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PREFACE

The objective of this book is twofold. Firstly, it is our aim to present a self-
contained, reasonably modern account of tensor analysis and the calculus
of exterior differential forms, adapted to the needs of physicists, engineers,
and applied mathematicians in general. Secondly, however, it is anticipated
that a substantial part of the material included in the later chapters is of
interest also to those who have some previous knowledge of tensors and
differential forms: we refer in particular to the remarkable interaction be-
tween the concept of invariance and the calculus of variations, which has
profound implications in almost all physical field theories.

The general approach and organization of the opening chapters is deter-
mined almost exclusively by the requirements of our first objective. In fact,
these chapters are based on courses presented during the past decade at
several universities to audiences with widely varying interests and academic
backgrounds. Accordingly the prerequisites consist merely of basic linear
algebra, advanced calculus of several real variables, and some very elemen-
tary aspects of the theory of differential equations; the first five chapters
therefore constitute a one-semester course which should be readily accessible
to senior undergraduates majoring in mathematics, physics, or some branch
of engineering. Initially the pace is very gradual, if not leisurely, with em-
phasis on motivation with the aid of simple physical examples, while at the
same time a systematic effort is made to proceed to the core of the subject
matter by way of successive abstraction from concrete situations. In this
respect, therefore, our treatment does not follow the historical development
of the calculus of tensors and forms, whose origins are deeply rooted in
differential geometry, which does, in fact, provide their most natural setting.
However, since the applications of tensors and forms have meanwhile
spread to entirely different areas, the basic approach presented below
has intentionally been divested of many of the customary trappings of
metric differential geometry.

The later parts of the book, beginning with Chapter 6, are devoted pri-
marily to the second of the aforementioned objectives. It had been observed
repeatedly by David Hilbert that the effects of invariance postulates on
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variational principles are of a surprisingly profound and far-reaching
nature, particularly insofar as relativistic field theories are concerned. Since
no previous knowledge of the calculus of variations is presupposed, this
subject is developed ab initio for single as well as multiple integrals, with
special emphasis on the various invariance requirements which may be
imposed on the fundamental (or action) integral. Much of this treatment is
based on the relatively recent direct methods of Constantin Carathéodory,
instead of on the classical theory of the first and second variations of the
fundamental integral; thus the approach of Carathéodory, which is un-
doubtedly more illuminating and powerful than the traditional procedure,
should be rendered accessible to a wide class of readers.t

A very important instance of the consequences of the imposition of
special invariance requirements on variational principles is represented by
the famous theorems of Noether, which, when applied to physical field
theories, predict the existence and precise nature of conservation laws.
Instead of following the original procedure of Emmy Noether, which is
based on some deep and conceptually difficult results in the calculus of
variations, it will be seen that these theorems can be derived directly and
almost effortlessly by means of elementary tensorial techniques.

In view of the fact that many applications of these ideas are concerned
with the general theory of relativity, a chapter on Riemannian spaces with
indefinite metrics is included; it should be emphasized, however, that it is
only at this stage that the concept of a metric is introduced and used in a
systematic manner. Thus, on the one hand, the aesthetic appeal of metric
differential geometry, absent from the earlier chapters, is recaptured, while
on the other hand, the prerequisites for the final chapter are established.
This chapter is considerably more specialized than the remainder of the
book: it contains, inter alia, fairly recent results which are of interest pri-
marily to relativists.

To a great extent the emphasis in this book is on analytical techniques.
Thus a large number of problems is included, ranging from routine manipu-
lative exercises to technically difficult problems of the kind frequently
encountered by those who use tensor techniques in the course of their re-
search activities. Indeed, some considerable trouble has been taken to
collect many usefui results of a purely technical nature, which generally are
not discussed in the standard literature, but which form part of the almost
indispensable “folklore” known to most experts in the field. Despite this
emphasis on technique, however, every effort has been made to maintain an
acceptable level of rigor commensurate with the classical background on

+ Incidentally, it should be pointed out that this approach also plays an increasingly significant
role in the theory of optimal control (which is not touched upon in this book).

PREFACE vii
which the analysis is based. Moreover, the modern, more sophisticated and
abstract approach to the theory of tensors and forms on manifolds, which
is less dependent on the use of coordinate systems, is discussed briefly in
the Appendix, which, it is hoped, will assist the reader in bridging the deep
chasm between classical tensor analysis and the fundamentals of more
recent global theories.

The first drafts of the manuscript of this book were scrutinized at various
stages by Professors W. C. Salmon and D. Trifan of the University of
Ar’izona, and by Professor G. W. Horndeski of the University of Waterloo.
It is a pleasure to acknowledge the many valuable suggestions received from
the§e colleagues. For assistance with the arduous task of proof-reading at
various stages, we are indebted to the following: S. Aldersley, M. J. Boyle,
and R. J. McKellar at the University of Waterloo, and P. L. Nash and
W. E. Smith at the University of Arizona.

Last, but not least, we are deeply grateful to Beatrice Shube of Wiley-
Interscience for her constant encouragement and invaluable advice.

DaviD LovELock
HanNo Runp

Tucson, Arizona
January 1975
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PRELIMINARY
OBSERVATIONS

One of the principal advantages of classical vector analysis derives from the
fact that it enables one to express geometrical or physical relationships in a
concise manner which does not depend on the introduction of a coordinate
system. However, for many purposes of pure and applied mathematics
the concept of a vector is too limited in scope, and to a very significant
extent, the tensor calculus provides the appropriate generalization. It, too,
possesses the advantage of a concise notation, and the formulation of its
basic definitions is such as to allow for effortless transitions from a given
coordinate system to another, while in general the inspection of any relation
involving tensors permits an inference to be drawn immediately as to whether
or not that relation is valid in all allowable coordinate systems.

The objective of this chapter is essentially motivational. A few simple
physical and geometrical situations are briefly described in order to reveal
the inadequacy of the vector concept under certain circumstances. In
particular, whereas in a three-dimensional space a vector is uniquely deter-
mined by its three components relative to some coordinate system, there
exist important physical and geometrical entities which require more than
three components for their complete specification. Tensors are examples of
such quantities; however, the definition of the tensor concept is deferred
until Chapters 2 and 3, and accordingly any reader who is reasonably
familiar with the elementary ideas touched upon below may confine himself
to a very casual survey of the contents of this chapter.

1.1 SIMPLE EXAMPLES OF TENSORS IN PHYSICS AND GEOMETRY

Although it is not feasible to define the concept of a tensor at this stage, we
briefly describe a few elementary examples which serve to indicate quite
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2 PRELIMINARY OBSERVATIONS

clearly that, in the case of many basic geometrical or physical applications,
it is necessary to introduce quantities which are more general than vectors.
Whereas a vector possesses three components in a three-dimensional space,
we shall be confronted with entities which possess more than three com-
ponents in such spaces.

The following notation is adopted in this section. Suppose that, in a
Euclidean space E;, we are given a rectangular coordinate system with
origin at a fixed point O of E;. The coordinates of an arbitrary point P of E,
relative to this coordinate system are denoted by (x!, x?, x3), and the unit
vectors in the directions of the positive Ox!-, Ox?-, and Ox3-axes are repre-
sented by e, e,, and e,. The latter form a basis of E; in the sense that any
vector A can be expressed in the form

A=Ae + A,e, + Aje,, (1.1)

in which 4,, 4,, A, denote the three components of A, these being the lengths
of the projections of A onto e, e,, e;, respectively. The length [A] of A is
given by

|A]2 = (4,)% + (4,)* + (45)> (12
In particular, for the position vector r of P we have
r = x'e; + x%, + x%,, (1.3)
and, writing r = |r| for the sake of brevity,
r? = (x1)? 4+ (x)? + (x3)% 1.9

EXAMPLE 1 THE STRESS TENSOR OF ELASTICITY

Let us consider an arbitrary elastic medium which is at rest subject to the
action of body and/or external loading forces, so that in its interior there will
exist internal forces. The stress vector across a surface element AS in the
interior of the body at a point P is defined by the limit AF/AS as AS — 0,
where AF denotes the resultant of the internal forces distributed over the sur-
face element AS. More precisely, let us consider a small cube of the elastic
material, whose edges are parallel to the coordinate axes. The faces of the
cube whose outward normals are e,, e,, e;, are respectively denoted by
81, 8,,S;. Let Fy, denote the stress over S, (k = 1, 2, 3) (see Figure 1). Each
of these vectors can be decomposed into components in accordance with (1.1):

Fo = Tii8y + 1€y + Tiaey, (1.5)

where 7, ; represents the jth component (j = 1, 2, 3) of the stress over the face
S;. The quantities 7;; are called the components of the stress tensor: they
completely specify the internal forces of the elastic medium at each point.
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Fig. 1

It should be emphasized that this description depends on a system of nine
components 7,;. (These are not generally independent but satisfy the sym-
metry condition 7,; = 7, provided that certain conditions are satisfied, but
this phenomenon is not relevant to this discussion.)

As a result of the forces acting on the body, a deformation of the medium
occurs, which is described as follows. A point P of the medium, whose initial
coordinates are (x!, x2, x3), will be transferred to a position with coordinates
(', 2, y3), and we shall write w/ = y/ — x/ (j = 1, 2, 3). If it is assumed that
w is a continuously differentiable function of position, one may define the

quantities
1/0uw  ou*
Sjx = E(W + 6—x’>’ (1.6)

which represent the components of the strain tensor. (We do not motivate
this definition here, the reader being referred to texts on the theory of elas-
ticity, e.g., Green and Zerna [1].) Again we remark that the specification
of s; depends on nine components (apart from symmetry). Moreover, one
of the basic physical assumptions of the theory is contained in the so-called
generalized Hooke’s law, which states that there exists a linear relationship
between the components of stress and the components of strain. This is
expressed in the form

3 3
Ta =2, 2 CikimSim G,k = 1,2,3), a.n

I=1m=1
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in which the coefficients c,,, are of necessity four-index symbols (as con-
trasted with ordinary vectors, whose components are merely one-index
symbols).

It should be abundantly clear from this very cursory description that
ordinary vector theory is totally inadequate for the purposes of an analysis
of this kind.

EXAMPLE 2 THE INERTIA TENSOR OF A RIGID BODY

Let us consider a rigid body rotating about a fixed point O in its interior.
The angular momentum about O of a particle of mass m of the body located at
a point P with position vector r relative to O is given by r x p, where p=
mdr/dt is the linear momentum of the particle. If @ denotes the angular
velocity vector we have that dr/dt = @ x r, and consequently the angular
momentum of the particle about O is m[r x (@ x r)]. Thus if the mass
density of the body is p, its total angular momentum about O is given by the
integral

H= f o[t % (@ x 1] dV, (1.8)

in which dV denotes the volume element, and where the integration is to be
performed over the entire rigid body, (e.g., see Goldstein [1]).

In order to obtain a more useful expression for H, we introduce a rec-
tangular coordinate system with basis vectors e,, e,, e, and origin at O, this
system being fixed relative to the rigid body. In terms of (1.3) we have, by
definition of vector product,

© x 1 =e(w; x> — 03x%) + ew;x' — 0,X%) + e5(wx? — w,x?),
and, after a little simplification,

rx (@ xr) = e {0,[(x*)? + (x*)*)] — w,x'x? — w;x'x3}

+ e {—wx'x? + ,[(x?)? + (x)?] — w;x2x3}
+ e3{—w,;x'x? — w,x2x3 + w;[(x1)? + (x?)*]}. 1.9
This expression is to be substituted in (1.8). Since the angular velocity

components @;, ®,, w; are independent of position, the following integrals
will occur, for which a special notation is introduced:

L= [l + 61V, 1, = (ol + 1,
(1.10)
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together with

1,, = — | px'x?dV =1,,, I, =—|pxx3dv =1,,,
12 21 13 31
(1.11)
I,; = —fpx2x3 dv = I,,.

In terms of this notation, then, the substitution of (1.9) in (1.8) yields the
following expression for the total angular momentum of our rigid body
about the point O:

H=e(,,0, +I,,0;, + I,;03) + e;(I,;0, + I,,0, + I,5053)

+ e3(l3,0, + I5,0, + I350,)

3 3 3 3 3
e, Io,+e, Y 1o, + e I,0, = > Y Iwye; (1.12)
=1 h=1 h=1

j=1h=1

This is the formula that we have been seeking; it clearly permits the com-
putation of the angular momentum H for any angular velocity @ whenever
the quantities (1.10), the so-called moments of inertia, together with the
quantities (1.11), the so-called coefficients of inertia, are known. However,
these quantities are defined uniquely by the structure of the rigid body, the
position of the point O, and the directions e,, e;, e; of the axes through O.
This phenomenon clearly exhibits the fundamentally important role played
by the coefficients I, which are known collectively as the components of the
inertia tensor. Again it should be stressed that these are two-index quantities.

The inertia tensor may also be used to calculate the total kinetic energy T
of the rigid body due to its rotational motion. The kinetic energy of the
particle of mass m located at P is 3m|dr/dt]?, and by a process of integration
similar to that sketched above it is easily shown that

3 3
T = 1 Y Y0, (1.13)
2516

Let us suppose, for the moment, that the inertia tensor of a rigid body is
known for a given set of axes through a point 0. For a different physical
problem involving the same rigid body it may be necessary to determine the
inertia tensor for another set of axes through a different center of rotation.
Thus it would be desirable to have some knowledge of the behavior of the
components of the inertia tensor under a change of rectangular axes. This
state of affairs exemplifies the central theme of the tensor calculus, which is,
in fact, deeply concerned with the transformation properties of entities of

this kind.
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EXAMPLE 3 THE VECTOR PRODUCT

Let A, B be two vectors with a common point of application P in E;, the
angle between these vectors (defined by a rotation from A to B) being denoted
by 6.1f 6 # 0 and 0 # =, these vectors span a plane IT through P. The vector
product C = A x B at P is defined geometrically as follows: (1) the magni-
tude |C| of C is given by [A] |B] sin 6; (2) the vector C is normal to IT in
such a manner that A, B, C form a right-handed system. This definition is
equivalent to the analytical expression

C =e¢,(4,B; — A3B,) + e,(A3;B, — A,B;) + e5(4,B, — A, B,). (1.14)

It should be remarked that the above geometrical definition of A x B
is meaningful solely for the case of a three-dimensional space, because in a
higher-dimensional space the plane IT does not possess a unique normal.
However, the formula (1.14) suggests quite clearly that in an n-dimensional
space with n > 3 we should define the quantities

Cy = A;B, — A,B; Gh=1,...,n). (1.15)

These two-index symbols represent the components of an entity which is an
obvious generalization to n dimensions of the three-dimensional vector
product. However, this entity is not a vector unless n = 3. The geometrical
reason for this is evident from the remark made above; the analytical reason
emerges from the fact that the components C,, C,, C; of C as given by
(1.14) are related to the quantities (1.15) for n = 3 by

C, = Cys, C, =Cjy, Cy=Cyy, (1.16)
or
Cj = Cu» (1.17)

where j, h, k is an even permutation of the integers 1, 2, 3, and this construction
is not feasible if the three indices j, h, k are allowed to assume integer values
greater than 3. Thus the generalization (1.15) of the vector product is repre-
sented by quantities which are not vector components; in fact, it will be seen
that (1.15) exemplifies a certain type of tensor.

1.2 VECTOR COMPONENTS IN CURVILINEAR COORDINATE SYSTEMS

Let us regard a given vector A, with fixed point of application P in E,, as a
directed segment in the usual sense. Relative to a rectangular coordinate
system with origin at O and basis vectors e,, e,, e;, we can represent A
according to (1.1), the length |A| of A being given by (1.2). Again, it should
be emphasized that the components 4,, 4,, A; of A which appear in (1.1)

1.2 VECTOR COMPONENTS IN CURVILINEAR COORDINATE SYSTEMS 7

are obtained by a process of projection onto the axes, which implies that
these components, and hence the expression for the length |A|, are indepen-
dent of the location of the point of application P.

However, when we attempt to carry out a similar program relative to a
curvilinear system of coordinates, the position is not quite so simple. Since
in this case there does not exist a universal triple of coordinate axes, we cannot
define the components of A by means of a direct process of projection;
moreover, it is not immediately evident what form the counterpart of the
formula (1.1) should assume. In this connection it should be remarked that
(1.1) is not a vector equation of the type A = B, which is independent of the
choice of the coordinate system: on the contrary, it is a nonvectorial relation
which depends crucially on the fact that it refers to a rectangular system.

In order to illustrate these remarks we shall consider in the first instance a
special type of curvilinear coordinates, namely, a spherical polar coordinate
system whose pole is located at the origin O of the given rectangular system
and whose polar axis coincides with e;. The spherical polar coordinates
(p, 0, ¢) are related to the rectangular coordinates (x', x2, x*) according to
the transformation

x' = psin 6 cos ¢,
x2 = p sin 0 sin ¢, Q.1
x3 = p cos 0,

as is immediately evident from Figure 2. It should be noted that p > O,
0<0<n0<¢<2m

In view of the fact that such a coordinate system does not possess a set of
rectangular axes to which any point of E, can be referred, we now endeavor
to construct a special system of axes at each point P of E;. To this end we
recall that, in the case of a rectangular system, three lines respectively parallel
to the x!-, x2-, and x3-axes can be constructed at any point P by the inter-
sections of appropriate pairs of planes through P; for instance, the inter-
section of the planes x? = const., x> = const. defines a line parallel to the
x!-axis. By way of analogy we shall now consider the surfaces p = c,,
0 = c,, ¢ = c,, which pass through a point P with spherical polar co-
ordinates c;, ¢,, ¢; (it being supposed that¢; > 0,0 < ¢, < %, 0 < ¢3 < 27).
The following should be noted:

1. The surface p = ¢, is a sphere of radius ¢, centered at O.

2. The surface 6 = c, is a circular cone with vertex O, whose axis co-
incides with Ox3, and whose semi-angle is c,.

3. The surface ¢ = ¢, is a plane containing Ox>, whose intersection
with the (x*x?)-plane is inclined at an angle c, to the Ox! axis.
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x3

€1

x!

Fig. 2

It then follows:

1. The p-coordinate curve, defined to be the intersection of the surfaces
2 and 3, is a straight line issuing from O, denoted by C, in Figure 2.

2. The 6-coordinate curve, defined to be the intersection of the surfaces
1 and 3, is a great circle on the sphere p = c,, denoted by C, in Figure 2.

3. The ¢-coordinate curve, defined to be the intersection of the surfaces
1 and 2, is the circle on the sphere p = ¢, containing all points satisfying
6 = c,, this curve being denoted by C, in Figure 2.

Let us now construct the three unit vectors &, €, , £, which are respectively
tangent to the coordinate curves p = ¢, 8 = c¢,, ¢ = c; at P, the directions
of these vectors being chosen in the directions of increasing p, 6, ¢. From
Figure 2 it is easily verified that relative to our rectangular coordinates the
components of €, €,, €, are given by

€, = (sin 0 cos ¢, sin @ sin ¢, cos 6),
€, = (cos 8 cos ¢, cos 8 sin ¢, —sin 6), 2.2)
€3 = (—sin ¢, cos ¢, 0).

1.2 VECTOR COMPONENTS IN CURVILINEAR COORDINATE SYSTEMS 9

Our construction has thus given rise to a set of three linearly independent
vectors at the point P. It is immediately evident that this construction can be
carried out at any point, and hence our spherical polar coordinate system
defines a basis at each point of E,. However, the directions of the corresponding
basis vectors €, €,, €, vary from point to point, for, according to (2.2), their
components relative to our fixed rectangular coordinate system depend
on the polar coordinates 6, ¢ of the point under consideration. It will be
seen presently that this idea of a “moving frame of reference” is of paramount
importance to all subsequent developments.

Now let us consider the vector A whose point of application is located at P.
At first sight one might be inclined to define the components of A relative to
the spherical polar coordinate system to be the oriented lengths of the pro-
jections of A onto the basis vectors ,, €,, £, at P. However, a little reflection
shows that a somewhat more sophisticated approach is required. Let dr
denote an arbitrary increment of the position vector r of P. Relative to the
rectangular coordinate system the components of dr are simply dx!, dx2,
dx3, which is in accordance with (1.3), and thus it is natural to define the
components of dr relative to the spherical polar coordinate system to be
dp, d0, d¢, where p + dp, 8 + df, ¢ + d¢ denote the coordinates of the
point whose position vector is r + dr. However, it is evident from Figure 3
that the oriented lengths of the projections of dronto g,, €,, €3 arerespectively
dp, p db, p sin 0 d¢, so that

dr = dpe, + pdOe, + psinOdpe,. 2.3)

Thus the coefficients of ¢, €,, €, are not merely the components (dp, df, d¢)
of dr, but rather these components multiplied respectively by the so-called
scale factors (1, p, p sin 6), which are functions of the positional coordinates
of P.

Returning to the arbitrary vector A at P, we note that it is always possible
to construct a curve r = r(t) through P, which is such that, for a suitable
choice of its parameter ¢, the tangent vector dr/dr is identical with A at P. In
accordance with the above definition, the components of dr/dt relative to the
spherical polar coordinate system are (dp/dt, d6/dr, d¢/dt); obviously these
quantities are also the corresponding components A4,, 4,, 4, of A at P, the
notation A; having been chosen for the purpose of distinguishing these
components from the components 4; of A relative to our rectangular
coordinate system. By virtue of our construction we have from (2.3):

_dr _dp

= + d—gs + sinedd)
_dt_Eel pdt 2T P &3,

dt

or, in terms of the above identification,
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A = Ag, + pA,e, + psin 0 4,¢,, 2.9

in which the scale factors (1, p, p sin 8) appear once more.
It is easily verified that the basis vectors of our spherical polar coordinate
system are mutually orthogonal:

€€, =0, €,°8; =0, €;-€, =0. 2.5)

(It should be emphasized, however, that this property is not common to all
curvilinear coordinate systems.) From (2.4) it therefore follows that

A-g, =4, A-g, = pd,, A-g; = psin04,, (2.6)

from which 4,, 4,, 4, may be evaluated directly with the aid of (2.2). It is
found that

A, = sin 0 cos ¢pA, + sin 0 sin pA, + cos 64,,

bN|

2

1 1 1
> cos 6 cos pA, + ’ cos 0 sin ¢pA, — P sin 64,, Q.7

sin ¢ cos ¢
- R Al . 2
psin 0 psin@

hN|

3 =

We remark that this represents a linear relationship between the components
of A in the respective coordinate systems, which can be expressed in the form

3
4;= hz_oc,-hAh, (2.8)
=1

in which, however, the coefficients o n are functions of the positional coordinates
(p> 6, ¢) of the point P of application of A.

In passing we note that we can express the length |A | of the vector A at
P in terms of its components (2.7). For, from (2.4) and (2.5) it follows directly
that

AP = (A- &) = (4,)* + p*A,)* + p*sin® (4,2 29)

Thus when spherical polar coordinates are used, the square of the length
of a vector is not given by the sum of the squares of its components, but
by a quadratic form in these components whose coefficients depend on the
position of the point of application of the vector.

We shall now briefly consider an arbitrary curvilinear coordinate system
in which the coordinates of a point P are denoted by (u, v, w). Our considera-
tions will be restricted to a region of E, in which P is uniquely represented
by this triple, so that there exist three relations which specify the rectangular
coordinates x!, x%, x* of P uniquely as functions of u, v, w:

x' = flu,v,w), x2 = f3u,v,w), x> = f3u,v,w). (210
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Again, if r denotes the position vector of P, we can represent (2.10) vectorially
as
r=r(uo,w). (2.11)

The following construction is a direct generalization of the procedure
sketched above. The u-coordinate curves are defined by the intersections of
the surfaces v = const., w = const., etc., and the tangent vectors to the
u-, v-, w-coordinate curves are respectively given by r, = dr/du, r, = dr/dy,
r, = dr/dw (by definition of partial derivative). The unit vectors in the
directions of these tangents are again denoted by ¢,, €,, €5, so that

rW
m , (2.12)

> 83=

where the normalization factors |r,|™ %, [r,|™%, |r,|”! are to be evaluated
directly from (2.11). Thus at each point of the region of E; under considera-
tion a basis is defined, it being assumed that the equations (2.10) are such that
the vectorsr,, r,, r,, are linearly independent. Also, from (2.11) we have

dr = dur, + dor, + dwr,, (2.13)

in which du, dv, dw are the components of dr relative to our curvilinear co-
ordinate system. Thus if we substitute from (2.12), we find that

dr = [r,| dug, + |r,| dve, + |r,| dwe,, (2.14)

so that the scale factors are simply |r,|, |r,|, |, ]. In accordance with our
previous construction we now define the components A4, A,, A5 of the
vector A at P relative to our curvilinear coordinate system by the relation

A=|r|48 + [r, 14,8, + Ir,|A5¢;. (2.15)

These considerations should exhibit quite clearly the analytical reason for
the appearance of the scale factors. Again (2.15) can be used to evaluate
A, A,, A, in terms of 4,, A,, A,; however, since (2.5) need not be valid
for the arbitrary coordinate system under consideration, scalar multiplica-
tion of (2.15) by €,, €,, £, will yield a system of three linear equations for
A,, A,, A5, the solution of which will again be of the form (2.8).

Moreover, it follows from (2.15) that the length |A| of A in terms of the
components 4,, 4,, A, is given by

AP =A-A= InIX(A4)? + In, |24, + I, 17(4,)* + 2|r,| Ir,| A, A,(e, * €;)
+ 2Ir,| I, | A, A5, - £5) + 2|r,,| Ir,| A3 A,(; - &)

But from (2.12) it follows that

rll ° rD

Ir, | Ir, |’

£,°8, =
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with two similar relations, and hence we conclude that
AR = 65,2 + I, XA, + |5, (5 -
+ 2(1',, ° ru)lez + 2([',] * rw)AZAS + 2(rw ° ru)A3Al' (216)

Thus, in an arbitrary curvilinear coordinate system in E; the square of
the length of a vector A at a point P of E5 is a quadratic form in the components
A,, A,, A5 of A, the coefficients of this quadratic form being functions of the
positional coordinates of the point P of application of A.

For the case of a spherical polar coordinate system with u = p, v = 6,
w = ¢, the transformation equations (2.11) reduce to (2.1),_from which it is
evident that the components of r,, 1y, ¥y are respectively given by

r, = (sin 6 cos ¢, sin 0 sin ¢, cos 6),
1y = (p cos B cos ¢, p cos B sin ¢, —p sin 0), (2.17)
r, = (—p sin 0 sin ¢, p sin 6 cos ¢, 0),

so that
I, 1> =1, Ire|2 = p% Iry|? = p?sin? 6. (2.18)
Thus the scale factors for our spherical polar coordinate system are 1, p,

p sin 6, which is in agreement with our previous analysis. Also, it is easily
verified analytically that

r, =0, r T, =0, r, r, =0, (2.19)

and hence the substitution of (2.18) and (2.19) in (2.15) and (2.16) respectively
yields the relations (2.4) and (2.9) as special cases.

1.3 SOME ELEMENTARY PROPERTIES OF DETERMINANTS

In the sequel certain properties of determinants will be used repeatedly.
These are listed here for future reference; it should be emphasized, however,
that no attempt is made to provide a comprehensive description of the
theory of determinants, (see, e.g., Hadley [1])-

Let us suppose that we are given n® quantities arranged as follows in
matrix form:

Ay, Q9 "7 Gin
a a 2 e aZn

21 2 3.1)
(23 a,s et Qpy

For the sake of brevity we denote this matrix by (a;,), it being understood that
the indices j, h, k, . . . range over the values 1, 2, ..., n throughout this section.
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The (n x n) determinant of the matrix (3.1) is defined to be

a= Z (——1)"a1jialj2 Cr @y, 3.2)
Ji-n
in which the summation is extended over all n! permutations j,, j,, ..., j,

of the first n integers, and where k¥ = 0 or 1 according as the permutation
at hand is even or odd. The following notation is used frequently below:

ayy Q13 0 Ay,
1 Gz -0 Gy

a = det(ay) = . 3.3)
ny A, Anp

It is immediately obvious from the definition (3.2) that an interchange of
two rows (or two columns) changes the sign of the determinant; in particular,
if two rows (or two columns) are identical, the value of the determinant is
Zero.

Let k be a fixed integer, with 1 < k < n. Clearly each term of the sum on
the right-hand side of (3.2) contains precisely one factor of the type g,
that is, one element from the kth row in (3.3). Hence the terms in (3.2) consist
of n types, the first of which possesses the factor g,,, the second possesses
the factor q,,, ..., and the nth possesses the factor q,,. Thus we can write
(3.2) in the form

a=auAy + G Ay + -+ QA = Zlaijjka (34)

i=
in which the coefficient A;, of the factor a,; is called the cofactor of a,;.
It is a direct consequence of the definition (3.2)—as may be verified quite
easily—that A4 is identical with the value of the (n — 1) x (n — 1) determi-
nant obtained from (3.3) by the deletion of the kth row and the jth column
multiplied by (—1)**/. Moreover, since by construction the cofactors

Ay, Agzs - ., Ay, do not contain any elements of the form q,;, it follows from
(3.4) that
da
A, = . 35
Jjk aakj ( )

The identity (3.4) represents the expansion of a determinant in terms of the
elements of its kth row; a similar formula may obviously be obtained for the
expansion of the determinant in terms of the elements of its kth column:

a=ay Ay + ayud + -+ au A, = Y Aya. (3.6)
=1
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This suggests that we consider a sum of the type Zj= 1 @ jAjp in which b # k.

From the definition of the cofactor it is immediately evident that this repre-
sents the expansion of a determinant with two identical rows, namely, the
kth and the hth rows, and accordingly this sum vanishes. This, together with
(3.4), indicates that

i =a if k=h
‘A, ’ 37
L% f"{: 0 if k#h 37
This result can be written in a more compact form in terms of the so-called

Kronecker delta 6,,. The latter is defined as follows:

s f=1 i k=h (hk..=1...n)
=0 if k#h (Bk...=1,...,n).

Thus (3.7) can be expressed as
Y a; Ay = ady, (3.8)
j=1

while (3.6) leads to an analogous relation, namely,

A0 = ady,. (3.9)
j=1

J

Thus, provided that the determinant a does not vanish, we can always con-
struct the elements b, of the matrix which is inverse to (3.1) by putting

by =a ‘A, (3.10)

since, by virtue of (3.8) and (3.9), these quantities satisfy the conditions

Y agby = Y byjam = S (3.11)
j=1 i=1

Let us now consider two (n X n) matrices (a,), (c;), whose determinants
are respectively denoted by a and c¢. The matrix whose elements are defined
by

S = 2 @iCpn> (3.12)
=1

is the product of the matrices (a;,), (c) (in this order); it is easily verified
that the value f of the determinant of this product matrix is given by
f=ac. (3.13)

In particular, the sums which appear on the left-hand side of (3.11) represent
the elements of the product of the matrix (a;) and its inverse (bj,).
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In many of the applications to be considered below, the elements a, are not
constants, but are in fact functions of one or more variables, and it is frequent-
ly necessary to evaluate the derivatives of the corresponding determinants.
Let us suppose, then, that the g,; are continuously differentiable functions
of m parameters t* (@ = 1, ..., m):

a; = aft', ..., ™).
Clearly the partial derivatives of the determinant a are given by
da & < Oa day

oa _ . 14
or ~ &, [~ day, O (319

However, by means of (3.5) this can be written in terms of the cofactors:

oa
ﬁ—ZZ,Wﬁ (3.15)

k=1 j=1

This simple formula will be found to be extremely useful.

PROBLEMS
1.1 In E, the quantity &, is defined by
+ Lif (j, h, k) is an even permutation of (1, 2, 3),

gim = { —1if (j, h, k) is an odd permutation of (1, 2, 3),
0 if (j, h, k) has any other set of values.

If C,, and C; are defined by (1.15) and (1.17), respectively, show that
Z Z € Crx U=1223).
h 1 k=1

1.2 Ifthe 3 x 3 matrix (a;;) has determinant a, show that

3 3 3
=2 Y X 0na3Gumum
h=11=1 m=1
where ¢, is defined in Problem 1.1.
1.3 Show that

2805 =0s (Lk=1...,n)
j=1
and
ijorj

Yo,4,=4, (i=1,...,n),
i=1

where A4,, ..., 4, are arbitrary quantities.
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1.4 If By, ..., B, are arbitrary quantities and a; = B;B; (i, j=1, ..., n) prove that
det(a;;) = O.

1.5 If A, is the cofactor of a,; show that
det(4,) = a"~!

where a = det(a; ).
1.6 Ifay = —ayforj k=1,...,nprove that, for n odd,

det(a;) = 0.

1.7 1If an elastic medium is isotropic then Hooke’s law assumes the form
3
Ty =4 > 50 + 2usy U, k=1,23),
i=1

where A, p are constants. Show that in this case if Ciktm = €

(1.7) implies that “;xmi> then the relation
.7) implies tha

Citim = Ad 30y + WD 01 + O Ord)-
Hence show that

Ciktm = Ckjim> Ciktm = Cimjx-

Establish that ¢, + Cjpmiy + Cjimg = Oif and only if 1 = —2pu.



AFFINE TENSOR
ALGEBRA 1IN
EUCLIDEAN GEOMETRY

Since the tensor calculus is concerned with the behavior of various entities
under the transition from a given coordinate system to another, we begin
with a detailed analysis of the simplest type of coordinate transformation,
namely, the orthogonal transformation in a three-dimensional Euclidean
space E;. The resulting transformation properties of the components of
vectors suggest the introduction of a special class of tensors, the so-called
affine tensors, whose definition is formulated in terms of the behavior of their
components under orthogonal transformations in E;. This gives rise to a
simple algebraic theory of tensors which may be regarded as an immediate
extension of elementary vector algebra. Moreover, the basic definitions are
such as to allow for an effortless transition from three to n dimensions.
However, by definition, orthogonal transformations are linear, and con-
sequently the theory of affine tensors is far too restricted for most purposes.
For instance, whenever curvilinear coordinates are introduced, one is
confronted with nonlinear coordinate transformations. By abstracting some
of the salient features of affine tensor algebra, however, one may formulate
in a natural manner a more general definition of the tensor concept which is
no longer dependent on the linearity inherent in orthogonal transformations.
An immediate application of these ideas is the study of parallel vector fields
in E, referred to curvilinear coordinates; this investigation is of relevance
also to the more general theory developed in subsequent chapters.

18
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2.1 ORTHOGONAL TRANSFORMATIONS IN E,

In this section we are concerned with the transformation from a given
rectangular coordinate system to another, it being assumed that these systems
have a common origin at a point O of our three-dimensional Euclidean
space E;. The unit vectors in the directions of the positive Ox!-, Ox2-, and

3 : .
Ox*-axes are again denoted by e, e,, e;. Since these vectors are mutually
orthogonal we may write

e e =20, (hj=1223), (1.1)

in which 6;, denotes the Kronecker delta as defined in Section 1.3. The
vectors e; are said to constitute an orthonormal basis {e ;3 of E5; any vector of
E, can be expressed as a linear combination of these basis vectors (see, e.g.

Hac'iley [1]). In particular, for the basis vectors of another orthono’rmai
basis centered at O, denoted provisionally by f ;U = 1,2, 3), one has a repre-
sentation of the form

fi =a,e; +a;,e;, +a;e;,
f, = a6, +aj,e; + ajze,,
fy = asie; + asze; + aj;e,,
in which the a, are real parameters which depend on the directions of

the vectors f{; relative to the basis {e;}. This representation can be written
more compactly as

3
f, = h;aj,,e,,. (1.2)

Clgarly this transformation is characterized completely by the 3 x 3
matrix (a;), whose elements possess a simple geometrical interpretation:
when the scalar products of (1.2) with e, (k = 1, 2, 3) are formed, the relations
(1.1) being taken into account, it is seen that

3 3
firee= Y aue,ce)= Y a,d, = a, 1.3)
h=1 h=1
or, since f ;> €, are unit vectors;

ajk = COs fj’ ek) (]’ k = 1’ 23 3)- (14)

Thus th.e coeflicients a;, in (1.2) are simply the cosines of the angles between
ic various basis vectors of the two orthonormal systems, which in turn
implies that the a, cannot assume arbitrary values or be independent of
each other. Indeed, there exists a set of relations between them which may be
easily obtained as follows.
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For the orthonormal basis {f;} we have, as in (1.1),

fj'fk=5jk (U, k=1,2,3),

so that by (1.2)

3 3 3 3

Op = ( Z ajheh> - ( Z aklel) = Z Z ajhau(eh . e),
=1 1=1 h=11=1
or, if we invoke (1.1),
3 3 3
S = Z Z Ay Ay Oy = Z Ay Ayp - (L5)
h=11=1 h=1

The transpose aj; of the elements a,; of the matrix (a,)) is to be denoted by
a};, and accordingly (1.5) can be written in the form

3
Z a;am = Oy U, k=1,273) (1.6)
h=1

These relations represent a necessary condition which the coefficients
a;, in (1.2) must satisfy in order that (1.2) represent a transformation from a
given orthonormal basis to another. By reversing the argument it is easily
shown that (1.6) is also a sufficient condition. Any linear transformation which
satisfies (1.6) is called an orthogonal transformation and the corresponding
matrix (ay,) is said to be orthogonal.

It is evident from the definition given in Section 1.3 that det(a}) = det(a,));
it therefore follows from (1.6), (1.3.12), and (1.3.13) that

det(ay,) det(af) = a* = det(dy) = 1,
so that the determinant of any orthogonal matrix satisfies the condition
a=+1. (L.7)

Thus a # 0, and the inverse of the matrix (a;;) exists. In fact, a comparison
of (1.3.11) with (1.6) indicates that the inverse of an orthogonal matrix is
identical with its transpose. This state of affairs may be illustrated geo-
metrically by the fact that the matrix of the inverse of the transformation
(1.2) is, in fact, the transpose of the matrix (a;) which characterizes (1.2).

For, if we multiply (1.2) by aj;, after which we sum over j from 1 to 3, at |

the same time taking (1.6) into account, we find that

3 3 3 3
aff; = % Y agame, = Y Sl
j=1 j=1h=1 h=1
or
3
e. = Y axf;. (18) |

i=1
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This relation expresses the basis vectors e, in terms of f; and accordingly
represents the inverse of the original transformation (1.2). Moreover, in
the same manner in which (1.2) gives rise to (1.4), it is seen that (1.8) implies
that

al’ckj = COS(ek, fj)s (19)

which is obviously consistent with the definition of a,.

Let {g,} denote the basis vectors of a third orthgnormal basis whose
origin is located at O. Clearly each vector g, can be represented in terms of
either one of the original bases: for instance,

3
g = z of;, (1.10)

Jj=1

in which we substitute from (1.2), so that

3 3
g = 2 X cyape, (1.11)
h=1 j=1
Thus if we write
3
g = Zplheh’ (1.12)
h=1

it follows from (1.11) that the corresponding matrix elements p,, are given by

3
P = chjajhs (1.13)
i=1

which clearly demonstrates that the matrix (p,,) is the product of the matrices
(cy) and (ay,).

The transformation characterized by the matrix (p,,) is said to be the
product of the transformations (1.10) and (1.2). Furthermore, since (py) 18
orthogonal by construction, it follows that the product of any two orthogonal
trapsformations is again orthogonal. Also, since matrix products obviously
satisfy an associative law, we may infer that the set of all orthogonal trans-
formations in E, is endewed with an associative binary operation, namely,
the product, which is such that the product of any two elements is again
an element of the set. Moreover, this set contains a unit element, defined
as the identity transformation whose coefficients are merely the Kronecker
fieltas, while the existence of the inverse of each element is assured. Accord-
ingly the set of all orthogonal transformations in E, forms a group, the so-
called orthogonal group, which is usually denoted by 0.
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2.2 TRANSFORMATION PROPERTIES OF AFFINE VECTOR
COMPONENTS AND RELATED CONCEPTS

Let us consider the position vector r of a point P of our three-dimensional
Euclidean space Ej relative to the common origin O of two orthonormal
bases with basis vectors {e;} and {f;}, respectively.

The coordinates of P in the rectangular systems defined by these bases are
provisionally denoted by x* and /, respectively (h, j = 1, 2, 3), which implies
that

3
r= 5 x'e, 2.1)
h=1
and
3 N
r= Y i, 2.2)
i=1

Clearly there must exist a relationship between the two sets {x"} and {7}
this is easily found explicitly by the application of (1.8) to the right-hand
side of (2.1), which gives
3 3 3 3
r= 3 Yxtaif,= Y ¥ a,xM;.
h=1 j=1 j=1h=1

This result is compared with the right-hand side of (2.2), it being noted that
the coefficients of each f; in these relations must necessarily be identical, so
that

3
Y= Yapx'  (j=1,273). .3)
h=1

This is the transformation formula by means of which the y-coordinates of
any point P of E; are given in terms of the original x-coordinates. It is not
surprising that the coefficients a » Which completely specify this trans-
formation are precisely those which appear in the transition (1.2) from the
orthonormal basis {e;} to the basis {f;}.

The inverse of (2.3), which corresponds to (1.8), is therefore given by

3 3

xk =3 aty'=Y a;y’ (k= 1,2, 3). (24)

i=1 i=1

The importance of the formulae (2.3) and (2.4) is due to the fact that they

will enable us to specify the transformation of any given function of the

coordinates under a change of orthonormal bases. Examples of this state of
affairs are encountered below.
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At this stage it is perhaps appropriate to introduce a change of notation,
which allows us to write our subsequent analysis in a more compact form.
Beginning with a given orthonormal system {e;}, the “transformed” basis
{f;} resulting from the application of the transformation (1.2) will be denoted
by {&;}, and accordingly the coordinates ¥’ of a point P of E 3 relative to the
latter system will be represented by X/. Thus we must now rewrite (1.2)
and (1.8), respectively, as

3
€ = Z an€y (2.5)
B=1
and
3 3
& = Y af€ = Y a,e,. 2.6)
Jj=1 j=1

Similarly the transformation equations (2.3) and (2.4) now assume the forms

3
= Yapx"  (j=1,23), @7
h=1
and
3 2
= Ya®  (k=1,23), 2.8)
j=1

respectively. We shall adhere to this notation throughout.

Thus far we have merely discussed the transformation of coordinates
under a change of basis. It is now necessary to consider the transformation
properties of vectors, or more precisely, the transformation properties of
the components of vectors. As long as we are dealing with rectangular co-
ordinate systems—as is indeed the case here—there are no difficulties.
Relative to a given orthonormal basis {e ;} We can represent any vector A
in the form (1.1%); if we apply (2.6) to the right-hand side of (1.1), we obtain

3 3
A= 3 ¥ a,d,s. (2.9)
h=1 j=1
However, relative to the new orthonormal basis {€;}, the vector A is repre-
sented as

3
A=Y dg, (2.10)
i=1

where 4 1,.22, A, denote the components of A in the latter system. Again,
the coefficients of €; on the right-hand sides of (2.9) and (2.10) must coincide,
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and accordingly we conclude that

3
A; = ZajhAh

h=1

(j=1,23). (211)

This, then, is the required transformation law for the components of a
vector A; it is easily seen, as above, that the inverse of (2.11) is given by
3
A, = 2 apA; (k=1,2,3). (2.12)
ji=1

The simple argument leading to this conclusion depends crucially on the
existence of a rectangular coordinate system and on the conceptual inter-
pretation in terms of (1.1.1) of a vector as a directed segment which is
completely determined by the oriented lengths of the projections of the
latter onto the coordinate axes. However, we have seen that, in the case of
curvilinear coordinate systems, this approach to the vector concept possesses
no immediate counterpart.

Thus even while we remain temporarily within the context of orthogonal
transformations as applied to orthonormal bases, it would seem advisable to
abandon the earlier, more intuitive point of view concerning the idea of a
vector, and to redefine this concept in terms of certain abstractions.

Our first step in this direction is achieved by the formulation of the
following.

DEFINITION

A set of three quantities (A, A,, As) is said to constitute the components of an
affine vector A, if, under the orthogonal transformation (2.7) of rectangular
coordinates in E,, the transformed quantities 4,, A,, Ay are given by formula
(2.11).

Remark 1. Some texts use the nomenclature affine orthogonal vector, or
Cartesian vector for the concept defined here. Whereas the terminology per se
is immaterial, it is essential that the adjectives affine, or orthogonal, or
Cartesian, be appended in this context, for they emphasize the fact that the
definition depends vitally on the stipulation that the transformations
concerned be orthogonal. [At a later stage more general definitions of the
vector concept will be formulated which are not subject to restrictions of
this kind, and which are therefore suitable also for curvilinear coordinate
systems.]

Remark 2. The vector A thus defined should be regarded as an entirely

new entity superimposed on the geometry of E,. It is not an element of Ej:
the elements of the latter are merely its points. [ Very often no clear distinction
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is made between a point P of E,, and the position vector r of P, and accord-
ingly vectors of E; are frequently treated as elements of E,. This mis-
conception is enhanced by the fact that, under the special circumstances
treated here, the transformation (2.7) of point-coordinates is formally
identical with the transformation (2.11) of vector components; however
it will soon be evident that under slightly more general conditions this,
similarity disappears in toto,]

Remark 3. It should be noted that the above definition of an affine vector
is entirely independent of the concept of the length of the vector. Indeed,
the latter is introduced by means of a secondary definition, which is meaning-
ful solely under the special circumstances treated here. [Under more general
conditions it may not even be feasible to define the length of a vector.]

The lengfh |A] of a vector A, whose components relative to the ortho-
normal basis {e;} are denoted by A4,, 4,, A,, is defined by

3

[AI> = Y (4% (2.13)

k=1
iF being understood that | A | refers to the positive square root of the right-hand
side above.
- .This Fleﬁnition involves specific reference to a given orthonormal basis:
it is easily seen, however, that the numerical value of | A| as defined by (2.13)

is independent of the actual choice of basis. For, if we substitute in (2.13)
from (2.12), we find that

3 3 3
AIZ= Y > Y azand;A4, (2.14)

k=1j=1h=1
while according to (1.6)

3
3 ann = 215
so that (2.14) becomes
2 3 3 _ 3 _
|A)? = _Z Y opAid, = Y (4, (2.16)
ji=1 h=1 =1

BuF the right-hand side of this relation is precisely the expression for |A|?
which would have appeared if the definition (2.13) had been written in terms

of th}f orthonormal basis defined by {€;}. Combining (2.13) and (2.16) we
see that

3 3
[A]? = k;(Ak)z = k;(zk)z, (2.17)
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a phenomenon which is often referred to as the invariance of length under
orthogonal transformations. This also justifies our definition (2.13): clearly
one would not want the concept of the length of a vector to be dependent
on the choice of the rectangular coordinate system. It should be stressed,
however, that this invariance depends on the fact that we are dealing solely
with orthogonal transformations in the present context. Thus under the
more general circumstances to be discussed below, the definition (2.13)
ceases to be appropriate. This, of course, is not surprising in view of our
observations in Section 1.2 concerning curvilinear coordinate systems.

Remark 4. For future reference, we indicate how the transformation
equations (2.11) and (2.12) can be written in a somewhat different form.
Let us differentiate the equations (2.7), which represent a point transforma-
tion, with respect to x*, regarding x*, x?, x* as independent variables. This
gives
ox’
ox"

= a,, (2.18)

while the corresponding inverse is similarly obtained from (2.8):

ox*
- = 2.19
ox’ Gk (2.19)
When this is substituted in (2.11) and (2.12) we see that the latter become
- 3 6 ’
A= % o x (2.20)
and
3 axk _
A, = — A, 2.21
k j;l a)—C'I Jj ( )
respectively.

In Section 1.1 we encountered certain quantities whose components—
in contrast to vectors—require for their specification more than one index.
We now investigate the transformation properties of these entities.

The simplest example of this kind is furnished by the products of the
components of two vectors A and B. The transforms under (2.7) of the
components of A are given by (2.11); we have similarly for the transforms
of the components of B:

3
B.= Y ayuB, (2.22)

=1
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so that

3 3

= ;.; l_zlaj,,ak,A,,B,. (2.23)
We can regard the nine products 4,B, (h = 1, 2, 3; 1 = 1, 2, 3) as the entries
of a 3 x 3 matrix, and (2.23) then gives us the transformation law of these
matrix elements. It will be seen that (2.23) is characteristic of the trans-
formation properties of certain types of tensors; however, prior to the
formulation of the precise definition of this concept, we examine some less
trivial special cases.

If we interchange the order of the indices j and k in (2.23), we have

o 3 3
AB; = Z Zak,,aﬂA,,B, = Y 2 a;a4,4,B,
h=11=1

h=1 1=

In the expression on the right one may replace the index & by [, and similarly
I by h, so that

AB; = Z Zaj,,a,‘,AB
wS11=

This is subtracted from (2.23), which yields

A;B, — A, B; Z Za,,ak,(A B, — A,B,).

h=1 1=

Thus if we define the components C,, of the vector product A x B in accor-
dance with (1.1.15), namely, by

Cn. = A,B, — A,B,, (2.24)

we see that the transformed components of A x B are given by

3 3
Cp= hzl lzlajhakl Cu- (2.25)
It should be observed that the quantities (2.24) obey a transformation law
which is formally identical with that exemplified by (2.23).

Another example of a special kind is provided by the Kronecker deltas.
These quantities assume the numerical values 0 and 1 irrespective of the
choice of the coordinate system, so that we are entitled to write also in the
X-coordinate system: 6, = 1 if j = k, while 8, = O if j s k. Thus in this
particular instance we have §,, = & - On the other hand, we may then infer
from (1.5) that

Op = Z Ay Ay, = ,.Zl ,Z ;a4 Sy, (2.26)
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from which it is evident that the Kronecker deltas are also quantities which
satisfy transformation laws of the type (2.23).

Let us now turn to the inertia tensor as defined in Section 1.1. If we use
the Kronecker delta once more we can write the expressions (1.1.10) and
(1.1.11) for the components of the inertia tensor relative to our x-coordinate
system in the form

In= [pinav, (2.27)

in which we have put

i = ( Z x™x ) W — xixk. (2.28)

When we subject these quantities to the coordinate transformation (2.7), we
note that the sum ) 2 _ | x™x™ is invariant: this is a special case of the identity
(2.17) with 4; = x/. Thus substituting directly from (2.26) and (2.7), we
find that

3
I = Z (x"x™d, — X%

3

(xmxm) Z Z ajhakl (Y Z Z Ay X hxt

I
Mw

(2.29)

IIMu llMu

m=1

3 3
Z Jhakll: Z ("X — x"x':l
3
Z @iy By

where, in the last step, we have used the definition (2.28) once more. Thus
the quantities i;, transform according to a law which is analogous to (2.23).
In order to determine in which manner the components (2.27) transform,
we have to integrate (2.29) over the rigid body under consideration. To this
end we note that the coefficients a, in (2.29) are independent of the positional
coordinates; thus they can be treated as constants for the purposes of in-
tegration. Also, the density p is obviously unaffected by the coordinate
transformation (2.7). However, for any volume integral referred to rectangular
axes we have from the usual rule for the transformation of integrals:

1 2 3
de:fdx‘dxzdx3=f Ax, X, x7)

dx! dx? d33
__——6(371, 250 x! dx* dx°,

in which the Jacobian is the determinant of the partial derivatives dx//ox",

2.2 TRANSFORMATION PROPERTIES OF AFFINE VECTORS 29

which, according to (2.19) and (1.7), is equal to det(a;) = a = £+ 1. Thus
the volume element dV is unaffected by the transformation, and the integra-
tion of (2.29) therefore yields

Zx IZ Ay Qg Ly - (2.30)
Again we observe that the components of the inertia tensor transform in
accordance with a transformation law of the type (2.23).

Finally, let us derive the transformation properties of the so-called stress
tensor of an elastic body as defined in Section 1.1. Again we construct a
rectangular coordinate system with origin at a fixed point O of the body, the
corresponding basis vectors being denoted by {e;}. We must now attempt
to obtain the components of the stress tensor relative to another rectangular
coordinate system with origin at O, whose basis vectors are {g}. To this
end we consider a small tetrahedron, whose sides are portions of the planes

!'=0,x? = 0,x> = 0,and X' = const. (for some fixed value of /), the areas of
these portions being respectively denoted by dS,,, dS,,, dS.,, and dS,,
(see Figure 4). Since the latter is, by definition, intersected orthogonaily

x3

€3

dS

x2

€

dSy
&
X

Fig. 4
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by the vector &, it follows that dS,, = dS;, cos(€;, ¢,) (k = 1, 2, 3), or because
of (1.4),

dSg,y = ay dSg,. (2.31)

Now by definition of the stress tensor components, the force per unit

area across that face of the tetrahedron which is normal to e, is Fy, =
33| © e, so that the total force across this face is

3
FuydSe = X Ti; dSwe;-
i=1

Hence the sum of the forces across the three faces x! =0, x> =0, x> =0
of the tetrahedron is
3 3

3 3
) Z Ty ASgye; = 3 Z ay Tx;€; dSqy, (2.32)

k=1 j=1 k=1 j=1
where, in the second step, we have used (2.31). But this sum must be equal
to the total force across the remaining face of the tetrahedron; again, by
definition of the stress tensor, this force is

3
Y %€, dS,. (2.33)
h=1

This is identical with (2.32), and accordingly the latter must be referred to the
{e,} basis, which is done by substitution from (2.6), the common factor
dS,,, being omitted at the same time. It is thus found that

3 3 3 3
Z Tih€ = Z Z Ay Ty j AnjChs
h=1 h=1k=1 j=1
and hence we obtain by equating coefficients of €, on either side:

3 3

T = 3, Y aglpTyj» (2.34)
k=1 j=1
which is again a transformation law of the type (2.23).
The above examples provide a convincing motivation for the formulation
of the following definition.

DEFINITION

A set of quantities T, (j=1,2,3;k=1,2,3),is said to constitute the com-
ponents of an affine tensor of rank 2, if, under the orthogonal coordinate
transformation (2.7), these quantities transform according to the transformation

law
3

3
Tjk = Z Ajp Ay Tyy- (2.35)
h=11=1
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Remark 1. Again the adjective affine (or, as in some texts, affine orthogonal,
or Cartesian)is used in order to emphasize that the coordinate transformation
referred to in this definition is an orthogonal one. Furthermore, it should
also be pointed out that affine tensors are not elements of E,; they are, in
fact, entirely new entities defined against the background of the theory of
orthogonal transformations in E;.

Remark 2. The definition includes the phrase “rank 2.” This is done because
it refers to a set of quantities whose specification depends on 3% components
T;., or equivalently, whose transformation law (2.35) involves a polynomial
of order 2 in the transformation coefficients a;;.

Remark 3. The inverse of (2.35) exists, and is seen to be

3 3
7;!1 = Z Z amhapl Tmp' (236)
m=1 p=1
This is an immediate consequence of the fact that (2.7) is an orthogonal
transformation; clearly (2.36) may be obtained directly from (2.35) by means
of (1.6).

Remark 4. Again, with the aid of (2.18) and (2.19) the transformation laws
(2.35) and (2.36) can be written in the form

T. = — .
=2 X g T (2.37)
and
3003 oxt oxt
T = Z Z =5 357 - (2.38)

2.3 GENERAL AFFINE TENSOR ALGEBRA

Thus far we have restricted our attention to coordinate transformations in
three-dimensional Euclidean spaces. This was done mainly for the sake of
the physical examples studied in the previous section: from a mathematical
point of view the restriction to three dimensions is not essential; indeed, it
is undesirable.

Accordingly we now consider an n-dimensional Euclidean space E,,
and by means of abstractions suggested by our previous discussion, we
develop the algebra of general affine tensors (see, e.g., Jeffreys [1], Synge
and Schild [1], and Temple [1]).

An orthonormal system {e;} in E, consists of n mutually orthogonal
unit vectors. Any other orthonormal system {€;} may be obtained from the
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first by means of the linear transformation
&= Yaue, (j=1..,n), 3.1)
h=1
provided that the coefficients a;, satisfy the orthogonality condition

n

‘5jk = Zajhakh (Lk=1,...,n), (3.2)

h=1

which, as before, implies that
a = det(ajk) = i 1. (33)

Thus (3.1) is once more called an orthogonal transformation; if, in addition,
a = + 1, the transformation is said to be proper orthogonal.

The coordinates of a point P relative to the orthonormal systems {e;}
and {e,} are respectively denoted by x’ (j = 1,...,n),and ¥ (j = L,..., n);
these coordinates are related according to the transformation equations

=3 aj,,x" G=1,...,n), (3.4
whose inverse is

xh = Z ajh_)_cj (h

1,...,n). (3.5

We are now in a position to formulate the most general definition of an
affine tensor.

DEFINITION

Let r be any positive integer. A set of n” quantities T, ,, ..., is said to constitute
the components of an affine tensor of rank r, if, under the orthogonal coordinate
transformation (3.4), these quantities transform according to the transformation
law

n n n

Z Z Z a.llhl J2hz "

hi=1hi=1 h=
GrsJas---nde=1...,n). (3.6)

Remark 1. If, in this relation, we put n = 3, r = 2, and replace j,, j, re-
spectively by j, k, it is obvious that we obtain the transformation law (2.35) of
an affine tensor of rank 2 in the three-dimensional case. Moreover, with
n = 3andr = 1, we obtain the transformation law (2.11) of an affine vector in
three dimensions. Thus we henceforth consider vectors to be tensors of rank 1.

’Tj;]z e T ]r r 7;11h1"-hr

i
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In both geometry and physics one frequently encounters quantities which
depend on positional coordinates, but whose numerical values are inde-
pendent of the choice of the coordinate system. Examples of this kind are
represented by the lengths of vectors, or the density of a material, or the
temperature of an object. Let us denote such a function of position by
@(x*, ..., x") relative to the orthonormal basis defined by {e;}. If the value of
¢ is indeed independent of the choice of the coordinate system, we have

S, ..., X = P(x, ..., x") 3.7

where ¢ denotes the corresponding function expressed in terms of the
coordinates X’/ as defined by the orthonormal basis {€;}. Under these cir-
cumstances ¢(x") is called an affine scalar, or an affine invariant, and, in the
present context, we shall regard such quantities as affine tensors of rank zero.

Remark 2. Because of (3.2) it is immediately evident that the inverse of (3.6)
exists and can be written in the form

Z Z Z Qjsni sk """ G, T_}ljZ“‘.ir

J1=1j2=1  j.=

h1h2 e =

(s by h,=1,....n). (38)

Remark 3. From (3.4) and (3.5) we infer the validity of the relations (2.18)
and (2.19), irrespective of dimensionality, so that (3.6) and (3.8) can also be
expressed as
n n o oxit Oxd2 oxIr
LK o Twens 39)
and

no9xM oxhr xhr

Z Z Z axh asz e -(ﬁ: T}sz"-jr’

1=1i=1  jo=

Tonyeon, = (3.10)

The following observation is of profound importance. An affine tensor is
said to vanish, if, relative to a given orthonormal system, all its components
are zero:

Tyinyeon, =0 (hy, hyy ... sh,=1,...,n). (3.11)
From the transformation law (3.6) it then follows that
T}l.iz'“jr =0 (jlajz,---,j, = 1,---;n) (3.12)

in any other rectangular coordinate system obtained from the first by means
of the orthogonal transformation (3.4).

Thus if an affine tensor vanishes in a given coordinate system, it vanishes in all
other systems related to the first by an orthogonal transformation.
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Accordingly, whenever a geometrical or physical situation is described in
a given rectangular coordinate system by means of a tensor equation such
as (3.11), the same state of affairs is described in any other admissible coor-
dinate system by the corresponding tensor equation (3.12); it follows that the
validity of the assertion contained in (3.11) is independent of the choice of
coordinates (provided that they are obtained from each other by an ortho-
gonal transformation). This is precisely what one would expect of a geo-
metrical theorem or of a physical law.

There are certain operations of an algebraic nature which one can per-
form with tensors. We deal here very briefly with operations of this kind;
an alternative discussion is presented later under more general conditions.

Firstly, when the components of an affine tensor of given rank r are each
multiplied by the same nonzero number or scalar, the resulting quantities
are once more the components of an affine tensor of the same rank r. This is
immediately evident from the transformation law (3.6) when the right-hand
side of the latter is multiplied by a nonvanishing scalar ¢, which, by virtue of
(3.7), is tantamount to multiplication of its left-hand side by &.

Secondly, when the respective components of two affine tensors of the
same rank are added, the resulting sums are again the components of an
affine tensor of the same rank. This follows directly from the fact that the
left- and right-hand sides of the transformation law (3.6) are linear in the
various components. For instance, let T, and S, denote the components of
two tensors of rank 3, so that their transforms under (3.4) are respectively
given by

M:

;4,0 S1pg-  (3.13)

IIM;

n n
Z Z iy Ong Tipgs =

Thus if we write
Wipg = Tipg + Sipg> Wi = Tiw + Sjins (3.14)

uM:

1p

in our respective coordinate systems, we find by means of (3.13) that

which shows that the quantities W]
tensor of rank 3.

From these two statements we infer that the set of all affine tensors of rank r
constitutes a vector space over the real numbers. The dimensionality of this
vector space is equal to the number of distinct components of these tensors,
namely, n". In particular, the set of all affine vectors forms an n-dimensional
vector space.

@G0 (Tpg + Sip) = 2, 2 2 AipngWipg,  (3.15)

1 I=1 p=1g=1

n[\’]a
uM:

»q ar€ in fact the components of an affine
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From this it is immediately evident that the addition of tensors of different
rank cannot possibly give rise to a tensorial quantity. For example, if one were
to add one of the equations (3.13) to the transformation law of a rank 2
tensor, say,

Vi =

IIM=

Z it Oxp Vips (3.16)

the result cannot be put into tensorial form. Indeed, while a combination such
as V, + Uj makes sense in that the indices j, k on V and U respectively are
tacitly assumed to have the same values, this is not the case for a combination
such as Vj, + Ty, because the index s on T has no counterpart on V, which
therefore precludes an identification of this kind.

It is, however, permissible to multiply the components of tensors of
arbitrary ranks, for this process gives rise to new tensors. For instance, if we
were to multiply the left-hand side of (3.16) by the component A, of an affine
vector, this component being given by 4, = Y 7_, a,,A4,, we would obtain

Vi Ay laﬂ UiepAng Vip Ay

M:
M:
M=

i

1 p=1
which shows that the quantities ¥;,4, form the components of an affine
tensor of rank 3.

It is easily verified that, in general, the quantities consisting of the products
of the components of two tensors of rank r and s respectively again con-
stitute the components of a tensor of rank r + s.

There is another operation, peculiar to tensor algebra, which is of con-
siderable importance in certain manipulations. For any affine tensor of
rank r > 2,say, T; ;,...j ...;,...j,» ON€ may select a pair of indices, say, j, and j,,
assign to these pairs of indices in turn the values (1, 1), (2, 2), ..., (1, n), and
form the sums of the n components thus obtained. These quantities constitute
the components of an affine tensor of rank r — 2. This is easily verified
directly by means of (3.2) when the operation indicated above is carried out in
respect of the transformation law (3.6). This process is generally referred to as
the contraction of tensors, and we shall illustrate it for the case of the trans-
formation law (3.13) of a tensor of rank 3.

Suppose, then, that we put k = h on the left-hand side of (3.13), after which
we sum over h:

T+ Tpa+ -+ T = ZTjnn':th
=1 =

-
e

n n
Z Z Qj1ppQng Em
1g=1
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We then apply the orthogonality condition (3.2) to the sum Y 7., a, »@nq> thus
obtaining

n n n n n n
Z I, = Z Z Z a; 6pq Iy = Z aﬂ( Z Epp)’
h=1 I=1 p=14=1 =1 p=1

which indicates that the quantities > 7_, T;,, form the components of an
affine tensor of rank 1 = 3 — 2.

It can be stated as a general rule that the process of contraction applied
once to a tensor of rank r gives rise to a new tensor of rank r — 2.

In particular, if the process of contraction is applied to an affine tensor of
rank 2, the result is an affine scalar. This establishes directly, for instance,
the invariant nature of the trace C,, + C,, + --- + C,, of a matrix (C,,j),
whose entries are the components of an affine tensor.

As a final example we note that, if I, denotes the components of a tensor of
rank 2, while @,, w, are the components of a vector, the quantities I ik Dy 0O
constitute the components of a tensor of rank 4. Contraction over the indices
(J, h) yields a rank 2 tensor, and subsequent contraction over (/, k) gives rise
to a scalar. Thus the invariant nature of the expression (1.1.13), namely,

1 n n
5 Z Z Ijkw_iwk (n=23),
j=1 k=1
is established effortlessly without calculation.

2.4 TRANSITION TO NONLINEAR COORDINATE TRANSFORMATIONS

It was stressed repeatedly that the tensor concept with which we have been
concerned thus far is restricted in the sense that we are dealing with affine ten-
sors which are defined relative to orthogonal transformations, the latter
being linear by definition.

However, it is imperative that we should divest ourselves of this restriction.
First, it is often necessary from a purely practical point of view to use cur-
vilinear coordinates, the transition to which involves nonlinear coordinate
transformations. Second, more often than not, one is concerned with tensor
analysis on manifolds (such as curved surfaces) on which orthonormal
coordinate systems simply cannot be defined ; accordingly the theory devel-
oped thus far is entirely inadequate for situations of this kind. This obser-
vation, far more so than the first, provides the motivation for the type of
generalization which we now attempt to achieve.

Let us endeavor to pinpoint those features of our earlier analysis which
proved to be the most essential for the objectives thus far attained. One of
these is the fact that the transformation law of tensors is always linear in the

2.4 TRANSITION TO NONLINEAR COORDINATE TRANSFORMATIONS 37

components of the tensors: this allows us to define the processes of multiplic-
ation by scalars and addition of tensors of the same rank, which in turn
permits us to regard all affine tensors of a given rank as elements of a vector
space. Also, the success of the operation of contraction depends vitally on the
relation (3.2) satisfied by the coefficients a; which appear in the transfor-
mation law. It is evident, therefore, that if we can extend our theory such as to
preserve these two features, a great deal of our basic analysis can be gener-
alized as required.

We shall consider two coordinate systems in E,, relative to which the
coordinates of a point P are denoted by (x!,..., x") and (X!,..., X"), re-
spectively. These two n-tuples of real numbers are related to each other by
transformation equations of the type

= fUx LX),
i" = f”(xlﬂ AR x”)’
_ in which the functions f!, ..., f" are n distinct functions of n variables. In

future we shall denote the n-tuple (x, ..., x") by a single letter x", it being
understood that all indices j, h, k, . .. assume the values 1 to n. Similarly we
shall also write the above system of n transformation equations in the form of
a single relation, namely, as PR,

X = fixh G=1...,n).
Furthermore, since the numerical value of each X’ is given by f7, there is no

need for two distinct symbols X and f, and accordingly, in order to economize
on symbols, our transformation formulae henceforth are written in the form

X = xi(x"). 4.1)
It is not assumed that the functions x/(x") are necessarily linear in the

coordinates x” [as is the case in (3.4), which is a special case of (4.1)]. At this
stage, only two assumptions are made:

1. The functions x/(x") are of class C? in a region G of E,. [A function
g(x") is said to be of class C? in G if it possesses continuous partial derivatives
up to and including the pth order with respect to all its arguments x* in G.]

2. The functional determinant

o ox
. ox! ox"
oxt, ..., x"
m R (4.2)
ox" ) ox"
ox! ox"
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is nonvanishing on a subregion of G; this implies (see, e.g., Apostol [1]) that
there exists a region R = G in which the transformation (4.1) possesses an
inverse, expressed in the form

x" = xM(x)), 4.3)

it again being understood that this represents a system of n equations, of
which the right-hand sides are functions of the n variables x/. Indeed, by
virtue of the inverse function theorem it follows from our assumptions that
these functions are also of class C2.

Henceforth our considerations will be restricted to the region R in which the
inverse (4.3) exists: this is to be understood throughout without specific
mention.

For future reference we note the following elementary fact. Let us sub-
stitute the functions X/(x") in (4.3), which yields a system of identities in the
variables x*, namely,

x* = xM(E(x"),

which, written out more fully, is of the form

By means of the chain rule we may differentiate each of these identities with
respect to x*. For the hth identity we thus obtain

o0 _avox | adow s odow
ax*  ax! oxk ox" ax* & ox ox*

But the variables x!, ..., x" are independent, so that dx"/dx* = §,,, and

accordingly one has

ox" 6x’
121 FEriEw: Spc- 4.4
Similarly
n 9x) ox”
L = 5. 4.
W= ox" ox! it (4.5)

After these preparations we now recall that, in the case of a linear trans-
formation, the transformation law (3.6) of an affine tensor can be expressed in
the form (3.9), which is possible because of the identifications (2.18) and (2.19)
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of the coefficients a; with the partial derivatives of the relevant coordinate
transformation, namely, a, = 0x//0x* and a; = 0x"/0x’. Obviously this
preserves the linear character of the tensor transformation law as far as the
tensor components are concerned; thus since the partial derivatives dx//9x*
are at our disposal in any case, this suggests that we should formulate the
transformation law for tensors in respect of the general coordinate trans-
formation (4.1) in terms of these derivatives exactly as in (3.9). Furthermore,
the counterpart of the orthogonality condition (3.2) assumes the form (4.4) or
(4.5) after the replacement of the coefficients a, by the d%//dx* has been made,
and, as we have seen above, in this form the crucial condition (3.2) is always
satisfied.

From a purely analytical point of view this suggestion seems to be a
satisfactory one, at least at first sight. It implies that we should, for instance,
define a vector by the requirement that its components A4, should transform
according to the relation

J

D
|

Z.:

J

A (4.6)

e
R
>

h=1
relative to coordinate transformation (4.1). However, before proceeding
further, we should verify that this program is in accordance with our geo-
metrical approach of Section 1.2 to the concept of the components of a
vector in curvilinear coordinates.

We shall therefore consider a special case in E,, namely, our purely geo-
metrical construction of the components of a vector A in spherical polar
coordinates. In this context we shall denote the latter as follows:

$i—p =0, =9 @7

and the transformation (1.2.1) from these curvilinear coordinates to the
appropriate rectangular coordinates is given by

x! = x! sin X2 cos x>,

x? = x! sin x? sin X3, 4.8)

x3 = x! cos X2,

this being a special case of (4.3). The matrix of the derivatives dx"/9%’ of this
transformation is

5 sin X2 cos x> X! cos x?cos x> —Xx! sin x? sin x>
X s, . 1. _
(a—_;) =| sinx%?sin x> Xx'cos Xx?sinx> X!'sinXx2cosx> ). (4.9
x -_— -— - —
cos x?2 —x! sin x? 0
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A simple calculation yields the inverse:

sin X2 cos X> sin X2 sin X°  cos X2
3

0%’ cos X2 cos X° cos X2 sin X sin X 410
axt) = %1 %1 L N (4.10)
sin X3 cos X3
T i 22 1 i 22 0
x!sin X x!sin x

Thus, substituting from (4.10) in (4.6) we infer that, according to this pre-
scription, the components A; of the vector A are given in spherical polar
coordinates by

A, = sin X* cos x*A4, + sin X? sin X>A4, + cos X*A4;,

P cos X2 cos X° , cos x? sin X3 sin X2

2 x1 ! x! 2 xt 7% 4.11)
1 sin X3 cos X°

3 lsinx?2 ! " xlsinx? ¥

This is seen to coincide with our previous expressions (1.2.7) for the com-
ponents of A in spherical polar coordinates when we revert to the original
notation by means of (4.7). Accordingly this conclusion seems to confirm,
at least from a geometrical point of view, that the suggested definition based
on (4.6) is a satisfactory one.

Nevertheless, a little reflection shows that our approach requires some
additional refinements. For instance, if we consider a set of components B,,
satisfying the transformation law (4.6), namely,

B =13 a_kak’ (4.12)
k=1 0X
the products of (4.6) and (4.12) yield
o noon o 9xl ox!
AjBl = hgl kgl Wﬁ Ath, (4‘13)

which exemplifies what would seem to be an acceptable transformation law
for a rank 2 tensor. However, if we contract over the indices j, ! (in an attempt
to obtain an inner product), we find that
L n n n 6)?1. axj
A8 = 2 4B, 4.14
j;ljl ZZZaxhaxk}lk ( )

j=1h=1k=1

in which the expression on the right-hand side cannot, in general, be simplified
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by an application of (4.4) or (4.5). Thus the process of contraction, as carried
out in this context, does not give rise to a corresponding scalar. [The fact
that this difficulty does not arise in the case of linear orthogonal coordinate
transformations is due to the fact that, according to (2.18) and (2.19), we have

ox/ ox*
o O

(4.15)

for such transformations; if it were possible to substitute (4.15) in (4.14)
the identity (4.4) could be readily applied.]

Clearly our program still lacks some vital ingredient, for it is essential
that somehow one should be able to construct scalars by means of suitable
combinations of tensors. Thus we approach this problem from a slightly
different angle by first considering scalars and certain vectors associated
with scalars.

A function ¢(x"*) of the coordinates x" is said to be a scalar or invariant
under the transformation (4.1) if its transform @(x’) possesses the same
numerical value; that is, if

AF) = p(x). (4.16)

Here it is to be clearly understood that the arguments X/ are related to the
arguments x" according to (4.1): both sets of coordinates refer to the same
point P of E,,.

With any differentiable scalar function ¢ one usually associates the so-
called gradient vector: the n components of the latter are defined to be the
n partial derivatives d¢/dx". The question that immediately arises concerns
the transformation properties of these derivatives, for, if they are to constitute
the components of a vector in the sense of the proposed transformation law
(4.6), the latter should be satisfied by d¢/0x". In order to test this criterion,
we differentiate (4.16) partially with respect to X/, the chain rule being applied
to the right-hand side, which gives

2§ _ x ox" g

% L 0% o @17

This would be in accordance with (4.6) only if one could identify dx"/0x’
with 0x//0x", which is not generally possible. Thus (4.17) exemplifies a
transformation law of the type

_ n axh
= 3 o5 Ca (4.18)

h=1

which is distinct from (4.6). However, the example (4.17) is obviously a signifi-
cant one which cannot be ignored. Furthermore, if we combine two sets of
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components, the first of which satisfy (4.6), the second (4.18), we obtain
quantities of the type
- = noon 9x) oxk
A4;C = Ak Al
n=1i=1 OX" OX
and if the process of contraction over j and [ is carried out in this instance we
obtain, using (4.4) on the right-hand side,

_ n n n a—j axk n n
4C= % % Y T5am 4= X S 6 ACy = T AC, (420

1 Jj=1h=1k=1 h=1k=1

A, Cy, (4.19)

M:

In contrast to (4.14) this result is indeed very satisfactory, for it indicates
that we have succeeded in constructing an invariant resembling the inner
product of two vectors.

This state of affairs indicates quite clearly that we must consider two types
of transformation laws, namely, (4.6) and (4.18), and accordingly we must
define two distinct kinds of vectors. [This distinction does not arise in the
theory of linear orthogonal transformations since in the case of the latter the
condition (4.15) is satisfied which deletes the distinction between (4.6) and
(4.18).]

As regards nomenclature, we shall distinguish between these two kinds
of vectors by calling the former contravariant and the latter covariant.
This distinction must also be reflected in our notation: henceforth contra-
variant vectors are endowed with superscripts, and covariant vectors are
distinguished by subscripts. This notation is used consistently; it forms an
essential aspect of tensor calculus.

The results of these considerations may now be crystallized in the followmg
two definitions.

DEFINITION

A set of n quantities (A%, ..., A") is said to constitute the components of a
contravariant vector at a point P with coordinates (x*, ..., x") if, under the
transformation (4.1), these quantities transform according to the relations

. *ox!
i A=Y WA"’ 4.21)

h=1

in which the coefficients 8x’/0x" are to be evaluated at P.

DEFINITION

C,) is said to constitute the components of a
, x") if, under the trans-

A set of n quantities (Cy, ...,
covariant vector at a point P with coordinates (x,
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formation (4.1), these quantities transform according to the relations
N C, =3 P C, 4.22)

in which the coefficients Ox"/0%’ are to be evaluated at P.

Remark 1. For future reference we note that co- and contravariant vectors
may also be called type (0, 1) and type (1, 0) tensors, respectively.

Remark 2. These definitions contain as a special case the definitions of an
affine vector in E;: for, when the transformation (4.1) happens to be an
orthogonal one with n = 3, both (4.21) and (4.22) reduce to (2.11).

Remark 3. Several of the equations above should now be rewritten with
various subscripts replaced by superscripts; in particular, the identity
(4.20) is to be expressed in the form

Y AT, = ¥ A'C,. (4.23)

Remark 4. The coefficients 0x//0x" which appear in the transformation
law (4.21) are, in general, functions of the variables x!, , X", which are
the positional coordinates of the point of application of the contravariant
vector A. This implies that one can add two contravariant vectors A and B
if and only if they are located at the same point. [For instance, if the points of
apphcanon of the vectors are distinct, with coordinates x* = xu, and
x* = xb,,, respectively, the corresponding transformation equations read

A= z % (xtl)) and B/ = i Mgh.
nsy OxP as1 OxP '
since the values of the coefficients of 4" and B” on the right-hand sides do not
in general coincide, the sum of the right-hand sides is not linear in 4* + B"]
It is, however, possible to multiply both sides of (4.21) by a scalar function
¢(x") since the latter satisfies (4.16), it being assumed that the arguments
x', ..., x" in ¢(x") also refer to the point of application of A. Thus the set
of all contravariant vectors at a point P of E, constitutes a vector space of
dimension n. Similar observations apply, of course, to covariant vectors.
Moreover, it is evident that the addition of co- and contravariant vectors cannot
give rise to a vectorial quantity.

As in the case of affine vectors one can form the products of the respective
components of various vectors (provided that these vectors are located at the
same point), thus obtaining the components of quantities which will be
recognized as tensors of rank r > 1. Again, a clear distinction must be made
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between co- and contravariant properties of the entities thus constructed.
For instance, given two contravariant vectors with components 4" and B*
located at the same point P of E,, it follows from (4.21) that the transforms
of the products of their components are given by

S o oxi ox!
A'B' = A"BF,
,,Zl k_zl axM ax*
which exemplifies the transformation law of a tensor of type (2, 0):
n ox! ox' Tk
. 4.24
Zl ,‘Zl ax" ox* (4.24)

Similarly (4.22) suggests the transformation law of a tensor of type (0, 2):

d Ox™M dxk
-y ¥ 35 a5 Sk (4.25)

h=1 k=1

However, it is also feasible to define the so-called “mixed” tensors,
possessing both co- and contravariant properties. For instance, if we form
the products of the components A" of a contravariant vector with the com-
ponents C, of a covariant vector, it follows directly from (4.21) and (4.22)

that the quantities thus obtained transform according to

n i

=3 % ax gx, "C,. (4.26)

h=1k=1
This exemplifies the transformation law of a type (1, 1) tensor, namely,
noonooxt ox*

LadaR*

h=1k=1

Vi= 4.27)

Remarks 2 and 4 made above in respect of the definitions of co- and
contravariant vectors apply more or less verbatim to the tensor components
which appear in (4.24), (4.25), and (4.27).

