
Issue 2 July 2010

How to Bootstrap
Bootstrap Your Company to Profitability!

Curator's Note

I'm overwhelmed by the overall reception from the
launch issue of Hacker Monthly. It sold more than
two hundred copies (my goal was a hundred), has

been downloaded more than ten thousand times, and
email subscribers have more than doubled (3,900 and
counting). Best of all, lots of readers sent in their form
of support, whether it's a simple email, suggestion to
improve, donation, or offer to help. Thank you all.

In this issue, I'm especially grateful for the help of the
excellent proofreader, Ricky and the incredibly talented
illustrator, Jaime.

A new section has been added in this issue, called
Hacker Comments. We created Hacker Comments
thanks to suggestions by our readers, who made a strong
point that the most interesting thing about Hacker News
is the comments. Indeed. — Lim Cheng Soon

ContentsCurator
Lim Cheng Soon

Contributors
Spencer Fry
Matt Welsh
Joey Devilla
Geoffrey K. Pullum
Mike Taylor
Jeff Atwood
Zack Linford
Jacques Mattheij
Zack Hiwiller
Bruce Schneier
Dominic Szablewski
Jakob Nielsen
Rafael Corrales

Proofreader
Ricky de Laveaga

Illustrators
Jaime G. Wong
Pasquale D'Silva

Printer
MagCloud

Advertising
ads@hackermonthly.com

Rate Card
hackermonthly.com/ratecard

Contact
curator@hackermonthly.com

Published by
Netizens Media
46, Taylor Road,
11600 Penang,
Malaysia.

Cover Image by Pasquale D'Silva.

HACkeR MontHlY is the print magazine version of
Hacker News — news.ycombinator.com — a social
news website wildly popular among hackers and
startup founders. The submission guidelines state that
content can be "anything that gratifies one's intellectual
curiosity."
Every month, we select from the top voted articles on
Hacker News and print them in magazine format. For
more, visit hackermonthly.com.

mailto:ads@hackermonthly.com
http://hackermonthly.com/ratecard
mailto:curator@hackermonthly.com
http://news.ycombinator.com
http://hackermonthly.com

 3

Contents

Cover Image by Pasquale D'Silva.

PRoGRAMMInG

10 New Programming Jargon
By JoEy DEvILLA

13 Scooping the Loop Snooper
By GEoFFREy K. PuLLuM

14 Programming Books:
The C Programming Language
By MIKE TAyLoR

StARtUP

30 On Working Remotely
By JEFF ATWooD

34 Increase Conversion Rate by
Making Your Site Ugly
By ZACK LINFoRD

36 Mistakes I've Made &
What You Might Learn From Them
By JAquES MATTHEIJ

SPeCIAl

18 If Mario Was Designed in 2010
By ZACK HIWILLER

20 Worst-Case Thinking
By BRuCE SCHNEIER

22 9 Years of Sleep
By DoMINIC SZABLEWSKI

24 iPad Usability:
First Findings from User Testing
By JAKoB NIELSEN

35 Zero Zero
By RAFAEL CoRRALES

28 HACkeR CoMMentS

FeAtUReS

4 How to Bootstrap
By SPENCER FRy

8 The Secret Lives of Professors
By MATT WELSH

Illustration by Jaime G. Wong. Check out his
work at http://retrazos.pe/.

http://retrazos.pe/

4 FEATURES

In my 10+ years of running
Internet companies, I've
never raised a single dime, yet
I've still gone on to sell three

profitable companies and am cur-
rently on my fourth, Carbonmade.
Bootstrapping is something I'm
very familiar with, so I've gathered
together some thoughts that should
provide you a step-by-step process
of going from idea to product to
profitability. I have nothing against
raising money — angel or venture
capital — it's just not the process
I'm most familiar with. How to
bootstrap goes hand-in-hand with
how to run a lean startup, so expect
some crossover below.

Idea Generating
Idea generating is only slightly differ-
ent when you're bootstrapping than
when you're looking to raise money.
The only important difference is: if
you're planning to bootstrap your
idea must have built-in revenue
generating functionality from the get
go. Building Twitter is off the table.

you can't wait to hit scale before
turning on the revenue features.
That's why ideas around Software
as a Service (SaaS) are so effective
for bootstrapped companies, because
you only need one customer to reach
revenue — and, with inexpensive
hosting costs, probably only a dozen
or two to reach profitability.

Bootstrapped companies can't
afford to wait around to reach a
network effect. you need to start
generating dollars as early as possible
so that you can quit your day job or
put a stop to the draining of your
bank account as soon as possible.
Bootstrapping startups don't have
the luxury to wait around. So when
generating an idea for your startup,
toss out everything that doesn't
involve charging a fee for at least
some of your clients. Leave the ad
revenue and crazy business model
revenue streams to the startups with
venture funding. That's just not your
game to play.

team Building
you can either come up with the
idea first or the team first. I think it's
fine to do it in either order, but it's
probably best to come up with the
idea before the team. Then you can
build a team around the idea. When
bootstrapping, you need to find a
team that's willing to work for noth-
ing and spend their off hours with
you, so finding these types of people
can take some searching. you're far
more limited in your choices.

The worst thing you can do
is work with people who can't
comprehend the idea of bootstrap-
ping. you need to work with people
who understand that their nights
and weekends are going to be fully
dedicated to building a product.
They'll be working two jobs, not
one. you need to explain to everyone
you depend on how a bootstrapped
company works: Revenue genera-
tion is slow at first, though steady,
and it could take a year or more
of hard work before they can quit
their other job and work full-time

How to Bootstrap
By SPENCER FRy

FEATURES

 5

on the company. But the advantage
here is that after a few months off
the ground you'll have a clear sense
of how soon that day can come.
Another advantage of a bootstrapped
company on the SaaS model is that
it's really easy to calculate your cash
flow.

It goes without saying that the
people you work with should have
complementary skills to your own,
but the bootstrapper's "slow but
steady" mindset is just as important
to the health of your company.
you'll find a lot of people may not
be comfortable with this approach.
Weed those people out as co-found-
ers when you're bootstrapping a
company. A one and done approach
won't work here.

off Hours
Almost every bootstrapped company
begins as an off-hours tinkering
project. That's true of Carbonmade,
which Dave built for himself first;
that's true of TypeFrag, which I built
over the course of a week during my

sophomore year in college; that's
true of 37signals' Basecamp, true of
Anthony's Hype Machine and lots of
other companies.

The good thing about bootstrap-
ping is that you don't need to spend
a single penny outside of server
costs and you can even do most
things locally before having to pay
any money on a server. your biggest
expense is time, and that's why off
hours are so important.

Consult on the Side
The way we started Carbonmade,
the way 37signals started, the way
Harvest started, and many other
startups too, was by first running a
consulting shop. We ran a design con-
sulting company called nterface that
Carbonmade grew out of. It's great,
because the money you're bringing
in through client work tides you over
while you're waiting for your startup
to grow.

Carbonmade was live for nearly 18
months before we started working

on it full-time. During those first
18 months, we were taking on lots
of client work to pay our bills. The
great thing about consulting through
the early months is that you can
take on fewer and fewer jobs as your
revenue builds up. For example, you
may need a dozen large projects
during the first year and only two or
three during the second year. That
was the case for us.

I know of other successful
bootstrapped companies that during
the first year would take on a single
client project for a month or two,
charging an appropriate amount, and
that would give them just enough
leeway to work on their startup for
two or three months. Then they'd
rinse and repeat. They did this
for the first year and a half before
making enough money to work on
their startup full-time.

there's no need to Rush
When you're bootstrapping there's
no rush to get things out the door,
even though that's all you hear these

“Leave the ad revenue and crazy
business model revenue streams
to the startups with venture
funding. ”

days. I know people talk about iterat-
ing quickly, and that's all well and
good, but when you're bootstrapping
and not meeting anyone's deadlines
but your own you can take your time
to better perfect your product before
every release. In my opinion, you
should strive to be more Apple-like
and really think things through.
If you don't take money from an
investor who will demand quick new
product releases, you can take the
time it needs to perfect things.

The first few iterations of your
product are everything, and boot-
strapping through this beginning
phase can allow you to take your
time and think through everything.
If you're too worried about getting
off the ground quickly, then you're
bound to make a mistake.

Building organically
Bootstrapping a company allows
you to grow it organically. We at
Carbonmade always refer to this
as incubating your project. We like
to release something, let it sit, feel
and gauge the reaction, and then
move on from there. you don't have
this kind of freedom when you're
not bootstrapping, because you're
desperately trying to ramp up as
quickly as possible.

I've heard stories of companies
acting too quickly on initial feedback
only to undermine themselves going
forward because the feedback was
from the wrong user group. For
example, if only web designers had
given us feedback in the early days
of Carbonmade, demanding more
precise tools for editing the look and
feel for their site, we would have
never realized that our market is far

more broad: the masses of creative
people who don't have a build-it-
yourself skill set. We would have
limited Carbonmade to a smaller
group of people and never have
gotten as big as we are today.

Making that First Dollar
Bootstrapping is all about making
that first dollar. When I launched
TypeFrag we didn't get any sign-ups
for the first week and this got us very
worried — my partner and I almost
threw in the towel — but about
five days into it we got our first bite.
Then another. Then three the next
day. And more and more. Sign-ups
began to pile up well beyond what
we had anticipated.

All this money coming in meant
we could begin to lay out our plans.
If no money had come in, we would
have had to drastically change direc-
tions. Revenue validated our idea,
and as every dollar came in we got
a better sense of our cash flow and
could plan the future development
of TypeFrag more accurately. We
were able to quickly figure out that
people wanted PayPal, so we add
that and saw even more money come
in. your first dollar validates your
product, your business model, and
everything else.

When Investors Come A Calling
As soon as you make that first dollar,
investors are going to start making
inquiries. That's a good sign! It
means you're doing something right.
They're not scary guys and most of
them are really nice and great people
to meet with! Even Jason Fried, the
man who is well known for scorning
investors, says in 37signals' 13th

podcast that it may even make sense
for your bootstrapped company to
take investment after you've gotten
off the ground. I completely agree,
as long as you know exactly how
you're going to put that money to
use. Furthermore, the outcome you
anticipate you'll get from taking
money needs to be well beyond what
you anticipate doing without it.

My advice: Consult with a select
few people you really trust who
aren't tied too closely to your com-
pany and see what they have to say.
Try and find someone who has raised
money before and had a successful
outcome or two. Share everything
with them and see if taking that $2.5
at a $10m valuation makes sense.
Can you put that $2.5m to use to
make your company worth at least
10x more than it's worth today in
three to five years? n

Spencer Fry is the co-founder and CEO
of Carbonmade, handling day-to-day
operations, accounting, legal matters,
customer service, marketing, advertising,
and “everything else” that’s not design or
code. Carbonmade is the easiest way to
display and manage your portfolio online,
with over 225,000 members.

6 FEATURES

“If you're too worried about getting off the ground
quickly, then you're bound to make a mistake.”

