
Implementation Experience with AES Candidate Algorithms Second AES Conference

Dr B. R. Gladman, 28th February 1999 page 1

Implementation Experience with AES Candidate Algorithms
by Dr Brian Gladman, UK

Introduction

This paper presents experience gained during the
implementation of each of the 15 AES candidate
algorithms and seeks to provide fair and accurate
comparisons in respect of implementation and
performance issues.

This paper considers the following topics:

• the effectiveness of each of the specifications
from an implementation perspective

• the feasibility of implementing the algorithms
using these specifications alone

• the effort involved in implementing each
algorithm to a reasonable level of efficiency

• The comparative performance of the AES
candidate algorithms when coded in C for
Pentium Pro and Pentium II processors.

The Algorithm Specifications

The Character of the Specifications

The specifications of the 15 AES candidates vary
widely in form, with some using a formal
mathematical style while others rely on a
combination of text, diagrams and pseudo code.
While each of these approaches can support correct
implementation, they are significantly different in
their ease of use from an implementation perspective.
For example, although formality is often valuable in
security critical code, it is surprising how difficult it
is to avoid semantic ambiguities that can undermine
precision and lead to implementation errors. On the
other hand, it can also be extremely difficult to
describe some features textually in an unambiguous
way.

Given these factors the most helpful approaches are
those that involve descriptions using more than one
form. Although descriptive redundancy introduces
the opportunity for inconsistency, more importantly it
reduces the risk that errors will persist and provide a
basis for erroneous implementation. Consequently,
specifications that employ a mixture of text,
diagrams and pseudo code will generally be
preferable to those that rely on one form of
description alone.

Provision of Guidance on Implementation

The AES algorithm specifications also vary widely is
in their coverage of implementation options and
optimisation opportunities. Some design teams have
clearly taken the view that such guidance is not

necessary whereas others have gone to considerable
lengths to explain how their algorithm can be
implemented efficiently within a range of processor
environments.

In some specifications, the way in which an
algorithm is described is quite different to the way in
which it is most efficiently implemented. Moreover,
there are AES specifications that omit important
details of the mathematical constructions that they
use. Whilst such omissions do not prevent
implementation, they lead to significant extra work
that could easily be avoided by providing the details
concerned.

Byte Order

An area of general difficulty in a number of the
specifications is in the conventions used for byte
order within multiple byte values (this will be
referred to here as ‘endianness’).

Several of the specifications contain errors caused by
confusion about byte order whilst others switch
between different byte order conventions in a way
that seems certain to lead to confusion.

Byte order on input and output is a particular area of
uncertainty. Quite a few AES candidates avoid the
endian issue by defining their inputs and outputs as
32-bit (or 64-bit) quantities so that byte order and any
associated conversion costs are external to the
algorithm. Some algorithms don’t specify their
endianness and hence force prospective implementers
to discover this using test vectors. Still others do
specify an endian convention but then proceed to use
the opposite convention in some or all of their
specifications.

In the authors experience this has been by far the
most troublesome issue in implementing and testing
the 15 AES candidate algorithms. In fact the
development process is compounded because the
standard test vectors for variable text and variable
keys do not contain any ‘endian neutral’ vectors of
the kind that are useful in resolving such ambiguities.

Although in an ideal world the specifications would
be precise and unambiguous on their byte order
conventions, experience suggests that this is unlikely
to be achieved in practice. Consequently it is
recommended that the standard sets of test vectors
for variable text and variable keys should be
augmented with (at least) an ‘all 0’ vector as an aid in
resolving such difficulties.

It is not clear whether byte order on input and output
is an internal or external issue from the viewpoint of

Implementation Experience with AES Candidate Algorithms Second AES Conference

Dr B. R. Gladman, 28th February 1999 page 2

the AES algorithms. However, in the following
commentary it will be assumed that the AES
specifications are intended to provide a basis for
implementations that produce results that are the
same on processors with different byte order
conventions.

Comments on Specific Specifications

CAST-256

With one exception, this specification fully describes
the algorithm and hence allows implementation
without reference to source code. The exception is
byte order on input/output, which is big-endian but
does not appear to be specified.

