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Abstract

The purpose of this lecture note is to introduce lattice based cryptography, which is
thought to be a cryptosystem of post-quantum age. We have tried to give as many details
possible specially for novice on the subject. Something may be trivial to an expert but
not to a novice.

Many fundamental problems about lattice are thought to be hard even against quan-
tum computer, compared to factorization problem which can be solved easily with quan-
tum computer, via the celebrated Shor factorization quantum algorithm. The first part of
our presentation is based on slides of Christ Peikert 2013 Bonn lecture (crypt@b-it2013).
We, more or less, give somewhat detailed explanation of Professor Peikert’s lecture slides.
We unfortunately could not attend his Bonn class. We are afraid that there are many
mistakes in this note; if any, they are due to our misunderstanding of the material. Part
II of our lecture note is on ring LWE, based on the paper “A tool-kit for Ring-LWE
Cryptography” by Lyubashevsky, Peikert and Regev. Part III is about multilinear maps
together with cryptanalysis of GGH map due to Hu and Jia. Our presentation follows
professor Steinfeld’s lecture slides on GGHLite, and the paper by Yupu Hu and Huiwen
Jia. When you read this lecture note, the corresponding original paper should be ac-
companied. We thank professor Jung Hee Cheon for introducing the subject and asking
Dong Pyo Chi to give a lecture on the subject at the department of mathematics in
Seoul National University. We also thank Hyeongkwan Kim for many helps, especially
many corrections and improvements of the manuscript during the 2015 Summer session
at UNIST. We also thank the students who took the classes at SNU and UNIST. The
lecture was given by a novice for novice, so many mistakes are unavoidable. If the reader
lets us know any errors, we will very much appreciate it.
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Chapter 1

Mathematical and Computational
Background

1.1 Mathematical Background

In Part I, we use the notations in [P13].

1.1.1 Definitions

Lattice

A lattice L of Rn is by definition a discrete subgroup of Rn. In this note we only deal
with full-rank lattice, i.e., L spans Rn with real coefficients. Moreover, we consider only
integer lattices, i.e., L ⊆ Zn.

Remark 1.1.1. Z +
√
2Z is not a lattice. Note that when α is irrational, nαmod 1 is

uniformly dense in S1 = [0, 1]/0∼ 1 (Weyl theorem).

Bases

A basis of L is an ordered set B = (b1,b2, . . . ,bn) such that

L = L(B) = B · Zn =

{
n∑
i=1

cibi : ci ∈ Z

}
. (1.1)

Note that by convention, bi are column vectors and B · k = k1b1 + · · · + knbn, where k
is a column vector.

Fundamental parallelepiped of basis B is

P (B) = B ·
[
−1

2
,
1

2

)n
(1.2)

=

{
n∑
i=1

αibi : −
1

2
≤ αi <

1

2

}
. (1.3)

Note that P (B) depends not only on lattice but also on the choice of basis B. A “good”
basis of L gives rather a square-like parallelepiped, while a ‘bad’ basis gives a very thin
parallelepiped. It is trivial to see the following lemma.
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Lemma 1.1.2.
Rn =

⋃
v∈L

(v + P (B)), (1.4)

that is, parallel translation by lattice vectors of parallelepiped covers Rn without overlap.

Proof. For any p ∈ Rn,

p =
∑
i

xibi (1.5)

=
∑
i

dxicbi +
∑
i

(xi − dxic)bi, (1.6)

where dac means rounding off. For example, d2.7c = 3, d2.5c = 3, and d2.1c = 2.
Therefore,

−1

2
≤ a− dac < 1

2
. (1.7)

Hence,
∑
i

dxicbi ∈ L and
∑
i

(xi − dxic)bi ∈ P (B). This shows that Rn =
⋃

v∈L(v +

P (B)).
If (v1 + P (B)) ∩ (v2 + P (B)) 6= ∅ for some v1 6= v2 ∈ L, then v1 + α = v2 + β for

some α, β ∈ P (B), so v1 − v2 = β − α. Since v1 − v2 is a Z-linear combination of bi
while β − α is a (−1, 1)-linear combination of bi, so v1 − v2 = 0 = β − α.

BU is also basis for any U ∈ GL(n : Z), i.e., U is an n × n integer matrix with
determinant ±1. Note that, for example,(

1 1023

0 1

)
∈ GL(2 : Z). (1.8)

Coset and Determinant

It is much better to think a coset element of Zn/L concretely (note that we assumed
L ⊆ Zn), as a subset v + L, i.e. a shift of the lattice L, where v ∈ Zn represents a coset
of Zn/L.

Lemma 1.1.3. Each coset of L has a unique representative in a parallelepiped P (B),
because

⋃
v∈L

(v + P (B)) covers Rn without overlap.

Proof. Let v ∈ Zn be a representative of a coset v + L. Since
⋃
w∈L

(w + P (B)) covers

Rn without any overlap, there exists a unique w ∈ L such that v ∈ (w + P (B)). Then
v −w ∈ P (B), and v represents the same coset, i.e.,

v + L = (v −w) + L, (1.9)

so v−w is a representative of the coset v+L in P (B). Moreover, such a representative
is unique, since if v1,v2 ∈ P (B) and

v1 + L = v2 + L, (1.10)

2



where

v1 =
∑

c1jbj, −1

2
≤ c1j <

1

2
, (1.11)

v2 =
∑

c2jbj, −1

2
≤ c2j <

1

2
, (1.12)

then
v1 − v2 =

∑
(c1j − c2j)bj ∈ L, (1.13)

i.e., c1j − c2j ∈ Z for all j. Note that if −1
2
≤ a < 1

2
and −1

2
≤ b < 1

2
, then then

−1 � a− b � 1. Hence, c1j − c2j = 0 for j = 1, 2, . . . , n.

By definition,
det(L) := |Zn/L| = | detB| = vol(P (B)) (1.14)

for any basis B of L.

Lemma 1.1.4. |Zn/L| = vol(P (B)).

Proof. Note the following:

• L+ P (B) covers Rn without overlap.

• Zn + · covers Rn without overlap, where · means the half closed unit cube[
−1

2
, 1
2

)n
.

Thus,

L+ P (B) = Rn (1.15)

= Zn + · (1.16)

=
⋃

c ∈ Zn/L

(c+ L+ · ). (1.17)

It follows that |Zn/L| | · | = |P (B)|, so |Zn/L| = vol(P (B)).

Successive Minima

Successive minima of linearly independent vectors are defined as follows:

• λ1(L) := min06=v∈L ‖v‖ = minx 6=y∈L ‖x− y‖

• λi(L) := min {r : L contains i linearly independent vectors of length ≤ r} .

Then λ1(L) ≤ λ2(L) ≤ · · · ≤ λn(L). Let v1,v2, . . . ,vn be corresponding lattice elements.
Note that {v1,v2, . . . ,vn} need not be a basis of L.

Example 1.1.1. Let L ⊂ Zn be spanned by 2e1, . . . , 2en, (1, 1, . . . , 1), where n > 4.
Then v = (v1, . . . , vn) ∈ L if and only if v1 = v2 = · · · = vn mod 2. Then

λ1(L) = · · · = λn(L) = 2. (1.18)

But {2e1, . . . , 2en} is not a basis of L. (1, 1, . . . , 1) or its variation should be an element
of any basis of L.
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1.1.2 Two simple bounds on the minimum distance

Gram-Schmidt Orthogonalization and Lower Bounding λ1

The Gram-Schmidt orthogonalization B̃ of a basis B of L is given by

B = QR (1.19)

= Q

 ‖b̃1‖ ∗
. . .

0 ‖b̃n‖

 (1.20)

= B̃

 1 ∗
. . .

0 1

 , (1.21)

where

B̃ = Q

 ‖b̃1‖ 0
. . .

0 ‖b̃n‖

 ,

and Q is an orthonormal basis reduced from B̃, and R is a representation of B with
respect to this basis.

Lemma 1.1.5. P (B̃) = B̃ ·
[
−1

2
, 1
2

)n
is a fundamental domain of L. That is, L + P (B̃)

covers Rn without overlap.

Proof. Since vol(P (B̃)) = vol(P (B)), it suffices to show that there is no overlap. Assume
there is a overlap, i.e.,

Bx+ B̃α = By + B̃β (1.22)

for some x,y ∈ Zn and ~α, ~β ∈
[
−1

2
, 1
2

)n
. Then B(x− y) = B̃(~β − ~α). Letting z = x− y,

B̃

 1 ∗
. . .

0 1

 z = B̃(~β − ~α), (1.23)

so  1 ∗
. . .

0 1

 z = (~β − ~α). (1.24)

Note that z is an integer vector and

−1 � βi − αi � 1. (1.25)

From the equality (1.24),

zn = βn − αn ∴ zn = 0→ αn = βn (1.26)

zn−1 + ∗zn = βn−1 − αn−1 (1.27)

zn−1 = βn−1 − αn−1 ∴ zn−1 = 0→ αn−1 = βn−1 (1.28)

· · ·
∴ z1 = 0 (1.29)

i.e., x = y. (1.30)

4



It is easy to see that λ1(L) ≥ min
i
‖b̃i‖ from Bc = Q(Rc) for c ∈ Zn.

Upper Bounding λ1: Minkowski’s Theorem

Theorem 1.1.6 (Minkowski Theorem 1). Any convex centrally symmetric body S of
volume > 2n det(L) contains a nonzero lattice point.

Proof. Let S ′ = 1
2
S, so vol(S ′) > det(L). Then there exist x 6= y ∈ S ′ such that

x− y ∈ L, since for some v1 6= v2 ∈ L,

(v1 + S ′)
⋂

(v2 + S ′) 6= φ (1.31)

z = v1 + x = v2 + y, x,y ∈ S ′ (1.32)

x− y = v2 − v1 6= 0 ∈ L. (1.33)

Now 2x,−2y ∈ S by the definition of S ′, so

x− y =
1

2
(2x) +

1

2
(−2y) ∈ S

by the convexity of S.

Corollary 1.1.7.
λ1(L) ≤

√
n(detL)

1
n . (1.34)

Proof. We give a proof of the corollary using the following two facts:

• A ball of radius >
√
n(detL) 1

n is convex and centrally symmetric.

• B(0,
√
n(detL) 1

n ) ⊃ a cube of side length 2(detL) 1
n , since

dist ((1, . . . , 1), (0, . . . , 0)) =
√
n.

It follows that
vol(B(0,

√
n(detL)

1
n )) > 2n detL.

Remark 1.1.8. We could obtain a more refined inequality if we use the exact formula
for vol(B(0, R)). Choose R such that vol(B(0, R)) = 2n detL. Then λ1(L) ≤ R.

Theorem 1.1.9 (Minkowski Theorem 2). (
∏n

i=1 λi(L))
1
n ≤
√
n(detL) 1

n .

Proof. We may assume ‖bi‖ = λi(L) for i = 1, . . . , n, and consider a lattice generated by
b1, . . . ,bn, possibly a sublattice of L.

T :=

y ∈ Rn :
n∑
i=1


〈
y, b̃i

〉
‖b̃i‖λi

2

< 1

 . (1.35)

Claim: The ellipsoid T does not contain any nonzero lattice point.
Let 0 6= y ∈ L, and 1 ≤ k ≤ n maximal such that

λk+1(L) 	 ‖y‖ ≥ λk(L). (1.36)

5



We claim y ∈ span{b1, . . . ,bk} = span{b̃1, . . . , b̃k}. If not, b1, . . . ,bk,y are k+1 linearly
independent and their norms are less than λk+1, a contradiction. Hence,

n∑
i=1


〈
y, b̃i

〉
‖b̃i‖λi

2

=
k∑
i=1


〈
y, b̃i

〉
‖b̃i‖λi

2

(1.37)

≥
k∑
i=1

1

λ2k


〈
y, b̃i

〉
‖b̃i‖

2

(1.38)

=
‖y‖2

λ2k
≥ 1, (1.39)

so y /∈ T , i.e., T does not contain any nonzero lattice vector. Hence,

2n det(L) ≥ vol(T ) =

(
n∏
i=1

λi

)
vol(B(0 : 1)) ≥

(
n∏
i=1

λi

)(
2√
n

)n
, (1.40)

so (
n∏
i=1

λi

) 1
n

≤
√
n(detL)

1
n . (1.41)

1.2 Computational Background

1.2.1 Hard problems

Shortest Vector Problem (SVP)

• SV Pγ: Given a basis B of L, find nonzero v ∈ L such that ‖v‖ ≤ γλ1(L).
There exists an exact algorithm for finding a nonzero minimum vector in time 2O(n),
polynomial time algorithm for gap 2n, but no quantum algorithm with exponential
boost.

• GapSV Pγ: Given a basis B of L and a real d, decide between λ1(L) ≤ d and
λ1(L) > γd.

Note that GapSV Pγ ≤ SV Pγ, i.e., GapSV Pγ reduces to SV Pγ. (SV Pγ → find v 6= 0 ∈ L
such that λ1(L) ≤ ‖v‖ ≤ γλ1(L).) If ‖v‖ ≤ γd, then λ1 ≤ γd. Hence, λ1 < d (because
either λ1 ≤ d or λ1 > γd). If ‖v‖ > γd, then γd < ‖v‖ ≤ γλ1, so d < λ1, hence λ1 > γd.)
But the reverse direction is open.
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LLL (Lenstra-Lenstra-Lovaz) algorithm

B = (b1, . . . ,bn) is a δ − LLL reduced basis if

(i) For 1 ≤ j < i ≤ n, we have |µi,j| ≤ 1
2
.

(ii) For 1 ≤ i < n, we have

δ‖b̃i‖2 ≤ ‖µi+1,ib̃i + b̃i+1‖2 = |µi+1,i|2‖b̃i‖2 + ‖b̃i+1‖2, (1.42)

where

µi,j =

〈
bi, b̃j

〉
‖b̃j‖2

, (1.43)

b̃i = bi −
i−1∑
j=1

µi,jb̃j. (1.44)

B has the following form with respect to the orthonormal basis
‖b̃1‖ µ2,1‖b̃1‖ µ3,1‖b̃1‖ ∗ ≤ 1

2
‖b̃1‖

‖b̃2‖ µ3,2‖b̃1‖ ∗ ≤ 1
2
‖b̃2‖

. . .
...

≤ 1
2
‖ ˜bn−1‖
‖b̃n‖

 (1.45)

In particular, if 1 ≥ δ > 1
4
, then

‖b̃i+1‖2 ≥
(
δ − 1

4

)
‖b̃i‖2. (1.46)

Hence,
‖b1‖ = ‖b̃1‖ ≤ 2(n−1)/2min ‖b̃i‖ ≤ 2(n−1)/2λ1(L).

(We choose δ = 3
4
.)
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LLL-algorithm

• Input: Lattice basis b1, . . . ,bn ∈ Zn.

• Output: δ-LLL reduced basis of L.

• Start: compute the Gram-Schmidt Orthogonalization b̃1, b̃2, . . . , b̃n.

• Reduction Step:
for i = 2 to n do

for j = i− 1 to 1 do

bi ← bi − cijbj, where cij =

⌈ 〈
bi,b̃j

〉
〈
b̃j ·b̃j

〉⌋.
• Swap Step:
If ∃ i such that δ‖b̃i‖2 > ‖µi+1,ib̃i + b̃i+1‖2
bi ↔ bi+1

goto start.

• Output: b1, . . . ,bn.

Shortest Independent Vectors Problem (SIV Pγ)

Given a basis B, find linearly independent vectors v1, . . . ,vn ∈ L such that ‖vi‖ ≤
γλn(L).

Bounded-Distance Decoding (BDD)

Given a basis B, ~t ∈ Rn, and real d < λ1/2 such that dist(~t,L) ≤ d, find the unique
v ∈ L closest to ~t. BDD is equivalent to finding e ∈ ~t+ L such that ‖e‖ ≤ d.

Algorithms for BDD

1. Babai’s Round off algorithm for BDD
Using a good basis B,

~t =
∑

αibi → e :=
∑

(αi − dαic)bi. (1.47)

It works if Ball(d) ⊆ P (B). Hence, d ≤ min‖b⊥
i ‖/2, where b⊥

i is the orthogonal
component of bi to the hyperplane span{b1, · · · , b̂i, · · · ,bn}.

2. Babai’s nearest plane algorithm for BDD
Output e = ~t mod B̃, where e ∈ P (B̃).
It works if Ball(d) ⊆ P (B̃), where B̃ is the Gram-Schmidt Orthogonalization of B
as before,

i.e., d ≤ min
i
‖b̃i‖/2. (1.48)

Note that P (B̃) is also a fundamental domain of the lattice L.
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Chapter 2

Short Integer Solution and Learning
With Errors

2.1 Hard problems

2.1.1 Short Integer Solution

Short Integer Solution (SIS)

Znq := n-dimensional vectors modulo q. Given ~a1, . . . , ~am ∈ Znq , find nontrivial and small
z1, . . . , zm ∈ Z such that

z1 ~a1 + · · ·+ zm ~am = 0 (2.1)

in Znq , i.e.,
Az = 0 mod q, (2.2)

where A = (~a1, . . . ,~am). This is finding a short vector in the lattice

L(A)⊥ := ker

(
Zm

A∈Zn×m
q

z 7→Az
// Znq

)
= {x ∈ Zm : Ax = u mod q}.

One-way Hash Function

Set m > n log q. Define fA : {0, 1}m → Znq as

fA(x) = Ax. (2.3)

Then fA covers Zn
q almost uniformly. (Note that since m > n log q, the number of

elements in the domain, 2m, is much larger than the number of elements in the range,
qn.)

We say collision x,x′ ∈ {0, 1}m when Ax = Ax′.

• A = (~a1, . . . , ~am) ∈ Zn×mq defines a q-ary lattice

L⊥(A) = {z ∈ Zm : Az = 0 mod q}.

• Hence, SIS is SVP on L⊥(A).

9



• A syndrome u ∈ Znq defines a coset

L⊥
u (A) = {x ∈ Zm : Ax = u mod q}

of L⊥(A).

Remark 2.1.1. We are assuming that A has n-linearly independent columns. Hence,
A : Zm → Znq is onto, so |Zm/L⊥(A)| = qn, i.e., detL⊥(A) = qn.

Worst-Case / Average-Case reduction

Finding a short nonzero z ∈ L⊥(A) for uniformly random A ∈ Zn×mq , where m ≈ n ln q
⇒ Solving GapSV Pβ√n, SIV Pβ√n on any n-dimensional lattice.

Algorithm for reduction

Repeat m-times.
Pick a random lattice point vi ∈ L, where L is an n-dimensional lattice.
Gaussian sample a point in 1

q
L around the lattice point vi ∈ L.

Hence, each sampled point can be written as vi +
1
q
B~ai, where 1

q
B~ai is short.

Give the m Znq samples ~a1, . . . , ~am to SIS oracle. Note that

A = (~a1, . . . ,~an) ∈ Zn×mq

is uniform. We subdivided the sides of the given lattice by “q”. So each lattice domain
of L has qn subpoints inside.

SIS oracle outputs z1, . . . , zm ∈ {−1, 0, 1} such that

z1 ~a1 + · · ·+ zm ~am = 0 (mod q). (2.4)

Therefore,
∑
zi(vi +

1
q
B~ai) is a lattice point of the given lattice L. Hence,

1

q
B(z1 ~a1 + · · ·+ zm ~am) (2.5)

is a short lattice vector in L since it is the sum of short vectors 1
q
B~ai.

2.1.2 Learning With Errors

Learning With Errors (LWE)

• Search LWE: Find s ∈ Znq given noisy random inner products

~a1 ← Znq , b1 = 〈s, ~a1〉+ e1 (2.6)

~a2 ← Znq , b2 = 〈s, ~a2〉+ e2 (2.7)

...

where ei ← χ, χ Gaussian over Z with width αq. (αq >
√
n)

Znq × Zm
A∈Zn×m

q

(s,e) 7→stA+e
// Zmq

• Decision LWE: Distinguish (A, bt = stA + et) from uniform (A, bt), where A =
(~a1, . . . , ~am).

Note that Search LWE ⇔ Decision LWE.

10



Lattice interpretation of LWE

L(A) := {z ∈ Zm : zt = stA mod q for some s ∈ Znq } = π−1(imA)

Zm

π
����

Znq
A

s 7→stA
// Zmq

Then, LWE ⇔ BDD on L(A). (Remark: From zt = stA+ e, we obtain zt by BDD, then
solve the simultaneous equation zt = stA mod q to obtain s.)

SIS versus LWE

• Regev: LWE ≥ GapSVP, SIVP quantumly. (Peikert et al. showed LWE ≥ GapSVP
classically. But, classical reduction LWE ≥ SVP, or LWE ≥ SIVP is unknown.)

• SIS ≥ LWE:
If we find short z such that Az = 0, then from bt = stA+ et, we find btz = 0+ etz;
if (A, bt) is LWE, then btZ is short; if (A, bt) is not LWE, then btz rather well
spread.

• SIS ≤ LWE quantumly.

Simple properties of LWE

1. Easy to check a candidate solution s′ ∈ Znq : test if b− 〈s′,~a〉 is small.
If s 6= s′, then b− 〈s′,~a〉 = 〈s− s′,~a〉+ e is well spread in Zq.

2. Shift the secret by any t ∈ Znq ,

(~a, b = 〈s,~a〉+ e)→ (~a, b′ = b+ 〈t,~a〉 = 〈s+ t,~a〉+ e). (2.8)

random ts → random self-reduction.
We obtain many new LWEs with essentially the same solutions. Hence, we can
boost success probabilities arbitrarily close to 1.

Proof of equivalence of Search/Decision of LWE.

Suppose thatD solves decision-LWE, i.e., it perfectly distinguish between (~a, b = 〈s,~a〉+e)
and uniform (~a, b). We want to solve search LWE; i.e., given pairs (~a, b), find s. To find
s1 ∈ Zq, it suffices to test whether s1 = 0 because we can shift s1 by 0, 1, . . . , q − 1, i.e.,
choose t = (0, 0, . . . , 0) or t = (1, 0, . . . , 0), t = (2, 0, . . . , 0), . . . , t = (q − 1, 0, . . . , 0). For
each (~a, b), choose r ← Zq. Invoke D on pairs (~a′ = ~a− (r, 0, . . . , 0), b). Since

b = 〈s,~a〉+ e

=
〈
s, ~a′ + (r, 0, . . . , 0)

〉
+ e

=
〈
s, ~a′

〉
+ s1r + e,

we see that if s1 = 0, then b =
〈
s, ~a′

〉
+ e is LWE, and if s1 6= 0, then b is uniform.
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Decision-LWE with ‘Short’ Secret

We may assume that the secret is short, i.e., drawn from the error distribution χn. In
this case, we say that our LWE is in Hermite Normal Form (HNF of LWE).

1. Draw samples to get (Ā, b̄t = stĀ+ ēt) for square invertible Ā.

2. Transform additional samples of LWE (~a, b = 〈s,~a〉+ e) to ~a′ = −Ā−1~a,

b′ = b+
〈
b̄, ~a′

〉
= 〈s,~a〉+ e+

〈
Āts+ ē, ~a′

〉
= 〈s,~a〉+

〈
Āts, ~a′

〉
+
〈
ē, ~a′

〉
+ e

= 〈s,~a〉+
〈
s, Ā(−Ā−1)~a

〉
+
〈
ē, ~a′

〉
+ e

=
〈
ē, ~a′

〉
+ e.

(~a′, b′) is LWE with secret ē. Then we obtain s from b̄t = stĀ+ ēt.

2.2 Cryptosystems

2.2.1 Public-Key Cryptosystem using LWE

(Due to Regev)
A← Zn×mq (i.e., uniformly random n×m matrix over Zq) open public.
s← Znq Alice secret.
Public key of Alice

bt = stA+ et. (2.9)

x← {0, 1}m Bob secret.
Bob sends to Alice

u = Ax, (2.10)

u′ = btx+ bit · q/2. (2.11)

Alice decodes u′ − stu ≈ bit · q/2.
Note that (A,bt) is LWE and (u,u′) uniformly random by left-over hash lemma when
m ≥ n log q.

2.2.2 Dual cryptosystem

A← Zn×mq open public as before.
Alice chooses a secret x← {0, 1}m.
Alice’s public key

u = Ax. (2.12)
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(by LHL, uniform if m ≥ n log q.)
Bob chooses a secret s← Znq .
Bob sends

bt = stA+ et, (2.13)

b′ = stu+ e′ + bit · q/2. (2.14)

Adding bit · q/2 does not change the uniformity of stA+ et.
Alice decodes b′ − btx ≈ bit · q/2.
Note that (A,u;b, b′) is a LWE pair.

2.2.3 More efficient Cryptosystem

A← Zn×nq open public.
Alice chooses a secret s← χn and an error e← χn.
Alice’s public key

ut = stA+ et. (2.15)

Bob chooses a secret r← χn, x← χ, and x, x′ ∈ χ.
Bob sends

b = Ar+ x (2.16)

b′ = utr+ x′ + bit · q/2. (2.17)

Alice decodes b′ − stb ≈ bit · q/2.
Note that (A,u;b, b′) is a Hermite normal form of LWE.
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Chapter 3

Discrete Gaussians and Applications

3.1 Discrete Gaussians and sampling

3.1.1 Discrete Gaussians

Gaussian sampling

Define

ρs(x) := exp

(
−π‖x‖

2

s2

)
. (3.1)

Note that ρs is rather flat if s is large, and steep if s is small.
Note that ∫

x∈Rn
ρs(x)dx = sn. (3.2)

Hence, vs := ρs
sn

is an n-dimensional Gaussian probability density. We define Fourier
Transform as

ĥ(w) =

∫
Rn

h(x)e−2πi〈x,w〉dx. (3.3)

Hence,

ρ̂s(y) =

∫
Rn

ρs(x)e
−2πix·ydx (3.4)

=

∫
Rn

e
−π

(
‖x‖2

s2
+2ix·y

)
dx (3.5)

=

∫
Rn

e−π
∑

i

(xi
s
+iyis

)2
e−π(‖y‖s)

2

dx (3.6)

= snρ 1
s
(y). (3.7)

Hence, if ρs(x) rather steep, then ρ̂s is rather flat, and vice versa.