Furthermore, by analogy with the theory of affine tensors it is now obvious
how one can extend these transformation equations to tensors of arbitrary
type. We shall defer these formal definitions to the next chapter.

In the sequel we encounter numerous examples of the various tensors
discussed here. However, already at this stage we should draw attention to a
mixed tensor of special importance. Bearing in mind that, by definition, the
Kronecker delta assumes the numerical values 0 and 1 irrespective of the
choice of coordinates, and writing (4.5) in the form
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we see by comparison with (4.27) that the Kronecker delta is, in fact, a type
(1, 1) tensor. Accordingly we henceforth denote its components by 6!, and
the notationally correct version of its transformation law is

noon 9% ox*

o = — 5
! hgl kgl 6x" 6)?’ 6’(, (428)
while (4.4) and (4.5) should be written in the forms
ox"* ox’ "
j;1 o Ak = o5, (4.29)
and
ox’ ox" )
AR
2 o ox 4] (4.30)

2.5 DIGRESSION: PARALLEL VECTOR FIELDS IN E, REFERRED TO
CURVILINEAR COORDINATES

In an n-dimensional Euclidean space E, let us consider two coordinate
systems in which the coordinates of a point P are denoted by X’ and x",
respectively. It is assumed that the first of these is a rectangular coordinate
system, whereas the second is an arbitrary curvilinear system, the correspond-
ing transformation being of the form (4.1), for which the functions x’(x")
are now supposed to be of class C2.

It is possible to construct a special vector field in E, which is such that
there exists a unique vector at each point of E,, these vectors being parallel
and of the same length. The components X’ of this field relative to the
rectangular system are obv1ously constant and thus, for any displacement
dx* the conditions el s

n Y'
; S dxt =0 (5.1)

must be satisfied.
The components X* of the same vector field relative to the curvilinear
system are related to the X’ according to

- n ox
X=3y =X
h; o X" (5.2)
so that, corresponding to any displacement dx*, we have
. n n 62_
dX’ = Z’g'h‘dXh Z Za a,‘X"dx. (5.3)
h=1 h=1k=1
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From this it is evident that the differentials of a vector field are not, in
general, components of a tensor : furthermore, the condition (5.1) for a parallel
vector field in E, does not imply a corresponding relation of the type dX* = 0.
Thus relative to our curvilinear coordinate system, a field of parallel vectors
of constant length is not characterized by the requirement that the com-
ponents of this field be constant.

Thus the question arises as to how such vector fields are to be described
in arbitrary curvilinear coordinates, and we now give a complete analysis
of this problem. To this end we recall that, relative to our rectangular co-
ordinate system, the length | X| of any vector X of our field in E, is given by

IX? =Y XX/ (5.4)
j=1
By means of (5.2) this can be written in terms of our curvilinear coordinate
system as follows:

noor ox! 9%/

IX[2 = Z T X ana XX (5.5)

h=1k=1 j=1

This suggests that we introduce new quantities g,, defined by

0%/ ox/
= — = 5.6
ghk s} 6x" axk! ( )
so that (5.5) can be written in the form
IXP2= Y Y guX"Xx (5.7)

h=1 k=1

Again this demonstrates thé fact that the length of a contravariant vector at
P is a quadratic form in the components of that vector, the coefficients g,
of this quadratic form as defined by (5.6) being evaluated at P. [In fact, the
relation (5.7) is the generalization to n dimensions of the identity (1.2.16).]

For future reference we note that the definition (5.6) implies that det(g,,)
# 0 by virtue of our assumption that the functional determinant (4.2) does
not vanish. Thus the symmetric matrix (g,,) possesses an inverse, to be de-
noted by (g™), so that

Zg I = (5.8)

We shall now endeavor to eliminate the second derivatives which appear
on the right-hand side of (5.3) by means of the g,, in the following manner.
First, multiplying (5.3) by %//0x' and summing over j, at the same time noting
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(5.6), we obtain

n 2=j
o o axi= zgmdx T DD et

h
,lh,klaxﬁxG’de (5.9)

Second, we differentiate (5.6) partially with respect to x!, which yields

Ogm _ < ( O°x% ox  ox) 9*%
oxt = 2 \oxTox o5 + o o ax*)' (510)
The second derivatives thus obtained are not yet expressed in a form most
suitable for our purposes; accordingly we consider two cyclic permutations
of the indices h, k, | in (5.10), corresponding to which the counterparts of
(5.10) are

agu "o/ 9% oxt axd 0%
= 2 \avawan +Waxh——axz>, (5.11)
and
dgy, & [ %% ox  ox %%
ox* ,Z dx* ox' 9x" + Bx! Ox* 6x"> (5.12)

In order to reduce (5.9) to an acceptable form we seek the expression

n %%/ ox/
Z ax" ax* oxt’
j=1 0x" 0x* Ox
which appears in both (5.11) and (5.12). These relations are added, and it is
found that the unwanted terms may be removed by subtracting (5.10)
from the sum thus obtained. In this way we find that

(é@ m aghk) _aw 0 2%/ ox

ox" T ax*  oxt j;, ox" ox* ox’ (513)
The following notation is therefore introduced (in the first instance merely

for the sake of brevity):
dg dg dg
Rk, [] = = Kl th _ Y99nk
Chk, 1] (6 T ok T o) (5.14)

these three-index quantities being called the Christoffel symbols of the
Jirst kind of our curvilinear coordinate system. Thus (5.13) can be expressed as

x 9*x) oxt
2 or o~ ke D (519
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and (5.9) becomes

n J
y L) Zg,,, Xt + 3 Z[hk Nx* dx*. (5.16)
j=1 ox! h=1 k=
Now, if it is assumed that the vector field X/ is parallel and of constant
length in E,, we may apply the criterion (5.1) to the left-hand side of (5.16),
which yields the condition

S gudX* + 3 3 [hk, X" dx* = 0 (5.17)

h=1 h=1k=1

for such a vector field in curvilinear coordinates. This condition is expressed
entirely in terms of quantities which pertain to this particular coordinate
system.

In order to write (5.17) in a slightly better form, we multiply it by g%,
the inverse of (5.6), and sum over [, at the same time noting (5.8). This gives

dx’+ Y Y Y g¢'[hk 1X"dx* =0, (5.18)

1=1h=1k=1

which suggests the notation
() = Y g'[hk, 1, (5.19)
=1

for the so-called Christoffel symbols of the second kind of our curvilinear
coordinate system. Accordingly we can write (5.18) in the form

X'+ Y Y {JX"dx* =0, (5.20)

h=1 k=1

which is the condition in curvilinear coordinates for a field of parallel vectors
of constant length.

For many practical purposes it is advisable to write (5.20) as a system of
partial differential equations. For any displacement dx* we have

. )¢l
ixi= v 9

%
k=1 0x

dx*, (5.21)

which may be substituted in (5.20) to yield
Z( + Z{hk}Xh> x* =0,

and, since this must hold for entirely arbitrary displacements dx*, it follows
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that our condition for the field of parallel vectors of constant length is equiva-
lent to

ox’ LI
Bxk + Y WX =0, (5:22)
x h=1

which is a system of n? partial differential equations of the first order to be
satisfied by the components of the vector field.

Remark 1. This condition is expressed entirely in terms of quantities
defined relative to the curvilinear coordinate system. It holds in any curvi-
linear coordinate system; accordingly one would infer that the left-hand
side of (5.22) is tensorial. (This will be verified by direct calculation at a later
stage under more general circumstances.)

Remark 2. In the original rectangular coordinate system the counterparts
gm of the quantities g, are given by g, = d,, = const., as is immediately
evident by comparison of (5.4) with (5.7). Thus the Christoffel symbols
(5.14) and (5.19) vanish identically in any rectangular coordinate system in
E,, and accordingly for such systems the condition (5.20) reduces formally to
(5.1).

Remark 3. As a simple application of the above analysis let us consider
the equation of a straight line in E, . Relative to the rectangular coordinate
system a straight line X’ = X’(s), where s denotes the arc length, is character-
ized by the condition

dx
;s -0, (5.23)
in which we have written
. dx?
% = d—’;. (5.24)

In (5.16), which holds for any vector X7, let us put X’ = X'/, and divide by ds,
observing (5.23) at the same time. This gives

n k
Z (gm ds 2 /h ) =0,

or, proceeding as before in the transition from (5.17) to (5.20),

dzx’ » dx" dx*
+ X Z{u =0 (5.25)

h=1 k=1

This system of n second-order ordinary differential equations characterizes
the straight lines of E, relative to any curvilinear coordinate system.
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PROBLEMS
2.1 In E, a rotation through an angle « about the x*-axis is characterized by the
matrix
cosa sina O
(@)= |—sina cosa O]
0 0 1
Show that this is a proper orthogonal transformation.
A reflection in the plane x2 cos § = x! sin 8 is determined by
cos 28 sin2f 0
(b;) ={sin28 —cos28 O}
0 0 1
Show that this is an orthogonal transformation which is not proper.
2.2 The components A4, of an affine vector in E; have the values (3,0, 0) in the x*
coordinate system. If
0 -1 0
(@) ={ 1 0 0
0 0 1
is the matrix of the (orthogonal) transformation from x' to X/, compute 4,.

2.3 Prove that the set of all proper orthogonal transformations in E, forms a group,
but that the set of all orthogonal transformations for which the associated
determinant is — 1 does not form a group.

2.4 In E, the quantity ¢ = ¢(x") is an affine scalar. Prove that 0*¢/(9x’ 0x’) are the
components of an affine tensor of rank 2.

25 InE,, A,, T;, and U,,, are the components of affine tensors of rank 1, 2, and 3,
respectively. If

) Ay Tij =U inj
in one rectangular coordinate system, establish that
‘Zh Tij = Uihj
in any other rectangular coordinate system.

2.6 InE, prove that §;; are the components of an affine tensor of rank 2.

*2.7 In E, the quantities B;; are the components of an affine tensor of rank 2. Construct

two affine tensors each of rank 4, with components C;; and D, for which

Z Z Cijlekl = Bij + B}i

k=11=1

n n

> Y. DyuBu =B~ By

k=11=1
are identities.
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2.8

29

2.10

2.12

213

Show that, in E;, the quantities ¢;;, defined in Problem 1.1 do not constitute the
components of an affine tensor of rank 3 unless the transformation is proper,
whereas the quantities ¢ ¢, are the components of an affine tensor of rank 6.
Establish that

it

3
&j =0, Y Eijpban = 04 85 — By Opj

j k=1

and

3 3
Z Z Ejutnjx = 2 Oy

k=1 j=1

In E; the components of the vector product C = A x B of two nonparallel
vectors are given by

C, =(A,B; — A3 By), C,= (43B, — A,B;), C;= (AJBZ — A4,B)).

The left-hand sides, regarded as components of an affine vector transform accord-
ing to (2.11), which is linear in the coefficients a n of the orthogonal transforma-
tion. On the other hand, the right-hand sides, regarded as components of an
affine tensor, transform according to (2.25), which is guadratic in the a n- Show
how this apparent contradiction can be resolved provided that the transformation
is proper.
The orthonormal basis {e;} in E, is “right-handed” in the sense that e, x e,
=e;,e, X e; =e;,ande; X e, =e,.

If {f;} represents an orthonormal basis obtained from {e;} according to (1.2),
show that

3
f, xf,= 3 Aje,,
h=1

where 4, denotes the cofactors in the determinant @ = det(a,,). Hence deduce that
fy xf,=+f; or —f,
according as a = +1 or ~1. (This result shows that proper orthogonal trans-

formations preserve the “right-handedness” or orientation of orthonormal
systems.)

If A; and B, are the components of two affine vectors in E, the angle 6 between
them is defined according to

2i=14:B;
(Z;= 1 AjAj Z;c'= 1 BkBk)uz
Prove that this quantity is an affine invariant.

InE,, i_f the quantities 4; = A,(x") are the components of an affine vector show that
0A,/0x’ are the components of an affine tensor of rank 2.

In E,, the quantities A, are the components of an affine vector for which

cos 0 =



52

*2.14

2.15

2.16

217
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If P;; = A;A; show that

S PPy = Py.
i=1

0 00
If,forn=3 (a P;=]0 0 O}
0 0 1
100
(2] Pij =0 % 0},
00 ¢
find 4,, if it exists.
In E,, b;; and c;; are the components of affine tensors of rank 2. If ¢;; = —cj;and

2 (cbj + b)) =0
i=1

for all ¢;;, show that forn > 2

b; =116

L iy

Determine 4 and deduce that it is an affine scalar.

In E, the quantity ¢ = ¢(x") is a scalar under (4.1). Prove that 8%¢/ox' x’ are
not the components of a tensor of either type (2, 0), (1, 1), or (0, 2). (Compare with
Problem 2.4.)

Let ¥/, %/ denote the coordinates of an arbitrary point P of E, referred to two
distinct rectangular coordinate systems. An arbitrary curvilinear system in E, is

related to the two rectangular systems according to

X =F0x", % =50M. (0 L
Show that : % :
N - n i oxi " %/ o/
a0 y X oxX_ 5. 0% 0%
- = oxhoxt o oxh ox*

Deduce that the quantities (5.6) defined for the curvilinear coordinate system are
independent of the choice of the rectangular coordinate system.
Let x*, x* denote the coordinates of an arbitrary point P of E, referred to two
arbitrary curvilinear coordinate systems. These coordinates are related to each
other by the transformation equations X* = x*x*). Let the quantities (5.6)
defined for each of these systems be denoted by g, , g, respectively. Show that
_ ok ox) ox!
Gne = j;l :=Zl %ﬁﬁgﬂ’
which indicates that the g 1 are components of a type (0, 2) tensor. Deduce the
transformation law satisfied by g = det(g;). Is the latter a tensor?
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2.18 Find explicit expressions for the Christoffel symbols in spherical polar coordinates
in E;, and hence write down the differential equations satisfied by straight lines
in E; in these coordinates.

2.19 In a four-dimensional space with coordinates x' (i = 1, ..., 4), if L} are indepen-
dent of position and satisfy

4 4
nij = Z ZnhkL’;L}

h=1k=1
where
-1 0 0
. 0 -1 0 0
(’1.‘,’) = 0 0 -1 0
0 0 1
then the transformation
4 : N
=Y Lx
i=1

is called a Lorentz transformation.
A set of 4" quantities T, ., is said to constitute the components of a Lorentz
tensor (or a 4-tensor) of rank r if under a Lorentz transformation they transform

according to the law
4

4
T}l"'jr = Z e Z L]hln T L:': 7;'1""‘"
hi=1 hr=1

Show that if a Lorentz tensor vanishes in a given coordinate system, it vanishes
in all other systems related to the first by a Lorentz transformation. Show that if
Tjx» Sijx» and V; are the components of Lorentz tensors of rank 3, 3, and 2, re-
spectively, then T, + S, Siz Vi and Y oo 37 , n,,V,, are Lorentz tensors of
rank 3, 5, and O, respectively, whereas Y ;., V,, is not tensorial (Synge [3],
Davis [1]).

2.20 In the notation of Problem 2.19 show that the set of all Lorentz transformations
forms a group.
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TENSOR ANALYSIS
ON MANIFOLDS

Since it is our objective to present a concrete and gradual development of the
theory of tensors, introducing new concepts only when they become in-
dispensable, the discussion of the previous chapters is carried out against the
background of a Euclidean space E,. The latter is characterized by the fact
that it admits Cartesian coordinate systems, each of which covers E, com-
pletely. However, some of the most important applications of the tensor
calculus are concerned with situations which require that the underlying
space be of a far more general nature, such as a curved surface, which may not
allow for the existence of a coordinate system by means of which it can be
covered entirely. Thus we must now divest ourselves of the assumption that
the underlying space is Euclidean; instead, it is now supposed that this role
is played by a so-called differentiable manifold. The concept of a differentiable
manifold is a somewhat abstract one: it can be described very roughly as an
n-dimensional space X, which can be covered by open neighborhoods on
each of which coordinate systems may be defined in such a manner as to
ensure that pairs of such systems are related to each other by differentiable
coordinate transformations. Smooth curves and surfaces in E; represent
simple examples of differentiable manifolds.

The first section of this chapter is devoted to a very rudimentary descrip-
tion of such manifolds, which, it is hoped, is sufficient for all subsequent
requirements. (A far more sophisticated and complete formulation is
presented in the Appendix.) Again, as the result of further abstraction from
the theory of tensors in E,, tensor fields on X, are introduced, and it is im-
mediately evident that the corresponding algebraic processes are formally
identical with those described previously. However, when one turns to the
calculus of tensors, one is immediately confronted with a formidable diffi-
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culty which results directly from the fact that the derivatives of tensor com-
ponents are not in general tensorial. Thus a new type of derivative, the so-
called covariant derivative, is introduced for the purpose of differentiation
of tensors. This, however, is possible solely on the strength of an additional
assumption, namely, that the differentiable manifold is endowed with an
affine connection.

The process of covariant differentiation forms the basis of the tensor
calculus. In some aspects it is very similar to partial differentiation in the
usual sense; nevertheless, a fundamentally important difference arises as an
immediate consequence of the fact that the order of repeated covariant
differentiation with respect to distinct coordinates x* and x* is by no means
immaterial. In fact, this phenomenon leads directly to the concept of the
curvature tensor of X, (and, already at this stage, it should be emphasized
that this tensor vanishes identically in an E,). A striking geometrical inter-
pretation of this state of affairs is afforded by the behavior of parallel vector
fields on X .

3.1 COORDINATE TRANSFORMATIONS ON DIFFERENTIABLE
MANIFOLDS

In this section we shall give a very rough and intuitive description of the
concept of a differentiable manifold. In order to attain an adequate degree
of generality for our general theory we cannot restrict ourselves to spaces
which can be covered completely by a single coordinate system (such as the
n-dimensional Euclidean space E,): simple examples of various kinds of
surfaces embedded in E; indicate that, in general, no single coordinate
system can exist which covers a given surface completely. This is true, for
example, of the two-dimensional sphere in E;, and consequently one con-
siders certain regions on the sphere which are chosen such that it is possible
to construct coordinate systems on each of these regions. This can be done
in various ways; for instance, relative to a rectangular coordinate system
(x!, x2, x3) of E,, one may choose the hemisphere for which x* > 0, on which
one can use x2, x> as coordinates, for obviously this hemisphere can be
mapped onto an open disk on the (x?, x*)-plane. Accordingly this hemisphere
is referred to as a “coordinate neighborhood,” and similarly the five other
hemispheres corresponding to the restrictions x* < 0,x? > 0,x2 < 0,x3 > 0,
x? < 0 can be regarded as coordinate neighborhoods. These six hemispheres
cover the sphere completely, and it is obviously feasible to use the coordinate
system thus defined. In general, of course, the existence of suitable coordinate
neighborhoods depends on the topological properties of the surface taken
as a whole. We do not concern ourselves here with problems of this kind,
the reader being referred to texts on differential topology. Instead, we simply
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require that the underlying manifold with which we are concerned be a
so-called differentiable manifold, so that the existence of coordinate neighbor-
hoods with appropriate coordinate systems is guaranteed by definition.

An n-dimensional manifold is a point set M which is covered completely
by a countable set of neighborhoods U,, U,,..., such that each point
P e M belongs to at least one of these neighborhoods; it is assumed that a
coordinate system is defined on each U in the sense that one may assign in a
unique manner #n real numbers x!, ..., x" to each point P € U. Thus as P
ranges over U, the corresponding numbers x!,..., x" range over an open
domain D of E,; in other words, it is supposed that there exists a one-to-one
mapping of each neighborhood U onto D. This mapping is assumed to be
continuous. The numbers x!,..., x" are called the coordinates of P; two
distinct points of U have distinct coordinates.

Let U,, U, be any two coordinate neighborhoods on E,such that U; n U,
is nonempty. Let P e U, n U,. Then, corresponding to the two coordinate
systems on U, and U,, we may assign to P the two sets of coordinates
x!,...,x"and X', ..., X", respectively, which, as before, we simply denote by
x/ and ¥/, it being understood that all Latin indices j, h, k, . .. range from 1 to n.
(See Figure 5.) Clearly the values of x/ and X/ must be somehow related: it
will be assumed that this relation can be expressed in the form

X = xi(x"), (1.1
with inverse
x" = xMx)), (1.2)

(where we have used the compressed notation introduced in Section 2.4).
The relations (1.1) and (1.2) represent coordinate transformations on the
set U, n U,. It will be supposed furthermore that the functions on the

Fig. 5
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right-hand sides of (1.1) and (1.2) are of class C* for all points Pe U, n U,.
If the manifold M is such as to admit a construction of this kind, it is called
an n-dimensional differentiable manifold; we shall henceforth denote such
manifolds by X, . (It should be emphasized that this is a very rough descrip-
tion of this concept: the precise formulation is considerably more sophisti-
cated and is discussed more carefully in the Appendix.)

Because our definition implies the existence of the partial derivatives
0x//ox" and 8x"/9x’, we immediately infer the validity of the identities
(2.4.29) and (2.4.30) in respect of the coordinate transformations-(1.1), (1.2) on
X,. However, in order to simplify our subsequent notation, we shall now
introduce the following convention.

SUMMATION CONVENTION. When a lowercase Latin index such as j, h, k, . ..
appears twice in a term, summation over that index is implied, the range of
summation being 1,..., n. The letter n is excluded from the summation
convention; this letter will invariably denote the fixed dimension of the
manifold under consideration.

Unless specifically stated otherwise, this convention is operative through-
out (the reader may familiarize himself with this notation by applying it
to the formulae of Section 2.4). In particular, we now write the identities
(2.4.29) and (2.4.30), respectively, in the form

- ox" ox/

%= 55 o (1.3)
and
. ox' ox"

(Thus on the right-hand side of (1.3) summation over j from 1 to n is under-
stood ; similarly on the right-hand side of (1.4) a summation over k is implied.)

From the product rule for determinants we immediately infer from (1.3)
that

Bx', .y X AR, R
oxt, ..., % axt,...,x")

1, (1.5)

in terms of the notation (2.4.2). Thus the Jacobian of the transformation
(1.2), namely,
oxt, ..., x"

T -0

does not vanish on U, n U,: this is a direct consequence of our definition.
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The manifold X, is said to be orientable if it is possible to choose coordinate
neighborhoods and corresponding coordinate systems such that each of
these Jacobians is positive (on the respective intersections of the coordinate
neighborhoods). In conclusion we recall that a real-valued function f of the
nvariables x/ is said to be of class C” at a point P of a coordinate neighborhood
U if it possesses continuous derivatives with respect to each of x!, ..., x" up
to and including the rth order at P. It should be observed that, by virtue of our
construction, the property of being of class C" on X, is independent of the
particular choice of coordinates.

3.2 TENSOR ALGEBRA ON MANIFOLDS

We now present the most general definition of a tensor; since we have
already dealt with several special cases under different conditions, we proceed
in a purely formal manner without further motivation.

DEFINITION

A set of n"** quantities T""""',‘l.,,k, is said to constitute the components of a
tensor of type (r, s) at a point P of a differentiable manifold X,,, if, under the
coordinate transformation (1.1), these quantities transform according to the law
Tt = Do PO O e, @1

= Ox™ ox" 0x! 0x' 1t

The rank of Tisr + s.

Again, our definition contains an explicit reference to the point P at which
the tensor is defined because the coordinates x* of that point enter as argu-
ments in the coefficients d%//0x" on the right-hand side of (2.1). Strictly
speaking, we should have written these derivatives in the form dx/(x*)/0x" in
order to indicate explicitly that they are to be evaluated at P.

Because of (1.4) the transformation law (2.1) possesses an inverse, namely,

ox™ - ox™oxh  ox*
oxt  9xFr ox*r Oxks

Thl“'hrkl---k, — le-njrllml’, (2'2)

which, in turn, implies (2.1).

Once more it should be emphasized that, if all the components of any tensor
vanish in a given coordinate system, they will vanish in any other system. As
special cases of the above definition we have contravariant vectors as type
(1, 0) tensors, whose transformation law is given by

i = ai A" 2.3)
ox"
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similarly, covariant vectors are type (0, 1) tensors, whose transformation law is
~ Ooxt
i = 357 Cw 2.4

while type (1, 1) tensors satisfy the transformation law

—:  OX) oxk
Ti= ox" ox" i 2:3)
In particular, we can write (1.4) in the form
0%’ Ox*
" o ox @6)

showing that the Kronecker delta is a type (1, 1) tensor.

A type (0, 0) tensor is simply a scalar or invariant.

We now give a formal treatment of algebraic processes which may be
applied to tensors at a fixed point P of X,,.

Addition

Let S .. be a type (r, s) tensor defined at P. Its transformation law,
according to (2.1), is given by
oxit  oxir oxr oOxks

Givir 29X OXT OXT L 0X Gy,
SRCE il TR A I L 0

If this is added to (2.1), we obtain

Thmhlln«l, + Sitir

13-+l
oxt axir axkr  oxks

= 5_@ . m . 5).6_’_‘ P axl! (Tiu hrk ks + Shl‘”hrkl‘“ks)’ (27)
which shows that the sums T™™*, .,  + St* .  are components
of a tensor of type (r, s) at P. Also, it follows directly from (2.1) that the
multiplication by a scalar or a constant of the components of a tensor of
type (r, s) yields a tensor of the same type. Thus the set of all tensors of type
(v, 5) at the point P of X, constitutes a vector space of dimension n"**. In
particular, the set of all contravariant vectors at P defines the so-called
n-dimensional tangent space T,(P), while the set of all covariant vectors at P
constitutes the dual tangent space T*(P), which is also of dimension n.

We remark that it is not possible to add tensors whose types are distinct,
nor is it permissible to add tensors defined at different points P and Q of X .

i
|
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Multiplication

It is always possible to multiply tensors of arbitrary type at the point P of
X, componentwise. More precisely, the multiplication of the components of
two tensors of types (ry, s,) and (r,, s,) at P yields a tensor of type (ry + r,,
s; + s,) at P. Rather than prove this statement in its fullest generality,
which would involve a profusion of indices and subscripts thereof, let us
consider a type (2, 1) tensor and a type (0, 2) tensor, whose transformation
laws are respectively given by

e OXIOX OxP

T = ook oxm T 7 28)

and
s _ ox* ox®
T PxIoxT

2.9)

The products of the components of these tensors transform according to

— = ox) 0x' OxP Ox* Ox"
TS = 7 = "~ " Thg
mUar - gxh ox* ox™ 0x* ox” °
which is obviously the transformation law of the components

V= TS, (2.11)

p

(2.10)

uv?

of a tensor of type (2, 3).

This process of multiplication can be combined with the process of
addition of tensors, provided that their respective types are appropriate.
Clearly the commutative, associative, and distributive laws are satisfied.

Contraction

Given a tensor of type (r, s), one may select a pair of indices, of which one is
a superscript, the other being a subscript, and replace them by two identical
indices, summation over the latter being implied by virtue of the summation
convention. This process is known as contraction, and the quantities ob-
tained by contraction constitute the components of a tensor of type (r — 1,
s — 1). Again, we shall not prove this assertion generally; instead, we shall
verify it for the case of a type (2, 1) tensor. Thus in (2.8), let us identify the
indices ! and m, denoting both by ¢, which gives

o a% ORI XD,
Tia = = ——= “2 s
7 oxhoxkox1 o F

it being understood that a summation over ¢ is implied on both sides. Then,
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pecause of (1.3), the product (0x9/0x*)(0x?/6%%) on the right-hand side is
merely the Kronecker delta 6, and accordingly we obtain

— ox/
T =50

which is the transformation law of a type (1, 0) tensor.
Clearly the process of contraction of a type (1, 1) tensor yields a scalar;
in particular, for the case of the Kronecker delta we have

=08+ - +=n (2.13)

T, (2.12)

Furthermore, one may form the products of components of tensors of
arbitrary types and then contract (provided, of course, that the process of
multiplication yields a type (r, s) tensor with » > 1 and s > 1). For instance,
if the components T* of a type (2, 0) tensor which satisfies

OxP 0x* ’

jl

are multiplied by the components C,, F,_ of two covariant vectors, we obtain
a type (2, 2) tensor, whose transformation law is given by

= OXIOX' Ox" Ox°

T F =~ —_— " T™C,F;

PT a4 gxh 9x* oxP 0x1 T

if we contract over the indices [, p, this reduces to the transformation law
of a type (1, 1) tensor, and if we contract once more over the remaining
indices j, ¢ we obtain the scalar

THC,F; = T*C,F,.

Symmetrization

A tensor is said to be symmetric in a pair of superscripts (or in a pair of
subscripts) if an interchange of the indices concerned does not affect the
values of the components of that tensor. If, on the other hand, this process is
tantamount to the multiplication of each component by — 1, the tensor is
said to be skew-symmetric (or anti-symmetric) in these indices. For instance,
if A,;, B,; denote the components of two type (0, 2) tensors, and if

Ay = A, (2.14)

while
B,; = —B,, (2.15)

)

the first is a symmetric tensor, while the second is skew-symmetric. Clearly
the equations (2.14) and (2.15) will hold in any coordinate system as a direct
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consequence of the form of the transformation laws of tensors: accordingly
all symmetry and skew-symmetry properties of tensors are independent of the
choice of the coordinate system.

Given any tensor of type (r, s) with r > 1, or s > 1, one can always con-
struct from it a symmetric and a skew-symmetric tensor in any pair of
subscripts, or any pair of superscripts. For example, in the case of a type
(0, 2) tensor C,; we can define

Shj = %(Chj + th)> (2-16)
and
Th' = %(Chj - th)a (2~17)

J

these being respectively symmetric and skew-symmetric. Naturally these
processes may be applied to tensors of arbitrary types (r > 1 or s > 1),
the remaining indices being held fixed. The process (2.16) is often referred to
as symmetrization. Furthermore, any such tensor can be written as the sum of
its so-called symmetric and skew-symmetric parts; for instance, one ob-
viously has

Chj = HCyj + C) + HCy; — Cpy). (2.18)

Remark. In the literature S,; and T,; as defined by (2.16) and (2.17) are often
respectively denoted by C,;, and Cy,;. This notation will not be used here.
Also, the process of symmetrization and its converse can be generalized to an
operation involving more than two indices: however, we shall defer the
discussion of this technique until we have dealt with the so-called numerical
tensors.

Criteria for Tensor Character: the Quotient Theorems

It was seen above that the product of two tensors yields another tensor. This
immediately raises the question as to a possible converse: if a tensor, multi-
plied by certain components, is known to give rise to another tensor, can one
conclude that these components themselves constitute a tensor? Sometimes
the answer to this is in the affirmative, and may therefore represent a criterion
for the tensor character of given components: criteria of this kind are
contained in the so-called quotient theorems. It should be emphasized,
however, that these theorems should be applied with utmost caution, as
will be evident from our remarks below.

As a first example of such a theorem, let us consider the following state of
affairs. Suppose that, at a fixed point P of X, we are given a set of n quantities
a, subject to the understanding that a, X* is a scalar for any contravariant
vector X" at P, so that we may write

a, X" = ¢, (2.19)
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in which ¢ denotes a scalar (which depends, of course, on a, and X*). Does
this imply that the a, constitute the components of a vector at P? We shall
see that this is indeed the case. Denoting the as yet unknown transform of a,
under (1.1) by @;, we know that in the X-coordinate system the condition
(2.19) reads

a; X' = ¢. (2.20)
Since ¢ is a scalar, we have ¢ = ¢. Furthermore, since X" is a contravariant
vector, it follows that
ox!

Xi=_— X" 2.21
6xh > ( )

accordingly subtraction of (2.20) from (2.19) gives

i
(a,, _g % )X" = 0. (2.22)

J axh

Here we note that a summation over h is implied, so that we cannot assert
directly that the coefficients of X" vanish. However, we now invoke the
additional hypothesis according to which (2.19) and hence (2.22) are valid
for any X" We may therefore choose a vector X" at P with components
(1,0, ..., 0). Equation (2.22) then reduces to

ox/ _
a, = W aj.
Similarly, choosing a vector with components (0, 1, ..., 0) at P, we infer
that
ax! _
a, = W aj.

Continuing in this manner, we find that

ox _

a, = W aj,
which is the transformation law for covariant vectors. We have therefore
established that if a, X* is a scalar for any vector X" at P, then the a, constitute
the components of a covariant vector at P. This result is called a quotient
theorem; however, in its application one must be absolutely certain that the
contravariant vector X"* which appears in its enunciation is arbitrary, and
this hypothesis represents a very strong condition which is not often satisfied.
As a second important case suppose that we are given a set of n* quantities
a,, of which it is known that a,, X"X* is a scalar ¢ for any vector X* at P.




64 TENSOR ANALYSIS ON MANIFOLDS

Again, can it be inferred that the a,, constitute the components of a type (0, 2)
tensor? We shall now see that this is not true in general. By hypothesis we
have

au X'X* =y
in the given coordinate system, and similarly

a,X'X' = §
in the X-coordinate system, in which we have denoted the as yet unknown

transforms of a,,; by ;. Using (2.21), and the fact that y = y, we obtain by
subtraction

_ ox' ox
(ahk— "6 pw )X"X" 0. (2.23)

Because a summation is implied over h and k, we cannot infer directly that
the coefficients of X*X* vanish. Again, by successively choosing vectors X’
at P with components (1,0,...,0),(0,1,...,0),...,(0,0, ..., 1), we deduce

from (2.23) that
ox’/ ox' _ ox' oxt
a,, _"ﬂax_lﬁ= , azz—aﬂE;?W:O, e, etc., (2.24)

but this tells us nothing about the terms involving a;, with j ;é h. Accordingly
we now choose a vector X/ at P with components (X!, X2, ., 0). For this
particular vector (2.23) becomes

_ ox ox _ oxl ox!
(all—aﬂWW>X1Xl+(alz~ ﬂa ax )X XZ

a ox’ ox' a ox! ox*
+<a21 — Gy )XZX1 (au Gy 2 )X X2 = 0.
Because of (2.24) the coefficients of X' X* and X2X? vanish; also, since
ox/ ox'  _ ox’ ox!

Ty = Ty et —s
1 ox? dxt Y ox! ax?

by a mere relabeling of the indices j and /, it is found that

ox’ 0
[(a12+a21) @y +a) 75 % x]XX = 0.

ox' o
Thus, choosing X! = 1, X? = 1, it is seen that
0% ox!

ay; +ay, =@ + ali)ﬁﬁ
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Again, this process may be repeated to yield

ax’ oxt
ox" ox*’
This is, in fact, the transformation law of a type (0, 2) tensor, but it refers to
ay + A, that is, the symmetric part of 2a,,, and not to ay, as such. Indeed,
nothing can be inferred about the tensorial character of the skew-symmetric
part of a, from our hypothesis. This is quite natural, for the skew-symmetric
part of a,, contributes nothing to the scalar y. This is so because

(@ — ) XPX* = @, X"X* — a,, X"X* = a, X"X* — a, X*X* = 0

identically, where, in the last step, we have interchanged the indices h and k.

Accordingly, the quotient theorem for this case must be stated as follows:
If a set of n® quantities ay, is such that for any contravariant vector X" at a
point P of X, the sum a,, X"X* is a scalar, then the symmetric parts Haw + ay)
of ay, are the components of a type (0, 2) tensor.

As a corollary we note that, if in addition to the above hypothesis, we are
given that the g, are symmetric, then it may be concluded that the a,, are the
components of a type (0, 2) tensor.

Clearly other quotient theorems can be established for tensors of different
types. In each case the hypotheses of these theorems are extremely stringent
and should be examined with utmost care before the theorems are applied.
Their incorrect application has led to numerous faulty arguments in the
literature; as a rule it is best to avoid them and to derive the transformation
properties of given quantities directly by ad hoc methods.

Gy + G, = (@ + ay) (2.25)

3.3 TENSOR FIELDS AND THEIR DERIVATIVES

In our discussion of tensor algebra it was repeatedly stressed that all algebraic
operations are concerned with tensors defined at one and the same point P
of our differentiable manifold X ,. Indeed, the definition of a tensor as given
above is formulated solely in terms of components prescribed at P. In many
applications, however, tensorial quantities are defined not only at a point
but on a finite region of X, and the restriction to a single point is unrealistic.
It may be necessary to compare, say, contravariant vectors at distinct points
of X,, and our algebraic apparatus js totally inadequate for purposes of this
kind.

Examples of tensorial quantities defined on finite regions are plentiful.
For instance, if one has a differentiable scalar function ¢(x") defined on a
region, the components d¢/0x* of its gradient are also defined at each point
of that region, and accordingly one speaks of a gradient field. Similarly the
vectors which describe the strength of an electromagnetic field on a region
of E, represent a vector field.
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In order to be able to extend the general tensor concept in this sense, we

formulate the definition of a tensor field as follows, noting that it is now §
necessary to regard the components of a tensor as functions of the co- }
ordinates x? of the points of the region of X, on which these components are

defined.

DEFINITION

A set of n”*® functions T" %, (x9) is said to constitute the components of a |
tensor field of type (r, s) on the manifold X ,, if, under the coordinate transforma- 1

tion (1.1), these functions transform according to the relation

. oxit oxlr oxk Oxks
Tivrdr,  (FP) = o o oot
gools py

In this formulation we have explicitly indicated the dependence of the
components on the positional coordinates, namely, by writing T (x9) on

x!, ..., x" of any point of X, at which T __ is defined, while x? refers to

the coordinates X!, ..., X" of the same point in the X-system. Clearly these ]
are also the arguments which respectively enter the coefficients 8x//0x" and §

ax*/0%" in (3.1).

In order to be able to relate tensors at distinct points it is manifestly ¥
necessary to use a process of differentiation. A tensor is said to be of class §
C? on a region of X, if its components are class C? functions of the co- §
ordinates: obviously this requirement is independent of the choice of the @
coordinate system. Thus for a tensor field of class CP(p > 1) we can form the |
partial derivatives of its components, and we now investigate how these

partial derivatives may be used. We begin by examining a few simple cases.

First, let us consider a differentiable scalar field ¢(x*). As we pass from a §
point P with coordinates x* to a neighboring point Q with coordinates ¥

(x* 4+ dx¥), the corresponding differential is given by

o¢

dp = -2 dx*. (32

ox*

Recalling that the components d¢/0x* of the gradient of ¢ constitute a ;:z

covariant vector, while the dx* represent the components of a contra-
variant vector by virtue of the fact that for any such displacement dx’ =

(0%//0x*) dx*, we see that the right-hand side of (3.2) is a scalar (in fact, it is é
an inner product). Thus d¢ is a scalar: clearly no difficulties are encountered @

here.

However, when we consider a second example, namely the case of a class ‘¥
C! contravariant vector field X"*(x*), we shall see that certain difficulties |

Th""h'k,---k,(xq)- 3.1

the right-hand side, and T _(X”) on the left; here x? refers to the coordinates ; :

3.3 TENSOR FIELDS AND THEIR DERIVATIVES 67

emerge almost immediately. Again, corresponding to the transition from
P to Q, the differential dX* of X" is given by

dx* = Fa dx*, (3.3)
These differentials would represent the components of a contravariant vector
if the partial derivatives 8X"/0x* were the components of a type (1, 1) tensor,
but generally this is not true.

This is seen directly by an examination of the transformation law of our
vector field, namely

_ ox)
Xixr) = a—')’ci,, XH(x9), (3.4)

which is to be differentiated with respect to x*. In doing so, we note that the
coefficients 8%//0x"* are given as functions of x/, so that the chain rule must be
used; a similar remark applies also to X". Accordingly it is found that

ox’ 9% ox' _, ox' ox' oX*

o7k~ dx' ox" oxk ox" 9x* ax' "
From this relation it is quite evident that the partial derivatives 6 X"*/9x' are
not the components of a tensor: the presence of the first term on the right-
hand side of (3.5) is the reason for this state of affairs. [This term is due to the
fact that the coordinate transformation (1.1) is not assumed to be linear.
If one restricts oneself to linear transformations, one has 9%x//0x'ox" = 0;
thus in the case of an affine vector field X/(x") the partial derivatives (3.5)

represent the components of a type (1, 1) affine tensor.]
If we multiply (3.5) by dx* and sum over k, noting that

3.5)

{
% dz* = dx!, » (3.6)
we find that D
ox’ ., o . -, 0x/oX"
o = el IV
a7 X = oo XX+ 5 ot
or, using (3.3) and its counterpart in the X-system:
3y
- oX %%
dX) = %,;dX" + 5?% X" dxk, (3.7)

This, then, is the transformation law of the differentials of the contra-
variant vector field X"*(x*): we reiterate that these differentials are not the
components of a tensorial function. (It should be remarked that (3.7) can
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be obtained more directly by considering the differentials of (3.4); however,
the present method is used since (3.5) will be required later.)

Because of this defect we must now endeavor to construct a new type of |

differential which has some of the properties generally associated with the
usual concept of a differential, but which is also tensorial. In our attempt to
do so we shall be guided by the analysis of Section 2.5 concerning the deriva-
tives of vectors relative to a curvilinear coordinate system in E,; we saw that
it was necessary to augment these derivatives by an additional term involving
the Christoffel symbols in order to obtain a tensorial expression. Under the
present circumstances we are not in possession of quantities of this kind
a priori, and we shall therefore have to endow our manifold with suitable
functions which play a role analogous to that of the Christoffel symbols.
This is to be done as follows.

Let us denote the new type of differential which we are seeking by DX,
it being assumed in view of the analogy referred to above that DX’ is of the
form

DX’ = dXJ + Pi(x?, X" dx"). (3.8)

Here the components P are to be specified by means of certain fairly natural
conditions which are to be imposed on DX,

We observe that, for any two contravariant vector fields X/, Z/, the
ordinary differential satisfies the condition d(X? + Z%) = dX/ + dZ’, while
it is evident from (3.3) that dX” is linear in dx*. Thus the following analogous
algebraic requirements are imposed upon the operator D:

1. For any two contravariant vector fields X’/ and Z’, D(X’ + Z/) =
DX’ + DZJ, which is satisfied if P/ is linear in X/,
2. DX/ is linear in dx*

Accordingly the components P’ on the right-hand side of (3.8) must be
linear homogeneous functions of X* and dx*; they are thus expressible in the
form

Pi(x?, X" dx*) = T,J(x?)X" dx*, 3.9)

in which the coefficients T\(x?) depend solely on the positional coordinates

xP. (Although we have endowed these coefficients with two subscripts and a

superscript, it is not implied that the I',/, are the components of a tensor.)
Finally, it is stipulated that

3. The DX’ constitute the components of a contravariant vector:

5J
pxi = %X px», (3.10)

T oaxh
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From (3.8), and its counterpart in the “barred” coordinate system, we
therefore infer that
o = OX ox/
S i+ Pl =, dX"+ _— P. 3.1
T dX’ + P Ew +6x’P (3.11)
In order to obtain the resulting transformation law for the components
P/, we subtract (3.7) from (3.11), which gives

2l 25j
_— ox’ 0°x

=P — ——_ X"dx* 3.12

ox! Ox" ox* x (3.12)
Clearly this is a necessary and sufficient condition for the validity of (3.10);
however, for our future requirements it is desirable that. we derive the cor-
responding transformation law for the coefficients I',’, which appear in
(3.9). By means of (3.4) and the inverse of (3.6) we can write the counterpart
of (3.9) in the barred coordinate system as follows:

= ; 0x™Oox? .,

I—JJ = r J X-m dip = Fme WWX dxk. (3.13)

This, together with (3.9), is substituted in (3.12) to yield

— . Ox™ 9xF oxi 0*x/
S XPhdxk = =T — ——— | X" dxX~ 3.14
me X 4 (6x’ R oxt 6x") x (319)
In order that this relation be satisfied it is sufficient that the transformation
law of the T}, is given by

= oxmoxP _oxX *%
mPaxh oxk  ax! PR T gxhoxt

(3.15)

Furthermore, this condition is also necessary by virtue of the fact’that the
components X", dx* which appear in (3.14) are entirely arbitrary. Also, we
can solve (3.15) for T/, in terms of I/, by multiplying by dx*/0x", 9x*/0x°,
which gives

£ (OX7 OxM\(0%P X"\ _ ox L, ox ox* 2%/ axhox*
m P\ ox* ox" J\ox* ox°)  ox' Mk ox" ox°  Ox" ox* X" 9%
We now apply (1.4) to the left-hand side above, obtaining T/, 87" 67 = T/,
and in the resulting relation we replace the indices r, s by m, p respectively.
It is thus found that

o, oXaxtax %% oxh oxt

- O ox 0x _ g o* 3.16
mpP T gx! 9xm OxP  M*  Oxh ox* ox™ OxP (3.16)




70 TENSOR ANALYSIS ON MANIFOLDS

Any set of three-index symbols I',/, whose transformation law is given by

(3.16) is said to constitute the components of an affine connection, or connection
coefficients, on our differentiable manifold X,. In terms of this connection we
may now, by means of (3.8) and (3.9), write

DX’ = dX/ + I,/ X" dx*, (3.17) 1

which is known as the absolute or covariant differential of the vector field
X: this was the object of our search.

Remark 1. In a certain sense the latter terminology is unfortunate as it
involves the term “covariant” in a manner which is inconsistent with its

previous use. Here the adjective covariant is used to indicate that (3.17) is |

tensorial.

Remark 2. Thus far we have merely constructed the absolute differential

'+ ofacontravariant vector field: we shall show, however, that similar processes }

can be applied to tensors of arbitrary type.

Remark 3. It should be reiterated that, despite the notation, the coefficients

I/, of the affine connection are not the components of a tensor.

Remark 4. Obviously the conditions 1-3 do not completely specify the
I',/,. In fact, any set of n® functions of position which transform according to
(3.16) defines an affine connection by means of which absolute differentials
may be constructed. Thus, before one can construct such differentials, the
differentiable manifold X, must be endowed with these coefficients. The
manifold is then called an affinely connected space (see Schrodinger [17).

Remark 5. The transformation law (3.16) can be expressed in a slightly
different form as follows. We recall that, according to (1.4),

ax’ ox* .
adGANE 'S 3.18

ox" ox™ "' (3.18)
This is differentiated partially with respect to x*, it being recalled that

Ox"/9x™ is given as a function of X4, so that the chain rule has to be applied
to this term. It is seen that

*’x oxr _ @ 9%x" ox? (3.19)
ox* ox* ox™ —  oOx® ox™ 9x4 OxF’ )
which is multiplied by dx*/0x? to give
Px ax'oxk % 9%xh oxtoxk
Ox" dx* ox™ dxF ~  Ox" ox™ 9%9 ox* OxF
ox/  9%x*k ox!  9%xh
= q _ _ 7
Ox" ox™ ox1 P Ix" ox™ oxP’ (3.20)
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This is substituted in (3.16), which then becomes

- ax’ ox* ax* . ax/  9%x"

mr = o oxm ox? "k T ot oxm ok (321)
An equivalent form of this is
2.h h . a 1 k
o°x"  ox i x' dx" _, (322)

ox™ oxP  ox/ ™P  gxmaxr W

which results from (3.21) by a repeated application of (1.4) and a change of
indices.

With the aid of the formalism developed above, it is now a simple matter
to define an appropriate absolute differential of a covariant vector field
Y, = Y,(x*). We recall that the transformation law of such a field is given by

ox! _
),h = é;f, Jj»

so that the differentials of ¥, relative to the two coordinate systems are related
by

(3.23)

o 255
:6—§-hde+ % 7 ax (3.24)

ox" ox*
We can eliminate the second term on the right-hand side by means of (3.15),
which is multiplied by Y, dx* for this purpose, giving

0% o 0X) . 0X™OXxP
axawr 0% = Do dxY o = Wiy 5o o 4

dy,

= I Y, dx* — % T,/ Y,ds.

This is substituted in (3.24), in the first term of which the index j is replaced
by m. It is thus found that

dY, — T,} Y, dx* = % dY,, — T,7, Y, d=”), (3.25)
which shows that the quantities defined by
DY, = dY, — I, Y, dx* (3.26)

are the components of a covariant vector. We therefore regard (3.26) as the
definition of the absolute differential of the covariant vector field Y,.

In the next section we deal with the definition of absolute differentials of
tensors of arbitrary type. However, we anticipate to some extent by stating
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already at this stage that the absolute differential of a scalar is defined to be

its ordinary differential, for as we have seen above, the latter is automatically

a type (0, 0) tensor. Let us briefly examine the relevance of this definition with }
regard to the scalar product ¢ = X"Y, of two given co- and contravariant |

vector fields. By definition we have
D(X*Y,) = D¢ = dp = d(X"%;) = (dX")Y, + (X" dY,.

On the right-hand side the differentials d X*, dY, are replaced by means of the i
corresponding absolute differentials DX*, DY, in accordance with (3.17) ;

and (3.26), respectively:
D(X"Y,) = (DX" — T X' dxMY, + X"(DY, + T, Y, dx")

= (DX"Y, + (X" DY,, (3.27)

where, in the second step, we have taken into account the fact that the two Z
terms involving the I'}", cancel (after an interchange of indices). This result 3
suggests that the product rule of ordinary differentiation holds also for }

absolute differentials.

3.4 ABSOLUTE DIFFERENTIALS OF TENSOR FIELDS

We have seen that the ordinary differentials of co- or contravariant vector §
fields are not tensorial. This is true also for differentials of tensor fields of
higher rank, as is immediately evident by differentiation of the transforma-
tion law (3.1) of a type (r, s) tensor. However, if it is supposed that our dif- |
ferentiable manifold X, is endowed with a connection—as will be assumed 4
here—it is a simple matter to construct the absolute differential of a tensor ;
field of arbitrary type. This is done by differentiation of (3.1) and the sub- }
sequent elimination of all unwanted expressions by means of (3.15) and (3.22) }

in terms of the connection coefficients. Again, in order to avoid an unneces-

sarily complicated calculation, we illustrate this process for the case of a |

type (1, 1) tensor field.

Let us therefore consider a tensor field T2(x?), whose transformation law is 1

; ox’ oxt
1= oxPox ™

Thus the differentials of TZ relative to the two coordinate systems are 3

related according to
%%/ ox" ox/  0%x" ox’ ox*

aTi = 2% 9% 1y
ax7 ok o ThAX * o5 v ow ox 3%

Clearly the first two terms on the right-hand side of (4.2) are to be eliminated: }

we shall deal with each one of them in turn.

(@.1) |

S TR + S ogdT] (42) ]
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To the first term we apply (3.15), which gives

o*x)  ox* ox’ ox" 0%\ ox"
- TP k __ (" 1ra _
OxP 0x* ox' T} dx <6x“ L — T, xP Ox* ) oxt T} dx".

In the second expression on the right we invoke the transformation law
(4.1), together with the inverse of (3.6); in both expressions various indices
are relabeled. We thus obtain

a%x) ox" ox’) ox"

TP dx* =

¥4 m k _ T Jj g Jss
p or o T Th dxt — T, T dz (4.3)

To the second term on the right-hand side of (4.2) we now apply (3.22) and
proceed similarly:

o*x" ox/ o OxM . ox o _ X ox* ., 0%’ -
W ow o P T g g ThAR — aage Ty s T3
o B
=Ty, T)dx* 5’% a’f T, T2, dx*, .4

We can now substitute (4.3) and (4.4) in (4.2), placing all terms involving
T and T on the left-hand side, which yields

dT{ + T/, T} dx* — T4, T} dx°
ox/ ox"
= oxP 0%

Direct inspection of this result clearly indicates that the quantities defined by

22 @T? + T2 Trdx* — T, TE dx¥).  (4.5)

DT? = dT? + (T, 7. T — T, TE) dx* (4.6)

represent the components of a type (1, 1) tensor field. Accordingly we regard
(4.6) as the definition of the absolute differential of a type (1, 1) tensor field.
The same process, applied to the general transformation law (3.1), yields

the following expression for the absolute differential of a type (r, s) tensor
field:

r
J1eedr — J1e-ir Ju it e - 1mj, R 8 k
DT ! ll"'ls e dT ! ll"'ls + Z rm kT ! ! =+t ll"'ls dx
=1
s
m '
- Z r T l. g imig s yools dx”. @.7
B=1

Clearly (3.17), (3.26), and (4.6) are special cases of this formula. For future
reference we note also the following equally important particular cases:
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first, for a type (0, 2) tensor field we have
DU, = dU,; — T/" U, dx* — T" U, dx*, (4.8)
and second, for a type (2, 0) tensor field
DVY = 4dv¥ 4+ T, L V™ dx* + I, V™ dx~. 4.9)
We are now in a position to state the basic laws of absolute differentiation:

1. The absolute differential of a type (r, s) tensor field is a type (r, s)
tensor; in particular, the absolute differential of a scalar field is its ordinary
differential (so that the absolute differential of a constant vanishes identically).

2. The absolute differential of the sum of two tensor fields of the same
type is the sum of the absolute differentials of these fields.

3. The absolute differential of the product of any two tensor fields is
given in terms of the absolute differentials of each of these fields by a rule
which is formally identical with the product rule of ordinary differentiation.

Statement 1 is a direct consequence of our construction, while 2 follows
directly from the linearity of the right-hand side of (4.7) in T""_.. The product
rule 3, of which we have already encountered an example in (3.27), can also
be derived in full generality directly from (4.7). Again, in order to avoid a
profusion of indices, let us verify it for a special case, namely for the product
of a type (2, 0) tensor field with a type (0, 1) field. Accordingly we shall consider
the product

TH, = VYY,. (4.10)

From (4.7) we have

D(TY,) = d(TH) + (T,5 T, + T4, T, — T,m TY, ) dx*,  (4.11) §

in which we substitute from (4.10), which gives TERV
D(VYY,) = (dVY)Y, + V”;(d Y,)

+ (T V™ 4 L0 V™) dxtY, — VIT," Y, dx).  4.12) §

From (4.9) it is evident that the coefficient of Y, in this expression is simply §

DVY,_ while according to (3.26), the coefficient of V¥ is DY,. Thus (4.12)
reduces to

D(VYY,) = (DVY)Y, + VY(DY,) @.13) |

as required.

Before concluding this section we remark that the above definitions and §
rules of absolute differentiation are valid for any set of connection co- ;

efficients I',',(x). Our conclusions depend solely on the transformation law

(3.16) of the connection . coefficients. For instance, if we are given another {
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connection, say [,},, satisfying the same transformation law, namely,

=, _ o oxhoxk o 2% ox" ax*
mr = oxl 5 0x7 | M % ox oxF OR" Ox “4-14)
we can use these alternative coefficients to construct absolute differentials
of tensor fields as in (4.7): naturally the numerical values of the components
of these absolute differentials will differ from those previously constructed,
but we will again obtain tensors of the required type. This is also immediately
evident from the fact that the right-hand side of (4.7) is linear in the connection
coefficients, for it follows immediately by subtraction of (4.14) from (3.16)
that the differences of the respective coefficients of two connections constitute
the components of a type (1, 2) tensor field:
. . oxox" ox*
By =Ty = o 2 2 (T — T (@15)
This conclusion entails further important consequences. Let us decompose
a given affine connection I',}, into its symmetric and skew-symmetric
parts according to the usual rule:

Ol = 30 + Td) + H( — T (4.16)
The connection is said to be symmetric if
=10, 4.17)

that is, if its skew-symmetric part vanishes. However, if I',}, represents
a connection, so does I'}},, as is immediately evident from (3.15) in view of the
symmetry of 82%//0x" dx* in the indices # and k. Thus, as a special case of
(4.15) with T}, = I}},, we infer that

L — Ty (4.18)
is a tensor. This is often referred to as the torsion tensor of the connection.
Clearly, if (4.18) vanishes in some coordinate system, it will vanish in any

other system, and accordingly the symmetry condition (4.17) is independent
of the choice of the coordinate system.

3.5 PARTIAL COVARIANT DIFFERENTIATION

The relation between the differential df of a function f(x*) of class C! and
the partial derivatives of f is given by df = (9f/0x*) dx*. This immediately
raises the question as to the existence of a counterpart of this relation for
absolute differentials: clearly it is necessary, for this purpose, to construct a
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tensorial analogue of partial derivatives. Again, this is easily achieved by |

means of a given connection.

For the sake of simplicity we shall consider once more a contravariant ]
vector field X" = X*(xP) of class C! on X,, whose transformation law is

given by

Xi(zl) = % XH(x) (5.1) “

In the preceding section we saw that the partial derivatives of X*(x?) are :
not tensorial; indeed, according to (3.5) these derivatives transform according $

to
ox" ox' ox*”

v _ o9 o
oxt ~ ox"ox* oxt

Again we eliminate the first term on the right-hand side by means of (3.15).

To this end, we multiply (3.15) by (8x*/0x")X*, after which we apply (14 @

and (5.1) to the second term on the right:

___alx_J_.ai h-.é—cirp a_kah_.l:j @E@_x"
ox"oxk oxt T oxr Mk ox! ™ P ox" ox* ox'
DA = |
Bx’ ax L S |
axp a rhkah L xm (5.3) W

This is substituted in (5.2), which yields

oxi .- ox! ox* (oXP
4T X = 2 X"
ax o axpax'<ax ML >T\£
showing that the quantities defined by . . ‘ -
ox?e ' ‘ 3
Xf = =5 + T2 X" 4 §

constitute the components of a type (1, 1) tensor. We refer to (5.4) as the
covariant derivative of the contravariant vector field XP(x*). Since dX? = i
(0XP/0x*) dx*, it follows immediately from (5.4) and (3.17) that the absolute ]

differential DX? is given by

DX? = X}, dx* (5.5)

for any displacement dx*. This is the counterpart of the relation referred to in

the opening sentence of this section which we have been seeking.
[Many texts use the following notations for (5.4): X%; X¥,; V, X?; we
adhere consistently to the notation given in (5.4).]

2 §
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Clearly a similar process can be applied to a covariant vector field Y,(x*),
and it is found that the covariant derivative of this field may be defined as

dy,
Yo = é‘_x: - 0% Y, (5:6)
for which we again have
DY, = Y, dx*

by virtue of (3.26).
The (partial) covariant derivative of a type (r, s) tensor field Tj"""’,‘m,s is
defined to be

) . 6’1“]1 o
TJ:---Jrllmlslk — ax s 4 Z F Jo TJ: e 1Mjas1e: Jrl o,
a=1
S s .
= XTIy mig e et 5.7
=1

so that, according to (4.7), we have

lemjrll-»-!,|k dx* = DTJ':'“jrhmls (5.8)

for any displacement dx*.
The laws of partial covariant differentiation may be summarized as
follows:

1. The covariant derivative of a type (r, s) tensor field is a type (r, s + 1)
tensor field; in particular the covariant derivative of a scalar is its ordinary
derivative (so that the covariant derivative of a constant vanishes identi-
cally).

2. The covariant derivative of the sum of two tensor fields of the same
type is the sum of the covariant derivatives of these fields.

3. The covariant derivative of the product of any two tensor fields is
given in terms of the covariant derivatives of these fields by a rule which is
formally identical with the product rule of partial differentiation in the
usual sense.

Statement 1 is an immediate consequence of our construction, while 2
follows directly from the linearity of the right-hand side of (5.7) in T ..
The product rule 3 may be verified by direct calculation as in the case of
absolute differentials. Thus operations with covariant derivatives are very
similar to those of ordinary differentiation. There is, however, a certain
aspect which entails a distinction of profound importance. This involves the
order of repeated covariant differentiation, which will be treated in the next
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section. Another feature which is also peculiar to covariant differentiation }

may be illustrated by the following important special case.
Suppose, for the moment, that our differentiable manifold X, is endowed

with a type (0, 2) tensor field a,(x') of class C' on X, it being assumed that

this tensor field is symmetric:

apx') = a(x"). (59) §

The transformation law satisfied by this field is ;
_ . OX) OXP

ahk(xl) = ajp(x )w 2 (5.10) |

Let us differentiate this relation with respect to x, using the chain rule:
day, Oa;, ox) ox° ox™ _  O*x ox® ox/ 0°xP
“Ohk e+ 8, a7 + Ay 5 Ak
oxt  ox™ ox" ax* ox! P 5x! oxP ax* P ox" ox' ax*

We shall endeavor to solve this system for the second derivatives 02x//0x" 0x*. ]
In order to do so, we permute the indices A, k, [ cyclically, which gives rise |

to two additional counterparts of (5.11):
Oay; 0ajp6_>_cj OxP ox™ . 0*x/ oxP +z @ o*xP
ox* — ox™ ox* ox' ax" P 9x" 9x* ox! P ox* ox" oxt’

and
day, _ 0a;, OX’ OxF X" o*x’  ox*F ox’ 9°x”

axk T Bxm X ox" axk | P axFox! ax" T axl axF ot

Here it is to be noted that, by virtué of the symmetry assumption (5.9), the 1
second term on the right-hand side of (5.11) is identical with the last term

on the right-hand side of (5.12), for the former may be written as

oxP 9*x/ _ ox) o9%xr _ ox) 9%xr

4. — =g i —— = . — .
P axk 9xt ox" Pi gx* gxh ox! P gxk oxPt ax!

Similarly, the third term on the right-hand side of (5.11) may be identified 1
with the second term on the right-hand side of (5.13), while the remaining two 3
terms in (5.12) and (5.13) involving the second derivatives of X/ and x” are §
also respectively identical. Thus if we subtract (5.11) from the sum of (5.12) §

and (5.13), it is found that
day | Oay _ Paw) _ . O°X OX7  0d, 0% 0% 05"
ax"  ox* oxt | T “Yr ax oxk axt T ox™ ax* 0x' ox"

(511 |

(5.12) ;

+dy e+ a 5.13) B
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After a suitable change of the indices j, p, m in the second and third terms on
the right we may write this relation in the form

1/%ay | Oay,  Oay _ 3*x! oxP
2 TP gxt oxk ox!

oxP  ox*  ox!

1 (0 , 08n; _0a;,) 0%’ OS7 OX
oxi " oxP %™

> oo O
This suggests that, in analogy with (2.5.14), we define the Christoffel symbols
of the first kind with respect to the symmetric tensor field a,(x') as follows:

@ 1[/0a, 0a da
a3 (T + - 50), (519)

where it is to be noted that the superscript (a) is intended to emphasize the
fact that these quantities are defined by means of the given tensor field
a,(x'). Thus, after changing a few indices, we can write (5.14) in the form

@ @  9x19x™oxF _  0*x® Ox?
e = Lams G535 330 ok Bar G o ol -16)

from which it is immediately evident that the Christoffel symbols are not
tensorial.

However, this relation is strongly reminiscent of the general transforma-
tion law (3.16) of a set of connection coefficients, and we now show how (5.16)
may be used to construct a particular connection from the given tensor
field a,,, provided that this field is nonsingular in the sense that a,, possesses
an inverse a* everywhere:

aya' = 8. (5.17)

Since ay, is a type (0, 2) tensor (see Problem 3.23), its inverse a* is a type (2, 0)
tensor, whose transformation law is given by

ox' ox’

aljz asr .
0X° 0x

(5.18)

.If this is multiplied by dx™/0x', the identity (1.4) being taken into account,
it is found that

lj a)_cm —=sr sm axj —=mr 6xj
o T e T o -19)
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We now multiply (5.16) by a“, applying (5.19) twice on the right-hand side: i

@ @  9x10x? [ ,, 0xX™ COXP\  92x4
ar,, =T (a” —) + qup(a“ -—

P oxh oxk ox! ax' | ox" ox*
@  9x/ 0x% 0xP 9*x1 ox’
—gmvp, XXX g ogr S 2T
™ o5 oxh oxk | Cr % 5 oxk ox

@ ) Ox7 0% OXP + ox' %
T\ e | 5% 6% oxF T ox ox" ox*’

where, in the last step, we have used (5.17). In analogy with (2.5.19) we now _
define the Christoffel symbols of the second kind with respect to the symmetric %

tensor field a,,(x") by

@

and it follows directly that the transformation law of these quantities is

given by

WET oz \ox" oxk 1P T oxF axt
or alternatively, if we multiply by 0x™/0x/, applying (1.4) in this process,

i T
1P 9xhoxk T oxi T oxPaxt”

@) j T <P (a) 2zr
(1_) ;o 0x <5x‘1 oxr @ %% )’

However, this is identical with the general transformation law (3.15) satis-
fied by any set of connection coefficients. It therefore follows that the Christof-
fel symbols of the second kind defined as in (5.20) with respect to any symmetric }
nonsingular type (0, 2) tensor field of class C* represent the components of an

affine connection on X ,,.
Moreover, it is immediately obvious from the definition (5.15) that

@ @

hik = | PN
and hence, by (5.20),
@ @
e = Ty (5.24)

The Christoffel symbols therefore define a symmetric connection in the sense }
of (4.17), and, as we have seen at the end of the last section, this symmetry {

property is independent of the choice of the coordinates, despite the non-
tensorial nature of the connection coefficients.

. @ |
Iy = aljrmzu (5-20) §

(5.21) |

(5.22)

(523) §
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Also, if we permute the indices 4 and [ in (5.15), we have

@ 1(0ay, Oay, Oay
r”‘"‘z(ax’ Tk T o)

and if this is added to (5.15), the symmetry property (5.9) being observed,
we obtain the useful identity

@ @ da
r,+10, ==-"2,
hik Lhk Oxck

(5.25)
Moreover the covariant derivative of the given tensor field a,,(x*) with respect
to the Christoffel symbols (5.20) is given by

da @) @
_ hl m m
Qpiik = Fr A Uy — i I},

or, if we use the inverse of (5.20),

_Oay @ @
Ap i = ox* nik = L gnk-

It therefore follows from (5.25) that
A =0 (5.26)

identically. It has thus been shown that the covariant derivative of any
symmetric nonsingular type (0, 2) tensor field vanishes identically whenever
this covariant derivative is defined in terms of the connection whose coef-
ficients are the Christoffel symbols defined with respect to the given tensor
field. Similarly

at, =0; (5.27)

it should be remarked, however, that the identities (5.26), (5.27) are in general
only valid for the special connection constructed here.

3.6 REPEATED COVARIANT DIFFERENTIATION

We have seen that the partial covariant derivative of a type (7, s) tensor field
gives rise to a type (r, s + 1) tensor field. Clearly the latter may be differentia-
ted once more, yielding a type (r, s + 2) tensor field. For instance, given a
class C? contravariant vector field X(x*), we may construct the covariant
derivatives X}, and subsequently X7,,. This is analogous to forming the
second partial derivatives 02¢/0x" dx* of a scalar function ¢(x") which is
twice continuously differentiable in all its arguments. However, for such a
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function the symmetry relation

o%¢ ¢

ox" 0x* ~ ox* ox"

holds identically, and the question now arises as to whether the order of '
repeated partial covariant differentiation of tensor fields is also immaterial. 1

It will be seen that the answer to this question is generally in the negative; ;
indeed, this fact gives rise to a distinction between the processes of ordinary 1
and covariant partial differentiation which is of paramount importance. We
shall now consider this situation in some detail for the case of a contra- §
variant vector field whose components X¥(x*) are class C? functions of the 4
coordinates. Again we have to assume that our differentiable manifold X, |
is endowed with a connection I';/,, so that, according to (5.7), we can form the
covariant derivatives j

). € 1
X, = X + T X : 6.2) 4

and
X{hlk 6 e (X]'h) + I,/ k(X N — T, k(Xu) (6.3)

In analogy with (6.1) we must now examine the symmetry properties— 1
or rather, the lack thereof —of the tensor X}, in the indices 4 and k. To this §
end we have to analyze (6.3) with some care. Thus we substitute (6.2) in the |
first two terms on the right-hand side of (6.3) and carry out the required §
differentiation of the first term. (It will be evident almost immediately why ‘:
we leave the third term in (6.3) unchanged.) It is thus found that ;

. 8 [oXx/ axm ;
Xine = R ( + rthX) + I’ (6 w+ " th) — Tl

a h
22X/ ar, A ox! oxm
= r.J 2
6x"6x ox* X+F”'6"+ mk oxh i
+ A Dm X — T X (64) 4

A similar result is obtained when the indices h, k are interchanged in this ]
relation, namely ]

. ¢l or/ ). & . oxm™ . .3
cag t R X+ T+ Dl + LATm X — TG X-
ox" ox ox 0x ox

6.5)]

Equation (6.5) is now subtracted from (6.4). In the course of this process we;
note, firstly, that the ordinary partial derivatives 2X7/dx* dx* are symmetric

J _
X =
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since X’(x") € C?, and secondly, that a change of the indices ! and m in the
third and fourth terms, respectively, on the right-hand side of (6.5) gives rise
to the expression

axm ; X!

J
F lhaxk,

mk ax).

which is identical with the sum of the fourth and third terms on the right-hand
side of (6.4). Accordingly it is found that

. . or/ or/
Xk — X = ( ax =32 6xl"k +

rmjk ", — mjh rlmk)X - (Fhlk =T klh)X {1-
6.6)

We now recall that, according to (4.18), the coefficient of X {, in the last
expression on the right-hand side is a tensor, the so-called torsion tensor,
to be denoted as follows:

Sh k= Fh Kk Fk h* (6'7)

A specific notation is also introduced for the coefficient of X' in (6.6), namely
ar/, or/ )

Kl = ox 'kh axl L+ 050 — 00 (6.8)

Thus if (6.7) and (6.8) are substituted in (6.6), we finally obtain
X]ihlk - Xijklh = Ktjthl - ShlkX]il’ (6-9)

This is the relation which we have been seeking; it should be scrutinized
in some detail. It is known that the left-hand side is a type (1, 2) tensor,
while the same is true of the second term on the right-hand side. Accordingly
the remaining term, namely, K/,, X', is a type (1, 2) tensor, and since the
vector field X'(x*) is completely arbitrary, it is inferred that the quantities
defined by (6.8) constitute the components of a type (1, 3) tensor, the so-called
curvature tensor of X,. [The reason for this nomenclature will become
evident presently. Also, the reader should verify the tensorial nature of (6.8)
by direct calculation, using the transformation law of the connection
coefficients.] SR

It will be seen that, in general, the curvature tensor does not vanish.
Therefore, even for a symmetric connection, for which S,} = 0, one is
compelled to conclude from (6.9) that one must always distinguish between
the tensors X{,, and X{,,,. This state of affairs can be interpreted geo-
metrically, as will be seen in the next section. Furthermore, similar con-
Clusions may also be reached for other types of tensor fields; for instance,
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. " . ..
for a class C? covariant vector field Y{(x") one can prove in a similar manner
that

J J

Again, by direct calculation it is easily shown that for any class C? tensor
field T+, of type (r, s) the general formula reads as follows:

j1+-+J; — it
T g — T 1y--Islk|h
r
— J J1reJa - 1M 4 14+4]
- Km “hk T - '1‘...15
a=1

s

-2 K, " Tj'mjrlr-.lp_mu,,ﬂ---l, - Shkajlmj'h.--um- (6.11) ;
=1 ]

Particular cases of special importance are the following:
Tﬂlhlk - Tﬂiklh = ijhk ™ + Kmlhk T — Sh"x Tﬂlm’ (6'12)‘
and :
T}llhlk = Ty = — K" T — K" Tim — S Ty (6-13)‘

The relations (6.9)—(6.13) are often referred to as the Ricci identities.

3.7 PARALLEL VECTOR FIELDS

We shall now turn to some geometrical implications of the process of

covariant differentiation. The focal point of our analysis will be the concept |
of parallelism on a differentiable manifold X, endowed with an affine :

connection (Levi-Civita [1]). Again we shall consider contravariant vectors
in the first instance, and we shall endeavor to establish criteria—if possible—

according to which two vectors defined at distinct points of X, can be re- |
garded as being parallel to each other. Thus, since different points of X, are |

involved in this problem, it is evident that the connection coefficients
I',/, will enter into our analysis.

Let us first recall an analogous situation in an n-dimensional Euclidean
space E, which was considered in Section 2.5, namely, the characterization

of parallel vector fields in E, referred to curvilinear coordinates. It was seen |
that a field of parallel vectors of constant length can be described by the »

partial differential equations (2.5.22), namely

ox/

W + {hjk}Xh =0, 7.1)

Yimk = Yipgn = _Kjlhk Y, — S Y- (6-10);
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in which the Christoffel symbols (2.5.19) are defined by means of (2.5.14)
in terms of the symmetric tensor g, associated with the curvilinear system,
the determinant of this tensor being positive (see Problem 3.23). However,
if one compares the definitions (2.5.19) and (2.5.14) with the relations (5.15)
and (5.20), it becomes evident that the Christoffel symbols (2.5.19) are
identical with the connection coefficients (5.20) constructed as in Section 3.5
for the case a,, = g,,; that is,

A (@
{hjk} = rh’k' (7.2)

It follows that the partial differential equation (7.1) which characterizes
the parallel vector field is simply of the form X/, = 0, in which the partial
covariant derivative is defined in terms of the special connection (7.2). In
particular, for an arbitrary displacement dx* we then have by virtue of the
identity (5.5)—which is valid for any connection—that

DX’ = X{k dx* =0 (7.3)

for a parallel vector field in E,.

We shall allow ourselves to be guided by this analogy from Euclidean
geometry in the course of our analysis on the manifold X,. Let us consider
a curve C on X, defined parametrically by the equations x/ = x/(t), where t
denotes the parameter of the curve, it being supposed that the functions
x/(t) are of class C*. The curve C passes through two fixed points P, and P,
of X,, these points corresponding respectively to parameter values ¢, and
t, (t; < t,). The vector field

i AX!
xt) = I (7.9
consists of tangents to C.

Now let us suppose that we are given a contravariant vector field X9(z)
defined at each point of C in the interval t, < t < t,, it being assumed that
the components X(t) are continuously differentiable functions of the
parameter ¢. [It should be noted that this does not imply that the X/ can be
represented as class C' functions X/ = X/(x*) of the coordinates of X,;
this is possible if and only if the X’ are defined over a finite n-dimensional
region of X, whereas in the present context the X7 are given merely along
a one-dimensional locus.]

By analogy with (7.3) we shall now introduce the following definition:

The vector field X/(t) is said to be parallel along the curve C if it satisfies the
differential equations

DX’ = 0 along C. (7.5)
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By virtue of the definition (3.17) of the absolute differential this condition

is equivalent to

dX7 + I, X" dx* = 0, (7.6) §
or, in terms of derivatives with respect to the parameter ¢,
dx’ . dx*
rJXxr=—=0o. 7.7) i
o P IhX o (7.7

In this formulation of the definition of parallelism the phrase “along the

curve C” appears repeatedly. This is due to the fact that the explicit form of ]
the differential equation (7.7) depends essentially on C; we shall see that this

circumstance has implications of profound importance.

An equivalent description of this concept of parallelism may be presented
as follows. Suppose that we are given a vector X7, at the point P, of C,
corresponding to the parameter value ¢t = t,. The vector X{;, + dX’ at the
point Q of C corresponding to the parameter value t + dt is said to result
from the parallel displacement of X{,)from the point P to the point Q if the
corresponding increment dX/ is given by (7.6). The continuation of this process
of parallel displacement of X7, along C from P, to P, is tantamount to the
construction of a vector field X¥(r) along C which satisfies the differential
equation (7.7) along C. This vector field is therefore parallel along C ac-
cording to the original definition. Clearly the process of parallel displacement
of X{,, from P, to P, is equivalent to the integration of (7.7) along C; thus,
if we denote the values of the components thus obtained at P, by X{,,, we
may write

2
Xl = X, —f 7 (X He)xM() dt. (7.8)
&t

Here it is to be clearly understood that the integration is to be performed
along the given curve C, which implies, inter alia, that we must substitute
in the integrand on the right-hand side of (7.8) for x' = xXt) and x* = xX¢)
as functions of ¢ as prescribed by the parametric equations defining C. From
this, however, it follows that in general the values of X {2, at P are crucially
dependent on the given curve C: in fact, these values would be independent
of C if and only if

T, Xhxk dt (7.9)

were an exact differential, and there is no reason to suppose that this is true.
As an immediate consequence of this state of affairs we are confronted with
the following phenomenon. Let us consider another class C! curve, denoted
by C*, which joins P, to P,. Again starting with the vector X, at P,, we
proceed to displace this vector from P, to P, by parallelism along C*. In the
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Fig. 6

relation corresponding to (7.8) the integrand assumes completely different
values and therefore, in general, the vector X fzf) thus obtained at P, will differ
from X/,, (see Figure 6):

XY, # Xy (7.10)

This is in stark contrast with our notion of parallelism in Euclidean geo-
metry. In the latter, given any two points P,, P, and a vector X{;, at P,,
the vector at P, which is parallel to X/, at P, is uniquely defined (except
for its length), irrespective of any curve or curves joining P, to P,. In the
case of a general differentiable manifold endowed with a connection the
corresponding situation is not nearly as simple. In fact, all that can be said
in the present context is that the vector X {2) at the point P, of X, is obtained
from the vector X}, at the point P, of X, by parallel displacement along the
curve C; similarly X¥%) is obtained by parallel displacement along the curve
C*. Thus in general there is no absolute parallelism; that is, there is no concept
of parallelism which does not depend on the choice of some curve joining
the points P, and P, at which the vectors X}, and X/,, are to be compared.

It is only for points which are infinitesimally close to each other that this
difficulty does not arise. For, given any contravariant vector X’ at a point
P with coordinates x*, a unique vector X’ + dX/ at a neighboring point Q
with coordinates (x* + dx*) may be defined by requiring that d X/ be given by

dXi = —T,J, X" dx*, (7.11)

where I',/, is to be evaluated at P, while dx* refers to the displacement PQ.
Because of (7.6) it is consistent with our definition of parallelism to say that
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the vector X7 + dX’ thus constructed at Q is parallel to the vector X’ at P. '
Accordingly we always have what may be loosely called a form of local ]

parallelism. In particular, since X/ is an element of the tangent space T,(P) of

X, at P, while X/ + dX7 is an element of T,(Q), this local parallelism provides |
us with a method of relating elements of distinct tangent spaces belonging }
to neighboring points of X,. In fact, by means of our affine connection 1
I/, a unique mapping of T,(P) onto the tangent space T,(Q) of a neighboring

point is defined in this manner.

The phenomenon illustrated by the inequality (7.10) is referred to as the §
nonintegrability of the parallel displacement; this nomenclature is motivated 3
by the fact that the integral on the right-hand side of (7.8) depends on the

choice of the curve C.

