

 [image: Hacker Monthly June 2010]

Curator's Note

I would like to give huge thanks to the
contributors, who so generously provided Hacker Monthly the
permissions to reprint their articles, the advertisers, who
believes in us despite it's just the first issue, Paul Graham, who
thankfully did not oppose this idea and gave me the 'go-ahead', and
most of all, the members of Hacker News, who provided both support
and valuable feedback to materialize the idea. Creating Hacker
Monthly has been both interesting and educational. Prior to this, I
do not have any experience working with magazine or print.
Throughout this one month, I've learned everything I could about
print magazine and spent countless hours working my way through
Adobe InDesign. I've also exchanged near hundreds of emails asking
for reprint permissions and looking for prospective advertisers.
The only downside though, is I don't have much time left to code,
which I missed quite a bit. I still remember the day sitting at
Starbucks and imagining what the magazine version of Hacker News
would be like. I can finally stop imagining now. - Lim Cheng
Soon
HACKER MONTHLY is the print magazine version of
Hacker News (news.ycombinator.com) - a social news website wildly
popular among hackers and startup founders with its content can be
"anything that gratifies one's intellectual curiosity"(as quoted
from the site's submission guidelines). Every month, we select the
top voted articles from Hacker News and put them in the magazine
format. For more, visit www.hackermonthly.com.

Curator

Lim Cheng Soon
Contributors

Brian Shul

Carlos Bueno

Jamie Zawinski

Eric Davis

Carter Cleveland

Bradford Cross

Hamilton Ulmer

Adam Kempa

Gary Haran

Walt Kania

Evan Miller

Tawheed Kader

Paul Graham

Jason Cohen

Steve Blank

Dave Rodenbaugh

William A. Wood
Printer

MagCloud
E-Book Conversion

Fifobooks.com
Advertising

ads@hackermonthly.com
Rate Card

hackermonthly.com/ratecard
Contact

curator@hackermonthly.com
Published by

Netizens Media

46, Taylor Road

11600 Penang

Malaysia

Flying the SR-71 Blackbird

By BRIAN SHUL

In April 1986, following an attack on
American soldiers in a Berlin disco, President Reagan ordered the
bombing of Muammar Qaddafi's terrorist camps in Libya. My duty was
to fly over Libya and take photos recording the damage our F-111's
had inflicted. Qaddafi had established a 'line of death,' a
territorial marking across the Gulf of Sidra, swearing to shoot
down any intruder that crossed the boundary. On the morning of
April 15, I rocketed past the line at 2,125 mph. I was piloting the
SR-71 spy plane, the world's fastest jet, accompanied by Maj Walter
Watson, the aircraft's reconnaissance systems officer (RSO). We had
crossed into Libya and were approaching our final turn over the
bleak desert landscape when Walter informed me that he was
receiving missile launch signals. I quickly increased our speed,
calculating the time it would take for the weapons-most likely SA-2
and SA-4 surface-to-air missiles capable of Mach 5 - to reach our
altitude. I estimated that we could beat the rocket-powered
missiles to the turn and stayed our course, betting our lives on
the plane's performance. After several agonizingly long seconds, we
made the turn and blasted toward the Mediterranean. 'You might want
to pull it back,' Walter suggested. It was then that I noticed I
still had the throttles full forward. The plane was flying a mile
every 1.6 seconds, well above our Mach 3.2 limit. It was the
fastest we would ever fly. I pulled the throttles to idle just
south of Sicily, but we still overran the refueling tanker awaiting
us over Gibraltar. Scores of significant aircraft have been
produced in the 100 years of flight, following the achievements of
the Wright brothers, which we celebrate in December. Aircraft such
as the Boeing 707, the F-86 Sabre Jet, and the P-51 Mustang are
among the important machines that have flown our skies. But the
SR-71, also known as the Blackbird, stands alone as a significant
contributor to Cold War victory and as the fastest plane ever-and
only 93 Air Force pilots ever steered the 'sled,' as we called our
aircraft. As inconceivable as it may sound, I once discarded the
plane. Literally. My first encounter with the SR-71 came when I was
10 years old in the form of molded black plastic in a Revell kit.
Cementing together the long fuselage parts proved tricky, and my
finished product looked less than menacing. Glue, oozing from the
seams, discolored the black plastic. It seemed ungainly alongside
the fighter planes in my collection, and I threw it away.
Twenty-nine years later, I stood awestruck in a Beale Air Force
Base hangar, staring at the very real SR-71 before me. I had
applied to fly the world's fastest jet and was receiving my first
walk-around of our nation's most prestigious aircraft. In my
previous 13 years as an Air Force fighter pilot, I had never seen
an aircraft with such presence. At 107 feet long, it appeared big,
but far from ungainly. Ironically, the plane was dripping, much
like the misshapen model had assembled in my youth. Fuel was
seeping through the joints, raining down on the hangar floor. At
Mach 3, the plane would expand several inches because of the severe
temperature, which could heat the leading edge of the wing to 1,100
degrees. To prevent cracking, expansion joints had been built into
the plane. Sealant resembling rubber glue covered the seams, but
when the plane was subsonic, fuel would leak through the joints.
The SR-71 was the brainchild of Kelly Johnson, the famed Lockheed
designer who created the P-38, the F-104 Starfighter, and the U-2.
After the Soviets shot down Gary Powers' U-2 in 1960, Johnson began
to develop an aircraft that would fly three miles higher and five
times faster than the spy plane-and still be capable of
photographing your license plate. However, flying at 2,000 mph
would create intense heat on the aircraft's skin. Lockheed
engineers used a titanium alloy to construct more than 90 percent
of the SR-71, creating special tools and manufacturing procedures
to hand-build each of the 40 planes. Special heat-resistant fuel,
oil, and hydraulic fluids that would function at 85,000 feet and
higher also had to be developed. In 1962, the first Blackbird
successfully flew, and in 1966, the same year I graduated from high
school, the Air Force began flying operational SR-71 missions. I
came to the program in 1983 with a sterling record and a
recommendation from my commander, completing the weeklong interview
and meeting Walter, my partner for the next four years He would
ride four feet behind me, working all the cameras, radios, and
electronic jamming equipment. I joked that if we were ever
captured, he was the spy and I was just the driver. He told me to
keep the pointy end forward. We trained for a year, flying out of
Beale AFB in California, Kadena Airbase in Okinawa, and RAF
Mildenhall in England. On a typical training mission, we would take
off near Sacramento, refuel over Nevada, accelerate into Montana,
obtain high Mach over Colorado, turn right over New Mexico, speed
across the Los Angeles Basin, run up the West Coast, turn right at
Seattle, then return to Beale. Total flight time: two hours and 40
minutes. One day, high above Arizona, we were monitoring the radio
traffic of all the mortal airplanes below us. First, a Cessna pilot
asked the air traffic controllers to check his ground speed.
'Ninety knots,' ATC replied. A twin Bonanza soon made the same
request. 'One-twenty on the ground,' was the reply. To our
surprise, a navy F-18 came over the radio with a ground speed
check. I knew exactly what he was doing. Of course, he had a ground
speed indicator in his cockpit, but he wanted to let all the
bug-smashers in the valley know what real speed was 'Dusty 52, we
show you at 620 on the ground,' ATC responded. The situation was
too ripe. I heard the click of Walter's mike button in the rear
seat. In his most innocent voice, Walter startled the controller by
asking for a ground speed check from 81,000 feet, clearly above
controlled airspace. In a cool, professional voice, the controller
replied, ' Aspen 20, I show you at 1,982 knots on the ground.' We
did not hear another transmission on that frequency all the way to
the coast. The Blackbird always showed us something new, each
aircraft possessing its own unique personality. In time, we
realized we were flying a national treasure. When we taxied out of
our revetments for takeoff, people took notice. Traffic congregated
near the airfield fences, because everyone wanted to see and hear
the mighty SR-71. You could not be a part of this program and not
come to love the airplane. Slowly, she revealed her secrets to us
as we earned her trust.

One moonless night, while flying a routine
training mission over the Pacific, I wondered what the sky would
look like from 84,000 feet if the cockpit lighting were dark. While
heading home on a straight course, I slowly turned down all of the
lighting, reducing the glare and revealing the night sky. Within
seconds, I turned the lights back up, fearful that the jet would
know and somehow punish me. But my desire to see the sky overruled
my caution, I dimmed the lighting again. To my amazement, I saw a
bright light outside my window. As my eyes adjusted to the view, I
realized that the brilliance was the broad expanse of the Milky
Way, now a gleaming stripe across the sky. Where dark spaces in the
sky had usually existed, there were now dense clusters of sparkling
stars Shooting stars flashed across the canvas every few seconds.
It was like a fireworks display with no sound. I knew I had to get
my eyes back on the instruments, and reluctantly I brought my
attention back inside. To my surprise, with the cockpit lighting
still off, I could see every gauge, lit by starlight. In the
plane's mirrors, I could see the eerie shine of my gold spacesuit
incandescently illuminated in a celestial glow. I stole one last
glance out the window. Despite our speed, we seemed still before
the heavens, humbled in the radiance of a much greater power. For
those few moments, I felt a part of something far more significant
than anything we were doing in the plane. The sharp sound of Walt's
voice on the radio brought me back to the tasks at hand as I
prepared for our descent. The SR-71 was an expensive aircraft to
operate. The most significant cost was tanker support, and in 1990,
confronted with budget cutbacks, the Air Force retired the SR-71.
The Blackbird had outrun nearly 4,000 missiles, not once taking a
scratch from enemy fire.