No implementation guidance is provided but the
algorithm is largely conventional and this makes this
omission a relatively minor one.

CRYPTON

The CRYPTON specifications are all well presented
and provide the details needed for implementation
from scratch. The algorithm defines and uses little
endian byte order. Rounds are numbered from 1, not
0, and when this is combined with reference to ‘even’
and ‘odd’ rounds, there is a small amount of room for
confusion.

There is limited implementation guidance. The
‘version 1’ algorithm is an improvement on earlier
versions from an implementation viewpoint because
the key-schedule is easier to understand.

DEAL

The DEAL specification is sound but relies heavily
on the separate specification of DES. Input/output
byte order is not specified but appears to be little
endian. There is almost no implementation guidance.

DFC

The DFC specification is complete but originally
contained errors that prevented correct
implementation from scratch. The corrected version
fully supports this.

Care is taken to specify big endian byte order.
Although the main specification document gives very
little guidance on efficient implementation, an
ancillary document giving some help has since
become available.

E2

The E2 specification uses an effective combination of
formal text and diagrams to describe this algorithm.
Nevertheless, byte order conventions are confusing
since section 1.1 of the document sets out what seem

to be ‘little-endian’ conventions when, in fact, the
algorithm is ‘big-endian’.

This situation arises because section 1.1 numbers
entities from ‘right to left’ whereas the main
specification uses ‘left to right’ numbering. This
notational inconsistency is unfortunate and seems
certain to cause confusion.

A supporting document provides very helpful
implementation guidance.

FROG

A combination of text, diagrams and pseudo code is
used to describe FROG. This fully supports
implementation and the provision of extensive
pseudo code makes implementation guidance largely
unnecessary.

However, the pseudo code is confusing in parts
because it specifies redundant code (in the
makePermutation procedure the line ‘if index > last
then index <= 0’).

Byte order conventions are given.

HPC–Medium

HPC is an algorithm that involves many constituent
sub-algorithms, only one of which is needed to meet
the AES requirement. The comments here only cover
HPC-Medium, the AES compliant component.

The HPC specification relies heavily on actual C
code sequences to describe its operation and this
makes its implementation relatively easy.

The input to HPC is defined in terms of 64 bit words
and care is taken to define character order within
these as ‘little-endian’. However input and output
byte order seems to be big-endian in practice (byte
order changes were needed to match the test vectors
on a little-endian processor).

LOKI97

The LOKI specification supports implementation
except for input and output byte order. Internal byte
order appears to be little endian but input and output
seem to use big-endian conventions. No
implementation guidance is provided.

MAGENTA

The specification is accurate and complete but is very
compact and quite difficult to follow. There is no
implementation guidance. Byte ordering is implied to
be little endian.

MARS

The MARS specification is excellent form an
implementation viewpoint since it uses text, diagrams

Implementation Experience with AES Candidate Algorithms Second AES Conference

Dr B. R. Gladman, 28th February 1999 page 3

and pseudo code to give a very clear overall
description of the algorithm. The input/output byte
order convention used is little endian and clearly
specified as such.

With the exception of an ambiguity in the ‘key
fixing’ step (now corrected) it was possible to fully
implement MARS from its specification.

The extensive pseudo code provided for MARS
makes implementation relatively easy. Although this
reduces the need for implementation guidance, some
aspects of the key-schedule are not easy to
implement efficiently and hence deserve coverage in
this respect.

RC6

The RC6 specification is excellent. It defines and
uses little endian conventions and provides full
pseudo code that makes it quite difficult to make
mistakes in its implementation. The simplicity of
RC6 makes implementation guidance unnecessary.

Rijndael

The Rijndael specification is generally good but there
are a number of discrepancies that make it impossible
to implement the algorithm without reference to the
supplied source code.

Byte ordering conventions are described but parts of
the specification appear to use different conventions.

Good implementation guidance is provided.

SAFER+

This specification is complete and fully supports
implementation without reference to source code. It
uses big-endian byte ordering conventions on input
and output.

