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FEAL Algorithm 

 

FEAL [1] is a Block Cipher that normally includes eight Feistel Rounds during its 

execution and works with 64-bit long plaintext and ciphertext blocks, however, in our 

implementation, the number of rounds is variable.   The algorithm begins by taking the initial 64-

bit key specified by the user and immediately executes the Key Schedule process. The key 

schedule process generates a total of 16 subkeys (for an 8 rounds FEAL implementation), each 

one of 16-bit long. In total, these subkeys conform a 256-bit key.  

 

For the eight round implementation, there is a total of 16 subkeys; one subkey for each 

round (from 0 to 7), as well as eight additional subkeys (from 8 to 15). Four of these additional 

subkeys (from 8 to 11) are used in the beginning and the last four (from 12 to 15) in the ending 

of the encipherment process. This is better understood looking at these step by step indications: 

 

1 The 64-bit long plaintext and User Key are accepted as input. 

2 During the key schedule process FEAL takes the 64-bit user key and generates 8 

subkeys plus one subkey for each round (each subkey is 16-bit long). 

3 First phase of the encipherment algorithm uses 4 subkeys (from 8 to 11). 

4 Each Feistel round uses one subkey. Normally, the implementation consists of eight 

rounds and it uses the subkeys from 0 to 7. Our Implementation has a variable number 

of rounds. 

5 Last phase of the encipherment algorithm uses 4 more subkeys (from 12 to 15). 

6 At the end, a random 64-bit ciphertext is returned. 

 

To generate the subkeys, the Key Schedule algorithm uses a special function defined by 

the authors and an S-function which adds the inputs and rotates the bits. The FEAL 

encipherment algorithm will output a supposedly random 64-bit ciphertext from the original 64-

bit plaintext.  This means FEAL needs two 64-bit sequences one for the plaintext and one for 

the key.   
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S-Function 

 

The S-Function is used within the Fk-Function and F-Function. Fk-Function is used during the 

Key Schedule process and the F-Function is used during the encryption and decryption 

process. Basically, S-Function takes care of implementing the S-Boxes of FEAL. It accepts 

three byte parameters and returns a single byte value. The S-Function can be explained 

following these steps: 

byte A 

byte B 

byte δ = 0 or 1 

S(A,B,δ) = RotateL2(T) 

T = A + B + δ mod 256 

 

Fk-Function 

 

The Fk-Function is used during the Key Schedule process to generate the 16-bit subkeys. It is 
important to mention the Fk-Function internally uses the S-Function. It accepts two 32-bit 
parameters and returns a 32-bit value containing two 16-bit subkeys each time is executed. The 
following diagram explains how the Fk-Function works: 

 
α and β: 32 bit halves of initial key 
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The F-Function 

 

The F-Function is used during the encryption and decryption processes and accepts two 

parameters. One of the parameters is a 16-bit subkey and the other is a 32-bit text message 

from the Feistel round. The following diagram explains the F-Function: 

 

α: 32 bit from Feistel Round 

β: 16 bit sub-key 

  

 
 

Key Generation 

 

The key generation function, also called Key Schedule, takes the original 64-bit User Key as 

input and uses the Fk function to generate the 16-bit subkeys needed by the encryption 

process.  The numbers of keys it generates depends on the number of rounds that will be used. 

The number of subkeys follows this formula: 

  

nsK = nR+8 

 

Where nsK is the numbers of subkeys needed and nR is the number of rounds. The 8 constant 

correspond to the last additional eight subkeys. Four of these subkeys are used in the beginning 

and the last four subkeys are used at the end of the encipherment process. This Key 

Generation Process in explained in the following Key Schedule diagram: 
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Key Schedule diagram 
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Encryption 

 

The FEAL encryption process consists of mixing the 64-bit plaintext and key provided by the 

user and apply the F-Function to each one of the Feistel rounds. In the beginning, four 16-bit 

subkeys from the key schedule are used. In an eight-rounds implementation, these first four 

subkeys are from subkey 8 to 11. Then, one 16-bit subkey is used for each Feistel round (from 

subkey 0 to 7). At the end, the last four 16-bit subkeys (from 12 to 15) are used. The Encryption 

/ Decryption diagram below shows the entire process. 