 On her final flight, the Blackbird, destined for the Smithsonian
National Air and Space Museum, sped from Los Angeles to Washington
in 64 minutes, averaging 2,145 mph and setting four speed records.
The SR-71 served six presidents, protecting America for a quarter
of a century. Unbeknownst to most of the country, the plane flew
over North Vietnam, Red China, North Korea, the Middle East, South
Africa, Cuba, Nicaragua , Iran, Libya, and the Falkland Islands. On
a weekly basis, the SR-71 kept watch over every Soviet nuclear
submarine and mobile missile site, and all of their troop
movements. It was a key factor in winning the Cold War. I am proud
to say I flew about 500 hours in this aircraft. I knew her well.
She gave way to no plane, proudly dragging her sonic boom through
enemy backyards with great impunity. She defeated every missile,
outran every MiG, and always brought us home. In the first 100
years of manned flight, no aircraft was more remarkable. With the
Libyan coast fast approaching now, Walt asks me for the third time,
if I think the jet will get to the speed and altitude we want in
time. I tell him yes. I know he is concerned. He is dealing with
the data; that's what engineers do, and I am glad he is. But I have
my hands on the stick and throttles and can feel the heart of a
thoroughbred, running now with the power and perfection she was
designed to possess. I also talk to her. Like the combat veteran
she is, the jet senses the target area and seems to prepare
herself. For the first time in two days, the inlet door closes
flush and all vibration is gone. We've become so used to the
constant buzzing that the jet sounds quiet now in comparison. The
Mach correspondingly increases slightly and the jet is flying in
that confidently smooth and steady style we have so often seen at
these speeds. We reach our target altitude and speed, with five
miles to spare. Entering the target area, in response to the jet's
newfound vitality, Walt says, 'That's amazing' and with my left
hand pushing two throttles farther forward, I think to myself that
there is much they don't teach in engineering school. Out my left
window, Libya looks like one huge sandbox. A featureless brown
terrain stretches all the way to the horizon. There is no sign of
any activity. Then Walt tells me that he is getting lots of
electronic signals, and they are not the friendly kind. The jet is
performing perfectly now, flying better than she has in weeks. She
seems to know where she is. She likes the high Mach, as we
penetrate deeper into Libyan airspace. Leaving the footprint of our
sonic boom across Benghazi, I sit motionless, with stilled hands on
throttles and the pitch control, my eyes glued to the gauges. Only
the Mach indicator is moving, steadily increasing in hundredths, in
a rhythmic consistency similar to the long distance runner who has
caught his second wind and picked up the pace. The jet was made for
this kind of performance and she wasn't about to let an errant
inlet door make her miss the show. With the power of forty
locomotives, we puncture the quiet African sky and continue farther
south across a bleak landscape. Walt continues to update me with
numerous reactions he sees on the DEF panel. He is receiving
missiletracking signals. With each mile we traverse, every two
seconds, I become more uncomfortable driving deeper into this
barren and hostile land. I am glad the DEF panel is not in the
front seat. It would be a big distraction now, seeing the lights
flashing. In contrast, my cockpit is 'quiet' as the jet purrs and
relishes her newfound strength, continuing to slowly accelerate.
The spikes are full aft now, tucked twenty-six inches deep into the
nacelles. With all inlet doors tightly shut, at 3.24 Mach, the
J-58s are more like ramjets now, gulping 100,000 cubic feet of air
per second. We are a roaring express now, and as we roll through
the enemy's backyard, I hope our speed continues to defeat the
missile radars below. We are approaching a turn, and this is good.
It will only make it more difficult for any launched missile to
solve the solution for hitting our aircraft. I push the speed up at
Walt's request. The jet does not skip a beat, nothing fluctuates,
and the cameras have a rock steady platform. Walt received missile
launch signals. Before he can say anything else, my left hand
instinctively moves the throttles yet farther forward. My eyes are
glued to temperature gauges now, as I know the jet will willingly
go to speeds that can harm her. The temps are relatively cool and
from all the warm temps we've encountered thus far, this surprises
me but then, it really doesn't surprise me. Mach 3.31 and Walt are
quiet for the moment. I move my gloved finger across the small
silver wheel on the autopilot panel, which controls the aircraft's
pitch. With the deft feel known to Swiss watchmakers, surgeons, and
'dinosaurs' (old- time pilots who not only fly an airplane but
'feel it'), I rotate the pitch wheel somewhere between
one-sixteenth and one-eighth inch location, a position which yields
the 500-foot-per-minute climb I desire. The jet raises her nose
one-sixth of a degree and knows, I'll push her higher as she goes
faster. The Mach continues to rise, but during this segment of our
route, I am in no mood to pull throttles back. Walt's voice pierces
the quiet of my cockpit with the news of more missile launch
signals. The gravity of Walter's voice tells me that he believes
the signals to be a more valid threat than the others. Within
seconds he tells me to 'push it up' and I firmly press both
throttles against their stops. For the next few seconds, I will let
the jet go as fast as she wants. A final turn is coming up and we
both know that if we can hit that turn at this speed, we most
likely will defeat any missiles. We are not there yet, though, and
I'm wondering if Walt will call for a defensive turn off our
course. With no words spoken, I sense Walter is thinking in concert
with me about maintaining our programmed course. To keep from
worrying, I glance outside, wondering if I'll be able to visually
pick up a missile aimed at us. Odd are the thoughts that wander
through one's mind in times like these. I found myself recalling
the words of former SR-71 pilots who were fired upon while flying
missions over North Vietnam They said the few errant missile
detonations they were able to observe from the cockpit looked like
implosions rather than explosions. This was due to the great speed
at which the jet was hurling away from the exploding missile. I see
nothing outside except the endless expanse of a steel blue sky and
the broad patch of tan earth far below. I have only had my eyes out
of the cockpit for seconds, but it seems like many minutes since I
have last checked the gauges inside. Returning my attention inward,
I glance first at the miles counter telling me how many more to go,
until we can start our turn Then I note the Mach, and passing
beyond 3.45, I realize that Walter and I have attained new personal
records. The Mach continues to increase. The ride is incredibly
smooth. There seems to be a confirmed trust now, between me and the
jet; she will not hesitate to deliver whatever speed we need, and I
can count on no problems with the inlets. Walt and I are ultimately
depending on the jet now - more so than normal - and she seems to
know it. The cooler outside temperatures have awakened the spirit
born into her years ago, when men dedicated to excellence took the
time and care to build her well. With spikes and doors as tight as
they can get, we are racing against the time it could take a
missile to reach our altitude. It is a race this jet will not let
us lose. The Mach eases to 3.5 as we crest 80,000 feet. We are a
bullet now except faster. We hit the turn, and I feel some relief
as our nose swings away from a country we have seen quite enough
of. Screaming past Tripoli, our phenomenal speed continues to rise,
and the screaming Sled pummels the enemy one more time, laying down
a parting sonic boom. In seconds, we can see nothing but the
expansive blue of the Mediterranean. I realize that I still have my
left hand full forward and we're continuing to rocket along in
maximum afterburner. The TDI now shows us Mach numbers, not only
new to our experience but flat out scary. Walt says the DEF panel
is now quiet, and I know it is time to reduce our incredible speed.
I pull the throttles to the min 'burner range and the jet still
doesn't want to slow down. Normally the Mach would be affected
immediately, when making such a large throttle movement. But for
just a few moments old 960 just sat out there at the high Mach, she
seemed to love and like the proud Sled she was, only began to slow
when we were well out of danger. I loved that jet. Brian Shul
was an Air Force fighter pilot for 20 years. Shot down in Vietnam,
he spent one year in hospitals and was told he'd never fly again.
He flew for another 15 years, including the world's fastest jet,
the SR-71. As an avid photographer Brian accumulated the world's
rarest collection of SR-71 photographs and used them to create the
two most popular books ever done on that aircraft, Sled Driver, and
The Untouchables. Brian today is an avid nature photographer and in
high demand nationwide as a motivational speaker. Reprinted
with permission of the original author. First appeared on the book
'Sled Diver'. For more information, visit
www.sleddriver.com.

A Dismal Guide to Concurrency

By CARLOS BUENO

Two people can paint a house faster than
one can. Honeybees work independently but pass messages to each
other about conditions in the field. Many forms of
concurrency,0 so obvious and
natural in the real world, are actually pretty alien to the way we
write programs today. It's much easier to write a program assuming
that there is one processor, one memory space, sequential execution
and a God's-eye view of the internal state. Language is a tool of
thought as much as a means of expression, and the mindset embedded
in the languages we use can get in the way.1 We're going through an inversion of scale
in computing which is making parallelism and concurrency much more
important. Single computers are no longer fast enough to handle the
amounts of data we want to process. Even within one computer the
relative speeds of processors, memory, storage, and network have
diverged so much that they often spend more time waiting for data
than doing things with it. The processor (and by extension, any
program we write) is no longer a Wizard of Oz kind of character,
sole arbiter of truth, at the center of everything. It's only one
of many tiny bugs crawling over mountains of data.
Many hands make light work

A few years ago Tim Bray decided to find out where things stood. He
put a computer on the Internet, which contained over 200 million
lines of text in one very large file. Then he challenged
programmers to write a program to do some simple things with this
file, such as finding the ten most common lines, which matched
certain patterns. To give you a feel for the simplicity of the
task, Bray's example program employed one sequential thread of
execution and had 78 lines of code, something you could hack up
over lunch. The computer was unusual for the time: it had 32
independent hardware threads, which could execute simultaneously.
The twist of the WideFinder challenge was that your program had to
use all of those threads at once to speed up the task, while adding
as little code as possible. The purpose was to demonstrate how good
or bad everyday programming is at splitting large jobs into
parallel tracks. How hard could it be? I thought. Very hard,
as it happened. I got up to 4 parallel processes before my program
collapsed under its own weight. The crux of the problem was that
the file was stored on a hard drive. If you've never peeked inside
a hard drive, it's like a record player with a metal disc and a
magnetic head instead of a needle. Just like a record it works best
when you "play" it in sequence, and not so well if you keep moving
the needle around. And of course it can only play one thing at a
time. So I couldn't just split the file into 32 chunks and have
each thread read a chunk simultaneously. One thread had to read
from the file and then dole out parts of it to the others. It was
like trying to get 31 housepainters to share the same bucket. When
I looked at other people's entries for hints I was struck by how
almost all of them, good and bad, looked complicated and
steampunky. Part of that was my unfamiliarity with the techniques,
but another part was the lack of good support for parallelism,
which forced people to roll their own abstractions. (Ask four
programmers to create a new abstraction and you'll get five and a
half answers.) The pithiest entry was 130 lines of OCaml, a
language with good support for "parallel I/O" but which is not
widely used outside of academia. Most of the others were several
hundred lines long. Many people like me were not able to complete
the challenge at all. If it's this difficult to parallelize a
trivial stringcounting program, what makes us think we're doing it
right in complex ones? Ideally, concurrency shouldn't leak into the
logic of programs we're trying to write. Some really smart people
would figure out the right way to do it. They would write papers
with lots of equations in them and fly around to conferences for a
few years until some other smart people figured out what the hell
they were saying. Those people would go develop libraries in our
favorite programming languages. Then we could just put

import concurrent;

at the top of our programs and be on our way. Concurrency would be
another thing we no longer worry about unless we want to, like
memory management. Unfortunately there is evidence that it won't be
this clean and simple.2 A lot of
things we take for granted may have to change. There are at least
two concurrency problems to solve: how to get many components
inside one computer to cooperate without stepping all over each
other, and how to get many computers to cooperate without drowning
in coordination overhead. These may be special cases of a more
general problem and one solution will work for all. Or perhaps
we'll have one kind of programming for the large and another for
the small, just as the mechanics of life are different inside and
outside of the cell. At the far end of the spectrum are large
distributed databases, such as those used by search engines, online
retailers, and social networks. These things are enormous networks
of computers that work together to handle thousands of writes and
hundreds of thousands of reads every second. More machines in the
system raise the odds that one of them will fail at any moment.
There is also the chance that a link between groups of machines
will fail, cutting the brain in half until it is repaired. There is
a tricky balance between being able to read from such a system
consistently and quickly and writing to it
reliably. The situation is summed up by the CAP Theorem,
which states that large systems have three desirable but
conflicting properties: Consistency, Availability, and
Partition-tolerance. You can only optimize for two at the expense
of the third.

