known animal.

So, yes, it's insane to try to follow all the advice on the
Internet simultaneously. But that doesn't mean it's insane to
listen to 37signals advice, or Godin's advice, or some other
company's advice. you just have to figure out which part of the
animal kingdom you're in, and seek out the best practices which
apply to creatures like you. If you want to be a stalker, you could
do worse than to ask the tiger for some advice.

Answer to "How Do I Become Smarter?"

From MARK MAUNDER (mmaunder)

I have great news for you. The brain is extremely plastic. Read
about neuroplasticity here: http://en.wikipedia.org/wiki/Neuroplasticity

Rest assured that your capacity to acquire new skills and
knowledge is massive. You don't just get smarter. you get smarter
at something in particular. Playing chess, doing IQ tests, running
the 100m dash, programming, social skills, public speaking, etc. So
you need to pick a particular skill or set of skills or vocation
and decide to get smarter at that. There are some general rules for
improving brain function though. Here are a few:

1. Read books. Reading trains your brain to concentrate for long
periods of time without fatigue or distraction. There is a growing
school of thought that the short bursts of reading and frequent
distractions we experience online are harming our ability for deep
contemplation, introspection and concentration.

See Nicholas Carr, The Shallows.

2. Try to get 10 hours of sleep a night. Sleep improves mental
and athletic performance.

3. Maintain your cardiovascular fitness. I highly recommend
running. After years of cycling, swimming, hiking, etc. I've found
that running gives my brain function the biggest boost and provides
me with sustained mental energy through the day.

A good cardiovascular system supplies your brain with plenty of
healthy oxygen rich blood.

It's like putting racing fuel in your car.

4. Eat well. Cook your own food. Avoid processed or pre-prepared
foods and non-organic foods (mainly due to the pesticides). Fish is
awesome, but watch out for mercury.

5. Don't drink anything stronger than wine. Don't do drugs.
(just like your mom told you)

6. Watch your weight. I find the biggest source of mental
fatigue is when I've gained a few pounds.

Good luck, and congratulations on making the decision at a
relatively young age to focus on your mental fitness.

On "If Architects Had To Work Like Software Developers"

From REGINALD BRAYTHWAYT (raganwald)

1. What makes you think Architects don't have to deal with fickle
customers who have no concept of time, space, or budget?

2. Every project of any description needs a change control
process. If yours consists of exchanging emails, it is going to go
this way whether you're a web developer or a tailor.

3. The more expertise a customer thinks they have in the subject
matter relative to you, the more comfortable they are
micro-managing it. What have you done to educate the customer about
how much expertise you bring to their project?

All comments are reprinted with permission of their
original author.

On Working Remotely

By JEFF ATWOOD

When I first chose my own adventure, I didn't know what working
remotely from home was going to be like. I had never done it
before. As programmers go, I'm fairly social. Which still means I'm
a borderline sociopath by normal standards. All the same, I was
worried that I'd go stir-crazy with no division between my work
life and my home life.

Well, I haven't gone stir-crazy yet. I think. But in building
Stack Overflow, I have learned a few things about what it means to
work remotely -- at least when it comes to programming. Our current
team encompasses 5 people, distributed all over the USA, along with
the team in NYC.

My first mistake was attempting to program alone. I had weekly
calls with my business partner, Joel Spolsky, which were quite
productive in terms of figuring out what it was we were trying to
do together -- but he wasn't writing code. I was coding alone.
Really alone. one guy working all by yourself alone. This didn't
work at all for me. I was unmoored, directionless, suffering from
analysis paralysis, and barely able to get motivated enough to
write even a few lines of code. I rapidly realized that I'd made a
huge mistake in not having a coding buddy to work with.

That situation rectified itself soon enough, as I was fortunate
enough to find one of my favorite old coding buddies was available.
Even though Jarrod was in North Carolina and I was in California,
the shared source code was the mutual glue that stuck us together,
motivated us, and kept us moving forward. To be fair, we also had
the considerable advantage of prior history, because we had worked
together at a previous job.