The SAFER+ specification does not provide any
implementation guidance. Surprisingly the PHT that
forms the core of SAFER+ is only specified in matrix
form without the decomposition that is needed for its
efficient coding.

Serpent

This specification provides an accurate and precise
description of the algorithm that is sufficient to allow
implementation in its ‘non-bitslice’ mode except for
input/output byte order. Internally Serpent is
specified as little endian but its byte order on input
and output is big-endian (but not clearly specified as
such).

There is some implementation guidance provided but
this would not be sufficient for implementers who
were not already familiar with the concepts of
‘bitslice’ operation. In practice it is not possible to

implement Serpent efficiently without reference to
supplied source code since the specification does not
provide any details of how the S boxes can be
implemented as Boolean functions. However, since
this algorithm is of non-US origin the header files
containing these definitions are freely available.

Twofish

The Twofish specification is very comprehensive and
contains all the information needed to implement the
algorithm. Its byte order conventions are clearly
defined.

High level guidance is provided on the ways in which
Twofish can be implemented efficiently but parts of
the algorithm – for example, the key-schedule – are
described in a way that is likely to encourage
inefficient implementation approaches. Although the
information needed for efficient coding is available
elsewhere in the document, it is not easy to find and
is hence not ‘user friendly’ from an implementation
perspective.

Conclusions in Respect of Specifications

In general the specifications of 15 AES candidate
algorithms are provided to a good standard. Byte
order remains as a significant problem that is
illustrated by the following table. This shows the
byte order changes have to be implemented by the
author’s source code to match the supplied variable
text and variable key test vectors when running on a
Pentium Pro/II processor.

Action Algorithms

no action

CRYPTON
DEAL
FROG
MAGENTA
MARS
RC6
Rijndael
Twofish

invert byte order in 32 bit words

CAST-256
DFC
E2
LOKI97

invert byte order in 64 bit words HPC

invert byte order in 128 bit words
SAFER+
Serpent

The mapping of test vectors to algorithm input,
output and key blocks used to compile this table is as
follows. The vectors are read as hexadecimal
numbers with consecutive pairs of hexadecimal digits
representing single bytes. The left and right digits of
each pair give the most and least significant four bits
of each byte respectively. The sequence of digit pairs
within each test vector is scanned from left to right
and the resulting bytes are placed in consecutive

Implementation Experience with AES Candidate Algorithms Second AES Conference

Dr B. R. Gladman, 28th February 1999 page 4

memory locations with increasing addresses. This
matches the NIST convention on ‘big-endian’
processors but should require an inversion of byte
order within input and output blocks on ‘little-
endian’ processors.

In practice, the table shows that the byte order
actually used varies widely among the 15 AES
candidates. Whether this matters depends on AES
policy: should byte order be specified by the
encryption algorithm or is this an external issue?

However, any need to change byte order on input and
output will involve processing costs and these can
have a significant impact on algorithm performance.
This is especially significant when an algorithm is
fast and it is hence not surprising to find that all the
higher speed AES candidates implement a byte order
that avoids such overheads when running on the
reference architecture.

Since these issues have a major impact on the
portability of encrypted data between different
processors, they will need to be resolved if this is an
AES algorithm requirement.

Implementation Experience

Although the AES teams have provided reference
and optimised implementations of their algorithms, it
is evident that quite different approaches have been
adopted in these respects. Thus, while some have
invested substantial effort to demonstrate algorithm
performance, others have left such efforts to be
pursued by the wider community.

In consequence, comparison of the performance of
the supplied implementations is more a comparison
of the approach of the different design teams than it
is an indication of the implementation properties of
the algorithms themselves.

The author’s aim has been to implement the
algorithms in a more consistent way in order to
provide a more equitable basis for their assessment.
Accordingly, all 15 AES candidate algorithms have
been implemented from scratch without reference to
the code provided by the original design teams1.

Choice of Implementation Approach

The work described here compares AES algorithm
implementations and performance when written in C
for the Pentium II machine. The choice of the
Pentium II is simply the result of its availability but
C was consciously chosen instead of the alternative
of using an assembler for several reasons.