 

Decryption 

 

The FEAL decryption process uses the same approach as the encryption. The only difference in 

this case is the process runs backwards. First, it uses the last four 16-bit subkeys (from 12 to 

15), then one subkey for each round and then the other four 16-bit subkeys (from 8 to 11) to 

recover the plaintext. The Encryption / Decryption diagram below shows the entire process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Encryption / Decryption diagram. 
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Source Code of our implementation of FEAL 

 

 Our source code for our FEAL implementation is displayed below: 

 

 

import java.util.Arrays; 

import edu.rit.util.Hex; 

import edu.rit.util.Packing; 

 

public class FEALCipher implements BlockCipher 

{ 

 //Set up parameters and default values 

 public int R = 8; 

 byte deltaParam = 0; 

 int numOfSubKeys = (this.R+8); 

 short[] subKey = new short[numOfSubKeys];   

  

 //Returns the block size of FEAL in bytes 

 public int blockSize() 

 { 

  return 8; 

 } 

  

 //Returns the key size in Bytes 

 public int keySize() 

 { 

  return 8; 

 } 

  

 //Function to set the number of rounds.  This is used in our attack 

 //It also sets up the appropriate number of subkeys which need to be generated 

 public void setRounds(int R) 

 { 

  this.R = R; 

  this.numOfSubKeys = (this.R+8); 

  this.subKey = new short[numOfSubKeys]; 

 } 

  

 //Method to access the subkeys used in the encryption process 

 public short[] getSubKeys() 

 { 

  return subKey; 

 } 

  

 //Method to set the key and extend keys to get the subkeys 

 //Takes in a 64-bit key 

 //Extends it based on how many rounds are needed 

 //Makes use of the FK function to generate the key 

 public void setKey(byte[] key) 

 { 

  //Set up the necessary parameters to extend the key using the Fiestel 

rounds 
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  //Method to set the key and extend keys to get the subkeys 

 //Takes in a 64-bit key 

 //Extends it based on how many rounds are needed 

 //Makes use of the FK function to generate the key 

 public void setKey(byte[] key) 

 { 

  //Set up the necessary parameters to extend the key using the Fiestel rounds 

  int roundsLimit = ((this.R+8)/2)+1; 

  int[] A = new int[roundsLimit+1];  // Left  part of the 64 bits Key (MSB) 

  int[] B = new int[roundsLimit+1];  // Right part of the 64 bits Key (LSB) 

  int[] D = new int[roundsLimit+1];  // Result from functionFK 

  int fkOutput = 0; 

   

  // Spliting the 64 bits key into two 32 bits ints (A and B) to pass those to functionFK 

  A[0] = A[0] |= ((key[0] & 255) << 24); 

  A[0] = A[0] |= ((key[1] & 255) << 16); 

  A[0] = A[0] |= ((key[2] & 255) << 8); 

  A[0] = A[0] |=  (key[3] & 255); 

   

  B[0] = B[0] |= ((key[4] & 255) << 24); 

  B[0] = B[0] |= ((key[5] & 255) << 16); 

  B[0] = B[0] |= ((key[6] & 255) << 8); 

  B[0] = B[0] |=  (key[7] & 255); 

 

  // Getting the subkeys: Using the key schedule 

  for(int r=1; r < (roundsLimit); r++) 

  { 

   D[r] = A[r-1]; 

   A[r] = B[r-1]; 

   B[r] = functionFK(A[r-1], (B[r-1] ^ D[r-1])); 

 

   subKey[2*(r-1)] = (short) (B[r] >> 16); 

   subKey[(2*(r-1)+1)] = (short) B[r]; 

  } 

   

  //Checks to see final case if our R is odd.  We need an extra key than what is normally used 

  if(this.R%2 == 1) 

  { 

   D[roundsLimit] = A[roundsLimit-1]; 

   A[roundsLimit] = B[roundsLimit-1]; 

   B[roundsLimit] = functionFK(A[roundsLimit-1], (B[roundsLimit-1] ^ D[roundsLimit-1])); 

   subKey[2*(roundsLimit-1)] = (short) (B[roundsLimit] >> 16); 

  } 

 } 

  

  

 //Method for encrypting a single plaintext block of 64 bits 

 public void encrypt(byte[] text) 

 { 

  //Set up side Arrays 

  int[] RightArray = new int[R+2]; 

  int[] LeftArray = new int[R+2]; 
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 //Method for encrypting a single plaintext block of 64 bits 

 public void encrypt(byte[] text) 

 { 

  //Set up side Arrays 

  int[] RightArray = new int[R+2]; 

  int[] LeftArray = new int[R+2]; 

   

  //Pack text into Right and Left 32-bit integers 

  LeftArray[0] |= ((text[0] & 255) << 24); 

  LeftArray[0] |= ((text[1] & 255) << 16); 

  LeftArray[0] |= ((text[2] & 255) << 8); 

  LeftArray[0] |=  (text[3] & 255); 

   

  RightArray[0] |= ((text[4] & 255) << 24); 

