
Incremental Cryptography and Application to Virus

Protection

Mihir Bellare∗ Oded Goldreich† Shafi Goldwasser‡

Abstract

The goal of incremental cryptography is to design cryp-
tographic algorithms with the property that having ap-
plied the algorithm to a document, it is possible to
quickly update the result of the algorithm for a mod-
ified document, rather than having to re-compute it
from scratch. In settings where cryptographic algo-
rithms such as encryption or signatures are frequently
applied to changing documents, dramatic efficiency im-
provements can be achieved. One such setting is the use
of authentication tags for virus protection.

We consider documents that can be modified by
powerful (and realistic) document modification opera-
tions such as insertion and deletion of character-strings
(or equivalently cut and paste of text). We provide effi-
cient incremental signature and message authentication
schemes supporting the above document modification
operations. They meet a strong notion of tamper-proof
security which is appropriate for the virus protection
setting. We initiate a study of incremental encryption,
providing definitions as well as solutions. Finally, we
raise the novel issue of “privacy” of incremental authen-
tication schemes.

Abstract appearing in Proceedings of the 27th ACM Symposium on the Theory of Computing, May 1995.

1 Introduction

Basic cryptographic primitives such as encryption and
signatures (private or public key) have received thor-
ough theoretical treatment. In various works strong
definitions of security have been proposed and achieved

∗Department of Computer Science & Engineering, Mail Code
0114, University of California at San Diego, 9500 Gilman Drive,
La Jolla, CA 92093. E-mail: mihir@cs.ucsd.edu

†Department of Applied Mathematics and Computer Sci-
ence, Weizmann Institute of Science, Rehovot, Israel. e-mail:
oded@wisdom.weizmann.ac.il. Partially supported by grant
No. 92-00226 from the US–Israel Binational Science Foundation
(BSF), Jerusalem, Israel.

‡Laboratory of Computer Science, MIT and Department of
Applied Mathematics and Computer Science, Weizmann Institute
of Science, Rehovot, Israel. e-mail: shafi@theory.lcs.mit.edu .

under general complexity assumptions. The main prob-
lem that remains and which to a large extent prevents
more widespread use of strong cryptography is the inef-
ficiency of existing schemes.

Incrementality is a new measure of efficiency which
is relevant in a large number of different settings. We
provide a comprehensive treatment of incremental cryp-
tography. We begin by identifying and stressing con-
ceptual issues, providing definitions for the security and
efficiency of incremental primitives. We follow this up
by presenting concrete, secure schemes for various tasks
which (in several cases) are efficient enough to be prac-
tical, and demonstrate this by attention to issues like
appropriate instantiation of abstract primitives and ex-
act security analyses.

1.1 The Setting

A document undergoing a cryptographic transformation
often does not exist in isolation: the document D that is
being transformed (eg. signed or encrypted) is a modifi-
cation of previous versions of the same document which
have already undergone the same cryptographic trans-
formation, or is constructed out of several other already
transformed documents in some simple way. Moreover,
the amount of modification that the document under-
goes is often small in comparison with the total size of
the document.

Examples of such settings abound; here are some.
The sending of documents which are slight variations of
one another to different recipients, such as a standard
contract or offer being sent by a corporation; exchanges
between different parties of drafts of the same document
where each draft is only slightly different from the pre-
vious one; remote editing of texts or programs which
must be authenticated at every change; video transmis-
sion of images which have not changed much between
frames.

A particularly good example is the use of authenti-
cation tags for virus protection. Consider a tamper-proof
processor with limited amount of secure local memory .
It accesses files stored on a (possibly insecure) remote
medium (e.g. a host machine or a WWW server). A
virus may attack the remote host, and inspect and al-
ter the contents of the remote medium (but it does not
have access to the processor’s protected local memory).

1

To protect his files against such viruses, the processor
computes for each file an authentication tag, depend-
ing on a key which is kept in the (safe) local memory.
A virus tampering with the file can’t re-compute the
tag, and verification of the tag will thus detect tam-
pering. Now note that for this to work, the processor
must re-authenticate his files when he modifies them.
Clearly, it is desirable to be able to update the authen-
tication tag rather than always having to re-compute it
from scratch. This problem is especially complex when
the local memory is not large enough to hold (even tem-
porarily) a single file or when it is too expensive to bring
in the entire file. We note that files in this virus setting
can grow very large and be subject to frequent updates;
eg. consider a database being periodically altered.

The idea of incremental cryptography, as we out-
lined in [BGG], is to take advantage of such settings,
and find ways to compute the cryptographic transfor-
mation on a document D not from scratch, but rather,
somehow, as a fast function of the values of the cryp-
tographic transformation on the documents from which
D was constructed. When the “changes” are small, the
incremental method may be anticipated to yield consid-
erable advantages in efficiency.

1.2 The Issues

One quickly sees that incremental cryptography is a vast
subject. Let us outline some important issues and our
contributions in this regard.

Primitives. One can consider incrementality for any
cryptographic primitive. The ones we focus on are sig-
natures (private and public key) and encryption (pri-
vate and public key). We focus on incrementality for
the transformations themselves, namely the signing or
encrypting, but discuss also incrementality of the “con-
jugate” transformations, namely verifying and decrypt-
ing.

Text modification operators. We discuss the
modification to a document in terms of applications of
a fixed set of underlying document modification opera-
tors. For example: replace a block in the document by
another; insert a new block; delete an old one. We then
focus on the design of incremental algorithms for each
such operator.

Operators should be powerful enough to reflect re-
alistic document changes: replace, insert and delete
taken together are a good choice from this point of view.
In settings such as text editing, one often pulls text from
one document into another. Accordingly we also con-
sider cut and paste operations, the first cutting a single
document into two, and the second pasting two docu-
ments into one. We stress that the more powerful the
text modification operators are the more challenging it
is to design fast incremental algorithms with respect to
them. See discussion of speed below.

Incremental algorithms. Fix an underlying crypto-

graphic transformation T (eg. signing under some key).
To each elementary text modification operation (eg. in-
sert) there will correspond an incremental algorithm.
This algorithm takes an existing document or docu-
ments; the values of T on them; a description of the
modification (here a block d to insert and an index into
the document for where to insert it); and possibly un-
derlying keys or other inputs. It must compute the value
of T on the resulting document. We are interested in
designing schemes possessing efficient incremental algo-
rithms.

History-free is better. A trivial way of achiev-
ing incrementality should at once spring to mind. Take
signatures as an example, although similar issues arise
with encryption. Say I have the signature σold of Dold

and modify Dold by inserting a block. I can update the
signature by signing the string consisting of σold and
the description of the modification. This is a history
dependent scheme. There may be settings in which this
is acceptable, but typically it is not desirable. It gets
prohibitive as one makes lots of changes: verification
cost is proportional to the number of changes. It re-
quires parties to store state, and signature sizes grow
with time. History free schemes are better. Our defini-
tions mandate history freeness and our schemes are all
history free.

Speed. The basic goal, of course, is that the incremen-
tal algorithm should run faster than re-computing the
transformation from scratch; the faster the better. The
requirement of our definition is that the incremental al-
gorithm run in time proportional only to the “number
of modification” and not proportional to the document
length. For example, if s denotes the block size then
updating the cryptographic form for one modification
should take poly(s)-time regardless of the number of
blocks in the modified document.1 (In addition as dis-
cussed above the algorithm should be history free.) This
seems an elegant requirement, and schemes achieving it
are referred to as ideal. 2 For efficiency, of course,
the polynomial in s should be small, and incrementality
should not be at the cost of too much increase in the
time to transform from scratch.

We stress that the efficiency condition becomes
more challenging as more powerful modification oper-
ations are being considered. For example, the cut and
paste operators allow to omit a large chunk of text from
the middle of the file by three modifications, and a
fast incremental signing algorithm should be able to up-
date the signature to fit this different-looking file within
poly(s)-time and independently of the size of the file and

1 There are technical issues about how the input is accessed,
but using a RAM model these things work out.

2 Other kinds of complexities may certainly be interesting: for
example, if the from scratch transformation takes O(n2s) time to
compute (where n is the number of blocks in the message) then an
incremental algorithm achieving O(ns) would be very nice. For
simplicity however we stick to our definition of ideality.

2

the length of the omitted chunk of text.

Security. Probably the single most important concep-
tual issue is security. Offhand, one might say there is
no new issue in security, because we are considering ex-
isting primitives (signatures, encryption) and security
has already been satisfactorily defined for them. But
incrementality brings in new concerns and gives rise to
new definitions.