1 For some algorithms limited inspection of the provided source

code was needed because of specification errors.

Firstly, writing good assembler code for modern
processor architectures is far from easy and
implementing all 15 AES candidates from scratch in
assembler in the limited time available would almost
certainly have been impossible.

Secondly, with modern C compilers it will normally
be possible to achieve speeds that are within 30% of
those achievable with hand coded assembler and this
is close enough for the assessments that are needed at
this stage in the AES process. At present, knowledge
of the ultimate performance of the AES candidates
on specific current generation processors is less
important than understanding how well the
algorithms map onto a wide range of different
processor architectures. Developing and making C
source code widely available was hence considered
to be the most effective way of providing the sort of
information that is most needed at this stage in the
AES selection process.

Before comparing the relative performance of the
AES candidate algorithms, the following paragraphs
provide comments, where appropriate, on aspects of
their implementation.

CAST-256

CAST-256 is a fairly conventional algorithm that is
straightforward to implement. The cost of
implementation is low and there appears to be limited
opportunities for optimisation.

CRYPTON

CRYPTON is a novel algorithm that allows the same
routine to be used for both encryption and
decryption. It is quite intricate and hence takes some
time to implement well. Optimisation opportunities
are explained in the specification and are
straightforward to implement. The key-schedule is
much faster for encryption than for decryption.

DEAL

DEAL is easy to implement provided that DES
source code is already available. There is limited
room for optimisation in DEAL and the efficiency
achieved is largely determined by that of the DES
implementation on which it depends.

DFC

DFC is quite time consuming to implement
efficiently on a 32-bit machine because it involves
64-bit arithmetic. There is considerable scope for
optimisation, especially in the modular division step.

Since DFC is based on 64-bit arithmetic, it makes
more sense to judge its performance using processor
and compiler combinations that support such

Implementation Experience with AES Candidate Algorithms Second AES Conference

Dr B. R. Gladman, 28th February 1999 page 5

capabilities (which will be the norm in AES time
scales).

E2

E2 is quite intricate and hence proved relatively
costly to implement and optimise. However, at the
time E2 was coded the absence of test vectors and
uncertainty about byte order had a big impact on
implementation cost.

There is considerable scope for optimisation in E2
and the author’s experience suggests that the best
approach is likely to vary from one processor family
to another.

The assistance given by Kazumaro Aoki of NTT
during implementation is gratefully acknowledged.

FROG

FROG is easy to implement since pseudo code is
provided for its constituent parts. However, its key-
schedule is painfully slow and offers little room for
any obvious improvements in efficiency. For this
reason alone FROG is not a realistic AES candidate.

HPC-128

The full HPC algorithm involves five sub-ciphers and
this makes implementation from scratch very costly.
It is hard to believe that this is necessary and the
author has chosen to implement only HPC-128, the
AES compliant element of the specification.

HPC-128 is relatively easy to implement since C
source code fragments are provided in the
specification. As with DFC, HPC uses 64-bit
arithmetic, which means that its performance is
relatively poor on 32-bit processors.

The key-schedule appears very costly compared to
the encryption and decryption routines and this seems
likely to count against it as a strong AES candidate.

Loki97

Loki97 is quite intricate and uses indices that have to
be computed by masking out parts of words that are
either 11 or 13 bits long. It was not particularly
difficult to implement but it proved quite time
consuming.

MAGENTA

The MAGENTA specification is very compact and is
not designed to ease the implementation task.
However, it proved relatively easy to implement
although the resulting performance is very
disappointing. Moreover, it seems unlikely that there
are any optimisations that would provide the very
significant gains needed to make it worth considering
as a continuing AES candidate.

MARS

The extensive use of pseudo code to describe MARS
makes implementation easy. It can also be optimised
in a relatively straightforward way.

The only area that caused any difficulty with MARS
was the ‘key fixing’ process in the key-schedule,
where the behaviour of bit 31 in 32-bit words proved
difficult to describe without reference to code
fragments.