Reprinted with permission of the original author. First appeared in http://spencerfry.com/how-to-bootstrap.

http://spencerfry.com/how-to-bootstrap

http://www.catn.com

8 FEATURES

The Secret Lives of
Professors
By MATT WELSH

 9

I came to harvard 7 years ago
with a fairly romantic notion
of what it meant to be a pro-
fessor — I imagined unstruc-

tured days spent mentoring students
over long cups of coffee, strolling
through the verdant campus, writing
code, pondering the infinite. I never
really considered doing anything else.
At Berkeley, the reigning belief was
that the best and brightest students
went on to be professors, and the rest
went to industry — and I wanted
to be one of those elite. Now that
I have students that harbor their
own rosy dreams of academic life, I
thought it would be useful to reflect
on what being a professor is really
like. It is certainly not for everybody.
It remains to be seen if it is even for
me.

To be sure, there are some
great things about this job. To first
approximation you are your own
boss, and even when it comes to
teaching you typically have a tre-
mendous amount of freedom. It has
often been said that being a prof is
like running your own startup — you
have to hire the staff (the students),
raise the money (grant proposals),
and of course come up with the big
ideas and execute on them. But you
also have to do a lot of marketing
(writing papers and giving talks), and
sit on a gazillion stupid committees
that eat up your time. This post is
mostly for grad students who think
they want to be profs one day. A few
surprises and lessons from my time
in the job...

Show me the money.
The biggest surprise is how much
time I have to spend getting funding
for my research. Although it varies a
lot, I guess that I spent about 40% of
my time chasing after funding, either
directly (writing grant proposals)
or indirectly (visiting companies,
giving talks, building relationships).
It is a huge investment of time that
does not always contribute directly
to your research agenda — just
something you have to do to keep

the wheels turning. To do systems
research you need a lot of fund-
ing — at my peak I’ve had 8 Ph.D.
students, 2 postdocs, and a small
army of undergrads all working in
my group. Here at Harvard, I don’t
have any colleagues working directly
in my area, so I haven’t been able to
spread the fundraising load around
very much. (Though huge props
to Rob and Gu for getting us that
$10M for RoboBees!) These days,
funding rates are abysmal: less than
10% for some NSF programs, and
the decision on a proposal is often
arbitrary. And personally, I stink at
writing proposals. I’ve had around
25 NSF proposals declined and only
about 6 funded. My batting average
for papers is much, much better. So,
I can’t let any potential source of
funding slip past me.

Must... work... harder.
Another lesson is that a prof’s job
is never done. It’s hard to ever call
it a day and enjoy your “free time,”
since you can always be working on
another paper, another proposal, sit-
ting on another program committee,
whatever. For years I would leave the
office in the evening and sit down at
my laptop to keep working as soon
as I got home. I’ve heard a lot of
advice on setting limits, but the big-
gest predictor of success as a junior
faculty member is how much of your
life you are willing to sacrifice. I have
never worked harder than I have in
the last 7 years. The sad thing is that
so much of the work is for naught —
I can’t count how many hours I’ve
sunk into meetings with companies
that led nowhere, or writing propos-
als that never got funded. The idea
that you get tenure and sit back and
relax is not quite accurate — most
of the tenured faculty I know here
work even harder than I do, and they
spend more of their time on stuff
that has little to do with research.

Your time is not your own.
Most of my days are spent in an end-
less string of meetings. I find almost

no time to do any hacking anymore,
which is sad considering this is
why I became a computer scientist.
When I do have some free time in
my office it is often spent catching
up on email, paper reviews, random
paperwork that piles up when you’re
not looking. I have to delegate all the
fun and interesting problems to my
students. They don’t know how good
they have it!

Students are the coin of the realm.
David Patterson once said this and
I now know it to be true. The main
reason to be an academic is not to
crank out papers or to raise a ton of
money but to train the next genera-
tion. I love working with students
and this is absolutely the best part of
my job. Getting in front of a class-
room of 80 students and explaining
how virtual memory works never
ceases to be thrilling. I have tried to
mentor my grad students, though
in reality I have learned more from
them than they will ever learn from
me. My favorite thing is getting
undergrads involved in research,
which is how I got started on this
path as a sophomore at Cornell,
when Dan Huttenlocher took a
chance on this long-haired crazy kid
who skipped his class a lot. So I try
to give back.

of course, my approach to being a
prof is probably not typical. I know
faculty who spend a lot more time
in the lab and a lot less time doing
management than I do. So there
are lots of ways to approach the
job — but it certainly was not what
I expected when I came out of grad
school. n

Matt Welsh is a professor of Computer
Science at Harvard University. His
research interests include OS, network,
and programming language support for
complex, large-scale systems, including
wireless sensor networks and cloud
computing services. He is the author of
“Running Linux” and blogs at
http://matt-welsh.blogspot.com.

Reprinted with permission of the original author. First appeared in http://matt-welsh.blogspot.com/2010/05/secret-lives-of-professors.html.

http://matt-welsh.blogspot.com
http://matt-welsh.blogspot.com/2010/05/secret-lives-of-professors.html

10 PROGRAMMING

Every field comes up with its
own jargon, and oftentimes
subgroups within a field

come up with their own specific
words or phrases (those of you
familiar with Microsoft Canada’s
Developer and Platform Evangelism
Team know that we have our own
term for “broken”, named after one
of our teammates who is notorious
for killing all sorts of tech gear).

A question recently posted on
Stack overflow asked for people to
submit programming terms that they
or their team have coined and have
come into regular use in their own
circles. I took a number of the sub-
missions and compiled them into the
alphabetically ordered list below for
your education and entertainment.

Banana Banana Banana
Placeholder text indicating that
documentation is in progress or
yet to be completed. Mostly used
because FxCop complains when a
public function lacks documentation.

Example:
/// <summary>

/// banana banana banana

/// </summary>

public CustomerValidationResponse

Validate(CustomerValidationRequ

est request, bool ...

Barack obama
A project management account to
which the most aspirational tickets –
stuff you’d really like to do but will
pobably never get approval for – gets
assigned.

Bicrement
Adding 2 to a variable.

Bloombug
A bug that accidentally generates
money. [Joey’s note: I have never
written one of these.]

Bugfoot
A bug that isn’t reproducible and has
been sighted by only one person. See
Loch Ness Monster Bug.

Chunky Salsa
A single critical error or bug that
renders an entire system unus-
able, especially in a production
environment.

Based on the chunky salsa rule
from TVTropes: Any situation that
would reduce a character’s head to
the consistency of chunky salsa dip is
fatal, regardless of other rules.

Configuration Programming /
Programmer
Someone that says they are a
programmer but only knows how to
hack at configuration files of some
other pieces of software configura-
tion to make them do what they
want.

Counterbug
A defensive move useful for code
reviews. If someone reviewing
your code presents you with a bug
that’s your fault, you counter with
a counterbug: a bug caused by the
reviewer.

DoCtYPe Decoration
When web designers add a proper
DoCTyPE declaration at the
beginning of an HTML document,
but then don’t bother to write valid
markup for the rest of it.

Drug Report
A bug report so utterly incompre-
hensible that whoever submitted it
must have been smoking crack. The
lesser version is a chug report, where
the submitter is thought have had
one too many.

New Programming Jargon
By JoEy DEvILLA

PROGRAMMING

 11

Duck
A feature added for no other reason
than to draw management attention
and be removed, thus avoiding
unnecessary changes in other aspects
of the product.

This started as a piece of Interplay
corporate lore. It was well known
that producers (a game industry
position, roughly equivalent to PMs)
had to make a change to everything
that was done. The assumption was
that subconsciously they felt that
if they didn’t, they weren’t adding
value.

The artist working on the queen
animations for Battle Chess was
aware of this tendency, and came
up with an innovative solution. He
did the animations for the queen
the way that he felt would be best,
with one addition: he gave the queen
a pet duck. He animated this duck
through all of the queen’s anima-
tions, had it flapping around the
corners. He also took great care to
make sure that it never overlapped
the "actual" animation.

Eventually, it came time for the
producer to review the animation
set for the queen. The producer sat
down and watched all of the anima-
tions. When they were done, he

turned to the artist and said, "That
looks great. Just one thing – get rid
of the duck."

Fear-Driven Development
When project management adds
more pressure, such as by firing a
member of the team.

Ghetto Code
A particularly inelegant and obvi-
ously suboptimal section of code that
still meets the requirements. [Joey’s
note: I’ve written ghetto code before,
but that’s because I’m street, yo!]

Hindenbug
A catastrophic data-destroying bug.
oh, the humanity!

Hocus Focus Problem
unexpected behavior caused by
changes in focus, or incorrect setting
of focus. Could also be used to
describe an app stealing your focus.

Hot Potato / Hot Potatoes
A fun way to pronounce http:// and
https://.

IRQed
Annoyed by interruptions.
Pronounced like and has a similar
meaning to “irked”.

Jimmy
A generalized name for the clueless/
new developer. The submitter at
Stack overflow writes:

We found as we were developing a
framework component that required
minimal knowledge of how it worked
for the other developers. We would
always phrase our questions as:
"What if Jimmy forgets to update the
attribute?"
This led to the term "Jimmy-proof"
when referring to well designed
framework code.

It’s probably best not to use this
term around IronRuby developer
Jimmy Schementi.

loch ness Monster Bug
A bug that isn’t reproducible and has
been sighted by only one person. See
Bugfoot.

Megamoth
MEGA Monolithic meTHod.
usually stretches over two screens in
height and often contained inside a
God object (an object that knows or
does too much).

.net Sandwich
When .NET code called native code
which calls other .NET code and
makes the poorly designed applica-
tion crash.

12 PROGRAMMING

n-gleton
A class that only allows a fixed
number of instances of itself.

noPping
Not napping, but simply zoning out.
Comes from the assembly language
instruction NoP, for No oPeration,
which does nothing.

Pokemon exception Handling
For when you just gotta catch ’em
all!

Reality 101 Failure
The program (or more likely feature
of a program) does exactly what was
asked for, but when it’s deployed
it turns out that the problem was
misunderstood and the program is
basically useless.

Refuctoring
The process of taking a well-designed
piece of code and, through a series
of small, reversible changes, making
it completely unmaintainable by
anyone except yourself. It’s job
security!

the Sheath
The isolating interface between your
team’s (good) code, and the brain-
dead code contributed by some other
group. The sheath prevents horrible

things (badly named constants,
incorrect types, etc.) in their code
from infecting your code.

Shrug Report
A bug report with no error message
or “how to reproduce” steps and only
a vague description of the problem.
usually contains the phrase "doesn’t
work."

Smug Report
A bug report submitted by a user
who thinks he knows a lot more
about the system’s design than he
really does. Filled with irrelevant
technical details and one or more
suggestions (always wrong) about
what he thinks is causing the prob-
lem and how we should fix it.

Stringly-typed
A riff on strongly-typed. used to
describe an implementation that
needlessly relies on strings when
programmer- and refactor-friendly
options are available.

Examples:

•	 Method parameters that take
strings when other more appropri-
ate types should be used

•	 on the occasion that a string is
required in a method call (e.g.
network service), the string is then
passed and used throughout the
rest of the call graph without first

converting it to a more suitable
internal representation (e.g. parse
it and create an enum, then you
have strong typing throughout the
rest of your codebase)

•	 Message passing without using
typed messages etc.