A
Consistent/Available

system means that reading and writing always works the way you
expect, but requires a majority or quorum of nodes to be running in
order to function. Think of a parliment that must have more than
half of members present in order to hold a vote. If too many can't
make it, say because a flood washes out the bridge, a quorum can't
be formed and business can't proceed. But when enough members are
in communication the decision-making process is fast and
unambiguous.
Consistent/Partitionable

means that the system can recover from failures, but requires so
much extra coordination that it collapses under heavy use. Imagine
having to send and receive a status report for every decision made
at your company. You'll always be current, and when you come back
from vacation you will never miss a thing, but making actual
progress would be very slow.
Available/Partitionable

means that you can always read and write values, but the values you
read might be out of date. A classic example is gossip: at any
point you might not know the latest on what Judy said to Bill but
eventually word gets around. When you have new gossip to share you
only have to tell one or two people and trust that in time it will
reach everyone who cares. Spreading gossip among computers is a bit
more reliable because they are endlessly patient and (usually)
don't garble messages.4 After lots
of groping around with billions of dollars of revenue at stake,
people who build these large systems are coming to the conclusion
that it's most important to always be able to write to a system
quickly and read from it even in the face of temporary failures.
Stale data is a consequence of looser coupling and greater autonomy
needed to make that possible. It's uncomfortable to accept the idea
that as the computing power of an Available/Partitionable system
scales up, the fog of war descends on consistency, but in practice
it's not the end of the world. This was not a whimsical nor easy
choice. Imagine Ebenezer Scrooge is making so much money that Bob
Cratchit can't keep up. Scrooge needs more than one employee to
receive and count it. To find out the grand total of his money at
any point, he has to ask each of them for a subtotal. By the time
Scrooge gets all the answers and adds them up, his employees have
counted more money, and his total is already out of date. So he
tells them to stop counting while he gathers subtotals. But this
wastes valuable working time. And what if Scrooge adds another
counting-house down the street? He'll have to pay a street boy,
little Sammy Locke, to a) run to the other house and tell them to
stop counting, b) gather their subtotals, c) deliver them to
Scrooge, then d) run back to the other house to tell them to resume
counting. What's worse, his customers can't pay him while this is
happening. As his operation gets bigger Scrooge is faced with a
growing tradeoff between stale information and halting everything
to wait on Locke. If there's anything Scrooge likes less than old
numbers, it's paying people to do nothing. Scrooge's dilemma is
forced upon him by basic physics. You can't avoid it by using
electrons instead of street urchins. It's impossible for an event
happening in one place (eg data changing inside one computer or
process) to affect any other place (eg other computers or
processes) until the information has had time to travel between
them. Where those delays are small relative to performance
requirements, Scrooge can get away with various forms of locking
and enjoy the illusion of a shared, consistent memory space. But as
programs spread out over more and more independent workers, the
complexity needed to maintain that illusion begins to overwhelm
everything else.3
import concurrent;

Shared memory can be pushed fairly far, however. Instead of
explicit locks, Clojure and many newer languages use an interesting
technique called software transactional memory. STM simulates a
sort of post-hoc, fine-grained, implicit locking. Under this scheme
semi-independent workers, called threads, read and write to a
shared memory space as though they were alone. The system keeps a
log of what they have read and written. When a thread is finished
the system verifies that no data it read was changed by any other.
If so the changes are committed. If there is a conflict the
transaction is aborted, changes are rolled back and the thread's
job is retried. While threads operate on nonoverlapping parts of
memory, or even non-overlapping parts of the same data structures,
they can do whatever they want without the overhead of locking. In
essence, transactional memory allows threads to ask for forgiveness
instead of permission. As you might have guessed from those jolly
hints about conflict and rollback, STM has its own special
problems, like how to perform those commit/abort/retry cycles
efficiently on thousands of threads. It's fun to imagine
pathological conflict scenarios in which long chains of
transactions unravel like a cheap sweater.5 STM is also not able to handle actions
that aren't undoable. You can't retry most kinds of I/O for the
same reason you can't rewind a live concert. This is handled by
queueing up any non-reversible actions, performing them outside of
the transaction, caching the result in a buffer, and replaying as
necessary. Read that sentence again. Undeniably awesome and clever
as STM threads are, I'm not convinced that shared memory makes
sense outside of the "cell membrane" of a single computer.
Throughput and latency always have the last laugh. A concurrent
system is fundamentally limited by how often processes have to
coordinate and the time it takes them to do so. As of this writing
computer memory can be accessed in about 100 nanoseconds. Local
network's latency is measured in microseconds to milliseconds.
Schemes that work well at local memory speeds don't fly over a
channel one thousand times slower. Throughput is a problem too:
memory can have one hundred times the throughput of network, and is
shared among at most a few dozen threads. A large distributed
database can have tens of thousands of independent threads
contending for the same bandwidth. If we can't carry the
shared-memory model outside of the computer, is there some other
model we can bring inside? Are threads, ie semi-independent workers
that play inside a shared memory space, absolutely necessary? In
his "standard lecture" on threads Xavier Leroy details three
reasons people use them:

	Shared-memory parallelism using locks or transactions. This is
explicitly disowned in both Erlang and Leroy's OCaml in favor of
messagepassing. His argument is that it's too complex, especially
in garbage-collected languages, and doesn't scale.

	Overlapping I/O and computation, ie while thread A is waiting
for data to be sent or received, threads B-Z can continue their
work. Overlapping (aka non-blocking I/O) is needed to solve
problems like WideFinder efficiently. This is often thwarted by
low-level facilities inside the operating system that were written
without regard to parallelism. Leroy thinks this should be fixed at
the OS level instead of making every program solve it again and
again.

	Coroutines, which allow different functions to call each other
repeatedly without generating an infinitely long stack of
references back to the first call. This looks suspiciously like
message-passing.

Message-passing, which first appeared in Smalltalk, is the core
abstraction of Joe Armstrong's programming language Erlang. Erlang
programs do things that make programmers take notice, like run some
of the busiest telephone switches for years without fail.6 It approaches concurrency with three iron
rules: no shared memory even between processes on the same
computer, a standard format for messages passed between processes,
and a guarantee that messages are read in the order in which they
were received. The first rule is meant to avoid the heartaches
described above and embraces local knowledge over global state. The
second and third keep programmers from endlessly reinventing
schemes for passing messages between processes. Every Erlang
process has sovereign control over its own memory space and can
only affect others by sending well-formed messages. It's an elegant
model and happens to be a cleaned-up version of the way the
Internet itself is constructed. Message-passing is already one of
the axioms of concurrent distributed computation, and may well be
universal. There are probably more axioms to discover. Languages
become more powerful as abstractions are made explicit and
standardized. Message-passing says nothing about optimizing for
locality, ie making sure that processes talk with other processes
that are located nearby instead of at random. It might be cool to
have a standard way to measure the locality of a function call.
Languages become even more powerful when abstractions are made
firstclass entities. For example, languages that can pass functions
as arguments to other functions can generate new types of
higher-order functions without the programmer having to code them
by hand. A big part of distributed computing is designing good
protocols. I know of no language that allows protocols as
first-class entities that can be passed around and manipulated like
functions and objects are. I'm not even sure what that would look
like but it might be interesting to try out. There is a lot of
sound and fury around parallelism and concurrency. I don't know
what the answer will be. I personally suspect that a relaxed,
shared-memory model will work well enough within the confines of
one computer, in the way that Newtonian physics works well enough
at certain scales. A more austere model will be needed for a small
network of computers, and so on as you grow. Or perhaps there's
something out there that will make all this lockwork moot.
Notes

[bookmark: note0]0. Parallelism is the act of taking
a large job, splitting it up into smaller ones, and doing them at
once. People often use "parallel" and "concurrent" interchangably,
but there is a subtle difference. Concurrency is necessary for
parallelism but not the other way around. If I alternate between
cooking eggs and pancakes I'm doing both concurrently. If I'm
cooking eggs while you are cooking pancakes, we are cooking
concurrently and in parallel. Technically if I'm cooking eggs and
you are mowing the lawn we are also working in parallel, but since
no coordination is needed in that case there's nothing to talk
about. [bookmark: note1]1. "The slovenliness of our
language makes it easier for us to have foolish thoughts. The point
is that the process is reversible." -- George Orwell, Politics and
the English Language

"That language is an instrument of human reason, and not merely a
medium for the expression of thought, is a truth generally
admitted." - George Boole, The Laws of Thought [bookmark: note2]2. Neither was the switch to memory management, come to
think of it. [bookmark: note3]3. This is not about
speed-of-light effects or anything like that. I'm only talking
about reference frames in the sense of "old news", such as when you
find out your cousin had gotten married last year. Her wedding and
your unawareness are both "true" relative to your reference frames
until you receive news to the contrary. [bookmark: note4]4. The categories are not rigidly exclusive. The
parliment problem is mitigated in real parliments with quorum
rules: say if a majority of members are in one place, or some
minimum number is present in chambers, they can act as though they
were the full body. The status report problem is usually handled by
having heirarchies of supervisors and employees aka "reports". The
gossip consistency problem can be helped by tagging data with
timestamps or version numbers so you can reconcile conflicting
values. [bookmark: note5]5. There is a recent paper
about an interesting variation on this theme called HyTM, which
appears to do a copy-on-write instead of performing writes to
shared memory. [bookmark: note6]6. A lot of writeups
repeat a "nine nines", ie 99.9999999% reliability claim for
Erlang-based Ericsson telephone switches owned by British Telecoms.
This works out to 31 milliseconds of downtime per year, which
hovers near the edge of measurability, not to say plausibility. I
was present at a talk Armstrong gave in early 2010 during which he
was asked about this. There was a little foot shuffling as he
qualified it: it was actually 6 or so seconds of downtime in one
device during a code update. Since BT had X devices over Y years,
they calculated it as 31ms of average downtime per device per year.
Or something like that. Either way it's an impressive feat.
Carlos Bueno is an engineer at Facebook. He writes occasionally
about general programming topics, performance, security, and
internationalization. His long-term project is to "save the web":
to build a network of independent, redundant, Internet
archives. Reprinted with permission of the original author.
First appeared in
www.facebook.com/note.php?note_id=379717628919.

iPhone Developer: "This is why I sell beer"

By JAMIE ZAWINSKI

Dali clock 2.31 is out now, I finally got
the iPhone/iPad port working. It was ridiculously difficult,
because I refused to fork the MacOS X code base: the desktop and
the phone are both supposedly within spitting distance of
being the same operating system, so it should be a small matter of
ifdefs to have the same app compile as a desktop application and an
iPhone application, right? Oh ho ho ho. I think it's safe to say
that MacOS is more source-codecompatible with NextStep than the
iPhone is with MacOS. It's full of all kinds of idiocy like this -
Here's how it goes on the desktop: NSColor fg = [NSColor
colorWithCalibratedHue:h saturation:s brightness:v alpha:a]; [fg
getRed:&r green:&g blue:&b alpha:&a]; [fg
getHue:&h saturation:&s brightness:&v alpha:&a];
But on the phone: UIColor fg = [UIColor colorWithHue:h saturation:s
brightness:v alpha:a]; const CGFloat *rgba = CGColorGetComponents
([fg CGColor]); // Oh, you wanted to get HSV? Sorry, write your
own. It's just full of nonsense like that. Do you think someone
looked at the old code and said, "You know what, to make this code
be efficient enough to run on the iPhone, we're going to have to
rename all the classes, and also make sure that the new classes
have an arbitrarily different API and use arbitrarily different
arguments in their methods that do exactly the same thing that the
old library did! It's the only way to make this platform succeed."
No, they got some intern who was completely unfamiliar with the old
library to just write a new one from scratch without looking at
what already existed. It's 2010, and we're still innovating on how
you pass color components around. Seriously? You can work around
some of this nonsense with #defines, but the APIs are randomly
disjoint in a bunch of ways too, so that trick only goes so far. If
you have a program that manipulates colors a lot, you can imagine
the world of #ifdeffy hurt you are in. Preferences are the usual
flying circus as well. I finally almost understood bindings, and
had a vague notion of when you should use NSUserDefaultsController
versus NSUserDefaults, and now guess what the iPhone doesn't have?
Bindings. Or NSUserDefaultsController. But it does have
NSUserDefaults. I can't explain. Also! I basically gave up on
trying to have any kind of compatible version of either Cocoa or
Quartz imaging that worked on both platforms at the same time - my
intermediate attempts were a loony maze of #ifdefs due to arbitrary
API wankery like the above, scathing examples of which I have
mercifully forgotten - so finally I said "Fuck it, the iPhone runs
OpenGL, right? I'll just rewrite the display layer in GL and throw
away all this bullshit Quartz code." (Let's keep in mind here the
insanely complicated thing I'm doing in this program: I have a
bitmap. I want to put it on the screen, fast, using two whole
colors. And the colors change some times. This should be fucking
trivial, right? Oh, ho ho ho.) So I rewrote it in OpenGL, just
dumping my bitmap into a luminance texture, and this is where some
of you are laughing at me already, because I didn't know that the
iPhone actually runs OpenGLES! Which has, of course, even less to
do with OpenGL than iPhones have to do with Macs. I expected the
usual crazy ifdef-dance around creating the OpenGL context and
requesting color buffers and whatnot, since OpenGL never specified
any of that crap in a cross-platform way to begin with, but what I
didn't expect - and I'm still kind of slack-jawed at this - is that
OpenGLES removed glBegin() and glVertex(). No, really, it really
did. That's like, the defining characteristic of OpenGL. So
OpenGLES is just a slight variant of OpenGL, in the way that
unicycle is a slight variant of a city bus. If you can handle one,
the other should be pretty much the same, right? Again, what the
hell - I can almost understand wanting to get rid of display lists
for efficiency reasons in an embedded API (I don't like it, because
my screen savers tend to use display lists a lot, but I can sort-of
understand it), but given that you could totally implement
glBegin() and glVertex() in terms of glDrawArrays() why the hell
did they take them out! Gaah! Anyway, where was I? Oh, yeah. So
Dali Clock works on the iPhone and iPad now, I think. I can't
actually run it on my phone, because I haven't gotten over my
righteous indignation at the idea that I'm supposed to tithe $100
to Captain Steve before I'm allowed to test out the program I wrote
on the phone that I bought. I imagine I could manage it if I
jailbroke my phone first, but the last time I did that it
destabilized it a lot and I had to re-install. So if one of you who
has supplicated at the App Store troth would like to build it from
source and let me know if it runs on your actual device, that'd be
cool. Oh, PS, I just noticed that since I rewrote it in OpenGL,
it's now too slow to get a decent frame rate when running full
screen on an 860MHz PPC G4. I mean, that machine is only 53x faster
than a 16MHz Palm Pilot, and only 107x faster than an 8MHz Mac128k.
This is why I sell beer. Jamie Zawinski was one of the founders
of Netscape and Mozilla.org, was the primary developer of Lucid
Emacs, and wrote most of your screen savers. Today he is the
proprietor of DNA Lounge, an all ages dance club and live music
venue in San Francisco. Reprinted with permission of the
original author. First appeared in
jwz.livejournal.com/1224702.html.