  RightArray[0] |= ((text[5] & 255) << 16); 

  RightArray[0] |= ((text[6] & 255) << 8); 

  RightArray[0] |=  (text[7] & 255); 

   

  //Set up the initial keys for use 

  int leftInitKey = 0; 

  int rightInitKey = 0; 

  leftInitKey |= ((subKey[R]&65535) << 16); 

  leftInitKey |= ((subKey[R+1]&65535)); 

   

  rightInitKey |= ((subKey[R+2] & 65535) << 16); 

  rightInitKey |= ((subKey[R+3] & 65535)); 

   

  LeftArray[0] = LeftArray[0] ^ leftInitKey; 

  RightArray[0] = RightArray[0] ^ rightInitKey; 

   

  //Initial xor 

  RightArray[0] = RightArray[0] ^ LeftArray[0]; 

   

  //Feistel rounds 

  for(int i = 1; i<= R;i++) 

  { 

   RightArray[i] = LeftArray[i-1] ^ functionF(RightArray[i-1],subKey[i-1]); 

   LeftArray[i] = RightArray[i-1]; 

  } 

   

  //Final xor of he left and right sides 

  LeftArray[R+1] = LeftArray[R] ^ RightArray[R]; 

  RightArray[R+1] = RightArray[R]; 

   

  //Set up final keys for xor 

  int leftFinalKey = 0; 

  int rightFinalKey = 0; 

  rightFinalKey |= ((subKey[R+4]&65535) << 16); 

  rightFinalKey |= ((subKey[R+5]&65535)); 

   

  leftFinalKey |= ((subKey[R+6] & 65535) << 16); 
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  //Set up final keys for xor 

  int leftFinalKey = 0; 

  int rightFinalKey = 0; 

  rightFinalKey |= ((subKey[R+4]&65535) << 16); 

  rightFinalKey |= ((subKey[R+5]&65535)); 

   

  leftFinalKey |= ((subKey[R+6] & 65535) << 16); 

  leftFinalKey |= ((subKey[R+7] & 65535)); 

  //Xor the last subkeys 

  LeftArray[R+1] = LeftArray[R+1] ^ leftFinalKey; 

  RightArray[R+1] = RightArray[R+1] ^ rightFinalKey; 

   

  //pack the results back into the encryption array 

  for(int i = 3;i>=0;i--) 

  { 

   text[i] = (byte)RightArray[R+1]; 

   RightArray[R+1] = RightArray[R+1]>>>8; 

  } 

  for(int i = 7;i>=4;i--) 

  { 

   text[i] = (byte)LeftArray[R+1]; 

   LeftArray[R+1] = LeftArray[R+1]>>>8; 

  } 

 } 

  

 //Function F used for encryption 

 //Inputs: A, B, where A is the plaintext and B is the subkey 

 private int functionF(int A, short B) 

 { 

  //set up and pack int and short inputs into byte arrays for convinence and set up a output array 

  byte[] subA = new byte[4]; 

  byte[] subB = new byte[2]; 

   

  subA[0] = (byte)(A>>>24); 

  subA[1] = (byte)(A>>>16); 

  subA[2] = (byte)(A>>> 8); 

  subA[3] = (byte)(A>>> 0); 

   

  subB[0] = (byte)(B>>>8); 

  subB[1] = (byte)(B>>>0); 

   

  byte[] fOut = new byte[4]; 

   

  //Do some initial xoring 

  fOut[1] = (byte)((subA[1]&255) ^ (subB[0]&255) ^ (subA[0]&255)); 

  fOut[2] = (byte)((subA[2]&255) ^ (subB[1]&255) ^ (subA[3]&255)); 

   

  //Call the S function given a particular path through the Function 

  fOut[1] = functionS(fOut[1],fOut[2],(byte)1); 

  fOut[2] = functionS(fOut[2],fOut[1],(byte)0); 
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  byte[] fOut = new byte[4]; 

   

  //Do some initial xoring 

  fOut[1] = (byte)((subA[1]&255) ^ (subB[0]&255) ^ (subA[0]&255)); 

  fOut[2] = (byte)((subA[2]&255) ^ (subB[1]&255) ^ (subA[3]&255)); 

   

  //Call the S function given a particular path through the Function 

  fOut[1] = functionS(fOut[1],fOut[2],(byte)1); 

  fOut[2] = functionS(fOut[2],fOut[1],(byte)0); 

  fOut[0] = functionS(subA[0],fOut[1],(byte)0); 

  fOut[3] = functionS(subA[3],fOut[2],(byte)1); 

  