Consider the case of digital signatures / authentica-
tion schemes. It is reasonable to assume that the adver-
sary not only has available to it previous signed versions
of documents but is also able to issue text modification
commands to existing documents and obtain incremen-
tal signatures of the modified ones. Such a chosen-
message-attack on the incremental signing algorithm
may lead to breaking a signature system that cannot be
broken by restricted attacks which don’t use the incre-
mental algorithm. Furthermore, in some scenarios such
as virus attacks it is in addition prudent to assume that
the adversary may be able to tamper with the contents
of existing documents and signatures/authentication-
tags. Accordingly we will consider two notions of se-
curity; a basic one, and a stronger notion of tamper
proof security which is relevant in the virus protection
setting.

Consider the case of encryption schemes. The usage
of incremental encryption algorithms may leak informa-
tion that is kept secret when using a traditional encryp-
tion scheme. For example, take an encryption scheme
which breaks the message into blocks and encrypts each
block using a secure probabilistic encryption. An in-
cremental encryption, with respect to (single block) re-
placement, may operate by merely encrypting the new
contents of the block and keeping all other (block) en-
cryptions unchanged; but this enables an adversary to
tell which blocks have has been changed. The encryp-
tion of a message together with the encryption of the
slightly modified message, leaks knowledge. It seems
that we cannot hope for efficient incremental encryp-
tion algorithms which hide the amount of difference be-
tween the two documents. Yet, it is possible to have
efficient incremental encryption which hides everything
besides.

The privacy of incremental schemes. Here is a
novel issue raised in the incremental setting: the “pri-
vacy” of different versions of a document. Suppose µ
is a signature of document M and µ′ is a signature of
slightly modified document M ′. Then, it may be de-
sirable for µ′ to yields as little information as possible
about the original M . What is tolerable for one appli-
cation may be different than another. For example, it
may be acceptable for µ′ to yield the fact that M and
M ′ differ in a single block, as long as the identity of the
block is kept secret.

1.3 The schemes

We present two signature schemes and one encryption
scheme.

XOR schemes. We present a particularly fast message
authentication (ie. private key signature) scheme based
on a pseudorandom function (PRF) [GGM]. It has in-
cremental algorithms for (single block) insert and delete
which require only four applications of the underlying
PRF. It achieves basic security, and it also achieves pri-
vacy. It builds on some schemes of [BGR] which were
incremental for replacement.

Tree schemes. The second signature scheme pro-
vides tamper proof security, and hence is applicable to
virus protection. It works in both the private and the
public key cases— a regular (ie. not incremental) mes-
sage authentication (resp. digital signature) scheme is
transformed into an incremental message authentication
(resp. digital signature) scheme. The scheme supports
not only insert and delete but also cut and paste. The
updates require a logarithmic (in the message length)
number of applications of the given (non incremental)
scheme. It uses 2–3 trees.

Encryption. We extend ideas on software protection
[Go, Os] to provide the first incremental encryption
scheme. The efficiency here is however not as good as
for our signature schemes.

1.4 From theory to practice

Instantiation. The schemes specified above are de-
fined in terms of “abstract” primitives: the XOR scheme
can use any PRF and the tree scheme can use any stan-
dard signature scheme. Key to achieving practicality is
appropriate instantiation of these abstract primitives by
concrete ones. In particular, suitable “pseudorandom in
practice” functions can be derived from DES, MD5 [Ri]
and other such primitives as described for example in
[BR]. The resulting XOR schemes can run within 1.05
times the speed of the most popular message authenti-
cation scheme in practice, namely the CBC MAC, with
the added advantage of incrementality that the CBC
MAC does not possess. Similarly, the private key ver-
sion of the tree scheme can be instantiated with the
CBC MAC itself as underlying message authentication
code and runs commensurately fast.

Instantiation is an important issue which may merit
more discussion. As indicated above, schemes (ours
in particular) are typically designed in terms of ab-
stract primitives like one-way functions or pseudoran-
dom functions. While many abstract primitives are
equivalent in theory, the right choice, when one is inter-
ested in a final practical outcome, is a primitive which
combines convenience of use with the property of pos-
sessing an efficient instantiation. In particular, finite
pseudorandom functions (ie. PRFs on fixed input and
output lengths) are good starting points because they

3

can be efficiently instantiated with block ciphers like
DES or via hash functions like MD5 [BR]. This is the
reason we discuss our XOR scheme directly in terms of
PRFs, and our tree scheme directly in terms of MACs,
rather than say they are “based on a one-way function.”
(The latter is true, but not useful from the point of view
of efficient instantiation.)

The central dividing line in efficient instantiation is
between number theoretic or algebraic functions (factor-
ing, discrete log) and DES or MD5 type constructions.
Instantiating PRFs (or MACs) via factoring or discrete
log based constructions will result in schemes orders of
magnitude less efficient than schemes using block ci-
phers (DES) or MD5 type hash functions. Whenever
possible (ie. in a private key setting) one is better of
with the second kind of instantiation. (One might sug-
gest that number theory based schemes are more secure.
But in truth the two are incomparable, and some re-
searchers familiar with both types of objects even favor
the block ciphers in this regard.)

Exact security. The user of a scheme needs to know
more than just that “no polynomial time adversary can
break the scheme except with negligible advantage.” He
needs to know, for given security or other parameters,
what kind of success is achieved by an adversary with
particular resources such as time and queries. (This
affects efficiency, because if, for a particular security
level, the security parameter must be high, then the
efficiency is less.) We take these concerns into account
by providing exact security reductions: our theorems
quantify the success of an adversary in breaking the
underlying assumption as a function of her success in
breaking the constructed scheme.

1.5 Previous work and comparison with

ours

The study of incremental cryptography was initiated by
the current authors in [BGG]. The primitives considered
there were collision free hashing and digital (public key)
signatures. The text modification operation considered
was replacement (of one message block by another). In-
cremental schemes based on the hardness of discrete log
were provided. The signature scheme met the notion
of basic security. Tamper proof security was pinpointed
and defined, and to provide solutions for it was left as
an open problem.

We have here expanded the scope in primitives to
include encryption and also the private-key versions of
all primitives, which are more important in practice. We
are considering more realistic and powerful text modifi-
cation operations like insert, delete, cut and paste. We
consider multi-document settings, not only single doc-
ument ones, and extend the definitions to this case. In
addition, we introduce new concerns such as history-
freeness and privacy. We provide the first solutions
for message authentication achieving tamper-proof se-

curity, and hence for virus protection. Our schemes can
be instantiated with DES and MD5 type primitives and
thus are considerably more efficient than those of [BGG]
which use the discrete log.

For the problem of virus protection when the virus
cannot see any authentication tags of files, the work
of Karp and Rabin [KR] on fingerprints can be used.3

Their fingerprint scheme is incremental with respect to
single character replacement, but does not provide fast
update for single character insert/delete.

2 Definitions

In order to define incremental cryptographic algorithms
and discuss their complexity and security, we introduce
a setting which we call a multi-document system. The
latter is defined with respect to a cryptographic scheme
and a set of text-modification operations.

Cryptographic schemes and the documents

they process. The documents to which cryptographic
transformations will apply are sequences of blocks; for-
mally, they are strings over an alphabet Σ = {0, 1}`

where ` is a parameter called the block size. We let D[i]
denote the ith symbol of the documentD. Our complex-
ity estimates are in terms of elementary operations over
this alphabet Σ, and translating them to bit operations
requires multiplication by a poly(`) factor. Documents
may also be called texts, messages or files and we will
switch irrationally back and forth in nomenclature.

Incrementality is a very general notion in that it
applies to a wide variety of primitives (encryption, sig-
natures, message authentication and fingerprinting to
name a few). To avoid providing a plurality of similar
definitions, we formulate below a general notion of a
cryptographic scheme which captures all the primitives
we know. Later we will define incrementality for any
cryptographic scheme. Below s is the security parame-
ter.

Definition 2.1 A cryptographic scheme is specified by a
triple S = (Gen,T,C) of probabilistic, polynomial time
algorithms.

Algorithm Gen is called the key generator. It takes
as input two parameters: 1s and |Σ|. It outputs a
pair (K ′,K ′′) of keys called the transformation key
and the conjugate key, respectively.

Both the transformation T and its conjugate C act
on Σ∗, using the corresponding key as additional in-
put. We write TK′(D) (resp., CK′′(D)) to indicate
the output of algorithm T (resp., C) on input D and
key K ′ (resp., key K ′′). We call TK′(D) a crypto-
graphic form of D. For every D ∈ Σ∗ and every pair
of keys, (K ′,K ′′), possibly produced by Gen(1s, |Σ|),
it is the case that CK′′(TK′(D)) = D.