But the minimum bar to work remotely is to find someone who
loves code as much as you do. It's enough. Anything else on top of
that -- old friendships, new friendships, a good working
relationship -- is icing that makes working together all the
sweeter. I eventually expanded the team in the same way by adding
another old coding buddy, Geoff, who lives in Oregon. And again by
adding Kevin, who I didn't know, but had built amazing stuff for us
without even being asked to, from Texas.

And again by adding Robert, in Florida, who I also didn't know,
but spent so much time on every single part of our sites that I
felt he had been running alongside our team the whole way, there
all along.

The reason remote development worked for us, in retrospect,
wasn't just shared love of code. I picked developers who I knew --
I had incontrovertible proof -- were amazing programmers. I'm not
saying they're perfect, far from it, merely that they were top
programmers by any metric you'd care to measure. That's why they
were able to work remotely. Newbie programmers, or competent
programmers who are phoning it in, are absolutely not going to have
the moxie necessary to get things done remotely -- at least, not
without a pointy haired manager, or grumpy old team lead, breathing
down their neck. Don't even think about working remotely with
anyone who doesn't freakin' bleed ones and zeros, and has a proven
track record of getting things done.

While Joel certainly had a lot of high level input into what
Stack overflow eventually became, I only talked to him once a week,
at best (these calls were the genesis of our weekly podcast
series). I had a strong, clear vision of what I wanted Stack
Overflow to be, and how I wanted it to work. Whenever there was a
question about functionality or implementation, my team was able to
rally around me and collectively make decisions we liked, and that
I personally felt were in tune with this vision. And if you know me
at all, you know I'm not shy about saying no, either. We were able
to build exactly what we wanted, exactly how we wanted.

Bottom line, we were on a mission from God. And we still are.
So, there are a few basic ground rules for remote development, at
least as I've seen it work:

• The minimum remote team size is two. Always have a buddy, even
if your buddy is on another continent halfway across the
world.

• only grizzled veterans who absolutely love to code need apply for
remote development positions. Mentoring of newbies or casual
programmers simply doesn't work at all remotely.

• To be effective, remote teams need full autonomy and a leader
(PM, if you will) who has a strong vision and the power to fully
execute on that vision.

This is all well and good when you have a remote team size of
three, as we did for the bulk of Stack overflow development. And
all in the same country.

Now we need to grow the company, and I'd like to grow it in
distributed fashion, by hiring other amazing developers from around
the world, many of whom I have met through Stack overflow
itself.

But how do you scale remote development? Joel had some deep
seated concerns about this, so I tapped one of my heroes, Miguel de
Icaza -- who I'm proud to note is on our all-star board of advisors
-- and he was generous enough to give us some personal advice based
on his experience running the Mono project, which has dozens of
developers distributed all over the world.

At the risk of summarizing mercilessly (and perhaps too much),
I'll boil down Miguel's advice the best I can. There are three
tools you'll need in place if you plan to grow a large-ish and
still functional remote team:

Real time chat

When your team member lives in Brazil, you can't exactly walk by
his desk to ask him a quick question, or bug him about something in
his recent checkin. Nope. you need a way to casually ping your
fellow remote team members and get a response back quickly. This
should be low friction and available to all remote developers at
all times. IM, IRC, some web based tool, laser beams, smoke
signals, carrier pigeon, two tin cans and a string: whatever. As
long as everyone really uses it.

We're currently experimenting with Campfire, but whatever floats
your boat and you can get your team to consistently use, will work.
Chat is the most essential and omnipresent form of communication
you have when working remotely, so you need to make absolutely sure
it's functioning before going any further.

Persistent mailing list

Sure, your remote team may know the details of their project,
but what about all the other work going on? How do they find out
about that stuff or even know it exists in the first place? you
need a virtual bulletin board: a place for announcements, weekly
team reports, and meeting summaries. This is where a classic
old-school mailing list comes in handy.