The particular example of parallel vector fields in a Euclidean space 3§
indicates, however, that under certain special circumstances an integrable
parallel displacement may be possible, and we shall now investigate the
conditions which must be satisfied in order that this be feasible. Let us sup- 3
pose, for the moment, that our X, is such as to permit the introduction of }
affine connection coefficients I/, of class C' which are such that the paraliel 3
displacement of a given contravariant vector X i}, at P, leads to a unique 3
vector X7 at any other point P of X,; that is, the same vector X7 is obtained 4
at P for all class C! curves joining P, to P. The coordinates of P are denoted §
by x*, and the vector X’ thus constructed at P will naturally also depend on |
these coordinates. Our construction therefore gives rise to a contravariant ;
vector field X/ = X’(x*) over a finite n-dimensional region G of X, containing &
P,. By construction, this field is of class C2, so that its covariant derivative ¥
X, is defined on G. Thus according to (5.5), we may write DX/ = X{, dx"
for any displacement dx", and, since our construction implies by virtue of ]

(7.5) that DX’ = O for arbitrary values of dx", it follows that our parallel

vector field satisfies the system of n? first-order partial differential equations 1

Xf;. =0 (7.12) |
on the region G. Written out in full, this system is
ox/ .
i -/, X" (7.13)

As a result of our assumption that a class C* vector field X/ exist such
that (7.13) is satisfied, this implies that the partial derivatives of the left-hand
side with respect to x* be symmetric in the indices h and k. We therefore
differentiate (7.13) with respect to x*, which gives

o2 x/ ors, ax!
v T lhxt
ox* 9x" ax* Ph gxk
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In the second term on the right-hand side we must replace 8X* /dx* in accor-
dance with (7.13), so that we obtain
2x/ r;/ .
ox —a_)é—khxl + rljhrmlkxmy

ok ox" 0

or

oxkoxt X

A similar relation is obtained by an interchange of the indices h and k, fr.om
which (7.14) is subtracted, the postulated symmetry of the left-hand sides
being taken into account. It is thus found that
orf, ary o e
(FX% - _6;1"—" + Iﬂm]krl h rmlhrl k)Xl = 0.

2yi J
o X (_ oin r,,,ﬁ,r,m)x’. (7.14)

If we now invoke the definition (6.8) of the curvature tensor, we see-that this is
equivalent to

Ky X' =0. (7.15)

This relation represents a necessary condition which must be satisfied by
the vector field X'(x*) if it is to be parallel in the sense of (7.12)t.

It is easily seen that this condition cannot be satisfied in general. Given an
affine connection on X, the curvature tensor is uniquely defined by (6.8) at
each point of X,: the values of its components are therefore specified irre-
spective of the vector field X ! Thus at the initial point P,, for an arbitrary
initial contravariant vector X, the left-hand side of (7.15) will not generally
vanish, and by continuity it follows that (7.15) cannot be satisfied on a
finite n-dimensional region containing P;.

It should be remarked, however, that there are some exceptions. It is
sometimes possible to construct certain special connections on a manifold
for which the curvature tensor possesses particular properties which are such
as to admit the existence of one or more special vector fields X’ such that
(7.15) is satisfied. Under these very special circumstances certain parallel
vector fields may exist, but in this case, it is also necessary to investigate the
integrability conditions of (7.15). Because of the specialized nature of these
affine connections and vector fields we do not pursue this matter here.

A special case of more immediate interest is represented by a differentiable
manifold X, on which one may construct a connection for which the curva-
ture tensor vanishes identically. This phenomenon is independent of the

% Clearly (7.15) can also be derived directly by substitution of (7.12) in (6.9); however, the
above derivation affords a better insight into the structure of the curvature tensor.
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choice of the coordinate system on X,, and under these circumstances X,
is called a flat space. For instance, the Euclidean space E, is flat in this sense.

This is due to the fact that E, admits a rectangular coordinate system in which 1}

the components of the tensor g,; are constants, so that, by (2.5.14) and (2.5.19),
the Christoffel symbols (7.2) vanish everywhere in these coordinates, and
according to (6.8) this entails that the components of the curvature tensor are
identically zero.

However, if

Kl =0 (7.16) |

on X,, it is obvious that (7.15) is satisfied automatically, and no further |

integrability conditions have to be considered. Under these circumstances
the condition (7.15) is not only necessary but also sufficient for the existence
of parallel vector fields, because (7.8) merely depends on the integral of an
exact differential. This is easily verified by a calculation very similar to that
giving rise to (7.14). The condition (7.16) is therefore sufficient for the existence
of parallel vector fields on X ,. In fact, given an arbitrary initial contravariant
vector X {,, at an arbitrary initial point P, of X, one can, if (7.16) is satisfied,
construct a vector field X/(x") on a finite region containing P,, each vector
of which is parallel to X {1) at P, in the sense of (7.12).

As an example of the general concept of parallelism on a differentiable
manifold X, let us consider the field of tangent vectors %/(t) of a class C?!
curve C. The absolute differential of this field is given by

DxJ = d%/ + T, J %" dxk,

and in accordapce with our definition (7.5) the tangent vectors are parallel
along C if Dx/ = 0 along C, that is, if the functions x/ = x/(¢) satisfy the
system of n second-order ordinary differential equations

d>x/ ; dx" dx*
a2 + 1w dr ar (7.17)
For a curve of this kind the tangent vectors are therefore generated by parallel
displacement: this represents an obvious generalization of the corresponding
property of the straight lines of Euclidean geometry. [Alternatively, a
comparison of (7.17) with the differential equations (2.5.25) of straight lines
in E, clearly points to the fact that (7.17) and (2.5.25) have formally the same
structure.]

On a differentiable manifold X, endowed with a connection I',/, the curves
satisfying the differential equations (7.17) play a special role; they are often
referred to as autoparallel curves or paths of X,. For this reason an affinely
connected manifold X, is sometimes called a space of paths (and, in the past,
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a non-Riemannian space) (see Eisenhart [3], Thomas [1]). The concept
of paths on a manifold endowed with a connection should be regarded as a
natural generalization of the notion of straight lines of Euclidean geometry.

The parameter ¢t which appears in (7.17) is always regarded as an invariant
under coordinate transformations. However, it should be remarked that if ¢
is replaced by another parameter 7 as a result of a class C? parameter trans-
formation t = #(z), where 7 is again an invariant, the structure of (7.17) will
be affected whenever ¢(z) is a nonlinear function of z. Thus the characteristic
structure (7.17) of the differential equations of the paths is dependent on the
choice of the parameter t. This phenomenon is reflected also in the equation
(2.5.25) of the straight lines of Euclidean geometry, in which the parameter s
is the arc length.

3.8 PROPERTIES OF THE CURVATURE TENSOR

In this section we derive some important algebraic and analytical properties
of the curvature tensor as defined by (6.8). Although this definition appears
to be somewhat complicated analytically, it gives rise directly to simple
identities which are satisfied by the curvature tensor, and, when calculations
involving the latter are performed, one usually uses these properties instead
of the expression (6.8).

The first identity expresses the skew-symmetry of the curvature tensor in
its last pair of indices:

Kljhk = "Ktjktn (8.1)
which is immediately obvious from (6.8).
The second identity is obtained when one permutes the indices [, h, k

in (6.8) cyclically, thus obtaining two similar relations. These are added to
(6.8), and after collecting terms in the manner indicated below, one obtains

Kljhk + Khjkl + Kkjlh
0 J J 0 J J 0 J j
=W(r1h_rhl)+5§7(rhk_rkh)+m(rkl—rlk)

+ A" — T + LI — 07 + OO — T, (82)

Here it is to be noted that the skew-symmetric parts of I',/, appear in a
definite pattern. Accordingly we introduce the torsion tensor (6.7), so that
(8.2) can be written in the form

Ky + Kilu + Ky,
— N + Sy + a8/,

ok T ad g T IS A TAST + DAST (83)
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The left-hand side of this relation is obviously tensorial, while the individual
terms on the right-hand side are nontensorial. This suggests immediately
that we must replace the partial derivatives of the torsion tensor by its
covariant derivatives. We therefore recall that, by definition,

as ljh

J —
S; K = ook

+ ijk Slmh - rlmk Smjh - Iﬂhmk Sljm' (84)

Again the indices I, h, k are permuted cyclically, and the relations thus
obtained are added to (8.4). This yields

Sljhlk + Shjkll + Skjllh

oS/ oS’ AR . . . .
= a;kh axhlk + a;hl + L0 S™ + S5+ LS — SPmTa™
- Smjl rkmh - Smjhrlmk - Shjmrkml - Smjk l_‘hml - Skjmrlmh- (85)

The sum of the first six terms on the right-hand side of (8.5) is identical with
the right-hand side of (8.3). Also, because of the skew-symmetry of the torsion
tensor in its subscripts, the last six terms in (8.5) can be combined in pairs as
follows:

— ST = Ty™) — SfnT™ — T — S0 — T
= _Sljmshmk - Shjmskml - Skjmslmh‘
Thus when (8.5) is substituted in (8.3), it is found that

Kljhk + Khjkl + Kkjlh = Sljhlk + Shjkll + Skjllh
+ Sljmshmk + Shjmskml + Skjmslmh‘ (86)

This is the identity which we have been seeking. In particular, for a sym-
metric connection (S/,, = 0), one has

Kiw + Ky + Ky =0, 8.7)

which is already directly evident from (8.2).

The third identity which we shall require involves the covariant derivatives
of the curvature tensor. In order to obtain this result we shall proceed
somewhat indirectly as follows. Given some class C> covariant vector
field Y}(x"), let us differentiate (6.10) Acovaria.ntly with respect to x?:

Yimwir — Yot = — YK ap = Yo Kime = YimSi"p = YiimipSu™e (8:8)
Again a cyclic permutation of the indices h, k, p is performed, and the resulting
two equations are added to (8.8). In the relation thus obtained all terms are

—
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collected as indicated, which yields the following result:

Yr = Yamptd) + Ko — Yianip) + Yigpiae = Viipiian)
= — YUK iy + Ko + Kilod) = K Yoy — K Yo — Kl Vi
= Ym(Sy o + Sk ot + Sp hi)
= YimipSu"k = YiiminS"p = YiimikSp™n- (89)

To each of the three expressions on the left-hand side we apply the formula
(6.13); accordingly this side becomes

1
—Kjlkp Yllh - Kh’kp Y}Il - Skmp lehlm - KJ' ph Yllk - Kklph lel

m 1 1 m
= 5, Yiam — K Yoy — Kpue Yo = Su™ Yijpim-
When this is substituted in (8.9), we see that the seventh, first, and fourth

terms on the left cancel with the fourth, fifth, and sixth terms, respectively, on
the right. Upon changing signs on each side, we obtain

lei(Khlkp + Ko + Kplhk) = Yl(Kjlhk|p + Kj’kp]h + Kjlphlk)
+ YmlSaeip + S"pin + Sp"nis)
+ S Yjimip = Yiipim) + Sk o Yiimin — Yiinim)
+ 8" K Y mpe = Yijgim)- (8.10)

J

To the last three expressions on the right-hand side we apply the identity
(6.10), so that the sum of these expressions becomes
——Shmk(Kjlmp 1fl + Sm,p Y]|1) - Skmp(Kjlmh Yl + Smlh Y]Il)
- Spmh(KjImk Y; + Smlk Yj|1)
= - Y;(Shmk Kjlmp + Skmijlmh + Spmthlmk)

- jll(Shmk Smlp + Skmpsm[h + Spmhsmlk)'
This is substituted in (8.10), all terms containing Y}, being collected on the
left, the skew-symmetry of the torsion tensor being taken into account:
Y}H{Khlkp =+ Kklph + Kplhk

- S"lkll’ - Skl}’lh - SPthi - Shlmskmp - Sk’mspmh - Sp’mShmk}
= Y;{Kjlhklp + Kj[kp|h + Kjlph|k - Shkajlmp - Skmijlmh - Spmthlmk}‘

However, by virtue of the identity (8.6) the coefficient of Y;; on the left-hand

side vanishes identically. Thus, since Y; is an entirely arbitrary vector field,
the coefficient of ¥, on the right must vanish also, so that
Ky + Kot + Ko = S Ky + S K + Sy K e (811

This is the so-called Bianchi identity: the importance of this identity in all
applications of the tensor calculus cannot be overestimated. Again, in the
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case of a symmetric connection this identity reduces to

Ky + Kl + Kju = 0. (8.12)

Various new tensors can be obtained from the curvature tensor (6.8)
by contraction. If we contract over the indices j and k we obtain a type (0, 2)
tensor, which is called the Ricci tensor and which is denoted as indicated:

. ory, or/;
Kun =K = 5" ~ o

+ 0,0 — O (8.13)
In passing we note that if we contract over j and A in (6.8), no further new
tensor is obtained since'an application of (8.1) simply yields

K/j = —K/y; = —Ky. (8.14)

Similarly, if we contract over [ and j in (6.8) a tensor is obtained which, as we
shall see, is also closely related to the Ricci tensor. First, from (6.8) we have
6rllh 01—1’1:

ox*  ox
Clearly, if we interchange the indices [, m in the fourth term on the right-hand
side, we see that it cancels with the third term, so that
a1—.llh aIﬂl’k

ox* axt’

Kllhk = + rmlkrlmh - rmlh '™

Kllhk = (8.15)

which is also a type (0, 2) tensor. Second, if we contract over j and k in (8.6),
noting (8.13) and (8.14), we obtain

Ky — Ky + ijlh = Sljhlj + Shjjll + Sjjllh + Sljmshmj + S m T+ Sjjmslmh'

(8.16)
This suggests that we define the torsion vector
S, =8/ =-8/; 8.17)
Also, the fifth term on the right-hand side of (8.16) can be written in the form
SiimS™ =SSy = =SS
so that (8.16) reduces to
Ky =Ky — Ky + S/ + Syp — S + S;Si, (8.18)

which is the required formula.

Thus for a symmetric connection (5,7, = 0), the tensor 3K ;/},, is merely the
skew-symmetric part of the Ricci tensor K. In general, even in the case of a
symmetric connection, the tensor (8.15) does not vanish. However, if there

A St i 8 S

PROBLEMS 95

exists a class C? function f(x") of the coordinates such that

) of
r/,= b (8.19)

that is, if l"jjh is a gradient, then one has

orj, or/

=1 !
ox' ox"’ (8.20)
so that, by (8.15),
K/ =0 (8.21)

under these circumstances. It follows from (8.18) that if a symmetric con-
nection is such that its contracted coefficients I/, are the components of a
gradient, the corresponding Ricci tensor is symmetric.

In passing we note the following phenomenon. As a result of the transforma-
tion law (3.16) of the connection coefficients, the I'/, do not form the com-
ponents of a covariant vector field. It follows that the function f(x") whose
derivatives appear in (8.19) is not a scalar.

PROBLEMS

Unless otherwise stated, all quantities are the components of tensors of the type indicated
by the position of the indices.

3.1 Provethat (a) 856" = &,
(b) 6i6{6} = n.
3.2 Let A" be a type (2, 0) tensor, while B,, C; denote type (0, 1) tensors. Show that
A"B,C,
is a scalar.

3.3 Prove that none of the following are the components of tensors

ij 1 Aii
A+ BY, A + Bhka:Bhk'

34 Prove thatif 4; is a type (0, 1) tensor, then
0A; 04,

X" axi
is a type (0, 2) tensor.
3.5 (a) If B;;X'X’ = O for all X, show that B;; = —B;;.

Jji

(b) If B;;X'Y’ = 0 for all X', Y/, show that B;; = 0.




3.6

37

3.8

3.9

3.10

3.12

3.13

3.14

3.15

3.16
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Show that the equation
A, — $Y, =0

for arbitrary Y; (where ¢ is a scalar), implies that A"
Show that if a,,;, X*X/Y'Y* = 0 for all X, Y/, then

¢,

Apije + Ajigge + i + A = 0.

If B/"; are the components of an arbitrary type (1, 2) tensor and AY* are such that
A”"B ", are the components of a type (2, 0} tensor, show that A% are the com-
ponents of a type (3, 0) tensor.

If B are the components of a skew-symmetric type (2, 0) tensor and A, are such
that A, B™ is a scalar, show that (4, — A,;) are the components of a type (0, 2)
tensor.

If bA,; + cAjy, = 0, show that either

(a) b= —cand 4,; = A, or

(b) b=cand A4;; = — A,

If A,; is skew-symmetric, while B" is symmetric, show that

(@) (O78] + &4d)Ay; = 0,

(b) A,;B" =0.

If B = — B show that BY* = 0. Show that every type (3, 0) tensor which is
symmetric on the first pair of indices and skew-symmetric on the last pair of
indices vanishes identically.

Given a tensor Sy, skew-symmetric in h, j, find a tensor T, skew-symmetric
in j, k, satisfying the relations

_njk + Tjhk = Shjk'

How many independent components has

(@) a;;ifa; = ay,

(b) by; if bij = "bji?

If A,; is a skew-symmetric tensor of type (0, 2), show that the quantities B,
defined by

oy O

_ 04,
O axT ox°® ox'

0A
B 2

(a) are the components of a tensor; and

(b) are skew-symmetric in all pairs of indices.

(¢) Show that B,, has n(n — 1)(n — 2)/3! independent components. What
happens if n = 27

In X, a tensor with components H",, has the following properties

i Ji — i
Hhk—"Hhk-' Hkh’

By
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317

318

3.19

3.20

3.21

3.22

3.24
3.25

3.26

Prove that HY,, has n%(n + 1)(n — 3)/4 independent components. Hence show
that if n = 3 then

HY, = 0.

If Ak = 4k(xh) is a totally skew-symmetric type (3,0) tensor field and g;; =
a; j(x") is a symmetric type (0, 2) tensor field for which a = det(a;;) > 0, show that

S

are the components of a skew-symmetric type (2, 0) tensor.

Using the transformation law satisfied by the connection coefficients verify by
direct calculation that the covariant differential of a type (1, 2) tensor field T,"p,
namely,

DT}, = dT/, + T, T", dx* — [/, T,7, dx* — )" T/, dx,

is a type (1, 2) tensor.
Show that the covariant differential of the Kronecker delta vanishes for any

connection.

If [}, are the components of an affine connection show that 4(
the components of an affine connection.

If ¢ is a scalar field show that
B — P1jti = — S P
Hence establish that, if the connection is symmetric, s0 is ¢ ;-
By considering 4;; — 4; show that (94 J0x) — 9A /6x‘) are the components ofa
type (0, 2) tensor. In a similar way show that 1f B;; ; then 0B,;/ox* +

0B,;/0x’ + 0B, /ox' are the components of a type (0, 3) tensor (Compare with
Problems 3.4 and 3.15.)

By multiplying (5.17) by @'%0x™/8x%)(8x*/0x") and noting (5.10), establish (5.18).

Ij + IT})arealso

Show that (la")fk + A}', are the components of an affine connection.
If b;; = bj; and det(b;)) # 0, show, in the notation of (5.20), that
@) ® .
rj -1/,
form the components of a type (1, 2) tensor.
Prove that

@
@ Thu = aﬂrh k>

fa; day (al_) @

o T i3

6 hj
© 25 4 e b 4 T, = 0.
a Ak
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3.27 Prove that

n /a) _ @
dxk Je
where a = Idet(a,,j)!.
3.28 If T'}; are the components of a symmetric affine connection and a;; = ay; is such
that det(a;;) # 0 and
(@) Qi = 0
show that

LYy =T/;
(b) Aijie = Akaij

show that

@
Tl =Ty — H46, + 1,80 — ai,a,).
3.29 Show that if
rl'lf =T ilj
then
da;A'4)) = 2a,;A'DA.
3.30 If a); is symmetric, det(a;)) # 0, and b;a,, — bya; + byay — by,a; = 0 show
that a;; = Ab,;.
3.31 If a; is symmetric and det(q, ;) # 0, and
Aa;j Ay + pag Ay + vagA,; =0
show that
(@) ifn > 1 and A=Ay,
or (b)ifn>2and 4; = —Ay,
then either A;; =O0orl=pu=v = 0.

*3.32 If a;; = a;; and det(g;)) # 0, show that a;; are constants under transformations
from one coordinate system to another if and only if the transformation is linear.
(This result is used in relativity to establish the linearity of the Lorentz transforma-
tion of Problem 2.19; see Rindler [1]).

3.33 If bY,, = 0 show that
K Jub™ + K, bim = 0.

3.34 Relative to a rectangular coordinate system in E, Newton’s law of motion is
expressed in the form F = m dv/dt, where F is the force, m the (constant) mass of a
particle, and v the velocity. Express this law in curvilinear coordinates using a
covariant differential defined by means of a suitable connection.

#
g
g

&
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N te I}
compute I /.
0 sin® x? P ik ' ‘
Relative to this connection a vector field X’ undergoes parailel displacement
along the curve x! = a from x? = 0 to x> = 2z. If initially X/ = (1, 0) calculate
X/ finally.
3.36 If T is skew-symmetric show that
TUmj =K ™ — %Shmk Tm‘|m'

1
335 In X,,if(q;)) = (

3.37 If the connection is symmetric, prove that (Veblen [1])
Kim + Kijmpe + Kopiigj + Kidmjt = 0.
3.38 If T/ is a type (1, 1) tensor field show that
H} = T/ 0T}jox" — Ty 0T} /ox" + THOT/ox! — OT;"/ox’)
is a type (1, 2) tensor (the Nijenhuis tensor, Nijenhuis [1]).
3.39 Let g,y be the components of a tensor of type (0, 3). Define

1
Sij = 3 (@ + Ay + apg + Ay + O + ayj)

1
by = ;(aijk + @y + G — e — B — Qg

1
Cijk = g (aijk + ajl'k - akij - akﬁ)’

dij = 3 (@ + @i — Qe — Aa-

Show that .
(a) S is completely symmetric; _
(b) by is completely skew-symmetric;
(©) Ciju = Cjixs> Ciji + Coij + Cjpi = %
(d) diy = dyji, dij + Ay + djg = 0.
If Pya;y = Sijns Paaiy = bijka Pyau = Cijs P,a;; = d;; show that

P (Pga;;) = (Pyap)0pfor 4,B=1,..., 4 (no summation over A).
Hence show that a;; has a unique decomposition of the form

Qijx = S + bijk + Cij + dijk'

How many independent components has S;;, b;j, ¢, and d;?
3.40 Under the conditions of the previous problem, define
hip = 3a — Gjp + @i — Ay

1
S = 3ap —

Qi + Qi — )
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3.41
342
3.43
344

345
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Show that {a) h,»jk = —hﬁk, hijk + hkij + hjki =0,

(b) fijk = _fkjn .,;'jk + fkij + fjk.‘ =0.
If Q1aij = Sijk> Q2aijp = bijk’ Qsagy = hijk’ Q4aijk = fijk show that QA(QBaijh)
=(Q,4a;3)045, (4, B=1,...,4). Hence show that g, has a unique decompo-
sition of the form

A = Sipe + bij + iy + fine

How many independent components has h,; and f;;?
[Problems 3.39 and 3.40 may be regarded as two distinct generalizations of the
decomposition (2.18) to tensors of type (0, 3).]
By differentiating (2.23) with respect to X?, obtain (2.25).
Obtain (3.21) from (3.16) by interchanging x with %'
Obtain (8.6) from (6.10) by setting Y, = ¢; and using Problem 3.21.
Show that the cogﬂicients of the affine connection obtained by first transforming
from x' to X' by X' = X'(x/) and then from X' to ¥ by X' = X{(%’) are identical with
those coefficients obtained by transforming directly from x’ to X by means of
= T(x(xM).
InX,, Newton’s equations of motion of a particle in a gravitational field character-
ized by a scalar field ¢ = ¢(x) are

d*x* d*x* o

ez darr T axe

(x=1,23).

Show that these are autoparallel curves of X, if the nonzero components of the
connection are I',%, = a® 0¢/0x*, where a is a constant. Hence show that the
only nonzero components of the curvature tensor are K,%,, = a* 8>¢/dx* ox*
and that K;; = 0 is equivalent to Laplace’s equation. By considering "/, show
that I /,-are Christoffel symbols of the second kind with respect to the symmetric
tensor field a;; if and only if X , is flat. (The geometry of dynamics has been treated
from a tensorial point of view with the aid of a symmetric type (0, 2) tensor field
in great detail in distinct ways by Synge [1].)

ADDITIONAL TOPICS
FROM THE
TENSOR CALCULUS

In this chapter we discuss several somewhat disjoint topics which, despite
their importance, do not fit naturally into the development of the previous
chapter. An important extension of the tensor concept is represented by the
so-called relative tensors; although this generalization is a fairly simple one
which merely entails some minor modifications of the general theory, it is
indispensable from the point of view of physical applications. This is due to the
fact that the integral of a scalar is not itself a scalar; indeed, in order that an
n-fold integral over a region of X, be invariant under arbitrary coordinate
transformations it is necessary and sufficient that its integrand be a relative
scalar (also called a scalar density).

Some considerable space is also devoted to the numerical relative tensors
(of which the Kronecker delta is a special case); intrinsically these are not
particularly interesting, but, as will be seen in subsequent chapters, they are
exceedingly useful and powerful manipulative tools. A brief description is
also given of normal coordinates, which, in a sense, may be. regarded as
generalizations of spherical polar coordinates of Euclidean geometry. Some-
times the application of normal coordinates gives rise to useful simplifications
of calculations involving tensors; however, their use is fraught with danger.
A very brief discussion is also given of the so-called Lie derivatives which
appear frequently in the modern literature. In the present context such deri-
vatives are defined with the aid of an arbitrary vector field, without reference
to an underlying connection. An alternative approach to the Lie derivative
is sketched in the Appendix.
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4.1 RELATIVE TENSORS

In this section we introduce a generalization of the tensor concept which

occurs very frequently in applications, particularly when integration pro- |

cesses are involved (Synge and Schild [1]). Although this extension is im-
portant, it is not an unduly drastic one; in fact, it will be seen that it is a simple

matter to apply the techniques and results of the previous chapter to the

generalization to be considered below.

We shall begin with an example which is suggested by a type (0, 2) tensor
field a,(x?) defined on our differentiable manifold X,. Under a class C?
coordinate transformation

X = xi(x"), (1.1)
the transformed components of g, are given by
ox" ox*
8y = 5 o e (1.2)
According to the usual product rule for determinants one therefore finds that
det(@;) = det(%)det(%)dct(ahk). (1.3)
We shall write, for the sake of brevity,
a(x?) = det[ay(x")], (1.4)
:)vhf}e in accordance with (3.1.6) the Jacobian of the inverse of (1.1) is denoted
y J:
h 1 n
J= det(%) - ‘;((’;—1—% (L.5)
of which it is assumed that it is positive. Thus (1.3) becomes
a(x™) = J2a(xP). (1.6)

This result indicates very clearly that the determinant of a type (0, 2) tensor
is not a scalar, nor is it a tensor of any type (r, s), with r, s > 0. In fact, it is
evident that (1.6) exemplifies a transformation law which differs from those
encountered thus far. Furthermore, if we assume for the sake of the present
argument that a(x?) is nonnegative, it follows from (1.6) that this is true also
of a(x™), and accordingly it may be inferred from (1.6) that

[a(x™)]"* = Jla(x")]"'>. (1.7)

This is again a new transformation law; further transformation laws may be
obtained by taking different exponents of (1.6).
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Clearly the examples (1.6) and (1.7) are nontrivial, and accordingly we are
led to introduce the following.

DEFINITION

A function Y(x") of the coordinates of the manifold X, is said to represent a
relative scalar field of weight w, if, under the coordinate transformation (1.1),
the transform of this function is given by

Y(Xi) = TV (xh). (1.8)

Remark. A relative scalar of unit weight is often called a scalar density.

Accordingly the determinant (1.4) is a relative scalar of weight 2, while its
square root is a relative scalar of weight 1, as indicated respectively by (1.6)
and (1.7). Furthermore, it is obvious that a scalar (or invariant) as defined in
Section 3.2 is simply a relative scalar of weight 0.

The importance of the concept of scalar density is illustrated by the follow-
ing consideration. Let us suppose that we are given a closed, simply connected
region G in X, on which a continuous function f(x") of the coordinates is
defined, so that we may construct the n-fold integral

1= ff(x") dx' - dx". (1.9)
G

[For instance, an integral of this type would define the mass of a material
body which occupies the region G if f(x") denotes the density of matter.]
According to the usual rule for a change of the independent variables in the
integrand of a multiple integral (Apostol [1]) it is found that the value of the
integral corresponding to (1.9) in the x-coordinate system is given by

AF, ..., %)

1"‘d n’
axt, ..., x" dx X

I= f fHydxt ... dx" = f F(x9)
G G
where f(%/) is the transform of f(x"). By means of (1.5) this can be written as

= ff(xf)rldxl.--dx". (1.10)
G

If £(x" is a scalar, that is, if f(x) = f(x"), it would follow immediately
from (1.9) and (1.10) that I # I (unless J = 1, which is not assumed here).
Thus the integral of a scalar field is not, in general, a scalar. However, it is
frequently of utmost importance to construct invariant integrals: in fact, the
theory of most physical fields, such as the electromagnetic field, or the gravit-

ational field of general relativity, depends crucially on the construction of
invariant integrals. (Also, the simple example referred to above is indicative of
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this requirement, for surely the mass of a material body is independent of the
choice of special coordinates.)

On the other hand, if the integrand f(x") of (1.9) happens to be a scalar
density, it follows immediately from (1.8) that

FEH = fxh,

and if this is substituted in (1.10), one obtains

ff(xf) Az .- d5" = ff(xh) dx! .- dxm, (1.11)
G G

so that the required invariance of the integral (1.9) is indeed attained. We
therefore conclude that a necessary and sufficient condition in order that the
integral (1.9) be invariant under the coordinate transformation (1.1) is that the
integrand f(x") be a scalar density.

Thus far we have merely generalized the concept of scalar, and the question
arises as to whether a corresponding extension in respect of tensors of arbit-
rary type (r, s) is feasible. Again, the example of our type (0, 2) tensor field
provides us with an immediate motivation. Let us denote the cofactor of the
element a,, in a = det(a,,) by 4", so that, according to (1.3.10), the elements
of the inverse matrix (a"*) are given by

aa"™ = A" (1.12)
But we know that the a* constitute the components of a type (2, 0) tensor.
Thus if we apply the transformation law of the latter, together with (1.6), to
(1.12) we see that

Al _ z7U 12 a_’)_cl a')?} hk __ g2 a’)?l 0)?’ hk
AY = aa’ = as Fp =) oo (1.13)
It follows that the cofactors 4™ in det(a,,) do not satisfy the transformation
law of a type (2, 0) tensor; again the factor J2 on the right-hand side of (1.13)
is responsible for this. This situation is analogous to (1.6), and accord-
ingly we shall refer to quantities which transform in the manner indicated by
(1.13) as relative type (2, 0) tensors of weight 2.

The above considerations clearly indicate the need for the following
general definition.

DEFINITION

A set of n"7* functions AP M, | (x9) is said to constitute the components of a
relative tensor field of type (r, s) and weight w on the manifold X ,, if, under the
coordinate transformation (1.1), these functions transform according to the

4.1 RELATIVE TENSORS 105

relation

oxh oxi axk Oxks
Rl =l

Kjl"‘j’h“-ls(fp) = Jw Ahlmhrkl“'ks(xq)’ (114)

in which the Jacobian J is defined by (1.5).

Remark 1. For the purposes of this definition the weight w is restricted to the
values 0, +1, +2,....

Remark 2. Relative tensors of unit weight are generally called tensor
densities. In order to distinguish the usual concept of tensor [w = 0in (1.14)],
relative tensors of zero weight are sometimes referred to as absolute tensors.

Remark 3. The algebraic operations described in Section 3.2 in respect of
tensors are easily extended to the case of relative tensors:

1. Two relative tensors of identical type and weight may be added to
yield a relative tensor of the same type and weight.

2. The products of the components of a type (r,, s,) relative tensor of
weight w, with those of a type (r,, s,) relative tensor of weight w, constitute
the components of a type(r; + r,,s, + s,)relative tensor of weightw, + w,;
in particular, when a type (r, s) relative tensor of weight w, is multiplied by a
relative scalar of weight w,, a type (r, s) relative tensor of weight w; + w,
is obtained.

3. The process of contraction applied to a type (r, s) relative tensor of
weight w yields a type (r — 1, s — 1) relative tensor of the same weight
(provided that r > 1, s > 1).

4. Symmetry and skew-symmetry properties of relative tensors of
arbitrary weight are independent of the choice of the coordinate system.

These statements are immediate consequences of the properties of the
corresponding operations described in Section 3.2. Furthermore, from the
linearity of (1.14) in the components of the relative tensor field it follows that
if a relative tensor vanishes in a given coordinate system, this will be the
case also in all other coordinate systems. Accordingly any relation which is
expressed entirely in terms of relative tensors is invariant under coordinate
transformations.

Again, the ordinary partial derivatives of a relative tensor field do not
constitute the components of a relative tensor, and accordingly it is necessary
to define once more a process of covariant differentiation. It will be seen that
this requires a nontrivial modification of the method introduced in the
preceding chapter. This situation is best illustrated by the consideration of the
gradient of a relative scalar field of weight w. To this end we differentiate (1.8)
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with respect to X/, which gives

oy ox" oy oJ

=JWT—+WJW_1"TJ~!//-

ox/ ox’ ox"* 0x (1.13)

In view of the presence of the second term on the right-hand side it is obvious
that the gradient of a scalar density of weight w is not a relative covariant
vector (unless w = 0, which is not assumed here). In order to construct an
appropriate relative tensor we have to evaluate explicitly the partial deri-
vatives of the Jacobian J.

Let us denote the cofactor of the element dx"/6x' of J by C%, so that

%‘C_—f cl = J8h. (1.16)
But from (3.1.3) we have
% 27’7 — o, (1.17)
so that
Ct = Jg—;l (1.18)

Now, according to the usual rule for the differentiation of a determinant as
given in Section 1.3, we have

aJ 0 (0x
0| ())

so that, by (1.18),

aJ o%xh ox'
= = i 1.1
ox’ ox’ ox' ox" (1.19)
This is substituted in (1.15) to yield
oy Jox" oy ?xt ot
a7 [xa Wawron o V| (1.20)

which represents the explicit transformation law of the gradient of .
In order to construct a suitable tensor density, we now invoke the trans-
formation law (3.3.21) of the connection coefficients, which is

0%x" ox™ - ox™ ox" ox*

- Y -Tm P
ox’ ox' ox" It 3xP 0% 0% T Dl
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In order to be able to substitute this in (1.20), we must contract over the
indices m and [; with the aid of (1.17) we thus obtain

o2x" ox ox" — oxh
oo~ LT Gap =T/

P 9% AT
This, incidentally, is the transformation law of the contracted connection

coefficients. If this is substituted in (1.20), it is found that

o _ L oxt 0w
oxi % oxt

k. (1.21)

ox"
+ WJer,!/I — wJY— FEs 5,

or, if we apply (1.8) to the second term on the right-hand side,
oy oy
_r — Jw il k

aw W =T g [ax — ""’]

from which it is immediately evident that the quantities defined by

(1.22)

oy
Vi = F w5, (1.23)
constitute the components of a type (0, 1) relative tensor of weight w. It is
therefore obvious that, when the covariant derivative of a relative scalar is
constructed, an additional term involving the contracted connection coef-
ficients has to be introduced.

By means of (1.21) the argument given above is easily extended to type
(r, s) relative tensor fields of weight w, and it is found that the covariant deri-
vative of such a field must be defined as follows:

a Ah Jr

hiels Ja AJ1Ja—1Mja s 10dr
ek — + ZF A 1yorls

Adrir
ox*

a=1

— h A1
wh A s

(1.24)

s
- Z rz,,mkA Tlyerlg - amlg s 1ol

p=1
which obviously reduces to the definition (3.5.7) of the covariant derivative of
a type (r, s) tensor field whenever w = 0.

For example, the covariant derivative of a relative contravariant vector
field of weight w is

oA

A} = F + IJ A" — wh Al (1.25)

In particular, if we contract over the indices j and k in this relation, we obtain
Y Y oA .

Al = ) + A" —wlhhAl=——+(1 - w)l,/; A", (1.26)

ox’
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Thus for a relative contravariant vector field of unit weight the contracted

covariant derivative is simply the sum of the corresponding ordinary partial
derivatives:

o
ox?

In analogy with the corresponding concept of elementary vector analysis
we regard A{ f (for any value of w) as the divergence of the relative contravariant
vector field 47,

Since the contracted connection coefficients obviously play an important
role whenever tensor densities are considered, let us evaluate these coefficients
explicitly for the case when the connection is derived directly from a non-
singular class C' symmetric type (0, 2) tensor field a,,(x') as was done in
Section 3.5. From (3.5.15) and (3.5.20) we have, for the Christoffel symbols
which define such a connection,

@
T, = lau'(% 4 Gan _ ?ﬁ’ys)_ (1.28)

Al = w = 1). (1.27)

27 \axt - oxk X
Contracting over j and k in this relation, we obtain
(@ 1 ,/0a,; Oa day;
T, = —gh 22 4 22 Z7hi ) .
Wi= g4 <6x" * o ax'> (1.29)
But as a result of the postulated symmetry of a,; we have
1 %m0 _ 1 0
ox’ ox! oxt’
so that (1.29) reduces to
@ 1 .0a, 1 . Oa;
Jo= g 2 g1 gt 2T
r,; S8 sh=54 et (1.30)

where, in the last step, we have used (1.12). Accordingly (1.30) becomes
@ 1 a 190 a 1
IJ,=-a ' = (Ina) = 55 (n /a) _lo/a (1.31)

2% o T 20w Ja o
in which a denotes |det(a,))|-
This is the required expression for the contracted Christoffel symbols.

Incidentally, since \/a is a scalar density of unit weight in view of (1.7),
it follows from (1.23) that

d/a

W =35 — T/ (132 §
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for an arbitrary connection. However, if we choose the special connection
(1.28) it follows immediately from (1.31) that

=0, (1.33)
which is a natural counterpart of the identities (3.5.26) and (3.5.27).

4.2 THE NUMERICAL RELATIVE TENSORS

In this section we are concerned with the so-called numerical relative tensors
which are often extremely useful in complicated manipulative processes
involving tensors (Veblen [2]). We have already encountered an example of a
numerical tensor, namely, the Kronecker delta. This tensor is a special case
of one of the most important numerical tensors, the so-called generalized
Kronecker delta. The generalized Kronecker delta, denoted by &1 i,
possesses an equal number of sub- and superscripts (r) and is defined in terms
of an r x r determinant as follows:

o oh o ok
2 2 J2
o 8 o - O
Slm = : @10
J J J
o o &

Clearly the Kronecker delta J} is a special case of this definition which cor-
responds to the value r = 1. With r = 2 in (2.1) we see that

Sih = sish — 55",

In general {*" 7 is the sum of r! terms, each of which is the product of r
Kronecker deltas. Since, as we have seen, the ordinary Kronecker delta is a
type (1, 1) tensor, it follows immediately that the generalized Kronecker delta
(2.1) is a type (r, r) tensor.

In (2.1) we notice that the indices j,, j,, ..., j, correspond to the Ist,
2nd, ..., rthrows of the determinant, whereas h,, h,, . . ., h, correspond to the
1st, 2nd, ..., rth columns of the determinant. In view of the fact that the
sign of a determinant is changed by interchanging two rows (or two columns)
we immediately have the following important properties:

Lyt iy Sigeerigersineeir
;f‘ oo (Z’;; B 2.2)

Jrednediesdr Jyeee i nescde?
for all distinct h, k, 1 < h, k < r; that is, the generalized Kronecker delta

5}1'.‘.'_"11 is skew-symmetric under interchange of any two of the indices i, - - - i,
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and is skew-symmetric under interchange of any two of the indices j; - -- j,.
Clearly then, if any two of the indices i, - - - i, (or j, - - - j,) coincide, the cor-
responding &} vanishes identically. If » > n, then at least two of the
indices i, - - - i, must coincide, in which case we have the useful result

ok =0 ifr>n (2.3)

To demonstrate the application of (2.3), and to gain some manipulative
skill involving (2.1), we briefly consider two examples, which will be used in
the sequel.

EXAMPLE | CURVATURE TENSOR IN X,
For n = 2 we have, from (2.3) and (2.1),
0 = 3ff = oty — oo + 104

When the latter is multiplied by K,;, the curvature tensor of X, defined
by (3.6.8), account being taken of (3.8.1), we find

0 = —28%K,!, + 28K, + 2K,%,,. 2.4)
By virtue of (3.8.13), (2.4) can be expressed in the form
thst = éths - 6’.:Kht fOV n= 2; (25)

that is, in X, the Ricci tensor completely determines the curvature tensor.

EXAMPLE 2 TENSORS OF TYPE (2, 2) IN X,
Consider a tensor of type (2, 2), HY,,, which has the following properties:

Hijhk = __Hﬁhk = _Hijkha (2.6)
H,, = 0,

(Specific examples of tensors with these properties are discussed later.)
We now wish to evaluate the tensor 8475 HY,,. Expanding &}j;; about the
first row (the index k) we see that, by (2.6),

SiHYy = S HYy — SFHY .
Each of the generalized Kronecker deltas on the right-hand side of the latter
are now expanded about the first row (the index I) so that, by (2.6),

oklrs HYyy = S5 HY,, — O3 HY,,

which finally yields
Sk HU,y = 4H"™,,. @7

ijtu
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Since, for n = 3, (2.3) implies

=0
we see from (2.7) that if HY,, satisfies (2.6) then
HY,=0  forn=3. 2.8)

In order to obtain other important properties of the generalized Kronecker
delta, we now return to (2.1) and, by virtue of (2.3), we restrict ourselves to the
case r < n. Let us expand (2.1) in terms of the elements of its last column
and the cofactors thereof, the latter being (r — 1) x (r — 1) determinants,
which are again expressed by means of the generalized Kronecker delta.
One thus obtains

J1de — Sde Sdtccdr—1 . Sir-18J10dr-2J Jr—2 801 dr— 3Jr—1Ji
O = ONORIETY — OO I 4 SRy

-1

4o+ (_ 1)r+ I(Siié{‘z'"jr (2.9)

1B o1

We now contract over the indices j,, h,, obtaining -

J1je—1Jr — Jredr-1 o Sdrrde-20r- J1dr - 3dr-1jr-2
S Al T el PR (i L TR

4 oo 4 (_ 1)r+ Iéﬁh_l{l:_l
However, by virtue of (2.2), the latter reduces to

ST = =+ DO (2.10)
In this formula we now contract over j,_;, h,_,, applying the formula to
itself for the case when r is reduced to r — 1. This gives

5]1'"!}—2];—1)} — (n —r + 2)(n —-—r + 1)511'“}%—2

hy e - 2dr—1Jr hyhy-2t

If this process is repeated, we obtain the following general identity:

eaesrege =S
GRS, = 1 O (2.11)

which is frequently used. An equivalent form of (2.11) is the following:

n—r+0!

S = T R (2.12)
In particular, when ¢t = r, we have
n! (2.13)

TR S
T n—n

As a further example, let us consider the sum 854, where A, is a

type (0, 3) tensor which is supposed to be skew-symmetric in all its indices.
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By (2.9) (with r = 3) we have
O A = OfA py — S Ay + Ol Ay
= 314,,.
In fact, for any integer r < n, it is easily seen that
A =rlA, 4, b (2.14)

is skew-symmetric in all its indices. In a similar way we

vz i
provided that A4; . ;.
also have

Oy g Bhv e = pI B, (2.15)

provided that B*# is skew-symmetric in all its indices.
We shall now derive another important result associated with the general-
ized Kronecker delta. Let T;,..; be a type (0, r) tensor field so that

oxM dxhr

i

T;l,_,ir()_cl) = FETRA T;.‘...h,(xk)-
We differentiate this equation with respect to %+* to find
oT,, .., xPe  9xM OxPe-tgxhect OxM

oxir+t = Z axzru oxiu ax" Bxin -1 Pxiu+1 X hy--<hy

oxt  9xMr Oxter 0T, .,

6:?’1 aiir 62"“ axhr+l ?

(2.16)

which clearly indicates that 07T, .., /0x"** are not tensors, in accord with
Section 3.5. However, the generahzed Kronecker delta enables us to associate
with the latter a quantity which is tensorial. This is achieved in the following
way. If we multiply (2.16) by 5% r*' and note that 9%x™/ox+: ox is

J1dren
symmetric in i,,,i, for u = 1, ..., r whereas 5" 1 js skew-symmetric in
i,d,foru=1,...,r we thus ﬁnd

J1dret

oxM  oxM+1 9T, .,

511 it aTl'l e Bigeetipsn

J1dres axlr+1 = Yiiedrss aii‘ o axi”,, 6x”’+‘ . (217)
Since 81+t is a type (r + 1,7 + 1) tensor we also have
h hy + k kr+
511 lr»1ax‘_..ax 1_.5'!1 hr+laXI...—ax '
J1edrsn a)—cu a)—ci,ﬂ kiokyyy 6X“ 6)_Cj’+"
which, if substituted in (2.17) establishes that &%t i+t 8T, ; /ox™* is a

(0, r + 1) tensor. We will return to this result in Section 5.2.
We return once more to (2.1) in order to introduce two additional numerical
tensors, the permutation symbols (which are sometimes referred to as the
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Levi—Civita symbols or alternating symbols). In (2.1) we set r = n and define
the permutation symbols g,,..,, , &t/ by

Enyerhy = Oniiims
and (2.18)
ghrin = o,
respectively. We draw attention to the fact that each of these quantities has
exactly n indices, where n is the dimension of X,. From (2.18) and (2.2),
Ep,...n, and &/ are each skew-symmetric in all their indices and will thus
vanish if any of the indices coincide. Furthermore, from (2.18) and (2.1)
= 1’
=1,

_ s12
€12..n = 013

FEEEE

12«n _ 12.-
3 = 013

so that we have

+1 ifh, --- h,is an even permutation of 1, 2, ..., n;

&y, = €W =1 —1 ifh; .- h,is an odd permutation of 1,2, ..., n;
0 otherwise.
(2.19)
The terminology permutation symbol is thus justified.
We now wish to establish that
By, &I = 1 (2.20)
To this end consider the quantity
A = gy, &I — SR 2.21)

which is clearly skew-symmetric in both sets of indices. Consequently, the
only possible nonzero components of 4j::4» will occur when j, ---j, and

-- h, are each a permutation of 1, 2, ..., n. However, from (2.19), (2.21)
and (2.1) it is easily seen that

A3 =0
We have thus shown that
Al =0,
which, by (2.21) establishes (2.20).
From (2.20) and (2.13) we also have )
Ehy..n, &P = nl. (2.22)

If we consider the determinant of an arbitrary set of n? quantities a;;
expressed in the form (1.3.2), we see that the summation taken together
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with the factor (— 1)* is very closely related to (2.19). In fact (1.3.2) can be
expressed in the form

= gftj2:in ..
det(q;;) = & a,;, a3, a

in®
By virtue of (2.19) it is easily seen that this last expression can be written
in the equivalent form

&,..q, det(a;) = & ma, a5 - a (2.23)

In a similar way, if b} and c¥ are each sets of n® quantities we have
&, det(b) = &, bit -~ bin, (2.24)
ghin det(bl) = &t Inbi - - - b, (2.25)

and
ghvin det(c) = g, €It eI (2.26)
If we multiply (2.24) by &+ noting (2.22) and (2.20), we find

det(bl) = L Siibi: - b, 227)

which is an expression for the determinant of (b}) in terms of the generalized
Kronecker delta.

We now wish to determine the tensor character of the permutation
symbols. In a new X-coordinate system (2.18) becomes

it gxiz in hy h2 hn
girin = Fiaedn — 0% OXR 0% 0x™ 0x* | 0%

P2om T gxki gxk ax*n 9xt 0x?
in which we substitute on the right-hand side from (2.20), noting at the
same time that, by virtue of (2.24)

OxM oxh2  OxMn

6k1...kn
B Ohieeh

(2.28)

=J (2.29)

where J denotes the Jacobian (1.5). Thus (2.28) reduces to

girin = g F 0%
oxkt Pxkn ’
which demonstrates that the permutation symbols & constitute the
components of a type (n, 0) relative tensor of weight + 1, that is, a type (n, 0)
tensor density.
Similarly, it may be shown that the permutation symbol ¢,,.., constitute
the components of a type (0, n) relative tensor of weight —1.

(2.30)

Ky+okn

AN o b
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We shall now derive some important results concerning determinants.
Again, let us consider an (n x ») matrix (a;f), with a = det(ajf). The sum of
all (1 x 1) principal minors is simply the trace, denoted by a,,:

— j — NI b
agy = aj = 64aj. (2.31)
The sum of all (2 x 2) principal minors is, by definition,
1,2 1,2 1.3 1.3 -1 -1
4y = (@103 — azay) + (aya3 — aza3) + -+~ + (@214, — a,” 'a,_,
= Sidids + SRl + - + 5 dh .

In applying the summation convention to this sum, it should be noted that
galal, = SiZalat + Syabh + - = oilatal — Siialal + -
= §ldids + dyidial + - = 2B ldidl + ),
so that we may write

2ta,, = Simakak (2.32)

Similarly, the sum a;, of all (3 x 3) principal minors is seen to be given by

3lag, = 5},’,?5a‘,"af,,a,",. (2.33)
Proceeding in this manner the following important formula is established
for the sum a, of all (s x s) principal minors of det(ajf):

! — Sdti2is ghigha . hs —
slag = 3555, 050453 - - - aj; (s=1....n)

(2.34)

We shall apply this result to the theory of characteristic (or secular)
determinants, which play a basic role in linear algebra and in the theory of
quadratic forms. Let us put, for the given matrix,

ch=at + 28", (2.35)

where 4 denotes an arbitrary parameter. The so-called characteristic deter-
minant is, by definition,

¢ = det(a} + 10", (2.36)
which is a polynomial of the nth order in A. One is frequently interested in
the roots 1, 4,, ..., 4, of the equation ¢ = 0, and accordingly it is useful to
have explicit expressions for the coefficients of 4, 42, ..., A" in the expansion
of the characteristic determinant (2.36). These expressions are determined
easily as follows. Using (2.35) and (2.27), we have

nle = Slip(aly + AN + A8 - (@l + A% (237)
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Clearly the coefficient of A" is n!, while the coefficient of 1"™* (for s = 1)
consists of the sum of (f) terms of the type

5{[1"']:].4. vodn ght L ks Ghs v

v S — Sdicdsds+ercdn g 0 oRs
1hshs 4 1--hn 255y Js s +1 6jn =90 . jn i 4;

hyi---hsjss 1o jn it Js

- j1owjs gh s
= (n — )5 a) - af,

where, in the second step, we have used (2.11) with r = n. Since

n\ n!
(s T (n—9)ts!’

it follows from (2.37) that the coefficient of A" ~* in ¢ is simply

1 ;
2o girds gl L. ghs
31 onlnajl - aj.

Thus the characteristic determinant (2.36) may be expressed in the form

n n—s

det(@ + A" ="+ Y
s=1

ST ORI (2.38)

By means of (2.34) this can be written more elegantly as

det(@ + 48" = 2" + Y 2" *a, (2.39)
s=1

in which a,, again denotes the sum of all s x s principal minors of det(a;‘).

The formulae (2.38) and (2.39) have an immediate corollary which will
be required later. Let us denote the sth elementary symmetric function of the

T0Ots 44, ..., 4, of the characteristic equation
det(a} + 8% =0 (2.40)
by H,), so that
Hyy=4 +i,+---+ 4,
Hgy = A2, + 2443 + -+ + 4,44, 2.41)

Hiy = A1A545 + A dpdy + - + Ay Ay 14y,
Hgy = Aydy A3 4.

Then it is known from the elementary theory of polynomial equations that
these quantities are related to the coefficients g, in (2.39) according to

ag = (—17H,. (2.42)

Because of (2.34) we thus obtain an explicit expression for the sth elementary
symmetric function of the roots of (2.40), namely,

(2.43)

1 ... .
_ o — 1Y _ SJiiz-is ghi b2 .. 4B
Hg =(=1) 1 Onis-,ajia;; - ajl.
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Finally, we shall obtain a useful expression for the cofactors of the elements

a} in the determinant det(a}). To this end let us consider the quantities

Aj defined by

(n— D)1 A4} = &2 a2 aln. (244)
Let us multiply (2.44) by a?, after which we apply (2.20), which gives
v (n — W1 Aja} = g, afad’? --- aln.
With the aid of (2.20) and (2.24) this becomes
(n — D) Aja} = 7> Inag;, . = adfin,
or, because of (2.11), with s = 1 and r = n,
Ajal = adj. (2.45)

Thus the quantities A} as defined in (2.44) are the cofactors of the elements
) in the determinant det(a’).

4.3 NORMAL COORDINATES

In Section 3.7 we encountered a class of curves which are characterized by
the fact that successive tangents result from each other by parallel displace-
ment. These so-called autoparallel curves or paths satisfy the system of n
second-order diffefential equations (3.7.17), namely,
d*x’ . dx" dx*
— h———=0, 3.1
ar TR ar (3-1)

in which the I',/, denote the coefficients of a given connection on our dif-
ferentiable manifold X, while ¢ is a prescribed parameter.

We shall now show that a pair of points O and P of X, can be joined by a
unique path, provided that O and P are sufficiently close to each other.
In the course of our derivation of this assertion we shall construct a special
coordinate system, whose properties will be studied in some detail.

Let us differentiate (3.1) with respect to ¢:

; d*x" dx*

OT ), dx" dx* dx' ax*
Rk dt? dt

d3x/
“ox! dr di dt T

+ i dx* d®x*
de3 ox!

hede dit
or, if we replace the second derivatives of x" and x* according to (3.1),

d3xi

dx" dx* dx* _
dr?

= 3.2
hEC Q@ dr dt ? (3.2
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in which we have put, for the sake of brevity,
(3.3)

We note that (3.2) yields the third derivatives d>x//dr* as polynomials
of the third order in dx*/dt; similarly, by differentiation of (3.2) we find that
the fourth derivatives d*x’/dt* can be expressed as polynomials of the fourth
order in dx*/dr. Clearly this process can be repeated indefinitely, provided
that the connection coefficients I',/, are of class C*®, as is assumed here. The
precise form of the coefficients of these polynomials, such as (3.3), does not
concern us in this context, and accordingly the corresponding expressions
will not be derived. ,

Now let us consider a fixed point O of X, and a path I', which passe:
through O with given tangent vector X" = dx"/dt at O. It is assumed that the
parameter ¢ is chosen such that t = 0 at O. Let x/(t) denote the coordinates
of a point P on I' corresponding to the parameter value t. By means of a
Taylor series expansion we can express the coordinates x/(t) of P as follows:

(1) = x/(0) + ¢ ax’ +ﬁ X +£ e
= dt )o_o 21\ de? )_o T 31\ )i ’

or, if we use (3.1), (3.2), and the relations obtained by subsequent differentia-
tion of (3.2),

‘ . A S S
(1) = X(0) + 059 — 2 DA — ST — o (34)
where it is to be understood that I',%,, T',%,, . . ., are evaluated at O, while X/ .

is the tangent vector of I" at O.

Clearly this series is convergent for sufficiently small values of ¢; we there-
fore suppose that the point P has been chosen such that this is indeed the case.
Thus, at least locally, the path I is completely specified by the initial point O
and the initial direction x*.

Now let us introduce a new set of quantities &/ by writing

&= x4, 3.5)
Then (3.4) may be written in the form
j j R SO S ny g
X(t)=X(0)+é’—?Fhk€§ —irhuifi"m (3.6)

B D
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Differentiation of (3.6) with respect to &7 yields

OxJ ; 1 . )
a5 = % — 51 (DAL + T,
1 . ) .
- ﬁ (ijkl ékél + rhjpl éhé, + Fthpéhék) - (3-7)
From (3.5) it is obvious that & — 0 when t — 0. Therefore, at O,
ox/ )
and accordingly the Jacobian
ax', ..., x") 1.9
g, ..., & -9)

at O.
We shall regard the variables &/ as new coordinates, the corresponding
coordinate transformation

xI = xi(E) (3.10)

being given explicitly by (3.6); because of (3.9) this transformation possesses
an inverse

g = &)
in a finite neighborhood U of O.

Thus, given a point P with coordinates x’ in the neighborhood U of O,
its coordinates &* in the new coordinate system are uniquely determined by
virtue of (3.11). Because of (3.5), this defines the quantities tx’ at O, which in
turn yield the path through O and P in view of (3.4). We have therefore proved
that, for any point O of our differentiable manifold X ,, there exists a neigh-
borhood U of O such that any point P e U is joined to O by a unique path.
Furthermore, it is easily seen that this path lies entirely in U.

Let us evaluate the connection coefficients I_"psq in the &/-coordinate system

at O. This is done by means of the transformation law (3.3.22), which, in this
context, assumes the form

ox o, ., ox"oxk 9%x7

oFs P = hka_épa_é" + OEP 9E°
The values of the first derivatives 8&%/9x/, dx"/0&P at O are known in terms of
(3.8). The second derivatives are calculated by differentiation of (3.7) with
respect to &9, which gives

o%xt

o&r o&t

(3.11)

(3.12)

= _%(rqu + rqu) +-
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in which the dots - - - de_note a polynomial in &/, beginning with first-order
terms. Again, because & = 0 at O, we infer that

a2x! L i i
aép—afq = —j(rp q + rq p) (313)
at 0. We now substitute (3.8) and (3.13) in (3.12), which yields
5£rpsq =T/ 52 511; - _;'(rqu + rqu >
or
l:qu = rqu — T qu + rqu) = %(l—‘qu - rqu) (3.14)
at O.

Thus the transformed connection coefficients I/, at O are identical with
the skew-symmetric part of the given connection.

In particular, if the given connection is symmetric, the coefficients of the
transformed connection vanish at O. Under these circumstances the coor-
dinate system defined by (3.11) is called a normal coordinate system, and the
point O at which the connection coefficients are zero in this system is known
as the pole of these coordinates.

It has therefore been established that, given any symmetric class C®
connection on the differentiable manifold X,, one can always construct a
coordinate system whose pole is located at an arbitrary point O such that the
transformed connection coefficients vanish at O.

Remark 1. The condition that the given connection be symmetric is essen-
tial. This is not only obvious from (3.14), but also is a direct result of the fact
that the skew-symmetric part S,’, of any nonsymmetric connection is ten-
sorial: if S/, does not vanish at O in the given coordinate system, it cannot
vanish at O in any other system, and therefore there does not exist a coor-
dinate system in which the nonsymmetric connection coefficients are zero
at O.

Remark 2. It should be clearly understood that, in the case of a symmetric
connection, the transformed connection coefficients vanish solely at the pole
O of the normal coordinates. The first- and higher-order derivatives of the
transformed coefficients do not generally vanish at O. This fact must always
be borne in mind when normal coordinates are used. In general there do not
exist coordinate systems on X, in which the connection coefficients vanish
on a finite region of X, . Indeed, under such conditions it would follow from
the definition (3.6.8) that the curvature tensor would vanish identically on

that region, which again is a tensorial condition that cannot generally be
satisfied.

W BN

R
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Remark 3. From the definition (3.5) it is evident that relative to our special
coordinate system the coordinates of any point P on the path I through the
pole O are given by & = xJt, in which ¢ is variable, while X/ is fixed. Thus the
differential equations satisfied by I" are simply

d*&l
dt?

—o0. (3.15)

If this is compared with the general system (3.1) relative to the &"-coordinates,
it follows that

— . d&hdE

Iy——= 3.16

hk dt dt ( )

in the special coordinate system along any path through the pole O. However,
since the coefficients of T/, in (3.16) are not arbitrary, this does not imply that
T/, vanishes along these paths. Because of (3.5) we can regard our special
coordinates as a generalization of the concept of spherical polar coordinates
of Euclidean geometry with pole or origin at O.

Remark 4. Normal coordinates can sometimes be used to simplify certain
calculations whenever a symmetric connection is given. For instance, at the
pole O of a normal coordinate system the components K/, of the curvature
tensor (3.6.8) reduce to
J J
Ry, - T _ T

0 o¢
from which the identity (3.8.7) follows directly. Since this identity involves
only tensors its validity in all coordinate systems is thus established. Further-
more, at the pole of a normal coordinate system the covariant derivative of a
tensor or tensor density is identical with its usual derivative. By means of this
fact it is a simple matter to derive the Bianchi identities (3.8.12) by direct
differentiation of the expression (3.6.8) for the curvature tensor at O in normal
coordinates.

44 THE LIE DERIVATIVE

We saw in Section 3.3 that if our differentiable manifold is endowed with an
affine connection, a process of tensorial differentiation of tensor fields can be
introduced. In contrast to this we now consider the situation when our mani-
fold is endowed with a type (1, 0) tensor field, the components of which will be
denoted by v'. By using arguments quite similar to those presented in Section
3.4, we show that it is again possible to introduce a tensorial process of differ-
entiation, which, although approached in the same spirit, differs radically
from covariant differentiation.
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For the sake of simplicity we illustrate the process for the case of a type
(1, 1) tensor density field, the components T} of which transform according to
ox/ ox"
oxP ox'
where J is defined by (1.5). The partial derivatives relative to the two coor-
dinate systems are related by

T = J — T2(x"), 4.1)

81_{ _ 0%x/ ax* ox" . ox!  0%*x* .
ox* 7 9x® oxP 9x* ox ox? ox* axt
ox/ ox* ox* oT?  8J %' ox" “2)
Ox? 8x' ax* ox® ' oxFoxP oxt M )
We also have
wk
P = % oA, (4.3)

Thus a two-index quantity is obtained from (4.2) by multiplication of (4.2)
by o*:

oTi , . % oxh 0% oxh
w0 avael o T G e an?
J /4 Jj
ox’ ox" oTy o 0J 0% ox" Tr. @.4)

oxP 0% ox* | T % oxP 0%
Clearly the first, second, and fourth terms on the right-hand side of (4.4) are
the ones to be rewritten since they contain second-order derivatives [see
(1.19)]. From (4.3) we have, by differentiation with respect to x?,
ox* ov 0*x » ox! ov°

axP o oxrox U T axt oxr’
so that the first term on the right-hand side of (4.4) can be written as

o*x7 ox* o ox’ ox" ov
o T = —— T — TP 45
ox? ox*’ ox ox* ! ox® ox' ox? W @-5)

where use has been made of (4.1). From (4.3) we also have

axh _
which, when differentiated with respect to x', yields
2 h h A=k t h

X o XU 0x v (4.6)

ox! dx* ox* ox' = ox' ox*

4.4 THE LIE DERIVATIVE 123

This allows the second term on the right-hand side of (4.4) to be expressed in
the form

o2xh _ ox! ot . ox* 9x7 ov*
TR e - T T am e v @7

From (1.19) we have
oJ o*xh _, ox!
W I o

which, together with (4.6), enables one to write the fourth term on the right-
hand side of (4.4) as follows:

6J , 0x) ox" otk aif ax* av*
TP = i = T .
oxt " ox” ox' Tt oo T “8)
We now substitute (4.5), (4.7), and (4.8) in (4.4) to find
Ty o ot .,  otF
g+
oxi ox* [ oT® P ok oot
=J S — — — — T | 4.
axvax’[ax Tk Dt g it ga i 49
This suggests that we define the so-called Lie derivative of T} as follows:
oTt ov? ook ovk
£,TE =510 T’;a -+ T,lga”,, + T (4.10)

for (4.9) clearly indicates that these quantities are the components of a type
(1, 1) tensor density.

This same process, applied to the general transformation law (1.14), yields
the following expression for the Lie derivativet of a type (r, s) relative tensor
field of weight w:

Jiir r i
£ Ajl"‘jrl L= Lﬁu o — Z Ajl"'ja—lmju+1”'jr! , o'
v ge--ls o -
ox a=1 * 0x
& A i o™ a
Jidr had e ]r
+ Z A hilg—amlg s a-ls 548 5 ok A Ipoelg® (4.11)

B=1

The basic laws of Lie differentiation are very similar to the corresponding
laws for absolute differentiation:

1. The Lie derivative of a type (r, s) relative tensor field is a type (7, s)
relative tensor of the same weight.

1 For an extensive study of the Lie derivative see Yano {1].
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2. The Lie derivative of the sum of two relative tensor fields of the same
type and weight is the sum of the Lie derivatives of these fields.

3. The product rule for Lie differentiation is formally identical with the
product rule of ordinary differentiation.

Statement 1 is valid as a result of the manner in which the Lie derivative is
constructed. Statement 2 follows from the linearity of (4.11) in the tensor
field. It is possible to establish statement 3 in complete generality. However,
in order to avoid a profusion of indices we will content ourselves with est-
ablishing it for the special case of the product of a type (2, 0) tensor field with a
type (0, 1) tensor density field. Consequently, we shall consider the product

T, = UYYV,. (4.12)
From (4.11) we have
. oTY o' o’ ov?P ok
£TY, = 6x"h v — T”Jhm - T, — F + T”P Fe + TY, — ppet

which, by (4.12), yields
; ouUY o' o ov? vt
j o — _ pJ Ip 1 h k
£,TY, [akv Uax" Uax] UI: +Va"+V"6":|
Because of (4.11) the latter reduces to
£D(Ule/’l) = (£v Ulj)Vh + Ulj(£v I/h)9
as required.

Remark 1. If, in addition to the type (1, 0) tensor field, our manifold is
endowed with an affine connection, we can express (4.11) in terms of partial
covariant derivatives as follows. From (3.5.4) and (3.6.7) we have

ov’

ﬁ = v{"' - rhjmuh =

v|]m - Shjmuh - ijh vt

which, when substituted in (4.11), account being taken of (1.24), yields

£NI = Aj""j'x,...,,,;. ot — 3 NJvriesimias e (ple S, 7= o)
a=1

s
. A A dreis
+ Z A 1,-~-x,_1m13+1...1,(u'|'1',, - Shml,,v) + wop AN
=1
(4.13)
In this form the tensorial character of the Lie derivative is obvious.

Remark 2. Tt is possible to introduce the Lie derivative in an alternative way
as follows (Yano [1]). With the given vector field we associate the trans-
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formation

X = x' + A 4.14)

where A is an arbitrary constant. The Lie derivative of A"/, (x") is then
defined by

£,A09 = lim

A0

Ajr--jrhmls(xh) _ Kjr"jrllml,(xh)

pl 4.15)

It is not difficult to show the equivalence of (4.11) and (4.15). However, again
for the sake of simplicity, we shall content ourselves with establishing this
equivalence only in the case (4.1):
From (4.14) we have
oxt o'

K=+ 1 (4.16)

from which we obtain

ox! A W Ll
det(éﬁ) = det(éj + A axj) = A det(ax]

From (2.38) we thus see that from (4.17)

- 15;). (4.17)

ox o'
= 4o 4.18
det(a J) 1+ 4 pp + (4.18)
where - - - denotes terms at least of order A2. We can write (4.1) in the form
de t< ot ) 2",, TR = 2 T"(x"), (4.19)

which, by (4.16) and (4.18), reduces to
v\ . o’
(1 + 2 % + - )(5}, + A a—zh)T{(x") = (5;, + A ﬁ>Tg(x")

; o
= Ti( + A5 TH). (4.20)

or
=k ov' 5k ov' <k
Ti(x*) + A a—T{,( )+—T’(x)
However, by expanding T¥(x*) in a Taylor series about x' we have
Ti( 5k T (K oT;, k
Tix*) = Tix") + | == AVE A+ -l (4.21)
0x* J1=0

Furthermore, it is easily seen from (4.20) that

oy _omy
0% J1-9 o
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so that (4.20) and (4.21) give
e oty ool e
Tj(x) — Ti(x*) = z[ﬁ’! o TE o+ TUR) o + o T:,(fc")] +oee

oxP ox!
We now divide this equation by A and let A — 0, noting that by (4.20)

lim Ti(x) = Ti(x*),

A—-0
to find
. Tix — Ti(x4 0T} o’ covt ot .
[T s DAY | A A 5t NN ' Sl A o'}
o 7 " o T T g T g The

which is in complete agreement with (4.10).

Originally the Lie derivative was defined in a form similar to that given
by (4.15) which arose quite naturally in the theory of deformations of sub-
spaces of a differentiable manifold (Davies [1]).

Remark 3. The above analysis (4.1)-(4.10) can be extended to certain
quantities which are not relative tensors, although the associated Lie deri-

vative may well be tensorial. For example, the Lie derivative of an affine
connection is given by

] PN 0% ovt , oo ;, oo
£.1 = xJ A rw rjlkw + r‘hkﬁ + rjhﬁv

which may be expressed in the equivalent form
£,/ = VK + @Sy + v

which clearly demonstrates that these are the components of a type (1, 2)
tensor.

PROBLEMS

Unless otherwise stated, all quantities are the components of absolute tensors of the
type indicated by the position of their indices.
4.1 If T™ are the components of a type (2, 0) tensor density show that
aTrS

rs s rh
T |,=W+I",,,T .

If the connection is symmetric and 7™ = — T show that

_ oT™

Trslr - W.
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42 (a) Prove that the covariant derivative of the generalized Kronecker delta vani-
shes identically for any connection.
(b) Prove that the covariant derivatives of the permutation symbols vanish
identically, if the connection is symmetric.
4.3 Give an expression for the general (3 x 3) determinant formed from the matrix

A, A, - A,
B, B, --- B,|
c, C, - C,

44 In X,, with a symmetric connection show that

. . 0A;
g4, = e Txi
and
(67 4;B,),; = ¢4, B, — e9*B; A,
[Note: this is the statement
div(A x B) = (curl A)- B — (curl B)- A].
What are the statements (identities)
curl grad f=0
divcurl A =0
where f is a scalar? Prove them using the index notation.

4.5 Relative to a rectangular coordinate system in E; Maxwell’s equations may be
written in the form

1 0H
curlE= — ——, divE = 4np
c ot
E 4
crtbi = LEL Ty gvE =0,
c ot c

Using the numerical tensors express these relations in component form valid
in any coordinate system (Davis [1], Landau and Lifshitz [1], and Panofsky
and Philips [1]).

4.6 1If, in X,, the connection is symmetric, show that
(@) sijthjlkh =0,
(b) e™K . = 0.

*47 Prove that

G1eedsis+10dr Shse 1oy Q1§ dsis e i dr
S S = (o — ST

4.8 Prove that

rerdris 1 einghe v 1 hn (g p)1 gitdre s 1 hn
£ Srriiin = (n — nle .




128

4.9

4.10

411

4.12
4.13

4.14

4.15

4.16

4.17

4.18

4.19
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By considering 5" H*™, where H"™,, satisfies (2.6), show that, in X,
O H*, + 8 H*, + S\H*, + 6:HY, + 6{HY,,
+ 8KHY, + 8HM  + SIHM, + 8JHY, = 0.

Hence show that, in X,

H ijr:Hrskj =% ;;(H'jrsH'stj)~
In X, and under the circumstances of Problem 4.9, show that if A;, B/ are such that

HY, A, =0, HY, B =0
then either

HY, =0 or A,B' =0.
Show that in X, a;; = a;; with a = det(a;;) # 0 and b;; = —b;; then

det|a; + b;;| = a + b + 4a"a™b,,, b, a,

where b = det(b,)) and a*a,, = 4}
Do Problem 3.37 using normal coordinates.

Establish the equivalence of (4.11) and (4.15) for a type (2, 3) relative tensor
field of weight — 3.

Show that
(@) £,87F =0,
(B) £, =0,
(c) £,v' =0.
Prove that

£E£0 + £,£8 + £ £u =0.
If the connection is symmetric prove that

£(ul) — (£,4); = u"£, T},

If the connection is symmetric prove that

(£vrjik)|h - (£urjih)1k = £ijikh-

Prove that

If w' = £,0' show that
(£,£, — ££)T = £,T%,
If a;; = a;; and det(a;;) # O show that
£,a; = vy; + vy

. M (a)h
where v; = g;0’ and I')Y; = T/,
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420 Evaluate det(t;) where t/ = 15! + A’B;.
4.21 Let d} be the components of an n x n matrix and define
M (D)Ijx = 5{.3
Show that, if a, is defined by (2.34) thenfor 1 <r <n

i = 4 j Q=
Mg =aM,_ ] for s=12...

r—1
Sk d - dy = (0 = DU (— UMhiGg-s- -

FLISEE St P
s=0

and hence that

n-1
A';i =Y (—l)sM(s){-am-s—l)’

s=0

where A4} is the cofactor of . Establish that
(— 1)"M(,,){ + Z (— 1)"”M(,,_s){am =0.
s=1

Show that this is just the Cayley-Hamilton theorem, by comparing it with (2.39),
where A is replaced by —A.

422 If, in X,, the quantities H' are such that Hj = 8 + A% where AjH] = R
show that the condition 4! = 0 implies that det(H’) = —27/16.



THE CALCULUS OF
DIFFERENTIAL FORMS

The calculus of differential forms—often called exterior differential calculus —
represents a relatively new tool of analysis whose use in pure and applied
mathematics has become increasingly widespread.t Like the tensor calculus,
its origins are to be found in differential geometry, largely as the result of
the investigations of E. Cartan towards the beginning of this century. It was
soon recognized, however, that the ramifications of this subject extend far
beyond the realm of differential geometry, and accordingly it can properly
be regarded as belonging to analysis per se: indeed, it has recently found its
way into several modern texts on advanced differential and integral calculus.
In these expositions, as well as in the books by H. Cartan [1] and H. Flanders
[1], the exterior differential calculus is introduced and treated without
reference to the tensor calculus, and it has even been asserted that the former
is superior to the latter, this opinion being based on the fact that the use of
forms is restricted to a lesser extent to coordinate neighborhoods than the
use of tensors. It is, perhaps, somewhat more realistic to recognize that both
disciplines are indispensable, each in its own right, there being many situa-
tions in which one is more effective than the other. In fact, some of the most
significant successes have been achieved when both are used in conjunction
with each other, a phenomenon which is exemplified most convincingly by
the works of E. Cartan.

It is this second point of view which is reflected in this chapter. The

+ Differential forms are also treated in the following texts: Brehmer and Haar [1}, E. Cartan [3],
H. Cartan [1], Flanders [1], and Slebodzinski [1]. For applications of differential forms to general
relativity, see Israel [1). Differential forms are also extremely useful in the theory of partial
differential equations; see, for instance, Harrison and Estabrook [1] and Wahlquist and Esta-
brook [1].
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algebraic and analytical properties of differential f_orms are treated ir} a
somewhat intuitive manner based on the use of coordinates, the reader bglng
referred to the Appendix for a more rigorous and intrinsic .approach. S1gce
the application of the exterior differential calculus is part{cularly effectilve
whenever integrability conditions are involved, we have inserted a fairly
detailed description of several versions of the theorem of I?robemgs on
systems of total differential equations, to which frequent appeal is made in the
sequel. ) .

One of the most powerful results of the exterior differential calculus is the
so-called theorem of Stokes, which represents a generalization to manifolds
of the Gauss divergence theorem of three-dimensional Euclidean geometry.
It should be stressed, however, that in contrast to the theorem of Gauss,
the theorem of Stokes is entirely independent of metric notions such as length,
area, and volume. In a sense this theorem may be regarded as the fundamental
theorem of calculus on manifolds, and consequently a rigorous derivatl.on of
its most general form depends on the theory of integration on mamfolds’
which is beyond the scope of this volume. Nevertheless, the version of Stokes
theorem derived below should be sufficient to meet most requirements.

5.1 THE EXTERIOR (OR WEDGE) PRODUCT OF
DIFFERENTIAL FORMS

Let A; denote the components of a covariant vector field on a diﬂ"eren.tiable
manifold X, referred to local coordinates x’. Corresponding to an arbitrary
displacement on X, with components dx’ we can construct the sum

= A;dx, (1.1)

which is called a 1-form (or Pfaffian form). The 1-form (1.1) happens_to. be a
scalar; however, given a type (1, 1) tensor field A% on X,,, one can similarly
define other 1-forms by constructing the expressions 4} dx’, which we shall
regard as contravariant 1-forms. In particular, with A% = &%, we obtain the
1-forms dx". _ .

We shall begin with a brief consideration of purely algebraic operations
which may be performed on 1-forms. For instance, the sum of two scalar
1-forms w = A; dx’, m = B; dx’ is defined by the obvious rule

w + n = (4; + By dx’,

which is again a 1-form; needless to say, the sum of two l-formg of diﬂ“er_ent
types, such as a scalar and a contravariant 1-form, has no tensorial meaning.

Similarly, the product of a 1-form w as exemplified by (1.1) and any function
£ (x*) which depends only on the coordinates is defined to be

fo = fA;dx’, . (1.2)
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which is another 1-form. However, when the product of two 1-forms w,
is considered, a new concept must be introduced, namely, the so-called
exterior (or wedge) product of w and 7, to be denoted by w A =. The exterior
product is assumed to obey the usual distributive law of multiplication, but
instead of commutativity one stipulates anticommutativity for 1-forms:

WAL= —7 A . (1.3)
Thus, in particular, we have
dx) A dx" = —dx* A dx. (1.49)
As a result of (1.2) and these rules, the exterior product of two scalar 1-forms
@ = A;dx/), n = B, dx", can be expressed in the form
w A = (4;dx)) A (B, dx") = A;B, dx’ A dx", (1.5)
or
® A T =%A;B, dx) A dxh + A, B;dx" A dx’) = {(A4;B, — A,B)) dx’ A dx",
(1.6)

This is not a 1-form but represents a scalar 2-form, the most general 2-form
of this type being represented by expressions such as

Ay dx) A dxh, (1.7)

where, because of (1.4), it can be assumed without loss of generality that the
coefficients 4, are the components of a skew-symmetric type (0, 2) tensor.
It will be seen that the process of exterior multiplication is extremely
useful; one of its main motivations arose from the transformation law of
integrals under a change of independent variables. For instance, for a co-
ordinate transformation X/ = x/(x*) with positive Jacobian we have

3
%) = % dx", (1.8)
so that
i Al i ol
dsi A dX' = (%g% dx* A dx* = %g((;‘k—’;;dxh A dx*. (1.9)

Thus, when n = 2, the left-hand side consists of only one nonvanishing term,
and the two nonzero terms on the right can be combined to yield
ax?!, x2)
dx' A dx? = 2" Zdx! A dx2.
XN T A, XD
In a purely formal sense this leads directly to the correct formula for the
transformation of the integral of a scalar function g(x’) over a domain G

5.1 THE EXTERIOR PRODUCT OF DIFFERENTIAL FORMS 133

of our 2-dimensional manifold X, provided that we represent the integrand
as a 2-form:

; - o O, XY N
J.Gg()_c’) dx! A dx? = ng(x}(Xh))de A dx?, (1.10)
it being recalled that the Jacobian on the right-hand side is supposed to

be positive. ' -
The exterior product of more than two 1-forms can obviously be obtaine
recursively, it being assumed that the associative law holds: for p 1-forms,

with p < n, given by
" = A} dx’ r=1,...,p<n), (1.11)
we have

(1.12)

As in the case of (1.6) these exterior products can be written i'n slightly more
illuminating form. From the property (4.2.15) of the g.el}erah‘zefi_ Kro_necker
delta it follows immediately that for any set of quantities C’*"/» which are
completely skew-symmetric in their superscripts, one has

Sjrde Chihe = plCivir, (1.13)
1°=*fp
In particular,

dx’t A oo A dxir = ;)1—‘6{;‘1'_'_',{;; dx" A - A dxPe, (1.14)
so that (1.12) is equivalent to

jri2J 1 2 3 hy k2 hs3
o' A 0 A= 3'6{,‘1{,22’,;’3Aj1AjzAj3 dx" A dx" A dx™,
..................................................... (1.15)

| N
— sd 1 ... 4P 1 .
W' A AP = 'éfi‘l.“,,';,Ah A% dx™ A A dx

Here it is to be noted that 81737 A} --- A? is the determinant of the matrix

hi-hp ip ¢
obtained by choosing the A,th, ..., h,th columns of the p x n matrix
A AL .- Al
2
A4 A4 AT (1.16)
a4y A
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. . n . .
In particular, for p = n, the determinant +det(A%) appears n! times in

o' A -+ A @, so that

o' Ao A" =det(Ah) dx Ao A dx™. (1.17)

The p 1-forms (1.11) are said to be linearly independent if the p quantities
whose components are A4}, ..., A? are linearly independent. From the above
construction it is immediately evident that the 1-forms w?,
dependent if and only if

.., @F are linearly

W' A AP =0, (1.18)

Clearly there cannot exist more than n linearly independent 1-forms at
any point P of X,. Thus the scalar 1-forms at P constitute a vector space of
dimension n, whose basis elements are represented by dx!, . .., dx" relative to
the given coordinate system of X,. Since each scalar 1-form is uniquely
defined by a covariant vector A4; as in (1.1), this vector space is isomorphic
to the dual tangent space T}*(P) of covariant vectors of X, at P.