3This was observed by Rabin (Ben-Or, private
communication).

4

We’ll assume for simplicity that s and |Σ| are recover-
able from each of the keys K ′,K ′′ output by the gen-
erator on input (1s, |Σ|). The above definition does not
address security, which is more primitive-specific.

Two kinds of generators are of particular interest.
A generator Gen is called symmetric if K ′ = K ′′. This
corresponds to a private key setting — the legitimate
parties share a key K ′ = K ′′. In discussing security
this key will be denied to the adversary. A generator
Gen is asymmetric if K ′ 6= K ′′. This corresponds to the
public key setting — one of the two keys (i.e., either K ′

or K ′′) can be made public keeping the other secret. In
discussing security, the public key, but not the secret
one, will be made available to the adversary.

Encryption is a canonical example, with the trans-
formation used to encrypt and the conjugate to de-
crypt. For signatures or other forms of authentication,
the transformation is used to signing or authenticate
while the conjugate is used to verify, under the (non-
standard) convention that the signature contains the
document and successful verification retrieves the doc-
ument rather than yield the bit 1.

Text modification operations. We consider sev-
eral text modification operations. Firstly, there are the
single-symbol update operations which take as input a
single text and modify it according to some parameter.
For example, the replacement operation, given a text
T = T [1] · · ·T [`] and parameter (i, σ) so that i ≤ ` and
σ ∈ Σ, returns the text unchanged expect for the ith

symbol which is set to σ. Similarly, insertion with pa-
rameters (i, σ) inserts σ in between the ith and i + 1st

position of the text, making it one symbol longer. The
deletion operator, with parameter i, omits the ith symbol
of the text, making it one symbol shorter. More power-
ful update operations operate on substrings of a given
text. Typical operations are delete-subtext (i.e., delet-
ing a sequence of consecutive symbols from the text)
and move-subtext (which moves a sequence of symbols
from one location in the text to another). Some op-
erations can operate on many texts at once or yield a
multi-text result. For example, insertion of a subtext
from one text into another.

All these operations, as well as many other nat-
ural operations, can be expressed by a constant num-
ber of cut and paste operations.4 The latter operations
take and/or produce several texts (rather than taking
and producing a single text). Applying cut with argu-
ment i to a text T = T [1] · · ·T [`] results in two texts,

T ′ def
= T [1] · · ·T [i] and T ′′ def

= T [i + 1] · · ·T [`]. Simi-
larly, applying paste to two texts, T ′ = T ′[1] · · ·T ′[`′]

4For example, the move-subtext operation is easily expressed
in terms of (upto six) cut and paste operations. To move l symbols
from start-location i + 1 to start-location j + 1 > i + l in the
text T = T [1] · · ·T [`], we cut the text at locations i, i + l and j,
producing the subtexts T ′ = T [1] · · ·T [i], T ′′ = T [i+1] · · ·T [i+l],
T ′′′ = T [i + l + 1] · · ·T [j] and T ′′′′ = T [j + 1] · · ·T [`]. Next, we
paste together T ′, T ′′′, T ′′ and T ′′′.

and T ′′ = T ′′[1] · · ·T ′′[`′′], results in the text T =

T [1] · · ·T [`′ + `′′], where T [j]
def
= T ′[j] for j ≤ `′ and

T [j]
def
= T ′′[j − `′] for j > `′.

The multi-document setting. In a simple setting
for incremental cryptography one maintains a single
document together with its cryptographic (transformed)
form while the document undergoes text modifications.
For applications in which the only text modifications
are single symbol ones (e.g., symbol insert/delete), this
setting seems adequate. In this paper we consider more
powerful text modifications which may deal with more
than one document at a time, for example inserting a
part of one document into another document. For this
purpose, we present the following multi-document set-
ting in which several documents are maintained, along
with their cryptographic (transformed) forms. A moti-
vating application is a text editor, where the documents
are files, several of them being simultaneously manipu-
lated by operations like cut and paste.

In order to define security it will be necessary to
specify documents by names— thinking of the editing
setting, these are the file names.

Definition 2.2 Let S = (Gen,T,C) be a cryptographic
scheme as in Definition 2.1, and let M be a set of
text modification operations (e.g., M = {cut, paste}).
A document system which maintains cryptographic forms
(wrt S) underM is an interactive machine operating as
follows.

The system is initialized with a transformation key
K ′, obtained by running Gen(1s, |Σ|), where s and
|Σ| are parameters.

In response to a create document command, with
parameters α ∈ {0, 1}∗ and D ∈ Σ∗, the system cre-
ates a new document5 with name α, sets its contents
to D, and its (corresponding) cryptographic form to
TK′(D). We stress that this is done by applying al-
gorithm T to the document D, using the key K ′. In
addition6, the system associates a counter, initial-
ized to 1, with the document α.

In response to a document pasting command, with
parameters (document names) α, β, γ ∈ {0, 1}∗, the
system acts as follows

– increments the counter of document γ;

– replaces the contents of document γ with the
text which results by pasting of the texts cur-
rently in documents α and β,

– updates the cryptographic form of γ to fit the

5 In case a document with name α existed before, it is deleted
before performing this command. We may assume, without loss
of generality, that this never happens.

6 This counter is not needed in settings in which only basic
security (as defined below) is required. It seems that the counter,
or some other tamper-proof register associated with each docu-
ment is required in order to achieve ideal tamper-proof incremen-
tal systems.

5

new contents of document γ.

The updating of the cryptographic form of docu-
ment γ is done by applying an incremental algorithm,
denoted IncT, associated with the transformation
T and the text modification paste. When invoked
by the system, IncT is given as input the current
contents of the documents α and β, the contents
of their cryptographic forms, and the transforma-
tion key K ′. Thus, algorithm IncT takes as input a
pair of documents and a corresponding pair of cryp-
tographic forms, as well as the transformation key
(and possibly the document name and its counter
value). The output of IncT satisfies

CK′′(IncTK′((D′, D′′), (µ′, µ′′))) = D′D′′

for every D′, D′′, µ′, µ′′ so that CK′′(µ′) = D′ and
CK′′(µ′′) = D′′.

Other document modification commands are processed
similarly.

The above definition has made a simplification in
one regard. Thinking of an editing setting, there ought
to be an explicit write operation with the semantics that
the cryptographic form of a document is created (and
becomes available to the adversary) only once such a
command is issued. In an authentication setting, for
example, this would increase the power of the adver-
sary since unwritten documents are not considered to
have been authenticated by the user and so the adver-
sary is considered successful also in case it can authen-
ticate these (intermediate) unwritten document. We
stress, however, that our schemes maintain their secu-
rity also in the more stringent setting (i.e., with explicit
write/authenticate operation), but due to space limi-
tations, we stick with the simpler model presented in
Definition 2.2. The above definition does not address
security which is more primitive-specific; such defini-
tions are outlined in the two following sections.

The complexity of incremental algorithms. We
are interested in the complexity of implementing docu-
ment systems such as the above. We ignore the cost of
implementing the text modification operations as well
as the cost of copying a constant number of crypto-
graphic forms: these are system operations of predeter-
mined cost. Our concern is the cost of updating the
cryptographic forms that is incurred in running the in-
cremental algorithms.

First, as discussed in the Introduction, we want
schemes to be history-free. We ask that the length of
the cryptographic form maintained for each document
is a function of the current length of the document and
(s, |Σ|), but is independent of the number of modifica-
tions the document has undergone.

Second, as ask that the running time of IncT is a
fixed polynomial in the security parameter s, denoted
p(s), independent of the length of the document. We
use a RAM, rather than TM, model of computation so

that sublinear time algorithms make sense: in this model
any algorithm A(x, y, · · ·) has direct access to each of
its inputs x, y, · · · and can address an input bit with a
logarithmic size address. Furthermore, for simplicity, we
assume that all documents presented to the system have
length bounded by 2s, where s is the security parameter.

Third, it is required that the complexity of effect-
ing the conjugate transformation on the cryptographic
form of a document D kept by the system, should be
the same as the complexity of effecting the conjugate
transformation on TK′(D) (ie., the cryptographic form
obtained by directly applying T to D).

Finally, we call a multi-document system maintain-
ing cryptographic forms ideal if the incremental algo-
rithms satisfy all of the above.

