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A Short Description of the Book

Many cryptographic schemes and protocols, especially those based on public-key cryptography,
have basic or so-called "textbook crypto” versions, as these versions are usually the subjects for
many textbooks on cryptography. This book takes a different approach to introducing
cryptography: it pays much more attention to fit-for-application aspects of cryptography. It
explains why "textbook crypto” is only good in an ideal world where data are random and bad
guys behave nicely. It reveals the general unfitness of "textbook crypto” for the real world by
demonstrating numerous attacks on such schemes, protocols and systems under various real-
world application scenarios. This book chooses to introduce a set of practical cryptographic
schemes, protocols and systems, many of them standards or de facto ones, studies them closely,
explains their working principles, discusses their practical usages, and examines their strong
(i.e., fit-for-application) security properties, often with security evidence formally established.
The book also includes self-contained theoretical background material that is the foundation for
modern cryptography.



Preface

Our society has entered an era where commerce activities, business transactions and
government services have been, and more and more of them will be, conducted and offered over
open computer and communications networks such as the Internet, in particular, via
WorldWideWeb-based tools. Doing things online has a great advantage of an always-on
availability to people in any corner of the world. Here are a few examples of things that have
been, can or will be done online:

Banking, bill payment, home shopping, stock trading, auctions, taxation, gambling, micro-
payment (e.g., pay-per-downloading), electronic identity, online access to medical records,
virtual private networking, secure data archival and retrieval, certified delivery of
documents, fair exchange of sensitive documents, fair signing of contracts, time-stamping,
notarization, voting, advertising, licensing, ticket booking, interactive games, digital
libraries, digital rights management, pirate tracing, ...

And more can be imagined.

Fascinating commerce activities, transactions and services like these are only possible if
communications over open networks can be conducted in a secure manner. An effective solution
to securing communications over open networks is to apply cryptography. Encryption, digital
signatures, password-based user authentication, are some of the most basic cryptographic
techniques for securing communications. However, as we shall witness many times in this book,
there are surprising subtleties and serious security consequences in the applications of even the
most basic cryptographic techniques. Moreover, for many "fancier" applications, such as many
listed in the preceding paragraph, the basic cryptographic techniques are no longer adequate.

With an increasingly large demand for safeguarding communications over open networks for
more and more sophisticated forms of electronic commerce, business and servicesl@l, an
increasingly large number of information security professionals will be needed for designing,
developing, analyzing and maintaining information security systems and cryptographic
protocols. These professionals may range from IT systems administrators, information security
engineers and software/hardware systems developers whose products have security
requirements, to cryptographers.

[al Gartner Group forecasts that total electronic business revenues for business to business (B2B) and
business to consumer (B2C) in the European Union will reach a projected US $2.6 trillion in 2004 (with
probability 0.7) which is a 28-fold increase from the level of 2000 [5]. Also, eMarketer [104] (page 41) reports
that the cost to financial institutions (in USA) due to electronic identity theft was US $1.4 billion in 2002, and
forecasts to grow by a compound annual growth rate of 29%.

In the past few years, the author, a technical consultant on information security and
cryptographic systems at Hewlett-Packard Laboratories in Bristol, has witnessed the
phenomenon of a progressively increased demand for information security professionals
unmatched by an evident shortage of them. As a result, many engineers, who are oriented to
application problems and may have little proper training in cryptography and information
security have become "roll-up-sleeves"” designers and developers for information security
systems or cryptographic protocols. This is in spite of the fact that designing cryptographic
systems and protocols is a difficult job even for an expert cryptographer.

The author's job has granted him privileged opportunities to review many information security
systems and cryptographic protocols, some of them proposed and designed by "roll-up-sleeves"
engineers and are for uses in serious applications. In several occasions, the author observed so-
called "textbook crypto" features in such systems, which are the result of applications of
cryptographic algorithms and schemes in ways they are usually introduced in many



cryptographic textbooks. Direct encryption of a password (a secret number of a small
magnitude) under a basic public-key encryption algorithm (e.g., "RSA") is a typical example of
textbook crypto. The appearances of textbook crypto in serious applications with a "non-
negligible probability"” have caused a concern for the author to realize that the general danger of
textbook crypto is not widely known to many people who design and develop information
security systems for serious real-world applications.

Motivated by an increasing demand for information security professionals and a belief that their
knowledge in cryptography should not be limited to textbook crypto, the author has written this
book as a textbook on non-textbook cryptography. This book endeavors to:

e Introduce a wide range of cryptographic algorithms, schemes and protocols with a
particular emphasis on their non-textbook versions.

e Reveal general insecurity of textbook crypto by demonstrating a large number of attacks on
and summarizing typical attacking techniques for such systems.

e Provide principles and guidelines for the design, analysis and implementation of
cryptographic systems and protocols with a focus on standards.

e Study formalism techniques and methodologies for a rigorous establishment of strong and
fit-for-application security notions for cryptographic systems and protocols.

e Include self-contained and elaborated material as theoretical foundations of modern
cryptography for readers who desire a systematic understanding of the subject.



Scope

Modern cryptography is a vast area of study as a result of fast advances made in the past thirty
years. This book focuses on one aspect: introducing fit-for-application cryptographic schemes
and protocols with their strong security properties evidently established.

The book is organized into the following six parts:

Part 1 This part contains two chapters (1—2) and serves an elementary-level introduction
for the book and the areas of cryptography and information security. Chapter 1 begins with
a demonstration on the effectiveness of cryptography in solving a subtle communication
problem. A simple cryptographic protocol (first protocol of the book) for achieving "fair coin
tossing over telephone” will be presented and discussed. This chapter then carries on to
conduct a cultural and "trade" introduction to the areas of study. Chapter 2 uses a series of
simple authentication protocols to manifest an unfortunate fact in the areas: pitfalls are
everywhere.

As an elementary-level introduction, this part is intended for newcomers to the areas.

Part 11 This part contains four chapters (3—6) as a set of mathematical background
knowledge, facts and basis to serve as a self-contained mathematical reference guide for
the book. Readers who only intend to "knowhow," i.e., know how to use the fit-for-
application crypto schemes and protocols, may skip this part yet still be able to follow most
contents of the rest of the book. Readers who also want to "know-why," i.e., know why
these schemes and protocols have strong security properties, may find that this self-
contained mathematical part is a sufficient reference material. When we present working
principles of cryptographic schemes and protocols, reveal insecurity for some of them and
reason about security for the rest, it will always be possible for us to refer to a precise point
in this part of the book for supporting mathematical foundations.

This part can also be used to conduct a systematic background study of the theoretical
foundations for modern cryptography.

Part 111 This part contains four chapters (7—210) introducing the most basic cryptographic
algorithms and techniques for providing privacy and data integrity protections. Chapter 7 is
for symmetric encryption schemes, Chapter 8, asymmetric techniques. Chapter 9 considers
an important security quality possessed by the basic and popular asymmetric cryptographic
functions when they are used in an ideal world in which data are random. Finally, Chapter
10 covers data integrity techniques.

Since the schemes and techniques introduced here are the most basic ones, many of them
are in fact in the textbook crypto category and are consequently insecure. While the
schemes are introduced, abundant attacks on many schemes will be demonstrated with
warning remarks explicitly stated. For practitioners who do not plan to proceed with an in-
depth study of fit-for-application crypto and their strong security notions, this textbook
crypto part will still provide these readers with explicit early warning signals on the general
insecurity of textbook crypto.

Part 1V This part contains three chapters (11—13) introducing an important notion in
applied cryptography and information security: authentication. These chapters provide a
wide coverage of the topic. Chapter 11 includes technical background, principles, a series of
basic protocols and standards, common attacking tricks and prevention measures. Chapter
12 is a case study for four well-known authentication protocol systems for real world
applications.Chapter 13 introduces techniques which are particularly suitable for open



systems which cover up-to-date and novel techniques.

Practitioners, such as information security systems administration staff in an enterprise and
software/hardware developers whose products have security consequences may find this
part helpful.

Part V This part contains four chapters (14—217) which provide formalism and rigorous
treatments for strong (i.e., fit-for-application) security notions for public-key cryptographic
techniques (encryption, signature and signcryption) and formal methodologies for the
analysis of authentication protocols. Chapter 14 introduces formal definitions of strong
security notions. The next two chapters are fit-for-application counterparts to textbook
crypto schemes introduced in Part 111, with strong security properties formally established
(i.e., evidently reasoned). Finally, Chapter 17 introduces formal analysis methodologies
and techniques for the analysis of authentication protocols, which we have not been able to
deal with in Part 1V.

Part VI This is the final part of the book. It contains two technical chapters (18—19) and a
short final remark (Chapter 20). The main technical content of this part, Chapter 18,
introduces a class of cryptographic protocols called zero-knowledge protocols. These
protocols provide an important security service which is needed in various "fancy"
electronic commerce and business applications: verification of a claimed property of secret
data (e.g., in conforming with a business requirement) while preserving a strict privacy
quality for the claimant. Zero-knowledge protocols to be introduced in this part exemplify
the diversity of special security needs in various real world applications, which are beyond
confidentiality, integrity, authentication and non-repudiation. In the final technical chapter
of the book (Chapter 19) we will complete our job which has been left over from the first
protocol of the book: to realize "fair coin tossing over telephone.” That final realization will
achieve a protocol which has evidently-established strong security properties yet with an
efficiency suitable for practical applications.

Needless to say, a description for each fit-for-application crypto scheme or protocol has to begin
with a reason why the textbook crypto counterpart is unfit for application. Invariably, these
reasons are demonstrated by attacks on these schemes or protocols, which, by the nature of
attacks, often contain a certain degree of subtleties. In addition, a description of a fit-for-
application scheme or protocol must also end at an analysis that the strong (i.e., fit-for-
application) security properties do hold as claimed. Consequently, some parts of this book
inevitably contain mathematical and logical reasonings, deductions and transformations in order
to manifest attacks and fixes.

While admittedly fit-for-application cryptography is not a topic for quick mastery or that can be
mastered via light reading, this book, nonetheless, is not one for in-depth research topics which
will only be of interest to specialist cryptographers. The things reported and explained in it are
well-known and quite elementary to cryptographers. The author believes that they can also be
comprehended by non-specialists if the introduction to the subject is provided with plenty of
explanations and examples and is supported by self-contained mathematical background and
reference material.

The book is aimed at the following readers.

e Students who have completed, or are near to completion of, first degree courses in
computer, information science or applied mathematics, and plan to pursue a career in
information security. For them, this book may serve as an advanced course in applied

cryptography.

e Security engineers in high-tech companies who are responsible for the design and
development of information security systems. If we say that the consequence of textbook



crypto appearing in an academic research proposal may not be too harmful since the worst
case of the consequence would be an embarrassment, then the use of textbook crypto in an
information security product may lead to a serious loss. Therefore, knowing the unfitness of
textbook crypto for real world applications is necessary for these readers. Moreover, these
readers should have a good understanding of the security principles behind the fit-for-
application schemes and protocols and so they can apply the schemes and the principles
correctly. The self-contained mathematical foundations material in Part Il makes the book a
suitable self-teaching text for these readers.

Information security systems administration staff in an enterprise and software/hardware
systems developers whose products have security consequences. For these readers, Part |
is a simple and essential course for cultural and "trade" training; Parts Ill and 1V form a
suitable cut-down set of knowledge in cryptography and information security. These three
parts contain many basic crypto schemes and protocols accompanied with plenty of
attacking tricks and prevention measures which should be known to and can be grasped by
this population of readers without demanding them to be burdened by theoretical
foundations.

New Ph.D. candidates beginning their research in cryptography or computer security. These
readers will appreciate a single-point reference book which covers formal treatment of
strong security notions and elaborates these notions adequately. Such a book can help
them to quickly enter into the vast area of study. For them, Parts I1,1V,V, and VI

constitute a suitable level of literature survey material which can lead them to find further
literatures, and can help them to shape and specialize their own research topics.

A cut-down subset of the book (e.g., Part I,11,111 and VI) also form a suitable course in
applied cryptography for undergraduate students in computer science, information science
and applied mathematics courses.
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Part |: Introduction

The first part of this book consists of two introductory chapters. They introduce us to some
of the most basic concepts in cryptography and information security, to the environment in
which we communicate and handle sensitive information, to several well known figures who
act in that environment and the standard modus operandi of some of them who play role of
bad guys, to the culture of the communities for research and development of cryptographic
and information security systems, and to the fact of extreme error proneness of these
systems.

As an elementary-level introduction, this part is intended for newcomers to the areas.



Chapter 1. Beginning with a Simple
Communication Game

We begin this book with a simple example of applying cryptography to solve a simple problem.
This example of cryptographic application serves three purposes from which we will unfold the
topics of this book:

e To provide an initial demonstration on the effectiveness and practicality of using
cryptography for solving subtle problems in applications

e To suggest an initial hint on the foundation of cryptography

e To begin our process of establishing a required mindset for conducting the development of
cryptographic systems for information security

To begin with, we shall pose a trivially simple problem and then solve it with an equally simple
solution. The solution is a two-party game which is very familiar to all of us. However, we will
realize that our simple game soon becomes troublesome when our game-playing parties are
physically remote from each other. The physical separation of the game-playing parties
eliminates the basis for the game to be played fairly. The trouble then is, the game-playing
parties cannot trust the other side to play the game fairly.

The need for a fair playing of the game for remote players will "inspire" us to strengthen our
simple game by protecting it with a shield of armor. Our strengthening method follows the long
established idea for protecting communications over open networks: hiding information using

cryptography.

After having applied cryptography and reached a quality solution to our first security problem,
we shall conduct a series of discussions on the quality criteria for cryptographic systems (81.2).
The discussions will serve as a background and cultural introduction to the areas in which we
research and develop technologies for protecting sensitive information.



1.1 A Communication Game

Here is a simple problem. Two friends, Alice and Bobl2l, want to spend an evening out together,
but they cannot decide whether to go to the cinema or the opera. Nevertheless, they reach an
agreement to let a coin decide: playing a coin tossing game which is very familiar to all of us.

[al They are the most well-known figures in the area of cryptography, cryptographic protocols and information
security; they will appear in most of the cryptographic protocols in this book.

Alice holds a coin and says to Bob, "You pick a side then | will toss the coin.” Bob does so and
then Alice tosses the coin in the air. Then they both look to see which side of the coin landed on
top. If Bob's choice is on top, Bob may decide where they go; if the other side of the coin lands
on top, Alice makes the decision.

In the study of communication procedures, a multi-party-played game like this one can be given
a "scientific sounding" name: protocol. A protocol is a well-defined procedure running among a
plural number of participating entities. We should note the importance of the plurality of the
game participants; if a procedure is executed entirely by one entity only then it is a procedure
and cannot be called a protocol.

1.1.1 Our First Application of Cryptography

Now imagine that the two friends are trying to run this protocol over the telephone. Alice offers
Bob, "You pick a side. Then | will toss the coin and tell you whether or not you have won." Of
course Bob will not agree, because he cannot verify the outcome of the coin toss.

However we can add a little bit of cryptography to this protocol and turn it into a version
workable over the phone. The result will become a cryptographic protocol, our first cryptographic
protocol in this book! For the time being, let us just consider our "cryptography” as a
mathematical function f(x) which maps over the integers and has the following magic properties:

Property 1.1: Magic Function f

I. For every integer X, it is easy to compute f(x) from x, while given any value f(x) itis
impossible to find any information about a pre-image x, e.g., whether x is an odd or even
number.



Protocol 1.1: Coin Flipping Over Telephone

PREMISE

Alice and Bob have agreed:

i. a"magic function" f with properties specified in Property 1.1

ii. an even number x in f(X) represents HEADS and the other case represents
TAILS

(* Caution: due to (ii), this protocol has a weakness, see Exercise 1.2 *)

1. Alice picks a large random integer x and computes f(x); she reads f(x) to
Bob over the phone;

2. Bob tells Alice his guess of x as even or odd;
3. Alice reads x to Bob;

4. Bob verifies f(x) and sees the correctness/incorrectness of his guess.

Il. It impossible to find a pair of integers (X, y)satisfying x # y and f(x) = f(y).

InProperty 1.1, the adjectives "easy" and "impossible” have meanings which need further
explanations. Also because these words are related to a degree of difficulty, we should be clear
about their quantifications. However, since for now we view the function f as a magic one, it is
safe for us to use these words in the way they are used in the common language. In Chapter 4
we will provide mathematical formulations for various uses of "easy" and "impossible" in this
book. One important task for this book is to establish various quantitative meanings for "easy,"
"difficult” or even "impossible.” In fact, as we will eventually see in the final technical chapter of
this book (Chapter 19) that in our final realization of the coin-flipping protocol, the two uses of
"impossible” for the "magic function” in Property 1.1 will have very different quantitative
measures.

Suppose that the two friends have agreed on the magic function f. Suppose also that they have
agreed that, e.g., an even number represents HEADS and an odd number represents TAILS. Now
they are ready to run our first cryptographic protocol, Prot 1.1, over the phone.

It is not difficult to argue that Protocol "Coin Flipping Over Telephone" works quite well over the
telephone. The following is a rudimentary "security analysis." (Warning: the reason for us to
quote "security analysis" is because our analysis provided here is far from adequate.)

1.1.1.1 A Rudimentary " Security Analysis"

First, from "Property 11" of f, Alice is unable to find two different numbers x and y, one is odd

and the other even (this can be expressed as x #y (mod 2)) such that f(x) = f(y). Thus, once
having read the value f(x) to Bob over the phone (Step 1), Alice has committed to her choice of



x and cannot change her mind. That's when Alice has completed her coin flipping.

Secondly, due to "Property 1" of f, given the value f(x), Bob cannot determine whether the pre-
image used by Alice is odd or even and so has to place his guess (in Step 2) as a real guess (i.e.,
an uneducated guess). At this point, Alice can convince Bob whether he has guessed right or
wrong by revealing her pre-image x (Step 3). Indeed, Bob should be convinced if his own
evaluation of f(x) (in Step 4) matches the value told by Alice in Step 1 and if he believes that the
properties of the agreed function hold. Also, the coin-flipping is fair if x is taken from an
adequately large space so Bob could not have a guessing advantage, that is, some strategy that
gives him a greater than 50-50 chance of winning.

We should notice that in our "security analysis" for Prot 1.1 we have made a number of
simplifications and omissions. As a result, the current version of the protocol is far from a
concrete realization. Some of these simplifications and omissions will be discussed in this
chapter. However, necessary techniques for a proper and concrete realization of this protocol
and methodologies for analyzing its security will be the main topics for the remainder of the
whole book. We shall defer the proper and concrete realization of Prot 1.1 (more precisely, the
"magic function" f) to the final technical chapter of this book (Chapter 19). There, we will be
technically ready to provide a formal security analysis on the concrete realization.

1.1.2 An Initial Hint on Foundations of Cryptography

Although our first protocol is very simple, it indeed qualifies as a cryptographic protocol because
the "magic function” the protocol uses is a fundamental ingredient for modern cryptography:
one-way function. The two magic properties listed in Property 1.1 pose two computationally
intractable problems, one for Alice, and the other for Bob.

From our rudimentary security analysis for Prot 1.1 we can claim that the existence of one-way
function implies a possibility for secure selection of recreation venue. The following is a
reasonable generalization of this claim:

The existence of a one-way function implies the existence of a secure cryptographic system.
It is now well understood that the converse of this claim is also true:
The existence of a secure cryptographic system implies the existence of a one-way function.

It is widely believed that one-way function does exist. Therefore we are optimistic on securing
our information. Our optimism is often confirmed by our everyday experience: many processes
in our world, mathematical or otherwise, have a one-way property. Consider the following
phenomenon in physics (though not an extremely precise analogy for mathematics): it is an easy
process for a glass to fall on the floor and break into pieces while dispersing a certain amount of
energy (e.g., heat, sound or even some dim light) into the surrounding environment. The
reverse process, recollecting the dispersed energy and using it to reintegrate the broken pieces
back into a whole glass, must be a very hard problem if not impossible. (If possible, the fully
recollected energy could actually bounce the reintegrated glass back to the height where it
started to fall!)

InChapter 4 we shall see a class of mathematical functions which provide the needed one-way
properties for modern cryptography.

1.1.3 Basis of Information Security: More than Computational
Intractability



We have just claimed that information security requires certain mathematical properties.
Moreover, we have further made an optimistic assertion in the converse direction: mathematical
properties imply (i.e., guarantee) information security.

However, in reality, the latter statement is not unconditionally true! Security in real world
applications depends on many real world issues. Let us explain this by continuing using our first
protocol example.

We should point out that many important issues have not been considered in our rudimentary
security analysis for Prot 1.1. In fact, Prot 1.1 itself is a much simplified specification. It has
omitted some details which are important to the security services that the protocol is designed to
offer. The omission has prevented us from asking several questions.

For instance, we may ask: has Alice really been forced to stick to her choice of x? Likewise, has
Bob really been forced to stick to his even-odd guess of x? By "forced,"” we mean whether voice
over telephone is sufficient for guaranteeing the strong mathematical property to take effect. We
may also ask whether Alice has a good random number generator for her to acquire the random
numberx. This quality can be crucially important in a more serious application which requires
making a fair decision.

All these details have been omitted from this simplified protocol specification and therefore they
become hidden assumptions (more on this later). In fact, if this protocol is used for making a
more serious decision, it should include some explicit instructions. For example, both
participants may consider recording the other party's voice when the value f(x) and the
even/odd guess are pronounced over the phone, and replay the record in case of dispute.

Often cryptographic systems and protocols, in particular, those introduced by a textbook on
cryptography, are specified with simplifications similar to the case in Protocol "Coin Flipping
Over Telephone." Simplifications can help to achieve presentation clarity, especially when some
agreement may be thought of as obvious. But sometimes a hidden agreement or assumption
may be subtle and can be exploited to result in a surprising consequence. This is somewhat
ironic to the "presentation clarity"” which is originally intended by omitting some details. A
violation of an assumption of a security system may allow an attack to be exploited and the
consequence can be the nullification of an intended service. It is particularly difficult to notice a
violation of a hidden assumption. In 81.2.5 we shall provide a discussion on the importance of
explicit design and specification of cryptographic systems.

A main theme of this book is to explain that security for real world applications has many
application related subtleties which must be considered seriously.

1.1.4 Modern Role of Cryptography: Ensuring Fair Play of Games

Cryptography was once a preserve of governments. Military and diplomatic organizations used it
to keep messages secret. Nowadays, however, cryptography has a modernized role in addition
to keeping secrecy of information: ensuring fair play of "games" by a much enlarged population
of "game players." That is part of the reasons why we have chosen to begin this book on
cryptography with a communication game.

Deciding on a recreation venue may not be seen as a serious business, and so doing it via
flipping a coin over the phone can be considered as just playing a small communication game for
fun. However, there are many communications "games" which must be taken much more
seriously. With more and more business and e-commerce activities being and to be conducted
electronically over open communications networks, many cases of our communications involve
various kinds of "game playing." (In the Preface of this book we have listed various business and
services examples which can be conducted or offered electronically over open networks; all of



them involve some interactive actions of the participants by following a set of rules, which can
be viewed as "playing communication games".) These "games" can be very important!

In general, the "players" of such "games" are physically distant from each other and they
communicate over open networks which are notorious for lack of security. The physical distance
combined with the lack of security may help and/or encourage some of the "game players"
(some of whom can even be uninvited) to try to defeat the rule of game in some clever way. The
intention for defeating the rule of game is to try to gain some unentitled advantage, such as
causing disclosure of confidential information, modification of data without detection, forgery of
false evidence, repudiation of an obligation, damage of accountability or trust, reduction of
availability or nullification of services, and so on. The importance of our modern communications
in business, in the conduct of commerce and in providing services (and many more others, such
as securing missions of companies, personal information, military actions and state affairs)
mean that no unentitled advantage should be gained to a player who does not conform the rule
of game.

In our development of the simple "Coin-Flipping-Over-Telephone" cryptographic protocol, we
have witnessed the process whereby an easy-to-sabotage communication game evolves to a
cryptographic protocol and thereby offers desired security services. Our example demonstrates
the effectiveness of cryptography in maintaining the order of "game playing." Indeed, the use of
cryptography is an effective and the only practical way to ensure secure communications over
open computers and communications networks. Cryptographic protocols are just communication
procedures armored with the use of cryptography and thereby have protective functions
designed to keep communications in good order. The endless need for securing communications
for electronic commerce, business and services coupled with another need for anticipating the
ceaseless temptation of "breaking the rules of the game" have resulted in the existence of many
cryptographic systems and protocols, which form the subject matter of this book.




1.2 Criteria for Desirable Cryptographic Systems and
Protocols

We should start by asking a fundamental question:
What is a good cryptographic system/protocol?

Undoubtedly this question is not easy to answer! One reason is that there are many answers to it
depending on various meanings the word good may have. It is a main task for this book to
provide comprehensive answers to this fundamental question. However, here in this first chapter
we should provide a few initial answers.

1.2.1 Stringency of Protection Tuned to Application Needs

Let us begin with considering our first cryptographic protocol we designed in 81.1.1.

We can say that Protocol "Coin Flipping Over Telephone" is good in the sense that it is
conceptually very simple. Some readers who may already be familiar with many practical one-
way hash functions, such as SHA-1 (see §10.3.1), might further consider that the function f(x) is
also easy to implement even in a pocket calculator. For example, an output from SHA-1 is a bit
string of length of 160 bits, or 20 bytes (1 byte = 8 bits); using the hexadecimal encoding
scheme (see Example 5.17) such an output can be encoded into 40 hexadecimal characterslb]
and so it is just not too tedious for Alice (Bob) to read (and jot down) over the phone. Such an
implementation should also be considered sufficiently secure for Alice and Bob to decide their

recreation venue: if Alice wants to cheat, she faces a non-trivial difficulty in order to find x ¢y
(mod 2) with f(x) = f(y); likewise, Bob will also have to face a non-trivial difficulty, that is, given
f(x), to determine whether x is even or odd.

[Pl Hexadecimal characters are those in the set {0, 1, 2, ..., 9, A, B, ..., F} representing the 16 cases of 4-bit
numbers.

However, our judgement on the quality of Protocol "Coin Flipping Over Telephone" realized using
SHA-1 is based on a level of non-seriousness that the game players expect on the consequence
of the game. In many more serious applications (e.g., one which we shall discuss in §81.2.4), a
fair coin-flipping primitive for cryptographic use will in general require much stronger one-way
and commitment-binding properties than a practical one-way hash function, such as SHA-1, can
offer. We should notice that a function with the properties specified in Property 1.1, if we take
the word "impossible” literally, is a completely secure one-way function. Such a function is not
easily implementable. Worse, even its very existence remains an open question (even though we
are optimistic about the existence, see our optimistic view in 81.1.2, we shall further discuss the
condition for the existence of a one-way function in Chapter 4). Therefore, for more serious
applications of fair coin-flipping, practical hash functions won't be considered good; much more
stringent cryptographic techniques are necessary. On the other hand, for deciding a recreation
venue, use of heavyweight cryptography is clearly unnecessary or overkill.

We should point out that there are applications where a too-strong protection will even prevent
an intended security service from functioning properly. For example, Rivest and Shamir propose
a micropayment scheme, called MicroMint [242], which works by making use of a known
deficiency in an encryption algorithm to their advantage. That payment system exploits a
reasonable assumption that only a resourceful service provider (e.g., a large bank or financial
institute) is able to prepare a large number of "collisions" under a practical one-way function,
and do so economically. This is to say that the service provider can compute k distinct numbers



(X1,X 2, ..., Xk) satisfying

flx) = flz2) = -+ = flax).