Excessively stringly typed code
is usually a pain to understand and
detonates at runtime with errors that
the compiler would normally find.

Unicorny
An adjective to describe a feature
that’s so early in the planning stages
that it might as well be imaginary.
This one comes from Rails Core
Team member yehuda Katz, who
used it in his closing keynote at last
year’s Windy City Rails to describe
some of Rails’ upcoming features.

Yoda Conditions
The act of using

if (constant == variable)

instead of

if (variable == constant)

It’s like saying “If blue is the sky”.n

Joey deVilla is Microsoft Canada's unlikely
Developer Evangelist. Prior to working
for "The Empire", he worked on open
source software at a number of startups,
developed multimedia CD-ROMs, worked
the street as an accordion busker and
even had a stint as an accordion-playing
go-go dancer at a Toronto nightclub. You'll
often find him hanging out at Toronto's
hackerspace HacklabTO.

Reprinted with permission of the original author. First appeared in http://www.globalnerdy.com/2010/05/09/new-programming-jargon/.

http://www.globalnerdy.com/2010/05/09/new-programming-jargon/

 13

No general procedure for bug checks succeeds.
Now, I won't just assert that, I'll show where it leads:
I will prove that although you might work till you drop,
you cannot tell if computation will stop.

For imagine we have a procedure called P
that for specified input permits you to see
whether specified source code, with all of its faults,
defines a routine that eventually halts.

you feed in your program, with suitable data,
and P gets to work, and a little while later
(in finite compute time) correctly infers
whether infinite looping behavior occurs.

If there will be no looping, then P prints out ‘Good.’
That means work on this input will halt, as it should.
But if it detects an unstoppable loop,
then P reports ‘Bad!’ — which means you're in the soup.

Well, the truth is that P cannot possibly be,
because if you wrote it and gave it to me,
I could use it to set up a logical bind
that would shatter your reason and scramble your mind.

Here's the trick that I'll use — and it's simple to do.
I'll define a procedure, which I will call q,
that will use P's predictions of halting success
to stir up a terrible logical mess.

For a specified program, say A, one supplies,
the first step of this program called q I devise
is to find out from P what's the right thing to say
of the looping behavior of A run on A.

If P's answer is ‘Bad!’, q will suddenly stop.
But otherwise, q will go back to the top,
and start off again, looping endlessly back,
till the universe dies and turns frozen and black.

And this program called q wouldn't stay on the shelf;
I would ask it to forecast its run on itself.
When it reads its own source code, just what will it do?
What's the looping behavior of q run on q?

If P warns of infinite loops, q will quit;
yet P is supposed to speak truly of it!
And if q's going to quit, then P should say ‘Good.’
Which makes q start to loop! (P denied that it would.)

No matter how P might perform, q will scoop it:
q uses P's output to make P look stupid.
Whatever P says, it cannot predict q:
P is right when it's wrong, and is false when it's true!

I've created a paradox, neat as can be —
and simply by using your putative P.
When you posited P you stepped into a snare;
your assumption has led you right into my lair.

So where can this argument possibly go?
I don't have to tell you; I'm sure you must know.
By reductio, there cannot possibly be
a procedure that acts like the mythical P.

you can never find general mechanical means
for predicting the acts of computing machines.
It's something that cannot be done. So we users
must find our own bugs. our computers are losers!

Scooping the Loop Snooper
A proof that the Halting Problem is undecidable

Geoffrey K. Pullum is a linguist, currently teaching at the University of Edinburgh. Formerly he was at the University of California,
Santa Cruz. His main research interests for some time have been in the grammar of Standard English and the formalization of
syntactic theories, and his recreational interest in theoretical computer science arises out of the latter.

By GEoFFREy K. PuLLuM

Reprinted with permission of the original author. First appeared in http://ling.ed.ac.uk/~gpullum/loopsnoop.html. An earlier version was published in Mathematics Magazine (73).

http://ling.ed.ac.uk/~gpullum/loopsnoop.html

14 PROGRAMMING

It’s 32 years old, and it
remains the single greatest
book ever written about a
programming language. Its

crown is secure; even if you’d not
already read the title of this article,
you’d know what book I’m talking
about. It’s the only language-specific
book in Top Five programming
books of the Programming Reddit’s
FAq. Co-written by Reinvigorated
Programmer regular Brian W.
Kernighan and Dennis M. Ritchie,
it’s not just the definitive book
about the language in question, it’s
the book that rewrote the book on
what it means to be definitive. Step
forward, please, The C Programming
Language!

The biography of the Beatles at
allmusic.com has a very astute and
resonant bit of analysis right in the
first paragraph, saying that “they
were among the few artists of any
discipline that were simultaneously
the best at what they did and the
most popular at what they did.”
you could say the same for K&R, as
it’s affectionately known: everyone
knows it’s the best book on C, and

(for once) the thing that everyone
knows is actually true.

So what makes it so great?

Short, comprehensive, dense
First: it’s so short. At 272 pages (this
is for the second edition, published
in 1988 and describing ANSI C), it’s
shorter that Harry Potter and the
Prisoner of Azkaban (317 pages) and
little more than one third the length
of order of the Phoenix.

Second, it’s so comprehensive.
There is, essentially, nothing to be
known about C beyond what is in
this book. If you can read those 272
pages, and understand them all, then
you are well on the way to being a
C wizard. (Er, assuming you have
the patience to go on to accumulate
a decade of experience leading to
wisdom, taste, good judgement and
technical intuition.)

Third, and this is really a conse-
quence of the first two, it’s so dense.
This is not a book that wastes words.
There are no extended introductory
sections on Why you Should Learn
C and C’s Place In The World.
The two prefaces (for 1st and 2nd

editions) are one and a bit pages
each. The introduction is four pages.
Then we’re straight into Chapter 1.
A Tutorial Introduction, which is 30
pages long and in that space covers:

•	 1.1 Getting Started
•	 1.2 variables and Arithmetic

Expressions
•	 1.3 The For Statement
•	 1.4 Symbolic Constants
•	 1.5 Character Input and output
•	 1.6 Arrays
•	 1.7 Functions
•	 1.8 Arguments — Call by value
•	 1.9 Character Arrays
•	 1.10 External variables and

Scope

At the end of that chapter, on page
34, is a sequence of five exercises,
culminating in this one (and enjoy
the characteristic Kernighanian
understatement in the final
sentence):

Exercise 1-24. Write a program to
check a C program for rudimentary
syntax errors like unbalanced
parentheses, brackets and braces.
Don’t forget about quotes, both single

Programming Books :
The C Programming Language
By MIKE TAyLoR

 15

and double, escape sequences, and
comments. (This program is hard if
you do it in full generality.)

And, as tough as that may seem
after only 30 pages, they really have
given you all the tools you need to
do the exercise by this point.

Say what you mean, simply and
directly
Apologies if you’re getting bored of
reading this Kernighan-and-Plauger
epigram every time you return to
this blog, but I really don’t think it
can be over-emphasised. Although
this advice’s appearance in The
Elements of Programming Style is
of course in the context of writing
programs, Kernighan also follows his
own advice when it comes to writing
prose. No words are wasted; neither
is your time. yet somehow the book
avoids feeling rushed despite packing
so much into so little space.

After the tutorial introduction, the
remaining chapters cover:

•	 Chapter 2. Types, operators,
and Expressions

•	 Chapter 3. Control Flow

•	 Chapter 4. Functions and
Program Structure

•	 Chapter 5. Pointers and Arrays
[this, by the way, on page 93]

•	 Chapter 6. Structures
•	 Chapter 7. Input and output
•	 Chapter 8. The uNIX System

Interface

That’s it for the chapters. So
they’ve got you doing systems
programming by page 169; from
page 185 to the end of the chapter,
they show you how to implement
malloc(). These guys are not mess-
ing about.

And then it’s on to the appendices,
which rival those of The Return of
the King for comprehensiveness
(though thankfully without the notes
on the differences between Eldar and
Númenorean calendars).

•	 Appendix A. Reference Manual
[because all the chapters are
tutorial]

•	 Appendix B. Standard Library
[yes, all of it, in 18 pages]

•	 Appendix C. Summary of
Changes [since the 1st edition]

And finally, there’s just time for
a characteristically comprehensive
index before the book comes to a
close.

In praise of small
Kernighan and Ritchie’s much-
quoted preface explains the philoso-
phy behind the book’s characteristi-
cally dense structure:

We have tried to retain the brevity
of the first edition. C is not a big
language, and it is not well served
by a big book. [...] Appendix A,
the reference manual, is not the
standard, but our attempt to convey
the essentials of the standard in
a smaller space. [...] As we said
in the preface to the first edition,
C “wears well as one’s experience
with it grows.” With a decade more
experience, we still feel that way.

And it’s true that the book is only
able to be as short as it is because the
language that it describes is as small
as it is. I have the second edition of
Stroustrup’s The C++ Programming
Language, which clearly models itself
on K&R and is about as terse as such

Programming Books :
The C Programming Language

16 PROGRAMMING

a book can be, but its 691 pages
make it fully two and half times the
size of the original. This, mind you,
is the second edition of Stroustrup,
published in 1991 only three years
after the K&R second edition, when
C++ was still relatively well under
control.

There is much, much more that I
could say about the smallness of C,
but rather that go against everything
I’ve just been saying by bloating this
review up into a monster, I am going
to save that for a separate article.

Do it yourself
It’s also characteristic of K&R that
they have this statement on the
copyright page:

This book was typeset
(pic|tbl|eqn|troff -ms) in Times
Roman and Courier by the
authors, using an Autologic APS-5
phototypesetter and a DEC VAX
8550 running the 9th Edition of the
UNIX(R) operating system.

That they did their own typeset-
ting is not just a cute touch, but an
insight on the completeness of their
mastery of what they were doing,
and the care they took over it. The
book is not what you would call
beautiful to look at, but the typeset-
ting is wholly functional, at one with

the text rather than fighting against
it.

If I could analyse it, I’d do it myself
Finally, we come to the aspect of
The C Programming Language that
is hardest to explain — and hardest
to do.

The bottom line here is that
writing is an art. you can hack your
way through to producing tolerable
text without being an artist, just as
an uninspired programmer can bash
his way through to wiring together
an uninspired web application. But
just as it takes a Ken Thompson
to invent and write uNIX, and a
Dennis Ritchie to invent C and
write the initial compiler, so it takes
a Brian Kernighan to write The C
Programming Language.

If all it took to write a truly great
technical book was to write down
everything there is to say about a
subject and then ruthlessly distill it
to its essence, then great technical
books would be much less rare
than they are. That, I think, is a
prerequsite; but it’s Necessary But
Not Sufficient. There is a graceful
quality about the writing in K&R,
even when it is brutally technical; it
draws you on and in; it’s just pleasant
to read. It is, on occasion, gently
humorous, though certainly not

written for laughs the way that, say,
Programming Perl is. It’s exhilarating
how the book takes you somewhere
worth getting to, and does it so
quickly. It treats you like a grown-
up; it is not “For Dummies”, but its
intelligent approach is not the elitist
kind that seems to want to make
the reader feel inferior, but a warm
intelligence that lifts you up to its
level. In short, it’s a book that wants
to make you a better programmer.