Incrementality for the conjugate. Our treat-
ment captures the operation of incremental algorithms
for the cryptographic transformation T (e.g., encryption
or signing/authentication). A similar treatment can be
provided for incremental algorithms for the conjugate
transformation C (e.g., decryption or verification), ex-
cept that there is no (natural) analogue to first and
third concerns discussed above (i.e., history-freeness and
maintaining the complexity of the conjugate operation).
Specifically, an incremental algorithm for the conjugate
operation is given the cryptographic form of a document
D, together with a previous document D′, its crypto-
graphic form C ′, and a description of the modification
M , by which D has been obtained from D′, and returns
D.

3 Incremental authentication

Here we propose incremental schemes for various forms
of authentication: signatures, message authentication
and fingerprinting. We will present two incomparable
schemes which are both “ideal” in efficiency according to
our discussions of Section 2. The first is an incremental
scheme for message authentication which is very simple
and (when properly instantiated) fast in practice, but is
secure only in the basic sense. It supports inserts and
deletes, but not cut. The second scheme is presented
again for message authentication but is extendible to
digital signatures as well. Although not as fast as the
first scheme, it is very efficient, and achieves tamper
proof security. It supports not only insert and delete
but also cut and paste. It can be used for the virus
protection application. We begin with the definitions of
security underlying these schemes.

3.1 Definitions of security

The introduction of incremental authentication raises
new security issues. We distinguish two settings, or re-
quirements, in security: basic security and the stronger
notion of tamper proof security. Definitions of basic
and tamper proof security, in the single-document set-
ting, were provided in our previous work [BGG]. Here

6

we extend both definitions to the multi-document set-
ting.

Basic security. Basic security addresses a setting in
which a user applying the incremental algorithm is as-
sured of the authenticity of the document and authen-
tication tag to which the algorithm is applied— this is
the natural case in which, for example, old documents
and their authentication tags are stored securely on the
user’s machine, and the definition of [GMR] extends in
the natural way. Specifically, the adversary may obtain
signatures to documents of its choice by issuing corre-
sponding create-document commands. In addition, it is
natural and certainly safer to assume that the adversary
can also issue document-modification commands and so
obtain the effect of the incremental signing algorithm
on previously formed signatures.

A basic attack on a document system which main-
tains cryptographic forms (wrt S under M) consists
of using the system as suggested in Definition 2.2. In
course of such an attack, the adversary can create ar-
bitrary documents of its choice and obtain the corre-
sponding signatures (produced by the ordinary signing
algorithm). In addition, the adversary can issue doc-
ument modification commands with document-names
and parameters of its choice and obtain the correspond-
ing signatures (produced by the incremental signing al-
gorithm). These signatures are associated with the doc-
uments which result from the corresponding modifica-
tion commands. To be deemed successful, the adversary
must produce a signature to a document different from
all the above (i.e., the documents appearing during the
attack). A definition can be easily produced following
the standard paradigms.

We remark that incremental signing queries may
supply the adversary with information it cannot obtain
by an ordinary attack (i.e., using only ordinary signing
queries). This may be the case even if the adversary only
uses the incremental queries as a shortcut to making or-
dinary signing queries (since the two signing algorithms
may produce different distributions). However, the ef-
fect of incremental signing queries is more dramatic in
case the adversary may tamper with documents as in
the stronger definition presented below.

Tamper-proof security. In some settings it is also
natural to allow the adversary to tamper with the docu-
ments and signatures stored in the system and so obtain
the effect of the incremental signing algorithm on arbi-
trarily chosen pairs of strings, which are not necessarily
valid (document,signature) pairs. Thus, the second se-
curity notion, called tamper-proof security, arises.

A tampering attack is similar to the basic attack de-
scribed above, except that the adversary may alter the
context of documents and cryptographic forms stored
by the system. Alternatively, we may describe the ad-
versary as issuing, in addition to the above document-
creation and document-modification commands, also

“tampering” commands of the form alter(α,D,C), for
α ∈ {0, 1}∗ and D,C ∈ Σ∗ of its choice. The effect of
such a tampering command is that the system changes
the contents of the document named α into D and the
contents of its cryptographic form into C.

A tampering attack is natural in some settings (e.g.,
fingerprinting for virus protection). We stress that the
incremental signing algorithm does not necessarily check
that the old signature is valid before modifying it ac-
cording to the required update. (Typically, the incre-
mental signing algorithm may not have enough time to
verify the validity of the old signature.)

Tampering not only provides the adversary with
more power, it also raises a definitional problem. Sup-
pose that the adversary obtains a signature by effecting
the incremental signing algorithm on an invalid (doc-
ument,signature) pair. The question is to which doc-
ument do we associate the “signature” produced this
way (which may not be a valid signature to any docu-
ment). Before proceeding, we remark that this question
is important since forgery is defined as ability to pro-
duce signatures to documents not encountered so far
(and thus it is crucial to properly define which docu-
ments have appeared so far). Our convention, by which
documents are accessed by their name, plays a major
rule in resolving this question.

As discussed above, once signatures are produced
for tampered documents (via the incremental signing al-
gorithm) it is not clear to which document-contents to
associate them. Our convention, justified below, is to
associate these signatures to the contents which would
have resided in these documents (document-names) if
they were not tampered with. Namely, although the
adversary may tamper with the documents and alter
their contents, the signatures that it obtained are asso-
ciated with the untempered documents (thus ignoring
the tampering). Thus, we associate with a tampering-
attack two sequences of documents. One is the actual
sequence of strings appearing as contents of the various
documents, in various times. The second sequence is the
sequence of virtual documents defined as follows. The
virtual document at the moment of issuing a document-
creation command is the document specified in the com-
mand (for which a signature is obtained via the ordi-
nary signing algorithm). The virtual document at the
moment of issuing a document-modification command
is the document resulting by applying the command to
the virtual documents the names of which are specified
in the command. We stress that virtual documents are
not affected by tampering commands (although the ac-
tual documents are effected). To be deemed successful,
the adversary must produce a signature to a document
different from any virtual document defined by the at-
tack.

Our justification for defining forgery with respect
to the virtual documents is that the decision to sign
a requested document is made by the application level

7

which is likely to relate to these (virtual) documents
rather than to the actual documents (handled by the
cryptographic system level). Our choice is particu-
larly justified in the context of fingerprinting for virus-
protection – see below. We conclude this subsection
by remarking that in this context (i.e., fingerprinting
for virus-protection) the adversary is deemed successful
if it can produce a document different from the current
virtual document so that the fingerprint for the two doc-
uments are the same. Note that in this context, it is not
required that the produced document did not appear as
a virtual document in the past.

3.2 The XOR schemes

Background. Some existing message authentication
schemes offer a natural incremental algorithm for the
replacement operation such that basic security is en-
sured. 7 Supporting insertion and deletion is harder,
even just for basic security, and no existing scheme of
which we are aware achieves it. We introduce simple
schemes supporting insertion and deletion. They extend
the XOR schemes of [BGR] which were incremental for
replacement. The chaining technique we introduce is
quite general.

The scheme. The key, denoted a, held by the parties
is a pair (a1, a2) of random strings; the first specifies
a pseudorandom function f1 = fa1

chosen from a fixed
underlying collection of PRFs [GGM], and the second
specifies a pseudorandom permutation f2 = fa2

, also
chosen from some fixed unerlying family [LR]. (Given
a2 it is possible to compute both fa2

and its inverse.)
We let rand denote the algorithm which given a string
σ picks a random k bit string r, called a randomizer,
and returns σ . r. To authenticate message D[1] . . . D[`]
begin by prefixing it with a special start symbol D[0]
and postfixing it with a special end symbolD[`+1]. The
authentication-tag of D = D[0] . . . D[`+1] is computed
in three steps:

(1) Randomize: For each i = 0, . . . , ` + 1 let R[i] =
rand(D[i]). We call R = R[0] . . . R[` + 1] the ran-
domized version of D.

(2) Chain and hash: Let h = ⊕`
i=0

f1(R[i], R[i+1]), and
call this value the hash of D.

(3) Tag: Let T = f2(h) be the tag of D. This is output.

Note that formally the authentication-tag consists of all
the randomizers together with the final tag. Informally,
however, the randomizers are thought of as part of an
extended message, and only the final tag is thought of
as “the tag.”

It is worth noting that the final step is necessary; if
we output h as the tag of D, the scheme can be broken,

7For example, hashing under linear universal-2 hash functions
[CW] yields an incremental fingerprinting scheme. A message
authentication scheme can be derived by appropriately encrypting
the fingerprint.

by xor-ing together some legitimately obtained tags.8

How to increment. Now we specify how increments
are performed. Suppose we want to compute the tag for
the document D′ = insert(D, i, σ) where 0 ≤ i ≤ `. Let
R′ = rand(σ). The randomized version of D′ is taken
to be R[0] . . . R[i] . R′ . R[i + 1] . . . R[` + 1]. The hash h
is first recovered from the tag via h = f−1

2
(T) and then

updated by

h′ = h⊕f1(R[i], R[i+1])⊕f1(R[i], R′)⊕f1(R
′, R[i+1]) .