Remark 3.1.1. ∫
R
e−πx

2

dx = 1, (3.8)∫
R
e−π

(
x
s

)2
dx = s. (3.9)
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Poisson summation formula

Let

f(x) : R→ C (3.10)

F (θ) :=
∑
n∈Z

f(θ + n) : S1 → C, (3.11)

where S1 = [0, 1]/0∼ 1. Then the Fourier series of F (θ) is

F (θ) =
∑
n∈Z

ane
2πinθ, (3.12)

where

an =

∫ 1

0

F (θ)e−2πinθdθ (3.13)

=

∫ 1

0

(∑
k

f(θ + k)

)
e−2πinθdθ (3.14)

=

∫ ∞

−∞
f(θ)e−2πinθdθ (3.15)

= f̂(n), (3.16)

i.e., F (θ) =
∑
f̂(n)e2πinθ.

In particular, we obtain Poisson Summation Formula

F (0) =
∑
n∈Z

f(n) =
∑
n∈Z

f̂(n). (3.17)

In general, for h : Rn → C,
ĥ(Zn) = h(Zn). (3.18)

Generalized Poisson summation formula

Let f : Rn → C.
f(L) = detL∗f̂(L∗), (3.19)

where L ⊂ Zn is a lattice and

L∗ = {x ∈ Rn : x · y ∈ Z, ∀y ∈ L} (3.20)

is called the dual lattice of L.

Proof. Let L = AZn for some n× n matrix A.

f(L) = (f ◦ A)(Zn) (3.21)

= ̂(f ◦ A)(Zn) (3.22)
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by Poisson summation formula. Let’s compute

f̂ ◦ A(y) =

∫
Rn

e−2πi〈x,y〉(f ◦ A)(x)dx (3.23)

putting Ax =: x′

=
1

detA

∫
Rn

e−2πi
〈
A−1x′,y

〉
f(x′)dx′ (3.24)

=
1

detA

∫
Rn

e
−2πi

〈
x′,A−1Ty

〉
f(x′)dx′ (3.25)

=
1

detA
· f̂(A−Ty). (3.26)

Hence,

f̂ ◦ A(Zn) =
1

detA
f̂(A−TZn) (3.27)

= detL∗f̂(L∗), (3.28)

because in general,

if L = L(B), B = (b1, . . . ,bn), (3.29)

then L∗ = L(D), D = (d1, . . . ,dn), (3.30)

where bi · dj = δij, i.e.,
BTD = I, (3.31)

i.e., L∗ = L(B−TZn). Note that detL∗ = (detL)−1.

Corollary 3.1.2. ρr(L+ c) ∈ rn detL∗(1± ε) if r ≥ ηε(L), i.e., |ρ 1
r
(L∗ \ 0)| ≤ ε, i.e., ρ 1

r

is very steep.

Proof.

ρr(L+ c) =
∑
x∈L

ρr(x+ c) (3.32)

=
∑
x∈L

ρr,−c(x) (3.33)

= detL∗
∑
y∈L∗

ρ̂r,−c(y) (3.34)

= rn detL∗
∑
y∈L∗

e2πi〈c,y〉ρ 1
r
(y) (3.35)

= rn detL∗(1± ε). (3.36)

Smoothing parameter [MR04]

ηε(L), defined above, is called the smoothing parameter, because if r ≥ ηε(L), then ρr is
rather flat, smooth, and ρr(L+c) is almost uniform with respect to c. More quantitatively.

• ηε(L) ≥
√
n/λ1(L

∗) where ε = 2−n (Micciancio and Regev [MR04]).
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• ∃ε ≤ 2e−πs
2
such that ρs(c+ Z) ∈

[
1± ε

1−ε

]
s for all c ∈ R. Just we compute (note

that ρs(c+ Z) ≤ ρs(Z))

2
∞∑
n=1

e−π(sn)
2

<
2e−πs

2

1− e−πs2
<

ε

1− ε
(3.37)

for some ε < 2e−πs
2
. (True if ε is sufficiently close to 2e−πs

2
.)

• The above example can be generalized to lattice L ⊂ Zn ⊂ Rn.
∃ε < 2ne−π(

s
M

)2 such that ρs(c+L) ∈ [1±ε]sn for all c ∈ Rn, whereM = max
i
‖b̃i‖.

Especially if s >
√
log nM , then ρs(c+ L) ∈ (1± ε) 1

poly(n)
.

Remark 3.1.3.

• ρs(x) = e−
π‖x‖2

s2 = ρs(x1) · · · ρs(xn)

• ρs(L(B)) ≤ ρs(L(B̃)) <
n∏
i=1

(
1 +

εi
1− εi

)
sn for some ε1, . . . , εn, where

εi < 2 exp

−π( s

‖B̃i‖

)2
 . (3.38)

ρs(L(B)) ≤ ρs(L(B̃)) follows from

B = Q

 ‖b̃1‖ ∗
. . .

0 ‖b̃n‖

 , (3.39)

where Q is orthogonal.

Discrete Gaussians

Definition 1. Discrete Gaussian distribution over coset c+ L is defined as

Dc+L,s(x) =
ρs(x)

ρs(c+ L)
(3.40)

for all x ∈ c+ L.

Note that if s is sufficiently large (e.g., s > ηε(L)), then the denominator is very close
to sn detL∗ (e.g., with ε = 2−n, s >

√
n/λ1(L∗)), and the numerator is the restriction of

ρs(x) on c+L. Hence, we only obtain exponentially small information about c+L when
sampled from Dc+L,s if s ∼

√
n/λ1(L∗).

Choose x ∈ Zn from DZn,s, where s > ηε(L). Reveal the coset x + L. Then every
coset c + L is almost equally likely, i.e., the distribution is almost uniform over Zn/L.
Given x ∈ c+ L, it has the conditional distribution Dc+L,s.

Let

A ← Zn×mq , i.e., uniformly (3.41)

x ← DZm,s (3.42)
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define fA(x) := Ax(=u) ∈ Znq . Then, inverting fA ⇔ decoding uniform syndrome u ⇔
solving SIS for A. (Solving Ax = u is equivalent to solving [A|u] [ x

−1 ] = 0.)

Conditional distribution when Ax = u is DL⊥
u (A),s, where

L⊥
u = {x ∈ Zn|Ax = u mod q}.

3.1.2 Sampling

Algorithms of Gaussian Sampling of DL⊥
u (A),s

(As remarked before, DL⊥
u (A),s sample does not reveal syndrome u if√

logmmax ‖b̃i‖ ≤ s,

where S = (b1, . . . ,bm) is a short enough basis of L⊥(A), since εi =
1

O(poly(m))
in this

case.)

Nearest plane algorithm with randomized rounding

Gaussian sample a hyperplane in the coset L⊥
u (A) which is parallel to span{s1, . . . , sm−1},

where S = {s1, . . . , sm} is a basis of L⊥(A). Then consider the Z span of s1, . . . , sm−1

displaced by the closest vector from the origin to the chosen hyperplane. Do Gaussian
sampling on this displaced (m − 1)-dimensional lattice. Iterate this process. Note that
ρs((c+ L)

⋂
plane) depends only on dist(0, plane), since ρs(x) depends only on ‖x‖.

Remark 3.1.4. Gaussian nearest plane algorithm for sampling DL⊥
u (A),s is not efficient

and inherently sequential. We need a more efficient Gaussian sampling.

Randomized Babai’s roundoff algorithm. [Bab85]

Babai’s roundoff algorithm for finding the representative of a coset in the fundamental
parallelepiped can be written as

c 7→ Sfrac(S−1c), (3.43)

where S = {s1, . . . , sm} is a basis of L⊥(A).

Naive randomized rounding: Note that frac(S−1c) ∈
[
−1

2
, 1
2

)m ⊂ Rm. Gaussian sam-
ple from frac(S−1c) + Zm, i.e., instead of the deterministic frac(S−1c), we could get
frac(S−1c) + ~p for some ~p ∈ Zm. Then apply S to obtain x. But then we have non-
spherical Gaussian distribution of x, because even though frac(S−1c) + ~p is spherical
Gaussian, when we apply S to frac(S−1c)+~p to obtain x, we have nonspherical discrete
Gaussian such that

Ex(xx
t) ≈ S · St, (3.44)

where S = (s1, . . . , sm) is a short basis of L⊥(A), i.e., it leaks some information about
short basis S.

Breakthrough: Gaussian correction
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Note that the sum of the Gaussian distribution is again Gaussian with the sum of the
covariances as its covariance. (The probability distribution of the sum of two random
variables X1 and X2 is

PX1+X2(y) =

∫
PX1(x)PX2(y − x)dx.

Hence, P̂X1+X2 = P̂X1P̂X2 . In particular, if PX1 and PX2 are Gaussian with covariances
s21 and s22, respectively, then PX1+X2 is Gaussian with covariance s21 + s22.)

1. Generate perturbation p with covariance
∑

2 = σ2I −
∑

1, where
∑

1 = SSt, and
σ > s1(S), the largest singular value of S.

2. Randomly round off c+ p to obtain a random sample

S · frac(S−1(c+ p)) + L⊥(A).

3. Then add −p.

3.2 Applications

3.2.1 Identity Based Encryption

Identity Based Encryption

• A: n×m matrix, master public key.

• u = H(Alice): hashed identity of Alice, public.

Master finds a Gaussian short element in f−1
A (u), i.e., x ← f−1

A (u) (Master has a short
basis of L⊥(A)), and give Alice x as her secret key.

I want to send a message bit to Alice so that only Alice can decode. Choose Gaussian
short s, e ∈ Znq , e′ ∈ Zq

bt := stA+ et (3.45)

b′ = stu+ e′ + bit · q
2

(3.46)

Alice decodes: b′ − btx ≈ bit · q
2
.

(Note that this protocol is just a little modification of dual LWE cryptosystem.)
It seems that it is required to have a lattice together with a short basis when we apply

SIS or LWE to cryptography. But it is not a simple job to generate a lattice together
with a short basis.

The following signature protocol is a typical application of a lattice together with a
short basis.

• pk = A, sk = short basis of L⊥(A).

• H : {0, 1}∗ → Znq random oracle.

• sign(msg): let u = H(msg), and output Gaussian x← f−1
A (u).

• verify(msg,x): check fA(x) = Ax = H(msg) and x is short enough.
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Chapter 4

Constructing Trapdoors and More
Applications

4.1 Strong trapdoor generation and inversion algo-

rithms

4.1.1 Methods

Step 1: Gadget G and Inversion Algorithms

Let q = 2k (It could be generalized to an arbitrary q). Define a 1 × k matrix g :=
[1 2 4 · · · 2k−1] ∈ Z1×k

q . Then the columns of

S =



2
−1 2

−1
. . .

2
−1 2


(4.1)

is a lattice basis of L⊥(g), and S̃ = 2Ik (Gram-Schmidt orthogonalization).
For q not a power of 2, let k = dlog(q)e so q < 2k. Let g = [1, 2, . . . , 2k−1] ∈ Z1×k

q as
before. Then the columns of

S =



2 q0
−1 2 q1

−1 q2
. . .

...
2 qk−2

−1 qk−1


∈ Zk×k (4.2)

is a short basis of L⊥(g), where q =
k−1∑
i=0

2iqi is the binary expansion of q. (Note that

detS = q.)

• Inversion of LWE with only one equation

gq = sg + e = [s+ e0, 2s+ e1, . . . , 2
k−1s+ ek−1] mod q, (4.3)
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where s ∈ Zq, small ei ∈ Z.
Get least significant bit from 2k−1s+ ek−1, i.e., write s = s0 + s12 + · · ·+ sk−12

k−1,
then

2k−1s+ ek−1 mod q = 2k−1s0 + ek−1. (4.4)

Hence, s0 = 0 if 2k−1s+ ek−1 is short and s0 = 1 if 2k−1s+ ek−1 is not short. Then
consider 2nd to the last, i.e.

2k−2s+ ek−2 = 2k−2(s0 + 2s1) + ek−1 mod q. (4.5)

We subtract 2k−1s0 to obtain 2k−1s1 + ek−2. Then we get s1 in the same way as
before. This method works exactly when every ei =

[
− q

4
, q
4

)
.

• Inversion of fg(x) = 〈g, x〉 = u.
For i ← 0, 1, . . . , k − 1, choose xi ← (2Z + u) by Gaussian sampling. Let u ←
(u− xi)/2 ∈ Z. Details are as follows. Note

〈g, x〉 = x0 + 2x1 + 22x2 + · · ·+ 2k−1xk−1 = u. (4.6)

Hence, x0 is even or odd according to u. x0 ← 2Z + u, Gaussian sampling from
2Z + u. Once we get x0, (u− x0)/2 = x1 + 2x2 + · · · . The same method works to
find x1, · · · .

Define

G = In ⊗ g =


· · · g · · ·

· · · g · · ·
. . .

· · · g · · ·

 ∈ Zn×nkq , (4.7)

where k =d log qe as before. Now f−1
G , g−1

G reduce to n parallel calls to f−1
g , g−1

g .

Also applies to HG for any invertible H ∈ Zn×nq by considering f−1
G ◦H

−1 or H−1 ◦ g−1
G .

Step 2: Randomize G to obtain uniformly random A

Consider n× (m̄+ nk) matrix [Ā|G] for uniform Ā ∈ Zn×m̄q . Then it is easy to solve SIS
and LWE for [Ā|G].

• SIS for [Ā|G] is f−1
[Ā|G]

(u) = x, where (Ā|G)x = u,X =

(
x1

x2

)
, x1 ∈ Zm̄, x2 ∈ Znk.

Āx1 +Gx2 = u. (4.8)

To obtain such x, choose small x1, then apply f−1
G to u− Āx1 to get x2.

• LWE for [Ā|G], st(Ā|G)+ et = (stĀ+ et1|stG+ et2) = (bt1|bt2). Apply g−1
G to bt2 to

obtain s, since
stG+ et2 = bt2. (4.9)

And confirm s satisfies stĀ+ e1 = bt1.
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To obtain random matrix A, choose short Gaussian R← Zm̄×ndlog qe and

A := (Ā|G)
(
I −R
0 I

)
(4.10)

= (Ā|G− ĀR). (4.11)

A is uniform if ĀR is uniform. If m̄ ≈ n log q, ĀR is uniform, since R → ĀR is
uniform from Zm̄×ndlog qe → Zn×ndlog qeq , and left over hash lemma applies if 2m̄ ≈ qn,
i.e., m̄ ≈ n log q. (Note that

(
I R
0 −R

)
is unimodular, hence the above construction is

just a base change.)
Now we have constructed uniformly random A = (Ā|G− ĀR).

Definition 2. R is a trapdoor for A with tag H ∈ Zn×nq , which is invertible, if A

(
R

I

)
=

HG.

Quality of R is
s1(R) = max

‖u‖=1
‖Ru‖. (4.12)

(maximal singular value)
From random matrix theory, we know

s1(R) ≈ (
√
#rows+

√
#colums)r (4.13)

for Gaussian entries with standard deviation r.

Remark 4.1.1. Let S ∈ Zw×w be any basis for L⊥(G). (w = nk)
A ∈ Zn×mq have trapdoor R ∈ Z(m−w)×w with tag H ∈ Zn×nq . Then L⊥(A) is generated
by the basis

SA =

(
I R
0 I

)(
I 0
W S

)
, (4.14)

where W ∈ Zw×m̄ is an arbitrary solution to

GW = −H−1A(I|0)T mod q. (4.15)

Note that both sides are n × m̄ matrices, and m = m̄ + w. Hence, (I|0) is an m̄ × m
matrix. Eq. (4.15) has many solutions since W has w× m̄ unknowns and the right hand
side gives n × m̄ conditions and G is a rank n matrix.. It is easy to check ASA = 0
mod q, and det(SA) = detS = qn = det(L⊥(A)). (We assume Zm 3 x → Ax ∈ Znq is
onto.) Let us consider the Gram-Schmidt Orthogonalization of SA,

S̃A = T̃B, (4.16)

where B =

(
I 0
W S

)
and T =

(
I R
0 I

)
. B̃ =

(
I 0

0 S̃

)
, hence ‖B̃‖ = ‖S̃‖.

Now we prove ‖T̃B‖ ≤ s1(T )‖B̃‖.
Let

B = QDU, TB = Q′D′U ′ (4.17)

by the Gram-Schmidt decomposition of B and TB, respectively, where Q is orthogonal,
D is positive diagonal, and U is upper triangular.

TQDU = Q′D′U ′ ⇒ T ′D = D′U ′′, (4.18)
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where T ′ = Q′−1TQ and U ′′ = U ′U−1. Then

‖T̃B‖ = ‖D′‖ ≤ ‖D′U ′′‖ = ‖T ′D‖ ≤ s1(T
′)‖B̃‖ = s1(T )‖B̃‖ = s1(T )‖S̃‖, (4.19)

since the ith row of D′U ′′ has the norm at least d′i,i, the i-th diagonal of D′.
Since

T =

(
I 0
0 I

)
+

(
0 R
0 0

)
and s1(T ) ≤ s1(R) + 1, it follows that

‖S̃A‖ ≤ (s1(R) + 1)‖S̃‖. (4.20)
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Suppose that A
(
R
I

)
= G.

• Given a LWE problem with coefficient matrix A,

bt = stA+ et, (4.21)

we can recover s from the LWE problem with coefficient matrix G,

bt
(
R

I

)
= stG+ et

(
R

I

)
. (4.22)

It works if each entry of et
(
R
I

)
is in

(
− q

4
, q
4

)
, i.e., ‖e‖ < q

4s1
(

R
I

) .
• Sampling Gaussian preimage.

Given u, sample z← f−1
G (u) and output x =

(
R
I

)
z ∈ f−1

A (u).
Then we have Ax = Gz = u as desired, i.e., we obtained an SIS solution x with
respect A from an SIS solution with respect to G.

But there is the problem as before that
(
R
I

)
z is nonspherical even though z is

spherical, i.e., it leaks R. This can be cured as before. The covariance of x =
(
R
I

)
z

is ∑
= Ex(x · xt) = Ez

((
R

I

)
z · zt

(
R

I

)t)
≈ s2RRt, (4.23)

when z spherical Gaussian with deviation s.

Choose s > s1(R) and let
∑

2 = s2I −RRt > 0.
Generate perturbation p with covariance

∑
2. Sample a spherical z such that

Gz = u − Ap. Output x = p +
(
R
I

)
z. This algorithm generates a spherical

discrete Gaussian over L⊥
u (A).

4.2 Applications

Efficient IBE

1. Choose A = (Ā| − ĀR). Let mpk = (A, u), msk = R (A has trapdoor R with tag
0).

2. map: id → invertible Hid ∈ Zn×nq

choose skid : x← f−1
Aid

(u) using the above algorithm, sampling Gaussian preimage,
where Aid = A+ (0|HidG) = (Ā|HidG− ĀR).

3. Encrypt to Aid, decrypt using skid as in dual public key cryptosystem.
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Part II

Introduction to Ring-LWE
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Chapter 5

Preliminaries for Ring-LWE
cryptography

5.1 Notations

In Part II, we use the notations in [LPR13].

• ∀ā ∈ R/Z, JāK ∈ R denotes the unique representative, where a ∈ (ā+Z)
⋂[
−1

2
, 1
2

)
.

• ∀ā ∈ Zq, JāK denotes the unique representative a ∈ (ā+ qZ)
⋂
[−q/2, q/2).

• [k] = {0, 1, . . . , k − 1}.

• Zm = Z/mZ.

• Z∗
m ⊂ Zm: the set of invertible elements mod m.

• |Z∗
m| = ϕ(m): Euler totient.

• H = {x ∈ CZ∗
m : xi = xm−i, ∀i ∈ Z∗

m}. Note that if (i,m) = 1 (relatively prime),
then (m− i,m) = 1 also.

• H ∼= R[n], n = ϕ(m).

• B = 1√
2

(
I
√
−1J

J −
√
−1I

)
unitary basis of H, where

I =


1

1
. . .

1

 , J =


1

1
...

1

 ,

1√
2
(ei + em−i) for i < m/2 and i ∈ Z∗

m,
√
−1√
2
(ei − em−i) for i >

m
2
and i ∈ Z∗

m. We

read B as a Z∗
m-by-[n] matrix.
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5.2 Gaussians and Subgaussian Random Variables

We follow [LPR13] as before, giving some details.

Definition 3. Random variable X over R is δ-subgaussian with parameter s > 0 if for
all t ∈ R

E[exp(2πtX)] ≤ exp(δ) · exp(πs2t2). (5.1)

Lemma 5.2.1. Pr(|X| ≥ α) ≤ 2 exp(δ − πα2/s2).

Proof. From the definition, Markov inequality1 says

Pr(X > α) ≤ exp(δ) · exp(πs2t2 − 2πtα) (5.2)

for any t. RHS becomes minimum at t = α
s2
, and its value is exp(δ) · exp

(
−πα2

s2

)
.

Similarly, Pr(X < −α) ≤ exp(δ) · exp(πs2t2 − 2πtα).

Example 5.2.1. If E(X) = 0 and |X| ≤ B, then X is 0-subgaussian with parameter
B
√
2π.

Proof. Let p(x) be a probability distribution of random variable X. Then

E(exp(2πtX)) =

∫ B

−B
e2πtxp(x)dx, (5.3)

where E(x) =
∫ B
−B xp(x)dx = 0 and

∫ B
−B p(x) = 1. Simplex method says that the max-

imum of
∫ B
−B exp(2πtx)p(x)dx occurs when p(x) is a boundary point of the simplex of

the probability space satisfying the given conditions, i.e., p(x) = (δB(x)+ δ−B(x))/2, and

its value is e2πtB+e−2πtB

2
= cosh(2πtB) ≤ exp(2π2B2t2). Hence, X is 0-subgaussian with

parameter B
√
2π.

Remark 5.2.2. We can prove ex + e−x ≤ 2ex
2/2 by series expansion.

Lemma 5.2.3. If the conditional probability Pr(Xi|X1, . . . , Xi−1) is δi-subgaussian with
parameter si for i = 1, . . . , k, then

∑
Xi is (

∑
δi)-subgaussian with parameter (

∑
s2i )

1/2.

Proof. We may assume k = 2.

E(exp 2πt(X1 +X2)) = EX1 (exp(2πtX1)EX2(exp 2πtX2|X1)) (5.4)

≤ exp(δ1 + δ2) exp(π(s
2
1 + s22)t

2). (5.5)

Lemma 5.2.4. Let X be δ-subgaussian with parameter s. Then for any t ∈
(
0, 1

2s2

)
,

E(exp(2πtX2)) ≤ 1 + 2 exp(δ) ·
(

1

2ts2
− 1

)−1

. (5.6)

1For any positive and increasing function f , E(f(X)) =
∫∞
−∞ f(x)p(x)dx ≥

∫∞
α

f(x)p(x)dx ≥
f(α)Pr(X > α), so Pr(X > α) ≤ E(f(X))/f(α).
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Proof. By Lemma 5.2.1,

exp(2πtr2)Pr(|X| > r) ≤ 2 exp(δ) exp(π(2t− 1/s2)r2), (5.7)

and since t < 1/2s2 by assumption, 2t− 1/s2 < 0, so

lim
r→∞

exp(2πtr2)Pr(|X| > r) = 0. (5.8)

Now let Pr(|X| > r) = f(r). Then

df = −(p(x) + p(−x))dx, (5.9)

where p(x) is the probability density, since f(r) =
∫∞
r
p(x)dx+

∫ −r
−∞ p(x)dx. Hence,

E(exp(2πtX2)) =

∫ ∞

0

e2πtr
2

(p(r) + p(−r))dr (5.10)

= −
∫ ∞

0

e2πtr
2

d(Pr(|X| ≥ r)) (5.11)

= 1 +

∫ ∞

0

d(e2πtr
2

)Pr(|X| ≥ r) (5.12)

(Since e2πtr
2
Pr(|X| > r) = 1 when r = 0, and by (5.8).)

= 1 +

∫ ∞

0

Pr(|X| > r)4πtr exp(2πtr2)dr (5.13)

≤ 1 + 8πt exp(δ)

∫ ∞

0

r exp(−πr2/s2 + 2πtr2)dr (5.14)

(Since t > 0 and by (5.7).)

= 1 + 2 exp(δ)

(
1

2ts2
− 1

)−1

(5.15)

≤ exp

(
2 exp(δ)

(
1

2ts2
− 1

)−1
)
. (5.16)

Lemma 5.2.5. If X1, . . . , Xk are random variables each of which is δ-subgaussian with
parameter s conditioned on any values of the previous ones, then for any r > k′s2/π
where k′ = 2k exp(δ), we have that

Pr
(∑

X2
i > r

)
≤ exp

(
k′
(
2
( πr
k′s2

)1/2
− πr

k′s2
− 1

))
. (5.17)

Proof. From the previous lemma,

E
(
exp

(
2πt

∑
X2
i

))
≤ exp

(
2k exp(δ)

(
1

2ts2
− 1

)−1
)
, (5.18)

where 0 < t < 1/2s2. Hence,

Pr
(∑

X2
i > r

)
≤ exp

(
2k exp(δ)

(
1

2ts2
− 1

)−1

− 2πtr

)
. (5.19)
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Letting x = 2s2t and A = πr/(s2k′) (note that 0 < x < 1 and A > 1 by assumption), the
expression inside the exponent can be written as

2k exp(δ)

((
1

x
− 1

)−1

− Ax

)
. (5.20)

The minimum of ( 1
x
− 1)−1 − Ax is 2

√
A− A− 1, obtained at x = 1− 1√

A
.

Remark 5.2.6. Since 2α1/2 − α− 1 < −α/4 for all α ≥ 4,

Pr(
∑

X2
i > r) ≤ exp

(
− πr
4s2

)
(5.21)

for any r ≥ 4k′s2/π.

Definition 4. An Rn-valued random variable X is δ-subgaussian with parameter s if for
all unit vectors u ∈ Rn, 〈X,u〉 is δ-subgaussian with parameter s.

Note that if the coordinates of X are independent and all are δ-subgaussian with
parameter s, then X is nδ-subgaussian with the same parameter s. (If u = (u1, . . . , un)
and u21 + · · ·+ u2n = 1, then uiXi is δ-subgaussian with parameter |ui|s.)

Corollary 5.2.7. For i = 1, . . . , k, let Xi be random vectors in Rn, and Ai n × n
matrices. For δi, si ≥ 0, suppose that Xi is δi-subgaussian with parameter si condi-
tioned on any values of X1, . . . , Xi−1. Then

∑
AiXi is (

∑
δi)-subgaussian with parameter

λmax(
∑
s2iAiA

T
i )

1/2.