The best way I can express it is to
say that at the end of each section
and subsection, you want to read
on and find out what’s next. That
stands in stark contrast to too many
other technical books, where I find
myself peeking ahead to find out
how much more of the current
chapter there is to plough through
before I can stop reading.

I wish I knew how they did it. But
I’m glad that they did. Kernighan
and Ritchie, we salute you! n

Mike Taylor is a computer programmer
by day and a dinosaur palaeontologist by
night, twin obsessions reflected in his two
blogs, http://reprog.wordpress.com/ and
http://svpow.wordpress.com/. He started
programming in 1980, on a Commodore
PET 2001 and a Video Genie, and has
hardly stopped since.

Kernighan, left, railing against innumeracy; Ritchie, right, auditioning for the role of Saruman.

Reprinted with permission of the original author. First appeared in http://reprog.wordpress.com/2010/04/06/programming-books-part-4-the-c-programming-language/.

http://reprog.wordpress.com/
http://svpow.wordpress.com/
http://reprog.wordpress.com/2010/04/06/programming-books-part-4-the-c-programming-language/

https://www.cloudkick.com/viz/demo/

18 SPECIAL

If Mario Was Designed in 2010
By ZACK HIWILLER

SPECIAL

19

Author’s note
While this post is meant to be humorous, it isn’t meant
to be humorous at the expense of my fellow designers.
I know we all try to do what is best for our games and
Lord knows I am just as guilty as everyone else, so
don’t take offense guys! It’s just me pining for a simpler
time…n

Zack Hiwiller is a game designer currently living in New York City.
He’s worked on games on eleven platforms from the lowly Game
Boy Advance to the chugging heat-expelling behemoth called
the Playstation 3. He writes about games and the game industry
on his blog at http://www.hiwiller.com.

Reprinted with permission of the original author. First appeared in http://www.hiwiller.com/2010/04/29/if-mario-was-designed-in-2010/.

http://www.hiwiller.com
http://www.hiwiller.com/2010/04/29/if-mario-was-designed-in-2010/

20 SPECIAL

At a security conference
recently, the moderator
asked the panel of dis-
tinguished cybersecurity

leaders what their nightmare scenario was.
The answers were the predictable array of
large-scale attacks: against our communications
infrastructure, against the power grid, against
the financial system, in combination with a
physical attack.

I didn't get to give my answer until the
afternoon, which was: "My nightmare scenario
is that people keep talking about their night-
mare scenarios."

There's a certain blindness that comes
from worst-case thinking. An extension of the
precautionary principle, it involves imagining
the worst possible outcome and then acting as
if it were a certainty. It substitutes imagination
for thinking, speculation for risk analysis, and
fear for reason. It fosters powerlessness and
vulnerability and magnifies social paralysis. And
it makes us more vulnerable to the effects of
terrorism.

Worst-case thinking means generally bad
decision making for several reasons. First,
it's only half of the cost-benefit equation.
Every decision has costs and benefits, risks
and rewards. By speculating about what can
possibly go wrong, and then acting as if that is
likely to happen, worst-case thinking focuses
only on the extreme but improbable risks and
does a poor job at assessing outcomes.

Second, it's based on flawed logic. It begs the
question by assuming that a proponent of an
action must prove that the nightmare scenario
is impossible.

Third, it can be used to support any position
or its opposite. If we build a nuclear power
plant, it could melt down. If we don't build
it, we will run short of power and society will
collapse into anarchy. If we allow flights near
Iceland's volcanic ash, planes will crash and
people will die. If we don't, organs won’t arrive
in time for transplant operations and people
will die. If we don't invade Iraq, Saddam Hus-
sein might use the nuclear weapons he might
have. If we do, we might destabilize the Middle
East, leading to widespread violence and death.

of course, not all fears are equal. Those that
we tend to exaggerate are more easily justified
by worst-case thinking. So terrorism fears
trump privacy fears, and almost everything
else; technology is hard to understand and
therefore scary; nuclear weapons are worse
than conventional weapons; our children need
to be protected at all costs; and annihilating
the planet is bad. Basically, any fear that would
make a good movie plot is amenable to worst-
case thinking.

Fourth and finally, worst-case thinking
validates ignorance. Instead of focusing on
what we know, it focuses on what we don't
know — and what we can imagine.

Remember Defense Secretary Rumsfeld's
quote? "Reports that say that something hasn't
happened are always interesting to me, because
as we know, there are known knowns; there
are things we know we know. We also know
there are known unknowns; that is to say we
know there are some things we do not know.
But there are also unknown unknowns — the
ones we don't know we don't know." And
this: "the absence of evidence is not evidence

Worst-Case Thinking
By BRuCE SCHNEIER

 21

of absence." Ignorance isn't a cause for doubt;
when you can fill that ignorance with imagina-
tion, it can be a call to action.

Even worse, it can lead to hasty and danger-
ous acts. you can't wait for a smoking gun, so
you act as if the gun is about to go off. Rather
than making us safer, worst-case thinking has
the potential to cause dangerous escalation.

The new undercurrent in this is that our
society no longer has the ability to calculate
probabilities. Risk assessment is devalued.
Probabilistic thinking is repudiated in favor of
"possibilistic thinking": Since we can't know
what's likely to go wrong, let's speculate about
what can possibly go wrong.

Worst-case thinking leads to bad decisions,
bad systems design, and bad security. And
we all have direct experience with its effects:
airline security and the TSA, which we make
fun of when we're not appalled that they're
harassing 93-year-old women or keeping first
graders off airplanes. you can't be too careful!

Actually, you can. you can refuse to fly
because of the possibility of plane crashes. you
can lock your children in the house because
of the possibility of child predators. you can
eschew all contact with people because of
the possibility of hurt. Steven Hawking wants
to avoid trying to communicate with aliens
because they might be hostile; does he want to
turn off all the planet's television broadcasts
because they're radiating into space? It isn't
hard to parody worst-case thinking, and at its
extreme it's a psychological condition.

Frank Furedi, a sociology professor at
the university of Kent, writes: "Worst-case
thinking encourages society to adopt fear as
one of the dominant principles around which
the public, the government and institutions
should organize their life. It institutionalizes
insecurity and fosters a mood of confusion and
powerlessness. Through popularizing the belief
that worst cases are normal, it incites people to
feel defenseless and vulnerable to a wide range
of future threats."

Even worse, it plays directly into the hands
of terrorists, creating a population that is easily
terrorized — even by failed terrorist attacks
like the Christmas Day underwear bomber and
the Times Square Suv bomber.

When someone is proposing a change, the
onus should be on them to justify it over the
status quo. But worst-case thinking is a way of
looking at the world that exaggerates the rare
and unusual and gives the rare much more
credence than it deserves.

It isn't really a principle; it's a cheap trick to
justify what you already believe. It lets lazy or
biased people make what seem to be cogent
arguments without understanding the whole
issue. And when people don't need to refute
counterarguments, there's no point in listening
to them. n

Internationally renowned security expert Bruce
Schneier has authored nine books — including Sch-
neier on Security and Beyond Fear — and hundreds
of articles and academic papers. Schneier regularly
appears on television and radio, has testified before
Congress, and is a frequent writer and lecturer on
issues surrounding security and privacy.

Reprinted with permission of the original author. First appeared in http://www.schneier.com/blog/archives/2010/05/worst-case_thin.html.

http://www.schneier.com/blog/archives/2010/05/worst-case_thin.html

22 SPECIAL

For the last ten years or so, I used to turn on my
PC when I came home from school or work and
shut it down again right before I went to bed. So

most of the time when my PC is running, I'm awake.
I've also been idling in IRC for as long as I had Internet –
when my PC is running, so is my IRC client.

I still have all my IRC logs since 2001 lying on my
HDD. The log format of mIRC changed slightly over the
years, but it's all easily parsable with some basic Regexp.
I quickly wrote a PHP script that extracts the Session
Start and Sessions Close markers and timestamps from
these logs and transfers them into an image.

As you can see, I tend to stay up late. I also tend to
go into a free-running sleep mode when I don't have to
get up early every morning. During May 2004, after my
A-Level exams and before my apprenticeship started, I

“rotated” my sleep cycle three times. This has been even
more extreme in the last two years, when we've had
fewer lectures and instead worked on a lot of projects. I
should really get one of these daylight lamps.

There's so much more interesting information hidden
in these IRC logs. Maybe I can bring myself to parse and
import all of them into a database, so I can run some
simple queries on them. Maybe I can even find my
pre-2001 IRC logs on some backup CDs. n

Dominic Szablewski is a freelance developer and a student for
Digital Media at the Hochschule Darmstadt in Germany. He is
currently working on his bachelor thesis about real-time games
written using HTML5. PhobosLab is his personal blog about any
project he can get to a presentable state.

9 Years of Sleep
By DoMINIC SZABLEWSKI

Reprinted with permission of the original author. First appeared in http://www.phoboslab.org/log/2010/05/9-years-of-sleep.

http://www.phoboslab.org/log/2010/05/9-years-of-sleep

High-quality programming screencasts

30% off coupon: HNFTW

 23

http://thinkcode.tv

24 SPECIAL

It looks like a giant iPhone",
is the first thing users say
when asked to test an iPad.
(Their second comment?

"Wow, it's heavy.")
But from an interaction design

perspective, an iPad user interface
shouldn't be a scaled-up iPhone uI.

Indeed, one finding from our study
is that the tab bar at the bottom of
the screen works much worse on
iPad than on iPhone. on the small
phone, users are likely to notice
the muted icons at the bottom of
the screen, even if their attention
is on content in the middle of the
screen. But the iPad's much bigger

screen means that users are typically
directing their gaze far from the tab
bar and they ignore (and forget)
those buttons.

Another big difference between
iPad and iPhone is that regular
websites work reasonably well on
the big tablet. In our iPhone usability
studies, users strongly prefer using
apps to going on the Web. It's simply
too painful to use most websites on
the small screen. (Mobile-optimized
sites alleviate this issue, but even
they usually have worse usability
than apps.)

The iPad's bigger screen offers
reasonable usability for regular Web
pages. of course, there's still the

"fat finger" problem common to all
touch screens, which makes it hard
for users to reliably hit small targets.
The iPad has a read–tap asymmetry,
where text big enough to read is too
small to touch. Thus, we definitely
recommend large touch zones on any
Web page hoping to attract many
iPad users.

Also, most Web pages offer a
rich and overstuffed experience
compared to the iPad's sparse and
regulated environment; when an iPad
app suddenly launches users onto the
Web, the transition can be jarring.

For more than a decade, when we
ask users for their first impression
of (desktop) websites, the most

iPad Usability:
First Findings From

User Testing
By JAKoB NIELSEN

 25

frequently-used word has been
"busy." In contrast, the first impres-
sion of many iPad apps is "beautiful."
The change to a more soothing user
experience is certainly welcome,
especially for a device that may turn
out to be more of a leisure computer
than a business computer. Still,
beauty shouldn't come at the cost of
being able to actually use the apps
to derive real benefits from their
features and content.

