
ilable at ScienceDirect

Digital Investigation 16 (2016) S65eS74
Contents lists ava
Digital Investigation

journal homepage: www.elsevier .com/locate/d i in
DFRWS 2016 Europe d Proceedings of the Third Annual DFRWS Europe
Lest we forget: Cold-boot attacks on scrambled DDR3
memory

Johannes Bauer*, Michael Gruhn**, Felix C. Freiling***

Department of Computer Science, Friedrich-Alexander-Universit€at Erlangen-Nürnberg (FAU), Martensstr. 3, 91058 Erlangen, Germany
Keywords:
Cold-boot memory acquisition
Scraping
Scrambling
Whitening
Decryption
* Corresponding author.
** Corresponding author.
*** Corresponding author.

E-mail addresses: johannes.bauer@cs.fau.de
gruhn@cs.fau.de (M. Gruhn), felix.freiling@cs.fau.de

http://dx.doi.org/10.1016/j.diin.2016.01.009
1742-2876/© 2016 The Authors. Published by Elsev
creativecommons.org/licenses/by-nc-nd/4.0/).
a b s t r a c t

As hard disk encryption, RAM disks, persistent data avoidance technology and memory-
only malware become more widespread, memory analysis becomes more important.
Cold-boot attacks are a software-independent method for such memory acquisition.
However, on newer Intel computer systems the RAM contents are scrambled to minimize
undesirable parasitic effects of semiconductors. We present a descrambling attack that
requires at most 128 bytes of known plaintext within the image in order to perform full
recovery. We further refine this attack using the mathematical relationships within the key
stream to at most 50 bytes of known plaintext for a dual memory channel system. We
therefore enable cold-boot attacks on systems employing Intel's memory scrambling
technology.
© 2016 The Authors. Published by Elsevier Ltd on behalf of DFRWS. This is an open access

article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

For several reasons, the contents of volatile memory
(RAM) are a valuable piece of digital evidence during a
forensic investigation. Firstly, the keys for full disk
encryption are usually stored in RAM. Extracting such keys
from a memory snapshot therefore allows to access con-
tents of encrypted storage that would be inaccessible
otherwise. Secondly, a plethora of other information about
the current system state can be recovered from RAM,
including ephemeral cryptographic communication keys,
the list of running processes and the details of active
network connections. Last but not least, new forms of
memory-only malware can only be analyzed while they are
active in memory. So overall, with the increasing use of
encryption technology, cloud storage and memory-only
(J. Bauer), michael.
(F.C. Freiling).

ier Ltd on behalf of DFRWS
malware, forensic memory image acquisition has become
increasingly important.

There has been a lot of debate on how to properly
perform imaging of volatile memory since there exist a
variety of options (V€omel and Freiling, 2011). One
commonly chosen option is runtime acquisition via soft-
ware using specific memory acquisition tools like WinP-
mem.1 While this method appears convenient in many
cases, memory imaging may be manipulated by malware
that hides in inaccessible memory regions (Stüttgen and
Cohen, 2013), thus creating a memory image that is not
forensically sound. Another problem of software acquisi-
tion methods is that they operate concurrent to regular
system activity and therefore produce inconsistencies that
do not occur in “perfect” memory snapshots (V€omel and
Freiling, 2012). A generic option that avoids these prob-
lems is to perform a so-called cold boot attack. These attacks
exploit the remanence effect of modern RAM technology.

Modern RAM technology is commonly based on dy-
namic random access memory (DRAM), a type of RAM in
1 http://www.rekall-forensic.com/.

. This is an open access article under the CC BY-NC-ND license (http://

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:johannes.bauer@cs.fau.de
mailto:michael.gruhn@cs.fau.de
mailto:michael.gruhn@cs.fau.de
mailto:felix.freiling@cs.fau.de
http://crossmark.crossref.org/dialog/?doi=10.1016/j.diin.2016.01.009&domain=pdf
http://www.rekall-forensic.com/
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
http://dx.doi.org/10.1016/j.diin.2016.01.009
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.diin.2016.01.009
http://dx.doi.org/10.1016/j.diin.2016.01.009

J. Bauer et al. / Digital Investigation 16 (2016) S65eS74S66
which the cells which store data are constituted of an array
of capacitors. Each capacitor is either charged or dis-
charged, depending onwhether the cell bit is set or cleared.
Since capacitors have a leakage current, their data content
slowly dissipates over time. Therefore, in order to effec-
tively use DRAM, each and every cell has to be periodically
refreshed. This is achieved by reading the contents and
writing it back to the RAM chip. The time that DRAM will
keep its contents without leakage affecting the content is
referred to as retention time. The fact that the retention time
is nonzero and that memory will keep its contents for a
while even when it is not actively refreshed, is often
referred to as the remanence effect. It is well-known from
electrical engineering that the leakage current of capacitors
grows exponentially with their temperature (Wyns and
Anderson, 1989). Therefore the retention time of RAM
dramatically decreases with increased chip temperature.

Cold boot attacks exploit the remanence effect and can
be executed in twoways: One way (Halderman et al., 2009)
is to reset the target computer by using the reset button
and boot from an alternative medium such as USB using a
special imaging USB stick that contains only a minimal
operating system together with imaging software such as
memimage (Halderman et al., 2009). Ideally, the original
contents of RAM are maintained and can be recovered,
apart from those parts that have been overwritten by the
acquisition software. Unfortunately, such an attack is easily
thwarted by using trivial protection mechanisms like BIOS
passwords.

The other way to perform cold boot attacks is to phys-
ically “transplant” the RAM module at runtime from the
device under investigation into an acquisition computer
and perform image extraction on that second computer.
When the semiconductors are properly cooled before
transplantation, they will retain most of their content. It is
therefore beneficial to freeze the DRAM modules using
cooling spray in order to increase the remanence effect. To
the best of our knowledge, this second form of cold boot
attack is paradigmatic for the class of memory acquisition
procedures since it combines genericity, availability and
offers the highest level of integrity and atomicity for the
acquired memory images (V€omel and Freiling, 2011, 2012).

While the remanence effect itself is already well-
studied (Hamamoto et al., 1998; Liu et al., 2013;
Halderman et al., 2009) were the first to exploit it to
attack full disc encryption systems on desktop PCs. How-
ever, it has been shown that cold boot attacks also affect a
multitude of other devices such as smart phones (Müller
and Spreitzenbarth, 2013). The dominating RAM technol-
ogy at that timewas called DDR2. Recently, however, Gruhn
and Müller (2013) reported that the results of Halderman
et al. (2009) could not be repeated with the more modern
DDR3 RAM technology. Even worse, the memory images
obtained from cold booting DDR3 devices appeared to be
random for reasons inherent in that technology.