The numbers x1,X 2, ..., Xk, are called collision under the one-way function f. A pair of collisions
can be checked efficiently since the one-way function can be evaluated efficiently, they can be
considered to have been issued by the resourceful service provider and hence can represent a
certified value. The Data Encryption Standard (DES, see 87.6) is suggested as a suitable
algorithm for implementing such a one-way function ([242]) and so to achieve a relatively small
output space (64 binary bits). Thus, unlike in the normal cryptographic use of one-way functions
where a collision almost certainly constitutes a successful attack on the system (for example, in
the case of Protocol "Coin Flipping Over Telephone"), in MicroMint, collisions are used in order to
enable a fancy micropayment service! Clearly, a strong one-way function with a significantly
larger output space (i.e., 2 64 bits, such as SHA-1 with 160 bits) will nullify this service even
for a resourceful service provider (in 83.6 we will study the computational complexity for finding
collisions under a hash function).

Although it is understandable that using heavyweight cryptographic technologies in the design of
security systems (for example, wrapping with layers of encryption, arbitrarily using digital
signatures, calling for online services from a trusted third party or even from a large number of
them) may provide a better feeling that a stronger security may have been achieved (it may also
ease the design job), often this feeling only provides a false sense of assurance. Reaching the
point of overkill with unnecessary armor is undesirable because in so doing itis more likely to
require stronger security assumptions and to result in a more complex system. A complex
system can also mean an increased difficulty for security analysis (hence more likelihood to be
error-prone) and secure implementation, a poorer performance, and a higher overhead cost for
running and maintenance.

It is more interesting and a more challenging job to design cryptographic or security systems
which use only necessary techniques while achieving adequate security protection. This is an
important element for cryptographic and security systems to qualify as good.

1.2.2 Confidence in Security Based on Established "Pedigree"

How can we be confident that a cryptographic algorithm or a protocol is secure? Is it valid to say
that an algorithm is secure because nobody has broken it? The answer is, unfortunately, no. In
general, what we can say about an unbroken algorithm is merely that we do not know how to
break it yet. Because in cryptography, the meaning of a broken algorithm sometimes has
quantitative measures; if such a measure is missing from an unbroken algorithm, then we
cannot even assert whether or not an unbroken algorithm is more secure than a known broken
one.

Nevertheless, there are a few exceptions. In most cases, the task of breaking a cryptographic
algorithm or a scheme boils down to solving some mathematical problems, such as to find a
solution to an equation or to invert a function. These mathematical problems are considered
"hard" or "intractable.” A formal definition for "hard" or "intractable™ will be given in Chapter 4.
Here we can informally, yet safely, say that a mathematical problem is intractable if it cannot be
solved by any known methods within a reasonable length of time.

There are a number of well-known intractable problems that have been frequently used as
standard ingredients in modern cryptography, in particular, in public-key or asymmetric
cryptography (see 88.3—88.14). For example, in public-key cryptography, intractable problems



include the integer factorization problem, the discrete logarithm problem, the Diffie-Hellman
problem, and a few associated problems (we will define and discuss these problems in Chapter
8). These problems can be referred to as established "pedigree” ones because they have
sustained a long history of study by generations of mathematicians and as a result, they are now
trusted as really hard with a high degree of confidence.

Today, a standard technique for establishing a high degree of confidence in security of a
cryptographic algorithm is to conduct a formal proof which demonstrates that an attack on the
algorithm can lead to a solution to one of the accepted "pedigree” hard problems. Such a proof is
an efficient mathematical transformation, or a sequence of such transformations, leading from
an attack on an algorithm to a solution to a hard problem. Such an efficient transformation is
called a reduction which "reduces" an attack to a solution to a hard problem. Since we are highly
confident that the resultant solution to the hard problem is unlikely to exist (especially under the
time cost measured by the attack and the reduction transformation), we will be able to derive a
measurable confidence that the alleged attack should not exist. This way of security proof is
therefore named "reduction to contradiction:" an easy solution to a hard problem.

Formally provable security, in particular under various powerful attacking model called adaptive
attacks, forms an important criterion for cryptographic algorithms and protocols to be regarded
asgood. We shall use fit-for-application security to name security qualities which are established
through formal and reduction-to-contradiction approach under powerful attacking models.

As an important topic of this book, we shall study fit-for-application security for many
cryptographic algorithms and protocols.

1.2.3 Practical Efficiency

When we say that a mathematical problem is efficient or is efficiently solvable, we basically
assert that the problem is solvable in time which can be measured by a polynomial in the size of
the problem. A formal definition for efficiency, which will let us provide precise measures of this
assertion, will be provided in Chapter 4.

Without looking into quantitative details of this assertion for the time being, we can roughly say
that this assertion divides all the problems into two classes: tractable and intractable. This
division plays a fundamental role in the foundations for modern cryptography: a complexity-
theoretically based one. Clearly, a cryptographic algorithm must be designed such that it is
tractable on the one hand and so is usable by a legitimate user, but is intractable on the other
hand and so constitutes a difficult problem for a non-user or an attacker to solve.

We should however note that this assertion for solubility covers a vast span of quantitative
measures. If a problem's computing time for a legitimate user is measured by a huge
polynomial, then the "efficiency" is in general impractical, i.e., can have no value for a practical
use. Thus, an important criterion for a cryptographic algorithm being good is that it should be
practically efficient for a legitimate user. In specific, the polynomial that measures the resource
cost for the user should be small (i.e., have a small degree, the degree of a polynomial will be
introduced in Chapter 4).

InChapter 14 we will discuss several pioneering works on provably strong public-key
cryptosystems. These works propose public-key encryption algorithms under a common
motivation that many basic versions of public-key encryption algorithms are insecure (we name
those insecure schemes "textbook crypto"” because most textbooks in cryptography introduce
them up to their basic and primitive versions; they will be introduced in Part 111 of this book).
However, most pioneering works on provably strong public-key cryptosystems resort to a bit-by-
bit encryption method, [125,210,241], some even take extraordinary steps of adding proofs of
knowledge on the correct encryption of each individual bit [210] plus using public-key



authentication framework [241]. While these early pioneering works are important in providing
insights to achieve strong security, the systems they propose are in general too inefficient for
applications. After Chapter 14, we will further study a series of subsequent works following the
pioneering ones on probably strongly secure public-key cryptosystems and digital signature
schemes. The cryptographic schemes proposed by these latter works propose have not only
strong security, but also practical efficiency. They are indeed very good cryptographic schemes.

A cryptographic protocol is not only an algorithm, it is also a communication procedure which
involves transmitting of messages over computer networks between different protocol
participants under a set of agreed rules. So a protocol has a further dimension for efficiency
measure: the number of communication interactions which are often called communication
rounds. Usually a step of communication is regarded to be more costly than a step of local
computation (typically an execution of a set of computer instructions, e.g. a multiplication of two
numbers on a computing device). Therefore it is desirable that a cryptographic protocol should
have few communication rounds. The standard efficiency criterion for declaring an algorithm as
being efficient is if its running time is bounded by a small polynomial in the size of the problem.
If we apply this efficiency criterion to a protocol, then an efficient protocol should have its
number of communication rounds bounded by a polynomial of an extremely small degree: a
constant (degree 0) or at most a linear (degree 1) function. A protocol with communication
rounds exceeding a linear function should not be regarded as practically efficient, that is, no
good for any practical use.

In 818.2.3 we will discuss some zero-knowledge proof protocols which have communication
rounds measured by non-linear polynomials. We should note that those protocols were not
proposed for real applications; instead, they have importance in the theory of cryptography and
computational complexity. In Chapter 18 we will witness much research effort for designing
practically efficient zero-knowledge protocols.

1.2.4 Use of Practical and Available Primitives and Services

A level of security which is good for one application needn't be good enough for another. Again,
let us use our coin-flipping protocol as an example. In §1.2.1 we have agreed that, if
implemented with the use of a practical one-way hash function, Protocol "Coin Flipping Over
Telephone” is good enough for Alice and Bob to decide their recreation venue over the phone.
However, in many cryptographic applications of a fair coin-flipping primitive, security services
against cheating and/or for fairness are at much more stringent levels; in some applications the
stringency must be in an absolute sense.

For example, in Chapter 18 we will discuss a zero-knowledge proof protocol which needs random
bit string input and such random input must be mutually trusted by both proving/verification
parties, or else serious damages will occur to one or both parties. In such zero-knowledge proof
protocols, if the two communication parties do not have access to, or do not trust, a third-party-
based service for supplying random numbers (such a service is usually nicknamed "random
numbers from the sky" to imply its impracticality) then they have to generate their mutually
trusted random numbers, bit-by-bit via a fair coin-flipping protocol. Notice that here the need for
the randomness to be generated in a bit-by-bit (i.e., via fair coin-flipping) manner is in order to
satisfy certain requirements, such as the correctness and zero-knowledge-ness of the protocol.
In such a situation, a level of practically good (e.g., in the sense of using a practical hash
function in Protocol "Coin Flipping Over Telephone") is most likely to be inadequate.

A challenging task in applied research on cryptography and cryptographic protocols is to build
high quality security services from practical and available cryptographic primitives. Once more,
let us use a coin-flipping protocol to make this point clear. The protocol is a remote coin-flipping
protocol proposed by Blum [43]. Blum's protocol employs a practically secure and easily
implementable "one-way" function but achieves a high-quality security in a very strong fashion



which can be expressed as:

e First, it achieves a quantitative measure on the difficulty against the coin flipping party
(e.g., Alice) for cheating, i.e., for preparing a pair of collision x ;&y satisfying f(x) = f(y).
Here, the difficulty is quantified by that for factoring a large composite integer, i.e., that for
solving a "pedigree™ hard problem.

e Second, there is absolutely no way for the guessing party to have a guessing strategy
biased away from the 50-50 chance. This is in terms of a complete security.

Thus, Blum's coin-flipping protocol is particularly good in the sense of having achieved a strong
security while using only practical cryptographic primitives. As a strengthening and concrete
realization for our first cryptographic protocol, we will describe Blum's coin-flipping protocol as
the final cryptographic protocol of this book.

Several years after the discovery of public-key cryptography [97,98,246], it became gradually
apparent that several basic and best-known public-key encryption algorithms (we will refer to
them as "textbook crypto™) generally have two kinds of weakness: (i) they leak partial
information about the message encrypted; (ii) they are extremely vulnerable to active attacks
(seeChapter 14). These weaknesses mean that "textbook crypto™ are not fit for applications.
Early approaches to a general fix for the weaknesses in "textbook crypto” invariantly apply bit-
by-bit style of encryption and even apply zero-knowledge proof technique at bit-by-bit level as a
means to prevent active attacks, plus authentication framework. These results, while valuable in
the development of provably secure public-key encryption algorithms, are not suitable for most
encryption applications since the need for zero-knowledge proof or for authentication framework
is not practical for the case of encryption algorithms.

Since the successful initial work of using a randomized padding scheme in the strengthening of a
public key encryption algorithm [24], a general approach emerges which strengthens popular
textbook public-key encryption algorithms into ones with provable security by using popular
primitives such as hash functions and pseudorandom number generators. These strengthened
encryption schemes are practical since they use practical primitives such as hash functions, and
consequently their efficiency is similar to the underlying "textbook crypto™ counterparts. Due to
this important quality element, some of these algorithms enhanced from using practical and
popular primitives become public-key encryption and digital signature standards. We shall study
several such schemes in Chapters 15 and 16.

Designing cryptographic schemes, protocols and security systems using available and popular
techniques and primitives is also desirable in the sense that such results are more likely to be
secure as they attract a wider interest for public scrutiny.

1.2.5 Explicitness

In the late 1960's, software systems grew very large and complex. Computer programmers
began to experience a crisis, the so-called "software crisis.” Large and complex software systems
were getting more and more error prone, and the cost of debugging a program became far in
excess of the cost of the program design and development. Soon computer scientists discovered
a few perpetrators who helped to set-up the crisis which resulted from bad programming
practice. Bad programming practice includes:

e Arbitrary use of the GOTO statement (jumping up and down seems very convenient)

e Abundant use of global variables (causing uncontrolled change of their values, e.g., in an



unexpected execution of a subroutine)

e The use of variables without declaration of their types (implicit types can be used in
Fortran, so, for example, a real value may be truncated to an integer one without being
noticed by the programmer)

e Unstructured and unorganized large chunk of codes for many tasks (can be thousands of
lines a piece)

e Few commentary lines (since they don't execute!)

These were a few "convenient” things for a programmer to do, but had proved to be capable of
causing great difficulties in program debugging, maintenance and further development. Software
codes designed with these "convenient” features can be just too obscure to be comprehensible
and maintained. Back then it was not uncommon that a programmer would not be able to to
understand a piece of code s/he had written merely a couple of months or even weeks ago.

Once the disastrous consequences resulting from the bad programming practice were being
gradually understood, Program Design Methodology became a subject of study in which being
explicit became an important principle for programming. Being explicit includes limiting the use
of GOTO and global variables (better not to use them at all), explicit (via mandatory) type
declaration for any variables, which permits a compiler to check type flaws systematically and
automatically, modularizing programming (dividing a large program into many smaller parts,
each for one task), and using abundant (as clear as possible) commentary material which are
texts inside a program and documentation outside.

A security system (cryptographic algorithm or protocol) includes program parts implemented in
software and/or hardware, and in the case of protocol, the program parts run on a number of
separate hosts (or a number of programs concurrently and interactively running on these hosts).
The explicitness principle for software engineering applies to a security system's design by
default (this is true in particular for protocols). However, because a security system is assumed
to run in a hostile environment in which even a legitimate user may be malicious, a designer of
such systems must also be explicit about many additional things. Here we list three important
aspects to serve as general guidelines for security system designers and implementors. (In the
rest of the book we will see many attacks on algorithms and protocols due to being implicit in
design or specification of these systems.)

1. Be explicit about all assumptions needed.

A security system operates by interacting with an environment and therefore it has a set of
requirements which must be satisfied by that environment. These requirements are called
assumptions (or premises) for a system to run. A violation of an assumption of a protocol
may allow the possibility of exploiting an attack on the system and the consequence can be
the nullification of some intended services. It is particularly difficult to notice a violation of
an assumption which has not been clearly specified (a hidden assumption). Therefore all
assumptions of a security system should be made explicit.

For example, it is quite common that a protocol has an implicit assumption or expectation
that a computer host upon which the protocol runs can supply good random numbers, but
in reality few desktop machines or hand-held devices are capable of satisfying this
assumption. A so-called low-entropy attack is applicable to protocols using a poor random
source. A widely publicized attack on an early implementation of the Secure Sockets Layer
(SSL) Protocol (an authentication protocol for World Wide Web browser and server, see
812.5) is a well-known example of the low-entropy attack [123].

Explicit identification and specification of assumptions can also help the analysis of complex



systems. DeMillo et al. (Chapter 4 of [91]), DeMillo and Merritt [92] suggest a two-step
approach to cryptographic protocol design and analysis, which are listed below (after a
modification by Moore [204,205]):

i. ldentifyall assumptions made in the protocol.

ii. For each assumption in step (i), determine the effect on the security of the protocol if
that assumption were violated.

Be explicit about exact security services to be offered.

A cryptographic algorithm/protocol provides certain security services. Examples of some
important security services include: confidentiality (a message cannot be comprehended by
a non-recipient), authentication (a message can be recognized to confirm its integrity or its
origin), non-repudiation (impossibility for one to deny a connection to a message), proof of
knowledge (demonstration of evidence without disclosing it), and commitment (e.g., a
service offered to our first cryptographic protocol "Coin Flipping Over Telephone" in which
Alice is forced to stick to a string without being able to change).

When designing a cryptographic protocol, the designer should be very clear regarding
exactly what services the protocol intends to serve and should explicitly specify them as
well. The explicit identification and specification will not only help the designer to choose
correct cryptographic primitives or algorithms, but also help an implementor to correctly
implement the protocol. Often, an identification of services to the refinement level of the
general services given in these examples is not adequate, and further refinement of them is
necessary. Here are a few possible ways to further refine some of them:

Confidentiality = privacy, anonymity, invisibility, indistinguishability
Authentication = data-origin, data-integrity, peer-entity
Non-repudiation = message-issuance, message-receipt

Proof of = knowledge possession, knowledge structure
knowledge

A misidentification of services in a protocol design can cause misuse of cryptographic
primitives, and the consequence can be a security flaw in the protocol. In Chapter 2 and
Chapter 11 we will see disastrous examples of security flaws in authentication protocols
due to misidentification of security services between confidentiality and authentication.

There can be many more kinds of security services with more ad hoc names (e.g., message
freshness, non-malleability, forward secrecy, perfect zero-knowledge, fairness, binding,
deniability, receipt freeness, and so on). These may be considered as derivatives or further
refinement from the general services that we have listed earlier (a derivative can be in
terms of negation, e.g., deniability is a negative derivative from non-repudiation).
Nevertheless, explicit identification of them is often necessary in order to avoid design
flaws.

Be explicit about special cases in mathematics.
As we have discussed in 81.2.2, some hard problems in computational complexity theory

can provide a high confidence in the security of a cryptographic algorithm or protocol.
However, often a hard problem has some special cases which are not hard at all. For



example, we know that the problem of factorization of a large composite integer is in
general very hard. However the factorization of a large composite integer N = PQ where Q
is the next prime number of a large prime number P is not a hard problem at all! One can

do so efficiently by computing L" ‘n""J (LJ is called the floor function and denotes the
integer part of -) and followed by a few trial divisions around that number to pinpoint P and

Q.

Usual algebraic structures upon which cryptographic algorithms work (such as groups,
rings and fields, to be studied in Chapter 5) contain special cases which produce
exceptionally easy problems. Elements of small multiplicative orders (also defined in
Chapter 5) in a multiplicative group or a finite field provide such an example; an extreme
case of this is when the base for the Diffie-Hellman key exchange protocol (see §8.3) is the
unity element in these algebraic structures. Weak cases of elliptic curves, e.g.,
"supersingular curves” and "anomalous curves,” form another example. The discrete
logarithm problem on "supersingular curves" can be reduced to the discrete logarithm
problem on a finite field, known as the Menezes-Okamoto-Vanstone attack [197] (see
8§13.3.4.1). An "anomalous curve" is one with the number of points on it being equal to the
size of the underlying field, which allows a polynomial time solution to the discrete
logarithm problem on the curve, known as the attack of Satoh-Araki [252], Semaev [258]
and Smart [278].

An easy special case, if not understood by an algorithm/protocol designer and/or not
clearly specified in an algorithm/protocol specification, may easily go into an
implementation and can thus be exploited by an attacker. So an algorithm/protocol
designer must be aware of the special cases in mathematics, and should explicitly specify
the procedures for the implementor to eliminate such cases.

It is not difficult to list many more items for explicitness (for example, a key-management
protocol should stipulate explicitly the key-management rules, such as separation of keys for
different usages, and the procedures for proper key disposal, etc.). Due to the specific nature of
these items we cannot list all of them here. However, explicitness as a general principle for
cryptographic algorithm/protocol design and specification will be frequently raised in the rest of
the book. In general, the more explicitly an algorithm/protocol is designed and specified, the
easier it is for the algorithm/protocol to be analyzed; therefore the more likely it is for the
algorithm/protocol to be correctly implemented, and the less likely it is for the
algorithm/protocol to suffer an unexpected attack.

1.2.6 Openness

Cryptography was once a preserve of governments. Military and diplomatic organizations used it
to keep messages secret. In those days, most cryptographic research was conducted behind
closed doors; algorithms and protocols were secrets. Indeed, governments did, and they still do,
have a valid point in keeping their cryptographic research activities secret. Let us imagine that a
government agency publishes a cipher. We should only consider the case that the cipher
published is provably secure; otherwise the publication can be too dangerous and may actually
end up causing embarrassment to the government. Then other governments may use the
provably secure cipher and consequently undermine the effectiveness of the code-breakers of the
government which published the cipher.

Nowadays, however, cryptographic mechanisms have been incorporated in a wide range of
civilian systems (we have provided a non-exhaustive list of applications in the very beginning of
this chapter). Cryptographic research for civilian use should take an open approach.
Cryptographic algorithms do use secrets, but these secrets should be confined to the
cryptographic keys or keying material (such as passwords or PINs); the algorithms themselves



should be made public. Let's explore the reasons for this stipulation.

In any area of study, quality research depends on the open exchange of ideas via conference
presentations and publications in scholarly journals. However, in the areas of cryptographic
algorithms, protocols and security systems, open research is more than just a common means to
acquire and advance knowledge. An important function of open research is public expert
examination. Cryptographic algorithms, protocols and security systems have been notoriously
error prone. Once a cryptographic research result is made public it can be examined by a large
number of experts. Then the opportunity for finding errors (in design or maybe in security
analysis) which may have been overlooked by the designers will be greatly increased. In
contrast, if an algorithm is designed and developed in secret, then in order to keep the secret,
only few, if any, experts can have access to and examine the details. As a result the chance for
finding errors is decreased. A worse scenario can be that a designer may know an error and may
exploit it secretly.

It is now an established principle that cryptographic algorithms, protocols, and security systems
for civilian use must be made public, and must go through a lengthy public examination process.
Peer review of a security system should be conducted by a hostile expert.



1.3 Chapter Summary

In this chapter we began with an easy example of applied cryptography. The three purposes
served by the example are:

i. Showing the effectiveness of cryptography in problem solving
ii. Aiming for a fundamental understanding of cryptography
iili. Emphasizing the importance of non-textbook aspects of security
They form the main topics to be developed in the rest of this book.

We then conducted a series of discussions which served the purpose for an initial background
and cultural introduction to the areas of study. Our discussions in these directions are by no
means of complete. Several other authors have also conducted extensive study on principles,
guidelines and culture for the areas of cryptography and information security. The following
books form good further reading material: Schneier [254], Gollmann [129] and Anderson [14].
Schneier's monthly distributed "Crypto-Gram Newsletters" are also good reading material. To
subscribe for receiving the newsletters, send an email to schneier@counterpane.com.




Exercises

1.1

1.2

1.3

1.4

1.5

What is the difference between a protocol and an algorithm?

InProt 1.1 Alice can decide HEADS or TAILS. This may be an unfair advantage for
some applications. Modify the protocol so that Alice can no longer have this
advantage.

Hint: let a correct guess decide the side.

Let function f map from the space of 200-bit integers to that of 100-bit ones with the
following mapping rule:

f(x) e (the most significant 100 bits of x) &
(the least significant 100 bits of )

here $ denotes bit-by-bit XOR operation, i.e.,

ﬂ.'ilﬁlh:{ i) il

1 otherwise

i. Isf efficient?
ii. Doesf have the "Magic Property 1"?
iili. Doesf have the "Magic Property 11"?

iv. Can this function be used in Prot 1.1?

Is an unbroken cryptographic algorithm more secure than a known broken one? If
not, why?

Complex systems are error-prone. Give an additional reason for a complex security
system to be even more error-prone.
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2.1 Introduction

One reason for the existence of many cryptographic protocols is the consequence of a fact: it is
very difficult to make cryptographic protocols correct. Endless endeavors have been made to
design correct protocols. Many new protocols were proposed as a result of fixing existing ones in
which security flaws were discovered. A security flaw in a cryptographic protocol can always be
described by an attack scenario in which some security services that the protocol purports to
provide can be sabotaged by an attacker or by a number of them via their collusion. In the area
of cryptographic protocols it is as if there is a permanent wrestling between protocol designers
and attackers: A protocol is proposed, an attack is discovered, a fix follows, then another attack,
and another fix ...

In this chapter we shall demonstrate a series of examples of a wrestling battle between attack
and fix. We shall start from an artificial protocol which is made flawed deliberately. From that
protocol we will go through a "fix, attack, fix again and attack again" process. Eventually we will
reach two protocols which have been proposed for solving information security problems in the
real world (all of the flawed and "fixed" then broken protocols prior to these two final results are
artificial protocols). The two real protocol results from our "attack, fix, attack, fix, ..." process are
not only real protocols, but also well-known ones for two reasons. They have played seminal
roles both in applications and in underlying an important study on formal analysis of
cryptographic protocols.

Unfortunately, these two real protocols from our fixing attempts still contain security flaws which
were only discovered long after their publication. One flaw in one of them was found three years
after the publication, and another flaw in the other protocol was exposed after another fourteen
years passed! Having revealed these flaws, we will make a final attempt for fixing, although we
will delay the revelation of some further security problems in the result from our final fixation to
a later chapter when we become technically better prepared to deal with the problems. Leaving
security problems unsolved in this chapter, we intend this chapter to serve an "early-warning"
message: cryptographic algorithms, protocols and systems readily contain security flaws.

This chapter also serves a technical introduction to material and ideas that will enable us (in
particular, readers who are new to the areas of cryptography, cryptographic protocols and
information security) to establish some common and important concepts, definitions and
agreements in the areas of study. These include some basic terminologies and the meanings
behind them (a term appearing for the first time will be in bold form), and the naming
convention for the protocol participants whom we will frequently be meeting throughout the
book. Also, the attacks on these flawed protocols will let us become familiar with some typical
behavior of a special role in our game play: the enemy, against whom we design cryptographic
protocols.

2.1.1 Chapter Outline

In 82.2 we introduce a simplified notion of encryption which will be used for this chapter only. In
82.3—82.5 we introduce the standard threat model, environment and goal for cryptographic, in
particular authentication, protocols. Finally, in §2.6 we develop a series of authentication
protocols.



2.2 Encryption

All protocols to be designed in this chapter will use encryption. We should provide an early
warning on this "one-thing-for-all-purpose™” style of using encryption: in many cases such uses
are incorrect and some other cryptographic primitives should be used instead. In this book we
will gradually develop the sense of precisely using cryptographic primitives for obtaining precise
security services. However, to ease our introduction, let us rely on encryption solely in this
chapter.

Encryption (sometimes called encipherment) is a process to transform a piece of information
into an incomprehensible form. The input to the transformation is called plaintext (or
cleartext) and the output from it is called ciphertext (or cryptogram). The reverse process of
transforming ciphertext into plaintext is called decryption (or decipherment). Notice that
plaintext and ciphertext are a pair of respective notions: the former refers to messages input to,
and the latter, output from, an encryption algorithm. Plaintext needn't be in a comprehensible
form; for example, in the case of double encryption, a ciphertext can be in the position of a
plaintext for re-encryption; we will also see many times in this chapter that encryption of
random number is very common in cryptographic protocols. Usually, cleartext means messages
in a small subset of all possible messages which have certain recognizable distributions. In §3.7
we will study the distribution of a message.

The encryption and decryption algorithms are collectively called cryptographic algorithms
(cryptographic systems or cryptosystems). Both encryption and decryption processes are
controlled by a cryptographic key, or keys. In a symmetric (or shared-key) cryptosystem,
encryption and decryption use the same (or essentially the same) key; in an asymmetric (or
public-key) cryptosystem, encryption and decryption use two different keys: an encryption
key and a (matching)decryption key, and the encryption key can be made public (and hence
is also called public key) without causing the matching decryption key being discovered (and
thus a decryption key in a public-key cryptosystem is also called a private key).Fig 2.1
illustrates a simplified pictorial description of a cryptographic system. A more complete view of a
cryptosystem will be given in Chapter 7 (Fig 7.1).

Figure 2.1. A Simplified Pictorial Description of a Cryptographic System
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We should point out that, within the scope of this chapter, the terms "plaintext,” "ciphertext,"
"encryption,” "decryption,” "encryption key" and "decryption key" are pairs of relative notions.
For a message M (whether it is plaintext or ciphertext), a crypto algorithm A (whether it
represents encryption or decryption) and a cryptographic key K (whether an encryption key or a
decryption key), we may denote by

M' = A(K, M),

acryptographic transformation which is represented by the functionality of either the upper
box or the lower box in Fig 2.1. Thus, we can use A' and K' to denote

M= A'(K', M),

namely,

M = A'(K', A(K, M))

completes the circle in Fig 2.1. In the case of symmetric cryptosystem, we may view K' = K, and
in the case of asymmetric cryptosystem, K’ represents the matching public or private component
ofK. In this chapter ciphertext in a protocol message will be conventionally specified as

{(M}k.

Later when we have learned probability distributions of messages (to be introduced in
83.7-83.8), we will know that plaintext (more precisely, cleartext or comprehensible) messages
are in a small subset of the entire message space, while ciphertext messages are much more
widely distributed in that space. This is the essential difference between plaintext and ciphertext.