The new tag is T ′ = f2(h
′). If we want to compute the

tag for the document D′ = delete(D, i) where 1 ≤ i ≤ `,
then we let R′ = rand(D[i−1]). The randomized version
of D′ is taken to be R[0] . . . R[i−2] . R′ . R[i+1] . . . R[`+
1], and the hash is updated to h′ =

h⊕f1(R[i−1], R[i])⊕f1(R[i], R[i+1])⊕f1(R
′, R[i+1])⊕d ,

where d = f1(R[i− 2], R[i− 1])⊕f1(R[i− 2], R′) if i ≥ 2
and 0 if i = 1. Again the tag is just T ′ = f2(h

′).
Notice that incrementing requires five/seven com-

putations of a PRF together with some XORs and other
simple operations. It is this considerably faster than re-
computing the tag from scratch.

Security. The adversary is allowed document create
operations and insert or delete operations. A corollary
of Theorem 3.1 below is that if f1, f2 are chosen uni-
formly from a family of pseudorandom functions, then
the document system presented above is secure in the
basic sense.

For applications it is important to have more in-
formation on how the strength of the underlying PRFs
translates into the strength of the scheme. Thus, the
theorem itself specifies our ability to break the underly-
ing PRFs as a function of the adversary’s success prob-
ability. The proof is omitted from this abstract.

Theorem 3.1 Let f1, f2 have outputs of n bits and be
chosen from a PRF family. Suppose the randomizing al-
gorithm randomizes its input by appending a k bit random
string. Suppose that the document system can be broken
with probability p in an attack which runs in time t, makes
mc document create requests, and mi incremental re-
quests (insert or delete). Letm = mc+mi and let L be the
maximum length of any document involved. Then, the un-
derlying pseudorandom function family can be broken with
probability p

2
−O(m2 ·2−n)−O((mcL+mi)

2 ·2−k), in time
O(t+(Lmc +mi)(k+ s+n)), and making O(mcL+mi)
oracle queries.

We remark that the above document system is not
tamper-proof secure. For example, the adversary can
first ask to create and tag a document abcde. Next it
tampers with this document converting its contents to

8For example, xor-ing together the hash value of D and the
hash values obtained (as below) by two different modifications to
D, e.g., delete(D, i) and delete(D, j) for suitably chosen i, j, yields
a hash value for the document delete(delete(D, i), j).

8

cde and ask to modify it by deleting the second symbol.
It obtains a valid tag for abce although this document
did not appear in the attack. A tamper-proof secure
scheme for message authentication is presented in the
next subsection.

Instantiation and efficiency. As discussed in the
Introduction, the PRFs are instantiated via DES or
MD5, individually or in combination. One would typ-
ically choose a fairly large block size so that the extra
memory required to store the randomizers is small in
comparison to the document size: say 5% of the origi-
nal. Now several instantiations are possible. To discuss
them let b denote the size of a block in the randomized
document. We focus here on f1; the permutation f2 can
be done similarly.

One example is to use only DES, assumed to be a
PRF. For a 56 bit DES key a let the PRF fa, taking
b-bit inputs, be defined by cipher block chaining— this
is still a PRF [BKR]. Now note that the number of DES
computations to compute the tag in our scheme is es-
sentially just 5% more than that for doing DES CBC
of the entire message. Thus we run at essentially the
same speed as the most widely used existing message
authentication scheme with the added advantage of in-
crementality.

As an aside we note that the XOR schemes of
[BGR] require at least 25% more DES operations than
the CBC. The fact that we have only a 5% overhead is
due to the chaining and exhibits another advantage of
this idea.

Another good instantiation is via composition.
Again let a be a DES key. Let the PRF fa be defined
by fa(x) = DESa(DESa(MD51(x))⊕MD52(x)), where
MD51 (resp. MD52) is the first (resp. second) half of
the output of MD5— this is shown by [BR] to be a PRF
assuming MD5 is a collision-free hash function and DES
is a PRF. In software this may be faster than the above.

Note that the scheme has additional efficiency prop-
erties. For example, MAC computation can be paral-
lelized because the f1 computations can be made in par-
allel.

Finally note keeping storage to within 5% of docu-
ment size is just an example— it could go lower.

3.3 The search tree schemes

In this subsection we present a document system main-
taining message-authentication tags, via fast incremen-
tal algorithms for tagging and verifying, with respect to
powerful text-modification operations such as cut and
paste. Our construction utilizes any ordinary message-
authentication scheme. Assuming that the basic scheme
is secure in the ordinary sense (i.e., withstands a chosen-
message-attack), we show that the incremental system
is tamper-proof secure.

Let MA be an ordinary message authentication al-
gorithm and MAa the tagging function induce by MA

with the authentication-key a (e.g., MAa = fa, where
fa is taken from a family of pseudorandom functions –
see [GGM]). Let VMA be the corresponding verification
algorithm (e.g., VMAa(m, t) may merely consist of com-
puting MAa(m) and checking whether it equals t). We
stress that these primitives are not incremental ones;
yet, we will build incremental schemes out of them.

The main idea in our construction of an incremen-
tal tagging algorithm is to “keep the adversary under
control” by virtue of partial verification. Specifically,
before modifying a part of the tag, the incremental tag-
ging algorithm checks that this part is “locally” valid. A
standard construction, namely tree authentication à la
Merkle [Me1, Me2], can be used to provide the first im-
plementation of this idea. However, this only works for
replacement. To handle the more complex operations
discussed above we use 2-3 trees [AHU].

The binary tree scheme. To help the reader un-
derstand what follows the binary tree scheme is now
presented. The construction may be standard, but the
proof that it achieves tamper resistance is not trivial;
however we’ll omit it because we present and prove cor-
rect a more general scheme below. Assume for con-
venience that ` = 2h is a power of two. The (incre-
mentable) tag of a document D = D[1] . . . D[`] is a bal-
anced binary tree of MA-tags. More formally, let Vh

denote the set of all strings of length at most h asso-
ciated in the obvious manner with the vertices of the
balanced binary tree of height h. The tree of tags can
be seen as a function Tag: Vh → {0, 1}

∗ which assigns a
tag to each node. This function is computed bottom-up
as follows:

For each i, let Tag(w) = MAa(D[i]), where w is the
ith leaf.

For each non-leaf node w, let Tag(w) =
MAa(Tag(w0),Tag(w1)).

Note that Tag(λ) is the tag of the root of the tree. In
order to prevent replacement of one document by an-
other (or by an old version of the same document),

we redefine the tag of the root to be Tag(λ)
def
=

MAa(Tag(0),Tag(1), α, cnt), where α is the name of the
document and cnt is the current counter value (associ-
ated with this document).

The incremental tagging algorithm works as fol-
lows. Suppose Tag(·) is the function describing the tag
of D, and that the jth symbol of D is to be replaced by
the symbol σ ∈ Σ. We first check that the path from
the claimed current value to the root of the tree is valid.
Then we perform the update. Details follow.

Let u0, . . . , uh be the path from the root u0 = λ to
the jth leaf, denoted uh. Then

check that VMAa accepts Tag(λ) as a valid authen-
tication tag of (Tag(0),Tag(1), α, cnt), where α is
the name of the document and cnt is the current
counter value (associated with this document).

9

for i = 1, ..., h−1: check that VMAa accepts Tag(ui)
as a valid authentication tag of (Tag(ui0),Tag(ui1)).

check that VMAa accepts Tag(uh) as a valid authen-
tication tag of D[j].

If these checks succeed then update Tag as follows:

set Tag(uh)← MAa(σ)

for i = h − 1, . . . , 1: set Tag(ui) ← MAa(Tag(ui0),
Tag(ui1)).

set Tag(λ)← MAa(Tag(0),Tag(1), α, cnt+ 1).

We stress that the values of Tag on all other nodes (i.e.,
those not on the path u0, . . . , uh) remain unchanged.