  //Set up and pack the result into an output integer 

  int output = 0; 

  output |= (fOut[0]&255); 

  output = output<<8; 

  output |= (fOut[1]&255); 

  output = output<<8; 

  output |= (fOut[2]&255); 

  output = output<<8; 

  output |= (fOut[3]&255); 

   

  return output;  

 } 

  

 //Function FK which is used in the key generation phase 

 //Inputs: A and B which are both 32-bit integers 

 private int functionFK(int A, int B) 

 { 

  //Set up substitute bytes and pack in the two inputs 

  byte[] subA = new byte[4]; 

  byte[] subB = new byte[4]; 

   

  subA[0] = (byte)(A>>>24); 

  subA[1] = (byte)(A>>>16); 

  subA[2] = (byte)(A>>> 8); 

  subA[3] = (byte)(A>>> 0); 

   

  subB[0] = (byte)(B>>>24); 

  subB[1] = (byte)(B>>>16); 

  subB[2] = (byte)(B>>> 8); 

  subB[3] = (byte)(B>>> 0); 

   

  //Set up the output byte array for convinence 

  byte[] fKOut = new byte[4]; 

  fKOut[1] = (byte)((subA[1]&255) ^ (subA[0]&255)); 

  fKOut[2] = (byte)((subA[2]&255) ^ (subA[3]&255)); 

   

  //Do the appropriate xor functions 

  fKOut[1] = functionS(fKOut[1], (byte)((fKOut[2]&255) ^ (subB[0]&255)),(byte)1); 

  fKOut[2] = functionS(fKOut[2], (byte)((fKOut[1]&255) ^ (subB[1]&255)),(byte)0); 

  fKOut[0] = functionS(subA[0], (byte)((fKOut[1]&255) ^ (subB[2]&255)),(byte)0); 
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We apologize for the organization of this previous section as we needed to put all of the source 

code in even though we have over 200 lines of code.  The contents can also be viewed in the 

FEALCipher.java class 

 

 

 

 

 

  //Set up the output byte array for convinence 

  byte[] fKOut = new byte[4]; 

  fKOut[1] = (byte)((subA[1]&255) ^ (subA[0]&255)); 

  fKOut[2] = (byte)((subA[2]&255) ^ (subA[3]&255)); 

   

  //Do the appropriate xor functions 

  fKOut[1] = functionS(fKOut[1], (byte)((fKOut[2]&255) ^ (subB[0]&255)),(byte)1); 

  fKOut[2] = functionS(fKOut[2], (byte)((fKOut[1]&255) ^ (subB[1]&255)),(byte)0); 

  fKOut[0] = functionS(subA[0], (byte)((fKOut[1]&255) ^ (subB[2]&255)),(byte)0); 

  fKOut[3] = functionS(subA[3], (byte)((fKOut[2]&255) ^ (subB[3]&255)),(byte)1); 

   

  //Pack the output into an integer 

  int output = 0; 

  output |= (fKOut[0]&255); 

  output = output<<8; 

  output |= (fKOut[1]&255); 

  output = output<<8; 

  output |= (fKOut[2]&255); 

  output = output<<8; 

  output |= (fKOut[3]&255); 

   

  return output; 

 } 

  

 //S Function used in both F and FK 

 //Takes in 2 bytes and a 1 or zero for delta. 

 //Sums them then mods by 256 and left rotates by 2 

 private byte functionS(byte A, byte B, byte delta) 

 { 

  //Sum inputs 

  byte T = (byte)(((A&255) + (B&255) + (delta&255))%256); 

   

  //Left Rotate by 2 

  return (byte)(((T&255)<<(byte)2)|((T&255)>>>(byte)6)); 

 } 

} 
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Ad-Hoc Attack on FEAL Cipher 

 

 To implement a structural attack on the FEAL block cipher, we first looked into the Linear 

Attack described in [2].  In this attack, the authors attempt to rewrite the FEAL F-Function into 

an equivalent form where a 32-bit key is used within the modified F-Function much like the 

original form with a 16-bit key.  It should be important to know here that these 32-bit keys are 

not part of either the original 64-bit user key used for the Key Schedule input of FEAL, nor are 

they in any way combinations of the 16-bit subkeys output from the Key Schedule.  If we need 

to refer to these 16-bit subkeys or the original 64-bit key, we will use the keyword “original” to 

denote that they are from the Encryption part. The only difference between this modified F-

Function and the original F-Function, is that instead of only xoring the key with the middle two 

bytes of the input message, the attack xors the 32-bit key with all of the bytes of the input 

message.  The modified F-Function is displayed below: 

 

 
  

Taking this idea of the modified F-Function, we then reduced the number of rounds to 

just one (1).  It became apparent that because we have reduced this problem to one (1) round, 

we no longer could implement the Linear Attack from [2].  However, we can take some ideas 

from this attack to hopefully break the cipher.  We also realized quite quickly that we will need to 

have two (2) 32-bit keys in order to make the plaintexts equal the outputs when the keys are 

input.  With this 2nd 32-bit key, we will have the following one (1) round algorithm: 
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Now that we have the modified algorithm, we can start to develop linear equations to try 

to find the keys.  First we will take care of the 32-bit key k2.  Because we have the plaintexts 

and the ciphertexts, we can derive the value for k2 with the following equation.   