With increasing speed of semiconductors, their unde-
sirable parasitic effects also grow in magnitude. Current
spikes and electromagnetic interference in the speed cat-
egories of DDR3 start to affect reliability and regulatory
compliance. To counteract this, RAM manufacturers in
general and Intel in particular performmemory scrambling
in DDR3 memory controllers. As we explain later (and as
observed by Gruhn and Müller (2013)), these scramblers
severely limit the potential of forensic image acquisition.
While Lindenlauf et al. (2015) performed measurements of
the remanence effect magnitudes with DDR3memory, they
excluded a discussion of memory scrambling. So, to the
best of our knowledge, there is no published work which
investigates the possibilities of performing cold boot at-
tacks on modern DDR3 systems in general, i.e., possibilities
to “descramble” the scrambler effects.

van Zandwijk (2015) recently performed some related
work using an analytic approach to descrambling NAND
flash chips. Their approach, however, is unfortunately not
easily transferable to RAM acquisition since they require
error-free source bit streams which cannot be guaranteed
for a cold boot process. Faintly related is also work by
Rahmati et al. (2012) which use the remanence effect in a
constructiveway to increase security of embedded systems.
For completeness,wealsomentionwork byKimet al. (2014)
because they also exploit physical properties of RAM semi-
conductors to provoke bit flips within the RAM modules.

To summarize, the ramification of memory scrambling
is currently not well understood and there is no general
method of performing cold boot attacks on scrambled
DDR3 memory. In this paper, we present an in-depth
analysis of DDR3 scrambling (using the Intel memory
scrambler as an example) and we show how to use this
knowledge to develop a practical method of descrambling
DDR3 memory in real-world scenarios.
Contributions

Our contributions which we make in this paper are as
follows:

� We present a template attack on scrambled DDR3
memory systems which requires 64 bytes of known
plaintext per memory channel (i.e., at most 128 bytes for
a dual-channel system) within the memory snapshot in
order to yield complete descrambling of the image.

� We refine this template attack by exploiting the math-
ematical relationships present within the key stream to
reduce the number of known plaintext bytes to only 25
(i.e., 50 bytes for a dual-channel system).

� We present methods which can be used to deinterleave
dual-channel memory and give an algorithm which can
construct an interleaved key stream of arbitrary length
from the subkeys for each channel.

We make the source code and documentation of our
research freely available to the community at https://
www1.informatik.uni-erlangen.de/filepool/mem/ddr3de
scramble.tar.gz.
Outline

We first give some necessary background information in
Section Background, then precisely formulate the problem
of descrambling DDR3 memory in Section Problem
description. We then show how the problem can be

https://www1.informatik.uni-erlangen.de/filepool/mem/ddr3descramble.tar.gz
https://www1.informatik.uni-erlangen.de/filepool/mem/ddr3descramble.tar.gz
https://www1.informatik.uni-erlangen.de/filepool/mem/ddr3descramble.tar.gz

Fig. 1. LFSR with polynomial x6 þ x4 þ x3 þ x þ 1.

J. Bauer et al. / Digital Investigation 16 (2016) S65eS74 S67
solved in Section Towards descrambling and present some
experimental results confirming our findings in Section
Experimental results. We finally conclude in Section
Conclusions and Outlook.

Background

Scrambling

Storage of bit streamswhich are strongly biased towards
zero or one can lead to a multitude of practical problems:
Modification of data within such a biased bit stream can
lead to comparatively high peak currents when bits are
toggled. These current spikes cause problems in electronic
systems such as stronger electromagnetic emission and
decreased reliability. In contrast, when streams without
DC-bias are used, the current when working with those
storage semiconductors is, on average, half of the expected
maximum.

Scrambling can be applied to biased bit streams to
remove these undesirable side effects. In the simplest case
such a scrambler is a pseudo-random binary sequence
(PRBS) that is added onto the input bit stream using the
exclusive or (XOR) addition. We call these devices additive
or synchronous scramblers. For the receiving side, the in-
verse operation, descrambling, must be applied in order to
get the original content. A pleasant side effect of the XOR
operation is that scrambling and descrambling is sym-
metric; it effectively is the same operation.

Linear-feedback shift registers

Since the goal of scrambling is only to achieve bias
removal, cryptographic requirements need not be satisfied
by a scrambling PRBS. A solution that is often chosen
because of the simplicity and efficiency with which it can
be implemented in hardware are linear-feedback shift
registers (LFSRs). As the name suggest, these hardware
building blocks are shift registers of a fixed bit width n. At
any given point in time, the content of the register is
referred to as the internal state. The bit which is fed back to
the register on each clock cycle is a linear combination, i.e.,
XOR, of some of the state bits. Bits which are inputs to the
linear function are called taps.

Mathematically, LFSRs can be modeled as polynomials
over F2 in which the state bits b0,…,bn�1 represented the
polynomial coefficients. Clocking corresponds to repeated
multiplication of the whole polynomial with x and reduc-
tion modulo the characteristic polynomial P of the LFSR.

Since an LFSR only has 2n possible states, it will always
produce a periodical bit sequence. The period of an LFSR
with a primitive characteristic polynomial is 2n�1 and it is
generated for every nonzero initialization of the shift reg-
ister. One possible hardware instance of such a shift register
is shown in Fig. 1.

DRAM

As explained before, DRAM needs to be continuously
refreshed in order to keep its content. For modern DRAM
generations such as DDR3 this process is implemented by
logic within the DRAM module itself (Micron, 2014). It is,
however, triggered by the host. In Intel systems, this is the
task of the memory controller hub (MCH). While the CPU
and MCH were separate chips in early hardware genera-
tions, the MCH is completely contained within modern
CPUs.

When the retention time is exceeded e for example
because the DRAM chip is unpowered e the stored charge
of the capacitors slowly decays and the RAM takes its
ground state. The ground state is not a trivial pattern of, for
example, all zero bits, but depends on the physical con-
struction of the chip itself. Namely, whether the statically
connected sides of the cells are biased against GND or
against the positive supply voltage, Vcc. The memory
pattern that a DRAM chip will therefore show when it far
exceeded its retention time is heavily dependent on the
physical semiconductor construction.