The search tree scheme. Recall that a 2-3 tree has
all leaves at the same level/height (as in case of bal-
anced binary trees) and each internal node has either
2 or 3 children (rather than 2 as in binary trees). We
stress that a 2-3 tree, alike a binary tree, is an ordered
tree and thus its leaves are in order. Thus, storing a
single symbol in each leaf of the tree defines a string
over Σ. It is well-known that such trees support insert
and delete (of a single symbol/leaf) in logarithmically
many operations9, where basic operations consist of any
single change in the topology of the tree (i.e., adding or
omitting a vertex or an edge). It is also easy to verify
that a paste operation (merging two trees so that the
leaves of the resulting tree represent the concatenation
of the leaves of the two trees) can also be implemented
in logarithmically many operations. A simple imple-
mentation of the cut operation results in at most log-
square operations (which correspond to the truncation
of logarithmically many subtrees). A more careful im-
plementation enables to repair the “damages” created
by a cut operation using only logarithmically many op-
erations. Finally, we note that in order to allow fast
search (i.e., locating the ith leaf, given i) it is useful to
append a counter to each vertex specifying the number
of leaves in the subtree rooted at it. Clearly, these coun-
ters can be updated within the stated complexity. The
two types of counters in the following description should
not be confused: one counter, used above, representing
the number of modifications to the document (hereafter
referred to as version counter), while the other counter
(termed size below), represents the number of symbols
in a subtext rooted at a vertex of the tag-tree.

Now, the (incrementable) tag of a document D =
D[1] . . . D[`] is a 2-3 tree of MA-tags, hereafter referred
to as a tag-tree. Each node w is associated a label which

9 To insert a leaf, add it as a child to the suitable level h − 1
vertex. In case the resulting children-degree of this vertex is 4,
split it into two vertices so that both are children of its parent.
The parent may be split so too, and so on until one gets to the
root. If the root needs to be split then the height of the tree is
incremented. To delete a leaf, we apply an analogous procedure.
Namely, if the resulting parent and its siblings have total children-
degree at least 4 then we rearrange these children so that each of
the resulting parent nodes has children-degree either 2 or 3. In
case the total children-degree is at most 3, we merge the parent
and its sibling to one vertex and turn to its parent.

consists of a tag (authenticating the children) and a
counter representing the number of leaves in the subtree
rooted at w. The tag of w is formed by authenticating
(using MAa) the labels the children of w, in the natural
generalization of the above. Namely, the label of an in-
ternal vertex w is a pair (MAa(L1, L2, L3), size), where
Li is the label of the ith child of w (in case w has only
two children, L3 = λ) and size is the number of leaves
in the subtree rooted at w. The tag of the root is formed
as the other tags, except that the information to which
MAa is applied contains also the document name and
the version-counter. Verification is done analogously to
the way it was conducted in the binary-tree scheme (i.e.,
for each vertex we check that VMAa accepts its tag as
valid authentication of the labels of its children) except
that we also check that the subtree-counters of the chil-
dren sum-up to the subtree-counter of their parent.

The incremental tagging algorithm proceeds as fol-
lows. Suppose that a document, so tagged, is to be cut
at location j. We first locate the jth leaf (using the
subtree counters contained in the nodes). This takes
O(log `) time. Then, we perform a partial validity check
analogously to the way it was conducted in the binary-
tree scheme except that we also check that the subtree-
counters of the children sum-up to the subtree-counter
of their parent. Again, we check only the validity of
the tags for vertices on the path from the leaf to the
root. (Note that these vertices are the parents and an-
cestors of all vertices which are to undergo topological
changes.) When checking the tagging of the root, we use
the corresponding document-name and current version-
counter. If this check succeeds then we go ahead and
implement these topological changes, creating new tags
for the corresponding vertices. The tagging of the root
is treated taking into account its slightly different struc-
ture (i.e., MA is applied here to information containing
also the document name and the incremented version-
counter). Incremental tagging for the paste operation
is performed analogously. In both cases, incremental
verification is similar.

A sketch of the proof of the following theorem is
in Appendix A. We assuming for simplicity that s =
log2 |Σ|.

Theorem 3.2 Suppose that the document system can
be broken with probability p(s) in an attack which runs in
time t(s), making document-create operations for docu-
ments of total length L(s) and at most m(s) document-
modification operations, each producing a document of
length at most `(s). Then, the underlying message authen-
tication system can be broken with probability p(s)/q(s)
via a chosen-message-attack which runs in time O(t(s))

and makes at most q(s)
def
= O(L(s) +m(s) · log `(s))

queries.

The adaptation to signature schemes is immediate by
substituting each reference to an (ordinary) authenti-
cation scheme by referring to an (ordinary) signature

10

scheme.

Application to Virus Protection. The setting for
virus protection by authentication was discussed in the
Introduction. Our tamper-proof incremental message
authentication scheme yields a virus-protection system
in the sense discussed there. This is done as follows.
Each file is stored on the insecure media together with
its tag-tree. By a suitable choice of parameters the stor-
age overhead can be negligible with respect to the file it-
self. For example, we can partition the file into blocks of
length s2, where s is the length of the tags (and the key)
in the basic message-authentication scheme MA. For an
L-bit-long file, we get a tag-tree that has L

s2 leaves and
can be encoded as a binary string of length O(L/s). For
each file, the user only needs to keep O(s) bits (in local
secure memory); these bits are used to store the key of
the authentication-scheme, the file-name and its current
version-counter. Whenever the file is modified the tag-
tree (residing in the insecure media) and the version-
counter (kept in the secure local memory) are modified
as described in the incremental scheme (above). When-
ever the user wishes to verify the integrity of its file, it
verifies the validity of the tag-tree in the obvious man-
ner.

The underlying message authentication scheme can
be taken to be any of the standard ones. For exam-
ple, the CBC MAC, or just one of the PRFs discussed
above. (Any PRF is a MAC [GGM]). Our scheme has
the additional property that it is secure even in face of
an adversary who can see the authentication tags and
even tamper with them. In contrast, the fingerprinting
method of Karp-Rabin [KR] is secure only if the adver-
sary cannot see the fingerprint.

4 Incremental encryption

4.1 The security of incremental encryp-

tion

As discussed in the Introduction, the usage of incremen-
tal encryption algorithms may leak information that is
kept secret when using a traditional encryption scheme.
Below, we outline a definition for the special case of
incremental encryption with respect to single symbol
replacement.

Loosely speaking, we say that an incremental en-
cryption, with respect to single symbol replacement, is
secure if given a sequence of encryptions E1, ..., Et, pro-
duced by encrypting D1 as E1 and deriving each sub-
sequence Ei by incrementing the previous Ei−1, it is
infeasible to derive any information about the original
document D1 as well as its modifications D2, ..., Dt (ex-
cept the fact that Di is obtained by replacing a single
symbol in Di−1). Equivalently, consider any two se-
quences, A = (A1, ..., At) and B = (B1, ..., Bt), so that
A1, B1 ∈ Σ` and Ai (resp., Bi) is obtained by replac-
ing a single symbol in Ai−1 (resp., Bi−1). Then, it is

infeasible to distinguish the sequence of encryptions pro-
duced by the document system when handling a create-
command for A1 and the corresponding replacement-
commands of A from the sequence of encryptions pro-
duced by the document system when handling a create-
command for B1 and the corresponding replacement-
commands of B.

4.2 Schemes for incremental encryption

If we allow incremental schemes which are efficient in
the amortized sense then there exist trivial solutions.
Namely, the encryption of the document can be aug-
mented by an encryption of the description of the mod-
ification, until the number of modifications equals the
length of the document, at which point one can re-
encrypt the document. This might be acceptable in
some settings, but a non-amortized solution is worth
seeking.

Another approach to incremental encryption is to
use the idea of “software protection” as defined in [Go].
(The setting consists of a processor, having only a lim-
ited amount of local memory, to store and access in-
formation on an insecure remote memory. The sim-
ulation should be oblivious in the sense that the ac-
tual access pattern does not leak information about the
original/simulated access pattern. The translation from
oblivious simulation of RAM to an incremental encryp-
tion scheme is quite obvious: the role of the processor
is played by the user, whereas the remote memory is
associated with the encryption.) A software protection
scheme with polylogarithmic overhead exists [Os], but
is also amortized, and using this results in an incremen-
tal encryption scheme whose efficiency is in the end not
better than that of the trivial solution above.

However the ideas of the software protection
schemes of [Go, Os] can be adapted to derive an in-
cremental encryption scheme for (single symbol) in-
sert/delete that is efficient in the strict sense (i.e., num-
ber of simulation steps per original operation) rather
than in the amortized sense (as presented there). The
adaptation is achieved by “pipelining.” A brief descrip-
tion follows.

The scheme maintains secure encryptions of doc-
uments which undergo a sequence of (single symbol)
replacements. (The scheme is presented in terms of
private-key encryption, but can be easily converted into
a public-key setting.)