Proof. For any unit vector u ∈ Rn,〈∑
i

AiXi,u

〉
=
∑
i

〈AiXi,u〉 =
∑
i

〈
Xi, A

T
i u
〉
. (5.22)

Note that
〈
Xi, A

T
i u
〉
is δi-subgaussian with parameter si‖ATi u‖2 conditioned on any value

of the previous ones. Hence, the sum is (
∑
δi)-subgaussian with parameter(∑

s2i ‖ATi u‖22
)1/2

= ((uT
∑

s2iAiA
T
i )u)

1/2, (5.23)

whose maximum over all unit vectors u is λmax(
∑
s2iAiA

T
i )

1/2.

5.3 Lattice Background

Let Λ = L(B) = {
∑

j zjbj : zj ∈ Z} be a lattice inH generated by a basis B = {bj} ⊂ H.
We define dual lattice of Λ ⊂ H as Λ∨ = {y ∈ H : ∀x ∈ Λ, 〈x, ȳ〉 =

∑
xiyi ∈ Z}. Note

that this is actually the complex conjugates of the dual lattice as usually defined in
Cn. If Λ = L(B), where B = {bj} ⊂ H, the dual basis D = {dj} is characterized by〈
bi, d̄k

〉
= δjk, i.e., BD

T = I, i.e., D = BT−1.

Remark 5.3.1.
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1. ρs
sn

is a probability distribution on Rn. Hence, ρs|Λ
sn

detΛ is almost a probability

distribution on the lattice Λ. In particular, ρs(Λ)
sn

detΛ ≈ 1. More precisely, if
s ≥ ηε(Λ), where ηε(Λ) is the smoothing parameter defined earlier, then ρs(Λ+c) ∈
(1 + ε)sn det(Λ)−1 ([Reg05]).

2. For any n-dimensional lattice Λ and s > 0, a point sampled from DΛ,s =
ρs

ρs(Λ)
has

the Euclidean norm of at most s
√
n except with probability at most 2−2n ([Ban93]).

3. There is an efficient algorithm that samples to within negl(n) statistical distance of
DΛ+c,s given c ∈ H, a basisB of Λ, and a parameter s ≥ maxj ‖b̃j‖ω(

√
log n) ([GPV08]),

where we define the discrete Gaussian probability distribution over Λ + c as

DΛ+c,s(x) =
ρs(x)

ρ(Λ + c)
,∀x ∈ Λ + c. (5.24)

Note c is not the center ofDΛ+c,s, since we did not translateDΛ by c. In comparison,
c + DΛ is a c-centered distribution. Rather, we restricted ρs on Λ + c. So the
maximum probability of DΛ+c,s occurs at the nearest point to the origin.

5.3.1 Decoding

Λ ⊂ H: a fixed lattice.
x ∈ H: an unknown short vector.
We are given t such that t = x mod Λ. The goal is to recover x.

First attempt

A basis B = (b1, . . . ,bn) is known, t =
∑
cibi, and claim x =

∑
(ci − dcic)bi, i.e.,

Babai’s round off algorithm with respect to the basis B [Bab85].

Problem: If the basis B are not short, then
∑

(ci − dcic)bi not short in general. Hence,
in that case it couldn’t be x, because x is rather short. This algorithm succeeds when
|x| ≤ d, where the ball of radius d is in P (B).

Second attempt

Choose {vi}, a fixed set of n linearly independent and typically short vectors in the dual
lattice Λ∨ ({vi} need not be a basis of Λ∨). Denote the dual basis of {vi} by {b′

i}, and
let Λ′ ⊃ Λ be the super lattice generated by {b′

i}. Given an input t = x mod Λ, we
re-express t in modΛ′ with respect to the basis {b′

i} as
∑
cib

′
i, ci ∈ R/Z, and output∑

iJciKb
′
i ∈ H (Note that ci = 〈x, v̄i〉 mod 1). Hence, the output is equal to x if and

only if all the coefficients ai = 〈x, v̄i〉 in the expansion x =
∑
aib

′
i are in [−1

2
, 1
2
). (Note

that in general, b′
i ∈ Λ′ is small but not necessarily in Λ.) Hence, the second attempt

works when x ∈ P (B′). In general, the radius of the ball enclosed in P (B′) is larger
than the radius of the ball enclosed in P (B) with the given basis B = (b1, · · · ,bn) even
though Λ′ ⊃ Λ, because of the choice of {vi}.

Example 5.3.1. Define a lattice by

x = (x1, . . . , xn) ∈ Λ ⊂ Zn if
∑
i

xi = 0 mod 2.
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Then

Λ∨ = Zn ∪ (Zn +
1

2
(1, 1, . . . , 1)).

A basis of Λ is

{(1, 1, 0, . . . , 0), (1, 0, 1, 0, . . .), (1, 0, . . . , 0, 1), (2, 0, . . . , 0)},

and a basis of Λ∨ is

{(1, 0, . . . , 0), · · · , (0, . . . , 0, 1, 0), 1
2
(1, . . . , 1)}.

Since
{vi} = {(1, 0, . . . , 0), · · · , (0, . . . , 0, 1, 0), (0, . . . , 0, 1)},

Λ∨ ⊃ L({vi}). But ‖vi‖ = 1 for i = 1, . . . , n, and Λ′ = L({vi})∨ = Zn ⊃ Λ.

Discretization

Input Λ = L(B) with a good basis B = {bi}, x ∈ H, c ∈ H.
The goal is to discretize x to a point y ∈ Λ + c written y ← bxeΛ+c, so that y − x is
not too large. Hence, it suffices to find a relatively short offset vector f from the coset
Λ + c′ = Λ + (c − x) and output y = x + f . Note that bz + xeΛ+c and z + bxeΛ+c are
identically distributed for any z ∈ Λ if our algorithm depends only on the coset Λ + c′,
and not on the particular representative. In this case, it is called valid discretization.

Coordinate-wise randomized rounding:

Given a coset Λ + c′, represent c′ =
∑
aibi mod Λ for some coefficient ai ∈ [0, 1), then

randomly and independently choose fi from {ai − 1, ai} to have zero expectation, and
output f =

∑
fibi ∈ Λ + c′. Note that fi is 0-subgaussian with parameter

√
2π, hence f

is 0-subgaussian with parameter
√
2πs1(B), since |fi| ≤ 1 and

B


f1
f2
...
fn

 = f ,

where B = (b1, . . . ,bn). More directly, let u be a unit vector. 〈f ,u〉 =
∑
fi〈bi,u〉, and

fi〈bi,u〉 is 0-subgaussian with parameter
√
2π · |〈bi,u〉|. Hence, 〈f ,u〉 is 0-subgaussian

with parameter (
∑

2π|〈bi,u〉|2)1/2 ≤
√
2πs1(B).

5.4 Algebraic Number Theory Background

For a positive integer m, the mth cyclotomic number field is a field extension K = Q(ζm)
obtained by adjoining an element ζm of order m (primitive mth root of unity) to the
rationals. (Hence, Q(ζm) = Q[ζm].) The minimal polynomial of ζm is the mth cyclotomic
polynomial

Φm(X) =
∏
i∈Z∗

m

(X − ωim) ∈ Z[X], (5.25)

where ωm = e2πi/m.
Since n = |Z∗

m| = ϕ(m) := degree of Φm, we can viewK as a vector space of dimension
n over Q, which has a basis (ζjm)j∈[n] = (1, ζm, . . . , ζ

n−1
m ), called the power basis.
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Remark 5.4.1. Xm− 1 =
∏

d|mΦd(X), where d runs over all the positive divisors of m,
because an mth root of unity is a primitive dth root of unity for some divisor d of m, and
conversely a primitive dth root of unity is an mth root of unity if d divides m. (Another
remark: Decompose {0, 1, 2, . . . . ,m− 1} according to gcd(j,m).) In particular,

Φp(X) = 1 +X +X2 + · · ·+Xp−1

for any prime p, and by induction,

Φpr(X) =
Xpr − 1

Xpr−1 − 1
=
tp − 1

t− 1
= 1 + t+ · · ·+ tp−1, (5.26)

where t = Xpr−1
. In general, for any m,

Φm(X) = Φrad(m)(X
m/ rad(m)),

where rad(m) is the product of all distinct primes dividing m. If m′ divides m, we can

view K ′ = Q(ζm′) as a subfield of K = Q(ζm) by identifying ζm′ with ζ
m/m′
m . In general

Φpq(X) is not of simple form for distinct primes p and q, even though

ϕ(pq) = ϕ(p)ϕ(q) = (p− 1)(q − 1).

5.4.1 A key fact from algebraic number theory

Let m = Πlml be a prime power factorization i.e., ml are powers of distinct primes. Then

Q(ζm) ∼= ⊗Kl,

where Kl = Q(ζml
), via the correspondence

⊗
l al ↔

∏
l al, where on the right we embed

each al ∈ Kl into K as a subfield.

5.4.2 Canonical Embedding and Geometry

Let K = Q(ζm), and ωm ∈ C a fixed primitive mth root of unity, for example e2πi/m. For
each i ∈ Z∗

m, let
σi : K → C, ζm 7→ ωim.

Clearly σi = σ̄m−i, ∀i ∈ Z∗
m, because σiσm−i = 1, i.e., σi = (σm−i)

−1 = σ̄m−i. We define
the canonical embedding

σ : K → CZ∗
m , a 7→ σ(a) = (σi(a))i∈Z∗

m
.

Hence, σ(K) ⊂ H ⊂ CZ∗
m , where H is defined as before. Note that σ is a ring homomor-

phism from K to H, where multiplication and addition in H are both componentwise.
For a ∈ K, define ‖a‖2 = ‖σ(a)‖2 and ‖a‖∞ = maxi |σi(a)|. Then ‖ζ‖2 =

√
n and

‖ζ‖∞ = 1.
The map

Tr : K → Q, a 7→
∑
i∈Z∗

m

σi(a)

is called the trace. Note that

Tr(a · b) =
∑
i

σi(a)σi(b) =
〈
σ(a), σ(b)

〉
. (5.27)

35



The map

N : K → Q, a 7→
∏
i∈Z∗

m

σi(a)

is called the norm.
Note that Tr(a) and N(a) can also be thought of as the trace and the determinant of

the multiplication map σ(a) : CZ∗
m → CZ∗

m .
It is trivial to see that

N(ab) = N(a)N(b). (5.28)

With the canonical isomorphism K ∼=
⊗

lKl, we have

σ (⊗lal) = ⊗lσ(l)(al), (5.29)

TrK/Q (⊗lal) =
∏
l

TrKl/Q(al), (5.30)

N(a1 ⊗ · · · ⊗ ak) =
∏
l

N(al)
m/ml . (5.31)

5.4.3 The Ring of Integers and Its Ideals

Let R ⊂ K denote the set of all algebraic integers in a number field K, i.e., a ∈ R ⊂ K if
and only if it satisfies a monic integral polynomial. R is called the ring of integers. Note
that Tr,N : R → Z, and for cyclotomic number field K = Q(ζm), R = Z[ζm] ∼= Z[x]

Φm(x)
.

Hence, the power basis {ζjm}j∈[n] is also a Z-basis of R. We can view R ∼=
⊗

lRl as before.

Definition 5. Discriminant ∆K of K is ∆K = det(σ(R))2.

∆K =

 m∏
primep|m

p
1

p−1


n

≤ nn, (5.32)

for the mth cyclotomic number field and n = ϕ(m). ∆K ≤ nn follows from σ(R) =
span{σ(1), σ(ζ1m), . . . , σ(ζn−1

m )} and ‖σ(ζ im)‖ =
√
n. Note that

∆K = | det(σi(ζjm))|2 (5.33)

= | det(Tr(ζ imζjm))|, (5.34)

because
Tr(xixj) =

∑
k

σk(xixj) =
∑
k

σk(xi)σk(xj) = HTH,

where xi = ζ im and H = (σi(xj)).
I ⊂ K is called a fractional ideal if ∃d ∈ R such that dI ⊂ R is an integral ideal. It

is principal if I = uR for some u ∈ K. σ(I) ⊂ H called an ideal lattice. For an I ⊂ R,
define the norm as N(I) = |R/I| (= the number of cosets of I in R).

Note the following:

• Consider the lattices σ(R) ⊃ σ(I). Then N(I) = |σ(R)/σ(I)|, and σ(R) is the
Z-span of σ(1), σ(ζ1m), . . . , σ(ζ

n−1
m ). σ(〈a〉) is spanned by σ(a), σ(aζ1m), . . . , σ(aζ

n−1
m ).

The j-th coordinate σj(aζ
i
m) = σj(a)σj(ζ

i
m) is stretched by σj(a). Hence, N(〈a〉) =

|N(a)|.
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• N(aI) = N(I)N(〈a〉) because |R/aI| = |R
I
‖ I
aI
| = N(I)N(〈a〉) and | I

aI
| = | R

aR
|.

• N(IJ) = N(J)N(I)
(Case 1) I, J coprime
The Chinese remainder theorem says that R→ R/I⊕R/J is onto, and its kernel is
I ∩ J = IJ . (It is trivial to see IJ ⊂ I ∩ J . To show that I ∩ J ⊂ IJ , let y ∈ I ∩ J ;
then y = y · 1 = y(a + b) = ya(∈ IJ) + yb(∈ IJ), where a ∈ I and b ∈ J , since
I + J = R.) Remember that any element of IJ is of the form

a1b1 + · · ·+ albl for ai ∈ I, bj ∈ J. (5.35)

(Case 2) I = pm, J = pk for some prime ideal p.
Just note that R/p ≈ pn/pn+1. (Since R is Dedekind, pn/pn+1 is singly generated;
the isomorphism is given by multiplying the inverse of the generator.)
(Case 3) The general situation can be reduced to either (Case 1) or (Case 2).

The norm of a fractional ideal I is defined by N(I) := N(dI)/|N(d)|, where d ∈ R
is such that dI ⊆ R. This is well-defined. Note that det(σ(I)) = N(I)

√
∆K , since

detσ(R) =
√
∆K . (detσ(I) is the determinant of the lattice σ(I) ⊂ H ⊂ CZ∗

m .)

Lemma 5.4.2.
√
nN1/n(I) < λ1(I) ≤

√
nN1/n(I)

√
∆

1/n
K (5.36)

Proof. The upper bound is just Minkowski’s inequality. To prove the lower bound, let
v ∈ I such that ‖v‖ = λ1(I). Since 〈v〉 ⊂ I,

N(I) ≤ |N(v)| =

∣∣∣∣∣∏
i

σi(v)

∣∣∣∣∣ .
Note that ‖v‖2 =

∑
|σi(v)|2 by the definition of the metric on H. Also,(∏

i

|σi(v)|2
) 1

n

≤ 1

n

∑
i

|σi(v)|2. (5.37)

Hence,
√
nN(I)

1
n ≤ ‖v‖.

Remark 5.4.3. It follows that GapSV Pγ of ideal lattice is trivial if γ = poly(n).

5.4.4 Duality

For more details, see [Con09].

Definition 6. For a fractional ideal I in K, its dual is defined as

I∨ = {a ∈ K : Tr(aI) ⊆ Z}. (5.38)

Then σ(T∨) is a dual lattice (more precisely, a conjugate dual lattice) of σ(I), because
the inner product in H is defined by Tr.

Definition 7. For any Q-basis B = {bj} of K, define a dual basis B∨ = {b∨j }, where
Tr(bib

∨
j ) = δij.
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Note that R∨ ⊃ R from the definition of integral elements, because Tr(r) ∈ Z for all
r ∈ R.

Lemma 5.4.4. I∨ = I−1R∨ (R∨ is called the codifferent, (R∨)−1 the different).

Here I−1 := {x ∈ K : xI ⊂ R}. It is a fractional ideal.

Proof.

1) I−1R∨ ⊂ I∨: trivial from the definitions of I−1, R∨ and I∨.

2) Note that

N(I∨) =

∣∣∣∣ RI∨
∣∣∣∣ (5.39)

=

∣∣∣∣I∨R
∣∣∣∣−1

(5.40)

=

∣∣∣∣ I∨R∨

∣∣∣∣−1 ∣∣∣∣R∨

R

∣∣∣∣−1

(5.41)

=

∣∣∣∣RI
∣∣∣∣−1

∆−1
K (5.42)

= N(I)−1∆−1
K , (5.43)

because I ⊂ R ⊂ R∨ ⊂ I∨, | I
J
| = det σ(J)

det σ(I)
, | I∨

J∨ | = |JI |
−1, det I∨ = (det I)−1, and

det(σ(R)) =
√
∆K . Note also

N(I−1R∨) = N(I−1)N(R∨) = N(I)−1∆−1
K , (5.44)

because N(IJ) = N(I)N(J) holds for general fractional ideals I, J ⊂ K. Hence,
I∨ = I−1R∨.

Lemma 5.4.5. Let m be a power of prime p, m′ = m/p, and j an integer. Then

Tr(ζjm) =


ϕ(p)m′ if j = 0 mod m,
−m′ if j = 0 mod m′, j 6= 0 mod m,
0 otherwise.

(5.45)

Proof. Let d = gcd(j,m), m̃ = m/d. Then

Tr(ζjm) =
∑
α∈Z∗

m

(ζjm)
α =

∑
α∈Z∗

m

(ζdj
′

m )α, (5.46)

where j = dj′. If α = α′ mod (m/d = m̃), dj′α′ = dj′(α + m
d
k) = dj′α + j′mk. Hence,

ζdj
′α

m = ζdj
′α′

m . Therefore we have

Tr(ζjm) = d TrQ(ζm̃)(ζ
j/d
m̃ ), (5.47)

since we have d such α′s, and ζdm = ζm̃.
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Note that Z∗
m → Z∗

m̃ is d-fold onto map when m = dm̃. Also note that∑
i∈Z∗

m

ωim =

{
−1 if m = p,
0 if m = pk, k ≥ 2,

(5.48)

where ωm is a primitive mth root of unity, because

Φp(x) = 1 + x+ · · ·+ xp−1 (5.49)

Φm(x) = 1 + xm
′
+ · · ·+ xm

′(p−1) (5.50)

where m′ = pk−1. The lemma follows, because ζ
j/d
m̃ is a primitive m̃-th root of unity.

Lemma 5.4.6. Letm be a power of a prime p, m′ = m/p, and let g = 1−ζp ∈ R = Z[ζm].
Then R∨ =

〈
g
m

〉
, p/g ∈ R, and 〈g〉 and 〈p′〉 are coprime for every prime integer p′ 6= p.

Proof. We first show that g/m ∈ R∨. It suffices to show that Tr(ζjmg/m) is an integer
for every j ∈ [ϕ(m)]. Note that

ζjmg/m = (ζjm − ζj+m
′

m )/m. (5.51)

Tr(ζjm − ζj+m
′

m ) =


(φ(p) + 1)m′(= m) if j = 0 mod m,

(−m′)− (−m′) = 0 if j = 0 mod m′ and j 6= 0 mod m,

0 otherwise.

Note that in the second case, j ∈ [ϕ(m)], i.e., j = 0, · · · ,m′(p− 1)− 1, hence not only j
but also j +m satisfies j = 0 mod m′ and j 6= 0 mod m.

We therefore have

Tr(ζjmg/m) =

{
1 for j = 0,
0 otherwise.

(5.52)

To show R∨ = 〈g/m〉, we compute N(R∨) and N(g/m). Let m = pl.

N(R∨) = ∆−1
K (by Eq. (5.44)) (5.53)

=

(
p

1
p−1

pl

)pl−1(p−1)

=
pp

l−1

mϕ(m)
=

pm/p

mϕ(m)
(5.54)

(5.55)

N(m) = mϕ(m) (5.56)

(5.57)

N(g) = N(1− ζp) = [NQ(ζp)/Q(1− ζp)]m/p (5.58)

= [(1− ζp)(1− ζ2p ) · · · (1− ζp−1
p )]m/p (5.59)

= pm/p (5.60)

since
Φp(x) = (x− ζp) · · · (x− ζp−1

p ) = 1 + x+ · · ·+ xp−1,

and letting x = 1, we obtain (1− ζp)(1− ζ2p ) · · · (1− ζp−1
p ) = p. Hence

N(g/m) = N(g)N(m)−1 = pm/p ·m−ϕ(m) = N(R∨), (5.61)
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i.e., R∨ =
〈
g
m

〉
.

To prove p/g ∈ R, note that

(1− ζp)((p− 1) + (p− 2)ζp + · · ·+ 2ζp−3
p + ζp−2

p ) (5.62)

= (p− 1)− (ζp + ζ2p + · · ·+ ζp−1
p ) = p, (5.63)

p/g = p/(1− ζp) ∈ R. (5.64)

To show that 〈g〉 and 〈p′〉 are coprime for every prime integer p′ 6= p, note that N(〈g〉) =
pm/p, power of p. Since the norm of 〈g〉+ 〈p′〉 is a divisor of both a power of p and of p′,
it must be 1, implying that 〈g〉 and 〈p′〉 are coprime.

Remark 5.4.7. ∣∣∣∣ R

〈g〉+ 〈p′〉

∣∣∣∣ =

∣∣∣∣ R〈g〉
∣∣∣∣ ∣∣∣∣ 〈g〉
〈g〉+ 〈p′〉

∣∣∣∣ (5.65)

=

∣∣∣∣ R〈g〉
∣∣∣∣ ∣∣∣∣〈g〉+ 〈p′〉〈g〉

∣∣∣∣−1

(5.66)

Hence, it is a factor of
∣∣∣ R〈g〉 ∣∣∣ = pm/p, i.e., a power of p.

On the other hand, ∣∣∣∣ R

〈g〉+ 〈p′〉

∣∣∣∣ =

∣∣∣∣ R〈p′〉
∣∣∣∣ ∣∣∣∣ 〈p′〉
〈g〉+ 〈p′〉

∣∣∣∣ (5.67)

=

∣∣∣∣ R〈p′〉
∣∣∣∣ ∣∣∣∣〈g〉+ 〈p′〉〈p′〉

∣∣∣∣−1

, (5.68)

so it is a factor of
∣∣∣ R〈p′〉 ∣∣∣ = p′ϕ(m).

Definition 8. If m =
∏

lml is a product of powers of distinct primes, define g =∏
p(1 − ζp), where p is an odd prime factor of m. For R = Z[ζm] =

⊗
l Z[ζml

], let
t = m̂/g ∈ R, where m̂ = m/2 if m even, and m̂ = m otherwise.

Note that m̂/g ∈ R because (1− ζ2) = 2, so m̂/g = m/
∏

p(1− ζp) ∈ R, where p runs
over all primes dividing m.

Corollary 5.4.8. R∨ = 〈g/m̂〉 = 〈t−1〉, and 〈g〉 is coprime with 〈p′〉 for every prime
integer p′ except the odd primes dividing m.

Proof. Just note that R ∼=
⊗

lRl, where Rl = Z[ζml ] and g = ⊗gl, where gl = 1− ζpl .

R∨ = ⊗lR∨
l = ⊗l

gl
ml

Rl =
g

m̂
⊗l Rl. (5.69)

5.4.5 Prime Splitting and Chinese Remainder Theorem

For an integer prime p ∈ Z, the factorization of principal ideal 〈p〉 ⊂ R = Z[ζm] is as
follows. Let pd be a prime factor of m, let h = ϕ(pd), f = the multiplicative order of
p modulo m/pd. Then 〈p〉 = ph1 · · · phg , where g = n

hf
, n = ϕ(m), and pi are distinct
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primes in R, each of norm pf . (n = ϕ(m) = ϕ(pd)ϕ(m′), m′ = m/pd, pf = 1 mod m′.
Hence, f |ϕ(m′)(= n/h). Also, N(〈p〉) = pn and N(ph1 · · · phg) = pfgh = pn.) In particular,
if prime q = 1 mod m, so that q is larger than m, then h = 1 and f = 1, hence 〈q〉
splits completely into n distinct prime ideals of norm q in R. Notice that the field Zq
has a primitive mth root of unity, ωm, because the multiplicative subgroup of Zq is cyclic
with order q − 1, which is a multiple of m. Note that ωim ∈ Zq, where i ∈ Z∗

m, are also
distinct mth roots of unity. Then the prime ideal factors of 〈q〉 are qi = 〈q〉+ 〈ζm − ωim〉.
Hence, each quotient ring R/qi is isomorphic to Zq via the map ζm 7→ ωim, which confirms
N(qi) = q. In this case,

Z[ζm]
〈q〉

= Zq[ζm] =
Zq[x]
Φm(x)

=
⊕
i∈Z∗

m

Zq[x]
x− ωim

≈ (Zq)n.

(Note that Φm(x) =
∏

i∈Z∗
m
(x − ωim), where ωim ∈ Zq, and Zq [x]

x−ωi
m
≈ Zq for each i ∈ Z∗

m,

because Zq + ωimZq = Zq.)

5.5 Ring-LWE

The formal definition of the ring-LWE problem is provided and the worst-case hardness
result in [LPR10] is shown as follows.

Definition 9 (Ring-LWE Distribution). For a secret s ∈ R∨
q (or R∨) and a distribution

ψ over KR = K ⊗ R, which is isomorphic to H via σ, a sample from the ring-LWE
distribution, As,ψ, over Rq × (KR/qR

∨) is generated by choosing a ← Rq uniformly at
random, choosing e← ψ and outputting (a, b = a · s+ e mod qR∨).

Definition 10 (Ring-LWE, Average-Case Decision). The average-case decision version
of the ring-LWE problem, denoted R − DLWEq,ψ, is to distinguish with nonnegligible
advantage between independent samples from As,ψ, where s← R∨

q uniformly random, and
the same number of uniformly random and independent samples from Rq × (KR/qR

∨).

Theorem 5.5.1. LetK be themth cyclotomic number field having dimension n = ϕ(m),
and R its ring of integers. Let α = α(n) > 0 and let q = q(n) ≥ 2, q = 1 mod m be
a poly(n)-bounded prime such that αq ≥ ω(

√
log n). (Note that f = ω(g) if g = o(f).)

Then there is a polynomial-time quantum reduction from Õ(
√
n/α)-approximate SVIP

(or SVP) on ideal lattices in K to the problem of solving R − DLWEq,ψ given only l
samples, where ψ is the Gaussian distribution Dξq for ξ = α · (nl/ log(nl))1/4.

Lemma 5.5.2 (Discretization). Let p and q be positive coprime integers, and be a valid
discretization, defined earlier, to cosets of pR∨. Let w ∈ R∨

p and (a′, b′) ∈ Rq ×KR/qR
∨.