Another important aspect is the mapping between
physical addresses and physical storage location within
memorymodules. Whenmore than onememorymodule is
present in a computer, the RAM is usually operated in so-
called dual-channel mode. In this mode, consecutive data
is alternated in a certain pattern between modules. This is
done for performance reasons, as it allows use of two
memory modules in parallel.
LFSR RAM scrambling

We now take a look at the actual process implemented
by the MCH construction of Intel. As the authors explain in
the patent on the topic, their aim is to reduce both elec-
tromagnetic interference (EMI) and current spikes by
scrambling (Mozak, 2011; Falconer et al., 2013).

In order to achieve this, they use a set of parallel LFSRs
which generate a PRBS that is XORed with the data.
Therefore the data on the memory bus appears to be
random and ideally exhibits no bit-bias. To be able to
generate the PRBS for an arbitrary memory location, a short
secret value, the so-called seed, is chosen on first power-up.
Upon a read or write request to the RAM, this seed is mixed
together with the memory address that the request was
made to. Fig. 2 illustrates this process schematically. This
combined value then serves as the parameterization of the
LFSR that generates the PRBS for the requested memory
access. In this way, it is possible for the MCH to create the
required PRBS for every random memory request. While
the Intel patent (Falconer et al., 2013) gives an example
seed calculation in which only the lesser significant bits of
the address are involved to parameterize the localized
PRBS, it is unclear if this is indeed the method that is used
in practice.

Note that when memory is operated in dual-channel
mode, as explained in Section DRAM, each of the two
channels will have its own scrambler and both scramblers

Fig. 2. Schematic display of a Intel DDR3 scrambler.

Fig. 3. Scrambled storage of data and image acquisition.

J. Bauer et al. / Digital Investigation 16 (2016) S65eS74S68
will also usually have distinct seed values. They are two
completely independent hardware units.

During the boot process, the MCH is programmed by
code that is part of the computer's firmware (i.e., the BIOS
or UEFI). It is during this initialization that the MCH pa-
rameters e including the scrambler configuration and
scrambler seed e are programmed as well. Therefore a
reseeding of the MCH scrambler can only occur when the
computer is performing a cold start (i.e., transitions from
unpowered to powered state). In our trials, the seed was
never reset when the computer was merely rebooted using
the reset button.
Problem description

As mentioned in the introduction, one approach to
perform image acquisition is to reset the target computer
by using the reset button (thereby not reinitializing any
memory scramblers) and boot from an alternative medium
such as USB. Tools like the memimage imaging software
(Halderman et al., 2009) have a sufficiently small memory
footprint as to leave most of the memory contents intact.
However, such attacks are easily thwarted using BIOS
passwords for example. The other approach is to physically
transplant the RAM module from the suspect's computer
into an acquisition computer and perform image extraction
on that second computer, as shown in Fig. 3. It is in this case
that scrambling comes into full effect, since the contents of
the RAM chip will contain only scrambled data and the
acquisition computer cannot have the correct seed to
replicate the original key stream.

As shown in Fig. 2, all data that is passed to or from the
DRAM chips is first passed through the scrambler circuitry
within the memory controller hub. It is transparently
scrambled when writing to and transparently descrambled
when reading fromRAM. Therefore at any point in time, the
RAM module will only contain a scrambled image M. All
connected peripherals will not be aware that scrambling is
even happening, but will only see the plain RAM image P.
The scrambling data streamwill be referred to as K and the
connection between the three is simply an XOR relation-
ship, as in a stream cipher:M ¼ P4K . When such an image
is forensically acquired via means of cold booting, the
captured image is referred to as I. While during normal
operation of the computer the key K0 was used by the
scrambler, during the image acquisition phase this key
might be K1, where K0 is not necessarily equal to K1. Fig. 3
shows this formally: During the normal use, the plain
image P is scrambled by K0 and the memory M consists of
the value K04P which resides in RAM:

P /
K0

scramble
P4K0 ¼ M (1)

When the RAM module is transplanted to the analysis
machine, generally the scrambling keywill be different. We
denote the new key by K1. Subsequently, during the
acquisition phase the descrambler adds K1 to the RAM
image, yielding an image

I ¼ P4K04K1 ¼ M4K1)
K1

descramble
M (2)

Therefore, in a cold boot scenario the descrambler does
not do what the name suggests (i.e., recover the original
plaintext image), but instead actually adds another layer of
scrambling on top of the already scrambled image. During
normal operation of the computer, K0 is equal to K1 so that
the key streams cancel each other out and the descrambler
actually recovers the plaintext image.

Intel's patent on their scrambler mechanics explains
that a parallel LFSR is used to generate the scrambler bit
stream K. Therefore it seems that decrypting such a
scrambled image would be a rather simple, straightforward
task. Surprisingly enough, in practice it turns out to be
more complicated than initially anticipated. This has a
number of reasons:

1. Nonexistent public documentation: All documentation
that explains the registers which are used by the mem-
ory controller hub (MCH)e the component that contains
the scrambling unit e is non-public. Parts of the docu-
mentation which are publicly available, such as the
patents Intel has filed on the issue (Mozak, 2011;
Falconer et al., 2013), are worded as broadly as possible
to include a plethora of different options. It is unclear
which one is used in practice.

J. Bauer et al. / Digital Investigation 16 (2016) S65eS74 S69
2. Lossy image acquisition: Forensic image acquisitionwhen
using cold boot techniques relies on the remanence ef-
fect of the semiconductors. This effect is neither guar-
anteed nor reliable. Bit flips occur frequently as the
DRAM cells lose their content. When trying to reverse
engineer the used scrambling mechanisms, this poses a
problem since algorithms like Berlekamp-Massey
(Massey, 1969) for synthesis of a LFSR from a given bit
stream rely on perfect input data to produce correct re-
sults. When the algorithms are fed noisy input they will
not indicate failure, but instead synthesize misleading
output.

3. Unknown ground state: If the DRAM content of a chip
which was inactive for a long time, i.e., the ground state
of that chip G, were known, then it would be easy to
determine the pure scrambler bit stream. We could
perform a cold boot attack on a machine that had been
turned off for a long time. While then assuming that
M ¼ G, we can determine K ¼ G4I, since for this ma-
chine the memory content C would be equal to G and it
would run through the descrambler during forensic
image acquisition. However, the ground state G is highly
dependent on the actual constitution of the hardware
itself and forms a nontrivial pattern. Therefore it is
difficult to gain access to the pure scrambling bit stream.