2 Steps to Becoming a Great Developer

By ERIC DAVIS

I want to share the two steps that I'm
using to walk the path to becoming a great developer. Becoming a
great developer is a constant work in progress, but it's a pattern
that I've seen many other great developers follow.
Step One: Write More Code

This might sound easy but trust me - it's not easy. There are an
infinite number of reasons we developers don't write code:

	I don't have the time

	I don't know that code base

	I don't have the right environment setup

	I don't know what to work on

	I'm tired

They all boil down to fear. You're afraid of something. Afraid of
wasting time, afraid of being embarrassed publicly, afraid of
making a mistake, afraid of being afraid. Let me share two stories
with you about my fears: I've been a contributor to Redmine for a
couple of years now, but I haven't been very active in the code
base. Why? Redmine is a large complex code base and I didn't know
how everything worked. So I stayed in my corner and only committed
minor changes. Yet I still found a way to break those sections.
Self-fulfilling prophecy? With my product, SeeProjectRun, I have to
charge users' credit cards. Taking actual money is scary. After
hearing all of the horror stories about companies screwing this up,
I became deathly afraid of this and put off writing any billing
code. Yes, me a developer who has written four credit card
interfaces for active_merchant was afraid of writing code to bill
his users. WTF is going on here? Fear is a mistress that will steal
your life if you let her. So how do you get over your fear of
writing more code?
Write more code

As odd as it sounds, the only way I found to get through my fear of
writing code was to crank it out like it was going out of style.
The easiest way to do this? Start new side projects and contribute
simple patches to Open Source. Every time you write code, you will
learn something about the code, your tools, or yourself. Did you
really think my 57 plus daily refactoring posts were only about
fixing bad code? Nope, they are my sledgehammers against coder's
block. Oh and the ending to my stories about fear: I just spent
last night rewriting a core component of Redmine and committed it
to the project this morning. It if breaks, I'll fix it. If it's
really crap code, I'll revert it. No one will care and no one will
remember the mistake. And for the billing code I strapped myself
down and finished the credit card billing code for SeeProjectRun in
two days. Throwing two hundred test cases at it proved to me that
it would work good enough to get over my fear. Don't let fear hold
you back from writing code.
Step Two: Work With Great Developers

Now that you're creating code, you need to work with great
developers so you can see how to they write great code. Just take:

	1 passionate developer (you)

	1 great developer (them)

	a dash of code Mix well daily and after a short rise in the
over, you'll have two great developers. Feel free to add a few nuts
(other great developers) and bake again. You don't need to search
for the greatest developers of all time, you just need developers
smarter and further along in their skills than yourself. This can
be easy if you work in a company that has hired great developers.
But what do you do if your company doesn't hire any great
developers or you are a solo freelancer like me?

Start reading great developers' code

I'm making it a habit to start reading great developer's code. They
put out so much code, you will find yourself reading so much of it
that you start to dream about code.1
Getting Started

Now here's the call to action, because you will never become a
great developer without taking action.
[1] Write At Least One Line Of Code In A New Code Base Every
Day For A Week. Switch Code Bases After Each Week.

This can be a new feature, a bugfix, a refactoring, or just
monkeying around with an idea. It doesn't matter, the act of
thinking through the code and writing is what you are after. Don't
know one a good code base to start on? Do a refactoring on Redmine
and tell me about it in the comments below.
[2] Find A Way To Learn From A Great Developer Every Week.

If you are working with a great developer:

	ask to pair program with them, or

	do an informal code review their last commit

	buy them lunch and ask them about their favorite hack

If you are working solo:

	download some popular projects and read through a single class
every week

	get some API documentation that shows the method's source code
inline and read the source each time you look up a method, or

	find a mentor and work with them on some real code

So whatever you do, take action today. Unless you're afraid of
becoming a great developer...But there is plenty of room at the
top.
Notes

[bookmark: note1]1. Notice that the smart developers
are always producing new code.... they are following step #1.
Eric Davis runs Little Stream Software, where he builds custom
software for businesses using Redmine. Reprinted with
permission of the original author. First appeared in
theadmin.org/articles/2010/04/16/two-steps-to-becoming-a-great-developer/.

Top Three Motivators for Developers

By DAVE RODENBAUGH

Software has long since lost its glory-days
status. We're not the go-to field anymore. Geeks are no longer
revered as gods amongst humanity for our ability to manipulate
computers. We get crappy jobs just like everyone else. So, what is
it that still motivates you to work as a software developer? Is it
your fat salary, great perks, and end-of-year bonuses? Unless
you've been working on Mars for the past two years, I think
Computerworld1 would disagree with
you. We've been getting kicked in the nads just as hard as everyone
else. Between budget cutbacks, layoffs and reductions in benefits
or increases in hours, clearly our paychecks are not our primary
source of satisfaction. If money were our primary motive, right now
we'd be seeing a mass exodus from the tech sector. So, if it's not
the money, then what is it that we hang on to when we get up each
day? Are we really working for those options? That salary bonus?
Turns out, we're kidding ourselves if we think that's our real
motive as developers.
The assumption

People perform better when given a tangible, and even substantial,
reward for completing a task. Think bonuses, stock options, and
huge booze-driven parties.
The reality

In a narrow2 band of actual cases,
this is true. By and large, the reward-based incentive actually
creates poorer performance in any group of workers for cognitive
tasks, regardless of economic background or complexity of the task
involved.3 I'm not making this up,
nor am I just drawing on anecdotal experience. Watch this 18-minute
video from TED4 and I'll bet you're
convinced too. Daniel Pink gave this lecture at the 2009 TED. It's
mind-blowing if you're stuck in the carrot-and-stick mentality. And
I'll just bet, unless you work for Google, are self-employed, or
extremely worldly, you probably are. I'm not saying that to
be mean or controversial. I'm saying that because this mentality
has pervasively spread to every business, industry and country on
the planet over the past 100 years. It's not just software
development, but we're hardly immune from its effect. While we're
not immune to the impact, we do have a lot going for us that gives
us an advantage in stepping outside this mentality:

	Developers tend to be social oddballs and the normal
conventions seem awkward to us. Social oddballs tend to question
things. We don't like what everyone else likes because, well, we're
nerds and we don't think like sales people. Or accountants. Or
athletes. We're willing to try things others find weird because
we're weird too.

	Because we're odd, we tend to be forward thinking and
revolutionary in our approaches to workplace advancements. Think
about the good aspects of the Dot Com era: pets in the workplace,
recreation rooms with pool tables and ping pong, better chairs and
desks for people, free lunches. Those innovations didn't come out
of Pepsi, Toyota, or Price Waterhouse Coopers, they came out of
tech companies. Every one.

	In doing so, our weird becomes the new normal. Witness the
output of the Dot Com era: Aside from the economic meltdown, how
many companies now regularly practice some, if not all of those
things we did back in the late 90s? (Albeit with more restraint,
thankfully)

With that in mind, let's take Daniel's idea of the results-oriented
work environment (ROWE) forward and create something new for the
21st century. It focuses on three important ideas, which developers
already love and embrace: Autonomy, Mastery, Purpose.
Autonomy

What developer out there doesn't like to be given the freedom to do
their own thing, on their terms, with their preferred hours, using
their tools, environment, IDE, language, operating system and
favorite t-shirt? Find me a single developer anywhere that doesn't
crave this kind of freedom and I'll pay you $10. Seriously. Drop me
a contact above. I'm good for it. Of course, you'll search for the
rest of your life and won't be able to do it.
Mastery

Every developer on the planet wants to get better at what they do.
We crave new knowledge like some people quaff coffee after a
hangover. Fortunately, the side effects of getting better at
development are far more benign than caffeine binging.
Purpose

Nothing is more tedious, horrific, or uninspiring to developers to
work on projects that lack any real meaning in the world. Or lack
any real direction. Or lack any substantial need from the company.
In fact, you can probably point to the brightest points of your
career all stemming from those projects that had the deepest
meaning to you personally. Maybe the darkest points are those
soul-sucking projects that you waded through because you were glad
to have a job but desperately waited for things to improve so you
could find a better job elsewhere. Preferably where soul-vacuums
didn't exist. Google gets it: They already advocate the 20% time
concept and (near-) complete workplace freedom. Atlassian gets it:
They have the Fedex challenge where everyone in the company gets 24
hours to work on something they are interested in, with the caveat
you have to deliver it at the end of 24 hours and you must present
it to the company. Think those don't create passion for the
company? How about the Nine Things Developers Want More than Money?
These points all touch on the same three basic concepts: autonomy,
mastery, and purpose. Does your company "get it"? If the answer is
NO, what can you do right now to change your workplace to "get it"?
And if that is too Sisyphean a task for you, how about starting
your own company instead, that does "get it"? That's my challenge
for you in 2010. "Make software suck less in the 21st century".
Good luck.
Notes

[bookmark: note1]1. http://www.computerworld.com/s/
article/347538/The_Big_Squeeze [bookmark: note2]2.
Anything that isn't a cognitive task, simple or complex, according
to the research I quote below. [bookmark: note3]3.
Sorry, outsourcers...dangling the reward under your workers noses
doesn't help even when your home country is considerably poorer on
average than Western economies. Yet another surprising finding of
their research. [bookmark: note4]4.
http://www.youtube.com/watch?v= rrkrvAUbU9Y Dave Rodenbaugh is
an independent software contractor with nearly 2 decades of
enterprise project experience in a variety of companies and
industries. Although he loves Java, he sometimes drinks a good
black tea when the mood strikes. He's still waiting for his first
business trip to the Caribbean. Reprinted with permission of
the original author. First appeared in
www.lessonsoffailure.com/developers/autonomy-mastery-purpose/.

What Value Do We Create Here?