Similarly all scalar 2-forms (1.7) at P are the elements of a vector space of
dimension 3n(n — 1), whose basis elements are represented by the in(n — 1)
exterior products dx’ A dx" with j < h. [It is easily verified that these basis
elements are linearly independent. For, suppose to the contrary that there
exist parameters ¢ > DOt all zero, such that

chh dx! A dx" = 0.

j<h
The exterior product of this relation with dx> A -.- A dx" is formed, and,
since dx” A dx" = 0 by virtue of (1.4), it is clear that the sole surviving term is

Crpdx' Adx? Adx3 Ao A dx",

from which it follows that ¢;, = 0. By symmetry, we conclude that all Cin
vanish, which establishes a contradiction.] Continuing in this manner
we regard any scalar p-form defined by

®=A; . ; dx" A - A dxe, (1.19)

where 4; .. ; is a completely skew-symmetric type (0, p) tensor with p < n,
as an element of a vector space of dimension (;), whose basis elements
relative to the given coordinate system on X, are represented by dx/t A
dx’? A --- A dxIr, with j; < j, < --- < j,. (The direct sum of these vector
spaces (p = 0, 1, ..., n) is said to constitute a Grassmann algebra.)

Although it is not possible to form the sum of a p-form w and a g-form =
unless p = g, one can always construct their exterior product. For a p-form
w given by (1.19), and g-form = given by

T =By, dX" A o A dxP, (1.20)

NGt v
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the exterior product is defined by
w A T= A By, dX A

In connection with this definition it should be observed that

S A dXIP A dXR A A dxMe (1.21)

AdxiPt A dxIP A dxPt A oo A dXMe
=(—1¥dx/* A - AdxiP o A dX" A

since the rule (1.4) is applied g times in succession in the process of moving
dx’» from the pth to the (p + g)th position. Carrying out this operation p
times, we obtain

dle A v )
A dxha A dxIe,

Axt A oo A dXIP A dXM A o A dXMe

=(—1)Prdx" A --- - A dxIe, (1.22)

When this result is applied to the definition (1.21), we obtain the following
rule, namely,

A dx"a A dxit A

wAnT=(—1)n A w, (1.23)

for the exterior product of a p-form w with a g-form 7. Clearly (1.3), in which
p = q = 1, is a special case of this.

For future reference we note the following. Suppose that, for a set of
quantities A ;, endowed with two subscripts (not necessarily skew-symmetric),
we are given that the corresponding 2-form vanishes:

w=Apdx) A dx"=0. (1.24)

Clearly one cannot infer from this that 4, = 0, for the symmetric part
(if any) of A is excluded from this statement because of (1.4). However, we
can write ‘
©= Y (Ay — Ay)dx) A dx", (1.25)
i<h

and hence, because the basis elements dx/ A dx" with j < h are linearly

independent, we may infer that
Ay — Ay

2]

= &k A4, =0. (1.26)

More generally, let us consider a set of quantities A4,,..,, endowed with p
subscripts (not necessarily skew-symmetric). From (1.14) we have that

Aoy X" A - A dx = 65‘; Fr Ay g dXT A e A dIn (127)
Moreover,
; 1 .
T Sld a e dor = S A A dddn,(128)
j1<--<jp
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for, among the p! permutations of p distinct integers j,, ..., j,, there is only
one for which j, < j, < --- < j,. Thus (1.27) can be written in the form

Ahlmhp dxh‘ VASRIRRAVAN dx"P = Z 6.’“ dxj1 INEERN dxjp,

) G J 1~~~hp
J1<e<jp

(1.29)

which is valid for any A4,,..,, , irrespective of symmetry or skew-symmetry
properties. In particular, it now follows from the linear independence of
the basis elements dx’* A --- A dx’» with j, <j, <--- <, that the con-

dition
Apyoo, X" A oo A dXPP =0 (1.30)
implies that
Sy Anyeoy, = O, (1.31)

This fact will be used frequently in the sequel.

5.2 EXTERIOR DERIVATIVES OF p-FORMS

Having briefly dealt with the algebraic properties of p-forms, we shall now
turn to the differential calculus of such forms. This is based on the concept
of exterior derivative, which is to be described below.

For a 1-form w given by (1.1) the exterior derivative, denoted by duw,
is a 2-form defined by

0A;

do = Fe ——ldx* A dx. 2.1)
Because of (1.4) this can be written in the form
0A;
do = i L dx) A dx*. 2.2)

Incidentally, one can combine (2.1) and (2.2) to obtain

04
( L ai) dx) A dx*, (2.3)

do =
@= ox!  oxk

which shows that the coefficients of the basis elements dx’ A dx* withj < k
are _the components of the “curl” of the vector field 4;.

Similarly, the exterior derivative of the 2-form (1.7) is, by definition, the
3-form

o4,
ox*

do = dx* A dxi A dxt =

34, . .
#dxi A dx® A dx, (2.4)
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In general, then, for a p-form (1 < p < n)

j— J1
o= 4., dx

- A dxe, (2.5)
the exterior derivative dw is the (p + 1)-form

0A

do =~ dox* A dxit A - A dxPP
ox

= (- 1)" " e dyt A oo A dxde A dxTee (2.6)

We shall now briefly derive some basic properties of the process of exterior
differentiation. Clearly, the exterior derivative of the sum of two p-forms is
simply the sum of their exterior derivatives. However, for the exterior
product of the p-form (1.19) with the g-form (1.20), we find, on applying the

definition (2.6) to the product (1.21):
JdB

Zhihg dx":l

A;
ajx -ip dkahx ay t A;.. dp ek

do A )= [a

AdXIT A - AdxdP A dXM Ao A dXMe,

or, because

dx® A dxTt A coo Adxir = (=12 dxPt A <o+ A dXIP A dXE,

this expression can be written in the form

dw A ) = (2%12 ax* A dx’t A -- A dxfl’) A By, X" A oo A dx"9)

. 0B,,...n, ,
+ (—1P(4;,...;, dX A <o A dxXP) /\( 6hx" dx* A dx" A oo A dx"q)
From (1.19), (1.20), and the definition (2.6) it therefore follows that
dw A ) =do A+ (—1Pw A dn, Q.7

which represents the product rule for the exterior derivative of the exterior
product of a p-form w with a g-form . It is easily verified that an interchange
of the order of w and = in (2.7) is consistent with (1.23).

Another immediate consequence of the definition (2.6) is the fact that

ddw) =0 (2:8)

identically for any p-form (2.5) provided that the coefficients 4; ...; in 2.5)
are of class C2. For, if the definition (2.6) is applied to itself it is found that

2
a—A“—‘de A dx® A dxIta

T ok - A dxPe,

ddw) =
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which vanishes identically by virtue of the symmetry of the second derivatives
ofA;..; inh and k. The identity (2.8) is often referred to as Poincaré’s Lemma;
we shall see subsequently that this lemma possesses a very useful local inverse.

Let us suppose, for the moment, that the coefficients 4;, ...; in (2.5) are the
components of a type (0, p) tensor, so that the p-form (2.5) is a scalar. However,
it was repeatedly stressed that the partial derivatives with respect to x* of a
tensor are not, in general, tensorial. Hence it is not immediately evident that
the exterior derivative (2.6) is tensorial. In order to clarify this point, we
apply the identity (1.27) to the (p + 1)-form (2.6), which yields the following
expression:

(_—l)p‘ hy-hphp 41 6Ah1'“hp dle A -

= (p 5 1)' T F A dx?l? A dxrrt. (29)

We now recall the general result obtained in Section 4.2, according to
which the sum

hBy-hphp + M
JiJplip+1 axhpn

(2.10)
is a type (0, p + 1) tensor whenever A4, .., represents a type (0, p) tensor
field; it therefore follows that, under these circumstances, the exterior
derivative (2.9) is a scalar (p + 1)-form. At this juncture it should be stressed
that the tensorial character of (2.10) is established without reference to the
existence of a connection on our underlying differentiable manifold X,,.
However, in practice one is frequently confronted with p-forms which are
not scalars. For instance, let us consider a contravariant 2-form of the type
IV = A,7, dx" ~ dx¥, 2.11)
in which the coefficients 4,7, represent the components of a type (1, 2) tensor
field. According to (2.6) and (2.9) we have

dx! A dx® A dx* = 1 ot 04/ dx" A dx* A dx!
T3 U iyt ’

aAhjk

ox!

TV =

(2.12)

which is not in general tensorial. In order to construct a tensorial exterior
derivative we have to invoke a connection, and accordingly it is now assumed
that X, is endowed with connection coefficients denoted by I',/,. This allows
us to introduce the covariant derivative of 4,7, which, according to Section
3.5, is given by

04,7

Arjsll = _6;"75 + Armsrmjt - Amjsrrml - Arjm rsmt'

(2.13)
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Because of the skew-symmetry properties of the generalized Kronecker delta
we have

;xitl(Amjs Iﬁrmt + Arjm rsmt = %6;?I(Amjs Srml + Arjm Ssml)’ (214)
where S,™, denotes the torsion tensor of our connection:
Srm! = Iﬁrmt - I_‘lmr‘ (215)

Thus, when (2.14) is applied to (2.13), we obtain

: . . 0A,7 .

5;17:1 [Arjslt + %(Amjssrmt + Arjm Ssmt)] = 5;5:1( ax",S + Arms rmjt)! (216)
from which it is evident that the right-hand side is a type (1, 3) tensor. This
conclusion, taken in conjunction with (2.12), strongly suggests that we should
define the covariant exterior derivative of the contravariant 2-form (2.11) by

; 1 0A,° .
DIl = 31 5;1’,( 6xr’s + A,’"sl"m’,) dx" A dx* A dx!

. 1 .
= dIV + 5 5 AT,/ dx" A d A d, @.17)

which is a contravariant 3-form. Because of (2.16) this relation is equivalent to

: 1 : . )
DIV = o i (A g + AL S+ A ST dxt A dxt A dxl. (218)

The definition (2.17) can be written in a somewhat more illuminating form
as follows. On applying the general identity (1.27) to the second term on the
right-hand side of (2.17), after which we substitute from (2.11), we obtain

1 .
3—!6;5(',A,’"s L7 dx" A dx* A dx!

= A" 0 dx" A dx* A dx' = TI* A T}J, dx. (2.19)
We therefore define the following 1-form (in the notation of E. Cartan):
w,’ = T}/ dx!, (2.20)

where it should be stressed that this form is not tensorial, being defined
directly by means of the coefficients of our connection. By means of (2.19)
and (2.20) we can now express the covariant exterior derivative (2.17) of the
2-form (2.11) in the following final form:

DIV =dIlV + " A w,/ = dIlV + w,/ A TI%,

where we have used (1.23).

2.21)
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By means of a similar application of (1.27) to (2.18) it is found that (2.21)
is equivalent to

DIV = [AJy; + HA,2 8™ + A7,S™)] dx* A dx* A dx'.  (2.22)

In passing we note that, should 4,7, = — A4, /,, this expression reduces to
DIV = (A, + A7 Sy™) dx" A dx* A dx'. (2.23)
The same technique may be applied to the more general p-form defined by
IV = A) ., dx)' A - A dxi, (2.24)
in which Aj:l,,, j, denotes the components of a type (1, p) tensor. The covariant
exterior derivative of this p-form is given by the following contravariant (p + 1)-

form:

DIV = dIV + (- 111" A o,/ = dTIVV + w,’ A T, (2.25)
of which (2.21)is a special case. The extension of this formula to p-forms whose
coefficients are type (r, p) tensors is immediate. However, one is sometimes
confronted with p-forms whose coefficients are type (r, p + q) tensors (g > 1),
in which case an additional g terms which are linear in the 1-forms (2.20) enter
into the definition of the covariant exterior derivative. For instance, in the
case of a 2-form

I/ = A/, dx" A dx¥ (2.26)
whose coefficients are the components of a type (1, 3) tensor field, the exterior
covariant derivative must be defined as

DII/ = dIl/ + o,/ A TI* — o} A 11,7 2.27)
It is easily verified that this may also be expressed in the form
DIIY = [Afu, + HA i Si™, + Afpm ST )1 dx" A dX* A dxP,  (2.28)
or, if A/, is skew-symmetric in h and k,
DII/ = (A gy + AP Sy™,) dx" A dx* A dxP. (2.29)

In particular, if one regards the components X’ of a type (1, 0) tensor field
as representing n 0-forms, one may write

DX/ = dX! + w,/X", (2.30)

which, by virtue of (2.20), coincides with the absolute differential of X’
(indicating that the notation introduced here is consistent with that of
Section 3.4).

In conclusion we observe that the product rule for covariant exterior
differentiation is the same as the rule (2.7) for exterior differentiation: if
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Q, I respectively denote a p-form and a g-form of arbitrary types (the tensor
indices being suppressed), we have

D(Q A TI) = DQ A IT + (—1)"Q A DIL (2.31)

The proof of this assertion follows directly from (2.7) and the general defini-
tion of exterior covariant derivatives.
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Let w be a p-form given by (2.5). This form is said to be exact, if there exists
a (p — D)-form z such that

w =dn. (3.1
According to the Lemma of Poincaré [i.e., (2.8)],
do =0 (3.2)

whenever w is exact. Any p-form o satisfying the condition (3.2) is called
closed, and thus the Lemma of Poincaré states that every exact p-form is
closed. This simple statement contains as special cases some well-known
identities of elementary three-dimensional vector analysis.

For instance, let us suppose that w is the 1-form (1.1). By means of (2.3) we
can then write

dw = 5F; dx) A dx¥, (3.3)
where we have put
04, O0A4;
T axd T axk”

(3.4)

Now, let us suppose for the moment that (1.1) is exact, that is, that there exists
a scalar function ¢(x") € C? such that
o¢

w = Aj dxj = d¢ = 5;(; dxj, (35)

which implies that
a,=22 (3.6)

i e
Under these circumstances the covariant vector field A4; is the gradient
field of ¢(x"), while d(d¢) = dw as given by (3.3) vanishes. Thus Fj = 0
[as would also be evident directly by substitution of (3.6) in (3.4)], which is
tantamount to the well-known statement that curl(grad ¢) = O identically
(irrespective of dimension). i o
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Moreover, even when F; # 0, an application of the Lemma of Poincaré
to (3.3) gives

1 0F;

0 = ddw) = = —3*

(de) 2 ox"

and according to the final remark of Section 5.1 it is inferred that

dx" A dx? A dx*
9’

oF,
ox'

rst
5jkh

s=0,

or

oF oF,. OF
Jjk hj kh -
ox* ox* ox’ 0, 3.7

[which can also be verified directly by differentiation of the definition (3.4)
of F;]. Now, for n = 3, this is merely a single relation, namely

OF 53 + OF 5, + OF,

axt T T e O - Gy

in which, according to the usual definition, F, 4, F5,, and F,, are respectively
the x!-, x?-, x3-components of the curl of the vector A whose components

- ¢~. zare given by 4,, A,, A;. Thus (3.7) is equivalent to the well-known identity

div(curl A) = O of three-dimensional vector analysis.

The main object of the present section is an investigation into the validity
or otherwise of the converse of the Lemma of Poincaré, which would be
contained in a statement to the effect that every closed p-form is exact,
or equivalently, that the relation dw = 0 for a given p-form w implies the
existence of a (p — 1)-form = such that w = dn. We shall see that this is
indeed the case in a certain local sense to be specified below.

To this end, let us consider a p-form

w=A, ; d)" Ao AdxIr, (3.9)

JirJp

of which it is assumed that the coeﬂicients Aj,.g, = Aj, . (X" are class C!
functions of the local coordinates x" of our dlfferentlable manifold X,.

More precisely, for a given point P on X, let us choose our coordinates such
that x! = ... = x" = 0 at P, after which we construct an open set U on X,
which is defined by the property that for any point Q € U with coordinates
x", the segment consisting of the points with coordinates tx* 0 < ¢t < 1, is
also contained in U. The set U is said to be star-shaped with respect to the
point P. It will henceforth be assumed that the coefficients 4 ieeein in (3.9)
are defined and of class C* on such a star-shaped set. Under these conditions
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we can apply an operator ¢ to our p-form w, this operator being defined by

14 . . .
Ow =Y (——1)’_1{f PTA;, dy (tx™) dt}x” dxit A -o o A dxIT

r=1

A dxirrr A A dXr, (3.10)

This is a (p — 1)-form, whose existence is assured by virtue of our assump-
tions. It has the general property that if @ = 0 then Ow = 0, which is easily
seen by expressing (3.10) in the form

1 o By Sieip ha hy
Ow = oD {L P A L (X dt}x S dx™ Ao Adx
and noting (1.30) and (1.31).
We now evaluate the exterior derivative of Ow. In doing so, we observe
that

0 (£x™) 6(tx’) _o4 (tx") 0A (tx")

A, . txh 11 ip Ji---jp =t Ji-- Jg
ox’ (X = ox! Ox/ ox! ox’

so that exterior differentiation of (3.10) gives

d(@w) :rgl(.——l)rﬁl{ 01 _q__,a_xm‘h}xir dx’

AdXt Ao A dXITY A dXIT A o A dXP
+ p{f P A (xR dt} dxit A -+ A dxIP, (3.11)
where, in the last term on the right-hand side, it has been noted that

p . .
Y A(=1y"dx A dxXt A e A dX

r=1

AdxIrtt Ao Adxe = pdxit A - A dxe.

Now let us apply the @-operator to some (p + 1)-form €, the latter being
given by
Q = B; dxt A oo A dxIPti, (3.12)

Ji-ip+1

it being assumed once more that the coefficients B;,..; are defined and

of class C! on the star-shaped open set U. According to the definition (3.10)
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of O we have
p+1 1
0 =y (—l)"‘{f tB; ;. (tx") dt}xj’ dxit A oo A dxdrer
r=1 0

A dxjr41 A A dxjp+1

P 1
= Z(—l)’”‘{f t*B;, ., . (tx") dt}xf' dxit A oo A dxIrr
r=1

0

AdxIrrt A e A dxdee

1
+ (- 1)"{f t*B;, .., . (tx") dt}xj'“ dx’t A - A dxr.
0

.In both terms on the right-hapd side we replace the indices Jp+1 by j and
in the ﬁ‘rst term we move dx’r+! = dx’ from the pth position to the first.
Since this requires (p — 1) interchanges, we thus obtain

» 1
0Q = (—1p1y (—1)'*1{f 1”B,,.., (tx") dt}xj' dx
r=1 0
dAxit Ao AdXI A dxITt A - A dixde
1
+ (—I)P{f t?B; ...;, {tx") dt}xj dxit A oo A dxe. (3.13)
0

However, from (3.9) we have

0A4; ..: .
do = (-1 ——EaxJ’:"'J’ dx/' A -o A dxIe A dxdet,

and thus we can make the identification

. Q =dow, (3.14)
provided that we now put
04; .
Bivvspines = (=17 50500 (3.15)
in (3.12). Under these circumstances (3.13) becomes

4 1 h
Odw) = — (—1)'—1U tvi{ih—é"f#x—)dt}xﬂ dx’
r=1 0 X

AdXIt A o A dxI A X A e A diXR

1 OA; .. (x* oo ,
+ {Lt"ﬁ'}ﬁldt}x’ dx’t A --- A dxir, (3.16)
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Thus, when (3.11) and (3.16) are added, we obtain
d(Ow) + O(dw)

[ 04, . (exty . .
= t? ——“"‘“’.( x) x4+ ptPT A, (X)) |dedxt A --- A dxP
o axj JiJp

1
= f %[t"Ah,,,jp(tx")] dt dx’* A -+« A dxIr
0

= A (M dxTt A A dXP = . (3.17)

This is an identity which is valid for any p-form @ whose coefficients
are of class C* on U; in particular, if dw = 0 on U, it follows from (3.17)
that

w = dn, (3.18)
where the (p — 1)-form = is given by (3.10):
n = Ow. (3.19)

Thus w is exact on U. This establishes the following theorem.

CONVERSE OF POINCARE’S LEMMA

Let U be an open region of X, which is star-shaped with respect to a point
P on X,. Then every closed p-form whose coefficients are defined and of class
C! on U is exact at P.

Remark. The above method of proof not only establishes the existence of
the required (p — 1)-form =, but also, according to (3.19), indicates a method
whereby n may be evaluated as a (p — 1)-form with class C! coefficients
on U. However, it is immediately obvious that (3.19) does not represent
a unique solution. For, let 1 be any (p — 2)-form, by means of which we can
define the (p — 1)-form

fi=m+ du. (3.20)

Clearly d#t = d=, so that (3.20) represents a class of (p — 1)-forms satisfying
the condition w = d#.

We shall now consider some extremely important special cases of the above
theorem. Let us suppose that the 1-form w = A4; dx’ is closed, that is, such
that dw = 0. From (3.3) and (3.4) we infer that this is equivalent to the state-
ment that

0A; 04,

04; 04 _ . 321
ox*  ox’ 0 (321
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However, the converse of Poincaré’s Lemma now assures us of the existence
of a O-form ¢ [i.e., a scalar function ¢(x")], for which @ = d¢, which implies
that (3.6) is satisfied. It follows that the system (3.21) always ensures the exis-
tence of a function ¢ satisfying (3.6). Since (3.6) obviously also implies (3.21),
we conclude: in order that a covariant vector field be a gradient field, it is
necessary and sufficient that its curl vanishes.

Now let us turn to a 2-form

® = Ay dx) A dx", (3.22)
for which

oA,

do = Ak

If this form is closed, it follows from the remark at the end of Section 5.1 that

. OA,
jhl: axls = 0’

04,  0AR\ | (044 0A,)\ . (04, 04,
_ . _ _%a) _o. 32
(6x" ) T\ ") T e T )70 G

From the converse of Poincaré’s Lemma we infer the existence of a 1-form
7 = B, dx" such that w = d=, or

<Aj,l — Z%)dx’ A dxt =0,

which in turn implies that

or

rs aBs
5jh<Ars - axr> = 0’

8, _on,
ox)  axt

or

Ay — Ay = (3.25)
Hence the system (3.24) ensures the existence of functions B, such that (3.25)
is satisfied. In particular, if 4,; is skew-symmetric, the system (3.24) reduces
to

0Ay | 0A, 04

ox* ox’ + ox"

A dx® A dxE (3.23).

ki _ (), (3.26) -
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1/6B, 0B,
Ay = igj - Tﬁ) 3.27)

Conversely, it follows by direct differentiation that (3.27) implies (3.26).
Thus, in order that a skew-symmetric tensor A, be the curl of a vector field, it
is necessary and sufficient that it satisfies the system (3.26). [In this connection
we recall that, for a type (0, 2) tensor field 4,,, the left-hand side of (3.26) is a
type (0, 3) tensor field, so that the invariance of the “integrability conditions”
(3.26) is guaranteed.]

Finally, turning to the general case of a p-form w such as (3.9), we observe
that the condition dw = 0 yields the system of equations

while (3.25) becomes

24
Sl e =0 (3.28)

on the one hand, while on the other the converse to Poincaré’s Lemma
ensures the existence of a (p — 1)-form

= Jt
=B ., dx A

A dxir-1, (3.29)

such that w = dr, or

_, 0B, ;
I:Ajlmjp — (=11 #’L’J dxit A oo A dxiP =0, (3.30)

which is equivalent to

B
o [A - (- %L] =0. (3.31)

It is therefore inferred that the system (3.28) ensures the existence of the
Sfunctions B,,...n,_, such that (3.31) is satisfied. Again, if A; . ; represents a
type (0, p) tensor, the “integrability” conditions (3.28) of (3 31) are tensor
equations.

In the application of these integrability conditions the local nature of the
solutions, as specified by the converse of Poincaré’s Lemma, must naturally
be observed.

5.4 SYSTEMS OF TOTAL DIFFERENTIAL EQUATIONS

In many applications of the exterior differential calculus one encounters
systems of total differential equations which are described by vanishing
1-forms of a type somewhat more general than those encountered above.
These will be briefly described in the present section, and to this end we shall
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consider n variables x/, together with a set of m variables t*, which we shall 4
regard as the local coordinates of a region G of an (n + m)-dimensional §
differentiable manifold X,.,,. [In this section Latin indices range from 1
to n as before, while Greek indices range from 1 to m; the summation con- §
vention is operative in respect of both sets of indices.] ;

An equation of the type x/ = x(t%) describes an m-dimensional subspace -
C,, of X, ,: for instance, if m = 1, this subspace is a curve. More generally, -
for a set of n independent parameters v”, the system of equations

x! = xi(2, v"), 4.1)

represents an n-parameter family of m-dimensional subspaces C, (" of
X, ... We shall assume that the functions (4.1) are of class C? in * and
of class C! in ", and that the family covers the region G of X, ., simply
in the sense that through each point of G there passes one member of C, ("
of the family. The latter assumption is tantamount to the requirement that
the n equations (4.1) can be solved for the n parameters v*:

ot = gh@®, x9). 4.2)

Let P be a point with coordinates (% x’) on the subspace C,(v"). It follows
from (4.1) that a displacement (dt*, dx’) at P tangential to C,(v") must satisfy -
the conditions

dx’ = bi dt*, 4.3) &

in which
axI(ee, v
o’

where it is understood that the parameters v* assume the values prescribed §
by (4.2) at the point P. In this sense the nm functions (4.4) are uniquely !
defined as class C! functions of (5, x*) on G by the system (4.1):

bi = bi(t*, x"). (4.5)

Moreover, these functions are tensors of types (1, 0) and (0, 1) with respect
to coordinate transformations ¥/ = ¥/(x") and i* = %(t%), respectively.

b

@4 |

Conversely, let us suppose that we are given a class C ! tensor field (4.5)
of this type on G. This allows us to define the 1-forms

o = dx/ — bi(t5, x") de* . (4.6) |

in x/ and %, of which it will be assumed that they are linearly independent. |
The system of n total differential equations

o =0 4.7
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is said to be completely integrable if there exist n class C* functions x/ =
x/(¢%, v") which are such that the substitution of these functions in (4.6) yields
(4.7). If m > 1 this is possible if and only if the bJ satisfy certain conditions,
for clearly the integrability of (4.7) implies that the solutions x/(¢%, v") must
satisfy

ox’
ot*

= bi(t*, x"), (4.8)

which represents a system of mn partial differential equations for the n
functions x/(t*, x*). Thus, when m > 1, the system (4.8) is overdetermined
in the sense that there are more equations than unknowns.

A necessary condition for the compatability of the members of the system
(4.8) is easily obtained as follows. For, if we are given a class C? solution
xJ(t?, v") of (4.8), we obtain by differentiation of (4.8) with respect to t¥ and
subsequent substitution from (4.8):

x' _obl bl ox' _abl  obl,
wor - "ol o T o

which must be symmetric in a, §. It is therefore necessary that

Q,fa =0, 4.9)
where we have written
; obl  obi,  0bl ob)
= " e T o O T o O (10

It will be seen that the condition (4.9) is also sufficient for the complete
integrability of the system (4.7). Indeed, we shall now prove the following
theorem, which is often associated with the name of Frobenius.

THEOREM

In order that the system (4.7) of n total differential equations with class C*
coefficients bi(t°, x") be completely integrable, it is necessary and sufficient
that these coefficients satisfy the conditions (4.9).

Proof. The necessity of (4.9) has already been established. In order to prove
sufficiency, we consider some fixed point with coordinates (¢, x{) in G,
and for any point with coordinates (¢, x’) in G we write

1* =1ty + A%s (4.11)
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with suitably chosen parameters 4% s. Let us now consider the system of n
ordinary differential equations
dx’

27— )ehi(E 3 h
o = bt + A%s, XN, (4.12)

According to the general theory of such equations we are assured of the
existence of class C? solutions of (4.12) of the type

x) = @I(s, A%, VM), 4.13)

which are uniquely specified in terms of their parameters v" provided that
suitable initial conditions are prescribed. The latter are here taken to be

xh = ¢J0, 25, v") = v/, (4.14)
the parameters v/ having been chosen such that v/ = x, for t* = ¢§. These
conditions also imply that

xi, = ¢¥(s,0,v") = v/, - (4.15)

since the solutions of (4.12) with A* = O are constant. By definition, the
functions ¢’ satisfy

o .
ai; = Jobi(ts, + s, ¢"). (4.16)
We now introduce a new set of quantities w by writing
J
wi(s, A%, ") = 6(,11)"‘ shi(ts + A%s, ¢"). 4.17)

Let us differentiate (4.16) with respect to A% after which we substitute from
4.17):

0%’ . ob obl, d¢*
— b B _13 878
aigs " et SH e o o |
. obj,  obj ob}
b 8 998 B ph 8 8) |
ba+51<5a+a b)+/1(3 (4.1)3,
Similarly we differentiate (4.17) with respect to s, after which we substitute 4
from (4.16): |
ow! _ o%¢’ bl — s abg 6b’ 6¢"
ds  0soA* o " ox" as
o0*¢’ ; s ob’ 6b{_ R
= ar bl — sA ar a % bp (4.19)
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This is added to (4.18), it being recalled that ¢’ is of class C2. In terms of the
notation (4.10) we thus obtain

owl ob}
x _ Y08k _ g8
35 A P wh = sl Q (4.20)
At this stage we invoke the assumption (4.9), so that (4.20) reduces to
ow’ ob}
a __ 18 B . h
e A I Ve 0. 4.21)

For fixed values of the parameters A% v*, we can regard this as a system of
ordinary linear differential equations for w! as functions of s. But from
(4.1‘7) we infer that w) = 0 for s = 0, since by virtue of (4.14) the derivatives
0¢’/0A* vanish when s = 0. Thus, from the general theory of linear systems
such as (4.21), it follows that

wi=0 4.22)
for all values of s. Hence (4.17) reduces to
o’ :
5‘; = sb(ty + 4%, ¢"). (4.23)

Using (4.11) we now construct the following functions for s # 0:

. ) ) ta T
Xi(s, 15,07 = (s, A% o*) — qS’(s, - o, uh>. (4.24)
On differentiating this with respect to ¢*, taking into account (4.23) and (4.11),
we obtain
(2.5 I o’ 1 1 o’
orr  afs s 04"
Also, differentiation of (4.24) with respect to s yields
oX’ o¢’ _ 0Pl — 1y 0’ 0l i*

= bi(t, . (4.25)

ds  0s 0A s*  ds oA s”
or, by virtue of (4.16) and (4.23),
ox’
S 2*bi(tE, ™ — 27bi(t5, ¢™) = 0, (4.26)

from which it follows that the functions (4.24) do not contain s explicitly.
We may therefore write

xI(1%, ") = X(s, 1%, 0%) = (s, 4%, 0P), (4.27)
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and according to (4.25) we then have
ox?
or*

which is (4.8). Finally, putting A* = 0 in (4.27), noting that this implies
t* = t2 by (4.11), we find, using (4.15),

X%, v*) = ¢i(s, 0, v") = x. (4.29)

From (4.28) and (4.29) we infer that the functions x/(¢*, v") constructed accord-
ing to (4.27) are solutions of the system (4.7) and represent an m-dimensional
surface in X,,,, passing through the point P with coordinates (f5, x).
By variation of the parameters v* an n-parameter family (4.1) of such surfaces
is obtained. This concludes the proof of the theorem.

The latter possesses an important corollary. Having established the
existence of the family (4.1) as a consequence of the condition (4.9), we may
construct the corresponding functions (4.2), which, by definition, are integrals
of the system (4.7) in the sense that these functions are constant on each
member C,(t") of the family (4.1). Thus, for an arbitrary displacement
dt*, we have

= bi(t*, x"), (4.28)

j j 20
O*aidt“+€g—dx"=<;t’a

TS ox™
from which we deduce that each of the n independent functions (4.2) is a
solution of the partial differential equation
od(t*, x¥) oD(t*, x¥)
o® ox"

g’
+ bt a‘ih) are,

+ bi(te, XM =0. (4.30)
It may therefore be inferred that the conditions (4.9) ensure the existence of n
functionally independent solutions g’(t°, x*) of (4.30). Moreover, if F denotes
any class C! function of n independent variables, it follows directly that
F(g’(t%, x¥)) is also a solution of (4.30), for

OF  wOF _0F0g ,0F 0g' _OF %9’ 9\ _
ot* *ox"  8g’ o *ogl ox*  og'\or* * ox*

Again, any solution of (4.30) is an integral of (4.7).

We shall now show how the theorem of Frobenius can be translated into
the language of the exterior differential calculus. By virtue of (2.1) the exterior
derivative of the 1-form (4.6) is given by

ob)

dwf——~dtﬂ/\dt“—%d koA dE®
=T ot o ’
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or, if we eliminate dx" by means of (4.6),

. ob;  obl obi
doy = =% + = b" = L Sl 7 h
(61?" pac ﬁ) dt* A dt pp dt* A o

In terms of the notation (4.10) this can be written in the form

do/ =% Qg dt* A dif + gz]; dr* A ot (4.31)

a<p

Let us now put
QY =do’ A @' A - A o" 4.32)

An explicit expression for this (n + 2)-form is obtained by taking the exterior
product of (4.31) with w! A --- A ©", where it is to be noted that, because
of (1.3),

" At A A" =0 th=1,...,n).

It is thus found that
Q=3 Q/,dt* ndtP A ' A--- A D" (4.33)

a<p
It follows that the condition (4.9) implies that Q/ = 0. In order to show
that the converse is also true, we note that the 1-forms with which we have
been dealing here [such as (4.6)] are in the variables (x/, t*), so that the
basis elements of the vector space of these 1-forms can be chosen to be
(dx!, dx?, ..., dx" di', ..., dt™. The (n + m) x (n + m) matrix

% b 4.34

0 5) (4.34)

whose determinant has the value + 1, when applied to these basis elements

yields a new basis, namely (wl, ..., o" dt!, ..., dt™). Thus the (n + 2)-forms
' A A" A dEE A dEP, with o < B,

constitute a subset of the corresponding basis elements of the (?17)-dimen-
siqnal vector space of all (n + 2)-forms. It therefore follows from (4.33) that
Q/ = 0 implies that Q,/, = 0: consequently the conditions &/ = 0 and (4.9)
are equivalent. The theorem of Frobenius may therefore be enunciated in the
following manner: In order that the system (4.7) of n total differential equations
with class C! coefficients bi(t*, x*) be completely integrable it is necessary and
sufficient that the (n + 2)-forms Q as defined by (4.32) vanish:

do' A o' A - A" =0 (=1,...,n. 4.35)
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Because of the structure of the 1-forms (4.6), our system (4.7) of total

differential equations is of a somewhat special kind. However, the above
formulation of the theorem of Frobenius is easily extended to more general
systems (which is one of the principal advantages of this formulation). Let
us therefore consider the system of n total differential equations described
by n/ = 0, where the 1-forms =/ are defined by

nl = Gi(t*, x*) dx" + Gi(tf, x*) dt*, (4.36)

it being assumed that the coefficients in (4.36) are of class C* and such that

det(Gf) # 0. 4.37)
Under these circumstances the inverse H¥(t%, x*) of Gj(t*, x*) exists:
HYG} = ;. (4.38)
One can therefore define the following n 1-forms:
k= Hin/ = dx* — BY(t*, x") dr®, (4.39)
where
Bf = —HYG]. (4.40)

Clearly the 1-forms (4.39) possess the structure of the 1-forms (4.6), and thus
the system

=0 (4.41)
is integrable if and only if the (n + 2)-forms

Uk=dpy* At Ao A " k=1,...,n (4.42)

vanish. But, by virtue of the construction (4.39), the integrability of (4.41)
implies that of the given system 7/ = 0, and it remains to rewrite this criterion :

in terms of the given 1-forms (4.36).
Now, from (4.39) we deduce that

dy* = dH% A 7/ + HYdn,

or, since the inverse of (4.39) is

n = Giy @43) §

in view of (4.38), we have

dp* = Gj(dH% A ") + HY dn’. (4.44)

Again, on taking the exterior product of (4.44) with p* A ---
that u" A 't A ---

A u", noting '
A u' = Qforh =1,...,n, we find that the (n + 2)-forms .
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(4.42) are given by
U=HYdmd A pt Ao A pn (4.45)
But from (4.39) we have

LN n— H! .. .H" gh J
oA AU Hj ---H} n/' A A Tin

|
— J1-Jn 1 n o h hp __ [AYS | n
—méhimh,.Hjl"'Hj,.T‘l’\"'/\775 =det(H)n' A --- A 7",

and accordingly (4.45) becomes
U* = det(Hp)H dn/ A 7' A - A T (4.46)

By virtue of the assumption (4.37) it therefore follows that the condition
U* = 0 is equivalent to
I =0, (4.47)
where
IV=dn/ At A --- AT (4.48)

It may thus be inferred that the system 7/ = 0 of n total differential equations
is integrable if and only if the conditions (4.47) are satisfied.

In order to facilitate a direct application of this result to general systems
of total differential equations it may be advisable to change the notation
slightly. Let us consider a set of N independent variables z4. [Here, and for
the remainder of this section, capital Latin indices 4, B, C range from 1 to N;
the summation convention applies to these indices also.] It is supposed that
a system of n total differential equations of the form

o =0 (=1,...,n;n < N) (4.49)

is given, where
w’ = Gi(z°) dz*. (4.50)
From the above theory it now follows that the system (4.49) is integrable if

and only if the n conditions

do' AP A A"=0 (j=1,...,n) (4.51)

are satisfied.
As an example, let us consider the case when n = 1. The given total
differential equation is then of the form

w=G,dz*=0.
Clearly
G,

oG
do A @ = aZ‘;'dz" AdzA A= —Gcﬁdz" A dz? A dZ°
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Thus, in view of the concluding remark of Section 5.1, the integrability
condition dw A w = 0 is equivalent to the requirement that

Gy 0G, G, 0G, 0G, 0Gg\
G“( 0z 0P ) + Gy (W 5 )T Ge 0z8  8z4) 0.
When N = 3 this reduces to a single relation of the type G-curl G = 0,

which is a necessary and sufficient condition that G be proportional to the
gradient of a scalar function.

5.5 THE THEOREM OF STOKES

One of the most powerful tools of the calculus of exterior differential forms
is the so-called theorem of Stokes, which consists of a very general integral
formula. Indeed, the latter contains all the known integral theorems of
classical vector analysis, such as the divergence theorem of Gauss, as special
cases. However, whereas the formulation of the divergence theorem depends
crucially on the Euclidean (or Riemannian) metric of the underlying mani-
fold, the formula of Stokes is entirely independent of any metrical concepts.

A rigorous proof of Stokes’ theorem in its fullest generality involves
concepts and techniques from algebraic topology which are beyond the scope
of this text. Accordingly a somewhat less ambitious treatment is presented
here, as a result of which the final formula does not reflect Stokes’ theorem
in its fullest generality, particularly as regards the topological nature of
admissible domains of integration. Nevertheless, the result to be derived
below should suffice for most purposes.

Since the theorem of Stokes is concerned with the integration of p-forms
over p-dimensional regions, it is necessary to begin with the definition of the
integral of a p-form. Let D denote an n-dimensional measurable region of our
differentiable manifold X ,, and let us suppose that we are given n + 1 scalar
functions f, ¢, ..., ¢" which are of class C! in their arguments x* on D. We
may therefore write, by virtue of (1.17),

1 n
d¢1A-.-Ad¢"=delA...Adx". (5.1)
oxt, ..., x")
Accordingly we now formulate the following definitiont:
P, ..., P"
dbt A - d"=f BP0 @) et gy, .
[rastn-nag = | e glomnGlaxtaxe, 62)

where the right-hand side denotes an n-fold integral in the usual sense.

+ A rigorous and comprehensive definition of the process of integration of differential forms
on manifolds is beyond the scope of this text. See, for instance, Bishop and Goldberg [1].

i
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The value of this integral is independent of the choice of the coordinate system,
for, under a coordinate transformation X/ = x/(x"), with positive Jacobian,
dp"  B¢" Ox"

ox) — oxP axi’

so that
AP, ..., " _ P, ..., ") Ax, ..., x")

oxL, ..., %) oY, ..., x" a(xt, ..., X"

(5.3)

Proceeding in a similar fashion to subspaces of X,, let us consider a
measurable region B of a p-dimensional subspace, which is represented
parametrically by class C' functions of the form

(a=1,...,p) (5.4)

in which the u* denote the p parameters. For any given set of p class C*
functions y*(x"*) we define by analogy with (5.2):

ff dl/ll Ao A dyP? = J-Bf(xh(ua)) szll(xh(ua))’ . ‘/jl’(xh(ll:l)Z; du' - - du?,
- ’ (5.5)

x = x(u®)

where it is to be understood that no summation over p is implied. As above,
it is easily shown that the value of this integral is independent of the choice
of the parametrization (5.4) of the region B.

We shall now turn to the derivation of Stokes’ theorem. Let G be a
(p + 1)-dimensional region of X, which is star-shaped relative to some point
O in the interior of G and bounded by a closed p-dimensional subspace 9G.
It is assumed that the latter is covered by a finite number of coordinate
neighborhoods U,, U,, ..., such that the corresponding parametrizations
are of class C1. If u!, ..., u” denote a set of parameters corresponding to U,
a region B of G is determined by a closed set b in the domain R, of the
variables u,...,u?. The region B is represented parametrically by the
equations

g = g, (5.6)
where the & refer to a special coordinate system of X, whose origin is
located at O. By hypothesis, the set of points

C(B) = {t&u™): u*e b}
defines a (p + 1)-dimensional region of X, which is contained entirely in G.

Let f4(&") denote (p + 1) differentiable functions of which it is assumed
that they are homogeneous of degree 1 in their arguments:

FALERY = tfAE") forallt =0  (A=0,1,...,p)

u*eb aa=1,...,p)

0<t<l,

5.7
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Since the (p + 1) variables ¢, u* may obviously be used to define a para-
metrization of C(B), we have, according to the definition (5.5):

f df® A dft A - A df?
(B
_ J’ o 0(lf"(tl"‘)) S 1), - SPEEw)
fe:)

o(t, u' . . , uP)

dtdul---du?.  (5.8)

Let us now put
g = fAwW)  (A4=01....p; B=1...,p) (5.9
so that, by (5.7),
fAEwh) = tghwh),

from which it follows that

of 4w’y _ A(uP) of 1w’y _ . ag*
ot g9 ’ ou* ouf’

Thus the functional determinant in the integrand of (5.8) becomes

¢ g' - g

0g° og* og®

=~ —_ e _— p [s] 1 A—1 A+1 P
P 0u‘ 5u1 6u1 =th(_I)AgAa(g1’g seensd > g ""’gp)

................... i o(u', . . . , uP)

%° o' g

ou?  ou? ou?

after expansion in terms of the elements of the first row. Except for the factor
t?, this expression depends solely on the p variables v, and thus (5.8) can be
written in the form

af’ Adft Ao A df?

C(B)
S g% g% ...,9 gt .., g7
— 1 th f A d dP
; 1) f L) 9" Ful, : ‘ : 4
1 )4
=-——p+1 Z(_I)AJ'gAng Adgl A - A dgh! A dghitt A - A dgP,
A=0 B

(5.10)

where, in the last step, we have used the general formula (5.5).
The relation (5.10) is an integral formula which holds for any set of (p + 1)
functions f 4(&") satisfying condition (5.7). The latter will hold if, in particular,
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we put

Ay =¢"1=9g* (4=0,....p) (5.11)
so that (5.10) reduces to

pt1

dfl A - /\dé‘p+l — Z( 1)A+1J6Adél A "'/\déA—l
B

C(B)

A dé"“ A oo A dEPTL (5.12)

By hypothesis, the boundary dG of G can be considered as the union
of regions B,, B,, ..., which correspond to the coordinate neighborhoods
U,, U,, ..., respectively, such that none of By, B,, ... have interior points
in common. The given star-shaped region G then consists of the union of
C(B,), C(B,), ..., for each of which a formula of the type (5.12) holds. On
adding the latter, we obtain

pt+1

J‘dfl/\"'/\dép-‘-l: Z( A+1J éAdélA“./\déA—l
G +1 2G

AdEATY A o A dEPTL (5.13)

Now let us introduce a one-parameter coordinate transformation x/ =

x/(&", 1) with nonvanishing Jacobian, which is such that the inverse trans-
formation may be expressed in the form

&= xI + Api(xh), (5.14)

where the functions ¢/(x") are of class C* on G but otherwise quite arbitrary.
In passing we note that

o8 o
A= O+ Az (5.15)

so that, for sufficiently small values of A, the Jacobian of (5.14) is in fact
positive on G. When (5.14) is substituted in (5.13), the left-hand side of the
latter becomes

f(dxl FAdPY A - A (@dXPTY 4+ AdgprTY),
G

in which the coefficient of A?* 1 is

f dpl A e A dpPT L (5.16)
G
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On the other hand, the right-hand side of (5.13) becomes, after substitution
from (5.14),

p+1
% Z (—1)A+1f (x1 + 2pN(dx' + Add*) A -+ A @' + 1dopr™Y

p+ 1 4= 4G
AdxA + AddtT ) A -

in which the coefficient of A?* ! is

A (@XxPFY 4+ AdgPT Y,

1 p+1
1 Z(_I)A+lf ¢Ad¢l Ao A d¢A—l A d¢A+l Ao A d¢p+1.
r+ 1= oG
(5.17)

Thus a comparison of (5.16) with (5.17) yields
p+1
(p + l)fd¢1 A e A d¢p+1 — Z(_I)A+1J. ¢Ad¢l/\ AN d¢A—1
G A=1 oG

AdpAtt A oo A dpPT (5.18)

This integral formula holds for any set of (p + 1) class C! functions
¢*(x’). In particular, with ¢?*! = 1, we have d¢?*! = 0, and the only
surviving term in (5.18) occurs on the right-hand side, namely, the term
corresponding to the value A = p + 1. It is therefore inferred that

dér A ---

oG

A dpP =0 (5.19)

for any set of p functions ¢*, ..., ¢”.
Returning to the more general formula (5.18), let us consider, for example,
the first two terms on the right-hand side, which are

¢t dp? Adpd A - AdpPT? (5.20)

and
— G2 dpt Adp3 A ---
oG

A dpPH1 (5.21)

respectively. Since ¢!, ¢? are O-forms, the expression (5.21) can be written
in the form

P dp® A dd> A - AdepPtt — f d(@1P?) A dp3 A - A dpPTL.
%G oG
(5.22)
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However, it follows from (5.19) that the second integral on the right-hand
side of (5.22) vanishes identically, and accordingly a comparison of (5.20)
with (5.22) indicates that the first two terms of the sum in (5.18) are identical.
By symmetry, it is obvious that all terms of this sum have the same value,
and, since there are p + 1 such terms, it follows that (5.18) is equivalent to

fd¢1/\---/\d¢v“=f dLdd® A dd A - A dPPTL. (5.23)
G oG

Clearly this integral formula is valid for any set of (p + 1) functions ¢*, ...,
¢P+ ! of class C*.
Let us now define a p-form w by putting

=¢ dp> Ad> A --- A dPFT, (5.24)
so that

do = dp' A dp? A -+ A dpPHL. (5.25)

Moreover, by suitable choice of ¢*, ..., $?* ! any p-form whose coeflicients
are continuous functions of x* can be expressed in the form (5.24), or as linear
combinations of such forms. Substitution of (5.24) and (5.25) in (5.23) there-
fore yields the following theorem.

STOKES’ THEOREM

Let G be a (p + 1)-dimensional region of X, star-shaped with respect to an
interior point O, the boundary 0G of G being a closed p-dimensional subspace
admitting parametric representations of class C 1. Then, for any p-form w
defined on G with continuously differentiable coefficients,

f do = [ o (5.26)
G oG

We shall now consider a few special cases of this theorem. Let us construct
an (n — 1)-form n; defined by

Cdx A

(n— Dln; = g5,., A dxin, (5.27)

so that

n= (=1 rdx! Ao AdXTE A AT A A dX

(5.28)

It should be recalled that the permutation symbol ¢; ..; is a type (0, n)
relative tensor of weight —1 (Section 4.2), so that =; is a covariant relative
vector of weight —1. Now let 4%(x") denote a differentiable contravariant
vector field of weight + 1 on G: then the (n — 1)-form w defined by

o = ;40 (529)
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is clearly a scalar. From the definition (5.28) it follows that
dn; =0 (5.30)
identically, and hence (5.29) yields

Aj
do = =— dx" A 7;

ox*

., 0A . ;
= (—I)JHde'l Adx! Ao AddITY AdXITE Ao A dXT,
in which a summation over both h and j is implied. For a given value of j,
the only surviving term in the summation corresponding to the index h is
that for which h = j; collecting all terms of this kind, we obtain

_ 1
do = de A A dX™ (5.31)
Since /ﬂ represents a contravariant relative vector of weight + 1, the sum
64’/6x{15 tensorial; in fact, according to (4.1.27) this expression is identical
;mth A{; (whenever X, is endowed with a connection). Hence (5.31) is equiva-
ent to

dw = Af;dx' A --- A dx". (5.32)

Thus the substitution of (5.29) and (5.32) in Stokes’ formula (5.26) with
p = n — 1yields

—f.dx‘/\-~-/\dx"=fA"~dx‘A--- d"=J AT
¢ Ox7 G lj A ax acn_] s (5.33)

yvhich is a divergence-type integral theorem, since the integrand of the n-fold
mteg_rals on the left is the divergence of the field A’. Moreover, if the para-
metric representation of the (n — 1)-dimensional hypersurface is given by

(5.4), with « = 1, ..., n — 1, a displacement dx’ tangential to 4G may be
represented in the form

. ox!
dx! = .
X P du*; (5.34)
thus on G the (n — 1)-form =; as defined by (5.27) can be expressed as
Ox/2 OxIn
n—Dn;, = ¢, e B du™ A --- A dutn?
Ox’2 Oxcin .
= Clipin gyt B gt dyl Ao A dutT?
axIz. . .. Jn
—¢ O 0 X) gt p A dun (5.35)

Jizin a(ul uu—l)
ey
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However, it should be observed that

axy Ax, L xIyA, x L x)
s guE Y, L, u Y AU Ut . U 1
identically for each value of @ (¢ =1,...,n — 1) since the second determi-

nant in (5.36) contains two identical rows. It therefore follows from (5.35) and
(5.36) that

e 0 (5.36)

oxI
o

; V] a=1...,n—1) (5.37)
identically. This result may be interpreted geometrically in the following
manner. The (n — 1) vectors dx//ou’, ..., dx7/ou"~ ! at any point P of &G are
tangent to 0G at P by construction; in other words, they span the tangent
hyperplane of G in the tangent space T,(P) of P. The left-hand side of (5.37) is
an inner product: if, in analogy with metric geometry, the vanishing of the
inner product is interpreted as orthogonality, one may interpret (5.37) by the
statement that the relative vector field w; is orthogonal (or normal) to 0G. This
result clearly illuminates the similarity between the nonmetrical divergence
theorem (5.33) and the classical divergence theorem of Gauss.

As a further example, let us consider the explicit form of (5.26) on a two-
dimensional Euclidean plane referred to Cartesian coordinates x!, x.
Any 1-form on E, is of the form w = 4; dx’ (j = 1, 2), so that

0A; . 0A 0A
do = 5);,%dx'l Adxl = (5)(—12 — bx—zl) dxt A dx?.
For a region G of E, bounded by a closed, simple curve C, we then have from
(5.26) with p = 1:

[ 04y ) et pat = fo = ' + 4, a0, (539
G 0x c C

ox!

which is often referred to as Green’s theorem in the plane.

Finally, let us put p = 0in (5.26), so that G is a continuous curve C which is
bounded by the initial and final points P,(t = t,)and P,(¢ = t,), respectively.
For any differentiable O-form w = f@), with do = f'(t) dt, the formula
(5.26) gives

f?mm=ﬂm—ﬂm

which shows that Stokes’ theorem may be regarded as a generalization of
the fundamental theorem of the calculus.
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5.6 CURVATURE FORMS ON DIFFERENTIABLE MANIFOLDS

We. shall now return to our n-dimensional differentiable manifold X, of
which it is once more assumed that it is endowed with a connection, the
latter not being necessarily symmetric. It will be shown how the curvature
theo.ry of X, as presented in Sections 3.6-3.8 may be rederived by means of an
application of the formal theory of exterior differential forms on X,,.

Let IV be some p-form on X, this form being defined by a class C? type
(1, p) tensor field on X,. According to (2.25) its covariant exterior derivative
is given by

DIV = 4TV + w,’ A I, 6.1)
whichisa (p + 1)-form of the same type, whose exterior covariant derivative
is therefore

D(DIT’) = d(DITY) + w; A DII.
In order to find an explicit expression for this (p + 2)-form, we substitute
from (6.1), after which (2.7) and (2.8) are applied, which gives
D(DIV) = d@dIlV + w, A TT") + o/ A dIT' + w,} A 117
=do,/ A" — 0/ AdIT" + o A dIT' + 0/ A o, A TT"

= (doy’ + o/ A w)) AT,
or
DDy = Q7 A 11", (6.2)

where we have put
Q) = do’ + o/ A w,. (6.3)

The form thus defined is called the curvature 2-form, for, if we substitute
from (2.20) in (6.3), we obtain

.oor) .
Q) = —ax# dx' A dx* + T, 5 T,m dx* A dx!

or,’ .
= —< hk _ rmlkr,,'",) dx* A dx!

ox!
_1feri,  ory o . .
- 5 W - Oxk + Iﬂmllrh kT 1_‘mjk I“hml dx* A dx'.

Clearly the coefficient of —3 dx* A dx'on the right-hand side is the curvature
tensor K,’,, as defined by (3.6.8), so that

j 1 j h
QJ = —3K/, dxP A dx*,

from which it is evident that the curvature 2-form is a type (1, 1) tensor.

(6.4)

A R

B
.
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Closely associated with this form is the torsion 2-form which is defined
by

Q= dx" A wy. (6.5)
Again it follows directly from (2.20) that this form may be expressed as
Q=T J, dx" A dx* = YT/, — [J) dx" A dxb,
or, in terms of the torsion tensor (2.15),
Q= 18,7, dx* A dx . (6.6)

Thus the torsion 2-form is a type (1, 0) tensor. Moreover, if we apply (6.1) to
the 1-forms dx’, noting (2.8), (1.23), and (6.5), we infer that
D(dx)) = d(dx’) + ] A dX" = —dx" A o = — Q. 6.7)

It is remarkable that D(dx’) = O identically whenever the connection is
symmetric. )
For the special case [TV = dx’ in (6.2), the latter becomes

D[D(dx))] = Q,7 A dx", (6.8)
and this, because of (6.7), yields
DY = —QJ A dx!, 6.9)

which clearly indicates how the covariant exterior derivative of the torsion
2-form is related to the curvature 2-form.
Now, by virtue of the definition (2.27) we have

DO, = dQ,’ + o/ A Q' — o} A Q). (6.10)
But, because of (2.7) and (2.8), it follows directly from (6.3) that
dQ, = do/ A @} — o/ A dwy,
in which we substitute from (6.3), which gives
dQ, = Q) — 0,5 A o) A o} — o) A Q) — ©, A o)
=) A Q) — o A Q) (6.11)

since the two terms involving the exterior products of the three 1-forms
w,™ cancel with each other. From (6.10) one therefore obtains the following
remarkable identity:

DO, = 0. (6.12)

The relations (6.3) and (6.5) are called the equations of structure (in the
terminology of E. Cartan); clearly the identities (6.9) and (6.12) are direct
consequences of these equations. We shall now interpret the above formalism
in terms of the theory of Sections 3.6-3.8.
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Recalling the remarks concerning the 1-form (2.30), let us regard the
absolute differential DX’ of a type (1, 0) tensor field X/ as a 1-form, namely as
DX’ = X{, dx". By virtue of the product rule (2.31) we have

D(DX’) = D(X{,dx") = (DX}, A dx" + X{, D(dx"),
or, if we apply (6.7),
D(DX) = X{,, dx* A dx" — Q"X],.
However, with TI/ = X/ in the relation (6.2), the latter becomes

D(DXY) = Q,iX*,

(6.13)

so that (6.13) yields
——X{h,k dx" A dx* — Q"Xfl',l =QJx*
To this relation we now apply (6.4) and (6.6), which gives
Xiupe dx" A dx* = Ky X dx" A dx* — S X dxP A dxk,

or, by virtue of the skew-symmetry of the curvature and torsion tensors in
the subscripts h and k,
,.Z (X = Xiup — K X' + S, Xy dx" A dx* =0, (6.14)
<k
which is obviously equivalent to the Ricci identity (3.6.9). More generally,
then, the relation (6.2) implies the Ricci identities for type (1, p) tensors.

Let us now turn to the identity (6.9). Because of (6.6), we have by analogy
with (2.23):

DQY = XSy + S5 Sy™) dxt A dx* A dx. (6.15)
When this, together with (6.4), is substituted in (6.9), we obtain
(Swun + SdeSy™ — Kp) dx* A dx* A dx' = 0. (6.16)

According to the concluding remarks of Section 5.1, this implies that
5;litl(srjs|t + Smjs Srml - Ktjrs) = 0’
which, because of the skew-symmetry properties of the curvature and torsion

tensors, is equivalent to the cyclic identity (3.8.6). Furthermore, for the
curvature 2-form (6.4) we have, by virtue of (2.29),

DQ} = —HK} Wy + K Sa™p) dx" A dX* A dxP. (6.17)
Thus the identity (6.12) implies that
(K e + Kl S,™) = 0, (6.18)

BN AN
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which obviously gives rise to the Bianchi identity (3.8.11). Thus the identities
(6.9) and (6.12) are equivalent to the cyclic and Bianchi identities, respectively.

Finally, let us turn to the problem of the parallel displacement of a vector
field X’ along a curve of X, as specified by the conditions (3.7.5), which, in
the notation (2.30), can be expressed in the form

(6.19)

w =0,
where
o = dX7 + w, X" (6.20)
The system (6.19) of n total differential equations is of the type exemplified
by (4.6), for in terms of (2.20) we can write (6.20) in the form

= dX7 — bi(x!, X') dx¥, (6.21)

where
bix, X = —-T, . X" (6.22)

A parallel vector field over a finite n-dimensional region of X, is defined if
and only if the system (6.19) is completely integrable. According to the
theorem of Frobenius this is possible if and only if the conditions

95, =0 (6.23)
are satisfied, where, by (4.10),
obi oObi  0bi obi
Q=5 ~ g + oxi O T axi (©24)
But from (6.22) we obviously have
obi oy obj .
and thus (6.24) gives
. or,’ or,; . . -
Qk'h = (_ a;:kh + axhk + Fljhrmlk - rljk rmlh)X >
or, in terms of the definition (3.6.8),
ijh = _ijthm = ijanm- (6.25)

From (6.23) it is therefore inferred that the necessary and sufficient condition
for the existence of a parallel vector field X’ on a finite region of X, is rep-
resented by the equations

K,y X™ = 0. (6.26)
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This, of course, is in agreement with the conclusion (3.7.15) of Section
3.7; however, in that section merely the necessity, and not the sufficiency,
of (6.26) is established.

Alternatively, the condition (4.35) could have been applied to the system
(6.19). From (6.20) we have, using (2.7) and (2.8),

do = dw,/X" - 0,/ A dX*,
or, after substitution from (6.20),
do/ = dw X" — w,) A 0" + o A 0'X".
On observing (6.3) we therefore infer that

do’l = QX" — w,) A o (6.27)

It follows that
do’ A o' Ao A " A o")X"

=@ AW A - (6.28)

Thus the necessary and sufficient conditions (4.35) for the complete integra-
bility of the system (6.19) are satisfied if

Q/x" =0, (6.29)

which, according to (6.4), is equivalent to (6.26). Moreover, an argument
similar to that following (4.33) involving the construction of a subset of
appropriate basis elements of (n + 2)-forms in (x*, X*) may be used to show
that (6.29) also implies (4.35).

Let us now suppose that the curvature tensor vanishes everywhere on X,.
A given set of n linearly independent contravariant vectors X7}, at a point
P, of X, then defines, by parallel displacement, a set of n vector fields
X {h)(x’) on X, which satisfy the system of partial differential equations

Xy _

Jj m
axt —rm lX(h)’

(6.30)
the integrability of which is guaranteed by our assumption. (Here the sub-
script h enclosed in parentheses is a mere labeling index which distinguishes
the n distinct vector fields.) From the transformation law for the contra-
variant vectors X, it follows that X = det(X (h)) is a relative scalar of weight
— 1. Thus, if Y{" denotes the cofactor of X7, in X, we have
1), 4 0Xi
Xpo= 55 + XU = 2 Y W + XT 7,

h=1
or, if we use (6.30),
—07XT, 5, + XTI/, = 0.

X = —;.Z‘l YL,/ X0y + XTj = (631)
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However, at the initial point P, we have X # O by virtue of the linear
independence of the X, at Py, and thus (6.31) indicates that X # 0 through-
out X,.

We shall now endeavor to introduce a new coordinate system X" =
x"(x’) by means of the partial differential equations

ox’

a7 = Xl (6.32)

According to (4.10) the integrability conditions for this system are given by

a‘X(h) 6X(k) X!

d xl (k) ox Tall i T 09

or, if we use (6.30),

L X6y Xog — T 1 Xy :h) = = TP X6 X fk) =0.

Since the X} m at P, are essentially arbitrary, this can be satisfied if and only if
our connection is symmetric, as will now be assumed. Moreover, according to
the remarks made above, the Jacobian J = det(X},) of (6.32) is nonvanishing
throughout X, and thus (6.32) defines an admissible coordinate transforma-
tion on X,. Because of (6.30) and (6.32) the second derivatives of this

transformation are given by

. Ox™ Ox!
m l a—h a-k

*x! 09X}, ox' ox!
= — =T, JXxn
a ax axl afk m 1<% (h) a—k

(6.33)

But, by virtue of (3.3.21), the connection coefficients in the x-coordinate
system are given quite generally by

re, =6_x_‘:<r ox™ ox' N 62x’_ >,

ox'\ ™' axk ox* ' ox" ox* (6.34)

and substitution of (6.33) in (6.34) yields T',?, = 0. We have therefore estab-
lished the following theorem.

THEOREM
If the curvature tensor vanishes on a differentiable manifold X, endowed with

a symmetric connection, there exist special coordinate systems relative to
which the components of this connection vanish everywhere.




170 THE CALCULUS OF DIFFERENTIAL FORMS

5.7 SUBSPACES OF A DIFFERENTIABLE MANIFOLD
On our differentiable manifold X, a system of n equations of the form

x = xHu®) G=1....msa=1,...,m;m <n), (7.1)

which express the n local coordinates of a point P of X, in terms of m vari-
ables u*, represents an m-dimensional locus in X,,. [Throughout this section
Greek indices range from 1 to m, and Latin indices continue to assume the
values 1 to n; the summation convention is operative in respect of both sets of
indices.] It will be assumed that the functions x/(u®) are of class C?, and that
the rank of the matrix of the first derivatives

o oxd
B =
* ou*

(7.2)

is maximal, namely, m. The m-dimensional locus defined by (7.1) is clearly
a differentiable manifold in its own right and is henceforth denoted by X,,,.
Since each point of X, is also a point of X, we say that X, is a subspace of
X ,,or that X, is embedded (or immersed) in X,,. The system (7.1) is said tobe a
parametric representation of X, , whose coordinates u* are often called the
parametersof X .

In the theory of subspaces one is confronted with two entirely distinct types
of transformations. First, we have, as before, coordinate transformations on
X, of the form

X = x(x"), (7.3)
while, second, we also have to consider parameter transformations
a* = w*(uf) (7.9

on X, . It is assumed henceforth that these transformations are of class C?
with nonvanishing Jacobians; moreover, it should be emphasized that (7.3)
and (7.4) are entirely independent of each other.

Putting B} = 8x//0u®, we infer directly from (7.2) and (7.3) that

a1
ox’ .
oxh

On the other hand, if we put B = 9x//8i°, it follows immediately from (7.2)
and (7.4) that

_j=
3

(7.5)

. ouf .
Bl = =5 B (7.6)
Thus, relative to the coordinate transformation (7.3), the BJ behave as com-
ponents of a type (1, 0) tensor, whereas relative to the parameter trans-
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formation (7.4) the B) behave as components of a type (0, 1) tensor. This
phenomenon is typical of the theory of subspaces and provides the moti-
vation for much of our subsequent analysis.

By virtue of (7.1) and (7.2) the m 1-forms du', ..., du™ at a point P of X,
determine n 1-forms dx!, ..., dx", given by

dx/ = B du, (1.7)

which may be interpreted as the components of a displacement in X, which
is tangential to X, at P. More generally, let U® denote the components of an
element of the tangent space T,,(P) of X,, at P, the U® representing the com-
ponents of a type (1, 0) tensor under the parameter transformation (7.4).
By means of the relation

X/ = BiU", (7.8)

the components of an element of T,(P) are uniquely defined. Because of the
linearity of (7.8) in U* we may thus regard 7,,(P) as a linear subspace of T,(P)
spanned by the m linearly independent vectors B/, ..., B/ , which, as we have
seen, are themselves elements of T,(P). [If the embedding manifold X, were
an n-dimensional Euclidean space E,, the plane T, (P) would coincide with
the tangent plane to X,, in the usual sense.]

We shall now suppose that our manifolds X,, and X, are each endowed
with an affine connection, whose components will be denoted by T',/, and
I",%;, respectively. It is not assumed that these connections are symmetric, or
that the I,°; are in any way related to the I',/, . (Strictly speaking, one should
not use the same symbol I for the connection coefficients on both X,, and X ;
however, since the former is always endowed with Greek indices, whereas the
latter may only have Latin indices, the proposed notation should not cause
any confusion.) These connections are introduced, in the first instance, merely
in order to enable us to construct covariant derivatives of quantities defined
on X,, which are tensorial with respect to one or both of the transformations
(7.3) and (7.4). By definition of connection, the transformation laws of I,7, and
I',’; under (7.3) and (7.4) are respectively given by

6%x/ ox’ — . 0XP 0x1
ook oxt wk — Lphg Ik ok (7.9)
and
o%uf out o ou’ ou?
= —Irs — . 7.10
o o’ out Ly =T ou* ouf (7.10)

In order to fix our ideas, let us consider a field XJ(u®) defined as class C!
functions on X ,,, representing the components of a type (1, 0) tensor relative
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to (7.3) and a type (0, 1) tensor relative to (7.4), so that

. ox ~ ou*
J h J
Xa= ox" Xas X = on*

X1 (7.11)

It should be emphasized that XJ(u) is given as a function of u!, ..., u™
(and not of x1, . . ., x"), and accordingly only the derivatives 0X7/0u’ (and not
0X]/0x") are defined. Differentiating the first and second members of (7.11)
with respect to uf and @i, respectively, and noting (7.2) we find

oxXi 9%x/ . . O0x oXh
2 = o ok X G (7.12)
and
i 2,,8 J € Y
X} 0%u ;. 0X{ 0w ou (.13

oW ow o ou’ oI 0P
Thus, as expected, neither of the derivatives (7.12) and (7.13) is tensorial
in any way. In order to construct covariant derivatives according to the
usual procedure, we eliminate the second derivatives in (7.12) by means of
(7.9), which gives

0%y (0, o 0o\, 0V 0K
ouf oxt Mk v'q ax" ax* ox' ouf’
or, if we observe (7.5) and the first member of (7.11),
oxi = ox’ [oX!
o «Bp =51 (a 5 + l"th"B") (7.14)
Similarly, an application of (7.10) to (7.13) yields
oXi =, o ouow (0X] 1 v
@ = £ _ Xi). 7.15
oL Rt S (auy I X (715

It is therefore inferred that the quantities on the left-hand side of (7.14)
represent the components of a type (1, 0) tensor under (7.3), while those
on the left-hand side of (7.15) represent the components of a type (0, 2)
tensor under (7.4). However, neither of these quantities is tensorial with
respect to both of (7.3) and (7.4), and therefore they cannot be regarded
as suitable covariant derivatives. Nevertheless, taken in conjunction, they
suggest the following definition:

0X]

Xlp =55 — Td's X1 + DA XCBG. (7.16)
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These quantities do, in fact, represent the components of a tensor field
which is of type (1, O) relative to the coordinate transformation (7.3) and of
type (0, 2) relative to the parameter transformation (7 4) This assertion
follows directly from (7.14), (7.15) and the fact that the I',/,, T ,, are invariant
under (7.4) and (7.3), respectively. We shall therefore call (7.16) the mixed
covariant derivative of the tensor fietd XJ(u®). Clearly this definition can be
readily extended to tensors of arbitrary types relative to the transformations
(7.3) and (7.4), or to arbitrary tensorial p-forms. The usual laws of covariant
differentiation apply also to mixed covariant derivatives. However, it should
be emphasized that, for quantities which are tensorial relative to (7.4),
while being invariant relative to (7.3), the mixed covariant derivative is simply
the usual covariant derivative with respect to the connection of X,,,.
The mixed absolute differential corresponding to (7.16) is given by

DX} = X}, duf = dX} — T}, X} duf + T}, X% dx*, (7.17)
where, in the third term, we have used (7.7). If, as in (2.20), we put
ot =T duf, (7.18)
we can write (7.17) in the form
DXi = dXI — 0 X} + w,/X". (7.19)

By analogy with (6.5) we can introduce the torsion 2-form on X,,, which
is defined by

O = du A wf, (7.20)
and for which
Q* =187, du* A dw?, (7.21)
where
S, =T2 —T7 (7.22)
is the torsion tensor of X,,. As in (6.7) it follows that
D(du®) = —Q~. (7.23)

Now let IT denote a set of mn p-forms on X,, (0 < p < m) which may be
represented in the form

I = Aly,.p, duf' A --- A dufs, (7.24)

where Aimu-p, is a type (1, 0) tensor relative to (7.3) and a type (0, p + 1)
tensor relative to (7.4). Then

DI = dIli — w,* A I + w,’ A T2 (7.25)
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is a (p + 1)-form of the same type, for which

D(DIE) = d(DTL)) — w,* A (DIT) + w,7 A (DITA). (7.26) §

In order to evaluate this expression, we substitute from (7.25), carrying out '

the differentiation implied in the first term with the aid of (2.7). It is thus found §

that 1
D(DIT)) = —dw,* A T + w,* A dTT4

+dw,) A TI" — 0, A dTT* — 0, * A dIT

+ ot Ao 4

+ ) AdITE — w0, A 0 ATTE + o A ol A TIE,

AT — 0t A o) A TIE
or, after some simplification with the use of (1.23),
D(DIL) = Q, A TTh — QF A ITj, (727 =

where the curvature 2-form Q,’ of X, is given by (6.3), while the curvature §
2-form Q.F of X, is defined similarly by ]

Qf = dof + 0f A ot (7.28) %
As in (6.4) the latter can be represented explicitly in the form ]
QFf = —1Kp, dut A dw, (729) &
in which Ka”w denotes the curvature tensor of X,, with respect to the given
connection I'y*, on X
arp, or}f

A A
K«xBey = %L =T+ Flﬁyra e FAle—a v

7.30)
ou’ out ( )

The formula (7.27) holds for any p-form IT! of the given type: in particular, %
therefore, it will hold for the O-form B! defined by (7.2), so that

e s

D(DB}) = B:Q,/ — B;}QF. (7.31)
Let us now define the quantities .
H/J/, = Bl;, (7.32) 1

which represent the components of a type (1, 0) tensor relative to (7.3) '
and of a type (0, 2) tensor relative to (7.4). Then

DB} = H/; du*,
and with the aid of (7.23) it is found that

D(DB!) = (DH,;) A duf + HJ,D(du®)
= HJy,du’ A du¥ — HJ,QF.

(7.33)
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When this is substituted in (7.31), the latter assumes the form
H/jy, du? A dw + H/,Qf = —BiQ,J + BiQ /. (7.35)

This is the identity which we have been seeking; it represents the relation-
ship between the respective curvature 2-forms of X, and X, in terms of the
second covariant derivatives of the quantities BJ. In order to obtain a
representation of (7.35) in terms of components, we substitute from (7.21),
(7.29), and (6.4), which allows us to write (7.35) as
(Hgy — HJypdu? A dw’ + HJ Sp5 duP A du’

= BiK,/ dx' A dx* — BIK,5,, duf A duw,
or, if we apply (7.7) to the first term on the right-hand side,
H/Jy, — H/J, 1, = K/wB.,B;B: — BiK s — H/.Ss,. (7.36)

a By

This formula clearly exhibits the relationship between the respective curva-
ture tensors of X, and X, in terms of the third derivatives of the embedding
equations (7.1). For most practical purposes, the relation (7.36) is too general,
since the curvature tensors are defined with respect to arbitrary connections
on X, and X,,. However, it will be seen that, subject to certain restrictions
to be discussed in Chapter 7, the formula (7.36) implies the famous equation
of Gauss and Codazzi of classical differential geometry.

PROBLEMS
5.1 (a) If w is the 2-form given by
w = dx' A dx? + dx? A dx*,

calculate w A w,and w A © A @.
(b) If w is the 2-form given by

w=dx" A dx?+dx? Adx*+ - 4 dxPT0 A dxPm

calculate w A w A -
52 If

A w(mtimes),andw A ® A -+ A @(m + 1 times).

f — (xl)z + (x2)2 + (x3)2 g = xl + x2 + x3
evaluate df A dg.

53 Ifo = x'x3dx? + x'x2dx® + (x! + x>x%) dx* + x3x* dx* evaluate dw, w A dw,
dw A dw,and w A dw A do.
54 If, in E,

o= A, dx
B = By dx' A dx* + B, dx* A dx® + B, dx* A dx',
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5.5

5.6

5.7

5.8
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show that
do = 0 if and only if curl A =0,
dp = 0 if and only if div B = 0.
What are the identities d(d¢) = 0 in vector notation, if ¢ is a 0-form?

In E,, with x! = x, x? = y, x> = z, and x* = ct, let

Egdx? A dx* + H, dx* A dx® + Hydx' an dx* + H, dx> A dx’
1

o =

3
g=

and
3
o= —3 Hpdx* ndx* + E, dx* A dx® + E;dx" A dx® + E, dx® A dx'.

p=1

Show that the source-free Maxwell’s equation given in Problem 4.5 with p = 0,
J = 0 can be expressed in the form

doa =0, dw = 0.
If

3
A=Y Agdx® — ¢ dx*
p=1
show that dA = « if and only if

0A
H=curlA and E= —grad ¢ — =

If
w=xdy ndz —2zf(y)dx A dy + pf(y)dz A dx

determine f so that
(a) do = dx A dy A dz,
(b) dw = 0.

fu=uxy,z),v=10vx,y,z),and
®=(y—ou)dx — (x + vu,)dy + (1 — vu,) dz,
where u, = 0u/0x etc., show that
do =0

if and only if u, = v, = 0 and v,u, — v,u, = 2. If these conditions are satisfied
prove that du, dv, and w are linearly independent.

If o = (y cos xy) dx + (1 + x cos xy) dy show that
dw =0
and find ¢(x, y) for which @ = d¢.
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5.9 Show thatif P = P(x,y) and Q = Q(x, y) then
Pdx +Qdy =0

is always integrable.

5.10 If P = P(x, y, u, v) and Q = Q(x, y, u, v) under what conditions is the system of
differential equations

dx =Pdu — Qdv
dy =Qdu + Pdv
completely integrable?
5.11 Show that the system of differential equations
2xydx — (y + z2)dy =0
xzdy — yzdz =0
is completely integrable.
5.2 If f = f(x', x%, y,¥,, ¥,), show that the two statements

a(w ¥,
x* \ dy, dy

of [Qf of ]
—dx' A dx? =d} ——dx?* — —dx'
oy 0y, 0y,

and

are equivalent.

5.13 In X, let @', ..., ®" be r-linearly independent 1-forms (r < n). The r 1-forms
7y, ..., 7, are also linearly independent and satisfy o' A n, + w® A 7, + ---
+ @ A 7, = 0. Show that

r
- i
Ty = Z ap @
i=1

where a,; = a;, (Cartan’s lemma).
*5.14 A p-form Q is said to be divisibie by a 1-form w if there exists a (p — 1)-form =
for which Q = 7 A w. Show that Q is divisible by w if and only if Q A @ = 0.

5.15 In X, let F;; be the components of a skew-symmetric tensor of type (0, 2) and let
A;, B; be the components of type (0, 1) tensors. Show that

F;; = A;B; — A;B,;
if and only if
Fiijk+Fiijh+Fthkj=0‘

Show that if n = 2 or 3 the latter condition is an identity whereas if n = 4 it is
equivalent to det|F ;| = 0.
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*5.16 Let a;; = a;; and a;; = a;{x"). Prove that a necessary and sufficient condition

for the existence of functions u; (i = 1, ..., n) for which
Ju; N Ou;
a,, = —. —_—
ooox! o oxt

< o%ay; d%ay;

— ) dx! A dx* = 0.
ox* oxt  Ox* oxt

(Hint: use the converse of Poincaré’s lemma twice.) These are the integrability
conditions for (1.1.6).
517 If ® is a p-form, ® = g,

i1oi, dX7T A -+ A dx'r, we define its Lie derivative with
respect to v' by

£0=(f,a A dx'».

v Wiy,

) dxt oA
Prove that

(@ £(c,® + c, Q) =c,£,P+c,£Q,
D) E@AD)=EDP A0+ DA Lo,
(¢) £(dD) = d(£,D),

where @, Q are p-forms, w is a g-form, and ¢,, ¢, are constants.

5.18 Let @ be a p-form, ® = a;,..;, dxit A --- A dx™, and let A’ be the components of
a type (1, 0) tensor. Define the (p — 1)-form

A|® = (p——flﬁ S ray AMdx A - A dxi for p>1

and

Al®=0 for =0.