First Studies
We conducted
our initial
usability studies
of iPad apps
and content a
few weeks after
Apple launched
the device. We tested 7 users — all
with at least 3 months' iPhone
experience — but only one was an
"experienced" iPad user.

(This user had only a week's
experience — far less than the
minimum of one year's experience
that we usually request of usability
study participants.)

obviously, the findings from
this research are only preliminary.
However, we're releasing them
anyway because the iPad platform is
so different and is expected to attract
considerable application develop-
ment during the coming months. It
would be a shame for all these apps
to be designed without the benefit
of the usability insights that do
exist, despite the gaps in our current
knowledge.

We tested the following applica-
tions and websites:

•	 ABC player
•	 Alice in Wonderland Lite
•	 AP News
•	 Art Authority
•	 BBC News
•	 Bloomberg
•	 craigsphone (Craigslist)
•	 eBay (both app and website)

•	 The Elements (physics
courseware)

•	 Endless.com
•	 Epicurious
•	 ESPN Score Center
•	 ESPN.com
•	 Gap
•	 Gilt
•	 Gq magazine
•	 GWR Lite (Guinness World

Records)
•	 iBook
•	 IMDb (Internet Movie

Database)

•	 iverse Comics
•	 Kayak (kayak.com)
•	 Marvel Comics
•	 MLB.com (Major League

Baseball)
•	 Nike.com
•	 Now Playing
•	 NPR (National Public Radio)
•	 The New york Times Editors'

Choice
•	 Popular Science
•	 Time Magazine
•	 uSA Today
•	 virginamerica.com
•	 whitehouse.gov
•	 Wolfram Alpha
•	 yahoo! Entertainment

Wacky Interfaces
The first crop of iPad apps revived
memories of Web designs from 1993,
when Mosaic first introduced the
image map that made it possible for
any part of any picture to become
a uI element. As a result, graphic
designers went wild: anything they
could draw could be a uI, whether it
made sense or not.

It's the same with iPad apps:
anything you can show and touch
can be a uI on this device. There are
no standards and no expectations.

Worse, there are often no per-
ceived affordances for how various
screen elements respond when
touched. The prevailing aesthetic is
very much that of flat images that
fill the screen as if they were etched.
There's no lighting model or pseudo-
dimensionality to indicate raised or
lowered visual elements that call out
to be activated.

In contrast, long-standing GuI
design guidelines for desktop user
designs dictate that buttons look
raised (and thus pressable) and that

scrollbars and other
interactive elements
are visually distinct
from the content.

The traditional
GuI separation
between "church

and state" — that is, between content
and features or commands — has
carried over to modern Web design.
Those 1993-style image maps are
long gone from any site that hopes to
do business on the Internet.

The iPad etched-screen aesthetic
does look good. No visual distrac-
tions or nerdy buttons. The penalty
for this beauty is the re-emergence
of a usability problem we haven't
seen since the mid-1990s: users
don't know where they can click.

For the last 15 years of Web
usability research, the main problems
have been that users don't know
where to go or which option to
choose — not that they don't even
know which options exist. With iPad
uIs, we're back to this square one.

Inconsistent Interaction Design
To exacerbate the problem, once
they do figure out how something
works, users can't transfer their skills
from one app to the next. Each
application has a completely differ-
ent uI for similar features.

In different apps, touching a
picture could produce any of the
following 5 results:

“Anything you can show and
touch can be a UI on this device.”

26 SPECIAL

•	 Nothing happens

•	 Enlarging the picture

•	 Hyperlinking to a more detailed
page about that item

•	 Flipping the image to reveal
additional pictures in the same
place (metaphorically, these new
pictures are "on the back side" of
the original picture)

•	 Popping up a set of navigation
choices

The latter design was used by uSA
Today: Touching the newspaper's
logo brought up a navigation menu
listing the various sections. This
was probably the most unexpected
interaction we tested, and not one
user discovered it.

Similarly, to continue reading once
you hit the bottom of the screen
might require any of 3 different
gestures:

•	 Scrolling down within a text field,
while staying within the same page

•	 For this gesture to work, you have
to touch within the text field.
However, text fields aren't demar-
cated on the screen, so you have to
guess what text is scrollable.

•	 Swiping left (which can some-
times take you to the next article
instead of showing more of the
current article)

 » This gesture doesn't work,
however, if you happen to swipe
within an area covered by an
advertisement in The New york
Times app

•	 Swiping up

iPad uIs suffer under a triple
threat that causes significant user
confusion:

•	 Low discoverability: The uI is
mostly hidden within the etched-
glass aesthetic without perceived
affordances.

•	 Low memorability: Gestures
are inherently ephemeral and
difficult to learn when they're not
employed consistently across apps;
wider reliance on generic com-
mands would help.

•	 Accidental activation: This occurs
when users touch things by
mistake or make a gesture that
unexpectedly initiates a feature.

When you combine these three
usability problems, the resulting user
experience is frequently one of not
knowing what happened or how to
replicate a certain action to achieve
the same result again. Worse yet,
people don't know how to revert to
the previous state because there's no
consistent undo feature to provide
an escape hatch like the Web's Back
button.

Crushing Print Metaphor
Swiping for the next article is
derived from a strong print metaphor
in many content apps. In fact, this
metaphor is so strong that you can't
even tap a headline on the "cover"
page to jump to the corresponding
article. The iPad offers no homep-
ages, even though users strongly
desired homepage-like features in
our testing. (They also often wanted
search, which was typically not
provided.)

In electronic media, the linear
concept of "next article" makes little
sense. People would rather choose
for themselves where to go, selecting
from a menu of related offerings.

A strategic issue for iPad user
experience design is whether to
emphasize user empowerment or
author authority. Early designs err
on the side of being too restrictive.
using the Web has given people
an appreciation for freedom and
control, and they're unlikely to
happily revert to a linear experience.

Publishers hope that users will
perceive content as more valuable
if each publication is a stand-alone
environment. Similarly, they hope for
higher value-add if users spend more
time with fewer publications rather
than flit among a huge range of sites
like they do on the Web.

using the desktop Web, a user
can easily visit 100 sites in a week,
viewing only 1–3 pages on most of
them. (For example, for one task
in which B2B users visited 15 sites,
they spent an average of 29 seconds
per pageview.) Most sites are visited
once-only, because users dredge
them up in a search or stumble upon
links from other sites or social media
postings. Without real customer
relationships, content sites have no
value and 90% of the money cre-
ated by users spending time online
accrues to search engines.

The current design strategy of
iPad apps definitely aims to create
more immersive experiences, in the
hope of inspiring deeper attachments
to individual information sources.
This cuts against the lesson of the
Web, where diversity is strength and
no site can hope to capture users'

“A strategic issue for iPad user experience design is
whether to emphasize user empowerment or
author authority. ”

 27

sole attention. Frequent user move-
ments among websites has driven
the imperative to conform with
interface conventions and to create
designs that people can use without
any learning (or even much looking
around). The iPad could be different
if people end up getting just a few
apps and sticking with them.

Card Sharks vs. Holy Scrollers
uI pioneer Jef Raskin once used the
terms card sharks vs. holy scrollers to
distinguish between two fundamen-
tally different hypertext models:

•	 Cards have a fixed-size presenta-
tion canvas. you can position your
information within this two-
dimensional space to your heart's
content (allowing for beautiful
layouts), but you can't make it
any bigger. users have to jump to
a new card to get more info than
will fit on a single card. HyperCard
was the most famous example of
this model.

•	 Scrolls provide room for as much
information as you want because
the canvas can extend as far down
as you please. users have to jump
less, but at the cost of less-fancy
layout because the designer can't
control what users are seeing at
any given time.

The Web is firmly in holy-scroller
camp, particularly these days: users
scroll a fair amount and sometimes
view information far down long
pages. Even mobile-phone apps often
rely on scrolling to present more
than will fit on their tiny screens.

In contrast, card sharks dominate
the early iPad designs. There's a bit
of scrolling here and there, but most

apps try to create a fixed layout for
the pretty screen.

There's no real reason we can't
have both design models: cards on
the iPad and scrolls on the desktop
(and phones somewhere in the
middle). But it's also possible that
we'll see more convergence and that
the Web's interaction style will prove
so powerful that users will demand it
on the iPad as well.

toward a Better iPad User
experience
Even our limited initial user studies
provide directions for making iPad
designs more usable:

•	 Add dimensionality and better
define individual interactive areas
to increase discoverability through
perceived affordances of what
users can do where.

•	 To achieve these interactive
benefits, loosen up the etched-glass
aesthetic. Going beyond the flat-
land of iPad's first-generation apps
might create slightly less attractive
screens, but designers can retain
most of the good looks by making
the GuI cues more subtle than the
heavy-handed visuals used in the
Macintosh-to-Windows-7 progres-
sion of GuI styles.

•	 Abandon the hope of value-add
through weirdness. Better to use
consistent interaction techniques
that empower users to focus on
your content instead of wondering
how to get it.

•	 Support standard navigation,
including a Back feature, search,
clickable headlines, and a homep-
age for most apps.

Although our full report offers
additional detailed advice, we obvi-
ously haven't yet developed a full list
of design guidelines.

one big question will remain
unanswered for a year or so until we
see how daily use of the iPad evolves:
Will people use the iPad mainly for
more immersive experiences than
the desktop and mobile Webs? In
other words, will people primarily
settle on a few sources and dig into
them intensively, rather than move
rapidly between many sources and
give each cursory attention?

Maybe people will begin to use
the desktop Web for more goal-
driven activities, such as researching
new issues or performing directed
tasks like shopping and managing
their investments. And they might
use the iPad for more leisurely activi-
ties, such as keeping up with the
news (whether "real" news or social
network updates) and consuming
entertainment-oriented content. We
don't know yet. The answer to this
question will determine how far iPad
uIs have to move from their current
wacky style. n

Jakob Nielsen, PhD, is principal of Nielsen
Norman Group (www.nngroup.com), a
user -research firm specializing in Web
usability. He is the author or editor of 12
books, including the recent Eyetracking
Web Usability (New Riders Press). Dr.
Nielsen writes a bi-weekly newsletter, The
Alertbox, with a quarter-million readers,
at www.useit.com.

“Better to use consistent interaction techniques
that empower users to focus on your content in-
stead of wondering how to get it.”

Reprinted with permission of the original author. First appeared in http://www.useit.com/alertbox/ipad.html.

http://www.nngroup.com
http://www.useit.com
http://www.useit.com/alertbox/ipad.html

28 HACKER COMMENTS

HACKER COMMENTS

Answer to “What text
editor do you use?”

From JoE CooPER (SwellJoe)

vim or emacs: pick one and
get back to work. Editing
text is a solved problem.

on “online advertising
is now dead”
*http://bit.ly/d9uK2e

From THoMAS PTACEK

(tptacek)

The other day, Dave Winer
broke his Cuisinart coffee
machine and was, within
5 minutes, able to replace
it on Amazon. Therefore,
online advertising is now
dead.

I took a laptop and a digital camera
with me and ended up hating them
every step of the way. My first travels
I did Africa and the middle-east, the
second I did asia.