4. Interleaved memory: Lastly, most modern systems with
more than one physical RAM chip will be configured to
use dual channel mode in order to improve system
performance. This means that consecutive data will be
put on alternating RAMmodules in an unknown pattern.
Since each channel has its own, completely separate
scrambler instance, it must be known which pieces of
data have been scrambled by which unit in order to
perform descrambling for such images.
Towards descrambling

We now describe an approach to descramble the con-
tents of a DDR3 memory image that was acquired using
cold boot. The first steps which we describe are necessary
to calculate certain parameters of the hardware that are
necessary for descrambling to work. These steps can,
however, also be performed after the memory image has
been taken.
Fig. 4. Experimental setup for image recovery.
Calculating memory offsets

As mentioned before, the scrambler LFSR is parameter-
ized by a global seed and (parts of) the memory address
that is accessed. It is therefore vital to know the exact
physical memory address of every byte in the acquired
image. Unfortunately, not all acquisition software works
reliably; in fact, there are many examples in which areas of
memory which are inaccessible are simply skipped instead
of being correctly filled with padding data (V€omel and
Stüttgen, 2013). When scanning through plaintext images
in order to locate cryptographic keys, this is not a problem.
For our purposes, however, it is not only important to get
the data, but also important to be able to pinpoint the exact
storage location of that data. Only then can we select the
correct key stream offset with which we will be able to
descramble the image. In order to work around inherent
limitations of acquisition software, we wrote a custom data
placer program to store the 64-bit physical address every 8
bytes throughout all available memory. Then a soft reset
was performed as to not reseed the memory scrambler and
a forensic imagewas created with the same software which
would later also capture the data images.

Note that using this approach we would also be able to
determine the effects of memory address scrambling when
performing acquisition on transplanted memory. While
this was not the case in our experiments, there are indeed
hints in literature that this would be something that could
be expected in the future (Gould, 2009).

By examining these dumped images, it was easy to
identify the locations where the acquisition process was
discontinuous. These discontinuities are referred to as
hidden memory regions (Stüttgen, 2015; Stüttgen et al.,
2015). This is expected, as the BIOS memory map (which
the acquisition software usually relies on) only loosely
correlates with the intricate details of the actual memory
mapping (which the MCH uses). As a consequence, such
forensic images may contain holes within where hidden
memory regions were present. Capturing exactly where
these discontinuities were located for any given combina-
tion of computer and DRAM allowed us to calculate the
actual address in the original physical memory of a given
offset within the dumped memory image file.
Distinguishing the scrambler type

Now we know which addresses in physical memory
map to an acquired image file offset, but we do not yet
know about the scrambling behavior of the device under
test at all. We now show how it is possible to determine
how the scrambler is configured by the computer's
firmware.

Here is the procedure to distinguish the different
scrambler types (see Fig. 4):

J. Bauer et al. / Digital Investigation 16 (2016) S65eS74S70
1. Turn the device completely off and leave it off for an
extended period of time (e.g., 1 min). This ensures that
the DRAM content will definitely be the ground state G.

2. Turn the device on and immediately perform cold boot
image acquisition.

3. Repeat these two steps twice to capture two indepen-
dent cold boot images I0 and I1.

To determine the scrambler type, it is now sufficient to
investigate the image content which has not been modified
by the BIOS or dumping software. (Note that the amount of
RAM that is overwritten by the BIOS on reboot needs to be
evaluated on an individual basis.) When analyzing this
memory, there are three possible outcomes:

1. The two captured images I0 and I1 are identical (except
for noise) and look non-random. Long sequences of
consecutive 0 and 1 bits are expected to be present in the
output. The details of the pattern depend on the physical
hardware wiring of the respective memory cells. This
finding implies that scrambling is disabled on the
machine.

2. The captured images are identical (except for noise), but
look random (i.e., equal distribution of all bytes with
approximately identical probability). This implies that
scrambling with a constant seed is used on the machine.
Note that disabled scrambling is a special case of con-
stant scrambling, where the constant scrambling key
stream KC ¼ 0

!
.

3. The captured images look completely different and also
both look random. This implies that scrambling with a
random seed is used on the machine.

In our experiments, we did not find any machine which
disabled the scrambling feature altogether. But there were
machines of either of the two latter types. Which type a
machine belongs to is determined by the system firmware,
as explained earlier in Section LFSR RAM scrambling. For
example, we found a system consisting of an MSI H55M-
P33 mainboard with an Intel Core i5-760 CPU to use con-
stant scrambling, while an Intel Core i3-3225 CPU within a
MSI B75MA-P45 mainboard used random scrambling.
Attacking constant scrambling

Assume a machine that performs constant scrambling.
For such a computer, descrambling the memory contents is
not necessary in most scenarios, since the scrambling and
descrambling key K is, as the name suggest, constant over
power cycles. Therefore, K ¼K0 ¼ K1 and therefore
I ¼ P4K04K1 ¼ P. The intuitive reason is that scrambling
and descrambling cancel each other out on the same sys-
tem when the key stream remains the same for both.
Therefore, if the forensic image acquisition is performed on
the same computer which also wrote the data into the
RAM, the system can be treated as if there were no
scrambling used at all. This also applies to RAM that was
transplanted from one system to another one which uses
the exact same firmware and therefore same, constant,
scrambler seed.
Unfortunately, in most practical cases the machine with
which the image recovery was performed will be different
from the computer which contains the forensically inter-
esting data. In such cases, things become more compli-
cated. Fortunately, for all hardware that we tested, the basic
principle of how the scrambler works was always identical,
so there is reason to assume that there currently is only one
generation of scrambling hardware available. This is also
the case which we assume and deal with here. If the two
computers use different scrambler generations, the results
could vary greatly depending on the exact scrambler
mechanisms which are employed.