We should notice that, in this chapter, our notation for ciphertext always means a result of using
a "perfect" cryptographic algorithm in the following two senses:

Property 2.1: Perfect Encryption with Notation {M}x

i. Without the key K (in the case of a symmetric cryptosystem), or the matching private key of
K (in the case of an asymmetric cryptosystem), the ciphertext {M}kdoes not provide any
cryptanalytic means for finding the plaintext message M.

ii. The ciphertext {M}kand maybe together with some known information about the plaintext
message M do not provide any cryptanalytic means for finding the key K (in the case of a
symmetric cryptosystem), or the matching private key of K (in the case of an asymmetric
cryptosystem).

Perfect encryption with these two properties (there will be an additional property which we shall



discuss in §2.6.3) is an idealization from the encryption algorithms that exist in the real world.
The idealization is a convenient treatment which allows a segregation of responsibilities of the
protocol design and analysis from those of the underlying cryptographic algorithm design and
analysis. The segregation eases the job of protocol design and analysis. We shall see in a
moment that perfect encryption does not prevent a protocol from containing a security flaw. In
fact, for every attack on each protocol to be demonstrated in this chapter, none of them depends
on any deficiency in the underlying cryptosystems.

We will introduce the formal notion of encryption and number of encryption algorithms in several
later chapters (Chapters 7,8,13 and 15). Nevertheless the abstract-level description on the
functionality of encryption/decryption given here shall suffice for our use in this chapter. Itis
harmless now for us to think of an encryption algorithm as a keyed padlock and a piece of
ciphertext as a box of texts with the box being padlocked.

The reader is also referred to [266] for a useful glossary in information security.



2.3 Vulnerable Environment (the Dolev-Yao Threat
Model)

A large network of computers, devices and resources (for example, the Internet) is typically
open, which means that a principal (or entity, agent, user), which can be a computer, a
device, a resource, a service provider, a person or an organization of these things, can join such
a network and start sending and receiving messages to and from other principals across it,
without a need of being authorized by a "super" principal. In such an open environment we must
anticipate that there are bad guys (or attacker, adversary, enemy, intruder,
eavesdropper, impostor, etc.) out there who will do all sorts of bad things, not just passively
eavesdropping, but also actively altering (maybe using some unknown calculations or methods),
forging, duplicating, rerouting, deleting or injecting messages. The injected messages can be
malicious and cause a destructive effect to the principals on the receiving end. In the literature
of cryptography such a bad guy is called an active attacker. In this book we shall name an
attackerMalice (someone who does harm or mischief, and often does so under the masquerade
of a different identity). Malice can be an individual, a coalition of a group of attackers, and, as a
special case, a legitimate principal in a protocol (an insider).

In general, it is assumed that Malice is very clever in manipulating communications over the
open network. His manipulation techniques are unpredictable because they are unspecified. Also
because Malice can represent a coalition of bad guys, he may simultaneously control a number
of network nodes which are geographically far apart. The real reason why Malice can do these
things will be discussed in §12.2.

In anticipation of such a powerful adversary over such a vulnerable environment, Dolev and Yao
propose a threat model which has been widely accepted as the standard threat model for
cryptographic protocols [101]. In that model, Malice has the following characteristics:

¢ He can obtain any message passing through the network.

e He is a legitimate user of the network, and thus in particular can initiate a conversation
with any other user.

e He will have the opportunity to become a receiver to any principal.
e He can send messages to any principal by impersonating any other principal.

Thus, in the Dolev-Yao threat model, any message sent to the network is considered to be
sent to Malice for his disposal (according to whatever he is able to compute). Consequently, any
message received from the network is treated to have been received from Malice after his
disposal. In other words, Malice is considered to have the complete control of the entire network.
In fact, it is harmless to just think of the open network as Malice.

However, unless explicitly stated, we do not consider Malice to be all powerful. This means that
there are certain things that Malice cannot do, even in the case that he represents a coalition of
bad guys and thereby may use a large number of computers across the open network in parallel.
We list below a few things Malice cannot do without quantifying the meaning of “cannot do;"
precise quantification will be made in Chapter 4:

e Malice cannot guess a random number which is chosen from a sufficiently large space.

e Without the correct secret (or private) key, Malice cannot retrieve plaintext from given



ciphertext, and cannot create valid ciphertext from given plaintext, with respect to the
perfect encryption algorithm.

e Malice cannot find the private component, i.e., the private key, matching a given public
key.

e While Malice may have control of a large public part of our computing and communication
environment, in general, he is not in control of many private areas of the computing
environment, such as accessing the memory of a principal's offline computing device.

The Dolev-Yao threat model will apply to all our protocols.



2.4 Authentication Servers

Suppose that two principals Alice and Bob (whom we have already met in our first
cryptographicprotocol "Coin Flipping Over Telephone”,Prot 1.1) wish to communicate with each
other in a secure manner. Suppose also that Alice and Bob have never met before, and therefore
they do not already share a secret key between them and do not already know for sure the other
party's public key. Then how can they communicate securely over completely insecure networks?

It is straightforward to see that at least Alice and Bob can make an arrangement to meet each
other physically and thereby establish a shared secret key between them, or exchange sure
knowledge on the other party's public key. However, in a system with N users who wish to hold
private conversations, how many trips do these users need to make in order to securely establish
these keys? The answer is N(N — 1)/2. Unfortunately, this means a prohibitive cost for a large
system. So this straightforward way for secure key establishment is not practical for use in
modern communication systems.

It is nevertheless feasible for each principal who chooses to communicate securely to obtain an
authentication (and a directory) service. Needham and Schroeder suggest that such a service
can be provided by an authentication server [213]. Such a server is like a name registration
authority; it maintains a database indexed by names of the principals it serves, and can deliver
identifying information computed from a requested principal's cryptographic key that is already
shared between the server and the principal.

An authentication server is a special principal who has to be trusted by its users (client
principals) to always behave honestly. Namely, upon a client principal's request it will respond
exactly according to the protocol's specification, and will not engage in any other activity which
will deliberately compromise the security of its clients (so, for instance, it will never disclose any
secret key it shares with its clients to any third party). Such a principal is called a trusted third
party or TTP for short. In this book we shall use Trent to name a trusted third party.

We suppose that both Alice and Bob use authentication services offered by their respective
authentication servers. In an extended network it is inexpedient to have a single central
authentication server. Needham and Schroeder proposed to use multiple authentication servers
who know each other. Thus, principals served by an authentication server have names of the
form "AuthenticationAuthority.SimpleName." The idea of using multiple authentication servers
has also been proposed by Diffie and Hellman [97].

However, in order to describe our protocols in this chapter with simplicity and clarity we suppose
that Alice and Bob use the same authentication server Trent. In Chapter 12 we will introduce the
network authentication basis for Windows 2000 operating system, the Kerberos authentication
protocol [90], where a general architecture of multiple authentication servers serving in different
network realms will be considered.

Being served by the same Trent, we assume that Alice (Bob) shares a cryptographic key with
Trent; let the key be denoted by Kat (KgT). Later we shall see that such a key is called key-
encryption key because its use is mainly for encryption of other cryptographic keys. Also due to
the high cost in the establishment of such a key, it should be used for a prolonged period of
time, and hence is also called a long-term key.



2.5 Security Properties for Authenticated Key
Establishment

All protocols to be described in this chapter are of a kind: they achieve authenticated key-
establishment. The precise meaning of this security service can be elaborated by the
following three properties.

LetK denote a shared secret key to be established between Alice and Bob, the protocols to be
designed in this chapter should achieve a security service with the following three properties:

At the end of the protocol run:

1. Only Alice and Bob (or perhaps a principal who is trusted by them) should know K.
2. Alice and Bob should know that the other principal knows K.
3. Alice and Bob should know that K is newly generated.

The first property follows the most basic meaning of authentication: identifying the principal who
is the intended object of communication. Alice (respectively, Bob) should be assured that the
other end of the communication, if "padlocked” by the key K, can only be Bob (respectively,
Alice). If the key establishment service is achieved with the help of Trent, then Trent is trusted
that he will not impersonate these two principals.

The second property extends authentication service to an additional dimension, that is, entity
authentication, or the liveness of an identified principal who is the intended object of the
communication. Alice (respectively, Bob) should be assured that Bob (respectively, Alice) is alive
and responsive to the communications in the current protocol run. We shall see later that this
property is necessary in order to thwart an attacking scenario based on replaying of old
messages.

The need for the third property follows a long established key management principle in
cryptography. That principle stipulates that a secret cryptographic key should have a short
lifetime if it is a shared key and is used for bulk data encryption. Such a key usage is rather
different from that of a "key-encryption key" or a long-term key which we have described at the
end of 82.4. There are two reasons behind this key management principle. First, if a key for data
encryption is a shared one, then even if one of the sharing party, say, Alice, is very careful in her
key management and disposal, compromise of the shared key by the other sharing party, say,
Bob, due to Bob's carelessness which is totally out of Alice's control, will still result in Alice's
security being compromised. Secondly, most data in confidential communications usually contain
(possibly a large volume of) known or predictable information or structure. For example, a piece
of computer program contains a large quantity of known texts such as "begin," "end," "class,"
"int," "if," "then," "else," "++," etc. Such data are said to contain a large quantity of
redundancy (definition see §3.8). Encryption of such data makes the key a target for
cryptanalysis which aims for finding the key or the plaintext. Prolonged such use of a key for
encryption of such data may ease the difficulty of cryptanalysis. We should also consider that
Malice has unlimited time to spend on finding an old data-encryption key and then reusing it as
though it were new. The well established and widely accepted principle for key management thus
stipulates that a shared data-encryption key should be used for one communication session only.
Hence, such a key is also referred to as a session key and a short-term key. The third
property of authenticated key establishment service assures Alice and Bob that the session key K
established is one that has been newly generated.






2.6 Protocols for Authenticated Key Establishment
Using Encryption

Now we are ready to design protocols for authenticated key establishment. The first protocol to
be designed merely intends to realize straightforwardly the following simple idea: Alice and Bob,
though they do not know each other, both know Trent and share respective long-term keys with
Trent; so it is possible for Trent to securely pass messages between them.

2.6.1 Protocols Serving Message Confidentiality

Since the environment for our protocols to run is a vulnerable one, our protocols will use
encryption to safeguard against any threat. At this initial stage of our step-by-step discussions to
follow, we shall restrict our attention to a threat which aims for undermining message
confidentiality.

2.6.1.1 Protocol "From Aliceto Bob"

Let Alice initiate a run of such a protocol. She starts by generating a session key at random,
encrypts it under the key she already shares with Trent, and sends to Trent the resultant
ciphertext together with the identities of herself and Bob. Upon receipt of Alice's request for
session key delivery, Trent shall first find from his database the shared long-term keys of the
two principals mentioned in Alice's request. He shall then decrypt the ciphertext using Alice's
key, re-encrypt the result using Bob's key, and then send to Bob the resultant ciphertext. Finally,
upon receipt and decryption of the delivered session key material, Bob shall acknowledge the
receipt by sending an encrypted message to Alice using the newly received session key. Prot 2.1
illustrates a protocol description which realizes delivery of a session key from Alice to Bob. In
this protocol, Alice is an initiator, and Bob, a responder.

In this chapter we shall introduce most of our protocols (and attacks on them) in two parts, a
pictorial part which illustrates message flows among principals, and a specification part which
provides the details of the actions performed by principals regarding the messages sent or
received. Although the specification part alone should be sufficient for us to describe a protocol
with needed precision (the specification part alone will be the protocol description method in the
rest of the book beyond this chapter), by adding pictorial presentation of message flows we
intend to allow those readers who are new to the area of cryptographic protocols an easy start.
This is a purpose that this chapter should serve.



Protocol 2.1: From Alice To Bob

PREMISE Alice and Trent share key KaT; Bob and Trent share
keyK gr.
GOAL Alice and Bob want to establish a new and shared

secret key K.

Alice Trent Bob

b

1. Alice generates K at random, creates {K}kar, and sends to Trent: Alice, Bob,

{K}kar;

2. Trent finds keys Kat, KpT, decrypts {K}kar to reveal K, creates {K}ksr and sends
to Bob: Alice, Bob, {K}ker;

3. Bob decrypts {K}ksr to reveal K, forms and sends to Alice: {Hello Alice, I'm
Bob!}k.

Before investigating whether Protocol "From Alice To Bob" contains any security flaw we should
comment on a design feature of it. The protocol lets Alice generate a session key to be shared
with Bob. Will Bob be happy about this? If it turns out that the session key generated by Alice is
not sufficiently random (a cryptographic key should be random to make it difficult to be
determined by guessing), then Bob's security can be compromised since the key is a shared one.
Maybe Alice does not care whether the session key is strong, or maybe she just wants the key to
be easily memorable. So long as Bob does not trust Alice (may not even know her prior to a
protocol run), he should not feel comfortable accepting a session key generated by her and
sharing with her. We shall modify this protocol by removing this design feature and discuss
security issues of the modified protocol.

2.6.1.2 Protocol "Session Key from Trent"



Since Trent is trusted by both client principals, he should be trusted to be able to properly
generate the session key. Prot 2.1 is thus modified to Prot 2.2. It starts with Alice sending to
Trent the identities of herself and Bob, the two principals who intend to share a session key for
secure communications between them. Upon receipt of Alice's request, Trent shall find from his
database the respective keys of the two principals, shall generate a new session key to be shared
between the two principals and shall encrypt the session key under each of the principals' keys.
Trent should then send the encrypted session key material back to Alice. Alice shall process her
own part and shall relay to Bob the part intended for him. Finally, Bob shall process his share of
the protocol which ends by sending out an acknowledgement for the receipt of the session key.
We shall name the modified Protocol "Session Key From Trent.

With the session key K being encrypted under the perfect encryption scheme, a passive
eavesdropper, upon seeing the communications in a run of Protocol "Session Key From Trent and
without the encryption keys Kat and KgT, will not gain anything about the session key K since it
may only be read by the legitimate recipients via decryption using the respective keys they have.

2.6.2 Attack, Fix, Attack, Fix ...

We now illustrate a standard scene of this book, that is, attack, fix, attack, fix ...

2.6.2.1 An Attack

However ,Protocol "Session Key From Trent is flawed. The problem with the protocol is that the
information about who should get the session key is not protected. An attack is shown in Attack
2.1. In the attack, Malice intercepts some messages transmitted over the network, modifies
them and sends them to some principals by impersonating some other principals. In the attack
shown in Attack 2.1 we write

Alice sends to Malice("Trent"): ...
to denote Malice's action of intercepting Alice's message intended for Trent, and we use
Malice("Alice") sends to Trent: ...

to denote Malice's action of sending message to Trent by impersonating Alice. We should note
that according to the Dolev-Yao threat model for our protocol environment that we have agreed
to in §2.3, Malice is assumed to have the entire control of the vulnerable network. So Malice is
capable of performing the above malicious actions. We can imagine that the symbol
("principal_name") is a mask worn by Malice when he is manipulating protocol messages
passing along the network. In 812.2 we shall see technically how Malice could manipulate
messages transmitted over the network this way.



Protocol 2.2: Session Key From Trent

PREMISE Alice and Trent share key KaT; Bob and Trent share
keyK gr.
GOAL Alice and Bob want to establish a new and shared

secret key K.

Alice Trent Bob

T

1. Alice sends to Trent: Alice, Bob;

2. Trent finds keys Kat, KpT, generates K at random and sends to Alice: {K}kar,

{K}ker;
3. Alice decrypts {K}kar, and sends to Bob: Trent, Alice, {K}xgr;

4. Bob decrypts {K}kgr to reveal K, forms and sends to Alice: {Hello Alice, I'm
Bob!}k.




Attack 2.1: An Attack on Protocol "Session Key From Trent"

PREMISE In addition to that in Protocol "Session Key
From Trent,"” Malice and Trent share key Kyr.

RESULT OF ATTACK

Alice thinks she is sharing a key with Bob
while actually sharing it with Malice.

Alice Malice Trent Bob

o]

1. Alice sends to Malice("Trent™): Alice, Bob;
2. Malice("Alice™) sends to Trent: Alice, Malice;

3. Trent finds keys KaT,K m1, generates Kay at random and sends to Alice:
{Kam¥kar, {KamFkurs

4. Alice decrypts {Kav}kar, and sends to Malice(Bob™): Trent, Alice, {Kam}kv;

5. Malice("Bob™) sends to Alice: {Hello Alice, I'm Bob!}ka-

Malice begins with intercepting the initial message from Alice to Trent. That message is meant
for instructing Trent to generate a session key to share with Alice and Bob. Malice alters it by
replacing Bob's identity with his own and then sends the altered message to Trent. Trent will
think that Alice wants to talk to Malice. So he generates a new session key Kay to share between
Alice and Malice, and encrypts it with the respective keys that he shares with these two
principals. Since Alice cannot distinguish between encrypted messages meant for other principals
she will not detect the alteration. Malice then intercepts the message from Alice intended for Bob
so that Bob will not know that he is requested to run the protocol. The result of the attack is that
Alice will believe that the protocol has been successfully completed with Bob whereas in fact



Malice knows Kay and so can masquerade as Bob as well as learn all the information that Alice
intends to send to Bob. Notice that this attack will only succeed if Malice is a legitimate user
known to Trent. This, again, is a realistic assumption — an insider attacker is often more of a
threat than outsiders.

We have seen that the above attack works as a result of Malice's alteration of Bob's identity. We
should notice the fact that the alteration is possible because Bob's identity is sent in cleartext.
This suggests to us to repair the protocol by hiding Bob's identity.

2.6.2.2 A Fix

Having seen the attack in which Malice alters Bob's identity, it seems straightforward to repair
Protocol "Session Key From Trent." For example, we can modify the protocol into one with Bob's
identity in the first message line being treated as a secret and encrypted under the key shared
between Alice and Trent. Namely, the first message line in Protocol "Session Key From Trent
should be correctly modified into

1. Alice sends to Trent: Alice, {Bob}ar;

Notice that it is necessary for Alice's identity to remain in cleartext so Trent will be able to know
which key he should use to decrypt the ciphertext part.

2.6.2.3 Another Attack

However, the above way of "repair” does not provide a sound fix for Protocol "Session Key From
Trent." For example, it is easy to see that Malice can do the following:

1. Malice("Alice") sends to Trent: Alice, {Malice}kar;

while the rest of the attack runs exactly the same as that in Attack 2.1. If initially Malice did not
know to whom Alice was intending to run the protocol, he would know that piece of information
when he intercepts Alice's message to Bob since that message has to contain Bob's address in
order for the network to correctly deliver the message. So Malice can in the end still successfully
masquerade as Bob. Notice that in this attack we assume that Malice has the ciphertext
{Malice}kar; this is possible as it can be the case that Malice has recorded it from a previous
protocol run (a correct run) between Alice and Malice.

2.6.2.4 Yet Another Attack

In fact, another way to attack Protocol "Session Key From Trent (or its "fix" shown above) does
not rely on change of any principal's identity. Instead, Malice can alter the message from Trent
to Alice (message line 2 in Protocol "Session Key From Trent) into the following:

Malice("Trent") sends to Alice: {K'}kar, ..-;

HereK' is a session key transported in a previous protocol run (a correct run) between Alice and
Malice such that Malice has recorded the ciphertext part {K'}kar- The rest of the attack run is
similar to that in the attack in Attack 2.1: Malice should intercept the subsequent message from
Alice to Bob, and finally acknowledges Alice by masquerading as Bob:



Malice("Bob™) sends to Alice: {Hello Alice, I'm Bob!}k:.

The fact that the "fixed" versions of Protocol "Session Key From Trent can be attacked with or
without altering Bob's identity clearly shows that to have Bob's identity in the first line of
Protocol "Session Key From Trent protected in terms of confidentiality cannot be a correct
security service. The attacks demonstrated so far have shown possibilities for Malice to alter
some protocol messages without detection. This suggests that the protocol needs a security
service which can guard against tampering of messages.

This brings us to the following security service.

2.6.3 Protocol with Message Authentication

We have seen in the attacks shown so far that Malice has always been able to alter some
protocol messages without detection. Indeed, none of the protocols designed so far has provided
any cryptographic protection against message alteration. Thus, one way to fix these protocols is
to provide such protection. The protection should enable legitimate principals who have the right
cryptographic keys to detect any unauthorized alteration of any protected protocol messages.
Such protection or security service is called message authentication (in some texts this notion
is also called data integrity, but we shall differentiate these two notions in Chapter 11).

2.6.3.1 Protocol "Message Authentication”

We observe that Malice's alteration of the protocol messages has caused the following two
effects. Either a session key is shared between wrong principals, or a wrong session key gets
established. Therefore we propose that the message authentication protection should provide a
cryptographic binding between the session key to be established and its intended users. This
leads to a new protocol: Prot 2.3, where the identities of Alice and Bob are included in the
encrypted message parts sent by Trent. We should name the new protocol "Message
Authentication."

We should pay a particular attention to the specification part of Protocol "Message
Authentication" where it instructs

3. Alice (decrypts {Bob, K}kaT),checks Bob's identity, ...
4. Bob (decrypts {Alice, K}kgT),checks Alice's identity, ...

Here in Protocol "Message Authentication,” steps for checking the intended principals’ identities
make a crucial distinction between this protocol and its predecessors (i.e., Protocol "Session Key
From Trent and its "fixes"). These checking steps are possible only after correct decryption of the
respective ciphertext blocks using the correct cryptographic keys. Thus, the cryptographic
operation "decryption-and-checking" performed by the recipient attempts to achieve a message
authentication service which enables the recipient to verify the cryptographic bindings between
the session key to be established and its intended users. A correct decryption result should imply
that the ciphertext message blocks in question have not been altered in transition. That is how
Protocol "Message Authentication” should thwart the attacks shown so far.

We should point out that to achieve message authentication, the operation of "decryption-and-
checking" (performed by a recipient) is not a correct "mode of operation”. In Chapter 17 we shall
see that the correct mode of operation should be "re-encryption-and-checking" (again performed
by a recipient). The reason that we use an incorrect or imprecise mode of operation in this
chapter is merely because "encryption-by-sender" and "decryption-by-recipient" are the only



available cryptographic operations for us to use at this stage.

Since we will use an incorrect mode of operation to realize the message authentication service, it
is necessary for us to explicitly state an additional property requirement that our encryption
algorithm must satisfy. The property is given below (its enumeration (iii) follows the
enumeration of the other two properties for "The Perfect Encryption with Notation {M}k" that we
have listed in §2.2).

Protocol 2.3: Message Authentication

PREMISE Alice and Trent share key KaTt; Bob and Trent share
keyK BT-
GOAL Alice and Bob want to establish a new and shared

secret key K.

Alice Trent Eob

1. Alice sends to Trent: Alice, Bob;

2. Trent finds keys KaT,K BT, generates K at random and sends to Alice: {Bob,
K}kar, {Alice,K} kpr;

3. Alice decrypts {Bob,K} kar, checks Bob's identity, and sends to Bob: Trent,
{Alice,K} gr;

4. Bob decrypts {Alice,K} kgr, checks Alice's identity, and sends to Alice: {Hello
Alice, I'm Bob!}k.

Property 2.2: Perfect Encryption with Notation {M}k (for message authentication service)

ili)Without the key K, even with the knowledge of the plaintext M, it should be impossible
for someone to alter {M}k without being detected by the recipient during the time of



decryption.

In order to show the importance of this property, below we demonstrate an attack on Protocol
"Message Authentication" supposing that our perfect encryption algorithm does not possess the
above message authentication property (namely, we assume that the encryption algorithm only
possesses the perfect confidentiality properties listed in §2.2). For ease of exposition, we modify
the presentation of the ciphertext blocks

{B'Ob! ‘r{}f‘fﬂ'."! {A'HE:E:- "F(}H:w'!

in the protocol into the following presentation

{Bobtg vy {K}trars {Alicet ks, {K} i

With this presentation of ciphertext blocks, we imply that the cryptographic binding between
principals' identities and the session key has been destroyed while the encryption retains the
perfect confidentiality service for any plaintext message being encrypted. Protocol "Message
Authentication" using this "perfect” encryption scheme should have its message lines 2, 3 and 4
look like the following:

2. Trent ..., sends to Alice: {Bob}kar, {K}kar, {Alice}ker,{K} ker;
3. Alice decrypts {Bob}kar and {K}kar, checks Bob's identity, ...
4. Bob decrypts {Alice}ksr and {K}kegr, checks Alice's identity, ...

Obviously, the confidentiality protection provided on the principals identities does not make a
point; by simply observing the protocol messages flowing over the network (from senders and to
recipients) Malice should be able to determine exactly the plaintext content inside the ciphertext
blocks {Bob}kar and {Alice}xsr. Thus, the modified protocol is essentially the same as Protocol
"Session Key From Trent," and thus can be attacked by essentially the same attacks
demonstrated in 82.6.2. The reader can apply these attacks as an exercise.

2.6.3.2 Attack on Protocol "Message Authentication”

Even considering that the encryption algorithm used possesses the message authentication
property,Protocol "Message Authentication” can still be attacked. The problem stems from the
difference in quality between the long-term key-encrypting keys shared initially between Trent
and its clients, and the session keys generated for each protocol run.

First, we note that the relationship between Trent and each of his clients is a long-term based
one. This means that a shared key between him and his client is a long-term key. In general, to
establish a key between an authentication server and a client is more difficult and more costly
than to establish a session key between two client principals (it should require thorough security
checking routines, even maybe based on a face-to-face contact). Fortunately, such a key is
mainly used in authentication protocols, with infrequent use for encrypting few messages with
little redundancy, and hence such use of a key provides little information available for
cryptanalysis. Therefore, secret keys shared between an authentication server and its clients can
be used for a long period of time. Often they are called long-term keys.



On the other hand, we should recall a key management principle we have discussed in 82.5,
which stipulates that a session key should be used for one session only. Consequently, no run of
a session-key establishment protocol should establish a session key which is identical to one
which was established in a previous run of the protocol. However, this is not the case for Protocol
"Message Authentication.” An attack run of the protocol will breach the session key management
principle. In this attack, all Malice needs to do is first to intercept Alice's request (see Prot 2.3):

1. Alice sends to Malice("Trent"): ...

and then inject a message line 2 as follows:

2. Malice("Trent™) sends to Alice: {Bob,K"} kar,fAlice,K'} ker

Here, the two ciphertext blocks containing K' are a replay of old messages which Malice has
recorded from a previous run of the protocol (a normal run between Alice and Bob), and
therefore this attack will cause Alice and Bob to reuse the old session key K* which they should
not use. Notice that, since K" is old, it may be possible for Malice to have discovered its value
(maybe because it has been discarded by a careless principal, or maybe due to other
vulnerabilities of a session key that we have discussed in §2.5). Then he can either eavesdrop
the confidential session communications between Alice and Bob, or impersonate Bob to talk to
Alice.

An attack in the above fashion is called a message replay attack.

2.6.4 Protocol With Challenge-Response

There are several mechanisms that may be employed to allow users to check that a message in a
protocol is not a replay of an old message. These mechanisms will be considered in detail in
Chapter 11. However for now we will improve our protocol using a well known method called
challenge-response (also called handshake). Using this method Alice will generate a new
random number Na at the start of the protocol and send this to Trent with the request for a new
session key. If this same value (Np) is returned with a session key such that the two pieces are
bound together cryptographically and the cryptographic binding provides a message
authentication service (i.e., Alice can verify the message integrity regarding the ciphertext
containingN »), then Alice can deduce that the cryptographic binding has been created by Trent
after having received her random number Na. Moreover, recall our stipulation on the
trustworthiness of Trent (see 82.4); Alice knows that Trent will always follow the protocol
honestly. So Trent has indeed created a new session key after receiving Alice's random
challenge. Consequently, the session key should be new (or fresh, current), namely, is not a
replay of an old key. The random number Na created by Alice for enabling the challenge-
response mechanism is called a nonce which stands for a number used once [61].