 

                

 

 Even though this value does not seem to be true for all plaintexts and ciphertexts given a 

particular normal secret key, it will always be the same for a key regardless of the plaintexts and 

ciphertexts.  Because of this, we have a value for k2.  Now we need to derive the bits for k1.  

Because this is only a 32-bit number, we theoretically could brute force it until it gave us the 

correct output, but this will take far too long and it really would not show any structural attack on 

the cipher.  Instead, we will systematically go through each byte of the Key and figure out a 

possible key which will be able to be used on the rest of the plaintext and ciphertext pairs.  To 

do this, we start with the second most least significant byte of k1 which we will define as 

k1[8~15] where 8~15 denotes the 8 through 15th least significant bits of k1.  By tracing the path 

of the modified F-Function while tracing the path for the one (1) round cipher, we see that there 

must exist a key where the following equation must hold true: 
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 Using this equation, we can brute force all possible combinations for k1[8~15] which is 

256 possibilities and then record which byte will give us the valid key byte.  We then can do 

similar processes for k1[24~31] and k1[0~7].  Neither of these are dependent on any of the 

other bits within the key so for each key byte, we just add 256 operations.  The equations 

needed for these keys are viewed below: 

 

                   

                                                         

 

                                                                

 

 Now the only final key we need to derive is k1[16~23].  The reason why we cannot 

derive this before is that it relies on what k1[8~15] is.  But now that we have an appropriate 

value for this, we can use it to find a candidate key for k1[16~23].  Again this is only a 256 

guess operation so it will bring our total number of operations to 2^10 or 1024.  The equation for 

this derivation is below: 

 

                   

                                                       

                                          

 

 After this we have a valid key for a given plaintext and ciphertext pair which means we 

have effectively broken the FEAL cipher by doing roughly 1024 operations.  The only problem 

with this is that unfortunately we cannot derive a generic k1 for all plaintext and ciphertext pairs 

as it will not be the same in all cases.  We believe that the Linear Attack Described in [2] was 

able to do this because they only attacked FEAL-4 through FEAL-8.  These extra rounds cause 

for more mixing of the data and as such the allow for generic keys which will work for all cases. 

It is important to know that the reference paper was very vague as to how to accurately modify 

the algorithm to be able to perform an attack on the cipher. 

 

 To remedy this, we do have some suggestions.  First when we tried multiple plaintext 

and ciphertext pairs, we noticed that certain key bytes occurred much more frequently than 

others.  Because of this, we can figure out a relatively small number of candidate keys (between 

20 and 50 for each byte of the key  for a given original key for the FEAL cipher), our search to 

find a key which will give the correct output of the original FEAL cipher is still much smaller than 

2^32 or even the 2^64 to derive the original key, as it will be in our observed worse case of 

50^4.  We should also note that here we still are unsure if this will work with 100% accuracy, but 

based on our observations, this seems to work pretty well.  We should also note that the 

number of candidate keys slightly depends on the number of plaintext and ciphertext pairs.  As 

this number increases, there is a higher chance for there to be more candidate keys(which 

could cause a problem if it gets too large).  The good thing about this is that while the number 

does go up, certain byte values for keys will also increase at the same time.  This means that 

even though we may have more potential keys, we should also see an increase in the frequency 

of certain keys occurring. 
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Description of our implementation of an Ad-Hoc Attack on FEAL 

  

Our implementation of our Ad-Hoc attack acts much like we described above.  It will take 

in a number for how many plaintext and ciphertext pairs are requested and a 64-bit key in 

hexadecimal.  Once it has these values, it will set up a FEAL cipher instance with one (1) round 

and set the key to be the input key.  The attack program named FEALAttack.java will then 

randomly create n plaintexts and encrypt them using the sub-keys generated in the setKey 

method of FEALCipher.java.  Once these pairs are found, the program will first derive the value 

for k2.  Because we know that this value will be constant regardless of our input plaintext and 

output ciphertext, we can easily find this.  Once we have k2 generated, we proceed to try to find 

valid key bytes for k1 using the described attack above.  Once we have candidate keys for this 

given plaintext and ciphertext pair, we check to see if we have already seen a given byte value 

from another plaintext-ciphertext pair and if we have not we add it to an ArrayList.  We then 

check to see if we have seen the entire k1 value or not and add this into an ArrayList as well if 

unseen.  We then proceed on to test the rest of the generated plaintext-ciphertext pairs and 

record any new unseen candidate keys.  Once we are done with all of this, we sort the 