We're using Google Groups and although it's old school in
spades, it works plenty well for this. you can get the emails as
they arrive, or view the archived list via the web interface. one
word of caution, however. Every time you see something arrive in
your inbox from the mailing list you better believe, in your heart
of hearts, that it contains useful information. The minute the
mailing list becomes just another "whenever I have time to read
that stuff", noise engine, or distraction from work ... you've let
someone cry wolf too much, and ruined it. So be very careful.
Noisy, argumentative, or useless things posted to the mailing list
should be punishable by death. Or noogies.

Voice and video chat

As much as I love ASCII, sometimes faceless ASCII characters
just aren't enough to capture the full intentions and feelings of
the human being behind them. When you find yourself sending
kilobytes of ASCII back and forth, and still are unsatisfied that
you're communicating, you should instill a reflexive habit of
"going voice" on your team.

Never underestimate the power of actually talking to another
human being. I know, I know, the whole reason we got into this
programming thing was to avoid talking to other people, but bear
with me here. you can't be face to face on a remote team without
flying 6 plus hours, and who the heck has that kind of time? I've
got work I need to get done! Well, the next best thing to hopping
on a plane is to fire up Skype and have a little voice chat.

Easy peasy. All that human nuance which is totally lost in
faceless ASCII characters (yes, even with our old pal *<:-))
will come roaring back if you regularly schedule voice chats. I
recommend at least once a week at an absolute minimum; they don't
have to be long meetings, but it sure helps in understanding the
human being behind all those awesome checkins.

Nobody hates meetings process claptrap more than I do, but there
is a certain amount of process you'll need to keep a bunch of
loosely connected remote teams and developers in sync.

Monday team status reports

Every Monday, as in somebody's-got-a-case-of-the, each team
should produce a brief, summarized rundown of:

• What we did last week

• What we're planning to do this week

• Anything that is blocking us or we are concerned about

This doesn't have to be (and in fact shouldn't be) a long
report.

The briefer the better, but do try to capture all the useful
highlights. Mail this to the mailing list every Monday like
clockwork. Now, how many "teams" you have is up to you; I don't
think this needs to be done at the individual developer level, but
you could.

Meeting minutes

Any time you conduct what you would consider to be a "meeting"
with someone else, take minutes! That is, write down what happened
in bullet point form, so those remote team members who couldn't be
there can benefit from -- or at least hear about -- whatever
happened.

Again, this doesn't have to be long, and if you find taking
meeting minutes onerous then you're probably doing it wrong. A
simple bulleted list of sentences should suffice. We don't need to
know every little detail, just the big picture stuff: who was
there? What topics were discussed? What decisions were made? What
are the next steps?

Both of the above should, of course, be mailed out to the
mailing list as they are completed so everyone can be notified.

You do have a mailing list, right? of course you do!

If this seems like a lot of jibba-jabba, well, that's because
remote development is hard. It takes discipline to make it all
work, certainly more discipline than piling a bunch of programmers
into the same cubicle farm. But when you imagine what this kind of
intellectual work -- not just programming, but anything where
you're working in mostly thought-stuff -- will be like in ten,
twenty, even thirty years ... don't you think it will look a lot
like what happens every day right now on Stack overflow? That is, a
programmer in Brazil helping a programmer in New Jersey solve a
problem?

If I have learned anything from Stack Overflow it is that the
world of programming is truly global. I am honored to meet these
brilliant programmers from every corner of the world, even if only
in a small way through a website. Nothing is more exciting for me
than the prospect of adding international members to the Stack
overflow team. The development of Stack overflow should be
reflective of what Stack overflow is: an international effort of
like-minded -- and dare I say totally awesome -- programmers. I
wish I could hire each and every one of you. OK, maybe I'm a little
biased. But to me, that's how awesome the Stack Overflow community
is.