By CARTER CLEVELAND

One summer I thought I had the ultimate
dream job. During the day I created software that accessed some of
the world's largest financial databases and provided traders with
real-time data and analysis for trade ideas. At night I worked with
the CTO on a side project that analyzed huge amounts of transaction
data to identify arbitrage opportunities. We figured that if we
could start finding enough of these opportunities, we could present
them as trade ideas to the bosses. So we wrote scripts, and at
night, after everyone else left the office, we installed them on
their computers and ran the scripts in parallel to try and crunch
through the massive amount of data we had access to. This was fun.
Really fun. And even better, the CTO was an awesome guy who taught
me a lot about programming. They also paid well. Really well. Even
more than my friends received working 100 hour weeks at I-Banking
jobs. In retrospect, no college student should ever have been paid
that much (on the bright side, the savings were enough for Art.sy's
initial funding). But that summer it meant I could go out to nice
dinners with my girlfriend, and never worry about paying for drinks
at expensive clubs. It meant I could afford fancy clothes, an
iPhone, and plane flights to Asia. Having always worked in labs
prior to that job, it redefined how I thought about money. So what
is wrong with this picture? I had an extremely fun and challenging
job, working with awesome people, that let me afford an incredible
lifestyle. It was a dream comes true. But at the end of the summer,
the CTO brought me into the corner office and closed the door. I
had worked with him all summer and this was my last day, so I was
expecting a performance evaluation. Instead, after some chit
chatting, he asked me a question: "Have you ever wondered what
value we create here?" Value? This wasn't what I was expecting at
all. "Not really." "I'll tell you. We increase the liquidity of the
secondary bond market. We shave basis points off of spreads." I'll
never forget that question. It turns out that our CTO was saving
every penny and had plans of leaving as soon as he had enough cash
to pursue his dream. He didn't care about the fancy clothes, the
clubs, or being a master of the universe. All he cared about was
how he would add value to the world. At this point, my story starts
to sound cliché, but it was a cliché I needed to experience in
person because it radically changed my perspective. "How am I
creating value?" I realized that the programs I had spent all
summer writing were great, if they could make people money and save
them time. But if all it resulted in at the end of the day was
slightly more efficient markets, well, what was the point of that?
I was so caught up in the fun and camaraderie of my job, so high
with the rush of money, I never considered such a simple question.
This probably won't change the minds of people who have already
chosen career paths. But to any students who are thinking about
their futures, I hope my story illustrates how easy it is to get
swept up by short-term pleasures, and how important it is to always
ask this question when making important decisions. Carter
Cleveland is the founder of Art.sy, a platform for connecting
artists and galleries with collectors of original fine art. He is
also the NYC Curator of The Startup Digest. Reprinted with
permission of the original author. First appeared in
www.astatespacetraveler.com/have-you-ever-wondered-what-value-we-create-here/.

7 Tips for Successful Self-Learning

By BRADFORD CROSS and HAMILTON ULMER

Self-learning is HARD. Regardless of where,
when or how you learn - being a good self-learner will maximize
your potential. In this post, Hamilton Ulmer (an almost-done
Stanford stats masters student) and I, will explore seven ways to
become a great self-learner.
1 The longest path is the shortest and
the shortest path is the longest

The shortest route to learning the craft of a field is the one
that, at first glance, appears the longest. To really learn
something, you must understand the basic concepts of your field. If
you try to skip, you may end up spending more time figuring out
concepts than if you had started with learning basics. Have you
ever wanted to take up a new subject, bought a book, only to make a
failed attempt at the first few chapters before submitting to a
lack of foundation for the material? Starting at the beginning
might seem daunting, but trying to skip to the goal directly is
likely to fail. If you are studying and unsure that you have the
background for something, just stop when you don't understand
something and go back to acquire that background.
2 Avoid isolation

In school you have many effective feedback loops. If you are
confused, you can ask the lecturer for a clarification. Your
homework assignments and exams motivate you to internalize the
content of the class, whether you want to or not. Peers can help
you smooth over small rough spots in your understanding. A decent
self-learner must find others who are familiar with the material.
Naturally one prefers to find an expert, but discussing the
material with a peer can also go a long way. Having a community is
vital. Often, a byproduct of finding or building a community is
finding a mentor. The one element of graduate school that is
hardest to replicate is the advisor-advisee relationship. They help
guide you, smoothing out the uncertainties you have about certain
topics, and help you make your own learning more efficient. As a
self-learner, you do not have the convenience of scheduled class
time and required problem sets. You must be aggressive about
finding people to help you.
3 Avoid multitasking

Another reason school is great for learning is that you plan your
day around your classes. There are distractions, of course, but if
you're concerned with learning at school, you prioritize your
classes over other things. You don't have to be in a classroom or
library to study, but notice the relative isolation and focus those
environments afford over reading a book with your laptop on while
writing emails and checking facebook or twitter with the TV on.
Remove the distractions and allocate large blocks of time. You
might find that for more difficult material, you need larger blocks
of time to study because it takes longer to shift into the context
of harder problems.
4 You don't read textbooks, you work
through them

Imagine taking a 12-hour flight with two books, Machiavelli's "The
Prince" and Shilov's "Elementary Functional Analysis." It would be
typical to finish the 100 pages of Machiavelli in two hours or so,
and spent the rest of the time working through 10 pages of a
Shilov's "Elementary Functional Analysis," minus some breaks for
napping and eating undesirable airplane food. Reading a technical
book is nothing like reading a novel. You have to slow down and
work carefully if you want to understand the material. Have you
ever found yourself 10 pages further in a book and having forgotten
what you've just read? Successful self-learners don't read, they
toil. If there are proofs, walk them through, and try proving
results on your own. Work through exercises, and make up your own
examples. Draw various diagrams and invent visualisations to help
you develop an intuition. If there is a realworld application for
the work, try it out. If there are algorithms, implement them with
your favorite programming language. If something remains unclear,
hunt down someone who's smarter than you and get them to explain.
Sometimes you just need to put the material down, step away, relax,
and think deeply to develop an intuition.

Figure 1. The "I'm stuck" decision tree.1 "In theory, there is no difference
between theory and practice. But, in practice, there is." - Jan
L. A. van de Snepscheut
5 Build Eigencourses

Great self-learners spend a lot of time to find the best resources
for learning. You can find all the textbooks, papers and other
resources you need on the Internet. Many of the course materials
from among the world's best universities are available for free
online.2 Check out the great lists
of links to video courses on this Data Wrangling post.3 You can pick and choose the best
"eigencourse" with lecture slides, video lectures, textbooks, and
other materials. The best way to find these materials is on Google.
You will often only need to pay for the book, and sometimes even
the book is free at the course website in pdf form. Take the time
to triangulate on the right material. Find the greats in the field,
see what they use and recommend. Find other students and read the
reviews on Amazon. Google is your friend.
6 What to do when you don't
understand

Learning is all about abstractions. We build up abstractions on top
of other abstractions. If you do not know the abstractions you are
reading about that are being composed into new higherlevel
abstractions, then you aren't going to understand the new
abstraction. If you get stuck, the way to get un-stuck is to follow
the I'm stuck decision tree.4
7 There is nothing so practical as a
good theory. -Kurt Lewin

Sometimes you are several hops away from something you can code up
and apply to a problem directly. Not all textbooks can be read with
application in mind, despite that they serve as the theoretical
foundation for applied work. This is why you must have a deep sense
of patience and commitment - which is why a prolonged curiosity and
passion for a topic are so valuable. Understanding analysis
(particularly sets, measures, and spaces) will serve as your
foundation for a deep understanding of probability theory, and both
will then serve as your foundation for understating inference, and
a deep understanding of inference is a mainstay of achieving high
quality results on applied problems. Avoid the dualistic mistakes
of technical execution without intuition, and intuition without
technical execution.
Notes

[bookmark: note1]1. Keep in mind that you often just
need to build a general foundation in the field, or mastery of some
subset of a field - you don't have to master the entire field.
[bookmark: note2]2. http://www.jimmyr.com/blog/1_
Top_10_Universities_With_Free_ Courses_Online.php [bookmark: note3]3. http://www.datawrangling.com/
hidden-video-courses-in-math-scienceand-engineering [bookmark: note4]4. Figure 1. Bradford has been doing applied
research since 2001. His interests are in Maths, Statistics,
Computer Science, Learning Theory, Network Theory, Information
Retrieval, Natural Language Processing, and engineering at scale.
Most recently, Bradford is co-founder and head of research for
FlightCaster, where is responsible for the statistical learning and
supporting architecture that power Flightcaster's predictive
algorithms. Hamilton Ulmer is a Master's student in
Statistics at Stanford. He has a great deal of experience as a data
engineer, having helped startups of various sizes and shapes get on
their feet with processing and visualizing their data, as well as
helping them make data-driven decisions. In August he will join the
Mozilla analytics team. Reprinted with permission of the
original author. First appeared in
measuringmeasures.com/blog/2010/4/19/7-tips-for-successful-self-learning.html.

Adam? ...is there a reason your laptop is in the fridge?

By ADAM KEMPA

I'd read a few times that bringing the
temperature of a failing drive down will increase its reliability
long enough to salvage important files. When the drive in my trusty
Powerbook decided one day last week to stop booting and make
horrible clicking sounds, I decided to test the theory. Not feeling
particularly motivated to dissect the Powerbook, since that would
void the warranty I planned to invoke to get the drive replaced, I
set it on a relatively uncluttered shelf of the fridge when I got
home from work. Ten minutes later, I took it out, and the drive
booted like new. I copied my iPhoto libraries to an external drive
and once that was successful, begun the copying of the only other
important file on the drive: a giant iMovie project (~ 30 GB).
About halfway through, the drive had warmed up, the copy progress
bar had stalled and the clicking was back.

Fair enough. Back in the fridge, for 20 minutes this time. I took
it out, booted up (painlessly), hooked it up to the external drive
and started the copy again. This time it made it to 75% before the
clicking took hold. At this point I considered going after the
video clips that made up the iMovie project in small batches, but
decided I didn't feel like doing that if it wasn't absolutely
necessary. I also didn't want to play guess and check to discover
the ideal length of time to chill a powerbook, so I devised a
devious plot.

This plot consisted of cooling the Powerbook down again, carting my
external drive to the kitchen, booting the laptop in the fridge,
beginning the copy, and closing the door. Success! I share this
experience with you, the Internet, in the hopes that it is useful.
Adam Kempa works as a web developer in Ann Arbor, Michigan (Yes,
people still live in Michigan). His nerdy musings intermittently
appear at kempa.com. Reprinted with permission of the original
author. First appeared in www.kemp.com/2006/10/02/
adam-is-there-a-reason-your-laptop-is-in-the-fridge/.

The Scariest Pricing Idea Ever

By WALT KANIA

Here's a pricing technique that sounds, at
first, like the dumbest newbie move of all time. Call it
'fill-in-the-blank' invoicing. Or 'pay what you want' pricing. The
notion is, you do the work first, then let the client decide how
much to pay for it. I know, that sounds like a sure way to end up
working for nickels and peanuts. I once thought that way, too. But
it's actually an ingenious tactic that should be in every
freelancer's arsenal, ready to wheel out when the wind is right.
(Notice I said when the wind is right. We'll come back to that.) It
goes like this. Instead of quoting a fee or negotiating a price in
advance, you tell the client: "Here's what I suggest. Let me jump
in and do the work as we discussed. I'll hit this as hard as I know
how, and make it as good as can be done." "When we're finished,
just pay whatever you feel the work was worth, based on what it
contributed to your overall project." "I'll accept whatever you
decide, no questions asked. Provided it is more than a buck
sixty-five." Scary? Absolutely. Risky? Maybe a little. Foolhardy
and stupid? Not at all. I had dabbled with this tactic before, but
only on those small, oddball projects a client would send me now
and then. "Let me just concentrate on getting this done for you,
and we'll settle up later. I trust you to be fair." "I have no
idea what to bill for this," I'd say. "Just send me whatever seems
right to you." Sometimes they would send a hundred or two more than
I anticipated, sometimes less. But it was always intriguing to see
how the client perceived what I had done. And a little humbling,
too, on occasion. But over the past year or so I finally got the
guts to try this on large projects for big clients. (Partly
because, while developing "Talking Money," I was thinking/obsessing
about pricing issues pretty much all day long. I was itching to see
how this worked.) I can tell you this: the 'pay what you want' idea
can be surprisingly and dumbfoundingly profitable. Better still, I
can guarantee you that it will shake up your thinking about fees
and pricing. It will un-stick some old notions. And heaven knows we
need that; most of us are way too myopic, constipated and
chickenshit about fees. As an added bonus, you will most likely do
the best work of your life, and deliver obscenely wonderful service
to your clients at the same time. (Mainly because you'll be too
scared not to.)
Making it pay. More.