2.6.4.1 Protocol "Challenge Response" (Needham-Schroeder)

Prot 2.4 specifies a new protocol which utilizes the challenge-response mechanism for Alice to
check the freshness of the session key. We shall temporarily name it "Challenge Response” (we
will soon change its name).

InProtocol "Challenge Response,” Bob also creates a nonce (N g), but this nonce is not sent to
Trent since in this protocol Bob does not directly contact Trent. Instead, Bob's nonce is sent to




Alice and then is replied from her after her slight modification (subtracting 1). So if Alice is
satisfied that the session key K is fresh and uses it in her response to Bob's freshly created
nonce, then Bob should deduce the freshness of the session key. Thus, the mutual confidence in
the session key is established.

Protocol "Challenge Response,” which we have reached by a series of steps, is probably the most
celebrated in the subject of authentication and key establishment protocols. It is exactly the
protocol of Needham and Schroeder which they published in 1978 [213]. Below we rename the
protocol the Needham-Schroeder Symmetric-key Authentication Protocol. This protocol has also
been the basis for a whole class of related protocols.

2.6.4.2 Attack on the Needham-Schroeder Symmetric-key Authentication Protocol

Unfortunately the Needham-Schroeder Protocol is vulnerable to an attack discovered by Denning
and Sacco in 1981 [94]. In the attack of Denning and Sacco, Malice intercepts the messages sent
by and to Alice in the message lines 3, 4 and 5, and replaces them with his own version. The
attack is given in Attack 2.2.

In the attack, Malice becomes active in message line 3 and intercepts Alice's message sent to
Bob. He then completely blockades Alice's communication channel and replays old session key
material {K', Alice}ksr which he recorded from a previous run of the protocol between Alice and
Bob. By our assumption on the vulnerability on an old session key, Malice may know the value K'
and therefore he can launch this attack to talk to Bob by masquerading as Alice.

We should point out that the vulnerability of an old session key is only one aspect of the danger
of this attack. Another danger of this attack is Malice's successful defeat of an important goal of
authentication. We shall specify that goal in 811.2.2 and see how the goal is easily defeated by
Malice in §11.7.1.

Protocol 2.4: Challenge Response

PREMISE Alice and Trent share key Kat; Bob and Trent
share key KgT.

GOAL Alice and Bob want to establish a new and
shared secret key K.




Alice

Trent

Bob

1. Alice creates Na at random and sends to Trent: Alice,Bob,N a;
2. Trent generates K at random and sends to Alice:{Na,K,Bob, {K,Alice} kar}kar;

3. Alice decrypts, checks her nonce Na, checks Bob's ID and sends to Bob: Trent,
{K,Alice} gr;

4. Bob decrypts, checks Alice's ID, creates random Ng and sends to Alice: {I'm
Bob!N B}K;

5. Alice sends to Bob: {I'm Alice!N g — 1}k.

Attack 2.2: An Attack on the Needham-Schroeder Symmetric-

key Authentication Protocol

RESULT OF ATTACK

Bob thinks he is sharing a new session key with Alice while actually the key is an old

one and may be known to Malice.




Alice Trent Bob

— ™ Malice |-

1 and 2. (same as in a normal run)
3. Alice sends to Malice(Bob"): ...
3'. Malice("Alice™) sends to Bob: {K',Alice} kegr;

4. Bob decrypts, checks Alice's ID and sends to Malice("Alice™): {I'm Bob!IN g}k';

5. Malice("Alice™) sends to Bob: {I'm Alice!N g — 1}«

2.6.5 Protocol With Entity Authentication

The challenge-response mechanism used in the Needham-Schroeder Protocol (the interaction
part between Alice and Trent) provides a security service called entity authentication. Like
message authentication, the service of entity authentication is also obtained via verifying a
cryptographic operation (by a verification principal). The difference between the two services is
that in the latter case, an evidence of liveness of a principal (proving principal) is shown. The
liveness evidence is shown if the proving principal has performed a cryptographic operation after
an event which is known as recent to the verification principal. In the case of the Needham-
Schroeder Protocol, when Alice receives the message line 2, her decryption operation revealing
her nonce Na shows her that Trent has only operated the encryption after the event of her
sending out the nonce Np (since the key used is shared between she and Trent). So Alice knows
that Trent is alive after that event. This accomplishes an entity authentication from Trent to
Alice.

However, in Bob's position in the Needham-Schroeder Protocol, he has no evidence of entity
authentication regarding Trent's liveness.

As usual, once a problem has been spotted, it becomes relatively easy to suggest ways of fixing
it: Trent should have himself authenticated in entity authentication to both of the client
principals. This can be done by, for instance, Bob sending a nonce to Trent too, which will be
included by Trent in the session key message returned from Trent. This way of fixing will add
more message flows to the protocol (an additional handshake between Bob and Trent). Denning
and Sacco suggest using timestamps to avoid adding message flows [94].



2.6.5.1 Timestamps

LetT denote a timestamp. The following fix was suggested by Denning and Sacco:

1. Alice sends to Trent: Alice, Bob;
2. Trent sends to Alice: {Bob,K,T, {Alice,K,T}  ker}kar:
3. Alice sends to Bob: {Alice,K,T} «kar;

4.

r } Same as in the Needham-Schroeder Protocol.
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When Alice and Bob receive their protocol messages from Trent, they can verify that their
messages are not replays by checking that

| Clock — T'| < Aty + Ats

whereClock gives the recipient's local time, Dt ; is an interval representing the normal
discrepancy between Trent's clock and the local clock, and Dty is an interval representing the
expected network delay time. If each client principal sets its clock manually by reference to a
standard source, a value of about one or two minutes for Dt; would suffice. As long as Dt; + Dty
is less than the interval since the last use of the protocol, this method will protect against the
replay attack in Attack 2.2. Since timestamp T is encrypted under the secret keys Kat and Kgr,
impersonation of Trent is impossible given the perfectness of the encryption scheme.

Needham and Schroeder have considered the use of timestamps, but they reject it on the
grounds that it requires a good-quality time value to be universally available [212].

2.6.6 A Protocol Using Public-key Cryptosystems

The final protocol to be introduced in this chapter is called the Needham-Schroeder Public-key
Authentication Protocol [213]. We introduce this protocol here with two reasons, both of which
fall within the agenda of this chapter. First, the protocol lets us obtain an initial familiarity with
the use of public-key cryptosystems. Secondly, we shall show a subtle attack on this protocol.
Even though the protocol looks simple, the attack was found seventeen years after the
publication of the protocol.

2.6.6.1 Public-key Cryptosystems

—1
We use key labels such as Ka for Alice's public key and h.zi for the matching private key

(Alice's private key). It is supposed that Alice is the only person who is in possession of her
private key. The ciphertext block

F—1
K,



denotes the perfect encryption of the plaintext M using Alice's public key Ka. It is supposed that

r—1

to decrypt the above ciphertext one must use the matching private key ‘hﬂ . Since it is
supposed that Alice is the only person to possess the private key, only she is able to perform
decryption to retrieve the plaintext M. Analogously, the ciphertext block

‘{ ﬂ'.lr}K-Il

r—1
denotes the perfect encryption of the plaintext M using Alice's private key K A | and decryption
is only possible with the use of Alice's public key Ka. With the knowledge of Ka being Alice's
public key, an action of decryption using Ka provides one with further knowledge that the
Jq.lr =1
{ }‘I'“.-t is created by Alice since the creation requires the use of a key that only she
ﬂ.lr r—1
has in possession. For this reason, the ciphertext { }h.-'l is also called Alice's (digital)

signature of message M, and an action of decryption using Ka is called verification of Alice's
signature of message M.

ciphertext

Protocol 2.5: Needham-Schroeder Public-key Authentication
Protocol

PREMISE Alice's public key is Ka,
Bob's public key is Kg,
Trent's public key is K.

GOAL Alice and Bob establish a new and shared secret.

1. Alice sends to Trent: Alice, Bob;
2. Trent sends to Alice: {Kg,Bob} ;

3. Alice verifies Trent's signature on "Kg,Bob," creates her nonce N 5 at random,
and sends to Bob: {Na,Alice} kg;

4. Bob decrypts, checks Alice's ID and sends to Trent: Bob, Alice;
5. Trent sends to Bob: {Ka,Alice} ;

6. Bob verifies Trent's signature on "Ka,Alice,"” creates his nonce N g at random,
and sends to Alice: {Na,N B}ka;

7. Alice decrypts, and sends to Bob: {Ng}ks.

2.6.6.2 Needham-Schroeder Public-key Authentication Protocol



Suppose that Trent has in his possession the public keys of all the client principals he serves.
Also, every client principal has an authenticated copy of Trent's public key. Prot 2.5 specifies the
Needham-Schroeder Public-key Authentication Protocol.

Here Alice is an initiator who seeks to establish a session with responder Bob, with the help of
Trent. In step 1, Alice sends a message to Trent, requesting Bob's public key. Trent responds in
step 2 by returning the key Kg, along with Bob's identity (to prevent the sort of attacks in

8§2.6.2), encrypted using Trent's private key Ky l. This forms Trent's digital signature on the
protocol message which assures Alice that the message in step 2 is originated from Trent (Alice
should verify the signature using Trent's public key). Alice then seeks to establish a connection
with Bob by selecting a nonce Np at random, and sending it along with her identity to Bob (step
3), encrypted using Bob's public key. When Bob receives this message, he decrypts the message
to obtain the nonce Na. He requests (step 4) and receives (step 5) the authentic copy of Alice's
public key. He then returns the nonce Na, along with his own new nonce Ng, to Alice, encrypted
with Alice's public key (step 6). When Alice receives this message she should be assured that she
is talking to Bob, since only Bob should be able to decrypt message 3 to obtain Na and this must
have been done after her action of sending the nonce out (a recent action). Alice then returns
the nonce N to Bob, encrypted with Bob's public key. When Bob receives this message he
should, too, be assured that he is talking to Alice, since only Alice should be able to decrypt
message 6 to obtain Ng (also a recent action). Thus, a successful run of this protocol does
achieve the establishment of the shared nonces Na and Ng and they are shared secrets
exclusively between Alice and Bob. Further notice that since both principals contribute to these
shared secrets recently, they have the freshness property. Also, each principal should trust the
randomness of the secrets as long as her/his part of the contribution is sufficiently random.

Needham and Schroeder suggest that Ny and Ng, which are from a large space, can be used to
initialize a shared secret key ("as the base for seriation of encryption blocks™) [213] for
subsequent secure communications between Alice and Bob.

Denning and Sacco have pointed out that this protocol provides no guarantee that the public
keys obtained by the client principals are current, rather than replays of old, possibly
compromised keys [94]. This problem can be overcome in various ways, for example by
including timestamps in the key deliveriesl@l. Below we assume that the clients' public keys that
are obtained from Trent are current and good.

[al Denning and Sacco propose such a fix [94]. However, their fix is flawed for a different reason. We will see
their fix and study the reason of the flaw in §11.7.7.

2.6.6.3 Attack on the Needham-Schroeder Public-key Authentication Protocol

Lowe discovers an attack on the Needham-Schroeder Public-key Authentication Protocol [180].

Lowe observes that this protocol can be considered as the interleaving of two logically disjoint
protocols; steps 1, 2, 4 and 5 are concerned with obtaining public keys, whereas steps 3, 6 and
7 are concerned with the authentication of Alice and Bob. Therefore, we can assume that each
principal initially has the authentic copies of each other's public key, and restrict our attention to
just the following steps (we only list message flows; the reader may refer to Prot 2.5 for
details):

3. Alice sends to Bob: {Na,Alice} ks;
6. Bob sends to Alice: {Na,N g}ka;
7. Alice sends to Bob: {Ng}ks-

We shall consider how Malice can interact with this protocol. We assume that Malice is a



legitimate principal in the system, and so other principals may try to set up standard sessions
with Malice. Indeed, the attack below starts with Alice trying to establish a session with Malice.
Attack 2.3 describes the attack.

The attack involves two simultaneous runs of the protocol; in the first run (steps 1-3, 1-6 and 1-
7), Alice establishes a valid session with Malice; in the second run (steps 2-3, 2-6 and 2-7),
Malice impersonates Alice to establish a bogus session with Bob. In step 1-3, Alice starts to
establish a normal session with Malice, sending him a nonce Na. In step 2-3, Malice
impersonates Alice to try to establish a bogus session with Bob, sending to Bob the nonce Na
from Alice. Bob responds in step 2-6 by selecting a new nonce Ng, and trying to return it, along
withN », to Alice. Malice intercepts this message, but cannot decrypt it because it is encrypted
with Alice's public key. Malice therefore seeks to use Alice to use Alice to do the decryption for
him, by forwarding the message to Alice in step 1-6; note that this message is of the form
expected by Alice in the first run of the protocol. Alice decrypts the message to obtain Ng, and
returns this to Malice in step 1-7 (encrypted with Malice's public key). Malice can then decrypt
this message to obtain Ng, and returns this to Bob in step 2.7, thus completing the second run of
the protocol. Hence Bob believes that Alice has correctly established a session with him and they
share exclusively the secret nonces Na and Ng.

A crucial step for Malice to succeed in the attack is Alice's decryption of Bob's nonce Ng for Malice
unwittingly. We say that a principal is used as an oracle or providing an oracle service when
the principal performs a cryptographic operation inadvertently for an attacker. We will see many
cases of oracle services in this book and will gradually develop a general methodology that
cryptographic algorithms and protocols should be designed such that they are secure even if
their users provide oracle services to attackers.

We can imagine the following consequences of this attack. Malice may include the shared nonces
within a subsequent message suggesting a session key, and Bob will believe that this message
originated from Alice. Similarly, if Bob is a bank, then Malice could impersonate Alice to send a
message such as:

Malice("Alice™) sends to Bob:

{Na,N g, Transfer £1,000,000 from my account to Malice's"}kg.

2.6.6.4 A Fix

It is fairly easy to change the protocol so as to prevent the attack. If we include the responder's
identity in message 6 of the protocol

6. Bob sends to Alice: {Bob,N a,N g}ka;



Attack 2.3: Lowe's Attack on the Needham-Schroeder Public-
key Authentication Protocol
PREMISE Alice's public key is Ka, Bob's public key is
Kg, Malice's public key is Ky.
RESULT OF ATTACK
Bob thinks he is sharing secrets Na, Ng with
Alice while actually sharing them with
Malice.
First run Second run
between between
Alice and Malice Malice("Alice") and Bob
Alice Malice Bob
1-3 2-3
{NA.AHC&}[{M {Nmﬁlicﬂ}](ﬂ
2-6
1-6 Na.N
(NaNy b, e Mo TRy
’ Ka
1-7
{ Ng }[(M 24
N { Np }x,

then step 2-6 of the attack would become
2-6. Bob sends to Malice("Alice™): {Bob,N a,N g}ka.

Now because Alice is expecting a message with Malice's identity, Malice cannot successfully
replay this message in step 1-6 with an intention to use Alice as a decryption oracle.

This fix represents an instance of a principle for cryptographic protocols design suggested by
Abadi and Needham [1]:



If the identity of a principal is essential to the meaning of a message, it is prudent to
mention the principal's name explicitly in the message.

However, we should refrain from claiming that this way of "fixing" should result in a secure
protocol. In 817.2.1 we will reveal several additional problems in this protocol due to an
undesirable design feature which can be referred to as "message authentication via decryption-
and-checking" (we have labeled it a wrong mode of operation, see 82.6.3.1). That design feature
appears generally in authentication protocols using secret-key or public-key cryptographic
techniques and has appeared in all protocols in this chapter (the design feature has been
retained in our "fix" of the Needham-Schroeder Public-key Authentication Protocol, and hence
our "fix" is still not a correct one). Methodical fixes for the Needham-Schroeder Authentication
Protocols (both symmetric-key and public-key) will be given in 817.2.3.

The error-prone nature of authentication protocols has inspired the consideration of systematic
approaches to the development of correct protocols. That topic will be introduced in Chapter 17.



2.7 Chapter Summary

Some design protection mechanisms, others want to crack them. This is a fact of life and there is
nothing special about it. However, in this chapter we have witnessed a rather sad part of this
fact of life in authentication protocols: they, as protection mechanisms, are very easily
compromised.

Actually, all complex systems easily contain design errors. However, unlike in the case of
systems which provide security services, users and the environment of other complex system are
generally non-hostile or even friendly. For example, a careful user of a buggy software may
learn to avoid certain usages in order to avoid a system crash. However, for an information
security system, its environment and some of its users are always hostile: the whole reason for
their existence is to attack the system. Exploiting design errors is of course an irresistible source
of tricks for them.

We have used authentication protocols as a means to manifest the error-prone nature of security
systems. Although it seems that protocols are more notoriously error-prone due to their
communication nature, the real reason for us to use authentication protocols is that they require
relatively simpler cryptographic techniques and therefore are more suitable for serving our
introductory purpose at this early stage of the book. We should remember that it is the hostility
of the environment for all security systems that should always alert us to be careful when we
develop security systems.

We will return to studying authentication protocols in several later chapters. The further study
will include a study on the principles and structures of authentication protocols and a taxonomy
of attacks on authentication protocols (Chapter 11), case studies of several protocols for real
world applications (Chapter 12), and formalism approaches to the development of correct
authentication protocols (Chapter 17).



Exercises

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

2.13

What sort of things can an active attacker do?

Under the Dolev-Yao Threat Model, Malice is very powerful because he is in control
of the entire open communications network. Can he decrypt or create a ciphertext
message without using the correct key? Can he find the key encryption key from a
ciphertext message? Can he predict a nonce value?

What is the role of Trent in authenticated key establishment protocols?
What is a long-term key, a key-encryption key, a short-term key and a session key?

Why with the perfect encryption and the perfect message authentication services,
can authentication protocols still be broken?

What is a nonce? What is a timestamp? What are their roles in authentication or
authenticated key establishment protocols?

Why must some messages transmitted in authentication or authenticated key
establishment protocols be fresh?

How can a principal decide the freshness of a protocol message?

For the perfect encryption notation {M}k, differentiate the following three
properties: (i) message confidentiality, (ii) key secrecy, and (iii) message
authentication.

Provide another attack on Protocol "Session Key From Trent (Prot 2.2), which allows
Malice to masquerade not only as Bob toward Alice as in Attack 2.1, but at the
same time also as Alice toward Bob, and hence Malice can relay "confidential
communications between Alice and Bob.

Hint: run another instance of Attack 2.1 between Malice("Alice") and Bob.
What is the difference between message authentication and entity authentication?

Provide another attack on the Needham-Schroeder Authentication Protocol in which
Alice (and Trent) stays offline completely.

Does digital signature play an important role in the Needham-Schroeder Public-key
Authentication Protocol?

Hint: consider that that protocol can be simplified to the version which only contains
message lines 2, 6 and 7.



Part II: Mathematical Foundations:
Standard Notation

This part is a collection of mathematical material which provides the basic notations,
methods, basis of algebraic operations, building blocks of algorithmic procedures and
references for modeling, specifying, analyzing, transforming and solving various problems
to appear in the rest of this book.

This part has four chapters: probability and information theory (Chapter 3), computational
complexity (Chapter 4), algebraic foundations (Chapter 5) and number theory (Chapter 6).
This part serves as a self-contained mathematical reference guide. In the rest of the book
whenever we meet non-trivial mathematical problems we will be able to refer to precise
places in these four chapters to obtain supporting facts and/or foundations. Therefore our
way of including the mathematical material in this book will help the reader to conduct an
active and interactive way of learning the mathematical foundations for modern

cryptography.

We will pay in-depth attention to, and provide sufficiently detailed elaborations for, the
algorithms and theorems which are important to the theoretical foundations and practical
applications of modern cryptography. We will provide a proof for a theorem if we believe
that the proof will help the reader to develop skills which are relevant to the study of the
cryptographic topics in this book. Sometimes, our development of mathematical topics has
to make use of facts from other branches of mathematics (e.g., linear algebra) which do
not have a direct relevance to the cryptographic skills to be developed here; in such cases
we will simply use the needed facts without proof.

The following standard notation is used throughout the rest of the book. Some notation will
be defined locally near its first use, other notation will be used without further definition.

f empty set

sUr union of sets Sand T

S nT intersection of sets Sand T

S\T difference of sets Sand T

sCr Sis asubsetof T

#S number of elements in set S (e.g., #& = 0)

x €S.x &s elementx in (not in) set S

x EyS sampling element x uniformly random in set
S

X E (a, b),x €[a, b], xinopen interval (a, b) (xin closed interval
[a, b])

MZ QR,C sets of natural numbers, integers, rationals,

reals and complex numbers

Zn integers modulo n



E*

(rs

desc(A)

X =D

ged(x, y)
lem(x, y)

logpx

L
[x]

Ix]

f(n)
I(n)
ord(x)
ordnp(x)

(g

(5)

In(1)

QRn

QNRp

deg(P)

multiplicative group of integers modulo n

finite field of q elements

description of algebraic structure A

value assignment according to the
distributionD

value assignment according to the uniform
distribution in S

modulo operation: remainder of a divided by
b

integery is divisible (not divisible) by
integerx

defined to be

for all

there exists

greatest common divisor of x and y
least common multiple of x and y

logarithm to base b of x; natural log if b is
omitted

the maximum integer less than or equal to x

the least integer greater than or equal to x

length of integer x (=1 + Llogsz for x = 1),
also absolute value of x

Euler's function of n
Carmichael's function of n
order of a group element
order of x (mod n)

cyclic group generated by g

Legendre-Jacobi symbol of integer x modulo
integery

(5)
xIx €l \Y/ =1y

the set of quadratic residues modulo integer
n;

the set of quadratic non-residues modulo
integern;

degree of a polynomial P



Uiy Uy
i=1 e s
n
I I i, t
=1 =S

Prop [E]
Prob [E | F]

n!

O(f(n))

Os(Q)

x My

sum of values vjfori= 1, 2, ..., n, or fori €S

product of values v fori =1, 2, ..., n, or fori
€S
complement of event E

sum of events E, F, i.e., either E or F occurs

product of events E, F, i.e., both Eand F
occur

eventF contains event E, i.e., occurrence of
E implies occurrence of F

difference of events E, F{=ENF)

sum of events Ejfori=1, 2, ..., n, or fori €
S

product of events E;fori =1, 2, ..., n, or fori
€S

probability of event E occurring

conditional probability of event E occurring
given that event F has occurred

factorial of n (= n(n—-1)(n—2) ... 1 with O!

( n! )
~ kln— k)
ways of picking k out of El(n — k)l

binomial distribution of k successes in n
Bernoulli trials with the success probability

being P

functiong(n) such that |g(n)| Eclf(n)| for
some constant ¢ > 0 and all sufficiently large
n

O() in the bitwise computation mode

logical operation NOT (x is a Boolean
variable), also bit operation: bit-wise
negation (X is a bit string)

logical operation AND (X, y are Boolean
variables), also bit operation: bit-wise and
(X, y are bit strings)



x Vy

x$y

(Gl

*)

logical operation OR (X, y are Boolean
variables), also bit operation: bit-wise or (X,
y are bit strings)

logical operation XOR (X, y are Boolean
variables), also bit operation: bit-wise xor
(X, y are bit strings)

non-executable comment parts in algorithms
or protocols

end of proof, remark or example
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Section 3.3. Properties

Section 3.4. Basic Calculation

Section 3.5. Random Variables and their Probability Distributions

Section 3.6. Birthday Paradox

Section 3.7. Information Theory
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3.1 Introduction

Probability and information theory are essential tools for the development of modern
cryptographic techniques.

Probability is a basic tool for the analysis of security. We often need to estimate how probable it
is that an insecure event may occur under certain conditions. For example, considering Protocol
"Coin Flipping Over Telephone" in Chapter 1, we need to estimate the probability for Alice to

succeed in finding a collision for a given one-way function f (which should desirably be bounded

by a very small quantity), and that for Bob to succeed in finding the parity of x when given f(x)
1

(which should desirably be very close to 2).

Information theory is closely related to probability. An important aspect of security for an
encryption algorithm can be referred to as "uncertainty of ciphers:" an encryption algorithm
should desirably output ciphertext which has a random distribution in the entire space of its
ciphertext message space. Shannon quantifies the uncertainty of information by a notion which
he names entropy. Historically, the desire for achieving a high entropy in ciphers comes from the
need for thwarting a cryptanalysis technique which makes use of the fact that natural languages
contain redundancy, which is related to frequent appearance of some known patterns in natural
languages.

Recently, the need for modern cryptographic systems, in particular public-key cryptosystems, to
have probabilistic behavior has reached a rather stringent degree: semantic security. This can be
described as the following property: if Alice encrypts either O or 1 with equal probability under a
semantically secure encryption algorithm, sends the resultant ciphertext ¢ to Bob and asks him
to answer which is the case, then Bob, without the correct decryption key, should not have an
algorithmic strategy to enable him to discern between the two cases with any "advantage™" better
than a random guessing. We notice that many "textbook™ versions of encryption algorithms do
not have this desirable property.

3.1.1 Chapter Outline

The basic notions of probability which are sufficient for our use in this book will be introduced in
8§3.2—83.6. Information theory will be introduced in 83.7—83.8.



3.2 Basic Concept of Probability

Let 3 be an arbitrary, but fixed, set of points called probability space (or sample space). Any

elementx €3 is called a sample point (also called outcome, simple event or
indecomposable event; we shall just use point for short). An event (also called compound

event or decomposable event) is a subset of S and is usually denoted by a capital letter (e.qg.,
E). An experiment or observation is an action of yielding (taking) a point from 5. An
occurrence of an event E is when an experiment yields x €E for some point x € S,

Example 3.1.

Consider an experiment of drawing one playing card from a fair deck (here "fair" means drawing
a card at random). Here are some examples of probability spaces, points, events and
occurrences of events.

1. Slz The space consists of 52 points, 1 for each card in the deck. Let event E; be "aces"
(i,e,E 1= {A‘,A @,A Q,A *}). It occurs if the card drawn is an ace of any suit.

2. Sz = {red, black}. Let event E; = {red}. It occurs if the card drawn is of red color.

3. Sg: This space consists of 13 points, namely, 2, 3, 4, .., 10, J, Q, K, A. Let event E3 be
"numbers." It occurs if the card drawn is 2, or 3, or ..., or lO.E|

Definition 3.1: Classical Definition of ProbabilitySuppose that an experiment can yield one
of n= #Sequally probable points and that every experiment must yield a point. Let m be the
i

number of points which form event E. Then value ™ is called the probability of the event E
occuring and is denoted by

Prob [E] = —.
n
Example 3.2.
InExample 3.1:
4 1
. Prob[E; ] = 5 = 15"
1
Prob[Es] = 5"

2.



Prob|[E3] = E
3. 1.

O

Definition 3.2: Statistical Definition of ProbabilitySuppose that n experiments are carried
L

out under the same condition, in which event E has occurred mtimes. If value "tbecomes and

remains stable for all sufficiently large n, then the event E is said to have probability which is

denoted by

Prob [E] = E

T

In §3.5.3 we will see that Definition 3.2 can be derived as a theorem (a corollary of the law of
large numbers) from a few other intuitive notions. We however provide it in the form of a
definition because we consider that itself is sufficiently intuitive.



3.3 Properties

1. A probability space itself is an event called sure event. For example, S = {HEADS,
TAILS}. We have

Prob [S] = 1.

2. Denoting by @ the event that contains no point (i.e., the event that never occurs). For
example, black O e @, 1tis called an impossible event. We have

Prob [(] = 0.
3. Any event E satisfies
0 = Prob [E] S 1.
4. IfE QF, we say that event E implies event F, and
Prob [E] = Prob [F].
E=8\E

5. Denote by the complementary event of E. Then

Prob [E] + Prob [E] = 1.



3.4 Basic Calculation

Denote by E UF the sum of events E, F to represent an occurrence of at least one of the two

events, and by E nF the product of events E, F to represent the occurrence of both of the two
events.

3.4.1 Addition Rules

1. prob [E UF] = Prob [E] + Prob [F] — Prob [E [F].