I believe remote development represents the future of work. If
we have to spend a little time figuring out how this stuff works,
and maybe even make some mistakes along the way, it's worth it. As
far as I'm concerned, the future is now. Why wait? §

Jeff Atwood lives in Berkeley, CA with his wife, two
cats, and a whole lot of computers. He is best known as the author
of popular blog Coding Horror and the cofounder of Stack Overflow
with Joel Spolsky.

Reprinted with permission of the original author. First appeared
in
http://www.codinghorror.com/blog/2010/05/on-working-remotely.html.

Increase Conversion Rate by Making Your Site Ugly

By ZACK LINFORD

"We trust things more when they look like they were done for
the love of it rather than the sheer commercial value of
it."

- Robert Scoble

Over the years many have contemplated the counter-intuitive
ability of "ugly" sites to win huge market share - think eBay.com, Amazon.com, DrudgeReport.com, PlentyofFish.com, CraigsList.org, MySpace.com, or usability expert Jakob
Nielsen's useit.com.

In our adventures in website optimization we've developed our
own grand unified theory of why ugly web design works:

(1) Value - Your visitors want a deal. Never, never, never,
forget that.

We're a nation of Walmart shopping, McDonald's value meal
eating, 2-Buck Chuck drinking coupon-clippers.

If your website looks BMW-fancy your visitor is going to assume
BMW-pricing.

Make your visitors think that they've found the last great deal
- look a little pathetic and rough around the edges and your
visitor is going to assume that they're not going to be taken
advantage of.

(2) Trust - nobody likes advertising, or advertisers (except
their wives).

Advertising ranks amongst the LEAST respected professions and
most people strongly dislike being advertised to because they feel
manipulated.

Eliminating stock-photos, fancy graphics, and high-brow design
elements can help your cause and make you feel more ma & pa
trustworthy than a corporate-titan in training.

(3) Accessibility - Build for technology two cycles back.

HTML5, the latest CSS tricks, and your kickass integrated flash
design have No PLACE in a website designed to sell when older
technologies can do a comparable job.

One of our clients receives in excess of 15,000 visitors a day to
their website - about 70% of that is coming from various versions
of Internet Explorer.
Yet nearly 27% are using outdated versions despite wide
availability.

So unless you enjoy building 10 versions of your site stick with
simple and build for compatibility with browsers, oS, screen
resolutions, color palettes, etc.

(4) Flexibility - Don't paint yourself into a corner.

What do PlentyofFish, CraigsList, and DrudgeReport have in
common?

They scaled to huge numbers of visitors with tiny staffs -
keeping your site flexible enough so the CEO can change the
homepage content.

It may not be aesthetically appealing, but it sure does beat a
static beautiful website.

A website that's easy to change, update, and experiment on is
better than one that relies heavily on advanced CSS, Flash, images
etc. that you can't change quickly.

(5) Function - Get your users where they want to be as your
priority

When you're running a commercial website just by virtue of
having arrived, a user is a qualified visitor ready for you to
close.

So get the !@%$!@% out of their way and let them transact!

Keep it simple

• Make sure your homepage is crystal clear to let a user
determine if your website will fulfill their need.

• Let users get where they need to go in as few clicks as
possible.

Any design element that detracts from your focus - will lose the
user - one of my favorite examples of this is from a Marketing
Experiments study on email:

Of the three emails above B outperforms the other two
design-element laden tests by 62%! It's no surprise that the
winning test lacks over-blown design elements & complexity,
keeping it simple collects the sale.

We've battled designers and CMOs day in and day out for nearly a
decade but overwhelmingly following the 5-rules laid out above
drive results that simply win. §

Zack Linford is the co-founder of ConversionVoodoo.com - a company
dedicated to increasing website conversion rates.