ArrayLists for each candidate key list and then output the size and the candidate keys.  There is 

also some other information printed out before all of this regarding the input key and its 

generated 16-bit subkeys as well as a couple plaintext ciphertext pairs generated by the 

function.   

 

Results from our implementation of an Ad-Hoc Attack on FEAL 

 

 We ran a couple of tests on our Ad-Hoc implementation of FEAL to test to see if this is a 

valid way to attack the 1-round cipher.  These tests gave us some very interesting results which 

we did not expect.  Originally we thought that there would be 1 value for k1 which would work in 

all cases.  This was quickly disproved as we could easily find two different sets of plaintexts and 

ciphertexts where our k1 was not the same.  Even though we could not find a key which would 

work for all cases, the results of our implementation show that there are a common set of byte 

values which occur quite frequently.  However the number of these values is dependent on 

which original key is used for the encryption as certain original keys will have more or less 

candidates for each byte of k1.  Although this could be an issue if the number of candidate keys 

gets too large (as we need to multiply the counts to see how many possibilities must be tried for 

new plaintexts), after a certain number of plaintext and ciphertext pairs we do not add any new 

candidate keys.  The only difference is that we could add new full 32-bit numbers for k1 which 

are made up of combinations of candidate keys for each byte position.  Below is a set of sample 

original keys with the number of candidate keys derived for each byte of k1 as well as the 

number of total operations to search for a usable key for any plaintext: 
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Original Key #K1_1 #K1_2 #k1_3 #k1_4 Total Operations 

0123456789ABCDEF 54 45 27 60 3936600 

AAAAAAAAAAAAAAAA 80 79 24 72 10920960 

FEDCBA9876543210 14 46 40 4 103040 

5738290BC37D3FEA 80 84 48 56 18063360 

 

Analysis of our implementation of an Ad-Hoc Attack on FEAL 

 

 Our implementations seemed to do pretty well in finding a fairly small number of 

potential candidate keys for each byte of k1.  In all our experiments, the highest number of 

potential keys for a given original key was around 80.  In most cases if this high of a number 

was experienced, the other three bytes of the k1 generally had less candidates.  Even so to find 

a valid k1 which would work for a specific pair of plaintext and ciphertext messages in a worse 

case scenario would be around 80^4 which is still substantially less than brute forcing the 

search of k1 or even brute forcing the search of the original 64-bit key.  We also checked to see 

how fast the attack will converge onto a set of valid candidate keys given a particular original 

key.  We noticed that somewhere between 1000 and 10,000 plaintext-ciphertext pairs, the 

attack would no longer find any new candidate keys for the bytes of k1.  It is also interesting to 

note that even with 1,000 plaintext-ciphertext pairs, the attack will find the majority of the 

candidate bytes(usually only 1 or 2 less) which means that if an attacker cannot afford the time 

for using 10,000 pairs, they may be able to break the code within 1,000 pairs even though it is 

not guaranteed to work.  To figure out the worst case number of encryptions we will need , lets 

assume that it will take 10,000 plaintext and ciphertext pairs to break the modified FEAL.  

Because the attack takes 2^10 operations to derive a specific candidate key for all bytes of the 

k1, the complexity will become 10,000(2^10) because we must do this each time.  Then to 

deduce which key to use given a new plaintext and ciphertext pair, we need to add  in another 

80^4 operations to figure out which permutation of candidate keys will work.  This means that 

the entire process is roughly 10,000(2^10) + 80^4 which is about 10240000 + 40960000 = 

51,200,000 in the worst observed case.  We should also note that this could be a little bit higher 

or substantially lower depending on how many candidate keys are derived.  It should be noted 

that this is less than 2^26 operations total so it is a significant improvement over a brute force of 

32 or 64 bit keys(k1 and original key respectively).   

 

Analysis of Other Attacks on FEAL 

 

 In our study of different attacks on the FEAL cipher, we came across two different 

techniques which crack the FEAL cipher in different ways. 

 

 The first technique is the Linear attack described in the paper A New Method for Known 

Plaintext Attack of FEAL Cipher [2]. This was the original attack we wanted to try to implement.  