Assuming that the two computers use at least the same
scrambler generation and merely differ in the parameteri-
zation (e.g., the host system uses constant scrambling with
K0, but the acquisition system uses a different key stream
K1), then the captured image can simply be treated as if it
were created on a randomized scrambling system, as
described next.
Attacking randomized scrambling

Consider again the two images I0 and I1 from Fig. 4. They
both capture the same, unknown, ground state G with
different scrambling keys applied to them. In other words,

I0 ¼ K04G and I1 ¼ K14G:

We can therefore apply a differential approach by con-
structing the image D

D ¼ I04I1 ¼ K04G4K14G ¼ K04K1

By eliminating the unknown ground state from the
equation we now only deal with the differential of two
unknown key streams. Since we know that the key stream
is periodic, as explained in Sect. Linear-feedback shift
registers, it can be written as the repeated concatenation
of some unknown partial key stream S (the subkey):

D ¼ Sx

We then inspect chunks from this D of varying size
(concretely, we used powers of two from 32…1024). Using
autocorrelation on these chunks we can identify the peri-
odicity p of S within D. To do this, we define an equality
function on two bit streams X;Y of equal length:

XzY⇔
HðX4YÞ

jXj < 3

Here, H is the Hamming weight of a bit vector. Intui-
tively, we consider two bit streams X,Y to be approximately
equal if and only if the average Hamming weight of their
bitwise difference is below a certain threshold 3. We group
n of these chunks into an equivalence class:

fC0; C1;…;Cn�1g with CizCj c i; j2f0;…;n� 1g
Once the periodicity p is selected correctly, only one

equivalence class will emerge with lots of approximately
equal differential subkey candidates Ci, all of length p.

J. Bauer et al. / Digital Investigation 16 (2016) S65eS74 S71
During our experiments, we determined the smallest value
for p at which this occurred to be 64 bytes.

Due to bit flips during the lossy acquisition, we still do
not, however, know S. Under the assumption that all can-
didates Ci are just deviations from S caused by random
noise during acquisition, we can calculate S by performing a
majority vote on each individual bit sj of S:

sj ¼

8><
>:

0 if
Pn�1

i¼0
Cij <

n
2

1 otherwise

As a result, we have the most likely subkey candidate S,
where D ¼ K04K1 ¼ Sx. We can now use this information
to recover P using a known plaintext attack.
Stencil attack

From our measurements we found that on all machines
we investigated, the differential of two keys K0 and K1
exhibited a 64-byte periodicity (i.e., p ¼ 64). This directly
enables what we refer to as the stencil attack for DDR3
descrambling. The attack works as follows:

1. Perform forensic recovery of the image that shall be
descrambled. Without loss of generality, the memory
image contentM of the image P isM ¼ P4K0. Here, K0 is
the key stream that is applied to the data by the
scrambler unit on the target system.

2. The captured image will be I ¼ P4K04K1, with both K0
and K1 unknown. Note that the descrambled image P is
the information of actual forensic interest and K1 is the
key stream added by the descrambler unit on the
acquisition system.

3. Therefore, I ¼ P4ðK04K1Þ ¼ P4D, where D is still un-
known. However, we know from Sect. 4.4 the periodicity
p of D. Therefore, scan through the image I at p-byte
boundaries and cluster p-byte chunks together using the
approximative equality function described above. Select
a partition that has lots of candidates: this is likely to be a
pattern of all 0 � 00. Construct the maximum likelihood
candidate S by majority vote.

4. Construct P ¼ I4Sx4Tx where T is the known plaintext.
If the known plaintext was a chunk of 0 � 00, i.e., T ¼ 0

!
then P ¼ I4Sx.

To reconstruct P, we therefore only need a known
plaintext of length p, i.e., 64 bytes in our case.
Mathematical approach

The stencil attack allows an attack to be mounted
against scrambled DDR3 memory, effectively yielding the
original image with relatively few pieces of known plain-
text required. However, we now look at the mathematical
relationships within the differential subkey stream with
the purpose of constructing a key stream from less known
plaintext.

In our approach we are limited to examination of a
differential key stream K04K1. This is as an inherent
limitation of performing acquisition with systems which
contain an active descrambler. During analysis, we found
some interesting congruencies within this differential key
stream. First, we partitioned the 64-byte differential key
stream stencil into 32 values of 2 bytes each. Each valuewas
interpreted as a little endian integer. We ended up with 32
16-bit integer values v0,…,v31. We then were able to find
three 16-byte polynomials p0,p1,p2 for which 24 congru-
encies hold for 0 � i � 7 and 0 � j � 2:

��
v4iþj[1

�
4pj

�
&0x7fff ¼ v4iþjþ1

If you recall Section Linear-feedback shift registers, this
relationship can immediately be recognized as a LFSR
relationship: Two related values, v4iþj and its adjacent word
v4iþjþ1 can be constructed from each other when the first
one is shifted right by one bit ([1) and then has the LFSR
polynomial added onto it (4 pj). Note however that in this
congruence we can only determine 15 of the 16 bits of the
adjacent word (&0x7fff). This is because it is lost when the
difference between two LFSR output streams is
constructed.

These relationships are a useful additional method to
confirm the validity of key streams and aid the search for a
known plaintext in the differential memory snapshot D. It
reduces the number of known plaintext bits to less than
40% of the original stencil attack: in our case, instead of 64
bytes we now need only (8 þ 3)$2 þ 3 ¼ 25 bytes if we
exploit the mathematical inter-stream relationships. Only
the eight initial states v4i (16 bytes), the three polynomials
p0…p3 (6 bytes) and the three most significant bits in every
group of 8 bytes (total of 3 bytes) need to be known to
construct the entire differential key stream.
Deinterleaving of memory

As stated before in Sects. 2.3 and 2.4 a systemwithmore
than one DRAM module will usually operate in dual-
channel mode to improve system performance. Each
memory channel has an independent scrambler, so the
attack as described in Section Stencil attack still works
when it is knownwhich part of the memory image needs to
be descrambled with which channel key. In our experi-
ments we determined how the algorithm to split data be-
tween channels works in Intel systems. Consider two
channel subkeys A and B of 64 bytes each. The two basic
interleaved streams Q1 and R1, each of length 256 bytes, are
defined to be:

Q1 ¼ A2jjB2

R1 ¼ B2jjA2

All further key streams are then defined recursively:

Qn ¼ Qn�1jjR2
n�1jjQn�1

Rn ¼ Rn�1jjQ2
n�1jjRn�1

This definition can be applied until one finds a Qn of
sufficient length. This Qn is then the complete key stream K.

J. Bauer et al. / Digital Investigation 16 (2016) S65eS74S72
Since every channel subkey is 64 bytes in length, the
length of an interleaved key stream Qi is exactly:
��Qi

�� ¼ 64,4i

Solving for i with given jQij:

i ¼ log4
jQij
64

i.e., for a dual-channel memory system of 4 GiB, one
would choose i ¼ 13.