Output (a = pa′ mod qR, b) ∈ Rq × R∨
q , where b = bpb′ew+pR∨ mod qR∨. If (a′, b′) ∈

As,ψ, then (a, b) ∈ As,χ where the error distribution χ is bpψew+pR∨ . If (a′, b′) is uniformly
random, then so is (a, b).

We show that the following variant of ring-LWE is as hard as the original one, closely
following the technique of [ACPS09].

Lemma 5.5.3 (Normal form of R−LWE). Let p and q be positive coprime integers, be
a valid discretization to cosets of pR∨, and w ∈ R∨

p . If R − LWEq,ψ is hard given some
number l of samples, then so is the variant of R−LWEq,ψ in which the secret is sampled
from χ := bpψew+pR∨ , given l − 1 samples.
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Proof. Start by drawing one sample and apply discretization to obtain 0th sample (a0, b0).
Let us assume that the 0th sample (a0, b0) ∈ Rq × R∨

q is such that a0 is invertible i.e.,
a0 ∈ R∗

q . From l − 1 samples (ai, bi) ∈ Rq ×KR/qR
∨, (i = 1, . . . , l − 1), output

(a′i = −a−1
0 ai, b

′
i = bi + a′ib0) ∈ Rq ×KR/qR

∨. (5.70)

This is the same kind of reduction we used to obtain the normal form of standard LWE.
If (ai, bi) is uniform, so is (a′i, b

′
i). If (ai, bi) ∈ As,ψ, then for each i,

b′i = (ai · s+ ei)− a−1
0 ai(a0 · s+ e0) (5.71)

= a′ie0 + ei, (5.72)

where e0 is our secret. Once we find e0, we obtain s from b0 = a0 · s+ e0.

Remark 5.5.4. When R = Z[ζm], the fraction of invertible elements in Rq is at least
1/ poly(n, log q) (see the [LPR10]).

Note: As in Z, for prime ideal p of R, an elements a ∈ R is invertible modulo pr if
and only if a 6= 0 mod p. Hence, the fraction of noninvertible elements in R/pr is∣∣∣ R〈p〉∣∣∣−1

= 1/N(p).

The proof of Remark 5.5.4 goes as follows.
Let q = pl11 · · · plαα be a prime-power factorization of q. Then

R

〈q〉
=

⊕
prime p|q

R

〈plp〉
.

Note that the fraction of noninvertible elements in R〈
plp

〉 is equal to that of R
〈p〉 . Since

〈p〉 = ph1 · · · phg in R, where h = ϕ(pd), f the multiplicative order of p modulo m/pd, pd

the largest power of p that divides m, g = n/(hf), R = Z[ζm], n = ϕ(m), and N(pi) = pf .
Hence, ∏

prime p|q

(1− p−fp)
n

fpϕ(pdp ) ≥
∏

prime p|q

(1− p−fp)
n

ϕ(pdp ) . (5.73)

Since pfp = 1 mod (m/pdp), pfp ≥ m
pdp

+ 1, so

(1− p−fp)
n

ϕ(pdp ) = (1− p−fp)ϕ(
m

pdp
)

(5.74)

≥ (1− p−fp)
m

pdp (5.75)

≥ e−1, (5.76)

using (1 − 1
1+x

)x > e−1 when x > 0. Note that the number of primes diving m is less

than log2m. (∵ Let m = pl11 · · · p
lk
k , then log2m = l1 log2 p1 + · · · + lk log2 pk > k since

li ≥ 1, log2 pi > 1.) Hence, the above product restricted to p which divides both m and

q is greater than
(
1
e

)log2 m = 1
poly(m)

. If the prime p does not divide m, dp = 0. Hence,

in this case, we compute
∏

p|q,p-m

(1 − p−fp)n because ϕ(pdp) = 1. Since pfp are distinct for
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distinct p and pfp ≡ 1 modulo m, it is bounded below by

log2 q∏
k=1

(
1− 1

km+ 1

)n
≥

log2 q∏
k=1

e−n/km
(
∵ 1− 1

α + 1
≥ e−

1
α

)
(5.77)

≥
log2 q∏
k=1

e−1/k (∵ n = ϕ(m) < m) (5.78)

≥ e−1

log2 q∏
k=2

(
1− 1

k

)
(5.79)

= (e log2 q)
−1.

(
∵

1

2
· 2
3
· · · l − 1

l
=

1

l

)
(5.80)

Thus we have shown that the fraction of invertible elements is greater than 1
poly(n,log q)

.

We used the following fact:(
1 + x

x

)x
=

(
1 +

1

x

)x
↗ e↙

(
1 +

1

x

)x+1

Hence, (
1− 1

1 + x

)x
=

(
x

1 + x

)x
↘ e−1,

therefore 1− 1
1+x

> e−1/x for all x > 0.
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Chapter 6

Discrete Fourier Transform &
Chinese Remainder Transform

We follow the algebraic framework of [LPR13].

• ωm: a primitive mth root of unity.

• m: prime power.

• DFTm: Zm × Zm matrix whose (i, j)th entry is ωijm (i, j = 0, 1, · · · ,m− 1).

• CRTm: submatrix of DFTm obtained by restricting to the rows indexed by Z∗
m and

columns indexed by [ϕ(m)].

For any positive integer with prime factorization m =
∏

lml,

DFTm :=
⊗
l

DFTml
, CRTm :=

⊗
l

CRTml
. (6.1)

Remark 6.0.5. DFT is unitary up to scaling by
√
n, while CRT not unitary even up to

scaling.

Decomposition of DFTm when m is a prime power (Fast Fourier Transform
(FFT))

Let m′ = m/p. We reindex columns of the matrix by j ↔ (j0, j1) ∈ [p] × [m′] such that
j = m′j0 + j1 and rows of the matrix by i ↔ (i0, i1) ∈ [p] × [m′] such that i = pi1 + i0.
(Remark: Let m = pk and write n = αk−1 · · ·α1α0 in p-digit representation, i.e., n =
α0+pα1+ · · ·+pk−1αk−1. Then for n = αk−1αk−2 · · ·α1α0, j0 = αk−1, j1 = αk−2 · · ·α1α0,
i0 = α0, i1 = αk−1 · · ·α1.) Then we claim

DFTm = (I[p] ⊗DFTm′) · Tm · (DFTp ⊗ I[m′]), (6.2)

where Tm is a “diagonal” matrix having ωi0i1m in the ((i0, i1), (i0, i1))th diagonal entry.
Note that diagonal in this new setting is not diagonal in the standard convention. But
Tm is at least unitary. Also, the matrix multiplication is defined with respect to the new
column-row index system, i.e., (AB)

(j0,j1)
(i0,i1)

=
∑m′−1

β=0

∑p−1
α=0A

(α,β)
(i0,i1)

B
(j0,j1)
(α,β) .
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Proof. Let I[p] ⊗DFTm′ = A, Tm = B, and DFTp ⊗ I[m′] = C. Then it suffices to show
that

(DFTm)
(j0,j1)
(i0,i1)

= A
(i0,j1)
(i0,i1)

B
(i0,j1)
(i0,j1)

C
(j0,j1)
(i0,j1)

(6.3)

because of the definitions of A, B, C. Just note that

ωi1j1m′ ω
i0j1
m ωi0j0p = ωm

′i0j0+i0j1+pi1j1
m = ω(pi1+i0)(m′j0+j1)

m . (6.4)

Similarly, we have

CRTm = (IZ∗
p
⊗DFTm′)T̂m(CRTp ⊗ I[m′]). (6.5)

CRTm is the submatrix of DFTm restricted to the rows Z∗
p × [m′] and the columns

[ϕ(p)]× [m′], because Z∗
m
∼= Z∗

p × [m′] and ϕ(m) = ϕ(p) ·m′.

• Z∗
p × [m′]↔ i = pi1 + i0 ∈ Z∗

m since i0 = 1, · · · , p− 1, and i ∈ Z∗
m if and only if i is

not a multiple of p.

• [ϕ(p)]× [m′]↔ {0, . . . , (p− 2)m′ + (m′ − 1) = pm′ −m′ − 1 = ϕ(m)− 1}
((j0, j1)↔ j = m′j0 + j1, j0 = 0, · · · , p− 2 = ϕ(p)− 1)
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Chapter 7

Powerful basis

7.1 Powerful basis ~p of K = Q(ζm) and R = Z[ζm]
• For a prime power m, ~pT = (ζjm)j∈[ϕ(m)], a vector over R.

• For m with prime power factorization m =
∏
ml, ~p = ⊗l~pl.

• For I = (R∨)k ⊂ K of R∨ = 〈t−1〉, the powerful basis of I is t−t~p.

Remark 7.1.1. Note that for p(jl) = ⊗lζjlml
, we have, from ζml

= ζ
(m/ml)jl
m ,

p(jl) ↔
∏
l

ζ(m/ml)jl
m . (7.1)

For example, when m = 15, ζ = ζ15 for (j1, j2) ∈ [ϕ(3)]× [ϕ(5)]↔ ζ5j1+3j2
15 , [ϕ(3)] = {0, 1},

[ϕ(5) = {0, 1, 2, 3}], the powerful basis consists of

ζ0 ← (0, 0), ζ3 ← (0, 1), ζ5 ← (1, 0), ζ6 ← (0, 2), (7.2)

ζ8 ← (1, 1), ζ9 ← (0, 3), ζ11 ← (1, 2), ζ14 ← (1, 3), (7.3)

which are different from the power basis {ζ0, ζ1, ζ2, ζ3, ζ4, ζ5, ζ6, ζ7}.

Applying the canonical embedding σ, we obtain a Z∗
m-by-ϕ(m) matrix σ(ζ0m) σ(ζ1m) · · · σ(ζ

ϕ(m)−1
m )

 (7.4)

which is nothing but CRTm, i.e., σ(~p
T ) = CRTm when m is a prime power.

Claim: ‖pj‖∞ = 1 and ‖pj‖2 =
√
ϕ(m) =

√
n for all pj.

If m = pk,

~pT = (1, ζm, ζ
2
m, · · · , ζp

k−1(p−1)−1
m ), (7.5)
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and σ(~pT ) is a Z∗
m × [ϕ(m)] matrix such that

σ(~pT ) =


1 ωm · · ·
1 ω2

m
...

...
1
1

 = CRTm, (7.6)

because σ(ζm) =


ωm
...
ωim
...

, where i ∈ Z∗
m.

Remark 7.1.2. σ(~pT ) is not unitary even up to scaling because σ(pj)s are not orthogonal
to each other, which is same as saying that CRTm is not unitary. Remember that DFTm
is unitary up to scaling.

Lemma 7.1.3. The largest singular value of σ(~pT ) is s1(~p) =
√
m̂ and the smallest

singular value is sn(~p) =
√

m
rad(m)

.

Remark 7.1.4. m̂ = m/2 if m is even, otherwise m̂ = m. Note that the ratio of s1(~p) to√
ϕ(m) is just

√
m̂/ϕ(m) = (

∏
p

p
p−1

)1/2 = O(
√
log logm), where the product runs over

all odd primes dividing m. Note that

∏
p|m
prime

p

p− 1
≈ 1 +

∑
p|m
prime

1

p
≤ 1 +

log2 m∑
n=1

1

n
≈ 1 +

∫ log2 m

1

1

x
dx ≈ log(logm), (7.7)

and that (detR)
1
n = ∆

1
2ϕ(m)

K ≤
√
ϕ(m). Hence, ~p is a relatively good basis, since s1(~p)

‖pj‖ is

O(
√
log logm).

Proof. We may assume that m is a power of a prime p. Let m′ = m/p. Then

CRTm = (
√
m′Q)(CRTp ⊗ I[m′]) (7.8)

for some unitary Q, because DFTm′/
√
m′ is unitary and so is the T̂m. Hence, it suffices

to copute the singular values of CRTp. Note that

CRT ∗
pCRTp = (pI[ϕ(p)] − 1 · 1T ). (7.9)

In particular, CRTp is not unitary even up to scaling. To prove this, the first [ϕ(p)]

columns of DFTp is A :=

(
1 1 · · · 1

CRTp

)
. Then

A∗A =


1
1
... CRT ∗

p

1


(

1 1 · · · 1
CRTp

)
= pI[ϕ(p)], (7.10)
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because the columns of DFTp are orthogonal to each other and has length
√
p. Also note

that

A =

(
1 1 · · · 1

0

)
+

(
0 0 · · · 0

CRTp

)
. (7.11)

Then

pI[ϕ(p)] = A∗A = CRT ∗
pCRTp + 1 · 1T . (7.12)

The eigenvalues and the corresponding eigenvectors of (pI[ϕ(p)])− 1 · 1T are
p↔ (1,−1, 0, · · · , 0), · · · , p↔ (1, 0, · · · ,−1), (p− 2) times, and 1↔ (1, 1, · · · , 1).

7.2 Gram-Schmidt orthogonalization of CRTm

Lemma 7.2.1. Let m be a power of a prime p and m′ = m/p. Then

CRTm = Qm(
√
m′Dp ⊗ I[m′])(Up ⊗ I[m′]), (7.13)

whereQm is unitary,Dp is a real diagonal [ϕ(p)]-by-[ϕ(p)] matrix with
√

(p− 1)− j/(p− j)
in its j-th diagonal entry, and Up is an upper unitriangular [ϕ(p)]-by-[ϕ(p)] matrix with
−1/(p− i− 1) in its (i, j)th entry 0 ≤ i < j < ϕ(p).

Proof. We know that

CRTm =
√
m′Q′(CRTp ⊗ I[m′]) (7.14)

for some unitary Q′. Thus, it suffices to show that CRTp = QpDpUp for some unitary
Qp. We compute

G = CRT ∗
pCRTp = (pI[ϕ(p)] − 1 · 1T ). (7.15)

G has diagonal entries p − 1, and −1 elsewhere. From the uniqueness of Cholesky de-
composition of G, it suffices to show that G = UT

p D
2
pUp, where

Dp =


. . . 0√

p− 1− j/p− j
0

. . .

 , (7.16)

Up =


1 − 1

p−1
− 1
p−1

· · · − 1
p−1

0 1 − 1
p−2

· · · − 1
p−2

0 0 1
. . .

 . (7.17)
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Let us compute the ith (i ∈ [ϕ(p)]) diagonal entry in UT
p D

2
pUp, which is∑

j

(Up)ji(D
2
p)jj(Up)ji (7.18)

=
∑
j

(Up)
2
ji(D

2
p)jj, (7.19)

and because of triangularity of Up, we obtain

= p− 1− i

p− i
+

i−1∑
k=0

1

(p− k − 1)2

(
p− 1− k

p− k

)
(7.20)

= p− 1− i

p− i
+ p

i−1∑
k=0

1

(p− k)(p− k − 1)
(7.21)

= p− 1− i

p− i
+ p(T (p)− T (p− i)) (7.22)(

where T (k) :=
1

1 · 2
+

1

2 · 3
+ · · ·+ 1

(k − 1)k
= 1− 1

k

)
= p− 1− i

p− i
+ p(1− 1

p
− 1− 1

p− i
) (7.23)

= p− 1. (7.24)

Computation of the off-diagonal entries is more complicated, but can be done in essentially
the same way.
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Chapter 8

Chinese Remainder Basis and Fast
Ring Operation

• Note that σ(~pT ) = CRTm, hence if a = 〈~p, a〉, then σ(a) = CRTma.

• Now assume that q is a prime integer = 1 mod m. In this case,
R

〈q〉
=
⊕
i∈Z∗

m

R

〈qi〉
,

where qi = 〈q〉+ 〈ζm − ωim〉 and ωm is some fixed element of order m in Zq.

Definition 11. Chinese remainder (or CRT ) Zq-basis ~c of Rq is defined as follows:

• For a prime power m, ~c = (ci)i∈Z∗
m
, where ci = 1 mod qi, ci = 0 mod qj, j 6= i

(The existence of such ci is guaranteed by the Chinese Remainder Theorem).

• For m having prime-power factorization m =
∏

lml, define ~c = ⊗l~cl.

For any power I = (R∨)k of R∨ = 〈t−1〉, we define t−k~c as the CRT Zq-basis of Iq.
Note that the ring operation can be done componentwise if the elements are repre-

sented in the CRT basis, i.e., if a = 〈~c, a〉 and b = 〈~c,b〉 ∈ Rq, then the coefficient vector
of a · b with respect to the CRT basis is componentwise multiplication a� b over Zq by
the defining property of ~c. When m is a prime power, the CRT basis ~c and the powerful
basis ~p = (ζjm)i∈[ϕ(m)] are related by

~pT = ~cTCRTm, (8.1)

i.e., ζjm =
∑

i∈Z∗
m
ciω

ij
m. To show this identity, just evaluate both sides at qi. Then both

are ωijm. They are equal at all of qi, so they are the same. Hence, if a ∈ Rq has the

coefficient vector a ∈ Z
[ϕ(m)]
q in the powerful basis, i.e., a = 〈~p, a〉, then its coefficient

vector in the CRT basis is CRTma, i.e., a = 〈~c, CRTma〉.
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Chapter 9

Decoding Basis of R∨

Let τ be an automorphism of R that maps ζm to ζ−1
m = ζm−1

m . τ is called the conjugation

map since σ(τ(a)) = σ(a). For example, if ζm → e2πi/m, then ζ−1
m 7→ e−2πi/m = e2πi/m.

Note that τ(~p) is also a Z-basis of R.

Definition 12. The decoding basis of R∨ is ~d = τ(~p)∨, the dual of the conjugate of the
powerful basis ~p.

Remark 9.0.2. Since R ⊂ R∨ ⊂ KR and ~d is a basis of R∨, any a ∈ KR can be

represented in the decoding basis as a =
〈
~d, a
〉
for some real vector a. Then

aj = Tr(ad∨j ) = Tr(aτ(pj)) = 〈σ(a), σ(pj)〉 ⇐⇒ a = CRT ∗
mσ(a), (9.1)

because σ(pj) is the jth column of CRTm. Since ~d is the dual of τ(~p), which embeds as

σ(τ(~p)) = CRTm, we have σ(~dT ) = (CRT ∗
m)

−1.

Remark 9.0.3. If L = L(B), then L∨ = L(B−T ).

Corollary 9.0.4. The spectral norm of ~d is s1(~d) =
√

rad(m)/m.

Remark 9.0.5. s1(~d) can be as large as 1, which, unlike ~p, is much larger than

(detR∨)
1
n = ∆

− 1
2n

K ≈ 1√
n
,

which may be thought as the average length of a good basis. The decoding basis is
still good choice for discretizing a continuous ring-LWE error, because the input error
distribution needs to have Gaussian parameter of at least ω(

√
log n)(� 1) for provable

worst-case hardness. If ~d were defined as the dual of the power basis {1, ζm, · · · , ζϕ(m)−1
m },

then the spectral norm of ~d could be much larger: e.g., for m = 1155 = 3 · 5 · 7 · 11,
s1(~d) ≈ 22.6.

9.1 Relation to the Powerful Basis

Recall that both ~d and t−1~p are Z-bases of R∨. We have the following relation between
them.
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Lemma 9.1.1. Letm be a power of a prime p, and letm′ = m/p, so that ϕ(m) = ϕ(p)m′.
Then

~dT = t−1~pT (Lp ⊗ I[m′]), (9.2)

where Lp ∈ Z[ϕ(p)]×[ϕ(p)] is the lower triangular matrix with 1s throughout its lower-left
triangle, i.e., its (i, j) entry is 1 for i ≥ j, and 0 otherwise.

Proof. First reindex the conjugate power basis using the index set [ϕ(p)]× [m′], as

τ(p(j0,j1)) = ζ−j0p ζ−j1m .

We have to show that

d(j0,j1) = t−1(ζj0p + ζj0+1
p + · · ·+ ζp−2

p )ζj1m (9.3)

=
1− ζp
m

·
ζj0p − ζp−1

p

1− ζp
· ζj1m , (9.4)

i.e., the trace of the product of the right hand side with τ(p(j′0,j′1)) is 1 if and only if
(j′0, j

′
1) = (j0, j1). We compute the trace of

1

m
(ζj0−j

′
0

p − ζp−1−j′0
p )ζj1−j

′
1

m . (9.5)

From an earlier computation of Tr(ζjm), the trace of this is 0 if j1 6= j′1 (because j1−j′1 6= 0
mod m′), and 0 if j0 6= j′0 (because j0 − j′0, p − 1 − j′0 6= 0 mod p. Note that j0, j

′
0 =

0, 1, · · · , p− 2.), and otherwise it is 1
m
(ϕ(p)m′ − (−m′)) = 1

m
(ϕ(p) + 1)m′ = 1.

9.2 Decoding R∨ and its Powers

Recall the decoding procedure: if Λ is a known fixed lattice and x ∈ H is an unknown
short vector, the goal is to recover x, given t = x mod Λ. Choose {vi} ⊂ Λ∨ a set of
n-linearly independent vectors, not necessarily a basis, which are rather short and let
{bi} be a dual basis of {vi}, which generates a super lattice Λ′ containing Λ.

Express t mod Λ′ in the basis {bi} as
∑
cibi, ci ∈ R/Z (so ci = 〈x, v̄i〉 mod 1), then

output
∑

JciKbi ∈ H. Then the output equals x if and only if all the coefficients ai = 〈x, v̄i〉
in the expansion x =

∑
aibi are in [−1/2, 1/2). Since (R∨)∨ = R and every pj of powerful

basis of R has ‖τ(pj)‖2 =
√
n, we could use the decoding basis ~d for decoding R∨ because

the dual of ~d is ~p and pj is rather short. But for decoding K/I, where I = (R∨)k =
〈
t−k
〉
,

if we use the Z-basis t1−k ~d of I, some elements of the dual of (t1−k ~d), which is tk−1τ(~p),
might be much longer than the shortest nonzero elements of I∨ =

〈
tk−1

〉
. (Remark: Let

t = m
g
, where m prime, and σ(g) = (1− ω1

m, 1− ω2
m, . . . , 1− ωm−2

m ). 1− ωm is very small

when m is large. Hence, t is very large.) Instead, we use m̂1−k ~d, which generates the
super ideal J = m̂1−kR∨ = t1−kg1−kR∨ ⊇ I, whose dual elements are m̂k−1τ(p) ⊂ I∨.
Note that

‖m̂k−1τ(~p)‖2
λ1(I∨)

=
m̂k−1

√
n

λ1(I∨)
< (

∏
odd prime p|m

p
1

p−1 )k−1. (9.6)

The last inequality follows from

λ1(I
∨) ≥

√
nN(R∨)(1−k)/n =

√
n∆

(k−1)/n
K . (9.7)
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Decoding Iq to I, where I = (R∨)k for some k ≥ 1

For an input ā ∈ Iq, write ā =
〈
m̂1−k ~d, ā

〉
mod qJ for some ā over Zq, where J =

m̂1−kR∨ ⊃ I. Define JāK :=
〈
m̂1−k ~d, JāK

〉
if this is in I, otherwise the decoding fails.

Note if a ∈ I, a =
〈
m̂1−k ~d, a

〉
, and aj ∈ [−q/2, q/2), where aj is jth component of a,

then the decoding succeeds. Hence, if every aj is δ-subgaussian with parameter s, then
by lemma 5.2.1, Ja mod qIK = a except with probability at most 2n exp(δ − πq2/(2s)2).

Writing a =
〈
m̂1−k ~d, a

〉
for a ∈ I with integral vector a, we have |aj| ≤ m̂k−1

√
n‖a‖2,

because |aj| = |Tr(am̂k−1τ(pj))| ≤ ‖a‖2m̂k−1
√
n by Schwarz inequality.

If a is δ-subgaussian with parameter s and b ∈ (R∨)l for some l ≥ 0, we write

ab =
〈
m̂1−k−l~d, c

〉
for some integral vector c. Then

cj = Tr(m̂k+l−1τ(pj)ab) (9.8)

= m̂k+l−1Tr(τ(pj)ba), (9.9)

which is δ-subgaussian with parameter

m̂k+l−1‖τ(pj)b‖2s ≤ m̂k+l−1‖τ(pj)‖∞‖b‖2s = m̂k+l−1‖b‖2s. (9.10)

9.2.1 Implementation of Decoding Operation

The goal is to recover an unknown element a ∈ I = (R∨)k given ā = a mod qI. We
assume that the input ā ∈ Iq is given in the form of a coefficient vector ā over Zq satisfying
ā =

〈
t1−k~b, ā

〉
mod qI, where ~b is some given Zq-basis of R∨

q . Output will be given as

a coefficient vector a over Z with respect to the decoding basis t1−k ~d of I.

Case 1) k = 1.

If ā =
〈
~d, ā
〉

mod qR∨, output a =
〈
~d, a
〉
where a = JāK.

Case 2) I = (R∨)k, k > 1.

1. Compute the representation ā′ = ā mod qJ in the Zq-basis m̂1−k~b of Jq (recall
that J = m̂1−kR∨ ⊇ I).

2. Decode it as in the case k = 1 to an element a′ ∈ J (which will be equal to a if
successful).

3. Compute the representation of a′ in the Z-basis t1−k ~d of I.

For step 1, we want to find ā such that

ā =
〈
m̂1−k~b, ā

〉
mod qJ . (9.11)

We claim that this ā is the coefficient of gk−1ā with respect to the basis t1−k~b mod qI,

because
〈
t1−k~b, ā

〉
= gk−1

〈
m̂1−k~b, ā

〉
= gk−1ā.

For step 2, rewrite the output of step 1 with respect to the basis m̂1−k ~d so that

ā′ =
〈
m̂1−k ~d, ā′

〉
. Then output Jā′K over Z and let a′ =

〈
m̂1−k ~d, Ja′K

〉
∈ J . If it is in I,
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we succeed. If not, we fail. (Remark: In general, it is easy to decide the membership of
a given lattice.)

For step 3, we convert the representation of a′ in the Z-basis m̂1−k ~d of J to a repre-
sentation in a Z-basis of I, namely t1−k ~d. Assuming step 2 succeeds, i.e., a′ ∈ I, we want
to find an integer vector a such that a′ =

〈
t1−k ~d, a

〉
. For the same a,〈

m̂1−k ~d, a
〉
= g1−k

〈
t1−k ~d, a

〉
= g1−ka′,

i.e., a is the coefficient of g1−ka′ in the basis m̂1−k ~d.