Naturally, the sole reason for using fillin-the-blank invoicing is
to net more from a project than you could with "traditional"
pricing. The idea is to get paid for the value the client derives
from the work, rather than for the number of hours it took. Or how
hard it was. Or how many shots you had to take. Or what somebody
else charged some other client somewhere. And by value, I don't
mean only hard economic value, like sales or savings or new
business. (Which in most cases is hard to quantify anyway.) As I've
discovered, clients are also willing to pay lavishly to get a
nosebleed project done and off the desk, to look like geniuses in
front of their bosses, to have presentations that their sales
people rave about. To finally get the bosses sold on videos for
user training. To untangle a project that somebody else screwed up.
That kind of value has no relation to how long it took you to do
the job. It's irrelevant, immaterial. And it is difficult to guess
what that value might be from our side of the glass. So it can pay
to let the client set that value. Example. A client of mine was
knee-deep in redoing all her company's web site content. She was
getting raw material from the various divisions that was ugly,
undecipherable and unusable. The go-live date was looming. She
called me in to figure out how to fix it all. But she had no idea
how many sections we'd be doing, how many pages, nor how bad the
raw material would be, so it was impossible to estimate any sort of
fee. I said, "Let me just concentrate on getting this done for you,
and we'll settle up later. I trust you to be fair." She agreed. I
did the work as it came in over a couple of weeks, revising,
re-writing, re-building the content. We came up with a neat and
tight format, a solid voice, sharp messaging. Everybody loved it. I
then told the client to let me know what she felt was a reasonable
fee for the project. It was entirely her call. Meanwhile, I went
back and parsed out the work based purely on hours spent. Had I
been pricing conventionally, it would have come to 3800 to 4200
bucks, depending on how I counted. Next day, I get an email from
the client. She says, "I'm thinking $9,500. How does that sound?" I
wrote her back and said "Fine. Sold." Now, lest you think I'm just
handing you rosy stories, here's another. "Don't that,this with
one-time clients...Been there, done lost shirt." A designer
friend is working on a web site for a financial firm, two partners.
He refers them to me for the writing. We have a few phone
conversations. Seems simple enough. Not a ton of content,
straightforward mission. The clients don't know much about
marketing or web stuff. I say, "Tell you what. I'll write
everything for you, and when you're happy with it, send me a check
for what you think is reasonable." Ordinarily, I would have quoted
about $2500 for the project, although I don't say that. I do some
drafts. There are some comments, some revisions. Slam-dunk. Site
goes live. Time to settle up. And I'm thinking the Wall Street guys
are seeing a fee with a lot of zeros. They send a check for $1200.
And say, 'Thanks for the great work." Ouch and a half.
What works, what doesn't

After a few painful scorchings, and several delightfully lucrative
wins, here is the bottom line. This technique works only when:

	You have a long-term relationship with the client. You've done
work for them before, at your usual rates. They trust you. They
know your work. And mostly likely they need to work with you
again.

	Don't try this with one-time clients, clients who don't use
this work often, or clients who didn't seek you out. Been there,
done that, lost shirt.

	The client has a big personal stake in the project. They have
skin in the game. They stand to look grand if all goes well, score
some points, be a hero, win some kudos. This does not work for
low-level backburner projects that no one cares about. (Like my
Wall Street clients; to them, their website was just some bullshit
thing they needed to have. They didn't perceive it as
critical.)

	The project looks hard, impossible, and indecipherable. (My
Wall Street clients thought it was a cinch to bang out a few pages
of drivel, and therefore paid accordingly. My technology client
tried untangling her web content herself, and got scared. To her,
it seemed insurmountable.)

How do clients react? Do clients like this idea? A few will balk.
They don't want the responsibility of figuring out a fee. They
don't want the anguish. That's okay. Give them a quote. Most will
be astonished that you offer the option. It shows you trust them.
That you value their judgment. That you even thought to ask. Huge
karma points translate to more dollars. Sometimes (as one client
confessed to me) they'll reflexively crank up the fee when filling
in the blank. Sort of like the way we reflexively and fearfully
crank down the price when the client says 'How much will it cost?"
Just so you know I'm not the only crackpot
using this idea, Matt Homann of LexThink, a consultant who works
with law firms, offers this 'you decide' option to all of his
clients. His experience with the technique mirrors mine exactly.
There's more about his approach here too, in The NonBillable Hour.
(It's for lawyers, but the ideas apply to us, I think.) Oh, and see
the classic Little Rascals episode from 1936, "Pay as You Exit." As
the story goes, the gang was putting on a show in the barn, but the
neighborhood kids were reluctant to pay the penny admission,
fearing that the show might be lame. Over Spanky's objections,
Alfalfa decided to let everyone in for free, and allow them to pay
on the way out if they liked the show. As it turned out, the gang
botched the show horribly, but the result was so hilarious that the
kids filed out laughing. Leaving Alfalfa with cigar box full of
pennies. Walt Kania is a freelance writer who runs The
Freelancery site (thefreelancery.com), and develops marketing
content (waltkania. com) for B2B and technology companies. He has
plied his trade independently his entire adult life, due to a
congenital inability to tolerate conventional employment for more
than three to five days. Reprinted with permission of the
original author. First appeared in
thefreelancery.com/2010/04/the-scariest-pricing-idea-ever-that-works/.

5 Actions that Made Me Happier

By GARY HARAN

Happiness is not universally quantifiable
but money is. At some point in my life I raced towards money
because I could measure it. When I noticed it wasn't making me
happier I set out to make happiness my main goal. Here is a list of
actions I took.
1 Reduced Commute Time

Commuting is a side effect of many jobs and sadly the higher the
salary the more commute time we're willing to do. Finding ways to
shave off commute time has a proven benefit as measured by this
study.1 When changing jobs wasn't a
possibility I used public transportation and got an Internet
capable cell phone so I could deal with paperwork related
annoyances during the commute. Instead of trying to find time at
home I'd deal with them while in traffic. I also borrowed and
bought a few books. Today my job allows me to work from home and my
commute takes about 38 seconds. I still need to commute a few days
a week but I can choose to take the car and avoid rush hour
traffic.
2 Removed Small Frustrations

I start every day by making some tea. I had this cheap kettle that
would randomly turn off on me. One day after pouring cold water
over tealeaves I decided to drive to the store. Now every morning I
look at the testament of a foregone frustration with a smile from
ear to ear. Removing frustrations can be as simple as moving the
furniture or spending a few bucks.
3 Played Sports

A Harvard University study started in 1937 that spanned 72 years
determined that healthy play could relieve daily frustrations
making us happier overall. A few years ago I joined a volleyball
team and now I play a minimum of once a week.
4 Attended Regular Meetups

Would doubling your income make you happier? Well it turns out that
seeing a group of people that meets just once a month provided the
same benefit as doubling your salary. Once I started digging I
found out that Montreal was vibrant and full of user groups and
programming language enthusiasts that meet regularly. I've met some
really interesting people through these groups and some of the
contacts even helped me professionally.
5 Drank Socially With Co-Workers

When work sucks your life sucks. A good team feels comfortable
cracking a joke to the CEO. Imagine how many valid concerns are not
expressed if a team has to worry about everything they say. Good
communication is perhaps the reason why those who occasionally have
a single drink after work with colleagues make significantly more
money on average than those who do not drink at all. Team members
who do drink are probably made aware of problems and can resolve
situation before they occur. It's a different setting and we all
know that a little alcohol can make shyness go away. So it's
perhaps a stretch to make this point but seriously having a drink
has some beneficial effect on the time you spend at work and that
can't all be bad since you're there a good portion of your day.
Notes

[bookmark: note1]1.
http://www.cces.ethz.ch/agsam2009/panels/AGSAM20
09_panel_mobility_Stutzer.pdf Gary is a programmer and
entrepreneur in Montreal, Canada. He is a father and entrepreneur
currently working at SocialGrapes.com. You can follow him on
twitter @xutopia. Reprinted with permission of the original
author. First appeared in
www.garyharan.com/2010/04/04/5-actions-that-made-me-happier.html.

How Not to Run an A/B Test

By EVAN MILLER

If you run A/B tests on your website and
regularly check ongoing experiments for significant results, you
might be falling prey to what statisticians call repeated
significance testing errors. As a result, even though your
dashboard says a result is statistically significant, there's a
good chance that it's actually insignificant. This note explains
why.
Background

When an A/B testing dashboard says there is a "95% chance of
beating original" or "90% probability of statistical significance,"
it's asking the following question: Assuming there is no underlying
difference between A and B, how often will we see a difference like
we do in the data just by chance? The answer to that question is
called the significance level, and "statistically significant
results" mean that the significance level is low, e.g. 5% or 1%.
Dashboards usually take the complement of this (e.g. 95% or 99%)
and report it as a "chance of beating the original" or something
like that. However, the significance calculation makes a critical
assumption that you have probably violated without even realizing
it: that the sample size was fixed in advance. If instead of
deciding ahead of time, "this experiment will collect exactly 1,000
observations," you say, "we'll run it until we see a significant
difference," all the reported significance levels become
meaningless. This result is completely counterintuitive and all
the A/B testing packages out there ignore it, but I'll try to
explain the source of the problem with a simple example.
Example

Suppose you analyze an experiment after 200 and 500 observations.
There are four things that could happen:

	
	Scenario 1
	Scenario 2
	Scenario 3
	Scenario 4

	After 200 observations
	Insignificant
	Insignificant
	Significant!
	Significant!

	After 500 observations
	Insignificant
	Significant!
	trial stopped
	trial stopped

	End of experiment
	Insignificant
	Significant!
	Significant!
	Significant!

Assuming treatments A and B are the same and the significance level
is 5%, then at the end of the experiment, we'll have a significant
result 5% of the time. But suppose we stop the experiment as soon
as there is a significant result. Now look at the four things that
could happen:

	
	Scenario 1
	Scenario 2
	Scenario 3
	Scenario 4
	

	After 200 observations
	Insignificant
	Insignificant
	Significant!
	Significant!

	After 500 observations
	Insignificant
	Significant!
	Insignificant
	Significant!

	End of experiment
	Insignificant
	Significant!
	Insignificant
	Significant!

The first row is the same as before, and the reported significance
levels after 200 observations are perfectly fine. But now look at
the third row. At the end of the experiment, assuming A and B
are actually the same, we've increased the ratio of significant
relative to insignificant results. Therefore, the reported
significance level - the "percent of the time the observed
difference is due to chance" - will be wrong.
How big of a problem is this?