¢ Prob[EUF] = Prob|E|+ Prob[F].

exclusive or disjoint, and

Prob[EUF| =Prob|E|+ Prob|F].

, we say that the two events are mutually

mn
L E:=s

3. Ifi=1 with EiNE; =0 (i # ) then

i Prob [ E;

i=1

= ];

Example 3.3. Show

Equation 3.4.1
Prob[E U F] = Prob[E] + Prob[ FNE].

BecauseE Ur=¢ U (F n E) where E and F n E are mutually exclusive, (3.4.1) holds as a
result of Addition Rule 2.1

Definition 3.3: Conditional ProbabilitylLet E, F be two events with E having non-zero
probability. The probability of occurring F given that E has occurred is called the conditional
probability of F given E and is denoted by

B = Prob [E N F']
~ Prob | E|

Prob [ F




Example 3.4.

Consider families with two children. Let g and b stand for girl and boy, respectively, and the first

letter for the older child. We have four possibilities gg, gb, bg, bb and these are the four points
1
in 3. We associate probability 4 with each point. Let event E be that a family has a girl. Let

eventF be that both children in the family are girls. What is the probability of F given E (i.e.,
Prob [F | ED?

1
The event E nF means gg, and so Prob [E nF] = 4. Since the event E means gg, or gb, or bg,

(E] = 2 - |F|E]=1 . _

and hence Prob 4. Therefore by Definition 3.3, Prob 4. Indeed, in one-third
of the families with the characteristic E we can expect that F will occur.H
Definition 3.4: Independent EventsEvents E, F are said to be independent if and only if

Prob [F | E] = Prob[F]

3.4.2 Multiplication Rules

1. Prob [E nF] = Prob [F | E] - Prob [E] = Prob [E | F] - Prob [F].
2. If events E, F are independent, then

prob [E NF] = Prob [E] - Prob [F].

Example 3.5.

ConsiderExample 3.1. We expect that the events E 1 and E; are independent. Their probabilities
1 1

are 13 and 2, respectively (Example 3.2). Since these two events are independent, applying

"Multiplication Rule 2," the probability of their simultaneous realization (a red ace is drawn) is
1
215.5

3.4.3 The Law of Total Probability

Thelaw of total probability is a useful theorem.

. Theorem 3.1

n
| JE:=s |
Eiﬁﬁj—@ﬁ

If i=1 and 7£ -”ll, then for any event A



Prob[A] =) Prob[A | E;] - Prob|E;].

i=1

Proof Since

T
A=AnS=|J(ANE)

i=1

whereA nE iand A nE ja ;tj) are mutually exclusive, the probabilities of the right-hand-side
sum of events can be added up using Addition Rule 2, in which each term follows from an

application of "Multiplication Rule 1.0

The law of total probability is very useful. We will frequently use it when we evaluate (or
estimate a bound of) the probability of an event A which is conditional given some other

mutually exclusive events (e.g. and typically, E and E). The usefulness of this formula is
because often an evaluation of conditional probabilities Prob [A | E;] is easier than a direct
calculation of Prob [A].

Example 3.6.

(This example uses some elementary facts of number theory. The reader who finds this example
difficult may return to review it after having studied Chapter 6.)

Let p = 24 + 1 such that both p and g are prime numbers. Consider choosing two numbers g and
h at random from the set S = {1, 2, ..., p— 1} (with replacement). Let event A be "h is generated
by g," that is, h =g * (mod p)for some x < p(equivalently, this means "log gh (mod p — 1)
exists"). What is the probability of A for random g and h?

It is not very straightforward to evaluate Prob [A] directly. However, the evaluation can be made
easy by first evaluating a few conditional probabilities followed by applying the theorem of total
probability.

Denote by ordp(g) the (multiplicative) order of g (mod p), which is the least natural number i
such that g = 1 (mod p). The value Prob [A] depends on the following four mutually exclusive
events.

[Ey] = ¢i2q) _ g—1
i. E1:ordp(g) =p—1=2qand we know Prob p—1 P—1 (here p is Euler's phi
function; in S there are exactly f (2q) = q — 1 elements of order 2q). In this case, any h < p
must be generated by g (g is a generator of the set S), and so we have Prob [A | E1] = 1.

) - | [Bp] = =2
ii. Ez: ordp(g) = g and similar to case (i) we know Prob P=—1_ In this case, h can be
generated by g if and only if ordp(h) | 4. Since in the set S there are exactly q elements of



[A| Bp) =4 =1
orders dividing g, we have Prob r-1 2,

Esz : ordp(g) = 2. Because there is only one element, p — 1, of order 2, so Prob

] = Lo
[ '1] P=1_0Only 1 and p — 1 can be generated by p — 1, so we have Prob
[A]| B3] = 225
o s p_ 1 )
. [E4l = 1
E4 : ordp(g) = 1. Only element 1 is of order 1, and so Prob P—1 Alsoonly 1can

[A] Bs]= ;5
be generated by 1, and we have Prob e
The above four events not only are mutually exclusive, but also form all possible cases for

the orders of g. Therefore we can apply the theorem of total probability to obtain Prob [A]:

qg—1 q—1 2 1
Prob[A] = 1=— 4 + + -
o = e i T T 1




3.5 Random Variables and their Probability Distributions

In cryptography, we mainly consider functions defined on discrete spaces (such as an interval of
integers used as a cryptographic key-space, or a finite algebraic structure such as finite group or
field). Let discrete space S have a finite or countable number of isolated points X1,X 2, ..., Xn, ...y
X#s. We consider the general case that S may contain a countable number of points, and in that
case, #S = #o. This will allow us to conduct computational complexity analysis of our algorithms
and protocols in an asymptotic manner (see §84.6).

Definition 3.5:Discrete Random Variables and their Distribution Function

1. A (discrete) random variable is a numerical result of an experiment. It is a function defined
on a (discrete) sample space.

2. Let S be a (discrete) probability space andxbe a random variable. A (discrete) distribution
function ofxis a function of type 5 — Rprovided by a list of probability values

Prob[é =x;|=p; (i=1,2,...,#S)

such that the following conditions are satisfied:

i. p=o0;

#5
E Pi = 1.
ij. =1

Now let us look at two discrete probability distributions which are frequently used in
cryptography. From now on we shall always drop the word "discrete” from "discrete probability
space,” "discrete probability distribution,™ etc. All situations in our considerations will always be
discrete.

3.5.1 Uniform Distribution

The most frequently used random variables in cryptography follows uniform distribution:

Prob £ =3 = % =12 ey H5R)

Example 3.7.



LetS be the set of non-negative numbers up to k bits (binary digits). Sample a point in S at
random by following the uniform distribution. Show that the probability that the sampled point is

ak-bit number is 2.

s = {0,1,2, ..., 2k— 13} can be partitioned into two disjoint subsets S; = {0,1,2, ..., 2x1-1} and

#5
_ _ #5851 = #82 = ——
So = {2k1 2k-1 4+ 1, ..., 2Kk—1} where S, contains all k-bit numbers, 2 .
Applying "Addition 2," we have
2%-1
Prob [sampled point € S2] = Prob U sampled point = ¢

j=2k=1

ak_1

= Z Prob [sampled point = i]

j=2k—1

&

!
|
et

i
#S

i=2k-1

|

In this example, the instruction "sample (a point) p in (a set) S at random by following the
uniform distribution" is quite long while it is also a frequent instruction in cryptography. For this
reason, we shall shorten this long instruction into "picking p in S at uniformly random," or into
an even shorter notation: p €y S.

3.5.2 Binomial Distribution

Suppose an experiment has two results, titled "success" and "failure" (e.g., tossing a coin results
in HEADS or TAILS). Repeated independent such experiments are called Bernoulli trials if there
are only two possible points for each experiment and their probabilities remain the same
throughout the experiments. Suppose that in any one trial.

Prob [ “success” | = p, Prob[“failure” | =1—p

then



Equation 3.5.1

Prob [k “successes” in n trials] = E (1 —p)*

v

(” )
where k is the number of ways for "picking k out of n."

Here is why (3.5.1) holds. First, event "n trials result in k "successes" and n—k "failures" can

v

( k )

happen in the number of ways for "picking k out of n,"” that is, the event has k points.
Secondly, each point consists of k "successes" and n — k "failures,"” we have the probability pk(1
—p) "X for this point.

If random variable x, takes values 0,1,..., n, and for value pwithO <p < 1

Prob[&, = k] = (E) pk[l —p)* % (k=0,1,...,n)

then we say that x, follows binomial distribution. Comparing with (3.5.1), we know that
Bernoulli trial follows the binomial distribution. We denote by b(k;n,p) a binomial term where k
=0,1,.,nandO0O<p< 1.

Example 3.8.

i. Let a fair coin be tossed 10 times. What is the probability for all possible numbers of
"HEADS appearance” (i.e., appears 0, or 1, or, ..., or 10 times)?

ii. The probability for "HEADS appears 5 times?"
iili. What is that for "HEADS appears less than or equal to 5 times?"

For (i), since this event always occurs, it should have probability 1. Indeed, applying "Addition
Rule 2," we have



11 10
Prob U HEADS appears i Linu’:s] = Z Prob [HEADS appears ¢ times|

i={0 i=0

SHIOION
- (3)

=3,

For (ii), we have

0 o
Prob [5 HEADS in 10 tosses| == (I,U) (]—) o == (0.246.

For (iii), we must sum the probabilities for all cases of 5 or less "HEADS appearances:"

5 1 i

, e gl - R DY s

Prob L!‘"FIADEJ appears i times in 10 t{:m:—n-.] = (}) E . ( ; ) = (1.623.
= =

|

Fig 3.1 plots the binomial distribution for p = 0.5 and n = 10, i.e., that used in Example 3.8.

Figure 3.1. Binomial Distribution
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The reader should pay particular attention to the difference between Example 3.8.(ii) and
Example 3.8.(iii). The former is the area of the central rectangular in Fig 3.1 while the latter is
the sum of the left six of them.

In applications of binomial distributions (e.g., in 84.4.1, §4.4.5.1 and 818.5.1), the probability
of having exactly r "successes" (as in Example 3.8.(ii), a single term) is less interesting than the
probability of r or less (or more) "successes" (as in Example 3.8.(iii), the sum of many terms).
Moreover, the sum of some terms will be much more significant than that of some others. Let us
now investigate "the significant sum" and "the negligible sum" in binomial distributions.

3.5.2.1 The Central Term and the Tails

Stacking consecutive binomial terms, we have

Equation 3.5.2

blk;n,p)  (n—k+1)p y (n+1p—£F&

b(k —1;n,p) k(1—p) k(1 —p)

The second term in the right-hand side is positive when k < (n + 1)p and then becomes negative
afterk > (n + 1)p. So, the ratio in (3.5.2) is greater than 1 when k < (n + 1)p and is less than 1
afterk > (n + 1)p. Consequently, b(k;n,p) increases as k does before k reaches (n + 1)p and
then decreases after k > (n + 1)p. Therefore, the binomial term b(k;n,p) reaches the maximum

value at the point k = |.(n + 1)pJ. The binomial term

Equation 3.5.3

b(|(n + 1)p] ;n,p)

is called the central term. Since the central term reaches the maximum value, the point I.(n +

1)pJ is one with "the most probable number of successes." Notice that when (n + 1)p is an
integer, the ratio in (3.5.2) is 1, and therefore in this case we have two central terms b((n + 1)p
—1; n, p) and b((n + 1)p;n, p).

Letr > (n + 1)p, i.e., ris a point somewhere right to the point of "the most probable number of

successes." We know that terms b(k;n, p) decrease for all k 2. We can estimate the speed of
the decreasing by replacing k with r in the right-hand side of (3.5.2) and obtain

Equation 3.5.4



(n+1—r7)p

1.
r(l —p)

b(k;n,p) < bk —1;n,p)s where s =

In particular, we have

b(k:n,p) < b(r;n,p)s.

Notice that (3.5.4) holds forallk =r + 1, r + 2, ..., n. Therefore we have

Equation 3.5.5

bir +i;n,p) < b(r; n,.,p)si fori=12...

Now for r > np, let us see an upper bound of the probability of having r or more "successes,"
which is

Equation 3.5.6

Prob[&, = r] = Z.’}[ﬁ:; n,p) = Z b(r + i;n,p).
k=7 i=0

By (3.5.5), we have

fi=r

Prob[&, > r] < b(r;n, p) Z st < b(rin,p) z s' = b(rin,p)
i=0

i=0

|
1—s

(n+1—rip
Replacings back to r(1-p] , we have

r(l —p)
r—(n+1)p

PI‘Db [En E ?‘] < b(?‘; n, :D}

Now we notice that there are only r — (n + 1)p binomial terms between the central term and b(r;
n, p), each is greater than b(r;n, p), and their sum is still less than 1. Therefore it turns out that
b(r;n, p) < (r — (n + 1)p) ~1. We therefore finally reach



Equation 3.5.7

Prob[&;, = 1] < forr>(n+1)p.

The bound in (3.5.7) is called a right tail of the binomial distribution function. We can see that
ifr is slightly away from the central point (n + 1)p, then the denominator in the fraction of
(3.5.7) is not zero and hence the whole "right tail" is bounded by a quantity which is at the
magnitude of (np)~1. Hence, a right tail is a small quantity and diminishes to O when n gets
large.

We can analogously derive the bound for a left tail:

Equation 3.5.8

Prob ¢, < 7] < (n+1—r)p

S ntlp—1)2 forr<(n+1)p.

The derivation is left for the reader as an exercise (Exercise 3.7).

At first sight of (3.5.7) and (3.5.8) it seems that the two tails are bounded by quantities which
1

are at the magnitude of n . We should however notice that the estimates derived in (3.5.7) and
(3.5.8) are only two upper bounds. The real speed that a tail diminishes to 0 is much faster than
1

n does. The following numerical example reveals this fact (also see the soundness and
completeness properties of Prot 18.4 in §18.5.1.1).

Example 3.9.

Letp = 0.5. For various cases of n, let us compute left tails of binomial distribution functions
bounded to the point r = n(p — 0.01).

i. Forn = 1,000, the corresponding left tail is:

Prob[¢ < 490] ~ 0.25333.

ii. Forn = 10,000, the corresponding left tail becomes:

Prob [¢ < 4,900] = 0.02221.

iii. Ifnis increased to 100,000, then the corresponding tail is trivialized to:



Prob[£ < 49,000] ~ 1.24241 -10~1°

1
Comparing these results, it is evident that a tail diminishes to O much faster than 1 does.

Sincep = 0.5, the distribution density function is symmetric (see Fig 3.1). For a symmetric
distribution, a right tail equals a left one if they have the equal number of terms. Thus, for case
(iii), the sum of the two tails of 98,000 terms (i.e., 98% of the total terms) is practically O, while
the sum of the terms of the most probable number of successes (i.e., 2% of the total terms

around the center, there are 2,001 such terms) is practically 1 U

3.5.3 The Law of Large Numbers

RecallDefinition 3.2: it states that if in n identical trials E occurs stably mtimes and if n is
Fi4
sufficiently large, then 1 is the probability of E.

Consider that in Bernoulli trials with probability p for "success," the random variable x, is the
number of "successes" in n trials. Then ™ is the average number of "successes" in n trials. By

Definition 3.2, ™ should be close to p.

Now we consider, for example, the probability that " exceeds p + a forany a > 0 (i.e., a is
arbitrarily small but fixed). Clearly, this probability is

e

Prob[&, > n(p+a)] = z b(i;n, p).

i=n{pta)+l

By (3.5.7), we have

Equation 3.5.9

1
Prob[&, > n(p + o)) < —.
no

Thus,

Equation 3.5.10

Prob[&, > n(p+ «)] — 0 (n — o).



Analogously we can also see

Prob [, < n(p—a)] = 0 (n — o).

Therefore we have (the law of large numbers):

lim Prob Sn —pl<al =1
n—oo 1

This form of the law of large numbers is also called Bernoulli's theorem. It is now clear that
Definition 3.2 can be derived as a corollary of the law of large numbers. However, we have
provided it in the form of a definition because we consider that itself is sufficiently intuitive.



3.6 Birthday Paradox

For any function f : X =Y where Y is a set of n elements, let us solve the following problem:

For a probability bound € (i.e., 0 <€ < 1), find a value k such that for k pairwise distinct
valuesx 1,X 2, ..., Xk €yX, the k evaluations f(x 1),f(x 2), ..., f(xk) satisfy

Prob | f(x;) = f(x;)] = € for some i # 7.

That is, in k evaluations of the function, a collision has occurred with the probability no less
than €.

This problem asks for a value k to satisfy the given probability bound from below for any
function. We only need to consider functions which have a so-called random property: such a
function maps uniform input values in X to uniform output values in Y. Clearly, only a function
with such a random property can enlarge the value k for the given probability bound, which can
then be able to satisfy other functions for the same probability bound. Consequently, itis
necessary that #X > #Y; otherwise it is possible that for some functions there will be no collision
occurring at all.

Thus, we can assume that the function evaluation in our problem has n distinct and equally
possible points. We can model such a function evaluation as drawing a ball from a bag of n
differently colored balls, recording the color and then replacing the ball. Then the problem is to
find the value k such that at least one matching color is met with probability €.

There is no color restriction on the first ball. Let y; be the color for the ith instance of ball
drawing. The second ball should not have the same color as the first one, and so the probability

fory 2 ;ty 1is 1 — 1/n; the probability for y3 ;ty 1 and ys ;ty 2is 1—2/n, and so on. Upon
drawing the kth ball, the probability for no collision so far is

R0

For sufficiently large n and relatively small x, we know

T s
(+2) ~e
T

or



So

(- 0-2) (-5 ) et

=1

The equation in the most right-hand side is due to Gauss summation on the exponent value.

This is the probability for drawing k balls without collision. Therefore the probability for at least
one collision should be

kik—1)
l—e " 2n

Equalizing this value to €, we have

_ k{k—1)
£ m ] —¢

or

1
k? — k =~ 2nlog ——,
1—¢€

that is,

Equation 3.6.1
1
k= \/2?1 log A
1—¢€

Thus, for a random function mapping onto Y, we only need to perform this amount of evaluations
in order to meet a collision with the given probability €. From (3.6.1) we can see that even if € is

a significant value (i.e., very close to 1), the value log £ will remain trivially small, and hence

in general k is proportional to 1

If we consider € = 1%, then

Equation 3.6.2
ko~ 1.1774/n.



The square-root relationship between k and n shown in (3.6.1) and in (3.6.2) suggests that for a
random function with the cardinality of the output space being n, we need only to make roughly

" evaluations of the function and find a collision with a non-negligible probability.

This fact has a profound impact on the design of cryptosystems and cryptographic protocols. For
example, for a piece of data (e.g., a cryptographic key or a message) hidden as a pre-image of a
cryptographic function (which is typically a random function), if the square root of this data is
not a sufficiently large quantity, then the data may be discovered by random evaluation of the
function. Such an attack is often called square-root attack or birthday attack. The latter
name is due to the following seemingly "paradoxical phenomenon:" taking n = 365 in (3.6.2),

we find k =~ 22.49; thatis, in order for two people in a room of random people to have the
same birthday with more than 50% chance, we only need 23 people in the room. This seems to
be a little bit of counter-intuition at first glance.

3.6.1 Application of Birthday Paradox: Pollard's Kangaroo Algorithm for
Index Computation

Letp be a prime number. Under certain conditions (which will become apparent in Chapter 5)
themodulo exponentiation function f(x) = g X (mod p) is essentially a random function. That
is, for x =1, 2, ..., p— 1, the value f(x) jumps wildly in the range interval [1, p — 1]. This
function has wide applications in cryptography because it has a one-way property: computing y
=f(x) is very easy (using Alg 4.3) while inverting the function, i.e., extracting x = f ~1(y), is
extremely difficult for almost all y € [1, p — 1].

Sometimes for y = f(x) we know X £ [a, b] for some a and b. Clearly, evaluations of f(a),f(a +
1), ..., can reveal x before exhausting b — a steps. If b — a is too large, then this exhaustive
search method cannot be practical. However, if ¥ b—a is a tractable value (for example, b — a
= 2100 gpnd so V b—a= 250 a gaspingly handleable quantity), then birthday paradox can

play a role in inverting f(x) in ¥ b—a steps. Pollard discovers such a method [238]; he names
the algorithm | -method and kangaroo method for index computation. The meanings of these
names will become clear in a moment.

Pollard describes his algorithm using two kangaroos. One is a tame kangaroo T and the other is
a wild one W. The task of extracting the unknown index value x from y = g* (mod p) is modeled
by catching W using T. This is done by letting the two kangaroos jump around in the following

ways. Let S be an integer set of J elements (J = I.Iogz(b — a)J, hence small):

S = {5(0),5(1),5(2),...,8(J — 1)} = {2°,2},22,...,271}.

Each jump made by a kangaroo uses a distance which is randomly picked from S. Each kangaroo
carries a mileageometer to accumulate the distance it has travelled.

T starts its journey from the known point tg = gP (mod p). The known point is b which can be
considered as the home-base since T is tame. Its path is

Equation 3.6.3



£+ 1) = t(3) - g*H¥ (mod J)) (mod @) for+=10,1,2,...

LetT jump n steps then it stops. We will decide how large n should be in a moment. After n-th
jump, the mileageometer carried by T records the distance so far as

n

d(n) = Z s(t(7) (mod J)).

i=(

Using the distance recorded on T's mileageometer, we can re-express (3.6.3) into

btd(n—1) {

t(n)=g mod p).

W starts its journey from an unknown point hidden in wg = g* (mod p). The unknown point is X
and that is why this kangaroo is a wild one. Its path is

Equation 3.6.4

w(j+1) =w(y) *g'"":“"':-” (mod ) (mod p) for g =0;1,2;.::

The mileageometer carried by W also records the distance so far:
J
D(j) =) s(wi (mod J)).
0

=

Similar to the expression for T's footprints, using the distance recorded on W's mileageometer
we can also re-express (3.6.4) into

x+D(i—1) [

w(i) =g mod p).

It is clear that footprints of the two kangaroos, t(i) and w(j), are two random functions. The
former ranges over a set of i points and the latter, j points. Due to birthday paradox, within
roughly

n=vb—a



jumps made by T and by W, respectively, a collision t(x) = w(h) should occur for some x <n and

h En. This is when T and W landed on the same point. One may imagine this as W landing on a
trap set by T. Now W is caught. The probability of occurring a collision tends to 1 quickly if the

number of random jumps the two kangaroo make exceed ¥ b— a,

When the collision t(x) = w(h) occurs, observing (3.6.3) and (3.6.4), we will have t(x + 1) = w(h
+ 1), tx + 2) =w(h + 2), .., etc., thatis, eventually w(m) = t(n) will show up for some integers

m =~n. One may imaging that the collision equation t(x) = w(h) represents the point where the
two legs of the Greek letter | meet, and after that meeting point, the two kangaroos jumps on
the same path which will eventually lead to the detection of w(m) = t(n) (recall that T jumps a
fixedn steps). This is explains | as the other name for the algorithm.

When the collision is detected, we have

T b+d{n—1)—D{m—1) I:

gt =g mod p).

Namely, we have extracted

z=b+dn—-1)—D(m—1).

Since we have kept the two mileageometers d(m — 1) and D(n — 1), we can compute X using the
"miles" accumulated in them. It is possible that the two kangaroos over run a long distance after
they have landed on the same point, and so the extracted index value can be x + o for some o
satisfyingg © (mod p) = 1. If this is the case, it's harmless to just consider x + o as the targeted
index value.

This is a probabilistic algorithm, which means that it may fail without finding a collision (i.e.,
fail to output the targeted index value). Nevertheless, due to the significant collision probability
we have seen in 83.6, the probability of failure can be controlled to adequately small. Repeating
the algorithm by offsetting W's starting point with a known offset value d, the algorithm will
terminated within several repetitions.

The value V¥ b—a being feasibly small is the condition for the | -algorithm to be practical.
Therefore, setting 1 — V b—a (the number of jumps made by T), the algorithm runs in time
proportional to computing ¥ b—a modulo exponentiations. The space requirement is trivial:

there are only J = |.Iog(b — a)J elements to be stored. The time constraint ¥ b—a means that
the algorithm cannot be practical for extracting a large index value. Pollard considers this
limitation as that kangaroos cannot jump across continents.



3.7 Information Theory

Shannon's definition for entropy [262,263] of a message source is a measure of the amount of
information the source has. The measure is in the form of a function of the probability
distribution over the set of all possible messages the source may output.

LetL = {a 1,a 2, ..., an} be a language of n different symbols. Suppose a source S may output
these symbols with independent probabilities

Prob[a,],Probla2],...,Prob[a,],

respectively, and these probabilities satisfy

Equation 3.7.1

Z Prob|a;] = 1.
i=1

The entropy of the source S is

Equation 3.7.2

1 n | 1
J'..l’l:..c)) = ZPIGb [ﬂ'...,] 1{}g2 m) .

i=1

The entropy function H(S) defined in (3.7.2) captures a quantity which we can name "number of
bits per source output.”

Let us explain the entropy function by assigning ourselves a simple job: considering that the
sourceS is memoryless, we must record the output from S. A straightforward way to do the job
is to record whatever S outputs. However, from (3.7.1) we know that each output from S will be
one of the n symbols aj,a 2, ..., ah which are already known to us. It can be quite uninteresting
and inefficient to record known things. Thus, the question for us is, how can we efficiently record
somethinginteresting in the output from S?

LetS output these symbols in a k consecutive sequence, i.e., S outputs a word of k symbols
for 1 <idp <%

g, Qi, - - - A4,

LetL x denote the minimum expected number of bits we have to use in order to record a k-



symbol word output from S. We have the following theorem for measuring the quantity L.

. Theorem 3.2 Shannon

[262,263]

L
lim =% = H(S).

k—oo K

Proof The following "sandwich" style relation holds for all integers k > O:

kH(S) < Ly < kH(S) +1.

The statement is in its limit form.E|

In other words, the minimum average number of bits needed for recording per output from S is
H(S).

3.7.1 Properties of Entropy

The function H(S) has the minimum value 0 if S outputs some symbol, say aj;, with probability 1,
since then

1

H{S} = Prob [{1]_] IDEQ(W

)= log,1 =0.

This case captures the fact that when we are sure that S will only and definitely output a;, then
why should we waste any bit to record it?

The function H(S) reaches the maximum value of logzn if S outputs each of these n symbols with

equal probability 1/n, i.e., S is a random source of the uniform distribution. This is because
under this situation

1 Ti
H(S) =~ Y "logy n = logy n.

=1

This case captures the following fact: since S can output any one of these n symbols with equal
probability, we have to prepare log2n bits in order to mark any possible one of the n numbers.

To this end we can think of H(S) as the amount of uncertainty, or information, contained in each
output from S.



Example 3.10.

ConsiderProt 1.1 ("Coin Flipping Over Telephone™). Whether running over telephones or on
connected computers, that protocol is for Alice and Bob to agree on a random bit. In the

protocol, Alice picks a large random integer T ey N, then sends f(x) to Bob under the one-way
functionf, and finally reveals x to Bob after his random guess. Viewed by Bob, x as a whole
number should not be regarded as a piece of new information since he knows already that x is
one element in N before even receiving f(x). Bob only uses an interesting part of Alice's output:
the parity of x is used to compute a random bit agreed with Alice. Thus, we have

]

Prob [z is D{ld]} T
1

Prob [ is even]|

H(Alice) = Prob [z is odd]logy(

Prob [z is even] log,(

| |

That is, Alice is a source of 1 bit per output, even though her outputis a large integer.E|

If Alice and Bob repeat running Prot 1.1n times, they can agree on a string of n bits: a correct
guess by Bob outputs 1, while an incorrect guess outputs 0. In this usage of the protocol, both
Alice and Bob are 1-bit-per-protocol-run random sources. The agreed bit string is mutually trust
by both parties as random because each party has her/his own random input and knows that the
other party cannot control the output.