We were unable to figure this one out for the reduced rounds(they started with FEAL 4) and as 

such we decided to borrow some ideas and see if we can apply them to the 1 round FEAL.  This 

paper was characterized by being one of the first Linear Attacks on any cipher(The authors 

would later go on to use this to break DES).  The main idea for this paper was to trace certain 
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pathways through the modified F Function to try to find linear combinations of particular bits 

from the plaintext and the ciphertext.  By doing this they could reduce the number of searches 

through the key space as they now knew what some bits were.  Unfortunately they do not go 

into much detail as to how many operations are needed to guess bits of each key, but they do 

say that FEAL 4 could be broken within 6 minutes by using only 5 plaintexts.  They also could 

break FEAL 6 with 100 texts and FEAL 8 with 2^15 plaintexts.  These results are much better 

than ours as we could only break FEAL 1 and we needed around 10,000 plaintexts to do it. 

What is unclear is that we do not know exactly how many operations needed to be done to 

derive each key.  Because they know that you need at least 4(2^12) to derive K1, they do not go 

into detail as to how to get the rest of the keys.  We do not know if they can find these keys 

within the same amount of complexity or not.  Despite this, the Linear Attack of FEAL 4 was still 

substantially better than our attack as we do not know exactly how large the candidate key 

space can grow depending on which original key is used. 

 

 The second attack we studied was a differential attack proposed in the paper Differential 

Cryptanalysis of Feal and N-Hash by Eli Biham and Adi Shamir[4]. In this paper, the authors 

describe an attack where they try to deduce the inputs and outputs of the middle two S 

Functions in the modified F Function.  By computing all possible inputs and outputs, the authors 

look to find similarities between different pairs by looking at their particular differentials.  Once 

they find a differential which will either always have similar inputs and outputs, they proceed to 

attack each key systematically to deduce the subkeys.  This approach differs from the Linear 

Attack and ours because it actually finds the subkeys generated from the key schedule of FEAL 

and not keys which represent the original subkeys and the various operations performed on 

them.  This study was able to calculate the key for FEAL 8 with 1,000 pairs with over a 95% 

success rate.  If the authors doubled the number of plaintext-ciphertext pairs, they improved the 

accuracy to almost 100%.  It should also be noted that this attack is very fast as well as they 

report the differential based attack can crack it in less than 2 minutes.  This attack is also much 

better than ours.  This one is able to crack a much more complicated problem(8 rounds instead 

of 1) in substantially less time with a smaller number of needed pairs.  It is interesting that this 

approach is not guaranteed to work.  Because this attack is extremely likely to break the cipher, 

we realized that we do not need to have something that works exactly 100% of the time.  We 

believe that we have come very close as after 10,000 plaintext-ciphertext pairs we do not add 

any new candidate keys(we even tried up to a million and still the same candidates were 

retrieved).   

 

Developer's Manual  

 The code deliverables for this project must be compiled in order to be used.  To do this, 

it is necessary to have Java Developer Kit (JDK) installed on the system as well as the Parallel 

Java Library from the RIT CS department [3].  It is also necessary to modify the classpath 

variable to include the Parallel Java Jar file.  Because we used the RIT CS lab computers to 

develop and run our software, the easiest way to run these programs is to use these systems.  If 

you are not using these computers, the following commands will not execute properly. 
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 First, we need to set up the classpath to include the parallel java library[3].  To do this on 

a lab computer just type in the following command: 

 

export CLASSPATH=.:/home/fac/ark/public_html/pj.jar 

 

 Once this is set up, we can compile all of the programs with the following commands: 

 

javac BlockCipher.java 

javac FEALCipher.java 

javac FEALAttack.java 

javac FEALTest.java. 

 

 The BlockCipher.java class is the required interface from the project webpage.  

FEALCipher.java is the class which does the key generation and encryption process which 

implements the BlockCipher interface.  FEALAttack.java is our implementation of our Ad-hoc 

attack on the one (1) round FEAL cipher.  FEALTest is a test class which will allow for easy 

encryption by allowing the user to input a number of rounds, a message and a key and it will 

print out a ciphertext.   

 

 To develop any other software using our implementation of the FEAL cipher, one must 

follow these steps or else it will not work properly.  First a FEALCipher object must be made.  

Then using this object, the setRounds(int R) method needs to be called to set the appropriate 

number of rounds(It defaults to 8).  Once the number of rounds is set, you must set the key by 

calling the setKey(byte[] key) method.  This will generate the appropriate number of subkeys 

needed for the encryption process.  Once the key is set, you can encrypt the message by calling 

the encrypt(byte[] text) method which will overwrite the text array with the encrypted message.  

