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Summary. We address the problem of how to construct ideal cipher systems when the

length of a key is much less than the length of an encrypted message. We suggest a new

secret key cipher system in which firstly the message is transformed into two parts in such

a way that the biggest part consists of independent and equiprobable letters. Secondly

the relatively small second part is enciphered wholly by the Vernam cipher whereas only

few bits from the biggest part are enciphered. This transformation is based on the fast

version of the Elias construction of an unbiased random sequence.

The time required for encoding and decoding and the memory size of the encoder and

decoder are presented as functions of the ratio of the key length and the message length.

The suggested scheme can be applied to sources with unknown statistics.

Keywords: ideal cipher system, fast algorithms, Shannon entropy.
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1 Introduction

We consider a common definition of a secret key cipher system as diagrammed below:

Plaintext Source �x1x2 . . . Encrypter �y1y2 . . .

Key Source

�
k̄

As always we assume that the secret key is statistically independent on the plaintext

sequence and the letters of the key are equiprobable. For the sake of simplification we

also assume that the plaintext letters, key letters and ciphertext letters are generated by

Bernoulli sources and take values in the alphabet A = {0, 1}, but the suggested method

is easily generalized for the case of any finite source alphabet and for Markov sources in

such a way as it has been described by M.Blume [2].

In the pioneering paper [6] C.Shannon has shown that there exist systems with so-called

perfect secrecy. Informally, it means that a cryptanalyst who knows an encrypted message,

obtains no further information to enable him to decide which message was transmitted.

Clearly, perfect secrecy is highly desirable but it is shown by Shannon that, roughly

speaking, the length of a key sequence has to be equal to the length of an encrypted

message for systems with perfect secrecy. Frequently the length of the key should be much

less than the length of encrypted messages. In this case it is impossible to construct a

system with perfect secrecy [6] but it is possible to construct so-called ideal cipher systems

[6]. In such systems the uncertainty of the key makes it impossible for the cryptanalyst,

among a subset of the messages, to decide exactly which message is the actual one sent.
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Using this notation we can say that a simply realisable ideal system is suggested for

the case when the length of a key is much less than the length of an encrypted message.

It should be noted that the complexity of methods will be assessed by the memory size

(S) (in bits) required to store the programs of an encoder and a decoder, as well as by

the average time (T ) required for encoding and decoding of a single letter measured by

the number of binary operations on single- bit words when they are implemented on a

computer with random access memory (it is a model of a common computer; see the

definition in [1]).

Let us give some new definitions. Let An and A∞ be the sets of all finite words with

the length n (n ≥ 1) and one-side-infinite words, respectively, in the alphabet A, and

let A∗ =
⋃∞

n=1 An. Let there be a plaintext source which generates letters from a finite

alphabet A and a key source which generates independent and equiprobable letters from

the alphabet {0, 1}. A cipher α is defined as a pair of such functions αen and αde that

αen assigns to each pair of words (x, k̄) , x ∈ A∞, k̄ ∈ {0, 1}∞, a sequence y ∈ {0, 1}∞ in

such a way that αde(y, k̄) = x , where x is a plaintext , k̄ is a sequence of letters of the

key and y is an encrypted message.

We address the problem when the length of the key is (much) less than the length of

an encrypted message. The formal model can be described as follows: there is a (small)

number γ ∈ (0, 1) and, when an encoder encrypts n first letters of the plaintext, it must

use not more than γn letters of the key sequence k̄, n > 0.

We consider a limiting entropy

H(x|m1 /y|∞1 ) = lim
t→∞ H(x|m1 /y|t1)
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where m, t are integers, U |ba = UaUa+1 . . . Ub for a word U and a ≤ b, H(·/·) is the

conditional entropy (see the definitions, for ex, in[4]). We will consider the plaintext

source with nonzero entropy only. (If the entropy of the plaintext source is equal to zero

there is no need to transmit the plaintext.) In that case the Shannon definition may be

formulated as follows: the system is ideal if

lim
m→∞(H(x|m1 /y|∞1 )/m) ≥ π (1)

where π is a positive constant. Informally it means that if somebody knows the (infinite)

encrypted text y but does not know x and k̄ then his uncertainty about the x|m1 is ap-

proximately equal to πm. In other words, a codebreaker will have around 2πm possible

highly probable variants of deciphering for x1, ..., xm. Of course, the more π , the better

the cipher system is.