3.8 Redundancyin Natural Languages

Consider a source S(L) outputs words in a natural language L. Suppose that, on average, each
word in L has k characters. Since by Shannon's Theorem (Theorem 3.2),H(S(L)) is the minimum
average number of bits per output from S(L) (remember that per output from S(L) is a word of k
characters), the value

H(S(L))

r(L) = E

should be the minimum average number of bits per character in language L. The value r(L) is
called the rate of languagel. Let L be English. Shannon calculated that r(English) is in the
range of 1.0 to 1.5 bits/letter [265].

Let E = {a, b, ..., z}. Then we know r(z) = logz 26 = 4.7 bits/letter. r(z) is called absolute

rate of language with alphabet set E Comparing r(English) with r(E), we see that the actual
rate of English is considerably less than its absolute rate.

Theredundancy of languagel with alphabet set E is

r(E) —r(L) (bits per character).

Thus for a conservative consideration of r(English) = 1.5, redundancy of Englishis 4.7 — 1.5 =

3.2 bhits per letter. In terms of percentage, the redundancy ratio is 3.2/4.7 = 68%. In other
words, about 68% of the letters in an English word are redundant. This means a possibility to
compress an English article down to 32% of its original volume without loss of information.

Redundancy in a natural language arises from some known and frequently appearing patterns in
the language. For example, in English, letter g is almost always followed by u; "the,"” "ing" and
"ed" are a few other known examples of patterns. Redundancy in natural languages provides an
important means for cryptanalysis which aims for recovering plaintext messages or a
cryptographic key from a ciphertext.

Example 3.11.

We have mentioned in Chapter 1 that in this book we will study many kinds of attacks on
cryptographic algorithms and protocols. In a later chapter (Chapter 14) we will introduce and
discuss four kinds of attacks on encryption algorithms which have rather long names. They are:

Passive plaintext indistinguishable attack

Active plaintext indistinguishable attack in the chosen-plaintext mode

Active plaintext indistinguishable attack in the non-adaptive chosen-ciphertext mode

Active plaintext indistinguishable attack in the adaptive chosen-ciphertext mode

Full meanings of these attacks will be explained in that chapter. Here we only need to point out



the following two facts about these attacks:

1. The use of long names is very appropriate because behind each of these long-named
attacks there is a non-trivial amount of information to convey.

2. InChapter 14 we will only deal with these four attacks.

Since in Chapter 14 we will only deal with these four attacks, the actual entropy of these names
can be as low as 2 bits per name. However, because numbers 0, 1, 2, and 3 and a few other
single characters (e.g., letter "a", index "i", "|", security parameter "k", etc.) will appear in
Chapter 14, in order to uniquely identify these attacks, we actually have to use more than two
bits of information to name these attacks.

Notice that we will not use strings a0, al, a2, a3 in any part of Chapter 14; we can actually
shorten the four long attacking names to these four strings, respectively, without causing any
ambiguity. Consequently, within Chapter 14, the entropy for naming these four attacks can
reasonably be as low as 4.7 + 2 = 6.7 (bits per name). Here 4.7 bits are for representing the
letter "a", and 2 bits are for representing the numbers O, 1, 2, 3.

On the other hand, by simple counting the reader can find that the average length of the four
long names is 62.75 (letters). Therefore, the average number of bits per letter in these long
names is 6.7/62.75 < 0.107. From this result, we can further calculate the redundancy of these
long names as (within the scope of Chapter 14):

6.7 —0.107

= ORY.
6.7 %

|

So these long attacking names are very, very redundant!

However, the area of study for cryptographic systems with provable strong security is an
environment much larger than Chapter 14. Therefore the extremely shortened names a0, al, a2,
a3 used in Example 3.11 are in fact too short for naming these attacks (using so short names
may cause ambiguity in understanding and uncomfortableness). As a matter of fact, the latter
three attacking names listed in Example 3.11 are shortened into IND-CPA, IND-CCA and IND-
CCAZ2, respectively. We will adopt these names in Chapter 14 too.

Finally we point out that the reason why only the latter three long names are shortened is
because in the area of study the latter three attacks are discussed more frequently. For "passive
(plaintext indistinguishable) attack," we are comfortable enough to use the long name since the
attack is a less frequently discussed topic due to its ease of prevention.



3.9 Chapter Summary

In this chapter we have conducted a very rudimentary study of probability and information
theory. However, the material is sufficient for the use in this book.

In probability, itis very important to understand and be familiar with the basic notions, the
properties and the rules for the basic calculations. We should emphasize that a good
understanding of the very basics, which is not a difficult task at all, will help the most. We have
witnessed that useful theorems and tools, e.g., the law of total probability, the law of large
numbers and birthday paradox, can be derived solely from a few basic and intuitive properties
and rules.

In the rest of this book we will frequently meet applications of conditional probability, the law of
total probability, binomial distributions, and birthday paradox (we have already seen Pollard's | -
algorithm as a good application of birthday paradox). In these applications we will become more
and more familiar with these useful tools.

We have also conducted a basic study of information theory. We now understand that entropy of
a message source is a measure on the amount of information contained in messages from the
source, or on the degree of randomness (unpredictability) of these messages.



Exercises

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

Throw two dice one after the other. Find the probability of the following events:

i. sumis 7,1, and less than or equal to 12;
ii. second die < first die;
ili. at least one die is 6;

iv. given that the first die is 6, the second die is 6.

In the preceding problem, find the probability that the first die is 3 given that the
sum is greater or equal to 8.

Given that 4.5% of the population and 0.6% of females are color blind, what is the
percentage of color blindness in males who consists of 49.9% of the population?

Hint: apply the law of total probability.

Supposeq is uniformly distributed in [—p/2,p/2]. Find the probability that sin g <
15, and that |sin q] < .

A quarter numbers in a set of numbers are square numbers. Randomly picking 5
numbers from the set, find the probability for majority of them being square
numbers.

Hint: analogous to Example 3.8.(iii), sum up the majority cases of number of
squares = 3.

What are (left, right) tails of a binomial distribution function?
Derive (3.5.8), an upper bound for a "left tail" of the binomial distribution function.

Why can Definition 3.2 be viewed as a theorem which can be derived from the law
of large numbers?

Letn = pq with p and g being distinct large primes of roughly equal size. We know
that for any a < n and gcd(a, n) = 1, it holds aP*9 = a"*1 (mod n). Prove that n can
be factored in n”* steps of searching.

Hint: search index p+qg from aP*4 (mod n) by applying Pollard's | -algorithm, with
noticingp+q =n “2: then factor n using p+q and pq.

InProtocol "Coin Flipping Over Telephone," Alice picks a large and uniformly
random integer. What is the entropy of Alice's source measured at Alice's end, and
what is that measured by Bob?




3.11 InExample 3.11 we have measured the redundancy for four very long attacking
names to be introduced Chapter 14 with respect to four extremely shortened
names: a0, al, a2, a3. Now, in the scope of that chapter measure the redundancy
for the following four reasonably shortened attacking names:

e Passive IND-Attack,
e IND-CPA,
¢ IND-CCA,

e IND-CCAZ2.



Chapter 4. Computational Complexity

Section 4.1. Introduction

Section 4.2. Turing Machines

Section 4.3. Deterministic Polynomial Time

Section 4.4. Probabilistic Polynomial Time

Section 4.5. Non-deterministic Polynomial Time

Section 4.6. Non-Polynomial Bounds

Section 4.7. Polynomial-time Indistinguishability

Section 4.8. Theory of Computational Complexity and Modern Cryptography

Section 4.9. Chapter Summary

Exercises



4.1 Introduction

If a random variable follows the uniform distribution and is independent from any given
information, then there is no way to relate a uniformly random variable to any other information
by any means of "computation.” This is exactly the security basis behind the only unconditionally
(orinformation-theoretically) secure encryption scheme: one-time pad, that is, mixing a
uniformly random string (called key string) with a message string in a bit by bit fashion (see
87.3.3). The need for independence between the key string and the message string requires the
two strings to have the same length. Unfortunately, this poses an almost unpassable limitation
for a practical use of the one-time-pad encryption scheme.

Nevertheless (and somewhat ironical), we are still in a "fortunate™ position. At the time of
writing, the computational devices and methods which are widely available to us (hence to code
breakers) are based on a notion of computation which is not very powerful. To date we have not
been very successful in relating, via computation, between two pieces of information if one of
them merely "looks random" while in fact they are completely dependent one another (for
example, plaintext, ciphertext messages in many cryptosystems). As a result, modern
cryptography has its security based on a so-called complexity-theoretic model. Security of such
cryptosystems is conditional on various assumptions that certain problems are intractable. Here,
"intractable” means that the widely available computational methods cannot effectively handle
these problems.

We should point out that our "fortunate" position may only be temporary. A new and much more
powerful model of computation, quantum information processing (QIP), has emerged. Under this
new model of computation, exponentially many computation steps can be parallelized by
manipulating so-called "super-position" of quantum states. The consequence: many useful hard
problems underlying the security bases for complexity-theoretic based cryptography will
collapse, that is, will become useless. For example, using a quantum computer, factorization and
multiplication of integers will take similar time if the integers processed have similar sizes, and
hence, e.g., the famous public-key cryptosystems of Rivest, Shamir and Adleman (RSA) [246]
(see 88.5) will be thrown out of stage. However, at the time of writing, the QIP technique is still
quite distant from practical applications. The current record for factoring a composite number:
15 (see e.g., [300]), which is the least size, odd and non-square composite integer.

Therefore, let us not worry too much about the QIP for the time being. The rest of this chapter
provides an introduction to our "less-powerful” conventional computational model and to the
complexity-theoretic based approach to modern cryptography.

4.1.1 Chapter Outline

84.2 introduces the Turing computation model. 84.3 introduces the class of deterministic
polynomial-time, several useful deterministic polynomial-time algorithms and expressions for
complexity measurement. 84.4 and 84.5 introduce two subclasses of non-deterministic
polynomial-time (NP) problems. The first subclass (84.4) is probabilistic polynomial-time which
is further broken down to four subclasses of efficiently solvable problems (84.4.2-84.4.5). The
second subclass (84.5) is the problems which are efficiently solvable only with an internal
knowledge and play an important role in the complexity-theoretic-based modern cryptography.
84.6 introduces the notion of complexities which are not bound by any polynomial. 84.7
instantiates the non-polynomial bounded problems to a decisional case: polynomial-time
indistinguishability. Finally, 84.8 discusses the relationship between the theory of computational
complexity and modern cryptography.



4.2 Turing Machines

In order to make precise the notion of an effective procedure (i.e., an algorithm), Turing
proposed an imaginary computing device, called a Turing machine, to provide a primitive yet
sufficiently general model of computation. The computational complexity material to be
introduced here follows the computation model of Turing machines. Below we introduce a variant
version of Turing machines which are sufficient for our purpose of computational complexity
study. A general description of Turing machines can be studied in, e.g., 81.6 of [9].

In our variant, a Turing machine (see picture in Fig 4.1) consists of a finite-state control unit,

some number k (:3 1) of tapes and the same number of tapeheads. The finite-state control unit
controls the operations of the tapeheads which read or write some information from or to the
tapes; each tapehead does so by accessing one tape, called its tape, and by moving along its
tape either to left or to right. Each of these tapes is partitioned into an infinite number of cells.
The machine solves a problem by having a tapehead scanning a string of a finite number of
symbols which are placed sequentially in the leftmost cells of one tape; each symbol occupies
one cell and the remaining cells to the right on that tape are blank. This string is called an input
of a problem. The scanning starts from the leftmost cell of the tape that contains the input while
the machine is in a designated initial state. At any time only one tapehead of the machine is
accessing its tape. A step of access made by a tapehead on its tape is called a (legal)move. If
the machine starts from the initial state, makes legal moves one after another, completes
scanning the input string, eventually causes the satisfaction of a terminating condition and
thereby terminates, then the machine is said to recognize the input. Otherwise, the machine will
at some point have no legal move to make; then it will halt without recognizing the input. An
input which is recognized by a Turing machine is called an instance in a recognizable language.

Figure 4.1. A Turing Machine
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For a given problem, a Turing machine can be fully specified by a function of its finite-state
control unit. Such a function can be given in the form of a table which lists the machine's next-
step move for each state. We shall provide a problem example and a specification of a Turing
machine in a moment (see Example 4.1 below).

Upon termination, the number of moves that a Turing machine M has taken to recognize an input
is said to be the running time or the time complexity of M and is denoted by Ty. Clearly, Ty can
be expressed as a function Ty(n) : N +— N where n is the length or size of the input instance,
i.e., the number of symbols that consists of the input string when M is in the initial state.
Obviously,T u(n) =n. In addition to the time requirement, M has also a space requirement S y
which is the number of tape cells that the tapeheads of M have visited in writing access. The
quantityS y can also be expressed as a function Sy(n) : [ +— N and is said to be the space
complexity of M.

We will see a concrete Turing machine in the next section.



4.3 Deterministic Polynomial Time

We begin with considering the class of languages that are recognizable by deterministic Turing
machines in polynomial time. A function p(n) is a polynomial in n over the integers if it is of the
form

Equation 4.3.1

k—1

pln) = cxn® + ex_1n + -4+ en+eg

wherek and c; (i =0, 1, 2, ..., k) are constant integers with o = 0. When k > 0, the former is
called the degree, denoted by deg(p(n)), and the latter, the coefficients, of the polynomial

p(n).

Definition 4.1: Class P We write P to denote the class of languages with the following
characteristics. A language L is in P if there exists a Turing machine M and a polynomial p(n)

such that M recognizes any instance | €L in time T y(n)with T y(n) Ep(n)for all non-negative
integers n, where nis an integer parameter representing the size of the instance I. We say that L
is recognizable in polynomial time.

Roughly speaking, languages which are recognizable in polynomial time are considered as
always "easy." In other words, polynomial-time Turing machines are considered as always
"efficient” (we will define the notion of "easy" or "efficient” in 84.4.6). Here let us explain the

meaning for always. Turing machines which recognize languages in P are all deterministic. A
deterministic Turing machine outputs an effect which is entirely determined by the input to, and
the initial state of, the machine. In other words, running a deterministic Turing machine twice
with the same input and the same initial state, the two output effects will be identical.

We should notice that in Definition 4.1, the universal-style restrictions "any instance | €L" and
"for all non-negative integers n" are very important. In the study of computational complexity, a
problem is considered solved only if any instance of the problem can be solved by the same
Turing machine (i.e., the same method). Only so, the method is sufficiently general and thereby
can indeed be considered as a method. Let us look at the following example for an illustration.

Example 4.1. Language DIV3

Let DIV3 be the set of non-negative integers divisible by 3. Show DIV3 € P.
We do so by constructing a single-tape Turing machine to recognize DIV3 in polynomial time.

We first notice that if we write the input as integers in the base-3 (i.e., ternary) representation,
that is, an input is a string of symbols in {0, 1, 2}, then the recognition problem becomes
trivially easy: an input x is in DIV3 if and only if the last digit of x is 0. Consequently, the
machine to be constructed should simply make consecutive moves to right until reaching a blank
symbol, and then it stops with a YES answer if and only if the final non-blank symbol is O.
Clearly, this machine can recognize any instance in number of moves which is the size of the

instance. Hence DIV3 € F.



However, we want to show that the fact DIV3 € P should be independent from the base
representation of the input. It suffices for us to show the case when the input is written in the
base-2 (i.e., binary) representation. Let this machine be named Div3. The finite-state control of
Div3 follows a "next move" function specified in Fig 4.2.

Figure 4.2. The operation of machine Div3

Current. state | Symbol on tape Next move New state
i 1y right o
(initial state) 1 right 71

blank “Ding” & Stop

i1 () right iz
1 right o
g2 0 right q1
1 right i

We now argue that the machine Div3 defined by the function in Fig 4.2 is sufficiently general for
recognizing all instances in DIV3.

First, we notice that for recognizing whether or not a binary string x € DIV3, it is sufficient for
Div3 to have three states, corresponding to the cases when it (its tapehead) completes scanning

strings 3k, 3k+1 and 3k+2 (for k = 0), respectively. The least input instance O stipulates that
Div3 must be in an initial state (without loss of generality, let the initial state be qg) upon its
completion of scanning input string 0. Without loss of generality, we can assign Div3 to state q;
upon its completion of scanning input string 1, and to state g2 upon its completion of scanning
input string 2 (= (10)7)[al.

[al we use (aia »...an)p, With aj < b and i = 1, 2, ..., n, to denote a number written in the base-b
representation; the cases of b = 10 and b = 2 are often omitted if no confusion arises.

For any non-negative integer a in the binary representation, postfixing a with symbol O
(respectively, symbol 1) yields value 2a (respectively, value 2a + 1). Thus, after completion of
scanninga = 3k (when Div3 is in state q o), Div3 must remain in go upon further scanning
symbol O, since at that point it completes scanning 2a = 6k = 3k’, and must evolve to g1 upon
further scanning symbol 1, since at that point it completes scanning 2a + 1 =6k + 1 = 3k"' + 1.
Similarly, after completion of scanning a = 3k + 1 (when Div3 is in state q1), Div3 must evolve
tog 2> upon completion of scanning 2a = 6k + 2 = 3k' + 2, and must evolve to qo upon
completion of scanning 2a + 1 = 6k + 3 = 3k'. The remaining two cases for a = 3k + 2 are: 2a =
6k + 4 = 3k"' + 1 (Div3 evolves from g2 to 1), and 2a + 1 = 6k + 5 = 3k' + 2 (Div3 stays in q>).

So, the three states qo,q 1 and g2 correspond to Div3's completion of scanning strings 3k, 3k + 1



and 3k + 2, respectively, for any k = 0. Now upon the head meeting the special symbol "blank,"
only in state qg Div3 is configured to ring the bell and stop (meaning to terminate with YES
answer) and hence to recognize the input 3k; in the other two states, Div3 will have no legal
move to make and therefore halt with no recognition.

Finally, it is easy to see Tpjya(n) = n. Thus, Div3 does recognize language DIV3 in polynomial
; O
time.

Example 4.2.

i. The bitstring 10101(=(21)10) is recognizable; Div3 recognizes the string in Tpjyz(]10101])
= ]10101] = 5 moves;

ii. The bit string 11100001(=(225)10) is another recognizable instance; Div3 recognizes itin
Toiva(]11100001]) = |11100001] = 8 moves;

iii. The bit string 10(= (2)10) is not recognizable; Div3 decides that it is unrecognizable in two
moves.

4.3.1 Polynomial-Time Computational Problems

By definition, P is the class of polynomial-time language recognition problems. A language
recognition problem is a decisional problem. For every possible input, a decisional problem

requires YES or NO as output. However, class Pis sufficiently general to enclose polynomial-
timecomputational problems. For every possible input, a computational problem requires an
output to be more general than a YES/NO answer. Since a Turing machine can write symbols to
a tape, it can of course output information more general than a YES/NO answer.

For instance, we can design another Turing machine which will not only recognize any instance x
£

€ DIV3, but will also output # upon recognition of x. Let this new machine be named Div3-
Comp. A very simple way to realize Div3-Comp is to have its input written in the base-3
representation. Then the input is an instance in DIV3 if and only if its final digit is O, and the
output from the machine, upon recognition of the input, should be the content on the input-tape
after having erased the last O unless 0 is the only symbol on the tape. If one insists that Div3-
Comp must only input and output binary numbers, then Div3-Comp can be realized as follows. It
first translates an input x from the base-2 representation into the base-3 representation, and

£

upon obtaining 3 in the base-3 representation it translates the number back to the base-2
representation as the final output. It is evident that these translations can be done digit-by-digit
mechanically in ¢ - |xX] moves where c is a constant. To this end we know

Tl'}ivf?'r-f}mnp(]x” {_: C- |"E|

whereC is a constant. From this example we see evidently that the class P must include the
problem which can be solved by Div3-Comp.

A general argument for P to enclose polynomial-time computational problems can be given as
follows. A computing device in the so-called von Neumann architecture (that is, the modern



computer architecture we are familiar with, [227]) has a counter, a memory, and a central
processor unit (CPU) which can perform one of the following basic instructions, called micro-
instructions, at a time:

Load: Loading the content in a memory location to
a register (in CPU)

Store: Storing the content of a register to a
memory location

Add: Adding contents of two registers

Comp: Complementing the content of a register (for
subtraction via "Add")

Jump: Setting the counter to a new value

JumpZ: "Jump" upon zero content of a register (for
conditional branching)

Stop: Terminating.

It is well known (see e.g., 81.4 of [9]) that the above small set of micro-instructions is sufficient
for constructing algorithms for solving arbitrary arithmetic problems on a von Neumann
computer (however notice that by "arbitrary arithmetic problems"” we do not mean to consider
instances of arbitrary sizes; we will further discuss this in a moment). It can be shown (e.g.,
Theorem 1.3 in [9]) that each micro-instruction in the above set can be simulated by a Turing
machine in polynomial time. Consequently, a problem that can be solved in polynomial time on a
von Neumann computer (which implies that the number of micro-instructions used in the
algorithm must be a polynomial in the size of the input to the algorithm) can also be solved by a
Turing machine in polynomial time. This is because for any polynomials p(n) and q(n), any ways
of arithmetic combining p(n),q(n),p(q(n)) and q(p(n)) will result in a polynomial in n. Notice
that we have deliberately excluded multiplication and division from our (simplified) set of micro-
instructions. A multiplication between numbers of size n can be done via n additions and hence
has its total cost should be measured by n x cost (Add). Division has the same cost as
multiplication since it is repeated subtraction which is addition of a complementary number.

We should mention an unimportant difference between the computation model based on Turing
machines and that based on von Neumann computers. By Definition 4.1, we regard a problem
solvable on a Turing machine only if any instance is solvable on the same machine (*one
machine to solve them all!"). The cost for solving a problem on a Turing machine is measured by
the size of the problem in a uniform manner across the whole spectrum of the size of the
problem. There is no need to have a pre-determined bound for the size of a problem. Machine
Div3 in Example 4.1 shows this evidently. Due to this property in cost measurement we say that
the Turing-machine-based computation model uses the uniform cost measure to measure
complexities. In contrast, registers and logical circuits which are the basic building blocks of a
von Neumann computer have fixed sizes. As a result, problems solvable on a von Neumann
computer must also have a pre-determined size: for the same problem, the bigger an instance
is, the bigger a machine is needed for solving it. In general, machines of different sizes do not
agree on a uniform measurement on the cost for solving the same problem. We therefore say
that a circuit-based computation model (upon which a von Neumann computer is based) has a
non-uniform cost measure. However, so far, the difference between the uniform and non-
uniform cost measures has not created any new complexity class, or caused any known classes
to collapse. That is why we say that this difference is not important.

In the rest of this chapter we shall often neglect the difference between a decisional problem and



a computational problem, and the difference among a Turing machine, a modern computer, a
procedure, or an algorithm. Decisional or computational problems will be generally called
problems, while machines, computers, procedures or algorithms will be generally referred to as
methods or algorithms. Occasionally, we will return to describing a language recognition
problem, and only then we will return to using Turing machines as our basic instrument of
computation.

4.3.2 Algorithms and Computational Complexity Expressions

Let us now study three very useful polynomial-time algorithms. Through the study of these
algorithms, we shall (i) get familiar with a programming language which we shall use to write
algorithms and protocols in this book, (ii) agree on some notation and convention for expressing
computational complexity for algorithms and protocols, and (iii) establish the time complexities
for a number of arithmetic operations which will be most frequently used in cryptography.

Above we have explained that Turing machines provide us with a general model of computation
and with a precise notion for measuring the computational complexity for procedures. However,
we do not generally wish to describe algorithms in terms of such a primitive machine, not even
in terms of the micro-instructions of a modern computer (i.e., the set of instructions we
described in 8 4.3.1). In order to describe algorithms and mathematical statements effectively
and clearly, we shall use a high-level programming language called "Pseudo Programming
Language™ which is very close to a number of popular high-level programming languages such
as Pascal or C and can be understood without any difficulty due to its plainly self-explanatory
feature.

4.3.2.1 Greatest Common Divisor

The first algorithm we shall study is the famous algorithm of Euclid for computing greatest
common divisor (Alg 4.1). Denoted by gcd(a, b) the greatest common divisor of integers a and
b, gcd(a, b) is defined to be the largest integer that divides both a and b.

Algorithm 4.1: Euclid Algorithm for Greatest Common Divisor

INPUT Integersa > b 2 0;
OUTPUT gcd(a, b).

1. ifo=0return(a);

2. return( gcd(b, a mod b) ).

InAlg 4.1, "a mod b" denotes the remainder of a divided by b. (In 84.3.2.5 we will formally
define the modular operation and provide some useful facts on modular arithmetic.) The

conditiona>b = 0 is merely for the purpose of ease of exposition. In the implementation, this



condition can be satisfied by replacing a, b with their absolute values, and by invoking gcd(|b],
|a]) in case |a| < |b].

Now let us examine how Alg 4.1 works. For positive integers a :_"'b, we can always write

Equation 4.3.2

a=bg+r

for some integer q ;t 0 (the quotient of a divided by b) and O i:r < b (the remainder of a

divided by b). Since by definition, gcd(a, b) divides both a and b, equation (4.3.2) shows that it
must also divide r too. Consequently, gcd(a, b) equals gcd(b, r). Since the remainder r (of a
divided by b) is denoted by a mod b, we have derived

gcd(a, b) = gcd(b, a mod b).

This is the fact we have used in Alg 4.1, namely, gcd(a, b) is defined by gcd(b, a mod b)
recursively. The series of recursive calls of gcd compute the following series of equations, each is
in the form of (4.3.2) and is formed by a division between the two input values:

Equation 4.3.3

a = bqy + 1
b = rigz + 12

Ty = T2q3 + T3

Th—3 = Tk—2Qk—1 T+ Tk—1
Fk—2 = Tk—1qk + Tk

wherer x = 0 (which causes the terminating condition in step 1 being met) and q1,q9 2, ..., qk.r 1,
ra, ..., rk—1 are non-zero integers. With rg = 0, the last equation in (4.3.3) means rk_1 divides
rk—2, and in the last-but-one equation, it must also divide rx_3, ..., eventually, as shown in the
first equation in (4.3.3),r k-1 must divide both a and b. None of other remainders in other
equations has this property (that's why they are called remainders, not a divisor; only rk_; is a
divisor in the last equation in (4.3.3)). Therefore, rk—1 is indeed the greatest common divisor of a
andb, i.e., r k-1 = gcd(a, b).

For example, gcd (108, 42) will invoke the following sequence of recursive calls:

gcd(108, 42) = gcd(42, 24) = gcd(24, 18) = gcd(18, 6) = gcd(6, 0) = 6.



4.3.2.2 Extended Euclid Algorithm

Alg 4.1 has thrown away all the intermediate quotients. If we accumulate them during the
computation of gcd(a, b), we can obtain something more than just gcd(a, b).

Let us see what we can obtain.

The first equation in (4.3.3) can be written as

a—+b(—q) =rmr.

Multiplying both sides of this equation with g2, we can obtain

agqa + b(—qiq2) = r1qa.

Using this equation and the second equation in (4.3.3), we can derive

Equation 4.3.4

a(—q2) + (1 + qiq2) = ra.

The same way of calculation can be carried out. In general, fori =1, 2, ..., k, we can derive

Equation 4.3.5

aXj + b =7

wherel j,m;are some integers which are, as indicated in (4.3.4), certain form of accumulations
of the intermediate quotients. We have seen in 84.3.2.1 that following this way of calculation we
will eventually reach rix = O, and then we have

Equation 4.3.6

aX_1 + !I}‘[qu:_l =TE. = g(‘.d{({., !‘}]I

An algorithm that inputs a, b and outputs the integers |i_;,mg_1 satisfying (4.3.6) is called
extended Euclid algorithm. Extended Euclid algorithm will have an extensive use in the rest of
the book for computing division modulo integers. Let us now specify this algorithm, that s, find
a general method for accumulating the intermediate quotients.

Observe the equations in (4.3.3) and denoter—; = a,ro=b, -1 =1, m1=0,l90=0, np= 1.