The interleaving pattern for i ¼ 6, i.e., for 4096 streams
of 64 bytes each, is graphically shown in Fig. 5. It is exactly
64 by 64 pixels (i.e., 4096 pixels) in size and every pixel's
color indicates whether stream 0 or stream 1 is in effect.
The stream order is shown left-to-right, top-to-bottom.

With this knowledge, we can perform the stencil attack
even when RAM is accessed in dual channel mode. The
acquired image I has to be deinterleaved into two channel
images IA and IB which can be treated independently before
interleaving them back together to form a plain image P.
Experimental results

Investigated machines

Our measurements were performed predominantly on
the Intel Core i3-3225 with a MSI B75MA-P45 mainboard.
We took care to verify that the results also apply to
different machines. In the process, we confirmed that our
results also apply to the following combination of CPUs and
mainboards:

� Intel i5-760/MSI H55M-P33
� i5-2520M/Dell 03PH4G
� i5-2400/Esprimo P900 E90þ
Fig. 5. Dual channel interleaving graphically.
Applying the stencil attack

In our experiments we first started out with a single
memory module present in the target computers. We then
used our data placer code to place 512 � 775 pixel gray
scale images of Mona Lisa at every 1 MiB boundary. At the
space in between images we placed an easily recognizable,
distinct pattern block.

We then froze the memory module by applying cooling
spray to it until it had reached around �30 �C. Then we cut
power to the system by shutting it completely off and
restarted immediately afterwards. The latency that our
targets took from complete shutdown to new boot-up
ranged from around 2 to up to 5 s. We then drew mem-
ory images using the memimage toolkit. By using the
techniques described in Section Stencil attack wewere able
to recover the original memory image.

You can see the results of our experiments in Fig. 6. The
first image, Fig. 6a shows an image acquisition that was
Fig. 6. Images of descrambling single-channel memory.

Fig. 7. Images of descrambling dual-channel memory.

J. Bauer et al. / Digital Investigation 16 (2016) S65eS74 S73
performed at operating temperature (about þ30 �C). No
data could be recovered from this test, as everything was
completely decayed.

On the second image, Fig. 6b, the image is shown when
it was drawn from the target after cooling to about �30 �C
was applied. The basic shape of Mona Lisa is still visible, but
it is distorted by a repeating pattern. This repeating pattern
is exactly the subkey stencil which we need to apply to
descramble the memory images. When this key is un-
known (because there is no known plaintext or at least no
known plaintext yet) we made a related-data experiment,
shown in Fig. 6c. For this we make the assumption that
consecutive 64-byte plaintexts will e at least to some de-
gree e repeat within the plaintext. Therefore the first 64-
byte block was chosen as a stencil subkey. You can see
clearly that the image looks a lot better than the completely
scrambled variant, but still has lots of distortions.

Finally, we used the method described in Section Stencil
attack and recovered the most probable key using majority
vote and known plaintext. This key was then applied to the
captured image, yielding a result that was, except for the
occasional bit error, very close to the original image.

Dual channel mode and decay rate

During our experiments we found the high decay rate of
DDR3 RAM when at operating temperature curious. To
verify our hypothesis that the retention time of memory
was indeed much less than what can be seen in DDR2
counterparts, we performed an experiment:We placed two
memory modules in our target PC and took care that they
were operated in dual-channel mode. Then we placed the
Mona Lisa images in RAM using our data placer program. At
this point in time, roughly every second 64-byte block of
the image is on one RAM module and every other 64-byte
block is on the other RAM module. We then inserted a
rectangular piece of 500 mm PET (polyethylene tere-
phthalate) in between the two RAM modules to achieve
thermal isolation between them. One of the twomodulese
but not the other e was then frozen by us before per-
forming a cold boot attack.

This experiment served a dual purpose: First, it allowed
us to confirm that the thermal dependency of DDR3 is
really as critical as we assumed it was. This is because the
only difference in the process was the temperature of the
modules e all other parameters like the power-down time
were exactly identical. Secondly, it allowed us to confirm
that our algorithm to decode dual-channel memory, as
explained in Section Deinterleaving of memory, worked as
expected.

The results are depicted in Fig. 7. On the left side, Fig. 7a
shows the interleaved, descrambled, memory image. The
results verified our hypothesis: Approximately every other
row was completely decayed and shows up as white noise
in the image. Even though the image in Fig. 7b gives a
rather noisy visual impression this noise is really only
present in the parts that were acquired from the warm
RAM module. This becomes obvious when the noisy
channel is masked out according to the algorithm we pre-
sented in Section Deinterleaving of memory. The result is
Fig. 7b, a successfully descrambled one-channel image of a
RAMmodule that was operated in dual-channel mode. The
image shows virtually no noise because our algorithm
correctly masks out only the module which had decayed
content.
Remanence effect in DDR3

In their original paper, Halderman et al. (2009) found
that DDR2 RAM exhibits a comparatively strong remanence
effect. They performed tests at operating temperature and
even without externally applied cooling to the chips, some
DDR2 chips had decay times of up to 35 s before showing
complete data loss. To determine these values for DDR3
memory, Lindenlauf et al. (2015) did similar decay mea-
surements. They found an astonishingly low bit error rate
when the modules were cooled to a temperature between
�30 �C and �35 �C and kept the RAM modules unpowered
for up to 50 s. It is not apparent, however, if these long
decay times were also performed with DDR3 memory or
just with DDR2, and while they do show the dependency of
the decay rate on the die temperature for DDR2 memory
they omit how these results transfer to DDR3 memory.

In our experiments, we found DDR3 memory to be
much less forgiving during cold booting. Much in contrast
to DDR2 memory it was absolutely essential for us to al-
ways keepmodules at low temperatures (around�30 �C) in
order to produce usable results. We observed retention
times of about 10 s before total decay occurred even when
such cooling was performed. At operating temperature
(aroundþ30 �C) wewere not able to acquire a single usable
image, because all data content had dissipated.

It is our assumption that this can be explained by the
different types of memory modules that were used by
Lidenlauf et al. compared to ours. While they used modules
that were produced in 2011, we used slightly more recent
modules (produced 2013) that were also a bit faster (666
and 833 MHz types).