Show that
(a) A|(4]®@) = 0;
() A|(® A ¥) = (4|®) A ¥ + (—1)’© A A|¥ where ¥ is a g-form;
(©) AJ(E,D) = £,4]®);
(@) d(A]®) + A](d®) = £,0.
5.19 In the notation of Problem 5.18 define

D =gq, ,(dx"—Ard)A---

oo, A (dxi® — AP dt).
Show that ® = @ — (4] D) A dt.
5.20 If A" = A*x/) are the components of a type (1, 0) vector field in X, show that the

partial differential equation

V00 _ o

AP =
ox"

=
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has (n — 1) independent solutions ¢, ..., ¢"~!. By considering the change of
coordinates % = ¢',i=1,...,n — 1, X" = f where f is any function of x’ for
which |8%/0x/| # O prove that there always exists a coordinate system in which
all the components of 4" except one are zero.

*5.21 Show that condition (4.51) is equivalent to each of the following
(@) There exist 1-forms ¢’ for which

do' = 6 A o
(b) There exists a 1-form A for which
d@! A ---

AN =AA0' A A "

*5.22 Prove that (4.7) is completely integrable if and only if there exist functions
A}, v* for which

@' = A} dv*.
[Hint: substitute (4.13) in (4.6) and note (4.11), (4.16), (4.17), and (4.22).]
5.23 If w = A; dx’ show that there exist «, ¢ for which

A, =a—
P
if and only if dw A @ = 0.
5.24 If o' = A,dx’, w* = B;dx’ show that there exist a, f, y, 3, ¢ and  for which

_ 09 oy
A= ox’ + ﬂax"’
o¢ oy

B- = e rry
R g +9 oxt

if and only if do®* A @' A w? =0 (a = 1, 2). Express this latter condition in
terms of 4; and B;.
5.25 Prove that

is completely integrable and has two functionally independent solutions.
5.26 In a particular X, w,/, defined by (2.20), are given by

o = JI5L8) + 55D dx" + H8}S — e~ H538)) dx®

where A, p are functions of x! alone and A = dA/dx*. Compute Q,7 and (¥, defined
by (6.3) and (6.5), respectively. Hence show that K/,, = 0 if and only if

2i—Ap+ 2 =0.
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527 I Q = A, dx' A dx) A dx* show that there exist 1-forms @', @?, »* for which

Q = w! A w? A o ifand only if

Ay, Apyiyie — Aijiy A

ijiy

2i3ia iyizia + AiiizAl'll'zid - AiﬁaAiniziz =0,
assuming without loss of generality that A, are completely skew-symmetric.
Prove that this is an identity if n = 4.

*528 If Qis a 2-form and »! and w? are 1-forms show that
QAo Aw?*=0
if and only if there exist 1-forms =, and =, for which

Q=7 Ao +m1,n0%

INVARIANT PROBLEMS
IN THE CALCULUS
OF VARIATIONS

A most fascinating phenomenon is the impact of the concept of invariance
under coordinate transformations on the calculus of variations. This is due
to the fact that when one assumes that the action integral of a variational
principle is an invariant (as is usually done in physical field theories), it is
necessary to stipulate that the integrand be a scalar density. The profound
implications of this state of affairs were clearly recognized by Hilbert [1],and
it is the objective of this chapter to describe these matters in some detail.
Since it is not assumed that the reader is familiar with the calculus of varia-
tions, some of the elementary aspects of the latter are developed ab initio with
the aid of tensor methods and the calculus of forms. Moreover, with the
exception of the first part of Section 6.2, the fairly recent approach of
Carathéodory to the calculus of variations is introduced in preference to the
more widely known classical techniques based on the theory of the first and
second variations. In this sense this chapter is to be regarded as an end in
itself. However, it should be pointed out that for the purposes of Riemannian
geometry as presented in Chapter 7, only an acquaintance with the contents
of Sections 6.1 and 6.2 is required, whereas the material of Chapter 8 is
dependent on Sections 6.1, 6.2, 6.5, and 6.7.

Particular emphasis is placed on the theorems of Noether, which are con-
cerned with the implications of the assumption that the fundamental integral
be invariant under a special r-parameter transformation group. These
theorems are of considerable importance in field-theoretic applications
since they establish the existence and precise nature of certain conservation

181
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laws which result from the given invariance requirement. Instead of following
the original derivation of Noether [ 1], which s fairly complicated and depends
on some deep and difficult theorems in the calculus of variations, the ap-
proach presented here is simple and direct, being essentially an exercise in
the techniques of the tensor calculus.

6.1 THE SIMPLEST PROBLEM IN THE CALCULUS OF VARIATIONS;
INVARIANCE REQUIREMENTS

We begin with a brief formulation of the simplest problem in the calculus of
variationst on our differentiable manifold X, after which the relevant in-
variance requirements will be considered in some detail.

A curve C of X, is represented parametrically in the form

x = xI(t), (1.1)

in which ¢ denotes a given parameter. For the sake of simplicity we consider
solely curves for which the representation (1.1) is given by class C? functions,
and, as before, we use the notation
.odx! .
) o — ¥/
X = T XI(¢). (1.2)
Let us suppose that we are given a class C? function L(t, x/, X’) of 2n + 1
independent variables which is to be referred to henceforth as the Lagrangian
or Lagrange function. Furthermore, let P, P, be two points of X, which are
joined by a curve such as (1.1), these two points corresponding to the param-
eter values z, and t,, respectively. One can then construct the integral
of the Lagrangian L along the curve C, namely,

1

I(C) = quL(t, xI(t), ¥¥(t)) dt, (1.3)

where it is to be understood that the functions x/(t), X/(z) which appear as §
arguments in the integrand are obtained from the relations (1.1) and (1.2) §
which refer to the curve C. Clearly the value of the integrand and hence also .
that of the integral will in general depend on the functions xI(t), ¥/(¢); in ;

other words, the integral (1.3) generally depends on the choice of the curve C

joining the points P, and P,. The resulting problem in the calculus of
variations is concerned with the conditions which a curve C must satisfy in |
order that it afford an extreme value to the integral (1.3) as compared with |

all other curves possessing the same end-points P, and P,.

+ More extensive treatments of the calculus of variations are presented, for instance, in the ;

following texts: Akhiezer [1], Carathéodory [1], Gelfand and Fomin [1}. and Rund [2].
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Va}riational problems of this kind occur in many bganches of pure and
applied mathematics. Two simple examples are presented here.

EXAMPLE 1

In an n-dimensional Euclidean space E, referred to rectangular coordinates
the length of-an arc of a curve C between two points P, and P, is given by

2 n . . 1/2 15 n 1/2
s = f > dx! dx’> = f (Z )'cj)'cj> dt. (1.4)
t j=1 t

1 1 =1
Intuitively it is obvious that the curve which affords a minimum to the
integral (1.4) is the (unique) straight-line segment joining P,, P,.

EXAMPLE 2

Let x’ denote the generalized coordinates of a classical dynamical system
with n degrees of freedom; the derivatives X/ = dx//dt may then be regarded
as the generalized velocity components, provided that the parameter ¢
represents the time. The kinetic energy T of such a system can usually be
expressed as a quadratic form

T = Ja,;X"x’, (1.5)

whose coeficients are given functions of the variables x". If it is assumed
that the dynamical system is conservative, one may associate with it a
potential function V(x"). A suitable Lagrangian may then be defined by
putting

L=T-V, (1.6)

which gives rise to a problem in the calculus of variations as exemplified by
the integral (1.3). According to Hamilton’s Principle, the motion of the
dynamical system is described by curves in the configuration space X, which
are such as to afford extreme values to this integral. (It should be emphasized
that this is a very superficial formulation of Hamilton’s Principle; see, e.g.,
Goldstein [1].) On the basis of this assumption the laws of motion governing
our dynamical system may be derived by means of the techniques of the
calculus of variations to be discussed below.

We now turn to the transformation properties of the fundamental integral
(1.3) of our variational problem. Two totally distinct types of transformations
must be considered:

1. A coordinate transformation of the type
X/ = )_Cj(xh), (1.7)

which does not affect the parameter t.
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2. A parameter transformation of the type
T = 1(1), (1.8)
which does not affect the coordinates x".

It is assumed henceforth that the integral (1.3) is invariant under (1.7);
we shall subsequently investigate the implications of the additional require-
ment that (1.3) be invariant also under (1.8).

As before, it is supposed that the transformation (1.7) possesses an inverse

xP = xM(x). (1.9)
The derivatives (1.2) constitute the components of a contravariant vector:
h
i = X g o 20, (1.10)
ox’

as is immediately evident by differentiation of (1.9). Furthermore, it follows
directly from (1.10) that

oxh  ox"
2% - a%’ (1.11)
together with
ox" *x"
™ awor (112

Clearly the assumption that the integral (1.3) be invariant under (1.7)

is equivalent to the stipulation that the Lagrangian L be a scalar relative
to (1.7). Thus, if we denote the transform of L under (1.7) by L, our invariance »

requirement is equivalent to the relation

Lie, 3, %) = L(t, x(%), £, %)), (L13) |

where, on the right-hand side, we have substituted from (1.9) and (1.10).
This must be valid for all values of (x/, /). Thus, differentiating with respect

to %/, and using (1.11), we obtain

oL oL ox* oL ox"
Xl axrox %" ox)’

from which it is evident that the derivatives L/0X" constitute the components §

of a covariant vector. However, if we differentiate (1.13) with respect to xI
and subsequently apply (1.12), we find that

oL oL ox" oL ox* oL ox" oL &*x' 4
%~ ox"ox | ox"ox!  ox"ox | oxPoxioxt

(1.15)

(1.14)
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which indicates that the derivatives dL/0x" do not form the components of a
tensor. In this connection it should be recalled that the derivatives d¢/0x"
of a scalar function ¢(x") represent a covariant vector, namely, the gradient
of ¢: however, in the case of the scalar Lagrangian L(t, x", X") this is not true
as a result of the dependence of L on the variables x".

It is therefore desirable to construct a covariant vector associated with
the derivatives dL/dx* which would represent a generalized gradient of L.
This is easily done by eliminating the second term on the right-hand side of
(1.15). To this end we differentiate (1.14) with respect to t, which gives

d(oL\ _d(oL\ox" OL d (ox"\ d (OL)ox" 0oL &x"
di\ow) " di\ow ) o T o at\ox' ) T di\ox" ) 0% | ox" oxd ok

(1.16)
When (1.15) is subtracted from this result it is found that
d (0L OL ox*[d (oL L
@ (a) T o [& (&) - Ex—] (1.17)
from which it is evident that the quantities defined by
E(L) = %(%) - % (1.18)

constitute the components of a covariant vector. Clearly this vector may be
interpreted as a generalized gradient of the Lagrangian L: it will be seen
that it plays a fundamental role in all subsequent developments. We shall
henceforth refer to E(L) as the Euler—Lagrange vector of L; written out
in full it is seen to possess the form

2L, o*L %L oL
ot Tawa Tovar o
It should be noted that, in contrast to the vector (1.14), the Euler-Lagrange
vector depends on the second derivatives %/ of the functions (1.1).
Let us now turn to the parameter transformation (1.8), of which it will be
assumed that the functions t(t) are of class C? and such that
dt

T = — . 1.20
1 dt>0 ( )

E(L) = (1.19)

The integral (1.3) is said to be parameter-invariant, if, for any curve C on X,
Joining any points P, and P, we have

P> J P2 J
f Lz, x5, % ar =f Lt . % ar. (1.21)
n dt or dt
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Clearly this condition can be satisfied if and only if the Lagrangian L is

such that
- dx’ . dx’
j — Jj
L(r, x7, d‘c) dt L(t, x7, i ) dt,

o
L(r, X/, ii_—)'c = L(t, X', %), (1.22)

or

for arbitrary values of the arguments (x/, x/), and for any function = = =(t).
In particular, if the latter is specified by T = ¢t + o for some arbitrary constant
a, we have ¢ = 1, and (1.22) reduces to

L(t + a, X/, %) = L(t, x’, XJ).
In this case the left-hand side apparently depends on o, while this is not the
case for the right-hand side, which implies that we must have
oL
=_o0
ot ’
that is, the Lagrangian L may not depend explicitly on ¢. Assuming this to be

the case generally, and putting A = i~ 1, it is inferred that (1.22) is equivalent
to

(1.23)

in which A is essentially arbitrary except for the restriction A > 0, which is a
direct consequence of (1.20). Accordingly the Lagrangian L(x/, x/) must
be positively homogeneous of the first degree in the %’.

The requirements (1.23) and (1.24) thus emerge as necessary conditions

for the parameter-invariance of the fundamental integral (1.3). The sufficiency

of these conditions is immediately evident from the following:

P2/ dx) Prf dx) \d P2 o dxI
j L( i) dr = f L( dx’ r-) dr _ f L( i) i
an dt 2n dt t dt

where, in the first step, we have used (1.24).

Remark 1. In the calculus of variations it is usually assumed that the 3
fundamental integral (1.3) is invariant under the coordinate transformation g
(1.7). However, in many applications the parameter-invariance of (1.3) &
cannot be presupposed. For instance, the Lagrangian defined by (1.6) and &
(1.5) does not satisfy the homogeneity condition (1.24). This phenomenon is, §
in fact, quite natural, since in the example (1.6) the parameter ¢ refers to the »

L(x/, A%y = AL(x/, XJ), (1.24)
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time in the sense of classical mechanics, in which the existence of an absolute
time scale is presupposed, which obviates the need for transformations of
the type (1.8). (This is in direct contrast to the requirements of relativistic
mechanics.)

Remark 2. In the case of most differential-geometric applications one is
confronted with parameter-invariant integrals. For instance, the integral
(1.4) is of this type, and it will be seen that this is true of many examples
encountered below.

Remark 3. Let us suppose, for the moment, that we are concerned with a
parameter-invariant integral, so that the validity of (1.23) and (1.24) may be
assumed. By means of Euler’s theorem on homogeneous functions we then
infer that

AL(x", %™
oxJ

However, it then follows from (1.18) that

. dfeL .\ oL oL, dL dL
E(L)%w = S (Y2 wi) o s 90 i 242 40 .
A =4 <0x1x> PR L P e

X = L(x", x". (1.25)

identically. Since E(L) is a covariant vector, we interpret this result by
saying that the Euler-Lagrange vector along any curve is normal to the tangent
vector of that curve. For instance, in the case of the integral (1.4) we have
L =31, ¥x)"2 so that

% EOYESS)
Cho, 2T (a2

which coincides in direction with the principal normal of the curve under
consideration.

E{L) =

6.2 FIELDS OF EXTREMALS

In order that a curve C of X, afford an extreme value to the fundamental
integral (1.3) it is necessary that the functions x’(t) which define C satisfy
a system of n second-order ordinary differential equations, the so-called
Euler-Lagrange equations. In this section these equations are derived by
means of two entirely distinct techniques, of which the first is the traditional
one, while the second is deeper and more elegant and therefore conceptually
somewhat more difficult.
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First Method

Let C: x/ = x/(t) be a given class C* curve of X, joining the points P, and P,,
which correspond to the parameter values t; and t,, respectively. Let us
construct a one-parameter family of curves C(u) by writing

xit, u) = xH(t) + uli(@), 2.1

in which u denotes the parameter, while the ((t) are class C! functions of ¢
such that

L) = Lty =0 22

The latter conditions ensure that each curve of the family passes through the
points P, and P, . Clearly the given curve C is the member of the family which
corresponds to the parameter value u = 0. Furthermore, differentiation
of (2.1) with respect to ¢ yields

Xt u) = %(t) + ull(t),

where %(z, u) denotes the partial derivatives dx/(t, u)/ot.
The value of the fundamental integral (1.3) evaluated along the curve C(u)
between the points P, and P, is denoted by I(u):

2.3)

15}
I(w) = f L{t, x/(t) + uli(t), (1) + ulie)} dr. 2.9)
t
It is generally possible to express I{u) as a power series in u as follows:
Iw) = 10) + 61 + 61 + - --, @5)

where we have used the following notation which is customary in the calculus

of variations:

8l = u(d—1> ,
du u=0

d?1
ot = w(G)

these quantities usually being referred to as the first and second variations

of the fundamental integral (1.3).

Now let us suppose that the curve C corresponding to the parameter value 3

u = 0 affords an extreme value to our integral; that is, it is assumed tha
I(u) takes on an extreme value for u = 0. This implies that the condition

=0

must necessarily be satisfied. In order to exploit this requirement we ob- &

viously have to evaluate the first variation (2.6).

2.6)

@7

X))

R
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From (2.1) and (2.3) we have

Ox’ . oxt
i i
au C b

and hence differentiation of (2.4) yields

dI 2 (oL ,. oL ,.
el - Y= iy Y
(du)uzo -[1 {6xj + oxt ¢ } dt.

The first term in the integrand on the right-hand side may be integrated by

parts as follows:
12 aL X X 4 5L 2 12 .. 3 aL
- dt = J X —_ J
f, P [c K= dz]“ f | {c f Fs dt} di.  (2.10)

2.9

1

}_{owever', because of (2.2) the first term on the right-hand side of this expres-
sion vanishes identically. Accordingly the substitution of (2.10) in (2.9) gives

dl _J“l oL 'aLd i g
Py MR F i B = Gl @11
and thus, because of (2.6), the condition (2.8) is equivalent to
12
f o, dr =0, 2.12)
t
where, for the sake of brevity, we have put
= .B_L — " oL dt
i = 3 a0 4 (2.13)
A set of n constants ¢ ; 1s now defined by the relations
12
cit, —t;) = f D, dt, (2.14)
31
so that
LPY
f (®; —c)dt=0. (2.15)
iy
We now choose the functions {’(t) which appear in (2.1) as follows:
4
{) = f((I)j —cydt, (2.16)
131

it being obvious from (2.16) that the conditions (2.2) are satisfied for these
functions. Moreover,

ity = @, — ¢, 2.17)
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so that (2.12) is equivalent to
’ i DD; — c;)dt =0,
or, because of (2.15), n
@)@, -

ty j=1

c;)dt = 0. (2.18)

The integrand of this integral consists of a sum of squares. Thus (2.18)
implies that each of these terms vanishes, that is, that

<I>j —c; = 0,

or, in view of (2.13),

oL t oL

—— | ——dt=c;. 2.19

FEVR B ™ R (2-19)
This relation is differentiated with respect to ¢, which yields

d (0L oL

et Bt I Y o 2.20

dt (03&’) -0x’ ’ (220
or, in terms of the notation (1.18)

E(L) = 0. (2.21)

We have therefore established the following important result: In order
that the curve C afford an extreme value to the fundamental integral (1.3) it is
necessary that the functions x%(t) defining C are such that the Euler—Lagrange
vector E (L) vanishes along C. The equations (2.20) or (2.21) which express
this condmon are usually referred to as the Euler—Lagrange equations: it is
evident from (1.19) that these consist of a system of n second-order ordinary
differential equations. Any curve satisfying the differential equations (2.21)
is called an extremal.

Remark 1. Since E(L) is a covariant vector, as was established in the
previous section, it follows that the Euler-Lagrange equations are invariant
under coordinate transformations.

Remark 2. The above derivation of the Euler-Lagrange equations is valid
irrespective of the parameter-invariance or otherwise of the fundamental
integral.

Remark 3. 1t should be stressed that the Euler-Lagrange equations are &
merely necessary conditions for an extreme value of the fundamental &
integral. There are many examples which illustrate the fact that the Euler— &

Lagrange equations do not represent sufficient conditions for extreme values. &
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Second Method (Carathéodory [1])

We now consider an alternative approach to the Euler—Lagrange equations.
In order to be able to present this approach in a manner which clearly
demonstrates its conceptual significance, it is necessary to introduce some
important new ideas. In particular, it is advisable to base our construction
on the (n + 1)-dimensional manifold X,,,;, whose coordinates are rep-
resented by the variables (t, x/), where the x/ refer as before to the given
manifold X,. A curve C of X, can be represented again by equations of
the type x/ = x/(t); however, it should be stressed that in this representation
the parameter ¢t has been identified with the (n + 1)th coordinate of X, .
This is not a serious drawback, for, as will be seen almost immediately, the
theory to be developed below is applicable solely to nonparameter-invariant
integrals.

According to (1.14) we may always associate a covariant vector with a
scalar Lagrangian L. In fact, we shall now write

OL(t, x", X"
p; = —(é;’;—x) (2.22)
these quantities being called the components of the canonical momentum.
[This nomenclature arises from the fact that for the Lagrangian (1.6), which
refers to a dynamical system, the quantities (2.22) represent the components
of the generalized momentum of that system.] Furthermore, it will be
assumed that one can solve the system (2.22) for the n components X’ as
functions of the p;, that is, that it is possible to write

X = ¢, x", Dy

In fact, under these circumstances (2.22) represents a one-to-one correspon-
dence between the covariant vectors p; and the contravariant vectors X’.
It should be emphasized that this assumption is tantamount to the require-

ment that
8%L
de‘(m) #0

by virtue of the inverse function theorem.

This assumption excludes homogeneous Lagrangians which satisfy
condition (1.25), for the latter implies that the determinant which appears in
(2.24) vanishes identically, as is easily verified by differentiation of (1.25).
Thus the present approach must be modified for parameter-invariant
problems in the calculus of variations; however, this modification will not
be discussed here.

(2.23)

(2.24)
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With the aid of (2.23) one can now associate the so-called Hamiltonian
function H(t, x", p,) with the Lagrangian L(t, x", x*) as follows:

H(t, x", p,) = —L[t, x", ¢"t, X, p)] + p;¢(t, X", p). (2.25)

Since p;¢’ = p;x’ is an inner product it follows that the function thus
defined is also a scalar.

Again, this definition is motivated by known results from classical
analytical dynamics. The kinetic energy T which appears in the special
Lagrangian (1.6) is given by the quadratic form (1.5) which must necessarily
be positive definite if T is to be always positive. This implies that the deter-
minant of the coefficients a,, of (1.5) be positive, which in turn guarantees the
existence of an inverse a":

aga™ = 8.
Corresponding to (2.22) we have, for the special Lagrangian (1.6):

— o, gh
Dj = ay; X7,

the counterpart of (2.23) being
X = a’p,.
The assumption (2.24) is automatically satisfied since in this case
8’L
det(m) = det(aj,,) > 0.

Because of (1.6) and the preceding relations the definition (2.25) is equivalent
to

H(t, x", p,) = _%ahjamajkplpk +V+ ajhphpj = %athth +V,
so that in this case the Hamiltonian represents the total energy T + V of
the dynamical system described by the Lagrangian (1.6).

The Hamiltonian (2.25) satisfies certain important identities. Let us dif-
ferentiate (2.25) with respect to p;:

oH oL 0" o

o __oLoe 9P L o
op; ox* p; * P op; +é
As a result of (2.22) the first two terms on the right-hand side cancel; thus
0H . )
T = @i, x", p,) = X'. (226
o : )
Similarly it is easily seen that
0H oL
o 2.27)

mag;:.rzse
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and

0H oL
_—=—=— 2.28
ot ot (2.28)
Clearly (2.26) represents the components of a contravariant vector,
while (2.27) is a tensor equation despite the fact that the individual derivatives
O0H/0x’, 0L/ox’ are nontensorial. However, it is immediately evident from
(1.18), (2.22), and (2.27) that the Euler-Lagrange vector E{L) can now be
expressed in the form
; H
dp, + o (2.29)

ED =" * o

which in turn implies the invariant nature of the identity (2.27).
Now let us suppose that we are given a scalar class C? function S = S(t, xM).
Along a curve C: x/ = x/(t) of X, ; we can form the total derivative

§—§§+_6_S)'C.i
dt ot ox'T

With the aid of this quantity we may construct an alternative Lagrangian by
writing

(2.30)

oS oS _;
*(p B by _ hogmy 90 99 :
L*(t, x", X" = L(t, x", X") o 6x’x’ (2.31)
and accordingly one obtains a new integral, namely,
Py
1*(C) = f L*(, X", 3" dt, 2.32)
Py

which is to be evaluated along C between the points P, and P,. However,
it is immediately evident from (2.31) that

I*C) = I(C) — (S, — Sy), (2.33)

where S,, S, denote the values of the function S(z, x’)at P, and P, respectively.
Since the difference

) -KC)=8,-85;

is independent of the choice of the curve C joining the points P, and P,,
it follows that C will afford an extreme value to the integral I* if and only if it
affords an extreme value to the integral I. Accordingly the integrals I* and I
are called equivalent integrals in the calculus of variations. The so-called
method of equivalent integrals, which is to be briefly sketched below,
entails the construction of curves which afford extreme values to I*(C);
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if this has been achieved, the same curves will obviously also represent the
solutions of our original problem.

To this end we now introduce the concept of a geodesic field. The latter
is defined to be a field of contravariant vectors X/ = (¢, x"), given at each
point of a finite region G of X,,, by a set of n class C? functions y/(t, x*)
which are such that, for a suitably chosen function S = S(t, x"), the following
conditions are satisfied:

L*(t, x" x") = 0 whenever %/ = yi(t, x"), (2.34)
while
L*t, x" %*) > 0 otherwise. (2.35)

It is not immediately evident that such a geodesic field can always be con-
structed, and we shall presently discuss the conditions which must be satisfied
in order that this be possible. For the moment, however, let us assume that
we are in possession of a geodesic field, in which case the latter gives rise
directly to a solution of our problem.

Regarded as a system of n first-order ordinary differential equations,
the relations

= Yz, x") (2.36)

may be integrated to yield a family of curves which cover the region G of
X, simply. Let I": x’ = x/(t) be a member of this family, and let the points
Py, P, on T correspond to the parameter values ¢, and ¢, respectively. The
tangent vector x’ of I satisfies (2.36) at each point by construction. It then
follows from (2.34) that

2
f L*(t, x", x*) dt = 0. (2.37)
t

r 1

On the other hand, for any other curve K in G which joins the points P,
and P, we have, by virtue of (2.35),

12
'[ L*(t, x" X" dt > 0. (2.38)

Thus the curve I' affords a minimum to the integral I*, and hence, in view
of our foregoing remarks, it affords a minimum to the given integral I.
Accordingly the curve I represents a solution of our problem in the calculus
of variations. [ This particular method entails the construction of a minimum;
a maximum could have been obtained in the same manner by merely re-
versing the inequality in (2.35).]
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Let us now investigate some of the basic properties of our geodesic field.
From (2.34) it follows that L*(¢, x", x") assumes a minimum value for X/ =
Yi(t, x"). Thus dL*/0x’ = 0O for these values of %’. However, from (2.31) and

(2.22) we have quite generally that
oL* oL 0SS _ oS

T a0 P o

so that, for the geodesic field,
oS

Pi= %

This defines the covariant vector field p; = p(t, x") as a function of position
on the region G of X, ;, and by virtue of (2.23) the directional arguments

% = ¢lt, x*, p) = ¥i(t, x") (2.40)

corresponding to the geodesic field are thus determined. These are sub-
stituted in the condition (2.34), after which (2.39) is applied, which gives

as s, oS

(2.39)

Lt ¥ ¢h = = + 25 ¢ = 5+ p
or, in terms of the definition (2.25),
%§ + H(t, x* p) = 0.
Again, because of (2.39), this can be written in the form
%‘j + H(t, x", %) = 0. (2.41)

This is a first-order partial differential equation for our scalar function
S = S(t, x'): clearly our construction of the geodesic field entails that S be a
solution of this equation, as is assumed henceforth. The partial differential
equation (2.41) is of fundamental importance to all subsequent developments:
it is known as the Hamilton-Jacobi equation.

The above argument shows that, if the function S(z, x") is to define a
geodesic field, it must necessarily satisfy the Hamilton-Jacobi equatif)n.
Conversely, for any given solution of this equation, the corresponding
covariant vector field p; = 8S/0x’ is determined as a function of position,
and hence a unique contravariant vector field */ = YAz, x") is obtained by
means of (2.40). Because of (2.39) and (2.41) it is immediately evident that this
vector field is such that the first condition on the geodesic field, namely
(2.34), is satisfied. [The second condition, namely, (2.35), will be investigated
presently.]
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Any curve I' which represents a solution of the system (2.36), satisfies
a system gf first-order differential equations which is easily obtained as
follows. Differentiating (2.39) along I" with respect to t, we obtain

dp; _ o8 4 s,
dt o | oxh o (242)
prever, if the Hamilton-Jacobi equation (2.41) is differentiated partially
with respect to x/, it is seen that
oS OH 0H 08
- =
ot dx’  ox)  dp, ox" axI

or, if we invoke the identity (2.26):

%S s ,,  oH

dgtox T o oxi T T ax

When this is compared with (2.42), one obtains the so-called canonical
equations

dp; OH
it (2.43)

which, together with (2.26), represent a system of 2n first-order ordinary
fliﬂerential equations which the curve T must satisfy. Moreover, from (2.29)
it is evident that the canonical equations (2.43) are equivalent to the Euler—
Lagrqnge equations. In fact, the latter result formally from (2.43) and (2.27)
by elimination of the variables p;. One therefore has the choice between a
system of 2n first-order equations for the 2n variables p ; and x/, or a system
of n second-order equations for the n variables x’. For many theoretical
purposes it is preferable to use the former system.

. Finally, let us briefly glance at the conditions which must be satisfied
in order that the validity of the inequality (2.35) is ensured. In terms of (2.31)
this condition may be written in the form

. as  as
LG, xk, xh) - E - & x>0,

with equality if and only if ¥/ = yY/(t, x*). One may eliminate 85/dt from

this formulation by means of (2.41), where it must be remembered, however,
that the latter applies to the geodesic field. This gives

L(t, x", %) — L(t, x", y*) + p,y’ — %‘ij % >0,
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or, if we use (2.39) and (2.22),

OL(t, x", Y
ox’

It is remarkable that we have been able to eliminate all explicit reference

to the function S(t, x*) from the formulation of the condition (2.35). In fact,

this suggests that we define, for any given Lagrangian L and any pair of

directional arguments (x*, y/*), the so-called excess function of Weierstrass:

OL(t, X", Y™
ox!

L(t, x*, x*) — L(t, x", y") — (* —y)=0. (2.44)

E(t, x", Y, %7 = L(t, x", x*) — L(t, x", ") — (& — ), (2.45)

in terms of which (2.44) can be written in the form
E(t, x", Y, %" = 0. (2.46)

It is clear that this condition depends entirely on the nature of the given
Lagrangian L(z, x", "), which may or may not be such as to satisfy (2.46).
However, for all physical applications the essential features of the theory
are contained in the Hamilton-Jacobi equation (2.41) augmented by the
covariant vector field defined by means of (2.39). If, in addition, condition
(2.46) is satisfied, it is immediately evident from the construction of the
geodesic field that the curves of the field (such as I') do in fact afford an
extreme value (at least locally) to the fundamental integral, and accordingly
(2.46) is often referred to as the sufficiency condition of Weierstrass for the
geodesic field. For many physical systems the Lagrangian is such that this
condition is not satisfied; nevertheless, the fundamental field equations
(2.41) and (2.39) yield physically acceptable conclusions. It would seem,
therefore, that the fundamental laws of nature are not, as is usually supposed,
concerned with extreme values of a fundamental integral; instead, these
laws are derivable from the properties of fields defined entirely by means of the
Hamilton-Jacobi equation.

In conclusion we note that the second mean value theorem allows us to
express the excess function (2.45) in a more compact form as follows:

W oon oem 1L X" 2" Aok _ ik
E( X 9 i) = 5 S5 (), (247)

where
" =0x" + (1 — O 0<o<l (2.48)
For example, in the case of the Lagrangian (1.6), we have from (1.5) that
o’L
o
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so that
E(t, X", ", X" = 1a;,(3) — )" — "),
and thus, since the ay, are the coefficients of a positive definite quadratic

form, it follows that the Weierstrass condition (2.46) is automatically satisfied
for dynamical systems whose Lagrangian is given by (1.6).

EXAMPLE

One of the simplest and yet most illuminating examples of the above analysis
is the theory of the classical harmonic oscillator. This model consists of a
single particle (assumed to be of unit mass) moving along a straight line, the
latter to be taken as our x-axis. The particle is attracted to the origin by a
force F = —w?x, where w is a given positive constant. The corresponding
potential is therefore V = iw?x?, while the kinetic energy is T = 1x2,
where x = dx/dt, and t denotes the time. According to (1.6) the Lagrangian
of the system is given by

L = (%) — o2, (2.49)

Clearly n = 1 in this example. The condition (2.24) is obviously satisfied,
so that the canonical momentum may be defined as

L .

p= P X, (2.50)

and thus the Hamiltonian function (2.25) assumes the form

H(x, p) = 3p* + s0?x%. (2.51)
Since

o0H N oH

E(— = WX, *é; = p, (252)

the canonical equations (2.43) and (2.26) are simply

p= —wbx, X = p. (2.53)
Let us choose our initial conditions such that x = 4 and X = O whent = 0,
where A is some constant. Under these conditions the solution of (2.53)
is given by

x = A cos ot. .54 §

Thus x lies in the range [ — A, A], and the motion is periodic with period §

2n/w (or frequency w/2n) and has an amplitude | 4|. In the configuration

space R, of the variables (x, t) the solution (2.54) is represented by a cosine 2
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curve which intersects the r-axis at the points r=Qk+1)7/ 2w, k=

0,+1,+2,.... A one-parameter family F of such extremal curves is ob-

tained when one allows A4 to vary continuously from — oo to co. With the

exception of the points (0,(2k +1)7/2w) this family covers R, simply in

the sense that through any point of R, [other than (0,(2k +1)7/2w)] there

passes a unique member of F. The latter thus defines a geodesic field on R,.
Along any member I' of F we have, by (2.51) and (2.53),

dH
5= pp+ 0¥xk = p(—wx) + w*xp =0,

so that H is constant along T, this value of H being denoted by E. Clearly
the value of E depends upon the choice of I'; that is, E is a function of the
parameter A. In fact, from (2.54) we have

p=Xx=—Awsin wt (2.55)
and if this, together with (2.54), is substituted in (2.51), we obtain
E = 1A4%0%. (2.56)

Let P(t, x) be an arbitrary point (not on the t- or x-axes of R,). The value
A of the parameter corresponding to the member I" of F which passes through
P is given by (2.54), or

A = X sec wt. (2.57)
Because of (2.56) the value of E corresponding to this point is
E = 1w?x? sec? wt, (2.58)
while (2.55) and (2.57) yield
p = —x sec wt sin ot = —wXx tan wt. (2.59)

According to (2.41) and (2.51) the Hamilton-Jacobi equation associated
with this example is

as oS\ oS 1[/eS\2 1, ,
os 08\ _ oS (L(OS\e L aa_ g 2.60
at+H<x’ax) 6t+2<6x> toex (2.60)

In order to construct a solution S = S(¢, x) of this equation we recall the
relation (2.39) of our general theory, namely,

e 2.61
P=3 (2.61)

in which we substitute from (2.59), obtaining

9 _ _ ox tan o, (2.62)
ox
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Moreover, since H = E by construction, it follows from (2.58) and the left-
hand side of (2.60) that

1
g—f =—3 w?x? sec? wt. (2.63)
By differentiation of (2.62) and (2.63) with respect to ¢ and x, respectively,
it is easily verified that the integrability conditions of this system are satisfied

(as is to be expected from the general theory). Hence S is found by direct
integration of (2.62) and (2.63), which yields

S(t, x) = —Lwx? tan wt (2.64)

(the constant of integration being neglected). This is the required solution
of the Hamilton—-Jacobi equation (2.60). The relations

S, x) = =, (2.65)

where X is a variable parameter, define a one-parameter family of curves
in R,, which is said to be transversal to the family F.

Along an extremal I' of the family F corresponding to the parameter
value A, the function (2.64) can, by means of (2.54), be expressed in the form

= —14%w sin ot cos ot = —1A4%w sin 2owt. (2.66)

Similarly, along I" the Lagrangian (2.49) has the value
L = 14%w%(sin? wt — cos? wt) = —1A%w? cos 2wt. (2.67)

Thus, along T,
ds
dt
which is consistent with the relation (2.34) [subject to (2.31)] of the general

theory. Moreover, between any two points on I' corresponding to the values
t=1t,,1=t,, chosen such that the interval [¢,, £,] does not contain a value
t=Qk+1)7w/2w (k=0,41, £2,...) or zeros of (2.67), we have

=L, (2.68)

12
f Ldt = S(t,) — S(t,) = 1A%w[sin 2wt, — sin 2wt,],  (2.69)
it

which clearly indicates that the function S represents a measure of the value

of the fundamental integral when evaluated along an extremal I' of the }

family F.

Remark. In most textbooks on analytical mechanics (e.g., Goldstein [1], $§i

p.- 278) the Hamilton-Jacobi equation (2.60) is treated in a somewhat
different fashion. Noting that the Hamiltonian (2.51) does not depend
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explicitly on the time, while H = E, a solution of the form
S = —Et + S*(x), (2.70)

is postulated. When this is substituted in (2.60) it is found with the aid of
(2.56) that

S* = f 2E — w?x? dx=cuf,/A2 — x? % dt, (2.71)
so that

S =—1420% + o f JAZ = X% % dt. (2.72)

This is obviously somewhat different from the solution (2.64) above, which
is due to the following reason. Because of the introduction of E in (2.70) one
immediately restricts oneself to a particular member I’ of the family F,
namely, that member whose parameter value A corresponds to E in accor-
dance with (2.56). Thus the solution (2.72) can only reflect the value of S
on I', instead of on the whole of R, (with the exception of isolated points).
However, it is easily seen that (2.72) coincides with the special case (2.66)
of (2.64). For it follows from the above argument that the integral on the
right-hand side of (2.72) should be taken along I', which requires that we
should substitute from (2.54), and this yields

S = 14%0? f(siHZ wt — 3 dt = —3A4%w sin 2wt, (2.73)
r

where it should be noted that the negative square root of 42 — x? has
to be chosen in the course of this calculation in order to achieve consistency
of (2.72), (2.73), and (2.61) with (2.55).

This remark should serve to emphasize the following important observa-
tion. The function S, which plays such a fundamental role in our general
theory as a solution of the Hamilton-Jacobi equation, is a function of the
variables (¢, x), and should be expressed as such, and should not be repre-
sented as a function of parameters such as A which merely serve to label
individual members of the field F. This observation applies to variational
problems in general.

6.3 INVARIANCE PROPERTIES OF THE FUNDAMENTAL INTEGRAL:
THE THEOREM OF NOETHER FOR SINGLE INTEGRALS

In Section 6.1 the invariance properties of the fundamental integral of a
problem in the calculus of variations were discussed with reference to
general coordinate transformations on our differentiable manifold X, on the
one hand, and general parameter transformations on the other. It may
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happen, however, that a given fundamental integral is invariant under a 3 j
special group of continuous transformations—irrespective of coordinate

or parameter transformations—and, under these circumstances, the cor-

responding Lagrangian must satisfy certain conditions. The latter can be

expressed in a very concise manner in terms of the Euler-Lagrange vector
E (L), and the resulting formulation of these conditions is usually referred
to as Noether’s theorem (Noether [1]). The importance of this theorem is
due to the fact that it allows us to construct quantities which are constant
along any extremal, that is, a curve which satisfies the Euler-Lagrange
equations E/(L) = 0, and thus, in the case of physical applications, one
obtains relations which may be interpreted as conservation laws.

Let us suppose that we are given some r-parameter group of transforma-
tions which is represented in the form

%= %, Xt wh) F = K X, w), 3.1)

in which the w* (s = 1,..., r) denote the r parameters of the group (see, e.g.,
Eisenhart [2]). [In the sequel the superscripts s, ¢ range from 1 to r; the sum-
mation convention is operative also in respect of these indices.] It will be
assumed that the functions on the right-hand sides of (3.1) are of class C3 in all
arguments, and that the values w®* = 0(s = 1, ..., r) correspond to the iden-
tity transformation X/ = x/, f = t. Furthermore, the parameters w® are sup-
posed to be entirely independent of each other. As a result of these stipul-
ations it is possible to express (3.1) in the form

: . . 1.
o=+ G, XS+ o LI, XMwswt + -
7 . ,,S l h S, .t
F=1t+ &t x"wW +?és,(t,x)ww + -

ox/ ; ot
={ — = £, 3
(ﬁws)ws o 7 <6ws>ws =0 & 3.3)

It is also immediately evident from (3.2) that

so that

o%! . ox of ot
X =5 ox” - a - a -1, B
&) =a (T -0 (G- &) -

together with

5?5 o
ow oxt ) _o X"

(32 4

25 j :
8%x/ _ 6(1’ 3.5) |
W' ot ) g Ot ]

6.3 INVARIANCE PROPERTIES OF THE FUNDAMENTAL INTEGRAL 203

0%t 8, %t e, 16
owsoxt) ..o, oxP WOt ) ey O (36)

Let us now assume that we are given a problem in the calculus of variations
which is such that its fundamental integral is invariant under the transfor-
mation (3.1), that is, that

o dx’ dx"
Lt X, — )di = h
L (t, X, FE ) dt LL(t, x", at ) dt, 3.7

the integration being performed along an arbitrary curve C of X,,. In order
that this requirement be satisfied, it is necessary and sufficient that

. dx)\ di dx*
Foed 2oV h 77
L(t, X4, 7 ) i L(t, x", dt> 3.8)

for any set of values of the parameters w*. Accordingly we may differentiate
(3.8) with respect to w®, noting that the right-hand side is independent of these
parameters. Putting w* = 0 after differentiation, we thus obtain

OL (ot +0_L ox/ +aL 0 (dx’ di
A \OW ) oy OXINOW ) o 0% | W \dE ] | esof \dt)ers

o (di
L— |— = 0. .
* L (dt >W,=0 0. B9

In order to be able to exploit this condition we must evaluate the various
derivatives with respect to w® which appear on the left-hand side.
To this end we observe that, along any curve C, we have by (3.1)
dx/ ox’  ox ,

I_E-Fﬁx’ (310)

and

and

i a9t ot
=5t (3.11)

in which %* = dx"/dt refers to the tangent vector of C. Relative to the X’-
coordinates, and the parameter f, this tangent vector is represented by
dX//di, which is given by
dx’di  dx’
di dt dr’

o (d\dt  d% o (db\_ o (4%
ows\dt Jdr ' di ow'\dt) ow' \ dt )

(3.12)
Thus
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or, if we substitute from (3.10) and (3.11),

ow \dt ) dt ow ot | ow ox" o e
In (3.10) and (3.11) we put w* = 0, noting (3.4) at the same time. This gives

so that (3.12) yields

obtaining

o (ax’! 6§"+aC’x i %8s | 9Cs L
oW\ dt /g ot ox" o ox"
dcj —x g
T oar dt’
Also, it is immediately evident from (3.11) and (3.6) that

ow* \dt ot 6x dt

We now substitute from (3.3), (3.16), (3.14), and (3.17) in (3.9). This yields |

L v Ly 2 (dc} dé>+Ldé‘=o. (19 §
ox! i

ot ox! °F dt dt dt

This, then, is a necessary condition which must be satisfied as a result of our ‘ ‘
invariance requirement (3.7). We shall refer to (3.18) as an invariance identity: §
it is clearly a condition involving the Lagrangian L and the quantities &
which are specified uniquely by the transformation group (3.1) under which §
the fundamental integral is to be invariant. It should be observed that the §
condition (3.18) does not involve the second or higher derivatives of the &

functions x’(t) which define the arbitrary curve C.

The theorem of Noether can be derived directly from (3.18) when the ; '
Euler-Lagrange vector E (L) is introduced into this relation. To this end we 3§

note that

oL dL oL _, oL
- ==
a o (dt X Tt )é"

<j - =j 23 2z 25 25j "
%(dg)ﬂﬁﬁ_d’;_(a‘ P xh>= USSR |

di dx’ ; ;
— = _— = &) M= xJ . j
@)=t (@) -ow=s e

dx’ .
Y
(df )ws=0 X 313 %

We now put w* = 0 in (3.13), and substitute from (3.5), (3.6), (3.14), and (3.15),

(3.16) *

K (ﬁ) _% | 9L a4 (3.17) |
ws=0 ;
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oL dy¥

oLdc, _ i OL i oL\ i

ox) dt ox/ 0%
together with

AL .d¢, 0L . d (oL d (oL
= xi s —_— = ¢/
o a Tt (axl Jé) (ﬁ)xjés'

These three relations are substituted in turn in (3.18). After a little simplifi-
cation this yields

oL d (aL\], [oL aL\].,
ox) de\ox’ S [ﬁ_ E(@x’)]x &

d
+E[L§ +6_LCJ_6_LXJ§:,

and

ox’ ox’
or, if we invoke the definition (1.18) of the Euler-Lagrange vector,
oL . .
E{L)(] — X&) = [Lé +taa G- x’fs)]- (3.19)

This relation represents r identities (s = 1,
enunciated in the following form:

..., r); its implications can be

If the fundamental integral of a problem in the calculus of variations is invariant
under a given r-parameter group of transformations such as (3.1), then there

exist r distinct linear combinations of the Euler-Lagrange vector E (L) which are
exact differentials.

The right-hand side of (3.19) suggests that we introduce the notation
oL ] .
0 = —L —_—— J o~
\= —LE — S5 — V), (3.20)

By means of (2.22) and (2.25) these quantities can be expressed as follows in
terms of the canonical coordinates:

0, = He, — p,Ci, (3.21)
and (3.19) can be written in the form

B — vg) = —

dt’

This conclusion immediately gives rise to the usual formulation of

(3.22)
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NOETHER’S THEOREM

If the fundamental integral of a problem in the calculus of variations is invariant
under the r-parameter group of transformations (3.1), the r distinct quantities
6, defined by (3.20) or (3.21) are constant along any extremal.

The following examples should serve to illustrate typical applications of
this theorem.

EXAMPLE 1

Let us suppose that the fundamental integral is invariant under the one- ]
parameter group (e.g., a time translation)

X = x4, F=1t+4+w

According to (3.3) we have {/ = 0, ¢ = | in this case. From (3.18) it is im- &

mediately evident that

oL :
o= 3. 3
ot 0, (3:23)

while (3.21) gives :
6=H.

The theorem then asserts that H = const. along any extremal. This, inciden-
tally, can also be verified directly as follows:

dH 06H 0¢H .
Gt T
or, if we use (2.26), (2.28), and (2.29),
dH oL )_cj(aH dpj> _ oL

OH dp;
dp; dt’

J

ar _ _ 9% o ap; _ 9= (I
dt En o Tt o+ EADX

so that dH/dt = 0 along any extremal by virtue of (3.23).

EXAMPLE 2

Let us suppose that the fundamental integral is invariant under the n- &

parameter transformation group (e.g., a space translation)

X =xI + w, =t G=1...,n=r).

According to (3.3) we have { = 8}, £; = 0 in this case. From (3.21) we thenf {

have

Oj = —Dj
and the theorem asserts that p; = const. along any extremal. Again t}_lis
easily verified by means of (3.18), from which it is inferred that dL/ox’ = §
under these circumstances.
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If, in the above examples, the Lagrangian L refers to a dynamical system
of n degrees of freedom, one would interpret the above conclusions as the
conservation laws of energy and linear momentum, respectively.

6.4 INTEGRAL INVARIANTS AND THE INDEPENDENT HILBERT
INTEGRAL

Fields of extremal curves possess many striking geometrical properties, some
of which are of considerable importance in many applications of the calculus
of variations. This is true in particular of geometrical optics, in which, accord-
ing to Fermat’s principle, bundles of light rays are represented by such fields
(Carathéodory [1], Synge [2]). The geometrical properties to be discussed
here are based on the concept of the so-called integral invariants (E. Cartan
[2], Hilbert [1]), which had originally been introduced by Poincaré primarily
in connection with the theory of first-order ordinary differential equations.

Let us consider an n-parameter family of curves in X, ,, represented
parametrically by n class C? functions in the form

x! = x(t, u") Gohyooy=1,...,n), 4.1)
in which the " denote the parameters of the family. It is assumed that
axt, ..., x"
o, ..., u" * 0, “.2)

so that the family (4.1) covers a region R of X,,, simply in the sense that
through each point Pe R there passes one and only one curve of 4.1);
henceforth our considerations will be restricted to this region. In accordance
with our previous notation we shall write

== (4.3)

along each member of (4.1), and, by means of the definition (2.22), we associate
the covariant canonical momentum vector field p; with the contravariant
vector field (4.3), namely,

p; = pit, u"). 4.4

Corresponding to an arbitrary displacement (dt, dx’) at any point P(t, x*)
of R we can now construct the 1-form

w = p;dx’ — H(t, x", p,) dt, (4.5)

Which, as we shall now see, possesses some very remarkable properties.
We shall begin by evaluating the exterior derivative of this 1-form. According
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to the theory of Section 5.2 we have (recalling that dt A dt = 0)

. 0H ; OH
do = dp; A dx) —dH A dt = (dpj + ﬁdt> A dx! — adpj Adt.  (4.6)

But from (4.1) and (4.4) we have, in terms of the notation 4.3),
ou®

where p; = dp;/dt, so that (4.6) is equivalent to

. OH op; gp o O ) = CH P kg
dco=|:(pj+———>dt+a—uiduk:| A (x’ dt+au;.d“ op, out du® A

op;
du, dp, = p,dt + b du¥, @.7)

dxj = ).C‘i dt + 6uk

ox/
. OH\ox! S TR AT TN
=(pj+5;>wdt/\du +(xJ o, 6u"du A dt
i op.
—%Z—hg—i{;duh A du*. “8)

Because of the identity (2.26) the coefficient of dp;/du” vanishes identically.
Moreover, the last expression on the right-hand side suggests the introduction ’
of the so-called Lagrange brackets, which are defined as %

ax’ dp; 0x’ dp;

[uh’ukawﬁ_i_

(4.9)

It should be remarked that these quantities play a central role in anglytical

mechanics and geometrical optics (Goldstein [ 1], Whittaker [17). By virtue of :

the skew-symmetry of du" A du* in the indices h and k we have 5
ox’ 0p J Bk h Kk
=28 dut A duF = L[t uF] du” A du,
ouh ou* o

and thus (4.8) can be expressed in the form

OH\ ox’
do = (15; + ﬁ) 4t A du — 1, uk] du” A du,

ou"
which is the expression we have been seeking. - |
Now let us suppose that the curves of the family (4.1) are ex.tremals of our ]
variational problem: that is, it is assumed that these curves satisfy the canon- :‘

ical equations (2.43):

(4.10)

p; OH _ [CRY),
ox’
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[However, it is not assumed at this stage that these extremals are necessarily
members of a geodesic field in the sense that there exists a function S(z, x*)
such that p; and H are given as derivatives of S as in (2.39) and (2.41), res-
pectively.] Under these conditions the expression (4.10) reduces to

do = —4[u", u*] du® A du*. 4.12)

When we substitute from (4.1) and (4.4) in the definition (4.9) of our Lag-
range brackets, we see that the latter may be expressed as functions of the
(n + 1) variables (u* t). Thus, applying the lemma of Poincaré [namely,
d(dw) = 0] to (4.12), we obtain

0= 3% [u", w*] dt A du* A du* + i, [uh, w*] du' A du* A du¥, 4.13)

du
But it follows directly from (4.9) that
_ % op;  ox 9%p; 0*x) ap; ox’ 9p;
oW out ok T dutou out Ut ot aut T duk ol au’

in which each term is symmetric in some pair of the triplet I, s, k. Hence

I3}
b;i [uh’ uk]

% [u*, U] du' A du® A du* =0 4.14)
identically, and accordingly we infer from (4.13) that
% [u", u] = 0. (4.15)

This shows that the Lagrange brackets are constant along each member of any
Jamily of extremals. This theorem was first established by Lagrange on the
basis of some very complicated analysis; it subsequently played a significant
role in the development of the theory of optical instruments.

From among the n parameters 4" we now single out two variables, say, u!
and u?, and we construct the two-dimensional plane T, defined by the equ-
ations u® = a3, ..., u" = a", in the domain R, of the v, where a3, . .., a" are
arbitrary constants. Let g denote a region on T, which is bounded by a simple
closed curve dg, of which it is assumed that it may be represented para-
metrically in the form u' = u'(z), u?> = u?(r), these functions being periodic
and of class C? in 1. According to (4.12) the 2-form dw assumes the value

do = —[u!, u*] du* A du® (4.16)
on g. An application of Stoke’s theorem then yields

- f[u‘, u?] dut A du® = f do = | o.
g g

o9
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But, by virtue of (4.15), the integrand on the left-hand side is independent of ¢,
and therefore the integral on the right is simply a constant whose value depends
solely on the choice of the curve dg:

= k(0g). 4.17)
o9

It is a simple matter to give a geometrical interpretation of this result
directly in terms of the family (4.1) of extremals in X, , ;. To each value of the
parameter T, that is, to each point on dg, there corresponds a unique extremal
of the family (4.1), which is given by

x = xI(t, ul(z), ul(z), @3, ..., a", (4.18)

so that the totality of points on dg defines a one-parameter subfamily of (4.1)

(which may be pictured as the generators of the two-dimensional surface of ‘

a tube in X,,,). Let ¢ be any closed curve in X, ,, which intersects each
member of (4.18) once and only once (that is, any simple curve which en-
circles the aforementioned tube). Clearly every curve of this kind is an image
of the curve dg on T, under the map defined by (4.18), and it therefore follows
from (4.5) and (4.17) that

§(pj dx! — H dt) = x(0g). 4.19)

Thus the value of this integral depends solely on the choice of the one-
parameter family (4.18), and is the same for all closed curves which intersect
each member of this family precisely once.

There are two important special cases of this conclusion which we now
consider. First, let ¢, and c, represent two closed curves of the type specified &
above, but subject to the restriction that they be constrained to lie on the
hypersurfaces t = t, and t = t, of X, ,, respectively. From (4.19) it is in- |

ferred that for each of these curves we have

[ prax = wta. [ pyax' = xizo), (4.20)

despite the fact that the integrands refer to entirely different values of t.

It therefore follows that the value of the integral

f p; dx’ 4.21)

1

is independent of t. An integral possessing this property is called an integral 3 :
invariant (or, more precisely, a relative integral invariant, since the domain of i

integration is closed).
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Second, let us now suppose that the 1-form (4.5) is exact, that is, that there
exists a function S(¢, x*) such that

= dS. (4.22)
Under these circumstances we clearly have
a8 as

and fr.om the theory of Section 6.2 it follows that our family (4.1) of extremals
constitutes a geodesic field. Moreover, we now infer from (4.22) that

dw =0, 4.29)

and hence, by virtue of the converse of Poincaré’s lemma, we conclude that
the condition (4.24) is characteristic of geodesic fields. Equivalently, such
fields are characterized among arbitrary families of extremals by the condition
that all Lagrange brackets vanish, as is evident immediately from (4.12). The
con§tant k(0g) obviously vanishes identically for any one-parameter sub-
family of an n-parameter family of extremals of a geodesic field. More
generally, for any differentiable curve C: ¥/ = %/(1) of X, ,, with %/ = dx//dt,
:thxgl joins two points P,(t,, X/(z,)), P,(t,, ¥(t,)), we have from (4.23) and

J= J: {p;% — H(t, x", p,)} dt = f o= S(P,) — S(P,), (4.25)

YPy
(e}

from which it is evident that the value of the integral J depends solely on the
end-points P, and P, and not on the choice of the curve C joining these points.
Indeed, the relation (4.25) defines the so-called independent integral of Hilbert
(Hilbert [1]). It should be emphasized, however, that the arguments p, in
the integrand of the latter refer to the geodesic field. By means of (2.22) and
(2.25) the canonical variables may be eliminated, so that (4.25) can be repre-
sented in the following equivalent form:

OL(z, x*, %"
0%

T2
J = f {L(t, xt, xP) +
1)

c

(- xf)} dt, (4.26)

Where it should be remarked once more that the arguments %’ in the above
Integrand refer to the geodesic field. Needless to say, the Hilbert independent
Integral is defined if and only if a geodesic field exists.

As a special case of (4.26) let us suppose that the points P,, P, on C are
chosen such that a given extremal I of the geodesic field passes through P,
and P,. If, for the moment, we identify C with I', we may put ¥ = %/ in
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(4.26), and the latter reduces to
12 :
J= f Lz, x*, %) dt. @27
rh
It therefore follows from (4.26) and (4.27) that, for an arbitrary differentiable -
curve C joining P, and P,, we have

ts 12
f L(t, x*, %" dr — f L(t, x", %) dt
&n r

12 i oL(t, xP, xh)
= J; {L(t, Xh, fh) - L(t’ xha xh) - axj

ch

(- xf)} dt, (4.28)

or, if we invoke the definition (2.45) of the Weierstrass excess function,

12 153 15
J. L(t, x", %" dt — f L(t, x*, %) dt = f E(t, x", x*, x" dt. (4.29)
LA Ctl

t

This result is sometimes referred to as the fundamental formula of the calculus
of variations: it indicates quite clearly that the extremal I affords a minimum
to the fundamental integral relative to all curves C with the same end-points
P,, P, whenever the Weierstrass condition E(z, xk, X' %F) > 0 is satisfied.
[Strictly speaking, certain additional requirements must be imposed in order
to ensure that the above conclusion is always valid: namely, that the points -
P,, P, are sufficiently close together to exclude the possibility of the existence
of a so-called conjugate point of P, on I" between P, and P,, and that Cbe
contained in a certain neighborhood of I'; however, a precise description of
these conditions is beyond the scope of the present discussion.]
Before concluding this section, let us return to the construction of integral
invariants of higher order by means of a family of extremals (it being no longer {
assumed that the latter is necessarily associated with a geodesic field). To z
this end we shall now restrict our attention to a hypersurface t = t;, = const.
of X, ,, on which the 1-form (4.5) is given by w = p; dx’. For some integer
p, 1 < p < n, let us consider the 2p-form defined by

oy =do A -+ A do (p exterior products). (4-30)2

Now, let R,, denote the 2n-dimensional phase space, whose points art‘-;%r

represented by the 2n coordinates (x/, p)). Over some simply-connected(f%{
2p-dimensional region h,, of R,,, which is bounded by a closed, class C ’f

subspace dh,, of dimension 2p — 1, we construct the integral

P

K;p= | (do). @318

6.4 INTEGRAL INVARIANTS: INDEPENDENT HILBERT INTEGRAL 213

However, according‘to- (4.12) and (4.15) the 2-form do is independent of the
value 't =1, and‘thxs is true therefore also of the integral (4.31). Thus the
latter is called an integral invariant of order 2p (or, more precisely, an absolute

1ptegral Invariant, since the region h,, is essentially arbitrary). Moreover
since |

(dwy =dlw A (dw)P~1], 4.32)

it follows from Stokes’s theorem that

K,, = dlw A (do)y~ 1] =

hap oh2p

w A (dw)?™ !, (4.33)

from wlhich we conclude that the integral on the right-hand side is a relative
integral invariant of order 2p — 1. [For p = 1, the latt i
responds to (4.21).] g , e obviously cor-

Since dw = dp; A dx’ on the hypersurface ¢t = t, of i
(430, o ; 1 of X, .4, it follows from

(dw) = (-1)*"®~"Vgp. A A dp; A dxt A - Adxie, (4.34)

t;efcause a to_tal of 1 + 2+ + (p — 1) = 3p(p — 1) interchanges of the
-forms dp; is rf‘:qulred to write the product (4.30) in the order given in
(4.34). Thus the integral invariant (4.31) of order 2p may also be expressed
in the form

Kyp=(=1*"D | dp, A--- Adp; Adxit Ao Adide. (435)

In particular, for p = n, we have from (4.34)
" _ dn(n— f1---in
do) = (=1)"" Vg, . eIndp Ao Adp, A dXE A - A dX,

or, if we use (4.2.22)

o) = (=)™ Ypldp, A - Adp, A dx' A -+ A dxX". (4.36)

It therefore follows from (4.31), with p = n, that the 2n-fold integral

dpy A - Adp, Adx* A - A dX" 4.37)

hzn

1s an abs.olute i.nteg.ral invariant of order 2n. This is the famous theorem
of Liouville which is of fundamental importance in statistical mechanics
(see, e.g., Uhlenbeck and Ford [1]). ’
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6.5 MULTIPLE INTEGRAL PROBLEMS IN THE CALCULUS OF
VARIATIONS

The theory of the preceding sections can be generalized to the case when the
variational problem is concerned with extreme values of a multiple integral. -
This extension will be briefly discussed here (Carathéodory [2]).

Instead of a single parameter ¢ we now consider a set of m parameters ¢*.
(Here, and in the sequel, all Greek indices range from 1 to m; the summation
convention is operative also in respect of these indices.) The n dependent
variables are again denoted by x’. It is advisable to introduce a new con- .
figuration space X, ,, which is supposed to be an (n + m)-dimensional
manifold whose local coordinates may be identified with the n + m variables
t*, x’.

An m-dimensional subspace C,, of X, . can be represented parametrically
in the form:

xi = xI(t%). 5.1)

It will be supposed that the functions x/(¢*) are of class C?; one may therefore
construct the derivatives

o g

xi = 6[’“’ (52) b
and our attention will be restricted to subspaces for which the rank of the
matrix (%)) is m. Under a class C? coordinate transformation of the type

X = xi(x"), (53) ¢

with nonvanishing Jacobian, involving solely the variables x”, the derivatives
(5.2) transform as follows:
ox/  ox/ ox* _ ox/

X = = 25y = A X (543

ot ox" ot Ox 2

from which it is evident that the %" represent the components of a contra-
variant vector relative to the transformation (5.3). However, under a class g
C? parameter transformation of the type £

P = (P, (5.5);

with nonvanishing Jacobian, which involves solely the parameters t#, one has|
oxi  oxl o o v
ot* o ot ot
from which it follows that the derivatives %/ are the components of a covariant]
vector relative to the transformation (5.5). ]

%4, (5.6)]
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Qn a given subspace C,, any function f = f(t% x/, XJ) can be expressed
entirely as a function of ¢* by substitution of x/ and x] from (5.1) and (5.2)
The following notation will be used consistently: o

G_o S

de = o T g0 Ka g Mo D)
where we have written
. 0%x7
St = s = % (5:8)

Now let us suppose that we are given a function L(t*, x’, %J), which is
suppqsed to be of class C? in its (m + n + mn) arguments. "Hlen for a
prescribed closed, simply-connected region G in the domain of the va’riables
t%, one can construct the m-fold integral

I(C,) = f L(t*, x’, x{) d(t), (5.9)
G
where we have used the notation
d(t) = dt' de* - - - di™. (5.10)

Thc? va!ue of this integral generally depends on the subspace C,, by means of
whlqh it is defined, for it is to be understood that the argum"énts x!, %I in
Fhe integrand L are to be replaced by the functions (5.1) and (5.2) ’of athe
1nfiependent variables t* which are specified by C,,. Again we are concerned
W_lt.h extreme values of the integral (5.9). More precisely, we seek the con-
ditions which a subspace C,, must satisfy in order that it afford an extreme
value to this integral relative to the values which it will assume for all other
class .C2 subspaces C,, which coincide with C,, on the boundary dG of G
(see Figure ?). Thus any admissible subspace of comparison €, which is
represented in the form x/ = %/(¢%), is supposed to satisfy the rest';iction

X(t%) = x/t*) = a/(t*) for all * € 6G, (5.11)

where the functions a’(¢*) are fixed, prescribed functions on the boundary
0G of G. (This condition corresponds to the stipulation of the single integral
problerp according to which the admissible curves of comparison are required
to terminate at two fixed end-points P, and P,; as in the single integral case
this restriction may be relaxed in various ways.)

As before, we refer to (5.9) as the fundamental integral of our problem in
the calculus of variations, whose integrand is again called the Lagrangian.

Befo%'e turning to the variational problem as such, let us briefly glance
at the invariance conditions which may be imposed on the integral (5.9).
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x
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Domain of variables ¢

Fig. 7

First, we shall demand that (5.9) be invariant under the coordinate trans-
formations (5.3). This obviously implies that the Lagrangian L be a scalar -

relative to (5.3). Second, under the inverse of the parameter transformation
(5.5), the integral (5.9) assumes the form

e g Ox) OFF )

I(C,) = LL {t (@), x'[*()], WEF}B d(p), (5.12) |

in which j
ot* b |

denotes the Jacobian of the inverse of (5.5). The integral (5.9) is said to be

parameter-invariant if

ot*

1(C,) = f L<i‘“, xJ, axj) d(t) (5.14) .
G r'

for all parameter transformations of the type (5.5). The necessary and suffi- §
cient conditions which the Lagrangian L must satisfy in order that (5.9) be §

parameter-invariant are contained in the following relations:

oL
or* ’

=0 (5.15) &
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together with

oL _; "
% Xp = L&§. (5.16)
In the immediate sequel it is not assumed that (5.9) is parameter-invariant,
so that no appeal to (5.15) and (5.16) will be made. Thus we shall not give a
proof of these conditions here; instead, we shall deduce the latter from the
theorem of Noether for multiple integrals which is to be established presently.
However, since L is supposed to be a scalar under the coordinate trans-
formation (5.3), we have

(e, 7, Xhy = L(%, xk, x;‘,), 5.17)
so that
oL _ oL 23]
2% ~ %l axk’ (5.18)
and
oL 0L ox) oL oxl
axk = o5 oxk T axd ot (519)
But from (5.4) it follows directly that
oxi oxloxt  ox ox’
a 77 e Y B — " 58
oxk  oxMoxk  ox” %0 ok O (5-20)
together with
oxi %,
ax* T ox oxk e .20
When (5.20) is substituted in (5.18) one obtains
oL  ox! , OL 9%/ oL
(5.22)

kT A k9% Az = Ak Ael
%5 Ox* " oxL ox*ox)

from which it follows that these quantities represent the components of a
Covariant vector. However, when (5.21) is substituted in (5.19) it is found that

OL dL X oL o*x
ox* ~ ox0 ax* T 8% ox" oxk = (5:23)
Which indicates that the derivatives dL/dx* are nontensorial. In order to
augment these quantities in a suitable manner, we differentiate (5.22) with
Tespect to t# (summing over f). In terms of the notation defined in 5.7)
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we thus find that

d (OL\_o¥ d (oL\
diP \axk ] ox* di” \ 8%}
The second term on the right-hand side of this relation is seen to be identical

with the corresponding term in (5.23) after the repeated indices  have been
replaced by a. On eliminating these terms it is found that

d (OL\ oL _ox'[d (0L 0oL
aP \oxk) ~ ax* T oxF |aP\ax%)) ~ ox |

from which we infer that the quantities defined by

oL
E(L) = E(f‘“ (a—L> (5.24)

OxJ, ox?’

constitute the components of a covariant vector, which will again be referred
to as the Euler—Lagrange vector.

We shall now give a brief discussion of the multiple integral variational
problem as formulated above. Again several distinct methods are feasible.
According to the classical procedure one can evaluate an expression for the

oL o*x’
o%) ox" ox* "

first variation 81 of the integral I; if the subspace C,, is to afford an extreme
value to I it is necessary that I = 0, and it may be shown—by a method i

analogous to that sketched in Section 6.2—that this implies that the functions

x/ = x/(t*) which define the subspace C,, must then satisfy the system of n

second-order partial differential equations

E{L) = 0. (5.25)

These are the so-called Euler—Lagrange equations: they represent necessary
conditions which the subspace C,, has to satisfy in order that it afford an

extreme value to the fundamental integral (5.9).

An important example of a multiple integral variational problem with

n = 1 and m arbitrary is represented by the Lagrangian

L = 3a*x, %, + 3u*x?,

in which ¢* = ¢?* and u are assumed to be constants, while x, = dx/0t"
Since 0L/0%, = a“”xﬁ, 0L/6x = p’x, it follows from (5.24) that the Euler-

Lagrange equations (5.25) assume the form
0%x
ot ot#

2

h = u°x.

When m = 4 and a*® = 5%, this is the famous Klein—-Gordon equation of a §
scalar field for a suitably chosen value of u; moreover, when m = 3 and @&

o VS
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a** = 5%, and u = 0, the above equation is simply Laplace’s equation (see,
e.g., Davis [1]).

Instead of outlining the procedure based on the first variation here, we
briefly discuss the corresponding generalization of the method of equivalent
integrals. This entails the construction of a function A(¢%, x/, %J) which is the
integrand of an independent integral in the sense that this integral does not
depend on the choice of the subspace C,, from the class of subspaces satisfying
condition (5.11); an integrand of this kind obviously represents a counterpart
of the total derivative dS/dt as introduced in Section 6.2 for the case of a
single integral. Such a function A can be obtained as follows.

Let $* = $*¢%, x") denote a set of m class C? functions. Relative to a
subspace C,, as defined by (5.1) one can construct the quantities

L ds* _as* a8,
CB—W = —a?ﬁ+ﬁxﬂ, (526)
which define a determinant

A@?, x", X = det(cp), (5.27)
in which the cofactors of the elements cj are denoted by C#; that is,
C3 cf = 52A. (5.28)

A single equation of the type WV(t!, x*) = O represents an (n + m — 1)-
dimensional subspace of X, ,,; thus the system of m equations

S5, x") = =°, (5.29)

in which the X* denote m variable parameters, represent an m-parameter

family of subspaces of dimension m + n — m = n. It will be assumed that

this family covers a region of X, ,,, simply, that is, through each point of

this region there passes one and only one member of the family, and our

subsequent considerations are restricted to this region. The intersection of
the family (5.29) with some subspace C,,: x/ = x/(t*) is given by

S%(¢5, xM(%)) = - (5.30)

Thus for a given value t4 € G there corresponds a point (¢, x"(t3)) on C,,,
through which there passes a member of (5.29) corresponding to parameter
values X%, the latter being given by % = S%¢%,, x"(¢2)). In this sense, therefore,
the equation (5.30) defines a mapping of the region G of the domain X,,

of the variables t* onto a region Gy of the domain R,, of the parameters Z*
It will be assumed henceforth that C,, is such that the Jacoblan of the mapping
be positive, that is, that

asL,...,=") [d=* ds* i
W det(d ﬂ) det(d ,,> =det(cl) = A >0, (531
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which implies that the mapping (5.30) is locally one-to-one. Moreover, from
the general transformation formulae for definite integrals we infer that
o=, ..., ="
Adt) = | === dt) = dzi...dzm S.
[aa0= | Gy do (532)

Gy

Now let us consider a second subspace C,,: x/ = %/(¢%) satisfying the con-
dition (5.11). Analogously to (5.30) this also defines a mapping of X,, into
R,,, namely, by means of the equations

53, ¥'(t%)) = =2, (5.33)

it being assumed once more that the corresponding Jacobian A is positive.
Furthermore, because of (5.11),

S(e5, x"(t%) = SX¢%, %¥(t%) for all £* € 4G,

so that the images of the boundary 6G of G under the two transformations
(5.30) and (5.33) coincide. It follows that the image of G under (5.33) is again
G, and hence, as in (5.32),

f Adw) = dxt...dzm
G Gy

so that

L R d@) = L A d(r) (5.34)

for all subspaces C,, satisfying the boundary condition (5.11). Thus the
determinant A(t%, x*, x*) represents the integrand of the independent integral &
which we have been seeking.
For a given positive Lagrangian L(t%, x*, %") we can now construct the 3
function
¥, x* %% = L(%, x", %%) — A(e%, x", xh), (535 §

which, by virtue of (5.34), is the Lagrangian of an equivalent problem in 4
the sense that if C,, affords an extreme value to {; L* d(t) it will do so also ¥
for {; L d(r) (and conversely) relative to all admissible subspaces of com- &

parison satisfying (5.11). In order to exploit this situation let us suppose ¥
that it is possible to construct m functions S%(¢%, x") together with nm functions §&

Vi(t%, x") which are such that

L*(t*%, x" x") = 0 whenever x; = ¥} (5.36) |

while ]
L*(t*, x" %) > 0 whenever %} # . (5.374
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If the subspace C,,: x/ = x/(t*) is a solution of %! = yi(¢*, x"), subject to
(5.11), the conditions (5.36), (5.37) obviously imply that C,, affords a minimum
to jG L* d(t) relative to all subspaces satisfying (5.11), and hence, in view of
the remarks made above, the subspace C,, represents a solution to our varia-
tional problem.

The functions S%(t%, x*), ¥i(z%, x*) on which this construction is based are
said to constitute a geodesic field, whose properties we shall now investigate.
It is evident from (5.36) and (5.37) that L*(¢t%, x*, x*) assumes a minimum value
when xI = ! (for %, x" fixed); it is therefore necessary that L*/0%] = 0
for these values. Because of (5.35) this is equivalent to the statement that

o _oa 538
% oxd (5:38)
for xJ = yJ, or, because of the general formula (1.3.15) for the derivative
of a determinant,
oL dc;
9L %
axl = C G
But from (5.26) it follows that
oce 08t oxh oSt os°
B _ _ﬁ =77 shgr — 27 s .
axi oxhaxl  oxh 0i% = 75 % (539)
so that
oL oSs*
- = C% — .
lped ¢ ox/ (540)

for xJ = yJ. Moreover, by means of (5.35), (5.28), and (5.26) the condition
(5.36) can be expressed as

(3 a ® HE a aSE a ass oJ
Léﬁ = A(Sﬁ = CSCp = (j.9 ﬁ <+ CE ﬁx},, (541)
or, if we invoke (5.40),
T
Léﬂ = C£ _6-[’? + a_xi xi,. (542)

This suggests the introduction of the so-called Hamiltonian complex

i . OL .
Hj = — L8 + 55 % (5.43)
which allows us to express (5.42) in the form
. 0S°

Hy=—-Ci o5

(5.44)
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The equations (5.40) and (5.44) characterize the geodesic field; however,
from the construction (5.41) it is evident that the m? relations (5.44) are not
independent, being equivalent to the single statement (5.36), which is

L(t%, x*, %7 = A(%, x", X%) (5.45)

for xJ = Y. It should also be noted that, for the case m = 1, the relations
(5.40) and (5.44) respectively reduce to the equations (2.39) and (2.41) when
the canonical variables in the latter are replaced by means of their cor-
responding counterparts as functions of (¢, x/, %/).

Now, let us differentiate (5.28) with respect to *:

acs , dct dA  dA
2L = 5= = — 5.46
e 6 T O g =% gn = G (5-46)
But from the rule (1.3.15) and (5.26) we have
dA dck d*s? d*s’? dc?
= 3 L x — X — Cu £ s
o= =S arar = arar £ de
so that (5.46) gives
dCy P
=0
dtll CE
Since A = det(cf) > 0 by (5.31), this obviously gives rise to the identity
4y _ (5.47)
dr*

Thus differentiation of (5.40) with respect to t* yields, in view of (5.26) and

(5.47),
d (6L\ ., d (857 [ &S | s,
dr (@) =S <6xj) =G <6t“ axl  axax e

€ € act  0A
.l <as L8 >'<h> =i = 2o (548) &

coxi\ ot | oxt ©ox! T oxi

On the other hand, when (5.45) is differentiated with respect to x/, one obtains

OL oL oyt oA A 3yt
ox)  oxh ax!  ox! T oxt ax’’

or, because of (5.38),
6L OA

_a 529 B

oxi  oxt
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for the geodesic field. Hence (5.48) reduces to

d (0L oL 0 5

ar\oxi) " a0 =Y (5.50)
from which we infer that any subspace C,,, defined by means of the geodesic
field as a solution x/ = x/(t*) of the equations % = Y, satisfies the Euler—

Lagrange equations (5.25). Such subspaces will again be called extremals.
Written out in full, the equation (5.50) assumes the following form:

o’L  o°xh 0’L  oxt *L oL

Xy oxp or* o ox)ox" or  oxj o ox/

= 0. (5.51)

As remarked above, this represents a system of n second-order partial
differential equations—in contrast to the single integral case, for which the
Euler-Lagrange equations are ordinary differential equations. This phenom-
enon accounts for some of the most basic differences between single and
multiple integral problems in the calculus of variations.

The following conclusion is of vital importance to all applications of the
theory of multiple integral problems in the calculus of variations. When
(5.43) is differentiated with respect to t* one obtains

dHy __dL d (oL\, oL
A~ d? T dr\exd [P T gxi e e
_ AL oL, oL, d (L), L
T TP T P T axd e T ar\axl)

ax] B
in which the third and the fifth terms on the right-hand side cancel, and thus,

in terms of the notation (5.24),

dHy oL
e~ arf

+ E(L)%). (5.52)

This is an identity; however, for any extremal subspace C,, it follows that

dH; oL
drr o

Thus, whenever the Lagrangian L(t%, x", x") does not depend explicitly on the
independent variables t* the m divergences dH?%/dt* vanish on an extremal
subspace. In many physical applications this gives rise directly to conserva-
tion laws.

At this stage it should be observed that the above theory of the geodesic
field is based essentially on (5.36) and (5.38), the latter being a necessary
consequence of the inequality (5.37). On the other hand, this inequality is

(5.53)
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not necessarily implied by (5.36) and (5.38), and, because its validity is crucial
to the method of equivalent integrals when one actually seeks to minimize 3§
the fundamental integral, it is desirable that we should investigate this state 3
of affairs a little more closely. We henceforth let %) = / refer to the geodesic
field, while %/ is supposed to represent an arbitrary directional field. In 3

terms of (5.35) the inequality (5.37) is simply

L(e*, x", £5) — AW, x", %) 2 0, (5:54)

and, in order to express this in a more useful form, we have to evaluate the §

determinant on the left-hand side. To this end we note that, by virtue of
(5.28) and (5.31), the relations (5.40) and (5.44) are equivalent to

os* oL  os*
Al O
ox7 “oxl o

We may therefore write

A, x" £ = de t(as o5 i’) = det[A“

orf - axt

. oL
om0

- oL .
=A"" dd(ci‘)det(—H; + Ex'—i 2;3),

where it should be clearly understood that A, H, dL/8%! refer to the geodesic
field since these quantities were inserted by means of (5.55) which is valid

solely for such fields. By means of (5.27), (5.43), and (5.45) this result can

be expressed in the form

A@®, X", &) = L~ det[Lé“ gl; & — J&{;)jl. (5.56)

Thus the inequality (5.54) can be written as

E(e, x*, 5%, £ = 0, (557) -

where we have defined the Weierstrass excess function by
E(t2, x*, %", %% = L2, x", £
OL(te, x*, Xt

1-m h ok h ok
— L17™(, x", xs)det[L(t”, x*, x1)og + %l

It is remarkable that we have succeeded in eliminating all explicit reference &
to the functions S* in the final formulation (5.57) of the inequality (5.37). §
However, it should be stressed once more that, in the definition (5.58), the ;

arguments %" refer to the geodesic field, while the %/ are arbitrary. The &

inequality (5.57) is usually called the condition of Weierstrass.