Then fori=1, 2, ..., k=1, the ith equation in (4.3.3) relates ri_1,r j and rij+1 by
Equation 4.3.7

Tig1l = Ti=1 — Tifi41-

Replacingr j—1 and r; in the right-hand side of (4.3.7) using equation (4.3.5), we derive

Equation 4.3.8

rie1 = a{Aic1 — giv1 i) + b(pic1 — i1 i)

Comparing between (4.3.8) and (4.3.5), we obtain (fori=0, 1, ..., k—1)

Equation 4.3.9

}"'i-l-l = }k;i__l - 'f}-i-l—l}‘f.
Hi+l = MHi—1 — i1}

These two equations provide us with a general method for accumulating the intermediate
quotients while computing greatest common divisor (see Alg 4.2).

Algorithm 4.2: Extended Euclid Algorithm

INPUT a, b: integerswitha> b = 0;

OUTPUT integersl ,msatisfying al + bm= gcd(a, b).

1. i+#=0; r_q +a;r g+b;
| 1#&=1;m ¢=0;lo%=0; np+1; (* initialize *)

2. while (ri = al j + bm ¥ 0) do (* it always holds al | + bm = r; *)

a. g #=r i1 = ri; (* + denotes division in integers *)

b. ljr1 =l -1 —gli;mj+r1 #=mj_1 — gm; (* sum up quotients *)




C. i+i+ 1;

3. return( (I'j—1,mi-1) ).

.Remark 4.1

In order to expose the working principle of Alg 4.1 and Alg 4.2 in an easily understandable way,
we have chosen to sacrifice efficiency. In the next two sections (84.3.2.3—84.3.2.4) we will
analyze their time complexities and contrast our result with the best known time complexity

result for computing greatest common divisor.H

4.3.2.3 Time Complexity of Euclid Algorithms

Let us now measure the time complexities for the two Euclid algorithms. It is clear that the
number of recursive calls in Alg 4.1 is equal to the number of loops in Alg 4.2 which is in turn
equal to k in (4.3.3).

Consider the case a > b and observe (4.3.7) fori =0, 1, ..., k= 1. We have either of the
following two cases:

Equation 4.3.10

|?"-g| < |?"g_ i |

or

Equation 4.3.11

Iriv1]| < |rical-

Further noticing rj+1 < rj, so case (4.3.10) also implies case (4.3.11), that s, case (4.3.11) holds
invariantly. This means that the maximum value for k is bounded by 2-]a]. If we consider the
modulo operation as a basic operation which takes one unit of time, then the time complexity of
gcd realized in Alg 4.1 is bounded by 2-]a]. This is a linear function in the size of a.

. Theorem 4.1

Greatest common divisor gcd(a, b)can be computed by performing no more than 2max(]al|, |b])
modulo operations. Therefore, Alg 4.1 and Alg 4.2 terminate within 2max(]a|, |b])loops.

G. Lamé (1795-1870) was the first person who proved the first sentence in the statements of
Theorem 4.1. It is considered to be the first theorem ever proved about the theory of
computational complexity (page 35 of [176]).

The series of equations in (4.3.3) which are formed by a series of divisions suggest an inherent



sequentiality characteristic in the computation of greatest common divisor. Since Euclid
discovered his algorithm (i.e., Alg 4.1), no significant improvement has been found to cut short
this seemingly necessary sequential process.

4.3.2.4 Two Expressions for Computational Complexity

When we measure the computational complexity for an algorithm, it is often difficult or
unnecessary to pinpoint exactly the constant coefficient in an expression that bounds the
complexity measure. Order notation allows us to ease the task of complexity measurement.

Definition 4.2: Order NotationWe write O(f(n))to denote a function g(n)such that there
exists a constant ¢ > 0 and a natural number N with |g(n)| Ec|f(n)|for alln =N.

Using the notation O() we can express the time complexities of Alg 4.1 and Alg 4.2 as O(loga).
Notice that in this expression we have replaced |a] with log a without explicitly giving the base
of the logarithm (though we conventionally agree that the omitted base is natural base €). The
reader may confirm that any base b > 1 will provide a correct measurement expression under

the order notation (Exercise 4.10).

So far we have considered that computing one modulo operation costs one unit of time, that is,
it has the time complexity O(1). As a matter of fact, modulo operation "a (mod b)" in the general
case involves division a =+ b, which is actually done in Alg 4.2 in order to keep the quotient.
Therefore the time complexity of modulo operation, the same as that of division, should depend
on the sizes of the two operands. In practical terms (for the meaning of "practical," see the end
of 84.4.6), using O(1) to represent the time for a division is too coarse for a sensible resource
management.

A simple modification of the order notation is to measure an arithmetic in terms of bitwise
computation. In bitwise computation, all variables have the values O or 1, and the operations

used are logical rather than arithmetic: they are A (for AND), vV (for OR), ea' (for XOR, i.e.,
"exclusive or"), and — (for NOT).

Definition 4.3: Bitwise Order NotationWe write O g()to denote O()under the bitwise
computation model.

Under the bitwise model, addition and subtraction between two integers i and j take max(|i|, lj])
bitwise operations, i.e., Og(max(]i|, |j])) time. Intuitively, multiplication and division between i
andj take |i] - |j| bitwise operations, i.e., O g(logi. log j) time. We should point out that for
multiplication (and division) a lower time complexity of Og(log(i + j) log log(i + j)) can be
obtained if the fast Fourier Transformation (FFT) method is used. However, this lower complexity
is an asymptotic one which is associated with a much larger constant coefficient (related to the
cost of FFT) and may actually cause a higher complexity for operands having relatively small
sizes (e.qg., sizes for modern cryptographic use). Therefore in this book we shall not consider the
FFT implemented multiplication and division. Consequently we shall only use the intuitive
complexity measurement for multiplication and division.

Let us now express the time complexities of Alg 4.1 and Alg 4.2 using the more precise bitwise
order notation Og(). In Theorem 4.1 we have obtained that for a > b, gcd(a, b) can be computed
inO(loga) time. Given that both input values are bounded by a, and that modulo operation or
division cost Og((loga) 2), the time complexities of Alg 4.1 and Alg 4.2 are both Og((loga) 3).

Now we should recall Remark 4.1: we have chosen to present these algorithms with easily
understandable working principles by sacrificing the efficiency. As a matter of fact, our sacrifice
on efficiency is rather large!



Careful realizations of these two algorithms should make use of the following two facts:

i. Modulo operation or division for creating a = bqg + r cost Og((loga)(logq)).

ii. Quotientsq 1,q 2, ..., gk in (4.3.3) satisfy

Equation 4.3.12

k k

Z log q; = log]:[qi < log a.

Hence the total time for computing greatest common divisor, via a careful realization, can be
bounded by

k
Z Og((loga)(logq;)) < Op((loga)?).

i=l

Careful realizations of the counterparts for Alg 4.1 and Alg 4.2 can be found in Chapter 1 of

[79].

In the rest of this book, we shall use the best known result Og((loga) 2) for expressing the time
complexity for computing greatest common divisor, either using Euclid algorithm or the
extended Euclid algorithm.

4.3.2.5 Modular Arithmetic

An important polynomial-time deterministic algorithm we shall study is one for computing
modular exponentiation. Modular exponentiation is widely used in public-key cryptography. Let
us first take a short course on modular arithmetic (readers who are familiar with modular
arithmetic can skip this section).

Definition 4.4: Modular OperationGiven integers x and n > 1, the operation "x (mod n)"is
the remainder of x divided by n, that is, a non-negative integer r € [0, n — 1] satisfying

r=kn+r
for some integer k.

. Theorem 4.2 Properties of Modular Operation

Let x, ¥, n ?’-‘ 0 be integers with gcd(y, n) = 1. The modular operation has the following



properties.

1. (x+y) (mod n) = [(x (mod n)) + (y (mod n))] (mod n);
2. (—xX) (mod n) = (n —x) (mod n) =n— (x (mod n));
3. (x-y) (modn) = [(x (mod n)) - (y (mod n))] (mod n);

4. Denote by y~1 (mod n)themultiplicative inverseof y modulo n. It is a unique integer in
[1,n — 1] satisfying

(v -y™1) (mod n) = 1.
Proof We shall only show 1 and 4 while leaving 2 and 3 as an exercise (Exercise 4.4).

We can write x = kn +r,y =In + sfor 0 i:r,s En—l.

For 1, we have

(x+y) (mod n) = [(kn+ 1)+ (n + 5)] (mod n)
= [(k+£€)n+ (r+ s)] (mod n)
= (r+s) (mod n)
= [(z (mod n)) + (y (mod n))] (mod n)

For 4, because gcd(y, n) = 1, applying extended Euclid algorithm (Alg 4.2) on input y, n, we
obtain integers | and msatisfying

Equation 4.3.13

YA+ np = 1.

Without loss of generality, we have | < n because otherwise we can replace | with | (mod n) and
replacemwith yk + mfor some k while keeping equation (4.3.13).

ByDefinition 4.4,yl (mod n) = 1. Therefore we have foundy —1 =1 < n as the multiplicative
inverse of y modulo n. Below we show the uniqueness of y—1 in [1, n — 1]. Suppose there exists

another multiplicative inverse of y mod n; denote itby | '€ [1,n— 1], " #l . We have

y(A—A') mod n =0,

Equation 4.3.14



y(A — A') = an,

for some integer a. We know y = In + 1 for some integer f Therefore equation (4.3.14) is

(fn+1)(A = X) =an,

or
!

A— AN =bn,

for some integer b. This contradicts our assumption | ,I" € [1, n— 1], | F-. U

Same as in the case of division in rationals @ division by a number modulo n is defined to be
multiplication with the inverse of the divisor, of course, this requires the existence of the inverse,

just as in the case in @ Thus, for any y with gcd(y, n) = 1, we write x/y mod n for xy=1 mod n.

Since computing y~1 involves applying extended Euclid algorithm, it needs time Og((logn) 2).
Therefore the time complexity for division modulo n is Og((logn) 2).

Theorem 4.2 shows that modular arithmetic is very similar to the integer arithmetic. It is easy to
see that addition and multiplication obey the following laws of commutativity and associativity
(where "0" denotes either addition or multiplication):

a°bmodn=b°a (Commutativity)
modn
a®((°c)modn=(a (Associativity)

°h) ©c mod n

Finally we should point out that, in the definition for the modular operation x mod n (see
Definition 4.4), the value of k (the quotient of x divided by n) is not an important element.
Therefore in equation

Equation 4.3.15

rmod n =y mod n

we should not care whether x and y may differ by a multiple of n. In the sequel, the above
equation will always be written as either

T =y (mod n),



or

x (mod n) = y.

We shall call this way of denoting equation (4.3.15) a congruence modulo n, or we say: X is
congruent to y modulo n.

4.3.2.6 Modular Exponentiation

Forx, y < n,modular exponentiationx Y (mod n) follows the usual definition of exponentiation
in integers as repeated multiplications of x to itself y times, but in terms of modulo n:

oV L or.. g (mod n).

]

Lety =+ 2 denote y divided by 2 with truncation to integers, that is,

o | U2 if y is even
yTE_{ (y—1)/2 ifyis odd

Then applying the "Associativity Law" of modular multiplication, we have

o (rE)”_E if y is even
e (z?)v*2x  if y is odd

The above computation provides the well-known algorithm for realizing modular exponentiation
called "repeated square-and-multiply.” The algorithm repeats the following process: dividing the
exponent into 2, performing a squaring, and performing an extra multiplication if the exponent is
odd.Alg 4.3 specifies a recursive version of the method.



Algorithm 4.3: Modular Exponentiation

INPUT X, Y, n: integers with x > 0, y :_:' O,n>1;
OUTPUT x¥ (mod n).

mod_exp(Xx, y, n)

1. ify = 0 return(1);

2. ify (mod 2) = 0 return(mod_exp(x 2 (mod n),y = 2, n) );

3. return(x - mod_exp(x2 (mod n),y = 2, n) (mod n) ).

We should notice a property in Alg 4.3 that is resulted from the recursive definition: the
execution of a "return" statement implies that the subsequent step(s) following the "return”
statement will never be executed. This is because the statement return(*value") causes the
program to go back, with "value," to the point where the current call of mod_exp was made. So
inAlg 4.3, if step 2 is executed, then step 3 will not be executed.

For example, starting from mod_exp(2, 21, 23), Alg 4.3 will invoke the following five recursive
calls:

mod_exp(2, 21, 23)

=2 - mod_exp(4(= 22 (mod 23)), 10, 23) (in step 3)
=2 - mod_exp(16(= 42 (mod 23)), 5, 23) (in step 2)
=2 .16 - mod_exp(3(= 162 (mod 23)), 2, 23) (in step 3)
=2 .16 - mod_exp(9(= 32 (mod 23)), 1, 23) (in step 2)
=2-16 -9 - mod_exp(12(= 92 (mod 23)), 0, 23) (in step 3)
=2-16-9-1 (in step 1)

Notice that the above six lines contain five recursive calls of mod_exp. The final line
"mod_exp(12, 0, 23)" merely represents "return value 1" and is not a recursive call. The final
value returned to mod_exp(2, 21, 23) is 12 which is constructed from several multiplications
made in step 3:

12=12.18.9=2" (2% {((2*)*)*)" (ricd 23).

Let us now examine the time complexity of mod_exp realized in Alg 4.3. Since fory > 0, the



operation "dividing into 2" can be performed exactly [logoy] + 1 times to reach O as the
quotient, a run of mod_exp(x, y, n) will invoke exactly [logay] + 1 recursive calls of the function
itself to reach the terminating condition in step 1 (zero exponent). Each recursive call consists of
a squaring or a squaring plus a multiplication which costs Og((logx) 2). Thus, considering X, y as
numbers less than n, the time complexity for mod_exp realized in Alg 4.3 is bounded by Og((log
n)3).

Similar to a seemingly unavoidable sequentiality in the computation of gcd, there is also an
inherent sequentiality in the computation of mod_exp. This is seen as a simple fact in the
repeated squaring: x4 can only be computed after x2 has been computed, and so on. Over the
years, no significant progress has been made to improve the complexity from Og((logn) 3)
(without considering using FFT, review our discussion in 4.3.2.4).

Fig 4.3 summarizes our examination on the time complexities for the basic modular arithmetic
operations. We should notice that in the case of addition and subtraction, the modulo operation

should not be considered to involve division; this is because for O Ea, b <n,we have —n < a +

b < 2n, and therefore

atb if0<atb<n
atbhb(modn)=¢ atb—n ifatb>n
n+{atd ifatb<0

Figure 4.3. Bitwise Time Complexities of the Basic Modular Arithmetic
Operations

Operation Complexity
for a, b g [1.n)

a=£b (mod n) Og(logn)

a-b (mod n) Op((logn)?)
b1 (mod n) Og((logn)?)
a/b(mod n) | Op((logn)?)

a” (mod n) Op((logn)®)




4.4 Probabilistic Polynomial Time

It is generally accepted that if a language is not in P then there is no Turing machine that
recognizes it and is always efficienfPl. However, there is a class of languages with the following

property: their membership in P has not been proven, but they can always be recognized
efficiently by a kind of Turing machine which may sometimes make mistakes.

[b] The precise meaning for an "efficient machine” will be defined in 84.4.6; here we can roughly say that an
efficient machine is a fast one.

The reason why such a machine may sometimes make a mistake is that in some step of its
operation the machine will make a random move. While some random moves lead to a correct
result, others lead to an incorrect one. Such a Turing machine is called a non-deterministic
Turing machine. A subclass of decisional problems we are now introducing share the following
bounded error property:

The probability for a non-deterministic Turing machine to make a mistake when answering
a decisional problem is bounded by a constant (the probability space is the machine's
random tape).

We conventionally call a non-deterministic Turing machine with a bounded error a probabilistic
Turing machine. For this reason, the name "non-deterministic Turing machine" is actually
reserved for a different class of decisional problems which we will introduce in 84.5.

A probabilistic Turing machine also has a plural number of tapes. One of these tapes is called a
random tape which contains some uniformly distributed random symbols. During the scanning
of an input instance I, the machine will also interact with the random tape, pick up a random
symbol and then proceed like a deterministic Turing machine. The random string is called the
random input to a probabilistic Turing machine. With the involvement of the random input, the
recognition of an input instance | by a probabilistic Turing machine is no longer a deterministic
function of I, but is associated with a random variable, that is, a function of the machine’s
random input. This random variable assigns certain error probability to the event of
recognizingl.

The class of languages that are recognizable by probabilistic Turing machines is called
probabilistic polynomial-time (PPT) languages, which we denote by PP.

Definition 4.5: Class F P we write P P to denote the class of languages with the following

characteristics. A language L is in PP if there exists a probabilistic Turing machine PM and a
polynomial p(n), such that PM recognizes any instance | € L with certain error probability which

is a random variable of PM's random move, in time Tpy(n) with Tpy(Nn) < p(n) for all nonnegative
integers n, where n is an integer parameter representing the size of the instance 1.

InDefinition 4.5 we have left one element to have a particularly vague meaning, which is: "PM
recognizesl €L, with certain error probability.” The "certain error probability" should be
formulated into the following two expressions of conditional probability bounds:

Equation 4.4.1



and

Equation 4.4.2

Prob | PM recognizes [ € L

I¢L

<9,

where € and d are constants satisfying

Equation 4.4.3

ee(%,l]. d€[0,=).

The probability space is the random tape of PM.

The expression (4.4.1) is the probability bound for a correct recognition of an instance. Itis
called the completeness probability (bound). Here "completeness” means eventually
recognition of an instance in the language. The need for bounding this probability from below is
in order to limit the possibility for a mistaken rejection of an instance. A more meaningful
manifestation for (4.4.1) is the following equivalent re-expression:

Equation 4.4 .4

Prob[PM decides [ L| I € L] <1 -

In this expression the value 1 — € is the probability bound for a false rejection. We say that the
completeness of PM is a bounded probability for false rejection.

The expression (4.4.2) is the probability bound for a mistaken recognition of a non-instance. It
is called the soundness probability (bound), Here "soundness" means no recognition of a

non-instance. The need for bounding the probability from above is obvious. We say that the
soundness of PM is a bounded probability for false recognition.

4.4.1 Error Probability Characterizations

We have expressed error probability bounds for a PM with two constants €,d in two intervals
(4.4.3) with no any precision. Now let us explain that the imprecision will not cause any
problem.

4.4.1.1 Polynomial-time Characterizations

For a probabilistic Turing machine PM with error probabilities bounded by any fixed value



1 y 1
€ € (‘2 1 1] (for completeness) and and any fixed value 0 € l“* 2] (for soundness), if we
repeatedly run PM n times on an input I, the repetition, denoted by PM'(l, n), is also a
probabilistic Turing machine. We can use "majority election" as the criterion for PM'(l, n) to

Tl
decide whether to recognize or reject I. That is, if [EJ +1 or more runs of PM(1) output
recognition (rejection), then PM'(l, n) recognizes (rejects). It is clear that the completeness and
soundness probabilities of PM'(l, n) are functions of n. We now show that PM'(l, n) remains
being polynomial time in the size of I.

Since the random moves of the n runs of PM(l) are independent, each run of PM(l) can be
viewed as a Bernoulli Trial of ¢ (or d for soundness) probability for "success" and 1 — € (or 1 —d
for soundness) probability for "failure." Applying binomial distribution (see 83.5.2), the majority
election criterion made by PM'(l, n) provides the error probability bound for PM'(l, n) as the sum

Tl
of all probabilities for n Bernoulli Trials with [EJ +1 or more "successes." For completeness, the
sum is

Equation 4.4.5

e(n) = Prob [5,,, = \_?—QIJ + 1] = b(i;n,e€).

For soundness, we have

Equation 4.4.6

hrs

3(n) = Prob [nn > EJ £ 1] = Y b(jin,4).

These two expressions are accumulative sums of the respective binomial distributions. Because

1 1
£>3 and ¢ < 2, the central term (defined in §3.5.2.1) of the first distribution is at the point

(n+1)e> |2]| +1

(where the binomial term reaches the maximum value) and that for

; v n
latter is at the point{n { l}é < L.ZJ } l.

In 83.5.2.1 we have investigated the behavior of these sums. The sum in (4.4.6) is a "right tail"
n

of the binomial distribution function since [?J +1>(n+1)d

r=|2fl

2 land P = d, we obtain

. Applying (3.5.7) using

_ 21 —48) 1
o) < {352 mrl




Withd being constant, we have

o(n) = 0 (n— o).

The reader may analogously derive the following result

€(n) >1— =
n

for some constant c. The derivation is left as an exercise (Exercise 4.7, a hint is given there).

1
Since the "tails" diminish to zero faster than n doeslcl, we can let n = ||, and hence the
machinePM'(l, n) runs in time |I]|-poly(]I]) where poly(]I]) is the running time of the machine
PM on the input |I. Therefore, PM' remains being polynomial time.

[c] Our estimates derived in (3.5.7) and (3.5.8) are only two upper bounds. The real speed that a tail
1

diminishes to 0 is much faster than that of H. See Example 3.9 for numerical cases. This will further be
confirmed by the soundness and completeness properties of Prot 18.4 in §18.5.1.1.

1
4.4.1.2 Why Bounded Away from 2?

__ ot n
Taa 0 2, then both distributions (4.4.5) and (4.4.6) have central terms at the point [ 2 J It
is easy to check that for odd n

e(n) = d(n) = lf

3

and for even n

e(n) = d(n) =

e

1
That is, £(n) can never be enlarged and d(n) can never be reduced; they will remain at the 2
level regardless of how many times PM(I) is repeated. So machine PM'(l, n), as n independent
runs of PM(1), can reach no decision because for both completeness and soundness cases, half of
then runs of PM(I) reach acceptances and the other half of the n runs reach rejections. With n
unbounded and PM(I) remaining in the indecision state, machine PM'(l, n) will never terminate
and hence cannot be a polynomial-time algorithm.



Therefore, for PP being the class of languages with membership recognizable in probabilistic

polynomial time, we must require both error probabilities expressed in (4.4.1) and (4.4.2) be
1

bounded away from 2.

However, we should notice that the requirement for error probabilities being "bounded-away-

1
from-2" is only necessary for the most general case of language recognition problems in the
class PP which must include the subclass of the "two-sided error" problems (see §4.4.5). If a

problem has one-sided error (i.e., either € = 1 or d = 0, see 84.4.3 and 84.4.4), then bounded
1
away from 2 is unnecessary. This is because, in the case of one-sided error algorithms, we do

not have to use the majority election criterion. A "minority election criterion” can be used
instead. For example, a "unanimous election criterion" can be used with which PM'(l, n)
recognizes (rejects) | only if all n runs of PM(l) reaches the same decision. In such a election
criterion, €(n) =* 1 or d(n) = 0 in a exponential speed for any quantities e,d € (0, 1).

1 W |
In applications, it is possible that some useful problems have € = 2or R 2 (but, as we have

reasoned, must not holding of both). For such problems, changing election criterion (e.g., to a
minority election one) can provide us with room to enlarge or reduce the error probability. In

8§18.5.1, we will see a protocol example which has the recognition probability €= 2, but we can
still enlarge the completeness probability by repeating the protocol using a minority election
criterion.

Several Subclasses in PP

The class P P has several subclasses which are defined by different ways to characterize the
error-probability bound expressions in (4.4.1) and in (4.4.2), using different values of € and d,
respectively. Let us now introduce these subclasses. We will exemplify each subclass with an
algorithm. Similar to the case where a deterministic Turing machine simulates a polynomial-time
algorithm, a probabilistic Turing machine simulates a randomized (polynomial-time)
algorithm. Therefore, the algorithm examples shown in our introduction will not be limited to
those for language recognition.

4.4.2 Subclass "Always Fast and Always Correct”

A subclass of F P is named ZPP (which stands for Zero-sided-error Probabilistic
Polynomial time) if the error probability bounds in (4.4.1) and (4.4.2) have the following

characterization: for any L € PP there exists a randomized algorithm A such that for any
instancel

Prob [ A recognizes I |1 € L] =1

and

Prob [ A recognizes I | [ ¢ L] = 0.



This error-probability characterization means that a random operation in a randomized

algorithm makes no error at all. So, at a first glance, ZPP should have no difference from P .
However, there are a class of problems which can be solved by deterministic algorithms as well
as by randomized algorithms, both in polynomial time; while the randomized algorithms can
yield no error whatsoever, they are much quicker than their deterministic counterparts. We will
provide an example for contrasting the time complexity in a moment.

4.4.2.1 An Example of "Zero-sided-error" Algorithms

Some randomized algorithms are so natural that we have been using them instead of their
deterministic counterparts for a long history. For example, to weigh an object using a
steelyard[d], the user should move around the counterbalance on the scaled arm in a
randomized way which will allow one to find the weight much quicker than to do the job in a
deterministic way. One such algorithm we all are familiar with is a randomized process for
looking up someone's phone number from a phone book. This algorithm is specified in Alg 4.4.

[d] The weighing instrument is called "Gancheng" in Chinese and has been used for more than two thousand
years.

Algorithm 4.4: Searching Through Phone Book (a £2PP
Algorithm)

INPUT Name: a person's name;

Book: a phone book;

OUTPUT The person's phone number.

1. Repeat the following until Book has one page
{
(a) Open Book at a random page;
(b) If Name occurs before the page, Book += Earlier_pages(Book);
(c) Else Book + Later_pages(Book);

}

2. Return( Phone number beside Name);

Clearly, the random operation in Alg 4.4 will not introduce any error to the output result.
Therefore this is indeed a "zero-sided-error” randomized algorithm. For a phone book of N
pages,Alg 4.4 will only need to execute O(logN) steps and find the page containing the name
and the number. We should notice that a deterministic algorithm for "searching through phone
book" will execute average O(N) steps.



The reason why Alg 4.4 works so fast is that names in a phone book have been sorted
alphabetically. We should notice that sorting is itself a ZPP problem: "quick-sort" (see, e.g.,
pages 92-97 of [9]) is a randomized sorting algorithm, can sort N elements in (N log N) steps,
and its random operations will not introduce any error to the outcome result. In contrast,
"bubble-sort" is a deterministic sorting algorithm; it sorts N elements in (N2) steps (see e.g.,
pages 77 of [9]).

We can say that ZPFP is a subclass of languages which can be recognized by randomized
algorithms in an "always fast and always correct" fashion.

4.4.3 Subclass "Always Fast and Probably Correct”

A subclass of P P which we name P p(Monte Carlo) (where P P(Monte Carlo)" stands for
"Monte Carlo" which is typically used as a generic term for "randomized") if the error probability
bounds in (4.4.1) and (4.4.2) have the following characterization: for any L € P P(Monte Carlo)
there exists a randomized algorithm A such that for any instance |

Prob[A recognizes I | I € L] =1,

and

Prob [ A recognizes [ | I & L] < 4,

1
hered is any constant in the interval (O, 2). However, as we have pointed out in §4.4.1.2, since
for one-sided-error algorithms we do not have to use the majority election criterion in the
process of reducing a soundness error probability bound, d can actually be any constant in (O,
1).

Notice that now d % 0; otherwise the subclass degenerates to the special case ZPP.
Randomized algorithms with this error-probability characterization have one-sided error in the
soundness side. In other words, such an algorithm may make a mistake in terms of a false
recognition of a non-instance. However, if an input is indeed an instance then it will always be
recognized. This subclass of algorithms are called Monte Carlo algorithms.

From our study in 84.4.1 we know that the error probability of a Monte Carlo algorithm can be
reduced to arbitrarily closing to O by independent iterating the algorithm and the iterated
algorithm remains in polynomial time. We therefore say that a Monte Carlo algorithm is always
fast and is probably correct.

We now show that PRIMES (the set of all prime numbers) is in the subclass P P(Monte Carlo).

4.4.3.1 An Example of Monte Carlo Algorithms

Since Fermat, it has been known that if p is a prime number and x is relatively prime to p, then
xP —1 =1 (mod p). This forms a basis for the following Monte Carlo method for primality test
([282]), that is, picking x €y (1, p — 1] with gcd(X, p) = 1 and checking



Equation 4.4.7

pa T
P~1/2 = 41 (mod p).