It seems likely that this aspect of the specification
can be simplified without compromising security and
the author feels that this would be worthwhile.

RC6

RC6 is by far the easiest of the AES candidates to
implement. It takes very little time and the simplicity
of the algorithm makes it quite difficult to make
mistakes in its implementation.

It also performs well on the Pentium II and is easily
the fastest of the candidates on this processor. It also
optimises well in C where performance is within
10% of that achievable with hand coded assembly
language.

Rijndael

Rijndael is a variant of square with a neat structure
that allows very good optimisation on 32 bit
processors. Its performance is very good and seems
likely to remain so on many processors since it uses
only efficient and commonly available instructions.
Its key-schedule is asymmetric and is much faster for
encryption than for decryption.

SAFER+

SAFER+ is a byte-oriented algorithm that does not
take full advantage of the 32-bit operations available
on the Pentium II. In consequence, its performance
is unspectacular on this processor. However little
time was spent on optimisation so there is likely to be
room for significant improvement (this has been
confirmed by a recent Cylink announcement on the
NIST AES forum).

Serpent

Serpent is an innovative algorithm that exploits the
‘bit-slice’ approach to algorithm implementation.
However, its performance is relatively poor
compared to many AES candidates, in part because it
employs an unusually large number of rounds.

The bit-slice version of the algorithm depends on
finding Boolean functions to represent S boxes that
can be computed in a minimum number of processor
cycles. Such optimisations were undertaken as a part
of the implementation process.

Implementation Experience with AES Candidate Algorithms Second AES Conference

Dr B. R. Gladman, 28th February 1999 page 6

Twofish

Twofish is a quite complex algorithm that combines
many different techniques. It is quite expensive to
implement from scratch, especially so if optimum
performance is needed.

The resulting benefit is that the algorithm can be
implemented in many different ways that allow it to
be optimised for a wide range of applications
scenarios.

Comparative Performance

The performance of the 15 AES algorithms has been
compared by timing encryption, decryption and key-
schedule computation on the Pentium Pro reference
platform. The results are presented in Table 1.

Timing

The timing was undertaken using the Pentium time
stamp counter in a code sequence of the following
general form:

cpuid
rdtsc
save counter - value 1
cpuid
timed subroutine call) – one call
cpuid
rdtsc
save counter - value 2
cpuid
timed subroutine call) – two
timed subroutine call) - calls
cpuid
rdtsc
save counter - value 3

cpuid

where the “rdtsc” instruction reads the time stamp
counter and the “cpuid” instruction forces the
processor to complete all previous instructions before
it continues. This is needed to avoid erroneous
timings resulting from ‘out-of-order’ execution of the
cycle count reading instructions.

The minimum values of:

Time for 2 = value 3 – value 2
time for 1 = value 2 – value 1

were then determined over 100 runs of the above
sequence and the difference between these values
was then reported as the number of cycles required
for the subroutine in question. Before each timing
sequence, the routine being timed was run at least
once in order to remove cache-filling effects.

Byte Order

It has been noted earlier that the AES algorithms use
different conventions for byte order, with some
candidates needing byte order changes on input and
output in order to match the test vectors provided.

It is not surprising that all the fastest algorithms
avoid byte order changes by using appropriate
ordering conventions for the ‘little-endian’ reference
platform. However, if these algorithms were run on
big-endian machines, they would require byte order
changes and their performance would suffer
accordingly.

The faster an algorithm is the more impact this will
have. For example on the 200MHz Pentium Pro

RC6 Rijndael MARS Twofish CRYPTON CRYPTON v1 CAST E2
Key Setup –128 1632 305:1389 4316 8414 531:1369 744:1270 4333 9473
 -192 1885 277:1595 4377 11628 539:1381 748:1284 4342 9540
 -256 1877 374:1960 4340 15457 552:1392 784:1323 4325 9913
Encrypt –128 270 374 369 376 474 476 633 687
 -192 267 439 373 376 473 469 633 696
 -256 270 502 369 381 469 470 639 691
Decrypt –128 226 352 376 374 474 470 634 691
 -192 235 425 379 374 470 470 633 693
 -256 227 500 376 374 483 469 638 706