Note that the multiplication by g and the division by g can be computed efficiently.
For example when m = p,

m~dT = (· · · , (ζj0p − ζp−1
p ), · · · ), j0 = 0, · · · , p− 2, (9.12)

mg~dT = (2− ζp − ζp−1
p , 1 + ζp − ζ2p − ζp−1

p , · · · ,
1 + ζp−2

p − ζp−1
p − ζp−1

p ), (9.13)

m~dTA = (1− ζp−1
p , ζp − ζp−1

p , · · · , ζp−2
p − ζp−1

p )

×


2 1 1 · · · 1
−1 1

−1 1
. . .

−1 1

 (9.14)

= (2− ζp − ζp−1
p , · · · ), (9.15)

i.e., g~dT = ~dTA.

9.3 Gaussian sampling in the Decoding Basis

Gaussian sampling a, to be precise σ(a), from KR and representing it with respect the

decoding basis can be achieved from the fact that if a =
〈
~d, a
〉
, then a = CRT ∗

mσ(a).

Since CRT ∗
ml

= (CRT ∗
p
l
⊗ I[m′

l]
)
√
m′
lQl for some unitary Ql,

CRT ∗
m =

⊗
l

(CRT ∗
p
l
⊗ I[m′

l]
)
√
m/ rad(m)

⊗
l

Ql. (9.16)

Since a spherical Gaussian distribution overH ⊂ CZ∗
m is changed into a spherical Gaussian

over H ′ = QH ⊂ CZ∗
m under the unitary transform Q, it suffices to generate a Gaussian

of parameter s
√
m/ rad(m) over H ′ and then left multiply the result by

C∗ :=
⊗
l

CRT ∗
p
l
⊗ I[m′

l]
= CRT ∗

rad(m) ⊗ I[m/ rad(m)]. (9.17)

Since CRT ∗
m sends the elements in H to the real vector space of coefficient vectors with

respect to the decoding basis ~d, H ′ ⊂ CZ∗
m can be characterized as follows

H ′ = {x ∈ CZ∗
m : C∗x ∈ R[ϕ(m)]}. (9.18)
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For the Gaussian sampling, we have to find a unitary matrix B′ made up of the elements of
H ′ such that C∗B′ is real. Such B′ is given in the form B′

p
l
⊗Im, since C∗ = CRT ∗

p
l
⊗I[ml].

We show that

B′
p
l
=

1√
2

(
I
√
−1J

J −
√
−1I

)
(9.19)

is one. We check that

(C∗B′) = (CRT ∗
p
l
B′
p
l
)ij (9.20)

= (e−2πi(ji)/p + e−2πi(j(p−i))/p)
1√
2

(9.21)

=
1√
2
(e−2πi(ji)/p + e2πi(ji)/p) ∈ R. (9.22)

Note that

CRT ∗
p =


1 1 · · · 1

ω
−(ij)
p

 . (9.23)

Our B′ = B′
p
l
⊗ Im is different from previous basis of H,

B =
1√
2

(
I
√
−1J

J −
√
−1I

)
∈ CZ∗

m×[ϕ(m)]. (9.24)

Even though the B′
p
l
part looks the same, B′ is a basis of H ′, not H.

Remark 9.3.1. The final vector of the decoding basis coefficients is C∗B′c for a real
Gaussian c.
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Chapter 10

Regularity

Let R = Z[ζm], n = ϕ(m), and q ≥ 1 a prime. Let a1, . . . , al−1 be chosen uniformly
and independently from Rq (l could be small). Then we claim that with high probability

over the choice of ai, the distribution of b0 +
∑l−1

i=1 biai is within the statistical distance
2−Ω(n) of uniform, where bi are chosen from a discrete Gaussian distribution on R of width
essentially nq1/l.

nq1/l is the best possible in some sense, since R is a rotation of
√
nZn, so the discrete

Gaussian of width t covers
(

t√
n

)n
lattice points.

(
t√
n

)l
≈ qn implies t ∼

√
nq1/l.

If we consider the more general combination
∑l−1

i=0 biai, then the regularity lemma
fails if l is small. For example, when q is a prime satisfying q = 1 mod m, so that 〈q〉
splits completely into n ideals of norm q each. Let q denote one of these prime factors.
With probability q−l all ai are in q, so in this case

∑m
i=1 biai is in q with certainty whose

distribution is very far from uniformity. By adding the b0 term, we avoid this common
divisor problem.

Lemma 10.0.2. For any n-dimensional lattice Λ and ε, r > 0,

ρ1/r(Λ) ≤ max

(
1,

(
ηε(Λ

∨)

r

)n)
(1 + ε). (10.1)

Proof. For r ≥ ηε(Λ
∨), the claim follows from the definition of smoothing parameter

ηε(Λ
∨). For r < η = ηε(Λ

∨),

ρ1/r(Λ) = (det Λ)−1r−nρr(Λ
∨) (by Poisson summation formula) (10.2)

< (det Λ)−1r−nρη(Λ
∨) =

(η
r

)n
ρ1/η(Λ). (10.3)

In particular,
ρ1/r(I) ≤ max(1, N(I)−1r−n)(1 + 2−2n), (10.4)

since η2−2n(I∨) ≤
√
n/λ1(I) ≤ (N(I))−1/n.

Lemma 10.0.3. In the mth cyclotomic number field of degree n, for any q, k ≥ 1,∑
J |〈q〉

N(J )k ≤ exp(3c)qkn ≤ qkn+5, (10.5)

where c is the number of distinct prime integer divisors of q.
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Proof. Since c ≤ log2 q and e3c ≤ e3 log2 q < q5, the second inequality is trivial. For the
first inequality, we may assume q = pe. Indeed, if q1 and q2 are coprime, then

∑
J |〈q1q2〉

N(J )k =

∑
J |〈q1〉

N(J )k
∑

J |〈q2〉

N(J )k
 , (10.6)

since when q1 and q2 are coprime, any J | 〈q1q2〉 is of the form J = J1J2, where J1| 〈q1〉,
J2| 〈q2〉, and N(J1J2) = N(J1)N(J2), because the ring of integers R is a UFD. Now
〈p〉 = ph1 · · · phg in R, where h = ϕ(pd), d ≥ 0 is the largest integer such that pd divides
m, each pi is of norm pf , where f ≥ 1 is the multiplicative order of p modulo m/pd, and
g = n/hf , so we have 〈q〉 = peh1 · · · pehg , and∑

J |〈q〉

N(J )k =

g∏
i=1

(1 +N(pi)
k + · · ·+N(pi)

ehk) (10.7)

= (1 + pfk + · · ·+ pehfk)g (10.8)

≤ pehfkg(1− p−fk)−g (10.9)

≤ qnk exp(3gp−fk). (10.10)

Remark 10.0.4.

1

1− x
= 1 + x+ x2 + · · · < e3x = 1 + 3x+

(3x)2

2
+ · · · (10.11)

when x < 1
2
.

Observe that pf > m/pd, since pf = 1 mod m/pd and pf > 1.

g ≤ n/ϕ(pd) = ϕ(m/pd) <
m

pd
,

hence gp−fk ≤ gp−f < 1, which proves∑
J |〈q〉

N(J )k ≤ qnke3. (10.12)

Hence, for general q, we have∑
J |〈q〉

N(J )k ≤ exp(3c)qkn ≤ qkn+5. (10.13)

(∵ exp(3c) < exp(3 log2 q) = exp(log2 q
3) < q5)

For a matrix A ∈ R[k]×[l]
q , we define

Λ⊥(A) = {~z ∈ R[l] : A~z = 0 mod qR}. (10.14)

Theorem 10.0.5. Let R be the ring of integers in the mth cyclotomic number field K of
degree n, and q ≥ 2 an integer. For positive integers k ≤ l ≤ poly(n), let A =

[
I[k]|Ā

]
∈

(Rq)
[k]×[l], where I[k] ∈ (Rq)

[k]×[k] is the identity matrix and Ā ∈ R
[k]×[l−k]
q uniformly

random. Then for all r > 2n,

EĀ[ρ1/r(Λ⊥(A)∨)] ≤ 1 + 2
( r
n

)−nl
qkn+5 + 2−Ω(n). (10.15)

In particular, if r > 2nq
k
l
+ 5

nl , then EĀ[ρ1/r(Λ⊥(A)∨)] ≤ 1+2−Ω(n), hence η2−Ω(n)(Λ⊥(A)) ≤
r except with probability at most 2−Ω(n).
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Corollary 10.0.6. Let R, n, q, k and l as above. Assume A = [I[k]|Ā] ∈ (Rq)
[k]×[l] is

chosen as above. Then with probability 1− 2−Ω(n) over the choice of Ā, the distribution
of A~x ∈ R

[k]
q , where each coordinate of ~x ∈ R

[l]
q is chosen from a discrete Gaussian

distribution of parameter r > 2nqk/l+5/nl over R, satisfies that the probability of each of
the qnk possible outcomes is almost uniform, i.e., is in the interval (1± 2−Ω)q−nk.

Proof. Since in this case
η2−Ω(n)(Λ⊥(A)) ≤ r (10.16)

except with probability at most 2−Ω(n),

ρr(Λ
⊥(A) + c) ∈ [1± 2−Ω(n)]rn det(Λ)−1, (10.17)

i.e., ∀c ∈ R
[k]
q . Hence, every c ∈ R

[k]
q occurs almost uniformly, since the probability of

A~x = c is proportional to ρ(Λ⊥(A) + c).

Proof of Theorem. Since x ∈ Λ⊥(A) ⇔ Ax = 0 mod qR[k], x ∈ R[l], and y ∈ Λ⊥(A)∨,
i.e., 〈y, x〉 ∈ Z ∀x ∈ Λ⊥(A), it is easy to see that

(R∨)[l] +
{

1
q
AT~s : ~s ∈ (R∨

q )
[k]
}
⊂ Λ⊥(A)∨. (10.18)

(For example,
〈

1
q
AT~s, x

〉
= 1

q
〈~s,Ax〉 ∈ Z since Ax ∈ qR[k].) To show the other inclusion

relation, we consider the simple case, when

A ∈ Zn×mq , Λ⊥(A) = {y ∈ Zm : Ay = 0 mod q}. (10.19)

Then
Λ⊥(A)∨ ⊃ Zm +

{
1
q
AT s : s ∈ Znq

}
. (10.20)

We assume that A : Zmq → Znq is onto as in our case. Then det(Λ⊥(A)) = qn, which is

the number of cosets. To show Λ⊥(A)∨ = Zm+
{

1
q
AT s : s ∈ Znq

}
, it suffices to show that

the determinant of RHS is 1
qn
. To prove this, assume two translates of Zm,

Zm + 1
q
AT s = Zm + 1

q
AT s′, s, s′ ∈ Znq . (10.21)

Then 1
q
AT (s − s′) ∈ Zm, so AT (s − s′) = 0 mod q. Hence, s − s′ = 0 mod q because

rank(A) = n. That is, the determinant of RHS is 1
qn

because RHS is the union of qn

different translates of Zm. The proof for the general case of Λ is the same.
Now we compute

EA[ρ1/r(Λ⊥(A)∨)] =
∑

~s∈(R∨
q )

[k]

EA
[
ρ1/r

(
(R∨)l + 1

q
AT~s

)]
(10.22)

=

 ∑
~s∈(R∨

q )
[k]

ρ1/r

(
(R∨)[k] + 1

q
~s
)E~a

[
ρ1/r

(
R∨ + 1

q
〈~a,~s〉

)]l−k
, (10.23)

where ~a represents a typical column vector of Ā, since ‖x‖2 = ‖x1‖2 + ‖x2‖2 for x =
(x1, x2) ∈ (R∨)[k] × (R∨)[l−k], and

ρ1/r(x) = e−πr‖x‖
2

= e−πr‖x1‖
2 · e−πr‖x2‖2 , e−πr‖y‖2 = e−πry

2
1 · · · e−πry2n . (10.24)
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In Eq. (10.22), note that 1
q
AT~s 6= 1

q
AT ~s′ if ~s 6= ~s′ in (R∨

q )
[k], since A is onto, hence AT is

injective.
For any given ~s = (s1, . . . , sk) ∈ (R∨

q )
[k], define the ideal

I~s = s1R + · · ·+ skR + qR∨ ⊆ R∨.

Then (Rq)
[k] 3 ~a → 〈~a,~s〉 uniformly random over I~s/qR

∨, since ~a, which is a column of

Ā, is uniformly random. Since
⊔

~a∈I~s/qR∨

R∨ +
1

q
〈~a,~s〉 = 1

q
I~s,

∑
~a∈I~s/qR∨

ρ 1
r

(
R∨ +

1

q
〈~a,~s〉

)
= ρ 1

r

(
1

q
I~s

)
, (10.25)

where ~a is a representative of a different coset element of I~s/qR
∨. Hence,

E~a
[
ρ1/r

(
R∨ + 1

q
〈~a,~s〉

)]
=
ρ1/r

(
1
q
I~s

)
|I~s/qR∨|

. (10.26)

Note that when x ∈ {1, · · · , n} is uniformly chosen,

Exf(x) =
f(x1) + · · ·+ f(xn)

n
=
f(x1 ∪ · · · ∪ xn)

n
, (10.27)

where f(A) =
∑

x∈A f(x).
Let T denote the set of all ideals J satisfying qR∨ ⊆ J ⊆ R∨. Then we can write
Eq. (10.23) as

(∑
J∈T

|J /qR∨|−(l−k) · ρ1/r
(

1
q
J
)l−k)

·

 ∑
~s s.t.I~s=J

ρ1/r

(
(R∨)[k] + 1

q
~s
)

≤ ρ 1
r
(R∨)l

(s=0)
+

∑
J∈T\{qR∨}

|J /qR∨|−(l−k) · ρ 1
r

(
1
q
J
)l−k

·
(
ρ 1

r

(
1
q
J
)k
− 1

)
. (10.28)

Now Eq. (10.28) satisfies

ρ 1
r
(R∨)l +

∑
J∈T\{qR∨}

|J /qR∨|−(l−k) · ρ 1
r

(
1
q
J
)l−k

·
(
ρ 1

r

(
1
q
J
)k
− 1

)
(10.29)

≤ ρ 1
r
(R∨)l +

∑
J∈T\{qR∨}

|J /qR∨|−(l−k) ·
(
ρ 1

r

(
1
q
J
)l
− 1

)
(10.30)

= 1 +
∑
J∈T

|J /qR∨|−(l−k)
(
ρ 1

r

(
1
q
J
)l
− 1

)
, (10.31)

so

ρ 1
r
(1
q
J )l ≤ max(1, (|J /qR∨|∆Kr

−n)l)× (1 + 2−2n)l (10.32)

≤ 1 + l21−2n + 2(|J /qR∨|∆Kr
−n)l, (10.33)
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where (10.32) follows from

η
2−2n

((
J
q

)∨)
≤

√
n

λ1

((
J
q

)∨) ≤ (N (Jq
))−1/n

and

N

(
J
q

)−1

=

∣∣∣∣ JqR
∣∣∣∣ = ∣∣∣∣R∨

R

∣∣∣∣ · ∣∣∣∣Jq
/
R∨
∣∣∣∣ = ∆K |J /qR∨|.

Hence,

(10.31) < 1 + 2−Ω(n) + 2∆l
Kr

−nl
∑
J∈T

∣∣∣∣ JqR∨

∣∣∣∣k (10.34)

≤ 1 + 2−Ω(n) + 2(r/n)−nlqkn+5, (10.35)

since ∆K ≤ nn and ∑
J∈T

|J /qR∨|k =
∑
J |〈q〉

N(J )k ≤ qkn+5. (10.36)

Note that | J
qR∨ | = | RqJ∨ | and qJ ∨ ⊃ qR.

qR∨ ⊂ J ⊂ R∨ (10.37)
1
q
R ⊃ J ∨ ⊃ R (10.38)

R ⊃ qJ ∨ ⊃ qR (10.39)

Conversely,

R ⊃ I ⊃ qR (10.40)

R∨ ⊂ I∨ ⊂ 1
q
R∨ (10.41)

qR∨ ⊂ qI∨ ⊂ R∨ (10.42)

i.e., there is a bijective correspondence

{ideal J : qR∨ ⊂ J ⊂ R∨} ←→ {ideal I : R ⊃ I ⊃ qR}.

Remark 10.0.7. If qR $ J , then∑
~s s.t.Is̄=J

(R∨)[k] + 1
q
~s ⊆ (1

q
J )[k] \ 0, since ~s 6= 0. (10.43)

Hence,

∑
~s s.t.Is̄=J

ρ 1
q

(
(R∨)k +

1

q
~s

)
⊂ ρ 1

r

((
1

q
J
)[k]
)
− 1 (10.44)

= ρ 1
r

(
1

q
J
)k
− 1. (10.45)
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Remark 10.0.8. Another computation:

ρ 1
r

(
(R∨)[k] + 1

q
~s
)

=
k∏
i=1

ρ 1
r
(R∨ + 1

q
si) (10.46)

≤ ρ 1
r
(1
q
J )k−1 ·

(
ρ 1

r
(1
q
J )− 1

)
(10.47)

≤ ρ 1
r
(1
q
J )k − 1, (10.48)

where (10.47) follows since si 6= 0 for some i and R∨ + 1
q
si ⊂ 1

q
J , and (10.48) follows

from ρ 1
r
(1
q
J ) > 1.
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Chapter 11

Cryptosystems

(q should be larger than p, but the smaller the better for the efficiency)

11.1 Dual-Style Cryptosystem [GPV08]

• Gen: choose a0 = −1 ∈ Rq, uniformly random and independent a1, . . . , al−1 ∈ Rq,
and independent x0, . . . , xl−1 ← DR,r. Output

~a = (a1, . . . , al−1, al = −
∑
i∈[l]

aixi) ∈ R{1,2,...,l}
q

as the public key, and

~x = (x1, . . . , xl−1, xl = 1) ∈ R{1,2,...,l}

as the secret key. Note that 〈~a, ~x〉 = x0 ∈ Rq.

• Enc~a(µ ∈ Rp): choose independent e0, e1, . . . , el−1 ← bpψepR∨ and el ← bpψet−1µ+pR∨

(shifted error). Let ~e = (e1, . . . , el) ∈ (R∨){1,...,l}. Output the ciphertext

~c = e0~a+ ~e ∈ (R∨
q )

{1,...,l},

l-samples of Ring-LWE.

• Dec~x(~c): compute d = J〈~c, ~x〉K ∈ R∨ and output µ = td mod pR.

If r > 2n · q1/l+2/nl, then (a1, a2, . . . , al) approximating uniform and the above cryp-
tosystem is secure under the hardness R-LWE because ciphertext ~c = e0~a+ ~e is a Ring-
LWE with proper security.

Theorem 11.1.1. Suppose that for any c ∈ R∨
q , bpψec+pR∨ is δ-subgaussian with pa-

rameter s for some δ = O(1
l
), and q ≥ s

√
(r2l + 1)n · ω(

√
log n). Then the decryption

is correct with probability 1 − negl(n) over all the randomness of key generation and
encryption.

Remark 11.1.2. If ψ is continuous Gaussian with parameter s′ > 1 and if we use

coordinate-wise randomized rounding, then since s1(~d) =
√

rad(m)
m

and the sum of two

independent Gaussians is again Gaussian with the sum of variances as the new vari-
ance, bpψec+pR∨ is 0-subgaussian with parameter s = p

√
s′2 + 2π rad(m)/m = O(ps′).
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(2π rad(m)
m

comes from discretization by coordinate-wise randomized rounding and multi-

plication by ~d, since if E(X) = 0 and |X| ≤ B, then X is 0-subgaussian with parameter
B
√
2π.)

Proof. By construction, 〈~c, ~x〉 = e0z0+〈~e, ~x〉 =
〈
~e′, ~x′

〉
mod qR∨, where ~e′ = (e0, e1, . . . , el),

~x′ = (x0, x1, . . . , xl = 1), and
〈
~e′, ~x′

〉
= t−1µ mod pR∨, so decryption is correct as long

as
J
〈
~e′, ~x′

〉
mod qR∨K =

〈
~e′, ~x′

〉
∈ R∨. (11.1)

With high probability, ‖xi‖2 ≤ r
√
n, ‖xl‖ = ‖1‖2 =

√
n. Therefore each coefficient of

eixi with respect to decoding basis is δ-subgaussian with parameter sr
√
n, and elxl is

δ-subgaussian with parameter s
√
n. Hence, each decoding basis coefficient of

〈
~e′, ~x′

〉
is

δ(l + 1)-subgaussian with parameters s
√

(r2l + 1) + n. By decoding Iq to I lemma, this
proves the theorem.

11.2 Compact Public-key Cryptosystem

Let R = Z[ζm], and p, q coprime integers, Rp the message space. q is coprime with every
odd prime dividing m.

• Gen: choose a uniformly a ← Rq. Choose x ← bψeR∨ and e ← bpψepR∨ . Output
(a, b = m̂(ax+ e) mod qR) ∈ Rq×Rq as public key, and x as the secret key. (Note
that m̂(ax+ e) ∈ gR/gqR, even ax+ e ∈ R∨/qR∨, because m̂ = tg.)

• Enc(a,b)(µ ∈ Rp): choose z ← bψeR∨ , e′ ← bpψepR∨ and e′′ ← bpψet−1µ+pR∨ . Let
u = m̂(za+ e′) mod qR and v = zb+ e′′ ∈ R∨

q . Output (u, v) ∈ Rq ×R∨
q .

• Decx(u, v): compute v − ux = zm̂(ax + e) + e′′ − m̂(za + e′)x = m̂(ez − e′x) + e′′

mod qR∨, decode it to d = Jv − uxK ∈ R∨. Output µ = td mod pR.

Theorem 11.2.1. The above cryptosystem is secure assuming the hardness of R −
DLWEq,ψ.

Proof. If (a, ax+ e) ∈ Rq × R∨
q is indistinguishable from uniform, then (a, m̂(ax+ e)) ∈

Rq × Rq is indistinguishable from uniform, since m̂R∨
q = gR, and 〈g〉, 〈q〉 are coprime.

Hence, we may assume that the public key (a, b) is uniformly random in Rq × Rq. We
have to prove that (a, b, Enc(a,b)(µ)) is computationally indistinguishable from uniform
for any message µ ∈ Rp. We know that uniform distribution and Az,ψ( for z ← bψeR∨)
over Rq×KR/qR

∨ are computationally indistinguishable from LWE assumption. Now do
the following process. Choose two samples from either uniform or Az,ψ (which we cannot
distinguish). (We may assume that (a, b) is uniform because of R-LWE.) Let them be
(a′, u′′) and (b′, v′), and apply the discretization process with w = 0 to (a′, u′′) to obtain
(a, u′), and with w = t−1µ ∈ R∨

p to (b′, v′) to obtain (b, v). Then output (a, b) as the public
key and (u = m̂u′ mod qR, v) ∈ Rq × R∨

q as the encryption of µ. If we sampled both

from uniform, then (a, b, u, v) is uniform in R
[3]
q ×R∨

q . If we sampled both from Az,ψ, then
(a, b) is uniform and (u, v) has the same distribution as the one generated by Enc(a,b)(µ).
This means that if we can distinguish random (a, b, u, v) and (a, b, Enca,b(µ)), we can
distinguish uniform distribution and Az,ψ over Rq×KR/qR

∨, which is a contradiction to
the R-LWE assumption. This completes the proof.
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Lemma 11.2.2. Suppose that bψeR∨ outputs elements having l2 norm bounded by l
with 1−negl(n) probability, that bpψee+pR∨ is δ-subgaussian with parameters s for some

δ = O(1), and that q ≥ s
√
2(m̂l)2 + nω(

√
log n). Then the decryption is correct with

probability 1− negl(n) over all the randomness of key generation and encryption.

Proof. e, e′ ∈ pR∨ and x, z ∈ R∨, hence m̂(e ·z−e′ ·x) ∈ pR∨, because m̂ = tg. Therefore
E := m̂(ez−e′x)+e′′ ∈ R∨ satisfies E = t−1µ mod pR∨. So decryption is correct as long
as JE mod qR∨K = E. By assumption, ‖x‖2, ‖z‖2 ≤ l with probability 1− negl(n), and
e, e′, e′′ are δ-subgaussian with parameter s. Hence, each coefficient of m̂ ·ez, m̂ ·e′x ∈ R∨

when represented in the decoding basis is δ-subgaussian with parameter sm̂l and those of
e′′ are δ-subgaussian with parameter s

√
n (∵ b = 1 in this case, and ‖1‖2 =

√
n). Since

e, e′, e′′ are mutually independent, each decoding basis coefficient of E is 3δ-subgaussian
with parameter s

√
2(m̂l)2 + n. The statement follows from decoding Iq to I lemma.

11.3 Homomorphic Cryptosystem

• Notations

R: mth cyclotomic ring of degree n = ϕ(m)

p, q coprime

Rp: the message space

q: the Ring-LWE modulus

〈p〉, 〈g〉 ⊂ R coprime, i.e., p is coprime with all primes dividing m

• Gen: s′ ← bψeR∨ output s = ts′ as secret key.

• Encs(µ ∈ Rp): e ← bpψet−1µ+pR∨ . Let c0 = −c1s + e ∈ R∨
q for uniformly random

c1 ← R∨
q , and output the ciphertext c(S) = c0 + c1S, where S is indeterminate.

e(= c(s)) is called the noise even though from e, we obtain the message µ (te = µ
mod pR).

• Decs(c(S)) for c of degree k: compute c(s) ∈ (R∨
q )
k and decode it to e = Jc(s)K ∈

R∨. Output µ = tke mod pR.

• Homomorphic product is standard polynomial multiplication c(S)c′(S).

• Homomorphic sum is defined for ciphertexts c, c′ of equal degree as c(S) + c′(S).

To homomorphically add two ciphertexts of different degrees, we must first homomor-
phically multiply the one having smaller degree by a fixed public encryption of 1 ∈ Rp

enough times to match the larger degree.
From decoding lemma in R∨, we obtain the following lemma.

Lemma 11.3.1. If q is large enough, or more precisely if the noise e in a degree k cipher-
text c is δ-subgaussian with parameter r for some δ = O(1), and q ≥ rm̂k−1

√
nω(
√
log n),

thenDecs(c) correctly recovers e with probability 1−negl(n). Moreover if q > 2‖e‖2m̂k−1
√
n,

then Decs(c) recovers with certainty.