In our solution we use an arbitrary (private-key)
semantically-secure (probabilistic) encryption scheme E
(the key is implicit in the notation). We assume that E
can be used to encrypt symbols in Σ as well as pairs
(i, σ), where σ ∈ Σ and i is an integer not greater
than the length of documents in our system. Using
E, we first present an obvious algorithm that main-
tains encrypted versions of documents which undergo
symbol-replacement. The encrypted versions consist of
two sequences of encryption values, denoted E1 and E2.

11

The first sequence, E1, is a block-by-block encryption
of some reference document D = D[1] · · ·D[`]; whereas
the second sequence, E2, encodes the sequence of modi-
fications, denoted M = M [1] · · ·M [t], by which the cur-
rent document has been obtained from D. The obvious
algorithm increments the encryption of a modified doc-
ument by appending the encryption of the modification
to E2. Every ` steps the algorithm recovers the modi-
fied document and re-encrypts it using a block-by-block
encryption, thus forming a new encryption sequence E1

(and setting E2 to be empty). The amortized complex-
ity of this algorithm amounts to two block encryptions
per each modification.

An important observation is that one may ‘pipeline’
the expensive actions of the above algorithm. Suppose
first that we are allowed to keep intermediate results in
some secure location (invisible by the adversary). Then,
once the length of E2 reaches `, we can start preparing
the new encryption of the document, denoted D′, which
results from D by applying the (first `) modifications in
M . We perform all required computation along with the
next ` modifications, while allowing M to grow upto a
total length of 2`. At this point, we have the encryp-
tion, denoted E′, of the document D′ (yet, indeed, now
the current document is different). Replacing E1 by
E′ and omitting the first ` modifications in M , we ob-
tain the encrypted form of the current document. We
stress that, within our (realistic) model of computation,
these operations (switching files and runcating a file)
can be performed in constant time. To summarize, the
algorithm works in epochs, each consisting of ` mod-
ifications. In each epoch, the algorithm updates the
encryption to match the modifications performed in the
previous epoch.

In the above description, we have assumed that the
user can store its intermediate results (which require
O(`) space) in a location invisible by the adversary.
This assumption is unrealistic in some settings and is
inconsistent with our definitions as presented in Sub-
section 4.1. We thus turn to implement the above ideas
without making this assumption10. To this end, we en-
crypt documents using three sequences of encryption
values, denoted E1, E2 and E3. The first two sequence,
E1 and E2, are as above and suffice for decrypting the
document. The additional sequence E3 is an encryption
of a “work area”, denoted W = W [1] · · ·W [2`], used to
implement the above procedure.

Following is a description of what is being done in
one epoch. (In our description, we do not mention ex-
plicitly the encryption operations, thus whenever we say
that we set a symbol of W it is to be understood that
the corresponding encryption is computed and stored.)
First, we set W to hold the relevant information; i.e.,
W [i] ← (i,D[i]) for i ≤ ` and W [i] ← M [i − `] for
` + 1 ≤ i≤ 2`. (Here we assume that the modification

10 Here is where we use the ideas of [Go, Os].

records have the form (i, σ), where i is a location and σ a
symbol to be placed in that location.) Next, we sort the
pairs in W by their left element, hereafter referred to as
their sorting-keys, so that if two sorting-keys are equal
then the corresponding pairs are kept in order. It is
crucial that the sorting is performed by an efficient and
oblivious sorting network such as Batcher’s sorting net-
work [Ba]. We stress that whenever two pairs are com-
pared and switched/unswitched they are re-encrypted
by E (and so the adversary cannot tell if they were
switched or not). This guarantees that the entire sort-
ing procedure does not leak any information to the ad-
versary. Once the sorting is completed, W is scanned
while setting all occurences with the same sorting-key,
save the last one (which is the ‘newest’ one), to a large
dummy value (i.e., (` + 1, ·)). Now, we sort the pairs
in W (by the sort-key) again, and obtain a sequence in
which the first ` entries hold the updated document D′.
Finally, we set E1 to hold the encryption of D′ and drop
the first ` elements of E2.

Using the AKS sorting network [AKS], our im-
plementation of one epoch requires O(` log `) steps
(whereas if we use Batcher’s network we get a total of
O(`) + `(log2 `) steps). These steps can be partitioned
evenly among the ` modification actions yielding the
desired complexity.

As stated above, each of the schemes presented in
[Go, Os] can be adopted to yield an incremental en-
cryption scheme for (single symbol) insert/delete that
is efficient in the strict sense. This is done analogously
to the above, provided hat the document length stays
within some predetermined bounds (e.g., between `/2
and 2`). Namely, the encryption of a document con-
sists of three sequences of encrypted values, E1, E2 and
E3, where E1 and E2 are as above and E3 is an en-
cryption of the workspace of some oblivious simulator.
As above, the algorithm works in epochs consisting of
` modifications each. In each epoch, the incremental
algorithm performs the ` modifications of the previous
epoch. This is done by simulating a RAM which main-
tains a data structure enabling fast performance of in-
sert/delete (e.g., a 2-3 tree).

5 The privacy issue

Privacy is an interesting new issue in incremental cryp-
tography to which we provide a brief introduction here.

Security, as defined for signature and encryp-
tion schemes, is concerned with what an illegiti-
mate/outsider party which does not know the private
key can do or learn. For example, in signature schemes
it was required that this outsider (called the adversary)
cannot forge signatures. We now consider the informa-
tion regarding previous versions of the document which
can be inferred by the legitimate party when inspecting
the current document together with the current crypto-
graphic form. That is, suppose, for example, that we are

12

given a document D together with its (updated) crypto-
graphic form and we are told that D was obtained from
some other document, called D′, by a deleting a single
symbol. Perfect privacy would mean that we cannot
tell the location of the deleted symbol. Partial privacy
may mean that we cannot tell the identity of the deleted
character (but we may have some information regarding
its location).

Perfect privacy is a natural concern in the context
of signatures. Suppose that one uses an incremental
signature scheme to produce signatures to related com-
mitments given to various parties. It is desirable that
none of these parties can learn from the signature given
to it something concerning commitments given to other
parties. Partial privacy may be useful too. Suppose Al-
ice has a standard commitment form in which she only
fills-up some very few spaces before signing (many such
forms do exist in the business world). Clearly, Alice
should not care if Bob, to him she gave such an in-
cremental commitment, learns that she have signed the
commitment (given to him) by incrementing a signature
to a different instance of this commitment, as long as
Bob cannot find out any details concerning this previous
commitment.

A definition of perfect privacy can be easily pro-
duced following the standard paradigms. Specifically,
given a document D and a signature to it, it should be
infeasible to distinguish whether the signature was by
the document system in response to a create command
or in response to a text modification command. Def-
initions of partial privacy may vary for ones in which
the amount of modification is the only information be-
ing leaked to ones in which only the secrecy of re-
placed/deleted symbols is preserved.

Our first message authentication scheme (i.e., the
XOR-scheme of Section 3.1) satisfies perfect privacy;
whereas the second scheme (i.e., the tree scheme) sat-
isfies only partial privacy.

Acknowledgements

We are grateful to Nir Shavit for pointing out several
important applications of incremental cryptography.

Work done while the first author was at the IBM
T.J. Watson Research Center, New York.

References

[AHU] A. Aho, J. Ullman, and J. Hopcroft. The
design and analysis of computer algorithms.
Addison-Wesley, 1974.

[AKS] M. Ajtai, J. Komlós and E. Szemerédi. An
O(n log n) sorting network. STOC 83.

[Ba] K. Batcher. Sorting networks and their ap-
plications. AFIPS Spring Joint Computer Con-

ference 32, 1968.

[BGG] M. Bellare, O. Goldreich and S. Gold-

wasser. Incremental cryptography: The case
of hashing and signing. Crypto 94.

[BGR] M. Bellare, R. Guérin and P. Rogaway.

XORMACs: New methods for message authen-
tication using block ciphers. Manuscript, March
1994.

[BKR] M. Bellare, J. Kilian and P. Rog-

away. The security of cipher block chaining.
Crypto 94.

[BR] M. Bellare and P. Rogaway. Entity au-
thentication and key distribution. Crypto 93.

[CW] L. Carter and M. Wegman. Universal
Classes of Hash Functions. J. Computer and

System Sciences 18, 143–154, 1979.

[Go] O. Goldreich. Towards a Theory of Software
Protection and Simulation by Oblivious RAMs.
STOC 87.

[GGM] O. Goldreich, S. Goldwasser and S. Mi-

cali. How to construct random functions. Jour-

nal of the ACM, Vol. 33, No. 4, 210–217, 1986.