= —A"'c:H;. (555 %

# — x{,)]. (5.58)
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Remark 1. The above discussion of the multiple integral variational problem
is a somewhat cursory one, many open questions having been ignored. A
more comprehensive treatment would have to take into account various
circumstances which are beyond the scope of this chapter. The most im-
portant of these is the fact that the function A as defined by (5.27) is not the
only integrand which gives rise to an equivalent integral. For instance, it
can be shown that each of the m distinct functions ¥, r = 1,..., m, defined
by

af +oxi

(5.59)

represent integrands of distinct independent integrals, the function A
corresponding to the special case r = m. It follows that each of the cases
r=1,2,..., mgives rise to a different type of geodesic field: thus one has,
in fact, a total of m distinct field theories for m-fold integral problems in
the calculus of variations. For each of these the Weierstrass excess function
assumes a distinct form. Naturally all these distinct excess functions reduce
to the function (2.45) when m = 1.

os* a8 .
W,,,(t%, x/, %}) = sum of all principal r x r minors of det( 4 -1),

Remark 2. For each of these m field theories a corresponding canonical
formalism may be developed. It is for this reason that no canonical formalism
is used in the above discussion; only a special canonical formalism peculiar
to the independent integral (5.34) would have been appropriate. It is, in
fact, possible to define a suitable Hamiltonian function, which in turn gives
rise to a single Hamilton—Jacobi equation to be satisfied by the m functions
S%(¢2, xP).

Remark 3. In the course of the construction of a subspace C,, for which the
vector field %/ is identified with the vectors ¥i(t?, x*) of the geodesic field
certain integrability conditions are implicitly involved. This is due to the
fact that this identification is tantamount to the assumption that there
exist solutions x/ = x/(t*) of the following system of partial differential
equations:

ox’

= i, x"), (5.60)

which, according to the theory of Section 5.4, is possible if and only if the
integrability conditions

oyi 0 ol | oy}
o L L X (561
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are satisfied. For the classical problem in the calculus of variations described
here these very restrictive additional conditions are unavoidable; it s

however, possible to construct satisfactory field theories for nonintegrable
solution manifolds C,,. ‘

6.6 THE THEOREM OF NOETHER FOR MULTIPLE INTEGRALS

It is possible to generalize the results derived in Section 6.3 for single integrals:v
to the case of multiple integral problems in the calculus of variations (Noether }

[1], Rund [8]). Accordingly we shall consider an r-parameter group of #
transformations of the type 2

X=X, XM w, = B, X w),

in which the w* denote the r independent parameters. (Here, and in the sequel, §
s, t =1, ..., r; the summation convention applies to these indices also.) 8
It is assumed that the functions on the right-hand sides of (6.1) are of clas :
C3 and that the values w! = w?> = ... = w" = 0 yield the identity trans- §
formation. Thus (6.1) can be expressed in the form

. . . 1.
X = xI + Gk, xyws + 31 CI(E8, xXMwsw* + - .

. 1
=04 GO W+ S 50 w4

ox/ . E _e
6ws ws=0 * aws ws=0 :

Differentiation of (6.2) also yields the following relations, which will be
used below:
ox’ . ox’ ]
o e '
atﬂ ws=0 P
0%’ oy o%xi ot
aws 6tﬁ ws=0 ws=0 B

==
% _ o % o
ow' ot f .o, or® W ox") .o X"

so that
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Let us now consider some subspace C,, of class C? represented parametri-
cally by the equations

xi = fi(.

[For the purposes of the present section this notation is used instead of (5.1)
in order to avoid possible confusion with the transformation equations (6.1).]
In this context, then, the functions x] are given by

(6.7)

xj = % (6.8)
Relative to this subspace we have
%=%+§ﬁ; 69
together with
%=%+%x;. (6.10)
From (6.4) it follows that
(g%j)ws:o = 8} X} = X}, (6.11)
while
(g)ws:o = 05%. 6.12)
In particular, for the functional determinant
D = det(Z—;), (6.13)
it is evident that
(D)ys—o = 1. (6.14)

In terms of the (¥, x/)-coordinates the subspace C,, as defined by (6.7) is
supposed to be given in the form

% = fiE), (6.15)
and, in analogy with (6.8), we shall write
% = af]. (6.16)
* o
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By definition, the functions (6.7) and (6.15) are related by means of the trans-
formation group (6.1) according to the relation

TH(tP, fH(eP), w) = JILEP, f(eP), w)]. (6.17)
Differentiation with respect to ¢# yields

ox oyt _op (o o o
orf " ax" P o \of T oxt af )

or, if we use the notations (6.8) and (6.16),

s % a 7 ’
X 0% = xf(at ot h). 6.18)

o ox* o T o™
By means of (6.4) it is inferred that, for w* = 0,
8 = (oo},

or

(e = 3. 619 1

Let us now assume that the fundamental integral (5.9) is invariant under the
given r-parameter group (6.1). A necessary and sufficient condition for this
to be the case is that

LG, %, )D = L(t%, x*, %%), (6.20)
B

where it is to be clearly understood that %/, x; are defined according to (6.8)
and (6.16), respectively, while D is given by (6.13).

The condition (6.20) holds for all values of the parameters w®. We therefore
differentiate partially with respect to w*, after which we put w* = 0, noting
that the right-hand side of (6.20) is independent of these parameters. In terms &

of (6.3) we thus find that

oL [o%] oD
iy 2 iy 4| x - |
l:atu é + ax} C Xﬁ <6Ws>ws= ](D)ws 0 + L<aw )ws=0 O' (6'21)

In order to exploit this conclusion it is necessary to evaluate the various

partial derivatives with respect to w*® which occur in (6.21).

First, if we differentiate (6.18) with respect to w*, noting that according to §

(6.8) the variables x} are independent of w*, we obtain

oY W, oy or s or
w P T aw o P T aw\arP T o P ow o T awoxt B )
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In this result we now put w® = 0, observing (6.5), (6.6), (6.4), and (6.19), which

yields
o agd o oxi . (0% | oL
3 T T \aws ), % T R\ Gs T o)
or
0%J d{’ dé”
d = _ .22
(3e)._ -G -uiz. 622

Second, denoting by T% the cofactor of the element di*/dt? in the deter-
minant (6.13), we have, in terms of (6.10):

oD o [dr o’ o’

— = TE. 6.23

W ow <dzﬁ>T (aws 3t ow ox x“) (6.23)
However, it is evident from (6.12) and (6.14) that T# = 6f when w* = 0. Thus
if we put w® = 0 in (6.23), noting (6.6) once more, we obtain

oD e oce , de
(5W‘)w5=o (at‘* M ﬂ>5« =i (6.24)

We are now in a position to substitute from (6.14), (6.22), and (6.24) in (6.21).
This yields

ag déf) + L% _ o (6.25)

oL
— Fe iy 4 28 __ ¥xJ
'5 + C * o (dt“ *s G ar

This is the result which we have been seeking: it represents an identity which
the Lagrangian L and its derivatives must satisfy if the fundamental integral
(5.9) is to be invariant under the r-parameter group (6.1). It should be observed
that the quantities £2, ¢, and their derivatives, which appear in (6.25), are
prescribed by the given transformation group. We shall refer to (6.25) as an
invariance identity.

The identity (6.25) gives rise directly to Noether’s theorem in the form in
which it is usually expressed. In order to derive this form we note that

oL, _dL, oL, o,
5{;5;- &S R 2 &8 X582,

ar
together with
oL dCl d oL C’ _d 6714
ax’ dar* ~ dr 6x’ dt“ ox] -
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, oL d [oL\
i B _ gy _ T -i B
a i XpCs = <8x’ ﬂé) ar* (ax{,)x"ff

These relations are substituted in turn in (6.25); on observing that

and

oL . df"
0%} b 4o

oL . . oL
T i e = Z i B
P & ax 55

it is found after a little simplification that
d oL .. oL .. oL d (oL
_ a i T i gB Dt J o i By =
r (Lés M xﬁéS> + [axJ dt“‘( )](C X&) =0,

or, in terms of the Euler-Lagrange vector (5.24),

. . do:
EL)(E] — x4&) = — L (6.26)
where we have put
oL . oL .
- L I ). .
oz (L«fs % Xzl + a5 Cs) (6.27)

The conclusion (6.26) can now be formulated as follows: if the fundamental
integral (5.9) is invariant under an r-parameter group of transformations, there
exist r distinct linear combinations of the Euler-Lagrange vector E {L), each
of which is a divergence.

The quantities 62 as defined by (6.27) can be expressed in a more compact
form in terms of the Hamiltonian complex (5.43), namely, as

oL

01 = Hyel — o5

& (6.28)
By means of (6.26) we can now formulate the theorem of N oether in the follow-
ing form:

If the fundamental integral (5.9) is invariant under the r-parameter transfor-
mation group (6.1), then on any extremal subspace C,, the divergences of the r
quantities 03 as defined by (6.27) or (6.28) vanish on C,,.

In any physical field theory the vanishing of a divergence is usually in-
terpreted as a conservation law; the importance of Noether’s theorem is
therefore due to the fact that, for any field theory based on a variational
principle, it immediately suggests appropriate conservation laws. This pro-
cedure is illustrated by the following examples.
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EXAMPLE |
Let us consider the m-parameter transformation
=1+ w

X = xJ, (6.29)

According to (6.3) we have, in this case, {{ = 0, {3 = 63. The invariance
identity (6.25) immediately yields

oL

Frohe 0; (6.30)
while (6.28) reduces to

0 = Hj. (6.31)

According to Noether’s theorem the divergences dHj/dt* vanish identically
on any extremal subspace C,,. This conclusion confirms the relation (5.53)
when (6.30) is taken into account.

EXAMPLE 2

Into any parameter transformation of the type (5.5) one can always inject r
parameters w® in an arbitrary manner. This gives rise to an r-parameter
group of the type

= w), o= x, (6.32)

for which {7 = 0 while &%, 8£%/0t? are essentially arbitrary. The invariance
identity (6.25) corresponding to (6.32) reduces to
it éa

oL 2 a¢t
(1) S

ot*
Because of the arbitrary nature of the coefficients &%, 9¢8/0t* this is possible
if and only if

(6.33)

oL oL .
ﬁ=0, a—;xi=L53

a

Thus if the fundamental integral (5.9) is to be invariant under all parameter
transformations of the type (5.5), the derivatives of L must satisfy these
conditions. [This establishes the assertion made in the preceding section in
respect of (5.15) and (5.16).]

6.7 HIGHER-ORDER PROBLEMS IN THE CALCULUS OF VARIATIONS

In the case of some physical applications, such as those in the general theory
of relativity, the formulation of our multiple integral problem as given in
Section 6.5 is still too restrictive. This is due to the fact that the integrand of
the fundamental integral (5.9) depends only on the first derivatives x} of
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the functions x/ = x/(t*) which define the subspaces C,,, whereas the for-
mulation of some problems requires that the Lagrangian depend on higher-
order derivatives of x/(t*). Thus this section is devoted to a very brief dis-
cussion of the so-called second-order variational problems which depend on
Lagrangians of the form

L = L(t%, xJ, x§, Xafﬁ), (7.1)

whose supplementary arguments X,/ » are defined by (5.8).

The formulation of such problems is identical with that given in Section
6.5, subject only to the stipulation that the boundary condition (5.11) for
admissible surfaces of comparison be augmented by the condition

£(tP) = Xi(tP) = al(t) for all f € OG, (7.2)

where the functions a/(¢f) are prescribed on the boundary 0G of G. It is
assumed that the Lagrangian (7.1) is of class C? in all its arguments and that
itis a scalar under coordinate transformations ¥/ = %/(x*)on X . Under these
circumstances 0L/0%,’; is a type (0, 1) tensor, while 0L/0x}, 8L/0x’ are not
tensorial.

The method of equivalent integrals may be applied as before, provided that
the integrand A of the requisite independent integral be defined as

AP, xP, x5, %,15) = det(c3), (7.3)
where
ds* 08* 0S* oS .
c,,:dtpzat,,+axx+a,, "y (7.4)

for some given set of m class C? functions $* = S%(¢#, x", xﬁ). The proof of the
fact that the integral of A is independent in the sense of (5.34) proceeds along
the same lines as in Section 6.5 provided that the additional boundary con-
ditions (7.2) are taken into account.

Again, the construction of the geodesic field entails that

L(t?, x", %5, %,"5) — AP, x", %5, %,"5) = 0 (7.5)

for such fields, while this expression is positive otherwise, and this implies
that
oL 0A oL 0A
-, === (7.6)
0x,7g ox;,  0x]
for geodesic fields. In terms of the cofactors C§ of the elements ¢/ of the deter-
minant A these conditions can be expressed in the form

0%,7,

oL act oL act
%7, zaxaz‘ﬂ’ oxl o .7

But from (7.4) we have, by differentiation with respect to iaj,,, observing the
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symmetry of the latter in its lower indices,

0, 135 i sas o5 ose
5 =30 - 66268 +55)_ 8x{,6 +6%5y,

while
oct 9%8® 0%s® o 0%8: h os® _, d (08® o8t _,
= + — X = . .
oxS A%l ot oxiox*T?Y 0x], ox/ 7

toaxdoxt e T o O T dr
When these values are substituted in (7.7), we obtain

oL 0S¢ o8¢
— = 4 2 7.8
a5, 2 (Ca PR ax;)’ 7.8)
together with
oL d [0S° 0Ss®
—_— = Y — | — x . .
o= S ar (ax;) + o (79)

However, in the same way as (5.47) is deduced from (5.46), it may be shown
that

dcC?
£ = 7.10
i (7.10)
identically, and hence (7.9) can be written as
oL d 0S¢ os®
= ? C:—. 7.11
axl ~ dr (C 6x’) M (7.11)
Moreover, by means of (7.4) the relation (7.3) can be expressed as
o . 0S° . 6S‘ . 08°
Lo = A = Cicy = C; =35 Y + C— 7 b+ Cl o 3% X4,
in which we substitute from (7.11):
os* oL . d NN GRS
a SR —_— Y o " j
Loy = oo * 5z ™ dﬁ( ‘axf) + G
08° L . , 08°
— 2 'J
=Cor ol 2dﬁ( )
1d 6’Ss 1 d . 0S¢ os* ., |
- Y flil Cc* %7
2dﬂ(Cs PRO ,) 2 dr ( a;a) K+ Clgg %o
0 oL . 1d 6S‘ AW
- C* il el ce %
=Gt T 2ar ( it y>"

ost  _ose\., 1d asc . oS
o Y J —_
(C % T G ox ) toar [(C R 6x,>x":|
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By means of (7.8) this can be written in the form

. oL .. d[oL\, oL _
Log _6—5:{‘% +ﬁ(a£a;‘y)xi_@;xa’y

o8¢ 1d 08¢ , 0%\
=C: = — * — — - . 7.12

=Gt ar [(C o~ Ceagfel 01
This suggests that, in analogy with (5.43), we define the Hamiltonian complex
of our second-order problem by

. . OL _. d { 0L \.. oL _,;
Hy = =L+ 55 % ~ 4 <axafy)xf’ *axg e (7.13)
while, for the sake of brevity, we shall put
1 a8t oS\ .,
@ — —[ce 2 v v 7.14
=3 (CS & ax;)x" (7.19)
Thus the final form of (7.12) is simply
. 0S° d .
——HB = CEW.}- W(hﬂy' (715)

The equations (7.8), (7.11), and (7.15) characterize the geodesic field of our
second-order problem. In particular, it should be noted that hj’ is skew-
symmetric in « and y by virtue of its definition (7.14), and hence

a (i,

dr* \ dt’
identically. Thus the additional term which appears on the right-hand side of
(7.15) [as compared with the corresponding equation (5.44) of the first-order

problem] is such that its divergence vanishes identically.
Now from (7.8) we infer that

& (oL 1 & [ o8 o5 e[, as=)
= — _— )= — C e
i dr (ax;’,,) 2 dr di? <Cs ot “oxg) T arar\C o

while differentiation of (7.11) gives, in view of (7.10),

d (oL a> [ , o8t d (o5°
e D e i P Lol |
ar* (ax;‘) dr ar? (CG axg) + e \aw

(7.16)

e R

so that

4 (057 _ 0 (dS _ . 0c _ oA
Ca\end) = Cai\ar) = C o~ o

dfoL _d(oL\]_
de* | oxi arP\ox7,) |~
717 &
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where, in the last two steps, we have used (7.4) and (1.3.15). However, because
of (7.6), it follows from (7.3) that for the geodesic field

oL _ oA
ox’  oxI (7.18)
Thus (7.17) can be expressed in the form
E(L) =0, (7.19)
where
d | OL d [ oL oL
E- = 7= |l — | = - . -
AD) dr® [63&; dr? (ax;p)] Ox/ (7:20)

The equations (7.19) are clearly the Euler-Lagrange equations of our second-
order problem in the calculus of variations; they represent necessary conditions
which a subpace C,, must satisfy in order to afford an extreme value to the
fundamental integral. It should be stressed, moreover, that in general the
Euler-Lagrange equations (7.19) are a system of n fourth-order partial differ-
ential equations for the functions x’ = x/(t%). Again, any subspace C,, satisfying
these equations is called an extremal.

For such subspaces there exists a direct analogue of the relation (5.53) for
first-order problems, provided that the Hamiltonian complex (7.13) is used.
For, if the latter is differentiated with respect to t* one obtains

dHy __dL  d[oL d (oL\], oL_,
de* — di? T ar|oxi  dr\oxJ) [P oxl = *

J
_d /oL 5c'f+d oL ).éj_'_aLd)'c'l,,y
der\ox, 7, )" " der\ox,J )P T exJ ar
from which it follows by simplification after expansion of dL/dt* and use of
(7.20) that

dH; L g
ar = — W + Ej(L)xB' (721)
This is an identity: for an extremal subspace, however,
dH;, oL
= — —, 7.22
dt* otk (7:22)

Incidentally, the latter relation may also be deduced directly from (7.15) by
virtue of (7.16), (7.10), and (7.5).
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PROBLEMS

6.1 Let n = 1, and suppose that the Lagrangian is defined to be L =t~ /1 + %2
Show that the extremal passing through the points (t = 1, x = 0) and (t = 2,
x = 1) is the circle (x — 2)* + > = 5.
6.2 Why does the Lagrangian L = x2 + 2¢xx fail to give rise to extremal curves?
6.3 If L = F(x’, %), that is, L is independent of ¢, show that the Euler-Lagrange
equations (2.20) always possess a first integral
.OF

F~%_—=C.
arr

6.4 Show that a first integral of the Euler-Lagrange equations associated with
the Lagrangian L = x2 + /1 + x?is given by

A—-x3)/1+ %=1,
where A is a constant.

6.5 Letn = 1, and let C denote a curve joining two given points P,(¢,, x,), P,(t;, x5).
Prove the following assertion: in order that the area of the surface of revolution
obtained by rotating C about the t-axis assumes a minimum value relative to all
other surfaces thus obtained by means of the family of curves joining P, and |
P,, it is necessary that C be a catenary: x = a cosh{(t + b)a~ '], where a and &
b are constants. ‘

6.6 Letn = 1,and show that the Hamiltonian function associated with the Lagrangian ,
L(t, x, %) = f(&, x) (1 + )Y is given by H = —./f? — p%. Write down the |
canonical equations, and show that if, in particular, f2 = x? + @(t), where @(t)
is arbitrary, then the canonical equations possess a first integral of the form
p? — x? = a, where a is a constant. (It may be assumed that f(¢, x) > 0.) -

6.7 Show that the Hamilton-Jacobi equation associated with the Lagrangian of 3 ]
Problem 6.6 is equivalent to 3

85\? as\?
&)+ (&) = ren

If 6f/0t = 0, a solution is given by

S(t, x) = At + J.x\/fz(r)—Azdt+ B

where A, B are constants. Deduce that, for the extremals, x = A~/ f2 — A%

6.8 (a) By examining the behavior of the excess function associated with the
Lagrangian (2.49) of the harmonic oscillator, establish whether the corres- &
ponding variational principle is concerned with maxima or minima of the ‘
fundamental integral. ;

(b) Show that the family of transversals does not, at any point, intersect the #&
family of the extremals of the harmonic oscillator orthogonally.
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6.9 Show that, corresponding to L = ./t + x% . /1 + %2, the extremals for which
X = A, dx/dt = 0 when t = 0 are given by x? — t2 = 42, Show that the family
of curves which are transversal to the extremal field is characterized by xt = B.

6.10 Let (1, x/) denote rectangular coordinates in E 3(n = 1,2),and let u(t, x’) represent
the refractive index of an inhomogeneous isotropic optical medium. Interpret
the Lagrangian L = c™'u(r, x') [1 + (%!)? + (¥2)2]"2 in terms of Fermat’s
principle (where ¢ denotes the velocity of light in vacuo) and write down the
corresponding Euler-Lagrange equation.

6.11 If L(z, x', ¥) = #(t, X', %) + A4,%' where 4, = A/(x") and

_ai _ aAI =0
oxi oxt T 7
show that
E{(L) = E(%).

Explain why A;% does not contribute to the Euler-Lagrange expression.
*6.12 If L = L(z, x', x') is such that E/(L) vanishes identically show that there exists an
o = oft, x") for which L = do/dt.
6.13 Show that if L = L(r, x/, x/) and
E{L) = fX' + ¢
where f = f(¢, x)) and ¢* = gi(t, x) then f = 0.

6.14 A partjcle of mass m in a three-dimensional Euclidean space E; referred to
Cartes¥an coordinates x!, x?, x3 is subjected to a central force represented by a
potential function V(t, r), where r* = (x')?> + (x3)? + (x3)2. The Lagrangian of
this system is giv'en by L = $m3/%/ — V(t, 7). Show that the corresponding funda-
mental integral is invariant under the three-parameter group of transformations
(where w' are constants and terms of order w'w” are neglected)

X/ = xJ h 1
X =x+ g x" .

It should be noted that this represents an infinitesimal orthogonal transformation
or rotation [see condition (2.1.5)]. By means of Noether’s theorem deduce that
this implies the conservation of the angular momentum 0 = r x p of the particle
about the origin.

6.15 Let L(z, x", x*) = g(t, x")I(x") where

n 1/2
g(t,x") >0 and K%)= [1 +¥ xfxf] .

Jj=1

(a) Show that

. . 1+ Z"=l yrit
E Bk shy K - chml T 7
(2, ", ", %) = gl )[l G ]

and deduce that E > 0 for all (¢, x*, ¥") with y* % %",
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d(9\_ %
ar\1) = ot
along an extremal.

6.16 Show that (5.25) is equivalent to

(b) Show that

dL

Q02 ax‘
3

(m—l)!a—lfdt‘/\u-/\dt'":d[s dt“Z/\---/\dt“"‘:|.
ox*
6.17 Find the Euler-Lagrange equations associated with the Lagrangians (n =
m = 2) ) . ‘ .
(@) L = p(x1)? — 1(x?)? (p, T constants; vibrating string p_roblem),
(b) L = [1 + (%Y)* + (%**)*]1"/2 (minimal surface problem in E;);
(¢) L = (xYHY? + (x3)? + 2xf(t4, 12).

6.18 If L(t%, x/, %i) = Y™, (dA*/dt") where 2* = A*(t%, x’), show that E (L), defined by !

(5.24), vanishes identically. Generalize this result to L(t%, x/, X}, X} ).

6.19 Find the Euler-Lagrange equation associated with
(@) Lt x, X,) = ‘; XoXqs
and
(b) L(t%, x, Xqy Xop) = — aé:lx)'c‘u.

Comment on these equations. ‘
6.20 Show by direct transformation that, if the Lagrangian (7.1) is a scalar under
coordinate transformations X/ = x/(x") on X,, then

oL
oL oL 5 d < >, E(L)

0%ty oxf TP \ox7,

the latter being defined according to (7.20), are each the components of type
(0, 1) tensors. - . - ot
6.21 Show that if the integral of the Lagrangian (7.1) is to be pz%rameter-myar‘lant (t ¢
is, invariant under arbitrary transformations #* = #*(¢°) with nonvanishing deter
minant), then L must satisfy the conditions
oL .
oL 0 oL . oL o &L, —— % =0.

— = —— X5+ 2 X, = — J
o axl? axj P %7
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The theory of tensors and differential forms as developed in Chapters 3-5
is based on the assumption that our differentiable manifold X . is endowed
solely with an affine connection. Metric concepts, such as the length of a
displacement, or the m-dimensional volume element (m < n), do not occur
within the context of the general theory. In this respect the above treatment
differs radically from the historical development of the subject, for originally
the tensor calculus arose from the theory of Riemannian spaces. The latter
represent natural generalizations to n dimensions of smooth two-dimensional
surfaces embedded in an E,, these surfaces being differentiable manifolds
endowed with a metric in the sense that there exists a type (0, 2) symmetric
tensor field g,; in terms of which the lengths of tangent vectors are defined.
(In the classical theory of surfaces the components g, ,, g,,, g,;, g,, are
usually denoted by E, F, F, G, respectively, and the quadratic form defined
by these coefficients is called the first fundamental form of the surface.)
Similarly, an n-dimensional Riemannian space V, is a differentiable manifold
which is endowed, in the first instance, with a nonsingular type (0, 2) sym-
metric tensor field, the so-called metric tensor field. By means of this metric
the arc length of a differentiable curve on V, is defined as a single integral,
which gives rise in a natural manner to a parameter-invariant variational
problem. The extremals of the latter are called the geodesics of V,, and an
analysis of the corresponding Euler-Lagrange equation reveals the existence
of a connection, whose coeflicients, the so-called Christoffel symbols, are
uniquely expressible in terms of the partial derivatives of the metric tensor
field. Thus, on the one hand, the existence of a metric ensures the existence
of an associated connection together with a corresponding theory of curva-
ture, whereas on the other hand, the existence of a connection alone does not

239
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in general imply the existence of a metric. The former state of affairs reflects
the historical development of the tensor calculus; in fact, it was realized
only much later that the mere existence of a connection is sufficient for the
purposes of a self-contained theory of tensors. ;

In the preceding sections the latter approach is adopted, largely because ¢
it is our aim to present the tensor calculus as a discipline which is essentially
independent of the background of metric differential geometry. This, how-
ever, has entailed certain painful losses, for the presence of a metric guarantees
a much richer geometrical structure than that which is implied by a con- |
nection alone, and this in turn allows for a more appealing ‘and concrete
geometrical interpretation. Moreover, it should also be observed that the |
general theory of relativity is based on the assumption that space-time is a
four-dimensional Riemannian space, and thus the metric theory is quite
indispensable to the relativist.

In the classical theory of surfaces the quadratic form defined by the
components of the metric tensor is positive definite; this assumption, -,
however, will not be made in our treatment of Riemannian geometry. k
Although this relaxation gives rise to some technical complications, it is :
imperitive from the point of view of relativistic applications that the prop-
erties of indefinite metrics be analyzed, particularly as regards the behavior
of certain types of geodesics. The theory of curvature of Riemannian spaces
is of course a special case of the theory treated in Chapter 3, but it will be seen
that it displays some important peculiarities which are a direct consequence ;3
of the existence of a metric. The theory of hypersurfaces of a Riemannian
space is very similar to the classical theory of surfaces embedded in a three-
dimensional Euclidean space, and it is hoped that the presentation given
below reflects some of the beauty inherent in classical differential geometry.

7.1 INTRODUCTION OF A METRIC

We now endeavor to introduce the notion of a metric into our general theory
(see, e.g., E. Cartan [4], Eisenhart [1], Levi-Civita [1], Schouten 1], and
Synge and Schild [1]). More precisely, we shall associate a concept of lengths
with co- and contravariant vectors, the latter being regarded once more as¢
elements of appropriate tangent spaces of our differentiable manifold X,,.
Let us suppose, then, that we are given a contravariant vector in the tangen
space T,(P) of some point P of X,,. Relative to some coordinate system O
X, for which the coordinates of P are x’, the components of this vector 2
denoted by X’. By analogy with the expression for the length of a vector in

Euclidean space referred to a curvilinear coordinate system we shall assuméss
that the length | X| of our given vector is the modulus of some functiof
F(x, X7) of the positional coordinates x/ as well as of the components X
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Clearly this function must satisfy certain conditions in order to yield a

sa.tisfact.ory concept of length; we begin by listing the most immediate
stipulations.

1. The functifm F (xj,'Xf) is of class C” in all its arguments, where r > 5.
2. The fu'nctlon F(x’, X’) is an invariant under arbitrary coordinate
transformations on X ,.

‘ 3. The function F(xj, XY) is positively homogeneous of the first degree
in the arguments X7; that is,

F(x’, AX’) = AF(x’, X?) for all A > 0. 1.1)

The motivation of these three conditions is immediate; the second requires
that the length of any vector be independent of the choice of the coordinate
system on X, while the third ensures that the length | AX | of the vector with
components AX’, for some positive number 1, be A|X| = A|F(x’, XJ)]|
Addi’fional requirements on F will be imposed presently. , .

'Thls cpnstruction gives rise immediately to the concept of arc length of a
differentiable curve C of X,. Assuming that C can be represented in the
form x) = x/(t), we assqciate the line-element ds = F(x’, dx/) with the contra-
variant vector dx) = %/ dt, where %/ = dx//dt. (Here it should be noted that
ds is the length of the displacement defined by dx’ whenever F(x/, dx’) > 0)
The arc length of C between two points P,, P, corresponding to ’parameter'
values t; and ¢, is now defined as

P> . i 12
5= F(x/,dx’) = f F(x?, xJ) dt, (1.2)
ch

P,
&

yvhere, ir} the second step, we have used (1.1). In passing we note that this
integral is parameter-invariant in the sense of Section 6.1.
Before proceeding with the geometrical theory, we derive a few simple

analy.tical consequences of (1.1). From Euler’s theorem on homogeneous
functions we have that

OF(,%) ;o
axj X = (x’ x), (13)
0?F(x, %) |
Fooe ¥ =0 (14)
so that
0*F(x, %)

(Here, and in the sequel, we do not affix indices to variables which appear
Merely as arguments: thus F(x, X) is intended to represent F(x/, %/).]
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Furthermore, since

3 = Fen S
it follows that
10F20, %) _ OF(6 %) OF(6 %) | p o OF (%) (1.6)
2 9xI ox* ox’  oxh 0%’ 0%
and hence, by virtue of (1.3) and (1.4),
F?(x, %) = lﬁz—Fz(x—’x)xfx". (1.7

2 ox/ ox"
This identity suggests that we introduce the notation
] 1 0%F*(x, %) (18)
95 R = 3 o o

so that (1.7) can be written in the form

F2(x, X) = g(x, X)XI%". (1.9)
The length | X | of any contravariant vector X’ of T,(P) can thus be regarded
as the positive square root of

| X1 = |gulx, X)X'X"|, (1.10)

while the line-element ds associated with a displacement dx’ at P is given by
(1.11) -

ds? = g(x, dx) dx" dx’.

It is easily verified that the quantities defined by (1.8) represent the com- -

ponents of a type (0, 2) tensor. Under a nonsingular coordinate transforma-
tion X/ = X/(x") on X, we have %" = (8x"/0x")%', so that

oxt  ox* ,  ox" (1.12)
0% T ow

while, according to condition 2,

FX(&, %) = FX(x", %*). (1.13)
Thus, differentiating (1.13) successively with respect to %/ and %!, we find that
oF2 _ 3F2 9% _ OF* ox"

% ox" 0% ox 0%’
92F? 9*F* dx* ox*
%) 0% 0xX" ox* ox) 0%

RS RSt e A B T B A S B ot
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or in terms of the notation ( 1.8),
_ Ox" oxk
9it = Gm % ox’ (1.14)
which is the transformation law of a type (0, 2) tensor. We note that, by
definition, the tensor (1.8) is symmetric.

When various additional restrictions are imposed upon the function
F(x, %) one obtains certain well-known geometries. For instance, if it is
required that F(x, X) > 0, with equality if and only if X! =%2=... =
X" = 0, and that the rank of the matrix (32F/dx’ 0x") be n — 1, the resulting
geometry is called a Finsler geometry, or equivalently, the manifold X,
is said to be a Finsler space (see, e.g, Rund [1]).

On the other hand, if it is assumed that the tensor (1.8) depends solely on
the positional coordinates x/, the determinant det(g ) being nonzero,
one says that the manifold X, is endowed with a Riemannian metric, the
tensor (1.8) being called the metric tensor. Under these circumstances the
identity (1.9) reduces to

F(x, X) = g ,(x)%/x", (1.15)

which indicates clearly that F2 is a quadratic form in the %/. Furthermore,
according to (1.10), the square of the length | X | of a contravariant vector is a
quadratic form in the components X” of that vector, the coefficients of which
depend on the coordinates of the point P at which the vector is defined.
[A special case of this state of affairs is given by the expression (1.2.16) for
the length of a vector in a Euclidean space referred to curvilinear coordinates.]

We shall henceforth restrict our attention to Riemannian spaces; in the
light of the above remarks these can be briefly described as differentiable
manifolds endowed with a type (0, 2) tensor field whose components are
denoted by g #(x), the latter being symmetric and such that

g = det(g,,) # 0. (1.16)

In passing we note that, according to the theory of Section 4.1, this determi-
nant is a scalar density of weight 2, and consequently the condition (1.16) is
independent of the choice of the coordinates. The manifold X, thus endowed
with a Riemannian metric will be denoted by ¥,. From (1.11) we infer that
with each displacement dx’ at a point P of V, we may associate the so-called
line-element ds according to

ds? = g,(x) dx’ dx". (1.17)

_Remark. The definition of a Riemannian metric as given in some texts
Includes the additional condition that the quadratic form (1.17) be positive
definite, the manifold being called pseudo-Riemannian otherwise; however,




since many physical applications involve line-elements of the type 11y ¥
which are not positive definite, this restriction will not be imposed here. ‘§
This implies that we have to take into account the existence of the so- 2 1
called null vectors, which are such that their lengths as defined by (1.10) #
vanish, although their components are not all zero simultaneously. (The §

geometrical significance of such null vectors will soon become evident.)

We now investigate some simple geometrical consequences of the fact
that the length | X | of a contravariant vector with components X’ at P is

given by the positive square root of
1X 7 = g X X"

Let Y’ denote the components of some other contravariant vector in T,(P);
the sums X’ + Y/ then represent another element of T,(P) for which ?

IX + Y2 = |gu0)X7 + YHX" + V).

Furthermore, the bilinear form
(X - Y) = g0XY"

is obviously an invariant since g,(x) is a type (0, 2) tensor: this quantity will
be regarded as an inner (or scalar) product of the vectors X, Y’. (We note
in passing that this construction is possible only by virtue of the fact that we §
are in possession of a metric; on an arbitrary differentiable manifold devoid |
of a metric one can only define the inner product of vectors which are re-;

spectively co- and contravariant.)
In terms of (1.20) we can write

GufX* + YN(XT + YI) = g, XX 42X - ¥) + g, Y'Y (121)4
Furthermore, for any real number A we have similarly that i
Guf X" + AYD(XI + AY)) = g, X*XT + 2X - Y) + g, Y'Y, (122
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(1.19)

(1.20)

and it now becomes necessary to distinguish between two distinct cases.

casE 1 The quadratic form (1.17) is positive definite. - :f
Under these circumstances the expression (1.22), regarded as a quadratic;

in 4, is positive for all values of 4, which is possible if and only if its discrimij
nant is nonpositive, that is, if :

(X - Y)Y < (95 X"X9) (g Y*Y),
or, since g,; X"X/, g,, Y*Y' are positive,

(X-Y)<|X||Y] .
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It then follows from (1.21) that
X+ Y <|XP+21X|)Y]+ (Y],
or, since all entries in this inequality represent positive real numbers

X+ Y| <|X]+ Y], (1.29)

whltch is the triapgle ipequality. Thus the latter, which holds for all pairs of
vectors in 7;,(1_’), is a direct consequence of the assumption that the metric i
positive definite. e

CASE 2 The quadrati iti
CAsE 2 q ic form (1.17) assumes both positive and negative
Let us assume that the vectors X”. Y. whi i
. : ; . > Y7, which appear in (1.21), span a pl
which contalgs null {ilre.ctlons. It then follows that the quadr;tis (1 221)) i?ln/el
may change sign, which implies that its discriminant is nonnegative, that is

X-YP? = |XPYA (1.25)

For ihej sake of simplicity, let us choose two vectors for which g, . X"X/ = 1
Gnj Y_ Y = .1, a:‘ld for which (X - Y) is positive (which is alwayshi)ossible b :
continuity if X* and Y* differ by small amounts). The inequality (1.25) ther}ll
reciuces 50 X-Y)>1. Accordingly it follows from (1.21) that g -().(" + Y
(X7 + YY) 2 4, so that | X + Y|? > 4, while [X| + Y] =2 Thhj f i

given pair of vectors, . s for this

IX + Y| > |X|+|Y], (1.26)

from which it is inferred that, for the case of an indefinite metric, ther i
vectors sat1§fying the reversed triangle inequality. [A similar a : eheXISt
also be applied to a pair of vectors for which g9 X"'X' = ~1,g -I;B'r)(’)? c— ialn
:find which are suﬁ‘ici'ently close to each other to énsure that (A; . h)J’) is neg_ative?
or linder thege circumstances (1.25) yields (X - Y) <—1, and hen ,
g_,,,{2XH+ Y")(Xf_ + YY) < —4, so that again [X + Y|? 2_4, wi’th [ X| + [)C’T
o (;ny Z:iervs;,v{ctctsgg.x;d be noted that the inequality (1.26) does not hold
T.h.ese conc.lusions ipdicate quite clearly that the distinction between
posxtilve.deﬁmte and. indefinite metrics has some profound geometrical
Implications. These will now be investigated a little more closely for each case.

Case 1 Positive definite case.
IenA Zontravarxant vector of T,(P) for which |X| = 1 is said to be of unit
gth. From (1.18) it follows that all unit vectors in T,(P) satisfy the condition

I XXX = 1. (1.27)
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Regarded as a locus in T,(P)—for which the coordinates x! of P are fixed,
so that the g;, may be regarded as constant coefficients, while the X/ are
variable —the equation (1.27) represents an (n — 1)-dimensional ellipsoid,
or hyperellipsoid, which is obviously a generalization of the concept of
unit sphere. The fact that the locus (1.27) is an ellipsoid and no other quadric
hypersurface is due to our assumption that the left-hand side of (1.27) is
positive definite.

Let X, Y be two unit vectors, represented as directed segments in T,(P) as
indicated in Figure 8. The sum X + Y of these vectors is identified as usual
with the diagonal of the parallelogram defined by X, Y. From the convexity
of the ellipsoid (which implies that all interior points of the line segment
joining the end-points of the vectors X, Y lie within the ellipsoid) it follows
that the intersection of the two diagonals of the parallelogram lies within the
ellipsoid, and hence that 3| X 4+ Y| < 1, with equality if and only if X and
Y coincide. Since |X| =1, |Y| = 1 by construction, this conclusion im-
mediately verifies the triangle inequality (1.24) in respect of these vectors.

X+Y

T, (P)

Fig. 8

case 2 Indefinite case.

Since the quadratic form g;, X’X* may assume both positive and negative
values, it is convenient, for the purposes of this discussion, to introduce
the so-called indicator &X), which is defined by

gX)=1 whenever gj,,X’:X" > 0,} (129)
&X)= —1 whenever g;, X’X" <0,
We can now write the definition (1.18) in the form
|X* = e(X)g; X X", (1.29)

recalling that | X | is the positive square root of | X |2. Thus X is a unit vector

whenever g, X’X" = +1, and the counterpart of the generalized unit sphere -

(1.27) consists of the pair of hypersurfaces

guX'X"=1,  g,X'X"= -1 (1.30%2
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Th_e nfature of thgsi su.rfaces obviously depends on the signature of the quad
rittl.c 10n;1 9»X’X". Since a general discussion of all relevant possibilities is
entirely eyond our scope, we shall merely illustrate the reversed triangle
inequality for the case n = 2 for a metric of the type ®

gp(x) = <a‘éx) _af(x)) (1.31)

:; tiexqg assumed that a,(x) > 0,.a2(x) > 0. Under these circumstances
the loci (1.30) are represented by pairs of conjugate hyperbolae as illustrated
in Figure 9. The asymptotes correspond to directions for which g X' X" = 0
thely t};erefore represent the directions of null vectors. Theséh divide_the;
(X%, X?)-plane mto.four regions, in two of which &(X) = 1, while in the other
two &(X) = —1, as indicated. Now if X » Y are two unit vectors both lying in
one and the same region for which &(X) = &(Y) = 1 (as in Figure 9) gt i

ev1der_1t f.rom the concavity of the hyperbola that X +Y|=>1 . 'tlli
equality if and only if the vectors X, Y coincide. Sincze | X = I;I - ;mby

X2

X+Y

X1

e(X)=1 =
e =

W

Fig. 9
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construction, it follows that they satisfy the reversed triangle inequality
(1.26). A similar conclusion is reached if X » Y are unit vectors lying in one
and the same region for which &X) = &Y) = — 1. However, if g€X) =1,
while &(Y) = — 1, this line of reasoning breaks down, and it is easily seen by
examining special cases that any one of the three possibilities

X+ Y2 [X|+]Y]

is feasible. In practice, however, one is generally interested only in sums of
vectors whose indicators have the same values.

The above observations should serve to emphasize the difference between
geometries based respectively on positive definite and indefinite metrics,
In this connection attention should be paid to a related feature. When
the quadratic form (1.18) is positive definite, it is always possible to find
a linear transformation on T,(P) which reduces (1.18) to a sum of squares
(Hadley [1]), namely,

’X|2 — (1\71)2 + ()?2)2 + -+ ()?")2, (1.32)

where X7 denotes the components of the vector X in the new coordinate
system in T,(P). This procedure enables one to regard the hyperellipsoid
(1.27) as the Euclidean unit hypersphere. Accordingly the geometry of
the tangent space T,(P) is essentially Euclidean. However, it should be
stressed that the linear transformation which reduces the coefficients
g #(x) of the quadratic form (1.18) in T,(P) to Kronecker deltas § i» Will not,
in general, have the same effect on the coefficients g (X + dx) corresponding
to the tangent space T;(Q) ofa neighboring point Q with coordinates x/ + dx’.
Accordingly the application of such affine transformations is of little practical
value. Nevertheless, having realized that each tangent space T,(P) is essen-
tially Euclidean, we shall say that a Riemannian space V, with positive definite
metric is locally Euclidean, it being understood that this metric varies from
point to point of V, by virtue of the dependence of the metric tensor on its
positional arguments.

If it is possible to find a coordinate transformation in ¥V, which is such
that the transformed metric tensor 9g;» is independent of its positional

coordinates, that is, such that in the transformed system 6@,,/62" =0
everywhere, then one may, of course, introduce a linear transformation
which reduces the quadratic form (1.18) to the form (1.32) in each tangent
space. Under these circumstances our Riemannian space V, is simply a
Euclidean space E,. The latter spaces are therefore characterized among the .
Riemannian spaces as manifolds which admit coordinate systems in which

the components of the metric tensor are everywhere constant.

More generally, allowing also for the case of indefinite metrics, we call ]
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a space endowed with a Riemannian metric a flat space whenever it admits
coordinate systems for which the components of the metric tensor are
constants. Necessary and sufficient conditions that a space be flat in this
sense are derived presently.

Thus far we have been concerned merely with the notion of length of a
contravariant vector. We now indicate how this leads directly to a similar
concept for covariant vectors. Let X* denote the components of an arbitrary
element of T)(P). Since g is a type (0, 2) tensor, it follows that the quantities
defined by

Z; = gulx)X" (1.33)

represent the components of a covariant vector, that is, an element of the
dual tangent space Tx(P). By virtue of the hypothesis (1.16) the matrix
(9,») possesses an inverse with entries g*, which are the components of a
symmetric type (2, 0) tensor, satisfying the conditions

gn(x)g”(x) = k. (1.34)
Thus if we multiply (1.33) by g’*, summing over J» we obtain
X* = ghx)Z,, (1.35)

which is obviously the inverse of (1.33). The relations (1.33) and (1.35) establish
a one-to-one correspondence between the tangent spaces T.(P) and TX(P).
It should be emphasized that this correspondence depends on the existence
of the given metric: for an arbitrary differentiable manifold X, devoid of a
mt.etric tensor no such relationship between the tangent space and its dual
exists.

. Let'us now substitute from (1.35) in the quadratic form g X'X* This
gives, in view of (1.34),

Iu X' X* = glkg’hzhgjkzj = 6:Zhgjkzj = gthjZ s (1.36)
which clearly suggests that we should define the length | Z| of any covariant
vector Z; by

|1Z|? = {2)9""Z;z,, (1.37)
where ¢Z) = +1 according as the quadratic form gz 2, is positive or

negative. In particular, whenever X AV ; are related according to (1.33) or
(1.35), one ha§ &X) = ¢(Z) and | X| = |Z] as a direct consequence of (1.36).

to the; .following definition. With any two non-null contravariant vectors
X7, Y/ in T,(P) we associate the following real function:
(X-Y)

cos(X, Y) = IXIY)’
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in which the inner product is given by (1.20). This function is regarded as a
cosine in the classical sense of the word since it refers to the “angle” defined
by two vectors in the tangent space T,(P), which, as we have seen, is a Eucli-
dean space whenever the metric is positive definite. In particular, the vectors
X, Y are said to be normal (or orthogonal) provided that

(X-Y)=0. (1.39)

Because of the symmetry of the metric tensor g,, this condition of normality
is a symmetric one. With the aid of the “unit hyperspheres” in T,(P) the
cosine (1.38) may be interpreted geometrically in terms of adjacent sides of a
triangle as in elementary Euclidean geometry.

7.2 GEODESICS

It was shown in Section 3.5 that one can always construct a unique connec-
tion on a differentiable manifold X, whenever a symmetric class C* tensor
field a,{x) is given, provided that the determinant a = det(a,;) is non-
vanishing. The metric tensor g,;(x) of a Riemannian space V, satisfies the
conditions under which this construction is possible, and consequently the
metric defines a connection on ¥,, which we shall now use consistently.

In accordance with (3.5.15) and (3.5.20) we can write down the Christoffel
symbols of the first and second kinds; however, since we wish to emphasize
that these symbols are defined with respect to the given metric we henceforth
use the following notation:

_1(0gy _ 0gm _ OGm
yhlk == 5 <axh + axk axl > (2-1)

and

Wk = 9" Ve = 59 " T axk | ox

these quantities representing the Christoffel symbols of the first and second
kinds, respectively.

In the sequel, unless otherwise stated, the processes of covariant differentia-
tion are defined with respect to the connection (2.2). Partial covariant
differentiation with respect to the positional coordinate x* will again be
denoted by a vertical stroke followed by the subscript k, and the operator
will have the same meaning as before. In particular, it follows from (3.5.26
and (3.5.27) that the covariant derivative of the metric tensor vanishe

1 ﬂ(a_glk 4 99m _ 6g,,k>, Q2

identically:

Jjh

gk =0,  g"i=0, 3%
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these identities usually being referred icci’
: to as Ricci’s lemma. Al
displacement dx* in ¥V, we have o for any

Dg;, = 9 jnlk dx* =0 (2.4)
identically.

A contravari i i
arlant vector with components X7 is once more said to be

transported by parallel displacement from the point P(x* i i
point Q(¢* + dx), if p (x*) to a neighboring

DXJ = dX' + y,J, X" dx* = 0

{lor the given displacement dx*. In particular, under these circumstances, we
ave ,

d|X|> = D|X|* = «X)D[g,,; X"X']
= &X)[(Dg,)X"X’ + g,(DXMXI + g, X"DXY)),

which vanishes by virtue of (2.4) and the condition that DX/ = 0. Thus

|X|> = constant: this implies that the len i
: gth of any vector remains
under parallel displacement. g nchanged

As an example of the application of this process let us consider the line-
element

ds® = g,; dx" dx’ 2.5)

along a differentiable curve x’: = x/(s) referred to its arc length s as parameter.
Clearly the tangent vector x/ = dxt/ds is a unit vector:

Gnix"xT = 1. (2.6)
Thus, according to the usual rules of covariant differentiation, we have
d . D "
_ X th .t _ ’ ) ’ Dx J
0= ds (gnjx"x") = D—s(ghjxhx’) = 29;.]""75" 2.7

Where,. in'the last step, we have used (2.4) and the symmetry of g, .. This
result indicates that the vector Dx"/Ds is normal to the tangent vec{or x'.
Let us denote by p~! the length of the vector Dx'¥/Ds:

1 Dx"

; Ds

(2.8)

;Fhus pC(Dx’f/Ds) is a unit vector, to be denoted by n/, which is normal to the
urve C:

DxY 1 ;
Dy = ; n. (2.9)
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Fig. 10

We shall refer to n’ as the principal normal to the curve C, and (2.9) is obviously
a generalization of the first Frenet formula for a curve in a Euclidean space.
The following heuristic argument will serve to illustrate the meaning of the
invariant defined by (2.8). Let us consider two neighboring points P(x"),
O(x" + dx") on the curve C. The unit tangent vectors at P and Q are re-
spectively x”/ and x” + dxJ, where dx” = (dx"/ds) ds = (d*x’/ds?) ds, which
is obtained by repeated differentiation of the equations x’ = x/(s) defining C.
Now let us transfer the unit vector x/ at P by parallel displacement to Q
(see Figure 10). This yields the vector x'/ + d*x"/ at Q, where d*x"/ is given by
d*x'7 + plx"dxk =0 2.10) -
in accordance with the definition of parallel displacement of x"/ . Furthermore, 'if
since parallel displacement preserves lengths, the vector x + d*x'’ at Q 2
is a unit vector. In terms of the Euclidean metric of the tangent space T,(Q)
the angle d6 between the vectors x”/ + d*x"/, x'/ + dx"/ is therefore defined _
to be '
df = |dx¥ — d*x'7|,
or, if we invoke (2.10),
df = |dx"7 + y,7, x™ dx*| = |Dx"|.
Thus (2.8) is equivalent to
1 _do

= @11

and accordingly we interpret p~! as the curvature of the curve C (see, €&
Stoker [1]).

The arc length of any curve C: x/ = x/(t) between two points P, and P
corresponding to parameter values ¢, and t,, respectively, can be calculated
from the integral (1.2). We now discuss the conditions which the curve mus
satisfy in order that it afford an extreme value to this integral in the sen

of Section 6.1. Since we must allow for the possibility that F(x’, ) ma
vanish, we are obliged to follow a somewhat indirect approach.
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For an arbitrary parameter ¢, we may write, using (1.15),
SO, 2y = $F2(x, X)) = 3g, %73, (2.12)
so that, by (2.5),
. 1 Co 1 /ds\?
J - _ EF2 /) —
fOd, %) = 3 F4(x/, x%) = 5 (Z) . (2.13)
Clearly
pOF_O Lo
W= o~ o 214
and
dF ﬁ? +F d (0F d{of
TR Pl a?) (2-13)
Thus, in terms of the definition (6.1.18), we have
dF OF
FE(F)=E(f) — ——
AF) = Ef) =~ =5 (2.16)
It also follows from (2.12) that
of on af 1dg
a0 =0 g =3 X
so that
_dfof of . 0g,; 10
PN = 5 (55) - L=+ B L0
or, if we use (2.1) and (2.2),
E,(f) = ghjjéh + ?hjkxhxk = ghj('*h + Vzhkxlxk)’
and hence
Dx*
E(f) = gx; Dr 2.17)
The identity (2.16) can therefore be written in the form:
_ Dx¥* dFoF
FERR) = 90 Dy ~ @ aw- @19

VA curve C: ’fj = x/(t) is said to be a geodesic of the Riemannian space
w if it is a solution of the Euler-Lagrange equation

E{F) = 0. (2.19)
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If F(x/, %) # 0 along a geodesic, it follows from (2.18) that the latter satisfies

the condition

D _dr oF
Ini pr T ar o

In particular, if the parameter ¢ is identified with the arc length s of the curve, #
it is inferred from (2.13) that F2 = 1, so that dF/ds = 0, in which case (2.20) &

reduces to
Dx'™ _
Inj Ds
or
Dx" d?x/ . dx" dx*
Ds ~dst T s ds (221)

This is the explicit form of the system of n second-order ordinary differential
equations to be satisfied by the geodesics of ¥, when referred to the arc length £
s as parameter (it being assumed that F # 0). The equation (2.21) clearly

shows that the geodesics of V, are autoparallel curves, that is, successive

tangents are obtained from each other by parallel displacement along the

curve. Moreover, it is evident from (2.8) that geodesics are characterized by

the vanishing of their curvature p~'. These phenomena are direct analogues

of the corresponding properties of straight lines of Euclidean geometry;

in fact, it follows from equation (2.5.25) that the differential equations
characterizing straight lines in a Euclidean space referred to curvilinear :
coordinates have precisely the same formal structure as the equations (2.21)

satisfied by the geodesics of V.

Instead of considering extreme values of the integral (1.2), one may con- f

sider the integral

12
1(C) = f £, %9) dt.
b
A curve satisfying the Euler-Lagrange equations
E(f)=0 (2.23)

associated with (2.22) will be called an f-extremal. According to (2.17) an

f-extremal is given by

Dx*
Dt

(2.20) :

SR

(2.22)
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This system of second-order ordinary differential equations always posseses a
first integral. For, from (2.12) it follows that
dF d

ey _ D hej ; Dx"
4 = d ) = 59,30 = 29, %0

Dx

Dt ’

where, in the last step, we have used (2.4) and the symmetry of g.. Thus j

(2.24) is satisfied, we have Y y of g;,. Thus if
dF

F— =
dt 0,
or
F(x, %) = ¢, (2.25)
where ¢ is some constant.
If ¢ # 0, it follows from (2.13) that
ds\? )
o) =< (2.26)

so that s = +ct + b. Thus, for an f-extremal the parameter t—which was
supposed to be arbitrary—turns out to be a linear function of the arc length
s whenever F # 0. However, under these circumstances it follows from (2.16)
and'(2.'23) that E(F) = 0. Accordingly an f-extremal satisfying the condition
f (x’, X) # O is simply a geodesic of V.. Moreover, it should be observed that
if F 5 0 at an initial point t = ¢, of the geodesic, this condition will persist
for all values of ¢ by virtue of (2.25).

On the other hand, if ¢ = 0, the relation (2.26) does not determine the

pgrameter t in any way. Because of (2.24) and (2.25) an f-extremal of this
kind is characterized by the relations

Dx’
Dt
A curve satisfying these conditions is called a null geodesic of the Riemannian
space V,. It should be remarked, however, that the formal structure of the

first of these conditions is nor independent of the choice of the parameter ¢.

In fgct, under a parameter transformation t = 7(¢), with dz/dt # 0, the
relations (2.27) become ’

d?x cdx"dx* dx <d%)(dr)2 dx" dx’

— + Y, — — = — ()=
dr? v"kd‘z: dt dr \dt?* J\dz

=0 and g,;x"%/ =0. (2.27)

(2.28)

Convefs'ely, ifa curve C: x/ = x/(0), referred to some parameter o, satisfies
the conditions

d*x’ - dx" dx* dx’ dx" dxi
; x
do? + Pk do do = g(o) Jo and g,; o 4o =

0, (2.29)
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where g(o) is a given function of g, it is easily inferred that C is a null geodesic.
For, if one defines a parameter ¢t by writing

r= f [exp( fg(a') da)] do, (2.30)

dt d* dt
o= exp( Jg(a) da), 302 = 4o g(o), (2.31)

one has

while (2.29) may be transformed to read
d?x/ ; dxhdx)(de\?  dx) dPt dx’ dt
[d7 + V""EI](EE) *arde? =9 do
and, because of the second relation in (2.31), this reduces (2.29) directly to
the form (2.27). ) )

We have therefore established the following result: if a curve C: x’ = x/(o)
of V, with F(x’, %) = O is such that the covariant derivative D(dx'/do) of
its tangent vector dx’/dc coincides in direction with this tangent vector, then
C is a null geodesic of V,. In this formulation the parameter ¢ is arbitrary
except for the condition ¢ # s. This characterization of null geodesics is
therefore parameter-invariant and of a purely geometrical nature.

The argument leading to (2.25) can be applied to geodesics without
reference to f~extremals; the equations (2.19) or (2.21) always possess the first
integral (2.25). Thus, any geodesic issuing from a point P(x{,) of V,, with
initial direction %/, such that F(x},, X{,,) > 0, has the property that F(x’, x)
> 0 for all values of ¢. Similarly, if the initial direction of an f-extremal is a
null direction, the curve will be a null geodesic.

In order to be able to distinguish between geodesics which afford maximum
or minimum values to the length integral, we have to invoke the Weierstrass
excess function. To this end we put t = s in the integral (2.22), which is
consistent with (2.26) provided that null geodesics are excluded from this
discussion. From (2.13) we then have

1 [
IAC) = 5 f ds, (2.32)

so that, apart from the factor i, this integral does in fact represent the arc
length of the curve C between the points corresponding to the parameter
values s, and s,. Since

*f

w9
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the expression (6.2.47) for the excess function associated with the integral
(2.22) or (2.32) is simply

E(t, X', §", X) = 39, (3" — ¢")(¥ — ¢). (2.33)

If the metric is positive definite this quadratic form is positive definite,
so that E > 0. From the general theory of Section 6.2 it then follows that
if a geodesic affords an extreme value to the length integral, this extremum
is a minimum.

If the metric is indefinite, the situation is more complicated, and ac-
cordingly we restrict our consideration to the case n = 2 with the metric
(1.31). Let us consider a geodesic whose unit tangent vectors are given by
Y¥(s), such that () = + 1 (a property which, as we have seen, persists along
any geodesic if it is satisfied at a single point). As admissible curves of com-
parison we admit solely such curves x/ = x/(s) whose unit tangent vectors
x"¥(s) also satisfy the condition e(x’) = + 1. Again (2.32) represents the length
integral (apart from the factor +3). However, if &) = +1, &x') = +1
for two unit vectors in any tangent space T,(P), we have e(x’ — ) = — 1 (see
Figure 9 of Section 7.1). Under these circumstances it follows from (2.33) that
E(t, x", ", %*) < 0. Thus, subject to the above restrictions, we infer that if
our geodesic affords an extreme value to the length integral, this extremum is
a maximum.

These conclusions are in agreement with the observations of Section 7.1
concerning the triangle inequality and the reversed triangle inequality.

7.3 CURVATURE THEORY OF RIEMANNIAN SPACES

In Section 3.6 it was shown how one can associate a curvature tensor
K/, with a given affine connection field I',/, on a differentiable manifold
X,. In the case of a Riemannian space, for which the connection may be
identified with the Christoffel symbols y,’,, one would naturally use the
curvature tensor defined in terms of this special connection. This tensor will
henceforth be denoted by R/, and, according to the formula (3.6.8), it is
given byt
. oy’ oy’ . .
R/ = % - a);hk + Yk 2" Pl Ve (3.1)

The theory developed in Sections 3.6-3.7 may clearly be applied directly to
the theory of Riemannian manifolds. In particular, since the Christoffel
symbols y,, are symmetric in their subscripts h and k [as is immediately

1 In the case of n = 4, there exist various computer programs which algebraically compute the
curvature tensor corresponding to a particular metric tensor; see Barton and Fitch [1].
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evident from (2.2)], the corresponding torsion tensor va'nishes identicall‘y, and
consequently the resulting formalism is simplified considerably. In particular,
the general formula (3.6.11) concerning an interchange of the orders of
repeated partial covariant differentiation will now reduce to

r

jieeed Jieeed - o irede - s 1o
Ty g — Tk Y. R, T Tiols
a=1

— Z ngmhk Tiy-~jrhml§_lm’ﬂ+1“.11_ (32)
B=1
Special cases of this formula are the following:
X{hlk - X{klh = X’lehk (3~3)
for any class C? contravariant vector field, while for any class C? type (0, 2)
tensor field
Ajllhlk - Ajl]klh = —AmIijhk - Aijlmhk‘ (3-4)
The tensor R/, is of type (1, 3). With the aid of our metric tensor g jm WE Can
construct a type (0, 4) tensor by writing
Ry = gijljhk’

which is usually referred to as the covariant curvature tensor. The latte.r
satisfies various identities which we shall now enumerate in a systematic
manner. From (3.8.1) and (3.8.7) we know that

lehk = _lekh’ (3-6)

(3.5)

and
R/w + Ry + Ry, = 0. (3.7

When these relations are multiplied by g,,, it is found in terms of the notation

(3.5) that
Ry = — Rimun> (3-8)

and
Ry + Ry + Ry = 0. (3-9)

A further identity is obtained when we identify the tensor A4, in (3.4) with
the metric tensor g;,. Because of Ricci’s lemma (2.3) one has

0= ”‘gmtijhk - gijlmhk’
or, using (3.5) once more,

lehk = - lehk'

A
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Thus the covariant curvature tensor is skew-symmetric in the first two
subscripts as well as in the last two subscripts.
The identities (3.8), (3.9), and (3.10) also imply the useful relation

Rijm = Rypy;. (3.11)
This is easily verified as follows. From (3.9) and (3.10) we have
Ryju = —Ryw; — Ryn» (3.12)

while

thkj = —Rhlkj = thjl + Rhﬂks lejh = _Rkljh = Rkjm + Rkhlj'

The last two expressions are substituted in (3.12), the skew-symmetry rela-
tions (3.8) and (3.10) being taken into account once more. This gives

lehk = 2thlj - thlk - Rkjhl = 2th1j + lekh’

where, in the last step, we have used (3.9) once more. This establishes (3.11).

For many applications of the theory of curvature it is necessary to ascertain
the number N of independent components of the tensor (3.5). In order to
determine N let us suspend the summation convention for the moment, and
let I, j, h, k denote distinct integers. There are five cases to be considered:
(1) all four indices identical; (2) three indices identical; (3) two pairs of
identical indices; (4) two indices identical, two distinct; (5) all four indices
distinct. Cases 1 and 2 do not yield any independent components since the
latter are identically zero under these circumstances. For case 3 we note that
Ry;;; has () independent components, while any components with different
positions of  and j, for example, Rj,;, are expressible in terms of R,;; by virtue
of (3.10). With regard to case 4 we observe that R e has n("3 ') independent
components, while all other components of this kind, for example, Ry,;
is expressible in terms of R, i because of (3.11). Finally, for case S we note that
Rijm has (3) independent components: however, R,; is not expressible in
terms of R, ., and accordingly this case yields 2(3) independent components,
all others being expressible in terms of R, and Ry, ;. Hence

n n—1 n 1
(A3 o

For instance, when n = 2, there is only one independent component, say,
R,,,,, all other components being zero or +R,,,,. Incidentally, it can be
shown that the Gaussian curvature of a V, is proportional to R, ,,,.

It is sometimes useful to have at one’s disposal an explicit representation
of the curvature tensor (3.5) in terms of derivatives of the metric tensor.
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On substituting (3.1) in (3.5) we find that

m a)’jmh a'}’jmk m.p m
Rjm = glij e = Gim ok Gim axt + GimVp kViTh — GimVp w? ik

in Vi Oim Gim . m m
= a):kh - axlilxk - a;k ¥+ 0777;‘  F Vmik?ih— V¥ e

(3.13)
However, from (2.1) we have

ayjlh _ 10 (aglh n aglj agjh) _ 1( azgm azglj azgjh)
2 >

ox*  20x\ax' | ax"  ox' ox*ox’ ' axFox" 9x* ox

ox!  ox*  ox!

so that, since g,,(x) is of class C?,

a)’jlh _ a}’jzk - 1 gy, _ *gu azgjk _ azgjh (3.14)
ox*  ox" T 2\0x*ox! ax"ox! | ax"ox!  ax*ox'/) )
Also, because of Ricci’s lemma, we have
G im
a)’Ck = gpmylpk + glempk = Yimk + ’lek’ (315)

with a similar formula for dg,,/0x". When these expressions, together with
(3.14), are substituted in (3.13), several obvious simplifications being effected,
we obtain the following formula for the covariant curvature tensor:

1 g _ g 4 % gy _ o%g m m
2\oxkox) ~ ax" ox) | ax"oxt  Ox* oxl + VimnVi k = Yimk V5 n-
(3.16)

It is evident that the curvature tensor is linear in the second derivatives
of the metric tensor; it is nonlinear in the first derivatives. Furthermore,
the identities (3.8), (3.9), (3.10), and (3.11) may be deduced directly from
(3.16) by inspection.

These identities are of a purely algebraic character. From the theory of
Section 3.8 it should be recalled, however, that the curvature tensor of an
affinely connected manifold satisfies a set of differential identities, namely,
the Bianchi identities. Clearly this must be true in particular for the curvature
tensor (3.1) of our Riemannian space; moreover, since the Christoffel symbols
define a symmetric connection, we may infer directly from (3.8.12) that

R piim + RP e + R = 0. 3.17)

From (3.5) and Ricci’s lemma we also have

R jlhk =

— P
lehk!m = gprj hk|m>
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and hence multiplication of (3.17) by g,, yields
Rjmgim + Rjtmuie + Rjtkmpp = 0, (3.18)

which are the Bianchi identities for the covariant curvature tensor. In
passing we note that the symmetry of the Christoffel symbols permits the
introduction of normal coordinates, by means of which (3.17) can be deduced
almost directly from (3.1).

By analogy with (3.8.13) we may also define the Ricci tensor R,, by contrac-
tion of the curvature tensor (3.1), namely, by writing

Ry, = RYy; = g"Rypj, (3.19)
so that
oy, oy J. i m P
th = 6);1"' - a,lc;f + ViV — Vel w Ve (3.20)

Now, applying the formula (4.1.31) to the metric tensor g,; we have the
identity

v, = % (In/g), (3.21)
where
g = |det(g,)!. (3.22)
Thus (3.20) can be written in the form

v/ & 2 o .
Ry = T = =5 (10 /) + 55 (n /o™ — vadr™y, (3.23)

from which it is clear that the Ricci tensor is symmetric when constructed by
means of the Christoffel symbols:
Ry, = Ry. (3.24)

This conclusion is in agreement with the general theory discussed at the end
of Section 3.8.
By analogy with (3.5) we shall use the notation

R] = g'Ry, (3.25)
which suggests the further contraction
R = R} =g"R,;. (3.26)

Clearly the quantity thus defined is an invariant, which will be referred to as
the curvature scalar. By means of the latter and the Ricci tensor one may
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construct the so-called Einstein tensor:
Gi = R} — L6iR. (3.27)

This tensor is of fundamental importance, which is due to the fact that its
divergence vanishes identically:

Gj; = 0. (3.28)

The proof of this assertion is based on the Bianchi identity (3.18). Let us
multiply the latter by g%, noting (3.19) and Ricci’s lemma, while (3.8) is
applied to the third term on the left-hand side. This yields

th|m + glklethc - ij|h = 0.

This relation is now multiplied by g, the definition (3.26) being taken into
account, while (3.10) and (3.19) are used to simplify the term in the middle.
It is thus found that
R|m - gllem|k - gthjmlh = 0’
and by means of (3.25) and (3.27) this can immediately be reduced to the
assertion (3.28).
By virtue of (2.3) the identity (3.28) can also be expressed in the form

G’ =0, (3.29)
where
G" = R™ — 1g"R (3.30)
and
R* = g"*Ri. (3.31)

Some of the most remarkable theorems concerning the curvature theory of
Riemannian manifolds refer to special Riemannian spaces, a few of which
are now considered. Of special importance in the general theory of relativity
are the so-called Einstein spaces, which are characterized by the property
that the Ricci tensor Ry, is proportional to the metric tensor g,,, that is,

Ry = gy, (3.32)

which is possible by virtue of the symmetry relation (3.24). The factor A of
proportionality is obtained by multiplication of (3.32) by g", the definition
(3.26) being taken into account, which gives

R
Ry, = n Ihi» (3.33)
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or equivalently,

. R _
Ry =~ o (3.34)

these being the defining equations of an Einstein space.t
The Einstein tensor (3.27) assumes a particularly simple form under these

circumstances, namely,
. 1 1\ ..
Gl =(-—=)siR
h (n 2) hT

1 1
7 2 /Rn=0 (3.35)

so that (3.28) yields

Therefore, unless n = 2,

R,=0 (3.36)
Jor an Einstein space, which implies that the curvature scalar is a constant
for such spaces. In particular, therefore, the factor of proportionality in
(3.33) is a constant. In view of (3.23) it is evident that (3.33) represents a
system of 4n(n + 1) partial differential equations of the second order to be
satisfied by the components 94; of the metric tensor, which are linear in the
second derivatives of the g, ;, but nonlinear in the first derivatives,

The conclusion (3.36) is not valid when n = 2. This phenomenon is related
to the fact that every two-dimensional Riemannian space is an Einstein space,
an assertion which is easily verified as follows by means of the defining
equation (3.19) for the Ricci tensor. Let us put I =1, h =1 in (3.19), after
yvhich we sum over p and j from 1 to 2, noting at the same time that the terms
involving R,,,; and R, ,,, vanish identically as a result of (3.10) and (3.8),
respectively. It is thus found that

R, = 922R1212a (3.37)
while similarly
Riz =Ry;1= —g*'Ryz1;, Ry, = g''Ry,,y,. (3.38)

However, forn = 2,

11 12
i (9 g 922 —9i2 _
g = ( ) = ( > det L
g?l g%2 ', . [det(g,)]

1 For an extensive study of four-dimensional Einstein spaces see Petrov [1].




264 RIEMANNIAN GEOMETRY

so that the relations (3.37) and (3.38) are equivalent to

R
R,; = gy de:é;:). (3.39)
This is of the form (3.33) with n = 2, where it is to be noted in passing that
(3.26), (3.37), and (3.38) give

R = guRu + 2gllez + 922R22 = (911922 - 2(912)2 + 922911)R1212
= 2det(g")R,,,, = 2[det(ghj)]—1R1212’
(3.40)

as required by consistency with (3.33).

A class of Riemannian manifolds which is even more special than that
exemplified by Einstein spaces is represented by the so-called spaces of
constant curvature. In order to define the latter it is necessary that we should
first introduce the concept of sectional curvature of a Riemannian space.
To this end let us consider a fixed point P(x") of our V,, and let us denote by
X4, Y’ the components of two arbitrary linearly’ independent vectors in
T,(P). These vectors determine a two-dimensional plane T,(P) of T,(P).
The scalar defined by

R X'X"YIY*
Gngi — glkgjh)XthYij,
is called the sectional (or Riemannian) curvature of our V, at P with respect
to the 2-plane T,(P) (Riemann [1]}). [This concept can be motivated geo-
metrically as follows. The set of all geodesics of ¥, which pass through P
and are tangent to T,(P) at P generates a uniquely defined two-dimensional
subspace V, of ¥, which is said to be geodesic at P. It is possible to apply the
techniques of the classical differential geometry of two-dimensional surfaces
to this ¥,, and accordingly its Gaussian curvature at P can be evaluated. It
may be shown (although this is not done here) that this Gaussian curvature is
identical with the expression (3.41).]

If UY, V/denote the components of two linearly independent vectors of
T,(P) which are contained in T,(P), it is possible to write

Ul=a, X' +a,Y, Vi=bX +b,Y,

with A = a,b, — a,b, # 0. Because of the skew-symmetry properties (3.8)
and (3.10) it is easily verified by direct calculation that, under these circum-
stances,

K(x,X,Y) = (3.41)

R U'UMVIVE = A2R,,, X' X"YIYH,
together with
(Gn9p — glkgjh)U’UthVk = Az(glhgjk_ glkgjh)XthYij'
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From (3.41) it therefore follows that
K(x,X,Y)= K(x, U, V)

whenever the pairs (X7, Y/), (U, V) span the same 2-plane T,(P), from which
it is evident that the sectional curvature depends solely on this 2-plane, and
not on the choice of the vectors which span T,(P).

However, it may happen that at some point P of V, the sectional curvature
is the same for all 2-planes in T,(P). A point possessing this property is
called isotropic. At an isotropic point the expression (3.41) assumes the same
values for all pairs (X7, Y/) of T,(P), in which case we denote K(x, X, Y)
by k(x); moreover, it is obvious from (3.41) that a necessary and sufficient
condition for P to be isotropic is that

Sim X' X "YIY* =0 (342
for any pair of vectors X/, Y/, where, for the sake of brevity, we have put
Spjme = Riju — k(x)(glhgjk = Iugjn)- (3.43)

By virtue of the quotient theorem the symmetric part of the coefficient of
X'X™" in (3.42) must vanish:

(Sijm + Spu) YY* =0,

and by the same token, the symmetric part of the coefficient of Y7 Y* must be
zero, that is,

Sljhk + Slkhj + Shjlk + Shklj = 0. (344

Now it is easily verified that the tensor S,;, possesses precisely the same
symmetry and skew-symmetry properties as the curvature tensor Ry
It therefore follows from the counterpart of (3.11) that (3.44) reduces to

Siime + Sy; = 0. (3.45)
But from (3.9) we have
Slkhj = ‘Smjk - Sljkh’
so that, with the aid of (3.8), one can write (3.45) as
28w — Sy = 0. (3.46)

Also,. since S, ;,; is skew-symmetric in A and k, it is evident from (3.45) that
Synj is skew-symmetric in h and k, so that (3.46) implies that

zsljhk = Slhjk = —Sljhk’
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which is possible if and only if S, ;, = 0. By means of (3.43) it is inferred that
an isotropic point P of V, is characterized by the condition that the relations

lehk = k(x)(glhgjk - glkgjh) (3.47)

be valid at P.

If the Riemannian space V, consists entirely of isotropic points, that is,
if the curvature tensor is everywhere expressible in the form (3.47), the
manifold V, is said to be a space of constant curvature. The Ricci tensor of
such a space is obtained directly from (3.47) by multiplication with g%,
which gives

Ry = (n — Dk(x)gy,- (3.48)

It therefore follows that a space of constant curvature is an Einstein space,
and a comparison with (3.33) shows that the sectional curvature k(x) is
related to the curvature scalar R according to

R = n(n — 1)k(x). (3.49)

Moreover, equation (3.36) indicates that for any Einstein space whose
dimension exceeds 2, the scalar R is a constant. It therefore follows from (3.49)
that for any Riemannian space V, of constant curvature, with n > 2, the
sectional curvature k(x) is a constant. This result is generally known as
Schur’s theorem.

It should be remarked that the converse to the statement following (3.48) is
not true, that is, an Einstein space need not be a space of constant curvature.
Nor is an arbitrary two-dimensional Riemannian manifold necessarily a
space of constant curvature. However, if a V, satisfies the condition (3.47) with
k(x) = constant, it exemplifies the so-called non-Euclidean geometries; the
corresponding geometry is said to be elliptic or hyperbolic according as
k>0ork <0.

In conclusion, let us briefly glance at Riemannian manifolds whose
curvature tensor vanishes identically. From the theorem at the end of
Section 5.6 we infer, as a special case, that under these circumstances there
exist coordinate systems in which the Christoffel symbols are identically zero.
By virtue of the identity (3.15) it follows that the components of the metric
tensor are constants in such coordinate systems, which is obviously character-
istic of flat spaces. This conclusion may be summarized in the following
theorem.

THEOREM

In order that a Riemannian space be flat, it is necessary and sufficient that
the components of its curvature tensor vanish identically.
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7.4 SUBSPACES OF A RIEMANNIAN MANIFOLD

As a special case of the theory developed in Section 5.7 we now consider a
subspace V,, of our n-dimensional Riemannian manifold V.. (Eisenhart [1],

Schouten [1], Rund [4]), this subspace being represented parametrically by
the equations

x) = xiu%) G=1....,ma=1,...,m;m < n). 4.1
(Throughout this section Latin and Greek indices range from 1 to n and
from 1 to m, respectively, the summation convention being operative in
respect of both sets of indices.) It is assumed that the functions x¥(u*) are of
class C?, and that the rank of the matrix of the derivatives
. ox)
Bl =
« = 5 4.2)
is maximal, namely, m. It will be recalled from Section 5.7 that, at each point
P of V,,, the B] represent the components of m linearly independent vectors
in the tangent space T,(P) which span the tangent space T,,(P) of V,, at P.
A displacement in ¥, whose components dx’ are expressible in the form

dx’ = BJ du* 4.3)

is said to be tangential to ¥, ; the element of arc length ds associated with such
a displacement is given by

ds* = g,; dx" dx’ = g,;B" B} du* du®. 4.4)
This clearly suggests the definition
9up(u®) = g4 x'(u*))B: B}, (4.5)
so that,on V,,
ds® = g,, du* du®. 4.6)

[Again it is remarked that, strictly speaking, the quantities defined by
(4.5) should be denoted by a symbol other than g; however, since in this
context the subscripts are always either all Latin, or all Greek, no confusion
is likely to arise.] Clearly the components (4.5) are class C3 functions of
their m arguments u°, their symmetry being guaranteed by the symmetry of
the metric tensor g,; of ¥,. Moreover, in view of the fact that the B" are type
(0, 1) tensors relative to parameter transformations on V., the g.p are com-
ponents of a type (0, 2) tensor relative to such transformations; relative to
coordinate transformations on V, they are simply scalars. Since the metric of
V, is not assumed to be positive definite, it is possible that on certain sub-
spaces V,, there exist points for which det(g,;) = 0. In order to exclude this
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Possibility and the complications resulting therefrom, we restrict ourselves

to subspaces for which the condition
det{gaﬁ) # 0 (47)

is everywhere satisfied. Under these conditions we may regard the quantities
(4.5) as the components of the metric tensor on V.. the resulting metric of
¥,, is said to be induced on V,, by the metric of V.. The subspace V,, is a Rieman-
nian manifold in its own right. The quantities 9. are also called the co-
efficients of the first fundamental form.

The condition (4.7) guarantees the existence of a tensor g* inverse to the
metric tensor:

995, = &2, (4.8)
by means of which we construct the quantities
B; = g°,,B". (49)
Because of (4.5) and (4.8) we have
B;B;; = g"‘gthfBj; =g%g.,p = 0%; (4.10)

however, it should be noted that B}B} # &". Any element Z/ of T,(P) is said
to be normal to V,, at P if it satisfies the m relations

gnjZ"Bi = 0, (4.11)

since, under these conditions, the vector Z/ is normal to each of the m vectors
B! which span T,(P) in T.(P). Clearly one can always construct sets of n — m
linearly independent vectors in T,(P) which are normal to V,. at P; however,
unless m = n — 1, such sets are by no means uniquely defined. Moreover,
it follows from (4.9) and (4.11) that

BiZ) = (4.12)

for any vector Z/ normal to v,.
The Christoffel symbols of V.. may be defined precisely as in V, in terms of
the derivatives of 9.5, Namely, as

1 dg dg dg
A — 1 g Be e af . .
ya B g ’Yaeﬁ 2 g (aua + auﬁ aug (4 13)

These three-index symbols determine a connection on V,, in exactly the same
way as the Christoffel symbols 74’ define a connection on the embedding
space V. By means of these two connections a process of mixed covariant
differentiation as described in Section 5.7 is uniquely defined, this process
being denoted once more by a pair of vertical bars followed by the appro-
priate subscript. Again, for quantities which are tensorial relative to param-
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eter transformations on V..» while being scalars relative to coordinate trans-
formations in ¥, the mixed covariant derivative is identical with the usual
covariant derivative on V. In particular, Ricci’s lemma for V., is simply

Gapyy = 0. 4.19)

Also, since g, ;%) is defined on all of V. (and not merely on V), we may write

6g p 0g,;
Injip = ﬁ - gljyk’kB;l; - ghthlkB; = (ﬁ - gljyhlk - ghlyjlk BZ = ghjlkBk9

or, by Ricci’s lemma for v,

Gnjys = 0. 4.15)
As in (5.7.32) let us now write
Hly = Blyy = By — 7%, B} + 9, B'BY), (4.16)
where we have used the notation
; _ 0B} 0%x/

(4.17)

= =—"_=RBJ.