Lemma 11.3.2. The above cryptosystem is secure assuming the hardness ofR−DLWEq,ψ.
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Proof. We have access to two distributions over Rq ×KR/qR
∨, either LWE distribution

As′,ψ where s′ ← bψeR∨ or the uniform distribution. Draw a sample from (a′, b′) ∈
Rq×KR/qR

∨ from the unknown distribution. Let a = pa′ mod qR and b = bpb′et−1µ+pR∨

to obtain (a, b) ∈ Rq×R∨
q . Let c1 = −t−1a ∈ Rq, c0 = b, and output c(S) = c0+c1S. If the

unknown distribution isAs′,ψ, then c(S) is distributed exactly according to Encs(µ). If the
unknown distribution is the uniform distribution, then (a, b) is uniform and independent
of µ. Hence, c(S) uniform. Therefore, if somebody distinguishes the ciphertext c(S)
and the uniform c(S), then he can solve R − DLWE, which contradicts the hardness
assumption of R−DLWE.

11.3.1 Modulus Reduction and Key Switching

We need large modulus q for the correct Decs(c), but for the efficiency, the smaller q is,
the better. For this purpose, we describe modulus reduction.

Let J be a fractional ideal, something like (R∨)k, and q, q′, p integers with both q
and q′ coprime to p. Let v ∈ Zp be v = q′q−1 mod p. Define a randomized function
FJ : Jq → K as follows. Assume that a good basis of J is given and x ∈ Jq. Then FJ (x)
is a short subgaussian element from the coset (v−q′/q)x+pJ . Note that (v−q′/q)x+pJ
is well defined because (v − q′/q)qJ ⊂ pJ . Also observe that for all x ∈ Jq, we have
(q′/q)x + FJ (x) ∈ Jq′ up to zero message, i.e., up to a multiple of p. (∵ If x ∈ qJ then
vx = vqJ ⊆ q′J , but note that v is defined up to a multiple of p.) It is trivial to see
that qFJ (x) ∈ pJ .

Modulus Reduction Procedure

c(S) = c0 + c1S is an input ciphertext with c0, c1 ∈ R∨
q . Let f0 ← FR∨(c0), f1 ←

t−1FR(tc1), where we used the bases ~d for R∨, and ~p for R. Output is c′(S) = c′0 + c1S,
where

c′0 =
q′

q
c0 + f0 mod q′R∨, (11.2)

c′1 =
q′

q
c1 + f1 (11.3)

= t−1

(
q′

q
tc1 + FR(tc1)

)
mod q′R∨. (11.4)

Then

c′0 + c′1s =
q′

q
(c0 + c1s) + (f0 + f1s) (11.5)

=
q′

q
e+ (f0 + (tf1)s

′) mod q′R∨. (11.6)

We define e′ = q′/q·e+(f0+f1s). Note that e
′ = q′

q
e mod pR∨, since qf0+q(tf1)s

′ ∈ pR∨.

The added error term f = (f0 + f1s) is 0-subgaussian with parameter

p
√
2π(rad(m)/m+ m̂‖t−1s‖2∞)1/2, (11.7)

and
‖f‖2 ≤ p

√
n(
√
rad(m)/m+

√
m̂‖t−1s‖∞)
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always if we use coordinate-wise randomized rounding to a coset of pR∨ (respectively,

pR) using the basis p~d (respectively, p~p) because of the definition of coordinatewise ran-
domized rounding defined at discretization, and the fact that if f =

∑
fibi is the output,

then |fi| ≤ 1.

Key Switching

c(S): degree-k ciphertext,
I = (R∨)k, d = k + 1,
~s = (s0, . . . , sk) ∈ R[d],

~c ∈ I [d]q : coefficient vector of a valid degree-k ciphertext c(S), where decryption c(s) =
〈~c, ~s〉 = e mod qI for some short e ∈ t−kµ+ pI.

Think of e ∈ I = (R∨)k as an element in the super lattice m̂1−kR∨ ⊃ I. Then

m̂k−1e =
〈
tm̂k−1~c, t−1~s

〉
. (11.8)

Let ~y = tm̂k−1~c ∈ R[d]
q , l = dlog2 qe, and define

g = (1, 2, 4, . . . , 2l−1) ∈ Z[l]
q , (11.9)

G = I[d] ⊗ gT ∈ Z[d]×[dl]
q . (11.10)

Find short ~x ∈ R[dl] such that G~x = ~y ∈ R[d]
q . (To find such short ~x, we do need a good

basis for Λ⊥(G), which we have; see lemma 23.) We have

m̂k−1e =
〈
~y, t−1~s

〉
=
〈
~x, t−1GT~s

〉
mod qR∨. (11.11)

Hint is a collection of independent degree −1 ciphertext hi(S
′) for each i ∈ [dl] given

below. (Note that the original secret was (s0, s1, . . . , sk). What we are going to do can
be thought of as the encryption of each sj in an l-vector.)

hi(s
′)← Encs′(0) + t−1(GT~s)i mod qR∨, (11.12)

i.e., we generate degree −1 encryptions of 0 and simply add entries of t−1GT~s to their
constant terms.

hi(S
′) = fi + t−1(GT~s)i (11.13)

for some short fi ∈ pR∨. For ~f = (fi)i∈[dl], we define

F := max
i∈Z∗

m

(
dl∑
j=1

|σi(fj)|2
)2

. (11.14)

Claim: If all the entries fj ∈ R∨ are δ-subgaussian with parameter s for some δ = O(1),
then

F ≤ Cs ·max(
√
dl, ω(

√
log n)) (11.15)

except with negl(n) probability.

69



Proof.

max
i∈Z∗

m

(
dl∑
j=1

|σi(fj)|2
)

(11.16)

= max
i∈Z∗

m

(
dl∑
j=1

Re(σi(fj))
2 +

dl∑
j=1

Im(σi(fj))
2

)
(11.17)

≤ 2max
i∈Z∗

m

max

{
dl∑
j=1

Re(σi(fj))
2,

dl∑
j=1

Im(σi(fj))
2

}
. (11.18)

Then previous estimation on Pr(
∑

i x
2
i > r) implies the claim, since Re(σi(fj)) and

Im(σi(fj)) are δ-subgaussian with parameter s/
√
2.

Remark 11.3.3. 1√
2
(xi + xm−i) =

√
2Re(xi) and similarly for

√
2Im(xi), and B =

1√
2

(
I
√
−1J

J −
√
−1I

)
is unitary basis of H, so

√
2Re(σ(·)) and

√
2Im(σ(·)) are Gaussian

with parameter s.

Key Switching Procedure

Input ~c ∈ I [d]q , compute ~y = tm̂k−1~c ∈ R[d]
q , generate a short ~x ∈ R[dl] such that G~x = ~y.

Output the degree −1 cyphertext

c′(S ′) =
∑
i∈[dl]

xihi(S
′). (11.19)

Then

c′(s′) =
∑

xi(fi + t−1(GT~s)i) (11.20)

=
〈
~x, ~f

〉
+
〈
~x, t−1GT~s

〉
(11.21)

=
〈
~x, ~f

〉
+ m̂k−1e mod qR∨. (11.22)

Hence, the noise term is e′ =
〈
~x, ~f

〉
+ m̂k−1e. Note that e′ = m̂k−1e modulo pR∨, since

fi ∈ pR∨. e′ is a relatively short element of R∨, since e was short in m̂1−kR∨, and ~x and
~f are also short in R∨ by construction. To choose a short ~x such that G~x = ~y for a given
~y ∈ R[d]

q , it suffices to find a short basis of Λ⊥(G).

Lemma 11.3.4. There is an efficiently computable Z-basis Z ∈ R[dl]×[dln] of Λ⊥(G) satis-

fying the following bounds, where ‖Z̃‖2 denotes the largest l2-norm of the Gram-Schmidt

orthogonalized vector Z̃. If q is a power of 2, then s1(Z) ≤ 3
√
m̂ and ‖Z̃‖2 = 2

√
n,

otherwise s1(Z) ≤
√

(9 + wt2(q))m̂ and ‖Z̃‖2 =
√
5n, where wt2(q) denotes the number

of 1s in binary expansion of q.

Proof. Consider the integral lattice

L⊥(G) = {~z ∈ Z[dl] : G~z = 0 ∈ Z[d]
q }. (11.23)
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Define Sg ∈ Z[l]×[l] as

Sg =


2
−1 2

−1 . . .

2
−1 2

 (11.24)

if q = 2l, and otherwise

Sg =


2 q0
−1 2 q1

. . . . . .
...

. . . 2 ql−2

−1 ql−1

 , (11.25)

where q =
∑

i∈[l] qi2
i is the binary representation of q, with qi ∈ {0, 1}. The columns

of Sq form a basis of L⊥(gT ), since the columns of Sq are linearly independent and
detSg = 2l = det(L⊥(gT )) if q = 2l, and also detSg = q in general if we consider the
expansion of detSg with respect to the last column.

The Gram-Schmidt Orthogonalization from earlier with q = 2l is

S̃ =


2

2
. . .

2

 if q = 2l. (11.26)

If q not a power of 2, we use the standard Gram-Schmidt Orthogonalization. Then

‖S̃i‖2 = 1 +
4i∑
j<i 4

j
=

4− 4−i

1− 4−i
(< 5) for i = 1, . . . , l − 1, (11.27)

‖S̃l‖2 =
3q2

4l − 1
< 3. (11.28)

(To compute ‖S̃l‖2, note that Si ⊥ α for i = 1, 2, . . . , l − 1, where α = (1, 2, · · · , 2l−1),
hence

‖S̃l‖2 =
〈sl, α〉2

‖α‖2
=

q2∑l−1
j=0 4

j
=

3q2

4l − 1
.) (11.29)

By definition,

s1(A) = max
u6=0

‖Au‖
u

. (11.30)

When q = 2l,

Sg =


2

2
. . .

2

 (= A1) +


0
−1 0

. . . . . .

−1 0

 (= A2).
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Sg(u) = A1u+ A2u, where ‖u‖ = 1. Hence,

‖Sgu‖ ≤ ‖A1u‖+ ‖A2u‖ ≤ 2 + 1 = 3.

When q 6= 2l, we consider STg .
2 −1

2 −1
. . .

2 −1
q0 q1 · · · ql−2 ql−1




u0
u1
...

ul−2

ul−1

 (11.31)

=


2u0 − u1
2u1 − u2

...
2ul−2 − ul−1

q0u0 + · · ·+ ql−1ul−1

 (11.32)

= 2


u0
u1
...

ul−2

0

−


u1
u2
...

ul−1

0

+


0
0
...
0

q0u0 + · · ·+ ql−1ul−1

 , (11.33)

where h = (q0, q1, · · · , ql−1), hence ‖h‖ = wt2(q). Then

‖STg u‖2 ≤ (3‖u‖)2 + ‖h‖2‖u‖2,

so
‖STg u‖ <

√
9 + wt2(q)‖u‖.

Now we claim that
Z = S ⊗ ~pT = I[d] ⊗ Sg ⊗ ~pT ∈ R[dl]×[dln]

is a Z-basis of Λ⊥(G) satisfying the bounds in the lemma, where ~p is the powerful basis
of R. Because

s1(Z) = s1(S) · s1(~p) = s1(S)
√
m̂, (11.34)

‖Z̃‖2 = ‖S̃‖2‖C̃RTm‖2 = ‖S̃‖2
√
n, (11.35)

we have proved the lemma.

Remark 11.3.5. Let A ∈ Z[h]×[k]
q be given. Then for any Z-basis B of L⊥(A) ⊂ Z[k] and

a Z-basis ~b of R, B ⊗~bT is a Z-basis of Λ⊥(A) ⊂ R[k]. To prove this, let ~z ∈ Λ⊥(A), i.e.,

A~z = 0 ∈ R[h]
q . Since ~z ∈ Rk and ~z = (ζ1, . . . , ζk), where ζi ∈ R,

ζi =
∑

aijbj, i = 1, . . . , k, aij ∈ Z. (11.36)

Then

~z =
∑

bj


a1j
a2j
...
akj

 =
∑

bj · aj,
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where


a1j
a2j
...
akj

 = aj. Hence, A~z = 0 implies Aaj = 0 ∈ Z[h]
q , i.e., aj ∈ L⊥(A), so aj can

be written uniquely as a Z-linear combination of basis elements in B, i.e., B ⊗~bT forms
a basis of Λ⊥(A) ⊆ R[k].
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Part III

Multilinear map
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Chapter 12

Multilinear maps

12.1 Why multilinear map?

Two-party non-interactive key exchange (2-party NIKE, Diffie-Hellman key exchange)
protocol

• Publish a cyclic group G (i.e., generator g of order q) where discrete log problem is
hard.

• Alice chooses a random x1 ∈ Zq, publishes y1 = gx1

• Bob chooses a random x2 ∈ Zq, publishes y2 = gx2 .

• Alice and Bob compute agreed secret key K = gx1x2 = y1
x2 = yx12 .

• Security: Computational Diffie-Hellman problem (CDH), i.e., given g, gx1 , gx2 , com-
pute gx1x2 .

Wish to have an N -multiparty version: G, GT are groups where Discrete log is hard,
and there is an efficient (N − 1)-linear map e : GN−1 → GT such that

e(gx1 , . . . , gxN−1) = e(g, . . . , g)x1···xN−1

for all x1, . . . , xN−1 ∈ Zq.
Then we obtain N -party NIKE:

• Publish cyclic groups G and GT (with generators g and gT , of order q), where
DL-problem is hard, and an efficient (N − 1) linear map e.

• For i = 1, . . . , N , party Pi chooses xi ∈ Zq and publishes yi = gxi .

• All parties can compute the agreed secret key

K = e(y2, y3, . . . , yN)
x1 (12.1)

= e(g, g, . . . , g)x1x2···xN . (12.2)

• Security: Hardness of Multilinear CDH problem (MCDH), i.e., given g, gx1 , . . . , gxN ,
compute e(g, . . . , g)x1···xN .
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12.2 Grag-Gentry-Halevi (GGH) Graded Encoding

Scheme

High level description

• R = Z[x]/ 〈xn + 1〉, where n is a power of 2.

• Publish rings Rg, Rq, and some public parameters of N − 1 Graded Encoding
Scheme.

• For i = 1, . . . , N , party Pi chooses xi ∈ Rg, publishes yi = Enc1(par, xi : ρi), i.e.,
level 1 encoding of xi with noise ρi with some encoding scheme.

• We require

Enc1(par, x1 : ρ1) · · ·Enc1(par, xk : ρk) = Enck(par, x1 · · ·xk : ρ) (12.3)

and
x · Enck(par, z : ρ) = Enck(par, x · z : ρ). (12.4)

• Noise-clearing Extraction process at level k

Ext(par, Enck(par, x : ρ)) = r(x) ∈ {0, 1}n (12.5)

should be independent of randomness ρ, and we require output x(x) ∈ {0, 1}n to
be uniform for uniform input x← U(Rg).

• Then all parties have agreed secret key

K = Ext(par, EncN−1(par, x1 · · ·xN : ρ)) (12.6)

= Ext(par, x1y2 · · · yN). (12.7)

(∵ x1y2 · · · yN = x1Enc1(par, x1 : ρ1) · · ·Enc1(par, xk : ρk) (12.8)

= x1EncN−1(x2 · · ·xN : ρ) (12.9)

= EncN−1(x1x2 · · ·xk : ρ)) (12.10)

• Security: Extraction of Graded computational Diffie-Hellman problem (Ext-GCDH):
Given

y1 = Enc1(par, x1 : ρ1), · · · , yN = Enc1(par, xN : ρN),

compute
Ext(par, EncN−1(par, x1 · · ·xN : ρ)).

Construction of Enc1, · · · , Enck
Public parameters

• Sample a small g ←↩ DR,σ until ‖g−1‖ ≤ lg−1 and I = 〈g〉 is prime, where DR,σ is
discrete Gaussian with variance σ. Define encoding domain Rg = R/〈g〉.

• Sample z ←↩ U(Rg).
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• Sample a level 1 encoding of 1, i.e., set y = [a · z−1]q with a←↩ D1+I,σ′ .

• Sample mr level-1 encodings of 0, i.e., set sj = [bj · z−1]q with bj ←↩ DI,σ′ for all
j ≤ mr.

• Sample h←↩ DR,
√
q and define a zero-testing parameter pzt = [h

g
zk]q ∈ Rq.

• Return par = (n, q, y, {xj}j≤mr) and pzt.

Remark 12.2.1.

R = Z[x]/〈xn + 1〉 ↔ Zn (12.11)
n−1∑
i=0

aix
i ↔ (a0, · · · , an−1) (12.12)

I(ideal) ⊂ R ↔ sublattice of Zn (12.13)

• poly(n)-ideal lattice SVP is assumed to be still difficult even against quantum com-
puter. But note that Gap-SVP for ideal lattice is trivial.

• R could be imbedded in Cn via the canonical map σ = (σ1, · · · , σn).

• But when n is a power of 2, the coefficient embedding and the canonical embedding
are isometric up to the constant

√
n.

If α(z) = a0 + a1z + · · ·+ an−1z
n−1, then

(α(ζ), α(ζ3), · · · , α(ζ2n−1)) (12.14)

= (a0, a1, · · · , an−1)


1 1 · · · 1
ζ ζ3 · · · ζ2n−1

ζ2 ζ2·3 · · · ζ2(2n−1)

...
... · · · ...

ζn−1 ζ(n−1)3 · · · ζ(n−1)(2n−1)

 , (12.15)

where ζ = e2πi/n and n = 2k. Note that
1 1 · · · 1
ζ ζ3 · · · ζ2n−1

ζ2 ζ2·3 · · · ζ2(2n−1)

...
... · · · ...

ζn−1 ζ(n−1)3 · · · ζ(n−1)(2n−1)

 (12.16)

is unitary up to
√
n. Hence,

‖σ(α(z))‖ =
√
n
√
|a0|2 + · · ·+ |an−1|2 (12.17)

=
√
n‖α‖. (12.18)
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Level-1 encoding Enc1(par, e)

• Given level-0 e ∈ R: e←↩ DR,σ′ , u′ = [ey]q, hence u
′ = [c′/z]q with c

′ ∈ e+ I (Note
that e = [e]〈g〉 + geH for some eH ∈ R, where [e]g is the unique coset representative
in Pg, and Pg = {

∑n−1
i=0 cix

ig : ci ∈ [−1
2
, 1
2
)}. Also note that (g, xg, · · · , xn−1g) is a

short Z-basis of the ideal lattice 〈g〉.)

• Rerandomize: Sample small ρj ←↩ DZ,σ∗
1
for j ≤ mr, and return u = [u′ +∑mr

j=1 ρjxj]q. Hence, u = [c/z]q with c ∈ e+ I and c = c′ +
∑
ρjbj.

Multiplying encodings

Given a level-k1 encoding u1 = [c1/z
k
1 ]q of e1 and a level-k2 encoding u2 = [c2/z

k2 ]q of e2,
u = [u1 · u2]q is a level-(k1 + k2) encoding of [c1 · c2]g. Note that u1 · u2 = [c1c2/z

k1+k2 ]q
and c1 · c2 ∈ e1 · e2 + I.

Extraction at level k Ext(par, u)

Given a level-k encoding u = [c/zk]q, return

v = up to lth most significant bit of [pztu]q with l < (
1

4
− ε) log q

=: MSBl([pzt · u]q).

Correctness of extraction

• At level 1: if c = [c]g + gr for some small r ∈ R, then

v =MSBl

(
h

g
([c]g + gr)

)
=MSBl

(
h

g
[c]g + hr

)
,

which is equal to MSBl(
h
g
[c]g) with high probability if q > ‖r‖8. Since h ∼ √q,

‖hr‖ ∼ √q‖r‖. If q > ‖r‖8, then √q‖r‖ < q
1
2
+ 1

8 = q
5
8 . Hence, the noise term

hr does not contribute to the most significant lth bit if l < (1
4
− ε) log q, since q 5

8

contributes up to 5
8
log q least significant bits.

• After k multiplications: for ui = [xi+gri
z

]q, where i = 1, · · · , k, we have

u = u1u2 · · ·uk =
[
x+ gr

zk

]
q

,

where x = x1 · · ·xk. Then we require r to satisfy

‖r‖ = O(2k‖(gr1) · · · (grk)‖) (12.19)

(∵ 2k because there are 2k terms)

= O((poly(n)N)k) < q1/8, (12.20)

where N := maxi ‖gri‖, i.e., O(maxi ‖gri‖) < q1/8k/ poly(n).
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Security of GDH for GGH scheme

Known attacks need a small multiple of g, dg (‖dg‖ < q).
Note: From public parameters, it is easy to compute a basis for the ideal 〈g〉, even

though g is a secret. But usually the bases thus found are rather long, so it is difficult to
find a short element dg in 〈g〉.

Attack on Graded Discrete Log problem. Given u = Enc1(par, x) =
[
x+rg
z

]
q
for small r.

• Compute p′zt := [dgpzt]q = [dg h
g
zk]q = [dhzk]q.

• Let u′ = [uyk−1]q = [x+r
′g

zk
]q, y

′ = [yk]q = [
1+r′yg

zk
]q.

• Compute u′′ := [u′p′zt]q = dh(x+ r′ · g) ∈ R, y′′ := [y′p′zt]q = dh(1 + r′y · g) ∈ R.

• Using a basis for 〈g〉 obtained from public parameters, it is easy to compute a (in
general very large) representation x′ ∈ R, where x′ = u′′y′′−1 mod 〈g〉, so x′ = x
mod 〈g〉 since u′′y′′−1 = x mod 〈g〉.

• Compute a small representation x′′ = x′ mod 〈dg〉. Then x′′ = x mod 〈g〉.

Note: 〈dg〉 is a sublattice of 〈g〉, and we have a short basis for the ideal lattice 〈dg〉, but
in general not for the ideal lattice 〈g〉.
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Chapter 13

GGHLite scheme for k-graded
encoding

Public Parameter Generation

• Sample g ←↩ DR,σ until ‖g−1‖ ≤ lg−1 and I = 〈g〉 is prime.

• Sample z ∈ U(Rq).

• Sample a level-1 encoding of 1: y = [az−1]q with a←↩ D1+I,σ′ .

• Sample B = (b1, b2) ∈ R × R from (DI,σ′)2. If 〈b1, b2〉 6= I or σn(rotB) < lb, then
resample.
Note:

rotB : R×R → R (13.1)

(x, y) → xb1 + yb2 (13.2)

and σn(rotB) is the smallest singular value of rotB as a linear map.

• Define level-1 encodings of 0:

x1 = [b1 · z−1]q, x2 = [b2 · z−1]q. (13.3)

• Sample h←↩ DR,
√
q, and define a zero test parameter pzt = [h

g
zk]q ∈ Rq.

• Return parameters = (n, q, y, x1, x2, pzt).

Level-1 encoding Enc(par, e)

Given a level-0 e ∈ R,

• Encode e at level-1: compute u′ = [ey]q.

• Return u = [(u′ + ρ1x1 + ρ2x2)/z]q with ρ1, ρ2 ←↩ DR,σ∗
1
.

• Hence, u′ + ρ1x1 + ρ2x2 is in DI+ρ, σ
∗
1B

T , ey.
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Formalizing Re-randomization Security

Informal requirement: Prevent correlation of statistical properties of re-randomized
encoding with encoded element.

Formal requirement: Breaking Ext-GCDH problem is as hard as breaking canonical
Ext-GCDH problem.

• Ext-GCDH: Given public parameters and y1 = [e1y + ρ11x1 + ρ21x2]q, · · · , yN =
[eNy + ρ1Nx1 + ρ2Nx2]q, compute

Ext(par, EncN−1(par, e1 · · · eN : ρ)) =MSBl(pzt · y1 · · · yN). (13.4)

• Canonical Ext-GCDH: Given public parameters and y1 = [c1z
−1]q, · · · , yN = [cNz

−1]q
with ci ←↩ DI+ei,σ∗BT for i = 1, · · · , N , compute

Ext(par, EncN−1(par, e1 · · · eN : ρ)) =MSBl(pzt · y1 · · · yN). (13.5)

Remark 13.0.2. The difference between Ext-GCDH and canonical Ext-GCDH is that
sampling in Ext-GCDH is from a shifted Gaussian (shifted by ei · y), while sampling in
canonical Ext-GCDH is from a fixed origin centered Gaussian, but with a shifted lattice
(by ei).

Theorem 13.0.3. This requirement is satisfied under suitable parameter conditions.

D1: The distribution of yi = [vi/z]q in Ext-GCDH problem

• vi distribution is a shifted Gaussian DI+ei,σ∗
1B

T ,c′i
with small shifted center c′i = eiy.

D2: The distribution of yi = [vi/z]q in canonical Ext-GCDH problem

• vi distribution is DI+ei,σ∗
1B

T – which has no shift of center.

The original strong GCDH requirement was based on the statistical distance (SD) ∆:
They required

∆(D1, D2) :=
∑
x

|D1(x)−D2(x)| < 2−λ. (13.6)

Problem with the strong requirement

We ask any adversary A with success probability ε against Ext-GCDH problem. Then
the success probability ε′ is still small (exponentially) against the canonical Ext-GCDH.
Since

|ε− ε′| < ∆(D1, D2), (13.7)

we have

ε−∆(D1, D2) < ε′ < ε+∆(D1, D2). (13.8)

Hence, we need the statistical distance ∆(D1, D2) < 2−λ exponentially small. Conse-

quently, we need
σ∗
1

‖c′1‖
= 2Ω(λ) (called exponential drowning). Note that
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σ

c

F1, Gaussian F2, Gaussian 
shifted by c

∆(F1, F2) = O
( c
σ

)
. (13.9)

Hint:

σ

c

(Approximated version of the above)

Security analysis of GGHLite is based on Renyi divergence (RD) R

R(D1‖D2) :=
∑
x

D2
1(x)/D2(x) (13.10)

Remark on Renyi divergence: On Rn,

R(P‖Q) =
∫
Rn

P 2(x)

Q(x)
dx = EP

(
P

Q

)
.

Note that (∫
A
P (x)dx

)2∫
A
Q(x)dx

<

∫
A

P 2(x)

Q(x)
dx < R(P‖Q). (13.11)

(For a general subset A, the first inequality follows from the Cauchy-Schwarz inequality

since P (x) = P (x)√
Q(x)

√
Q(x).) Hence, Q(A) ≥ P (A)2/R(P‖Q).
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Security analysis of GGHLite based on Renyi divergence

Any adversary A with success probability ε against Ext-GCDH problem has success
probability ε′ against canonical Ext-GCDH problem with

ε′ ≥ ε2/R(D1‖D2)
2. (13.12)

Hence, we require only that R(D1‖D2) is poly(λ). Then ε
′ ∼ 2−λ implies ε ∼ 2−λ.