It easy to see that π cannot be larger than the plaintext entropy. On the other hand,

it is obvious that if γm letters of the key were used for encryption of m first letters of the

plaintext, then π cannot be larger than γ,γ < 1. So we obtain the following inequality:

π ≤ min{γ, h},

where h is the Shannon entropy of the plainext source. (For example, if the plaintext is

generated by Bernoulli source, its entropy is defined by the equality h = −∑
a∈A p(a) log p(a),

where p(a) is the probability of a, a ∈ A . The general difinition may be found in [4].)

Using the given definition we can say that we suggest such a cipher system that π

in (1) is not less than min{γ/2, h}. The time of encryption and decryption of one

letter of the plaintext and the memory size of the encoder and decoder are equal to

O(log3(1/γ) log log(1/γ)) bit operations and O((1/γ) log(1/γ)) bits , correspondingly.
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We can see that, if the entropy of the plaintext h is quite large, the suggested system

uses only a half key digits (γ/2 instead of γ ). The possibility to modify the suggested

system in such a way that the key digits are used more efficiently is considered too. But

in this case the complexity of the system increases.

The rest of the paper is organised as follows. The second part contains a description

of the system as well as the main properties of the system are described in the third part.

2 Description of the cipher system

For a given γ ∈ (0, 1) let n be a minimal integer such that the inequality

�2 log(n + 1)�/n ≤ γ/2 (2)

is valid. (Here and below log n = log2 n). It is easily to see that

n < 4 log(1/γ)/γ + O(1), (3)

when γ → 0.

The description of the suggested cipher system may be divided into two parts as follows:

firstly, a generated sequence of letters is transformed into two subsequences and, secondly,

both subsequences are encrypted by different methods.

The first part plays a key role. It is based on the method of P.Elias [3] and the fast

algorithm of enumeration from [5].

Let us give some new definitions in order to describe the method of transformation. Let

Si
n be the set of all binary words of the length n with i ones, (n ≥ i ≥ 0) and let for every

x ∈ Si
n code(x) be lexicographical number of the word x in the set Si

n which is written in
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the binary number system, the length of code(x) equals �log(
n

i

)� bits. (Here and below

|x| is the length of x if x is a word and the number of elements if x is a set.) For example,

S2
4 = {0011, 0101, 0110, 1001, 1010, 1100} and code(0011) = 000, code(1100) = 101.

A generated plaintext can be written in the form of a sequence of blocks of the length

n, where n is defined above, see(2). Every block x̄ is encoded by the sequence of three

words u(x̄)v(x̄)w(x̄). Here u(x̄) is the number of units in the block x̄ and the length of

u(x̄) is equal to �log(n + 1)� bits. In order to describe v(x̄) and w(x̄) we define

mk = �log(
n

k

)�(= log |Sk
n|)

where k is the number of units in x̄. Let αmk
αm1−1 . . . α0 be a binary notation of |Sk

n| and

αmk
= 1, αj1 = 1, . . . , αjs−1 = 1 as well as the other αjk

= 0 . (In other words, s is the

number of units in the word αmk
αmk−1 . . . α0.) Let β(x̄) = βmk

βmk−1 . . . β0 be the binary

notation of the lexicographical number of x̄ and let the following inequalities be valid:

αmk
αmk−1 . . . αjr000 . . . 0 ≤ β(x̄)

< αmk
αmk−1 . . . αjr+100 . . . 0

(4)

for a certain r. (Obviously such r exists.) The word w(x̄) is defined as follows

w(x̄) =




βjr−1βjr−2 . . . β0, if jr − 1 ≥ 0

Λ, if jr − 1 < 0

(5)

where Λ is an empty word and j0 = mk by definition. Now we can describe the word

v(x̄). This word contains the binary notations of the integer r for which (4) is valid. By

definition, r belongs to the set {j0, j1, . . . , js−1} . (Let us recall that it is the set of such

indexes that αjk
= 1 for each jk, where αmk

αmk−1 . . . α0 is the binary notation of the word
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mk). So, it is enough to keep �log s� binary digits in order to encode and decode each

possible r and , by definition, the length of the word v(x̄) is equal to �log s� bits. Let us

note that

|v(x̄)| < �log(n + 1)� (6)

because by definition |v(x̄)| ≤ �log s� = �log(mk + 1)�, mk = �log(
n

k

)� and (
n

k

) < 2n

for every k = 0, 1, . . . , n.