P 0w T out oub b

Because of the symmetry of both of the Christoffel symbols which appear in
(4.16), it is evident that

H/J, = Hy,, (4.18)

it being recalled that the quantities (4.16) represent the components of

imim + 1) type (1, O) tensors relative to coordinate transformations on

V.., and of n type (0, 2) tensors relative to parameter transformations on

V.. Now the mixed covariant differentiation of (4.9) with respect to uf
yields, in view of (4.14), (4.15), and (4.16):

B';”,, = g""‘g,u-th,,. 4.19)
From (4.10) we obtain similarly
BB + B;HJ, = 0,
and hence, by (4.18),
Bj B! = B;

i stBf;’
so that (4.19), taken together with (4.8), gives
gthahﬂBi = gthahsB{r = gthiH.zhr (4.20)

But when we evaluate the covariant derivative of the relation g,, = g,, Bj B!
with respect to u?, again noting (4.14), (4.15), (4.16), and (4.18), we obtain

0 = gthaj B:‘ + gthngzhs’



270 RIEMANNIAN GEOMETRY N
(,

which, when taken in conjunction with (4.20), yields

g BiH, 5 = 0. (4.21)

In accordance with (4.11) it is therefore inferred that the H/;, regarded as
im(m + 1) contravariant vectors in T,(P), are normal to V,, at P. This simple
conclusion is of paramount importance to all of our subsequent analysis.

Let us substitute from (4.16) in (4.21), after which (4.5) is applied, which
gives

gsl’yalﬂ = gthgBajﬂ + gljBi:yh]kB:B’:f’

or
(4.22)

This represents an explicit expression for the Christoffel symbols of V,
in terms of the Christoffel symbols of V,. The formula (4.22) may also be
verified (although somewhat laboriously) by direct calculation upon dif-
ferentiation of (4.5) with respect to u’, and substitution of the relations
thus obtained in the explicit definition (4.13).

As an immediate application of (4.21) let us consider a differentiable curve
Ciu* = u(t) of V,, referred to an arbitrary parameter t. The parametric
representation of C as a curve of V, is given by x/ = x/(u*(t)) in terms of
(4.1), so that

Vacs = 9 Be By + vup BiBLBj.

% = Bl (4.23)
where %/ = dx//dt, w* = du®/dt. Let U* = U%(t) be a differentiable contra-
variant vector field of V,, defined along C, whose components relative to
V. are given by

X/ = BU~ (4.24)
In terms of (4.17) and (4.16) we then have along C:
ax’ . - dU*
- J @B j
i B/, U + B} i
J asB i B"Bk Ug? Bivy 4 UJ_B+BJ.dU“
=Haz/iUu _'thBu B u’ + 2V 8 u *

3

. . . (dU .
= HJ,U# — yJ X" + B;( + 9% Uﬂuﬁ),

dt

where, in the last step, we have used (4.23) and (4.24). From the definition

of absolute derivative it therefore follows that
DX’

DX? _ by umw 4 B 2V

. 4.25)
Dt * Dt (
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This formula clearly indicates how the absolute derivative with respect to
the embedding space V, of a tangential vector field X/ is decomposed into
normal and tangential components. Because of (4.21) the first term on the
right-hand side of (4.25) is the normal component, while the tangential
component is determined by the absolute derivative of the given vector field
with respect to the subspace V,,. This conclusion is tantamount to the
statement that the absolute derivative with respect to the subspace V., of
any vector field tangential to ¥, is obtained by the projection onto V,, of its
absolute derivative with respect to V.

In passing we note that this property of the absolute derivative with respect
to ¥, could actually have been used to define such derivatives; in other words,
one could have begun with a decomposition of DX//Dt into normal and
tangential components, and then have defined DU%/Dt by the identification
of B} DU*/Dt with the tangential components. This procedure does, in fact,
lead to a unique connection on V.., the so-called induced connection. Not
surprisingly, however, it may be shown that the coefficients of the induced
connection are identical with the Christoffel symbols (4.13). The latter are
said to determine an intrinsic connection on V,,, since they are defined in the
usual manner in terms of the metric tensor of V,,. This state of affairs may be
described by the assertion that, for any subspace of a Riemannian manifold,
the induced and intrinsic connections are identical. (In more general geo-
metries, such as Finsler spaces, this conclusion is not valid.)

As an immediate consequence of (4.25) one may state the following result:
If the vector field U* is parallel along C (that is, if DU®*/Dt = 0 along C),
then its absolute derivative with respect to V, is always normal to V,,.

A particularly interesting special case of (4.25) occurs when we identify
the vector field U* along C with the tangent vector 4® of C, after which we put
t = 5, where s denotes the arc length of C (it being assumed that nowhere
along C does u* represent a null direction). Under these circumstances we
obtain

Dx'J
Ds

ra
= HJ,u"u? + BJ %
Here it should be observed that the first term on the right-hand side depends,
at each point P(u*) of C, only on the coordinates u* of P and the components
u'* of the unit tangent vector of C at P. This term is therefore identical for all
curves of ¥, which pass through P and have the common tangent u'*. How-
ever, there exists a unique geodesic I' of ¥,, which passes through P and
possesses the tangent u'*: since Du"/Ds = 0 for T, it follows from (4.26) that

Dxlj J oo,
(Ds )r = Hopuu®.

(4.26)

(4.27)
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This result clearly exhibits the geometrical significance of the term in
question; incidentally, with the aid of (4.21) we may also conclude that
the principal normal of any geodesic of V,,, regarded as a curve of V,, is always
normal to the subspace V,. Also, according to the definition (2.8) of the
curvature 1/p of curves of ¥,, the curvature 1/pp- of I' is given by

1 z Dx,j Dx’h j 10, 7, 1€y,
(pr> - “’f”(‘ﬁ)fﬁ?)r = gulH o) (H I w).  (428)

Again, this quantity depends solely on P and the direction «'* at P and is
therefore completely determined at each point and for any tangential
direction at that point by the given subspace V,. (In fact, this quantity
corresponds to the square of what is generally called the normal curvature

in the classical theory of surfaces.)
Returning to the case of an arbitrary differentiable curve C on V,, we

now define, by analogy with (2.8), the so-called geodesic curvature 1/p, by

1\*  Du*Du’*
p.) 948 D5 Ds
which is simply the square of the curvature of C when the latter is regarded

as a curve of V,,. From (4.26), as applied to C, we then have

Dx'J Dx'"
9in Ds Ds

(4.29)

= gu(Hpuu?)(H, u'u")

. Du’® Du® Du'’?
ra, . h
+ 2g;(H,yuu’?)B] Ds + Gop Ds Ds’

or, if we invoke (2.8), (4.21), (4.28), and (4.29),

= () G
—Z2=\52) T\ )
P pl" pg

This relation clearly displays the relationship between the two curvatures
1/p and 1/p, of any curve C on V,,. In particular, if the metric of ¥, is positive
definite, the right-hand side of (4.28) is always nonnegative, so that in this

case
1 >(1>2
p* T \pg)

Let us now turn to the relationship between the respective curvature
tensors of ¥, and V,,. For an m-dimensional subspace X, of a general n-
dimensional differentiable manifold X, both X, and X, being endowed with
arbitrary connections, this relationship is given by (5.7.36). In the present

4.30)

(4.31)

context the respective connections are defined by the Christoffel symbols .
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of ¥, and V,, respectively, for which th i i
R 8 € torsion tensors are identi
so that (5.7.36) reduces to entically zero,
T .
Hlgyy — Hlyyp = R/ BBy B} — BiR,, (4.32)

in which R,jhk R4 res ivel
ne> Ry'g, TESpEctively denote the curvature tensors of
the latter being defined as usual by of ¥,and V,,

ayt, oyt

R A . a B Y ]

« By T 5y T aﬂy + '}’aly?a g ‘yalﬁ‘)]aa -
u ou 4

(4.33)

L ’tl'he fje.ll;ltions. (4.32) may be written in a more illuminating way as follows

€t us differentiate (4.21) covariantly with respect to u”, noting (4 ‘

same time, thus obtaining ’ £ (416)at the
i ;

G BeH, g, + g,,sz"yHa’ﬂ = 0. 4.39)

This suggests that we multiply (4.32) b % in doi
- . Y gx; B.; in doing so,
(3.5) and (4.5), which yields " 8 so, we also observe

9w B{H gy, — gniBeH ), = Ryju B, B!B} B} — Racpys (4.35)
where, by analogy with (3.5), we have put

Raeﬂy = gei.RaAﬂy' (436)
We now substitute from (4.34) in (4.35), which gives
_gthshyHajﬂ + gthchﬂHajy = lethLBiB;B‘; — Ryipy»
or, on interchange of the indices &, B, and y
Raﬁye = lethiBf;B:Bz + gjh(Haijﬂhs - Haszﬁh'p)' 4.37)

This is the relation which we have been seeking: it clearly displays the
curvature tensor of the subspace V,, in terms of the curvature tensor of the
embec{dmg space V, and the tensor H,,",,. The relation (4.37) is called the
ez.guatzon'of Gauss since it is the generalization of a formula of the classical
differential geometry of surfaces which bears this name.

7.5 HYPERSURFACES OF A RIEMANNIAN MANIFOLD

The t'heo.ry of subspaces assumes a particularly simple and geometrically
Uluminating form for the case of hypersurfaces, namely, when the dimension
m of the subspace is m = n — 1. This simplification is largely due to the fact
that under these circumstances the rank of the matrix (BJ) is n — 1, which
al}ows us to define a unique unit normal at each point P of af/ . This ’follows
directly frgm the fact that the system (4.11) possesses a unia:lé solution (up
to a multiplicative factor). This solution is normalized, and accordingly
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the unit normal N7 to V,_, at P is determined (except for its sign) by the
conditions

g;.jBZN" =0, 5.1
8(N)g,U-N"Nj =1, (5.2)

where &(N) is the indicator of N’. [Again we exclude from our considerat.ions

hypersurfaces possessing points for which the. determlpfmt of g.p vamslﬁes

identically.] We suppose, moreover, that the sign of N’ is chosen such that

N; = g;,N* = ¢v;, with ¢ > 0, where the v; denote the components of a
j = Yin PV

rellative covariant vector defined by

a(xl,...,xj“l,xj”,...,x")_
= ki
owt, . . . L,u"Y

i i f the identity v,B} = 0.
the latter being normal to V,_ by virtue of ;B
Having thus defined a unique normal N’ at .each point P of V,,Il , let l;s
return to the equations (4.16) and (4.21). According _to the latter the 3n(n — 1)
vectors H,/; are normal to V,_,; hence we may write

Bl = HJy = e(N)N'Q,,, (5.4)

where the coefficients Q,; are class C' functions of .the parameters utE am{
represent the components of a type (0, 2) tensor relative to parameter ratl?isc
formations on V,_,. Moreover, because of (4.18), the Qa.,ﬂ are symmeture:
[The quantities thus defined should not be con.fus.ed with the curlwia .
2-forms (5.6.39).] The coefficients Q,; are .of .ba51c importance lto :«it figm
sequent developments; their geometrical significance emerges clearly
i siderations. .

thii(illp?(::’;lgb:o; point on ¥,_,, and let C be s?me dilzerentlablz curv(;:i :gf
V,_, passing through P with giyen unit tangent u'* = du®/ds fatV P.. c?‘?;n b
tcn> (2.9) the principal normal »’ of C, regarded as a curve o 4,,,225 gnd ol
Dx'J/Ds = n’/p, where 1/p denotes the curvature of C. From (4.26) a X

we then have

(5.3)

v; = (—1y+?

Dx'J . . s ;Du* 55)
X — (NN'Qu W+ Bl = (

i i nt
In particular, for the unique geodesic I of ¥, _; which possesses the tange:
u*at P,

1y J
Dx7) _ e(N)N'Q, uu? = 'L (5.6)
Ds Jr Pr

/ inci i ded as 8°;
where nf denotes the principal normal of I', the latter being regar:

i i nj i 1/ppof T8
curve of V,. Thus, since N/, n} are unit vectors, the curvature 1/p
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given by
1 Q,; du® du?
+— = a8 — Zoag AU AU” .
t - Q,pu"u Gup dt® AP (5.7)

The numerator on the right-hand side of (5.7) is called the second Jfundamental
formof the hypersurface V.- 1;itisadirect generalization of the corresponding
concept of the classical theory of surfaces. It is evident from (5.7) that the
second fundamental form provides some indication
ties of ¥,_, at P in the direction .

Returning to the curve C, let us multiply (5.5) by gx;N*®, noting (5.1),
(5.2), together with the definition (1.38). It is thus found that

of the curvature proper-

cos(N,
Qzﬁ u""u'ﬁ = “(p n) .

This result implies the well-known theorem of Meusnier: since the left-hand
side depends solely on the coordinates of the point P and the direction
u* at P, the relation (5.8) implies that the ratio cos(N, n)/p has the same value
Jor all curves of V,,_, which pass through P and possess a common tangent
u' at P. This quantity is called the normal curvature K(u®, w*) of V,_, at P in
the direction u’*: from (5.7) and (5.8) it follows that, apart from sign, the
normal curvature K(u®, u’%) may be identified with the curvature 1/py of the
geodesic I of V,_, which passes through P in the direction #*. For the unit
vector u’* the normal curvature is simply the quadratic form Q,pu'*u’®; for an
arbitrary vector #* tangent to V.1 at P one has to write

(5.8)

K, i) = Dea D0 _ Dy dit duh (59)
G W0t Gop du* duf

For any given ¥,_, the coefficients of the first and second fundamental
forms can always be evaluated explicitly from the embedding equations (4.1),
and hence the normal curvature can be calculated at any point P of | 249
for any prescribed direction u'* through P. Accordingly Meusnier’s theorem
(5.8) specifies the distribution of the curvatures of the set of all curvesof V,_ |
which pass through P in the direction u’”,

However, it is clearly necessary to consider also curves of ¥,_, which
pass through P in different directions, and therefore one is naturally interested
in the values of the normal curvature corresponding to all directions tan-
8ential to V,_; at P: in particular, those directions at P for which the normal
Curvature assumes extreme values are of paramount importance. Before
Proceeding with this program it should be pointed out that the normal
Curvature, as given by (5.9), is defined solely for non-null directions #*.
Therefore, in order to avoid undue complications we assume, for the moment,
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that there are no null directions in T,(P), so that, without loss of generality,
we may suppose that the first fundamental form g,, du” duf is positive

definite at P. The problem of finding extreme values of (5.9) is obviously

tantamount to the determination of extreme values of Q,, 4"’ subject to the
restriction g,,4*#* = 1. According to the method of Lagrange multipliers
we therefore construct the function

F?, i) = Qi — Mg,z — 1),
it being recalled that for the required extremum it is necessary that 0F /0u” = 0.

Because of the symmetry of Q,; and g,, the latter condition is obviously
equivalent to

(Q,, — g, )i = 0. (5.10)

This is a system of n — 1 homogeneous linear equations, nontrivial solutions
of which correspond to values of A4 which satisfy the so-called characteristic
equation

det(Q,, — ig,,) = O. (5.11)

The left-hand side of (5.11) is a polynomial of order n — 1 in 4; thus (5.11)
possesses n — 1 solutions A, (r = 1,...,n — 1), which are not necessarily
distinct. To each solution A, (an eigenvalue) there corresponds a direction
¢, (the corresponding eigenvector) such that (5.10) is satisfied:

r=1,...,n— 1), (5.12)

When this relation is multiplied by #}, (no summation over the index r),
it follows immediately from (5.9) that 4, is given by

Aoy = K@, 4). (5.13)

These values of the normal curvature are called the principal curvatures of
V,_, at the point P(u®).

The directions «f, satisfying (5.12) are called the principal directions of
V,_, at P; if the n — 1 roots of (5.11) are all distinct, these directions are
uniquely defined. Let uf,, u, represent two principal directions corre-
sponding to distinct roots 4,, 4, of (5.11), so that

M3 — i
Q)1 = Ay Gaytity

. . . .
Qi) = AnGaylitys Quytity = Aoy

Multiplying the first of these by u},,, the second by ,), and subtracting the
relations thus obtained, it is found that
Guptily i) = 0. (5.14)

Thus principal directions corresponding to distinct roots of the characteristic
equation (5.11) are mutually orthogonal. Moreover, it is known from the
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theory of quadratic forms that one can always construct a set of n — 1
mutually _or.thogonal principal directions, even when the roots of (5.11) are
not a!l distinct (in which case, however, the principal directions are not
all unique). These directions may be used to construct an orthonormal basis

in T,,(P), relative to which the second fundamental form assumes the following
diagonal form:

Qupttil = 2\ @')? + 2@ + -+ + A 1 @) = K, i)g,, .
(5.15)
This particular representation of normal curvature in terms of the principal
curvatures (5.13) is the counterpart of the theorem of Euler for two-dimen-

sional surfaces V, embedded in a three-dimensional Euclidean space.
Let us put

Q; = gayQB)" (5.16)

noting at the same time that the characteristic equation (5.11) may then
be written in the equivalent form

det( — 16%) = 0, (5.17)

Fo wl?ich the theory of Section 4.2 may be applied directly. The fundamental
invariants of V,_, are defined to be the n — 1 elementary symmetric functions
of the roots Ay, . .., Ay—q, of (5.17):

Hyy=An+ -+ a1y

Hoy = Anday + danydey + 0 + Ao gydp-1ys
............................................ (5.18)
H,_, = )%1)1(2) T '10-—1)-

The formula (4.2.43) allows us to compute these invariants directly as

polynomials in Qf%; in particular, for the so-called mean curvature H

we have @

Hy,, =0 = glzﬁﬂ,p,
while

det(©,,)
det(gaﬂ) '
(5.19)
When n = 3, the latter expression is known as the Gaussian curvature of the
surface V,.
A further very significant property of the coefficients of the second funda-
meptal_form is the fact that the latter allow us to express the covariant
derivative of the unit normal N7 in a very elegant manner. Differentiating

Heoyy = (1) 'det(@Q)) = (= 1)"" 'det(g™Q,,) = (—1)"~*
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(5.1) with respect to v, noting (4.15), (5.4), and (5.2), we obtain
9n;BiNYp = —9i;N'Biyp = —guN"Ne(N)Qyp = — €y, (5.20)
while differentiation of (5.2) yields
9w N"Nijp =0, (5.21)

which implies that N{w is tangentigl to V,,_I..Thus _there exxsthcoeﬁlictlfmts
A5 such that Ny, = B]A5. When this is substituted in (5.20), the relations
(4.5) being taken into account, it is seen that

gth:Nﬂﬁ = gth:Bilé = gmsl; = _Qap

so that 4; = —€j by (5.16). We therefore conclude that the covariant deriva-
tive of the unit normal is given by
Nis = —BiQ;. (5.22)

Thus along an arbitrary curve C of V,_, the absolute derivative of N7 is
simply
= Nj,5- = —BiQju’? = —Blg“Q,u”. (5.23)

A curve of V, _, is said to be a line of curvature of V,_, if its tangent vector
coincides everywhere with a principal direction. Along such a curve we have,
by virtue of (5.10) and (5.13),

Qu’? = K(u, w)gpu’, (5.24)

where K(u, u') denotes the principal curvature in the direction of u'?. When
(5.24) is substituted in (5.23) the latter reduces to

DN/
Ds
This simple conclusion implies the theorem of Rodrigues: alon.g a line of
curvature of V,_, the direction of the absolute derivatit_)e of the unit normal of
V., _, coincides with the direction of the tangent of the line _of curvature. ;
If the second fundamental form is not positive definite at a point P o
V,_,, there exist directions u™ at P for which

Qpuuf =0. (5.26)
These are called asymptotic directions, and a curve of V,_, whose tangent

vectors coincide everywhere with such directions is called an asymptotic
line of V,_ . For curves of this kind the relation (5.5) reduces to

= —K(u, u)Blig*g,u*? = —K(u, uW)Bju? = —K(u, u)x. (5.25)

Dx7 _ g, Du” "’ (5.27)

Ds *Ds p’
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which indicates that the principal normal of an asymptotic line, regarded
as a curve of V,, is always tangential to ¥,_,. If, in particular, the hyper-
surface V,_, is such that it contains asymptotic lines which are also geodesics
of V,_,, it follows from (5.27) that Dx'//Ds = 0, that is, such curves are also
geodesics of ¥,. Conversely, if the hypersurface V,_, contains a geodesic of
V., this curve is an asymptotic line as well as a geodesic of V,_,. It should be
emphasized, however, that whereas principal directions exist at each point
P of any ¥,_,, this is not true for asymptotic directions. In fact, if all the
roots 4., of the characteristic equation (5.11) are positive, it is evident from
(5.15) that condition (5.26) cannot be satisfied.

Let us now turn to the relationship between the respective curvature

tensors of V, and V, _,. First, if we substitute from (5-4) in (4.37), noting (5.2),
we obtain

Rzﬁye = RfjthiBﬁB:B:c + S(N)(Qaygﬁs - QaeQﬂy)‘ (528)

This is the equation of Gauss for a hypersurface V,_, of an n-dimensional
Riemannian manifold V,; it is without doubt the most significant relation
in the theory of hypersurfaces. The first term on the right-hand side of (5.28)
clearly displays the influence exerted by the curvature tensor of the embedding
space V, on the curvature of the embedded manifold V,_ 1, while the second
term gives a precise portrayal of the contribution due to the coefficients of the
second fundamental form of V,_ ,.

Second, let us differentiate (5.4) with respect to u’, at the same time observ-
ing (5.22), which yields

H/lpy, = e(N)(N'Qp, — BIQIQ,)). (5.29)

When this is multiplied by N ; = ga;N", the relations (5.1) and (5.2) being
taken into account, it is found that

NiHg, = Qup,- (5.30)
But from (4.32) we have, again because of (5.1),
NfHy, — Hyyp) = N;R/.B, B} B}, (5.31)
and hence by (5.30),
Qnﬂ”v — Qﬂ“ﬂ = NjR,jthiB;;B’;. (5.32)

These are the equations of Codazzi for a hypersurface V,_, of V,. They are
essentially integrability conditions on Q,; and indicate quite clearly that the
components of an arbitrary symmetric type (0, 2) tensor field cannot, in
general, play the role of the coefficients of the second fundamental form of
some hypersurface V,_,.
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Let us conclude this section with a few remarks of a general nature con-
cerning the case when the embedding manifold ¥, is a Euclidean space E,.
Under these circumstances R/, = 0, and the equations (5.28) and (5.32)
of Gauss and Codazzi reduce to

RUﬂ)’E = QanﬂE - QaeQﬁy9 (5.33)

and
Qupity = Layiip = 0, (5.34)

respectively. Irrespective of these simplifications, the theory of hypersurfaces
continues to depend on the fundamental tensors g,; and Q,,. The existence
of the former renders any hypersurface V,_, of E, a Riemannian space in
its own right; any analytical development which depends solely on g,,
and the derivatives thereof is part of the intrinsic theory of V,_, in the sense
that, once the g,, are given, no appeal whatsoever need be made to the fact
that V,_, is embedded in E,. On the other hand, the coefficients Q. of the
second fundamental form are defined if and only if an embedding is assumed :
therefore, a development which includes the use of these quantities cannot
be expected to be necessarily intrinsic. Indeed, it is obvious that any state-
ment pertaining to the normals of ¥, _, must be nonintrinsic; the same applies
to concepts such as principal or asymptotic directions. However, when we
consider the equation (5.33) of Gauss in this context, we are confronted with
the following remarkable phenomenon. The left-hand side of (5.33), namely,
the curvature tensor of V,_,, is clearly intrinsic, since this tensor is defined
entirely in terms of the g,, together with their first and second derivatives.
The right-hand side, however, is merely a bilinear form in the coefficients
Q,;, and therefore consists of elements each of which is nonintrinsic. One
is therefore led to conclude that there must exist intrinsic functions of the
nonintrinsic coefficients, and that the right-hand side of (5.33) is an example
of a function of this kind.

The significance of this example may be illustrated most effectively
for the case when n = 3. From (5.19) it is evident that the Gaussian curvature
of a surface V, is given by

_ det(€,p)
@7 det(g,y)

Moreover, from the theory of Section 7.3 we recall that, for any V,, all
nonvanishing components of the curvature tensor are of the form +R,;;,-
Thus only a single independent Gauss equation can be obtained from (5.33),
namely, when we put « = y = 1, = & = 2, which gives

(5.35)

Risy. = Q418,; — Q4,95 = det(Qaﬁ)' (5.36)
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The expression (5.35) for the Gaussian curvature of a V, embedded in E
thus assumes the form ?

R
H — 1212
@ det(g,y)

It therefore follows that the Gaussian curvature is an intrinsic invariant
despitg the nonintrinsic appearance of the definition (5.35). This conclusion’
first discovered by Gauss [1] on the basis of some exceedingly intricate’
calculations, was designated by him the Theorema Egregium.

(5.37)

7.6 THE DIVERGENCE THEOREM FOR HYPERSURFACES OF A
RIEMANNIAN MANIFOLD

In Seption 5.5 adivergence theorem for closed hypersurfaces of a differentiable
maplfold X, was presented. This theorem is entirely independent of the
potlol.l of a metric; however, when the embedding space is Riemannian
in whlgh case a metric is available, a corresponding divergence theorem ma};
be derived in which the role played by the metric is clearly displayed. We
shall now address ourselves to this matter.

To this ?nd we shall obtain an identity which relates the determinants of
the respective metric tensors of the embedding space ¥, and the hypersurface
V.- 1. This identity involves the quantities v, on V,_ 1 as defined by (5.3)
which can be written in an equivalent mannerj as ’ o

(n—Dly; = sjh_,,j"Jj""j", (6.1)
where
e 002, L xIm)
J"T"J" — > >
out,...,u"" 1y’ ©6.2)
Now, as a result of (4.5) we have
—_ ! = p&1@n—1aB81Bn-1
(n 1)'det(gaﬁ) & & gﬂfﬂl o 'ganglﬂn_l
— srzl-“a,.—:eﬁl-"ﬁn—lBﬁ e B£:~1BZZ1 ... an-lgjzhz Gih
— J}2~-'Jr..]’lr'"'ngjzh2 G (63)

Moreover, by virtue of (4.2.20), (4.2.11), and (4.2.15) the definition (6.1) yields
Vel e = [(n — 1)1] " Yghizing, | Jhahe
= [ — DTSR TPt = [(n — DT offy Jhahn = Jiin,
(6.4)
so that (6.3) is equivalent to

(n — 1)detlg,s) = v;v, ez inghtabng g . (6.5)
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But according to (4.2.44) the cofactor G of g, in det(g,,) is given by
(n— 1)'G—’" = 81'}'2"'.in8hh2“~hngj2hz RN RN
and hence, since G™* = g/*det(g,,), the relation (6.5) reduces to
det(gaﬁ) = det(glk)gjhvj Vi (6.6)
which is the required identity.
As an immediate consequence of (6.6) we can now obtain an ex_plicit
representation of the unit normal N/ of V,_,. Let us recall that v;B] =0

identically; according to the convention stipulated at the beginning of the
preceding section we therefore have

v, = vN,

J J?

(6.7)
where

v = +[e(v)g, V]2 (6.8)
In particular, it follows from (6.6) that a necessary and sufficient condition
that the unit normal N/ at a point P of V,,_, define a null-direction in V, is that
the determinant of the induced metric tensor of V,_ | vanishes at P.

Since our subsequent analysis will be concerned with closed hyper-
surfaces in V,, to which the identity (6.6) is to be applied, we assume for the
remainder of this section that the metric of V, is positive definite, thus
excluding the possibility of normal null directions.

Now let us turn to the general nonmetric divergence theorem as formulated
in equation (5.5.33), in which the integrand of the surface integral involves the
(n — 1)-forms =; as given by (5.5.35). In view of (6.1) and (6.2) the latter can be
expressed in the form

m=vydu' Ao Adu"T

Thus the integral formula (5.5.33) is equivalent to

fA{j dx'' A - Adx" = f v, A dut Ao A dutT (6.9)
G oG

where 0G is the hypersurface bounding an n-dimensional region G of V,
subject to the restrictions specified in Section 5.5, while Al(x") is a differen-
tiable contravariant relative vector field of weight + 1 defined on G. If X¥(x")

denotes an arbitrary type (1, 0) absolute tensor field on G, then /det(g;) X ’
represents the components of a relative tensor field of the same type as 4’

since /det(g,,) is a scalar density. We may therefore put A = Jdet(g,) X’
in (6.9), which, with the aid of Ricci’s lemma, will then give

f det(gy) X{;dx' A - A dx" = f vi/det(gy) X7 dut A - A duTh
G G
(6.10)
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In this relation we now substitute from (6.7), noting (6.6) and (6.8) at the
same time, thus obtaining

J‘\/mX{jdx‘ A Adx" = f Vdet(g) N, X7 du' A --- A dum 1.
G oG
(6.11)

This is the divergence theorem for an arbitrary differentiable contravariant

vector field X’ defined over an n-dimensional region G of a Riemannian manifold
| 4

n-

The n-form
det(gy,) dx* A -+ A dX" (6.12)

is interpreted as the n-dimensional volume element of V,. This form is a
scalar, since n!(dx' A --- A dx") =g ; dx/* A--- A dx is a relative
tensor of weight —1. By the same token, the (n — 1)-form

Jdetg,p) dut A - A dun? (6.13)

is regarded as the (n — 1)-dimensional volume element of V,_,. From the
manner in which the volume elements (6.12) and (6.13) enter into the integral
formula (6.11), it should be immediately evident how the latter contains the
Gauss divergence theorem of classical vector analysis as a special case.

As an application of the divergence theorem (6.11) we now derive the
Gauss-Bonnet theorem for a two-dimensional Riemannian space V, with
positive definite metric (without assuming that V, is embedded in a manifold
of higher dimension). To this end we shall require a certain identity, which
will first be derived for a V, of arbitrary dimension n. Let X/ = X¥(x*) denote
a class C? contravariant vector field defined over a finite region of V,,and let
us put

—32Z) = pm /g P X'XT;, (6.14)
where
p=1X1? =g, X"X/, (6.15)
and
g = det(g,). (6.16)

The divergence of (6.14) is given by
—3Z{; = u" /g SIX' Xy, + XUXT) — /g SEXIXTL. (6.17)

As regards the first term on the right-hand side we note that, by virtue of
(3.3), (3.6), and (3.19),

O1m X' Xy = 200m X' (XT5y; — XTh)
= %5{:xXlekahj = %Xle(kaml — R = “Rthle- (6.18)
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For the sake of brevity we now introduce the notation

R™, = g"RP ., (6.19)
observing that, because of (3.10),

R™,, = —R™,,.. (6.20)
By means of (4.2.9) we then deduce with the aid of (3.3) and (3.19) that
O X ; X'R™,, = [8H0n 0, — 0,04 + (05,051 + 8500)]1X ; X'R™,,

= J(RM,y — R¥,) + X, X SHR™,, + X, X'SER™™,,

= 2uR + 4X, X'R™, = 2uR — 4R, X'X*, (6.21)
and thus (6.18) can be written in the form
XX = 300 X ; X'R™,, — JuR. (6.22)
An expansion similar to that carried out in (6.21) gives
poih X4 X = o X X'XTy XT, — 2X,, X'S" X7 XT,. (6.23)

Also, since
m; = 2gu X"X};,

we have
S XX — w6 XX, = Ol X X B+ 2p 7 X, XIS X X
= pu o X X' XT XF,, (6:24)

the last step resulting directly from (6.23). We now substitute from (6.22)
and (6.24) in (6.17), which yields

2/9R = Zi; + u~ /g 8% X, X' (4" ' XL XT, + R™Py).  (6.25)

This is the identity (Horndeski [1]) which we have been seeking: it expresses
the scalar curvature R of our V, in terms of the first and second covariant
derivatives of an arbitrary class C* contravariant vector field.

Let us now restrict ourselves to the case when n = 2. Recalling the fact
that the generalized Kronecker delta vanishes identically whenever the
number of its sub- or superscripts exceeds the dimension, we infer from (6.25)
that the scalar curvature of our V, may be represented as a divergence:

2/gR = 2. (6.26)

Moreover, for a V, the scalar curvature R is proportional to the Gaussian
curvature H,, (which, as was shown at the end of the last section is an
intrinsic quantity); in fact, from (3.40) and (5.37) we have that

R = 2H,,,. (6.27)
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In order to apply the divergence theorem to (6.26), let us suppose that the
vector field X’ which appears in the definition (6.14) of Z7 is a unit field,
that is, that 4 = 1, and let us put

S =L X'XT, = X"X|, — XX}, (6.28)
so that (6.14) becomes

Zi=4/g5s. (6.29)
Therefore, because of (6.27), we now have
H, = S{j. (6.30)

Now, let G be a simply connected region of ¥, bounded by a simple closed
curve C of class C?, whose parametric representation is given by x/ = xi(s),
where s denotes the arc length of C. Thus x¥ = dx//ds is the unit tangent
vector pf C, and the counterpart of (4.5) with m = 1 is simply Gup =
gn;X"x7 =1 (with « = 1, B = 1). Thus if we apply the integral formula
(6.11) with n = 2 to the vector field S/, we obtain by virtue of (6.30)

f Ja Heydx' A dx? = f Ja Sjdx A dx? = ff N, Sids, (631)
G G C
where the unit outward normal N is given by

N;=/gepx", (6.32)

in consequence of (6.1), (6.7), and (6.6).

The left-hand side of (6.31) is the so-called curvatura integra of the region
G of V,, and it remains to reduce the integral on the right-hand side. By
means of (6.28), (6.32), and (4.2.20) it is easily verified by direct expansion
and use of the fact that X{,x"* = DX’/Ds along C, that

A . DX"
NS’ = —/ge;, X s

Since the field X7 is unit by hypothesis, we can decompose X7 into tangential
and normal components along C according to

. (6.33)

X7 = a(s)x"’ + b(s)N’, (6.34)
with
a’ + b2 =1. (6.35)
On taking the covariant derivative of (6.34) with respect to s, we obtain
h th
i ’j 2 ’ 7j Dx
£y X7 Dy = X N*¥ab' — a'b) + a’e;,x" Ds
.DN*" .DN*" Dx"’
b2 . NJ . '] B L . .
+ bZg, Ds + absﬂ,(x Ds + N Ds ) (6.36)
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We now reduce each of these expressions in turn. From (6.32) we have
X /N" = —(/9) 'NyN* = —(/9)™". (6.37)

Moreover, according to the first Frenet formula Dx'//Ds = nj/p,' where
1/p is the curvature of C, while n’ is the principal normal of C, given by
n, = —./g x>, n, = /g x'*. Hence by (6.32),

Dx7_ N (6.38)
Ds p
and thus
th i B _ 1
e D = p e, xINY = o7/ NN = (00 (639)

Also, since g,,;x"*N’ = 0, it may be inferred from (6.32) and (6.38) that

. ,
. DN" _ » DN’ Ly, DX —
enlV o= (V@) g o= —(W0) lgn 5o N = (/971 (640)

while similarly

s DN -1y, DV 6.41
tnx! Do = ~WO TNy =0 (641)
together with
Dx'J _ ——
g N" Ds = P lg) NN* = 0. (6.42)

On substituting from (6.37) and (6.39)-(6.42) in (6.36), noting (6.35) at the
same time, we obtain

€, X7 D; - —(/9) " Hab' — ab) + (p/9) " (6.43)
J N

Because of (6.35) we may puta = cos 0, b = s'in 0, so that ab’ — a'b = db/ds,
and substitution of (6.43) in (6.33) therefore yields
do 1

§== 2 (6.44)
NS =

The integral formula (6.31) therefore assumes the form

ds
f VI Hgydxt A dx? + ¢ — = 2m. (6.45)
G ch

This is the famous Gauss-Bonnet theorem for a region G of a two-({iimensiom:il
Riemannian space V,. In this formulation it is assumed that G is bounde
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by a simple closed curve of class C2; it is not difficult to obtain extensions of
this theorem when various conditions on G assumed above are relaxed.
(Chern [1], Rund [9], Stoker [1]). It should be emphasized that the above
derivation of (6.45) is not based on any assumption to the effect that V, is
embedded in a manifold of higher dimension. Naturally (6.45) is valid also if
V, happens to be a subspace; however, in any case it should be clearly under-
stood that the integrand 1/p refers to the curvature of C as a curve of ¥, and
is therefore the geodesic curvature of C whenever an embedding is assumed.

PROBLEMS

7.1 By using an appropriate quotient theorem, prove that g are the components of a
type (2, 0) tensor. (Hint: multiply 979, = 8, by an arbitrary vector X k) See
also Problem 3.23.

7.2 In a three-dimensional Euclidean space the components of the metric tensor
referred to orthogonal Cartesian coordinates are simply the entries of the 3 x 3
unit matrix, since in these coordinates ds? = (dx!)? + (dx?)? + (dx®)>. Evaluate
the components of the metric tensor referred to a spherical polar coordinate
system (r, 6, ¢).

7.3 In V,, with positive definite metric, let Q be a p-form Q = g,

treiy XA o A dx,
An (n — p)-form *Q is defined by

(n—p)rra= My owniy 8- grhra, gy AXPPUA A e,
where
Miyin = /9 &y, and g = det(g,).
Show that
*(*Q) = (— 1)rn—pQ,
74 1Ina V¥, with line-element
1 r

2
ds? = [272 -~ F] ar* + = dp?

where u? = r? — 42 (a constant), r > a, show that geodesics are characterized by

d 2
a"l:(é) + rz:, = br*
where b is a constant. To what type of geodesic does b = 1 correspond?
7.5 Show that the geodesics of V, corresponding to the line-element
ds? = (dx")? + (x!)*(dx?)?

are given by x! = a sec(x? + b), a, b constants.
g Yy
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7.6

7.7

7.8

79
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A particular V; has the line-element

1
ds? = dt? —

1—Ar?

dar?* — r2 d¢?

where A is a positive constant and r? < 1/A. Show that null geodesics are charac-
terized by

(;—;)2 =r}1 — Ar¥)(w? — 1)

where o is a constant. By setting 2 = 1/u solve this differential equation and
establish that these geodesics are ellipses if r, ¢ denote the usual polar coordinates.

A particular V, has the (de-Sitter) line-element
ds? = Fdt? — F~1dr* — r*d0? — r*sin? 0 d¢?

where F = 1 — r?/a?, (a = constant). Show that, in the plane 6 = n/2, nuli
geodesics are characterized by

j—; =r/a?r? — 1

where « is a constant, and, furthermore, these are straight lines if r, ¢ denote the
usual polar coordinates.

The line-element of a certain V, is

2,2
ds? = (dx)* + (dy)* + (dz)® + 2gtdx dt — c* dt? (1 - gcz )

where g, ¢ are constants. Determine the geodesics which correspond to it. Show
that the family of geodesics which pass through (0, 0, 0,0) at s = 0 are x = —3gt?
+ at, y = bt, z = kt where a, b, k are constants. By transforming from (x, y, z, )
to (X, y, z, f) where X = x + 1gt?, § = y, Z = z, F = t suggest a possible physical
interpretation for V.

A certain V, has the line-element

1
ds? = udt?* — —dx? — dy?* — dz?
u
where u=1—2gx and g is a positive constant.Show that a family of geodesics

which pass through (0,0,0,0) at s =0 is given by
=z=0.

By considering the line-element under the transformation

u'? cosh gt = 1,

u'? coshgt — 1
g

Z =z,

b
I

y=y
u'’2 sinh gt

g
discuss this geodesic in the (X, ¥, Z, ) coordinate system.

3
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7.10 Verify that

are the equations of a geodesic in a V, for which
dsz =(1 + g_x 2 2 d 2 d 2 d 2 2
= oz ) ¢ dt” — ((dx)* + (dy)* + (d2)?),

g and c being constants. In this ¥, particles follow geodesics. A particle is at rest
at x =y =2z =0 at time ¢ = 0. Show that in the subsequent motion dx/dt
attains a maximum of ¢/2.

7.11 A particular V, has the line-element
2 2t 2 2
ds? = exp v (dx? + dy? + dz?) — dt?,

where a is a positive constant. A null geodesic passes through x = xo > 0,
y =0,z =0att = ¢, in the direction of the negative x-axis. Prove that if

_to
Xo > a exp| 2

the null geodesic will never pass through the origin.
7.12 If V, has the line-clement

1 1
ds? = fzdtl — r—zdr2 — d6? — sin? 6 d¢*

show that those geodesics for which r = ry, dr/ds =0, and %0 =0 at s =0 always
move away from the origin.
7.13 Determine the geodesics corresponding to

1
ds? = z dt® — ~ dz? — dx* — dy>.

7.14 Explain how the identity (2.17) can be used in order to compute the Christoffel
symbols of the second kind for a given metric.

7.15 If ¢ is a scalar field in ¥V, and
Hi} = ¢|1|j - gijgrsd’lrls
prove that
Hyug™ = Rigy;.
*7.16 Prove that

R i + Rﬁlklilh + Rﬁmnx = RY, R, + RV, R, + RY,R,.
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7.17

7.18

7.19

7.20
7.21

7.22
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Let the metric tensor of ¥, be such that
lekhlj =0.

Show that under these circumstances

(@ Ryyp = Runiics

(b) R = constant, )

(©) R™yRyy + Ry R, + RYyR,, =0.

In V, show that

(a) sijthkhaj =0,

(b) sijthijablk =0,

() if F;; = —F; then
e F =0 ifandonlyif F,y + Fu; + Fy; = 0.

(a) If s is a scalar field of V, with positive definite metric, show that

1 0 O
—_—— T
Jg o' (\/5 g 6x’)
where g = det(g;,).
(b) If ds® = dx? + dy* + dz* show that gy, ; = O reduces to

621// azl// aZw
2y =2 7YY YV _
V=St =l

95 =

(c) By considering the transformation x = rsin 6 cos ¢, y = rsin 8 sin ¢,
z = r cos 8 show that the line-clement in (b) becomes

ds? = dr* + r* d0? + r?sin® 0 d¢?,

and hence evaluate V2y in spherical polars.

If Ryje + Rijp = O show that R, = 0.
Prove that

R RYM = 2R, R*7
where

R = giagibgkeglag
and that

Riikhll‘lj =0.

InV, a vector B, satisfies g/B; B; = 0 together with B,; + B, = 0. If B' = g'B;
show that

(@) B =0,

(b) By,B' =0,

(c) B,,B =0,

(d) if F; = B;; — By, then F;;B" = 0,

(¢) g"F;;, = 2R%B,.

PROBLEMS

*723 If
B = ghjgki[ZRﬂimRm’ + QMIRijmm — Ryl — 9"™R, R — g’mR|z|m),

show that

(a) Bhk = Bkh,

b) B""lk = 0.
7.24 In V;, AY is defined by

A — GWRI — 15IR),.
Show that
AV =A%, AY;=0, g;4%=0.

7.25 If V, is such that R = O prove that V, is flat.
If V4 is such that R;; = 0 prove that V, is flat.

7.26 Obtain all the Christoffel symbols of the second kind for
ds® = [(du)® + (dv)*]f(u + v)

where fis a function of u + v alone.

Hence solve
Rijkl =0
for f.
727 Ifds® = (dx*)* + (x!)*(dx?)? + (x!)? sin? x%(dx>)? show that
Rijkl =0.
7.28 If,in V,,ds* = (dx")* + H?(dx?)?, where H = H(x!, x?), show that
0’H
Riz12=— W

Under what conditions is Ry, = 0?
729 If V, is flat and

ds* = f(dx")* + (dx?)*]

where r = [(x')* + (x%)*]"2, find f.
7.30 A particular V, has line-element

ds? = eMdx")? + (dx?)? + (dx3)? + Hdx*)?
where 4, u are functions of x alone. Prove that V, is flat if and only if
0" — g+ W) =0.
Obtain u if (@) A = 0, (b) A = — u. (See Problem 5.26.)

291
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7.31 A tensor C},,, is defined, for n > 2, by

1
Clim = R}y + — (Rigjm + R;,5, — R,;é,, — R:..th)

R il (4
+ G- Dn=2 (9nOm — GjmOh-

Show that, if
Cionm = 9uCjlum then Citwm = = Cligm = — Cjtp»

Cuja + Cijme + Cijy, =0 and CJ,; = 0.
(C}ymarecalled the components of the Weyl conformal curvature tensor; Weyl[1])
7.32 Prove that if n = 3 then C/,, = 0.
7.33 Show thatif L;; = [g;;R — 2(n — 1)R;;]/2(n — 1)(n — 2) then

Cifa = R}y + 8tLy, — 8Ly, + g*guL; — gjkgthji
and
Chjillj =(n— 3)(L;.z|.' - Lhill)'

*7.34 (a) Let the points of two Riemannian spaces V,, ¥, be in one-to-one corre-
spondence, corresponding points having the same coordinates x’, the respective
metrics being g,(x") and §,(x"). If there exists a scalar ¢ = a(x*) for which
gi; = €%°g;;, V, and ¥, are said to be conformal. Show that if ¥, and ¥, are
conformal then

¥y = vl + 8oy + 8oy — gygtoy,
where 7; are the Christoffel symbols of the second kind formed with respect

to §;. If L;; and C/, are constructed from §,; in the same way as L;; and C/,
are constructed from g;; (see Problem 7.33) show that

Cijkl = Cijkl and Ly — Ly, + Ci’jhall = Zih:j - Ei_f;h
where the semicolon denotes covariant differentiation with respect to §; 1T
If ¥, and ¥, are conformal and 7, is flat then ¥, is called conformally flat. Show
that if ¥V, is conformally flat then

®

~

Clu=0 and L,;— L, = 0.

Discuss the dependence of these two conditions, paying particular attention
to the cases n = 3 and n > 3 (see Problems 7.32 and 7.33).
(c) Consider a V, for which

Ciy=0 and Ly~ L, =0.
Show that these conditions guarantee the existence of a scalar ¢ for which

17,75 —
I — 010, + 3970, 0) = — L,
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By defining
g-ij = e26gij
show that ¥, is flat. Hence establish that V, is conformally flat if and only if
(@ Ly; ~ Ly, =0 forn=3,
b) C/Hy=0 forn> 3.

7.35 In the notation of Problem 7.34, if F, ij = —Fj is an arbitrary tensor field in V,
and V, show that

[

9GP Fudi = (/3 F"PF o),
where g = Idet(g;;)] and § = |det(g;;)|.
7.36 If, in V,, *R%, = ¢/ R ,,, show that *RY,, has the properties (4.2.6).
7.37 Show that, if n = 4 (see Problem 4.9),
(@) *RY*RM;, = 0(*R”,*R™,);
)] Cijklcklih = %‘H;(C"m c™)
where CY,; = ¢g*C,/,, (Bach [1], Lanczos [1], Lovelock [1, 4]).
7.38 If ¢'is a vector field in ¥, for which C/u®' = Oshow that either g, 9'¢' =0o0rV,
is conformally flat (Brinkmann [1], Lovelock [4]). (See Problem 4.10.)
*7.39 The Bel-Robinson tensor T¥** is defined, in V,, by
Tijkh = Riakthbja + Riathkbja . %ginalthkb .
where
Rkbal = gchcbah Rkbd, = gdﬂRkbab
Show that
Tikh — Tiikn . pijhk

Hence show that if R;; = 0 then
(@) T_‘{"" is totally symmetric,
() T”khgij =0,
(c) T#, =0
(Bel [1], Robinson [1]).
740 Prove that G} = —1satRrs .
Hence show that if n = 4
Gi= —(R',, + R, + R3;))
G? = R2421 + R“sn
and obtain the remaining components of GS.
7.41 Consider a particular ¥, with line-element
ds® = (dx')? + (dx?)? — (dx3)?

and the hypersurface characterized by

=ul,  x2=u? X = W) + @)
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Show that all points on this surface are such that
det(g,,) = 0.

7.42 Show that if g;; is positive definite then so is g,,4, defined by (4.5).
7.43 In E, with coordinates x’ (i = 1, 2, 3, 4) and line-element

ds? = (dx')? + (dx?)? + (dx3)? + (dx*)?

a surface S is defined by

x! = cos u!

x? = sin u! cos u?

x3 = sin u! sin u? cos u3
x* = sin u! sin u? sin ©®

(hypersphere of radius 1). Compute B, Gup> N A Q.. and R g;, for S.
7.44 In E, with line-element ds? = (dx')?> + (dx?)? + (dx®)?, the surface area 4 of the
hypersurface x' = x'(u®) (@ = 1, 2) is defined by

A= J‘f det g, du' du?
R

where R is the appropriate region in the u!, u® plane.
(a) If the surface is characterized by

1 1 2 2

xt=u!, x2=u’ x*=f@'ud),

show that

A= f f V1 + @f/our)? + (9f /ou?)? du* du?.

(b) Under transformations of the type ii* = &*(uf) show that A is a scalar. Interpret
this result.
7.45 In E, show that a surface of revolution is characterized by

x! = f(u')cos u?
f(ub)sin u?

= u!

x2
x3

(0 < u? < 2n). Evaluate its surface area.

7.46 In E; a torus is defined by

x! = (b + asin u')cos u?

x2 = (b + asin u')sin u?

x3 = acos u',

where a, b are constants (@ < b), 0 < u! < 2n, 0 < u? < 2n. What is the surface
area?
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*7.47 Showthatifn >4and det(Q,,) # 0 then (5.28) imply (5.32) (Thomas [2],Berry [1]).

| *748 (@) If

Allr) = 816375, BY, - B BY - Bl
show that
. rtin — 1! .
Alr) = ———— 6/ — rBiB* Aiy(r —
(r) [e— L r’B;B5 Al'(r — 1).
Hence show, by induction, that
) tn — 1)! "(n —
Air) = ri(n — ! i rri(n — 2)! BiBe.
(n—r—1) n—r—11*7"
) If
N; = Aa,-,-‘mi"_la“""’"-lB;ll <o Bin-1 /M
"IV [det g4

sho“./ that g"fNiNj = 1if A = 1/(n — 1)!. Hence, with this choice of 4 and by
considering N,g’*N ; show that
BB} = 3] — ¢"N,N,.
7.49 Prove that in E; on the surface of a cylinder the geodesics are helices.

*7.50 Prove that the geodesics on the surface of a sphere in E, are great circles, that s,
they 1¥e in a plane through the center of the sphere. Hint: show that, in 6, ¢
coordinates, one of the geodesic equations integrates to

. d

sin? @ —¢ = sin o
ds

where a is a constant, and this gives rise to

d_¢ _ sin o
d0 ~ sin O(sin? O — sin” «)'/2

In this differential equation let u = tan « cot 6 to find

tan a

cosip — f) = 5.

and write the latter in terms of x, y, z.
*7.51 (Mercator’s projection)
(@) Find the geodesics corresponding to

ds* = sech?*y(dx? + dy?).

(b) In E; a hemisphere of unit radius (coordinates 6, ¢) is mapped onto the x, y
plane by

X =4q¢
y = In(cot 46).
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Calculate the metric for the hemispherical surface in terms of x and y and show
that the great circles are represented by the curves

sinh y = a sin(x + f), ,

a, B constants.

7.52 The coefficients of the rth fundamental form C,,,,; of a hypersurface V,_, ofa ¥, i

are defined by the recursion formula

Corap =97cCpo1yyp (r=2,...,n),
where Cy )5 = Gup> Cizyap = Qa5 With each of these one may associate the scalar
M, defined by

M, =g%Cqiryp r=0,...,n—1).
Show that the fundamental invariants of V, _, as defined by (5.18) can be expressed
explicitly in the form

21Hg, = M, — M,
31H = M3, — 3M,M ) + 2'M;),
4!H = M{, — 6M34 My, + 3M%) + 8M ()M ) — 3!M ),
and so forth. By means of the equation (5.28) and the above expression for H ,,
show that
2H, = R — R + 2R, N'N",

where R, R denote the scalar curvatures of V,. ; and V,, respectively. Show that if
the embedding space is Euclidean,

41H, = R*"R,,,. + R* — 4R"R,,

(Rund [5]).

7.53 By means of Newton’s formula show that, for a hypersurface V,_, of a V,, the

quantities M, as defined in Problem 7.52 are related to the invariants (5.18)
r)
according to

r—1
(- 1)r+ er(r) = Z (— I)SH(S)M(r—s)’
s=0

in which H,, = 1. Using the Cayley-Hamilton theorem show that the coefficient
of the nth fundamental form of V,_, is given by

n—1

Conap + 2 (1’ HyCoumgap = 0.
s=1

(Note: this is a generalization of the well-known theprem in the classical dif-
ferential geometry of surfaces according to which the third fundamental form me;);
be expressed as a linear combination of the first and second fundamental forms.

(Rund [7]).
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7.54 In the notation of Problem 7.52, show that

H,, > oM
s _ — 1)+ ®
ou” = 1( )‘ s—1) u®

7.55 The coefficients of the associated fundamental formsofa V, _ 1ina ¥, aredefined by

r—1
(- 1)'+1P(r)¢p = Z (- I)SH(S)C(r—s)aﬁ r=1,...,n),
s=0
in the notation of Problem 7.52.
Show that, if ¥, is a space of constant curvature,

9**Piyagia = 0
(Rund [6]).
7.56 Show that the rth curvature of V. is given by
Hyy = 555,00 - Qfyr!
Hence show that the curvatures H @»>Hay, ..., H (2m Of a hypersurface embedded
in E,, with 2p + 1 < n, are intrinsic quantities of the hypersurface (Lovelock (IGY)R
7.57 If X', Y, Z! W' are components of arbitrary type (1, 0) tensors the notation

R(X, Y)Z is frequently used to denote RiyX*Y'Z' while (R(X, Y)Z, W repre-
sents R/, X*Y'Zig, W* (Nelson [17). Show that

R(X,Y)Z = —R(Y, X)Z,

R(X, Y)Z + R(Y, Z)X + R(Z, X)Y = 0,
RX, )Z, W) = —(R(X, Y)W, Z),
(R(X, Y)Z, W) = (R(Z, W)X, Y.

7.58 If, in V,, A, satisfies Ay; + Ay = 0 (the Killing equation) show that, along any
geodesic, 4; dx*/ds is constant. Conversely prove that if A, dx'/ds is constant along
any geodesic then A, satisfies Killing’s equation.

7.59 In a particular Vs, 4, satisfies the Killing equation and A4;A4° = constant (#0),
where 4" = g'i4,. If R;; = 0 show that
(@) A4 =0,

) Af|inp.ghj =0,
(¢) A;B' = 0 where B = eMa, A,
(d) B'Big,; = 0.
If A; has the additional property that all null vectors orthogonal to it vanish
identically, prove that R/,;A; = 0and hence that V, is flat. (See Problem 7.38.)
7.60 If, in a particular ¥,, there exists a non-null vector A; for which
CiaAid* =0
and
eMC A, 47 =0,
where A = g'/4; and C, jx is defined in Problem 7.31, show that V, is conformally
flat.



INVARIANT VARIATIONAIL

PRINCIPLES AND
PHYSICAL FIELD
THEORIES

Invariant variational principles have had a profound inﬁuence on physical
field theories, and this final chapter is devoted to an introduction to the
Su}:,')\]e;t};ysical field is described by the so-called field functions (e.g.,. the
components of a vector field), and it is usually as§umeq that the field equations
that govern the behavior of the field are identlca_l v&_uth the Eule_r-ngrangc;
equations of a given problem in the calculus of varlathns. The action mtf:gra‘
of the latter is supposed to be invariant under f:oordmate tragsformatlons,
this implies that the corresponding Lagrangian is a scalar density. Howevefi,
for any given type of field, this invariance.requlreglent must be .augment;:

by an additional assumption concerned with invariance properties, namely,
one which specifies the transformation propertxe.:s of . the field functlor.ls.
These two invariance requirements, taken in conjunction, severely restrict
the classes of admissible Lagrangians and hence also the types of acceptable

ations. '

ﬁeﬁ et?l?s chapter three such field theoriest are considered, of which the
first two are concerned with field functions which are tensor fields of type
(0, 1) and (0, 2), respectively, while the third is a combination of the previous

1 References to other field theories which have been considered can be found in a survey article
by Rund and Lovelock [1].
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cases. These examples have been selected because they contain Maxwell’s
equations, the Einstein field equations, and the Einstein-Maxwell equations,
as special cases. The techniques developed in this way are then used to
significantly strengthen an earlier result due to E. Cartan [1] and Weyl [2],
which is frequently used to motivate the field equations of Einstein.

Although oriented toward the needs of relativists, this chapter requires
no previous knowledge of relativity. Nevertheless, an acquaintance with the
elements of general relativity as covered in, for example, Adler, Bazin, and
Schiffer [1] would be beneficial.

8.1 INVARIANT FIELD THEORIES

In this section we discuss the role played by invariant variational principles
in the theory of physical fields, with particular reference to the electro-
magnetic and gravitational fields. We therefore adopt a notation which is
more appropriate to these applications than that used in Chapter 6. In
general we shall be concerned with action integrals of the type

1= [ Lot o), o8, p) d) (L1)

where the Lagrangian L is a given function (assumed to be of class C* in all
its arguments), G is a prescribed simply connected region of our given mani-
fold X, (referred to local coordinates x"), and x4 =1,... , M) denotes
the dependent variables with

D

a4 pA 62,0A
b= A ms P

P X kT axh oxk

and
d(x) = dx' ... dx".

A comparison of (1.1) with (6.7.1) shows that the role played by the set
(¢%, x"(t*)) in Chapter 6 is here played by the set (x*, p#(x"). In this notation
the Euler-Lagrange expression (6.7.20) is

d [éL d (oL oL
E = | = _ % J— 1.2
Al =25 [apj;, dx* (apf;)] op*’ (12
and the Euler-Lagrange equations (6.7.19) are
E, (L) =0. (1.3)

It is usually assumed that the integral (1.1) is invariant under (proper)
coordinate transformations

T = xM(x), (1.4)
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which implies that L must be a scalar density, that is, that the transform of L
under (1.4) is given by

L=, p*, phs P) = JL(X", p*, p%h, P, (1.5
where
J =det(JH) (> 0), (1.6)
and
ox*t
Jh= - 1.7

We henceforth restrict our considerations to such Lagrangians.

Up to this stage no assumptions have been made concerning the trans-
formation properties of p4 under (1.4), and in order to proceed further we are
forced to discuss specific cases. We shall primarily be concerned with two
such cases: in the first of these p# will represent the components of a type
(0, 1) tensor field (a covariant vector field), while in the second case they will
represent the components of a type (0, 2) symmetric tensor field (a metric
field). These particular examples have been selected, first because they serve
to illustrate the typical techniques used to analyze the problem under
consideration, and second because of their importance when applied to
certain physical field theories.

8.2 VECTOR FIELD THEORY

In this first case we consider scalar densities of the type
L= L(xh, 1/ l//h,k’ I 2.1)

where , are the components of a covariant vector field (and here play the
role of p4) and g,, are the components of a symmetric type (0, 2) tensor
field for which g = |det(g,,)| # O. It is assumed of the g,, that they are ar-
bitrary but preassigned whereas the ¥, are the functions to be determined
by the variational method (Rund [3]).

By considering the particular transformation

X" = x* +a* 22)

where a” are constants, it is easily seen that (1.5) and (2.1) imply

L = LYy, ¥ui> G- 23) i

8.2 VECTOR FIELD THEORY

30
For convenience we introduce the notation
—
oY,
. oL
Y =
3 Vs s 2.4
Av_ L
59:‘,’

where, in the latter i i
Yo g mthe whié l\;ve have ;egarded the argumc?nts g;;in (2.3) asrepresenting
2(g;; i N g;; and g are to be considered as independent. As a
consequence of this AY is symmetric. Our first task will be to discuss the
tensorial character of ¥, W9, and A¥.

Under the transformation (1.4) the arguments of (2.3) transform as follows:
lph =J ;. '//ia
U = Jht: + J;.Ji‘/’i,j, (2.5)
I = J;.Jigij’
where J} is defined by (1.7) and
_aJ, 0*x!

i

hEToxF T 8% 0xt (2.6)

If we take (2.3) and (2.5) into account then in thi
N . . this case (1.5) red
following identity in y,, ¥, ;, g,;, Ji, and J,, : (1.5) reduces to the

LUy, v + J;':Jiwi,j’ J;; {cgij) = JL(y,, '/’i,j, gij)' 2.7)

Differentiati i . .
of @) ntiating (2.7) with respect to y,, ¥, j» and g;; we obtain, by virtue

I + P = I (2.8)
VI = TPy, (29)

and
AMJLJT = JAY, (2.10)

respectively. The relations (2.9) and (2.10) clearly indicate that ¥ and A¥
are the components of tensor densities of type (2, 0). However, in view of the
term P*J %, in (2.8), it appears that ¥ have no tensorial character. We shall
return to this point shortly. .

In order to cxplqit (2.7) further we shall eventually differentiate it with
Tespect to J, and J),, which means that we will require the corresponding
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derivatives of ,, ¥, ., g and J. Taking into account the appropriate
symmetry relations we find, from (2.5),

Wy _

=&y,
6J§ hl//s
Wity 135, + ¥, TL00n
o (2.11)
aghk i i st
= g, (Jio, + JidL),
an gis(J 1 0% 9%

Vs _ 0815, + 3,30,
st

the derivatives of i, and g, with respect to J", vanishing identically. Further-
more, if A}, denotes the inverse of J}, that is,

A Jh = 5 (2.12)
then, by (1.3.5),
o _a. @13)
aJ:

We first differentiate (2.7) with respect to J_,, which, by (2.4) and (2.11),
yields

PH,(0,8, + 6,61) = 0.
In general ¥, # 0, in which case the latter equation implies
Pst 4 P =, (2.14) -

or, in view of the tensorial character of V¥,
P g = (, (2.15)

This is the first set of conditions which L must satisfy as a result of (2.7).
A remarkable feature of this result is the fact that gradlent_ ﬁeldg, that is,
fields for which i, ; = ;;, must be excludeq from our congderqtmns. FOIl"
the latter condition combined with (2.15) yields ¥* = 0, in which case

would depend solely on y; and g,. ) ’
If (2.14)pis applied to (2.8]), we se]e that the first term on the left-hand side of

the latter vanishes identically, which implies that the ¥* are the components

of a tensor density of type (1, 0). :
We now differentiate (2.7) with respect to J$, and use (2.4), (2.11), and (2.13

to obtain )
Vroyp, + PR ik + U, T8 + RM UL, + Ji6) = JLA. (218
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To the second term on the left-hand side we apply (2.14). This suggests the
following notation:

Fis=¥o; =¥, (2.17)

these quantities being the components of a skew-symmetric type (0, 2) tensor.
The relation (2.16) can thus be written in the form

Wy, + JP*F, + 2A%g, Ji = JLA.. (2.18)

Equation (2.18) is an identity in Ji. Consequently, if we consider the par-
ticular transformation

% = x, (2.19)
in which case Jj = 5], A' = 8, J = 1, the relation (2.18) reduces to
Wiy, + PIF,, + 2AYg, = 3L, (2.20)

which is the second (tensorial) condition to be satisfied by L. Equations (2.15)
and (2.20) are usually called invariance identities.

Now that we have exhausted the information which we can obtain from
(2.7) we turn to the Euler-Lagrange expression (1.2) which, in this case, is

E(L) =¥, — ! @.21)
By virtue of (2.5) and (2.9) this can be expressed in the form
E(L) = W9, — ¥, (2.22)

where the vertical bar denotes covariant differentiation relative to the
Christoffel symbols defined by the tensor g, ;- The relation (2.22) clearly
indicates that the E'(L) are the components of a tensor density of type (1, 0),
so that the Euler-Lagrange equations (1.3), namely,

EX(L) = 0, (2.23)
are tensorial conditions.

From (2.21), (2.15), and (4.1.27) we obtain the identity

EXL), = E{L), = W= - (2.29)
Consequently, if the Euler-Lagrange equations (2.23) are satisfied, then
a_\yi =0, (2.25)
Ox

which is called the generalized Lorentz condition.

We now wish to obtain an additional identity which, upon (2.23) being
satisfied, reduces to a divergence condition. If we differentiate (2.20) co-
variantly with respect to x’, we find

2A‘jll‘gjs =L, - ¥y, - Y, — ‘Ptijjs — \P'ijsh. (2.26)
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Because of (2.17), (2.22), and (2.24), this can be expressed in the form
‘ — WYF - 227
2Atj|tgjs = L|s + EI(L)M 'l’s + EJ(L)Fjs - \thtls k4 F]slt ( )
i f (2.15) and the identity
By virtue of (2.15) -

F'sh + Ft.ils + FstLi =0

J
[which is an immediate consequence of (2.17)], we can express the last term
on the right-hand side of (2.27) as follows:
. .
_‘Pthjsh = —%\P!j(Fjslt - Fy)) = %\PUthls ==Yy
Consequently (2.27) can be written in the form
j t — Yy,
2Atj|tgjs = EI(L)h'//s + EJ(L)Fjs + [Lls - ¥ ‘ﬁu; \P wtl{s] . .

It is easily seen that the quantity in square brackets vanishes identically,
so that we have

| " i 2.29

2A", = g"Y,E(L), + ¢"F ; E(L). (2.29)

From (2.29) we see that if (2.23) is satisfied, then

A", =0 (2.30)
. .
The quantities A” are usually called the components. of thefenerg y-momentum
tensor density and, by (2.20), they can be expressed in the form
Atr — é_(gtrL _ \Pzgrs'//s _ grs\Pthjs).
We conclude this section by considering the following particular choice
for the Lagrangian: -
L= \/g g"Gg* Fi;Fpy + w4, (2.

where p is a constant. It is clearly a scalar density_of the f.orm (2.3t)hS(i that the
analysis of this section is applicable. From (2.32) it is easily seen thal

Y = 2\/5 g7g"Fy = 2\/5 F*,

(2.31)

and |
W* = 2u./g g™,
Consequently, for this example, the identities (2.22) and (2.31) become
’ Py s . 3
EXL) = 2(/9 F*); — 2u/9 8", (2.33)

and o i
Al — —\/é [FiFyg" — 39" (F;F)] — l‘\/g [gg™¥:¥; — 39" (@)D,

234
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respectively, while the condition (2.25)is

a )
k52 Wag9y) =o. (2.35)
Consider the particular case when gi; represents the metric of Minkowski
space-time, for which, by definition 911 = 922 = ¢33 = -1, g,, = 1,

9:;;=0( #j).If u = 0, then (2.33) and (2.28) are Maxwell’s equations while
(2.34) is the well-known energy-momentum tensor of the electromagnetic
field provided that we identify y, with the electromagnetic vector potential.
If 4 # 0, then (2.35) reduces to the usual Lorentz condition.

8.3 METRIC FIELD THEORY
We now turn our attention to scalar densities of the form

L = L(x", nic> Gnk, j»> Gk, jo)s (3.1

where g,, are the components of a symmetric type (0, 2) tensor field with
g = |det(g,,)] 0. Lagrangians of the kind (3.1) are considerably more
complicated than those of kind (2.1) for two reasons: first, the field considered
in (3.1), namely I, satisfies a transformation law [under (1.4)] which is
more complicated than that of the vector field, and second, the function
(3.1) depends on second-order derivatives of the field whereas the Lagrangian
(2.1) is dependent on first derivatives of the vector field. It will be seen that,
as a result of these properties, the resulting calculations are substantially
longer than those of the corresponding vector field case (Rund [3]).

By considering the particular transformation (2.2) it is again possible to
show that (1.5) and (3.1) imply that

L= L(ghks Gk, j> ghk,jl)a (3.2)
so that (1.5) can be written in the form
E(ghk’ ghk,j’ ghk,jl) = JL(ghk: Ghi,j» ghk,jz)- 3.3)

A fundamental role will again be played by the derivatives of L with respect
to its arguments, which we denote by
JL oL

- oL Ak — ARk _
agij 0g;; 09}
where the remark following (2.4), and its obvious generalization to 9ijx
and g;; ., is again applicable. Thus the following are immediate properties:

AY

(3.4)

AY = A¥, (3.5)
Ak = pdik (3.6)
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Aidkh — AJikh _ Abjhk (3.7)
As in the preceding section we first discuss the tensorial character of AY,

AUk and AUk,
Under (1.4) the arguments of (3.2) transform as follows:

gi; = J?J?gab’ (3.8)
Giju = JSI5 + T8I P08ay + T35 T3 Gab e 3.9
Gijkn = (JiakhJ';' + Jiaijbh + Jiah']jbk + ‘]?Jjbkh)gab
+ (&I + T BT + JAT5 + T BTy + T ) b
(3.10)

+ ST ab ca>

where

Ja g 3"
Pk T axh T 9 O%* 0%

If we differentiate (3.3) with respect t0 g,y a5 Japc> aNd g5, taking into
account (3.5)-(3.10), we find respectively that

iian OFiian i
JADed = Rin _—agw = Riikhgagt Je g, (3.11)
ab,cd
J—_ gi; —... 0G;

JA®e = Rikh -—gg”""' + Ak —69 T, (3.12)

gab,c gab,c

and
A = Foan iin | g Osia | 713 0y (3.13)
0da 09ap o

The relation (3.11) establishes that the A***? form the components of a type
(4, 0) tensor density. However, because of the presence of the first term on the
right-hand side of (3.12) and the first two terms on the right-hand side of (3.13),
the quantities A°>¢ and A®’ have no tensorial character. Nevertheless, it is
possible to introduce quantities closely related to these which are tensorial
in character. We do this in the following indirect manner. Let h;; be the
components of an arbitrary symmetric type (0, 2) tensor field, so that it and
its derivatives transform in the manner indicated by (3.8)-(3.10) in which g;;
is replaced by h;; throughout.
We now define a new quantity F by t

F =A™, o+ A%h,  + Ah,,. (3.14)

+ This quantity was first introduced by du Plessis {1].

8.3 METRIC FIELD THEORY
If we substitute (3.1 1)~(3.13) in (3.14) we find

. Tog 2 g
JF = Ku,kh[ i.kh + Gij, kn agi',kh
agab, cd abed 6gab,c hab-f + ag:b hab]
i 08;; ag, 7]
+ Ku,k[ .k p + 9ij, k | 0F;
rgab,c b, ¢ Tgab h, | + AY ﬁﬁg,,: hgy |. (3.15)
From (3.8)~(3.10) it is easil ities i
Yy seen that the quantities in square brackets i
' ets
(3.15) are, respectively, R ns By i, and h;;, so that (3.15) reduces to ®
e o JF =F; (3.16)
1s, F'1s a scalar density. We now wish t iti A § BF
con b anocalar density. ¥ o find quantities ITY, [T o that F
F = AWy + T 4 T, (3.17)

H . . .
ere the vertical stroke again répresents covariant differentiation relative to

the Christoffel symb “ i
ol ymbols y,% defined in terms of the tensor g;; by (7.2.2), so

Bijp = hiju — Vha; — Yk Bias (3.18)
and

hijlkll = hij,kl - Viakhaj,l - Vj"khia,z - yiak,lhaj = Vil
— ub i b ¢ c o
belhb,,k + bz()’b whe + Vi % Ppe) — ')’jbx hipi + yjbl(yick hey + v, hy)
- Y Ihij,b + Vi I(yicbhcj + Vjcbhic)' (3.19)

We substitute (3 18) and (3.19) in (3.1 i i
! . G. -17) and identify the (symmetri
coefficients of h;; and h;;, with those in (3.14) to find that ITi+* a(nzli ngesligj;id)

be defined by
TI5% = AGK 4 2 ¢ Aeidt 1 5 5 pt |
AVE 4 2y 8 AGRE 29,0 ABH 4 ok AlibL (3.20)
and
o Aij i aj, 3 ui . ‘
IT A "fl‘ 'Y,,‘k,z/b\c:kl + '}{alk,fA k1 yablyb'k Ak _ 'chl'}’bjk/\ti‘k'
— Py AbeR .ybjlycxkAbc,kl _ 7kb1)’cib/\cj‘kl _ kaly ijd’“
+ p Ik P Tk, 621

(\;/;361;:)1? establ'lsh that I'II‘L" and‘l'I”' are tensorial. According to (3.11) and
(3.17) ! lfac;lu:n;tg F ; A ij}::.j, k1 18 a scalar density, and hence it follows from
t .C(O . 1Y + Ay, T 1s a scalar density for arbitrary symmetric
ype (0, ) tenso.rs h;;. By an obvious generalization of the quotient theorem
of Section 3.2, it follows that (ITV + IT") and (IT%* + T1/¥) are the coms
bonents of tensor densities of type (2, 0)and (3, 0), respectively. However, fron;
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(3.20) and (3.21)

I = 11, [Tk = [, (3.22)

so that IT¥ and IT¥* are the components of tensor densities of type (2,0) and

(3, 0), respectively. These are the quantities which we were §eek1ng:
Surprisingly enough, the relations (3.14) and (3.17) als.o yield an important

additional result if we rewrite them in a more appropriate form. Clearly we

have

hija AT = (hy A, — B AV

ijk
and
hij,klAij'“ = (hij,kAij’kl),t - hij,kAij'kl,t
= (hij,:Aij'“),k - (hiinj'kl,z),k + hiinj’kl,tka
so that (3.14) can be expressed in the form
F = —hijEij(L) + [hiinj"‘ + h,-j,,A”’“ — hijAU’“,,],k (3.23)
where E¥(L) is the Euler-Lagrange operator (1.2) for the case (3.2), namely,

y d o d 5
EL) = 55 [A — 5 (M) — AV, (3.24)

It is easily seen that (3.17) can be expressed in a similar manner, namely, as

F = —hij{_Aij'kl[kll + nij,klk _ Hij} + [hijr[ij,k + hij“Aij.kl _ hiinj,le;I;'S)

We observe that the quantities in square brackets in (3.25).are the (;omponex}ts
of a type (1, 0) tensor density, in which case the covarlapt derl_vatlye with
respect to x* can be replaced by the corresponding partial derlygtlve [§ee
(4.1.27)]. We shall now establish the equivalence of the quantities which
are respectively in square brackets in (3.23) and (3.25). From (3.20) we have
hijnij,k + hij"Aij,kl _ hiinj,kl" — hij[Aij’k + 47ailAaj'“ + j)).bkll\ij,bl]
+ (hij,lAij,“ - 27ialhnjA”'kl)
— hij(Aij,li + 2,yailAaj,kl _'_“,yaklAi,,al)
= h; AWk + hij AR — hy AHK .
Consequently (3.23) and (3.25) imply that
h[EHL) — {— APy, + T, — TV} =0

for arbitrary symmetric h;;. This establishes the identity

EU(L) = —TI9 + TTik, — UK, (3.26)
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which, in turn, demonstrates quite clearly that the E¥(L) are the components
of a symmetric tensor density of type (2, 0).

We now wish to obtain the invariance identities associated with 3.2).
These are a direct consequence of the fact that (3.3) is an identity in J",_,
JJ,, and J? after the substitution of (3.8)~(3.10). Differentiating (3.3) with
respect to J,,,, noting (3.10), and taking into account the appropriate sym-
metry relations, we obtain

RUKJE5836, 0 + 51045, + 81015, + 816,64 + 61050, + 64SLE%) = O,

This is valid for an arbitrary transformation; thus, in particular, also for
the identity transformation

¥ =x' withJ! = 8, (3.27)
in which case it reduces to

APt 4 Atus | Aubst _ (3.28)

by virtue of (3.7). This is a tensorial condition. By repeated application of
(3.28) and (3.7), an important identity can be obtained as follows:

sb,tu __ th,us b,st _ Ats,bu tu,sb t,b. b tu,sb bs,
AT = — NI NS NI g ATSh | puibs g AUSD  DAtah _ Absur
or

Asb,tu — Atu,sb. (329)

We now return to (3.3) and differentiate it with respect to J/, to find, by
(3.9) and (3.10),

ATEHIATT; 00618 + 816 + J2I88H0 6, + 836)]19us,e
+ 457(57 8% + 5300 Phga} + 2RUKSSIS, + 816G, = O.
For the special transformation (3.27) this reduces to

2/\Sb,mgrb,c + 2A!b’scgrb,c + Anb,“gab.r + ASb,tgrb + Atb,sgrb = (330)

We now wish to express (3.30) in a more useful form, and this we do by
introducing a normal coordinate system, as discussed in Section 4.3, where
it should be remarked that this is permissible by virtue of the fact that the
Christoffel symbols define a symmetric connection on our manifold V,. At
the pole P of this normal coordinate system, where P is chosen arbitrarily,
we have y;, = 0, so that by (7.2.3), g, = 0 and gijx = 0. A comparison of
(3.20) and (3.30) shows that

HSb,tgrb + I-Itb'sgrb =Y
that is,

It + 11 = Q. (331)
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From (3.22) and (3.31) we thus find
HSM,[ — _Htu.s = Hts,u — __Hus,t

or
It = 0, (3.32)

at P. However, since IT** is tensorial, this is valid in an arbitrary coordinate
system, and furthermore, since P is arbitrary, the relation (3.32) is valid
everywhere. Thus (3.32) is an identity which holds throughout V. It is, in
fact, equivalent to (3.30).

Remark 1. From (3.32) it now becomes evident why we have concentrated
our attention on scalar densities of the type (3.2) rather than on the more
natural (and simpler) choice

L= L(Qip gij.k)-
In the latter case AY"* = 0, which implies by (3.20) that
[Tk = Al
However, the identity (3.32) then ensures that L/dg;;, = 0. Thus we have
the following theorem.

THEOREM

There does not exist a scalar density L = L(g;;, g;;,) which depends solely
on the g;; and their first derivatives.