Lemma 13.0.4. For any n-dimensional lattice Λ ⊂ Rn and rank n matrix S ∈ Rm×n, let
P be the center-shifted Gaussian distribution DΛ,S,w, and Q the center-shifted Gaussian
distribution DΛ,S,z for some w, z ∈ Rn. If w, z ∈ Λ, let ε = 0. Otherwise fix ε ∈ (0, 1)
and assume that σn(S) ≥ ηε(Λ). Then

R(P‖Q) ∈

[(
1− ε
1 + ε

)2

,

(
1 + ε

1− ε

)2
]
exp(2π‖S−T (w − z)‖2) (13.13)

⊂

[(
1− ε
1 + ε

)2

,

(
1 + ε

1− ε

)2
]
exp

(
2π‖(w − z)‖2

σn(S)2

)
(13.14)

(refer the paper [LSS14] on GGHLite for the proof.)

Hence, the lemma implies that

R(D1‖D2) ≤ exp

(
2π‖c′1‖2

σn(σ∗
1B

T )2

)
. (13.15)

For the requirement R(D1‖D2) ≤ poly(λ), we can use
σ∗
1

c′1
= O(1/| log λ|).

In our scheme, vi = [eia + ρ1b1 + ρ2b2/z]q with ρi ←↩ DR,σ∗
1
. Hence, we have to show

that
ρ1b1 + ρ2b2 ≈ DI,σ∗

1B
T , (13.16)

where B = [b1, b2] = g[t1, t2] ∈ R2.

• Step 1. We show [t1, t2]R
2 = R with nonzero probability.

Remark 13.0.5. It is the probability that two random algebraic integers are co-
prime ≈ ζR(2)

−1 as in the integer case. (Let n1, n2 be random integers, and p a
prime. Then the probability that both n1 and n2 has p as a common factor is 1

p2
.

Hence, the probability that the pair n1, n2 is coprime is given by
∏

p prime

(
1− 1

p2

)
,

which is ζ(2)−1.)

Remark 13.0.6. [t1, t2]R
2 6= R is non-negligible for R = Z[x]/〈xn + 1〉, where n

is even, since each random element of R falls in the ideal 〈x+ 1〉 with probability
1
2
, hence both t1, t2 get stuck in 〈x+ 1〉 with probability 1

4
. (h = a0 + a1x + · · · +

an−1x
n−1 ∈ R is defined up to a multiple of (xn + 1), i.e., if h̃ = h + f(x)(xn + 1)

in R for some polynomial f(x), then h̃ = h in R. Hence, h ∈ 〈x+ 1〉 if and only if
h(−1) = 0 for some f(x), i.e., there exists f(x) such that

a0 − a1 + · · · ± an−1 + f(−1)2 = 0, (13.17)

that is, if a0 − a1 + · · · ± an−1 is even.)

• Step 2. Let AT = {V ∈ R2 : TV = [t1, t2]V = 0}. If σ∗
1 > ηε(AT ), then ρ1t1+ρ2t2 is

within SD 2ε of DR,σ∗
1T

t , which comes from discrete Gaussian leftover hash lemma.
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Chapter 14

Cryptanalysis of GGH map

We follow the notations in Steinfeld’s lecture slides. We only explain essential parts of
the cryptanalysis due to Yupu Hu and Huiwen Jia [Hu15].

14.1 Schematic description of the cryptanalysis

1. From public noised encoding V of secret v, one generates an equivalent secret, v(0),
of which the noise v(0) − v is not short in general and v(0) − v ∈ 〈g〉.

2. For the product
K+1∏
k=1

v(k),
K+1∏
k=1

v(0,k) −
K+1∏
k=1

v(k) ∈ 〈g〉, but not short.

3. Key step of modified encoding/decoding.

From η :=
K+1∏
k=1

v(0,k) =
K+1∏
k=1

v(k) + ξg, we obtain

η′′′ = (h(1 + ag)Kg−1)
K+1∏
k=1

v(k) + ξ′′(1 + ag) mod q,

where ξ′′(1 + ag) short. Hence, the higher order bits of η′′′ are what we want to
obtain.

14.2 Generating an equivalent secret

Y := yK−1x(1)pzt (mod q) (14.1)

= h(1 + ag)K−1b(1) (14.2)

X(i) := yK−2x(i)x(1)pzt (mod q) (14.3)

= h(1 + ag)K−2(b(i)g)b(1) (14.4)

Note that RHSs are rather short.

V → W := V yK−2x(1)pzt (mod q) (14.5)

= vY + (u(1)X(1) + u(2)X(2)) : short (14.6)

→ W (mod Y ) = (u(1)X(1) (mod Y ) +

u(2)X(2) (mod Y )) (mod Y ) (14.7)
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From W (mod Y ), X(1) (mod Y ), and X(2) (mod Y ), obtain W ′ ∈
〈
X(1), X(2)

〉
such that

W −W ′ (mod Y ) = 0.

Denote W ′ = u′(1)X(1) + u′(2)X(2).

v(0) := (W −W ′)/Y (14.8)

= v + ((u(1)X(1) + u(2)X(2))−W ′)/Y (14.9)

= v + ((u(1) − u′(1))X(1) + (u(2) − u′(2))X(2))/Y (14.10)

= v + ((u(1) − u′(1))b(1) + (u(2) − u′(2))b(2)g)
/
(1 + ag). (14.11)

Since g and 1 + ag are coprime,
v(0) − v ∈ 〈g〉 .

v(0) is called the equivalent secret of v.

14.3 Modified Encoding/Decoding

η :=
K+1∏
k=1

v(0,k) =
K+1∏
k=1

v(k) + ξg (14.12)

η′ := Y η = Y
K+1∏
k=1

v(k) + ξ′b(1)g (14.13)

η′′ := η′(mod X(1)) (14.14)

η′′ = Y
K+1∏
k=1

v(k) + ξ′′b(1)g (14.15)

(∵ η′′ is the sum of η′ and a multiple of X(1), and X(1) is a multiple of b(1)g.) Note that

η′′ has size
√
nX(1) by the definition (mod X(1)), and that Y

K+1∏
k=1

v(k) also small. Hence,

ξ′′b(1)g = η′′ − Y
K+1∏
k=1

v(k) is small.

η′′′ := y(x(1))−1η′′(mod q) (14.16)

= (h(1 + ag)Kg−1)
K+1∏
k=1

v(k) + ξ′′(1 + ag) (mod q) (14.17)

Note that ξ′′(1 + ag) is small and that (h(1 + ag)Kg−1)
K+1∏
k=1

v(k) (mod q) is the decoded

message, so its high order bits are what we want to obtain.

14.4 Witness encryption based on 3–exact cover

• 3–exact cover problem:
A subset of {1, 2, . . . , 3K} which has exactly three elements is called a piece. A
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collection ofK pieces without intersection is called a 3–exact cover of {1, 2, . . . , 3K}.
The 3–exact cover problem is that, for randomly given N(K) different pieces with
a hidden 3–exact cover, find it. If N(K) = O(K), it easy. If N(K) = O(K2), it is
hard.

• Encryption:

– Sample short elements v(1) · · · v(3K) ∈ R.
– Compute v(1) · · · v(3K)yKpzt (mod q).

– Then EKEY is its high-order bits.
Hide EKEY into pieces as follows. Randomly generate N(K) different pieces of
{1, 2, . . . , 3K} with a hidden 3–exact cover called EC. For each piece {i1, i2, i3},
compute noised encoding of v(i1)v(i2)v(i3), i.e.,

V {i1,i2,i3} = v(i1)v(i2)v(i3)y + (u({i1,i2,i3},1)x(1)

+u({i1,i2,i3},2)x(2)) (mod q). (14.18)

• Decryption: If one knows EC, compute pzt
∏

{i1,i2,i3}∈EC

V (i1,i2,i3) (mod q). Then

EKEY is its high-order bits.

14.5 Breaking WE based on the hardness of 3–exact

cover problem

Given N(K) = O(K2) different pieces of {1, 2, . . . , 3K}, {i1, i2, i3} is called a combined
piece if

1. {i1, i2, i3} is not a piece given;

2. {i1, i2, i3} = ({j1, j2, j3} ∪ {k1, k2, k3})− {l1, l2, l3};

3. {j1, j2, j3}, {k1, k2, k3}, {l1, l2, l3} are pieces given.

{i1, i2, i3} is called a second-order combined piece if

1. {i1, i2, i3} is neither a piece nor a combined piece;

2. {i1, i2, i3} = ({j1, j2, j3} ∪ {k1, k2, k3})− {l1, l2, l3};

3. {j1, j2, j3}, {k1, k2, k3}, {l1, l2, l3} are pieces given or combined pieces.

We define combined 3–exact cover of {1, 2, . . . , 3K} as before.
The combined 3–exact cover problem is to “find a combined 3–exact cover among pieces,
combined pieces, and second-order combined pieces.”

Claim: The combined 3–exact cover problem is easy.
We are given random K2 pieces, and there is a hidden 3–exact cover among them. Then
for a random {i1, i2, i3} which is not piece,

Prob({i1, i2, i3} is not a combined piece) ∝ e−1,
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as shown below. Hence, from the random K2 pieces, we obtain about (1 − e−1)C3K
3

different subsets of {1, 2, . . . , 3K} which are pieces or combined pieces. There are about
e−1C3K

3 left over 3-element subsets of {1, 2, . . . , 3K} which are neither pieces nor combined
pieces. Choose one {i1, i2, i3} from them. We show that

Prob({i1, i2, i3} is not a second-order piece) ∝ e−K
3

by the same method of computatiing Prob({i1, i2, i3} is not a combined piece). Hence,
almost all of different C3K

3 subsets of {1, 2, . . . , 3K} which consists of 3 elements are
pieces, combined pieces, or second-order combined pieces, so the combined 3–exact cover
problem is easily solved by choosing a random 3–exact cover among pieces, combined
pieces, and 2nd order combined pieces.

Computation of Prob({i1, i2, i3} is not a combined piece)

Take a random {i1, i2, i3} which is not a piece and fix it. Take a random {α, β, γ} from
{1, 2, . . . , 3K} − {i1, i2, i3}. Then partition {α, β, γ, i1, i2, i3} into two parts, {j1, j2, j3}
and {k1, k2, k3}. Let {l1, l2, l3} = {α, β, γ}. The number of possibilities of such 3-triples
{j1, j2, j3}, {k1, k2, k3}, {l1, l2, l3} is C3K−3

3 ·C6
3 . Hence, the probability out of all possible

3-triples is
C3K−3

3 · C6
3

(C3K
3 )

3 ≈ 80

81K6
≈ 1

K6
.

Hence, the probability that there is no 3 triples {j1, j2, j3}, {k1, k2, k3}, {l1, l2, l3} such
that

{j1, j2, j3} ∪ {k1, k2, k3} ⊃ {i1, i2, i3}
{l1, l2, l3} = {j1, j2, j3} ∪ {k1, k2, k3} − {i1, i2, i3}

among 3 random pieces {j1, j2, j3}, {k1, k2, k3}, {l1, l2, l3} is about(
1− 1

K6

)O(K2)(O(K2)−1)(O(K2)−2)

≈ exp

(
−O(K

2)3

K6

)
≈ e−1.

Take a fixed combined 3–exact cover. Take an element {i1, i2, i3} of this combined
3–exact cover.

1. If {i1, i2, i3} is a piece, we count +1.

2. If {i1, i2, i3} is a combined piece, so that

{i1, i2, i3} = {j1, j2, j3} ∪ {k1, k2, k3} − {l1, l2, l3},

count {i1, i2, i3} → +1, {k1, k2, k3} → +1, {l1, l2, l3} → −1.

3. If {i1, i2, i3} is a second-order combined piece, then

{i1, i2, i3} = {j1, j2, j3} ∪ {k1, k2, k3} − {l1, l2, l3},

where {i1, i2, i3}, {k1, k2, k3}, {l1, l2, l3} are pieces given or combined pieces.

(3–1) If {i1, i2, i3} is a piece given, count +1.
If {i1, i2, i3} is a combined piece, count
{i1, i2, i3} = {α1, α2, α3} ∪ {β1, β2, β3} − {γ1, γ2, γ3}.

+1 +1 −1
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(3–2) Similarly for {k1, k2, k3}.
(3–3) If {l1, l2, l3} is a piece given, count −1.

If {l1, l2, l3} is a combined piece, count
{l1, l2, l3} = {ε1, ε2, ε3} ∪ {δ1, δ2, δ3} − {ξ1, ξ2, ξ3}.

−1 −1 +1

Note: It is possible that one piece is counted several times.

CPF = collection of all positive factors

NPF = the number of positive factors

CNF and NNF are similarly defined.

Remark 14.5.1. NPF −NNF = K.

Since there are about K2 pieces with factors (+1), there are (1 − e−2)C3K
3 − K2

combined pieces with factors (+,+,−), and e−2C3K
3 second-order combined pieces with

factors at most (+++++,−− −−). Hence, for a randomly chosen combined 3–exact
cover, it is almost certain that NPF ≤ 3K, hence NNF ≤ 2K.

(∵ 5e−2 + 2 ·
(
1− e−2 · K

2

C3K
3

)
+ 1 · K

2

C3K
3

≤ 2 + 3e−2 < 3)

If all of our combined 3–exact cover consists of pure pieces, NPF −NNF = NPF = K.
If one of pure pieces is replaced by a combined piece, NPF −NNF is not changed. The
same result holds for second-order combined pieces.

Breaking WE

Randomly take a combined 3–exact cover → Obtain CPF and CNF .
For a positive factor (pf) = {i1, i2, i3}, denote the secret of (pf) as v(pf) = v(i1)v(i2)v(i3),
and the equivalent secret of v(pf) as v′(pf).

PPF :=
∏

pf∈CPF

v′(pf) (14.19)

PNF :=
∏

nf∈CNF

v′(nf) (14.20)

PTS :=
3K∏
k=1

v(k) (14.21)

Then

1.
∏

pf∈CPF

v(pf) = PTS ×
∏

nf∈CNF

v(nf)

2. PPF −
∏

pf∈CPF

v(pf) ∈ 〈g〉

3. PNF −
∏

nf∈CNF

v(nf) ∈ 〈g〉
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4. PPF − PNF × PTS ∈ 〈g〉

If PTS ′ is an equivalent secret of PTS, then PPF − PNF × PTS ′ ∈ 〈g〉, since PTS ′ −
PTS ∈ 〈g〉. Conversely, if PNF and g are coprime, and if PPF − PNF × PTS ′ ∈ 〈g〉,
then PTS ′ is an equivalent secret of PTS, since in this case PNF × (PTS ′−PTS) ∈ 〈g〉
implies (PTS ′ − PTS) ∈ 〈g〉.

Note that the Hermite normal form of

g =


g0 g1 · · · gn−1

−gn−1 g0 · · · gn−2
...

...
. . .

...
−g1 −g2 · · · g0

 , (14.22)

which is the matrix representation of (g, xg, . . . , xn−1g)T , is

G =


G0

G1 1
...

. . .

Gn−1 1

 , (14.23)

where G0 is the absolute value of det g, and Gi(mod G0) = Gi. This can be obtained by
Gauss elimination once the basis of 〈g〉 is formed. Hence,

PPF − PNF × PTS ′ ∈ 〈g〉 (14.24)

⇔ PPF G−1 − PTS ′ × PNF ×G−1 ∈ R, (14.25)

where

PNF =


PNF0 PNF1 · · · PNFn−1

−PNFn−1 PNF0 · · · PNFn−2
...

. . .
...

−PNF1 −PNF2 · · · PNF0

 . (14.26)

Let lcm be the least common multiple of all denominators of the entries of PPF G−1

and PNF ×G−1. Then

(lcm× PPF ×G−1) (mod lcm) (14.27)

= PTS ′ × (lcmPNF ×G−1) (mod lcm). (14.28)

Note that there is at least one solution, namely PTS, which we do not know. Obtain a
solution PTS ′. Let η = PTS ′, and compute η′ = Y η. Let η′′ = η′(mod X(1)), and again
compute η′′′ = y(x(1))−1η′′(mod q). The high-order bits of η′′′ is then what we wanted.

Remark 14.5.2. We must obtain the Hermite normal form of 〈g〉 for an unknown
small g, when Y , X(1), X(2) are public. First we obtain the Hermite normal forms of〈
h(1 + ag)K−2b(1)

〉
and

〈
h(1 + ag)K−2b(1)g

〉
when the principal ideals 〈Y 〉,

〈
X(1)

〉
,
〈
X(2)

〉
are known. Note that if the Hermite normal form of the principal ideal 〈g′〉 is

G′
0

G′
1 1
...

. . .

G′
n−1 1


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and g is a factor g′, then the Hermite normal form of 〈g〉 is
G0

G′
1(mod G0) 1

...
. . .

G′
n−1(mod G0) 1

 ,

where G0 is the determinant of 〈g〉.

14.6 Computing the Hermite Normal Form of 〈g〉
by computing the Hermite Normal Forms of〈
h(1 + ag)K−2b(1)

〉
and

〈
h(1 + ag)K−2b(1)g

〉
We assume that 1 + ag and b(1)g are coprime.

1. Gaussian sample Z from the lattice 〈Y 〉.

2. Compute Z ′ = Z mod X(1). Then Z ′ is uniformly distributed over the intersection
area

〈
h(1 + ag)K−2b(1)

〉
∩ PP (X(1)). (Since 1 + ag and b(1)g are coprime, multipli-

cation (or division) by 1 + ag preserves the uniformity over PP (X(1)).)

3. Compute the determinant of 〈Z ′〉.

4. Repeat the above steps several times.

5. Compute the greatest common divisor of the polynomially many sample. Then with
a high probability, it is the determinant of

〈
h(1 + ag)K−2b(1)

〉
. Hence, we obtain

the Hermite normal form of
〈
h(1 + ag)K−2b(1)

〉
from that of 〈Y 〉. Z ′ is of the form

〈Y 〉 −
〈
X(1)

〉
, so Z ′ is in the greatest common divisor of 〈Y 〉 and

〈
X(1)

〉
, which is〈

h(1 + ag)K−2b(1)
〉
, and of course in the parallelepiped PP (X(1)).

Similarly, we obtain the Hermite normal form of
〈
h(1 + ag)K−2b(1)g

〉
by sampling from

the lattice
〈
X(2)

〉
. Then compute mod X(1), . . .

With the two Hermite normal forms of
〈
h(1 + ag)K−2b(1)

〉
and

〈
h(1 + ag)K−2b(1)g

〉
, we

obtain the Hermite normal form of 〈g〉. (Just divide the determinant of
〈
h(1 + ag)K−2b(1)g

〉
by the determinant of

〈
h(1 + ag)K−2b(1)

〉
, then obtain the determinant of 〈g〉.)

Remark 14.6.1. Recently a quantum algorithm was found that can compute small
generators of principal ideals in the cyclotomic ring. (In particular, Soliloquy; Campbell,
Groves, Shepherd. [Cam14]) That is, small generators themselves of 〈g〉 are found, not
only the secrets of multipartite NIKE or WE. But the cryptanalysis of Hu and Jia are
classical analysis.
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Appendix A

Hermite Normal Form of Ideal
Lattices (following Ding and
Lindner, Smart and Vercauteren)

Let I ⊆ R = Z[x]/〈f(x)〉 be an ideal, where f(x) = a0 + a1x + · · · + an−1x
n−1 + xn

is an irreducible monic polynomial. Let L be the corresponding ideal lattice under the
coefficient embedding, and B ∈ Zn×n a basis of L. Then we have 0 0 · · · 0 −a0

In−1

...
−an−1

B = BT

for some integral matrix T , because it corresponds to the invariance of I under the
multiplication by x. If B is the HNF-basis of L, then the diagonal entries form a division
chain

B(n,n) | B(n−1,n−1) | · · · | B(1,1),

because when the ith column


∗

B(i,i)

0
...
0

 is multiplied by x, it becomes



0
∗

B(i,i)

0
...
0


, and

it should be a linear combination of B over integers, i.e.,



0
∗

B(i,i)

0
...
0


= Bt for some

integral vector t. Comparing both sides, especially the (i + 1)th component, we have
B(i+1,i+1)ti+1 = B(i,i), showing that B(i+1,i+1) | B(i,i).

When I = 〈p, x−α〉, two element representation of I, where p is the norm of I and α
is a root of f(x) modulo p, the corresponding HNF representation is very simple. Since

p, px, . . . , pxn−1, (x− α), x(x− α), . . . , x2(x− α), . . . , xn−1(x− α)
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are all in the ideal I and span I, we obtain HNF of the ideal lattice L,
p −α −α2 · · · −αn−1

0
0
...
0

In−1

 ,

where all integers in the first row, and in the second column and onward, are taken
modulo p. But it is a bad basis of ideal lattice I, in general.
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Appendix B

Notes on Cyclotomic Fields with
Examples (by H. Kim)

B.1 Cyclotomic Number Fields & Ring of Integers

The group of units For m = 2k+1, the group of units in Zm is given by

Z∗
m =

{
1, 3, 5, 7, 9, . . . , 2k+1 − 1

}
,

so n := ϕ(m) = |Z∗
m| = 2k.

Cyclotomic number fields & ring of integers The minimal polynomial over Q of
a primitive mth root of unity is called the mth cyclotomic polynomial, and it is denoted
by Φm(x). Since Φm(x) | xm − 1, the coefficients of Φm(x) are in Z by Gauss’s Lemma,
i.e., Φm(x) ∈ Z[x].

When m = 2k+1, it is given by

Φm(x) = x2
k

+ 1,

so the field extension of Q by an mth root of unity is

Q(ζm) = Q[x]/Φm(x) = Q[x]/(x2
k

+ 1).

Q(ζm) is therefore a degree 2k field extension over Q, and 1, ζm, ζ
2
m, . . . , ζ

2k−1
m is a Q-basis.

An element of Q(ζm) is said to be integral (over Z) if it is the root of a monic
polynomial with integer coefficients. For example, ζm is integral since it is the root of
the polynomial xm − 1. The ring of integers for Q(ζm), i.e., the set of integral elements
of Q(ζm), is given by

R := Z[ζm] = Z[x]/Φm(x) = Z[x]/(x2k + 1).

R is a Dedekind domain, and a free abelian group of rank 2k. Any Z-basis of R is a
Q-basis of Q(ζm), since linear independence over Z is equivalent to linear independence
over Q. Any Z-basis of R is called an integral basis. 1, ζm, ζ

2
m, . . . , ζ

2k−1
m ∈ R is an integral

basis, called the power basis. Note that Q(ζm) is a field of fractions for R. Since R is
a Dedekind domain, every nonzero ideal of R can be written uniquely as a product of
prime ideals.
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Examples

• m = 4

– Z∗
m = {1, 3}

– n = 2

– Q(ζm) = Q[x]/(x2 + 1) = Q(i)

– R = Z[x]/(x2 + 1) = Z[i]
– Power basis: {1, i}

• m = 8

– Z∗
m = {1, 3, 5, 7}

– n = 4

– Q(ζm) = Q[x]/(x4 + 1) = Q
(

1+i√
2

)
– R = Z[x]/(x4 + 1) = Z

[
1+i√

2

]
– Power basis:

{
1, 1+i√

2
, i, −1+i√

2

}
Note that Q ⊆ Q(ζ4) ⊆ Q(ζ8). This is because ζ28 is a 4th root of unity. (For example,(

1+i√
2

)2
= i.) More generally, if m′ | m, then ζ

m/m′
m is an m′th root of unity, so Q(ζ ′m) ⊆

Q(ζm). If m =
∏

`m` is a prime power factorization, i.e., the m` are powers of distinct
primes, then Q(ζm`

) ⊆ Q(ζm), and there is an isomorphism⊗
`

Q(ζm`
)

∼−→ Q(ζm)

such that ⊗`a` 7→
∏

` a`. For example, 72 = 2332, so Q(ζ23) ⊗ Q(ζ32)
∼−→ Q(ζ72) via

a⊗ b 7→ ab. The inclusion Z[ζm`
] ↪→ Q(ζm`

) induces an injective1 ring homomorphism⊗
`

Z[ζm`
] ↪→

⊗
`

Q(ζm`
),

which can be shown to be integral. Hence,
⊗

` Z[ζm`
]

∼−→ Z[ζm].

B.2 The Space H and the Canonical Embedding

B.2.1 The Space H

CZ∗
m denotes the set of all functions Z∗

m → C. It has an obvious ring structure. It can be
viewed as the Cartesian product Cn whose elements are indexed by the elements of Z∗

m,
and both addition and multiplication are component-wise.

The space H is defined by

H :=
{
x ∈ CZ∗

m |xi = x̄m−i ∀i ∈ Z∗
m

}
.

1Recall that an abelian group is flat if and only if torsion-free.
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H ⊆ CZ∗
m is a real subspace of dimension n. In fact, the C-inner product on CZ∗

m induces
an R-inner product on H, and there is an R-inner product space isomorphism Rn ∼−→ H
via the n-by-n unitary matrix

U =
1√
2



1 i
. . . ...

1 i
1 −i

... . . .

1 −i


.

Examples

• m = 4 : H =
{
(a+ ib, a− ib) ∈ C{1,3} | a, b ∈ R

}
' R2 via

U =
1√
2

(
1 i
1 −i

)
.

Note that detU = −i.

• m = 8 : H =
{
(a+ id, b+ ic, b− ic, a− id) ∈ C{1,3,5,7} | a, b, c, d ∈ R

}
' R4 via

U =
1√
2


1 0 0 i
0 1 i 0
0 1 −i 0
1 0 0 −i

 .

Note that detU = −1.

Lattice in H By a lattice inH, we will mean the image of a full-rank lattice in Rn under
the isomorphism Rn ∼−→ H. Equivalently, it is the free abelian group generated by an
R-basis of H. If L ⊆ H is a lattice generated by an R-basis b0, . . . , bn−1, its determinant
is defined by

detL := | detB|,

where B = [b0 · · · bn−1]. If c0, . . . , cn−1 ∈ H is another R-basis generating L, then B = CV
for some unimodular matrix V , so detL is independent of the choice of an R-basis of H
generating L.