First, let us explain that it is possible to find x̄ if u(x̄)v(x̄)w(x̄) are known. Indeed, the

first �log(n + 1)� bits give a possibility to find a number of units in an encoded block. It

gives a possibility to find the number |Sk
n| = αmk

αmk−1 . . . α0 and therefore, the numbers

mk = log |Si
n|, s (the number of units in the binary notations of mk ) and �log s�. The

next �log s� bits contains information about the length of the word w(·). After that it is

possible to find digits βjr−1βjr−2 . . . β0. The word αmk
. . . αjrβjr−1βjr−2 . . . β0 is the code

of the lexicographical number of the encoded block x̄.

Let us consider an example. Let the block length n = 4 and the word x be 0101. Obvi-

ously, x̄ belongs to the set S2
4 = {0011, 0101, 0110, 1001, 1010, 1100} and its lexicographical

number β(x̄) = 001. It is obvious that mk = �log |Sk
n|� = 2 and |Sk

n| = |S2
4 | = (110)2,

s = 2. According to (1) we check the inequalitie

000 ≤ 001 < 100

Hence, jr = 2, r = 0 and we can find u(0101) = 010, v(0101) = 0, w(0101) = β1β0 = 01,see

(2). In order to make clear the main goal of the suggested transformation we consider
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codes for all words from the set S2
4 .

uvw(0011) = 010 0 00

uvw(0101) = 010 0 01

uvw(0110) = 010 0 10

uvw(1001) = 010 0 11

uvw(1010) = 010 1 0

uvw(1100) = 010 1 1

The main property of the considered transformation may be formulated as follows: the

symbols of w(x̄) are independent and equiprobable. It is easily seen from this example.

Indeed, we can see that all the words from S2
4 are equiprobable and there are four words

with w parts 00, 01, 10, 11. So, in this set the letters 0, 1 are equiprobable and independent.

Similarly, there are two aquiprobable words with w = 0 and w = 1 and, obviously, in this

set the letters 0, 1 are eqiprobable and independent. The same property is fulfilled for

each Sk
n. It is important to note that the average length of w grows as nh, whereas the

length of u and v grows as O(log n) if n increases. The formal proof of both properties is

given in [3].

It is easy to see that the most difficult part of encoding is the calculation of the

lexicographical number β(x̄) of x̄ in the Sk
n. Respectively, the most difficult part of

decoding is the calculation of x̄ on the basis of its lexicographical number β(x̄).

Let us describe the second part of the suggested method. Briefly, this part may be

described as follows: at least �γn� first letters of the sequence u(.)v(.)w(.) are encrypted
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by the Vernam cipher, whereas all other letters of this sequences are not changed. Hence,

the words u(.)v(.) and at least �γn/2� first letters of the word w(.) will be encrypted.

That is why a codebreaker will have at least 2�γn/2� equiprobable alternate versions of

deciphering an initial block.

The suggested scheme is a little bit more complicated because it is possible that the

length of the sequence u(.)v(.)w(.) is shorter than �γn�. In this case it is natural to use

extra bits of the key for the encryption of the following words.

In order to give a formal description of this part of the method we define an auxiliary

value R(m) as the number of digits of the key which were used for encryption of the first

m blocks

u(1)v(1)w(1)u(2)v(2)w(2) . . .u(m)v(m)w(m), m > 1.

It is obvious that R(m) ≤ �mγn� bits. It is convenient to denote

u(i)v(i)w(i) = Li

and let Li = Li
1L

i
2 . . . Li

K where K = |Li| .

The letters of each Li are encrypted according to following equality

encrypted(Li
j) =




Li
j

⊕
k̄R(i−1)+j , if R(i − 1) + j ≤ �iγn�

Li
j , if R(i − 1) + j > �iγn�

(7)

where k̄ = k̄1k̄2k̄3 . . . is the key and a
⊕

b = a + b(mod2).
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3 The properties of the cipher system

The suggested transformation of the original plaintext plays the key role. That is why we

describe the properties of the transformation first.