Remark 2. Instead of confining our attention to scalar densities of the type
(3.2), we may consider relative tensors of type (r, s) and weight w, with the
same functional dependence as in (3.2), namely,

iyeiy gl
Al = AYVTE(Gs Gij ko Gij, 1

and define
Pgeeeip iye-ip
Airirabed 043, iripsabe _ %
Jieed ) Jueeed = .
° agab.cd : agab,c

The analysis giving rise to (3.11), (3.28), and (3.32) remains essentially un-
changed. The counterparts of the latter imply that A%< are the com-
ponents of a relative tensor of type (r + 4, s) and weight w, which satisfies

Ai.l---i,-;ab,cd _'_Ai'l-ni_,;db,ac +Ai_1~~~ir;cb.da:0’

J1ds Jis J1-Js

while
i'y--i.,;ah,ck — 0

i1---ip;ab, c ¢ Aiy--ir;ab, bk a  giy---ip hb,ck b
Al i + S Al + 2y, 5 AR + 2y, AR

Jids J1ls JiJs
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Again we see that if 4%t irabed — f1---ir;ab, i

re%ative ° S tthlf A =0, then.A;‘,,,,‘j!“ ¢ = 0; that is, there are no
nsors the components of which depend on g, . explicitly (see

also McKiernan and Richards [1]). '

We now return to (3.3) once more, and diff i it wi
i : . 3 erentiate it with respect t
J3, which, by (2.13) and (3.8)—(3.10), yields pect o
Aijkhesass b yc a s Jc a c SS
AY w’éﬂ‘.’i""": + Jioros I I + JiIbec 65 J8 + JiI 568639 up. ca
+ AVHGIGITL + JiS83 T, + T80 50)g, .
+ AY(S753TY + Ji020%g,, + 15 = JASL, (3.33)
where y; contains terms which are linear in J »'e and J,° ;. For the special

transformation (3.27) we see that 4° = 0, in which
(Buchdahl [1]) #; =0, in which case (3.33) reduces to

sb, ced ab, s i
ZA € grb,cd + 2A b dgab, rd + 2A b,cgrb,c + Aab, xgab,r + 2A8bgrb = :L

(3.34)

We now wish to rewrite (3.34) in a more useful form. In doing so we will
frequer}tly rpake use of the following result, which follows from (3.7) and
(3.28): if a;; is any quantity which is symmetric in i and Jj> then

o AT = Jo (AP 4 A%y — 30 ; A, (3.35)
By (7.3.16), at the pole P of a normal coordinate system, we have

Rbrud = %(gbd, ra + gra. bd — gdr,ab - gab. dr)’
so that a repeated application of (3.35) yields

Aab'Sderad = _%Aab,sd(gab, dr + gdr,ab) (336)
at P. Furthermore, by (3.21) and (3.32)

Als — l—Its _ ‘yatk,lAas, kI __ 'Yask,lAat'kl' (337)
Since at P

ya’k,l = %gtb(gab, kit + 9ot — Gar, b1 (3.38)

the relation (3.37) can be expressed, by repeated application of (3.35), in
the form o

A® =TI" — fgth(gah, i+ G, aASH — %gs"(gah, ki + Gue, ad A (3.39)
at P. If we apply (3.36) twice to (3.39), we then obtain
A = 1% 4 LgthAsbisag, o 1gsh AsbdR, (3.40)
We now substitute (3.36) and (3.40) in (3.34) to find, at the pole P,
— AR LTI 4 1AW raR,s | — LgrsT, (3.41)
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Using similar arguments to those following (3.32), we conclude that (3.41)
is valid everywhere in all coordinate systems. In view of (3.22) the relation

(3.41) thus gives rise to
IT* = 1g"L + 3A“*R,",,, (3.42)

which is, in fact, equivalent to (3.34). Thus for the Lagrangian (3.2) the
invariance identities are (3.28), (3.32), and (3.42).
If we return to (3.26), and note (3.32) and (3.42), we find

Eij(L) — —%gijL _ %Aab, idejad — Aij’“ml‘ (3.43)

This form of the Euler-Lagrange expression is particularly useful, since it
indicates that it is only necessary to evaluate AY* when an explicit expres-
sion for EY(L) is sought.

Finally, we turn to the evaluation of E¥(L);; which we again evaluate at
the pole P of a normal coordinate system. From (3.24) we have

EU(L)U = —A% hk,,hkj + AR — Aij.j : (344)

By virtue of (3.28) the first term on the right-hand side vanishes identically,
so we need consider only the remaining two. In view of (3.20), (3.32), and

(3.35) we have
Aibk = § ATK 4y T AabKE ok AaL S
so that
AR = (5 AR)

which, at the pole, reduces to

Aij,k’kj — ,yail’ijal,kj + 2yail,kAal’kj,j' (345)
In view of (3.38) and

yail,kj = %gih(gah, wj t Ginaxj — gaz,hkj)
at P, we see that (3.45) gives rise to

Aij’k,kj = _%gihgal, hijal'kj - gih(gal,hk + gkh,at)Aal’jk,j’ (3.46)

where we have made use of (3.28) and (3.35).
However, from (3.34), we have

A = 1g9L — g, g"APC — SA g, 16" — G NN Gua b F Gab, 10
so that at P,
AV ;= 3TN g 0y — g A" (Gra,ap + Gav,1a) — gIAI" G, 5 (347)
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If we substitute (3.46) and (3.47) in (3.44), noting (3.29), we find, at P
E”(L)I ;=0. (3.48)

As l_)efore this is a tensorial identity and is valid throughout V¥, in any co-
ordinate system. This establishes the following theorem.

THEOREM

For any scalar density L = L(g,;, g,; 4, 9ij. ) the components E¥(L) of the
Eulger-Lagrange tensor density are such that their divergence vanishes identi-
cally.

We shall conclude this section by looking at the specific scalar density
defined by

Lo =a/gR ~24/g = o /g 9“g"R p0q — 20-/9, (3.49)

where o, 4 are constants and R and R, are defined by (7.3.26) and (7.3.16).
Clearly L_,o is a scalar density of the type (3.2) so that we may apply the above
analysis in order to calculate EY(L,). As indicated earlier, this requires only a
knowledge of A¥* for L,, which we now evaluate. From (7.3.16) and the
remark following (3.4) we see that

= ((620] + 5;5)(8}8L + 8+8}) + (5,61 + 8:5)(6k8, + 545L)

— (0,00 + 5(6))(953; + 858}) — (80] + 846])(5%8" + 5461)]. (3.50)
Consequently, from (3.49) and (3.50), we have

Alik _ _a\/; 2ghight — gikglt _ gitgik

5 , (3.51)

which, when substituted in (3.43), yields by virtue of Ricci’s lemma,

E™(L,) = a/g [R™ — 14"R] + A\/g g™ (3.52)

where R" is defined by (7.3.29). We note that the quantities in square brackets
are the components of the Einstein tensor defined by (7.3.30). We see that the
Euler-Lagrange equations

EY(L) = 0, (3.53)
in the case (3.49), reduce to

a(RY — 1g"R) + Ag'i = 0. (3.54)
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These equations are the well-known Einstein vacuum field equations (with
cosmological term) provided that the g, are interpreted as the components
of the metric tensor of four-dimensional space-time.t

Remark In general, it is clear from (3.24) that E¥(L) will be of fourth order
in g,,. However, for the particular scalar density L,, given by (3.49), the
associated E¥(L,) as given by (3.52) are only of second order. One might
be tempted to think that (3.54) could be obtained from a scalar density of the
type L = L(gy;, g;;,,) since the associated Euler-Lagrange expression would
be of second order. However, we have already seen that such scalar densities
do not exist.

8.4 THE FIELD EQUATIONS OF EINSTEIN IN VACUO

In the preceding section we saw that the Einstein vacuum field equations
(3.54) are obtainable from a variational principle when the scalar density
L is chosen suitably, namely, as given by (3.49). In view of the physical signi-
ficance attributed to these equations in the four-dimensional case, it seems
appropriate to consider their derivation in a little more detail. From (3.26)
and (3.48) we see that in general the EY(L) are the components of a type
(2, 0) tensor density whose functional dependence is given by

Eij(L) = Eij(gab H gab. rs gab, rs* gab, rst> gab, rstu)’
and which, in addition, satisfy the conditions
E”(L)| ;i=0, E¥(L) = E(L).

However, if L is chosen according to (3.49) then the EY(L) are merely depen-
dent on the g,, and its first and second derivatives. Consequently, guided by
these observations, it seems natural to consider the following problem: to
find, in a four-dimensional space, all type (2, 0) tensor densities the com-
ponents A% of which satisfy the conditions (Lovelock [3, 5])

Aij = Aij(gab’ gab,c’ gab.cd)’ (41)
AV, =0 “2)

and
Al = A, 4.3)

With regard to this problem it should be noted that, in the first instance, it
is not assumed that A" represent an Euler-Lagrange tensor density EY(L).

+ For an introduction to the general theory of relativity see the following texts: Adler, Bazin,
and Schiffer [1], Eddington [1], Fock [1], Hawking and Ellis [1], Meller [1], Pauli [1], Schrodinger
[11, Synge [4], and Weyl {2].
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If we introduce the notation
Aij;ab,cd — __6_Aij
agab, cd ’
044
A ab,c —
agab,c ’ (4 4)
Aij;ab — aAij
agab ’

and recall that (1” are assumed to be the components of a tensor densit
then the analysis giving rise to (3.11)—(3.13) establishes that only Ai";“”’g‘;
are tl{e components of a tensor density. Furthermore, the counterpart of th
Invariance identity (3.28) is easily shown to be ’ )

ij;ab,cd ij; db.
Alhiabcd | gijidb.ac 4 gijichda _ ()

. 4.5)
which, in view of the obvious properties
Aij; ab,cd = Aij; ba, cd = Aij;ab, dc (4 6)
implies that
Aij;ab,cd — Aij;cd, ab
[see (3.29)]. 7
Because for a type (2, 0) tensor density we have
i 04y - .
A JIJ' = —axi + yhlehJ + .thjAzh _ ,yjhhAij,
it follows from (4.1) and (4.4) that
ij'= ij;ab,cd ij;ab,c ij;a i j
1,4 =4 ab,caj + AT PG,y o+ A "Gas, ; + V'3 AY,
from which it is inferred that
a4y 1, .
Pl ¥ L it; ab, rs is; ab, tr ir;ab, s
s 3 (4 + A + Airabsty
Consequently, if (4.2) is applied to the latter we find
Ait;ab.rs + Ais;ab, tr + Air; ab, st _ 0. (4 8)
However, by (4.3) and (4.4) we also have
Air;ab, rs _ Ati;ab,rs, (4 9)

so that (4.8) and (4.9) imply [see (3.29)]

Ait: ab,rs — Ars; ab, it

(4.10)
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From (4.7) and (4.10) we thus have

Ait; ab,rs _ Aab; it, rs, (411)
which, by (4.8), establishes the relation
Ait;ab,rs + Aib;ta.rs + Aia; bt,rs — 0 (412)
If we now introduce the quantities
o aAi.i; ab, cd
Au;ab,cd; rs,tu __ , (413
ys,tu )

then it is easily seen that they form the components of a tensor density (see
Section 8.3, Remark 2). Obviously, by definition, A >°%7s* has the same
symmetry properties in the indices ijabcd as does A, namely, (4.5)-
(4.12). Furthermore, from (4.4) and (4.13),

Aisab,cdirs,tu . gijirs, i ab,cd (414)

Consequently, the quantities 4’11z i isie:7is.isito are the components of a
tensor density with the following symmetry properties:

1. Itis symmetricin i,,_,i,,forh=1,...,5.

2. It is symmetric under interchange of the pair (i, ,, i,,) With the pair
(g1 i forh, k=1,...,5.

3. It satisfies a cyclic identity [as characterized by (4.12)] involving any
three of the four indices (iy_ 1> is5) (izx—1> i2e) for b, k=1, ..., 5 (h # k).

We now wish to show that in a four-dimensional space
Aiisabiedirs,tu — () n=4. (4.15)

This is accomplished in the following manner. In view of the fact that (4.13)
has 10 free indices, at least three of these must coincide in a four-dimensional
space. Let this index be denoted by 1. By properties 1 and 2 these three
coinciding indices can always be brought into one of the two following
situations: Aililb1dirsmu op gili1lbdirs,tu However, the second of these
vanishes identically by an application of property 3 to the second, third,
and fourth indices. Furthermore, if we use property 3 on the third, fourth,
and fifth indices of A 1% 14:rs-1 we find

i1;1b, 1d;rs,tu _ i1;11,bd;rs,tu
24 = —A s

and we have already seen that the right-hand side of the latter vanishes.
This establishes (4.15). For future reference we draw attention to the fact
that this is the only occasion on which we make use of the assumption that
n=4
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In order to obtain A" we integrate the differential equations (4.15). From
(4.13) and (4.15) it therefore follows that
Aij; ab, cd — aijabcd’ (4.16)

where o/abd are the components of a tensor density which has all the sym-
metr)f properties of A% namely, (4.5)—(4.12), and which is at most a
function of g,, and g, ,. However, we have already indicated that all tensorial

quantities of this type must be independent of g,, , (see Section 8.3, Remark 2)
so that , ’

ojabed — aijabcd(grs). (4.17)
From (4.4), (4.16), and (4.17) we thus have

AV = oilg g+ BUGres Grs, o (4.18)

wher; B are, as yet, undetermined functions. We now wish to express
the right-hand side of (4.18) in tensorial form. Now from (7.3.16) we have

Rbcad = %(gbd,ca + 9ea,ba — Gac,ab — gab,dc) + lbtadv
where

Abcad = ’J)cma‘ybmd - YCmdyamb' (419)
Therefore, by the technique exemplified by (3.35) applied twice, we find

ijabcd — __3 ijabcd ijabed
a Rycaa = —3 (Gab,ca t Guac,ap) + @7y

— __3nijabcd ijabed
- 2(2 gab, cd + o Abcad’

where we have used (4.7) in the last step. From the latter equation and (4.18)
we thus find

AY = —Zo AR,y (4.20)
where
.uij =B’ + %‘xﬁdbw'{bcar

However, in (4.20) the quantities AY + Z«'/***/R, . are the components
of a symmetric type (2, 0) tensor density, in which case, so are u". Moreover,
from (4.18) and (4.19), the u¥ are independent of g, ,,, which implies that
they are also independent of g,, ., that is, '

p = piig ).
Our problem has thus reduced to the evaluation of y* and «/%¢. We

sha_ll ﬁrst find !zij, the most general symmetric type (2, 0) tensor density
which is a function of g,,. Since " is a tensor density, its transformation law
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is explicitly given by
S EJ g, = Ju, (4.21)
where J;f and J are defined by (1.7) and (1‘.6). By differentiating (.4.‘21).with
respect to J§, and subsequently setting X' = x‘, we obtain the invariance
identity
ij b e b ot b, Ik
(650301 + 878,00 + 850Y8,,6505 + 6,0;60)9, P Oau™,
sd
where use has been made of (2.13). This equation reduces to
Ik
Sk ub 4 8Ltk 4 2g él‘_= Sk,
a a ac 6gbc

which upon multiplication by g° can be written in the form

ouk
g"du"’ + gldﬂbk — gbd‘ulk -2 3 . (422)
Gbd
The right-hand side of (4.22) is symmetric in b and d, so that we have
kd , b 1d, bk kb, 1d 1b, dk

g’ + gttt = gt + gt

If we multiply the latter by g,, and note that u is symmetric, we have

utt = Ag'®, (4.23)
where
4 =H9u
n

We now substitute (4.23) into (4.22), and note the identity
og™
0Ga

which follows from (7.1.34), to find

= __%_glbgdk + gldgbk

G g (4.24)
0Gpa

If we define ¥ by

and recall that dg/dg,, = gg™, we see that (4.24) reduces to dy/dg,, ='0;
that is, = a, where a is a constant. We now substitute this together with
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(4.25) in (4.23), to find

u® = a/gg". (4.26)
We have thus established the following lemma.

LEMMA

The most general symmetric type (2, 0) tensor density which is a function of
g,s alone, has components a\/é g', where a is an arbitrary constant.
Remark. This lemma is a special case of a more general result in which no

symmetry properties of the tensor are assumed, namely, if «”/ are the com-
ponents of a type (2, 0) tensor density and «/ = «'(g, ) then

o = a\/;g‘:’: ) for n> 2,
a\/g g’ + beY for n=2,
where a and b are constants. We note that, for n > 2, the quantities « are
inevitably symmetric (Lovelock [2]).

We now turn to the calculation of o’ which follows the same pattern
as the above, but is a little more complicated. The analysis by which (4.22)
was obtained from (4.21) is now repeated for «“**? and we find
girasjabcd + gjraisabcd + garaijsbcd + gbraijascd + gcraijabsd + gdraijabcs

ijabcd
— g _ g P o)
%9

Again the right-hand side of 4.27) is symmetric in r and s, so that we have

rs

girasjabcd + gjraisabcd + garaijsbcd + gbrdijascd + gcraijabsd + gdraijabcs
— gisarjabcd + gjsairabcd + gasaijrbcd + gbsaijarcd + gtsaijabrd + gdsaijabcr,
which, when multiplied by g, , gives
p y w g
(n _ l)asjabcd + O(jsal'md + aajsbcd + abjascd + acjabsd + adjabcs
— gjsgirairabcd + gasgiraijrbcd + gbsgiraijarcd + gcsgi’aijabrd + gdsgiraijabcr‘
(4.28)
By (4.9) the second term on the left-hand side can be combined with the first

term. Furthermore, it is possible to combine the remaining terms on the
left-hand side with the first term, since, by (4.12) and (4.8), we have

aajsbcd + ab}ascd = _asjbacd

and

acjnbsd + adjabcs = sjabdc

—
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Consequently the left-hand side of (4.28) reduces to (n — 2)a/®. We
now turn to the right-hand side and consider the coefficient of g*. From
(4.12) we have

ijrbcd rjbicd __ bjircd
ot/ + o E = el

which, when multiplied by g,,, account being taken of (4.6), yields

B ¢b jed
| ptdrbed —
glra 2 b
where
¢bjcd — gi,fxbﬁ"d- (429)

This same process is repeated on the third, fourth, and fifth terms on the
right-hand side of (4.28), so that the latter reduces to
2(71 _ z)asjabcd —_ 2gjs¢abcd _ gas¢bjcd - gbs¢ajcd — gcs¢abjd _ gdsqsabcj. (430)

Consequently (for n > 2) the problem of finding «***** has been reduced
to that of calculating ¢?*. Furthermore, by (4.29), ¢** are the components
of a tensor density with the symmetry properties

<babjd — ¢bajd = ¢abdj —_ ¢jdab,
¢abjd + ¢adbj + ¢ajdb — 0 (431)

Moreover, since ¢°% is a function of g,, alone, the analysis which gave rise
to (4.27) can be repeated for ¢**#, and we find

ijab
2 997
09,

Again the symmetry of the right-hand side in r and s is used to obtain an
equation similar to (4.28), namely,

(n _ 1)¢Sjab + ¢jsab + ¢ajsb + ¢bjas — gjsgir¢irab + g"’g.-,d’”'b + gbsgird)ija"

gird)sjab + gjr¢isab + gar¢ijsb + gbr¢ijas — grs¢ijab _

which, by (4.31), can be written in a form similar to (4.30), namely,
(n — 1)griet = gl — 1g™g™ — Lgtgie, (432)
where
¢ = g, 9"

Clearly, ¢* are the components of a symmetric type (2, 0) tensor density
which is a function of g, only, which by the previous lemma implies that

¢ = B/9 9, (4.33)
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where B is a constant. After substituting (4.33) in (4.32), which in turn is
substituted in (4.30), we have completely determined o'/#><d,

We now return to (4.20) in order to evaluate A”. From (4.30) and (7.3.11)
we have

(n — 2R, oy = gP ™Ry — 20" Ry 0ag™. (4.34)
However, from (4.32) and (4.33) we see that
(n — DY Ryesg = B/ (@9 — 369" — 19"°9")Rypens
_38/9R]
=73

where R} is defined by (7.3.25). Consequently for n > 2, the relation (4.34)
becomes
asjabcd Rbcad = 3ﬂ\/§ [%QJSR - st]

n—1Dr-2

where R is defined by (7.3.26). The latter, together with (4.26), is substituted
in (4.20) to finally yield

A = o /g [RY — 1g%R] + A /g g". (4.35)
We have thus established the following theorem.

THEOREM

In a four-dimensional space the only tensor density whose components A
satisfy the conditions AV = A", AY; = 0 and A(g,,, G.p, > Gab, ca): IS given by

AT = a /g (RY — 3g"R) + A /g g"
where o and A are constants.

Remark I This theorem establishes quite clearly that (3.52) are the only
possible second-order Euler-Lagrange expressions in a four-dimensional
space obtainable from a scalar density of the form (3.2). Nevertheless, it does
not establish that L,, defined by (3.49), is the only scalar density of the
form (3.2) with this property. In fact, the most general scalar density of the
form (3.2) for which the associated Euler-Lagrange equations are of second
order has been found for n < 4 (Lovelock [2]), the relevant scalar density
in the four-dimensional case being

L= “\/97 R — 2}'\/5; + ﬂsijklRabinubkl + 7\/5 (R* — 4R{R§' + RabiiRijab)a
(4.36)
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where R®;; = g""R,’;;and a, 4, f, and y are constants. At first sight one might
be tempted to think that the coefficients of § and y contribute to the Euler-
Lagrange expression. However, it can be shown by direct calculation that

ES(eR®, R ) =0,

and (4.37)
E™(/g(R* — 4RIR% + R* R )) = 0 forn = 4.

For n > 4 this problem is, as yet, an open one.

Remark 2. The problem pertaining to (4.1)-(4.3) for arbitrary n has been
completely settled (Lovelock [3, 5]) the result being

m—1
At = \/g_ kz “(k)gﬂa?}',’,'.'.}b;:RJUzh,hz oo Rime-vm Ly /1\/5 g™ (4.38)
=1

where ay,, 4 are arbitrary constants and

_yn/2 if n is even,
T l(n + 1)2 ifnis odd:

Indeed, as in the case of (4.35), this A" is always the Euler-Lagrange ex-
pression corresponding to a suitably chosen scalar density of the form (3.2).

Remark 3. Weyl[2]and E. Cartan [ 1] have shown that, on an n-dimensional
manifold, the only tensor density satisfying (4.1)-(4.3) which is linear in g,, .,
is given by (4.35). We can obtain this result immediately from the above
analysis in the following way. If A" is linear in g,, ., then we must have

62 Aij
agab,cd 6grs,tu

However, this is (4.15), but now valid for arbitrary n. The analysis which
gives rise to (4.35) thus goes through in toto for n > 2, and we again recover
(4.35). For n = 2 one easily sees that 4Y%*<d = (O, which implies that AY =
}L\/_(; gY. This is consistent with (4.35), since the coefficient of « in (4.35)
vanishes identically for n = 2 by (7.3.39) and (7.3.40). However, we draw
attention to the fact that in the four-dimensional case the linearity assumption
is not required. In fact, the above analysis can be extended to establish the
following result (Lovelock [7]): In a four-dimensional space the only type
(2, 0) tensor density whose components satisfy the conditions

Aij = Aij(gab’ YGab,c> gab.cd) and Aij” =0

= 0.

is given by
A = a\/g [RY — 14YR] + A\/E g,
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Cpnseq_uently, not only is the linearity assumption superfluous in the four-
d1m§n51onal case, but so also is the symmetry assumption (4.3). This result
has important applications in the general theory of relativity.

8.5 COMBINED VECTOR-METRIC FIELD THEORY

In this section we consider a combination of the vector and metric field
theories discussed in Sections 8.2 and 8.3. Here we are concerned with quan-
tities of the type (Rund [3])

L(gija Gijns Gijhs vi, Wi,j) = Ll(gij’ Gijns gij,hk) + Lz(gij, Vi, '//i.j)’ 5.1
where L, and L, are scalar densities. We adopt the notation

A — a_L Ak — B_L Akt _ 9L
g ij 6gii.k og; 7.kl ’
. 0dL . oL
Tl == \PU =
oy, o’

in which case the complete set of Euler-Lagrange equations corresponding to
(5.1)is

E¥(L) =0, (5.2)
E{L) = 0, (53)
where
E¥(L) = % [Aif" - % (A"f”")] — AY,
and
d

E(L) = 77 ¥ — ¥

However, because of the special form of (5.1) we have
EY(L) = E¥(L,) — T¥Y, (54
EYL) = E(L,), (5.5)

where TY is the energy-momentum tensor density corresponding to L,
introduced in Section 8.2, namely,

Tij — aLZ

=2 5.6
29, (5.6)
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However, (5.4) and (5.5) are not independent. From (5.4) and (3.48), we
find

E¥(L); = —TY;. (5.7)
By (2.29) and (5.6), we also have
TY; = 3"V, E(L,), + ¢°F E(L,)}. (5.8)
From (5.7), (5.8), and (5.5) we thus obtain the identity (Horndeski [2])
EY(L); = —3g"y,E(L), — 3¢"F; E(L), (59

which clearly displays the relationship between (5.4) and (5.5).
Because of (5.4) and (5.5), the combined Euler-Lagrange equations (5.2)
and (5.3) are

E¥(L,) = TY, (5.10)

As an application of the above analysis, we briefly consider the following
example:

L=Ly+ B\/g gjkgthiijk (5.12)

where L, and F,; are defined by (3.49) and (2.17) and B is a constant. Clearly
(5.12) is of the form (5.1) with

L, =L,
L, = ﬂ\/.‘; gjkgthiijk'
From (3.52), (2.33), (2.34), and (5.6) we thus find
EYL,) = —a/q [3¢"R — RV + A/q 4%,
E¥(L,) = 4p(\/9 F7);,
and
T = —2B./g [F"Fuug” — 1g"(F,.F)], (5.13)
so that (5.10) and (5.11) reduce to
o[RY — 1g"R] + Ag" = —2B[F"F,,g" — 3g'(F, F]  (5.14)
and

Fi . =0. (5.15)

i =
In the four-dimensional case the relations (5.14) and (5.15) are the well-known
Einstein-Maxwell field equations which purport to govern the interaction of
gravitational and electromagnetic fields.
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Remark 1. 1t is possible to consider arbitrary scalar densities of the form
L(g:j> Gijns Gijms ¥is ¥i ) Without insisting on the particular decomposition
(5.1). The subsequent analysis is quite complicated but it can be shown that
E'(L) and E¥(L) are tensor densities of type (2, 0) and (1, 0), respectively,
while, moreover, the relation (5.9) is also valid. Furthermore, it should be
pointed out that it is possible to obtain (5.14) and (5.15) from a scalar density
of this type, namely,

L = a/g sy p| Koo, 2h¥le] F, gigit
N .,kwaw[z( w5t W W] 20/9 + B9 FiyFug™a™,
where Y/ = gy, [see (7.6.25)].

Remark 2. In view of the physical significance of the Einstein-Maxwell
field equations, an important problem is to determine the conditions which

ensure the inevitability of (5.14) and (5.15). We draw attention to the fact that
L, given by (5.12), is a scalar density of the general type

L = L(g;;, g x» Gijuns Vi j)s (5.16)
while (5.14) implies that
EN(L) = E(g,, Gab,c> Gab,ca> Vab)- (5.17)

With these comments in mind, we cite the following results (Lovelock [12]):
If n = 4 the only scalar density of the type (5.16) for which (5.17) is valid is

L=a/gR + pn/g(R* - 4R, RY + RY,R¥.) + pe™R® R, + &
(5.18)

where a, y, p are constants and & is a scalar density of the type
L = LG Vap) (5.19)

The relation (5.18) is clearly of the special form (5.1) and, in this case, the
equation (5.10) reduces to

0¥
agij.

In order to restrict & we can proceed in two different ways. On the one
hand (Lovelock [12]) we could demand that

0L . .
9L T agu, (5.21)
agij g

a/g (RY — 1g'R) = (5.20)

where T is defined by (5.13), and then attempt to find .#. This would ensure
that we would obtain (5.14). However, in this case (5.11) may not reduce to
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(5.15). On the other hand (Lovelock [10]) we could demand that
E(Z) = 48(/g F7);, (5.22)

in which case we would obtain (5.15), but (5.20) may not reduce to (5.14).
It turns out that (5.21) and (5.22) are equivalent and they each imply that

L = By/g Fi;Fug™g® + ye™F Fy — 22/, (5.23)

where y is a constant, and so in either case we obtain the Einstein-Maxwell
equations, the coefficient of y satisfying the Euler-Lagrange equations
identically.

PROBLEMS
8.1 Show that in a V, for which ds? = — Y'2_, dx* dx* + (dx*)* where x* = ct
{c = constant), if
0 Hy, —H, E,
—-H, 0 H, E,

Fi) =
) H, —H, 0 E,

-E, —E, —E, 0

then Maxwell’s equations in vacuo (see Problem 4.5) can be expressed in the form
F4; = 0 together with F,j, + Fyy; + Fj,; = 0.

82 If L(gj, ¥y, ¥;;) = eMF;F,, in V,, show that EY(L), defined by (2.21), vanishes
identically. By noting that ¢F F,, = 2(¢/®F,;y), explain this. (Hint: See
Problem 6.18.)

83 If F; = —F; and T} = F*F, — {6(F"F,) show, in a V, for which ds*> =
— Y2_ 1 (dx?)? + (dx*)?, that T% = 0 if and only if F;; = 0. Establish that this
result is false if

2 4 4
ds* = — Y (@dx?)? + Y dxfy* or ds*= 4 Y (dxM.
a=1 =3 a=1
(This result could be used in relativity to motivate the signature of space-time

being +2).
8.4 If T} is defined as in Problem 8.3 show that

Thy = Fi, F7y; — 3F™(Fipg + Fpg + Fop).
Hence show that if F; is defined by (2.17) then
Th; = Fu F7;.
*8.5 Ifnisevenand F;; = —F; show that
. 1 ... .
ey B Foiny = n ST gy - Fi )
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Ifnisodd and F,; = — F; show that

iy,
e F iy Fpny

1 S
F'lnAzh.,-l'//h,. = *n o 5}811.--;,.1:‘“1_2 N Fi'l'lin—lljlin

T enzmml:ili3 .. Fi,.»]l-,llpj
(Lovelock [9]).

In V, how many independent components has F,Fy —

FyF,;, + FuF, if
F,; = —F;;? Hence show that ik b

FiFyy — FyF; + FikFlj = %gijkl(srsmFrsFtu)x

and that
det F,; = g4(e™"F, F )
If F;; = — F;; determine real numbers a, § so that

H",; = F™F}; + aF* F*, + BF* F*,
has the properties (4.2.6) where F¥, = gtiF e
Hence show that, if T;'. is defined as in Problem 8.3, then in v,
Ti =0,
TiT| = {5UTETY).
[This result, when used in conjunction with (5.14) with A = 0, immediately gives

rise to the so-called algebraic Rainich conditions R = 0 and RiR{ = 15i(RZRY).
(Rainich [1], Misner and Wheeler [1D.] ‘

IfL = L(g,;, ¥, ;) 1s a scalar density and

oL o
6gij 9i; =
show that, in ¥,
Ti=0
TiT] = 264T; T
where
. 0L
T; = E Gaj+

Give ?xamples of scalar densities with these properties (Lovelock [8]). (This
esta.bllsh.es the existence of additional tensors which have the properties necessary
to give rise to the algebraic Rainich conditions mentioned in Problem 8.7).
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8.9 If Lisascalar density and L = L(g,;, ¢, ¢ ;) where ¢ is a scalar field, show that the
invariance identities are
oL 1oL .
=+ 5-—g",=59"L
og;; 20¢; 2

Hence show that

oL | .
= — 5 ",EL)
<agij>[j 2 "

where

E(L) = oL (£>
( )——%4’ 3,),

If L/dg;; = O establish that L = 0.
8.10 Show that
VIR = Jag" 0l v — v ) + 5
where S/ = S/(g,;, gub.o)- Explain how this decomposition can be used to account
for the fact that E¥(,/gR) contains no third and fourth derivatives of g,
*8.11 Prove thatin V,
Eij(sabrerstrdab) — 0’
EY(/g(R? — 4R;;R" + R®,;RY,)) = 0.
8.12 Prove that if 4" is defined by (4.38) then
Al — g
A, =0,
*8.13 If

m—1
hy--oh Jrj ... Rizk—1J2k —_
L=- 2\/; Z a(k)éil‘"'jzzl’:R ! 2h:’lz R h2s - 1hax ZA’\/g
k=1

show that A¥**, = 0. Hence show that
Elh( L) = Alh

where A™ is defined by (4.38).
8.14 Show that properties 1-3 following (4.14) are not independent by showing that 2
is a consequence of 1 and 3.
*8.15 If the components of a type (0, 1) tensor field are denoted by ¢, and ¢, = o49r)
show that ¢, = 0.
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*8.16 If the components of a type (0, 2) tensor field are d
, enot . o
show that ¢ denoted by ¢, and ¢, ®:49,5)
¢ij = ag;; ifn > 2,
and

¢y =ag;+b ge; ifn=2
where q, b are constants (Lovelock [2]).

TITIn ponents of a type (0, 3) tensor field are den
b N oted by ¢,,
i (g as) Show that Y @i and ¢

ijk =

¢ijk =0 forn # 3
and

by = a\/g;s,.jk forn =3
(@ a constant).
818 IfL = L(g,,, Gavc> Vo) and Lis a scalar density show that

oL —0
agab,r: o

*8.19 Show that if T* are the components of a type (4, 0) tensor field for which T ig
totally symmetric,

Tij“ = Tij“(gabv gab,n gab,:d)
Tijklli = 0
then
Tijkl o a(gijgkl + gilgjk + gikgjl)

where a is a constant (Bedet and Lovelock [1)). (Compare with Problem 7.39.)
*8.20 Construct all scalar densities of the form L = L(y;, ¥, ;) (Lovelock [12]).
*8.21 If n > 2 show that the only symmetric tensor B¥ for which

BY = Bi(g,,, Yar ¥,p) and Bijlj = “thjhlj
where o™ is a tensor and o = MGy, Yoo ¥, ) is
BY=aTi4pgi
wh-ere T% is defined in Problem 8.3. [This result can be used to establish the
uniqueness of the electromagnetic energy-momentum tensor, (Lovelock [111).]




| Appendix

TENSORS AND FORMS
ON DIFFERENTIABLE
MANIFOLDS

The approach to the tensor calculus as presented in the main body of the text
may, with some justification, be criticized on the grounds that the concept of a
tensor is defined entirely in terms of the transformation properties of its
components relative to some coordinate system. It is the aim of this Appendix
to outline an alternative approach which does not suffer from this defect. To
this end the notion of differentiable manifold is defined with some precision,
which also serves to augment the superficial description of Section 3.1. This

rigorous approach to the calculus of exterior forms, which in turn provides an
alternative foundation for the theory of curvature. This theory is pursued to a

Stage at which it blends in naturally with the theory of the main text.
However, the subject matter of this Appendix does not merely furnish a
more rigorous basis for the classical tensor calculus. Whereas the analysis of
the latter is usually restricted to certain coordinate neighborhoods, the tools
to be developed below are indispensable in the investigation of differentiable
manifolds “in the large.” This is due to the fact that the new techniques
diminish the dependence of the analysis on coordinate systems, and thus
allow for the abandonment of such restrictions. Although global differential
geometry is not treated in the Appendix, the topics discussed therein should
render the study of that subject readily accessible. In this regard the reader is
211
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referred, for instance, to the texts by Bishop and Goldberg [1], Brickell and
Clark [1], Goldberg [1], Greub, Halperin, and Vanstone [1], and Kobayashi
and Nomizu [1].

A.1 DIFFERENTIABLE MANIFOLDS; TANGENT AND
COTANGENT SPACES

A differentiable manifold may be roughly described as a topological space
of a certain kind that can be covered by appropriate coordinate neighbor-
hoods. We shall therefore begin with a discussion of topological spaces.

A topology on a set M is a class T of subsets of M that satisfies the
following conditions: (1) the intersection of every finite class of sets in T is
a set in T (2) the union of any class of sets in T is a set in T; (3) the empty
set & and M are in T. The pair (M, T) is a topological space (usually
denoted by M), and the sets of T are called the open sets of this space. The
closed sets of M are the complements in M of the open sets. The concepts
“open” or “closed” are not mutually exclusive: a set can be open, or closed,
or both, or neither. The interior A° of a subset 4 C M is the union of all
open sets contained in 4, and from property (2) it follows that A° is open.
The closure A of A is the intersection of all closed sets that contain A.
Clearly 4 is closed. A set is open if it coincides with its interior, and closed
if it coincides with its closure. The boundary of A is the set A=A — A°.

A topological space is said to be connected if the only sets that are both
open and closed are @ and M. It is not difficult to show that M is
connected if and only if it is nor the union of two disjoint nonempty open
sets. A subset 4 of M is said to be dense in M if A=M, and M is
separable if it contains a countable dense subset. A topological space M is
called a Hausdorff space if, for every pair of distinct points p € M, g € M,
there exist open subsets 4, B such that p€ 4, g€ B, and AN B=J. Any
open set containing p is called a neighborhood of p.

A class 7 of subsets of the topological space M is a cover of M if M
coincides with the union of all 4 € 7. If each set A € & is open, the class
& is an open cover of M. A subclass of a cover that is itself a cover is called
a subcover. A topological space M is said to be compact if every open cover
has a finite subcover. It may be shown that every closed and bounded
subset of R” is compact (this is the Heine-Borel theorem), but R” itself is
not compact.

A cover & of a topological space M is a refinement of a cover =« of M if

for every set B, € & there exists at least one set A, € o such that B, C A4,. '
The cover & is said to be locally finite if for each p € M there exists an -
open set W, such that the set { A€ &1 ANW,#@} is finite (that is, the §
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neighborhood W, of p has a nonempty intersection with only a finite
numt?er of sets of the cover). A Hausdorff topological space M is paracom-
pact if every open cover of M has a locally finite refinement.

Let M, N denote a pair of sets. A map (function) f from M into N
denoted by f: M — N, is a rule that assigns to each p& M an element’
g€ N. One writes q9=f(p), and f(M)= {f(p):peEM}. If f(M)=N
the map f is said to be onto, or surjective. If f(p)= f(q) implies that,
P=q .the.map is said to be one-t0-one, or injective. If f is both surjective
and injective, it has an inverse f1:N—> M, and f is called a bijection. For
three sets M, N, P, with maps f: M — N, g: N — P, the composition of g
and f, denoted by g e f, is the map M — P which is obtained by following
f by g for all p € M for which f(p) is in the domain of g.

When the sets M, N are topological spaces, their topologies can be used
to define the notion of continuity. A map f: M — N is continuous if for
every open set G in N the set f~(G) in M is open. A bijection f: M > N
is called a homeomorphism if both f and f~':N— M are continuous
Under these circumstances the topological spaces M, N are said to bt;
homeomorphic (and N is the homeomorphic image of M). A topological
property of a topological space M is a property that is common to all
.topologlcal spaces that are homeomorphic to M. For instance, compactness
1s a topological property.

Fet M be a topological space, and let U be an open neighborhood of a
point p € M. If, for some given integer n, there exists a homeomorphism
h.: U— R" onto an open subset R”, the pair (U, k) is called a chart of
dtmen:vion n, with coordinate neighborhood U. Under these circumstances
h(p) is an n-tuple of real numbers, and we shall write h(p)= (..., u".
An az.‘las on M is a collection of charts {U, h,}, where a€ I, the fatter
denoting an index set, such that the sets U, constitute an open cover of M.
A topological manifold is a separable Hausdorff space that can be covered
by an atlas, and we shall now restrict our attention to spaces of this kind.
) Let us consider a pair of charts (U, h1),(U,, h,) for which the intersec-
tion W =UNU,+#@ (See Figure 5, page 56). For some point p € W let us
write hy(p) = (#',...,u"), and h,(p)=(@\,...,u"). This gives rise to the
hf)lrneorxlorph1§m Chyohilihy(W) - hy(W), by which (ul,..., u") —>
(ul,..., u"), with inverse h; o hy': h, (W) — h (W) by which (@,..., u") -
(u',...,u"). These homeomorphisms define functional relationships be-

tween the n-tuples (ul,.‘.,u"),(ﬂl,...,ﬁ"), which we shall respectively
represent as
' =ul(u,...,u"), w=u/l(d,...,a"), (j=1,..,mn). (1.1)

If the functions that occur in (1.1) are of class C*, the charts Uy, h),(Uy, hy)
are said to be C*-compatible.
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Let f: M — R be a function on M, and let (U,, h,) be a chart of an atlas
such that U, is contained in the domain of f. The function foh_! is a
real-valued function on the open set 4,(U,) of R", and f is said to be of
class C* if fo h ! is of class C*. This property is independent of the choice
of the chart (U, k) if the latter is C*-compatible with all other admissible
charts. This is certainly the case if all overlapping charts of the atlas are
C*-compatible; an atlas of this kind is said to be C*-compatible. We shall
restrict ourselves to the case C®-compatibility; a C>-atlas on M is a
collection of C*-compatible charts whose domains cover M. A C*-atlas is
said to be maximal if it contains each chart that is C*-compatible with any
one of its charts, and such a C%-atlas is said to define a differentiable
structure on M.

A C>-differentiable manifold is a topological manifold M together with a
differentiable structure. The dimension of M is the dimension of its charts.

Many examples of differentiable manifolds can be cited, including R”,
finite-dimensional vector spaces, and smooth surfaces in E3. Also, the
group GL(n,R) of all nonsingular n X n matrices with real entries has a
differentiable structure by virtue of the homeomorphism from GL(n,R)
onto the open subset of R* of points whose n? coordinates define nonvan-
ishing determinants. If M, N are differentiable manifolds of dimension »
and m respectively, with C*-atlases {U,, h,},{ Vs, kg}, the product mani-
fold M X N may be endowed with a C*®-atlas {U, XV}, h,X kg}, where
h,Xkg:U, XV — R"XR" thus M X N is a differentiable manifold.

For a given chart (U, k), and some p € U, we have h(p) = (u,..., u").
The coordinate functions are the real-valued functions on U that are
represented by individual entries in the set {u!,..., u"}: these are denoted
by x/ (j=1,...,n). Accordingly x/=wu/oh is a map U— R, and x/(p) =
u/. If we denote the coordinate functions associated with a pair of overlap-
ping charts (U, h,),(U,, h,) by x’/ and X/ respectively, the relations (1.1)
give rise to the transformation equations (3.1.1) and their inverses (3.1.2). If
the Jacobian (3.1.6) is positive on U, N U,, the charts are said to be oriented
consistently. The manifold is orientable if it has an atlas that consists
entirely of charts that are oriented consistently.

The set of all C* functions U— R on a neighborhood U of a point
P € M is denoted by C;°. For any f € C;° the function g = f o h~!is a map
R* — R, that is, a real-valued function of the coordinates. Accordingly the
partial derivatives of f with respect to x/ are defined by

af _ 9g I(foh")
f=—"—=—2%oh=—"—""">0h, 1.2
f ax/  du’ du’ (1.2)
This is supposed to indicate that d,f( p) is the derivative with respect to u’
of the real-valued function fo A~ at the point A( p) of R”. The definition
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(1.2) entails the usual laws of partial differentiation: th f o
and a, b € R, one has T Ol’allf,gec,,,

9,(af +bg) =ad,f+ bd,g (linearity), (1.3)
9;(f2) =1(9,8)+g(3,f) (rule for derivations). 1.4)

We shal} now iptroduce the notion of the tangent space T,(M) at a point
p of a differentiable manifold M. This space is the set of all maps

X:C°— R that satisfy the following conditions for all g
a,béR; g ions for f,8€CP and

X(af +bg) =a(Xf)+b(Xg) (linearity), (1.5)
X(fg) = (Xf)g(p)+f(p)(Xg) (rule for derivations), (1.6)

with vector space operations in T,(M) defined for X,Y € T,(M) by
(X+Y)f=Xf+Yf, (aX)f=a(Xf). (1.7)
Any element X € T,(M) is said to be a tangent vector of M at p- When
(1.3), 19 are compared with (1.5), (1.6) it is seen that each differential
operator d; is a vector at p (when followed by evaluation at p). Moreover,
for any constant ¢ € R one has, in view of (1.7) and (1.6): X(c) =cX(1) =

c[X(.1)+ X(1)] =2¢cX(1), so that X(c¢) =0 identically. The following theo-
rem is fundamental to the entire development.

THEOREM

Relative to a given chart (U, k) with coordinate functions x4 x any
vector X € TI',( M), with p € U, admits the representation

; d
X=X’ v (summation convention), (1.8)

in which the coefficients X’ € C° are uniquely defined by
XJ = Xx/. (1.9)

Proof. Without loss of generality we may assume that the chart (U, k) is
such’ that A(p) =(0,...,0). Let f € G, and let ¢ €U be in the domain of
f, with h(q) = (u,..., u™). First, it is asserted that

f(a) =f(p)+x/(q)f(q), (1.10)
where
;(p)=3,1(p). (1.11)

This is established as follows. The function g=/fe°h"! is defined on an
open set of R” that contains the points (u,..., u"),(0,...,0). Thus
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d n ) n
g(ul,...,u")—g(O,...,O)=flz[g(tu1,...,tu )] dr = ulg;(ut,...,u"),
()

(1.12)
where
. 19g(nd,..., ")
(o) = [ D)
Differentiation of (1.12) with respect to u* yields
n g (ut,...,u")
J L o.u n . 0g;
%——)=gk(ul,...,u )+uf——————auk ,
so that, in particular,
3g(0,...,0) —_ 1.13
—o—=5,(0....,0). (1.13)
A set of n functions f; =g h is defined on U, for which
fi(q) =g, (u',...,u"), (1.14)

and, if it is recalled that, by definition of g, one has
g(u,...,u") =f(q), g(0,...,0) = f(p),

it is seen that the substitution in (1.12) of (1.14), together with x/(g) =/,
yields (1.10). Also, by virtue of (1.2), (1.13), and (1.14),

9g(0,...,0)

ajf(p)=;ugj°h(P)= du’

=2,(0,...,0) = £;(p),

which is (1.11) as asserted.
Second(, for any X € T,(M) we now evaluate. Xf(q) by means of (1.10),
regarding the point p as fixed. Since X is a derivation,

xf(q) = (Xx/(9))f,(q) + x(q) X(£,(q))-

In this relation we put u/= x/(gq) =0, so that g coincides with p. Because
of (1.11) it is thus found that

Xf(p) = (Xx/(p))£,(p) = (Xx/(p))(3,/(P))

ich i i e statements (1.8) and (1.9) of the theorem. _
Wh’i%; l:tnslelgtsogsl d,=9/3x’ ;re 3alled coordipate vectors; they are 1%nea_rly
independent. For, should there exist a relation A47/9 = 0, kan apjplicitlo,?
to the coordinate function x* would yield 0=A/(9;x"*)=4 8f = A",
(k =1,..., n), contrary to hypothesis. This gives rise to the
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COROLLARY

The n coordinate vectors 9 ; constitute a basis of the n-dimensional tangent
space T,(M) at each point p € M.

The bases referred to in this corollary are called the coordinate bases (also
natural or canonical bases) induced by the chart W, h).

Let us consider the effect of a coordinate transformation such as (1.1) on
the representation (1.8) of the vector X. On U, NU, we have

d =; 0
X=X'—=X/—
Ix*t Ix’’
where
Xh=Xxk, X/ = X%/,
Because of (1.9) the second relation can be expressed as
—. ax/
X/ = xh—_
ax"’

which is nothing other than the transformation law (3.2.21) of a type (1,0)
tensor. Thus

8 _ xn0% 3 n_9

X=X—=x"— "L - x» 2
ax’ Ix" ax/ axh’
and, since the values X* are arbitrary, it follows that
a dx/ @

Ix"  ax* ax/”

This conclusion suggests quite clearly how one should proceed with the
construction of type (0,1) vectors. To this end we consider the space
T¥(M) that is dual to the vector space T,(M), this space consisting of all
linear functions w: T,(M)—>Ron T,(M). This space, too, can be endowed
with a vector space structure in an obvious way. For any X € T,(M) we
denote by w(X) or {w, X) its image in R by (both notations will be
used). For any f € C7 we now define a unique element df €T}(M) by
requiring that

4, X)=Xf (1.15)
for all X € T,(M).
The significance of this definition becomes apparent immediately upon

specialization. First, let us identify the vector X in (1.15) with a coordinate
vector 3 ;» which gives

(df,8,)=20f. (1.16)
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Second, let us identify f with the coordinate function x/ in (1.15), at the
same time using (1.9):
(dx’, Xy = Xx/= X/

From this it is evident that dx’, as a linear map: T,(M) — R, when applied
to X € T,(M), has for its value the Jj** component of X. (In this sense dx/
“selects” X/.) In particular, since the j** component of 3, is 8/, it follows

that
{dx’, d,) =8} (1.17)

This shows that the elements {dx": k=1,...,n} of Tf(M) constitute a
basis of Ty(M) that is dual to the basis {3,: j=1,...,n} of T,(M).
Accordingly any w € T¥(M) can be expressed as

w=wdx’. (1.18)
Consequently the element df € T,)(M) admits the representation
df = f,dx". (1.19)

Because of (1.17) this yields

(df, 9;) = fikdx", 3,y = f,8} = f;,
so that, by (1.16), f; = d,f, and (1.19) assumes the form
df = (9,f) dx, (1.20)

which is consistent with the customary expression for the “differential” of a

function. )
When (1.20) is applied to the coordinate functions x/ that are related to

x" by (3.1.1), it is seen that
dx/=(9,x7) dx". (1.21)

Thus the coordinate representations of the element (1.18) of 7;¥(M) can be
expressed as

©=u,dx/ = w(d,x’) dx" = w,dx",

which clearly implies the transformation law (3.2.4) for type (0,1) tensors.
Thus the coefficients w; of w in (1.18) are nothing other than the compo-
nents of a covariant vector. Consequently the dual tangent space 7.} (M) is

called the corangent space, and its elements w are referred to as covectors or
1-forms.

Thus far our attention has been restricted to single vectors, that is, to
individual elements of a given tangent space 7,(M). In practice one is -
concerned with vector fields on M (or on some subset N of M): such a §:
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ﬁel.d is given when a unique element is prescribed in each T, (M ) for all
points p € M (or p € N). Relative to a coordinate system xfp the co
nents of individual vectors are defined precisely as before; in ge,nerz:lIl lt)ho-
components_X Jof Xe T,(M) are functions of the coordin,ates x/ of : 1:
vector field is said to be'a C* field if these are C* functions, as wiﬁ.b
supposeq henceforth. The set theoretic union of all T,(M) a’s P ran s
over M, is call-ed the tangent bundle T(M) of M ; thus eaéh rep;resentativegg;
a vector field is in T(M). Similar definitions apply, of course, to covecto:
g:;is \t»lflhose represegtatives are in the cotangent bundle T™( M’ ), the latte;
OvergM' e set theoretic union of all cotangent spaces T} (M), as p ranges
Let X,Y be a pair of vector fields on M; at each poi i
representatives satisfy the conditions (1.5) and (1.6). Thcf :au:rtelijseogiotll::lu
true for the combination aX + bY, with a,b&R. Consequently the se)t,
Z (M) of all vector fields on M is a vector space (of infinite dimension
over the field R. However, for any pair f, g € C*, we have by (1.5) ancg

(1.6), P
XY(fg) = X((¥f)g + f(¥g))
N = (XYf)g +(¥F)(Xg) +(Xf)(Yg) + f( X¥g), (1.22)
which shows that XY, although defined as a differenti i
1 S s & tial operator,
derivation and thereforg not in & (M). This is due to theppresgtrlc;so?ottﬁ:
second and third terms in (1.22), whose sum happens to be symmetric in X
ax}d Y. Consequently these terms may be eliminated by an interchange of X
with Y in (1.22), followed by subtraction. In terms of the notation
[X,Y]=xY-YX, (1.23)
it is thus found that

[X.Y](fe) =([x,Y]1f)g+ F([X.Y]g). (1.24)
The Lie bracket (1.23) of X, Y is therefore a derivation, and, since it also

satisfies the condition (5), it follows that the Lie brack ]
s the con P racket of a pair of vector

This fact has significant implications. First, we n
. y ote that, for a,b R,
and X,Y,Z € (M), the skew-symmetry condition i *
[X9Y]=—[Y’ X]’ (1'25)
and the conditions of bilinearity, namely
[ax+ bY, Z] =a[X, Z]+blY, 2], [X,aY +bZ] =a[X,Y]+b[X, Z],
(1.26)

;r; Z‘ﬂld as direct consequences of the definition (1.23). Second, for any
I 4
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[x.[y, z]lf = x([Y. Z1f) - Y, Z1(Xf)
= X(Y(2f)) - X(z(Yf)) - Y(2(Xf))
+Z(Y(XT)). (1.27)

Two similar relations are obtained by cyclic permutations of X, Y, Z. When
these are added to (1.27) it is found that all terms on the right-hand side
cancel in pairs. Since f is arbitrary, this implies the Jacobi identity

[x,[v,z]]+[v.[z, x1]+[Z,[Xx,Y]] =0. (1.28)

A vector space V over R on which there is defined a map ¥ X V' — ¥V which
assigns to each pair X €V, Y €V a unique element [X,Y]EV is called a
real Lie algebra whenever this product satisfies the conditions of skew-
symmetry, bilinearity, and the Jacobi identity. Thus the above analysis may
be summarized in the statement that the set & (M) of vector fields on M is a
real Lie algebra.

A.2 TENSOR ALGEBRA AND EXTERIOR ALGEBRA

From the theory of the preceding section it is evident that vectors and
covectors can be defined without any reference to their components in some
coordinate system. Instead, they are introduced as elements of the tangent
or cotangent spaces of the underlying manifold. We shall now indicate how
this procedure can be extended to encompass arbitrary type (r,s) tensors.
To this end some elementary notions of multilinear algebra are briefly
described.

Our considerations will be based on an n-dimensional vector space ¥ and
its dual V*. By definition of the latter, any element w € V* is a linear
function «: ¥V — R, whose value for a given X €V is denoted by w(X) =
{w, X). Because of linearity one can also regard X as a linear function on
V*, with (@, X) = X(w) when evaluated at . In this sense V' may be
identified with the dual (V*)* of V*. (This conclusion depends on the
assumption that dim V is finite.)

Let X,Y be vectors in V, so that the pair (X,Y) €V XV (Cartesian
product). A function f:¥ X ¥ — R is said to be bilinear if it is linear in X
(for fixed Y), and linear in Y (for fixed X). Let w,w &V*. The tensor
product of « with 7 is a map w®=:V XV — R with values w®7(X,Y) =
w(X)m(Y), which is clearly bilinear. More generally, a function
f:V X --+ XV (s copies) — R is said to be s-linear if it is linear in each of
its arguments X;,..., X, € V. For a given set of s elements .., et eVt
the tensor product w'® --- ®w*: ¥ X --- XV — R is given by

B® e @ (X, X,) = (X)) @' (X,). (2.1)

5 Because of (2.5) and (2.2) this is equivalent to:
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We shall write

VIX(V*) =V X - xVxyex ... X y*

(s copies of V. i
I o » ¥ copies of P*),
. éf( +—> R is s-linear, and g:(V*)" > R is r-linear, their te )
s + r)-linear map f®g: Vs x(V*r- R, for wh;ch .
® r
n f g(Xl,..., X, e ) =f(x,..., Xs)g(wl,...,w’).
e set of all (s + r)-linear functions on V* X (V*)”
Ti=(V*)ev"
=1*® ... * i
. BV*@V® --- @V, (s copies of V*, r copies of 1)
Vector space structure is defined on this set i .
a€R, and T, S J,7, one defines nan
(aT)(Xl,...,Xs,wl,...,w’)=aT(X1,...,X,w1 w")
(T+ s)(Xl,...,,\;,wl,...,w') =T(X,,..., X,, o w")
+S(X1,...,Xs,w1,...,w’).

; .
S a ype (r,s) tensor; in particular, elements of

sor product is

2.2)
is denoted by

obvious manner: if

Any element of 7

the tangent space

T .
»(M) at some fixed point p of the underlying manifold M

Let {e;: j=1 n} den i
[ yeens ot i i
(sl 1j’ R sz e a basis of V, with corresponding dual basis
e/(e)) = 8} )=s;
7, e,(e/) = 8/. 2
3
Thus any X eV, o e p* can be represented as >
X=X,, w=qwg/
» )/ w;e’, (2.4)
e(X) =X/, ej(w) =w, (2.5)

(The first of (2.5) can be reg
given {e;} in ¥.) Now let T b
bilinear function on ¥ x V*,
X, w as displayed in (2.49) mus

arded as a defining equation for ¢ & p* for
e some element of I} = 1V*®V, that is, 7 is a
Therefore‘the value of T for the argilments
t necessarily be of the form

T(X,0) =T"Xk,. (2.6)
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T(X,0)=T!e/(X)e,(w) =Tre/®e,( X, w).

Consequently any 7 € 7} can be expressed as
T=T!/®e,.

(2.7)

Also, the n? elements {e/®e,: j, h =1,...,n} are linearly independc.:nt by
virtue of the linear independence of {¢’},{e,}; th(?y there}l!:'ore constitute a
basis of the n>-dimensional space J 1. The coefficients 7; jthat ap}llaear in
(2.7) are the components of the tensor T. In the basis {e/®e,} they are

given by

T;‘=T(ej) eh)’ (28)

as is immediately evident from (2.7) and (2.3). .
This process may be extended directly to the space J. The elements

{efl® ®efs®e,,1® s ®ey t ju=1,..,n hg=1,..,r;
a=1,...,s;B=l,...,r}

.
constitute a basis of the n"**-dimensional space J,". Any T € J;" can be
represented as

T=Th-"  ei®- - Qe ®e,® - B¢, (2.9)
where 210
h, .

We are now in a position to turn to exterior algebra, whicl; is cop(;
cerned essentially with skew-symmetric tensors. A tensor T E_ .?: 2X 1sY )saz) !
to be symmetric or skew-symmetric accordling' as T(Y, X)=T¢( I,nmetry
T(Y, X)=—T(X,Y), (X,Y €V). Clearly this is tantamount ;o TsyAccord-
or skew-symmetry in the subscripts of the components T}, ; of T.
ingly any skew-symmetric tensor can be represented as

T=T,e"®e =T, ", (2.11)
where

fi=1(c"®e/— e/®E"). (2.12) :
Since ¢"/ = — ¢/, while being otherwise linearly independent, it follows that ©

the elements (2.12), with h < j, define a basis of the vector space A2(V)‘7°£‘f
all skew-symmetric type (0,2) tensors. Clearly A*(¥') is a subspace of 7z,

and has dimension 3n(n —1).

Let w, 7 € V*. The exterior (or wedge) product of w with 7 is defined as,

wAT=3(w®7T —7®w).
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If w is represented by (2.4), while = is similarly given by 7 = 7,6/, we have
by (2.13) and (2.12):

WAT= %whwj(eh® e—e/® Eh) = wh‘ﬂjl‘?hj, (2-14)

which shows that w A 7 € A2(V). Moreover, with w = &", 7 = ¢/, the rela-
tion (2.13) assumes the special form
eAei= %(e"@sj— £j®e") =gh,

Consequently the set {e¢" A &/: h < J} is a basis of AX(V).

Again, this construction is readily extended to type (0,s) tensors. A
tensor T of this type is totally skew-symmetric if its value changes sign when
the order of any two of its arguments X,,..., X, €V is reversed. Moreover,
with any type (0,s) tensor T one can always associate a totally skew-

symmetric tensor AT of the same type, the alternating operator A being
defined by

(2.15)

AT(Xl,...,XS)=l' Y (2.16)

(-1)'7(X,,.... X, ),
in which the summation extends over all s! permutations of 1,...,s), and
k=0 or 1 according as the permutation (ay,...,a,) is even or odd. Let
Q,II be two totally skew-symmetric tensors of type (0,s;) and (0,s,)

respectively. The exterior (or wedge) product of £ with IT is defined as
QAIl=A(QeII), 217)

which is a totally skew-symmetric tensor of type (0, s; + 5,) [and which is
therefore identically zero whenever s1+5,> n]. The following important

properties of the exterior product are direct consequences of the definition
2.17):

(i) Associativity: Q A(II A A)y=(Q ATD)A A;
(i)) (Anti)-Commutativity: II A Q = (—1)2Q A IT;
(iii) Distributivity: (2 + A)AII=Q AL+ A A II (in which it is as-
sumed that A is also of type (0, 5,)).

The set of all totally skew-symmetric tensors of type (0, s)—also called
s-forms—may be endowed with the structure of a vector space, denoted by
A*(V), with basis elements

ehoh={eh Ao Ngh:ji< e <i} (2.18)
Clearly dim A*(V) = ( ;’), which is consistent with the notation AW =
V*, A°(V') = R. The essence of the entire construction is represented by the
sequence A°(V), A(V), AX(V),..., A" {(¥), A"(V) of vector spaces of di-
mension 1, n, 3n(n—1),...,n,1, respectively. The direct sum
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A(V) =AVeoAN(V)e - eA'(V), (2.19)

endowed with the exterior product as defined in (2.17) in an associative
algebra over R. It is called the exterior algebra or Grassmann algebra over
V. Clearly

dim A(V) =2"

A.3 EXTERIOR CALCULUS ON MANIFOLDS

The construction of the previous section is now applied to the theory of
differential forms on an n-dimensional differentiable manifold M, the role
of the vector spaces V,V* being assumed by the tangent and cotangent
spaces T,(M), T}(M) at each point p of M. This entails the construction
of the spaces J Y(T,(M)) and N(T,(M)) of type (0, s) tensors and s-forms
respectively. It is convenient (but by no means necessary) to allow the
coordinate basis { 3/9x/} of T,(M) to play the role of the basis {e;} of V,
which implies that the basis {dx/} of T(M ) assumes the role of the basis
{&/} of V*. According to (2.18), the set {dx/ A -+ Adxls: jy <o+ <}
is a basis of A*(T,(M)); thus any s-form « at p admits the representation

(3.)

A field of s-forms is defined on M (or on a subset N of M)if a unique
s-form is assigned to each point p € M (or N). The components w; _; in
(3.1) are then functions of the coordinates of p, and if these are C*
functions (as will be assumed henceforth) we have a C* field. The set of all
C> fields of s-forms on M is denoted by A*(M), which is endowed with a
vector space structure in the usual manner. In particular, the space A’(M)
is the set of all C* functions (scalar fields, O-forms) on M, while the
algebra A(M) that results from (2.19) is the algebra of exterior forms or
Grassmann algebra on M. The space A°(M) will frequently be denoted
by A°.

We are now in a position to define exterior derivatives of forms. Accord-
ing to (1.15) one associates with each O-form f€C% a unique element
df €Ty (M) = Al(Tp(M )). Thus the operator d can be regarded as a map
d: A° > Al This immediately raises the question as to the possibility of
extending the domain of d to AL A2..., A", and we shall now show that
this is indeed the case.

To this end we introduce maps d: A* = A**! (0 < s < n) that are subject
to the following conditions:

(a) If £ € A°, then df(X)= Xf [which is merely a restatement of (1.15)};
(b) If w e A°, 7 € A°, then d(w+7)=dw+dm

W= W, dx A - /\dxj’.
S Js
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(© If e N, 7 e A, then d(w A
’ 1) =d - “
(d) For any w € A%, d%w = d(dw) Z)O ermEHhe

F rom (c) and (d) it follows that d(dx# A - -
1{1 d is applied to (3.1),
that

A dm;

a - A dx’) =0 identically. Th
the conditions (b) and (c) being observed, it Ys foulrllii,

do=dw, AdxhA- - Adxh,

(3.2)
wh A . . .

s ;;fti:;;;h'(é 5 é(si)s(?:fnl;ileci ::)y d(a) in the form (1.20). It follows that the

— etely determine the exterior derivati
ot g (o) omple : rior derivative dw of any
Chtes 35 ytical properties of these derivatives are discussed in
re::;— ::;111 now turn to the process of interior multiplication of forms. This
requ Whi:hex&lséen;ci] of a C* vector field X, at least on a neighborhéod U
M, n allows one to associate with an
ic y s-form w at

unique (s —1)-form at p, the latter being denoted by X lw. [The ngtfti[(j)nzs1

i(X)w, iyw are also used fre i i
olloms om0 quently.] The operation X J is subject to the

(1) For any function (0-form) f: U — R, X J f=0;
(11) For any 1-form w, Xlow=w(X)=(w, X); ’
(1}1) For w € AS, r € A’, XJ(w+'ﬂ)=XJw+X’J7r'
(iv) For w € A%, w € A, XA o Am)=(XJo)A7+(—1) 0 A(Xd7).

For example, if w = w;dx’, and X = X/3,
J

and (ii) that , it follows from (iii), (iv), (i),

X=X (wdx’) = (Xd0;)dx/ + w,( X Jdx’) = w,dx/(X) = w, X7,

. (3.3)
as required. It is easily verified in the sam
. € manner th.
s-form (3.1) with totally skew-symmetric coefficients at, for the general

Xdw=sX%;, dx/2A- - Adxh, 34)

The following general rules are di
The follc e direct consequen iti
(D)-(@v): if X, Y are vector fields on M, and f, gqare (Eisi’o;)rfrlsthe conditions

(fX+gY)lo=f(X1w)+g(Ylw),
X1Y1dwo+Y1X1lw=0.

(35)
(3.6)

cogigsc:lyf aIlds‘sociat.ed 'with thf: process of interior multiplication is the
pt of Lie derivative. Again it must be assumed that a C* vector field

X on U is given. The Li jvati i
x gi e Lie derivative of an s-form with respect to X is defined
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Lyw=Xldo+d(X1w). (3.7)

This is evidently also an s-form. [The corresponding definition in terms of
local coordinates is sketched in Problems 5.17 and 5.18 on page 178.] For
the case of a 0-form f the definition (3.7) yields

$Xf=Xde+d(X_lf)=X.Idf=df(X)=Xf. (3.8)
Also, from (iv) it is immediately seen that £y is a derivation:
LowAm)=(Lyo) AT+ wA(LyT). (3.9

If w is replaced by dw in (3.7) one obtains
Ly(dw) = X1d% +d(X1dw) =d(Xldw),
while exterior differentiation of (3.7) yields
d(Lyw) =d(X1dw)+d*(Xiw)=d(Xldw),
from which it follows that %, and d commute:
Lyd=dZLy. (3.10)
In order to define the Lie derivative of a vector field Y with respect to a

given vector field X we impose the additional condition that %y be a
derivation also when applied to the form Y Jw, that is,

Lo(Yiw) = (LyY Mo +Y 1Ly0. (3.11)
This determines .#,Y uniquely. For, if we put w = df for some f € A°, we
have by (3.8)
Zy(Yadf) = Lx(df(Y)) = £ (Yf) = XY,
together with
(LxY)1df = df (ZxY) = (LxY)f,
while by (3.10) and (3.8)
Y I Lydf ) =Y Id(Lxf) = Yid(Xf)=d(Xf)(Y)=YXf.
The substitution of these relations in (3.11), with w = df, then gives XYf =
(ZL4Y)f + YXf, from which it follows that
L, Y=[X,Y]. (3.12)
As indicated in Section 4.4, the Lie derivative of type (7, s) tensors is well
defined and may in fact be constructed for nontensorial geometrical object
fields in terms of limiting processes.
We shall now derive a few formulae that are indispensable for any

calculation within this framework. First, let = = gdf for some f, g A%
Then by (2.13),
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dn(X,Y)=dg Adf(X,Y)=1(dg®df - dfedg)(X,Y)
=3(dg(X)df (Y)—df(X)dg(Y))

But, because of (iv), we also have
Xldm=X1dg Adf =(X1dg)df —dg(X1df)=dg(X)df - df(X)dg,
so that, by (ii),
(X1dn,Y) =YIX1n=dg(X)df(Y)—df(X)dg(Y),

and hence 2d#(X,Y)=Y 1X 1d#. Since any 1-form w can be represented
as a sum of terms such as gdf, it follows by linearity that

2dw(X,Y) =Y IXldo=(X1de,Y) (3.13)
for all » € A!. Second, by (3.7)
(X1do,Y) = (£30,Y)—(d(X10),Y) =Y 1%0—Yu(X), (3.14)

from which we eliminate the second term by means of (3.11):
(X1dw,Y) =Ly (Ylw)— (LY )lw — Yo(X)
=Xo(Y)—-[X,Y 4o —Yo(X),

where, in the second step, we have used (3.8) and a3 i
: ; 3 . .12). A co
this result with (3.13) yields the important formula ) mparison of

2d0(X,Y) = Xo(Y) - Yo(X) - o([ X, Y]) (3.15)

for the values of the exterior derivative of a 1-fi imi

; ~form. Similar, but somewhat
more complicated formulae for values of s-forms with s >1 i
Also, because of (3.14) and (3.13), ’ can be derived.

(Zxw,Y)y=(X1dw,Y)+Yu(X) = 2dw(X,Y)+ Yo(X).
This, together with (3.12) and (3.15), implies that
L0, Y)Y =(Zxw,Y)+(w, ¥, Y), (3.16)
which displays the nature of .2, as a derivation once more
Let M, N denote a pair of differentiable manifolds, and lei ¢: M —> N be
a C* map of M into N. We shall now present a brief analysis of some
effe.cts of ¢ - To this end let us consider some f € C®, where q=¢(p) for
a given point p € M. Clearly F= fo¢p € Cy. An ind‘{wed map ¢ ,: T,(M)

— T,(N) is now defined as follows: i =
T, s: the image Y =¢, X of
1s supposed to be such that ® GuXofany X< 0

o XF=X(fo)=Yf = ($.X)f. (3.17)
With this is associated a second induced map ¢ *: T}(N) > T} (M), called
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the pull-back of ¢ in view of the order; for any w € T*(N) the image
¢ *w e Ty (M) is defined by the requirement that, for all X €T,(M),

(¢*w)(X) =w(daX). (3.18)

This construction is readily extended to s-forms with s >1: if w € A°(N),
and X,,..., X, € T,(N), the pull-back ¢ *Q is such that
(¢ *2)(X;,..., X,) =24 Xy,..., D uX,). (3.19)

In particular, if f € A°(N), then ¢ *f=fo . .

This situation is readily described as follows in terms of local coordi-
nates. If the coordinate functions on M and N are denoted respect.ively by
{x’} and {y*} (j, h,... =1,...,n5 &, B... =1,...,m), the map ¢ 1sarepre-
sented by a system of m equations y®= y*(x’), and F(x’) = f(y*(x’)).
Then for X = X/(3/9x/) €T, (M), and Y=¢,X=Y*(d/9y*) ET,(N),
the condition (3.17) yields

IF(x) _ 4, 0f(») 3y*(x) _ . 9/(y)
o =X gy BRETS

XF =X’ o) ,
which implies that the components of X and Y are related by
a a aya(x) 1
(X)) =Y =TXI' (3.20)

Consequently, for w = w,dy* € T}(N),and ¢ yo =7 = m,dx’/ € Ty(M), the
condition (3.18) yields
7(X) = mX = 0($ 1 X) = 0¥ = wai%%Xj,
so that
(¢*w)j=wj=waa—);;§—;‘—). (3.21)
The induced maps as defined above possess some very useful properties,
two of which are described below. First, if Y; =¢ (X)), Y, = «(X,), then
DX, X]=[¢ X, 0 Xp] =1, L] (3:22)
This is established as follows. Let us replace X, 7, f in (3.17) by X,,Y,, Y, f,
respectively, to obtain
XI(Y2f°¢ ) = (Y1Y2f),
while, according to (3.17), with X=X,, X,(f°¢)=Y,f, so that
X1X2(f°¢ )= (7Y, f).
A similar relation results from an interchange of X, X,, which is subtracted
to yield
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(X, X,](f-¢ )= ([Yp 1,171).
This implies (3.22) by virtue of (3.17). Second, for any s-form w one has
d(¢p*w) =0b*(dw). (3.23)

Since any s-form admits a representation such as (3.1), and since ¢ * can be
regarded as an algebra homomorphism, it is sufficient to verify (3.23) for

w=f&€A%N), and w=df € A(N). As regards the first case, we merely
observe that

d@*f)=d(f-¢)=0*df. (3.24)
For the second case we have, on the one hand, ¢ *(dw)=¢ *(d 2fy=0,
while on the other, because of (3.24), d(¢p*w) =d(¢p *df) = d*(¢p *f)=0,
which implies the assertion.

A.4 CONNECTIONS, TORSION, AND CURVATURE

In this section it will be shown how the basic concepts of the classical
tensor calculus as developed in Chapter 3 can be introduced and analyzed
in a coordinate-free manner. We shall begin with the notion of a connection
within the context of the Lie algebra %' (M) of vector fields on our
differentiable manifold M.

A C% connection on M is a linear map (M)X Z(M)— Z (M),
denoted by V :(X,Y) —Vv,Y, that is defined for any pair X,Y € (M),
and subject to the following conditions:

Vixtgr =fVx+8Vy, (4.1)
Vx(fY) = (Xf)Y + fvyY, (42)

where f, g € A°(M). In order to reveal the relationship between the vector
fields VY and the vector fields constructed in Chapter 3 in terms of
covariant derivatives, we must introduce local basis fields { e i j=1,...,n}
in the tangent spaces T,(M) of each point p of a coordinate neighborhood
U of M, with corresponding dual basis fields {e/: j=1,...,n} for Ty (M).
Since V,Y € (M) for all X,Y € Z(M),V ye; € (M), so that

Vxej=wjh(X)eh, (4.3)

in which the coefficients wj"( X) € R are linear in X, that is, wjh € A (M).
These n? 1-forms are called connection 1-forms. With X = X’e 5, Y=Y, we
have, in consequence of (4.2) and (4.3):

VY =Vy(Ye;) = (XY')e, + Y/(vye,) = ( XY/ + Yho,/(X))e,,
(4.4)



350 TENSORS AND FORMS ON DIFFERENTIABLE MANIFOLDS

in which w,’( X) = X*w,’(e;) by linearity, so that
VY= (XY +Y"X*0,/(e,))e,;. (4.5)

Evidently the connection v is completely determined by the values eD)
of the connection 1-forms in a given basis. In particular, whenever the basis
{ €’} is identified with the coordinate basis {dx’} on U, we shall write

w,’ =T,/ dx*, (4.6)
with values
w,/(8,)=T,7,dx"(3,) =T,/ ,8r=T,,. 4.7)
In this basis X = X*3,, and (4.5) can be expressed as
VY =X*3,Y/ +Y"T/,)d,= (X*Y)a,, (4.8)

where the components of the covariant derivative of the vector field Y are
defined as in (3.5.4). The tensorial character of such derivatives is a direct
consequence of the fact that v Y is defined without reference to local
coordinates.

For a given connection v on M we define the torsion as a map
T:F(MYXZ(M)—> Z(M), given by

T(X,Y)=VyY-vyX—-[X,Y], (4.9)

for X,Y € & (M). The explicit evaluation of this expression in the arbitrary
basis {e;} is readily performed. Since (4.5) can be expressed as

vi¥ = {Xe/(Y)+ 0,/(X)e"(Y)} e, (4.10)
it follows with the aid of (2.13) that
VyY—VyX= {Xef(Y) —Ye/(X)+ 0,/ (X)e"(Y) - wkj(Y)s"(X)} e;
= { Xe/(Y) - Ye/(X)+2(w,/ A ") (X, Y)] e,
But, according to (3.15),
2de/(X,Y) = Xe/(Y)-Ye/(X)— /([ X, Y]),
so that
VY —vyX=2{de/(X,Y)+(w,/ A e")(X,Y)}e, +[ X, Y].
Consequently (4.9) is equivalent to

iT(X,Y)=Q/(X,Y), (4.11)
where the torsion 2-forms are defined as
Q/=de/ + whj A el (4.12) ‘
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[In the coordinate basis {dx/} this yields in terms of (4.6):
@/ =d?/+ T,/ dx* A dx" =~ 4(T,7, - L/, )dx" A ax*,  (4.13)

which is the counterpart of the ex i
‘ pression (3.4.18).] It should be ob
that, for a torsion-free connection, the relation (4.9) reduces to observed

VY -V, X=[X,Y]. (4.14)

The connection also gives rise to a set of curvature 2-forms
derive the latter, we begin with the so-called ¢ ,
The latter is defined for any pair X,
Z € Z(M) a vector field defined by

In order to
urvature operator K(X,Y).
Y2 (M), and assigns to each

K(X, Y)Z= (VXVY_VYVX_V[X,Y])Z‘ (415)
By means of (4.10) and (4.3) it is seen that
vaYZ=vX{(Yef(z)+w,,f(y)eh(z))e,}
=X(Y£j(Z)+whj(Y)£"(Z))ej
+(Yef(Z)+whj(Y)e"(Z))wjl(X)e,
= {XYe/(Z) +( X0, /(Y)) e (Z) + w, (V) Xe"(2Z)
+w,,j(X)Yeh(Z)+w,j(X)wh[(Y)e"(Z)}ej.
It should be noted that the sum of the third and fourth terms in this

expression is symmetric in X and Y. With the ai i
papression e aid of (2.13) it therefore

VxVyZ=VyWxZ={(XY~YX)e/(Z)+ (Xw,/(Y) - Yo, /(X))e"(Z)
+(w/(X)w,'(Y) - w/(Y)w,'(X))e"(Z)} e,
= {[x, Y1e/(Z)+( Xe,(Y) - Yo, /( X)

+20/ A 0 (X,Y))e"(Z) ] e, (4.16)
Also, as in (4.10)

VixnZ={[X.Y]e/(Z)+ 0, ([ X, Y])e"(Z)}e,.

When this, together with (4.16), is substituted in the definition (4.15), it is
found that o

K(X,Y)Z= {( X0,/ (Y) - Yo, /(X) - 0, /([ X, Y])
+20/ A w/(X,Y))e"(Z) ] e,.
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Because of (2.15) this reduces to

IK(X,Y)Z={Q/(X,Y)e"(2Z)}e,, (4.17)
where the curvature 2-forms are defined by
Q/=dw/+ 0/ A, (4.18)

The relations (4.12) and (4.18) are the equations of structure, the latter set
being identical with (5.6.3).

We shall conclude with the derivation of some fundamentally important
consequences of the equations of structure. The covariant exterior deriva-
tives of individual elements of a set {II/: j=1,...,n} of s-forms are
defined by

DI/ =dTl/ + w,’ A TI". (4.19)
When this prescription is applied once more, it is seen that
DDI1/ = d(DIl/) + w,’ A(DII*)
= d(dTl + @,/ ATI") + @, A(dTT% + w," A TIY)
=dw/ A" — w0,/ AdIT* + @,/ A dTT* + 0,/ A 0" ATT
Because of (4.18) is this equivalent to
DDIUV = (dw,/+ o/ A ©,') ATIF =@,/ A TI. (4.20)

In particular, if IT/ is identified with the basis element &/, it follows from
(4.12) and the definition (4.19) that

DQ/=DDe/ =Q,/ A " (4.21)

This is a statement concerning 3-forms: when written out in terms of the
basis {&/ A e" A €F: j < h <k} for such forms, an identity is obtained that
reduces to the cyclic identity (3.8.6) when the basis {&’} is identified with
the coordinate basis {dx”/}.

The covariant exterior derivatives of the curvature 2-forms are given by

DR,/ =dQ’ + o/ AR — w0 AR/, (4.22)
in which we substitute from (4.18) to obtain
DQ,’ = d(dwhj+ w/ A w,,’) +w/ A (dw,,’+ w, A w,,'")
—w A (dw,j+ @, A w,"')
=do/ A, — ol Adw, + o) Ade + o) Aw, A,

! j j !
—wAdo]—w] A" Aw,.
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Since all terms cancel in pairs, this implies that

J
ba,’=0 (4.23)

ation is expressed in terms of a basis of
that reduces to the general Bianchi identity

identically. Again, when this rel
3-forms an identity is obtained
(3.8.11) in a coordinate basis.
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