B.2.2 The Canonical Embedding

Let i ∈ Z∗
m, and ωm some fixedmth root of unity. By the universal property of polynomial

rings, the inclusion Q ↪→ C extends uniquely to a ring homomorphism

Q[x]→ C

such that x 7→ ωim. The kernel is generated by the minimal polynomial of ωim, which
is Φm(x). Hence, there is an injective Q-algebra homomorphism Q[x]/Φm(x) ↪→ C such
that x̄ 7→ ωim, i.e.,

σi : Q(ζm) ↪→ C
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such that ζm 7→ ωim. σi are none other that the n Galois automorphisms on Q(ζm) fixing
Q. In particular, they are independent, up to a permutation, of the choices of ζm and
ωm. Since R = Z[ζm], σi is also an automorphism on R fixing Z.

The canonical embedding is the function

σ : Q(ζm)→ CZ∗
m , a 7→ (σi(a))i∈Z∗

m
.

It is an injective Q-algebra homomorphism. Since ωm−i
m = ω̄im, the image of σ lies in H.

Lattice in H induced by a Q-basis of Q(ζm) If x0, . . . , xn−1 ∈ Q(ζm) is a Q-basis,
σ may be represented by the n-by-n matrix (σi(xj)). Note that the jth column of this
matrix is σ(xj) ∈ H. For the power basis 1, ζm, . . . , ζ

n−1
m , the matrix becomes

S := (σi(ζ
j
m)).

Note that a different choice of ζm or ωm results in a permutation of rows or columns of
S. Each σi induces a character Q(ζm)

∗ → C∗, so by the independence of characters, the
rows of (σi(xj)) are linearly independent over C. Hence, σ(x0), . . . , σ(xn−1) generate a
lattice in H with determinant | detσi(xj)| 6= 0.

It follows that if G ⊆ Q(ζm) is a free abelian subgroup with a basis g0, . . . , gn−1, then
σ(G) is a lattice in H generated by σ(g0), . . . , σ(gn−1), and det σ(G) = | detσi(gj)| 6= 0.
In particular, σ(R) is a lattice in H, and det σ(R) = | detS| 6= 0.

If x0, . . . , xn−1 ∈ Q(ζm) are linearly dependent over Q, then
∑

j qjxj = 0 for some
qj ∈ Q, not all zero, and since σi is Q-linear,∑

j

qjσi(xj) = σi

(∑
j

qjxj

)
= 0.

Hence, the columns of the matrix (σi(xj)) are linearly dependent overQ, so det σi(xj) = 0.
Note the following:

• If x0, . . . , xn−1, y0, . . . , yn−1 ∈ Q(ζm) and yj =
∑

kMjkxk, where Mjk ∈ Q, then

detσi(yj) = (detM)(detσi(xj)).

• If x0, . . . , xn−1, y ∈ Q(ζm), then

detσi(yxj) = det σi(y)σi(xj) =

(∏
i

σi(y)

)
detσi(xj) = N(y) det σi(xj),

Examples

• m = 4 :

S =

(
σ1(1) σ1(ζ4)
σ3(1) σ3(ζ4)

)
=

(
1 i
1 −i

)
detS = −2i, so det σ(R) = | − 2i| = 2.

• m = 8 :

S =


σ1(1) σ1(ζ8) σ1(ζ

2
8 ) σ1(ζ

3
8 )

σ3(1) σ3(ζ8) σ3(ζ
2
8 ) σ3(ζ

3
8 )

σ5(1) σ5(ζ8) σ5(ζ
2
8 ) σ5(ζ

3
8 )

σ7(1) σ7(ζ8) σ7(ζ
2
8 ) σ7(ζ

3
8 )

 =


1 ζ8 ζ28 ζ38
1 ζ38 −ζ28 ζ8
1 −ζ8 ζ28 −ζ38
1 −ζ38 −ζ28 −ζ8


detS = −16, so det σ(R) = | − 16| = 16.
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Trace and norm For a ∈ Q(ζm), define

Tr(a) :=
∑
i∈Z∗

m

σi(a), N(a) :=
∏
i∈Z∗

m

σi(a).

Note that if a ∈ R, then Tr(a) ∈ R and N(a) ∈ R.
Note the following:

• Tr(a) and N(a) are independent of the choices of ζm and ωm.

• Tr(1) = n and N(1) = 1.

• Tr is Q-linear.

• N(ab) = N(a)N(b) for all a, b ∈ Q(ζm). Hence, if u ∈ R is a unit, then N(u) = ±1.
(The converse is also true; see Corollary B.2.3.)

• For all a ∈ Q(ζm), N(a) = 0 if and only if a = 0.

Proposition B.2.1. Let a ∈ Q(ζm), and A an n-by-n matrix with entries in Q rep-
resenting the multiplication map Q(ζm)

a−→ Q(ζm) with respect to some Q-basis. Then
TrA = Tr(a) and detA = N(a).

Proof. Let f = det(xI − A) be the characteristic polynomial. Then clearly

f = xn − (TrA)xn−1 + · · ·+ (−1)n detA. (B.1)

By the Cayley-Hamilton theorem, a is a root of f , so f is divisible by the minimal
polynomial of a. In fact, it is easy to show that if ma ∈ Q[x] is the minimal polynomial

of a with degree d, then f = m
n/d
a .

Let a0, . . . , ad−1 ∈ Q(ζm) be the roots of ma (they all lie in Q(ζm) since Q ⊆ Q(ζm)
is a splitting field extension of Φm, hence normal), so that ma = (x − a0) · · · (x − ad−1).
Then

mn/d
a = xn − n

d

∑
i

aix
n−1 + · · ·+ (−1)n

(∏
i

ai

)n/d

,

so comparing with (B.1), we see that

TrA =
n

d

∑
i

ai, detA =

(∏
i

ai

)n/d

. (B.2)

Now consider the extensions

Q
d

⊆ Q(a)
n/d

⊆ Q(ζm).

Being separable, a0, . . . , ad−1 ∈ Q(ζm) are distinct, and there are exactly d embeddings
of Q(a) into Q(ζm) fixing Q (corresponding to a 7→ ai), each of which extends to exactly
n/d automorphisms (Q ⊆ Q(ζm) being normal) of Q(ζm) fixing Q. It follows that

∑
i∈Z∗

m

σi(a) =
n

d

∑
i

ai,
∏
i∈Z∗

m

σi(a) =

(∏
i

ai

)n/d

.

By (B.2), it follows that Tr(a) = TrA and N(a) = detA.
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Corollary B.2.2. i. If a ∈ Q(ζm), then Tr(a) ∈ Q and N(a) ∈ Q.

ii. If a ∈ R, then Tr(a) ∈ Z and N(a) ∈ Z.

Proof. i is immediate from Proposition B.2.1. If a ∈ R, then

Tr(a),N(a) ∈ R ∩Q = Z,

since Z is integrally closed.
Alternatively, any Z-basis of R is a Q-basis of Q(ζm), and with respect to this basis,

the multiplication maps Q(ζm)
r−→ Q(ζm) and R

r−→ R by r ∈ R are represented by the
same matrix A with integer entries, whoses trace and determinant are integers.

Corollary B.2.3. For all r ∈ R, N(r) = ±1 if and only if r is a unit in R.

Proof. Any Z-basis of R is a Q-basis of Q(ζm), and with respect to this basis, the mul-
tiplication maps Q(ζm)

r−→ Q(ζm) and ϕ : R
r−→ R are represented by the same matrix A

with integer entries. Now r is a unit in R if and only if ϕ is an isomorphism if and only
if detA ∈ Z is a unit, i.e., detA = ±1. Since detA = N(r), the result follows.

Proposition B.2.4. If x0, . . . , xn−1 ∈ Q(ζm), then detTr(xixj) = (det σi(xj))
2.

Proof.

Tr(xixj) =
∑
k∈Z∗

m

σk(xixj) =
∑
k∈Z∗

m

σk(xi)σk(xj) = (ATA)ij,

where A is the matrix (σi(xj)). Hence, detTr(xixj) = (detA)2.

Remark B.2.5. Note that If x0, . . . , xn−1, y0, . . . , yn−1 ∈ Q(ζm) and yj =
∑

kMjkxk,
where Mjk ∈ Q, then

detTr(yiyj) = (detM)2 detTr(xixj).

Corollary B.2.6. If b0, . . . , bn−1 is a basis of a free abelian subgroup G ⊆ Q(ζm), then

detσ(G) = | detTr(bibj)|.

Corollary B.2.7. i. If x0, . . . , xn−1 ∈ Q(ζm), then (det σi(xj))
2 ∈ Q.

ii. If r0, . . . , rn−1 ∈ R, then (det σi(rj))
2 ∈ Z. In particular, (detS)2 ∈ Z.

Corollary B.2.8. x0, . . . , xn−1 ∈ Q(ζm) is a Q-basis if and only if detTr(xixj) 6= 0.

Examples

• m = 4 : If ω4 = i, then

σ : Q(ζ4) → C{1,3},

q0 + q1ζ4 7→ (q0 + iq, q0 − iq1)

where q0, q1 ∈ Q. Hence,
Tr(q0 + q1ζ4) = 2q0 ∈ Q,

N(q0 + q1ζ4) = q20 + q21 ∈ Q.
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Since ζ24 = −1,

(p0 + p1ζ4)(q0 + q1ζ4) = p0q0 − p1q1 + (p0q1 + p1q0)ζ4,

where p0, p1, q0, q1 ∈ Q. Hence, in terms of the basis 1, ζ4, the multiplication map

Q(ζ4)
q0+q1ζ4−−−−−→ Q(ζ4)

is represented by the matrix

A =

(
q0 −q1
q1 q0

)
.

Note that
TrA = 2q0 = Tr(q0 + q1ζ4),

detA = q20 + q21 = N(q0 + q1ζ4).

• m = 8 : If ω8 =
1+i√

2
, then

σ : Q(ζ8) → C{1,3,5,7},

q0 + q1ζ8 + q2ζ
2
8 + q3ζ

3
8 7→ (q0 + q1ζ8 + q2ζ

2
8 + q3ζ

3
8 ,

q0 + q3ζ8 − q2ζ28 + q1ζ
3
8 ,

q0 − q1ζ8 + q2ζ
2
8 − q3ζ38 ,

q0 − q3ζ8 − q2ζ28 − q1ζ38 )

where q0, q1, q2, q3 ∈ Q. Hence,

Tr(q0 + q1ζ8 + q2ζ
2
8 + q3ζ

3
8 ) = 4q0 ∈ Q,

and after some calculation, one can verify that

N(q0 + q1ζ8 + q2ζ
2
8 + ζ38 ) = (q20 − q22 + 2q1q3)

2 + (q21 − q23 − 2q0q2)
2 ∈ Q.

It is easy to see that in terms of the basis 1, ζ8, ζ
2
8 , ζ

3
8 , the multiplication map

Q(ζ8)
q0+q1ζ8+q2ζ28+q3ζ

3
8−−−−−−−−−−−−→ Q(ζ8)

is represented by the anti-circulant matrix

A =


q0 −q3 −q2 −q1
q1 q0 −q3 −q2
q2 q1 q0 −q3
q3 q2 q1 q0

 .

Note that
TrA = 4q0 = Tr(q0 + q1ζ8 + q2ζ

2
8 + q3ζ

3
8 ).

One can also verify that

detA = N(q0 + q1ζ8 + q2ζ
2
8 + q3ζ

3
8 ).
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B.3 Discriminant

The discriminant of Q(ζm) is defined by

∆Q(ζm)
:= (det σ(R))2.

Hence, if b0, . . . , bn−1 ∈ R is any integral basis, then

∆Q(ζm)
= | detσi(bj)|2 = | detTr(bibj)|.

In particular,
∆Q(ζm)

= | detS|2.

Since (detS)2 ∈ Z (Corollary B.2.7), ∆Q(ζm)
is a positive integer.2

If x0, . . . , xn−1 ∈ Q(ζm), then xj =
∑

iMjibi for someMji ∈ Q, so (see Remark B.2.5)

| detTr(xixj)| = (detM)2∆Q(ζm)
. (B.3)

Relationship with polynomial discriminant Since S = (σi(ζ
j
m)) is a Vandermonde

matrix,

detS =
∏
i<j

(σi(ζm)− σj(ζm)) =
∏
i<j

(ωim − ωjm).

Hence, in terms of ∆Φm
:=
∏

i<j(ω
i
m − ωjm)2, we have

∆Q(ζm)
= |∆Φm|.

Examples

• m = 4 : We know that detS = −2i, so ∆Q(ζm)
= | detS|2 = 4. On the other hand,

Tr(ζ i4ζ
j
4) =

(
Tr(ζ04ζ

0
4 ) Tr(ζ04ζ

1
4 )

Tr(ζ14ζ
0
4 ) Tr(ζ14ζ

1
4 )

)
=

(
Tr(1) Tr(i)
Tr(i) Tr(−1)

)
=

(
1 + 1 i− i
i− i −1− 1

)
=

(
2 0
0 −2

)
,

so
∆Q(ζm)

= | detTr(ζ i4ζ
j
4)| = | − 4| = 4.

• m = 8 : We know that detS = −16, so ∆Q(ζm)
= | detS|2 = 28. On the other

hand,

Tr(ζ i8ζ
j
8) =


Tr(ζ08ζ

0
8 ) Tr(ζ08ζ

1
8 ) Tr(ζ08ζ

2
8 ) Tr(ζ08ζ

3
8 )

Tr(ζ18ζ
0
8 ) Tr(ζ18ζ

1
8 ) Tr(ζ18ζ

2
8 ) Tr(ζ18ζ

3
8 )

Tr(ζ28ζ
0
8 ) Tr(ζ28ζ

1
8 ) Tr(ζ28ζ

2
8 ) Tr(ζ28ζ

3
8 )

Tr(ζ38ζ
0
8 ) Tr(ζ38ζ

1
8 ) Tr(ζ38ζ

2
8 ) Tr(ζ38ζ

3
8 )

 =


4 0 0 0
0 0 0 −4
0 0 −4 0
0 −4 0 0

 ,

so
∆Q(ζm)

= | detTr(ζ i8ζ
j
8)| = |44| = 28.

2A more standard definition of ∆Q(ζm) is detS, which can be negative.
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B.4 Ideals

If I ⊆ R is an ideal, define N(I) := |R/I|. Note that N(I) ≥ 1, where equality holds if
and only if I = R.

Proposition B.4.1. If I ⊆ R is a nonzero ideal, then N(I) is finite.

Proof. Let I ⊆ R be a nonzero ideal. Then there exists a nonzero element a ∈ I, and

N(a) = a
∏
i∈Z∗

m,
ωi
m 6=ζm

σi(a) 6= 0.

Since a ∈ R, σi(a) ∈ R for all i ∈ Z∗
m, so

∏
ζm 6=ωi

m
σi(a) ∈ R. Since a ∈ I, it follows that

N(a) ∈ I. Since a ∈ R, N(a) ∈ Z. Now R ' Zn as an abelian group, so R/N(a)R '
(Z/N(a)Z)n as an abelian group. Since N(a) 6= 0, |(Z/N(a)Z)n| = nN(a) < ∞, i.e.,
|R/N(a)R| is finite. Since N(a)R ⊆ I ⊆ R and R/I ' (R/N(a)R)/(I/N(a)R), |R/I|
must be finite, too.

Remark B.4.2. It follows that N(I) is a positive integer for every nonzero ideal I ⊆ R.

Corollary B.4.3. If I ⊆ R is a nonzero ideal, then N(I) ∈ I.

Proof. Let N(I) = k ∈ Z. Since |R/I| = k, for 1̄ ∈ R/I, we must have k · 1̄ = 0 ∈ R/I,
i.e., k ∈ I.

Corollary B.4.4. Every nonzero ideal of R is a free abelian group of rank n.

Remark B.4.5. It follows that if I ⊆ R is a nonzero ideal, then σ(I) is a lattice in H.

Proposition B.4.6. If b1, . . . , bk ∈ R are linearly independent over Z and r ∈ R is a
nonzero element, then rb1, . . . , rbk are linearly independent over Z.

Proof. Consider the equation

0 = c1rb1 + · · ·+ ckrbk = r(c1b1 + · · ·+ ckbk),

where c1, . . . , ck ∈ Z. In view of R = Z[x]/Φm(x), we may represent r and bi as poly-
nomials in Z[x] of degree less than n, say r = f̄ and bi = ḡi. Then the equation above
implies that Φm(x) divides f(c1g1 + · · · + ckgk) in Z[x]. Since Φm(x) is irreducible, it is
a prime (Z[x] being a UFD), so it divides f or c1g1 + · · · + ckgk. Since the degrees of f
and c1g1 + · · · + ckgk are both less than n, we must have c1g1 + · · · + ckgk = 0. Then
c1b1 + · · ·+ ckbk = 0, so c1 = · · · = ck = 0 by the linear independence of b1, . . . , bk.

Corollary B.4.7. If b0, . . . , bn−1 ∈ R is an integral basis and r ∈ R is a nonzero element,
then the ideal 〈r〉 ⊆ R is a free abelian group with a basis rb0, . . . , rbn−1.

Lemma B.4.8. Let b0, . . . , bn−1 ∈ R be an integral basis, I ⊆ R a nonzero ideal with a
Z-basis c0, . . . , cn−1, and cj =

∑
iMjibi, where Mji ∈ Z. Then

N(I) = | detM |.
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Proof. There exists an integral basis b′0, . . . , b
′
n−1 ∈ R such that k0b

′
0, . . . , kn−1b

′
n−1 is a

Z-basis of I for some k0, . . . , kn−1 ∈ Z. Then clearly N(I) = |k0 · · · kn−1|, so N(I) =
| detM ′|, where M ′ is the n-by-n diagonal matrix with diagonal entris k0, . . . , kn−1, so
that kjbj =

∑
iM

′
jibi. More generally, change of bases corresponds to M ′ 7→ UM ′V for

some unimodular matrices U and V , so | detM ′| remains unchanged.

Proposition B.4.9. If I ⊆ R is a nonzero ideal, then

(detσ(I))2 = N(I)2∆Q(ζm)
.

Proof. Let b0, . . . , bn−1 ∈ R be an integral basis, and c0, . . . , cn−1 a Z-basis of I. Then
cj =

∑
iMjibi for some Mji ∈ Z, so by (B.3) and Lemma B.4.8,

| detTr(cicj)| = N(I)2∆Q(ζm)
.

Hence,
(detσ(I))2 = | detσi(cj)|2 = | detTr(cicj)| = N(I)2∆Q(ζm)

.

Proposition B.4.10. If r ∈ R is a nonzero element, then N(〈r〉) = |N(r)|.

Proof. Let b0, . . . , bn−1 ∈ R be an integral basis. By Corollary B.4.7, rb0, . . . , rbn−1 is a
Z-basis of 〈r〉, so by Proposition B.4.9,

| detσi(rbj)|2 = N(〈r〉)2∆Q(ζm)
. (B.4)

On the other hand, detσi(rbj) = N(r) det σi(bj), so

| detσi(rbj)|2 = N(r)2| detσi(bj)|2 = N(r)2∆Q(ζm)
. (B.5)

Since ∆Q(ζm)
6= 0, (B.4) and (B.5) gives N(〈r〉) = |N(r)|.

Remark B.4.11. Note that the equality does not hold if r = 0.

Lemma B.4.12. If I ⊆ R is a nonzero ideal and P ⊆ R is a nonzero prime ideal, then
there is a ring isomorphism I/PI ' R/P .

Proof. Since R is a Dedekind domain, PI and I are distinct ideals, and there is no ideal
between PI and I. Hence, I/PI is an R/P -module with no intermediate submodule, so
it is generated by a single nonzero element. Since P ⊆ R is a maximal ideal, this means
that I/PI ' R/P .

Proposition B.4.13. N(IJ) = N(I)N(J) for all ideals I, J ⊆ R.

Proof. If I = 0, then IJ = 0, so N(IJ) = N(I) = |R|, so the equality becomes

|R| = |R| · N(J).

Since R is infinite and N(J) ≤ |R|, the equality does hold.
Now assume that I 6= 0 and J 6= 0. Since R is a Dedekind domain, I is a product of

nonzero prime ideals. If it is an empty product, i.e., I = R, then the equality becomes
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N(J) = 1 · N(J), which is obviously true. So we may assume that I 6= R, and it suffices
to show that N(PJ) = N(P )N(J) for every nonzero prime ideal P ⊆ R.

From the ring isomorphism
R/PJ

J/PJ
' R/J,

we have |R/PJ | = |J/PJ | · |R/J |, i.e., N(PJ) = |J/PJ | · N(J). (Note that all three
quantities are finite by Proposition B.4.1.) By Lemma B.4.12, |J/PJ | = |R/P | = N(P ),
so N(PJ) = N(P )N(J), as desired.

Corollary B.4.14. If I, J ⊆ R are nonzero ideals, then |I/IJ | = N(J).

Proof. From the ring isomorphism

R/IJ

I/IJ
' R/I,

we have |R/IJ | = |R/I| · |I/IJ |, i.e., N(IJ) = N(I) · |I/IJ |. On the other hand, N(IJ) =
N(I)N(J) by Proposition B.4.13. Since all quantities here are finite and N(I) 6= 0, we
have |I/IJ | = N(J).

Corollary B.4.15. Let I ⊆ R be a nonzero ideal. If N(I) is prime, then I is a prime
ideal.

Proof. If I = R, then N(I) = 0 is not prime, so I 6= R. Hence, I is a product of
at least one prime ideal. Suppose that I = J1J2, where J1, J2 ⊆ R are ideals. Then
N(I) = N(J1)N(J2), and since N(I) is prime, N(J1) = 1 or N(J2) = 1, i.e., J1 = R or
J2 = R. This shows that I is a product of at most one prime ideal.

B.4.1 Fractional ideals

An R-submodule I ⊆ Q(ζm) is called a fractional ideal of R if there exists a nonzero
d ∈ R such that dI ⊆ R. Note that every ideal of R is a fractional ideal. An ideal of R
is sometimes called an integral ideal. Since every nonzero integral ideal is a free abelian
group of rank n (Corollary B.4.4), so is every nonzero fractional ideal. It follows that if
I ⊆ Q(ζm) is a nonzero fractional ideal, then σ(I) is a lattice in H.

Note the following:

• If I ⊆ Q(ζm) is a fractional ideal such that dI ⊆ R for some nonzero d ∈ R, then
b0, . . . , bn−1 is a Z-basis of I if and only if db0, . . . , dbn−1 is a Z-basis of the integral
ideal dI.

• Since Q(ζm) is a field of fractions for R, every finitely generated R-submodule of
Q(ζm) is a fractional ideal of R. In particular, every principal R-submodule of
Q(ζm) is a fractional ideal.

• If I, J ⊆ Q(ζm) are fractional ideals, then so are I + J and IJ .

The norm of a nonzero fractional ideal I ⊆ Q(ζm) is defined by

N(I) := N(dI)/|N(d)| ∈ Q,
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where d ∈ R is a nonzero element such that dI ⊆ R. This is well-defined: if e ∈ R
is another nonzero element such that eI ⊆ R, then by Proposition B.4.10 and Proposi-
tion B.4.13,

|N(e)|N(dI) = N(〈e〉)N(dI) = N(edI) = N(deI) = N(〈d〉)N(eI) = |N(d)|N(eI).

For nonzero integral ideals, this definition of norm agrees with the earlier definition
of norm. Note that the norm of a nonzero fractional ideal is a positive rational number.

Proposition B.4.16. Let I ⊆ Q(ζm) be any subset. TFAE:

i. I is a nonzero fractional ideal of R.

ii. There exists d ∈ R such that dI is a nonzero ideal of R.

Proof. i⇒ii: By definition, there exists a nonzero d ∈ R such that dI ⊆ R. Since
I ⊆ Q(ζm) is an R-submodule, so is dI, i.e., dI ⊆ R is an ideal. Since d 6= 0 and I 6= 0,
dI 6= 0

i⇐ii: Since dI ⊆ R is a nonzero ideal by assumption, d 6= 0 and I 6= 0. Hence, all we
have to show is that I ⊆ Q(ζm) is an R-submodule. First note that since dI ⊆ R is an
ideal, I 6= ∅.

• Let i1, i2 ∈ I. Since dI is an abelian group, di1 + di2 ∈ dI, i.e., d(i1 + i2) ∈ dI.
Since d 6= 0, this implies that i1 + i2 ∈ I.

• Let i ∈ I and r ∈ R. Since dI ⊆ R is an ideal, rdi ∈ dI, i.e., d(ri) ∈ dI. Since
d 6= 0, this implies that ri ∈ I.

Hence, I ⊆ Q(ζm) is an R-submodule.

Proposition B.4.17. If x ∈ Q(ζm) is a nonzero element, then N(〈x〉) = |N(x)|.

Proof. Since Q(ζm) is a field of fractions for R, dx ∈ R for some nonzero d ∈ R. Then
d〈x〉 ⊆ R, so

N(〈x〉) = N(d〈x〉)
|N(d)|

=
N(〈dx〉)
|N(d)|

=
|N(dx)|
|N(d)|

=
|N(d)N(x)|
|N(d)|

= |N(x)|.

Proposition B.4.18. If I, J ⊆ Q(ζm) are fractional ideals, then N(IJ) = N(I)N(J).

Proof. If I = 0, then IJ = 0 and N(IJ) = N(I) = |R|, so the equality becomes

|R| = |R| · N(J).

Since R is infinite and N(J) ≤ |R|, the equality does hold.
Now assume that I 6= 0 and J 6= 0. If d, e ∈ R are nonzero elements such that

dI, eJ ⊆ R, then deIJ ⊆ R, so

N(IJ) =
N(deIJ)

|N(de)|
=

N(dI)N(eJ)

|N(d)N(e)|
=

N(dI)

|N(d)|
· N(eJ)
|N(e)|

= N(I)N(J).
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Proposition B.4.19. If I ⊆ Q(ζm) is a nonzero fractional ideal, then

(detσ(I))2 = N(I)2∆Q(ζm)
.

Proof. Let dI ⊆ R, where d ∈ R. By Proposition B.4.9,

N(I)2∆Q(ζm)
=

N(dI)2

|N(d)|2
∆Q(ζm)

=
(detσ(dI))2

|N(d)|2
.

Let b0, . . . , bn−1 be a Z-basis of I. Then db0, . . . , dbn−1 is a Z-basis of dI, so

detσ(dI) = | detσi(dbj)| = |N(d)| · | detσi(bj)| = |N(d)| detσ(I).

Hence, N(I)2∆Q(ζm)
= (det σ(I))2.
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