J. Bauer et al. / Digital Investigation 16 (2016) S65eS74S74
Conclusions and outlook

Memory acquisition of DDR3 memory in the real-world
is more complicated thanwith a laboratory setup: While in
a lab setup researchers can choose systems which work for
their demonstration e systems which will usually use
constant scrambling e this luxury is not available in a real-
world scenario. On top of the intricacy of descrambling
images come practical aspects like dual-channel decoding.
Both are obstacles that are not in place to deter cold boot
attacks, but they still complicate memory acquisition
significantly in practice.

We have demonstrated that our explanations and as-
sumptions about the internal construction of the Intel
DRAM scrambler are in line with the observations wemade
from our experimental results. Cracking a dual-channel
system requires only 128 bytes of known plaintext to
apply our stencil method and only 50 bytes if the mathe-
matical approach is chosen. This is a negligible amount of
data compared to the huge amount of RAM that is present
in the computer systems of today. Large chunks of the RAM
will usually be set to zero in regular operation of a com-
puter, be it either by the operating system or by any
running application. We further demonstrated that we are
able to correctly deinterleave RAM images. This is a pre-
requisite to correct descrambling of dual-channel systems,
as each channel has an independent scrambler.

Since the operation of memory scramblers is trans-
parent for the system during normal operation, it could
well be possible that newer MCH revisions choose to use
different mechanisms for scrambling. Of particular interest
for forensic investigation would be if our results can be
applied to DDR4 memory as well. This is something we
would like to explore in future work.

In order to improve on our attack, it would be most
interesting to mathematically attack the generated key
stream itself. Since our approach only works with differ-
ential streamswe at no point in time are able to reconstruct
the original key stream e we only ever reconstruct differ-
ential key streams. Our ideas for future work are to utilize
custom-built hardware around an FPGA development
board in order to be able to read out the raw key stream
from a cold booted DDR3memorymodule. This would then
enable brute forcing of key streams by trying different
seeds, but it would also be an attack that would be signif-
icantly more difficult than what we show in this work.

Investing this time would be interesting not only from
an academical standpoint, but also within a real-world
scenario. The reason that scramblers are present in the
first place is because Intel deemed it necessary to limit
excessive current spikes on the memory bus and in the
memory modules. This leads us to believe that there could
be possibly exploitable detrimental effects if one could
purposefully produce these excessive current spikes. If the
scrambling key stream were known to an attacker, this
could be leveraged from any unprivileged application to
mount an attack which aims to distort RAM integrity. Since
disturbing RAM-integrity is a relevant topic and is receiving
increased attention after the inspiring row hammer attacks
of Kim et al. (2014), this might prove to be a worthwhile
investment of time after all.

References

M. Falconer, C. Mozak, A. Norman, Suppressing power supply noise using
data scrambling in double data rate memory systems, US Patent
8,503,678 (Aug. 6 2013). URL http://www.google.com.ar/patents/
US8503678.

G. Gould, Address scrambling to simplify memory controller's address
output multiplexer, US Patent 7,493,467 (Feb. 17 2009). URL http://
www.google.com/patents/US7493467.

Gruhn M, Müller T. On the practicability of cold boot attacks. In: Avail-
ability, Reliability and Security (ARES), 2013 Eighth International
Conference on, IEEE; 2013. p. 390e7.

Halderman JA, Schoen SD, Heninger N, Clarkson W, Paul W, Calandrino JA,
et al. Lest we remember: cold-boot attacks on encryption keys.
Commun ACM 2009;52(5):91e8.

Hamamoto T, Sugiura S, Sawada S. On the retention time distribution of
dynamic random access memory (DRAM). Electron Devices IEEE
Trans 1998;45(6):1300e9.

Kim Y, Daly R, Kim J, Fallin C, Lee JH, Lee D, et al. Flipping bits in memory
without accessing them: an experimental study of DRAM disturbance
errors. In: Proceeding of the 41st annual international symposium on
Computer architecuture. IEEE Press; 2014. p. 361e72.

Lindenlauf S, H€ofken H, Schuba M. Cold boot attacks on DDR2 and DDR3
SDRAM. In: Availability, Reliability and Security (ARES), 2015 10th
International Conference on, IEEE; 2015. p. 287e92.

Liu J, Jaiyen B, Kim Y, Wilkerson C, Mutlu O. An experimental study of data
retention behavior in modern dram devices: implications for reten-
tion time profiling mechanisms. ACM SIGARCH Comput Archit News
2013;41(3):60e71.

Massey JL. Shift-register synthesis and BCH decoding. Inf Theory IEEE
Trans 1969;15(1):122e7.

Micron. DDR3 SDRAM datasheet for MT41J256M4, MT41J128M4 and
MT41J64M4. 2014. URL, https://www.micron.com/~/media/
documents/products/data-sheet/dram/ddr3/1gb_ddr3_sdram.pdf.

C. Mozak, Suppressing power supply noise using data scrambling in
double data rate memory systems, US Patent 7,945,050 (May 17
2011). URL https://www.google.com.ar/patents/US7945050.

Müller T, Spreitzenbarth M. Frost: forensic recovery of scrambled tele-
phones. In: Applied cryptography and network security. Springer;
2013. p. 373e88.

Rahmati A, Salajegheh M, Holcomb D, Sorber J, Burleson WP, Fu K. TAR-
DIS: time and remanence decay in SRAM to implement secure pro-
tocols on embedded devices without clocks. In: Presented as part of
the 21st USENIX Security Symposium (USENIX Security 12), USENIX,
Bellevue, WA; 2012. p. 221e36. URL, https://www.usenix.org/
conference/usenixsecurity12/technical-sessions/presentation/
rahmati.

Stüttgen J. On the viability of memory forensics in compromised envi-
ronments. Ph.D. thesis. Friedrich-Alexander-Universit€at Erlangen-
Nürnberg (FAU), Department of Computer Science; 2015.

Stüttgen J, Cohen M. Anti-forensic resilient memory acquisition. Digit
Investig 2013;10:S105e15.

Stüttgen J, V€omel S, Denzel M. Acquisition and analysis of compromised
firmware using memory forensics. Digit Investig 2015;12(Suppl. 1):
S50e60. http://dx.doi.org/10.1016/j.diin.2015.01.010.

van Zandwijk JP. A mathematical approach to NAND flash-memory
descrambling and decoding. Digit Investig 2015;12:41e52.