Reprinted with permission of the original author. First appeared
in
http://www.conversionvoodoo.com/blog/2010/04/increase-your-conversion-rate-by-making-your-site-uglier/

Mistakes I've Made & What You Might Learn From Them

By JAQUES MATTHEIJ

I've been running my own companies since 1986. That's 24 years
now, with some brief stints of employment if a contract was so time
consuming that the Dutch regulators took it as being equivalent to
employment (they do that here to stop employers that try to avoid
paying in to social security by hiring all their employees as
free-lancers). At the high point of running 'TrueTech' we had about
20 full timers and partners, and a bunch of free-lancers.

It's been a long, very interesting and at times very stressful
ride so far, and I wished I could say I never made any mistakes.
But I have. Plenty of them, and most of them seem to be related to
personality traits, I've tried to outline those below.

Some of the mistakes were almost without consequences, some of
them with grave consequences. Here are the 'highlights', hopefully
they'll save some of the readers of this from repeating them.

I'm fairly gullible and I tend to believe that what people tell
me is true

I don't usually follow up to verify that what I'm told is true,
I was raised in an environment where almost everybody simply spoke
the truth.

Automatically I assumed (and it seems to be a pretty strongly
ingrained thing, I still have this today) that everybody is always
truthful.

That's a serious weak point, and it has cost me dearly on a few
occasions. over time I've become more wary, especially the last 15
years have shown me a few very nasty instances of how cunning and
calculating people can be when they deceive those around them for
profit. I've gotten a lot better at spotting inconsistencies in
peoples' stories and this has helped to mitigate the gullibility
factor to some extent, but if someone comes to me with a sob story
I'm more likely than not overwhelmed by the emotion and willing to
help even when I really should be more cautious. And every now and
then a sob story is real, even when it sounds highly unlikely.

This particular mistake has cost me dearly over the years and
has changed my personality to someone that is much more cautious
than he would like to be.

When evaluating people I always see the potential, but hardly
ever the reality

Most people achieve only a fraction of what they could do
theoretically.

My problem is that when presented with a potential employee or
partner that I tend to see what they could do, but not what
they actually realistically speaking will be able to do.

It's like looking at a sports car, you know it can do 150 miles
per hour, but in real life circumstances it will hardly ever do
that, more likely it will just have to obey the usual traffic rules
and will periodically need refueling and so on. So you have to
adjust your expectations based on real world conditions, and I'm
very bad at that.

If it hadn't been for that I could have predicted the burning
out of some people in my surroundings with greater accuracy and
possibly I could have prevented it from happening, and I would have
been better able to estimate how much work I could expect to get
out of a given configuration of people working on projects.

I either delegate too much or too little

This is probably one of my biggest shortcomings, when delegating
stuff I either hand it off and don't look back until I'm presented
with some kind of disaster, or I'm so on top of it that whoever is
doing the job feels like the dragon is breathing down their neck
all the time. The sweet spot is somewhere in the middle, but I
haven't found it yet.

Over the years this has made life harder for employees, partners
and customers, I could have done a much better job here.

Trust but verify is something that I heard about way too late,
it also applies to some extent to '1' above. The mistakes I made
because of this are along the line of letting people run a
subsidiary company for over 3 months without checking the books
(and finding out much too late that they'd gone off and spent 3
months worth of turn over in the local casino!), or riding shotgun
on a new developer and disagreeing with just about every thing he
did only to find out many years later that there are multiple
equally valid solutions to a problem. This is probably one of the
hardest things for me to do, to 'let go' and to accept that someone
else will do something different from the way I would do it, but
will still do a good enough job of it.

I'm a loner

When it comes to doing things, I can do way too much.
Electronics, basic engineering, software, metalworking, woodworking
and so on. If there is a technical skill I've probably tried my
hand at it, and can do a reasonably job of it. Not perfect, but
good enough for government work. That means that I'm pretty self
sufficient and there are only a few fields where I know that I
absolutely suck. on top of that I'm a voracious reader with an
extremely wide interest, I remember most of what I've read.