[GM] S. Goldwasser and S. Micali. Probabilis-
tic encryption. J. of Computer and System Sci-

ences 28, 270–299, April 1984.

[GMR] S. Goldwasser, S. Micali and R. Rivest.

A digital signature scheme secure against adap-
tive chosen-message attacks. SIAM Journal of

Computing, 17(2):281–308, April 1988.

[KR] R. Karp and M. Rabin. Efficient random-
ized pattern matching algorithms. IBM J. of Re-

search and Development Vol. 31, No. 2, March
1987.

[LR] M. Luby and C. Rackoff. How to construct
pseudorandom permutations from pseudoran-
dom functions. SIAM J. Computation, Vol. 17,
No. 2, April 1988.

[Me1] R. Merkle. A certified digital signature
scheme. Crypto 89.

[Me2] R. Merkle. Protocols for public key cryp-
tosystems. Proceedings of the 1980 Symposium

on Security and Privacy.

[Os] R. Ostrovsky. Efficient Computations on
Oblivious RAMs. STOC 90.

[Ri] R. Rivest. The MD5 message-digest al-
gorithm. IETF Network Working Group,
RFC 1321, April 1992.

A Sketch of proof of

Theorem 3.2

A key observation regarding the incremental tagging al-
gorithm follows.

Proposition A.1 Suppose that Tag is a valid tag-tree
for the text T , stored as version cnt of document (name)

13

α. Then the tag-trees produced by the system in response
to a cut-operation, with parameters α, β, γ, are valid tag-
trees for the resulting texts (when stored as new versions
of documents (names) β and γ). Similarly, for pasting.

We stress that the term “validity” used in the above
proposition and below includes the requirement that
the document-name and version-counter authenticated
by the root match the actual document-name and the
corresponding current version-counter.

We show that attacks on our tree tagging system
cannot be too successful since they would yield success-
ful attacks on the basic message authentication scheme
MA.

Consider an arbitrary adversary that attacks the
tagging system using commands of all three types (i.e.,
‘create’, ‘modify’ and ‘tamper’). Note that both tag-
ging algorithms employed (for ‘create’ and ‘modify’) use
an oracle to MAa (and VMAa), for a randomly gener-
ated authentication-key a. We assume for simplicity
that the adversary always halts outputting a properly
tagged document (i.e., a pair (D,µ) where µ is an MAa-
valid authentication tree for D). We stress that this
(document,tag)-pair is not necessarily one which has
not “appeared before” (i.e., D may have appeared as
a previous virtual message). Actually, our task is to
show that it is most likely that the document D has ap-
peared previously as a virtual document (see Section 3.1
for terminology).

We now consider two events defined over the prob-
ability space of all possible executions of the above at-
tack. The first event is that the adversary has produced
(either as part of a tampering command or as part of
its output) a tree-tag containing anMAa-tag for a string
for which an MAa-tag did not appear as part of some
tag-tree created by the system (in response to some ‘cre-
ate’ or ‘modify’ command). The second event is that the
sameMAa-tag appears as the tag of two different strings
in either two different tag-trees or in the same tag-tree,
produced by the system (in response to some ‘create’ or
‘modify’ command). Both events may occur only with
negligible probability, since each of them constitutes a
breach of the security of the basic message authentica-
tion scheme MA. If none of the events occur, we call the
execution good.

From this point on, we assume that the execution
is good and show that (in this case) the tag-tree output
by the adversary is for a document, denoted D, which
has appeared before as a virtual document. Since the
tag-tree output by the adversary is valid, it follows that
all the MA-tags appearing in it are valid. By the as-
sumption that the execution is good, it follows that all
these tags, and in particular the tag of the root, have
appeared in some previous tag-tree (produced by the
system). Consider the earliest time t in which there
exists a document name α with a cryptographic form
having a vertex v with the same MAa-tag as the root of
D (i.e., the document output by the adversary). Since

roots have a special form, the node v must be the root
of the tag-tree. Let Vt be the virtual document associ-
ated with document-name α at that time t. Note that
Vt was defined in time t by either a create or a modifi-
cation command.

If Vt was defined by a document-creation command
then the tag-tree of document α at time t must be valid
(as it was produced in response to a create command).
By the assumption that the execution is good, it fol-
lows that this (valid) tag-tree is identical to the (valid)
tag-tree of D (since otherwise two different valid tag-
trees, with an identical root, have appeared in the ex-
ecution implying that the execution contains two dif-
ferent strings with the same MAa-tag). It follows that
Vt = D.

We are left with the case where Vt was defined by
a document-modification command. For each virtual
document, we define a virtual tag-tree (associated with
it). The definition mimics the one of a virtual document
(i.e., it ignores the possible tampering of the tag-trees
associated to document-names). Namely,

The virtual tag-tree associated with a creation com-
mand (and with the virtual document defined by
this command) is the actual tag-tree produced by the
system. Thus, in this case, the virtual tag-tree is
a valid tag-tree of the corresponding virtual docu-
ment.

The virtual tag-tree associated with a modification
command (and with the virtual document defined
by this command) consists of a tree of MA-tags in
which the new tags (produced at this stage by the
system) are the actual ones but the tags of the other
vertices are as in the virtual tag-tree of the corre-

sponding virtual documents.

An important observation, proven by induction on the
recursive definition of a virtual tag-tree, is that every
virtual tag-tree consists of MAa-tags which were pro-
duced by the system. Combining the same type of in-
duction with Proposition A.1, we prove the following

Lemma A.2 At any time, the virtual tag-tree associated
with each document is a valid tag-tree for the correspond-
ing virtual document.

We stress that the assertion of the lemma does not nec-
essarily hold with respect to the actual tag-trees that
may even contain illegal MAa-tags.

Proof: First, we observe that the lemma holds for a
virtual tag-tree defined by a create operation. Now,
consider a virtual tag-tree defined by pasting documents
(names) α and β. By definition, this virtual tag-tree
consists of the MAa-tags of the corresponding virtual
tag-trees and the actual tags produced for the vertices
along the path from the topological change to the root.
We claim that if a path from some vertex in the actual
tag-tree of α (resp., β) to its root is valid then the labels
of the children of the vertices on this path equal the
corresponding labels in the virtual tree of α (resp., β).

14

Once this claim is proven we are done (since then we are
guaranteed that the newly formedMAa-tags are tags for
the correct values).

The claim is proven by induction from the root of this
path, using the hypothesis that the execution is good,
the fact that the virtual tag-tree of α consists of MAa-
tags produced by the system, and the hypothesis that
the virtual tag-tree of α is a valid tag-tree (for the cor-
responding virtual document). Firstly, if the tag of the
root of the actual tag-tree for document α having cur-
rent version-counter cnt is valid then it must have been
produced by the system for document α at the time its
counter was incremented to the value cnt. Thus, the
root of the actual tag-tree equals the root of the virtual
tag-tree of α. It follows that the labels of the children
of root of the actual tag-tree are as in the correspond-
ing virtual tag-tree. In particular, the subtree counters
of the corresponding children in the two tag-trees are
equal and thus the locations of the corresponding sub-
texts are the same. Similarly, if the tag of a vertex, v,
of the actual tag-tree is both valid and equals the cor-
responding tag in the virtual tag-tree then the labels of
v’s children are as in the corresponding virtual tag-tree.
The claim follows and so does the lemma.

We now claim that the virtual tag-tree of Vt equals
the tag-tree produced by the adversay (for D). First, we
observe that the actual tag-tree of Vt at time t contains
as its root an MAa-tag of a string containing the docu-
ment name α and a counter-version denoted cnt. How-
ever, by validity of the virtual tag-tree of Vt it follows
that also the virtual tag-tree contains as its root an au-
thentication of the document name α and the counter-
version cnt. Combining this with the definition of the
incremental algorithm and the fact that each MA-tag in
the virtual tag-tree has appeared in an actual tag-tree,
we infer that the roots of both the actual and virtual
tag-trees of Vt are identical. Thus, the virtual tag-tree
of Vt and the output tag-tree of D have identical roots
(recall that by definition the root of the actual tag-tree
of Vt equals the root of the tag-tree of D). By the as-
sumption that the execution is good and the fact that
the virtual tag-tree consists of MAa-tags produced by
the system, we conclude again that these two (valid)
tag-trees (ie., the virtual tag-tree of Vt and the tag-tree
of D) must be identical, and again Vt = D follows. This
concludes the proof that in every good execution the
authenticated document output by the adversary (ie.,
D) is a virtual document which has appeared before.

15