This is all that is needed to do to implement the FEAL Cipher into your own code. 

 

User's Manual  

 

 To use this set of programs, you must first compile the programs as described above in 

the Developers manual.  Once the programs are compiled, they can be run easily with the 

following commands.  Because BlockCipher.java is an interface, you cannot run this at all.  Also, 

the FEALCipher.java is not executable as it does not have a main method.  To run an instance 

of the FEALCipher, please use the FEALTest.java class.  This class can be executed using the 

following command: 

 

java FEALTest <Plaintext> <key> <#Rounds> 

 

where <Plaintext> is the 64-bit input plaintext in hexadecimal, <key> is the original 64-bit key in 

hexadecimal used for subkey generation and <#Rounds> is the number of Feistel rounds 

requested by the user.  This program will output the encrypted message as well as remind the 

user what the input parameters were. 
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 To implement the attack FEALAttack.java, one must use this command: 

java FEALAttack <number of plaintexts> <Key In Hex> 

 

Where <number of plaintexts> is the requested number of randomized plaintext and ciphertext 

pairs used for the key derivation.  <Key In Hex> is the original input 64-bit key used to encrypt 

the random plaintext messages.  This program will output the derived value for k2 as well as the 

candidate keys for each byte of k1 as well as the number of bytes needed to cover each input 

case.  The outputs are further described in the implementation part of this paper above. 

 

Lessons learned from the project 

 

 After this project we learned a couple of things about Cryptography.  First, algorithms 

can be relatively easy to implement and get working properly, but can be fairly difficult to break 

given certain circumstances.  Doing cryptanalysis is quite difficult for a lot of cases and even 

cryptanalysis on relatively unsecure ciphers can be quite difficult if you do not completely 

understand all that is going on in the cipher.  Second, we learned that even though a certain 

technique might not be able to be applied very well to a concrete circumstance, one can often 

try some ideas inspired by other work to figure out a way to break the code differently.  Because 

one approach will not solve all of the problems, cryptographers carrying out cryptanalysis will 

often need to adapt to their current situation.  Third, we learned that even though a solution 

might not be a complete solve-all solution, sometimes a set of solutions can be just as valuable.  

For instance we cannot generate a k1 value which will apply for all possible plaintext and 

ciphertext pairs.  We can however find a list of candidate keys which occur relatively frequently 

and try each one of these.  Because this list is substantially smaller than the full list of numbers, 

we can quickly find a valid key for a given plaintext and ciphertext pair.  Fourth, we learned that 

no matter how difficult a problem can seem at times, one should never give up.  There were 

times with this project where we just could not think of any other way to try to fix our issues.  But 

we kept going and we tried different approaches until we found one that worked.  We believe 

that this project allows us to see some of the issues facing cryptanalysis in general and how 

difficult this can be. 

 

Discussion of Future Work 

 

 There are a couple of things we could do in the future.  Although this cipher is proven to 

be broken with as little as 5 known plaintext-ciphertext pairs(for FEAL-4)[1], our approach could 

be valid if we were able to figure out exactly what the accuracy is for a given key. Because we 

are currently unsure about how well this will work overall, future work should be devoted to 

running some statistical measurements to gauge how effective this method is.  Because we can 

only generate a list of keys which should work, we do not know how common is it for a key to 

appear on the list in comparison to not appearing.  If any further work is to be done, this is likely 

the place to do it.   

 

 Another idea is to find another place to add a 3rd key for the attack which could increase 

the likelihood that a given key would work for more plaintext ciphertext pairs.  In other words we 
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would try to efficiently derive a third key which could be put at a new location in the 1-round 

algorithm which would hopefully stay relatively constant given any plaintext or ciphertext pair.  

The main thing to be careful of here is to make sure that deriving the third key takes negligible 

time.  This is probably not possible, but it could add some more insight to get more concrete 

results. 

 

Statement of Group activity 

 

 Each group member worked an equal amount on this project.  The majority of the coding 

was done in a group session with Zack coding out the S, F and Fk Functions while Carlos coded 

out the Key generation methods.  Once these steps were done, we both worked on the 

encryption method together.  Once our implementation of the cipher was finished, we both 

looked into figuring out the attack.  Once the idea of our attack was formed, Zack began to code 

out the derivation functions while Carlos began working on the write up of the paper.  Once 

Zack finished commenting and implementing the code, he began helping Carlos finish up the 

writing of the documentation.  Because of this, we feel as though we both contributed evenly 

towards the completion of this project.  We will also be evenly contributing to the completion of 

the presentation as well. 
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