Theorem 1 Let a Bernoulli source generate letters from the alphabet A = {0, 1} with

(unknown) probabilities p and q, respectively. Let a generated sequence be transformed

as it is described above and n, n ≥ 2, be a parameter of the transformation. Then the

following holds:

i) The symbols of the sequence w(x|n1 )w(x|2n
n+1)w(x|3n

2n+1) . . . are independent and equiprob-

able.

ii) E(w(x|(r+1)n
rn+1 )) > nh − 2 log(n + 1) where h = −(p log p + q log q) is the entropy of

the source, E(·) is an expectation.

iii) the transformation requires the memory size O(n log n) bits and has the time of

encoding and decoding O(log3 n log log n) bit operations per letter as n → ∞.

Proof. We will omit the proof of i) because it is given in P.Elias paper [3] and the

main idea is quite obvious.

In order to prove ii) we first note that every block x̄ may be decoded using three

encoded words u(x̄)v(x̄)w(x̄). Due to the classical Shannon theorem we know that the

length of encoded words is more than or equal to the entropy:

E(|u(x̄)|) + E(|v(x̄)|) + E(|w(x̄)|) ≥ nh

By definition |u(x̄)| = �log(n + 1)� bits and |v(x̄)| < �log(n + 1)�, see (6). From the last

three inequalities we obtain the claim ii).
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Let us estimate the complexity of the method. In order to find u(x̄) it is enough

to look through the word x̄ and calculate the number of units. It takes O(n log n) bit

operations or O(logn) bit operations per letter. In order to find v(x̄) and w(x̄) it is

necessary to calculate (
n

i

) and the lexicographical number of the word x̄ in Si
n where

i is the number of units. We suggest to use the method from [5] for this purpose. The

time of calculation and the memory size are equal to O(log3 n log log n) bit operations per

letter and O(n logn) bits, respectively. Using estimations from [5] it is easy to obtain the

same estimation for the complexity of decoding. Theorem 1 is proved.

The next theorem shows that the suggested cipher is ideal.

Theorem 2 Let a Bernoulli source generate letters from the alphabet {0, 1} with proba-

bilities p and q, respectively, p > 0, q > 0, and let the suggested cipher system be used for

encrypting the source messages and γ ∈ (0, 1) be a parameter of the system. Then

i) lim
m→∞m−1H(x|m1 /y|∞1 ) ≥ min{γ/2, h},

ii)S ≤ const log(1/γ)/γ

iii)T ≤ const log3(1/γ) log log(1/γ),

where T and S are the time of calculation and the memory size,respectively.

Remark 1 From i) we can see that, roughly speaking, only half of the digits of the key

is used, when the entropy h is quite large. It is possible to modify the suggested system

in such a way that the key digits will be used more efficiently, but the complexity of the

system will increase. Namely, for every ϕ ∈ (0, 1) it is possible to construct a cipher
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system for which the following inequality is valid:

lim
m→∞m−1H(x|m1 /y|∞1 ) ≥ min{γϕ, h}. (8)

If ϕ is more than 1/2 then the modified system uses the key more efficiently. In order to

describe the modified system it is enough to change the parameter n whereas all other

parts are not changed. Namely, the parameter n is defined as such a minimal integer that

the inequality

�2 log(n + 1)�/n ≤ γ(1 − ϕ)

is valid (instead of inequality (2)). As before, a plaintext is divided into blocks of the

length n and �γn� first letters of each blocks are encrypted by the Vernam cipher. In this

case, at least nγϕ equiprobable letters from each block will be encrypted that results in

(8). But the compexity increases as

S = const log(1/(γ(1−ϕ))/(γ(1−ϕ)), T = const log3(1/(γ(1−ϕ))) log log(1/(γ(1− ϕ)))

that is bigger than ii) and iii) when (1 − ϕ) is small.

Outline of Proof. We divide the proof into two deferent parts which correspond to

the following cases: i) with probability one all (might be except a finite number) letters

of the transformed plaintext are encrypted , ii) with probability one infinite number of

letters of the transformed plaintext are not encrypted.

In the first case the uncertainty is equal to the entropy source h because asymptotically

all letters of the transformed plaintext are encrypted by the Vernam cipher. In the second

case the average number of encrypted bits is γn a block. It means that at least γn/2

equirobable bits are encrypted by the Vernam cipher. Hence, at least 2γn/2 equiprobable
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variants of deciphering are possible (when the key is unknown) and we obtain the first

claim of the theorem.

The two other claims of the theorem are obtained from the definition of the value n

and the theorem 1 by direct calculation.
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