V€omel S, Freiling FC. A survey of main memory acquisition and analysis
techniques for the windows operating system. Digit Investig 2011;
8(1):3e22. http://dx.doi.org/10.1016/j.diin.2011.06.002. URL, http://
dx.doi.org/10.1016/j.diin.2011.06.002.

V€omel S, Freiling FC. Correctness, atomicity, and integrity: defining
criteria for forensically-sound memory acquisition. Digit Investig
2012;9(2):125e37.

V€omel S, St€ottgen J. An evaluation platform for forensic memory acqui-
sition software. Digit Investig 2013;10(Supplement):S30e40. http://
dx.doi.org/10.1016/j.diin.2013.06.004.

Wyns P, Anderson RL. Low-temperature operation of silicon dynamic
random-access memories. Electron Devices IEEE Trans 1989;36(8):
1423e8.

http://www.google.com.ar/patents/US8503678
http://www.google.com.ar/patents/US8503678
http://www.google.com/patents/US7493467
http://www.google.com/patents/US7493467
http://refhub.elsevier.com/S1742-2876(16)30003-2/sref3
http://refhub.elsevier.com/S1742-2876(16)30003-2/sref3
http://refhub.elsevier.com/S1742-2876(16)30003-2/sref3
http://refhub.elsevier.com/S1742-2876(16)30003-2/sref3
http://refhub.elsevier.com/S1742-2876(16)30003-2/sref4
http://refhub.elsevier.com/S1742-2876(16)30003-2/sref4
http://refhub.elsevier.com/S1742-2876(16)30003-2/sref4
http://refhub.elsevier.com/S1742-2876(16)30003-2/sref4
http://refhub.elsevier.com/S1742-2876(16)30003-2/sref5
http://refhub.elsevier.com/S1742-2876(16)30003-2/sref5
http://refhub.elsevier.com/S1742-2876(16)30003-2/sref5
http://refhub.elsevier.com/S1742-2876(16)30003-2/sref5
http://refhub.elsevier.com/S1742-2876(16)30003-2/sref6
http://refhub.elsevier.com/S1742-2876(16)30003-2/sref6
http://refhub.elsevier.com/S1742-2876(16)30003-2/sref6
http://refhub.elsevier.com/S1742-2876(16)30003-2/sref6
http://refhub.elsevier.com/S1742-2876(16)30003-2/sref6
http://refhub.elsevier.com/S1742-2876(16)30003-2/sref8
http://refhub.elsevier.com/S1742-2876(16)30003-2/sref8
http://refhub.elsevier.com/S1742-2876(16)30003-2/sref8
http://refhub.elsevier.com/S1742-2876(16)30003-2/sref8
http://refhub.elsevier.com/S1742-2876(16)30003-2/sref8
http://refhub.elsevier.com/S1742-2876(16)30003-2/sref9
http://refhub.elsevier.com/S1742-2876(16)30003-2/sref9
http://refhub.elsevier.com/S1742-2876(16)30003-2/sref9
http://refhub.elsevier.com/S1742-2876(16)30003-2/sref9
http://refhub.elsevier.com/S1742-2876(16)30003-2/sref9
http://refhub.elsevier.com/S1742-2876(16)30003-2/sref10
http://refhub.elsevier.com/S1742-2876(16)30003-2/sref10
http://refhub.elsevier.com/S1742-2876(16)30003-2/sref10
https://www.micron.com/%7E/media/documents/products/data-sheet/dram/ddr3/1gb_ddr3_sdram.pdf
https://www.micron.com/%7E/media/documents/products/data-sheet/dram/ddr3/1gb_ddr3_sdram.pdf
https://www.google.com.ar/patents/US7945050
http://refhub.elsevier.com/S1742-2876(16)30003-2/sref13
http://refhub.elsevier.com/S1742-2876(16)30003-2/sref13
http://refhub.elsevier.com/S1742-2876(16)30003-2/sref13
http://refhub.elsevier.com/S1742-2876(16)30003-2/sref13
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/rahmati
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/rahmati
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/rahmati
http://refhub.elsevier.com/S1742-2876(16)30003-2/sref15
http://refhub.elsevier.com/S1742-2876(16)30003-2/sref15
http://refhub.elsevier.com/S1742-2876(16)30003-2/sref15
http://refhub.elsevier.com/S1742-2876(16)30003-2/sref15
http://refhub.elsevier.com/S1742-2876(16)30003-2/sref16
http://refhub.elsevier.com/S1742-2876(16)30003-2/sref16
http://refhub.elsevier.com/S1742-2876(16)30003-2/sref16
http://dx.doi.org/10.1016/j.diin.2015.01.010
http://refhub.elsevier.com/S1742-2876(16)30003-2/sref18
http://refhub.elsevier.com/S1742-2876(16)30003-2/sref18
http://refhub.elsevier.com/S1742-2876(16)30003-2/sref18
http://dx.doi.org/10.1016/j.diin.2011.06.002
http://dx.doi.org/10.1016/j.diin.2011.06.002
http://dx.doi.org/10.1016/j.diin.2011.06.002
http://refhub.elsevier.com/S1742-2876(16)30003-2/sref20
http://refhub.elsevier.com/S1742-2876(16)30003-2/sref20
http://refhub.elsevier.com/S1742-2876(16)30003-2/sref20
http://refhub.elsevier.com/S1742-2876(16)30003-2/sref20
http://refhub.elsevier.com/S1742-2876(16)30003-2/sref20
http://dx.doi.org/10.1016/j.diin.2013.06.004
http://dx.doi.org/10.1016/j.diin.2013.06.004
http://refhub.elsevier.com/S1742-2876(16)30003-2/sref22
http://refhub.elsevier.com/S1742-2876(16)30003-2/sref22
http://refhub.elsevier.com/S1742-2876(16)30003-2/sref22
http://refhub.elsevier.com/S1742-2876(16)30003-2/sref22

	Lest we forget: Cold-boot attacks on scrambled DDR3 memory
	Introduction
	Contributions
	Outline

	Background
	Scrambling
	Linear-feedback shift registers
	DRAM
	LFSR RAM scrambling

	Problem description
	Towards descrambling
	Calculating memory offsets
	Distinguishing the scrambler type
	Attacking constant scrambling
	Attacking randomized scrambling
	Stencil attack
	Mathematical approach
	Deinterleaving of memory

	Experimental results
	Investigated machines
	Applying the stencil attack
	Dual channel mode and decay rate
	Remanence effect in DDR3

	Conclusions and outlook
	References