The test is repeated k = logop times with the —1 case occurring at least once. Alg 4.5 specifies
this test algorithm.

Algorithm 4.5: Probabilistic Primality Test (a Monte Carlo
Algorithm)

INPUT p: a positive integer;
OUTPUT YES if p is prime, NO otherwise.

Prime_Test(p)

1. repeat logop times:

a. X€y(1,p—-11;

b. if gcd(x, p) > 1 or x(P—1)/2 o (mod p) return( NO );

end_of_repeat;

2. if (testin 1.(b) never shows —1 ) return( NO );

3. return( YES).

First of all, we know from Fermat's Little Theorem (Theorem 6.10 in 86.4) that if p is prime
then for all x < p:

Equation 4.4.8

2?71 =1 (mod p).

So if p is prime then Prime_Test(p) will always return YES, that is, we always have (including the
case of p being the even prime)



Prob [J.:[p_'l}fg = +1 (mod p) | p is prime ] =],

On the other hand, if p is a composite number then congruence (4.4.7) will not hold in general.
In fact (a fact in Group Theory, see Example 5.2.3 and Theorem 5.1 (in 85.2.1) if the inequality
against congruence (4.4.7) shows for one x < p with gcd(x, p) = 1 then the inequality must
show for at least half the numbers of this kind. Thus we conclude that for x €y (1, p — 1] with
gcd(x, p) = 1:

Equation 4.4.9

Prob [®~1/2 = 41 (mod p) | p is composite ] = 1/2;

Therefore, if the test passes k times for x chosen at uniformly random (remember that the — 1
case is seen to hold at least once), then the probability that p is not prime is less than 27K, Here
we have used the "unanimous election criterion”: p will be rejected if there is a single failure in
logop tests. Notice that this election criterion is different from the majority election one which we
have studied in 84.4.1 (for the general case of two-sided error problems) where failures will be
tolerated as long as the number of failures does not exceed half the number of tests. In this
"unanimous election" the soundness probability tends to O much faster than the majority election
case.

We have set k = logzp, and so any input instance p:

Prob [ Prime_Test(p) = YES | p is not prime] < 270827,

In 84.3 we have seen that computing modulo exponentiation and computing the greatest
common divisor with logzp -bit long input value have their time complexities bounded by
0g((logzp)3). Therefore the time complexity of Prime_Test(p) is bounded by Og((logp)4).

To this end we know that PRIMES — the language of all prime numbers — is in P P(Monte
Carlo).

Nevertheless without invalidating this statement, in August 2002, three Indian computer
scientists, Agrawal, Kayal and Saena, find a deterministic polynomial-time primality test

algorithm [8]; consequently, PRIMES is in fact in P,

4.4.4 Subclass "Probably Fast and Always Correct”

A subclass of PP which we name PP(Las Vegas) (stands for "Las Vegas") if the error

probability bounds in (4.4.1) and (4.4.2) have the following characterization: for any L € PP
(Las Vegas) there exists a randomized algorithm A such that for any instance |



Prob[ A recognizes I | I € L] > e,

and

Prob | A recognizes I | I € L| =0,

1
here € is any constant in the interval (2,1) Again, as in the case of one-sided-error in the
soundness side (84.4.3), because there is no need to use the majority election criterion in the
process of enlarging the completeness probability bound, € can actually be any constant in (O,
1).

Also again we should notice € - = 1; otherwise the subclass degenerates to the special case

ZPP. Randomized algorithms with this error-probability characterization have one-sided error
in the completeness side. In other words, such an algorithm may make a mistake in terms of a
false non-recognition of an instance. However, if an instance is recognized then no mistake is
possible: the instance must be a genuine one. This subclass of algorithms are called Las Vegas
algorithms. The term Las Vegas, first introduced in [16], refers to randomized algorithms which
either give the correct answer or no answer at all.

From our analysis in 84.4.1.1, we know that the probability for a Las Vegas algorithm to give
YES answer to an instance can be enlarged to arbitrarily closing to 1 by independent iterating
the algorithm and the iterated algorithm remains in polynomial time. If we say that Monte Carlo
algorithms are always fast and probably correct, then Las Vegas algorithms are always correct
and probably fast.

Observing the error probability characterizations of ZP'P, P P(Monte Carlo) and P P(Las
Vegas), the following equation is obvious

ZPP = PP(Monte Carlo) N PP(Las Vegas).

4.4.4.1 An Example of Las Vegas Algorithms

Letp be an odd positive integer and let p — 1 = gql1g2 ... gk as the complete prime factorization of
p — 1 (some of the prime factors may repeat). In Chapter 5 we will establish a fact (5.4.4):p is
prime if and only if there exists a positive integer g € [2, p — 1] such that

Equation 4.4.10

g? 1 = 1 (mod p)
gP=W/a 2 1 (modp) for i=1,2,...,k

This fact provides us with an algorithm for proving primality. Inputting an odd number p and the
complete prime factorization of p — 1, the algorithm tries to find a number g satisfying (4.4.10).



If such a number is found, the algorithm outputs YES and terminates successfully, and p must be
prime. Otherwise, the algorithm will be in an undecided state; this means, it does not know if p
is prime or not. The algorithm is specified in Alg 4.6.

First we notice k < log2(p — 1), therefore Alg 4.6 terminates in time polynomial in the size of p.

From the fact to be established in Theorem 5.12 (in 85.4.4), we will see that if Alg 4.6 outputs
YES, then the input integer p must be prime; no error is possible. Also, if the algorithm outputs
NO, the answer is also correct since otherwise Fermat's Little Theorem (4.4.8) will be violated.
These two cases reflect the algorithm's "always correct” nature. The error-free property of the
algorithm entitles it to be named "Proof of Primality."

Algorithm 4.6: Proof of Primality (a Las Vegas Algorithm)

INPUT p: an odd positive number;
ql,92, ..., gk: all prime factors of p — 1;
OUTPUT YES if p is prime, NO otherwise;

NO_DECISION with certain probability of
error.

1. pickg €y[2,p—1];

2. for (i=1, i++,k) do

3. ifg -1/, = 1 (mod p) output NO_DECISION and terminate;
4. ifg p-1 1 (mod p) output NO and terminate;

5. output YES and terminate.

However, when Alg 4.6 outputs NO_DECISION, it does not know whether or not the input
integerp is prime. It is possible that p is not prime, but it is also possible that an error has
occurred. In the latter case p is indeed prime, but the testing number g which the algorithm
picks at random is a wrong one. After we have studied Theorem 5.12 in 85.4.4, we will know
that the wrong number g is not a "primitive root.”

To this end we know that Alg 4.6 is a one-sided-error algorithm in the completeness side, i.e., a
Las Vegas algorithm. We may revise the algorithm into one which does not terminate at a
NO_DECISION answer, but carries on the testing step by picking another random tester g. The
modified algorithm is still a Las Vegas algorithm, and becomes "probably fast" since it's possible
that it always picks a non-primitive root as a tester. Fortunately, for any odd prime p, the
multiplicative group modulo p (to be defined in Chapter 5) contains plenty of primitive roots and
so such an element can be picked up with a non-trivial probability by random sampling the
group modulo p (in Chapter 5 we will establish the proportion of primitive roots in a
multiplicative group modulo a prime).



Las Vegas algorithms and Monte Carlo algorithms collectively are referred to as "randomized
algorithms with one-sided error." Algorithms in this union (recall that the union includes

ZP'P) are really efficient ones; even they are non-deterministic algorithms, their time-
complexity behaviors are similar to those of the algorithms in P.

4.4.4.2 Another Example of Las Vegas Algorithms: Quantum Factorization

A quantum computer can factor an integer in time polynomial in the size of the integer (i.e.,

FACTORIZATION £Q F—")_ Shor devises such an algorithm ([267], also see, e.g., pages 108-115
of [300]). We now explain that Shor's quantum factorization procedure is also a Las Vegas
algorithm.

To factor an integer N, a random integer a is picked; a quantum algorithm, which uses Simon's
idea of finding period in quantum state by sampling from the Fourier transform [276], can find
the period of the function f(x) = aX (mod N), i.e., the least positive integer r satisfying f(r) = 1.
InChapter 6 we shall see that for a composite N, a non-trivial proportion of integers a satisfying
gcd(a, N) = 1 has an even period (called the multiplicative order of the element a), i.e., ris
even.

Once an even period r is found, if a'/2 F 1 (mod N), then a2 (mod N) is a non-trivial square-
root of 1 modulo N. In §6.6.2 (Theorem 6.17) we shall show that gcd(a”2 + 1, N) must be a
non-trivial factor of N, i.e., the algorithm has successfully factored N.

Ifr is odd or if a /2 = =1 (mod N), then gcd(a2 + 1, N) is a trivial factor of N, i.e., 1 or N; so
the algorithm fails with no answer. However, for randomly chosen integer a < N, the probability

for encountering a2 F 1 (mod N) is bounded from below by a constant € > 1/2, and therefore
the procedure can be repeated using another random element a. By our analysis in §4.4.1.1,
Shor's algorithm remains in polynomial time.

4.4.5 Subclass "Probably Fast and Probably Correct”

A subclass of P P is named B PP (which stands for "Bounded error probability Probabilistic
Polynomial time") if the error probability bounds in (4.4.1) and (4.4.2) both hold for the
following cases:

Equation 4.4.11

- 3,

S

€E [% +a,1) and 4 € (0,

herea > 0 and b > 0. We should pay attention to two things in this error probability
characterization:

1. €#1 andd # 0. Otherwise, the subclass BPP degenerates to one of the three simpler
cases: ZPP, or PP(Monte Carlo), or PP(Las Vegas). Now with € Flandd & o,
algorithms in BPP have two-sided errors, both false no-recognition (a completeness



error) and false recognition (a soundness error) are possible.

2. a > 0 and/or b > 0. This means that algorithms in BP'P have their error probabilities

: (€ TE#D)
clearly bounded away from 2. In 84.4.1 we have reasoned that if - 2 2/ then
repeating the algorithm with the majority election criterion can lead to the enlargement of

-1 s5s_-1

the completeness (reduction of the soundness) error probability. If & 2 or 0 2, then
the majority election technique won't work, since the former (the latter) case means that
there is no majority fraction of the random moves to lead to a recognition (rejection).

However, a "minority election criterion” may still be used (we will see such an example in

_ 1 o
8§18.5.1). Finally, if & 2 and 0 2, then no election criterion can work and the
problem is notin PP (i.e., cannot be recognized by a non-deterministic Turing machine

regardless of how long a machine runs).

Since besides Monte Carlo and Las Vegas, Atlantic City is another famous gambling place to lure
people to increase their winning probabilities by increasing the number of games they play,
randomized algorithms with two-sided-errors are also called Atlantic City algorithms. Now let
us look at an example of Atlantic City algorithms.

4.4.5.1 An Example of Atlantic City Algorithms

There is a famous protocol in quantum cryptography named the quantum key distribution
protocol (the QKD protocol, see e.g. [31]). The QKD protocol allows a bit string to be agreed
between two communication entities without having the two parties to meet face to face, and yet
that the two parties can be sure with a high confidence that the agreed bit string is exclusively
shared between them. The QKD protocol is a two-sided-error randomized algorithm. Let us
describe this algorithm and examine its two-sided-error property.

Let us first provide a brief description on the physical principle for the QKD protocol. The
distribution of a secret bit string in the QKD protocol is achieved by a sender (let Alice be the
sender) transmitting a string of four-way-polarized photons. Each of these photons is in a state
(called a photon state or a state) denoted by one of the four following symbols:

=5 | 5 5 N

The first two photon states are emitted by a polarizer which is set with a rectilinear orientation;
the latter two states are emitted by a polarizer which is set with a diagonal orientation. Let us
denote by + and x these two differently oriented polarizers, respectively. We can encode
information into these four photon states. The following is a bit-to-photon-state encoding
scheme:

Equation 4.4.12

+0)= —, +(1)= | , X(O) =/, X(1)=\.

This encoding scheme is the public knowledge. If Alice wants to transmit the conventional bit O
(respectively, 1), she may choose to use + and consequently send out over a quantum channel



— (respectively, |), or choose to use x and consequently send out / (respectively, \). For each
conventional bit to be transmitted in the QKD protocol Alice will set differently oriented
polarizers + or x uniformly random.

To receive a photon state, a receiver (who may be Bob, the intended receiver, or Eve, an

eavesdropper) must use a device called a photon observer which is also set with rectilinear or

diagonal orientation}s. We shall also denote by + and x these two differently oriented observers,
e

respectively. Let 7 and > denote the two differently oriented observers receiving and

interpreting photon states transmitted from left to right. The observation of the photon states

obeys the following rules:

Correct observations (states are maintained)

R N = R - -

Incorrect observations (states are destroyed)

N :+> —  probability

| probability

/ +: —  probability

| probability

Tl it 3 i
b= 3=

x

| = /" probability
1 =

» bability
o : / probability
S probability

probability

B B
b= b=

These observation rules say the following things. Rectilinearly oriented states can be correctly
observed by rectilinearly set observers correctly; likewise, diagonally oriented states can be
correctly observed by diagonally set observers correctly. However, if a rectilinearly (diagonally)
oriented state is observed by a diagonally (rectilinearly) oriented observer, then a +£45°
"rectification™” of the orientation will occur, with 0.5 probability in either directions. These are
wrong observations and are an inevitable result of "Heisenberg Uncertainty Principle.” which
underlies the working principle for the QKD Protocol.

So if the orientation setting of the receiver's observer agrees with (i.e., is the same as) the
setting of Alice's polarizer then a photon state will be correctly received. The public bit-to-photon
encoding scheme in (4.4.12) is a 1-1 mapping between the conventional bits and the phone
states. So in such a case, the conventional bit sent by Alice can be correctly decoded. On the
other hand, if the orientation settings of the photon devices in the two ends disagree, a wrong
observation must occur and it also necessarily destroys the photon state transmitted, although
the receiver can have no idea which photon state has actually been sent and destroyed.

We are now ready to specify the QKD Protocol. The protocol is specified in Prot 4.1.

Let us explain how this protocol works and measure the probabilities for the two-sided errors to
occur.



Protocol 4.1: Quantum Key Distribution (an Atlantic City
Algorithm)

High-level Description of the Protocol

Quantum channel Alice sends to Bob m photon states, each of them is randomly

SRIVAN

oriented in

. m
Conventional channel, open discussions They choose * 1 "sifted bits" which
are transmitted as the result of Alice's settings of her polarizers agree with Bob's

settings of his observers. They further compare random & (<k) "testing bits” in the k
sifted bits to detect eavesdropping, and in absence of an eavesdropper, they agree

on the remaining k — & secrete bits.

1. Alice generates m random conventional bits aj,a 2, ..., am €y {0, 1}; she sets m
randomly oriented polarizers p1,p 2, ..., pm €u {+, X}; she sends to Bob m
photon states pi1(ai),p 2(a2), ..., pm(am) according to the bit-to-photon-state
encoding scheme in (4.4.12);

2. Bob sets m randomly oriented photon observers 03,0 2, ..., om £y {+, x} and
uses them to receive the m photon states; using the bit-to-photon-state
encoding scheme in (4.4.12) Bob decodes and obtains conventional bits bq,b 2,
...,b m; he tells Alice: "All received!";

3. They openly comg?re their settings (p1,0 1), (P2,0 2), ..., (Pm,0 m); if there are
more than "* 10 pairs of the settings agree as follows: (* without loss of

generality we have relabeled the subscripts *)

py=1up; Tor 1 <t<k,

then they proceed to execute the following steps; otherwise the run fails (* the
failure is an error in the completeness side *);

ERNT.
4. (* now the set {(u’“ bi‘-}}i—l contains k pairs of sifted bits distributed via the
agreed settings of polarizers and observers *) Alice and Bob openly compare

. BYlk
random f pairs in {m“ bi’-}}i_l; the compared bits are called testing bits; if
any pair of the testing bits do not match, they announce "Eavesdropper
detected!" and abort the run;

5. They output the remaining k — f bits as the distributed secret key; the run
terminates successfully (* but an error in the soundness side may have
occurred *).

Steps 1 and 2 are quite straightforward: Alice sends to Bob m random photon states using m



random settings p1,p 2, ..., Pm €Eu {+, X} (Step 1) and Bob has to observe them in a random
process using m random settings 01,0 2, ..., om €y {+, X} (Step 2). The m conventional bits Alice
encoded and transmitted are aj,a 2, ..., an and those Bob received and decoded are bs,b 5, ...,
bm.

In Step 3, Alice and Bob discuss over a conventional communication channel to see whether or
[ - YR

not in their random m pairs {{;U-x; Of-]};:lil of the devices settings there are =~ 1 pairs of
settings being the same. If there are k agreed settings they will proceed further. Otherwise, the
run has failed and this is an error in the completeness side. We shall provide a probability
measure for the completeness-side error in a moment.

Suppose that a completeness-side error has not occurred and the two parties are now in Step 4.
They now have a set of k sifted bits which are distributed by the k agreed devices settings.
Without loss of generality we can relabel the subscripts of these bits; so Alice's sifted bits are aj,
ar, ..., ax and those of Bob are bj,b 2, ..., bx. They now conduct an open discussion again over the

conventional channel: comparing a random £ pairs of the sifted bits. Any mismatch will be
considered as being caused by an eavesdropper Eve. If they do not find the existence of Eve in

Step 4, the protocol reaches the happy end in Step 5. Alice and Bob now share k — f bits which
they consider as not having been eavesdropped. However, it is possible that the reason of non-
detection is the occurrence of a soundness-side error. Let us now investigate the probability for
this error.

Probability of the Soundness-side Error

Suppose Eve has listened the quantum channel. The only way for Eve to observe the photon
states sent from Alice is to use the same technique that Bob uses. So Eve has to set m random
orientations for her observers and she also has to send m states to Bob. Due to "Heisenberg
Uncertainty Principle” her wrong observations will destroy Alice's states. Since Eve can have no
idea on the correctness of her observations, she will have no idea on what should be passed to
Bob. One strategy for Eve is to send to Bob a completely new set of m states which she invents
randomly (just as Alice does), hoping that whatever she sends and whatever Alice sends will be
observed by Bob without difference; another strategy is to just pass over to Bob whatever she
has observed, hoping that she has not destroyed Alice's states. Actually, there will be no
difference between these two strategies in terms of effecting the soundness-side error probability
which we now derive.

Let us consider the second strategy (the first strategy will lead to the same soundness-side error
probability result, Exercise 4.9). For state pi(a;j), if Eve has set her observer ej correctly, i.e., ej =
pi, then she will receive the state pj(aj) and hence the bit a; correctly, and consequently Bob will
receive the state and the bit correctly too. So in this case there is no way for Alice and Bob to
detect Eve's existence. Since the probability for Eve to have correctly set her i-th observer is %2,
we have ¥z as part of the probability value for non-detection (in the i-th position).

If Eve has set her i-th observer incorrectly then the i-th state she observes is incorrect and
hence she will send an incorrect state to Bob. Nevertheless, Bob's observer will "rectify” that
wrong state by +£45°, 50:50 chance either way. Thus, Bob may receive that state correctly or
incorrectly with probability for either case being 1/2. A correct receipt will again leave Eve
undetected. Notice that this sub-case of non-detection is after Eve's wrong setting of her device

which also has the probability 1/2. Since Eve's and Bob's devices settings are independent, the
1 1 _ 1

probability of this sub-case of non-detection is 2 2 4,

Summing the probability values obtained in the above two paragraphs, we have derived

1,1 _ 3
2 T 4~ 4 as the probability for non-detection of Eve in her listening of the i-th state. Since Eve



must listen to all the sifted states in order for her to obtain the distributed key, and Alice and

Bob compare random f testing bits and any single mismatch will signal a detection (this is a
"unanimous election criterion”, not even a single failure is tolerated, see 84.4.1.2), the
4

¢
probability for non-detection of Eve in all positions is {lj . This is the probability for the
soundness-side error. This quantity diminishes to O very fast.

Probability of the Completeness-side Error

Finally let us look at the probability for a completeness-side error to occur. Consider Alice's m
settings of her devices being a random binary vector V = (v1,V 2, ..., Vi) and those of Bob's, W =
(W1,W 2, ..., Wy). A completeness-side error occurs when

VeW= (v ®w,vs Bwa, ...,V B wWn)

it
has less than 11} zeros. Since the settings of Alice and those of Bob are independent and uniform,

\% $W should also be a uniformly random binary vector of m binary bits. The probability of

number of zero's i appearing in this vector follows the binomial distribution of m trials with i

successes where the probability for success is 0.5. Clearly, the "most probable number of zeros"
Tr

in vector V ®W is 2. Thatis, the "central term" (see §3.5.2.1) of this binomial distribution is
[m+lJ . lm+lJ

at point 2 1. So point 1t} is far away (far left) from point 2 where the central term is.
Thus, the probability of a completeness-side error

Prob [zems_in{l’ eW) < %]

is a "left tail" of this binomial distribution function. By the probability bound for a left tail which
we have established in (3.5.8), we derive the following bound for the probability of occurring a
completeness-side error:

m (m+1-— 205 3
— | < 1 - i i)
“‘] (m+1)05-2)2 " m (for m = 2)

Prob {zems_in(l-’ &W) <

Therefore, the probability for Alice and Bob to run the protocol beyond Step 3 is greater than
L

T

Summary of the Two-sided-error Probabilities

We summarize the probabilities of two-sided errors for Prot 4.1 as follows. For completeness
side we have:
3

- ok . I s
Prob | Number of sifted bits = o | In m photon states {llﬁl.l']]II]‘l{"ti] =1 - —,
m



and for soundness side we have:

i
Prob [ Non-detection of Eve | Alice and Bob test ¢ testing bits]| < (—J ;

o
We should notice that the "left tail" bound ", obtained from (3.5.8), for the completeness-side
)
error probability is a loose upper bound. The left tail diminishes to zero much faster than m does
(see the numerical example in Example 3.9).

These error probability results show that the QKD protocol can be practically used for key
distribution. In the real application, the conventional communication channel over which Alice
and Bob conduct open discussions should have the authentication property. That is necessary in
order for them to be sure that they share the secret key with the right communication partner.
Authentication will be the topic of Part IV.

Commercial QKD systems are expected to be in practical use in year 2004 or so [268].

4.4.6 Efficient Algorithms

To this end of our introduction to the polynomial-time class and to the probabilistic polynomial-
time (PPT) subclasses, we have established the following class inclusion relation:

PP(Monte Carlo)

PCZPPC PP(Las Vegas)

C BPP C PP.

Algorithms which can solve problems in any of these classes are called efficient algorithms.

Definition 4.6: Efficient AlgorithmsAn algorithm is said to be efficient if it is deterministic or
randomized with execution time expressed by a polynomial in the size of the input.

This definition characterizes a notion of tractability: whether deterministic or randomized, a
polynomial-time problem is solvable, i.e., such a problem requires resources which are
manageable even if the size of the problem can be very large. Problems outside the tractable
class are intractable.

However, since polynomials can have vastly different degrees, within PorP P, problems have
vastly different time complexities. Therefore an efficient algorithm for solving a tractable
problem need not be efficient in a practical sense. We will see a few protocol examples in a later
chapter, which have their time complexities bounded by polynomials in their input sizes. Thus,
these protocols are efficient by Definition 4.6), however, they have little value for practical use
because the polynomials that bound their time complexities are simply too large (i.e., their
degrees are too large). This is in contrast to the situations in applications where some algorithms
with non-polynomial (to be defined in §4.6) time complexities are still useful for solving small
instances of intractable problems effectively (e.g., Pollard's Kangaroo Method for Index
Computation §83.6.1).



We shall use the term practically efficient to refer to polynomial-time algorithms where the
polynomials have very small degrees. For example, Turing machine Div3, algorithms gcd,
mod_exp and Prime_Test, and the QKD protocol are all practically efficient. Now let us see
another example of a practically efficient algorithm which is widely used in modern

cryptography.

4.4.6.1 Efficient Algorithms: An Example

The idea of probabilistic primality test can be translated straightforwardly to an algorithm for
generating a random probabilistic prime number of a given size. We say that nis a
probabilistic prime number if Prime_Test(n) returns the YES answer. Alg 4.7 specifies how to
generate such a number of a given size.

Algorithm 4.7: Random k-bit Probabilistic Prime Generation

INPUT k: a positive integer;
(* the input is written to have the size of the
input *)

OUTPUT ak-bit random prime.

Prime_Gen(k)

1. p €u (2k1,2k—1] with p odd;

2. if Prime_Test(p) = NO return( Prime_Gen(k) );

3. return(p).

First, let us suppose that Prime_Gen(k) terminates. This means that the algorithm eventually
finds a number p which satisfies Prime_Test(p) = YES (in step 2). From our estimate on the error
probability bound for Prime_Test, the probability for the output p not being prime is bounded
from above by 2-X where k = logap.

An obvious question arises: Will Prime_Gen(k) terminate at all?

The well-known prime number theorem (see e.g., page 28 of [170]) states that the number of
X

primes less than X is bounded below by log X | So the number of primes of exactly k binary bits
is about

23: 2.1;—1 2!;

k. k-1 2%




Thus, we can expect that Prime_Gen(k) may recursively call itself 2k times in step 2 until a
probabilistic prime is found, and then it terminates.

With the time complexity for Prime_Test(p) being bounded by Og((logp)4) = Og(k%), after 2k
calls of Prime_Test, the time complexity of Prime_Gen(k) is bounded by Og(k>).

Another question arises: while Og(k®) is indeed a polynomial in k, can this quantity be a
polynomial in the size of the input to Algorithm Prime_Gen(k), i.e., a polynomial of the size of k?

When we write a number n in the base-b representation for any b > 1, the size of the number n
is logp n and is always less than n. In order to make Prime_Gen(k) a polynomial-time algorithm
in the size of its input, we have explicitly required in the specification of Prime_Gen(k) that its
input should be written to have the size of the input. Using the unary, or base-1, representation,
k can indeed be written to have the size k.

Definition 4.7: Unary Representation of a NumberThe unary representation of a positive
natural number n is

P I] sev ],
R —

T

From now on we shall use Prime_Gen(1X) to denote an invocation instance of the algorithm
Prime_Gen. In the rest of this book, the unary representation of a number always provides an
explicit emphasis that the size of that number is the number itself.



4.5 Non-deterministic Polynomial Time

Consider the following decisional problem:

Proplem SQUARE-FREENESS

INPUT N: a positive and odd composite integer;
QUESTION IsN square free?

Answer YES if there exists no prime p such
thatp 2|N.

Problem SQUARE-FREENESS is very difficult. To date there exists no known algorithm (whether
deterministic or probabilistic) which can answer it in time polynomial in the size of the input. Of
course, there exists algorithms to answer this question. For example, the following is one: on

N.J
inputN, perform trial division exhaustively using the square of all odd primes up to [ , and
answer YES when all divisions fail. However, for N being a general instance input, this method

O(| VN|) = O(e"%")

runs in time , i.e., in time exponential in (half) size of N.

Nevertheless, Problem SQUARE-FREENESS should not be regarded as too difficult. If we know
some "internal information" of the problem, called a witness (or a certificate or an auxiliary
input), then an answer can be verified in time polynomial in the size of the input. For example,
for input N, the integer p(N), which is named Euler’'s phi function of N and is the number of all
positive numbers less than N and co-prime to N (see Definition 5.11 in 85.2.3), can be used as a
witness for an efficient verification algorithm to verify an answer to whether N is square free. Alg
4.8 is an efficient verification algorithm.

Algorithm 4.8: Square-Free(N,p(N))

1. d +=gcd(N,f(N));

2 N
2. ifd=1or d ff‘ answer YES else answer NO.

The reader who is already familiar with the meaning of f (N) may confirm the correctness of Alg
4.8 (Exercise 4.13). This verification algorithm is due to a basi