In countries where I have "based"
myself, anything more than 4 weeks;
the laptop has been a good useful
distraction. When you're shocked
by a local culture which you have
to deal with for extended survival
(anything more substantial than a
western-style hotel and continental
breakfast) you will end up missing
speaking your familiar language,
eating familiar foods, or just walking
outside without a guide at hand
(printed or in-flesh.) Also there is
that strong sense of alienation when
everybody around you is looking at
you, even when you have been with
them for weeks. In these times, firing
up your slackware box and seeing
what you used to work on in more
homely times is a good psychological
aid.

Cameras I didn't like. I hated
being looked at and treated as a
"foreigner", and I feel like I am doing
the same when I point a lens at a

"local" person, building or artifact.
It felt like I was capturing their
soul to take back home with me as
a novelty. I have no photos of my
travels, but I have friends. Hundreds
of good friends from all walks of life;
fishermen, priests, pimps, students,
political activists, drug traffickers, aid
workers, moms, bicycle repairmen,
white-house staffers, journalists you
name them.

Coming back was hard. I have
lost 80lbs and came back with more
street-sense than I could imagine.
When I landed at Dulles Airport
I had $60 to my name and I had
the photo of a new girlfriend in my
wallet. None of my family or friends
had the time to give me a ride home,
so I took the bus, for the first time
in the u.S. Before then I have taken
the bus a few times on nights-out
when I knew I wouldn't be fit to
drive. This time it was just what I
was used to do. My instincts where
different; I took a window seat in the
way back that was close to an exit
door. Something that you do when
traveling in dangerous places (you
don't sit in the front, or police and

bandits will pull over the bus and
shake you up for bribes; and you
don't sit sandwitched between two
locals, unable to escape.)

I also came back with 2pack a day
cigarette habit. Hi alcohol tolerance.
A very unprofessional appearance.
An appetite for anything served to
me on a plate. A habit of carrying a
bag with basic survival necessities.
Indifference to crashing anywhere.
Hitching rides with total strangers.
And finally, a weird ability to con-
nect with people in the underworld.

My first few gigs have been
freelancing gigs doing anything and
everything. It took my girlfriend
the last few months polishing up
back to shape; I don't think I would
have come back if it wasn't for her,
actually. I have seen many long-
time Western expats dying in local
hospitals of controllable diseases;
the ex-military Americans are most
prone to this. Diabetes, high-blood
pressure, liver problems; I have
pitched in $5 donations to so many
expats in hospitals I didn't want to
be one of them.

Sounds crazy but I've
used this in action. How
do you think I got such
high karma here? ;-)

Thing is - it works. Both
online and in-person. I'd
much rather be honest
about how little I know
(and often am when I'm
working long-term with
someone), but I've found
it's a losing strategy in
most situations. If you do
know your stuff, you'll
just get shouted down by
idiots. Better to shout the
idiots down first and then

do the research to make
sure you're not wrong. If
you screw up everything,
you'll probably get
another chance simply by
virtue of confidence (look
at John Meriweather, who
nearly brought down the
global financial system
three times and is still
managing money), but
if you appear timid and
then screw up, people are
all like "I knew he didn't
really know what he was
talking about..."

Answer to “I'm tired of Hacking. What Do I Do?”

From MAHMuD MoHAMED (mahmud)

on “Humans prefer cockiness to expertise”
*http://bit.ly/c4uR3b

From JoNATHAN TANG (nostrademons)

1980: CPM on your choice
of hardware or lock into
Apple hardware & software
at a higher price.
1990: DoS on your choice
of hardware or lock into
Apple hardware & software
at a higher price.
2000: Windows on your
choice of hardware or lock
into Apple hardware &
software at a higher price.
2010: Android on your
choice of hardware or lock
into Apple hardware &
software at a higher price.

on “Fake Steve Jobs: Why
I'm Switching to Android”
*http://bit.ly/aoA6qK

From ED WEISSMAN (edw519)

http://bit.ly/d9UK2e
http://bit.ly/c4UR3b
http://bit.ly/aOA6qK

 29

This guy has gone to the zoo and interviewed
all the animals. The tiger says that the secret to
success is to live alone, be well disguised, have
sharp claws and know how to stalk. The snail
says that the secret is to live inside a solid shell,
stay small, hide under dead trees and move
slowly around at night. The parrot says that
success lies in eating fruit, being alert, packing
light, moving fast by air when necessary, and
always sticking by your friends.

His conclusion: These animals are giving
contradictory advice! And that's because
they're all "outliers".

But both of these points are subtly mislead-
ing. yes, the advice is contradictory, but that's
only a problem if you imagine that the animal
kingdom is like a giant arena in which all the
world's animals battle for the Animal Best
Practices championship [1], after which all the
losing animals will go extinct and the entire
world will adopt the winning ways of the one
True Best Animal. But, in fact, there are a hell
of a lot of different ways to be a successful
animal, and they coexist nicely. Indeed, they
form an ecosystem in which all animals require
other, much different animals to exist.

And it's insane to regard the tiger and the
parrot and the snail as "outliers". Sure, they're
unique, just as snowflakes are unique. But, in
fact, there are a lot of different kinds of cats
and birds and mollusks, not just these three.
Indeed, there are creatures that employ some
cat strategies and some bird strategies (lions: be
a sharp-eyed predator with claws, but live in
communal packs). The only way to argue that
tigers and parrots and snails are "outliers" is to
ignore the existence of all the other creatures
in the world, the ones that bridge the gaps in
animal-design space and that ultimately relate
every known animal to every other known
animal.

So, yes, it's insane to try to follow all the
advice on the Internet simultaneously. But that
doesn't mean it's insane to listen to 37signals
advice, or Godin's advice, or some other
company's advice. you just have to figure out
which part of the animal kingdom you're in,
and seek out the best practices which apply to
creatures like you. If you want to be a stalker,
you could do worse than to ask the tiger for
some advice.

on “Why Your Startup Shouldn't Copy
37signals or Fog Creek” *http://bit.ly/cfkZ4R

From MICHAEL F BooTH (mechanical_fish) I have great news for you. The
brain is extremely plastic. Read
about neuroplasticity here:
http://en.wikipedia.org/wiki/
Neuroplasticity

Rest assured that your
capacity to acquire new skills
and knowledge is massive.

you don't just get smarter.
you get smarter at something in
particular. Playing chess, doing
Iq tests, running the 100m
dash, programming, social skills,
public speaking, etc. So you
need to pick a particular skill
or set of skills or vocation and
decide to get smarter at that.

There are some general rules
for improving brain function
though. Here are a few:

1. Read books. Reading trains
your brain to concentrate for
long periods of time without
fatigue or distraction. There is a
growing school of thought that
the short bursts of reading and
frequent distractions we experi-
ence online are harming our
ability for deep contemplation,
introspection and concentration.
See Nicholas Carr, The Shal-
lows. http://n.pr/bnAfRV

2. Try to get 10 hours of sleep
a night. Sleep improves mental

and athletic performance.
http://n.pr/9wQsXr

3. Maintain your cardiovascular
fitness. I highly recommend
running. After years of cycling,
swimming, hiking, etc I've
found that running gives my
brain function the biggest boost
and provides me with sustained
mental energy through the day.
A good cardiovascular system
supplies your brain with plenty
of healthy oxygen rich blood.
It's like putting racing fuel in
your car.

4. Eat well. Cook your own
food. Avoid processed or
pre-prepared foods and non-
organic foods (mainly due to
the pesticides). Fish is awesome,
but watch out for mercury.

5. Don't drink anything stronger
than wine. Don't do drugs. (just
like your mom told you)

6. Watch your weight. I find
the biggest source of mental
fatigue is when I've gained a
few pounds.

Good luck, and congratula-
tions on making the decision at
a relatively young age to focus
on your mental fitness.

Answer to “How do I become smarter?”

From MARK MAuNDER (mmaunder)

1. What makes you think
Architects don't have to deal
with fickle customers who have
no concept of time, space, or
budget?

2. Every project of any descrip-
tion needs a change control
process. If yours consists of
exchanging emails, it is going to
go this way whether you're a
web developer or a tailor.

3. The more expertise a
customer thinks they have in
the subject matter relative to
you, the more comfortable they
are micro-managing it. What
have you done to educate the
customer about how much
expertise you bring to their
project?

on “If architects had to work like software developers”
* http://bit.ly/aA2FWB

From REGINALD BRAyTHWAyT (raganwald)

All comments are reprinted with permission of their original author.

http://bit.ly/cfkZ4R
http://n.pr/bnAfRV
http://n.pr/9wQsXr
http://bit.ly/aA2FWB

30 STARTUPS

When i first chose
my own adventure,
I didn't know what

working remotely from home was
going to be like. I had never done
it before. As programmers go, I'm
fairly social. Which still means I'm
a borderline sociopath by normal
standards. All the same, I was wor-
ried that I'd go stir-crazy
with no division between
my work life and my home
life.

Well, I haven't gone
stir-crazy yet. I think. But
in building Stack overflow,
I have learned a few things
about what it means to
work remotely — at least
when it comes to program-
ming. our current team encompasses
5 people, distributed all over the
uSA, along with the team in NyC.

My first mistake was attempting
to program alone. I had weekly calls
with my business partner, Joel Spol-
sky, which were quite productive in
terms of figuring out what it was we
were trying to do together — but
he wasn't writing code. I was coding
alone. Really alone. one guy working

all by yourself alone. This didn't
work at all for me. I was unmoored,
directionless, suffering from analysis
paralysis, and barely able to get
motivated enough to write even a
few lines of code. I rapidly realized
that I'd made a huge mistake in not
having a coding buddy to work with.

That situation rectified itself soon

enough, as I was fortunate enough
to find one of my favorite old coding
buddies was available. Even though
Jarrod was in North Carolina and I
was in California, the shared source
code was the mutual glue that stuck
us together, motivated us, and kept
us moving forward. To be fair, we
also had the considerable advantage
of prior history, because we had
worked together at a previous job.

But the minimum bar to
work remotely is to find
someone who loves code as
much as you do. It's enough.
Anything else on top of that — old
friendships, new friendships, a good
working relationship — is icing
that makes working together all the
sweeter. I eventually expanded the

team in the same way by
adding another old coding
buddy, Geoff, who lives
in oregon. And again by
adding Kevin, who I didn't
know, but had built amazing
stuff for us without even
being asked to, from Texas.
And again by adding Robert,
in Florida, who I also didn't
know, but spent so much

time on every single part of our
sites that I felt he had been running
alongside our team the whole way,
there all along.

The reason remote development
worked for us, in retrospect, wasn't
just shared love of code. I picked
developers who I knew — I had
incontrovertible proof — were amaz-
ing programmers. I'm not saying
they're perfect, far from it, merely

On Working
Remotely
By JEFF ATWooD

STARTUPS

“Always have a buddy,
even if your buddy is on
another continent half-
way across the world.”