Encrypt -128 94.8 68.4 69.4 68.1 54.1 53.8 40.4 37.3
Decrypt -128 113.3 72.7 68.1 68.4 54.1 54.5 40.4 37.0
Average -128 103.2 70.2 68.7 68.3 54.1 54.1 40.4 37.2

Serpent DFC HPC SAFER+ LOKI97 FROG DEAL MAGENTA
Key Setup –128 2402 5222 120749 4278 7430 1416182 8635 30
 -192 2449 5203 120754 7426 7303 1422837 8653 25
 -256 2349 5177 120731 11313 7166 1423613 11698 37
Encrypt –128 952 1203 1429 1722 2134 2417 2339 6539
 -192 952 1288 1477 2555 2138 2433 2358 6531
 -256 952 1178 1462 3391 2131 2440 3115 8711
Decrypt –128 914 1244 1599 1709 2192 2227 2365 6534
 -192 914 1235 1599 2530 2189 2255 2363 6528
 -256 914 1226 1526 3338 2184 2240 3102 8705

Encrypt -128 26.9 21.3 17.9 14.9 12.0 10.6 10.9 3.9
Decrypt -128 28.0 20.6 16.0 15.0 11.7 11.5 10.8 3.9
Average -128 27.4 20.9 16.9 14.9 11.8 11.0 10.9 3.9

The values are in clock cycles for Pentium Pro/II. The two key set-up values for Rijndael and CRYPTON are those for encryption
and decryption respectively. The speeds in the last three rows are megabits/second for the 200MHz Pentium Pro reference platform.

Table 1

Implementation Experience with AES Candidate Algorithms Second AES Conference

Dr B. R. Gladman, 28th February 1999 page 7

reference platform, an algorithm that achieves 25
megabits/second will suffer a penalty of around 2
megabits/second whereas one that is capable of 100
megabits/second suffers a much larger penalty of
about 15 megabits/second.

In order to fairly compare algorithm performance the
figures given in Table 1 therefore exclude any
processing costs for changing byte order on input and
output. The figures are thus a measure of the ‘core’
performance of the algorithms – the speed they can
achieve on processors where input and output byte
order changes are not needed.

Implementation Focus

The implementations on which Table 1 is based place
emphasis on encryption/decryption speed rather than
on limiting memory use or key-schedule cost.

Results

Table 1 shows that RC6 is the fastest algorithm on
the Pentium Pro/II processor. Rijndael, MARS and
Twofish follow and achieve effectively the same
performance. Somewhat surprisingly, the speed of
candidates varies over a large range (25:1).

For reference purposes DES coded in C can achieve a
speed of over 27 megabits/second on the reference
platform, considerably faster than many of the AES
candidates.

Practical Encryption Speeds

For many cryptographic applications, encryption
speed is more important than that for decryption.
This applies, for example, when an algorithm is used
in cipher block chaining mode or when it is used as a
hash function. In addition, when a small number of
blocks are encrypted the cost of computing the key-
schedule will have a significant impact on algorithm
performance.

Using the above figures (for 128 bit keys) the AES
algorithms can be ranked in respect of the overall
performance they achieve in encrypting blocks of
different length. The resulting rankings for small,
medium and large numbers of blocks are shown in
the following table:

16 bytes 4096 bytes >106 bytes

Rijndael RC6 RC6
CRYPTON Rijndael MARS
RC6 MARS Rijndael

Serpent Twofish Twofish
MARS CRYPTON CRYPTON
CAST CAST CAST

This shows that both Rijndael and CRYPTON are
very effective for small numbers of blocks because
they both have fast encryption key-schedules.

For a text length of about 4000 bytes the better
encryption speed of RC6 puts it in first place and
other algorithms such as MARS and Twofish with
good encryption speeds also improve their rankings.

For bulk encryption, RC6 is ahead of the other
algorithms, followed by MARS, Rijndael and
Twofish, all of which provide very similar levels of
performance.