Suppose your conversion rate is 50% and you want to test to see if
a new logo gives you a conversion rate of more than 50% (or less).
You stop the experiment as soon as there is 5% significance, or you
call off the experiment after 150 observations. Now suppose your
new logo actually does nothing. What percent of the time will your
experiment wrongly find a significant result? No more than five
percent, right? Maybe six percent, in light of the preceding
analysis? Try 26.1% - more than five times what you probably
thought the significance level was. This is sort of a
worst-case scenario, since we're running a significance test after
every observation, but it's not unheard-of. At least one A/B
testing framework out there actually provides code for
automatically stopping experiments after there is a significant
result. That sounds like a neat trick until you realize it's a
statistical abomination. Repeated significance testing always
increases the rate of false positives, that is, you'll think many
insignificant results are significant (but not the other way
around). The problem will be present if you ever find yourself
"peeking" at the data and stopping an experiment that seems to be
giving a significant result. The more you peek, the more your
significance levels will be off. For example, if you peek at an
ongoing experiment ten times, then what you think is 1%
significance is actually just 5% significance. Here are other
reported significance values you need to see just to get an actual
significance of 5%:

	You peeked...
	To get 5% actual significance you need...

	1 time
	2.9% reported significance

	2 times
	2.2% reported significance

	3 times
	1.8% reported significance

	5 times
	1.4% reported significance

	10 times
	1.0% reported significance

Decide for yourself how big a problem you have, but if you run your
business by constantly checking the results of ongoing A/B tests
and making quick decisions, then this table should give you
goosebumps.
What can be done?

If you run experiments: the best way to avoid repeated
significance testing errors is to not test significance repeatedly.
Decide on a sample size in advance and wait until the experiment is
over before you start believing the "chance of beating original"
figures that the A/B testing software gives you. "Peeking" at the
data is OK as long as you can restrain yourself from stopping an
experiment before it has run its course. I know this goes against
something in human nature, so perhaps the best advice is: no
peeking! Since you are going to fix the sample size in advance,
what sample size should you use? This formula is a good rule of
thumb:

Where δ is the minimum effect you wish to detect and σ2
is the sample variance you expect. Of course you might not know the
variance, but if it's just a binomial proportion you're calculating
(e.g. a percent conversion rate) the variance is given by:

Committing to a sample size completely mitigates the problem
described here. If you write A/B testing software: Don't
report significance levels until an experiment is over, and stop
using significance levels to decide whether an experiment should
stop or continue. Instead of reporting significance of ongoing
experiments, report how large of an effect can be detected given
the current sample size. That can be calculated with:

Where the two t's are the t-statistics for a given significance
level /2 and power (1-β). Painful as it sounds, you may even
consider excluding the "current estimate" of the treatment effect
until the experiment is over. If that information is used to stop
experiments, then your reported significance levels are garbage.
If you really want to do this stuff right: Fixing a sample
size in advance can be frustrating. What if your change is a
runaway hit, shouldn't you deploy it immediately? This problem has
haunted the medical world for a long time, since medical
researchers often want to stop clinical trials as soon as a new
treatment looks effective, but they also need to make valid
statistical inferences on their data. Here are a couple of
approaches used in medical experiment design that someone really
ought to adapt to the web:

	Sequential experiment design: Sequential experiment design lets
you set up checkpoints in advance where you will decide whether or
not to continue the experiment, and it gives you the correct
significance levels.

	Bayesian experiment design: With Bayesian experiment design you
can stop your experiment at any time and make perfectly valid
inferences. Given the real-time nature of web experiments, Bayesian
design seems like the way forward.

Conclusion

Although they seem powerful and convenient, dashboard views of
ongoing A/B experiments invite misuse. Any time they are used in
conjunction with a manual or automatic "stopping rule", the
resulting significance tests are simply invalid. Until sequential
or Bayesian experiment designs are implemented in software, anyone
running web experiments should only run experiments where the
sample size has been fixed in advance, and stick to that sample
size with near-religious discipline. Evan Miller is a graduate
student in Economics at the University of Chicago, and the author
of the Chicago Boss web framework. Reprinted with permission of
the original author. First appeared in
www.evanmiller.org/how-not-to-run-an-ab-test.html.

How I Took My Web-App to Market in 3 Days

By TAWHEED KADER

I'm a huge fan of the 37Signals mantra of
"scratch your own itch." Inspired by their book for "Getting Real"
which I've read at least twice, and "Rework" which I'm reading now,
I decided to write a small web application to scratch an itch
around customer development emails. Do note though, 37Signals
mantra here probably roots back to a saying my Dad, also an
entrepreneur, has always said to me: "Necessity is the mother of
invention". Either way, here's the problem I solved with Tout: as
I've been ramping up customer development for Braintrust, I
realized that typing, copying, pasting, re-typing all these emails
was becoming a huge pain. Even worse, it became even harder to keep
track of all these emails. "There had to be a better way!" - and
while there are tons of CRMs out there, the simple "get in, get
out" type of solution didn't exist. So, I decided to create one.
Introducing Tout - the simplest way to templatize and track (like
you do for websites) your customer development emails. It helps me
create e-mail templates, send emails quickly, and track when
someone's viewed my email, and whether they clicked on my link. It
also let me track whether my overall email was a "success" or not.
It took me about 1 day to get the app working to fit my own need.
After realizing this could probably help other people, it took me
another 2 days to get it production ready. WOW! I think we're at
amazing times right now. With all the different "common services"
startups cropping up, building, releasing and opening up shop for a
web application has never been easier. Here are the common
services/technologies I leveraged to take Tout to market in 3 days:
Heroku

All of my development is on Rails, and Heroku puts Rails on
steroids. Thanks to their amazing cloud infrastructure, I had to do
ZERO sysadmin stuff and was able to get my app online in literally
3 commands. More importantly, setting up DNS, E-Mailing, and SSl
was all done through the web UI as well. I highly recommend them
for starter applications, especially ones that are still testing
out the market. The only downside for Heroku is that they have no
way to support realtime applications (i.e. run an XMPP or NodeJS
server to push out real-time updates) - can you guys start working
on this?
Sendgrid

Even though the biggest "feature" of my web-app is sending emails,
I had to write next to no code for actually sending out emails or
even configuring e-mail servers. All of this got taken care of by
Sendgrid. They were also very diligent about validating my site and
making sure I was compliant with CAN-SPAM laws and ensuring this
doesn't turn into another spamming machine.
Chargify

Tout has a premium feature, and charges credit cards, handles
recurring billing and even sends out invoices. However, I didn't
have to write more than about 50 lines of billing code. Chargify
takes care of all of this - all I have to do is build out hooks to
keep the subscription level of the customer up to date. The reality
is, it has become so ridiculous easy to take web applications to
market now that I don't have to spend time working on plumbing -
instead, all of my time and energy goes toward the creative aspect
of the product - which is the way it should be. TK is the
Founder and CEO of Braintrust (http://braintrusthq.com), a webapp
that helps organize your team's conversations. He also blogs bout
his journey as a single founder for a bootstrapped company at
http://tawheedkader.com. Prior to Braintrust, TK co-founded
HipCal,which was sold to Plaxo in 2006. Reprinted with
permission of the original author. First appeared in
www.tawheedkader.com/2010/04/how-i-used-heroku-chargify-and-sendgrid-to-take-my-web-app-to-market-in-3-days/.

Organic Startup Ideas

By PAUL GRAHAM

The best way to come up with startup ideas
is to ask yourself the question: what do you wish someone would
make for you? There are two types of startup ideas: those that grow
organically out of your own life, and those that you decide, from
afar, are going to be necessary to some class of users other than
you. Apple was the first type. Apple happened because Steve Wozniak
wanted a computer. Unlike most people who wanted computers, he
could design one, so he did. And since lots of other people wanted
the same thing, Apple was able to sell enough of them to get the
company rolling. They still rely on this principle today,
incidentally. The iPhone is the phone Steve Jobs wants.1 Our own startup, Viaweb, was of the second
type. We made software for building online stores. We didn't need
this software ourselves. We weren't direct marketers. We didn't
even know when we started that our users were called "direct
marketers." But we were comparatively old when we started the
company (I was 30 and Robert Morris was 29), so we'd seen enough to
know users would need this type of software.2 There is no sharp line between the two types
of ideas, but the most successful startups seem to be closer to the
Apple type than the Viaweb type. When he was writing that first
Basic interpreter for the Altair, Bill Gates was writing something
he would use, as were Larry and Sergey when they wrote the first
versions of Google. Organic ideas are generally preferable to the
made up kind, but particularly so when the founders are young. It
takes experience to predict what other people will want. The worst
ideas we see at Y Combinator are from young founders making things
they think other people will want. So if you want to start a
startup and don't know yet what you're going to do, I'd encourage
you to focus initially on organic ideas. What's missing or broken
in your daily life? Sometimes if you just ask that question you'll
get immediate answers. It must have seemed obviously broken to Bill
Gates that you could only program the Altair in machine language.
You may need to stand outside yourself a bit to see brokenness,
because you tend to get used to it and take it for granted. You can
be sure it's there, though. There are always great ideas sitting
right under our noses. In 2004 it was ridiculous that Harvard
undergrads were still using a Facebook printed on paper. Surely
that sort of thing should have been online. There are ideas that
obvious lying around now. The reason you're overlooking them is the
same reason you'd have overlooked the idea of building Facebook in
2004: organic startup ideas usually don't seem like startup ideas
at first. We know now that Facebook was very successful, but put
yourself back in 2004. Putting undergraduates' profiles online
wouldn't have seemed like much of a startup idea. And in fact, it
wasn't initially a startup idea. When Mark spoke at a YC dinner
this winter he said he wasn't trying to start a company when he
wrote the first version of Facebook. It was just a project. So was
the Apple I when Woz first started working on it. He didn't think
he was starting a company. If these guys had thought they were
starting companies, they might have been tempted to do something
more "serious," and that would have been a mistake. "Just fix
things that seem broken, regardless of whether it seems the problem
is important enough to build a company on." So if you want to come up with organic startup ideas,
I'd encourage you to focus more on the idea part and less on the
startup part. Just fix things that seem broken, regardless of
whether it seems like the problem is important enough to build a
company on. If you keep pursuing such threads it would be hard not
to end up making something of value to a lot of people, and when
you do, surprise, you've got a company.3 Don't be discouraged if what you produce
initially is something other people dismiss as a toy. In fact,
that's a good sign. That's probably why everyone else has been
overlooking the idea. The first microcomputers were dismissed as
toys. And the first planes, and the first cars. At this point, when
someone comes to us with something that users like but that we
could envision forum trolls dismissing as a toy, it makes us
especially likely to invest. While young founders are at a
disadvantage when coming up with made-up ideas, they're the best
source of organic ones, because they're at the forefront of
technology. They use the latest stuff. They only just decided what
to use, so why wouldn't they? And because they use the latest
stuff, they're in a position to discover valuable types of fixable
brokenness first. There's nothing more valuable than an unmet need
that is just becoming fixable. If you find something broken that
you can fix for a lot of people, you've found a gold mine. As with
an actual gold mine, you still have to work hard to get the gold
out of it. But at least you know where the seam is, and that's the
hard part.
Notes

[bookmark: n1]1. This suggests a way to predict areas
where Apple will be weak: things Steve Jobs doesn't use. E.g. I
doubt he is much into gaming. [bookmark: n2]2. In
retrospect, we should have become direct marketers. If I were doing
Viaweb again, I'd open our own online store. If we had, we'd have
understood users a lot better. I'd encourage anyone starting a
startup to become one of its users, however unnatural it seems.
[bookmark: n3]3. Possible exception: It's hard to
compete directly with open source software. You can build things
for programmers, but there has to be some part you can charge for.
Paul Graham is an essayist, programmer, and programming language
designer. In 1995 he developed with Robert Morris the first
web-based application, Viaweb, which was acquired by Yahoo in 1998.
In 2002 he described a simple statistical spam filter that inspired
a new generation of filters. He's currently working on a new
programming language called Arc, a new book on startups, and is one
of the partners in Y Combinator. Reprinted with permission of
the original author. First appeared in
www.paulgraham.com/organic.html.