 31

that they were top pro-
grammers by any metric
you'd care to measure.
That's why they were able to work
remotely. Newbie programmers, or
competent programmers who are
phoning it in, are absolutely not
going to have the moxie necessary to
get things done remotely — at least,
not without a pointy haired manager,
or grumpy old team lead, breathing
down their neck. Don't even think
about working remotely with anyone
who doesn't freakin' bleed ones and
zeros, and has a proven track record
of getting things done.

While Joel certainly had a lot of
high level input into what Stack
overflow eventually became, I only
talked to him once a week, at best
(these calls were the genesis of
our weekly podcast series). I had a
strong, clear vision of what I wanted
Stack overflow to be, and how I
wanted it to work. Whenever there
was a question about functionality or
implementation, my team was able
to rally around me and collectively
make decisions we liked, and that I
personally felt were in tune with this
vision. And if you know me at all,

you know I'm not shy about saying
no, either. We were able to build
exactly what we wanted, exactly
how we wanted.

Bottom line, we were on a mission
from God. And we still are.

So, there are a few basic ground
rules for remote development, at
least as I've seen it work:

•	 The minimum remote team size is
two. Always have a buddy, even if
your buddy is on another conti-
nent halfway across the world.

•	 only grizzled veterans who
absolutely love to code need apply
for remote development positions.
Mentoring of newbies or casual
programmers simply doesn't work
at all remotely.

•	 To be effective, remote teams need
full autonomy and a leader (PM, if
you will) who has a strong vision
and the power to fully execute on
that vision.

This is all well and good when
you have a remote team size of
three, as we did for the bulk of Stack
overflow development. And all in
the same country. Now we need to

grow
the
company, and I'd like
to grow it in distributed
fashion, by hiring other amazing
developers from around the world,
many of whom I have met through
Stack overflow itself.

But how do you scale remote
development? Joel had some deep
seated concerns about this, so I
tapped one of my heroes, Miguel de
Icaza — who I'm proud to note is on
our all-star board of advisors — and
he was generous enough to give us
some personal advice based on his
experience running the Mono proj-
ect, which has dozens of developers
distributed all over the world.

At the risk of summarizing merci-
lessly (and perhaps too much), I'll
boil down Miguel's advice the best
I can. There are three tools you'll
need in place if you plan to grow a
large-ish and still functional remote
team:

➊ Real time chat
When your team member lives

in Brazil, you can't exactly walk by
his desk to ask him a quick question,

32 STARTUPS

or bug him about something in his
recent checkin. Nope. you need a
way to casually ping your fellow
remote team members and get a
response back quickly. This should
be low friction and available to all
remote developers at all times. IM,
IRC, some web based tool, laser
beams, smoke signals, carrier pigeon,
two tin cans and a string: whatever.
As long as everyone really uses it.

We're currently experimenting
with Campfire, but whatever floats
your boat and you can get your team
to consistently use, will work. Chat is
the most essential and omnipresent
form of communication you have
when working remotely, so you need
to make absolutely sure it's function-
ing before going any further.

➋ Persistent mailing list
Sure, your remote team may

know the details of their project, but
what about all the other work going
on? How do they find out about
that stuff or even know it exists in
the first place? you need a virtual
bulletin board: a place for announce-
ments, weekly team reports, and
meeting summaries. This is where a
classic old-school mailing list comes
in handy.

We're using Google Groups and
although it's old school in spades,
it works plenty well for this. you
can get the emails as they arrive,
or view the archived list via the
web interface. one word of cau-
tion, however. Every time you see
something arrive in your inbox from
the mailing list you better believe, in
your heart of hearts, that it contains
useful information. The minute the
mailing list becomes just another

"whenever I have time to read that
stuff", noise engine, or distraction
from work … you've let someone cry
wolf too much, and ruined it. So be
very careful. Noisy, argumentative, or
useless things posted to the mailing
list should be punishable by death.
or noogies.

➌ Voice and video chat
As much as I love ASCII,

sometimes faceless ASCII characters
just aren't enough to capture the full
intentions and feelings of the human
being behind them. When you find
yourself sending kilobytes of ASCII
back and forth, and still are unsatis-
fied that you're communicating, you
should instill a reflexive habit of
"going voice" on your team.

Never underestimate the power
of actually talking to another human
being. I know, I know, the whole
reason we got into this programming
thing was to avoid talking to other
people, but bear with me here. you
can't be face to face on a remote
team without flying 6 plus hours,
and who the heck has that kind of
time? I've got work I need to get
done! Well, the next best thing to
hopping on a plane is to fire up
Skype and have a little voice chat.
Easy peasy. All that human nuance
which is totally lost in faceless ASCII
characters (yes, even with our old
pal *<:-)) will come roaring back if
you regularly schedule voice chats.
I recommend at least once a week
at an absolute minimum; they don't
have to be long meetings, but it sure
helps in understanding the human
being behind all those awesome
checkins.

Nobody hates meetings and
process claptrap more than I

do, but there is a certain amount of
process you'll need to keep a bunch
of loosely connected remote teams
and developers in sync.

➊ Monday team status reports
Every Monday, as in some-

body's-got-a-case-of-the, each team
should produce a brief, summarized
rundown of:

•	 What we did last week

•	 What we're planning to do this
week

•	 Anything that is blocking us or we
are concerned about

This doesn't have to be (and in
fact shouldn't be) a long report.
The briefer the better, but do try
to capture all the useful highlights.
Mail this to the mailing list every
Monday like clockwork. Now, how
many "teams" you have is up to you;
I don't think this needs to be done
at the individual developer level, but
you could.

➋ Meeting minutes
Any time you conduct

what you would consider to be a
"meeting" with someone else, take
minutes! That is, write down what
happened in bullet point form, so
those remote team members who
couldn't be there can benefit from
— or at least hear about — whatever
happened.

Again, this doesn't have to be long,
and if you find taking meeting min-
utes onerous then you're probably
doing it wrong. A simple bulleted list
of sentences should suffice. We don't

“Chat is the most essential and omnipresent form
of communication you have when working
remotely.”

Reprinted with permission of the original author. First appeared in http://www.codinghorror.com/blog/2010/05/on-working-remotely.html.

http://www.codinghorror.com/blog/2010/05/on-working-remotely.html

 33 33

need to know every little detail, just
the big picture stuff: who was there?
What topics were discussed? What
decisions were made? What are the
next steps?

Both of the above should, of
course, be mailed out to the

mailing list as they are completed
so everyone can be notified. you do
have a mailing list, right? of course
you do!

If this seems like a lot of jibba-
jabba, well, that's because remote
development is hard. It takes
discipline to make it all work,
certainly more discipline than piling
a bunch of programmers into the
same cubicle farm. But when you
imagine what this kind of intellectual
work — not just programming, but
anything where you're working in

mostly thought-stuff — will be like
in ten, twenty, even thirty years …
don't you think it will look a lot
like what happens every day right
now on Stack overflow? That is,
a programmer in Brazil helping a
programmer in New Jersey solve a
problem?

If I have learned anything from
Stack overflow it is that the world
of programming is truly global. I
am honored to meet these brilliant
programmers from every corner of
the world, even if only in a small way
through a website. Nothing is more
exciting for me than the prospect of
adding international members to the
Stack overflow team. The develop-
ment of Stack overflow should be
reflective of what Stack overflow
is: an international effort of like-
minded — and dare I say totally

awesome — programmers. I wish
I could hire each and every one of
you. oK, maybe I'm a little biased.
But to me, that's how awesome the
Stack overflow community is.

I believe remote development
represents the future of work. If we
have to spend a little time figuring
out how this stuff works, and maybe
even make some mistakes along
the way, it's worth it. As far as I'm
concerned, the future is now. Why
wait? n

Jeff Atwood lives in Berkeley, CA with
his wife, two cats, and a whole lot of
computers. He is best known as the
author of popular blog Coding Horror and
the cofounder of Stack Overflow with Joel
Spolsky.

http://coder.io/tag/redis
http://coder.io
http://coder.io
http://coder.io
http://coder.io
http://coder.io
http://coder.io
http://coder.io
http://coder.io
http://coder.io
http://rubyinside.com
http://blog.coder.io
mailto:peter@coder.io
http://coder.io

34 STARTUPS

over the years many
have contemplated the
counter-intuitive ability

of “ugly” sites to win huge market
share – think eBay.com, Amazon.
com, DrudgeReport.com,
PlentyofFish.com, CraigsList.org,
MySpace.com, or usability expert
Jakob Nielsen’s useit.com.

In our adventures in website optimization
we’ve developed our own grand unified theory
of why ugly web design works:

➊ Value – Your visitors want a deal. never,
never, never forget that.

We’re a nation of Walmart shopping, McDon-
ald’s value meal eating, 2-Buck Chuck drinking
coupon-clippers.

If your website looks BMW-fancy your
visitor is going to assume BMW-pricing.

Make your visitors think that they’ve found
the last great deal – look a little pathetic and
rough around the edges and your visitor is
going to assume that they’re not going to be
taken advantage of.

➋ trust – nobody likes advertising, or
advertisers (except their wives).

Advertising ranks amongst the LEAST
respected professions and most people strongly
dislike being advertised to because they feel
manipulated.

Eliminating stock-photos, fancy graphics, and
high-brow design elements can help your cause
and make you feel more ma & pa trustworthy
than a corporate-titan in training.

➌ Accessibility – Build for technology two
cycles back.

HTML5, the latest CSS tricks, and your kickass
integrated flash design have No PLACE in a
website designed to sell when older technolo-
gies can do a comparable job.

one of our clients
receives in excess of
15,000 visitors a day
to their website –
about 70% of that is
coming from various
versions of Internet
Explorer.

yet nearly 27% are using outdated versions
despite wide availability.

So unless you enjoy building 10 versions
of your site stick with simple and build for
compatibility with browsers, oS, screen resolu-
tions, color palettes, etc.

➍ Flexibility – Don’t paint yourself into
a corner.

What do PlentyofFish, CraigsList, and Drudg-
eReport have in common?

They scaled to huge numbers of visitors with
tiny staffs – keeping your site flexible enough
so the CEo can change the homepage content
may not be aesthetically appealing, but it sure

Increase Conversion Rate
by Making Your Site Ugly

“We trust things more when they look like
they were done for the love of it rather
than the sheer commercial value of it.
 - Robert Scoble

”

By ZACK LINFoRD

Reprinted with permission of the original author. First appeared in http://www.conversionvoodoo.com/blog/2010/04/increase-your-conversion-rate-by-making-your-site-uglier/.

http://www.conversionvoodoo.com/blog/2010/04/increase-your-conversion-rate-by-making-your-site-uglier/

 35

does beat a static beautiful website.
A website that’s easy to change, update, and

experiment on is better than one that relies
heavily on advanced CSS, Flash, images etc
that you can’t change quickly.

➎ Function – Get your users where they
want to be as your priority.

When you’re running a commercial website
just by virtue of having arrived, a user is a
qualified visitor ready for you to close.

So get the !@%$!@% out of their way and let
them transact!

keep it simple

•	 Make sure your homepage is crystal clear
to let a user determine if your website will
fulfill their need.

•	 Let users get where they need to go in as
few clicks as possible.

Any design element that detracts from your
focus – will lose the user – one of my favorite
examples of this is from a Marketing Experi-
ments study on email:

of the three emails above B outperforms the
other two design-element laden tests by 62%!