Note, however, that this table is based on a version of
Twofish that is optimised for bulk encryption. Its
performance for small numbers of blocks could be
considerably improved by using a different version
(although bulk encryption speed would then suffer
unless both versions were available).

Serpent enters the table for the encryption of one
block but its lower encryption speed quickly reduces
its ranking as the number of blocks increases.

Conclusions

The AES winning candidate will need to perform
well in a wide range of different environments – on
high-end and low-end processors, on smart cards and
in hardware. On this basis, it would be wrong to
eliminate candidates solely on the performance that
they provide on the reference platform as reported
here. Quite apart from this, the primary concern
must be security and until the list of secure
candidates is known, it is premature to discuss the
elimination of candidates with any certainty.

However, the algorithms vary across a very large
range in performance terms on the Pentium Pro/II
processor and this does allow some general
conclusions to be reached.

First, it seems unlikely that candidates that provide
less than 15 megabits/second on the reference
platform should be carried forward into the next AES
round. On this basis MAGENTA, DEAL, FROG and
LOKI97 could reasonably be eliminated. This
criterion would also make SAFER+ and HPC
marginal although care is required in considering the
latter since it will perform a great deal better on 64-
bit processors (as will DFC). Moreover, a recent
announcement by Cylink suggests that SAFER+ can
achieve a much better performance than the author’s
code offers and this suggests that it would be wrong
to rule this candidate out on the basis of the results
given here.

A major reason for the lower performance of Serpent
is its unusually large number of rounds. It seems
certain that Serpent is very conservative when
compared with other AES candidates and this
suggests that its number of rounds could be
significantly reduced to improve its performance. It

Implementation Experience with AES Candidate Algorithms Second AES Conference

Dr B. R. Gladman, 28th February 1999 page 8

might hence remain as a candidate with such a
change.

RC6 has to be a strong candidate for the next round if
it is secure. It is simple, elegant, easy to implement
and easy for C compilers to optimise. Moreover, its
simplicity is likely to make implementation
assurance much easier than for other candidate
algorithms. Its use of a multiply instruction may hurt
it on some processors but, despite this, its many
attractive features combine to make it a strong
contender.

Rijndael is an especially strong candidate because it
is simple to implement and provides a very good
performance across small, medium and large
numbers of encrypted blocks. It maps well in C and
seems likely to maintain its performance on a wide
range of processor architectures.

MARS also achieves a very good level of
performance on the reference platform, although its
use of multiply instructions may again reduce its
performance on some processors.

Twofish is an ‘engineers cipher’ in that it can be put
together in a variety of different ways to achieve a
good balance between performance and resource
costs in many different operating contexts. The
downside is that it is a relatively complex algorithm
and this may make implementation assurance more
difficult than for other candidates. Nevertheless, it
would be surprising if it did not continue into the
next round.

Of the candidates with lower 32-bit performance,
HPC and DFC need careful consideration because
they use 64-bit arithmetic and this will be highly
efficient by the time an AES winner is chosen.
However, HPC’s key schedule is time consuming.

CRYPTON, E2 and CAST provide good ‘mid-range’
performance on the reference platform and their
status is hence likely to be determined how well they
perform in other contexts.

Additional Information

Further information on the work reported here is
available on the author’s web site at:

http://www.seven77.demon.co.uk/aes.htm

Acknowledgements

Many people have made helpful comments on
aspects of the work reported here. The helpful
contributions made by the following people are
gratefully acknowledged:

• Russell Bradford
• Shai Halevi (IBM)

• Niels Ferguson and Doug Whiting (Twofish)
• Marcus Watts
• Eli Biham and Ross Anderson (Serpent),
• Richard Schroeppel (HPC)
• Richard Outerbridge (DEAL)
• Kazumaro Aoki (NTT)
• Sam Simpson
• Helger Lipmaa
• Louis Granboulan
• Vincent Rijmen (Rijndael)
• David Hearn

I would also like to thank the Intel Corporation for
providing support for this work by providing a copy
of their VTune™ performance tuning application that
proved invaluable in the optimisation of the author’s
implementations of the AES candidate algorithms.