Not Disruptive, and Proud of It

By JASON COHEN

I remember "disruptive" when it was called
"paradigm shift." That phrase died during the tech-bubble along
with "portal" and "think outside the box," yet the concept has
returned. Don't follow along. When I get pitched - usually by
someone raising money - that they "have something disruptive," a
little part of me dies. You should be worrying about making
something useful, not how disruptive you can be. "Disruptive" is
the in-vogue word for the opposite of "incremental improvement." A
disruptive product causes such a large market shift that entire
companies collapse (the ones who don't "get it") and new markets
appear. Disruptive is fascinating, disruptive changes the world,
disruptive makes us think. Disruptive also sometimes generates
billions of dollars, which is why venture capitalists have always
loved it and always will. But disruptive is rare and usually
expensive. It's hard to think of disruptive technologies or
products that didn't take many millions of dollars to implement.
Most of us don't have access to those resources, and many of us
don't care, because we'd rather work on an idea we actually
understand and can build ourselves, an idea that might make us a
living and be useful to people. There's nothing wrong with
incremental improvement. What's wrong with doing something
interesting, useful, new, but not transcendental? What's wrong with
taking a known problem with a known market and just doing it better
or with a fresh perspective or with a modern approach? Do you have
you create a new market and turn everyone's assumptions upside down
to be successful? Should you? I'm not so sure. Here's my argument:
1 It's hard to explain the benefits of
disruption.

Have you tried to explain Twitter someone? Not the "140 characters"
part - the part about why it's a fundamental shift in how you meet
and interact with people? Hasn't the listener always responded by
saying, "I don't need to know what everyone had for lunch. Who
cares? What's next, 'I'm taking a dump?'" They don't get it, right?
But it's hard to explain. There are ways to elucidate the utility
of Twitter, but even the good ones are lengthy and require
listeners with patience and open minds - two attributes in short
supply. "It's hard to explain" should not be a standard part of
your sales pitch. "You just need to try it" and "trust me" don't
cut it. That may be OK for Twitter - today - but what about the 100
other social-networking-slash-link-sharing networks that didn't
survive? Ask them about selling intangible benefits.
2 It's hard to sell disruption, because
people don't want to be disrupted.

If you're reading this you're probably more open to new ideas and
new products than most, because you're inventing a new product,
starting a company, or you're just ruffled because I'm pissing on
"disruptive" and you're looking for nit-picky things to argue with
me about. But most people are creatures of habit. They don't want
their lives turned upside down. They launch into a tirade of
obscenities if you just rearrange their toolbar. When they hear
about a new social media craze they cringe in agony, desperately
hoping it's a passing fad and not another new goddamn thing they'll
be aimlessly paddling around in for the next decade. Change is
hard, so a person has to be experiencing real pain to want change.
Selling a point-solution for a point-problem is easier than getting
people to change how they live their lives. Identifying specific
pain points and explaining how your software addresses those is
easier than trying to tap into a general malaise and promising a
better world.
3 Most technology we now consider
"disruptive" wasn't conceived that way.

Google was the 11th major search engine, not the first. Their
technology proved superior, but "a better search engine" was hardly
a new idea. In retrospect we say that Google transformed how people
find information, and further, how advertising works on the
Internet. Disruptive in hindsight, sure, but the genesis was just
"incrementally better" than the 10 search engines that came before.
(Or 18.) Scott Berkun gives several other examples in a recent
BusinessWeek article. He highlights the iPod - an awesome device,
but not the first of its kind. Rather, there were a bunch of crappy
devices that sold well enough to prove there were a market, but no
clear winners. Here an innovation in design alone was enough to win
the market. Not inventing new markets, not innovative features, not
even improving on existing features like sound quality or battery
life - just a better design, unconcerned about "disrupting"
anything else. Setting your sights on being disruptive isn't how
quality, sustainable companies are built. Disruption, like
expertise, is a side effect of great success, not a goal unto
itself.
4 The disruptors often don't make the
money.

The construction of high-speed Internet fiber backbones and
extravagant data centers fundamentally changed how business is
conducted world-wide both between businesses and consumers, but
many of the companies who built that system went bankrupt during
the 2000 tech bubble, and those who managed to survive have still
not recovered the cost of that infrastructure. They were the
disruptors, but they didn't profit from the disruption. Disruptive
technology often comes from research groups commissioned to produce
innovative ideas but unable to capitalize on them. Xerox PARC
invented the fax machine, the mouse, Ethernet, laser printers, and
the concept of a "windowing" user interface, but made no money on
the inventions. AT&T Bell Labs invented Unix, the C programming
language, wireless Ethernet, and the laser, but made no money on
the inventions. Is it because disruptors are "before their time,"
able to create but not able to hold out long enough for others to
appreciate the innovation? Is it because innovation and business
sense are decoupled? Is it because "version 1" of anything is
inferior to "version 3," and by the time the innovator makes it to
version 2 there are new competitors - competitors who don't bear
the expense of having invented version 1, who have silently
observed the failures of version 1, and can now jump right to
version 3? "Why" is an interesting question, but the bottom line is
clear: Disruption is rarely profitable. "My daughter convinced
me that insisting something be Deeply Meaningful With Purpose could
sometimes suck the joy from it." - Kathy Sierra
5 Simple, modest goals are most likely
to succeed, and most likely to make us happy.

It's not "aiming low" to attempt modest success. It's not failure
if you "just" make a nice living for yourself. Changing the world
is noble, but you're more likely to change it if you don't try to
change everything at once. I made millions of dollars at Smart Bear
with a product that took an existing practice (peer code review)
and solved five specific pain points (annoyances and time-wasters).
Sure it wasn't worth a hundred million dollars, and it didn't turn
anyone's world inside out, but it enjoys a nice place in the world
and it is incredibly fulfilling to see people happier to do their
jobs with our product than without it. Had I tried to fundamentally
change how everyone writes software, I'm sure I would have failed.
I made less money personally at ITWatchDogs, but the company was
profitable and sold for millions of dollars. We took a simple
problem (when server rooms get hot, the gear fails) and provided a
simple solution (thermometer with a web page that emails/ pages you
if it's too hot). There were many competitors, both huge (APC with
$1.5 billion market cap), midsized (NetBotz with millions in
revenue and funding), and small (sub-$1m operations like us). We
had something unique - an inexpensive product that still had 80% of
the features of the big boys - but nothing disruptive. Had we tried
to fundamentally change how IT departments monitor server rooms,
I'm sure we would have failed. There's nothing wrong with modesty.
Modest in what you consider "success," and modest in what you're
trying to achieve every day. Of course it's wonderful that
disruptive products exist, improving life in quantum leaps. And
it's not wrong to pursue such things! But neither is it wrong to
have more modest goals, and modest goals are much more likely to be
achieved. Jason is the founder of three companies, all
profitable and two exits. He blogs on startups and marketing at
http://blog.ASmartBear.com. Reprinted with permission of the
original author. First appeared in
blog.asmartbear.com/not-disruptive.html.

Turning On Your Reality Distortion Field

By STEVE BLANK

I was catching up over coffee and a muffin
with a student I hadn't seen for years who's now CEO of his own
struggling startup. As I listened to him present the problems of
matching lithium-ion battery packs to EV powertrains and direct
drive motors, I realized that he had a built a product for a
segment of the electric vehicle market that possibly could put his
company on the right side of a major industry discontinuity. But he
was explaining it like it was his PhD dissertation defense.
Our product is really complicated

After hearing more details about the features of the product (I
think he was heading to the level of Quantum electrodynamics) I
asked if he could explain to me why I should care. His response was
to describe even more features. When I called for a time-out the
reaction was one I hear a lot. "Our product is really complicated I
need to tell you all about it so you get it." I told him I
disagreed and pointed out that anyone can make a complicated idea
sound complicated. The art is making it sound simple, compelling
and inevitable.
Turning on your Reality Distortion Field

The ability to deliver a persuasive elevator pitch and follow it up
with a substantive presentation is the difference between a funded
entrepreneur and those having coffee complaining that they're out
of cash. It's a litmus test of how you will behave in front of
customers, employees and investors.
30-seconds

The common wisdom is that you need to be able to describe your
product/company in 30-seconds. The 30 second elevator pitch is such
a common euphemism that people forget its not about the time, it's
about the impact and the objective. The goal is not to pack in
every technical detail about the product. You don't even need to
mention the product. The objective is to get the listener to stop
whatever they had planned to do next and instead say, "Tell me
more." "Envision how the world will be different five years
after people started using your product." How do you put together a 30-second pitch? Envision how
the world will be different five years after people started using
your product. Tell me. Explain to me why it's a logical conclusion.
Quickly show me that it's possible. And do this in less than 100
words. The CEOs reaction over his half- finished muffin was, "An
elevator pitch is hype. I'm not a sales guy I'm an engineer." The
reality is that if you are going to be a founding CEO, investors
want to understand that you have a vision big enough to address a
major opportunity and an investment. Potential employees need to
understand your vision of the future to decide whether against all
other choices they will join you. Customers need to stop being
satisfied with the status quo and queue up for whatever you are
going to deliver. Your elevator pitch is a proxy for all of these
things. While my ex student had been describing the detailed
architecture of middleware of electric vehicles I realized what I
wanted to understand was how this company was going to change the
world. All he had to say was, "The electric vehicle business is
like the automobile business in 1898. We're on the cusp of a major
transformation. If you believe electric vehicles are going to have
a significant share of the truck business in 10 years, we are going
to be on the right side of the fault zone. The heart of these
vehicles will be a powertrain controller and propulsion system.
We've designed, built and installed them. Every electric truck will
have to have a product like ours." 75 words. That would have been
enough to have me say, "Tell me more."
Lessons Learned

	Complex products need a simple summary

	Tell me why I should quit my job to join you

	Tell me why I should invest in you rather than the line outside
my door

	Tell me why I should buy from you rather than the existing
suppliers

	Do it in 100 words or less.

Steve Blank is a retired serial entrepreneur and the author of
Customer Development model for startups. Today he teaches
entrepreneurship to both undergraduate and graduate students at
U.C. Berkeley, Stanford University and the Columbia
University/Berkeley Joint Executive MBA program. Reprinted with
permission of the original author. First appeared in
steveblank.com/2010/04/22/turning-on-your-reality-distortion-field/.

Best Writing Advice for Engineers

By WILLIAM A. WOOD

How to make engineers write concisely with
sentences? By combining journalism with the technical report
format. In a newspaper article, the paragraphs are ordered by
importance, so that the reader can stop reading the article at
whatever point they lose interest, knowing that the part they have
read was more important than the part left unread. State your
message in one sentence. That is your title. Write one paragraph
justifying the message. That is your abstract. Circle each phrase
in the abstract that needs clarification or more contexts. Write a
paragraph or two for each such phrase. That is the body of your
report. Identify each sentence in the body that needs clarification
and write a paragraph or two in the appendix. Include your contact
information for readers who require further detail. William A.
Wood works for NASA at Langley Research Center. He has a Ph.D. in
Aerospace Engineering from Virginia Tech, and he has published in
IEEE Software (Digital Object Identifier:
10.1109/MS.2003.1196317). Reprinted with permission of the
original author. First appeared in
www.edwardtufte.com/.bboard/q-and-a-fetch-msg?msg_id=0001yB.

Tell us what you think

It's our first try, so we might have done something wrong, or
right. Please tell us about it so we can get better in coming
issues. hackermonthly.com/feedback/
Hacker Monthly is an independent project by Netizens Media and not
affiliated with Y Combinator in any way.