It’s no surprise that the winning test lacks
over-blown design elements & complexity,
keeping it simple collects the sale.

We’ve battled designers and CMo’s
day in and day out for nearly a decade but
overwhelmingly following the 5-rules laid out
above drive results that simply win. n

Zack Linford is the co-founder of
ConversionVoodoo.com – a company dedicated to
increasing website conversion rates.

I’ve been thinking about something
that we always did junior year
when I was on my high school

soccer team.
When we’d score a goal, we realized

that it’s when a team is at its most vul-
nerable. I saw it first hand when many
earlier teams I had been on would get
scored on right after our goal. It negates
the whole point of working so hard for
that score.

So that year, after a goal, we would
pause and celebrate for just a few
seconds. And as we ran back to our side
of the field, we always had one guy
stop and yell at the top of his lungs,
“WHAT’S THE SCoRE?” and we’d yell
back “ZERo-ZERo!”

That scared our competitors, but
more importantly it got us results.
That year we outscored the teams we
played something like 48 goals for and
6 against. We beat some of the best
teams in the southeast and some really
big schools.

My varsity team was barely 15 guys
from a 200 person school. We had a
high concentration of really talented
people, but the big part of our success
wasn’t our talent. our success was
actually the result of our mentality. And
that’s the broader point: don’t let your
success turn into complacency. Because
right after a small success is when you
are the most vulnerable to complacency
and bad results. n

Rafael Corrales is co-founder and CEO of
LearnBoost, a VC and angel backed education
startup offering free gradebook software. He
graduated from Georgia Tech and holds an
MBA from Harvard Business School.

Zero Zero
By RAFAEL CoRRALES

Reprinted with permission of the original author. First appeared
in http://blog.rafaelcorrales.com/2010/05/zero-zero.html.

http://ConversionVoodoo.com
http://blog.rafaelcorrales.com/2010/05/zero-zero.html

36 STARTUPS

I’ve been running my own
companies since 1986. That’s
24 years now, with some brief

stints of employment if a contract
was so time consuming that the
dutch regulators took it as being
equivalent to employment (they
do that here to stop employers
that try to avoid paying in to
social security by hiring all their
employees as free-lancers). At the
high point of running ‘TrueTech’
we had about 20 full timers
and partners, and a bunch of
free-lancers.

It’s been a long, very interesting
and at times very stressful ride
so far, and I wished I could say I
never made any mistakes.

But I have. Plenty of them, and
most of them seem to be related
to personality traits, I’ve tried to
outline those below.

Some of the mistakes were
almost without consequences,
some of them with grave conse-
quences. Here are the ‘highlights’,
hopefully they’ll save some of
the readers of this from repeating
them.

I’m fairly gullible and I tend to
believe that what people tell
me is true
I don’t usually follow up to verify
that what I’m told is true, I was
raised in an environment where
almost everybody simply spoke
the truth.

Automatically I assumed (and
it seems to be a pretty strongly
ingrained thing, I still have this
today) that everybody is always
truthful.

That’s a serious weak point,
and it has cost me dearly on a few
occasions. over time I’ve become
more wary, especially the last 15
years have shown me a few very
nasty instances of how cunning
and calculating people can be
when they deceive those around
them for profit. I’ve gotten a lot
better at spotting inconsistencies
in peoples’ stories and this has
helped to mitigate the gullibility
factor to some extent, but if
someone comes to me with a sob
story I’m more likely than not
overwhelmed by the emotion and
willing to help even when I really
should be more cautious. And
every now and then a sob story is
real, even when it sounds highly
unlikely.

This particular mistake has
cost me dearly over the years
and has changed my personality
to someone that is much more
cautious than he would like to be.

When evaluating people I
always see the potential, but
hardly ever the reality
Most people achieve only a
fraction of what they could do
theoretically.

My problem is that when pre-
sented with a potential employee
or partner that I tend to see what
they *could* do, but not what
they actually realistically speaking
will be able to do.

It’s like looking at a sports car,
you know it can do 150 miles
per hour, but in real life circum-
stances it will hardly ever do that,
more likely it will just have to
obey the usual traffic rules and
will periodically need refueling
and so on. So you have to adjust
your expectations based on real
world conditions, and I’m very
bad at that.

If it hadn’t been for that I
could have predicted the burning
out of some people in my sur-
roundings with greater accuracy
and possibly I could have
prevented it from happening, and
I would have been better able
to estimate how much work I
could expect to get out of a given
configuration of people working
on projects.

Mistakes I’ve Made & What
By JAquES MATTHEIJ

 37

I either delegate too much or
too little
This is probably one of my
biggest shortcomings, when
delegating stuff I either hand
it off and don’t look back until
I’m presented with some kind of
disaster, or I’m so on top of it that
whoever is doing the job feels
like the dragon is breathing down
their neck all the time. The sweet
spot is somewhere in the middle,
but I haven’t found it yet.

over the years this has made
life harder for employees,
partners and customers, I could
have done a much better job here.
Trust but verify is something
that I heard about way too late,
it also applies to some extent to
‘1’ above. The mistakes I made
because of this are along the line
of letting people run a subsidiary
company for over 3 months
without checking the books
(and finding out much too late
that they’d gone off and spent
3 months worth of turn over
in the local casino!), or riding
shotgun on a new developer and
disagreeing with just about every
thing he did only to find out
many years later that there are
multiple equally valid solutions to
a problem. This is probably one
of the hardest things for me to
do, to ‘let go’ and to accept that
someone else will do something
different from the way I would
do it, but will still do a good
enough job of it.

I’m a loner
When it comes to doing things, I
can do way too much. Electron-
ics, basic engineering, software,
metalworking, woodworking and
so on. If there is a technical skill
I’ve probably tried my hand at it,
and can do a reasonably job of it.
Not perfect, but good enough for
government work. That means
that I’m pretty self sufficient and
there are only a few fields where
I know that I absolutely suck. on
top of that I’m a voracious reader
with an extremely wide interest, I
remember most of what I’ve read.

Higher mathematics and design
would be two of the fields that I
really suck at, as well as managing
people. The result of that is that I
was pretty happy running my one
man company and completely not
prepared to deal with the reality
of growing it, more people.

I wished that the ‘school of life’
up to that point had forced me
more often to work together with
people in a real team setting, first
as a team member, and then as a
team leader, so that I would have
been better prepared to deal with
that. It definitely didn’t help in
my relations with the employees
of the company when it grew. I
was just a ‘techie’, never planning
to be in charge of a company that
size and I grew in to the job very
reluctantly.

Now I’m back to ‘square 1’,
alone (or, more precisely with one
business partner) and much more
happy because of that, still not
sure if I’ve learned these lessons
well enough to be able to grow
again. Maybe.

I have a lot of energy, but not
everybody is like that
Another one of those ‘expecta-
tion’ issues, I can work on stuff
with tremendous energy, but
that’s a rarity, and most people go
about life at a more relaxed pace.
I’m always doing something,
I really can’t sit still for more
than 3 minutes without having
to get up and doing something
(unless I’m watching a movie or
reading a book, but that’s still
doing something). Subconsciously
I expect other people to be like
that too, and I’m often quite
surprised when they’re tired or
zoned out in front of the Tv or
simply doing nothing.

So I tend to burn people out,
they try to keep up and give up
after a while. I should try to slow
down a bit to a more moderate
pace and keep the ‘energy bursts’
to myself.

You Might Learn From Them

38 STARTUPS

I have a short attention span
It is difficult for me to stay
focused on the same thing for
a long time. This started when
I was a kid, if I got some new
toy I would play with it for its
intended purpose for about 10
minutes, then rip it apart to see
how it worked. It took a long
time before I had skills enough to
put stuff back together again.

I still have this, I learn pretty
quickly, but once I understand
how something works the
mystery has gone out of it and I
am likely to move on. But give
me a puzzle that is ‘unsolvable’
and I’ll probably spend a lifetime
on it.

The only exceptions here were
Lego (I played with it over and
over again), Electronics (taking
stuff apart was both a source of
parts and a way to learn) and
programming.

I have to work really very hard
to overcome this tendency and
I’m pretty sure that it has cost me
over the years to find little or no
interest in doing the ‘grunt’ work
of running a business.

I’m pretty harsh
When I see stuff I do not agree
with I am very outspoken, diplo-
macy is definitely not my strong
suit. Not everybody can deal with
this and even though I try very
hard to moderate the force I find
it very difficult, especially when
I think people are not nice to
other people. That can bring out
a force 7 gale in no time at all.
Even though the emotion driving
that is pure I could do a lot better
by tempering my feelings and
coming up with constructive
criticism instead of full blown
confrontation. This has soured
my relationships with people
on more than one occasion,
and some of those people were
important players in or around
my business.

I take full responsibility for
each and every mistake I’ve ever
made, no matter whether or not
other people were involved, if
there was something that I could
have done better then I regret
not having done that. In the
long term though, I hope I can
improve these aspects and that by
learning from my past mistakes
which taught me about these
traits, and I hope that I can avoid
future repetitions.

I also hope that by reading
about this you may be able to
avoid some of my past mistakes.n

Jacques Mattheij is the inventor of the
live streaming webcam, founder of
camarades.com / ww.com and a small
time investor. He also collects insight-
ful comments from Hacker News.

“When I see stuff I do not agree with I am very
outspoken, diplomacy is definitely not my
strong suit.”

Reprinted with permission of the original author. First appeared in http://jacquesmattheij.com/Mistakes+I've+made,+and+what+you+might+be+able+to+learn+from+them.

http://camarades.com
http://ww.com
http://jacquesmattheij.com/Mistakes+I've+made,+and+what+you+might+be+able+to+learn+from+them

 39

Reach the hackers and
startup founders who are
building tomorrow's web.

Advertise with Hacker Monthly
Email us at ads@hackermonthly.com.
Don't forget to ask us about our introductory advertising offer.

Reprinted with permission of the original author. First appeared in http://jacquesmattheij.com/Mistakes+I've+made,+and+what+you+might+be+able+to+learn+from+them.

mailto:ads@hackermonthly.com
http://jacquesmattheij.com/Mistakes+I've+made,+and+what+you+might+be+able+to+learn+from+them

tell us what you think
Let us know what you liked, and what we need to work on.
Please share your thoughts so we can improve the coming issues.

hackermonthly.com/feedback/

Hacker Monthly is an independent project by Netizens Media and not affiliated with Y Combinator in any way.

http://hackermonthly.com/feedback/

	Curator's Note
	Contents
	FEATURES
	How to Bootstrap
	The Secret Lives of Professor

	PROGRAMMING
	New Programming Jargon
	Scooping the Loop Snooper
	Programming Books: The C Programming Language

	SPECIAL
	If Mario Was Designed in 2010
	Worst-Case Thinking
	9 Years of Sleep
	iPad Usability: Firsrt Findings From User Testing
	Zero Zero

	HACKER COMMENTS
	STARTUPS
	On Working Remotely
	Increase Conversion Rate by Making Your Site Ugly
	Mistake I've Made & What You Might Learn From Them