Higher mathematics and design would be two of the fields that I
really suck at, as well as managing people. The result of that is
that I was pretty happy running my one man company and completely
not prepared to deal with the reality of growing it, more
people.

I wished that the 'school of life' up to that point had forced
me more often to work together with people in a real team setting,
first as a team member, and then as a team leader, so that I would
have been better prepared to deal with that. It definitely didn't
help in my relations with the employees of the company when it
grew. I was just a 'techie', never planning to be in charge of a
company that size and I grew in to the job very reluctantly.

Now I'm back to 'square 1', alone (or, more precisely with one
business partner) and much more happy because of that, still not
sure if I've learned these lessons well enough to be able to grow
again. Maybe.

I have a lot of energy, but not everybody is like that

Another one of those 'expectation' issues, I can work on stuff
with tremendous energy, but that's a rarity, and most people go
about life at a more relaxed pace.

I'm always doing something, I really can't sit still for more
than 3 minutes without having to get up and doing something (unless
I'm watching a movie or reading a book, but that's still doing
something). Subconsciously I expect other people to be like that
too, and I'm often quite surprised when they're tired or zoned out
in front of the Tv or simply doing nothing.

So I tend to burn people out, they try to keep up and give up
after a while. I should try to slow down a bit to a more moderate
pace and keep the 'energy bursts' to myself.

"When I see stuff I do not agree with I am very outspoken,
diplomacy is definitely not my strong suit."

I have a short attention span

It is difficult for me to stay focused on the same thing for a
long time. This started when I was a kid, if I got some new toy I
would play with it for its intended purpose for about 10 minutes,
then rip it apart to see how it worked. It took a long time before
I had skills enough to put stuff back together again.

I still have this, I learn pretty quickly, but once I understand
how something works the mystery has gone out of it and I am likely
to move on. But give me a puzzle that is 'unsolvable' and I'll
probably spend a lifetime on it.

The only exceptions here were Lego (I played with it over and
over again), Electronics (taking stuff apart was both a source of
parts and a way to learn) and programming.

I have to work really very hard to overcome this tendency and
I'm pretty sure that it has cost me over the years to find little
or no interest in doing the 'grunt' work of running a business.

I'm pretty harsh

When I see stuff I do not agree with I am very outspoken,
diplomacy is definitely not my strong suit. Not everybody can deal
with this and even though I try very hard to moderate the force I
find it very difficult, especially when I think people are not nice
to other people. That can bring out a force 7 gale in no time at
all.

Even though the emotion driving that is pure I could do a lot
better by tempering my feelings and coming up with constructive
criticism instead of full blown confrontation. This has soured my
relationships with people on more than one occasion, and some of
those people were important players in or around my business.

I take full responsibility for each and every mistake I've ever
made, no matter whether or not other people were involved, if there
was something that I could have done better then I regret not
having done that. In the long term though, I hope I can improve
these aspects and that by learning from my past mistakes which
taught me about these traits, and I hope that I can avoid future
repetitions.

I also hope that by reading about this you may be able to avoid
some of my past mistakes. §

Jacques Mattheij is the inventor of the live
streaming webcam, founder of camarades.com / ww.com and a small time investor. He also
collects insightful comments from Hacker News.

Reprinted with permission of the original author. First appeared
in
http://jacquesmattheij.com/Mistakes+I've+made,+and+what+you+might+be+able+to+learn+from+them.

Tell Us What You Think

Let us know what you liked, and what we need to work on.
hackermonthly.com/feedback/

Please share your thoughts so we can improve the coming issues.

Reach the hackers and startup founders who are building
tomorrow's web.

Advertise with Hacker Monthly

Email us at ads@hackermonthly.com.

Don't forget to ask us about our introductory advertising
offer.

Hacker Monthly is an independent project by Netizens Media and
not affiliated with Y Combinator in any way.

